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Abstract

Plants have been observed to show a range of plastic responses to environmental

conditions. For example, the abundance and distribution of nutrients, as well as the

presence and proximity of local competition, have been seen to result in changes in

root proliferation and architecture. However, whilst some species have been witnessed

displaying certain responses under given circumstances, experimental evidence sug-

gests that responses to environmental factors can be far from simple, and sometimes

counter-intuitive. Plant responses to components of the environment, and the benefit

of such responses, are highly context sensitive.

This thesis explores some of the real world complexities that result in the observed

responses to hierarchical sets of environmental factors, and presents a theoretical

model that seeks to elucidate the interplay between different factors and their effects

on “optimal” behaviour by both individuals and populations.

Starting with a simple one-dimensional model comprising a linearised approxi-

mation of a Gompertz growth function with nutrient patch dependent growth, the

individual and combined effects of stochasticity in resource and competitor distribu-

tion are investigated. Complexity and functionality are progressively built up, with

a resource dependent proliferation response, a scaling up into two-dimensions, and

finally different intrinsic plant growth strategies trading growth rate against root

system efficiency all introduced and investigated.

Throughout the work presented in this thesis, complex and subtle behavioural

responses and patterns emerge from seemingly simple models. The importance of

stochasticity on individual and population level performance is also highlighted, and

the results demonstrate the inability for mean-field approximations and expected

results to capture the emergent behaviour.
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Chapter 1

Introduction

At the broad scale, plants can be thought of as constituting two parts: above and

below ground. For obvious reasons, the above ground part of a plant’s structure can

be much more easily observed and measured, and consequently understood. Above

ground, from the initial days as a shoot growing from a seedling through to a fully

formed system of stemming branches adorned with leaves, buds or flowers, growth has

evolved to allow the plant to best facilitate a number of functions, such as capturing

light for photosynthesis or attracting pollinating insects. Survival for a plant means

succeeding in adequately performing all of these functions to allow reproduction to

take place.

Below ground, a plant’s root system similarly performs a number of equally im-

portant tasks to enable the plant to grow and survive. The main functions of the root

system are anchorage, nutrient acquisition and water uptake (Hodge et al. 2009).

How an individual plants goes about performing these functions varies from species

to species (Malamy 2005), and depends on both the environmental conditions in which

the species have evolved to succeed and those which the individual plant finds itself

growing within (Malamy 2005).

The focus of this thesis is on the below ground elements of plant growth, specifi-

cally the effects of stochasticity in environmental conditions and competition on the

performance of an individual or population of plants. The aim is to further under-
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standing of how their behaviour can maximise performance and, in turn, how different

behaviour affects others in the environment. A better understanding of how resource

distribution affects plant growth, at both the individual and population scale, could

help to minimise the cost (financially and environmentally) incurred from excessive

use of fertilisers (Cropper and Comerford 2004).

1.1 Root function

Observations of below ground activity of an individual or a plant community can

be performed in many ways (Cahill and McNickle 2011), such as excavating root

systems, the use of transparent growth chambers, or tracking the movement of tracer

elements/compounds; the most appropriate method obviously depending on what

exactly is being investigated. Whilst X-ray Computed Tomography (CT) scanning

allows for the tracking and visualisation of root structures within the soil, and soil

movement using isotopes, there are limitations to the accuracy and applicability of

such approaches (Garbout et al. 2011). Although new techniques and approaches

are leading to improvements in this area (for example, Mairhofer et al. 2012, 2013),

consequently it is difficult to perform below ground observations in non-destructive

ways without having to grow the plants in idealised lab conditions, and often it is

plausible to only study one or two plants at a time. This is one of the key areas where

theoretical models can help in understanding the growth and behaviour of plants.

The individual roots in a plant’s root system directly affect a narrow volume

around their surface, the rhizosphere. By secreting compounds the roots modify the

immediate environment, stimulating microbial activity to aid nutrient capture, as well

as helping to protect the roots from disease and drying out (Paterson 2003; Paterson

et al. 1999; Hodge et al. 1998b; Kuzyakov 2002). Over a broader spatial range, the

root system indirectly affects the environment through diffusion due to water uptake

(Tinker and Nye 2000). The different nutrients required by a plant can have markedly

different diffusion rates, varying by a number of orders of magnitude (Tinker and

Nye, 2000). Consequently, optimal proliferation for different nutrient types requires
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different strategies. Nutrients with relatively high diffusion rates (such as NO−

3 ions)

can cause issues of self competition amongst closely located roots (Casper and Jackson

1997) for example; conversely, relatively immobile nutrients (such as phosphate ions)

experience little diffusion over time frames relavent to root growth (Tinker and Nye

2000). This immobility makes obtaining phosphate more difficult, and consequently

many plants have evolved to form symbiotic relationships with mycorrhizal fungi, the

most common form being that of the arbuscular mycorrhizal (AM) which can form

on circa two-thirds of all land plant species (Smith and Read 2008). In exchange

for carbon from the host plant, the AM fungal partner enhances the plant’s nutrient

capture by exploring a larger volume of soil and acquiring phosphurus (P) from beyond

the phosphate depletion zone that quickly builds up around the plant root’s surface

(Smith and Read 2008; Tinker and Nye 1973).

1.2 Root system architecture

It is a challenge in itself to describe an existing root system, let alone model the

growth and development of a system dynamically. In terms of root architecture there

are two key elements: the shape of the system and its structure (Hodge et al. 2009).

The shape of the root system refers to the spatial distribution of the roots, and can

be represented by measurements such as root length densities (length of root per unit

volume of soil) or the depth of soil in which roots are found. The structure describes

the components of the system, and can be expressed by considering the root system

as a collection of nodes (branching points) and links (root segments between nodes)

to form different classifications (Fitter et al. 1991). Both shape and structure provide

valuable information in terms of describing the physical properties of the root system,

but both are needed to fully represent its architecture (two different root systems can

have similar shape but different structure, or vise versa).

Structure classifications generally fall into one of two categories: developmental

systems and topological systems (Fitter 1987; Fitter et al. 1991; Fitter and Strickland

1991). Developmental systems deal with the order of roots (starting with first order,
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and subsequent subsidiary roots taking higher order values) and how the structure

grows and develops over time. Problems with this form of classification arise when

trying to describe existing structures rather than developing ones, due to the need

for decisions to be made over the ordering of the roots at existing branching points

retrospectively.

Topological systems use a reverse ordering to describe an existing structure (exte-

rior links are of first order, with interior links defined by the number of exterior links

they supply). From this labelling system, topological parameters such as altitude

(maximum path length to an external link) and external path length (sum of all path

lengths to external links) can be defined (Fitter 1987). Due to the ordering employed,

these models are not suited to growing/developing systems since they would require

the re-ordering of existing roots as the system evolves over time.

Different species display markedly different root architectures (Hodge et al. 2009;

Taub et al. 1996), but individual plants also see changes to their architecture through

their life time. Taub et al. (1996) utilised the topological classification of Fitter (1987)

to quantify the variations in root systems from numerous species when grown under

different conditions. Classification within the topological model changed as a result

of the plants altering their root system structure over time, reflecting shifts towards

a more herringbone like structure under reduced resources.

Whilst root length density, branching angles, root depth and topological classifi-

cations can say much about the structure and spatial distribution of a root system,

there are many other features that are important in attempting to fully define a root

system. As stated, the root system as a whole performs a numbers of functions, and

these functions are served as a combination of the functions of the individual roots.

Different roots within a plant’s root system perform different functions (Waisel and

Eshel 1992; Hishi 2007). For example, it has been shown that as little as 30% of a

plant’s root system can be involved in water uptake, and only 10% involved in nitrate

uptake, at a given time (Robinson 1991; Hodge et al. 2009).
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1.3 Root responses to the environment

It is well established that localized root proliferation in nutrient-rich patches occurs

in response to heterogeneity in resource supplies (reviewed by Hodge 2004, 2009).

Aided by the modular nature of their root systems, plants can exhibit a significant

degree of architectural flexibility in root deployment (de Kroon et al. 2009; Malamy

2005; Hodge et al. 2009).

Whilst such behavioural responses can seem quite logical, evaluating exactly why

plants respond in the way they do to environmental cues is not straight forward.

The marginal value theorem (MVT), more common in animal literature than that for

plants, has been highly influential in the study of optimal foraging strategies (Charnov

1976). The MVT predicts that optimal foraging involves organisms investing foraging

effort proportional to the quality of an encountered resource patch. When applied to

plants, there is evidence that these predictions are true for root proliferation strategies

(for example Gleeson and Fry 1997; Gersani et al. 1998), and there are arguments

that optimality is important in assessing root foraging behaviour (McNickle et al.

2009)

However, observed results of the proliferation responses of different plants in vary-

ing scenarios suggest that notions of optimality are perhaps too simple. For example,

it has been demonstrated that root proliferation is of little net benefit to either single

plants or plants grown in monoculture as a means to acquire nitrogen (N) from N-rich

zones (Hodge et al. 1998a; Fransen et al. 1998; van Vuuren et al. 1996). However,

when plants are grown in interspecific competition for N from a complex organic patch

(mixed N-sources) then root proliferation can confer a competitive advantage (Hodge

et al. 1999a; Robinson et al. 1999). In short, the response itself to the available

resources does not reflect the importance of the reaction in terms of nutrient capture,

but rather the importance of the reaction (and subsequently obtained resources) are

highly context sensitive (Hodge et al. 2009).

The presence/absence of competing plants obviously forms a part of this context.

As well as plastic responses to resource heterogeneity, plants are also known to alter
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their behaviour in response to the presence of competitors (Cahill et al. 2010, Hodge

2009, Gersani et al. 1998). A commonly observed response is root segregation in

order to avoid direct competition with the roots of other plants (reviewed by Schenk

et al. 1999).

But just as root responses to resource heterogeneity are context sensitive, so too

are the responses to competitors. For example, Cahill et al. (2010) observed that when

Abutilon theophrasti seedlings are grown in isolation, they deploy a broad foraging

strategy regardless of the level of resource heterogenity. When grown in the presence

of competition, a more focussed foraging strategy was observed, which in turn was

influenced by the resource distribution. Again, responses cannot simply be attributed

to one factor or another, with an emerging hierarchical set of factors combining to

determine the observed responses.

Responses to competitors also appear to be dependent on the identity of the

competition. There is evidence to suggest that plants are able to recognise “kin”,

and alter behaviour so as to reduce direct competition with sibling plants compared

to non-related competitors (Dudley and File 2007; Bhatt et al. 2011; Murphy and

Dudley 2009), though it has been observed that not all plants respond in the same

way to self/non-self competition (see Hess and de Kroon 2007; Schenk 2006; Masclaux

et al. 2010; Milla et al. 2009). Whilst such behaviour has evolutinary merit, it is

again context sensitive and its effect on the outcome of competition compared to other

factors could be limited (Milla et al. 2009)

The different contexts in which a plant can find itself growing can of course be

hugely variable: soil impedance (affected by water content and soil type), resource

abundance and distribution, competitor proximity and numbers, and a whole host

of other factors will all affect what it means for a root system’s architecture and

proliferation responses to be optimal.

Even when optimal behaviour can be identified and/or quantified, it does not

necessarily mean that it is the preferred behaviour for an organism to display. Care

must be taken when talking about optimality, as one has to be careful about what
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it actually means to be “optimal”; when talking about success and survival in an

evolutionary context (which ultimately is what has shaped the form and behaviour

of all organisms), it is essential to assess performance against evolutionarily relevant

metrics rather than simply assess mean-field properties (Currey et al. 2007; James et

al. 2010; Preston et al. 2010).

As well as changes to root architecture, varying population densities (and with

it varying levels of competition) affect size hierarchies (distibution of inividual sizes

amongst the population) and community make-up (Wijesinghe et al. 2005). In even-

aged monocultures, as the population grows there is a tendency for a size hierarchy

to quickly emerge comprising a large quantity of smaller individuals and just a few

larger individuals (Hara, 1988; Purves and Law, 2002). As a plant grows, on the

local scale it continually influences, and is influenced by, the growth of its neighbours

(Schneider et al. 2006). Spatial population structure is highly localized, and mean-

field dynamics of the population do not qualitatively capture information about local

neighbourhood interactions and dynamics (Law and Dieckmann, 2000). Competition

is both local (Schneider et al. 2006; Lv et al. 2008) and, on a paired-plant basis,

strongly assymetric (Schwinning & Weiner, 1998; Schneider et al. 2006; Lv et al.

2008). Whilst summing these individual, local, pair-wise interactions can provide a

model of population-level dynamics that successfully explain some of the observed

variation in size-hierarchies, further work is needed to validate how accurate such

methods are (Schneider et al. 2006).

Experiments performed to assess the compound effects of resource and neighbour-

hood heterogeneity are somewhat limited by the experimental constraints mentioned

earlier. For example, a series of studies (Day et al. 2003; Wijesinghe et al. 2005;

Hutchings and Wijesinghe, 2008) investigated the impact of the spatial pattern of nu-

trient supply on yield and community structure. In each of these studies, plants were

grown in “chequerboard” environments, with squares of different sizes and nutrient

concentrations. Such an approach allows for areas of varying nutrient concentrations

to be created and observed. However, such organised, strictly defined resource hetero-
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geneity is some way from the more random heterogeneity often experienced in nature

(Fitter 1994).

In experiments carried out with Cardamini hirsuta (Day et al. 2003), it was

observed that overall yield among populations grown with the same total levels of nu-

trient supply were similar irrespective of the distribution of nutrient supply, with total

yield increasing with an increased total supply of nutrient. Whilst yield was unaffected

by resource distribution, populations grown in heterogeneous populations responded

by concentrating biomass into areas of higher nutrient concentration, though this al-

location of biomass was not affected by patch scale. It was also observed that the

mortality rate was greater under homogeneous conditions than heterogeneous condi-

tions at all nutrient levels and patch scales, suggesting that nutrient heterogeneity

can be an important component of plant survival.

When the population was comprised of a mixture of 20 herbaceous annual and

perennial species (Wijesinghe et al. 2005), it was observed that whilst the pattern

of nutrient distribution had few significant effects on a particular species or group

of species, community biomass and elements of population composition were affected

significantly. At greater concentration differences between patches, an increase in

root biomass was observed, demonstrating that competing plants obtaining resources

from limited sources increase root growth relative to those growing in homogeneous

environments. Whilst different species demonstrated notably different responses to

nutrient supply (for example Dactylis glomerata and Galium verum both saw sig-

nificant increases in biomass with decreasing nutrient patch density, whereas Rumex

crispus saw a corresponding decrease in abundance), the pattern of nutrient supply

had little effect on species richness and diversity. In conclusion, this suggests the rela-

tionship between diversity and heterogeneity is not necessarily positive. Highlighting

the inherent difficulties in performing observations of such experiments, it is worth

noting that the separation of the roots of individual species was not possible when

assessing biomass allocation within the environment.

When the impact of environmental heterogenity on the yield of the clonal plant
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Glechoma hederacea was investigated (Hutchings and Wijesinghe, 2008), the yield

at all scales was highly dependent on environmental context, with maximum yield

attained under a limited range of heterogeneous conditions. Even though overall

nutrient levels remained constant, the effects of nutrient heterogeneity on local and

popolation-level yield was highly context sensitive, with yield strongly affected by

the scale and relative concentrations of the patches. Yield significantly exceeded or

fell short of that in the homogeneous treatments depending on these patch prop-

erties, with yield differing greatly between treatments with common patch contrast

but different patch scales. The mean yield in high and low quality patches of the

large scale heterogeneous treatments were observed to always be significantly higher

or lower, respectively, than that achieved in the equivalent parts of the homogeneous

treatments. However, at the greatest concentration contrasts between patches, overall

yield in the heterogeneous treatments was significantly greater than in the homoge-

neous treatments, with the greatest net yield (compared to homogeneous conditions,

and overall) realized when patches were large and with the greatest contrast between

patches.

Despite the limitations imposed by the practicality of performing such experi-

ments, the results of these studies (Day et al. 2003; Wijesinghe et al. 2005; Hutch-

ings and Wijesinghe, 2008) help to cement the notion that responses to variability in

resource supply are highly context sensitive. Again, a hierarchical response pattern

is observed, with resource supply closely linked to competitor type and presence in

determining the overall effects on individuals within a population. Also, they high-

light that heterogeneity in resource supply (and the effects this has on plant growth)

is not as simple as the existance of areas of presence and absence of a resourse, but

that resource heterogeneity is also qualitatively and spatial-scale dependent.

Fitter (1994) defined a set of basic attributes to describe a patch. These key at-

tributes fall into two scale categories: spatial and temporal. Within the spatial and

temporal categories, there are sub-attributes for distribution (pattern and predictabil-

ity, respectively), extent (size and duration, respectively) and number (abundance and
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frequency, respectively). These patch properties, and the corresponding effects they

have on plant growth and competition, remain understudied.

With such a broad range of function and response, the modelling of plant root

growth and competition can be something of a daunting task. Whilst partly defined

by genetic information, in contrast to many modelled animals and organisms, plants

do not have predefined, known structures, and instead determine their own structure

during growth and development (Tardieu, 2010).

1.4 Modelling root systems

There are a numerous approaches to modelling root growth, each with their own

relative strengths and weaknesses (reviewed by Dupuy et al. 2010). All modelling

requires some level of compromise, and demands varying degrees of simplification or

assumption. As with all forms of modelling it is important when making decisions

about how to condense the complexity of the real world into a managable model that

these assumptions are carefully considered. If not, it is quite plausible, and to an

extent, inevitable, that a model will reflect nothing more than the assumptions made

during its construction.

A relatively common simplified approach to the modelling of root growth and

competition is to consider a root system’s “zone of influence” (see for example Berger

et al. 2002; Casper et al. 2003; O’Brien et al. 2007), the area or volume over which

an individual alters its environment. Such an approach eschews explicit modelling of

the root architecture and represents the root system as an area or volume (depending

on the number of dimensions being modelled) exhibiting certain charactistics such as

levels of resource uptake. Interaction and overlap between root systems are typically

controlled by predefined rules (for example Berger et al. 2002), rather than root

growth being determined by explicit processes and/or interactions.

An example of a different approach to the zone of influence methodology is taken

by O’Brien et al. (2007). In their two-dimensional model, distance-dependent root

growth costs and resource uptake proportional to resource levels results in a passive

31



CHAPTER 1. INTRODUCTION

(from the plant’s point of view) growth process where overlap and resource levels de-

termine the outcome of competition and realised growth. Whilst this approach yields

information about how the presence of local competition can alter a plant’s realised

performance in relation to its potential performance (in the absense of competition),

its passive nature excludes a large part of a plant’s responses and behaviour which are

implicit in such occurances in reality (Hodge 2004, 2009; Cahill and McNickle 2011).

In contrast to these highly simplified representations of root system are architec-

turally explicit models (Dupuy et al. 2010; Fitter et al. 1991; Jakobsen and Dexter

1987; Jourdan and Rey 1997; see Vos 2009 for a review of structural plant modelling).

The development of architecturally explicit models has been aided significantly in im-

provements in available computational power. While Fitter (1987) calculated nutrient

uptake and movement by scanning the screen of an Acorn BBC microcomputer and

counting coloured pixels, in more recent years advances in computational resources

has led to increasingly more complex and sophisticated models (see for example Jour-

dan and Rey 1997).

An important facet of modelling the function (in terms of water and nutrient

uptake) of root models is one of feedback loops between the root system and soil

environment (Pierret et al. 2007, Leitner et al. 2010; see Bever 2003 for a review of

conceptual and theoretical work on soil community feedback). This importance stems

from the fact that whilst the physical properties of the soil can affect the plant’s root

structure and architecture (Hodge 2004; Fitter and Stickland 1991), similarly there

is the effect of the plant’s behaviour on the soil (Pierret et al. 2007, Leitner et al.

2010).

For an individual root, the uptake of water and nutrients are often modelled and

described by partial differential equations. Two important examples of such equations

are the Richards equation for the movement of water in unsaturated soils (Jury and

Horton 2004) and the convection diffusion equation for solute transfer in soil (Barber

1995), which can be used to model the plant-soil dynamics of water and nutrient

uptake/movement (Leitner et al. 2010). These partial differential equations can be
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solved numerically by using the finite element method (FEM) (Doussan et al. 2006;

Javaux et al. 2008). An individual root element is often considered as a cylindrical

volume of specified length and radius (Roose and Fowler 2004, Roose and Schnepf

2008), over which transport equations for solute and water movement can be solved

to derive uptake along the root’s length.

Explicit architectural models are often constructed by calculating uptake for an

individual root segment and scaling this behaviour up to the whole-plant level (Roose

and Schnepf 2008, Leitner et al. 2010). Due to the computational complexity of

modelling water and solute uptake across an entire root system’s architecture, and

the resulting water and solute transport within the surrounding environment, it is

often necessary to reduce the problem to a simpler form. This is often achieved by

replacing a fully explicit model of resource uptake across a continuous root system

with a sink term to describe uptake over the entire structure (Roose and Fowler

2004, Roose and Schnepf 2008). This introduction of such a sink term in effect scales

uptake from the individual root to the root system as a whole, whilst simultaneously

reducing the complexity from the root system as a whole to an individual point of

acquisition. Whilst a number of different techniques exist to calculate this sink term

(Roose and Schnepf 2008), these methods typically rely on simplifying assumptions

about root structure (such as an even distribution of roots, or functional equivalence

across all roots) and the environment (homogenious soil) (Roose and Schnepf 2008,

Leitner et al. 2010). Such upscaling often results in a number of issues, not least the

absence (or at least masking) of the effects of both intra- and inter-plant root-root

competition for resources (Tardieu et al. 1992; Dupuy et al. 2010). As a result of

these assumption, it follows that sink terms need validation on an experimental basis

(Leitner et al. 2010).

Despite the continual increases in computational power, complex architectural

models are still difficult to scale up to population levels (Dupuy et al. 2010). As such,

whilst they can provide insight into certain aspects of plant growth, they can often

not be applied to competitive scenarios, and accordingly provide direct information
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and insight that is highly constrained to specific contexts.

However, the many factors influencing plant growth and root architecture dis-

cussed here also give rise to one of the biggest issues with complex architecturally

explicit models: parametrisation. Root growth models containing explicit root ar-

chitecture require a large number of parameters to define growth, development and

function (Dupuy et al. 2010). Measurements and observations of plant roots are

not only difficult (Cahill and McNickle 2011) but, as has been stated a number of

times within this discussion, highly context dependent (Hodge et al. 1999; Day et al.

2003; Wijesinghe et al. 2005; Hutchings and Wijesinghe 2008). The big question this

raises is: how does one parameterise a model and evaluate its behaviour in different

environmental conditions when the parameters themselves are so context sensitive?

Not only is there a large degree of variability in observed behaviour dependent on

the conditions a plant is grown in; there is a large degree of variability in growth and

architecture in control conditions (Forde 2009). This is a significant obstacle to such

models, and will likely persist to be so for some time to come.

It is possible for seemingly complex and realistic root system representations to

be generated and visualised by relatively simple models and methods. For example,

the fractal nature of plants’ root and branch systems have long been observed and

appreciated (Prusinkiewicz and Lindenmeyer, 1990), with simple algorithms able to

generate apparently complex structures. These algorithms can also be coupled with

environmental feedback (Mech and Prusinkiewicz, 1996), however this requires the

specification of rules of interaction for the interface between the plant simulation and

the environment model.

An alternative is a density based approach, where the density of a given property

or group of properties is used to describe a given structure. For example, Dupuy et

al. (2005) use branching density (the number of branching points per soil volume

and angular inclination range) as the characteristic measurement, and use a model to

generate a root structure with a branching density as close as possible to a specified

value. Although using just a single general root branching density function was
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sufficient for the simulated root systems generated to show strong similarity to the

real observed root systems, it is acknowledged that this is only possible for a static

geometry. When linking such a density based structure to resource uptake (Leitner

et al. 2010), the problems described previously regarding sink term validation still

apply. A dynamic model (i.e. a growing, developing root system) would require much

more consideration and parametrisation still.

It is generally excepted that the modelling of plants lags some way behind that

of other ecological areas (Tardieu, 2010). Given this fact, and the level of complexity

evident in the observations of plant growth and competition, it is not surprising that

increasingly complicated and detailed models continue to be created. Whilst there

appears to be a push for this trend to continue (Vos et al. 2010), it can be argued

that the inherent difficulties and issues associated with parametrisation and defining

behaviour in such models leaves plenty of scope for simplified models. As has been

shown in other areas of research (for example fish recruitment and foraging strategies,

see Brindley and Pitchford 2001; Brindley et al. 2003, 2005), models with minimal

assumptions about growth and functionality can allow for effects of different factors

to be investigated at the simplist level, and minimise concerns about complexity in

one area clouding simplicity in another, or vise-versa. Such simplified models can

potentially possess much greater flexability when it comes to scaling and applications

to variable conditions than their more complicated counterparts.

1.5 Thesis overview

In this thesis an idealised one-dimensional model of plant growth and competition

in heterogeneous environments is developed. By avoiding all non-essential features,

minimal assumptions are required. With a focus on qualitative rather than quan-

tative results, the need for “real world” parametrisation is avoided, and accordingly

issues of context sensitive measurements and observations averted. By reducing the

problems of growth and competition to their simplest conceptual form, behaviour can

be observed and understood, as far as possible, at each stage before progressively
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adding more complexity.

In Chapter 2, the basic one-dimensional model is introduced and explained. Start-

ing with a Gompertz growth curve, an environment consisting of a patchy resource

and a neighbourhood of competitors is defined. Simulations are run for varying pop-

ulations sizes and patch numbers under different combinations of plant and patch

distributins, and for two different behaviours at neighbour-neighbour boundaries. A

further simplified, linear growth model is defined and tested against the Gompertz

growth model. It is shown that the linear model closely approximates the Gompertz

model both qualitatively and quantitatively at the population and individual scale

for nearly all scenarios.

In Chapter 3, the linear model from Chapter 2 is tested in environments with both

statsitically uniform and aggregated patch distributions. The plants are equipped

with a simple proliferation paramater that allows them to bias growth in the direction

of the most recently found patch. Running the model within a genetic algorithm,

context sensitive sensitive results emerge demonstrating a hierarchical response to

environmental factors consistent with the literature.

In Chapter 4, the model is expanded into, and adapted for, two-dimensions. Initial

tests are performed in analagous conditions to those in Chapter 3 to verify if the model

demonstrates the same qualitative behaviour in two-dimensions as in one-dimension.

Although subtle differences emerge in the results, similar trends are observed in the

two-dimensional model as to for the one-dimensional model in Chapter 3.

In Chapter 5, different growth strategies are tested within the two dimensional

model. Four different plant types displaying different growth rates, initial maximum

size limits and root efficiencies are tested individually, in monocultures and in mixed

competition to assess how different environmental factors can affect growth and com-

petition among plants with different behaviours and properties.

The thesis concludes with a summary of the work and results presented, and

discusses possible applications and developments for future research.
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Chapter 2

Capturing the complexity: a

one-dimensional model of plant

growth and nutrient acquisition

2.1 Introduction

One of the key components of plant growth is the proliferation of roots into the

surrounding soil to facilitate the capture of available nutrients (Taub and Goldberg

1996; Williamson et al. 2001; Hodge 2009). In the presence of competition between

two or more plants, a race ensues to best capitalise on the available resources and

hence attain an advantage over the competiton (Robinson et al. 1999). As such, the

state of both the environment (Day et al. 2003; Wijesinghe et al. 2005; Hutchings and

Wijesinghe 2008) (here taken to mean the spatial distribution of available resources)

and the neighbourhood (Purves and Law 2002; Schneider et al. 2006; Lv et al. 2008)

(the relative location of individual plants), and an individual plant’s ability to react

to these conditions (Robinson et al. 1999), have important and significant impacts

on the outcome of competition.

Observing and understanding plants’ reactions to, and the impact of, variations
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in the environmental and neighbourhood conditions requires a detailed knowledge

of the conditions being experienced. An accurate understanding of both the physi-

cal make-up of the soil and knowledge of individual plants’ positions in relation to

both neighbouring plants and these physical features often requires heavily idealised

experimental set ups (for example, Hodge et al. 1999a).

By creating a theoretical framework in which to investigate such scenarios, the

environmental and neighbourhood conditions can be described exactly, either deter-

ministically or in a rigorous statistical sense. As a result, the impact of different

combinations of conditions along with that of different evolutionary strategies can

be observed in models and, in turn, used to improve our understanding of the real

biological systems.

In order to facilitate this, for the purposes of this chapter all other facets of plant

growth and competition (see Chapter 1) are excluded, and the focus placed purely on

the underground growth and interactions.

2.2 Modelling growth and competition in heterogeneous

environments

2.2.1 Plant growth

Reducing the modelling of a plant’s growth to its simplest form means representing a

plant’s size, L, as a function of time, with “size” usually taken to mean either length

or dry weight (Erickson 1976). There are a number of different functions that perform

this task depending on the stage of growth, part of the plant, or plant species.

The simplest such equation is a linear differential equation (Eqn. 2.1), with growth

at a constant rate g. The growth of root segments (measured as length) have been

observed to grow linearly over a substantial period of time (Kraus 1895).

dL

dt
= g. (2.1)

On a whole plant scale, a number of plants species have been measured (in terms
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of length and dry weight) to grow with expontential growth for considerable periods

of time (Erickson 1948; Purves and Law 2002). In this instance, the rate of growth of

an individual is proportional to its size; this proportion defined by a relative growth

rate, g (Eqn. 2.2). That is, as a plant gets larger, in turn its rate of growth increases.

This was famously proposed by Blackman (1919) as the “compound interest law of

plant growth”.

dL

dt
= gL. (2.2)

Whilst linear and exponential growth have been observed to fit experimental data

over certain time periods, it stands that no plant (or any organism for that matter)

can keep growing with linear growth, and even less so exponential growth, without

some sort of cap or interuption to this pattern.

Over more extensive periods of a plant’s life, behaviour is more often consistent

with a growth function that is sigmoid in form (Erickson 1976). An example of a

proposed sigmoid function for plant growth is the “autocatalytic equation” (Erickson

1976), or logistic equation. This assumes that growth of an individual is proportional

to both its current size (as with exponential growth) and also the difference between

its current size and a specified upper limit, Lmax (see Eqn 2.3).

dL

dt
= gL(Lmax − L). (2.3)

In this form, growth is initially exponential-like until the plant reaches size Lmax/2,

at which point (the “inflexion point”) the relative growth rate begins to decrease as the

plant gets bigger. The curve is symmetrical about the mid-point Lmax/2 and displays

assymptotic behaviour at the lower and upper bounds (i.e. 0 and Lmax/2). However,

observed plant growth often is not symmetrical around this point (see below), and so

in these instances another kind of sigmoid function is required.

An example of a sigmoid growth curve that has been shown to fit experimental

data for plant growth with this non-symmetry (Purves and Law 2002; Schneider et

al. 2006; Lv et al. 2008) is the Gompertz growth curve (Eqn. 2.4).
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dL

dt
= gL ln(

Lmax

L
). (2.4)

Integrating equation 2.4, it follows that

L(t) = Lmaxe
−L(0)e−gt

, (2.5)

where Lmax is the upper size limit as before, g is an intrinsic growth peramater and

L(0) is the initial size. The Gompertz function has been coupled with competition

kernels to define a model for growth amongst competitors (Purves and Law 2002;

Schneider et al. 2006), with an extension of this approach adding stochasticity into

the framework (Lv et al. 2008) to account for observed variability.

There is no “one size fits all” model to describe plant growth, not least because

different types of plant exhibit different types of growth (Taub et al. 1996). But also,

as discussed in Chapter 1, “growth” is highly context sensitive. When plants grown

in isolation as control tests (in idealised, homogeneous environments) demonstrate

significant levels of stochasticity in their growth (Lv et al. 2008; Forde 2009), then

plants growing in situ with all of the added factors and sources of stochasticity that

it brings are inevitably going to demonstrate varied growth behaviour.

However, Purves and Law (2002), Schneider et al. (2006) and, in particular, Lv

et al. (2008) demonstrate that, regardless of the stochasticity present from environ-

mental and competition induced factors, the growth of Arabidopsis thaliana (one of

the most widely studied plants) remains qualitatively Gompertz in nature. The Gom-

pertz growth formula thus is a good selection as a base to build a highly idealised

model upon: it gives a foundation for defining growth in a way that inherently in-

cludes processes that occur in plant growth without a need for explicity modelling

them, such as growth due to uptake of background nutrient resources and loss due

to metabolism (Purves and Law 2002). Furthermore, as complexity is built into the

model, it can be retained as a reference point to check that “growth”, in its broadest

sense, is adhering to observed experimental behaviour (i.e. it remains Gompertz-like).
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Figure 2.1: Visualistation of basic plant growth and measurement of size. Growth is

modelled purely at the root system (shown red in figure). Plant size, L, is taken as the

measurement of the length of the extent of the root system (i.e. the sum of the size

of the root structure growth in both directions from the plant’s centre). Root growth

will remain symmetrical around the plant’s centre as shown unless neighbourhood

conditions interfere (see Sections 2.2.4 and 2.2.5).

2.2.2 Gompertz growth models

The Gompertz growth curve is applied to an idealised one-dimensional model in which

a specified number of plants growing within a given environment compete for available

nutrient resources. The environment is defined as a one dimensional length with

periodic boundary conditions (i.e. the environment can be thought of as circular),

with nutrient resources defined as simple patches (of point physical-size and uniform

nutrient content) placed in the environment. In this model, a plant’s roots grow in

both directions (subect to neighbourhood conditions; see Sections 2.2.4 and 2.2.5)

within the one-dimensional environment, and the size of the plant, L, is the total

length of the roots (i.e. the sum of the growth in both directions; see Fig. 2.1). The

“nutrient content”, or quality, of a patch is defined by the marginal benefit to a plant

from its acquisition, (p). Varying the number of plants, their physical distribution,

and both the abundance and distribution of available resources allows the impact of

different spatial distributions of plants, resources, and the joint impact of the two, on

growth at the individual and population levels to be observed.

In the Gompertz model it is assumed that the size L of an individual at time t
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is given by Eqn. 2.5, where g is an intrinsic growth parameter, L(0) determines the

initial size of an individual, and Lmax is the maximum size limit (i.e. lim L(t) as

t → ∞). As seen in Figure 2.2 and discussed in section 2.2.1, the Gompertz growth

function forms a sigmoid curve, with growth initially exponential before tailing off,

and non-symmetry around the inflection point. The growth parameter (g) determines

the steepness of the curve, initial size (L(0)) the interception point of the axis, and

the maximum size (Lmax) the asymptotic limit.

2.2.3 Gompertz models with patch-dependent growth

In order to accommodate the influence of resource acquisition on plant growth, within

this model it is assumed that Lmax is not constant, but rather that its value increases

with the acquisition of each resource patch by a value equal to the patch quality (in

terms of the marginal benefit to the plant), p. At time t, the upper size limit Lmax

can be expressed as

Lmax(t) = L0 +N(t)p, (2.6)

where N(t) is the number of patches acquired by time t. Consequently the function

in Eq 2.5 is only applicable for an individual before it encounters any patches. As

patches are acquired, the formula for the size of L(t) takes the form of a more com-

plicated stochastic function incorporating plant and patch distribution; the size of

an individual at a specified time depends not only on the number of patches it has

acquired, but also importantly when these patches were acquired.

The rate of growth at a given time depends on current size and the number of

patches acquired, and not explicitly when. It follows from equations 2.5 and 2.6 that

the rate of growth at time t can be expressed as
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Figure 2.2: Examples of Gompertz growth curves for different values of (a) growth

parameter, g, and (b) maximum size limit, Lmax. Initial size (as determined by L(0))

is fixed. Larger values of g result in quicker initial growth causing a steeper curve,

whilst Lmax defines the asymptotic growth limit, with larger values resulting in a larger

final size.

43



CHAPTER 2. CAPTURING THE COMPLEXITY: A ONE- . . .

dL

dt
= rL ln

(

Lmax(t)

L

)

, (2.7)

= rL ln

(

L0 +N(t)p

L

)

. (2.8)

However, this is not an easily solvable differential equation since N(t) depends on L,

with L a stochastic variable.

It is important to check that the observed behaviour with the amended Gompertz

growth function including patch acquisition (Eqn. 2.8) is still “Gompertz” in its

nature. The previously mentioned examples of deterministic (Purves and Law, 2002;

Schneider et al. 2006) and stochastic (Lv et al. 2008) Gompertz growth modelling

have not explicitly modelled the actual functions and interactions that cause the

observed behaviour, but rather they have been applied to observed behaviour both

during and after the effects of neighbouring plants and environmental variability have

taken effect. This means it is important to check that the fundamental Gompertz

behaviour is not being radically altered by the amendment for patch acquisition. A

number of tests were performed to investigate this, summarised in Figure 2.3. It shows

a plot of three different growth curves: the blue line is an initial parameterisation of

the Gompertz growth function; the red line takes the same parameterisation and adds

growth “jumps” due to patch acquisition by increasing the asymptotic limit Lmax (see

equation 2.6)- note that the red line is not continuous, but rather piecewise continuous

between patch acquisitions (that is, the function is continuous except at the instances

of patch acquisitions); finally, the dashed black line shows a Gompertz growth curve

reparametrised so as to attempt to fit the patch-amended version.

As can be seen, the addition of patch acquisition (red line) to the basic Gompertz

growth curve (blue line) results in behaviour that is qualitatively consistent with a

reparametrised Gompertz growth function (black line). This means that whether or

not a plant is acquiring patches and the resulting growth benefit, growth can consis-

tently be described as being Gompertz growth, consistent with data-fitting models

from experimental observations (Purves and Law, 2002; Schneider et al. 2006; Lv et
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Original Gompertz growth
Original Gompertz + patches growth
New Gompertz growth

Figure 2.3: Example of original Gompertz growth curve (blue), the same growth with

the addition of patch acquisition and resulting growth benefit (red), and attempted

fit of newly parameterised Gompertz growth curve to patch amended growth (dashed

black line). Comparing the red and dashed black lines, it can be seen that the amended

Gompertz growth with patch acquisition results in behaviour that is still “Gompertz”

in nature.
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al. 2008).

Using this approach to control individual plant growth, freedom remains in how to

implement boundary behaviour between neighbouring plants. In different spatial di-

mensions the implementation of overlap and interference in a model takes on different

meanings. In the real, three-dimensional world, two plants obviously cannot occupy

the same piece of physical space simultaneously. However, the roots of competing

plants can, and do, overlap to create areas of interference and direct competition

(Robinson et al. 1999; Wijesinghe et al. 2005). Consequently, in one dimension

it is necessary to either completely deny overlap if a literal physical interpretation

is to be taken, or otherwise to allow overlap if the one-dimensional environment is

not considered a direct translation of real three-dimensional space. In the following

models each plant grows and proliferates uniformly where permitted (see Fig. 2.4a);

that is until any direct interaction occurs with a neighbour, the plants will distribute

root growth equally in both directions. However, different assumptions are made as

to how plants interact when their growth brings them into contact.

2.2.4 Non-overlapping model

In the first instance (the “non-overlapping” model), each neighbouring plant acts

as an impenetrable physical barrier to its neighbours’ growth. This means that plants

will grow uniformly (i.e. equally in each direction) until a boundary (a neighbouring

plant) is met. At this point all growth will be concentrated in the direction where

space permits (Fig. 2.4b). The initial proximity of neighbouring plants, as well as the

speed at which they can acquire nutrients and grow, relative to a given individual is

what will ultimately dictate the final size of an individual.

2.2.5 Overlapping model

In the second case (the “overlapping ” model), there is the potential for quite differ-

ent results. Here plants can effectively “pass” through each other and uniform growth

persists regardless of the presence of, and interaction with, neighbouring plants. The
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(a)

(b)

(c)

Figure 2.4: The difference between the non-overlapping and overlapping models in

appropriating growth: In scenario (a), two plants (P1 and P2) have grown (root

growth shown as red lines) uniformly until they share a common boundary; (b) In the

non-overlapping case, growth in the direction of the boundary ceases and instead all

growth is channelled to the free space away from the boundary; (c) In the overlapping

case, growth continues to be uniform, with each individual continuing to grow equally

in both directions, overlapping at the common boundary. In scenarios (b) and (c),

the sizes of the plants (L1 and L2) are unchanged; it is just the distribution of growth

that is altered.

interference here comes from that fact that an individual overlapping a neighbour

will likely be penetrating into exhausted soil, with any nutrients occupying this area

potentially already captured by other plants quicker to exploit the available resources

(Fig. 2.4c). Conversely, an individual that is particularly quick at acquiring nutrients

and grows relatively quickly has the possibility to “leap-frog” a neighbour and beat

it to nutrients situated on the far side of said neighbour (Fig. 2.5).

2.2.6 Statistical structure of plant and patch placement

For each model, three different configurations of plant and nutrient distribution will

be tested to assess the behaviour under varied environmental (patch distribution) and

neighbourhood (plant distribution) conditions:
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t ↓

Figure 2.5: An illustrative example of how an individual can “leapfrog” a competitor

for resources situated beyond the neighbour in the overlapping model. Initially (top),

both individuals (P1 and P2) have grown (root growth shown as red lines) at the

same rate as no available patches (shown as blue dots) have been acquired by either

plant. Through time (moving down the diagrams), Plant 1 obtains a growth advan-

tage through acquiring patches (grey dots denoting exploited patches that have been

removed) and a resulting increase in relative growth rate. By the bottom diagram,

Plant 1 has grown past Plant 2 and is closer to the remaining patches to the right of

Plant 2.
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• Fixed, regularly spaced plants with independently, uniformly randomly dis-

tributed nutrient patches;

• Independently, uniformly randomly distributed plants with fixed, regularly spaced

nutrient patches;

• Independently, uniformly randomly distributed plants and independently, uni-

formly randomly distributed nutrient patches.

The first of these investigates the effect of simple stochastic variation in the dis-

tribution of nutrient patches. The second scenario investigates the impact of the

variation in the neighbourhood in a patchy but regular environment. Finally, the

third method shows the combined effect of stochastic variation in both the environ-

ment and neighbourhood. Since stochasticity within the model arises from variation

within the plant and patch distributions, if both plants and patches are regularly

distributed there will be no variation in results, and all individuals would perform

identically. Consequently, the configuration with fixed, regularly placed plants and

patches is omitted.

For each combination of model (non-overlapping and overlapping) and the three

different configurations of plant and patch placement described above, a number of

repetitions were run for different numbers of plants and patches (1000 repetitions for

2,3,4,5,6,7,8,9 and 10 plants, and 100 repetitions for 100 plants; each performed for

1,2,3,5 and 10 patches per plant). The size of the environment is scaled proportionally

to the number of plants, meaning that relative space per plant remains constant across

all of the experiments, and the difference in results reflects the effect of plant numbers

and not population-level plant density. The patch numbers are defined on a variable

patch-per-plant basis (since environmental space is fixed per-plant, this is equivalent

to a specified spatial density of patches). The quality, p (in terms of nutrient content),

of each individual patch is inversely proportional to the number of patches, since total

nutrient content per-plant remains fixed.
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2.2.7 An alternative approach: constant growth models

In the Gompertz model, patch acquisition is assumed to increase the maximum size

limit of an individual (Lmax; see Eq 2.6) in the Gompertz equation (Eq 2.4) deter-

mining its growth. This has two effects: firstly, it increases the maximum achievable

size (space/neighbour boundary conditions permitting); secondly, by the nature of

the Gompertz equation, it increases the growth rate of the individual in the short

term. That is to say acquiring nutrients both facilitates a temporary increase in the

rate at which an individual grows, and also increases the potential upper size limit

the plant can reach.

Whilst modelling plant growth according to a Gompertz growth equation makes

sense since it has been shown to act as a good approximation of reality, there are

issues to using this approach. Analytical progress with the problem is complicated by

the fact that the different plants are often growing at different rates, and the size of a

given individual at a given time t is defined by not just how many patches it has ac-

quired, but also when it did so. The other problem is that stochastic simulations with

large numbers of individuals are computationally intensive. With Gompertz growth

demonstrating asymptotic behaviour, the later stages of growth take an increasingly

long time to simulate, and it is necessary to impose a cut-off threshold to terminate

each computational run. The larger this threshold, the bigger the time saving, but

also the greater potential interference to results. This issue is affected by the number

of plants, the number of patches, and also the distributions of both.

As a result, the approach as detailed in Section 2.2.3 has very real limitations

for investigating the effect of stochastic environmental and neighbourhood conditions

where repeated runs are required (especially when relatively complicated environmen-

tal descriptions are desired). With the Gompertz models this is simply not viable,

and as such an alternative model is not just desirable but, realistically, essential.

Because of this, different approaches were tried and compared to see if simpler,

quicker methods can yield comparative results. As an alternative to the two Gom-

pertz models (non-overlapping and overlapping) detailed in Section 2.2.3, two different
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models have been created which address the issue of computation time and which also

offer increased scope for progress in finding an analytical solution. These alternative

models replace the variable growth rate of the Gompertz growth function with a

constant intrinsic growth rate. The same initial size constraints as used for the Gom-

pertz model are placed on each individual, and similarly patch acquisition results in

the same increase in potential maximum size. However, patch acquisition now results

in an instantaneous jump in size rather than the inherent increase in growth rate

associated with increasing the upper limit in the Gompertz growth function.

The behaviour of the alternative constant growth model is much simpler to ex-

press. The size at a given time is defined by

L(t) = gt+N(t)p (2.9)

until the upper size limit (Lmax), is met. Provided the plant is not spatially con-

strained by a neighbour (non-overlapping model) its growth rate is fixed at g, except

the instant when a patch has been encountered and an instantaneous jump occurs.

For computational purposes, this speeds things up in two ways. Firstly, there is now

no longer the asymptotic growth behaviour which arises in the Gompertz function,

and instead the growth rate remains constant. Secondly, with all plants growing at

a fixed, constant rate, it is possible to implement “short cuts” in the code. Since

plant growth is constant and uniform across the population, it is possible to calculate

the next “event” (i.e. patch encounter/acquisition or neighbour-boundary interac-

tion) and jump forward to the time at which this occurs, adding the relevant level of

growth to each individual where applicable.

The constant growth rate for all individuals makes analytical work much simpler.

With a Gompertz growth function analytical progress means dealing with a set of

coupled differential equations (one for each plant) whose parameters all depend on

the number of patches acquired by an individual and the times at which they were

acquired. With a constant intrinsic growth rate, the complexity is vastly reduced.

Simulations were run within the MATLAB computing environment to ascertain
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whether there were any systemic differences between the models formulated in Sec-

tions 2.2.3 and 2.2.7, and so establish if the constant growth models yields the same

qualitative results as the more computationally intensive Gompertz approach.

2.3 Results

The results presented in this section are summarised to highlight the key results and

findings. Plant numbers were seen to have limited effect on results for population

sizes above two plants, and so results for the different scenarios are presented for

when eight plants are grown in competition. Full results for all other plant numbers

can be found in (Appendix A).

Results for when just two plants are growing are omitted since they demonstrate

behaviour that is not consistent with larger population sizes. Under certain circum-

stances (especially at low patch numbers), results can be highly discretised across all

models. For example, when there are just two plants with one patch per plant in the

overlapping case, the final size of an individual can only take one of three fixed sizes:

Lmax(0) if no patches have been acquired, Lmax(0)+p if one patch has been acquired,

or Lmax(0) + 2p if an individual has acquired both available patches. As such, the

distribution of the final sizes achieved over multiple runs does not always provide a

helpful point of reference for comparison across the different configurations of model

and plant/patch numbers. For other results, the mean, variation and skew have been

chosen to summarise the qualitative results (see Appendix A). These three statistical

measurements provide insight into not just average performance, but also the level

of inequality across the population as well as how this inequality is distributed. In

turn, they reflect the trends occurring across the populations as population size, patch

numbers, and plant and patch distributions are altered. It is important to capture

such information as from an evolutionary perspective, statistical rarities can be the

most significant results (Preston et al. 2010).

Across the different models, results are shown for three different configurations of

plant and nutrient patch distributions: regularly placed plants with uniformly ran-
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dom patches, uniformly random plants with regularly placed patches, and uniformly

random plants and patches. For each configuration, mean final plant size is pre-

sented, along with error bars showing the standard error of the mean (Rice, 2007).

The standard error of the mean is calculated as the standard deviatation of the mean

values across all repetitions (i.e. the standard deviation of the means), divided by

the squareroot of the number of repetitions. The standard error of the mean provides

the standard deviation of the sample mean’s estimate of the population mean; in this

case, this is the standard deviation of the simulation means’ estimate of the actual

mean (i.e. the mean of an infinite number of repetitions).

2.3.1 Gompertz growth models results

Non-overlapping Gompertz model

Fig 2.6 shows the mean of the final plant sizes for repetitions of the non-overlapping

Gompertz model under the three different configurations of plant and patch distribu-

tion for a population size of eight plants and different choices of number of patches

(per plant).

Regularly placed plants and uniformly random patches (Fig. A.1(a))

The numbers of plants has little effect on the results. With the plants placed in a

fixed, regular distribution, all stochasticity arises from the distribution of the nutrient

patches. As a consequence the results are non-scale (i.e. environment size or, accord-

ingly within the model, plant number) dependent due to limited neighbour influence,

and there is limited scope for variation across the population.

The effect of different patch numbers has a much more marked effect. Although

the total level of nutrients within the environment remains fixed as the number of

patches increases, the move towards a homogenised environment leads to both an

increase in mean plant size, and also a reduction in the variation of the distribution

of final individual sizes.

Uniformly random plants and regularly placed patches (Fig. 2.6(b)) Again
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Figure 2.6: Plots of mean individual sizes of the non-overlapping Gompertz model with

a population size of eight plants for the three different environmental/neighbourhood

configurations: (a) regularly placed plants and uniformly random patches; (b) uni-

formly random plants and regularly placed patches; and (c) uniformly random plants

and patches. The error bars denote the standard error of the mean.
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an increase in plant numbers results in a small effect on the distribution of final plant

sizes, whilsy increasing patch numbers result in a large increase in mean size.

Here all stochasticity is caused by the distribution of the plants, and with no

overlapping permitted some plants are potentially highly constrained by immediate

neighbours. Those plants which are not constrained by close neighbours have limited

opportunity to exploit the extra space due to the regularly placed patches. As the

patch numbers increase and the environment becomes increasinly homegenious, they

are clearly better able to exploit the resources and space as their is a sharp increase

in mean size at higher patch numbers, with a notable increase in mean size from three

to five patches per plant.

Uniformly random plants and patches (Fig. 2.6(c)) As with the previous two

cases, population size does not tend to have a large effect on the results, whilst greater

patch numbers see a large increase in mean size. The performance response to patch

numbers more closely resembles that of the regularly placed plants and uniformly

random patches scenario (Fig. 2.6(a)) than that of the uniformly random plants and

regularly placed patches case(Fig. 2.6(b)), though performance is typically not as

good when both the plant and patches are uniformly randomly placed as when just

the patches are uniformly randomly distributed.

Overlapping Gompertz model

Fig (2.7) shows the results for the same configurations with a population size of eight

plants but for the overlapping Gompertz model. The permitted overlapping at the

site of neighbour-neighbour interactions means that the population is better able to

collectively take advantage of all patches acquired. In short: all patches acquired by

any plant, regardless of neighbour locations, are turned into growth by the individual

which acquired them. As a result of this, how the patch acquisition is distributed

amongst the individuals in a population makes potentially negligible difference to the

mean plant size.
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Figure 2.7: Plots of mean individual sizes of the overlapping Gompertz model with

a population size of eight plants for the three different environmental/neighbourhood

configurations: (a) regularly placed plants and uniformly random patches; (b) uni-

formly random plants and regularly placed patches; and (c) uniformly random plants

and patches. The error bars denote the standard error of the mean.
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Regularly placed plants and uniformly random patches (Fig. 2.7(a)) Like

in the non-overlapping counterpart, population size has a limited effect on results.

Increasing patch numbers lead to an increase in mean performance and a reduction

in variation amongst results as the environment becomes more homogenious.

Uniformly random plants and regularly placed patches (Fig. 2.7(b)) The

number of plants has little effect on performance, whereas as the number of patches

grow, mean size increases. Like in the non-overlapping case, a sharp increase in

average performance is observed when increasing from three to five patches per plant,

with performance continuing to increase up to ten patches per plant.

Uniformly random plants and patches (Fig. 2.7(c)) Population size has a

small effect on results. As patch numbers increase, mean size increases though at a far

smaller rate than in the other scanarios and in the non-overlapping equivalent case,

suggesting the neighbour-boundary constraint of the non-overlapping case actually

increases average performance across the population.

2.3.2 Constant growth models results

The results for the non-overlapping constant growth model are shown in figure 2.8,

and those for the overlapping constant growth model in figure 2.9.

It can be seen by comparing these results with those of the original Gompertz

models that, in both non-overlapping (Fig 2.6) and overlapping (Fig 2.7) configura-

tions, the simplified constant growth model offers very similar results across different

patch numbers for a population size of eight plants. For the non-overlapping case the

qualitative results as summarised by the mean, variance and skew (see Appendix A)

are nearly indistinguishable, whilst for the overlapping case it is only at large plant

numbers and low patch abundances in the configurations with uniformly random

patch placement that important differences become apparent.

Whilst these results show that statistically the Gompertz and constant growth

models are performing very similarly (except at the extreme parameter ranges men-
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Figure 2.8: Plots of mean individual sizes of the non-overlapping constant growth

rate model with a population size of eight plants for the three different environmen-

tal/neighbourhood configurations: (a) regularly placed plants and uniformly random

patches; (b) uniformly random plants and regularly placed patches; and (c) uniformly

random plants and patches. The error bars denote the standard error of the mean.
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Figure 2.9: Plots of mean individual sizes of the overlapping constant growth rate

model with a population size of eight plants for the three different environmen-

tal/neighbourhood configurations: (a) regularly placed plants and uniformly random

patches; (b) uniformly random plants and regularly placed patches; and (c) uniformly

random plants and patches. The error bars denote the standard error of the mean.
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tioned above), they do not show how closely the two models match in terms of the

behaviour of individual plants. In order to access this, a number of simulations were

run across different permutations of plant and patch numbers, as well as plant and

patch distribution, tracking the performance of each individual through time. In each

of these comparisons, a plant and patch distribution were generated (according to the

parameter choices) and the constant growth and Gompertz growth models both run

with the same initial conditions (samples of comparisons shown in figure 2.10).

With the exception of large plant numbers combined with a low patch count (as

reflected in the previous results), the constant and Gompertz growth models not only

provide very similar performance on a population level, but also at the individual level.

Even at the extremes of the parameter ranges, most individuals perform closely to

their counterparts in the Gompertz model. The results can deviate during the growth

process (though typically remain relatively close), however the constant growth model

consistently performs well at reproducing the final results generated by the Gompertz

growth model.

2.4 Discussion

Within the idealised models presented here, a number of factors are assessed. In

terms of the stochasticity within the model (and consequently the results), there are

two sources: plant distribution and patch distribution. As mentioned in section 2.2.6,

if both plants and patches are distributed regularly throughout the environment,

both potential sources of stochasticity are removed, and all individuals would per-

form identically regardless of population size or patch abundance. Consequently the

results focus on the effect of stochasticity in plant distribution with regular patches,

stochasticity in patch distribution with regular plant placement, and the compound

effect of stochasticity in both plant and patch distribution. Within the framework of

these stochastic factors, there are also deterministically defined properties: population

size, patch frequency and the quality of each individual patch.
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Figure 2.10: Samples of comparisons between individual-level performance for con-

stant growth (left column) and Gompertz growth (right column) models through time

for: (a) three plants and ten patches per plant; (b) ten plants and five patches per

plant; and (c) 25 plants and 100 patches per plant.
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2.4.1 Simulations with two plants

The reason for omitting the results for two competing plants is that at a population

size of just two plants, certain characteristics offer the potential to make the results

unique amongst varying population levels. Consequently they often stand out from

the other results and do not fit in with the emerging trends. The first factor is that

with just two plants, there can only be at most one neighbour-neighbour boundary

of interaction. This means that even when the plants are situated very close together

there cannot really be proper crowding effects, as even though the two plants might

be tightly constrained on their nearest sides, they will conversely always have open

space on their distant sides. Additionally, with just two plants there is a certain

degree of inevitable asymmetry; with just two plants, for one plant to get especially

lucky often requires that the second plant be especially unlucky.

It has been shown that in certain circumstances the behaviour on a population

level can be built up as a series of coupled one-one interactions between paired plants

(Schneider et al. 2006; Lv et al. 2008) (and that may very well also apply here),

and that observed competition on a pair-wise scale is highly asymmetric (Purves and

Law 2002; Schneider et al. 2006; Lv et al. 2008). The problem in this instance is

that such an approach does not lend itself to the future plans for this model and

the approach to be taken. The coupled interactions of local competitors (Schneider

et al. 2006; Lv et al. 2008) describe observed behaviour encompassing all responses

and interactions to the environment and neighbourhood. Here the model is explicitly

simulating the capture of heterogeneous resources and (in Chapter 3) responses to this

resource heterogeneity. Because of this, repeated runs of a two plant model cannot

recreate the behaviour of a larger population, neither quantitatively nor qualitatively.

2.4.2 Results for larger population sizes

As the number of plants is increased, the inherent asymmetry of the two-plant com-

petition quickly disappears. Even with just three plants, the size of one individual

does not necessarily (depending on the model and configuration) provide information
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about the size of any of the other individuals beyond their potential combined size

(as determined by the resource level). As the number of individuals increases further,

the behaviour of one plant provides increasingly little information about another in-

dividual’s performance in the remaining population. However, as the population size

increases, the population-level behaviour converges and so the probability distribution

for the size of an individual in a population also converges.

Regularly placed plants and uniformly random patches

With regularly placed plants and uniformly random patch distribution (Figs 2.6(a)

and 2.7(a)), there is little sensitivity to population size other than at low patch fre-

quencies, with increased sensitivity in the overlapping model. In these circumstances,

increasing population size sees a small increase in mean performance, and an increase

in variation. At low patch numbers, most plants do badly, and only a lucky few

gain access to the patches. As the population numbers (and accordingly environment

size and total patch numbers) increase, whilst average resources per plant do not

change, the possibility for aggregations in resource distribution increases. When no

overlapping is allowed, any of these lucky plants have their growth limited by their

neighbours, and since the plants are regularly placed, the available space per plant is

always (relatively) limited. With overlapping permitted, no such constraint applies,

and an individual can fully exploit the available resources.

As the number of patches per plant increases, the probability that a patch lies

within a plant’s initial growth range also increases, and so too does the probability of

an individual reaching further patches. Although an increase in patch numbers per

plant results in lower quality patches, the greater access to the patches by an individ-

ual results in, on average, a larger quantity of nutrient being acquired. Accordingly,

an increase in mean plant size is observed. Increased patch numbers per plant also

result in a decrease in variability. This is to be expected since as patch numbers

per plant increase, the resource distribution converges towards a homogeneous envi-

ronment, removing the sole cause of variability in the model. Since at such a limit
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the regularly placed plants would not grow large enough to encounter each other, it

follows that the behaviour of the overlapping and non-overlapping models converges.

There is little difference in average performance between the overlapping and non-

overlapping models apart from at low patch numbers for larger population sizes. In

these conditions, the overlapping model sees a slight increase in performance across

the population.

Uniformly random plants and regularly placed patches

Swapping the distribution methods for plants and patches (Figs 2.6(b) and 2.7(b)),

with patch positions fixed at regular intervals, there is limited scope for a plant to get

lucky in patch acquisition. Instead, the “luck” (or lack of) comes from relative loca-

tion to neighbouring plants. Variance remains relatively small since whilst the only

stochastic factor is the plant distribution, any extreme variation in this distribution

is largely damped by the fixed patch locations. In effect, plants can be extremely

unlucky in being tightly neighboured on either side by competitors, with no patches

within close proximity. However, positive luck can only extend so far as to being

uninhibited by competitors, and does not include the scope to grow into a large ag-

gregation of patches. A small decrease in mean performance is observed as plant

numbers increase in the non-overlapping model. This is caused by the fact that as

the numbers of plants increase, the potential for being unlucky (as described above)

gets larger, and out-weighs (at a population level) the corresponding good luck for

the other plants.

Patch numbers have a much larger impact on performance, with a large increase

in mean performance as the number of patches per plant increases. Despite lower

quality patches, the increased availability of access to an initial patch (and often

subsequent patches) leads to an overall higher acquisition of nutrients; rather than

having a lucky few plants in a position to grow larger with little chance of maximising

this potential, as patch numbers increase more of the plants in this position are able to

obtain patches and benefit from them. This also accounts for the increase in variation
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with plant numbers at higher patch frequency.

The overlapping and non-overlapping models show similar behaviour. Relatively

unaffected by plant numbers, as patch numbers increase, plants on average do better

with a decreasing numbers of plants doing particularly badly. When no overlapping

is permitted, this is a result of those plants with little room between themselves and

neighbours increasingly likely to acquire some patches as the frequency increases.

With overlapping allowed, at low patch numbers, most plants do not obtain any

patches. Consequently most only achieve the initial maximum size limit with only a

select few growing bigger. As the number of patches increases a little (and their quality

decreases), more of the plants that would not have obtained a patch are now able to

do so. At the same time, fewer of the plants originally gaining a significant boost

from one or two high quality patches achieve the same level of nutrient acquisition

and growth. This trend is reversed as the number of patches increases further. The

plants on the fringe of groups or that have space to themselves are able to obtain

nearby patches and continue growing into space containing further patches whereas

those within a group will obtain locally available resources but soon find themselves

growing into depleted areas already exploited by competing neighbours. This causes

the average plant to do better than when in a more heterogenious environment (fewer,

higher quality patches), but still allows those lucky enough to be able to grow into

empty space to make the most of the opportunity, hence the mean increases.

The significant increase in mean plant size between patch numbers of three and

five patches per plant suggest some sort of “tipping point” occurs. With the increase

from one to three patches per plant, there is only a modest increase in mean perfor-

mance, but increasing patch frequency to five patches per plant results in more than

a doubling of mean plant size. Increasing patch numbers from five to ten per plant

does not see anything like as bigger gain.

Unlike with regularly placed plants and uniformly random patches (Figs 2.6(a)

and 2.7(a)), there is a noticeable drop in average performance in the overlapping

model compared to the non-overlapping model as patch numbers increase.
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Uniformly random plants and patches

When both plants and patches are placed according to a uniformly random distri-

bution (Figs 2.6(c) and 2.7(c)), the compound effects of stochasticity in both plant

and patch distribution is observed. Like in the regularly placed plants and uniformly

random patches case, there is little effect from population size other than at low

patch numbers, again emphasised under the overlapping model, for the same reasons

as discussed above. Indeed, the behaviour in general is quite similar, with increases

in mean plant size as well as a decrease in variability as patch numbers increase. The

decrease in variability is to be anticipated, as performance is levelling out across the

population as the environment tends toward homogeneity. Those plants fortunate

to be isolated from immediate competition see an increasing likelihood of obtaining

patches and thus growing larger, but are less likely to get particularly lucky and

obtain a large quantity of resources.

The overlapping model sees a reduceded average performance compared to the

non-overlapping model at anything other than the lowest patch numbers.

Non-overlapping vs overlapping results

As discussed in Section 2.2.3, in representing the real three-dimensional world in an

idealised one-dimensional model there are decisions that need to be made regarding

interpretations of space. Specifically, when it comes to issues of root overlap, it needs

to be decided what is permissible and what is not. Whilst in reality there has been an

observed tendency for the roots of competing plants to favour segregation (Schenk,

Callaway & Mahall 1999), competing plants also can, and often do, experience over-

lapping roots (Robinson et al. 1999; Wijesinghe et al. 2005), and this interaction

cannot be dismissed when it comes to the importance of the effects of inter-plant

competition. Whilst root interaction and overlap can occur, multiple roots (be they

of the same individual, or two or more competing plants) cannot occupy the same

region of space simultaneously. When space is represented in one-dimension though,

any overlap means just that: both plants are occupying the same region of space at
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the same time.

Two approaches have been taken to try and accommodate both possibilities:

“overlapping” and “non-overlapping” models. With the overlapping model, the root

systems of different plants are permitted to grow into the same space. This allows

for the phenomenon of root overlap to occur, and the corresponding consequences

for the individuals involved. This approach can be justified by considering the root

systems not as a solid impenetrable mass, but rather as a “loose” collection of roots

growing in a given direction, with space and room for other roots to explore the same

region simultaneously. Analogously, the plants can be thought of as directing the root

growth in both directions through a tube (i.e. the environment is a torus), albeit with

“perfect” precision in terms of acquiring resources along its length.

In the non-overlapping case, a more literal interpretation is taken of the one-

dimensional physical space, and the presence of the root system of one plant act as

an impassable barrier to that of a competitor. This removes the possibility of root

overlap, and effectively enforces complete segregation.

Between these two approaches, it is intended to minimise assumptions about plant

interactions and allow the respective behaviours in both circumstances to be evalu-

ated and compared, so as to isolate the effects of direct interactions that occur with

neighbour encounters.

Comparing the non-overlapping and overlapping results, with the exception of

when plants are regularly placed, the overlapping results show a drop in mean plant

size at higher numbers of patches per plant. This can appear counter-intuitive since

in the non-overlapping case, individuals placed in close proximity to neighbours may

find their growth stunted, and the more patches an individual acquires the more

likely it is to encounter a neighbour and find growth constrained. In contrast, with

overlapping allowed, every plant is able to grow to at least its initial size limit, and

also to turn all resources acquired into growth. However, the absence of neighbour

imposed boundaries can in fact both help and hinder an individual. One the one

hand, any patches acquired by a plant or remaining intrinsic growth can always be
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fully utilised by a plant when there are no boundaries in place; a bounded plant may

obtain resources or have remaining intrinsic growth that it is unable to use as it is

constrained by neighbour imposed boundaries. On the other hand, a bounded plant is

guaranteed to always be growing into unexploited soil, whereas a non-bounded plant

could be growing into a region already explored and depleted by a competitor. To

summarise: whilst an overlapping plant is always able to fully grow to the limits of

its resources, a non-overlapping plant is always growing (when able to) into an area

which potentially contains more resources to be acquired.

2.4.3 Constant growth models

The results show that the constant growth models return results that are very similar

to the Gompertz growth models. The comparison runs between the two models when

run under identical inital conditions (examples shown in fig. 2.10) demonstrate that

not only does this occur on a population-level, but also at an individual level. The

deviation between the Gompertz and constant growth models under the combination

of large plant and small patch numbers can be easily explained. Just as in the

Gompertz models, as the population grows (and accordingly so to the total physical

space), in the constant growth models the possibility for plants to grow increasing

large in the overlapping configurations continues to increase. Whilst the potential

maximum size increases with available space, so too the probability of reaching it

decreases. However, with instantaneous jumps rather than a temporary increase in

relative growth rate, it is much more likely that a plant will be able to take advantage

of these opportunities in the constant growth model. This probability is increasingly

great at lower patch numbers, since the patches are high quality (p is relatively large)

and so the instantaneous jumps are correspondingly so. If a plant obtains a single

patch and consequently receives a large jump, it not only receives a large, immediate

benefit over its competitors from the initial jump, it is also possible that it will, in

the process, encounter another patch, and so on. Put simply: with large patches and

a big area to grow into, the probability of being lucky is much bigger than in the
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Gompertz model. As patch numbers increase (and therefore individual patch quality

decreases), these jumps become much smaller. As these jumps decrease in size, the

behaviour (in terms of final results) tends to that of the Gompertz models as the

effect of the instantaneous jumps tend to a short-term increase in growth rate, as is

the benefit to patch acquisition in the Gompertz models.

These deviations can be argued to be of limited relevance to the main aims of

this study for the following reasons. One reason why these deviations at large plant

numbers are of little consequence is that the whole reasoning for repeating these

experiments for different plant numbers is to identify the trends as population size

changes. With this in mind, it is not necessary to run the simulations for particularly

large population sizes as the results at smaller populations can give the same qualita-

tive information. That the constant growth model matches the Gompertz model at

smaller population sizes means that it can be used in place of the Gompertz model

at these levels, and the behaviour at larger scales for the Gompertz model can be

extrapolated from the trends observed in the results above. Just as differing be-

haviour at large population sizes need not be an issue in using the constant model in

place of the Gompertz model, likewise deviation at small patch numbers/large patch

quality does not provide a problem. As the plan for these models is to test in more

complicated environments, with larger numbers of (lower quality) patches, this will

inherently remove the issue of low-frequency/large-quality patches.

It is worth stressing that as the quality of the individual patches (and more specif-

ically the marginal benefit to an individual from acquiring a patch) converges to zero,

the constant growth model does no converge towards the Gompertz growth model, but

the results of the two models do converge. The constant growth model always demon-

strates constant growth between patch acquisitions and the quality of the individual

patches does nothing to affect this: it only effects the size of the patch-dependent

jumps. As the quality of the patches tends to zero, so too do the size of these jumps,

and so the constant growth model converges towards simple linear growth (i.e. it

converges towards constant growth without any patches). Similarly, the Gompertz

69



CHAPTER 2. CAPTURING THE COMPLEXITY: A ONE- . . .

model tends towards its base behaviour (that is, its behaviour given no patches are

acquired). If no patches are present/acquired (or equivalently the patches are of zero

quality/benefit to the plants), the growth behaviour of the two models remains fun-

damentally different (namely constant and Gompertz, respectively). However, the

relative performance of the different individuals within a population becomes the

same, and so whether the plants are growing with constant growth or according to a

Gompertz growth function has no effect on their relative sizes.

Future plans for these models consist of running them in environments consisting

of a greater number of patches (allocated by more complicated distributions) and the

implementation of genetic algorithms (for the investigation of evolutionary beneficial

growth strategies). As comparison to the Gompertz model demonstrates, the constant

growth model is a successful approximation; with the benefit of increased analytical

tractability and reduced computational demands, it has been demonstrated to be

suitable substitute in future work for the Gompertz model.

2.5 Conclusion

In the above work two different approaches (non-overlapping and overlapping) to

modelling stochastic plant growth and resource acquisition amongst competition in

one dimension have been demonstrated using an amended Gompertz function to de-

fine growth, and variation in plant locations and patch distributions providing the

stochasticity. These models demonstrate strong trends in response to patch abun-

dance/quality, as well as relative resilience to changes in population sizes (over a

minimum population size and at relatively higher patch frequencies). These trends

allow the use of modelling at lower population numbers to predict the behaviour at

larger population sizes, and also offer a qualitative indication of the effects of stochas-

ticity in plant location and/or nutrient distribution.

When the neighbourhood is defined with plants regularly spaced and patches

independently uniformly randomly distributed, before environmental conditions are

taken into account each plant has equal potential for succeeding regardless of whether
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under the non-overlapping or overlapping approach. It is purely the stochasticity in

the patch locations that determines the variation in the final size hierarchy.

Conversely, when plant positions are varied under non-overlapping growth, some

plants have the potential to grow much bigger than others before the patch distri-

bution is even taken into account. In effect, the plant locations dictate maximum

possible size, and the position of the patches how much of that potential is max-

imised and how quickly. When overlapping is permitted, these strict limitations are

removed, however a plant in close proximity to its neighbours is going to have to get

lucky in order to get big; either with a large, localised collection of patches it can

reach before it begins to overlap with its competitors, or by getting enough of an

advantage to “leap-frog” them in the race for available patches located beyond them.

This ability to get lucky depends on the patch distribution, and so when the

patches are regularly distributed, it is unlikely that a plant in a crowded area is going

to be able to attain any meaningful advantage over its immediate competitors. By

comparison, when both plant and patch positions are independently uniformly dis-

tributed, there is a greater probability for an individual located in a densely populated

area to get lucky and receive a significant advantage over its local neighbours.

In both the non-overlapping and overlapping models, maximum total yield is

greatest when plants are regularly located and patches uniformly distributed. This

suggests that avoiding inter-plant competition improves the average performance,

and so competition cannot be strictly asymmetrical on a population-wide scale. The

difference in yields between treatments is greater in the overlapping model than the

non-overlapping model, demonstrating that enforced root segregation (by neighbour-

neighbour boundaries) has a significant effect on population growth; again, reducing

competition helps to maximise growth.

Also, in both non-overlapping and overlapping environments, when plants are uni-

formly placed, there is little difference in overall yield regardless of patch distribution,

consistent with experimental observations (Day et al. 2003). However, whilst total

yield remained constant, there is larger variation in individual size when resources
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were randomly distributed. This would imply that whilst resource distribution does

not affect overall yield, it does have an impact on the uniformity of the yield of

individuals within the population.

Comparing the results of the non-overlapping and overlapping approaches to mod-

elling in one-dimension, the impact of neighbour-neighbour boundaries can be identi-

fied as in all other ways the models are identical. The impact of neighbour-neighbour

boundaries has the potential to be more significant when the spatial distribution

of neighbourhood is varied (i.e. plants are not regularly placed) and more pairs of

plants will consequently be in close proximity to one-another, and conversely more

individuals will be granted space to themselves. It is shown that whilst imposed

neighbour-neighbour boundaries can limit an individual’s growth by constraining the

space available to them, on average it actually results in better performance due to

forcing the plants to use their resources to proliferate into previously unexplored (and

more importantly, undepleted) areas.

This interesting result touches upon on the potential benefits for an individual to

selectively proliferate in response to signals from its environment, so as to maximise

the potential return (in terms of the acquisition of resources) per unit growth of the

root system. This ties in with real observations of plants’ propensity to avoid direct

competition (i.e. for competing plants to segregate their roots; Schenk, Callaway &

Mahall 1999). Whilst in the non-overlapping case it is strict rules governing the model

that force the plants to display this behaviour, going forward it is the non-bounded

model but with the plants equipped to be selective in how they proliferate which is

the area of interest for this work.

However, these Gompertz models have drawbacks that prohibit their use in more

complicated, realistic environments and/or where many repetitions are required. In

offering up a pair of alternative models using a constant intrinsic growth rate, rather

than an asymptotic function, to determine growth, it has been demonstrated that

these simpler, computationally quicker and less intensive approaches can yield results

virtually indistinguishable in terms of qualitative behaviour across a range of environ-
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mental and neighbourhood configurations. Although the models diverge at certain

extremes (under a combination of large population size and low patch numbers), it

has been explained why these do not represent a problem and therefore do not stand

in the way of using the simpler models for future work.

The constant growth models allow for more realistic and complicated environments

to be defined and investigated, and these models can now be coupled with more

sophisticated behaviour for the individuals to inspect the impact of changes in the

environment on the performance of individuals and populations, but also how different

growth strategies perform in these different conditions of resource and competitor

abundance and distribution.
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Chapter 3

Optimal root proliferation

strategies: the roles of nutrient

heterogeneity, competition and

mycorrhizal networks

Plant and Soil February 2012, Volume 351, Issue 1-2, pp 191-206

Background and Aims Plants proliferate roots in order to acquire nutrients, typi-

cally contending with heterogeneous resources and competing neighbours. A mathe-

matical model was developed to identify optimal root proliferation strategies in patchy

nutrient environments. The impact of joining mycorrhizal networks was also assessed.

Methods A simple model of growth and competition in one spatial dimension was

implemented within a genetic algorithm to obtain optimal proliferation strategies

under different scenarios of resource distribution, and in the presence or absence of

local competition and large-scale mycorrhizal networks.

Results A strong proliferation response emerged for isolated plants in heteroge-

neous environments with low resources, and also for plants growing in competition.

Even in statistically homogeneous environments, the presence of competition con-
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ferred a selective advantage to plants proliferating in the direction of the most re-

cently acquired patch. In the presence of mycorrhizal networks, the optimal strategy

switched from symbiosis to proliferation driven growth as the relative cost of acquiring

resources through the networks increased.

Conclusions The optimal proliferation response in a given scenario was governed

by a hierarchy of factors: resource levels and distribution; the presence or absence of

competition; and the marginal benefit of obtaining resources via symbiotic relation-

ships with mycorrhizas.
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3.1 Introduction

Nutrient availability in soil is both spatially and temporally heterogeneous over rela-

tively small distances and at scales relevant to plant roots (Cain et al. 1999; Jackson

and Caldwell 1993; Farley and Fitter 1999; Gross et al. 1995). Plant roots have to

cope with this heterogeneity or patchiness in resource supply and be able to exploit

the nutrient-rich zones or patches upon encounter. Moreover, they have to capture

nutrients from such patches both in competition with soil organisms and other plant

root systems (Hodge et al. 2000a, 2000b; Kaye and Hart 1997). Plants are aided in

this respect by the modular structure of their roots systems, which enables architec-

tural flexibility in root deployment (de Kroon et al. 2009; Malamy 2005; Hodge et al.

2009). Localized root proliferation in nutrient-rich patches is a well established re-

sponse to heterogeneity in resource supply (reviewed by Hodge 2004, 2009) although

it has also been demonstrated that root proliferation is of little net benefit to either

single plants or plants grown in monoculture as a means to acquire nitrogen (N) from

N-rich zones (Hodge et al. 1998a; Fransen et al. 1998; van Vuuren et al. 1996). This

is due to the high mobility of nitrate (NO−

3 ) ions, which in moist soil have a diffusion

coefficient in the region of 10−5cm2s−1 (Tinker and Nye 2000). However, when plants

are grown in interspecific competition for N from a complex organic patch (mixed

N-sources) then root proliferation does confer a competitive advantage (Hodge et al.

1999a; Robinson et al. 1999). In contrast to NO−

3 ions, phosphate ions are relatively

immobile with a diffusion coefficient in moist soil of around 10−9cm2s−1 (Tinker and

Nye 2000). Given the rate of growth and the average lifespan of the finer roots (see

Fitter 1999; Eissenstat and Yanai 1997) which are responsible for much of the nutrient

uptake, the relative volumes of soil able to be exploited for these different nutrients

by a single root per unit root length can differ by orders of magnitude (Fitter et al.

2002). Consequently, whilst a plant’s root system can capture NO−

3 from a relatively

large surrounding area, successfully obtaining phosphate from the environment re-

quires a plant either to proliferate roots directly within the phosphate sources, or to

use another strategy e.g. forming a symbiotic relationship with mycorrhizal fungi.
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The most common form of mycorrhizal symbiosis is that of the arbuscular myc-

orrhizal (AM) (Smith and Read 2008) association which can form on c. two-thirds of

all land plant species. The key function of the AM symbiosis is to enhance nutrient

capture for the associated host plant while, in return, the fungus obtains a supply of

carbon (Smith and Read 2008). However, unlike fungi involved in both the ecto- and

ericoid mycorrhizal associations (Hodge et al. 1995; Read and Perez-Moreno 2003),

arbuscular mycorrhizal fungi (AMF) have no known saprotrophic capabilities and so

are unlikely to play a direct role in organic matter decomposition (see Leigh et al.

2011). The fungal hyphae can however explore a large volume of soil and acquire

phosphorus (P) beyond the phosphate depletion zone that rapidly builds up around

the root surface (Smith and Read 2008; Sanders and Tinker 1973) and it has been

shown that the arbuscular mycorrhizal fungi (AMF) may largely take over the acqui-

sition of P for their associated host plant (Smith et al. 2009). In addition, a key role

for AMF in N cycling has recently been identified (Hodge and Fitter 2010) and some

of the N captured from nutrient patches may be passed to their associated host plant

under some conditions (Leigh et al. 2009; Hodge 2003a; Barrett et al. 2011; Hodge

and Fitter 2010), but not others (Hodge 2003b; Reynolds et al. 2005). Plant N:P

biomass ratios (g N/g P) can vary markedly, with individual measurements ranging

from approximately 1-100, with an average ratio among terrestrial plant species of

12-13 in their natural field sites (Güsewell 2004).

The results from numerous studies verify that the quality, type and distribution of

nutrient patches influence the way in which a plant grows and the nutrients which it

acquires (see for example Cahill et al. 2010; Hodge et al. 1999b; Fitter 1994; Shemesh

et al. 2010). Hodge et al. (1999a) and Robinson et al. (1999) observed the reaction

of the grass species Lolium perenne L. and Poa pratensis L. to the presence of a high-

quality N patch. Both species saw an increase in root-length density within the patch

and a proportional increase in N uptake. It is also important to note that Robinson

et al. (1999) concluded that the results are driven by context sensitivity, with the

need for reactive proliferation strongly linked to the presence of inter-specific compe-
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tition. These conclusions are supported by a modelling study which demonstrated a

theoretical basis for the weak affiliation in monocultures between proliferation and N

capture. Williamson et al. (2001) and Linkohr et al. (2002) investigated the effect of

the presence of a phosphate patch, the latter comparing directly with the results for

the presence of an N patch. The different qualities of the two nutrients are reflected

in contrasting responses to the N and phosphate patches: unlike in the response to

a high quality N patch, an increased availability of phosphate caused an increase in

primary root length and a decrease in lateral root density.

It is, however, challenging to disentangle the ecological processes driving the obser-

vations from experimental and field-based studies. In particular, the roles of environ-

mental heterogeneity (nutrient patchiness), neighbourhood competition for resources,

and the evolutionary context of root proliferation strategies, are hard to isolate.

With such a broad range of environmental factors influencing a plant’s growth and

so many physiological and morphological responses at a plant’s disposal, modelling

plant growth can be a daunting task. A number of different approaches have been

taken in the past, focussing on different aspects of the problem (for example see Bever

2003, for a review of conceptual and empirical work on soil community feedback and

competitor coexistence; Dupuy et al. 2010, for a review of root growth models; Vos

et al. 2009, for a review of structural plant modelling).

Such different approaches help to yield insight into different areas of plant growth.

For example, Cropper and Comerford (2005), coupled a mechanistic nutrient uptake

model with a genetic algorithm to estimate the minimum addition of P required to

meet the requirement of a 4-year growth demand of loblolly pine. They found that

the amount of P required was doubled when using a low root length density input

compared to that with a high root density input. O’Brien et al. (2007), created a

spatially explicit model of below ground competition in plants, treating competition

for space as an evolutionary game. They found that root spread can be predicted by

the cost-benefit ratio for root production, and predict that in areas with no overlap

root growth should match resource availability, whilst in areas of overlap they are
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predicted to display the ‘Tragedy of the Commons’ (Hardin 1968).

3.1.1 Overview of model

The aim of this work is to elucidate the processes driving root proliferation strategies

by considering an idealised model of plant growth and competition in one spatial

dimension. The growth of individual plants is modelled in a patchy nutrient en-

vironment, where both the quality and statistical distribution of immobile nutrient

patches were known. The environmental scenarios included in this work represent

plant growth with a growth limiting, fixed, immobile nutrient (such as P), requiring

an individual plant to grow to it in order for acquisition, with no diffusion or move-

ment of any other kind modelled. It is assumed that an individual plant can change

its root proliferation only in response to local (temporally and spatially) information.

An idealised representation of mycorrhizal networks is then developed by grouping

nutrient patches into “networks”. Upon encountering a patch, a probabilistic choice is

made by the plant to either acquire the individual patch, or to “join” the network and

gain access to all patches within the network, albeit at a cost given that AMF are large

sinks for plant assimilate (Johnson et al. 2002; Hodge 1996). Defining networks in this

way, as a collection of connected patches, is an abstraction from reality (for example

see Southworth et al. (2005) for a network theory analysis of mycorrhizal/plant

networks), but this deliberately simplified approach allows the interplay between plant

competition and mycorrhizal network dynamics to be assessed using a minimal set of

assumptions, and also captures plant growth in heterogeneous environments in a way

which is computationally tractable.

The basic model is simple and strategic, aiming to identify and broadly quantify

the factors driving proliferation and competition in heterogeneous landscapes. Com-

plexity is added to the model systematically. First the optimal proliferation response

for an individual plant growing in isolation is obtained, in both a uniformly random

and a statistically patchy environment, to show how spatial heterogeneity influences

proliferation strategy. These baseline results are then compared to those arising from
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competition simulations (under the same average conditions). Finally the role of

mycorrhizal networks with varying spatial structures is investigated.

Whilst in a given scenario a certain strategy may achieve the greatest fitness ”on

average”, within an evolutionary context this may not be the strategy that best en-

ables an individual to succeed against competitors (Currey et al. 2007). By coupling

the model with a genetic algorithm (GA), it is possible to find the best strategy

taking into account stochasticity within the environment (resource distribution), the

neighbourhood (location of competitors), mycorrhizal network structure (where ap-

plicable) as well as evolution (population dynamics, selection and mutation). Such an

approach therefore facilitates assessing fitness against evolutionarily relevant metrics

rather than simple mean-field properties (Currey et al. 2007; James et al. 2010;

Preston et al. 2010).

For an isolated plant in a uniformly random environment, a proliferation strat-

egy driven by encountered nutrient patches should provide on average no advan-

tage/disadvantage, since statistically any other given patch is equally likely to be

found anywhere in the environment. However, when patches are distributed het-

erogeneously, finding a patch provides statistical information that the next patch is

likely to be close by. Consequently, one might expect that a bias toward proliferating

in the direction of the last found patch would statistically be beneficial in terms of

maximising exploitation of the environment per unit growth.

In the presence of competition it is less clear what behaviour will be evolution-

arily favoured; in a random environment the acquisition of a patch provides infor-

mation that the individual is growing, at least in the short term, into unexploited

soil. As such, the plant gains indirect information about its neighbours which could

in principle be beneficially exploited. Within a patchy heterogeneous environment

the acquisition of patches similarly provides indirect information about the relative

proximity of neighbouring plants, but also provides statistical information about the

location of other patches (at least in unexploited soil). It is not clear what effect this

will have on the strength of the proliferation response in comparison to the control
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experiments, and the GA framework developed here provides a rigourous mechanism

through which such questions can be answered.

When mycorrhizal networks are introduced, it is expected that as the cost of

acquiring resources from the networks increases, the propensity for an individual to

join the networks will decrease. Similarly, it is likely that responsive proliferation will

become more important as the benefit from joining the networks decreases. What is

not clear is what impact the spatial properties of the networks will have on when this

“switch” occurs, and how it depends on the structure of the network itself.

3.2 Methods

Running in Matlab, the central model is conceptually simple: a growing plant prolif-

erates roots in a one-dimensional patchy nutrient environment and receives a growth

benefit from the acquisition of nutrient patches. This methodology is simplistic, but

it is argued below that it captures the essential ingredients and allows biological,

ecological, and evolutionary factors to be isolated.

3.2.1 Environment

The environment ([0, d] on a horizontal axis, where d = 1 for an isolated individual,

and scaled to d = P for a population of P plants) contains a series of identical, discrete

nutrient patches of point physical size (i.e. negligable physical size) and quality p.

The quality of a patch reflects the marginal benefit to a plant from its acquisition

(see Plant Growth subsection), with

p = ptot/n, (3.1)

where ptot is the (specified) expected total nutrient content and n is the (again,

specified) expected number of patches in the environment. Changes in ptot and n

therefore allow for environments with different quantities and/or qualities of nutrient

patches to be defined. For consistency across the various simulations, as well a scaling
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Table 3.1: Table of parameters used in the models. “Variable” implies parameter takes

no fixed value (detailed in text), “fixed variable” means parameter takes different

fixed values in different simulations (described in text) and “cont” and “comp” refer

to control and competitive environments respectively.

Name Property Value Dimensions

α proliferation bias [-1,1] (variable) -

β network preference [0,1] (variable) -

L0 initial maximum size 0.2 mass

Lmax maximum size at time t variable mass

P number of plants 1 (cont) 100 (comp) -

ptotpp mean total nutrient per plant fixed variable mass

p individual patch quality fixed variable mass

n mean no. of patches per plant fixed variable -

N no. of patches obtained by individual variable -

g growth rate 0.5 mass/time

dt time step 10−3 time

d size of environment 1 (cont) 100 (comp) length
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the physical size of the environment, mean nutrient content and mean patch numbers

are scaled on a patches per-plant (ppp) basis. For computational simplicity and to

avoid boundary artefacts, the environment is taken to be periodic (i.e. circular).

Two methods of patch distribution are considered, differing in the statistical prop-

erties of the distribution of the distance x between patches:

Random nutrient distribution

In this case, n nutrient patches are independently distributed uniformly randomly

throughout the environment. That is, each patch is placed independently according

to a uniform distribution across the entire environment. The existence of a patch

at a given location therefore contains no information about the locations of other

patches. Throughout this work these environments will be referred to as “random

environments”.

Heterogeneous nutrient distribution

Here a Pareto distribution (specifically, a non-standard Pareto distribution of the

second kind; see Johnson et al. 1994) is sampled to generate inter-patch distances, x,

with the probability density function given by

f(x) =
rar

(a+ x)r+1 , (x > 0). (3.2)

Reparameterising the Pareto distribution (as in James et al. 2005) by letting

a = r−1
λ

, it is possible to have two parameters, λ and r, which independently define

the mean distance between patches and the “patchiness” of the overall distribution

respectively. Starting at a random point, patches are placed across the environment

spaced according to independent samples of these inter-patch distances. This results

in an expected total of Pλ patches distributed heterogeneously across the interval

[0, d]. Throughout this work, the parameter r remains fixed at 2.1 in order to gen-

erate heterogeneous environments whilst maintaining a finite variance in the Pareto
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distribution, whilst λ, which is equal to the expected number of patches per unit

length, is varied to change the density of patches.

The choice of a Pareto distribution allows truly “patchy” environments to be gen-

erated, with individual patches aggregating into larger patches, and areas containing

little or no nutrient emerging. Unlike in random environments, with this method

the position of one patch provides statistical information about the location of neigh-

bouring patches. Throughout this work these environments will be referred to as

“heterogeneous environments”. Figure 3.1 illustrates examples of both random and

heterogeneous distributions.

(a) (b)

Figure 3.1: Visual representations of examples of random (a) and heterogeneous (b)

environmental resource distributions. Here 100 patches are distributed across the

entire environment according to the two different methods.

3.2.2 Mycorrhizal networks

The networks are defined according to three different sets of rules. The first method

is random (Fig 3.2(a)), with each patch independently, randomly assigned to one of

10 networks. The second method uses a threshold parameter determined to provide

on average 10 networks, where a patch lying within this threshold distance of a neigh-

bour will belong to the same network as this neighbour, resulting in spatially-local

networks (Fig 3.2(b)). The random and local networks are at the extremes of the

spectrum of possibilities, suggesting totally uncorrelated spatial structure on the one

hand, and strictly local interactions on the other. To bridge the gap between these
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extremes, the local networks were subjected to a small amount of random “re-wiring”

(Fig 3.2(c)). This is achieved by each patch having a 0.001 chance of selection, with

selection meaning every patch in the same network after the selected patch (inclu-

sive) being assigned to another randomly chosen network. These generalised network

structures allow the complexities involved in spatially extended plant-mycorriza in-

teractions to be captured qualitatively without the need for the extra assumptions

and complications required by a fully spatially explicit model.

(a) (b)

(c)

Figure 3.2: Representative examples of (a) random, (b) local and (c) “rewired-local”

networks in a heterogeneous nutrient environment. The black nodes represent the

individual networks, whilst grey nodes represent the nutrient patches. The location of

black network nodes are purely for visual clarity, whilst relative patch positions are

represented by the distribution of the grey patch nodes.

3.2.3 Plant growth

For the purposes of this study, a plant’s size, L, is regarded as equivalent to the size

of its root system. Mass and length are interchangable as interpretations of size of

an individual within the model, but here size shall be considered as mass. The plants
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are independently distributed uniformly randomly throughout the environment, and

growth is assumed to occur at a constant rate, g, reflecting an unmodelled background

homogeneous nutrient resource. Growth is initially uniform, with proliferation equal

in both directions around the environment away from the “centre” of the plant. The

choice of g is arbitrary and has no impact on the outcome of the model provided

suitably small time steps are implemented (i.e. provided the amount of growth in a

given time step, g∗dt, is sufficiently small). If a plant encounters a nutrient patch, then

the plant experiences a rapid (instantaneous) additional growth equal to the quality of

the patch, p (Eqn. 3.1). Hence at time t, the plant is of size L(t) = gt+N(t)p, where

N(t) is the number of patches acquired by the individual at time t. The plant grows

until it reaches a maximum size, Lmax, which is dependent on the quantity of nutrient

acquired with Lmax(t) = L0 + N(t)p where L0 is an arbitrary initial maximum size

limit which can be thought of as representing a level of nutrient in the seed (fixed at

0.2 throughout this work for all individuals). Too small a value of L0 would make it

unlikely that an individual would reach an initial patch, whilst too high would make

it likely an individual would easily exploit the environment. Consequently the value

of L0 = 0.2 is chosen as a suitable middle-ground within the confines of the rest of

the model.

Previous work has shown that this method of modelling growth can be used as

an accurate characterisation of a Gompertz growth function (as used by Purves and

Law (2002); Lv et al. (2008)) with upper size limit equal to Lmax(t). It follows that

the final size of an individual is L = 0.2 +Np where N is the total nutrient acquired

by the plant upon reaching its size limit. The final size of the plant is therefore a

measure of the quantity of nutrient it has obtained, and is assumed to be a measure

of its fitness and growth success.

Directional proliferation

When a plant encounters a patch, it is possible for the individual to proliferate roots

directionally so as to potentially more efficiently exploit its environment. In order
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to minimise assumptions about a plant’s ability to detect and “remember” its en-

vironment, a plant’s information of the environment is limited to knowing in which

direction its last acquired patch was located. A simple trait then uses this informa-

tion, with each individual possessing a dimensionless parameter α between −1 and 1

which linearly dictates which proportion of its growth it proliferates in this direction,

with a positive value representing a bias of growth towards the last found patch and a

negative value resulting in a bias away. The parameter α is fixed for each individual,

and is allowed to evolve between generations.

Growth with mycorrhizal networks

When the model is run for plants grown in the presence of mycorrhizal networks,

expected nutrient per plant, ptotpp, is fixed at 0.4 and expected patch numbers at

25 ppp. The decision to join a network is governed by a second dimensionless trait

parameter, β, which takes value between 0 and 1 and equates to the probability

that the plant will join the network at a given patch encounter. If the plant does

join the network then it gains access to all patches within the network, with a “cost”

parameter, c, determining the proportion of benefit the plant loses relative to if it were

to acquire each patch independently of the network (c = 0 results in no cost; c = 1

implies full cost, i.e. no marginal benefit to the plant from acquiring resources from

a network). The values of c tested were: 0.5, 0.8, 0.9, 0.95, 0.99 and 0.999. Whilst

only one nutrient is explicitly modelled, the cost can be considered as a carbon cost

to the plant in an exchange process whereby all P is obtained from the network. The

parameters β and c thereby efficiently characterise the trade-off between gaining full

access to local nutrients, and gaining access to distant nutrients (at a cost) via a

mycorrhizal symbiotic association.

3.2.4 Population dynamics and evolution

In order to quantify the roles played by proliferation and network parameters α and β

under different ecological scenarios, the model was coupled with a genetic algorithm
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(GA) for both “control” (individuals grown in isolation in environment size [0, 1])

and competitive (a population of 100 plants competing for available resources in

environment size [0, 100]) conditions. Using the final size of an individual as a measure

of its fitness, the GA allows the relative success of plants with different values of α

and β to provide evolutionarily derived optimum values for a given scenario.

The GA works as follows:

1. An initial population is created with each individual possessing randomly chosen

proliferation (α) and, where applicable, network (β) parameter values.

2. The model is run and these individuals are then assessed for success within the

generation as defined by the fitness function.

3. The most successful are identified and the next generation is created as their

offspring, inheriting their α and β values.

4. The offspring then experience small, independent, individual mutations to their

inherited parameter values.

5. Return to step 2.

This cyclic process continues until enough generations have been iterated for con-

vergence (absolute or statistical) to occur. The GA uses a truncated selection process

to select the fittest 10% of individuals in a generation, with each of these individuals

producing 10 cloned offspring with mutation in the subsequent generation. Muta-

tions, defined here as small random changes to the inherited parameter values, occur

with 100% probability, with the mutations sampled from a uniform distribution with

limits -0.05 and 0.05. See Supplementary material for further details of GA choice

and implementation.
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3.3 Results

3.3.1 Proliferation reponse for isolated plants, and plants in compe-

tition

The evolved mean values of the proliferation parameter α are shown in Figure 3.3, with

bars indicating the variability in the outputs of the evolutionary algorithm. Explicitly,

for each evolutionary simulation, we subsample at 1000 generation intervals so as to

arrive at 100 pseudo-independent samples. Autocorrelation analysis establishes that

this interval is sufficient for subsamples to be treated as statistically independent

(see Supplementary material for details). The bars show the standard deviations for

these subsamples. Treating the data as independent samples, significant differences

in the mean from value 0 can be established by a t-test, indicated by the standard

* notation. Results are shown for different permutations of patch numbers and total

nutrient content, for control and competitive environments, and with random and

heterogeneous patch distributions. These results summarise the long term averages

of trait distributions across the modelled populations.

As anticipated, regardless of nutrient levels and patch density, the individuals

grown in control tests within randomly defined environments demonstrate no prolif-

eration preference (α remained close to 0).

In contrast, an isolated individual grown in a patchy heterogeneous environment

demonstrates a propensity to proliferate towards the last found patch (α > 0), though

the value of α depends on patch density and, to a greater degree, global nutrient levels.

In particular, at high nutrient levels and low patch density (Figure 3.3 (c)) there is

no signal for a proliferation strategy.

In random environments, the introduction of competition causes a shift from no

benefit in proliferation strategy to a preference to proliferate towards the last found

patch (α > 0). This demonstrates that the presence of competition allows an in-

dividual to improve its relative ability to exploit its environment by responding to

encountered patches, even without any implicit statistical information about the en-
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Figure 3.3: Evolved mean values for proliferation preference, α, for plants grown in

random and heterogeneous environments, in isolation (control) and among neighbours

(competition). All tests were run for 5 ((a) and (c)) and 25 ((b) and(d)) patches per

plant (ppp), and nutrient levels of ptot equal to 0.2 ((a) and (b)) and 0.8 ((c) and

(d)) per plant (ptotpp). The bars show the standard deviations of 100 uncorrelated

sub-samples from each simulation, see text for details.
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vironment.

At high nutrient levels, the introduction of competition in patchy heterogeneous

environments causes an increased propensity to proliferate towards the last found

patch (Figure 3.3 (c) and (d)). However, at lower nutrient levels where the control

tests provide a strong signal for a positive α value, a weakening of the signal and a

reduction in the benefit of possessing a positive proliferation value is observed (Figure

3.3 (a) and (b)).

With the exception of isolated individuals in random environments (where no

proliferation strategy ever emerges), all results show that a higher patch density

results in an increase in proliferation toward the last found patch (Figure 3.3 (b) and

(d)). In contrast, at high nutrient levels there is a reduction in necessity to proliferate

in such a way (Figure 3.3 (c) and (d)).

3.3.2 Additional heterogeneous control tests

In order to investigate the observed dependence on patch numbers and nutrient levels,

further control tests within patchy heterogeneous environments were carried out for

a larger set of nutrient levels (ptotpp ranging from 0.05 to 0.8 in 0.05 increments)

and a greater range of patch numbers (5, 10, 25, 50, 100 and 250 ppp). Figure 3.4

summarises the results from these tests, with standard deviations omitted for clarity

(see Supplementary material for details).

At low patch numbers, proliferation response to patches (α) remains at a positive

value as the total nutrient level increases, before beginning to decrease as the total

nutrient content is further increased. This continues until α settles around 0.

As the number of patches increases (and accordingly individual patch quality

decreases by Eqn. 3.1), both the rate at which α converges to 0 and the nutrient level

at which this transition occurs are seen to change. With increased patch numbers, the

transition takes place over a smaller range of nutrient levels (i.e. a steeper descent),

and the transition occurs at higher nutrient levels. As well as these qualitative and

quantitative changes to the observed transitions, with increasing patch numbers there
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Figure 3.4: Evolved mean values for proliferation preference, α, plotted against ex-

pected nutrient levels per plant (ptotpp) for isolated individuals grown in heterogeneous

environments. Expected patch numbers are: 5, 25 and 250 patches per plant (ppp).

Standard deviations omitted for clarity (see Supplementary material for more details)
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is a lowering of the mean α value at lower nutrient levels.

From the lowest mean patch number (5 ppp) to the highest (250 ppp) tested, the

evolved response of the proliferation bias, α, to an increase in total nutrient content

shifts from steadily reducing and converging to value 0, to increasing steadily before

sharply dropping to a value of 0. The results for 10, 50 and 100 ppp are consistent

with these trends but are omitted from Figure 3.4 for clarity.

3.3.3 Proliferation and symbiosis responses for plants grown in com-

petition in the presence of mycorrhizal networks

Figure 3.5 summarises the results for tests with competition in the presence of myc-

orrhizal networks. Figure 3.5(a) shows the effect of cost on proliferation strength (α)

for different network types, and figure 3.5(b) shows the effect on propensity to join

the network (β). Results are plotted against a rescaled cost − log(1− c); this rescaled

cost increases monotonically with c, and the logarithm form allows a wide range of c

values to be displayed.

In general (irrespective of network type) at relatively low cost to acquiring re-

sources through the networks (small c value) there is no foraging preference (α remains

close to 0) (Fig 3.5a)) and a preference to join the network (β > 0.5) (Fig 3.5b)). As

the relative cost of acquiring resources from the network is increased (c → 1), there

is a switch from a plant’s growth being driven by network symbiosis to being prolif-

eration oriented, with it becoming less desirable to join the networks (β → 0) and

foraging strategy becoming relevant with a positive preference to proliferate towards

the last acquired patch (α > 0).

The propensity to join the random mycorrhizal networks at lower cost (c) is less

than for the other types of mycorrhizal networks. As c increases, this propensity also

increases, and carries on doing so past the cost at which under other network types a

shift in preference for precision over symbiosis occurs.
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Figure 3.5: Plots of evolved mean (a) proliferation preference, α, and (b) propensity

to join a network, β, values. Plotted against rescaled cost − log(1− c), where c is the

network associated cost (see text for details), for different network types. Standard

deviations ommitted for clarity (see Supplementary material for more details).
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3.4 Discussion

Comparing results (Figure 3.3) from the control tests in random and heterogeneous

environments demonstrates that no benefit exists from proliferating in response to

patch acquisition when the acquisition of a patch provides no information about the

environment. When the patches do provide information, this can be used to an

individual’s advantage by directing proliferation in response to acquiring the patch.

As would be anticipated, exceptions occur to this pattern when global nutrient

levels are too low or too high (Figures 3.3(c) and 3.4). As patch quality tends towards

zero, so too does the relative benefit of acquiring a patch, and thus the potential

reward for proliferating in response to the presence of patches. If p is large enough,

the relative benefit from finding such a patch becomes so great that there is no longer

a need to be selective in proliferation, despite the increased reward in obtaining the

undiscovered patches.

The contrasting results for control and competitive tests (Figure 3.3) within ran-

dom environments confirm that, in the presence of competition, finding a patch im-

parts useful information to a plant. This is true even in an environment where a single

patch provides no information about the distribution of the remaining patches. With

no signal of neighbour presence/proximity contained within the model, an individual

can never know that it is overlapping with a competitor and therefore proliferating

into exploited soil. However, the acquisition of a patch does inform an individual

that it is not at that moment overlapping with such a competitor. Information that

proliferation in a given direction is definitely not in a region of overlap provides a

strong enough advantage to bias growth in this direction.

In patchy heterogeneous environments where an individual patch potentially con-

tains information about both the unexplored environment and also the presence (or,

more precisely, absence) of competitors, a slightly more complicated picture emerges.

References to control tests show that within a heterogeneous environment the strength

of signal for a positive trait, when it exists (Figure 3.3 (a) and (b)), often decreases

with the introduction of competition. Conversely, where little or no signal exists (Fig-
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ure 3.3 (c) and (d)), the addition of competition leads to the emergence of a positive

trait value. This, together with the results for the additional heterogeneous control

tests (Figure 3.4), demonstrates that competition could reduce the effectiveness of re-

sponding to patches within low-mid nutrient level environments, but in nutrient rich

environments could provide an additional pressure that necessitates selective prolif-

eration. Further, the greater α values from heterogeneous competitive environments

compared to random competitive environments demonstrates that not only can the

addition of competition cause a positive signal to emerge, but part of this signal

represents the emergence of a benefit in responding to the patch distribution.

Hodge (2009) observed that not all plants respond in the same way to self/non-self

competition (see also Hess and de Kroon 2007; Schenk 2006; Masclaux et al. 2010;

Milla et al. 2009). With no ability for an individual to directly detect neighbours,

and the plants represented in this work being non-species specific, there was no scope

for “kin” or competitor recognition (see for example, Dudley and File 2007; Bhatt et

al. 2011; Murphy and Dudley 2009) and evolutionary selection pressure applies only

at the individual level in the model.

However, the results shown here provide theoretical support for experimental

results seen for particular species. Cahill et al. (2010) found that for Abutilon.

theophrasti seedlings grown alone and in competition, in treatments combining differ-

ent levels of resource heterogeneity, that root placement was driven by a “hierarchical

set of decision rules dependent on presence or absence of a neighbour”. As in the

results shown here at high nutrient levels (Figure 3.3 (c) and (d)), regardless of re-

source heterogeneity, in isolation a plant would grow with a broad foraging strategy

ignoring the resource distribution. In the presence of competitors, a more specific for-

aging strategy was adopted and was modified by resource distribution. More broadly,

Cahill et al. (2010) conclude that plants “non-additively integrate information about

both resource and neighbour based cues in the environment”, which is consistent with

the evolved results presented in this work.

When mycorrhizal networks were introduced, the general pattern of behaviour was
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easy to understand. At relatively low costs for acquiring resources via the networks

(low c value) the plant had a strong pressure to join the networks. This is shown both

by a propensity to join (large β value), but also by the lack of signal for a positive

proliferation (α) value. Effectively a plant needed to join the networks in order to be

successful, and consequently proliferation strategy became insignificant. As the cost

increased, a point was reached where it no longer remained beneficial to the plant

to join the network, and so β decreased to 0. At the same time, root proliferation

became important again, hence the emergence of a signal for a positive α value.

At lower costs, the reduced pressure (lower β value) to join random networks com-

pared to local and “rewired-local” networks does not reflect a relative lack in benefit

in doing so, either directly to the individual or indirectly by depriving neighbours of

resources. One explanation for the observed reduction in β could be that at such

low costs, there was only scope for such a small number of individuals to monopolise

the networks/resources that within the GA the selection pressure did not get fully

expressed when using a truncated selection method.

Within an environment of random networks, the benefit to an individual from join-

ing a network resulted in greater potential to join subsequent networks than with local

and “rewired-local” networks. This made it possible for an individual to monopolise

not only local resources, but also those over a greater spatial range. Consequently,

there was greater potential to deprive the competition of available resources than with

spatially structured networks. This explains why it was beneficial to continue joining

the networks and resist switching to a proliferation-based growth strategy when the

cost of doing so would have suggested otherwise. The lack of difference between results

for local and “rewired-local” networks suggest that not enough rewiring took place

to make a significant difference. With increasing amounts of rewiring the networks

would tend towards random networks, suggesting a greater level of rewiring than was

performed would see results in between those of the random and local network tests.

As discussed in the introduction, the implementation of mycorrhizal networks

was necessarily idealised due to constraints imposed by the original model. Within
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such a framework, it was impossible to implement many of the dynamic features of

plant/network interactions (Smith and Read 2008; Hausmann and Hawkes 2009). As

such, this implementation acted to demonstrate the significance of the spatial distri-

bution of networks among plants/resources on the cost/benefit relationship between

plants and networks, and to inform future experiments and their research. The limita-

tions also highlight the need for moving into a more temporally explicit model. Such

a model would also allow the order of patch encounter (Duke and Caldwell 2000),

temporal network dynamics (Hausmann and Hawkes 2009), and the physical size and

temporal properties of patches (Fitter 1994; Hodge 2004) to be integrated.

Also, although it is recognised that roots can also modify their environment and

the microbial decomposing community through rhizodeposition processes (Paterson

2003; Paterson et al. 1999; Hodge et al. 1998b; Kuzyakov 2002) this was not included

in this model not least because rhizodeposition itself can be affected by many envi-

ronmental factors (Hodge and Millard 1998; Hodge et al. 1997; reviewed by Jones et

al. 2004, 2009; Hinsinger et al. 2009), and thus is often difficult to quantify.

The model is restricted to growth in one spatial dimension, but one can argue that

the evolutionary effects on proliferation strategies will be amplified in higher dimen-

sions. In one dimension, local proliferation in the “correct” direction happens 50% of

the time when growth is random, and any evolved strategy can only improve upon

this. In higher spatial dimensions there are more “incorrect” possible growth direc-

tions, and so the relative advantage of a directional proliferation strategy is increased.

Similarly, as the number of dimensions is increased, so too is the complexity of the

spatial distribution of patches. Consequently, a trait which maximises proliferation

efficiency and allows more precise exploitation of space stands to be more beneficial

in higher dimensions. As such, it is reasonable that the selection pressure to possess

and utilise such a trait will be greater in higher dimensions and that a stronger signal

would emerge for a parameter governing such behaviour. However, extension of the

simulations to higher dimensions requires further assumptions, and is not considered

here.
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Robinson et al. (1999) suggested for a highly mobile and diffusive nutrient like N

that it is the presence of inter-specific competition that drives the benefit for respon-

sive proliferation. In that scenario, the mobility of the nutrient makes it unnecessary

for the plant to be particularly selective in its proliferation of roots, but the added

pressure of competition provides the benefit from response to the environment. The

results presented here show that similar evolutionary forces can drive the emergence

of reactive proliferation in response to randomly distributed immobile nutrients in en-

vironments where isolated plants do not benefit from such behaviour. With no direct

information imparted to an individual about the presence and proximity of com-

petitors in this model, the acquisition of immobile nutrient patches provided enough

information for a plant to gain, on average, an advantage by responding to them,

regardless of their distribution or quality.

Supplementary material

Genetic algorithm

The genetic algorithms (GAs) allow for evolved values of proliferation strength (α)

and network symbiosis preference (β) to be obtained across different environmental

and biological scenarios. The mean values of α (and β where applicable) across the

population through time have are shown in Figures 3, 4 and 5 in the main text as

they preserve both quantitative and qualitative properties of α and β (for α: < 0,

≈ 0 and > 0 representing bias away from last found patch, no preference and bias

towards last found patch, respectively; for β: ≈ 0 and ≈ 1 demonstrates a weak and

a strong propensity to join networks, respectively).

Within the genetic algorithm, one generation in the control experiments consists

of 100 individuals grown in an independently defined environment, whilst in the com-

petitive scenario 100 individuals grow and compete in the same environment simul-

taneously. The fitness measure of an individual is its final size, which in this model

is equivalent to its success in obtaining nutrient patches.
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The GA employs a truncated selection method, with the top 10% (10 in this

case) of plants by fitness chosen and each producing 10 “offspring” in the subsequent

generation, with each offspring being a clone of its single parent, with a small random

mutation (i.e. the mutation rate is 100%). The mutation is drawn from a uniform

distribution with mean zero, and limits -0.05 and 0.05. This approach was chosen as

results were consistent with other tested implementations of mutation and selection

algorithms, but required the fewest generations to obtain a clear signal (where one

existed).

Due to the noisy nature of the results generated by the GA, it is important to

be sure that enough results have been generated for a clear signal (if present) to be

detected, i.e. that the recorded mean parameter values are not just random anoma-

lies, but accurately reflect statistical convergence. The results shown in Figures 3,4

and 5 in the main text are consistent across different environment and parameter

choices, with clear trends emerging. Also, all of the different selection methods and

mutation rates tested have led to the same results; all that changes is the number

of generations required for the signal to emerge. 100,000 generations were deemed

sufficient to establish the distribution of the evolvable trait values. For selected pa-

rameter and environmental choices, the algorithm was run for 10,000,000 generations

and confirmed that the chosen limit of 100,000 was sufficient.

The results from the GA show clear distributions emerging. As an example, Figure

S 1 shows the distribution of α for 10,000,000 generations within the GA when no

selection bias is imposed (i.e. the selection process is completely random), and so the

emergent distribution is what one would see if there were truly no correlation between

α and fitness. It is important to note that one would not expect to see a uniform

distribution here: the peaks above the lower limit of -1 and below the upper limit of

1 are as a result of this being the mean of 100 bounded values. Consequently a value

of 0 or 1 would require all 100 individuals to take this value, which is statistically

highly unlikely.

Comparing this distribution with those for examples of random (Fig. S 2) and
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Figure 3.6: Distribution of proliferation parameter α value when tested for 10,000,000

generations with random selection method (i.e. no fitness measure is in place). This

represents the expected distribution when the value of α has no effect on fitness.

patchy heterogeneous (Fig. S 3) control tests, it can be seen that in the random case

there is no signal at all whilst in the heterogeneous case a biased distribution emerges

leading to the recorded positive mean α value (see Fig. 3(a) in main text).

Due to the stochastic nature of the environments and the stochastic process of

parent selection/offspring production and forced mutation within the GA, with suc-

cessive generations a statistical convergence of the distributions of α and β emerge

rather than single, optimal values.

Autocorrelation analysis and variability within results

In order to present a meaningful measure of variability, the 100,000 generations are

split into 100 subsamples of 1,000 consecutive generations. This approach is supported

by autocorrelation analysis which involves testing the data for correlation with itself

over different time lags. This is achieved by time shifting the data and calculating
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Figure 3.7: Distribution over 100,000 generations of mean of proliferation parameter

α (across 100 individuals) for control test in random environments (5 patches per

plant (ppp); nutrient level ptotpp =0.2).
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Figure 3.8: Distribution over 100,000 generations of mean of proliferation parameter

α (across 100 individuals) for control test in heterogeneous environments (5 patches

per plant (ppp); nutrient level ptotpp =0.2).
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the Pearson product-moment correlation coefficient (typically referred to as r). The

forumula for finding the sample correlation coefficient r for samples X1, X2, ..., Xn and

Y1, Y2, ..., Yn of random variables X and Y respectively is given by (Canavos 1984):

r(X,Y ) =

∑n
i=1(Xi − X̄)(Yi − Ȳ )

√

∑n
i=1(Xi − X̄)2

√

∑n
i=1(Yi − Ȳ )2

,

Figure S 4 shows the correlation of data for control tests with 25 ppp in heteroge-

neous environments at different time lags (in generations). Each line represents data

from simulations with different expected nutrient levels per plant (ptotpp). Such tests

were carried out for data from all types of simulation run, and 1,000 generations was

consistently seen to be sufficient for correlation to be deemed negligible. As such, re-

sults for each test can be considered as 100 pseudo-independent repetitions over 1,000

generations, and the results can be tested for significance to verify recorded values

are significantly different from those from a random distribution such as in Figure S

1.

Figure S 5 shows an extended version of Figure 4 (from main text) with bars

showing standard deviations. This both confirms that where a positive proliferation

perameter (α) is reported there is indeed a significant signal, but also highlights how

variability tends to increase with a reduction in the strength of α. This makes sense

since where a value close to 0 is reported, it is not because there is any pressure

for this value, but rather it arises due to a lack of any signal, hence an increase in

variability.

Similarly, Figure S 6 shows an extended version of Figure 5 (see main text) with

bars showing standard deviations. It is worth noting that a positive proliferation

parameter value (α > 0) follows a lack of propensity to join the networks (β close to

0) as described in the main text. It follows that when there is a positive β value there

is no clear signal for α and consequently there is a lot of variability. As the cost of

joining the networks increases and consequently β tends towards 0, a positive α value

emerges along with a reduction in variability. The higher variability evident in the

random networks at lower costs also suppports the explanation in the main text that
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Figure 3.9: Results from control tests with 25 ppp in heterogeneous environments are

time separateed and the Pearson product-moment correlation coefficient (PPMCC)

calculated. Each line represents results from simulations performed with different

expected nutrient levels per plant (ptotpp).
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Figure 3.10: Extended version of Figure 4 within the main text. Figures (a), (b) and

(c) show the mean proliferation parameter (α) values for 5, 25 and 250 patches per

plant (ppp) respectively. Bars denote standard deviations.
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the lower β values compared to other networks at low costs are caused by a lack of

selection pressure within the GA.
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Figure 3.11: Extended version of Figure 5 within the main text. Figures (a), (b) and

(c) show the mean proliferation perameter (α) values and (d), (e) and (f) the mean

network parameter (β) values at different costs c for random, local and “rewired-local”

networks respectively. Bars denote standard deviations.
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Chapter 4

Higher dimensions: scaling root

growth and proliferation to a

two-dimensional model

4.1 Introduction

In Chapter 3, an idealised one-dimensional model of plant growth and competition

was presented. Neighbourhoods were defined by independently uniformly randomly

placing plants within a specified one-dimensional range, and the environment com-

prised of point-sized nutrient patches distributed either independently uniformly ran-

domly (“random environments”), or by a random walk (a path composed of random

steps; see Grimmet and Stiraker 2004) utilising a long-tailed Pareto distribution for

inter-patch distances, causing aggregation of patches to occur (“heterogenous envi-

ronments”). Individual plants were equipped with a proliferation response parameter

(α) which governed their biasing of growth in reaction to the location of their most

recently found patch. The model was run under different environmental conditions

(varying total resource levels and patch abundance) to investigate the impacts of

different effects of resource supply and distribution on plant proliferation strategies.
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By running the model within a genetic algorithm, the effects of patch distribution,

quality, abundance and overal nutrient content on the benefit of possessing a prolifer-

ation response to local (spatially and temporally) knowledge of the environment was

assessed.

Overall a hierarchical set of factors emerged in controlling the pressure for a reac-

tive proliferation response, with environmental conditions often only contributing to

this pressure when competition was present, consistent with observed results (Cahill

et al. 2010; Robinson et al. 1999) Whilst the one dimensional model achieved its

aims of quantifying the impact of different factors (both individually and and col-

lectively) on the benefit of plant proliferation responses to their environments, there

are intrinsic limitations to the one dimensional model that are discussed in Chapter

3. Specifically the one-dimensional model and environments were deemed limited in

being able to accomodate more complicated dynamics, with patch encounter being

too strictly governed by initial conditions and more complex physical properties of

patches (such as size and life-span) being difficult to include. Within one-dimension,

the incorporation of mycorrhizal networks was also necessarily highly simplified.

For this reason the model has been expanded into two spatial dimensions. With

a move into two dimensions it is possible to construct more realistic environments,

and also to capture more realistic interaction between competing plants. The core

functionality of the model largely carries over from the one-dimensional approach,

with some changes being necessary to accomodate the move into an extra dimension.

4.2 Methods

4.2.1 Two-dimensional environments

The environment is defined as a square with sides of length S, and therefore if there

are n patches within the environment, there is a patch density of n
S2 . It follows that

the expected number of patches in an area K is Kn
S2 . This equates to a total nutrient

content (in terms of marginal benefit to the plant) of Kx, where x = np
S2 is the nutrient
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density within the environment.

As with the one-dimensional model (see Chapter 3), two types of environment

are defined according to methods of resource distribution: “random” and “heteroge-

neous”.

Random nutrient distribution

In two dimensions, the random environments (see Fig 4.1) are defined in much the

same way as within the one-dimensional model, with each patch being independantly

distributed uniformly randomly within the environment. Whilst in one-dimension this

means the location of each patch is determined by one sample from a uniform random

distribution along the range of the environment, in two dimensions the analagous

approach is to select two samples from a uniform random distribution to determine

the x- and y-coordinates for each patch. As with the one-dimensional environments,

these random environments see no statistical relationship between the locations of

one patch and another (that is, the presence of one patch provides no information

about the distribution of the other patches within the environment).

Heterogeneous nutrient distribution

Patchy heterogeneous environments (Fig again use the Pareto distribution described

in Chapter 3 to sample inter-patch path lengths for a random walk. To account for the

scaling up to two dimensions, the method used for the one-dimensional environments

needs to be exapanded to account for filling a two-dimensional environment. This is

achieved by for each path segment choosing not just a path length, but also a new

orientation. By sampling a radian angle from a uniform [0,2π] distribution, a new

orientation is sampled for each path step.

Plant distribution

In two dimensions, plants are independently distributed uniformly randomly through-

out the environment. This is implemented in the same way as when creating a random
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Figure 4.1: Example of a “random” 2-dimensional environment. Here 5000 patches

are independently distributed uniformly randomly across the environment, resulting

in no statistical aggregation or spatial structure of patch locations.
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Figure 4.2: Example of a “patchy heterogenious” 2-dimensional environment. Here

5000 patches are placed by starting in a random location and performing a random

walk with step lengths sampled from a Pareto distribution. Between each path step,

the direction of travel is chosen from a uniform distribution.
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nutrient distribution, with two samples taken from a uniform random distribution to

determine the x- and y-coordinates for each plant.

4.2.2 Plant growth

As in Chapter 3, in the two-dimensional model intrinsic growth is of constant rate,

g, until an upper size limit (Lmax0) is reached, that is

dL

dt
= g (4.1)

whilst t < Lmax0/g. Whilst in one dimension “size” is equivalent to length, in two

dimensions it is taken as equivalent to area. Whilst the Gompertz growth model (of

which the constant growth model is a simplification; see Sections 2.2.2 and 2.2.7) is

often used to describe plant weight (Purves and Law 2002; Schneider et al. 2006; Lv et

al. 2008), it is argued that is justifiable to apply the measure of “size” to area in this

model. There is no implicit or implied third dimension in the two-dimensional model,

therefore just as in one-dimension length, and in three-dimensions weight(≈volume),

give a full measure of the plant’s extent, so too in two dimensions does its area.

Growth within the model is defined such that area grows at a constant rate, and so

accordingly the rate of growth radially from the plant’s centre decreases as the plant

gets bigger. Assuming there is no proliferation bias (i.e. α = 0, and so growth is

uniform), radial size (Lrad) grows according to

dLrad

dt
=

g

2πLrad
. (4.2)

Patch acquisition again results in an instantaneous jump, p, in an individual’s size

(the marginal benefit to a plant from patch acquisition), and increases the upper size

limit (Lmax(t)) by the same amount, so

Lmax(t) = Lmax0 + pN(t), (4.3)

where N(t) is the number of patches acquired by the plant by time t.
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4.2.3 Nutrient patch acquisition

When calculating the expected size of an individual, it is essential to factor in that

the acquisition of a patch causes the plant to increase in size, and so acquiring a

patch increases the size of the area explored and accordingly the expected number of

patches found. This in turn results in more expected growth, leading to more patch

acquisition, and so on. This becomes an infinite iterative-cycle, and the expected size

of a plant at a given time can be expressed as an infinite sum.

To formulate this expression for a plant at time t (assuming t < Lmax0/g), we

must first consider its size due to intrinsic growth:

L(t)intr = gt. (4.4)

From above, it is expected that from this growth the plant receives a marginal benefit

equal to gtx, and so growth due to intrinsic growth plus first order patch acquisition

is given by

E(L(t)intr+O(1)) = gt+ gtx. (4.5)

However, this additional growth from first order patch acquisition in turn leads to

more expected patch acquisition, and resulting growth due to second order patch

acquisition equal to (gtx)x, making the expected size due to intrinsic growth plus

first and second order patch acquisition

E(L(t)intr+O(1)+O(2)) = gt+ gtx+ gtx2. (4.6)

Continuing this process iteratively, the expression for the expected size of the indi-

vidual due to intrinsic growth plus first to ith order patch acquisition becomes

E(L(t)intr+O(1)+O(2)+...+O(i)) = gt+ gtx+ gtx2 + ...+ gtxi, (4.7)

which when expanded for infinite order patch acquisition results in the expression
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E(L(t)) = gt

∞
∑

i=0

xi. (4.8)

Provided x < 1, the infinite sum in Eqn. 4.8 is equal to 1
1−x

, and so

E(L(t)) =
gt

1− x
. (4.9)

Within the experiments described here, the nutrient content x (in terms of marginal

benefit to the plant) is defined such that the expected size of a plant growing in iso-

lation in a homogeneous environment is twice that of when grown with no patches.

That is

Lmax0

1− x
= 2Lmax0, (4.10)

which gives a value of x = 0.5. Lmax0, as in Chapter 3, is fixed at 0.2, and so expected

size in control conditions is 0.4. This value lies within the mid-range of values tested

in Chapter 3 and, along with a fixed number of 25 patches per plant, has been chosen

as it allows for enough resources in the environment and marginal benefit from patch

acquisition to have a significant effect on the experiments, without being so small

so as to have no impact nor so large so as to dominate results and hide potential

subtleties in results caused by other factors.

As in one-dimension, a mechanism is built into the model which allows a plant to

potentially respond to its environment and influence root proliferation in response to

its last acquired patch by means of a parameter α. In one dimension, growth is limited

to two directions, therefore the distribution of growth can only be a weighting between

these two directions. In two dimensions, however, there are an infinite number of

directions within the plane for growth, and so any directional bias of growth can have

an arbitrary degree of fidelity. In order to keep the model both relatively simple as well

as analagous to the one-dimensional model, growth is now split into four “directions”,

doubling the fidelity with the doubling of dimensions. This is achieved by splitting

the plant’s radial growth into four sectors, each covering a π/2 radian range from the
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plant’s centre (Fig 4.3(a)), with each plant being randomly oriented by an angle θ

radians (chosen from a uniform [0,π/2] distribution; Fig 4.3(b)) so as to avoid any

artifacts from enforced plant alignment. Now when a plant encounters a patch, the

segment where the patch was found becomes the “direction” for any (potential) bias

in growth (see Fig 4.3(c)). Whilst in reality plant exhibit a much higher fidelity of

root response (Hodge et al. 1999, 2009; Hodge 2009; Cahill and McNickle 2011) it

is argued that this approach is a sensible one to take. As stated above, this if for

reasons of simplicity and keeping the two-dimensional model analagous to the one-

dimensional model (Chaper 3). Also, experiments have been carried out investigating

the response of root systems on the same sectoral basis (Campbell et al. 1991; Gao

et al. 2012).

This has prompted a reworking of the proliferation bias value α. In one dimension,

the value of α (-1:1) pertained to a linear shift of growth bias in the direction of the

most recently found patch, with a value of 1 meaning a 100% bias of growth in the

direction of the last found patch, a value of -1 meaning a 100% bias of growth in

the opposite direction, and a value of 0 representing 50% of growth in each direction

(i.e. no response to patch acquisition). When the growth bias relates to four sectors

rather than two, an α value of -1 and 1 still results in 0 or 100%, respectively, of all

growth being in the target direction. Now, however, a value of 0 must relate to 25%

of total growth (that is, no growth bias in the target sector). In order to satisfy these

conditions, a quadratic equation fitting the three points is solved giving the formula

secgrowthtarget = 0.25α2 + 0.5α+ 0.25, (4.11)

secgrowthother = (1− secgrowthtarget)/3, (4.12)

where secgrowthtarget and secgrowthother are the growth ratios within the “target

sector” (sector where the most recently acquired patch was located) and each of the

remaining three sectors, respectively. This means that as the value of α changes, the

percentage of overall plant growth in the target sector does not change linearly. For

example, an α value of 0.4 in the one-dimensional model would see 70% of growth in
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(a)

(b)

(c)

Figure 4.3: (a) Plant split into four π/2 radian sectors and (b) rotated by angle θ

(in radians), where θ is chosen from a uniform [0,π/2] distribution. (c) Figurative

example of how the individual in Fig 4.3(b) may look after experiencing growth and

nutrient acquisition with a non-zero proliferation bias in response to nutrient patch

acquisition. The proliferation bias leads to unequal growth in each of the four sectors

of the root system.
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the target direction and 30% in the other direction. In the two-dimensional model,

this value would result in 49% of the growth in the target sector, and 17% of the

growth in each of the remaining three sectors. When α is not 0, growth in each of

the four sectors is calculated using Eqn. 4.2 in conjunction with the individual sector

radii and the percentage of growth assigned to each sector.

4.2.4 Experimental set up

Whilst in Chapter 3 the one-dimensional model was run within a genetic algorithm

(GA) to assess the relative benefit of different growth strategies within an evolutionary

context, in this chapter the two-dimensional development of the model is not run

within a GA framework. Instead, simulations are run (again within the MATLAB

computing environment) for a number of repetitions for the different configurations

and the results analysed. This means that results returned will not be like for like with

those in Chapter 3, and thus some caution must be displayed when comparing the

results. It does, however, significantly speed up the process of running the simulations,

and allows for the direct comparison of results for different strategies in terms of

overall performance. Whilst in Chapter 3 the relative benefits and/or cost of different

strategies are established in an evolutionary context, the simulations as performed

in this chapter will still allow for the qualitative comparison of the relative merits of

different growth strategies, and for comparison to results from the one-dimensional

model.

4.3 Results

Figures 4.4-4.6 show the results for control tests (individuals grown in isolation), sin-

gle type competition (competition with plants of same type, i.e. monocultures) and

mixed competition (competition within a population between both types of plants),

respectively. In control tests, the results given are for all individuals across all repe-

titions, whilst the competition results (monocultures and mixed) show the results for
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Figure 4.4: Plant sizes from control (individual plants grown in isolation) tests. Re-

sults shown for plants with no (α = 0; dark grey bars) and positive (α = 0.5; light

grey bars) proliferation bias, in uniformly random (“uni”) and patchy heterogeneous

(“het”) environments (“env”). Error bars show +/- standard error of the mean. *

denote significant difference from expected performace in control conditions in uni-

form environments (i.e. size 0.4), with * implying 0.05 ≥ P, ** 0.01 ≥ P and ***

0.005 ≥ P.

the populations across all repetitions. Standard errors of the mean are shown for all

results. In Figures 4.4 and 4.5, significant difference from the expected peformance

in control conditions in uniform environments (i.e. individual size of 0.4) is estab-

lished by a t-test across all individuals from all replications, with significant difference

indicated by the standard * notation. In Figure 4.6, a paired t-test was performed

between the means of the two plant types over each replication of mixed competition,

with significant difference again indicated by the standard * notation.

In control tests (individual plants grown in isolation in an individually generated

environment) the results (Fig 4.4) are consistent with the trends seen in the results
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Figure 4.5: Plant sizes from competitive (multiple plants grown together) tests with

plants grown as monocultures. Results shown for monocultures with no (α = 0; dark

grey bars) and positive (α = 0.5; light grey bars) proliferation bias, in uniformly

random (“uni”) and patchy heterogeneous (“het”) environments (“env”). Error bars

show +/- standard error of the mean. * denote significant difference from expected

performace in control conditions in uniform environments (i.e. size 0.4), with *

implying 0.05 ≥ P, ** 0.01 ≥ P and *** 0.005 ≥ P.
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Figure 4.6: Plant sizes from competivitive (multiple plants grown together) tests with

mixed plant types. Results shown for competition between plant types with no (α = 0;

dark grey bars) and positive (α = 0.5; light grey bars) proliferation bias, in uniformly

random (“uni”; left two bars) and patchy heterogeneous (“het”; right two bars) en-

vironments (“env”). Error bars show +/- standard error of the mean. * denote

significant difference in performance between plants grown with no proliferation bias

and those grown with positive proliferation bias in mixed competition, with * implying

0.05 ≥ P, ** 0.01 ≥ P and *** 0.005 ≥ P.
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from the one-dimensional model, though some subtleties emerge.

As was expected, and in line with previous results, in uniformly random envi-

ronments no difference in performance was observed between plants with a positive

proliferation bias and those with no bias. Both types of plant achieved an average

size close to 0.4, in line with the chosen value of x (see Methods). When control

tests were carried out in patchy heterogeneous environments, plants with no bias per-

formed no better/worse than when in uniformly random environments. Plants with

a positive bias performed slightly better than the expected performance in a uniform

environment.

When competing as monocultures (Fig 4.5), both plants with a positive prolifera-

tion bias and those with no bias performed worse than in the control tests in uniformly

random environments (with no difference between the two plant types). Both per-

formed better than in the controls tests in patchy heterogeneous environments, with

the positive bias plants performing better than the non-bias plants.

When both types of plants were competing with each other in mixed competition

(Fig 4.6), in the uniformly random environments there was no difference in perfor-

mance between the two (and no difference to when each plant type were grown as

monocultures, see Fig 4.5). In patchy heterogeneous environments, the positive bias

plants had an advantage over the non-bias plants. Compared to results when com-

peting as monocultures, the non-bias plants performed less well, and the positive bias

plants performed better.

4.4 Discussion

A key result to emerge from these tests is that competing populations (regardless

of proliferation strategy) on the whole perform better within heterogeneous environ-

ments than in random environments. Whilst this increase in performance gain for

plants with a positive proliferation bias can be explained by them maximising growth

based on implicit and explicit information about their neighbourhood (see Chapter

3), that populations consisting solely of non-proliferation biasing plants see a simi-
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lar (albeit slightly smaller) improvement in performance is more difficult to explain

and in contrast to some observed behaviour. For example, Day et al. (2003) grew

populations in environments with vary levels and scale of heterogeneity, and it was

observed that population level yields when grown with the same total levels of nu-

trient supply were similar irrespective of the distribution of nutrient supply. It is

perhaps worth noting that these “heterogeneous” environments were composed of

chequerboard distributions of nutrient supply; whilst offering statistical levels and

scales of heterogeneity, such environments are some way from the heterogeneity cre-

ated in these tests and witnessed in reality. Conversely, Hutchings and Wijesinghe

(2008) observed that population yields were highly context sensitive, with resource

distribution having a distinct effect on overall yield. Again distibuting resources in

a chequerboard formation, at the largest concentration contrasts between patches,

overall yield in the heterogeneous tests were significantly greater than in homoge-

neous environemtns, with the greatest net yield observed when patches were large

and with the greatest contrast between patches (Hutchings and Wijesinghe 2008).

A population of non-biased proliferating plants performing less well in random

environments than control tests (in either environment type) can be attributed to the

effects of overlap, and the resulting exploration of previously exploited soil. Such a

negative effect from competition due to overlap fits with the observed tendency for

plants to avoid the roots of competing plants in favour of segregation (Schenk, Call-

away Mahall 1999). But the increase in performance as a population in the patchy

heterogeneous environments (relative both to competition in random environments

and, more importantly, control tests in both environment types) shows that the dy-

namics of plant interaction is causing the population to perform better as a whole.

Given the idealised nature of the model, it is wholly plausible that such a phenomenon

could have could occur, or at least have some impact, in real life.

With stochastic environments and interactions, it is possible (and indeed likely

given enough repetitions) that “extreme” events may occur within the model. Specifi-

cally, there is a possibility that a very high quantity of patches may be located within
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a very small area (i.e. a localised high concentration of nutrient resource exists).

It is worth noting that in reality “extremes” can occur and in a population is not

unusual to see a few individuals perform significantly better than the rest of the pop-

ulation, even within experiments performed in homogeneous conditions (Schneider et

al. 2006; Lv et al. 2008). The statistical testing confirm that any observed results

can be verified as significant and are not simply skewed by anomalous results.

4.5 Conclusion

The results generated by the two-dimensional model are consistent with those seen for

the one-dimensional model in Chapter 3, though subtle differences exist. The results

in Chapter 3 demonstrated the different selection pressures for a positive prolifera-

tion response by means of running the model within a GA framework. In contrast,

here the results demonstrate the relative benefit of such strategies via direct compar-

ison of performance. However, both sets of results confirm the relative advantage of

possessing such a trait under different circumstance.

Whilst competition itself causes a slight advantage to those with the ability to

proliferate in response to the environment, it is the environment itself which seems

to be the biggest factor in determining the benefit of this trait. Like the results in

Chapter 3, it can be seen that when competition and heterogeneous environments are

combined that the biggest advantage in posessing a proliferation response is observed.

Again a compound effect of environmental and neighbourhood conditions provided the

strongest selection pressure for such a strategy. This is consistent with experimental

observations (Cahill et al. 2010).

Some of the trends emerging in the results presented here that were not evident in

the results presented in Chapter 3 do not so much suggest that different behaviour is

being observed, but rather can be attributed to fact that the tests themselves are not

the same; in Chapter 3 the model was run within a GA and long term trends observed.

In these tests, performance is observed as a series of direct comparisons of relative

achieved size. The slightly stronger emphasis on the impact of competition within
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the one dimensional model is probably explained by the fact that a near neighbour

in one-dimension has an effect of effectively closing off 50% of the possible area to

be grown into. In two dimensions, a similar level of “crowding” would require a

greater number of individuals located in close proximity to the target plant. In two-

dimensions competition still provides an incentive to adjust proliferation in order to

maximise resource yield per unit growth. However, the probability of such extreme

crowding as in the one-dimensional model is much less, and also the ability to “out-

compete” a neighbour within two dimensions is much greater than in one; instead

of needing to “leap-frog” the competitor in order to beat them to resource located

beyond them, in two-dimensions it possible to grow “around” a competitor.

Although there are subtle differences between the results, qualitatively the same

trends are seen to emerge. These consistencies point to the fact that the one-

dimensional model did a good job of qualitatively representing what occurs when

the model scaled up to two-dimensions. The emergence of a significant benefit to

all plant types when grown as a population (either as a monoculture or in mixed

competition) within the patchy heterogenious environments relative to the expected

(and observed) behaviour in uniformly random environments (both in control con-

ditions and as competing populations) highlights the subtle results that can emerge

from what remains a relatively simple model. These results are not easy to explain,

but once again demonstrate that mean-field approximations can be of little relevance

when dealing with stochastic, dynamic models (and as a consequence, real life).

126



Chapter 5

Different strategies: trading root

growth rate and size against root

system efficiency

5.1 Introduction

As discussed in Chapter 4, whilst the one dimensional model developed in Chapters

2 and 3 offers a good approximation of the qualitative results of the two dimensional

model when investigating simple proliferation responses, its strict spatial constraints

limit the growth (and subsequently emergent behaviour) of plants in a way that is not

the case in higher dimensions. The move to two dimensions allows more flexability

for plants to successfully grow and capture resouces in the presence of neighbourhood

competition, and so should better allow different growth strategies to prove their

relative values under different conditions.

It is well known that different plant species display markedly different root growth

strategies (Malamy 2005; Hodge et al. 2009; Taub et al. 1996), and also high levels

of architectural flexibility in root deployment (de Kroon et al. 2009; Malamy 2005;

Hodge et al. 2009). In Chapters 3 and 4 the relative benefit of a plant’s ability to

127



CHAPTER 5. DIFFERENT STRATEGIES: TRADING ROOT . . .

focus root growth in response to the detection of available resources in one and two

dimensions, respectively, was investigated. In this chapter, different plant types are

specified by varying intrinsic growth rates and initial maximum sizes, and are balanced

by limiting the different plants’ abilities to successfully capture encountered nutrient

patches. These different strategies are compared in control conditions (plants grown in

isolation), competition when grown as a monoculture (a population of the same plant

type grown simultaneously within the same environment) and in mixed competition

(populations made up of two different plant types growing in competition). The

relative effects of the positive proliferation responses to acquired patches seen in

Chapters 3 and 4 are also investigated.

By defining plants in this way, fundamentally different growth strategies are eval-

uated across a range of conditions. It has been proposed (Campbell et al. 1991)

that different plants exhibit a trade-off between scale and precision when it comes to

foraging for resources. Campbell et al. (1991) suggest that plants can be loosely cate-

gorised as “dominants” and “subordinates”, with the dominant plant types displaying

large scale at the expense of precision, whilst subordinates demonstrate greater for-

aging precision at a smaller scale. It is hypothesised that this balance of trading one

trait off against another contributes towards diversity in community structure within

populations of competing plants.

The idea of a scale-precision trade-off is not wholly accepted however, with anl-

yses of published data suggesting there exists no empirical evidence to support such

a claim (Kembel and Cahill 2005; Kembel et al. 2008). Kembel et al. (2008) pro-

pose that scale and precision need to not be looked at in isolation, but rather to be

considered as part of a broader range of traits, finding that “root foraging precision

seems to form part of a suite of traits related to rapid growth rate and the fast set of

resource-economic leaf and root traits”. There is also evidence to suggest that many

observations of apparent scale-precision trade-offs are in fact an artefact of experi-

mental practice and the time periods over which observations are made (Kembel et

al. 2008; Fransen et al. 1999; Berendse et al. 2007).
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Due to the nature of model developed in the previous chapters and adopted here,

by varying growth rates and the ability of an individual to uptake available resources

there is some freedom in interpreting what these traits represent in a “real” context.

Whilst increasing growth rate and size is fairly self explanatory, the relative ability

of an individual to successfully acquire available resources (see Section 5.2 for details

of implementation) could represent precision as described by Campbell et al. (1991),

but could equally represent properties of individual root function (Waisel and Eshel

1992; Hishi 2007) within the root system or uptake capacity of the system as a whole.

5.2 Methods

The core model was carried over from Chapter 4, with the environments (random

and heterogeneous) and plant placement defined in the same way (see Section 4.2.1).

Proliferation strategies were implemented in the same way, with the plants’ root

systems (and therefore growth) split into four sectors, and the ability to focus growth

in the sector of the last acquired patch (see Section 4.2.2).

5.2.1 Different growth strategies and root system efficiency

Different plant types and growth strategies were implemented by introducing differ-

ent growth rates (g) and initial maximum sizes (Lmax0). In order to impose some

sort of compromise on a strategy favouring quicker growth to a larger size, the new

feature added to the model is different qualities of root system, or a semblance of

root efficiency. This in implemented as a probabilistic success rate of acquiring the

encountered nutrient patches. Each plant’s root system has a parameter f which is

the probability that a patch encountered by the plant is captured. The average of this

behaviour is equivalent to deterministically equating f to the proportion the resources

encounted that are captured, and so there is some flexability in how to interpret the

“efficiency” as it is implemented.

The value of f can be fixed, or can decay with time (linearly at rate k). By
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combining this with different growth rates, different types of root system can be

represented. For example, a quicker growing plant with a lower f value (and/or a

higher k value) could be regarded as a “woody” plant; fast growing and covering a

large area, but not particularly good at acquiring all avilable resources (a pseudo-

“dominant” plant in the categorisation of Campbell et al. (1991)). Conversely, a

slower growing plant with a higher f value (and/or lower k value) could be seen as a

“weedy” plant; slow growing and covering a less expansive area, but better equipped

for depleting this area of available resources (a pseudo-“subordinate” plant in the

categorisation of Campbell et al. (1991)). Without any real-world parametrisation

to determine relative growth rates, it is deemed unhelpful to relate the different

plant types to specific real-world counterparts. However, by offering these contrasting

growth strategies, it is possible to see how different trade-offs reward the plant under

different circumstances. The intial value of f is denoted f0, and so over time the value

of f is given by

f(t) = f0 − kt, (5.1)

provided t < f0
t
. If t ≥ f0

t
, then f(t) = 0. Following the same derivation as for Eqn.

4.8, it follows that if k = 0 then

L(t) =
gt

1− f0x
. (5.2)

If k ≥ 0 then

L(t) =
g log(1− f0x+ ktx)

kx
−

g log(1− f0x)

kx
. (5.3)

5.2.2 Different plant types

Four different plants types are considered: two quicker growing with lower root effi-

ciency, and two slower growing with higher root efficiency. Within both of these pairs,

one plant has constant root efficiency, whilst the other decays over time with an aver-
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Figure 5.1: Plant type 1 intrinsic (i.e. non-patch dependent) growth (blue) and root

efficiency (red) against time.

age efficiency equal to the constant variant. Figures 5.1-5.4 show the (deterministic)

growth and root efficiency for the four different plant types over time.

5.2.3 Performance normalisation and experimental set up

In order to investigate the relative benefits and disadvantages of each growth strat-

egy, it was necessary to some how “normalise” the performance so that under certain

conditions performance was equal (or as close as possible). Since survival amongst

competition is the driving force behind evolving strategies, it was decided to nor-

malise performance across the different plant types by attempting to normalise their

behaviour within monocultures (i.e. when grown in competition with only their own

kind).

By running the model within MATLAB for each of these plant types as a mono-

culture within uniformly random environments, the environment was parametrised

(by varying the total nutrient content of the environment, ptot, and consequently the

quality of each individual patch, p) so as to normalise population growth between the

four types. Whilst they are not exactly the same (ignoring stochasticity, it is impos-

sible to do so), they are close enough so as to provide a relatively equalised “control”

performance to compare other results against (fig 5.5) (normalised value: x = 0.825).
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Figure 5.2: Plant type 2 intrinsic (i.e. non-patch dependent) growth (blue) and root

efficiency (red) against time.
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Figure 5.3: Plant type 3 intrinsic (i.e. non-patch dependent) growth (blue) and root

efficiency (red) against time.
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Figure 5.4: Plant type 4 intrinsic (i.e. non-patch dependent) growth (blue) and root

efficiency (red) against time.

Figure 5.5: Results for monocultures of each of the four defined plant types (with no

proliferation bias) in uniformly random environments. This forms the “base” result

for comparison to, and demonstrates that performance across the different plant types

is relatively equal. Error bars denote +/- standard error of the means.
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The population was then split in two, with each half made up of one of the four

plants types (including pairing plants with their own kind). Like in Chapter 4, simu-

lations were run as independent iterations, and not within a genetic algorithm (GA)

as in Chapter 3. Simulations were run in MATLAB for both uniformly random and

patchy environments, for each permutation of either one, the other or both having

a positive proliferation bias to the last found patch (resulting in 72 distinct combi-

nations in total, since in monocultures there is symmetry). In total, 100 repetitions

were then performed for each of these combinations, and the results compared to see

how the different strategies fared in different conditions, and in which circumstances

each plant type performed best and worst.

5.3 Results

The results for the different configurations of simulations are summarised in Figures

5.6-5.12. In each case, mean values of all individuals across all repetitions are shown,

with error bars denoting the standard errors of the mean (across all individuals for

control tests, and all populations for competition tests). In Figures 5.6 and 5.7, signif-

icant difference in performance by each plant type from its peformance in monoculture

competition conditions in uniform environments (i.e. the initial normalised perfor-

mance) is established by an unpaired t-test across all individuals from all replications,

with significant difference indicated by the standard * notation. In Figures 5.8-5.12,

an unpaired t-test was performed between all individuals across all replications of

the paired results, with significant difference between the two again indicated by the

standard * notation.

The results for each of the plant types when grown as monocultures (without

any proliferation bias) in patchy heterogeneous environments are shown in figure 5.6.

Compared to the corresponding results for uniform environments (Fig 5.5), it can be

seen that performance is markedly different both between growth in the two types

of environment, but also between the different plant types when grown in the patchy

environments. The fast/large growing plants with lower root efficiency (plant types
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Figure 5.6: Results for monocultures of each of the four defined plant types (with no

proliferation bias) in patchy environments. Comparing to Fig 5.5, it is evident that

the “equal” performance seen across the different plant types in uniformly random

environments does not carry over to patchy environments. Error bars denote +/-

standard error of the means. * denote significant difference in performance from when

grown as monocultures in uniform environments (fig 5.5), with * implying 0.05 ≥ P,

** 0.01 ≥ P and *** 0.005 ≥ P.

1 and 2) see no or modest (though significant) improvements on the performance

from uniform environments, whilst the slower/smaller growing plants with higher

root efficiency (plant types 3 and 4) see large significant improvements in final size.

Within each of these pairs of plant types, those with initially higher root efficiency

that then deteriorates (plant types 1 and 3) see a greater increase in performance

than those with root efficiency fixed as the average of the former (plant types 2 and

4, respectively). Variation in results increases with average size.

Figures 5.7 and 5.8 show the results for plants grown in control tests (plants

grown in isolation) in uniformly random and patchy heterogenious environments, re-

135



CHAPTER 5. DIFFERENT STRATEGIES: TRADING ROOT . . .

Figure 5.7: Comparison of performance when each plant type is grown in control

conditions in uniformly random environments with no proliferation bias (α = 0).

Error bars denote +/- standard error of the means. * denote significant difference

in performance from when grown as monocultures in uniform environments (fig 5.5),

with * implying 0.05 ≥ P, ** 0.01 ≥ P and *** 0.005 ≥ P.

spectively. To check the effect of proliferation response, α, figure 5.8 compares the

results from control tests within patchy environments when plants with no prolifera-

tion bias (α = 0) and a positive proliferation bias (α = 0.5). As discussed in Chapter

3, there can be no advantage to an individual plant grown in a uniform environment

from any proliferation bias, so figure 5.7 only shows results with no proliferation bias

(α = 0).

In uniformly random environments there is a small but statistically signiicant de-

crease in performance for plant types 3 and 4 when grown as a monoculture compared

to when grown in control tests (compare with Fig 5.6), with little or no difference for

plant types 1 and 2. In contrast, in patchy environments (Fig 5.8) all plants types

see a small increase in performance, with significant improvements when grown with
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Figure 5.8: Comparison of performance when each plant type is grown in control

conditions in patchy environments with no (α = 0; dark grey bars) and positive (α =

0.5; light grey bars) proliferation bias. Error bars denote +/- standard error of the

means. * denote significant difference in performance between plants grown with no

proliferation bias and those grown with positive proliferation bias, with * implying

0.05 ≥ P, ** 0.01 ≥ P and *** 0.005 ≥ P.
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a positive proliferation value. Plant types 3 and 4 see a bigger increase than types 1

and 2.

In the control tests, plant types 1 and 2 see no real difference in performance

between uniform and patchy environments, as expected, whilst types 3 and 4 see a

small increase in performance when grown in patchy environments compared to in

uniform environments.

Figures 5.9 and 5.10 compare the results for plants grown in monocultures with

no proliferation bias (α = 0) and a positive proliferation bias (α = 0.5) in uniformly

random and patchy environments, respectively. There is no difference in performance

between the two strategies in uniform environments, and a very small improvement

for all plant types in patchy environments, with only plant type 2 demonstrating a

significant improvement.

Across all permutations of mixed competing plant types, in uniformly random

and patchy environments, only very small patterns of response to proliferation bias

(α) emerged (results not shown). Consequently the results for mixed competition

are just shown for growth with no proliferation bias (α = 0). The best and worst

performance for each plant type when grown in uniform environments is shown in

figure 5.11. The results show that there is very little (although often statistically

significant) difference in performance across the four plant types, regardless of which

other plant types they are grown with. The results remain consistent with those for

when the different plant types were grown as monocultures (fig 5.5), i.e. performance

is effectively equal across all four plant types, irrespective of competition type.

The best and worse performance for each plant type when grown in patchy en-

vironments are shown in figure 5.12. Compared to the results from the uniformly

random environments (Fig 5.11), their is much greater (and strongly significant) vari-

ation between both the best performances of each of the plant types (as expected

after the results when grown as monocultures in patchy environments), but the dif-

ference between the best and worst performances for the individual plant types is also

greater.
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Figure 5.9: Comparison of performance when each plant type is grown in competition

as a monoculture in uniformly random environments with no proliferation bias (α = 0;

dark grey bars) and positive proliferation bias (α = 0.5; light grey bars). Error bars

denote +/- standard error of the means. No significant difference was observed in

performance between plants grown with no proliferation bias and those grown with

positive proliferation bias.

139



CHAPTER 5. DIFFERENT STRATEGIES: TRADING ROOT . . .

Figure 5.10: Comparison of performance when each plant type is grown in competition

as a monoculture in patchy environments with no proliferation bias (α = 0; dark grey

bars) and positive proliferation bias (α = 0.5; light grey bars). Error bars denote +/-

standard error of the means. * denote significant difference in performance between

plants grown with no proliferation bias and those grown with positive proliferation

bias, with * implying 0.05 ≥ P, ** 0.01 ≥ P and *** 0.005 ≥ P.
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Figure 5.11: Best (dark grey) and worst (light grey) performance for each plant type

from across all of the competition tests in uniformly random environments. Error bars

denote +/- standard error of the means. * denote significant difference in performance

between best and worst performance in mixed competition, with * implying 0.05 ≥ P,

** 0.01 ≥ P and *** 0.005 ≥ P.
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Figure 5.12: Best (dark grey) and worst (light grey) performance for each plant type

from across all of the competition tests in patchy environments. Error bars denote +/-

standard error of the means. * denote significant difference in performance between

best and worst performance in mixed competition, with * implying 0.05 ≥ P, **

0.01 ≥ P and *** 0.005 ≥ P.
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5.3.1 Summary of performance of different plant types

5.3.2 Plant 1

Plant type 1 sees a small improvement in performance in patchy environments com-

pared to uniformly random environments when grown as a monoculture (Figs 5.5 and

5.6). It experiences little or no difference in performance regardless of environment

type when it is grown in control conditions (Figs 5.7 and 5.8). In mixed competition

with other plant types there is no real variation in performance in uniformly random

environments (Fig 5.11). There is some variation in patchy environments (Fig 5.12),

with best performance against plant type 2, and worst against type 3.

5.3.3 Plant 2

Plant type 2 typically sees little difference in performance between uniformly random

and patchy environments, or when grown in control conditions or as a monoculture

(Figs 5.5-5.10). There is very little difference in mixed competition regardless of

competition in uniformly random environments (Figs 5.11), though significant (but

still relatively small) differences in performance in patchy heterogeneous environments

(Fig 5.12).

5.3.4 Plant 3

Plant type 3 sees a large improvement in performance in patchy environments com-

pared to uniform environments when grown as a monoculture (Figs 5.5 and 5.6),

and average plant performance when grown in a monoculture is slightly worse than

control in uniform environments (Figs 5.5 and 5.7) and markedly better in patchy

environments (Figs 5.6 and 5.8).

In mixed competition, there is little difference in performance regardless of com-

petitor in uniform environments (Fig 5.11) whilst a large variation is seen in patchy

environments (Fig 5.12), with best performance against plant type 1, and worst when

grown as a monoculture (i.e. competing with itself).
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5.3.5 Plant 4

Like plant type 3, when grown as a monoculture plant type 4 sees a large increase in

performance when grown in a patchy environment comparded to a uniformly random

environment (Figs 5.5 and 5.6), and comparing growth as a monoculture to control

tests there is a slight decrease in performance in uniformly random environments

(Fig 5.7)) and a large improvement in patchy environments (Fig 5.8). Again as with

plant type 3, the introduction of mixed competition results in little difference in

performance against all plant types in uniformly random environments (Fig 5.11) but

a larger deviation in performance is seen in patchy environments (Fig 5.12), with, like

plant type 3, best performance against type 1 and worst performance against type 3.

5.4 Discussion

Across all permutations of competing plant types, in uniformly random and patchy

environments, no strong pattern of response to proliferation bias emerged (results not

shown). This is likely due to the increased quality, in terms of marginal benefit to

the plants, of the individual patches. Although a statistally significance difference in

performance was demonstrated by plant type 2 when grown as a monoculture with

and without a positive proliferation parameter (Fig 5.10), the actual performance

difference is very small. Caution must be taken when interpreting results not to con-

fuse statistical significance with importance. When running simulations, in principle

it is possible for an arbitrarily large number of replicate “experiments” to be per-

formed, and so using statistical tests to establish “significance” can be deceptive as

with enough replicates an arbitrarily small P-value can be arrived at for effects which

are of no practical significance (Currey et al. 2009).

The lack of a prominent benefit from the existence of a positive proliferation char-

acteristic can potentially be explained by a number of factors. As with the results

obtained in Chapter 4, the tests here are evaluating the relative performance of dif-

ferent individuals based on the outcome of experimental simulations, rather than as
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in Chapter 3 where the model is run within a genetic algorithm to obtain an “op-

timum” strategy based on evolutionary processes. It is perhaps worth noting that

whilst there isn’t a strong indication that a positive proliferation bias offers a signifi-

cant advantage, in all like-for-like tests the plants possessing a positive proliferation

bias perform at least as well as those that possess no bias, and often better (if not by

a large amount). As such it would not be unreasonable to expect that were the model

to be run within a GA like in Chapter 3, that ultimately a positive proliferation bias

would emerge as a favourable strategy.

As discussed within Chapter 3, in one-dimension, the benefit of a positive pro-

liferation bias is highly context sensitive, and it isn’t simply the presense/absense

of competition or the resource distribution that determines the level of benefit, but

a hierarchical combination. The benefit of a positive proliferation response is also

tightly linked to the quality of the individual patches. No benefit exists if the indid-

ual patches are of too high or too low a quality, and it is only in a “sweet spot” in

between that a benefit was observed. The quality of the patches in these experiments

(as determined by the balancing of the performance across the four different plant

types when grown as monocultures in uniform environments) lies beyond this region,

and there is a good chance that the same behaviour observed in the one-dimensional

model applies here, and that the patch quality is beyond that for which a positive

proliferation bias can yield a benefit.

The four different plant types show markedly different reactions to both envi-

ronment and competition. At one extreme plant types 1 and 2 see only a small

effect on performance from changes to either patch distribution or the construction

of the neighbourhood competition, whilst at the other extreme plant type 3 shows a

large positive performance response to a heterogeneous environment when grown as

a monoculture, and a large increase in performance depending on the type of plants

it is growing in competition with.

In between these extremes, plant type 4 shows a smaller response to environment

type than plant type 3 when grown as a monoculture, but sees a similarly large
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positive effect from growing in competition with types 1 and 2, but a decrease in

performance against type 3.

As described earlier, plant types 1 and 2, and types 3 and 4, can be paired up as

sharing the same growth rates and average root efficiency over the growing period.

Plants types 1 and 2 show a smaller reaction to environment type and less ability to

exploit a patchy environment than types 3 and 4. However, they also show a high

resilience to environmental and neighbourhood effects, and whilst they never perform

as well as plant types 3 and 4 do in their ideal circumstances, they do not seem to

suffer from the inclusion of higher performing plant types (3 and 4), and so seem quite

capable of co-existing with neighbours who far better exploit the environment.

The lack of significant (in the practical rather than statistical sense) benefit to the

individuals of reactive directional proliferation in response to acquired patches means

that any semblance of benefit due to the “precision” of the plants must be implicit

within the different root system efficiencies of the different plant types. If precision

is considered in this way, then the above results are inconsistent with the broad scale

findings of Grime et al. (1991), who found “results indicate that the most successful

competitors under the productive conditions of the conventional competition exper-

iment exploited patches more completely because of higher growth rates and larger

size, not because of greater flexibility within the leaf canopy and root system”, whilst

they do potentially support the assertion that different strategies help to support

co-existance within the population. However, in relating the results in this chapter to

experimental results, it is worth emphasising that the different root system effiencies

desribed for the different plant types potentially embody a lot more properties than

simply scale and precision. These other properties implicitly contained within the

model’s simplified nature could well support the suggestion that scale and precision

in isolation are not sufficient to desribe relative performance, and that rather they

are part of a larger “suite” of important traits (Kembel and Cahill 2005; Kembel et

al. 2008).

Plants types 3 and 4 experience high levels of performance in patchy environ-
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ments when grown either as monocultures or in mixed competition. This ability to

successfully exploit the environment when grown in competition highlights that one

can’t simply extrapolate average performance in such conditions from performance

when grown in isolation. When grown as monocultures with no proliferation bias,

some drop in average performance compared to when grown as isolated individuals

is expected since overlap and competition (specifically depletion of resources by com-

petitors) reduces the expected available resources available to an individual per unit

growth of the root system. Consequently, as with the results seen in Chapter 4, the

increased performance when grown in patchy heterogenious environments as mono-

cultures (and to a lesser extent, in mixed competition) compared to in isolation is

somewhat counter-intuitive.

5.5 Conclusion

By adding another level of complexity to the model that has been developed over

the previous chapters (in this chapter, it is the addition of “root efficiency”) results

emerge that are both consistent with those seen previously, as well as offering new

insight into the complex interactions that occur between competing plants.

The four different plant types defined in this chapter can each be categorised by

two characteristics: a relatively high (plants types 1 and 2) or low (plant types 3

and 4) intrinsic growth rate (and, respectively, relatively large or small initial upper

bounds, and relatively low or high root efficiency), and decreasing (plant types 1 and

3) or constant (plant types 2 and 4) root efficiency. With performance normalised for

growth as monocultures in control conditions, the relative effects of different environ-

ment types and mixed competition are assessed for the different plant types.

Across all tests in uniformly random environments (controls, monocultures and

mixed competition) there is little to separate the different plant types. Performance

remains close between the different plant types when control tests are performed

in patchy heterogeneous environments too, with plant types 3 and 4 seeing a small

advantage over plant types 1 and 2. However, when grown as monocultures, this
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advantage is drastically increased. Although plant types 1 and 2 see a small increase in

performance, plant type 4 nearly doubles its average size, and plant type 3 sees an even

greater increase in performance. The increase in performance between environment

types is consistent with that seen in Chapter 4, but the disparity of the levels of

improvement reflect the intrinsic differences of the four plant types.

If it were known that more patches would be available to an individual, it would

be expected that plant types 3 and 4 would perform better than plant types 1 and 2

since they have a higher root effiency (manifesting itself as a higher conversion rate

of patch encounters into successful patch acquisitions). Yet it is also true that plant

types 1 and 2 would expect to encounter more patches based on their higher intrinsic

growth rate and initial maximum sizes. The “balancing” of these two factors are

what allow all of the plants to perform relatively equally in uniform environments. In

patchy heterogeneous environments, there is clearly a shift in balance favouring the

improved acquisition rates over the initial higher encounter rates, with the compound

effect of patch acquisition (see Chapter 4) ultimately outweighing the benefit of an

increased initial encounter rate.

These differences in performance are further highlighted when the different plant

types are grown in mixed competition in patchy heterogeneous environments. When

grown in competition against plant type 1, plant type 3 achieves an average size

nearly four times larger than when it is grown as a monoculture in a uniformly

random environment. But conversely, in the same mixed competition, plant type

1 performs nearly identically to its performance as a monoculture in a uniformly

random environment; the significant increase in performance by plant type 3 appears

to not occur at the expense of plant type 1.

As with much of the results shown in the previous chapters, a key message to

again take from these results are that the expected mean field performance cannot be

used to predict the performance of the plants when grown under stochastic conditions.

Whilst in chapter 4 it was seen that the plants perform better as monocultures in

patchy heterogeneous environments compared to uniformly random environments, in
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this chapter it is shown that additonal properties of the plants that have little obvious

effect on expected performance can compound these effects greatly.
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Chapter 6

Concluding Remarks

6.1 Summary of work and results

Whilst a far from exhaustive review of the subject, Chapter 1 of this thesis gives

some insight into the intricacies and complexities of the world of plant roots. After

decades of experiments and observations, there remain many areas of plant growth

and competition that remain far from fully understood. Whilst the models and results

presented in Chapters 2-5 barely scratch the surface, it is believed that they do shed

some light onto certain aspects of plant growth and competition, and they do offer

some new insight.

Beyond the inherent difficulties involved in making measurements and observa-

tions of plant root activity (Cahill and McNickle 2011), a recurring issue is that of

highly context sensitive responses (see for example: Hodge et al. 1999a; Robinson et

al. 1999; Cahill et al. 2010; Wijesinghe et al. 2005). Whilst experiments performed

under laboratory conditions can reveal interesting observations of behaviour, of what

relevance they are when it comes to plants growing in nature is debatable.

The goal of Chapter 2 was to derive a “simple” model of plant growth and com-

petition, with a mechanism for nutrient acquisition, which could be understood and

taken forward to apply in different conditions. The starting point was the Gompertz

growth function. This function is an experimentally justified choice for desribing
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generic plant growth both in isolation and in competition (Purves and Law 2002;

Schneider et al. 2006; Lv et al. 2008), and can be considered to implicitly account

for processes that occur in plant growth such as growth due to uptake of background

nutrient resources and loss due to metabolism (Purves and Law 2002), removing the

need for explicit modelling. The Gompertz fucntion not only implicitly captures many

mechanism and features of plant growth, but when coupled with an explicit modelling

of resource capture and resulting growth it scales to retain Gompertz-like behaviour.

This idealised one-dimensional model, consisting of a deterministic growth function

coupled to an explicit, stochastic model of nutrient resource distribution, can simulate

the growth of a number of individuals growing and competing for a scarce, patchily

distributed resource.

However, the model is computationally (relatively) slow, and analytically diffi-

cult to make progress with. A constant growth model provides a computationally

and analytically simplified alternative that is demonstrated to accurately capture the

behaviour of the Gompertz model, both at the population and individual level.

Although the aim in Chapter 2 was to provide a model to utilise in more intensive

and complicated settings and scenarios, results of interest are apparent from the vali-

dation tests. Through comparisons of the non-overlapping and overlapping models, it

can be seen that a strict mechanism of non-overlap between neighbouring plants can

significantly improve average performance. Whilst this might not come as much of

a surprise considering the propensity for the segregation of roots among many plant

species (Schenk et al. 1999), it is surprising how effective it is at increasing over-

all yield when it is remembered that these enforced neighbour-neighbour boundaries

constrain the growth of those within them, and potentially limit the ability of an

individual to turn captured resources into resultant growth.

Similarly, the relative invariance of results to population size (apart from at ex-

treme environmental parameter choices) suggests that a population of, say, ten plants

can be successfully used to simulate the behaviour of a significantly larger popula-

tion. The spatial limitations of the one-dimensional framework will no doubt help
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in contraining growth and behaviour, and may well contribute to this. Likewise,

the “stochastic” distributions of plants and patches as defined by uniformly random

distributions have limited ability to simulate consistantly aggregated resource distri-

butions.

In Chapter 3 the contstant growth model derived previously is applied to patchy

heterogeneous environments. The simulations are performed for generic plants with

minimal assumptions about growth and fuction. A simple trait allowing for the prolif-

eration in the direction of the last acquired patch allows for response to environmental

information, and provides the plants with an ability to actively proliferate in response

to local resources. Tested within the evolutionary context of genetic algorithm, the

results support observations of a percieved hierarchy of influences on the benefit of

proliferation response to resources (Cahill et al. 2010).

Whilst the results in Chapter 3 highlight that a simple model can generate inter-

esting and intricate results, it can no be denied that the one-dimensional environments

impose highly limiting restrictions on what can be done with the model. In Chapter

4, the model is expanded into two dimensions. The model largely carries over di-

rectly from the one-dimensional framework developed previously, with choices made

to deliberately keep the expanded two-dimensional model as analogous as possible

to the one-dimensional case in order to assess the effect of dimensionality. Overall

consistent behaviour was observed with the one-dimensional model, though subtlies

emerged in the results and the different ways in the which the models were assessed

(within a GA in Chapter 3 to assertain evolutionary benefits of behaviours, and here

as replicated experiments to assess relative performance) make it impossible to do

direct like-for-like comparisons. Whilst the observed reduction in performance when

grown in competition compared to in isolation when grown within uniformly random

environments can easily be explained as due to overlap, the increase in performance

when grown in patchy heterogeneous environments under competition compared to

in isolation is less intuitive. As a population, the plants are better able to benefit

from exploitation of the environment when resources are aggregated in distribution.
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This can be understood when plants are able to respond to their environment and so

focus root growth into areas of higher resource concentration, but that it occurs when

plants grow passively with no response is a far from obvious or trivial result. Whilst

a change in overall yield with resource distribution is not consistent with some exper-

imental results (Day et al. 2003), it is with others (Hutchings and Wijesinghe 2008).

With no proliferation response, this is an interesting result breaking from intuitively

expected behaviour, and arguably all the more interesting that is generated by such

a relatively simple model.

Similarly interest results emerge in Chapter 5, where different plant types with

contrasting growth strategies are introduced by trading root growth rate (and size)

against root system efficiency. With root system efficiency implemented as a prob-

abalistic chance of patch acquisition given an encounter, there is some freedom as

to how to interpret this in terms of real world behaviour. By normalising behaviour

across monoculture tests in uniformly random environments, a “base” level is created

where the relative strengths and weaknesses of the different plant types level out, and

performance is very similar. Whilst little difference in performance persists across all

tests in uniformly random environments, large differences in relative performance are

observed in competition with patchy heterogeneous environments. When growing as

a competing population (either as a monoculture or in mixed competition), the two

plant types which favour root system efficiency over growth rate display significantly

better performance than the faster growing counterparts. These results and their de-

viation from expected mean-field results are not easy to explain. Whilst they seem to

be at odds with some observations (Grime et al. 1991), it is necessary to remember

that in a model so idealised, a nunber of different facets of plant growth could be

implicitly affected by changes to certain properties without being apparent. “Root

system effiency” is easily defined and understood within the confines of the models,

but when relating such a model to real life, it could cover a myriad of related factors.

The models and experiments developed and discussed in this thesis are highly

conceptual, idealised representations of incredibly complicated real-world processes
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and interactions. Whilst it can easily be pointed out that in the whole thesis not a

single real-world parameter is sourced or implemented, it would be arguably unfair to

see this as a criticism. Whilst the visual representations of one- and two-dimensional

root structures presented in this thesis are a long way from the complexity and real-

ism seen generated by architectually explicit models (Jourdan and Rey 1997; Leitner

et al. 2010), they allow for tests and comparisons to be performed that would be all

but pointless with more complicated models. In order to assess the impacts of differ-

ent strategies on performance and under different environmental and neighbourhood

conditions, it is necessary to have a model flexible enough to be applied to all of these

different scenarios.

The simple models presented here not only allow for the application to a range

of different conditions, but also allow for results to be considered within the confines

of a model whose behaviour is well understood. When counterintuitive behaviour

emerges like that witnessed under competition within heterogeneous environments in

Chapters 4 and 5, with a simple model it is much easier to decide if such behaviour

is of interest and deserving of further investigation than if a model with a plethora

of parameter choices and imposed assumptions (Roose and Schnepf 2008, Leitner et

al. 2010) returns a similarly puzzling result. This is not to dismiss the merits of

such complicated models, but rather to stress the continued importance and scope of

simplifying approaches. The results mentioned above are not all easy to explain, but

given the nature of the model which generated them, it is hard to dismiss them and

not conclude that they could hold interesting insight into the underlying processes

being modelled.

6.2 Further research

It is considered the work presented in this thesis could be taken forward in two distinct

ways: applying the existing models to new applications, and developing the models

further.

With some of the results generated thus far no easily understood, it would appear

154



CHAPTER 6. CONCLUDING REMARKS

sensible to first take the existing model and apply it in new ways. Perhaps the most

obvious example of this would be to take existing studies and attempt to replicate

the experimental set ups and then compare results. One series of studies (Day et al.

2003; Wijesinghe et al. 2005; Hutchings and Wijesinghe 2008) studied the relation-

ship between the spatial pattern of nutrient supply on yield and community structure.

Spatial patterns of nutrient supply were created by grids of squares of different sizes

and nutrient concentrations. Whilst obviously an experimental ideal rather than re-

flection of naturally occurring resource heterogeneity, such environments could easily

be replicated within the two-dimensional model defined in Chapter 4. By defining

resource and plant distributions in line with these studies, it may be possible to re-

veal and understand why behaviour evident in the results of Chapters 4 and 5 seem

consistent with results observed by Hutchings and Wijesinghe (2008), but at odds

with those by Day et al. (2003).

Another area that the model could be applied to investigate is the effects of

patch sizes. Fitter (1994) defined a set of basic attributes to describe a patch, with

attribute falling into two scale categories: spatial and temporal. The individual

patches described in Chapters 2-5 have no physical size within the model, but they

can be aggregated construct larger patches. The resource distributions described

in this thesis typically fall under “uniformly random” and “patchy heterogeneous”

classifications. By varying the distributions and number of different environment

types and properties could be defined.

Finally, the temporal properties of patches could be investigated. This would

require the introduction of patch turnover and duration, as well as creation. By

combining such temporal properties along with the above mentioned spatial-scale

properties, a large variety of resource patterns could be defined and tested within the

model.
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Appendix A

Results for different population

sizes

In this appendix the full results from the simulations run in Chapter 2 are shown for

different population sizes

Across the different models, results are shown for three different configurations of

plant (P) and nutrient patch (N) distributions: regularly placed plants with uniformly

random patches (rPuN), uniformly random plants with regular patches (uPrN), and

uniformly random plants and patches (rPrN).

A.0.1 Gompertz growth models results

Non-overlapping Gompertz model

Fig A.1 shows the mean, variance and skew of the final plant sizes for repetitions of

the non-overlapping Gompertz model under the three different configurations of plant

and patch distribution for different choices of population size and number of patches

(per plant).
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Figure A.1: Plots of mean, variance and skew of the non-overlapping Gompertz model

for the three different environmental/neighbourhood configurations: regularly placed

plants and uniformly random patches (rPuN); uniformly random plants and regular

patches (uPrN); and uniformly random plants and patches (uPuN). Note that different

scales are used on the z-axis across the different figures.
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Overlapping Gompertz model

Fig (A.2) shows the results for the same configurations but for the overlapping Gom-

pertz model. The permitted overlapping at the site of neighbour-neighbour interac-

tions means that the population is better able to collectively take advantage of all

patches acquired. In short: all patches acquired by any plant, regardless of neighbour

locations, are turned into growth by the individual which acquired it. As a result of

this, how the patch acquisition is distributed amongst the individuals in a population

makes negligible difference to the mean plant size.

A.0.2 Constant growth models results

The results for the non-overlapping constant growth model are shown in figure A.3,

and those for the overlapping constant growth model in figure A.4.

It can be seen by comparing these results with those of the original Gompertz mod-

els that, in both non-overlapping and overlapping configurations, the simplified con-

stant growth model offers qualitatively very similar results. For the non-overlapping

case the qualitative results as summarised by the mean, variance and skew are nearly

indistinguishable, whilst for the overlapping case it is only at large plant numbers and

low patch abundances in the rPuN and uPuN configurations that differences become

apparent.
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Figure A.2: Plots of mean, variance and skew of the overlapping Gompertz model

for the three different environmental/neighbourhood configurations: regularly placed

plants and uniformly random patches (rPuN); uniformly random plants and regular

patches (uPrN); and uniformly random plants and patches (uPuN). Note that different

scales are used on the z-axis across the different figures.
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Figure A.3: Plots of mean, variance and skew of the non-overlapping constant growth

model for the three different environmental/neighbourhood configurations: regularly

placed plants and uniformly random patches (rPuN); uniformly random plants and

regular patches (uPrN); and uniformly random plants and patches (uPuN). Note that

different scales are used on the z-axis across the different figures.
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Figure A.4: Plots of mean, variance and skew of the overlapping constant growth

model for the three different environmental/neighbourhood configurations: regularly

placed plants and uniformly random patches (rPuN); uniformly random plants and

regular patches (uPrN); and uniformly random plants and patches (uPuN). Note that

different scales are used on the z-axis across the different figures.
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[40] Güsewell S (2004) N:P ratios in plants: variation and functional significance.

New Phytol 164:243-266

[41] Hara T (1988) Dynamics of size structure in populations. Trends Ecol Evol 3:129-

132

[42] Hardin G (1968) The tragedy of the commons. Science 162:1243-1248

[43] Hausmann NT, Hawkes CV (2009) Order of plant host establishment alters the

composition of arbuscular mycorrhizal communities. Ecology 91: 2333-2343

[44] Hess L, de Kroon H (2007) Effects of rooting volume and nutrient availability as

an alternative explanation for root self/non-self discrimination. J Ecol 95:241-251

[45] Hinsinger P, Bengough AG, Vetterlein D, Young IM (2009) Rhizosphere: bio-

physics, biogeochemistry and ecological relevance. Plant Soil 321:117-152

[46] Hodge A (2003a) Plant nitrogen capture from organic matter as affected by spa-

tial dispersion, interspecific competition and mycorrhizal colonization. New Phytol

157:303-314

[47] Hodge A (2003b) N capture by Plantago lanceolata and Brassica napus from

organic material: the influence of spatial dispersion, plant competition and an

arbuscular mycorrhizal fungus. J Exp Bot 54:2331-2342

[48] Hodge A (2004) The plastic plant: root responses to heterogeneous supplies of

nutrients. New Phytol 162:9-24

[49] Hodge A (2009) Root decisions. Plant Cell Environ 32:628-640

[50] Hodge A, Alexander IJ, Gooday GW (1995) Chitinolytic enzymes of pathogenic

and ectomycorrhizal fungi. Mycol Res 99:935-941

166



BIBLIOGRAPHY

[51] Hodge A (1996) Impact of elevated CO2 on mycorrhizal associations and impli-

cations for plant growth. Biol Fert Soils 23:388-398

[52] Hodge A, Paterson E, Thornton B, Millard P, Killham K (1997) Effects of photon

flux density on carbon partitioning and rhizosphere carbon flow of Lolium perenne.

J Exp Bot 48:1797-1805

[53] Hodge A and Millard P (1998) Effect of elevated CO2 on carbon partitioning

and exudates release from Plantago lanceolata seedings. Physiol Plant 103:280-286

[54] Hodge A, Stewart J, Robinson D, Griffiths BS, Fitter AH (1998a) Root prolifer-

ation, soil fauna and plant nitrogen capture from nutrient-rich patches in soil. New

Phytol 139:479-494

[55] Hodge A, Paterson E, Grayston SJ, Campbell CD, Ord BG, Killham K (1998b)

Characterisation and microbial utilisation of exudate material from the rhizosphere

of Lolium perenne grown under CO2 enrichment. Soil Biol Biochem 30:1033-1043

[56] Hodge A, Robinson D, Griffiths BS, Fitter AH (1999a) Why plants bother: root

proliferation results in increased nitrogen capture from an organic patch when two

grasses compete. Plant Cell Environ 22:811-820

[57] Hodge A, Stewart J, Robinson D, Griffiths BS, Fitter AH (1999b) Plant, soil

fauna and microbial responses to N-rich organic patches of contrasting temporal

availability. Soil Biol Biochem 31:1517-1530

[58] Hodge A, Stewart J, Robinson D, Griffiths BS, Fitter AH (2000a) Plant N capture

and microfaunal dynamics from decomposing grass and earthworm residues in soil.

Soil Biol Biochem 32:1763-1772

[59] Hodge A, Stewart J, Robinson D, Griffiths BS, Fitter AH (2000b) Spatial and

physical heterogeneity of N supply from soil does not influence N capture by two

grass species. Funct Ecol 14:645-653

167



BIBLIOGRAPHY

[60] Hodge A, Berta G, Doussan C, Merchan F, Crespi M (2009) Plant root growth,

achitecture and function. Plant Soil 321:153-187

[61] Hodge A, Fitter AH (2010) Substantial nitrogen acquisition by arbuscular my-

corrhizal fungi from organic material has implications for N cycling. P Natl Acad

Sci USA 107:13754-13759

[62] Hutchings MJ, Wijesinghe DK (2008) Performance of clonal species in patchy

environments: effects of environmental context on yield at local and whole-plant

scales. Evol Ecol 22:313-324

[63] Jackson RB, Caldwell MM (1993) Geostatistical patterns of soil heterogeneity

around individual perennial plants. J Ecol 81:683-692

[64] Jakobsen BF, Dexter AR (1987) Effect of soil structure on wheat root growth,

water uptake and grain yield. A computer simulation model. Soil Tillage Res 10:331-

345

[65] James A, Baxter P, Pitchford J (2005) Modelling predation as a capped rate

stochastic process, with applications to fish recruitment. J R Soc Interface 2:477-

487

[66] James A, Pitchford JW, Plank MJ (2010) Efficient or inaccurate? Analytical

and numerical modelling of random search strategies. B Math Biol 72:896-913

[67] Johnson D, Leake JR, Ostle N, Ineson P, Read DJ (2002) In situ CO2-C-13

pulse labeling of upland grassland demonstrates a rapid pathway of carbon flux

from arbuscular mycorrhizal mycelia to the soil. New Phytol 153:327-334

[68] Johnson NL, Kotz S, Balakrishnan N (1994) Continuous univariate distributions-

1, Second Edition. New York: Wiley-Interscience, pp 574-575

[69] Jones DL, Hodge A, Kuzyakov Y (2004) Plant and mycorrhizal regulation of

rhizodeposition. New Phytol 163:459-480

168



BIBLIOGRAPHY

[70] Jones DL, Nguyen C, Finlay RD (2009) Carbon flow in the rhizosphere: carbon

trading at the soil-root interface. Plant Soil 321:5-33

[71] Jourdan C, Rey H (1997) Modelling and simulation of the architecture and devel-

opment of the oil-palm (Elaeis guineenis Jacq.) root system. Plant Soil 190:217:233

[72] Kaye JP, Hart SC (1997) Competition for nitrogen between plants and soil mi-

croorganisms. TREE 12:139-143

[73] Kembel SW, Cahill JF (2005) Plant phenotypic plasticity belowground: a phy-

logenetic perspective on root foraging trade-offs. Am Nat 166:216230.

[74] Kembel SW, de Kroon H, Cahill JF, Mommer L (2008) Improving the scale

and precision of hypotheses to explain root foraging ability. Ann Bot-London 101:

12951301

[75] Hishi T (2007) Heterogeneity of individual roots within the fine root architecture:

causal links between physiolgical and ecosystem functions. J For Res 12:126-133

[76] Jury WA, Horton R (2004) Soil physics (sixth ed.). Wiley, New York

[77] de Kroon H, Visser EJW, Huber H, Mommer L, Hutchings MJ (2009) A modular

concept of plant foraging behaviour: the interplay between local responses and

systemic control. Plant Cell Environ 32:704-712

[78] Kuzyakov Y 2002. Review: factors affecting rhizosphere priming effects. J Plant

Nutr Soil Sci 165:382-396

[79] Law R, Dieckmann U (2000) A dynamical system for neighbourhoods in plant

communities. Ecol 81:2137-2148

[80] Leigh J, Hodge A, Fitter AH (2009) Arbuscular mycorrhizal fungi can transfer

substantial amounts of nitrogen to their host plant from organic material. New

Phytol 181:199-207

169



BIBLIOGRAPHY

[81] Leigh J, Fitter AH, Hodge A (2011) Growth and symbiotic effectiveness of an

arbuscular mycorrhizal fungus in organic matter in competition with soil bacteria.

FEMS Microbiol Ecol 76:428-438

[82] Leitner D, Klepsch S, Bodner G, Schnepf A (2010) A dynamic root system growth

model based on L-Systems. Plant Soil 332(1-2):177192

[83] Linkohr BI, Williamson LC, Fitter AH, Leyser OHM (2002) Nitrate and phos-

phate availability and distribution have different effects on root system architecture

in Arabidopsis. Plant J 29:751-760

[84] Lv Q, Schneider MK, Pitchford JW (2008) Individualism in plant popula-

tions: using stochastic differential equations to model individual neighbourhood-

dependent plant growth. Theor Popul Biol 74:74-83

[85] Mairhofer S, Zappala S, Tracy SR, Sturrock C, Bennett MJ, Mooney SJ, Prid-

more TP (2012) RooTrak: automated recovery of three-dimensional plant root

architecture in soil from x-ray microcomputed tomography images using visual

tracking. Plant Physiol 158:561569

[86] Mairhofer S, Zappala S, Tracy SR, Sturrock C, Bennett MJ, Mooney SJ, Prid-

more TP (2013) Recovering complete plant root system architectures from soil via

x-ray µ-Computed Tomography. Plant Methods 9:8

[87] Malamy JE (2005) Intrinsic and environmental response pathways that regulate

root system architecture. Plant Cell Environ 28:67-77

[88] Masclaux F, Hammond RL, Meunier J, Gouhier-Darimont C, Keller L, Reymond

P (2010) Competitive ability not kinship affects growth of Arabidopsis thaliana

accessions. New Phytol 185:322-331

[89] McNickle GG, St. Claire CC, Cahil JF (2009) Focusing the metaphor: plant

foraging behaviour. Trends Ecol Evol 24:419-426

170



BIBLIOGRAPHY

[90] Milla R, Forero DM, Escudero A, Iriondo JM (2009) Growing with siblings: a

common ground for cooperation or for fiercer competition among plants? Proc R

Soc B 276:2531-2540

[91] Murphy GP, Dudley SA (2009) Kin recognition: competition and cooperation in

Impatiens (Balsaminaceae). Am J Bot 96:1990-1996

[92] O’Brien EE, Brown JS, Moll JD (2007) Roots in space: a spatially explicit model

for below-ground competition in plants. Proc R Soc B 274:929-934

[93] Paterson E (2003) Importance of rhizodeposition in the coupling of plant and

microbial productivity. Eur J Soil Sci 54:741-750

[94] Paterson E, Hodge A, Thornton B, Millard P, Killham K (1999) Carbon parti-

tioning and rhizosphere C-flow in Lolium perenne as affected by CO2 concentration,

irradiance and below-ground conditions. Glob Change Biol 5:669-678

[95] Pierret A, Doussan C, Capowiez Y, Bastardie F, Pages L (2007) Root functional

architecture: a framework for modelling the interplay between roots and soil. Va-

dose Zone J 6(2):269281

[96] Preston MD, Pitchford JW, Wood AJ (2010) Evolutionary optimality in stochas-

tic search problems. J R Soc Interface 7:1301-1310

[97] Prusinkiewicz P, Lindenmayer A (1990) The algorithmic beauty of plants.

Springer, Berlin

[98] Purves DW, Law R (2002) Experimental derivation of functions relating growth

of Arabidopsis thaliana to neighbour size and distance. J Ecol 90:882-894

[99] Read DJ, Perez-Moreno J (2003) Mycorrhizas and nutrient cycling in ecosystems

- a journey towards relevance? New Phytol 157:475-492

[100] Rice JA (2007) Mathematical statistics and data analysis (third ed.) Thomson

Higher Education, Belmont

171



BIBLIOGRAPHY

[101] Reynolds HL, Hartley AE, Vogelsang KM, Bever JD, Schultz PA (2005) Arbus-

cular mycorrhizal fungi do not enhance nitrogen acquisition and growth of old-field

perennials under low nitrogen supply in glasshouse culture. New Phytol 167:869-880

[102] Robinson D (1991) Roots and resource fluxes in plants and communities. In:

Atkinson D (ed) Plant root growth: an ecological perspective. Special publication

of the British Ecological Society n10. Blackwell Scientific Pub., London, pp 103-130

[103] Robinson D, Hodge A, Griffiths BS, Fitter AH (1999) Plant root proliferation in

nitrogen-rich patches confers competitive advantage. Proc R Soc Lond 266:431-435

[104] Roose T, Fowler AC (2004) A mathematical model for water and nutrient uptake

by plant root systems. J Theor Biol 228(2):173184

[105] Roose T, Schnepf A (2008) Mathematical models of plant soil interaction. Philos

Trans R Soc A 366:45974611

[106] Sanders FE, Tinker PB (1973) Phosphate flow into mycorrhizal roots. Pestic

Sci 4:385-395

[107] Schenk HJ (2006) Root competition: beyond resource depletion. J Ecol 94:725-

739

[108] Schenk HJ, Callaway RM, Mahall BE (1999) Spatial root segregation: are plants

territorial? Adv Ecol Res 28:145-180

[109] Schneider MK, Law R, Illian JB (2006) Quantification of neighborhood-

dependent plant growth bt Bayesian hierarchical modelling. J Ecol 94:310-321

[110] Schwinning S, Weiner J (1998) Mechanisms determining the degree of size asym-

metry in competition among plants. Oecologia 113:447-455

[111] Shemesh H, Arbiv A, Gersani M, Ovadia O, Novoplansky A (2010) The effects

of nutrient dynamics on root patch choice. PloS ONE 5:1-6

172



BIBLIOGRAPHY

[112] Smith FA, Grace EJ, Smith SE (2009) More than a carbon economy: nutrient

trade and ecological sustainability in facultative arbuscular mycorrhizal symbioses.

New Phytol 182:347358

[113] Smith SE, Read DJ (2008) Mycorrhizal Symbiosis, 3rd Edn. Academic Press,

London

[114] Southworth D, He X-H, Swenson W, Bledsoe CS, Horwath WR (2005) Appli-

cation of network theory to potential mycorrhizal networks. Mycorrhiza 15:589-595

[115] Tardieu F (2010) Why work and discuss the basic principles of plant modelling

50 years after the first plant models? J Exp Bot 61:2039-2041

[116] Tardieu F, Bruckler L, Lafolie F (1992) Root clumping may affect the root water

potential and the resistance to soil-root water transport. Plant Soil 140:291-301

[117] Taub DR, Goldberg D (1996) Root system topology of plants from habitats

differing in soil resource availability. Func Ecol 10:258-264.

[118] Tinker PB, Nye PH (2000) Solute Movement in the Rhizosphere. Oxford Uni-

versity Press, Oxford, p 84

[119] Vos J, Evers JB, Buck-Sorlin GH, Andrieu B, Chelle M, de Visser PHB (2010)

Functional-structural plant modelling: a new versatile tool in crop science. J Exp

Bot 61:2101-2115

[120] van Vuuren MMI, Robinson D, Griffiths BS (1996) Nutrient inflow and root

proliferation during the exploitation of a temporally and spatially discrete source

of nitrogen in soil. Plant Soil 178:185-192

[121] Waisel Y, Eshel A (1992) Differences in ion uptake among roots of various types.

J Plant Nutr 15:945-958

[122] Williamson LC, Ribrioux SPCP, Fitter AH, Leyser O (2001) Phosphate avail-

ability regulates root system architecture in Arabidopsis. Plant Physiol 126:875-882

173



BIBLIOGRAPHY

[123] Wijesinghe DK, John EA, Hutchings MJ (2005) Does pattern of soil resource

heterogeneity determine plant community structure? An experimental investiga-

tion. J Ecol 93:99-112

174


