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Abstract

We study analytic aspects of the Dedekind zeta function of a Galois extension.

Specifically, we are interested in its mean values. In the first part of this thesis we

give a formula for the second moment of the Dedekind zeta function of a quadratic

field times an arbitrary Dirichlet polynomial of length T 1/11−ε. In the second part,

we derive a hybrid Euler-Hadamard product for the Dedekind zeta function of

an arbitrary number field. We rigorously calculate the 2kth moment of the Euler

product part as well as conjecture the 2kth moment of the Hadamard product using

random matrix theory. In both instances we are restricted to Galois extensions.

We then conjecture that the 2kth moment of the Dedekind zeta function of a

Galois extension is given by the product of the two. By using our results from the

first part of this thesis we are able to prove both conjectures in the case k = 1 for

quadratic fields. We also re-derive our conjecture for the 2kth moment of quadratic

Dedekind zeta functions by using a modification of the moments recipe. Finally,

we apply our methods to general non-primitive L-functions and gain a conjecture

regarding their moments. Our main idea is that, to leading order, the moment of

a product of distinct L-functions should be the product of the individual moments

of the constituent L-functions.
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CHAPTER 1

Introduction

1.1. L-functions and the Selberg Class

L-functions play a central role in analytic number theory. They can be associ-

ated to many different objects, and in each case encode much of the object’s key

information. The prototypical example is the Riemann zeta function

(1) ζ(s) =
∞∑
n=1

1

ns
=
∏
p

(
1− 1

ps

)−1

.

From an algebraic point of view, the object to which the zeta function is associated

is the field of rationals Q. The unique factorisation of the integers is realised in the

equality between the series and product representations, and so one can clearly

see that the zeta function embodies something fundamental. Other examples of

its arithmetic nature are given by the following identities involving well known

arithmetic functions:

(2) ζ(s)2 =
∞∑
n=1

d(n)

ns
,

where d(n) is the number of divisors of n;

(3)
ζ(s− 1)

ζ(s)
=
∞∑
n=1

φ(n)

ns
,

where φ(n) is Euler’s totient function, and

(4)
1

ζ(s)
=
∞∑
n=1

µ(n)

ns
,

where µ(n) is the Möbius function. Our previous comment along with the above

examples demonstrate, at least superficially, that the zeta function is of some

7



8 1. INTRODUCTION

arithmetic significance. The key point is that ζ(s) can be analytically continued;

the new regions of the continuation allow for a different perspective, no longer

superficial.

The analytic continuation of ζ(s) was first demonstrated by Riemann [48]. He

showed ζ(s) continued to a function analytic on all of C except for a simple pole

at s = 1 with residue 1 and that satisfied the functional equation

(5) π−
s
2 Γ
(s

2

)
ζ(s) = π−

1−s
2 Γ

(
1− s

2

)
ζ(1− s)

where Γ(s) is the gamma function. The Euler product representation in (1) implies

that ζ(s) has no zeros in the half-plane σ > 1. By the functional equation and the

fact that Γ(s) has poles at the negative integers, we see that ζ(s) must have zeros

at the negative even integers – the so-called trivial zeros. If any other zeros are

to occur, they must be in the critical strip 0 ≤ σ ≤ 1. Riemann conjectured that

all zeros in the critical strip lie on line of symmetry of the functional equation:

σ = 1/2. This is the Riemann hypothesis. He also stated that the number of zeros

in the critical strip was given by

(6) N(T ) = {t ∈ [0, T ] : ζ(σ + it) = 0, 0 ≤ σ ≤ 1} =
T

2π
log

T

2πe
+O(log T ).

A published proof was later given by von-Mangoldt and consequently the formula

is referred to as the Riemann-von-Mangoldt formula.

One can use these facts on the analytic character of ζ(s) to demonstrate a

connection with the prime number theorem. Let us outline an argument showing

(7) ψ(x) =
∑
n≤x

Λ(n) ∼ x

where Λ(n) is the von-Mangoldt function. This is easily seen [1] to be equivalent

to the prime number theorem in the form
∑

p≤x 1 ∼ x/ log x. The function Λ(n)

essentially gives a weight of log p which allows cleaner expressions. We first note
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for σ > 1

ζ ′(s)

ζ(s)
=
d

ds
log

[∏
p

(
1− 1

ps

)−1 ]
= −

∑
p

log p

ps − 1

=−
∑
p

log p
∞∑
m=1

p−ms = −
∞∑
n=1

Λ(n)

ns
.

(8)

Given that

(9)
1

2πi

∫
(c)

ys
ds

s
=


1 if y > 1

1/2 if y = 1

0 if y < 1

where the integral is over the vertical line <(s) = c > 0, we see that

(10) ψ0(x) =
1

2πi

∫
(c)

−ζ
′(s)

ζ(s)
xs
ds

s

where ψ0(x) is the ‘dashed’ sum version of ψ(x). This means the last term of the

sum is multiplied by 1/2 if x is an integer. Here, we have chosen c > 1 so that

the Dirichlet series converges absolutely. We can view this integral as the limit of

some finite integral, which we then view as part of a rectangular contour whose

left edge is left of the line <(s) = 1. By Cauchy’s residue formula, the value of the

integral over the rectangle is approximately x−
∑

ρ x
ρ/ρ where the sum is over the

non-trivial zeros ρ inside the rectangle. After some estimates we can take limits

and we’re left with

(11) ψ0(x) = x+O

(∑
ρ

xρ

ρ

)
.

The fact that the error term is indeed an error term is due to the non-trivial fact

that ζ(s) has no zeros on the line σ = 1, and hence xρ � x. The full details of

this kind of argument can be found in Proposition 3.1.3. One can note that the

Riemann Hypothesis implies the primes are distributed as regularly as possible, in

the sense that error term in the prime number theorem is minimal. For something

as equally deep, we also have the following lesser known example which better
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exemplifies the association with the rationals. Let x1, . . . , xN ∈ (0, 1] be the set of

rationals of height at most Q. Then for each integer h we have

N∑
n=1

e(hxn) =
∑
d|h

dM(Q
d

)(12)

where M(x) =
∑

n≤x µ(n) is the sum function of the Möbius function (see for

example [24]). Now, M(x) � xθ+ε if and only if the Dirichlet series for 1/ζ(s)

converges for σ > θ. The Riemann hypothesis implies that we may take θ = 1/2,

and as a consequence one gets

(13)
N∑
n=1

e(hxn)� (Q|h|)1/2+ε

when (xn) are the complete set of rationals of height at most Q. We can there-

fore we view the Riemann hypothesis as the implication that the rationals are

distributed as uniformly as possible. We are now satisfied that the zeta function

is an object worthy of study, and so we move on to its generalisations.

To define a general L-function, we take the axiomatic approach via the Selberg

Class. This was originally defined by Selberg [53]. Along with his article our

main references are [28, 56]. Although most of this thesis is concerned with the

Dedekind zeta function, the approach via the Selberg class will help us describe

our problems in a fuller generality whilst also setting notation and defining terms.

Let

(14) L(s) =
∞∑
n=1

aL(n)

ns

for some coefficients aL(n). The axioms are as follows:

• Ramanujan Hypothesis: aL(n)� nε for any ε > 0.

• Analytic continuation: There exists a non-negative integer k such that

(s− 1)kL(s) is entire and of finite order.

• Functional equation: There exists a positive integer d and for 1 ≤ j ≤ d

there exist Q, λj ∈ R>0, and εL, µj ∈ C with |εL| = 1 and <(µj) ≥ 0 such
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that

(15) ΛL(s) := γL(s)L(s) = εLΛL(1− s)

where

γL(s) = Qs/2

d∏
j=1

Γ(λjs+ µj)

and ΛL(s) = ΛL(s).

• Euler product: L(s) satisfies

L(s) =
∏
p

Lp(s)

where the product is over primes and

Lp(s) = exp

( ∞∑
m=1

b(pm)

pms

)
for some coefficients satisfying b(pm)� pmθ for some θ < 1/2.

We define the degree of an L-function as the quantity

(16) dL := 2
d∑
j=1

λj.

It is conjectured that λj = 1/2, j = 1, . . . , d for all L-functions in the Selberg

class, which amounts to saying that the degree is just the number of gamma

factors in the functional equation. It often occurs that the coefficients b(pm) allow

for an expression of the form Lp(s) = f(p−s)−1 where f is some polynomial.

Consequently, some authors choose to define the degree of an L-function as the

degree of f . Also, authors following [43] may refer to the dimension of an L-

function as what we have defined as the degree.

Let us complement these axioms with some examples. First we have the Rie-

mann zeta function. This is a degree 1 L-function with γζ(s) = π−s/2Γ( s
2
) and

εζ = 1. We also have b(n) ≡ 1 so that

(17) ζp(s) = exp

( ∞∑
m=1

1

pks

)
= exp

(
− log

(
1− p−s

))
=

(
1− 1

ps

)−1
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as seen previously. Another example is given by Dirichlet L-functions which are

also of degree 1. Let χ be a primitive Dirichlet character mod q and let

(18) L(s, χ) =
∞∑
n=1

χ(n)

ns
=
∏
p

(
1− χ(p)

ps

)−1

.

The functional equation for Dirichlet L-functions reads

(19) Λ(s, χ) :=

(
π

q

)− s+a
2

Γ

(
s+ a

2

)
L(s, χ) =

G(χ)

ia
√
q

Λ(1− s, χ)

whereG(χ) =
∑q

k=1 χ(k)eq(k) is the Gauss sum and a is defined by χ(−1) = (−1)a.

Since |G(χ)| =
√
q (see [1] for example) we have |εL| = 1. We will see later that

Dedekind zeta functions and Artin L-functions provide examples of L-functions

with degree greater than 1.

For a given L-function in the Selberg class one can deduce equivalents of the

famous results concerning the Riemann zeta function. These are derived in a

similar fashion, the main tool being contour integration along with basic upper

bounds on the L-function. In deriving the upper bounds, it will frequently occur

that we require an estimate for some ratio of the γL factors. For this, we require

an asymptotic expansion of the Gamma function.

Lemma 1.1.1 (Stirling’s formula). [58] For s in the range | arg s| ≤ π−ε we have

the asymptotic formula

(20) log Γ(s) =

(
s− 1

2

)
log s− s+

1

2
log 2π +O

(
1

s

)
,

or equivalently,

(21) Γ(s) =

(
2π

s

) 1
2 (s

e

)s(
1 +O

(
1

s

))
.

Let s = σ + it with σ fixed. Writing i = eπi/2 and expanding the above with a

consideration for |t| large, we get

(22) Γ(σ + it) =
√

2π tσ−1/2e−
π
2
|t|
(
|t|
e

)it
e
π
2
i(σ−1/2)

(
1 +O

(
1

t

))
.
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The details of this kind of argument can be found in Lemma 1.1.3 below. Taking

moduli gives the following.

Lemma 1.1.2 (Rapid decay in vertical strips). For σ fixed and |t| → ∞ we have

(23) |Γ(σ + it)| =
√

2π|t|σ−1/2e−
π
2
|t|
(

1 +O

(
1

t

))
.

Given that L(s) is absolutely convergent for σ > 1 it is clearly bounded in this

region. Therefore, by the functional equation in its asymmetric form:

(24) L(s) = εLκL(s)L(1− s), κL(s) =
γL(1− s)
γL(s)

,

we can deduce an estimate for σ < 0 provided we have an upper bound on κL(s).

Lemma 1.1.3. Let L be a member of the Selberg class. Then for t ≥ 1 we have

uniformly in σ

(25) κL(s) = (λQtdL)
1
2
−σ−itλ′t−2i

∑
=(µj)eitdL+πi

4
(µ−dL)

(
1 +O

(
1

t

))
where λ =

∏d
j=1 λ

2λj
j , λ′ =

∏d
j=1 λ

−2i=(µj)
j and µ = 2

∑d
j=1(1− 2<(µj)). In partic-

ular, |κL(1
2

+ it)| = 1. Also, for z ∈ C we have

(26)
γL(s+ z)

γL(s)
= λ1/2

(
Q(it)dL

)z/2(
1 +Oz

(
1

t

))
as t→∞. The dependence on z in the error term is at most polynomial.

Proof. Since Γ(s) = Γ(s) we have

(27) κL(s) =
γL(1− s)
γL(s)

= Q
1
2
−s

d∏
j=1

Γ
(
λj(1− σ) + <(µj)− i(λjt−=(µj))

)
Γ
(
λjσ + <(µj) + i(λjt+ =(µj))

) .

Let u = λj(1− σ) +<(µj), u
′ = λjσ +<(µj) and v = λjt+=(µj) so that a single

term of the product is given by Γ(u− iv)/Γ(u′ + iv). Since we are considering t

to be large we are also considering v to be large. With this in mind, Stirling’s
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formula gives

log
Γ(u− iv)

Γ(u′ + iv)
=(u− iv − 1

2
) log(u− iv)− (u− iv)

− (u′ + iv − 1
2
) log(u′ + iv) + u′ + iv +O

(
1

v

)
=(u− iv − 1

2
)
(

log(−iv) + log(1− u
iv

)
)
− (u′ + iv − 1

2
)

×
(

log(iv) + log(1 + u′

iv
)
)
− u+ u′ + 2iv +O

(
1

v

)
=(u− iv − 1

2
) log(−iv)− (u′ + iv − 1

2
) log(iv) + 2iv +O

(
1

v

)
.

Now,

(u− iv − 1
2
) log(−iv) =(u− iv − 1

2
)
(

log(−iλjt) + log(1 +
=(µj)

λjt
)
)

=(u− iv − 1
2
) log(−iλjt)− i=(µj) +O

(
1

t

)
.

(28)

The expression now becomes

log

(
(−iλjt)u−iv−

1
2 (iλjt)

−(u′+iv−1
2

)e2iv−2i=(µj)

)
+O

(
1

t

)
= log

(
(λjt)

u−u′−2ive2iv−2i=(µj)−πi2 (u+u′−1)

)
+O

(
1

t

)(29)

and the first result now follows on exponentiating, inputting the values of u, u′, v

and then taking the product over j. For the second result we proceed similarly.

Let u = λjs + µj and v = λjz and take consideration for u large. Via the same

procedure as before we find

log
Γ(u+ v)

Γ(u)
=v log u+ (u+ v − 1

2
) log(1 + v

u
)− v +O

(
1

u+ v

)
+O

(
1

u

)
=v log u+Ov

(
1

u

)
= log

(
(λjs+ µj)

λjz
)

+Oz

(
1

s

)
= log

(
(λjit)

λjz
)

+Oz

(
1

t

)
.

(30)

The result now follows upon exponentiating and taking the product over j. �
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By formula (25) and the functional equation in the form (24) we see that L(s)

is of polynomial growth in the half-plane σ < 0. It remains to find the order of

growth inside the critical strip. Now, if we were dealing with analytic functions

bounded on the boundary of some closed region, we could apply the maximum-

modulus principle to show the function is bounded on the interior of that region.

The so-called Phragmén-Lindelöf principle can be considered an extension of the

maximum modulus principle to vertical strips, and so is useful for Dirichlet series.

Lemma 1.1.4 (Phragmén-Lindelöf for strips). [28] Suppose f(s) is analytic and

of finite order in the strip σ1 ≤ σ ≤ σ2. Assume that

|f(σ1 + it)| ≤Mσ1(1 + |t|)α,

|f(σ2 + it)| ≤Mσ2(1 + |t|)β

for t ∈ R. Then

(31) |f(σ + it)| ≤M l(σ)
σ1

M1−l(σ)
σ2

(1 + |t|)αl(σ)+β(1−l(σ))

for all s in the strip, where l is the linear function such that l(σ1) = 1, l(σ2) = 0.

Proposition 1.1.5. Let L(s) be an element of the Selberg class. Then for |t| ≥ 1,

L(s) is at most of polynomial growth in vertical strips.

The Phragmén-Lindelöf principle actually allows for a more precise statement

on the growth of L(s) in vertical strips. Note that for a polynomial f(t) of degree

d, the quantity log f(t)/ log t → d as t → ∞. Accordingly, for a given L-function

we define

(32) µL(σ) = lim sup
t→±∞

log |L(σ + it)|
log |t|

= lim inf
t→±∞

{a : L(σ + it)� |t|a}.

By the absolute convergence of the Dirichlet series we have µL(σ) = 0 for σ > 1,

and by (25) we have µL(σ) = dL(1/2 − σ) for σ < 0. The Phragmén-Lindelöf

principle therefore gives µL(σ) = dL(1 − σ)/2 for −ε ≤ σ ≤ 1 + ε. By convexity



16 1. INTRODUCTION

we have continuity and therefore this last region can be extended to 0 ≤ σ ≤ 1.

In particular, on the half-line

(33) L(1
2

+ it)� |t|
dL
4

+ε.

Any improvement to this bound is known as a subconvexity bound, the best pos-

sible is the Lindelöf hypothesis which states L(1/2 + it)� |t|ε.

For every L-function in the Selberg class there exists an equivalent version

of the Riemann-von-Mangoldt formula (6). This is derived in the same way as

for the Riemann zeta function by considering contour integrals of the logarithmic

derivative. The proof can be found in most books on analytic number theory, we

reference [28] for the general case.

Proposition 1.1.6. Let NL(T ) denote the number of zeros of L(s) in the region

0 ≤ σ ≤ 1, −T ≤ t ≤ T . Then

(34) NL(T ) =
T

π
log

(
λQ

(
T

e

)dL )
+O(log T )

where dL = 2
∑d

j=1 λj and λ =
∏d

j=1 λ
2λj
j .

There are several conjectures surrounding the Selberg class besides the afore-

mentioned degree conjecture. For instance, it is expected that the Riemann hy-

pothesis holds for all members i.e. all non-trivial zeros of L(s) lie on the line

σ = 1/2. There are also some conjectures due to Selberg [53] which concern the

value distribution of these functions. To state these we must define a notion of

irreducibility. We say an L-function is primitive if it cannot be written as the

product of two non-trivial (i.e. ≡ 1) L-functions. The first of Selberg’s conjectures

states that for two primitive L-functions L1, L2 we have

(35)
∑
p≤x

aL1(p)aL2(p)

p
=

log log x+O(1) if L1 = L2

O(1) otherwise.
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The second states that for a given L-function, not necessarily primitive, there

exists an integer nL such that

(36)
∑
p≤x

|aL(p)|2

p
= nL log log x+O(1).

These conjectures are quite profound and have many consequences (see[14] for

example). In the final chapter we show that these conjectures have implications

on the moments of non-primitive L-functions. We now move on to our principal

L-function of study: the Dedekind zeta function.

1.2. Algebraic number theory

We first review the necessary algebraic number theory. For the early intro-

ductory material we refer to Stewart and Tall’s book [57], our main source is

Neukirch’s book [44], and we also reference [6, 19, 33]. We only include infor-

mation pertinent to the definition and ensuing properties of the Dedekind zeta

function, extraneous information is omitted.

A number field is a finite extension K of the rationals. The index n = [K : Q] is

the degree of the extension, or as we sometimes refer to it, the degree of the number

field. By the Primitive Element Theorem there exists an algebraic number α such

that K = Q(α). Since Q is of characteristic zero, K is a separable extension and

therefore the minimal polynomial of α has n distinct roots in C. Consequently,

there exist n distinct embeddings

(37) τi : K→ C, i = 1, . . . , n

which fix Q. Since the n embeddings correspond to the conjugates of α we see

that for each τ : K → C there corresponds a complex conjugate τ : K → C

(since complex roots of the minimal polynomial occur in complex conjugate pairs)

although we may have τ = τ (in the case of the associated root being real). We

denote the number of real embeddings by r1 and the number of complex conjugate
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pairs by r2 so that n = r1 + 2r2. For an element a ∈ K we define its norm as

NK/Q(a) = N(a) =
n∏
i=1

τi(a)

and note that for a ∈ Q we have N(a) = an.

If K is viewed in analogy with the rationals then the object providing the

analogy with the integers is known as the ring of integers of K, denoted OK.

This is comprised of all the algebraic integers that lie in K, that is, the set of

all elements in K that are the root of some monic polynomial with coefficients in

Z. This does indeed form a ring, more precisely, it is a free Z-module of rank

n. Also, the field of fractions of OK is K and so the analogy with the rationals

and integers is fairly complete. An important quantity associated to OK is the

discriminant. Informally, this measures the size of the ring of integers and also

has ramifications on the behaviour of its primes. If we choose a basis a1, . . . , an

for OK as a Z-module, then the discriminant is defined as

(38) dK =
[

det(τi(aj))
]2

where the τi are the n distinct embeddings K→ C.

It may be that OK does not have unique factorisation, however this can be

recovered in some sense by considering the ideals of OK as opposed to the elements.

Given an integral domain R with ideals a, b we can form the product

ab :=

{
k∑
i=1

aibi : ai ∈ a, bi ∈ b, k ≥ 1

}
.

Similarly to the integers, we can then define the usual notions of divisibility, great-

est common divisor, coprime etc. A fundamental property of OK is that any ideal

has a unique factorisation in terms of prime ideals. So, for a given ideal a ⊂ OK

we may write

(39) a =
∏
p

pvp(a)
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where the product is over the prime ideals of OK and vp(a) is some non-negative

integer, non-zero for only finitely many prime ideals.

We would like to define an L-function related to the ideals of OK so that

we can encapsulate the property of unique factorisation in a similar fashion to

that of the Riemann zeta function. For this we first need a map from the ideals

to the natural numbers. Given an ideal a, it turns out that the quotient ring

OK/a is finite. We therefore define the ideal norm of an ideal a to be |OK/a|

which we denote N(a). We note for a principal ideal with generator β, we have

N((β)) = NK/Q(β). The ideal norm is completely multiplicative and so given the

above product representation (39), we have

(40) N(a) =
∏
p

N(p)vp(a).

At this point it should be stated that all prime ideals of OK are in fact maximal.

This implies that OK/p is a finite field and so N(p) = pf for some prime p and

some natural number f . Let us examine this in more detail.

Note p∩Z is a prime ideal in Z and hence p∩Z = (p) = pZ for some prime p.

We therefore have p ⊃ pOK. We say that p lies above the associated prime p and

we write p|p. Suppose that

pOK = pe11 . . . pegg

for some positive integers ei, g where the pi are the distinct prime ideals in OK

lying above p. Taking norms gives

pn = N(p1)e1 . . .N(pg)
eg .

Hence each N(pi) = pfi for some positive integer fi and
∑g

i=1 eifi = n. In partic-

ular note that

(41)
∑
p|p

fp ≤ n.
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The integer ei is called the ramification index of pi. If ei > 1 we say that p ramifies

in K and an important point is that a prime is ramified if and only if it divides the

discriminant dK. The integer fi is called the degree of pi. If ei = fi = 1 for all pi|p

then we say p splits completely in K. If g = 1 and e1 = 1 then we say p is inert

in K. We note that for quadratic extensions K = Q(
√
m) with m squarefree, the

splitting of ideals can be described in terms of the Kronecker symbol:

(42)


p ramifies ⇐⇒ p|dK

p splits ⇐⇒
(
dK
p

)
= 1

p inert ⇐⇒
(
dK
p

)
= −1

1.2.1. The Dedekind zeta function. The Dedekind zeta function of K is

defined as the series

(43) ζK(s) =
∑
a

1

N(a)s

where the sum is over all ideals a ⊂ OK. Upon formally expanding the product

(44)
∏
p

(
1− 1

N(p)s

)−1

we see that the worst case of divergence is presented by the sums
∑

pN(p)−s.

Since there are at most n prime ideals above a given rational prime p and since

|N(p)s| = pfσ ≥ pσ, we see that the product converges absolutely and uniformly

for σ ≥ 1 + δ. By the unique factorisation of prime ideals and the usual argument

we therefore have

(45) ζK(s) =
∑
a

1

N(a)s
=
∏
p

(
1− 1

N(p)s

)−1

.

Since this converges absolutely and locally uniformly for σ > 1 it defines an analytic

function there.
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To demonstrate that ζK(s) is a member of the Selberg class we first write ζK(s)

as a normal Dirichlet series,

(46) ζK(s) =
∞∑
m=1

rK(m)

ms
.

The coefficients rK(n) now represent the number of ideals of norm n and note

rK(1) = 1 (corresponding to the ideal OK). To get a grasp of these coefficients we

write the product over prime ideals as a standard Euler product:

(47)
∏
p

(
1− 1

N(p)s

)−1

=
∏
p

∏
p|p

(
1− 1

N(p)s

)−1

=
∏
p

g∏
i=1

(
1− 1

pfis

)−1

.

Expanding this into the Dirichlet series (46) we see that the coefficient rK(m) is

given as a product of divisor functions and therefore rK(m)� mε. The Ramanujan

hypothesis is therefore satisfied and note we have incidentally satisfied the Euler

product hypothesis.

Similarly to the Riemann Zeta function, we can continue ζK(s) to a meromor-

phic function on C and this function then satisfies a functional equation. If we

define the completed Dedekind Zeta function as

(48) ΛK(s) = |dK|s/2π−ns/2Γ( s
2
)r1+r2Γ( s+1

2
)r2ζK(s)

then this functional equation reads

(49) ΛK(s) = ΛK(1− s).

So, in the notation of section 1.1 we have ε = 1, Q = |dK|π−n and γ(s) =∏n
j=1 Γ((s + µj)/2) where µj is zero for r1 + r2 of the j’s and 1 for the remaining

r2. The only pole of ζK(s) is at s = 1. It is simple and has residue given by the

analytic class number formula

(50) ψK = Ress=1(ζK(s)) =
2r1(2π)r2hKRK

w
√
|dK|
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where RK is the regulator, hK is the class number and w is the number of roots

of unity in K (see [44]). We therefore see that the Dedekind zeta function is a

member of the Selberg class of degree n.

In Chapter 3 we will frequently make use of the following two results. The first

is the equivalent of the prime number theorem for ideals. This is known as the

prime ideal theorem and was first derived by Landau [31]. It states

(51) πK(x) := |{p ⊂ OK : N(p) ≤ x}| = x

log x
+O

(
x

log2 x

)
.

The second result is an equivalent of Merten’s theorem for number fields [46]. This

is given by

(52)
∏

N(p)≤x

(
1− 1

N(p)

)−1

= ψKe
γ log x

(
1 +O

(
1

log x

))
where γ is the Euler-Mascheroni constant.

Another important tool is the Hadamard product for ζK(s). First note that

the function

(53) Λ∗K(s) :=
(
s
2

)r1+r2 ( s+1
2

)r2 (s− 1)ΛK(s)

is entire and of order 1. Therefore, by the theory of entire functions ([58], chapter

8) we may write

(54) Λ∗K(s) = ea+bs
∏
ρ

(
1− s

ρ

)
es/ρ

for some constants a, b. Here, the product is over the zeros of Λ∗K(s). Accordingly,

(55) ζK(s) =
eA+Bs

(s− 1)Γ( s+2
2

)r1+r2Γ( s+3
2

)r2

∏
ρ

(
1− s

ρ

)
es/ρ

for some constants A,B where the product is now over the non-trivial zeros of

ζK(s).

An interesting question arises when considering the holomorphy of ζK(s)/ζ(s).

From the Hadamard product we can clearly see that the trivial zeros of ζK(s) have

multiplicity no less than those of ζ(s). We also see that the poles at s = 1 cancel.
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The question then reduces to whether ζ(s) has any non-trivial zeros that ζK(s)

does not (accounting for multiplicities too). The answer to this lies in Artin L-

functions. These L-functions provide a factorisation of ζK where ζ(s) is always a

factor, however, they are not fully understood and so there is not yet a complete

answer to our question. Nevertheless, this factorisation will provide a useful tool

for us and so we devote the next section to its derivation.

1.2.2. Artin L-functions. Artin L-functions are a generalisation of Dirichlet

L-functions to arbitrary complex-valued characters and arbitrary Galois extensions

of number fields. The following example demonstrates the possibility of such func-

tions. Let K = Q(ζm) where ζm = e2πi/m. Then for an element τ ∈ G = Gal(K/Q)

we have τ(ζm) = ζjτm for some jτ . It is hard not to show that τ(ζm) is also a

primitive mth root of unity and so (jτ ,m) = 1. It is also hard not to show that

the identification v : G→ (Z/mZ)×, τ 7→ jτ provides an injective homomorphism.

Since |G| = [K : Q] = φ(m) = |(Z/mZ)×| (see [60] for example) we have an

isomorphism

Gal(Q(ζm)/Q) ∼= (Z/mZ)×.

By the above identification, given a prime (p,m) = 1, we have a corresponding

element in G which we denote ϕp. Therefore, for a primitive Dirichlet character

χ : (Z/mZ)× → C× we can attach a character χGal : G→ C× via

χGal(ϕp) = χ(p).

The Dirichlet L-function can now be written in terms of purely Galois theoretic

information:

L(s, χ) =
∏
p

(
1− χGal(ϕp)

ps

)−1

,

the product over primes being considered as a product over the prime ideals of the

ring of integers of the base field.

In defining Artin L-functions our first goal is to describe a generalisation of

ϕp. This can in fact be defined for a general finite Galois extension L/K to which
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the L-function is consequently related. We then let the character be an arbitrary

character of the Galois group and we take the product over prime ideals.

So let L/K be a finite Galois extension of number fields and let OL, OK be

their respective rings of integers. Let p be a prime ideal of OK. Then pOL is an

ideal of OL and so we have the unique decomposition into prime ideals

pOL =

g∏
j=1

P
ej
j .

Once again; we say that the Pj lie above p, which we denote by P|p, and we refer

to the ej as the ramification indices. Recall that OL/Pj and OK/p are both finite

fields and therefore OL/Pj is a finite extension of OK/p. The degree

fj = [OL/Pj : OK/p]

is called the inertia degree and similarly to before, we have the relation
∑

j ejfj =

n = [L : K].

Since L/K is Galois, the ideals are subject to the action of the Galois group.

Indeed, for an element a ∈ OL and for τ ∈ G = Gal(L/K), the conjugate τ(a) is

again in OL and hence G acts on OL. For a prime P lying above p, the conjugate

τ(P) also lies above p since

τ(P) ∩ OK = τ(P ∩ OK) = τ(p) = p.

What’s more is that G acts transitively on the primes P of OK lying above p

(Proposition 9.1, [44]). Consequently, the ramification indices ej are all equal

since τ(P
ej
j ) = (τ(Pj))

ej . Also, for Pi, Pj lying above p there exists a τij in G

such that τij(Pi) = Pj which induces an isomorphism

OL/Pi → OL/τij(Pi), a mod Pi 7→ τij(a) mod τij(Pi)

so that

fi = [OL/Pi : OK/p] = [OL/τij(Pi) : OK/p] = fj.
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We may therefore write ej = e and fj = f and we have the identity

(56) efg = n = [L : K].

We now define an object which, amongst other things, helps describe the num-

ber g of ideals P lying above p. For a given prime ideal P of OL we define the

decomposition group of P over K as

(57) GP = {τ ∈ G : τ(P) = P}.

Suppose P lies above p ⊂ OK and let τ vary over the representatives of G/GP.

Since G acts transitively and τ varies over elements of G, τ(P) varies over the

prime ideals lying above p. If τ(P) = σ(P) for σ, τ ∈ G, then σ−1τ = id in G/GP

i.e. σ and τ belong to the same equivalence class. Therefore, as τ varies over the

representatives of G/GP, each of the remaining prime ideals lying above p is hit

exactly once. Hence g = (G : GP) and by the orbit-stabiliser theorem we also have

|GP| = n/g = ef .

An alternative interpretation of the decomposition group exists in some cases

and goes as follows. First note for τ ∈ G we have τ(OL) = OL and therefore given

τ ∈ GP (for which τ(P) = P) we have an induced automorphism

τ ∗ : OL/P→ OL/P, a mod P 7→ τ(a) mod P.

Write κ(P) = OL/P and κ(p) = OK/p so that κ(P)/κ(p) is an extension of finite

fields. This turns out (Proposition 9.4, [44]) to be a Galois extension and note

that τ ∗ fixes the elements of κ(p) so it can therefore be viewed as an element of

Gal(κ(P)/κ(p)). Also, the map τ 7→ τ ∗ provides a surjective homomorphism

GP → Gal(κ(P)/κ(p)).

The kernel of this homomorphism is defined as the inertia group of P over K and

is denoted IP. Explicitly, we have

IP = {τ ∈ GP : τ(a) ≡ a mod P ∀a ∈ OL}.
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So we have the isomorphism GP/IP ∼= Gal(κ(P)/κ(p)) and therefore

|IP| = |GP|/|Gal(κ(P)/κ(p))| = ef/f = e, (GP : IP) = f.

We now see that if e = 1 i.e. p is unramified in OL, then GP
∼= Gal(κ(P)/κ(p)).

Since κ(P)/κ(p) is an extension of finite fields, its Galois group is cyclic and

generated by the Frobenius

a mod P 7→ aq mod P.

where q = |OK/p| = N(p) (see [32] for example). The corresponding element of

GP is called the Frobenius automorphism of P relative to the extension L/K and

is denoted ϕP. So, for every a ∈ OL, we have

(58) ϕP(a) ≡ aq mod P.

By computing ϕPτ
−1 for τ ∈ G and then applying τ we see that τϕPτ

−1 = ϕτ(P).

Since G acts transitively on the primes lying above p, we see that for two different

primes P,P′, the automorphisms ϕP and ϕP′ are conjugate. In particular, if G is

abelian then ϕP does not depend on the choice of P lying above p and we may

write ϕp instead of ϕP. In this case ϕp is sometimes referred to as the Artin symbol

which we denote
(L/K

p

)
.

We are more interested in ϕP as a map from the unramified prime ideals to G,

as opposed to its effects on the elements of OL. Let L/K be an abelian extension

and let IK denote the set of ideals in OK whose prime decomposition contains only

primes that are unramified in OL. Then we may extend
(L/K

p

)
by multiplicativity

to a map (L/K
·

)
: IK → G,

m∏
j=1

p
nj
j 7→

m∏
j=1

(L/K
p

)nj .
Let us furnish these definitions with some examples. Let L = Q(

√
m) for some

squarefree m and let K = Q. Then G = {±1} up to isomorphism and so there are

two possibilities for the subgroup Gp; namely G itself and H = {1}. If Gp = G

then g = |G|/|Gp| = 1 and so the prime p lying under p is inert in OL. In this
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case Gp is generated by −1, and so inert primes are sent to −1 by the Frobenius.

If Gp = H then g = 2 and so p splits. In this case, H is generated by 1 and so

split primes map to 1. If p ramifies we set ϕp = 0. By (42), we see that the Artin

symbol equals the Kronecker symbol in this case.

For the extension Q(ζm)/Q where ζm = e2πi/m we have already noted that

G ∼= (Z/mZ)× via the identification τ 7→ jτ where jτ is the integer such that

τ(ζm) = ζjτm . We also have that a prime ramifies in K if and only if it divides m

(Proposition 2.3, [60]). So assume p - m and let p lie above p. Then by (58) we

have

ϕp(a) ≡ ap mod p ∀a ∈ OQ(ζm) = Z[ζm].

Since ϕp(ζm) is an mth root of unity and since the mth roots of unity are distinct

mod p (since m =
∏m−1

j=1 (1− ζjm)) we see that

ϕ(ζm) = ζpm,

i.e. the Frobenius of p maps p to the equivalence class [p] in (Z/mZ)×. This is of

course the element ϕp described in the introduction to this section.

We are now ready to define Artin L-functions. For a given Galois extension

L/K with Galois group G, let

ρ : G→ GL(V )

be a representation of G on some finite dimensional C-vector space V . For unram-

ified primes p of OK with divisor P in OL let

(59) Lp(s, ρ,L/K) = det(I − ρ(ϕP)N(p)−s)−1

and form the product over such primes, which we denote

(60) Lun(s, ρ,L/K) =
∏

p unramified

Lp(s, ρ,L/K).

Since the choice of P|p only affects ϕP up to conjugation, under which the de-

terminant is invariant, the above quantity is well defined. Note also that we
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have invariance under equivalent representations and that we may also take ρ(ϕP)

in its diagonalised form. For the ramified primes we still have an isomorphism

GP/IP ∼= Gal(κ(P)/κ(p)) and so we can lift ϕP from Gal(κ(P)/κ(p)) except that

it must be defined modulo IP. Consequently, we restrict ρ to the subspace V IP of

V on which IP acts trivially i.e. the subspace

(61) V IP = {v ∈ V : ρ(τ)(v) = v ∀τ ∈ IP}.

We denote the new local factor by

(62) Lp(s, ρ,L/K) = det(I − ρ(ϕP)|
V
IPN(p)−s)−1

and let

(63) L(s, ρ,L/K) =
∏
p

Lp(s, ρ,L/K).

We will sometimes write L(s, ρ) for L(s, ρ,L/K) if the context is clear. Now, for

each local factor we diagonalise ρ(ϕP) so that

(64) det(I − ρ(ϕP)|
V
IPN(p)−s)−1 =

dimV∏
j=1

(1− λjN(p)−s)−1

where the λj are the eigenvalues of ρ|
V
IP (ϕP). Since G is finite, the linear auto-

morphism ρ(τ) is of finite order for all τ ∈ G, and in particular, for ϕP. Therefore,

|λj| = 1 and so L(s, ρ) is bounded by ζK(s)dimV . Hence L(s, ρ) converges abso-

lutely and uniformly for σ ≥ 1 + δ and consequently defines an analytic function

there. As is also made clear by (64): if V is the trivial representation (i.e. ρ(τ) ≡ I)

then L(s, ρ) = ζK(s).

Recall that the character of a representation ρ is defined as the trace χ = tr(ρ)

and note that degree(ρ) := dimV = χ(1). Two representations are equivalent if

and only if their characters are equal. Since the local factor Lp(s, ρ) is invariant

under equivalent representations, we see that L(s, ρ) is only dependent on χ. To
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gain an explicit expression in terms of characters let λj be the eigenvalues of

ρ|
V
IP (ϕP) and denote the character of this representation by χ

V
IP . Then

logL(s, ρ) =−
∑
p

dimV∑
j=1

log(1− λjN(p)−s) =
∑
p

∞∑
m=1

dimV∑
j=1

λmj
mN(p)ms

=
∑
p,m

χ
V
IP (ϕmP )

mN(p)ms
.

(65)

It is known that L(s, χ) can be continued to a meromorphic function on C

with functional equation of the usual type. This is achieved by expressing it as

a quotient of Hecke L-functions via theorems of class field theory. From this

expression, we see that it is possible for L(s, χ) to contain an infinite amount of

poles in the region 0 < σ < 1. Artin conjectured that if χ is non-trivial, then

L(s, χ) is in fact entire. Assuming this, it folows that L(s, χ) is a member of the

Selberg class. The functional equation for L(s, χ) is given by

(66) Λ(s, χ) := γ(s, χ)L(s, χ) = W (χ)Λ(1− s, χ)

where W (χ) is some complex number of modulus one. The gamma factor is

(67) γ(s, χ) =

(
q(χ)

πnχ(1)

)s/2 nχ(1)∏
j=1

Γ

(
s+ µj

2

)

where n = [K : Q], µj is equal to 0 or 1, and q(χ) is the conductor, for which we

will not require an explicit expression.

Our main reason for describing Artin L-functions is the fact that they provide

factorisations of the Dedekind zeta function. In order to explain this we briefly

review some representation theory, the details can be found in Serre’s book [55].

Let G be a finite group and let V be a vector space of dimension equal to the

order of G with basis (eτ )τ∈G indexed by the elements of G. We let G act on V

by permuting the indices of the basis via left multiplication, that is, for σ in G

we define a linear map ρ(σ) which sends eτ to eστ . This is a representation of G
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called the regular representation. The character rG of the regular representation

is given by

(68) rG =
∑
χ

χ(1)χ

where the sum is over all distinct irreducible characters of G. For a subgroup H

with character ψ we can define the induced character of G by the formula

(69) IndGH(ψ)(τ) =
1

|H|
∑
σ∈G

σ−1τσ∈H

ψ(σ−1τσ).

In terms of induced characters we have rG = IndG{1}(1{1}) where 1G is the trivial

character. Now, given two characters χ1, χ2 we have

(70) L(s, χ1 + χ2) = L(s, χ1)L(s, χ2).

To see this take two representations (ρ1, V1), (ρ2, V2) with characters χ1, χ2. Then

(ρ1 ⊕ ρ2, V1 ⊕ V2) is a representation with character χ1 + χ2 and we have

(71) det(I − (ρ1 ⊕ ρ2)(ϕP)|(V1 ⊕ V2)IPz)

= det(I − ρ1(ϕP)|V IP
1 z) det(I − ρ2(ϕP)|V IP

2 z).

Slightly more involved (and hence omitted) is the proof of the fact that for a given

subgroup H of G we have

(72) L(s, χ,L/LH) = L(s, IndGH(χ),L/K)

where LH is the fixed field of H. Writing rG as an induced character we see

(73) L(s, rG,L/K) = L(s,1{1},L/L{1}) = L(s,1,L/L) = ζL(s).

On the other hand, by formula (68) we have

(74) L(s, rG,L/K) =
∏
χ

L(s, χ,L/K)χ(1) = ζK(s)
∏
χ 6=1

L(s, χ,L/K)χ(1).
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Equating gives the formula

(75) ζL(s) = ζK(s)
∏
χ 6=1

L(s, χ,L/K)χ(1).

1.2.3. The Dedekind zeta function (bis). We now return to the Dedekind

zeta function with its factorisation in terms of Artin L-functions. We renew the

old setup with Q as the base field but we now assume the finite extension K to be

Galois. The factorisation now reads

(76) ζK(s) = ζ(s)
∏
χ 6=1

L(s, χ,K/Q)χ(1).

Recall that for K = Q(
√
m) with m squarefree, G = {±1} and the frobenius sends

split primes to 1 and inert primes to −1. The only non-trivial representation of G

is the one dimensional signature representation sending 1 to 1 and −1 to −1. If Ip

is non-trivial then V Ip = V G which is trivial and therefore there is no local factor

for ramified primes. We therefore have

ζQ(
√
m)(s) =ζ(s)

∏
p split

(
1− 1

ps

)−1 ∏
p inert

(
1 +

1

ps

)−1

=ζ(s)
∏
p

(
1−

(
dK
p

)
p−s
)−1

=ζ(s)L(s, χ)

(77)

where χ = (dK|·) is the Kronecker symbol (n.b. (42)) and L(s, χ) is the usual

Dirichlet L-function. The modulus q of χ is given by the formula

(78) q =

4|dK| if dK ≡ 2(mod 4),

|dK| otherwise.

The main aspects of the Dedekind zeta function that will be of interest to us

are its mean values on the half line, or as we shall refer to them, its moments. We

briefly review the results in this area before describing the moments problem for
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general L-functions. The first major result concerning the Dedekind zeta function

was given by Motohashi [39]. He showed that for a quadratic extension K,

(79)
1

T

∫ 2T

T

|ζK(1
2

+ it)|2dt ∼ 6

π2
L(1, χ)2

∏
p|dK

(
1 +

1

p

)−1

log2 T

where L(s, χ) is the Dirichlet L-function appearing in (77). This was subsequently

improved by Müller in [42] where, by employing the methods of Heath-Brown

[22], he found the lower order terms. For higher power moments or higher degree

extensions little is known. In the papers [2, 3], Bruggeman and Motohashi give an

explicit formula for the fourth moment of the Dedekind zeta function of particular

quadratic fields, however this does not immediately yield an asymptotic. Their

methods rely on a spectral analysis of Kloosterman sums which echos the methods

of Motohashi used for the Riemann zeta function [40].

In terms of higher degree extensions, the most that is known is either an upper

bound on the moments, or the asymptotic value of the sum
∑

m≤x rK(m)2 where

the coefficients are those of the Dedekind zeta function when written as a Dirichlet

series. As we shall see later, the value of this sum has a bearing on the moments.

For a general Galois extension of degree n, Chandrasekharan and Narasimhan

showed [7]

(80)
∑
m≤x

rK(m)2 ∼ cx logn−1 x

for some constant c. The strength of this result is essentially allowed by the simple

description of how primes split in Galois extensions. For non-Galois extensions

they must replace ∼ with ≤. In the same paper they also give upper bounds

on the moments as well as conjecture the asymptotic (79) with an unspecified

constant, which Motohashi then deduced.
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An asymptotic relation of the form (80) for non-Galois extensions was recently

given by Fomenko [17]. For K a (non-Galois) cubic field, he obtains the formula

(81)
∑
m≤x

rK(m)2 = c1x log x+ c2x+O(x9/11+ε)

for some constants c1, c2. Here, the method relies on expressing ζK(s) as a product

of the Riemann zeta function and the L-function of a modular form of weight 1.

This can be deduced from the factorisation (75) by considering a higher degree

extension in which the cubic field K is normal. One then obtains ζK(s) as a

product of ζ(s) and the Artin L-function of a 2-dimensional representation (this

particular factorisation is described in Heilbronn’s section of [6]). By the work of

Weil-Langlands and Deligne-Serre [54] we can write this Artin L-function as the L-

function of a modular form of weight 1 and obtain the aforementioned factorisation.

1.3. Moments of L-functions

Let L be a member of the Selberg class. The quantity of interest is

(82)

∫ T

0

|L(1
2

+ it)|2kdt,

which we refer to as the 2kth moment of L. We first present the results of Hardy-

Littlewood [21] and Ingham [25] concerning the 2nd and 4th moment of the zeta

function. We then describe the general moments problem in a modern setting

(smooth functions etc.) which helps clarify the main obstacles to achieving higher

moments.

The classical approach to evaluating moments first involves expressing ζ(s) as

a combination of sums that converge within the critical strip. This representation

is derived from the functional equation and consequently embodies some its char-

acter, for example, it possesses a symmetry about the critical point. We refer to

these expressions as approximate functional equations. The first of these takes the
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form

(83) ζ(s) =
∑
m≤x

1

ms
+ κ(s)

∑
n≤y

1

n1−s +O(x−σ) +O(t1/2−σyσ−1)

which is valid for 0 ≤ σ ≤ 1 (uniformly) and for x, y, t > 0 with 2πxy = t. Here,

(84) κ(s) =
γ(1− s)
γ(s)

= π1/2−sΓ((1− s)/2)

Γ(s/2)

which is the factor appearing in the functional equation ζ(s) = κ(s)ζ(1 − s).

Specialising to the 1/2-line we have

(85) ζ(s) =
∑
m≤N

1

m1/2+it
+ κ(1

2
+ it)

∑
n≤N

1

n1/2−it +O(N−1/2)

where N = N(t) =
√
t/2π. Writing ζ(s) = S + κS + E we see

(86)

∫ T

0

|ζ(1
2

+ it)|2dt =

∫ T

0

[
2|S|2 + 2<(κ(1

2
− it)S2) + (S + κ(1

2
+ it)S)E

+ E(S + κ(1
2
− it)S + E)

]
dt

where we have used κ(1
2

+ it) = κ(1
2
− it) and |κ(1

2
+ it)| = 1 (the first of these

follows from Γ(s) = Γ(s) whilst the latter follows from (25)). In order to evaluate

the first term, which turns out to be the main term, we appeal to the following

Theorem of Montgomery and Vaughan.

Proposition 1.3.1. (Montgomery–Vaughan mean value Theorem) [37] We have

(87)

∫ T

0

∣∣∣∣ ∑
n≤M

a(n)

nit

∣∣∣∣2dt =
∑
n≤M

|a(n)|2(T +O(n)).

Note that if M = o(T ) then the error term is smaller than the main term. Applying

the Theorem to our above situation gives

(88) 2

∫ T

0

|S|2dt ∼ T log T

and it remains to evaluate the remaining terms. For the term involving κ(1
2
−it)S2

one can use Stirling’s formula to give an asymptotic expansion for κ(1
2
− it). The
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resultant integral can then be evaluated by the theory of exponential integrals (see

[59]). The term |E|2 is easily evaluated whilst for the cross terms one can use the

Cauchy-Schwarz inequality. As a result, we acquire

(89)

∫ T

0

|ζ(1
2

+ it)|2dt ∼ T log T.

For the fourth moment one can apply a similar process starting from the equa-

tion

(90) ζ(s)2 =
∑
m≤x

d(m)

ms
+ κ(s)2

∑
n≤y

d(n)

n1−s +O(x1/2−σ log t)

which can be found in section 4.2 of [26]. Again, this is valid uniformly for 0 ≤

σ ≤ 1 and for x, y, t > 0 such that xy = (t/2π)2. After applying the Montgomery-

Vaughan mean value Theorem and using

(91)
∑
n≤M

d(n)2

n
∼ 1

4π2
log4M

we get

(92)

∫ T

0

|ζ(1
2

+ it)|4dt ∼ 1

2π2
T log4 T.

There are several issues that arise when considering higher moments of the

zeta function. As one might expect, there exist approximate functional equations

for ζ(s)k involving sums with the coefficients dk(n). The first issue is that for

some approximate functional equations the error term increases with k making

the integral of |E|2 large. Another is that the sums are of length ≤ (t/2π)k/2

and so when applying the Montgomery-Vaughan mean value Theorem, the error

term becomes too large. For moments of general L-functions these problems often

occur in one form or another, indeed, it seems they are systemic to the approximate

functional equation approach. Nevertheless, we continue with this approach and

give our treatment of general L-functions in all its modern cleanliness.

Let L(s) be an L-function in the Selberg class with at most one pole at s = 1.

Let G(s) be an even entire function of rapid decay in vertical strips with G(0) = 1.
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We keep in mind something like G(z) = ez
2
. Let s lie in the strip 0 ≤ σ ≤ 1 and

consider the integral

(93) I(s,X,Λ) =
1

2πi

∫
(c)

ΛL(s+ z)G(z)Xz dz

z

where X is some parameter, ΛL(s) is given by (15) and c is some number greater

than 1 but not too large. Since L(s) is of at most polynomial growth in vertical

strips, this integral exists due to the rapid decay of G(s) and Γ(s). Shifting the

contour to <(z) = −c gives

(94) I(s,X,Λ) = Λ(s) +R(s,X) +

∫
(−c)

ΛL(s+ z)G(z)Xz dz

z

where

(95) R(s,X) = (resz=1−s + resz=−s)ΛL(s+ z)G(z)
Xz

z

(recall Λ(s) may have a pole at s = 0 arising from the Gamma function, hence the

residue term at z = −s). Note that we have essentially considered the integral as

the limit of some finite integral, which we then considered as part of a rectangular

contour. Since L(s) is of at most polynomial growth in vertical strips, the hori-

zontal sections vanish in the limit due to the rapid decay of G. We now apply the

functional equation in this last integral to give

(96) Λ(s) = I(s,X,Λ) + εLI(1− s,X−1,Λ)−R(s,X).

On expanding the absolutely convergent Dirichlet series we get the following.

Proposition 1.3.2 (Approximate functional equation). Let L(s) be an element

of the Selberg class and suppose it has at most one pole, situated at s = 1. Then

for 0 ≤ σ ≤ 1 and X > 0 we have

(97) L(s) =
∞∑
m=1

aL(m)

ms
Vs

(m
X

)
+ κL(s)

∞∑
n=1

aL(n)

n1−s V1−s (nX)− R(s,X)

γL(s)
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where R(s,X) is given by (95),

(98) Vs(Y ) =
1

2πi

∫
(c)

γL(s+ z)

γL(s)
G(z)Y −z

dz

z
,

with G an even, entire function of rapid decay in vertical strips with G(0) = 1,

and

(99) κL(s) = εL
γL(1− s)
γL(s)

.

We can show that both sums in (97) converge in the critical strip, in fact, they

are essentially finite. We first estimate Vs(Y ) via formula (26). This gives

(100)
γL(s+ z)

γL(s)
� (Q|t|dL)<(z)/2

and hence

Vs(Y ) =
1

2πi

∫
(c)

γL(s+ z)

γL(s)
G(z)Y −z

dz

z

=1 +
1

2πi

∫
(−c)

γL(s+ z)

γL(s)
G(z)Y −z

dz

z

=1 +O

((
Y√
Q|t|dL

)c)
.

(101)

On the other hand, taking c = A withA large we derive the boundO
(
(
√
Q|t|dL/Y )A

)
.

For convenience we write q(t) =
√
Q|t|dL . Then the above upper bound gives

∞∑
m=1

aL(m)

ms
Vs (m) =

∑
m≤q(t)1+ε

aL(m)

ms
Vs(m) +O

( ∑
m>q(t)1+ε

aL(m)

mσ

(
q(t)

m

)A)(102)

with A large. Using the Ramanujan hypothesis aL(n) � nε and taking A large

enough we can bound the tail of this series by q(t)−B with B large. Applying a

similar argument to V1−s(n) we gain an expression for L(s) as a combination of

two convergent sums of length approximately q(t).

Let us now return to the moment problem and attempt to evaluate

(103)

∫ T

0

|L(1
2

+ it)|2kdt.
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The cleanest way to do this is to find an approximate functional equation for

|L(1/2 + it)|2k. Clearly, |L(s)|2k is an L-function satisfying

(104) |L(s)|2k|γL(s)|2k = |γL(1− s)|2k|L(1− s)|2k

and has the double Dirichlet series

(105)
∞∑

m1,m2=1

aL,k(m1)aL,k(m2)

ms
1m

s
2

for some coefficients aL,k(n). To simplify its approximate functional equation, we

set the parameter X equal to 1 and we take G(z) = ez
2

so that the R term divided

by the gamma factor is� (1 + |t|)−A with A large. Then, by Proposition 1.3.2 we

have

|L(1
2

+ it)|2k =
∞∑

m1,m2=1

aL,k(m1)aL,k(m2)

m
1/2+it
1 m

1/2−it
2

Vt (m1m2)

+ κk(1
2

+ it)
∞∑

n1,n2=1

aL,k(n1)aL,k(n2)

n
1/2+it
1 n

1/2−it
2

Vt (n1n2) +O((1 + |t|)−A)

(106)

where

(107) Vt(Y ) =
1

2πi

∫
(c)

(
γL(1

2
+ it+ z)γL(1

2
− it+ z)

γL(1
2

+ it)γL(1
2
− it)

)k
G(z)Y −z

dz

z
,

and

(108) κk(1
2

+ it) =

∣∣∣∣γL(1
2
− it)

γL(1
2

+ it)

∣∣∣∣2k.
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Note that by (25), κk(1/2 + it) = 1 and therefore the above expression simplifies

to 2
∑

+O(t−A). Integrating the simplified approximate functional equation gives

∫ T

0

|L(1
2

+ it)|2kdt =2

∫ T

0

∞∑
m1,m2=1

aL,k(m1)aL,k(m2)

m
1/2+it
1 m

1/2−it
2

Vt (m1m2) dt+O((1 + |t|)−A)

=2

∫ T

0

[ ∞∑
m=1

|aL,k(m)|2

m
Vt
(
m2
)

+
∞∑

m1,m2=1
m1 6=m2

aL,k(m1)aL,k(m2)

m
1/2+it
1 m

1/2−it
2

Vt (m1m2)

]
dt+O((1 + |t|)−A)

(109)

As is clear, we’ve split the sum over terms for which m1 = m2; the diagonals, and

those for which m1 6= m2; the off-diagonals. Thus far, we have managed to avoid

any large error terms and we have not needed to calculate any integrals involving

<(κL(1/2 + it)), such as those that appear in (86). The remaining difficulty lies in

calculating the off-diagonals. It is here that we run into a problem similar to that

which prevents us from using the Montgomery-Vaughan Mean Value Theorem.

For any L-function with more than 2 gamma factors it seems incredibly difficult

to evaluate the off-diagonals. We shall say more on this later, but for the meanwhile

let us assume these terms are no larger than the diagonals themselves. We can

therefore expect

(110)

∫ T

0

|L(1
2

+ it)|2kdt ∼ fL(k)

∫ T

0

∞∑
m=1

|aL,k(m)|2

m
Vt
(
m2
)
dt

for some coefficient fL(k).

Let us evaluate this integral for L(s) = ζ(s)k. In this case we have aL,k(m) =

dk(m). We first push the sum through the integral in Vt(m
2). This is legal since the

resultant series converges absolutely for <(z) > 0 (since dk(n)� nε). Therefore,

(111)
∞∑
m=1

dk(m)2

m
Vt
(
m2
)

=
1

2πi

∫
(c)

fk(t, z)G(z)

[ ∞∑
m=1

dk(m)2

m1+2z

]
dz

z
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where

(112) fk(t, z) =

(
γ(1

2
+ it+ z)γ(1

2
− it+ z)

γ(1
2

+ it)γ(1
2
− it)

)k
and γ(s) = π−s/2Γ(s/2). By formula (26) we have

(113) fk(t, z) =

(
t

2π

)kz (
1 +Oz

(
1

t

))
where the growth of z in the error term is at most polynomial. To gain an expansion

for the series we first note

(114)
∞∑
m=1

dk(m)2

m1+2z
=
∏
p

∞∑
j=0

dk(p
j)2

pj(1+2z)
=
∏
p

(
1 +

k2

p1+2z
+O

(
1

p2(1+2z)

))
.

We factor out the divergent part of this product and write it in terms of an L-

function we know i.e. we write

(115)
∞∑
m=1

dk(m)2

m1+2z
= ζ(1 + 2z)k

2

Ak(z)

where

(116) Ak(z) =
∏
p

(
1− 1

p1+2z

)k2 ∞∑
j=0

dk(p
j)2

pj(1+2z)
=
∏
p

(
1 +O

(
1

p2(1+2z)

))
.

Note this last product is absolutely convergent for <(z) > −1/4. We therefore

shift the contour in (111) to (−1/4 + ε) picking up a pole at z = 0. Writing

(117) ζ(s) =
1

s− 1
+ γ + · · · ,

(
t

2π

)kz
=

∞∑
m=0

1

m!

[
kz log

(
t

2π

)]m
we see that the residue of the integrand at z = 0 is given by

(118)
a(k)

k2!

(
k

2

)k2
logk

2

(
t

2π

)
where a(k) = Ak(0). By virtue of (113) and (115) when combined with the

bound ζ(1/2 + it) � t1/6+ε ([59], Theorem 5.5), the integral on the new line is

� t−k/4+1/6+ε � t−1/12+ε. Therefore, upon integrating we acquire

(119)
1

T

∫ T

0

|ζ(1
2

+ it)|2kdt ∼ a(k)g(k)

k2!
logk

2

T
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for some coefficient g(k). We refer to a(k) as the arithmetic factor and g(k) as the

geometric factor.

Determining g(k) is a difficult problem. By the second and fourth moments

we know that g(1) = 1 and g(2) = 2, and these remain the only rigorous results.

It is only recently that headway has been made in finding believable conjectures

for g(k) with k > 2. In the paper [12], Conrey and Ghosh conjecture, based on

their work in [13], that g(3)=42. Their methods involve considering the moments

of the zeta function times some Dirichlet polynomial, which is a sum of the form∑
n≤T θ a(n)n−s where θ < 1/2. Taking a(n) = 1, the Dirichlet polynomial then

approximates ζ(s) and accordingly, the moment then approximates the higher

moments of the zeta function. Later, Conrey and Gonek [15] described a method

that could also give a conjecture for the eighth. This was based on mean values of

long Dirichlet polynomials, and it seems these methods reach their limit with the

eighth moment.

An entirely different approach was recently given by Keating and Snaith [30].

This used random matrix theory which requires at least a brief explanation; more

thorough accounts can be found in the survey article [8] and the conference pro-

ceedings [35]. The idea that the zeros of the Riemann zeta function could be the

eigenvalues of some Hermitian operator was first attributed [36] to Hilbert-Polya.

The point here is that if we write a zero as 1/2 + iγ, then the fact that the γ are

the eigenvalues of some Hermitian operator implies they are real, and the Riemann

hypothesis follows. Little evidence suggested this was the case until Montgomery

calculated the pair-correlation of the zeros [36]. Freeman Dyson then noticed this

matched with the pair-correlation of the eigenvalues of a random hermitian matrix.

This was later corroborated with the numerical evidence of Odlyzko [45]. Keating

and Snaith then argued that if the zeros could be modeled by eigenvalues, then the

zeta function on the 1/2-line should be modeled by a characteristic polynomial. By
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calculating the moments of this polynomial they were then led to the conjecture

(120)
g(k)

k2!
=
G(k + 1)2

G(2k + 1)

where G is the Barnes G-function which satisfies G(1) = 1 and G(z + 1) =

Γ(z)G(z). Their formula actually allows for k to range continuously through values

> −1/2 if we replace k2! by Γ(k2 + 1) and dk(p
m) by Γ(k +m)/m!Γ(k).

The issue with the method of Keating and Snaith was that the arithmetic

factor had to be incorporated in an ad hoc way. Indeed, it seems unlikely that

eigenvalues would really ‘know’ anything about primes. In the paper [20], Gonek,

Hughes and Keating were able to reproduce the conjecture whilst incorporating

the primes in a more natural way. The method basically involves writing the zeta

function as a product over primes times a product over zeros. The moments of the

product over zeros are handled with the random matrix theory whilst the primes

can handle themselves. One of the main results of this thesis is to reproduce this

result for the Dedekind zeta function. In the process we raise some new questions

about moments of non-primitive L-functions in general. The simplest way to

describe our solution is, in fact, in terms of the characteristic polynomial method

of Keating and Snaith. The basic idea is that for two distinct L-functions, the

matrices associated to their zeros can be chosen independently. The expectation

of the characteristic polynomial associated to the product of these two L-functions

will then factorise due to this independence. Consequently, we see a factorisation

in the main term of the moments. So for example, given two distinct L-functions

L1, L2 we can expect

1

T

∫ T

0

|L1(1
2

+ it)|k1|L2(1
2

+ it)|k2dt ∼ a(k1, k2)

(
g(k1)

k2
1!

logk
2
1 T

)
·
(
g(k2)

k2
2!

logk
2
2 T

)
where g(k) is as above and a(k1, k2) is some mixed arithmetic factor containing

information from L1 and L2.

An alternative method to conjecturing moments was recently given by Conrey

et al. [10] in the form of a recipe. It is capable of conjecturing several different
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types of moments and in particular, when applied to the Riemann zeta function,

this recipe reproduces the conjecture of Keating and Snaith. The recipe is actually

concerned with shifted moments, which is to say, moments of the form

(121)

∫ T

0

L(1
2

+ α1 + it) · · ·L(1
2

+ αk + it)L(1
2

+ αk+1 − it) · · ·L(1
2

+ α2k − it)dt

where αi are (usually) small (usually) complex numbers. Of course, setting the

shifts to zero gives the 2kth moment of L. The main purpose of the shifts is to

give a structural viewpoint of the resultant asymptotic whilst having the added

advantage of giving formulas for moments of the derivatives (which are acquired

by differentiating the shifts). The other main result of this thesis gives the first

example of a shifted moment of a non-primitive L-function, namely, the product of

two zeta functions and two Dirichlet L-functions which is a more general form of a

quadratic Dedekind zeta function. We will then use this result to suggest how the

recipe should be modified to deal with non-primitive L-functions in general, and

we then apply this to corroborate our conjectures based on the method of Gonek,

Hughes and Keating.

Examples of moments of non-primitive L-functions do exist, although there are

not many and they certainly have not been studied systematically. In our final

chapter we attempt to apply both conjectural methods to general non-primitive

L-functions and hopefully offer some insight into this new area.
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1.4. Statement of Results

There are two main results to this thesis; the extension of the hybrid product

method of Gonek, Hughes and Keating to the Dedekind zeta function, and the

shifted second moment of the Dedekind zeta function times a Dirichlet polynomial.

The presence of the Dirichlet polynomial takes precedence over the shifts in our

nomenclature and we henceforth refer to this result as the twisted second moment.

In order to prove some of the conjectures given by the hybrid product method, we

require the twisted moment result as a (somewhat long) Lemma. However, this is

a result of interest in its own right, and we therefore devote the first half of this

thesis to its derivation.

In Chapter 2 we consider the integral

I(h, k) =

∫ ∞
−∞

(
h

k

)−it
ζ
(

1
2

+ α + it
)
L
(

1
2

+ β + it, χ
)

× ζ
(

1
2

+ γ − it
)
L
(

1
2

+ δ − it, χ
)
w(t)dt

(122)

where h, k are coprime integers, χ is some primitive Dirichlet character mod q

and w(t) is some smooth function with the intention of being the characteristic

function of the interval [T/2, 4T ]. Our methods will closely follow those of Hughes

and Young [23] who derived a formula for I(h, k) when q = 1. Similarly to their

result, our main term will be written in terms of products of shifted zeta and

L-functions, as well as finite products over the primes dividing h and k. Let

(123) fα,β(n, χ) =
∑

n1n2=n

n−α1 n−β2 χ(n2)

and let

(124) σα,β(n) =
∑

n1n2=n

n−α1 n−β2 .

Then, our main term will be given in terms of

(125) Zα,β,γ,δ,h,k(s) = Aα,β,γ,δ(s)Bα,β,γ,δ,h,k(s)
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where

Aα,β,γ,δ(s) =ζ(1 + α + γ + s)ζ(1 + β + δ + s)L(1 + β + γ + s, χ)

× L(1 + α + δ + s, χ)

ζ(2 + α + β + γ + δ + 2s)

∏
p|q

(
1− p−1−s−β−δ

1− p−2−2s−α−β−γ−δ

)
(126)

and

(127) Bα,β,γ,δ,h,k(s) = Bα,β,γ,δ,h(s, χ)Bγ,δ,α,β,k(s, χ)

with

(128) Bα,β,γ,δ,h(s, χ) =
∏
p|h

∑
j≥0 fα,β(pj, χ)fγ,δ(p

hp+j, χ)p−j(1+s)∑
j≥0 fα,β(pj, χ)fγ,δ(pj, χ)p−j(1+s)

.

Here, hp is the highest power of p dividing h. We must also define a slight variant

of the above. This is given by

(129) Z ′α,β,γ,δ,h,k(s, χ) = A′α,β,γ,δ(s, χ)B′α,β,γ,δ,h,k(s, χ)

where

(130) A′α,β,γ,δ(s, χ) = L(1 + α + γ + s, χ)L(1 + β + δ + s, χ)

× L(1 + α + δ + s, χ)L(1 + β + γ + s, χ)

L(2 + α + β + γ + δ + 2s, χ2)

and

(131) B′α,β,γ,δ,h,k(s, χ) = B′α,β,γ,δ,h(s, χ)B′γ,δ,α,β,k(s, χ)

with

(132) B′α,β,γ,δ,h(s, χ) =
∏
p|h

∑
j≥0 χ(pj)σα,β(pj)σγ,δ(p

hp+j)p−j(1+s)∑
j≥0 χ(pj)σα,β(pj)σγ,δ(pj)p−j(1+s)

.

Theorem 1. Let

I(h, k) =

∫ ∞
−∞

(
h

k

)−it
ζ

(
1

2
+ α + it

)
L

(
1

2
+ β + it, χ

)
× ζ

(
1

2
+ γ − it

)
L

(
1

2
+ δ − it, χ

)
w(t)dt

(133)
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where w(t) is a smooth, nonnegative function with support contained in [T/2, 4T ],

satisfying w(j)(t)�j T
−j
0 for all j = 0, 1, 2, . . . , where T 1/2+ε � T0 � T . Suppose

(h, k) = 1, hk ≤ T
2
11
−ε, and that α, β, γ, δ are complex numbers� (log T )−1. Then

I(h, k) =
1√
hk

∫ ∞
−∞

w(t)

(
Zα,β,γ,δ,h,k(0) +

1

qβ+δ
Z−γ,−δ,−α,−β,h,k(0)

(
t

2π

)−α−β−γ−δ
+ Z−γ,β,−α,δ,h,k(0)

(
t

2π

)−α−γ
+

1

qβ+δ
Zα,−δ,γ,−β,h,k(0)

(
t

2π

)−β−δ
+ 1q|h

χ(k)G(χ)

qδ
Z ′−δ,β,γ,−α,h

q
,k

(0, χ)

(
t

2π

)−α−δ
+ 1q|k

χ(h)G(χ)

qβ
Z ′
α,−γ,−β,δ,h, k

q

(0, χ)

(
t

2π

)−β−γ )
dt+ E(T )

(134)

where

(135) E(T )� T 3/4+ε(hk)7/8+ε
(
q3/2+ε|L(1, χ)|(T/T0)7/4 + q1+ε(T/T0)9/4

)
and G(χ) is the Gauss sum.

In Chapter 3 we extend the hybrid product method to the Dedekind zeta

function. The starting point is the hybrid product itself of course. This takes the

following form.

Theorem 2. Let X ≥ 2 and let l be any fixed positive integer. Let u(x) =

Xf(X log(x/e)+1)/x where f is a smooth, real, nonnegative function of total mass

one with support in [0, 1]. Thus, u(x) is a real, non-negative, smooth function with

mass 1 and compact support on [e1−1/X , e]. Set

U(z) =

∫ ∞
0

u(x)E1(z log x)dx,

where E1(z) =
∫∞
z
e−w/w dw. Then for σ ≥ 0 and |t| ≥ 2 we have

(136) ζK(s) = PK(s,X)ZK(s,X)

(
1 +O

(
X l+2

(|s| logX)l

)
+O(X−σ logX)

)
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where

(137) PK(s,X) = exp

( ∑
a⊆OK

N(a)≤X

Λ(a)

N(a)s logN(a)

)

with

(138) Λ(a) =

logN(p) if a = pm,

0 otherwise,

and

(139) ZK(s,X) = exp

(
−
∑
ρ

U((s− ρ) logX)

)
,

where the sum is over all non-trivial zeros of ζK(s).

We will use the hybrid product to conjecture asymptotics for the 2kth moment

of ζ(1
2

+ it). This will be facilitated by the following conjecture which follows from

a similar reasoning to that given in [20].

Conjecture 1 (Splitting Conjecture). Let X,T →∞ with X � (log T )2−ε. Then

for k > −1/2, we have

(140)
1

T

∫ 2T

T

|ζK(1
2

+ it)|2kdt

∼

(
1

T

∫ 2T

T

∣∣PK
(

1
2

+ it,X
)∣∣2k dt)( 1

T

∫ 2T

T

∣∣ZK
(

1
2

+ it,X
)∣∣2k dt).

We plan to evaluate the moments of PK by using the Montgomery-Vaughan

mean value theorem. Due to the nature of how primes split, or rather, how they

are not known to split in some cases, we restrict ourselves to Galois extensions. It

may be possible to remove this restriction given milder conditions on K.

Theorem 3. Let K be a Galois extension of degree n with Galois group G =

Gal(K/Q) and for a given prime p let gp denote the index of the decomposition
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group Gp in G. Let 1/2 ≤ c < 1, ε > 0, k > 0 and suppose that X and T → ∞

with X � (log T )1/(1−c+ε). Then

(141)
1

T

∫ 2T

T

∣∣PK
(

1
2

+ it, X
)∣∣2k dt ∼ a(k)ψnk

2

K (eγ logX)nk
2

where ψK denotes the residue of ζK(s) at s = 1 and

(142) a(k) =
∏
p⊆OK

((
1− 1

N(p)

)nk2 (∑
m≥0

dgpk(p
m)2

N(p)m

)1/gp )
with dk(p

m) = dk(p
m) = Γ(m+ k)/(m!Γ(k)).

In considering the moments of ZK for Galois extensions we first express ζK(s)

as a product of Artin L-functions. For each individual L-function we then follow

the heuristic argument given in section 4 of [20]. This essentially allows us to write

the moments of ZK as an expectation over the unitary group. We then assume a

certain quality of independence between the Artin L-functions, namely, that the

matrices associated to the zeros of L(s, χ,K/Q) at height T , act independently for

distinct χ. This allows for a factorisation of the expectation and we are led to

Conjecture 2. Let K be a Galois extension of degree n. Suppose that X,T →∞

with X � (log T )2−ε. Then for k > −1/2 we have

(143)
1

T

∫ 2T

T

∣∣ZK
(

1
2

+ it,X
)∣∣2k dt

∼ (eγ logX)−nk
2
∏
χ

G(χ(1)k + 1)2

G(2χ(1)k + 1)

(
log
(
q(χ)T dχ

))χ(1)2k2

where the product is over the irreducible characters of Gal(K/Q), G is the Barnes

G-function, q(χ) is the conductor of L(s, χ,K/Q) and dχ is its degree.

By combining this with Theorem 3 and Conjecture 1 we see that the factors

of eγ logX cancel, as expected, and we acquire a full conjecture for the moments

of ζK(1/2 + it) when K is Galois. Although the form of this conjecture should be

fairly clear, we state it in full for the purposes of completeness.
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Conjecture 3. Let a(k) be given by (142) and let ψK denote the residue of ζK(s)

at s = 1. Let K be a Galois extension of degree n and suppose that X,T → ∞

with X � (log T )2−ε. Then for k > −1/2 we have

(144)
1

T

∫ 2T

T

|ζK(1
2

+ it)|2kdt ∼ a(k)ψnk
2

K

∏
χ

G(χ(1)k + 1)2

G(2χ(1)k + 1)

(
log
(
q(χ)T dχ

))χ(1)2k2

where the product is over the irreducible characters of Gal(K/Q), G is the Barnes

G-function, q(χ) is the conductor of L(s, χ,K/Q) and dχ is its degree.

In section 3.4 of Chapter 3 we use Theorem 1 to prove Conjecture 2 for k = 1

in the case of quadratic extensions. That is, we prove

Theorem 4. Let K be a quadratic extension. Suppose that X,T →∞ with X �

(log T )2−ε. Then

(145)
1

T

∫ 2T

T

∣∣ZK
(

1
2

+ it,X
)∣∣2 dt ∼ log T · log qT

(eγ logX)2
.

where q is the modulus of the character χ in the equation ζK(s) = ζ(s)L(s, χ).

By combining this with Theorem 3 and then comparing with Motohashi’s result

(79), we see that Conjecture 1, the splitting conjecture, is true for k = 1 in the

case of quadratic extensions.

As previously mentioned, we can use our twisted moment theorem as a means

to extend the moments recipe of Conrey et al. [10] to non-primitive L-functions.

We then use our modified recipe to reproduce our main moments conjecture in the

case of quadratic extensions.

Conjecture 4. Let K be a quadratic extension and let a(k) be given by (142).

Then

(146)
1

T

∫ 2T

T

|ζK(1
2

+ it)|2kdt ∼ a(k)L(1, χ)2k2
(
G(k + 1)2

G(2k + 1)

)2

(log T · log qT )k
2

.
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In the final chapter we attempt to generalise the main ideas of this paper to

non-primitive L-functions. The functions under consideration are of the form

(147) L(s) =
∑

αL(n)n−s =
m∏
j=1

Lj(s)
ej

where ej ∈ N and the Lj(s) are distinct, primitive members of the Selberg class.

We require that the ‘convolution’ L-functions

(148) Mj(s) =
∞∑
n=1

|αLj(n)|2

ns

behave reasonably, in particular, that they have an analytic continuation. We then

claim

Conjecture 5. With the notation as above, let αL,k(n) be the Dirichlet coefficients

of L(s)k. Then for k > −1/2,

(149)
1

T

∫ T

0

∣∣L (1
2

+ it
)∣∣2k dt ∼ aL(k)

m∏
j=1

G2(ejk + 1)

G(2ejk + 1)

(
log
(
QjT

dj
))(ejk)2

where

(150) aL(k) =
∏
p

(
1− 1

p

)nLk2 ∞∑
n=0

|αL,k(pn)|2

pn

with nL =
∑m

j=1 e
2
j .

We remark that if L(s) = ζK(s) with K Galois and we have a factorisation in

terms of Dirichlet series, then the residue term χnk
2

K of (141) is a factor of aL(k).

For example, see the discussion following (556) in Chapter 4
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The Twisted Second Moment

Let M(s) be an arbitrary Dirichlet polynomial of length T θ. So,

(151) M(s) =
∑
n≤T θ

a(n)

ns

for some complex valued coefficients a(n). The aim of this chapter is to find an

asymptotic formula for the integral

(152)

∫ 2T

T

∣∣ζK (1
2

+ it
)∣∣2 ∣∣M (

1
2

+ it
)∣∣2 dt

when K is a quadratic number field. On expanding |M |2 and pushing the integral

through the sum this becomes

(153)
∑

h,k≤T θ

a(h)a(k)√
hk

∫ 2T

T

∣∣ζK (1
2

+ it
)∣∣2(h

k

)−it
dt.

When evaluating this inner integral we assume h/k is in its reduced form i.e. that

h and k are coprime. The formula we acquire can then be applied to the above by

writing h/k = (h/(h, k))/(k/(h, k)).

In a bid for greater applicability, we generalise the integral in several ways.

First, we replace ζK(s) with ζ(s)L(s, χ) where χ is an arbitrary Dirichlet character

mod q. This makes little difference to the ensuing arguments. Second, we include

small shifts in the argument’s of ζ(s) and L(s, χ). There are several benefits to

the shifts; one is that they allow for formulas involving the derivatives of ζK(s),

another is that they make residue calculations easier since we only have to deal

with functions with simple poles. Finally, we approximate the range of integration

by incorporating some smooth function in the integrand. The generalised integral

51
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is then given by

I(h, k) =

∫ ∞
−∞

w(t)ζ
(

1
2

+ α + it
)
L
(

1
2

+ β + it, χ
)

× ζ
(

1
2

+ γ − it
)
L
(

1
2

+ δ − it, χ
)(h

k

)−it
dt

(154)

where α, β, γ, δ are small complex numbers and w(t) is some smooth function

having the intention of being the characteristic function of the interval [T/2, 4T ].

The formula for I(h, k) given in Theorem 1 states that

I(h, k) =
1√
hk

∫ ∞
−∞

w(t)

(
Zα,β,γ,δ,h,k(0) +

1

qβ+δ
Z−γ,−δ,−α,−β,h,k(0)

(
t

2π

)−α−β−γ−δ
+ Z−γ,β,−α,δ,h,k(0)

(
t

2π

)−α−γ
+

1

qβ+δ
Zα,−δ,γ,−β,h,k(0)

(
t

2π

)−β−δ
+ · · ·

)
dt+ E(T )

where the dots represent the two extra Z ′ terms and where

E(T )� T 3/4+ε(hk)7/8+εq1+ε(T/T0)9/4.

As we shall see shortly, the main terms in our formula for I(h, k) are of size

≈ (hk)−1/2T log2 T . Therefore, on taking T0 � T 1−ε we see that the error term

has a power saving provided hk � T 2/7−ε. However, when applying our formula

for I(h, k) in (153), one must take into account the size of the coefficients when

determining the length of the polynomial, if one is to obtain a power saving in

the error. In particular, for coefficients a(n)� nε, we must take the length of the

polynomial θ to be ≤ 1/11− ε i.e. hk � T 2/11−ε (see formula (498) for example).

For q > 1, the two Z ′ terms are entire since they are comprised solely of

Dirichlet L-functions times finite products over primes dividing hk. The main

terms are given by

Zα,β,γ,δ,h,k(0) = Aα,β,γ,δ(0)Bα,β,γ,δ,h,k(0)
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where

Aα,β,γ,δ(0) =

ζ(1 + α + γ)ζ(1 + β + δ)L(1 + β + γ, χ)L(1 + α + δ, χ)

ζ(2 + α + β + γ + δ)

×
∏
p|q

(
1− p−1−β−δ

1− p−2−α−β−γ−δ

)

and Bα,β,γ,δ,h,k(0) is some product over the primes dividing hk.

In order to make sense of the formula, let us sketch the evaluation of I(1, 1).

As can be seen from the formula for Aα,β,γ,δ(0), the only cause of non-holomorphy

is due to the zeta functions. In particular, the integrand is undefined as α+γ → 0

and β+δ → 0. We first simplify by letting γ = δ = 0. Writing ζ(1+s) = 1/s+ · · ·

and

(155)
L(1 + β, χ)L(1 + α, χ)

ζ(2 + α + β)

∏
p|q

(
1− p−1−β

1− p−2−α−β

)
= c00 + αc10 + βc01 + · · ·

with

(156) c00 =
|L(1, χ)|2

ζ(2)

∏
p|q

(
1 +

1

p

)−1

,

we see that Zα,β,0,0,1,1(0) = c00
αβ

+ · · · . Performing a similar procedure on the

remaining Z terms we see that the integrand is given by

c00

αβ

[
1 +

(
t

2π

)−α(
qt

2π

)−β
−
(
t

2π

)−α
−
(
qt

2π

)−β
+ · · ·

]
= c00 log

(
t

2π

)
log

(
qt

2π

)
+ · · ·

where the remaining terms are of a lower order (in t) and holomorphic in αβ. On

taking w(t) as a smooth approximation to the characteristic function of interval

[T, 2T ] with T0 = T 1−ε we recover Motohashi’s formula (79). Being more diligent
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with the lower order terms we can show that

(157)
1

T

∫ 2T

T

|ζ(1
2

+ it)L(1
2

+ it, χ)|2dt =
1

T

∫ 2T

T

P
(
log
(
t

2π

)
, log

(
qt
2π

))
dt+E ′(T )

where P (x, y) is some quadratic polynomial with leading coefficient c00xy, and

E ′(T ) � T−1/4+ε. Note that the main term has the same order of magnitude as

the product

1

T

∫ 2T

T

|ζ(1
2

+ it)|2dt× 1

T

∫ 2T

T

|L(1
2

+ it, χ)|2dt.

We expect this sort of factorisation to hold for an arbitrary product of L-functions,

the above example provides a building block for this philosophy which we detail

in the final chapter.

The proof of Theorem 1 follows the same line of reasoning to that taken in

section 1.3 of Chapter 1. We first find an approximate functional equation for

(158) ζ
(

1
2

+ α + it
)
L
(

1
2

+ β + it, χ
)
ζ
(

1
2

+ γ − it
)
L
(

1
2

+ δ − it, χ
)
.

As usual, this takes the form ∑
(1) + κ

∑
(2).

where κ is the factor appearing in the asymmetric functional equation of (158).

Due to the presence of the shifts κ 6= 1 as it would do otherwise (cf. (108)).

However, the two sums are sufficiently similar that we only need treat one of

them. We split each sum into its diagonal and off-diagonal components. The

diagonals are evaluated similarly to before by shifting contours and computing

residues. The diagonals are then seen to contribute the first two terms:

(159) Zα,β,γ,δ,h,k(0) +
1

qβ+δ
Z−γ,−δ,−α,−β,h,k(0)

(
t

2π

)−α−β−γ−δ
.

They also contribute four extra terms which are dependent on the shifts. These

need to be shown to cancel with terms arising from the off-diagonal contribution.

To evaluate the off-diagonals we apply the ‘delta-method’ of Duke, Friedlander

and Iwaniec [16]. This first requires a little preparation however most of the work
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lies in finding, and then applying, a Voronoi-type sum formula. Specifically, we

need a formula for the sum

(160)
∞∑
n=1

fα,β(n, χ)ed(chn)g(n)

where fα,β(n, χ) is given by (123), c and d are coprime integers and g is some

smooth function of rapid decay. After an application of the delta-method we see

that the total contribution of the off-diagonal terms is given by a sum of eight main

terms plus the error term E(T ). Each of these main terms then combines with

another to give either a Z or Z ′ term minus one of four the extra terms acquired

from the diagonals.

2.1. Setup

2.1.1. The Approximate Functional Equation. We first restate the nec-

essary functional equations:

Λ(s) :=π−s/2Γ
(s

2

)
ζ(s) = Λ(1− s),(161)

ξ(s, χ) :=

(
π

q

)− s+a
2

Γ

(
s+ a

2

)
L(s, χ) =

G(χ)

ia
√
q
ξ(1− s, χ).(162)

If we define

Ξα,β,γ,δ,t(s, χ) =Λ

(
1

2
+ α + s+ it

)
ξ

(
1

2
+ β + s+ it, χ

)
× Λ

(
1

2
+ γ + s− it

)
ξ

(
1

2
+ δ + s− it, χ

)(163)

then by the above two functional equations and the fact that G(χ)G(χ) = (−1)aq

we see

(164) Ξα,β,γ,δ,t(−s, χ) = Ξ−γ,−δ,−α,−β,t(s, χ).

After expanding equation (163) we group together the zeta and L-functions and

group together the gamma factors and write

(165) Ξα,β,γ,δ,t(s, χ) = ζα,β,γ,δ,t(s, χ)Γα,β,γ,δ,t(s)
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where

ζα,β,γ,δ,t(s, χ) =ζ

(
1

2
+ α + s+ it

)
L

(
1

2
+ β + s+ it, χ

)
× ζ

(
1

2
+ γ + s− it

)
L

(
1

2
+ δ + s− it, χ

)(166)

and

Γα,β,γ,δ,t(s) =π−1−2s−α+β+γ+δ
2

−aq
1
2

+s+β+δ
2

+a

× Γ

( 1
2

+ α + s+ it

2

)
Γ

( 1
2

+ β + s+ it+ a

2

)
× Γ

( 1
2

+ γ + s− it
2

)
Γ

( 1
2

+ δ + s− it+ a

2

)
.

(167)

We require an approximate functional equation for ζα,β,γ,δ,t(0, χ). By (164), this

satisfies the functional equation

ζα,β,γ,δ,t(0, χ) = κα,β,γ,δ,tζ−γ,−δ,−α,−β,t(0, χ)

with

κα,β,γ,δ,t =
Γ−γ,−δ,−α,−β,t(0)

Γα,β,γ,δ,t(0)

= πα+β+γ+δq−(β+δ)
Γ
(

1
2
−α−it

2

)
Γ
(

1
2

+α+it

2

) Γ
(

1
2
−β−it+a

2

)
Γ
(

1
2

+β+it+a

2

) Γ
(

1
2
−γ+it

2

)
Γ
(

1
2

+γ−it
2

) Γ
(

1
2
−δ+it+a

2

)
Γ
(

1
2

+δ−it+a

2

) .

(168)

The equivalent of Proposition 1.3.2 is given by the following.

Proposition 2.1.1. Let G(s) be an even, entire function of rapid decay as |s| → ∞

in any fixed vertical strip |<(s)| ≤ C satisfying G(0) = 1, and let

(169) Vα,β,γ,δ,t(x) =
1

2πi

∫
(1)

G(s)

s
gα,β,γ,δ(s, t)x

−sds
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where

gα,β,γ,δ(s, t) =

(
π2

q

)s
Γα,β,γ,δ,t(s)

Γα,β,γ,δ,t(0)

=
Γ
(

1
2

+α+s+it

2

)
Γ
(

1
2

+α+it

2

) Γ
(

1
2

+β+s+it+a

2

)
Γ
(

1
2

+β+it+a

2

) Γ
(

1
2

+γ+s−it
2

)
Γ
(

1
2

+γ−it
2

) Γ
(

1
2

+δ+s−it+a

2

)
Γ
(

1
2

+δ−it+a

2

) .

(170)

Then if all α, β, γ, δ have real part less than 1/2, we have

ζα,β,γ,δ,t(0) =
∑
m,n

fα,β(n, χ)fγ,δ(m,χ)

(mn)1/2

(m
n

)−it
Vα,β,γ,δ,t

(
π2mn

q

)

+ κα,β,γ,δ,t
∑
m,n

f−γ,−δ(n, χ)f−α,−β(m,χ)

(mn)1/2

(m
n

)−it
× V−γ,−δ,−α,−β,t

(
π2mn

q

)
+O

(
(1 + |t|)−A

)
.

(171)

Proof. We start in the familiar way by considering

I1 =
1

2πi

∫
(1)

Ξα,β,γ,δ,t(s)
G(s)

s
ds.

Moving the line of integration to (−1) we obtain a new integral

I2 =
1

2πi

∫
(−1)

Ξα,β,γ,δ,t(s, χ)
G(s)

s
ds

=
1

2πi

∫
(1)

Ξ−γ,−δ,−α,−β,t(s, χ)
G(s)

s
ds

where we have made the change of variables s 7→ −s and used the functional

equation (164). Due to the rapid decay of G(s) in the imaginary direction we see

that the only residue of the integrand that matters is the one at s = 0. The other

residues are those occurring at the poles of the zeta functions; these give rise to

the equivalent of the R term of Proposition 1.3.2. Therefore, we may write

I1 + I2 = Ξα,β,γ,δ,t(0) +O((1 + |t|)−A)
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and hence

ζα,β,γ,δ,t(0, χ) =
1

2πi

∫
(1)

ζα,β,γ,δ,t(s, χ)
Γα,β,γ,δ,t(s)

Γα,β,γ,δ,t(0)

G(s)

s
ds

+
1

2πi

∫
(1)

ζ−γ,−δ,−α,−β,t(s, χ)
Γ−γ,−δ,−α,−β,t(s)

Γα,β,γ,δ,t(0)

G(s)

s
ds

+O((1 + |t|)−A)

=
1

2πi

∫
(1)

ζα,β,γ,δ,t(s, χ)gα,β,γ,δ(s, t)

(
π2

q

)−s
G(s)

s
ds

+
κα,..
2πi

∫
(1)

ζ−γ,−δ,−α,−β,t(s, χ)g−γ,−δ,−α,−β,t(s, t)

(
π2

q

)−s
G(s)

s
ds

+O((1 + |t|)−A).

Now, on expanding the Dirichlet series we have

ζα,β,γ,δ,t(s, χ) =
∑
m,n

fα,β(n, χ)fγ,δ(m,χ)

n1/2+s+itm1/2+s−it

and so by reversing the order of integration and summation the result follows. �

We note that by (25) and (26) we have

(172) κα,β,γ,δ,t = q−β−δ
(
t

2π

)−α−β−γ−δ (
1 +O(t−1)

)
and

(173) gα,β,γ,δ(s, t) =

(
t

2

)2s (
1 +Os(t

−1)
)

as t → ∞. The dependence on s in the error term of gα,β,γ,δ(s, t) is of poly-

nomial growth, at most, and hence will be negated by the rapid decay of G(s)

in any applications we make. Note that g(s, t) is the equivalent of the function

γL(1/2 + it + s)/γL(1/2 + it) in the notation of our introductory section on mo-

ments. By applying the same argument used there we see that the sums in the

above approximate functional equation can be restricted to mn� t2+ε. This fact

will be used later.
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It will frequently occur that a function Fα,β,γ,δ, say, arising from the first term

of the approximate functional equation has an equivalent F−γ,−δ,−α,−β arising from

the second. As such, we shall often abbreviate functions of the form Fα,β,γ,δ to Fα

and F−γ,−δ,−α,−β to F−γ .

2.1.2. A Formula for the Twisted Second Moment. Applying the ap-

proximate functional equation to I(h, k) gives

I(h, k)

=
∑
m,n

fα,β(n, χ)fγ,δ(m,χ)

(mn)1/2

∫ ∞
−∞

(
hm

kn

)−it
Vα,t

(
π2mn

q

)
w(t)dt

+
∑
m,n

f−γ,−δ(n, χ)f−α,−β(m,χ)

(mn)1/2

∫ ∞
−∞

(
hm

kn

)−it
κα,tV−γ,t

(
π2mn

q

)
w(t)dt

=I(1)(h, k) + I(2)(h, k).

(174)

By expanding the inner integral and interchanging the orders of integration we

have

I(1)(h, k) =
∑
m,n

fα,β(n, χ)fγ,δ(m,χ)

(mn)1/2

1

2πi

∫
(1)

G(s)

s

(
π2mn

q

)−s

×
∫ ∞
−∞

(
hm

kn

)−it
gα(s, t)w(t)dtds

(175)

and similarly

I(2)(h, k) =
∑
m,n

f−γ,−δ(n, χ)f−α,−β(m,χ)

(mn)1/2

1

2πi

∫
(1)

G(s)

s

(
π2mn

q

)−s

×
∫ ∞
−∞

(
hm

kn

)−it
κα,tg−γ(s, t)w(t)dtds.

(176)

We will now split the sum over m, n into those parts for which hm = kn,

the diagonal terms, and those for which hm 6= kn, the off-diagonals. In what

follows we only work with I(1)(h, k) since any result we acquire can be made to

apply to I(2)(h, k) by performing the substitutions α ↔ −γ, β ↔ −δ and by



60 2. THE TWISTED SECOND MOMENT

inserting κα,t into the integrals over t. This often amounts to multiplying by

q−β−δ(t/2π)−α−β−γ−δ in light of (172) .

2.2. Diagonal Terms

Let I
(1)
D (h, k) denote the sum of terms in I(1)(h, k) for which hm = kn. Writing

n = hl and m = kl with l ≥ 1 we see

I
(1)
D (h, k) =

1√
hk

∫ ∞
−∞

w(t)
1

2πi

∫
(1)

G(s)

s

(
π2hk

q

)−s
× gα(s, t)

∞∑
l=1

fα,β(kl, χ)fγ,δ(hl, χ)

l1+2s
dsdt.

(177)

Here we have pushed the sum through the integrals but since the shift parameters

are small we have absolute convergence and hence this is legal.

Proposition 2.2.1. Let Zα,h,k(s) be given by (125). Then

I
(1)
D (h, k) =

1√
hk

∫ ∞
−∞

Zα,h,k(0)w(t)dt+ J (1)
α,γ + J

(1)
β,δ +O

(
qεT

1
2

+ε

(qhk)1/4

)
(178)

and

I
(2)
D (h, k) =

1

qβ+δ

1√
hk

∫ ∞
−∞

Z−γ,h,k(0)

(
t

2π

)−α−β−γ−δ
w(t)dt

+ J (2)
α,γ + J

(2)
β,δ +O

(
qεT

1
2

+ε

(qhk)1/4

)(179)

where

(180) J
(1)
a,b = q−

a+b
2

Res2s=−a−b(Zα,h,k(2s))

(hk)
1
2
−a+b

2

G(−(a+ b)/2)

−(a+ b)/2

∫ ∞
−∞

(
t

2π

)−a−b
w(t)dt

and

J
(2)
a,b =

1

qβ+δ
q
a+b
2

Res2s=a+b(Z−γ,h,k(2s))

(hk)
1
2

+a+b
2

G((a+ b)/2)

(a+ b)/2

×
∫ ∞
−∞

(
t

2π

)−α−β−γ−δ+a+b

w(t)dt.

(181)
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Proof. By the theory of Euler products (see for example [59], section 1.4) we

have
∞∑
l=1

fα,β(kl, χ)fγ,δ(hl, χ)

l1+s
=
∏
p

∑
j≥0

fα,β(pkp+j, χ)fγ,δ(p
hp+j, χ)

pj(1+s)

=

( ∏
(p,hk)=1

∑
j≥0

fα,β(pj, χ)fγ,δ(p
j, χ)

pj(1+s)

)(∏
p|h

∑
j≥0

fα,β(pj, χ)fγ,δ(p
hp+j, χ)

pj(1+s)

)

×
(∏

p|k

∑
j≥0

fα,β(pkp+j, χ)fγ,δ(p
j, χ)

pj(1+s)

)

=

(
∞∑
n=1

fα,β(n, χ)fγ,δ(n, χ)

n1+s

)
Bα,h,k(s).

(182)

By using a method similar to that used on 1.3.3 of [59] or of that given in section

1.6 of [5] we see the Dirichlet series in parentheses has Euler product

∏
p

(
1− 1

p1+s+α+γ

)−1
(

1− χ(p)

p1+s+α+δ

)−1(
1− χ(p)

p1+s+β+γ

)−1

×
(

1− |χ(p)|2

p1+s+β+δ

)−1(
1− |χ(p)|2

p2+2s+α+β+γ+δ

)(183)

which equals Aα(s). Hence

(184) I
(1)
D (h, k) =

1√
hk

∫ ∞
−∞

w(t)
1

2πi

∫
(ε)

G(s)

s

(
π2hk

q

)−s
gα(s, t)Zα,h,k(2s)dsdt.

On applying the approximation (173) we have

(185)

I
(1)
D (h, k) =

1√
hk

∫ ∞
−∞

w(t)
1

2πi

∫
(ε)

G(s)

s

(
qt2

4π2hk

)s
Zα,h,k(2s)dsdt+O

(
(qT )ε√
hk

)
where we have used the estimate

(186)

∫ ∞
−∞

t−1+εw(t)dt�
∫ 4T

T/2

t−1+ε|w(t)|dt� T ε.

Since G(s) is of rapid decay and Z is only of moderate growth we may shift

the line of integration to <(s) = −1/4 + ε (with the shift parameters small) and
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encounter poles at s = 0, 2s = −α − γ and 2s = −β − δ. Similarly to before we

may estimate the integral on this new line as

(187) � q−1/4+ε(hk)−1/4−εT ε
∫ 4T

T/2

t−1/2+ε|w(t)|dt� qε(qhk)−1/4T 1/2+ε.

The pole at s = 0 gives

1√
hk

∫ ∞
−∞

Zα,h,k(0)w(t)dt

whilst the two poles at 2s = −α − γ and 2s = −β − δ give rise to J
(1)
α,γ and J

(1)
β,δ

respectively. A similar argument follows for I
(2)
D . �

We let I
(1)
O (h, k) (resp. I

(2)
O (h, k)) denote the sum of terms in I(1)(h, k) (resp.

I(2)(h, k)) for which hm 6= kn. The goal of the remainder of this chapter is to

prove the following.

Proposition 2.2.2. We have

I
(1)
O (h, k) + I

(2)
O (h, k) =

1√
hk

∫ ∞
−∞

w(t)

(
Z−γ,β,−α,δ,h,k(0)

(
t

2π

)−α−γ
+ Zα,−δ,γ,−β,h,k(0)

(
qt

2π

)−β−δ
+ 1q|h

χ(k)G(χ)

qδ
Z ′−δ,β,γ,−α,h

q
,k

(0, χ)

(
t

2π

)−α−δ
+ 1q|k

χ(h)G(χ)

qβ

× Z ′
α,−γ,−β,δ,h, k

q

(0, χ)

(
t

2π

)−β−γ )
dt− J (1)

α,γ − J
(1)
β,δ − J

(2)
α,γ − J

(2)
β,δ + E(T ).

(188)

where E(T ) is the error term of Theorem 1.

By combining this with Proposition 2.2.1 the J terms cancel and we get The-

orem 1. To prove Proposition 2.2.2 we first prepare I
(1)
O (h, k) for an application of

the methods in [16]. The results of this application are then given in section 2.4

where we see that I
(1)
O (h, k) can be expressed as a sum of four main terms. These

terms are then manipulated in sections 2.6 and 2.7 and we find that by combining

them with their counterparts in I
(2)
O (h, k) we get a cancellation. The remaining
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terms are, in fact, undercover versions of the terms in Proposition 2.2.2 and the

rest of the chapter is devoted to unveiling them.

2.3. The Off-Diagonals: A Dyadic Partition of Unity

As mentioned previously, we may restrict the sums over m, n in (175) and

(176) so that mn ≤ T 2+ε whilst incorporating a negligible error term. Now, let

(189) F ∗(x, y) =
1

2πi

∫
(ε)

G(s)

s

(
π2xy

hkq

)−s
1

T

∫ ∞
−∞

(
x

y

)−it
gα(s, t)w(t)dtds

and let

(190) I
(1)
O (h, k) = T

∑
m,n

hm 6=kn

fα,β(n, χ)fγ,δ(m,χ)

(mn)1/2
F ∗(hm, kn)

so that

I(1)(h, k) = I
(1)
D (h, k) + I

(1)
O (h, k).

We wish to apply the results of [16] to I
(1)
O (h, k). To do this we follow [23] and

first apply a dyadic partition of unity for the sums over m and n.

Let W0(x) be a smooth, nonnegative function with support in [1, 2] such that∑
M

W0(x/M) = 1,

where M runs over a sequence of real numbers with #{M : M ≤ X} � logX.

Let

(191)

IM,N(h, k) =
T√
MN

∑
m,n

hm6=kn

fα,β(n, χ)fγ,δ(m,χ)W
(m
M

)
W
( n
N

)
F ∗(hm, kn)

where

W (x) = x−1/2W0(x).

Then

(192)
∑
M,N

IM,N(h, k) = I
(1)
O (h, k)
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and note that by the first remark of this section we may take MN ≤ T 2+ε.

We can show that the main contribution to IM,N(h, k) comes from the terms

which are close to the diagonal. To demonstrate this we can use integration by

parts on the innermost integral of F ∗(x, y) and thereby take advantage of the

oscillatory factor (x/y)−it. This gives

1

T

∫ ∞
−∞

(x/y)−itg(s, t)w(t)dt � 1

T | log(x/y)|j

∫ ∞
−∞

∣∣g(0,j)(s, t)w(j)(t)
∣∣ dt(193)

� Pj(|s|)T 2<(s)

T j0 | log(x/y)|j
.

for any j = 0, 1, 2, . . . where Pj is some polynomial. If | log(x/y)| ≥ T−1+ε
0 then the

above bound can be made arbitrarily small by taking j large. Hence, on writing

hm− kn = r, we get

IM,N(h, k) =
T√
MN

∑
r 6=0

∑
hm−kn=r

| log(hm/kn)|�T−1+ε
0

fα,β(n, χ)fγ,δ(m,χ)

×W
(m
M

)
W
( n
N

)
F ∗(hm, kn) +O(T−A).

(194)

Now, r/kn � | log(1+r/kn)| � T−1+ε
0 and therefore r � knT−1+ε

0 �
√
hkMNT−1

0 T ε

since n � N and hM � kN . Summarising;

Proposition 2.3.1. We have

IM,N(h, k) =
T√
MN

∑
0<|r|�

√
hkMN
T0

T ε

∑
hm−kn=r

fα,β(n, χ)fγ,δ(m,χ)F (hm, kn)

+O(T−A)

(195)

where

F (x, y) =W
( x

hM

)
W
( y

kN

) 1

2πi

∫
(ε)

G(s)

s

(
π2xy

hkq

)−s
× 1

T

∫ ∞
−∞

(
1 +

r

y

)−it
g(s, t)w(t)dtds.

(196)
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2.4. The Delta Method

One can show after a short computation that

(197) xiyjF (i,j)(x, y)�
(

1 +
x

X

)−1 (
1 +

y

Y

)−1

P i+j, i, j ≥ 0

where X = hM , Y = kN and P = (hkq)εT 1+ε/T0. It should also be noted that F

has compact support in the box [X, 2X] × [Y, 2Y ] due to the support conditions

on W . Now, let

(198) DF (h, k, r) =
∑
m,n

hm−kn=r

fα,β(m,χ)fγ,δ(n, χ)F (hm, kn).

The above observations on F make this sum well suited to an application of the

main result of [16]. Following their method we will show that

DF (h, k, r) =
2∑

i,j=1

1

h1−aik1−bj
Sij(h, k, r)

∫ ∞
max(0,r)

x−ai(x− r)−bjF (x, x− r)dx

+ ( Error term)

where the ai, bj are particular shifts and Sij(h, k, q, r) are certain infinite sums.

Before applying the δ-method we first attach to F (x, y) a redundant factor

φ(x − y − r) where φ(u) is a smooth function supported on (−U,U) such that

φ(0) = 1 and φ(i) � U−i. U will be chosen optimally later. Denote the new

function by Fφ(x, y) = F (x, y)φ(x − y − r) and note DF (h, k, r) = DFφ(h, k, r).

The derivatives of the new function satisfy

(199) F
(i,j)
φ �

(
1

U
+
P

X

)i(
1

U
+
P

Y

)j
� U−i−j

provided that U ≤ P−1 min(X, Y ) which we henceforth assume.
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2.4.1. Setting up the δ-method. Throughout this section we closely follow

[16]. Let ω be a smooth, even function of compact support in [Ω, 2Ω] such that

(200)
∑
d≥1

ω(d) = 1, ω(i) � Ω−i−1, i ≥ 0.

Then the δ symbol, which is equal to 1 for n = 0 and 0 for n ∈ Z\{0}, can be

given in terms of Ramanujan sums

(201) δ(n) =
∞∑
d=1

∆d(n)
d∑
c=1

(c,d)=1

ed(cn)

where

(202) ∆d(u) =
∞∑
m=1

(dm)−1
(
ω(dm)− ω

( u

dm

))
.

The following Lemma is taken from [16]. It shows that ∆d(u) gives a good ap-

proximation to the Dirac distribution.

Lemma 2.4.1. Let f ∈ C∞0 (R) and let j ≥ 1. Then

(203)

∫ ∞
−∞

f(x)∆d(x)dx = f(0) +O

(
Ω−1dj

∫ ∞
−∞

(Ω−j|f(x)|+ Ωj|f (j)(x)|)dx
)
.

Note the derivatives of ∆d(u) satisfy

(204) ∆
(i)
d (u)� (dΩ)−i−1, i > 0.

We also have

(205) ∆d(u)� 1

|u|+ dΩ
+

1

dΩ + Ω2
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(see Lemma 2 of [16]). Now, choosing Ω = U1/2 we see that ∆d(u) vanishes if

|u| ≤ U and d ≥ 2Ω. Therefore, using (201),

DF (h, k, r) =
∑
m,n

fα,β(m,χ)fγ,δ(n, χ)Fφ(hm, kn)δ(hm− kn− r)

=
∑
d<2Ω

d∑
c=1

(c,d)=1

ed(−cr)
∑
m,n

fα,β(m,χ)fγ,δ(n, χ)ed(chm)ed(−ckn)F ](m,n)

(206)

where F ](x, y) = Fφ(hx, ky)∆d(hx− ky− r). We now evaluate the innermost sum

using standard techniques.

2.4.2. A Voronoi Summation Formula. We require a formula for the sum

∞∑
n=1

fα,β(n, χ)ed(cn)g(n)

where (c, d) = 1 and g is a smooth function of rapid decay. For this we apply

Mellin transforms to the Dirichlet series

(207) Eα,β(s, c/d, χ) =
∞∑
n=1

fα,β(n, χ)ed(cn)

ns
.

The analytic behaviour of Eα,β(s, c/d, χ) is described in [18], [41] albeit without

the shifts. Following the methods in these papers one can show that Eα,β(s, c/d, χ)

admits a meromorphic continuation with at most one pole. It also possesses a

functional equation, although not of the usual type. Incorporating the shifts into

the arguments of these papers requires little extra effort, in fact, the proofs read

almost verbatim. We therefore choose to omit our proofs. The following is adapted

from Lemma 1 of [41].

Lemma 2.4.2. Let (c, d) = 1. If 1 < % := (d, q) < q then Eα,β(s, c/d, χ) is

entire. If % = 1, then Eα,β(s, c/d, χ) is meromorphic with a single simple pole at

s = 1−α. If % = q, then it is meromorphic with a single simple pole at s = 1− β.
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The residues are given by

(208) Res
s=z

Eα,β(s, c/d, χ) =


χ(d)L(1−α+β,χ)

d1−α+β
, if % = 1, z = 1− α

χ(c)G(χ)L(1+α−β,χ)
qβ−αd1+α−β

, if % = q, z = 1− β
.

For the functional equation of Eα,β(s, c/d, χ) we follow the methods of Furuya

given in [18]. The functional equation is written in terms of the Dirichlet series

(209) Ẽα,β(s, c/d, χ) =
∞∑
n=1

σα,β(n, c/d, χ)

ns

where

(210) σα,β(n, c/d, χ) =
∑
uv=n

u−αv−β
d1∑
b=1

b≡cu(mod d)

χ(b)ed1(bv)

and d1 = dq/%, the least common multiple of d and q. Following the proof of

Lemma 3 of [18] we get

Lemma 2.4.3. Let

(211) H(s) = Hα,β(s, d, q) =
(2π)2s−2+α+β

d2s−1+α+β

(
%

q

)s+β
Γ(1− s− α)Γ(1− s− β)

and let

(212) θ(s) = θα,β,χ(s) = eπi(s+
α+β
2 ) + χ(−1)e−πi(s+

α+β
2 ).

Then

(213) Eα,β(s, c/d, χ) = H(s)

(
θ(−β)Ẽ−α,−β(1− s, c/d, χ)

− θ(s)Ẽ−α,−β(1− s,−c/d, χ)

)
where c is the unique solution to the equation cc ≡ 1 mod d.



2.4. THE DELTA METHOD 69

A trivial estimate gives that σα,β(n, c/d, χ)� qf<α,<β(n, |χ|)/% and so Ẽα,β(s, c/d, χ)

converges absolutely for <s > 1 −min(<α,<β). Also, By Stirling’s formula (23)

we see

(214) θ(s)H(s)� |t|1−2σ−<(α)−<(β).

The functional equation therefore implies that Eα,β(s, c/d, χ) is polynomially bounded

for σ < 0. By the Phragmén-Lindelöf principle we see that it is polynomially

bounded everywhere on C for which |t| ≥ 1.

We now have enough to prove the Voronoi summation formula via Mellin trans-

forms; an alternative method can be found in [29].

Proposition 2.4.4. Let g(x) be a smooth, compactly supported function on R+

and let (c, d) = 1. Also, let z be equal to either 1−α or 1−β depending on whether

% = 1 or % = q respectively and let z be arbitrary in any other case. Then∑
n≥1

fα,β(n, χ)ed(cn)g(n) =
(

Res
s=z

Eα,β(s, c/d, χ)
)∫ ∞

0

xz−1g(x)dx

+
∑
+−

∑
n≥1

σ−α,−β

(
n,± c

d
, χ

)
g±(n)

(215)

where

(216) g+(y) =
2θ(−β)

d

(
%

q

)1−α−β
2
∫ ∞

0

g(x)Kβ−α

(
4π
√
%xy/q

d

)
(xy)−

α+β
2 dx

and

(217) g−(y) = −2π

d

(
%

q

)1−α−β
2
∫ ∞

0

g(x)Bα−β

(
4π
√
%xy/q

d

)
(xy)−

α+β
2 dx.

Here, Kν(z) is the usual Bessel function and Bν(z) is defined as

(218) Bν(z) =

cos(π
2
ν)Yν(z) + sin(π

2
ν)Jν(z), if χ is even

i cos(π
2
ν)Jν(z)− i sin(π

2
ν)Yν(z), if χ is odd

where Yν(z), Jν(z) are again the usual Bessel functions.
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Proof. For simplicity we assume the g is in Schwartz space and that g(0) = 0.

The general case then follows on taking smooth approximations. We let G denote

the Mellin transform of g, that is,

(219) G(s) =

∫ ∞
0

xs−1g(x)dx

and note that it is holomorphic in the region <s > −2 except for a simple pole at

s = 0 with residue g(0) = 0. Applying Mellin inversion and then shifting contours

we have

∑
n≥1

fα,β(n, χ)ed(cn)g(n) =
1

2πi

∫
(2)

Eα,β(s, c/d, χ)G(s)ds

=
(

Res
s=z

Eα,β(s, c/d, χ)G(s)
)

+
1

2πi

∫
(− 1

4
)

E(s)G(s)ds.

(220)

Note that interchange of summation and integration in the first line is justified by

the absolute convergence of E and that the contour shift is also valid since G(s)

decays rapidly whilst E(s) increases at most polynomially as |=s| → ∞. Writing

Ẽ±(s) = Ẽ−α,−β(s,±c/d, χ) for short and applying the functional equation (213)

gives

1

2πi

∫
(− 1

4
)

E(s)G(s)ds

=
1

2πi

∫
(− 1

4
)

H(s)

[
θ(−β)Ẽ+(1− s)− θ(s)Ẽ−(1− s)

]
G(s)ds

=
1

2πi

∫
( 5
4

)

H(1− s)
[
θ(−β)Ẽ+(s)− θ(1− s)Ẽ−(s)

]
G(1− s)ds

=
(2π)α+β

d1+α+β

(
%

q

)1+β∑
+−

∑
n≥1

σ−α,−β(n,± c
d
, χ)G±

(
4π2%n

d2q

)
(221)

where

(222) G+(y) = θ(−β)
1

2πi

∫
( 5
4

)

Γ(s− α)Γ(s− β)G(1− s)y−sds
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and

(223) G−(y) = − 1

2πi

∫
( 5
4

)

θ(1− s)Γ(s− α)Γ(s− β)G(1− s)y−sds.

We note that since the shifts are small, Ẽ−α,−β(s) is absolutely convergent on the

line <s = 5/4 and hence the interchange of summation and integration is legal.

By (219) and the fact that g is Schwartz we have

(224) G+(y) = θ(−β)

∫ ∞
0

g(x)

(
1

2πi

∫
( 5
4

)

Γ(s− α)Γ(s− β)(xy)−sds

)
dx

and similarly for G−(y). The result now follows on applying the formulae

2Kν(z) =
1

2πi

∫
(c)

Γ(s)Γ(s− ν)
(z

2

)ν−2s

ds,(225)

−πYν(z) =
1

2πi

∫
(c)

Γ

(
s− ν

2

)
Γ

(
s+ ν

2

)
cos

π

2
(s− ν)

(z
2

)−2s

ds,(226)

πJν(z) =
1

2πi

∫
(c)

Γ

(
s− ν

2

)
Γ

(
s+ ν

2

)
sin

π

2
(s− ν)

(z
2

)−2s

ds,(227)

along with the obvious substitutions for s. �

Before applying this formula we compile some results on σα,β(s, c/d, χ) which

will be used later. First, It should be noted that σα,β(s, c/d, χ) is quite similar to

fα,β(n, χ) when % = 1 or % = q. Indeed, we have

(228) σα,β(n, c/d, χ) =

χ(d)ed(cqn)G(χ)fα,β(n, χ) if % = 1,

χ(c)ed(cn)fβ,α(n, χ) if % = q.
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The case % = q is easily seen since in this instance d1 = d. This implies a unique

solution (mod d1) to the equation b ≡ cu (mod d). Consequently,

σα,β(n, c/d, χ) =
∑
uv=n

u−αv−β
d1∑
b=1

b≡cu(mod d)

χ(b)ed1(bv)

=
∑
uv=n

u−αv−βχ(cu)ed(buv)

=χ(c)ed(cn)fβ,α(n, χ)

(229)

For the case % = 1 we have the following method which also gives insight into the

cases 1 < % < q. Let b = j + ql where 1 ≤ j ≤ q and 0 ≤ l ≤ d/%− 1. Then

(230) σα,β(n, c/d, χ) =
∑
uv=n

u−αv−β
q∑
j=1

χ(j)ed1(jv)

d/%−1∑
l=0

ql≡cu−j(d)

ed/%(lv).

If we now put % = 1 then l is uniquely determined (mod d) by l ≡ q(cu− j) (mod

d). Therefore, in this case

σα,β(n, c/d, χ) =
∑
uv=n

u−αv−β
q∑
j=1

χ(j)edq(jv)ed(q(cu− j)v)

=ed(cqn)
∑
uv=n

u−αv−β
q∑
j=1

χ(j)eq(−rjv)

=ed(cqn)
∑
uv=n

u−αv−βG(−rv, χ)

(231)

where r is the integer such that qq = 1 + rd. Formula (228) for % = 1 now follows

on noting G(−rv, χ) = χ(−rv)G(χ) and χ(−r) = χ(d).

In the remaining cases 1 < % < q we return to formula (230) and write Q =

q/%, D = d/%. Now, a necessary condition for the existence of a solution to the

congruence ql ≡ cu−j (mod d) is that %|cu−j. In this case l is uniquely determined
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(mod D) by l ≡ Q(cu− j)/% (mod D). Therefore

q∑
j=1

χ(j)ed1(jv)

d/%−1∑
l=0

ql≡cu−j(d)

ed/%(lv)

=
1

%

q∑
j=1

χ(j)ed1(jv)

%∑
m=1

e%(−m(cu− j))ed(Q(cu− j)v)

=
1

%
ed(cQuv)

%∑
m=1

eδ(−mcu)

q∑
j=1

χ(j)ed1
(
j
(
mQD + v(1−QQ)

))
.

(232)

Therefore, for 1 < % < q we have

(233) σα,β(n, c/d, χ) =
1

%
ed(ncQ)G(χ)

∑
uv=n

u−αv−β
%∑

m=1

χ(mQ− vw)e%(−mcu)

where w is defined by the equation QQ = 1 + wD.

2.4.3. Applying Voronoi Summation. Recall that the formula forDF (h, k, r)

was given by

DF (h, k, r) =
∑
d<2Ω

d∑
c=1

(c,d)=1

ed(−cr)
∑
m,n

fα,β(m,χ)fγ,δ(n, χ)ed(chm)ed(−ckn)F ](m,n).

We first write the fractions ch/d, ck/d in reduced form i.e. as ch(d)/d(h), ck(d)/d(k)

where m(n) = m/(m,n). This gives (ch(d), d(h)) = 1, (ck(d), d(k)) = 1 and so we

may apply Proposition 2.4.4 to the two innermost sums. Note that the form of

the innermost sums will be dependent on (d(h), q) and (d(k), q). So for example, if

in the outer sum d is such that (d(h), q) = 1 and (d(k), q) = 1, then the inner sum

over m takes the form(
Res
s=1−α

Eα,β(s, ch(d)/d(h), χ)

)∫ ∞
0

x−αF ](x, n)dx+
∑
+−

· · ·

=
χ(d(h))L(1− α + β, χ)(

d(h)

)1−α+β

∫ ∞
0

x−αF ](x, n)dx+
∑
+−

· · · .
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Computing the sum over n in a similar fashion we see that the two innermost sums

are given by

χ(d(h))χ(d(k))L(1− α + β, χ)L(1− γ + δ, χ)(
d(h)

)1−α+β(
d(k)

)1−γ+δ

∫∫ ∞
0

x−αy−γF ](x, y)dxdy + · · ·

where the dots represent the three remaining terms (considering
∑

+− · · · as a

single term).

In order to gain the full expression for DF (h, k, r) it should be clear that we

must distinguish the d in the outer sum. Accordingly, we partition the positive

integers into 9 sets Pij, 1 ≤ i, j ≤ 3, subject to the following conditions:

(234) d ∈


P1j if (d(h), q) = 1,

P2j if (d(h), q) = q,

P3j if 1 < (d(h), q) < q

, d ∈


Pi1 if (d(k), q) = 1,

Pi2 if (d(k), q) = q,

Pi3 if 1 < (d(k), q) < q

.

We will later give a description of these sets but for the meanwhile we only make

use of the observation that if either i = 2 or j = 2 then the elements of the set Pij

are divisible by q. This can be seen by writing h, k and d ∈ Pij as their respective

q-parts times non q-parts and then solving the given conditions (the q-part of an

integer n is defined as
∏

p|q p
np). Let

(235) Ri =


Res
s=1−α

Eα,β(s, ch(d)/d(h), χ) if i = 1,

Res
s=1−β

Eα,β(s, ch(d)/d(h), χ) if i = 2,

0 if i = 3

and

(236) R′j =


Res
s=1−γ

Eγ,δ(s, ck(d)/d(k), χ) if j = 1,

Res
s=1−δ

Eγ,δ(s, ck(d)/d(k), χ) if j = 2,

0 if j = 3.
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Also, as is evident from Proposition 2.4.4 and Lemma 2.4.2 we must associate the

shifts with i, j so let

(237) ai =


α if i = 1,

β if i = 2,

0 if i = 3,

bj =


γ if j = 1,

δ if j = 2,

0 if j = 3.

Applying the Voronoi sum formula gives

(238) DF (h, k, r) =

3∑
i,j=1

∑
d<2Ω
d∈Pij

d∑
c=1

(c,d)=1

ed(−cr)

{
RiR

′
jIij +

1

d(h)

AR′j

∞∑
m=1

σ−α,−β(m,−ch(d)/d(h), χ)

m
α+β
2

Ih(m)

+
1

d(k)

BRi

∞∑
n=1

σ−γ,−δ(n, ck(d)/d(k), χ)

n
γ+δ
2

Ik(n)

+
1

d(h)d(k)

AB
∞∑

m,n=1

σ−α,−β(m,−ch(d)/d(h), χ)σ−γ,−δ(n, ck(d)/d(k), χ)

m
α+β
2 n

γ+δ
2

Ihk(m,n)+· · ·

}

where

A =

(
(d(h), q)

q

)1−α−β
2

, B =

(
(d(k), q)

q

)1− γ−δ
2
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and

Iij =

∞∫∫
0

x−aiy−bjF ](x, y)dxdy,(239)

Ih(m) =− 2π

∞∫∫
0

x−
α+β
2 y−bjBα−β

(
4π
√

(d(h), q)mx/q

d(h)

)
F ](x, y)dxdy,(240)

Ik(n) =− 2π

∞∫∫
0

x−aiy−
γ+δ
2 Bγ−δ

(
4π
√

(d(k), q)ny/q

d(k)

)
F ](x, y)dxdy,(241)

Ihk(m,n) =4π2

∞∫∫
0

x−
α+β
2 y−

γ+δ
2 Bα−β

(
4π
√

(d(h), q)mx/q

d(h)

)
(242)

×Bγ−δ

(
4π
√

(d(k), q)ny/q

d(k)

)
F ](x, y)dxdy.

The additional terms of (238) are those involving the Kν-Bessel function and can

be estimated using the same method we use for the ones displayed.

2.4.4. Evaluating the Main Terms. We have

Iij =

∞∫∫
0

x−aiy−bjF ](x, y)dxdy

=
1

h1−aik1−bj

∞∫∫
0

x−aiy−bjFφ(x, y)∆d(x− y − r)dxdy

=
1

h1−aik1−bj

∫ ∞
0

∫ ∞
r−x

x−ai(x− r + u)−bjFφ(x, x− r + u)∆d(u)dudx.

(243)

If r−x ≤ 0 then by Lemma 2.4.1 and (199) we see that the inner integral is equal

to

x−ai(x− r)−bjFφ(x, x− r) +O((d/Ω)A), A ≥ 1.
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If r − x > 0 then the integral is � (d/Ω)A for some A ≥ 1. Assuming d ≤ Ω1−ε

and on taking A large we get

(244) Iij =
1

h1−aik1−bj

∫ ∞
max(0,r)

x−ai(x− r)−bjF (x, x− r)dx+O(Ω−B)

where B is an arbitrary positive constant. By formula (259) below we have hkIij �

XY (X+Y )−1 log Ω valid for all d. Also, by formula (312) below we have the bound

d∑
c=1

(c,d)=1

χ(c)ed(−cr)� q1/2(r, d).

On applying these in the sum over d ≥ Ω1−ε we get

(245)
3∑

i,j=1

∑
d<2Ω
d∈Pij

d∑
c=1

(c,d)=1

ed(−cr)RiR
′
jIij

=
2∑

i,j=1

1

h1−aik1−bj
Sij(h, k, r)

∫ ∞
max(0,r)

x−ai(x− r)−bjF (x, x− r)dx

+O((hk)−1q1/2XY (X + Y )−1Ω−1+ε)

where

(246) Sij(h, k, r) =
∑
d∈Pij

d∑
c=1

(c,d)=1

ed(−cr)RiR
′
j.

These last terms are given explicitly in Proposition 2.5.1 below.

2.4.5. Estimating the Error Terms. Throughout the following analysis we

essentially ignore the shift parameters but since they are small this is of no great

importance. We first estimate the sums over c. Pushing the sum over c through

(238) we encounter sums of the form

(247) S1 =
d∑
c=1

(c,d)=1

ed(−cr)R′jσ−α,−β(m,−ch(d)/d(h), χ),
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(248) S2 =
d∑
c=1

(c,d)=1

ed(−cr)σ−α,−β(m,−ch(d)/d(h), χ)σ−γ,−β(n, ck(d)/d(k), χ)

Clearly, we also encounter a slight variant of (247) but this can be estimated using

the same method as for the sum displayed. In estimating these we shall make use

of Weil’s bound for Kloosterman sums

(249) S(r, t, d) =
d∑
c=1

(c,d)=1

ed(cr + ct)� (r, d)1/2d1/2τ(d)

where τ is the usual divisor function. We will also need an estimate for sums of

the form

(250) Sχ(r, t, d) =
d∑
c=1

(c,d)=1

χ(c)ed(cr + ct).

These are similar to Salie sums ([27],[51]) the difference being that q|d whenever

they appear. These are dealt with in [41] (see formula (16)) where Müller obtains

(251) Sχ(r, t, d) = Sχ(t, r, d)� q1/2(r, d)1/2d1/2τ(d).

By inspecting the cases 1 ≤ i, j ≤ 3 and using (249), (251) along with the obvious

variants of (208), (228), (233) we get

(252) S1 �
1

d(k)

q3/2|L(1, χ)|(r, d)1/2d1/2τ(d)τ(m),

(253) S2 � q(r, d)1/2d1/2τ(d)τ(m)τ(n).

We now estimate the integrals Ih, Ik, Ihk. From (204),(199) we have the bound

(254) F ](i,j) � aibj

(dΩ)i+j+1
.

Using this along with the recurrence relations (zνYν(z))′ = zνYν−1(z), (zνJν(z))′ =

zνJν−1(z) an integration by parts argument shows that these integrals are small
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unless

(255) m <
hqX

(d(h), q)
Ω−2+ε, n <

kqY

(d(k), q)
Ω−2+ε.

For m,n in this range we estimate the integrals using the support conditions on

F and the bounds Yα−β(z), Jα−β(z)� z−1/2 to give

(256) Ih(m)�
(

hqd2

n(d(h), q)X

)1/4 ∫∫

(257) Ik(n)�
(

kqd2

n(d(k), q)Y

)1/4 ∫∫

(258) Ihk(m,n)�
(

hkq2d4

mn(d(h), q)(d(k), q)XY

)1/4 ∫∫
where ∫∫

=

∫∫ ∞
0

|Fφ(hx, ky)∆d(hx− ky − r)|dxdy

=(hk)−1

∫∫ ∞
0

|Fφ(x, x− y − r)∆d(y)|dxdy

�(hk)−1 XY

X + Y

∫ U

−U
|∆d(y)|dy

�(hk)−1 XY

X + Y
log Ω.

(259)

Here, we have used the upper bounds (197) and (205) along with the support

conditions on φ. Therefore, summing over m, n in the range (255) we have

(260)
∑
m

τ(m)|Ih(m)| � d1/2q

k(d(h), q)

X3/2Y

X + Y
Ω−3/2+ε,

(261)
∑
n

τ(n)|Ik(n)| � d1/2q

h(d(k), q)

XY 3/2

X + Y
Ω−3/2+ε,

(262)
∑
m,n

τ(m)τ(n)|Ihk(m,n)| � dq2

(d(h), q)(d(k), q)

(XY )3/2

X + Y
Ω−3+ε.
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Introducing these bounds into (238) along with (252), (253) and summing over d

we get an error term of

(263) q3/2|L(1, χ)| XY
X + Y

(
X1/2

k
+
Y 1/2

h

)
Ω−3/2+ε + q

(XY )3/2

X + Y
Ω−5/2+ε

where we have used
∑

d≤x(hk, d) � x1+ε. We now take U = Ω2 = P−1(X +

Y )−1XY and the above becomes

(264) q3/2|L(1, χ)|P 3/4

(
XY

X + Y

)1/4+ε(
X1/2

k
+
Y 1/2

h

)
+ qP 5/4(XY )1/4+ε(X + Y )1/4.

2.5. Combining Terms and integral manipulations

We now combine the main terms (245) and error term (264) in the formula for

DF (h, k, r) whilst noting that X � Y �
√
hkMN .

Proposition 2.5.1. Let Pij and ai, bj be defined respectively by (234) and (237).

Also, let

(265) Ψij(h, k, r) =
1

h1−aik1−bj
Sij(h, k, r)

∫ ∞
max(0,r)

x−ai(x− r)−bjF (x, x− r)dx.

Then

DF (h, k, r) =
2∑

i,j=1

Ψij(h, k, r) + E[(T )(266)

where

E[(T )�T ε(hkMN)3/8+ε
(
q3/2+ε|L(1, χ)|(T/T0)3/4 + q1+ε(T/T0)5/4

)
.(267)
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The terms Sij(h, k, r) are given by

S11(h, k, r) = Lα,β(χ)Lγ,δ(χ)
∑
d∈P11

cd(r)χ(d(h))χ(d(k))

d1−α+β
(h) d1−γ+δ

(k)

,(268)

S12(h, k, r) =
χ(−1)G(χ)Lα,β(χ)L−γ,−δ(χ)

qδ−γ

∑
d∈P12

cd(r, χ)χ(d(h))χ(k(d))

d1−α+β
(h) d1+γ−δ

(k)

,(269)

S21(h, k, r) =
G(χ)L−α,−β(χ)Lγ,δ(χ)

qβ−α

∑
d∈P21

cd(r, χ)χ(h(d))χ(d(k))

d1+α−β
(h) d1−γ+δ

(k)

,(270)

S22(h, k, r) =
L−α,−β(χ)L−γ,−δ(χ)

q−1+β−α+δ−γ

∑
d∈P22

cd(r, |χ|2)χ(h(d))χ(k(d))

d1+α−β
(h) d1+γ−δ

(k)

,(271)

where Lx,y(χ) = L(1− x+ y, χ),

(272) cd(r, χ) =
d∑
c=1

(c,d)=1

χ(c)ed(−cr)

and cd(r) is the usual Ramanujan sum.

We can now return to Proposition 2.3.1 and apply our formula for DF (h, k, r).

Summing over r gives

IM,N =
T√
MN

∑
06=r�Tε

√
hkMN
T0

{ 2∑
i,j=1

Ψij(h, k, r)

+O
(
T ε(hkMN)3/8+ε

(
q3/2|L(1, χ)|(T/T0)3/4 + q(T/T0)5/4

))}
=

T√
MN

∑
06=r�Tε

√
hkMN
T0

2∑
i,j=1

Ψij(h, k, r)

+O
(
T ε(MN)3/8+ε(hk)7/8+ε

(
q3/2|L(1, χ)|(T/T0)7/4 + q(T/T0)9/4

))
(273)

By the usual integration by parts argument (formula (193)) we see that Ψij(h, k, r)

is small for large r and hence we may freely extend the sum over r 6= 0. Summing

over M,N we obtain
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Proposition 2.5.2.

(274) I
(1)
O (h, k) =

∑
M,N

∑
r 6=0

2∑
i,j=1

T√
MN

Ψij(h, k, r) + E(T )

where

(275) E(T )� T 3/4+ε(hk)7/8+ε
(
q3/2+ε|L(1, χ)|(T/T0)7/4 + q1+ε(T/T0)9/4

)
.

We now wish to manipulate the integrals in Ψij. These are very similar to the

integrals of section 6 in [23], the only important difference being that we have

the presence of cd(r, χ) which is not necessarily invariant under the transformation

r 7→ −r.

Let

(276) I
(1)
ij,α =

∑
M,N

∑
r 6=0

T√
MN

Ψij(h, k, r)

so that

I
(1)
O (h, k) =

2∑
i,j=1

I
(1)
ij,α + E(T ).

Now,

I
(1)
ij,α =

∑
r 6=0

∑
M,N

T√
MN

1

h1−aik1−bj
Sij(h, k, r)

∫ ∞
max(0,r)

x−ai(x− r)−bjF (x, x− r)dx

where

F (x, y) =W
( x

hM

)
W
( y

kN

) 1

2πi

∫
(ε)

G(s)

s

(
π2xy

hkq

)−s
× 1

T

∫ ∞
−∞

(
1 +

r

y

)−it
g(s, t)w(t)dtds.

(277)

Using W (x) = x−1/2W0(x) and recalling
∑

M W0(x/M) = 1, we see that

I
(1)
ij,α =

1

h
1
2
−aik

1
2
−bj

∑
r 6=0

Sij(h, k, r)

∫ ∞
max(0,r)

x−
1
2
−ai(x− r)−

1
2
−bj

× 1

2πi

∫
(ε)

G(s)

s

(
π2x(x− r)

hkq

)−s ∫ ∞
−∞

(
1− r

x

)it
g(s, t)w(t)dtdsdx
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We split the sum over r into two terms; those for which r > 0 and those for which

r < 0. This gives

I
(1)
ij,α = I+ + I−

where

I± =
1

h
1
2
−aik

1
2
−bj

∞∑
r=1

Sij(h, k,±r)K±

with

K+ =

∫ ∞
r

x−
1
2
−ai(x− r)−

1
2
−bj 1

2πi

∫
(ε)

G(s)

s

(
π2x(x− r)

hkq

)−s
×
∫ ∞
−∞

(
1− r

x

)it
g(s, t)w(t)dtdsdx

and

K− =

∫ ∞
0

x−
1
2
−ai(x+ r)−

1
2
−bj 1

2πi

∫
(ε)

G(s)

s

(
π2x(x+ r)

hkq

)−s
×
∫ ∞
−∞

(
1 +

r

x

)it
g(s, t)w(t)dtdsdx.

Performing the substitution x 7→ rx+ r in K+ and the substitution x 7→ rx in K−

gives

K+ = r−ai−bj
∫ ∞
−∞

w(t)
1

2πi

∫
(ε)

G(s)

s

(
π2r2

hkq

)−s
g(s, t)

×
∫ ∞

0

(x+ 1)−
1
2
−ai−s−itx−

1
2
−bj−s+itdxdsdt

and

K− = r−ai−bj
∫ ∞
−∞

w(t)
1

2πi

∫
(ε)

G(s)

s

(
π2r2

hkq

)−s
g(s, t)

×
∫ ∞

0

x−
1
2
−ai−s−it(x+ 1)−

1
2
−bj−s+itdxdsdt.

Here, we have swapped the orders of integration but as we shall see shortly, the

resulting integral is absolutely convergent and so this is allowed. By formula (91)
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of [23] we have

(278)

∫ ∞
0

(x+ 1)−
1
2
−ai−s−itx−

1
2
−bj−s+itdx =

Γ(1
2
− ai − s+ it)Γ(ai + bj + 2s)

Γ(1
2

+ bj + s+ it)

and

(279)

∫ ∞
0

x−
1
2
−ai−s−it(x+ 1)−

1
2
−bj−s+itdx =

Γ(1
2
− bj − s− it)Γ(ai + bj + 2s)

Γ(1
2

+ ai + s− it)
.

K+ and K− are now sufficiently similar to allow for a re-combination of terms.

Defining

Tij(h, k, r, s, t) = Sij(h, k, r)
Γ(1

2
− ai − s+ it)

Γ(1
2

+ bj + s+ it)
+ Sij(h, k,−r)

Γ(1
2
− bj − s− it)

Γ(1
2

+ ai + s− it)

this gives

I
(1)
ij,α =

1

h
1
2
−aik

1
2
−bj

∞∑
r=1

r−ai−bj
∫ ∞
−∞

w(t)
1

2πi

∫
(ε)

G(s)

s

(
π2r2

hkq

)−s
g(s, t)

× Tij(h, k, r, s, t)Γ(ai + bj + 2s)dsdt.

Note by Stirling’s formula

(280) Tij(h, k, r, s, t) =

(
Sij(h, k, r)e

−πi
2

(ai+bj+2s) + Sij(h, k,−r)e
πi
2

(ai+bj+2s)

)
× t−ai−bj−2s

(
1 +O

(
1+|s|2
t

))
and so the evaluation of Tij is reduced to the evaluation of Sij(h, k, r) under the

transformation r 7→ −r.

In the cases i = j, the sums Sij(h, k, r) are given by

S11(h, k, r) = Lα,β(χ)Lγ,δ(χ)
∑
d∈P11

cd(r)χ(d(h))χ(d(k))

d1−α+β
(h) d1−γ+δ

(k)

and

S22(h, k, r) =
L−α,−β(χ)L−γ,−δ(χ)

q−1+β−α+δ−γ

∑
d∈P22

cd(r, |χ|2)χ(h(d))χ(k(d))

d1+α−β
(h) d1+γ−δ

(k)

.
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By Lemma 2.6.1 below, the elements d ∈ P22 are divisible by q and hence

cd(r, |χ|2) =
d∑
c=1

(c,d)=1

|χ(c)|2ed(−cr) =
d∑
c=1

(c,d)=1

ed(−cr) = cd(r).

Therefore, since cd(−r) = cd(r) we have Sij(h, k,−r) = Sij(h, k, r) if i = j. In the

cases i 6= j the sums in question are given by

S12(h, k, r) =
χ(−1)G(χ)Lα,β(χ)L−γ,−δ(χ)

qδ−γ

∑
d∈P12

cd(r, χ)χ(d(h))χ(k(d))

d1−α+β
(h) d1+γ−δ

(k)

,

and

S21(h, k, r) =
G(χ)L−α,−β(χ)Lγ,δ(χ)

qβ−α

∑
d∈P21

cd(r, χ)χ(h(d))χ(d(k))

d1+α−β
(h) d1−γ+δ

(k)

Once again, by Lemma 2.6.1 we see q|d for d ∈ Pij, i 6= j. For such d we have

(281) cd(−r, χ) = χ(−1)
d∑
c=1

(c,d)=1

χ(−c)ed(cr) = χ(−1)cd(r, χ)

and consequently Sij(h, k,−r) = χ(−1)Sij(h, k, r) = (−1)aSij(h, k, r) for i 6= j.

Inputting the above information into (280) gives

Tij(h, k, r, s, t) = Sij(h, k, r)t
−ai−bj−2s

×

2 cos(π
2
(ai + bj + 2s)) if i = j

2ia cos(π
2
(ai + bj + 2s+ a)) if i 6= j

}(
1 +O

(
1+|s|2
t

))
.

We now move the s-line of integration to 1 so that the sums over r converge

absolutely allowing us to push them through the integrals. Along with the above

formula for Tij we now have

(I
(1)
ij,α)i=j =

1

h
1
2
−aik

1
2
−bj

∫ ∞
−∞

w(t)
1

2πi

∫
(1)

G(s)

s

(
π2

hkq

)−s ∞∑
r=1

Sij(h, k, r)

rai+bj+2s

× 2 cos
(
π
2
(ai + bj + 2s)

)
Γ(ai + bj + 2s)t−ai−bj−2sg(s, t)

×
(

1 +O
(

1+|s|2
t

))
dsdt.(282)
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and

(I
(1)
ij,α)i 6=j =

1

h
1
2
−aik

1
2
−bj

∫ ∞
−∞

w(t)
1

2πi

∫
(1)

G(s)

s

(
π2

hkq

)−s ∞∑
r=1

Sij(h, k, r)

rai+bj+2s

× 2ia cos
(
π
2
(ai + bj + 2s+ a)

)
Γ(ai + bj + 2s)t−ai−bj−2sg(s, t)

×
(

1 +O
(

1+|s|2
t

))
dsdt.(283)

We plan to show that the new sums over r are given by a product of two zeta

functions (or L-functions) times a finite Euler product over the primes dividing

h and k. It turns out that one of these zeta functions can be paired with the

Gamma factors in the line integral allowing us to use the functional equation and

hence remove the Gamma factors. A further simplification will occur after using

the asymptotic t−2sg(s, t) ∼ 2−2s and integrating the error terms over t.

2.6. Some Arithmetical Sums

Let

(284) Uij(s) :=
∞∑
r=1

Sij(h, k, r)

rai+bj+2s
.

Since the Sij are given as sums over Pij, we first investigate these sets. Recall that

for an integer n we define it’s q-part by

n(q) =
∏
p|n
p|q

pnp

and it’s non-q-part by n∗ := n/n(q) so that (n∗, q) = 1.

Lemma 2.6.1. We have

(285) P11 =

{
d ∈ Z≥1 : (d, q) = 1

}
and

(286) P22 =

{
d ∈ Z≥1 : d = qh(q)k(q)l where l ≥ 1

}
.
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If q|h then

(287) P12 =

{
d ∈ Z≥1 : d = qml where l ≥ 1 , (l, q) = 1 andm|h(q)/q

}
otherwise P12 = ∅. Similarly, if q|k then

(288) P21 =

{
d ∈ Z≥1 : d = qnl where l ≥ 1 , (l, q) = 1 andn|k(q)/q

}
otherwise P21 = ∅.

Proof. Let d ∈ Pij. We first note that

(289) d(h) =
d

(d, h)
=

d∗

(d∗, h∗)

d(q)

(d(q), h(q))
= d∗(h∗) · d(q)(h(q))

and therefore the only influence on (d(h), q) is due to (d(q)(h(q)), q). This means we

can let d∗ range freely over the positive integers coprime to q in all of the following.

The conditions defining P11 are given by (d(h), q) = 1 and (d(k), q) = 1. There-

fore (d(q)(h(q)), q) = 1 and (d(q)(k(q)), q) = 1. This implies d(q) = (d(q), h(q)) =

(d(q), k(q)) which is only possible if d(q) = 1 since (h, k) = 1.

P22 is given by the conditions (d(h), q) = q and (d(k), q) = q. These imply that

d(q) = lq(d(q), h(q)) = mq(d(q), k(q)) with l,m ≥ 1 and (l, q) > 1, (m, q) > 1.

Therefore we may write l = n(d(q), k(q)), m = n(d(q), h(q)) for some n with

(n, q) > 1. Putting this back into the previous equality gives

d(q) = nq(d(q), h(q)k(q)).

This is possible if and only if d(q) = nqh(q)k(q) and it is clear that the given n is

arbitrary.

For P12 the conditions are (d(h), q) = 1, (d(k), q) = q. The first of these im-

plies that d must satisfy d(q) = (d(q), h(q)) whilst the second gives that d(q) =

mq(d(q), k(q)) with m ≥ 1 and (m, q) > 1. Equating these gives

d(q) = (d(q), h(q)) = mq(d(q), k(q)).
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This is possible if and only if q|h hence otherwise P12 is empty. Now, if q|h then

k(q) = 1 and therefore

mq = (mq, h(q)).

This constraint implies that m may only range over the divisors of h(q)/q. A

similar argument follows for P21.

�

We note that since (h, k) = 1 at most one of the sets P12, P21 is non-empty.

We deal with U11(s) first. By (268) and (285) this reads as

(290)

U11(s) = Lα,β(χ)Lγ,δ(χ)
∞∑
r=1

∞∑
d=1

(d,q)=1

cd(r)χ(d(h))χ(d(k))(h, d)1−α+β(k, d)1−γ+δ

d2−α+β−γ+δrα+γ+2s
.

Proposition 2.6.2. Let h =
∏

p p
hp and k =

∏
p p

kp. Then

U11(s) =Lα,β(χ)Lγ,δ(χ)
ζ(α + γ + 2s)ζ(1 + β + δ + 2s)

ζ(2− α + β − γ + δ)

×Q11(s)C11,α,h,k(s)

(291)

where

(292) Q11(s) = Q11,α,q(s) =
∏
p|q

(
1− p−1−β−δ−2s

1− p−2+α−β+γ−δ

)

and

(293) C11,α,h,k(s) = C11,α,β,γ,δ,h(s, χ)C11,γ,δ,α,β,k(s, χ)

where

(294) C11,α,β,γ,δ,h(s, χ) =
∏
p-q
p|h

(
C

(0)
11 (s)− p−1C

(1)
11 (s) + p−2C

(2)
11 (s)

(1− χ(p)p−α−δ−2s)(1− p−2+α−β+γ−δ)

)
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with

C
(0)
11 (s) =1− χ(p)hp+1p−(hp+1)(α+δ+2s)(295)

C
(1)
11 (s) =(χ(p)pγ−δ + p−β−δ−2s)(1− χ(p)hpp−hp(α+δ+2s))(296)

C
(2)
11 (s) =χ(p)p−β+γ−2δ−2s − χ(p)hpp−hp(α+δ+2s)pα−β+γ−δ.(297)

Proof. To simplify things we first define

F (a, b, c) =
∞∑
r=1

∞∑
d=1

(d,q)=1

cd(r)χ(d/(h∗, d))χ(d/(k∗, d))(h∗, d)a(k∗, d)b

da+brc+1

so that

U11(s)

Lα,β(χ)Lγ,δ(χ)
= F (1− α + β, 1− γ + δ,−1 + α + γ + 2s).

By formula (1.5.5) of [59] we have

∞∑
r=1

cd(r)

rc+1
= ζ(c+ 1)

∑
n|d

n−cµ(d/n)

where µ is the mobius function. Summing over r and performing the substitution

n 7→ d/n in the sum over the divisors of d we have

F (a, b, c)

ζ(c+ 1)
=

∞∑
d=1

(d,q)=1

χ(d/(h∗, d))χ(d/(k∗, d))(h∗, d)a(k∗, d)b

da+b+c

∑
n|d

ncµ(n).

Let gc(d) =
∑

n|d n
cµ(n). Since the numerator is multiplicative we have

F (a, b, c)

ζ(c+ 1)
=
∏
p-q

(∑
m≥0

χ(pm/(php , pm))χ(pm/(pkp , pm))(php , pm)a(pkp , pm)b

pm(a+b+c)
gc(p

m)

)
.

We now split this product into three parts, the first over the primes p - hk and

other two over those for which p|h and p|k.

If p - hk then we have factors of the form∑
m≥0

|χ(pm)|2gc(pm)

pm(a+b+c)
= 1 + (1− pc)

∑
m≥1

(
|χ(p)|2

pa+b+c

)m
=

1− p−a−b

1− p−a−b−c
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since p - q. If p|h then we have factors of the form

1 + (1− pc)
∑
m≥1

χ(pm/(php , pm))χ(pm)(php , pm)a

pm(a+b+c)
.

Now

∑
m≥1

χ(pm/(php , pm))χ(pm)(php , pm)a

pm(a+b+c)

=

hp∑
m=1

χ(1)χ(pm)pma

pm(a+b+c)
+

∞∑
m=hp+1

χ(pm−hp)χ(pm)phpa

pm(a+b+c)

=
χ(p)

pb+c
1− χ(p)hpp−hp(b+c)

1− χ(p)p−b−c
+ phpa

∑
m≥1

χ(pm)χ(pm+hp)

p(a+b+c)(m+hp)

=
χ(p)

pb+c
1− χ(p)hpp−hp(b+c)

1− χ(p)p−b−c
+ χ(p)hpp−hp(b+c) p−a−b−c

1− p−a−b−c

= p−b−c
[
(χ(p)− χ(p)hp+1p−hp(b+c))(1− p−a−b−c) + χ(p)hp

×p−hp(b+c)p−a(1− χ(p)p−b−c)

]
/(1− χ(p)p−b−c)(1− p−a−b−c)

= p−b−c
[
χ(p)− χ(p)hp+1p−hp(b+c) − χ(p)p−a−b−c + χ(p)hpp−hp(b+c)p−a

]
/(1− χ(p)p−b−c)(1− p−a−b−c)

The numerator of the local factor is thus given by

(1− χ(p)p−b−c)(1− p−a−b−c) + (1− pc)p−b−c

×(χ(p)− χ(p)hp+1p−hp(b+c) − χ(p)p−a−b−c + χ(p)hpp−hp(b+c)p−a)

= 1− p−a−b−c − χ(p)hp+1p−(hp+1)(b+c) + χ(p)hpp−hp(b+c)p−a

−χ(p)p−b + χ(p)hp+1p−hp(b+c)p−b + χ(p)p−a−2b−c − χ(p)hpp−hp(b+c)p−a−b

= (1− χ(p)p−b)(1− p−a−b−c) + χ(p)hpp−hp(b+c)p−b(χ(p)− p−a)(1− p−c)



2.6. SOME ARITHMETICAL SUMS 91

If p|k then we have the same except χ is replaced by χ and a and b are interchanged.

Therefore

F (a, b, c)

ζ(c+ 1)
=
ζ(a+ b+ c)

ζ(a+ b)

∏
p|q

(
1− p−a−b−c

1− p−a−b

)

×
∏
p-q
p|h

(
(1− χ(p)p−b)(1− p−a−b−c) + χ(p)hpp−hp(b+c)p−b(χ(p)− p−a)(1− p−c)

(1− χ(p)p−b−c)(1− p−a−b)

)

×
∏
p-q
p|k

(
(1− χ(p)p−a)(1− p−a−b−c) + χ(p)kpp−kp(a+c)p−a(χ(p)− p−b)(1− p−c)

(1− χ(p)p−a−c)(1− p−a−b)

)

We can now substitute the values for a, b, c to give the desired result. �

We now turn to U22(s). By (271) and (284) we have

U22(s)q−1−α+β−γ+δ

L−α,−β(χ)L−γ,−δ(χ)
=
∞∑
r=1

∑
d∈P22

cd(r)χ(h(d))χ(k(d))(h, d)1+α−β(k, d)1+γ−δ

d2+α−β+γ−δrβ+δ+2s
.

Proposition 2.6.3. Let Q22(s) = Q11,−γ,q(−s) . Then

U22(s) =
L−α,−β(χ)L−γ,−δ(χ)

qβ+δ+2s

ζ(β + δ + 2s)ζ(1 + α + γ + 2s)

ζ(2 + α− β + γ − δ)

×Q22(s)C22,α,h,k(s)

(298)

where

(299) C22,α,h,k(s) = h(q)−β−γ−2sk(q)−α−δ−2sC22,α,β,γ,δ,h(s, χ)C22,γ,δ,α,β,k(s, χ)

and

(300) C22,α,β,γ,δ,h(s, χ) =
∏
p-q
p|h

(
C

(0)
22 (s)− p−1C

(1)
22 (s) + p−2C

(2)
22 (s)

(1− χ(p)pβ+γ+2s)(1− p−2−α+β−γ+δ)

)

with

C
(0)
22 (s) =p−hp(β+γ+2s) − χ(p)hp+1pβ+γ+2s(301)

C
(1)
22 (s) =(p−hp(β+γ+2s) − χ(p)hp)(pβ+δ+2s + χ(p)p−α+β)(302)

C
(2)
22 (s) =p−hp(β+γ+2s)χ(p)p−α+2β+δ+2s − χ(p)hpp−α+β−γ+δ.(303)
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Proof. Similarly to before we define a new function

(304) G(a, b, c) =
∞∑
r=1

∑
d∈P22

cd(r)χ(h(d))χ(k(d))(h, d)a(k, d)b

da+brc+1

so that

U22(s)q−1−α+β−γ+δ

L−α,−β(χ)L−γ,−δ(χ)
= G(1 + α− β, 1 + γ − δ,−1 + β + δ + 2s).

As in Proposition 2.6.2 we first perform the sum over r and get

(305) G(a, b, c) = ζ(c+ 1)
∑
d∈P22

χ(h(d))χ(k(d))(h, d)a(k, d)b

da+b+c
gc(d)

where gc(d) =
∑

n|d n
cµ(n). By Lemma 2.6.1 we may write d = qh(q)k(q)l with

l ≥ 1. This implies that (h, d) = h(q) · (h∗, l) and (k, d) = k(q) · (k∗, l). Therefore

(306) G(a, b, c) = A
∞∑
l=1

χ(h∗/(h∗, l))χ(k∗/(k∗, l))(h∗, l)a(k∗, l)b

la+b+c
gc(qh(q)k(q)l)

where

(307) A =
ζ(c+ 1)

qa+b+ch(q)b+ck(q)a+c
.

Writing the Dirichlet series as an Euler product we have

G(a, b, c)

A

=
∏
p

∑
m≥0

χ
(

p
h∗p

(ph
∗
p ,pm)

)
χ
(

p
k∗p

(pk
∗
p ,pm)

)
(ph

∗
p , pm)a(pk

∗
p , pm)b

pm(a+b+c)
gc(p

qp+h(q)p+k(q)p+m)

=
∏
p-q

(?)
∏
p|q

(?).

(308)

We deal with product over p|q first. In this case we have h∗p = k∗p = 0 and qp ≥ 1.

Consequently, we have a local factor of the form∑
m≥0

gc(p
m+qp+···)

pm(a+b+c)
= (1− pc)

∑
m≥0

p−m(a+b+c) =
1− pc

1− p−a−b−c
.
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If p - q and p - hk then we have a local factor of the form∑
m≥0

gc(p
m)

pm(a+b+c)
=

1− p−a−b

1− p−a−b−c
.

Finally, if p - q and p|h then we have a local factor of the form

χ(p)hp + (1− pc)
∑
m≥1

χ
(

php

(php ,pm)

)
(php , pm)a

pm(a+b+c)
.

Computing this in a similar fashion to proposition 2.6.2 we see the local factor is

given by

p−hp(b+c)(1− pc)(1− χ(p)p−a) + χ(p)hp(pc − p−a−b)(1− χ(p)pb)

(1− χ(p)pb+c)(1− p−a−b−c)
.

Therefore, similarly to before, we find

G(a, b, c)

A
=
ζ(a+ b+ c)

ζ(a+ b)

∏
p|q

(
1− pc

1− p−a−b

)

×
∏
p-q
p|h

(
p−hp(b+c)(1− pc)(1− χ(p)p−a) + χ(p)hp(pc − p−a−b)(1− χ(p)pb)

(1− χ(p)pb+c)(1− p−a−b)

)

×
∏
p-q
p|h

(
p−kp(a+c)(1− pc)(1− χ(p)p−b) + χ(p)kp(pc − p−a−b)(1− χ(p)pa)

(1− χ(p)pa+c)(1− p−a−b)

)
(309)

Inputting the values of a, b, c and a brief computation gives the result. �

At this point we note that there exist certain similarities between U11 and U22.

Indeed, the equivalent of U11 in I
(2)
O contains a factor of q−β−δ and has undergone

the transformation α 7→ −γ. Therefore the L and ζ(2 + · · · )−1 factors match

with those of U
(1)
22 as does the Q factor after the transformation s 7→ −s. It is a

surprising fact that the finite Euler products Cii,α,h,k(s) also possess this symmetry.

Indeed, we have

Proposition 2.6.4.

(310) hαkγ(hk)−sC11,α,h,k(−s) = h−δk−β(hk)sC22,−γ,h,k(s).



94 2. THE TWISTED SECOND MOMENT

By permuting the shifts we also have

(311) hβkδ(hk)−sC22,α,h,k(−s) = h−γk−α(hk)sC11,−γ,h,k(s).

Proof. Since

C11,α,h,k(s) = C11,α,β,γ,δ,h(s, χ)C11,γ,δ,α,β,k(s, χ)

and

C22,−γ,h,k(s) = h(q)α+δ−2sk(q)β+γ−2sC22,−γ,−δ,−α,−β,h(s, χ)C22,−α,−β,−γ,−δ,k(s, χ)

we only need to prove(
h

h(q)

)α+δ−2s

C11,α,β,γ,δ,h(−s, χ) = C22,−γ,−δ,−α,−β,h(s, χ)

since the result then follows by symmetry. It suffices to check the formula at each

prime dividing h. By inspection of the Euler products we need to show

php(α+δ−2s)C
(i)
11,α,β,γ,δ,h(−s) = C

(i)
22,−γ,−δ,−α,−β,h(s)

for i = 0, 1, 2 and each of these is immediately apparent when written out. �

We now work with U12 and U21 which in the above sense are self-similar. First,

we need a technical lemma

Lemma 2.6.5. Let cd(r, χ) be given by (272) and suppose q|d. Then

(312) cd(r, χ) = G(χ)
∑
n|r
n|d/q

µ

(
d/q

n

)
χ

(
d/q

n

)
χ
( r
n

)
n.

Under the given conditions this implies

(313)
∞∑
r=1

cd(r, χ)

rs
= G(χ)L(s, χ)

(q
d

)s−1 ∑
n|d/q

µ (n)χ (n)ns−1.
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Proof. We have

cd(r, χ) =
d∑

n=1
(n,d)=1

χ(n)ed(−nr) =
d∑

n=1

(∑
m|n
m|d

µ(m)

)
χ(n)ed(−nr)

=
∑
m|d

µ(m)

d/m∑
n=1

χ(mn)ed(−mnr)

=
∑
m|d
m-q

µ(m)χ(m)

d/m∑
n=1

χ(n)ed/m(−nr)

(314)

where the condition m - q is merely for emphasis. Since q|d we may write d/m = aq

for some a say. Now,

aq∑
n=1

χ(n)eaq(nr) =

q∑
n=1

χ(n)eaq(nr)
a−1∑
k=0

ea(kr)

=

a
∑q

n=1 χ(n)eq(nr/a) if a|r,

0 otherwise.

(315)

Since
∑q

n=1 χ(n)eq(nr/a) = χ(r/a)G(χ) we have

cd(r, χ) = G(χ)
∑
m|d
d
mq
|r

µ(m)χ(m)χ

(
r

d/mq

)
d

mq

= G(χ)
∑
c|d
c|qr

µ

(
d

c

)
χ

(
d

c

)
χ
(qr
c

) c
q
.

(316)
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The result now follows on applying the change of variables c/q 7→ n. For the result

involving the Dirichlet series we apply the formula to give

1

G(χ)

∞∑
r=1

cd(r, χ)

rs
=
∞∑
r=1

1

rs

∑
n|r
n|d/q

µ

(
d/q

n

)
χ

(
d/q

n

)
χ
( r
n

)
n

=
∑
n|d/q

µ

(
d/q

n

)
χ

(
d/q

n

)
n
∞∑
m=1

χ(m)

(mn)s

= L(s, χ)
∑
n|d/q

µ

(
d/q

n

)
χ

(
d/q

n

)
n1−s

= L(s, χ)
(q
d

)s−1 ∑
n|d/q

µ (n)χ (n)ns−1.

(317)

�

By formula (269) we have

(318) U12(s) = χ(−1)G(χ)qγ−δLα,β(χ)L−γ,−δ(χ)

×
∞∑
r=1

∑
d∈P12

cd(r, χ)χ(d(h))χ(k(d))(h, d)1−α+β(k, d)1+γ−δ

d2−α+β+γ−δrα+δ+2s

and by (270) we have

(319) U21(s) = G(χ)qα−βL−α,−β(χ)Lγ,δ(χ)

×
∞∑
r=1

∑
d∈P21

cd(r, χ)χ(h(d))χ(d(k))(h, d)1+α−β(k, d)1−γ+δ

d2+α−β−γ+δrβ+γ+2s
.

If we ignore the factor χ(−1) then it is fairly clear that U21(s) can be acquired

from U12(s) by swapping h with k, replacing χ with χ and by performing the

substitutions α↔ γ, β ↔ δ. Accordingly, we only need work with U12(s).
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Proposition 2.6.6. Suppose q|h. Then U12(s) is non-zero and has the form

U12(s) =χ(−k)Lα,β(χ)L−γ,−δ(χ)
L(α + δ + 2s, χ)L(1 + β + γ + 2s, χ)

L(2− α + β + γ − δ, χ2)

×
( ∑
m|h(q)/q

1

mα+γ+2s

)
C12,α,h,k(s)

(320)

where

(321) C12,α,h,k(s) = C12,α,β,γ,δ,h(s)C12,δ,γ,β,α,k(s)

and

(322) C12,α,β,γ,δ,h(s) =
∏
p-q
p|h

(
C

(0)
12 (s)− p−1C

(1)
12 (s) + p−2C

(2)
12 (s)

(1− p−α−γ−2s)(1− χ(p)2p−2+α−β−γ+δ)

)

with

C
(0)
12 (s) = 1− p−(hp+1)(α+γ+2s)(323)

C
(1)
12 (s) = χ(p)(pδ−γ + p−β−γ−2s)(1− p−hp(α+γ+2s))(324)

C
(2)
12 (s) = χ(p)2pδ−β(p−2(γ+s) − p2(α+s)p−(hp+1)(α+γ+2s)).(325)

Proof. Let

(326) H(a, b, c) = χ(−1)G(χ)
∞∑
r=1

∑
d∈P12

cd(r, χ)χ(d(h))χ(k(d))(h, d)a(k, d)b

da+brc+1

so that

(327)
qδ−γU12(s)

Lα,β(χ)L−γ,−δ(χ)
= H(1− α + β, 1 + γ − δ,−1 + α + δ + 2s)

Using formula (313) and noting that |G(χ)|2 = q we have

(328) H(a, b, c) = χ(−1)qc+1L(c+ 1, χ)
∑
d∈P12

χ(d(h))χ(k(d))(h, d)a(k, d)b

da+b+c
gc(d/q, χ)

where

(329) gc(m,χ) =
∑
n|m

µ(n)χ(n)nc.
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By Lemma 2.6.1 we see that d = qml where (l, q) = 1 and m is a divisor of

h(q)/q. Consequently, (h, d) = (h∗, l)(h(q), qm) = (h∗, l)qm and (k, d) = (k∗, l)

since k = k∗. Therefore

H(a, b, c)

qc+1L(c+ 1, χ)

=
1

qb+c

∑
m|h(q)/q

1

mb+c

∞∑
l=1

(l,q)=1

χ(l/(h∗, l))χ(k∗/(k∗, l))(h∗, l)a(k∗, l)b

la+b+c
gc(ml, χ)

=
1

qb+c

( ∑
m|h(q)/q

1

mb+c

)
∞∑
l=1

(l,q)=1

χ(l/(h∗, l))χ(k∗/(k∗, l))(h∗, l)a(k∗, l)b

la+b+c
gc(l, χ)

(330)

since (m, q) > 1 for m > 1. We now express the Dirichlet series as an Euler

product.

If p - hk then we have a local factor of the form

(331) 1 + (1− χ(p)pc)
∑
j≥1

(
χ(p)

pa+b+c

)m
=

1− χ(p)2p−a−b

1− χ(p)p−a−b−c
.

If p|h then we have a local factor of the form

1 + (1− χ(p)pc)
∑
j≥1

χ(pm/(php , pm))(php , pm)a

pm(a+b+c)
.(332)

Computing this similarly to as in Proposition 2.6.2 we see that the local factor is

given by

(333)
(1− χ(p)p−b)(1− χ(p)−a−b−c)− p−(hp+1)(b+c)(1− χ(p)p−a)(1− χ(p)pc)

(1− p−b−c)(1− χ(p)p−a−b−c)
.

Finally, if p|k then we have a local factor of the form

χ(p)kp + (1− χ(p)pc)
∑
j≥1

χ(p)mχ(pkp/(pkp , pm))(pkp , pm)b

pm(a+b+c)

=χ(p)kp

(
1 + (1− χ(p)pc)

∑
j≥1

χ(pm/(pkp , pm))(pkp , pm)b

pm(a+b+c)

)
.

(334)
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Note that the quantity in parentheses is the same as the local factor at p|h with a

and b switched. Therefore,

H(a, b, c)

L(c+ 1, χ)
=
χ(k)

qb−1

L(a+ b+ c, χ)

L(a+ b, χ2)

( ∑
m|h(q)/q

1

mb+c

)

×
∏
p-q
p|h

(1− χ(p)p−b)(1− χ(p)p−a−b−c)− p−(hp+1)(b+c)(1− χ(p)p−a)(1− χ(p)pc)

(1− p−b−c)(1− χ(p)2p−a−b)

×
∏
p|k

(1− χ(p)p−a)(1− χ(p)p−a−b−c)− p−(hp+1)(a+c)(1− χ(p)p−b)(1− χ(p)pc)

(1− p−a−c)(1− χ(p)2p−a−b)
.

(335)

After inputting the values for a, b, c a short computation gives the result. �

We will not write out the equivalent proposition for U21(s) since it is easily

acquired from that of U12(s) by multiplying by χ(−1) and performing the substi-

tutions h↔ k, χ↔ χ and α↔ γ, β ↔ δ.

To get a functional equation for C12,α,h,k(s) we must incorporate the sum over

the divisors of h(q)/q as well as an extra factor of q which, happily, makes an

appearance in the next section.

Proposition 2.6.7. We have

1

qα+δ−s

( ∑
m|h(q)/q

1

mα+γ−2s

)
hαkδ(hk)−sC12,α,h,k(−s)

=
1

qβ+δ

1

q−β−γ+s

( ∑
m|h(q)/q

1

m−α−γ+2s

)
h−γk−β(hk)sC12,−γ,h,k(s).

(336)

Proof. Since

(337)
∑

m|h(q)/q

1

mα+γ−2s
=

(
h(q)

q

)−α−γ+2s ∑
m|h(q)/q

1

m−α−γ+2s

we are required to show

(338)

(
h

h(q)

)α+γ−2s

kβ+δ−2sC12,α,h,k(−s) = C12,−γ,h,k(s).
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Also, since

(339) C12,α,h,k(s) = C12,α,β,γ,δ,h(s)C12,δ,γ,β,α,k(s)

it suffices to show

(340)

(
h

h(q)

)α+γ−2s

C12,α,h(−s) = C12,−γ,h(s)

by symmetry. We must therefore check that

(341) php(α+γ−2s)
C

(i)
12,α(−s)

1− p−α−γ+2s
=

C
(i)
12,−γ(s)

1− pα+γ−2s
= −

C
(i)
12,−γ(s)

pα+γ−2s(1− p−α−γ+2s)

for i = 0, 1, 2, each of which can easily be verified by inspection. �

The functional equation for C21(s) is acquired from that of C12(s) by performing

the necessary substitutions. After re-arranging the factors of q this gives the

following.

Proposition 2.6.8.

1

qβ+γ−s

( ∑
m|k(q)/q

1

mα+γ−2s

)
hβkγ(hk)−sC21,α,h,k(−s)

=
1

qβ+δ

1

q−α−δ+s

( ∑
m|k(q)/q

1

m−α−γ+2s

)
h−δk−α(hk)sC21,−γ,h,k(s).

(342)
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2.7. Application of the Sum Formulae

2.7.1. The Cases i = j. Applying Proposition 2.6.2 to (282) we get

I
(1)
11,α =

1

h1/2−αk1/2−γ
Lα,β(χ)Lγ,δ(χ)

ζ(2− α + β − γ + δ)

1

2πi

∫
(1)

G(s)

s

(
hkq

π2

)s
× Γ(α + γ + 2s)2 cos

(
π
2
(α + γ + 2s)

)
ζ(α + γ + 2s)ζ(1 + β + δ + 2s)

×Q11(s)C11,α,h,k(s)

∫ ∞
−∞

t−α−γ−2sg(s, t)w(t)
(

1 +O
(

1+|s|2
t

))
dtds

=
1√
hk

Lα,β(χ)Lγ,δ(χ)

ζ(2− α + β − γ + δ)

1

2πi

∫
(1)

G(s)

s
qs

× ζ(1− α− γ − 2s)ζ(1 + β + δ + 2s)Q11(s)hαkγ(hk)sC11,α,h,k(s)

×
∫ ∞
−∞

(
t

2π

)−α−γ (
t

2

)−2s

g(s, t)w(t)
(

1 +O
(

1+|s|2
t

))
dtds(343)

where we have used the functional equation

π−2sζ(α + γ + 2s)Γ(α + γ + 2s)2 cos
(π

2
(α + γ + 2s)

)
=πα+γ2α+γ+2sζ(1− α− γ − 2s).

(344)

Moving the s-line of integration back to ε and using the properties of w along with

Stirling’s approximation for g(s, t) we get

I
(1)
11,α =

1√
hk

Lα,β(χ)Lγ,δ(χ)

ζ(2− α + β − γ + δ)

∫ ∞
−∞

(
t

2π

)−α−γ
w(t)

1

2πi

∫
(ε)

G(s)

s
qs

× ζ(1− α− γ − 2s)ζ(1 + β + δ + 2s)Q11(s)hαkγ(hk)sC11,α,h,k(s)dsdt

+O

(
1√
hk
|L(1, χ)|2(hkqT )ε

)
.(345)



102 2. THE TWISTED SECOND MOMENT

We note that this error term is of a lower order than E(T ). For i = j = 2, the

same process used in conjunction with Proposition 2.6.3 gives

I
(1)
22,α =

1√
hk

L−γ,−δ(χ)L−α,−β(χ)

ζ(2 + α− β + γ − δ)

∫ ∞
−∞

1

qβ+δ

(
t

2π

)−β−δ
w(t)

1

2πi

∫
(ε)

G(s)

s
q−s

× ζ(1− β − δ − 2s)ζ(1 + α + γ + 2s)Q22(s)hβkδ(hk)sC22,α,h,k(s)dsdt

+O

(
1√
hk
|L(1, χ)|2(hkqT )ε

)
.(346)

As usual, the formulas for I
(2)
11,α and I

(2)
22,α can be acquired by performing the sub-

stitutions α ↔ −γ, β ↔ −δ and multiplying by Xα,t ∼ q−β−δ(t/2π)−α−β−γ−δ in

the integrals over t. With this we have enough information to compute the main

terms of the off-diagonals.

Proposition 2.7.1. Let Aα,β,γ,δ,q(s) be given by formula (126). Then

I
(1)
11,α + I

(2)
22,α + I

(1)
22,α + I

(2)
11,α

=
1√
hk

∫ ∞
−∞

w(t)

(
t

2π

)−α−γ
A−γ,β,−α,δ,q(0)hαkγC11,α,h,k(0)dt

+
1

qβ+δ

1√
hk

∫ ∞
−∞

w(t)

(
t

2π

)−β−δ
Aα,−δ,γ,−β,q(0)hβkδC22,α,h,k(0)dt

−R (−α−γ
2

) +R (−β−δ
2

) +R′ (−α−γ
2

)−R′ (−β−δ
2

) + E(T )

(347)

where

(348) R(b) =
1

2

qb√
hk

Lα,β(χ)Lγ,δ(χ)

ζ(2− α + β − γ + δ)
ζ(1− α + β − γ + δ)

×
∫ ∞
−∞

w(t)

(
t

2π

)−α−γ
G (b)

b
hαkγ (hk)bQ11 (b)C11,α,h,k (b) dt

and

(349) R′(b) =
1

2

q−b−β−δ√
hk

L−γ,−δ(χ)L−α,−β(χ)

ζ(2 + α− β + γ − δ)
ζ(1 + α− β + γ − δ)

×
∫ ∞
−∞

w(t)

(
t

2π

)−β−δ
G (b)

b
hβkδ (hk)bQ22(b)C22,α,h,k (b) dt.
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Proof. We first shift the contour of I
(1)
11,α to −ε. We encounter poles at s =

−(α + γ)/2 and s = −(β + δ)/2 due to the zeta factors and we also encounter a

pole at s = 0. The poles at s = −(α + γ)/2 and s = −(β + δ)/2 give rise to the

terms −R (−α−γ
2

) and R (−β−δ
2

) respectively whilst the pole at zero gives the residue

L(1− α + β, χ)L(1− γ + δ, χ)ζ(1− α− γ)ζ(1 + β + δ)

ζ(2− α + β − γ + δ)

×
∏
p|q

(
1− p−1−β−δ

1− p−2+α−β+γ−δ

)
1√
hk

∫ ∞
−∞

w(t)

(
t

2π

)−α−γ
G(0)hαkγC11,α,h,k(0)dt

=
1√
hk

∫ ∞
−∞

w(t)

(
t

2π

)−α−γ
A−γ,β,−α,δ,q(0)hαkγC11,α,h,k(0)dt

In the integral on the new line we make the substitution s 7→ −s. Applying the

functional equation (310) we see this new integral cancels with I
(2)
22,α (recall G(s)

is even). Using the same process on I
(1)
22,α along with the functional equation (311)

we get the remaining terms. �

2.7.2. The Cases i 6= j. Using the functional equation

π−2sΓ(ai + bj + 2s)2ia cos
(π

2
(ai + bj + 2s+ a)

)
L(ai + bj + 2s, χ)

=πai+bj
(

2

q

)ai+bj+2s

G(χ)L(1− ai − bj − 2s, χ)

(350)

and the same procedure as above we get

I
(1)
12,α =1q|h

χ(k)G(χ)√
hk

Lα,β(χ)L−γ,−δ(χ)

L(2− α + β + γ − δ, χ2)

∫ ∞
−∞

(
t

2π

)−α−δ
w(t)

1

2πi

∫
(ε)

G(s)

s

× q−α−δ−s
( ∑

m|h(q)/q

1

mα+γ+2s

)
L(1− α− δ − 2s, χ)L(1 + β + γ + 2s, χ)

× hαkδ(hk)sC12,α,h,k(s)dsdt+O

(
1√
hk
|L(1, χ)|2(hkqT )ε

)
(351)
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where we have used χ(−1)G(χ) = G(χ). Multiplying by χ(−1) and performing

substitutions h↔ k, χ↔ χ and α↔ γ, β ↔ δ we get

I
(1)
21,α =1q|k

χ(h)G(χ)√
hk

L−α,−β(χ)Lγ,δ(χ)

L(2 + α− β − γ + δ, χ2)

∫ ∞
−∞

(
t

2π

)−β−γ
w(t)

1

2πi

∫
(ε)

G(s)

s

× q−β−γ−s
( ∑

m|k(q)/q

1

mα+γ+2s

)
L(1− β − γ − 2s, χ)L(1 + α + δ + 2s, χ)

× hβkγ(hk)sC21,α,h,k(s)dsdt+O

(
1√
hk
|L(1, χ)|2(hkqT )ε

)
.(352)

The presence of the indicator functions is due to conditions that Uij(s) be non-

zero. By using the functional equations (336), (342) and a similar method to that

employed in Proposition 2.7.1 we get

Proposition 2.7.2. Let A′α,β,γ,δ(s, χ) be given by formula (130) and let

(353) Mα,γ,h(s) =
∑

m|h(q)/q

1

mα+γ+2s
.

Then

I
(1)
12,α + I

(2)
12,α + I

(1)
21,α + I

(2)
21,α

=
1q|hχ(k)G(χ)

qα+δ
√
hk

∫ ∞
−∞

w(t)

(
t

2π

)−α−δ
A′−δ,β,γ,−α(0, χ)Mα,γ,h(0)

× hαkδC12,α,h,k(0)dt

+
1q|kχ(h)G(χ)

qβ+γ
√
hk

∫ ∞
−∞

w(t)

(
t

2π

)−β−γ
A′α,−γ,−β,δ(0, χ)Mα,γ,k(0)

× hβkγC21,α,h,k(0)dt+ E(T )

(354)

We are now almost in a position to prove Proposition 2.2.2. The goal of the

remaining sections is to relate the functions Cii,α,h,k to Bα,h,k and Cij,α,h,k to B′α,h,k

(for i 6= j). We will then write the main terms of Propositions 2.7.1 and 2.7.2 in

terms of Zα,h,k and Z ′α,h,k respectively and we will show that the residue terms of

Proposition 2.7.1 cancel with those of Proposition 2.2.1.
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2.8. The Functions Bα,h,k(s, χ) and B′α,h,k(s, χ)

We first recall the formula for B;

Bα,h,k(s, χ) =Bα,β,γ,δ,h(s, χ)Bγ,δ,α,β,k(s, χ)(355)

where

(356) Bα,β,γ,δ,h(s, χ) =

∏
p|h

∑
j≥0 fα,β(pj, χ)fγ,δ(p

hp+j, χ)p−j(1+s)∑
j≥0 fα,β(pj, χ)fγ,δ(pj, χ)p−j(1+s)


Proposition 2.8.1. We have

(357) Bα,β,γ,δ,h(s, χ) =
∏
p|h

(
B(0)(s)− p−1B(1)(s) + p−2B(2)(s)

(p−γ − χ(p)p−δ)(1− |χ(p)|2p−2−α−β−γ−δ−2s)

)

where

B(0)(s) =p−γ(hp+1) − χ(p)hp+1p−δ(hp+1),(358)

B(1)(s) =χ(p)p−γ−δ(p−α + χ(p)p−β)(p−γhp − χ(p)hpp−δhp)p−s,(359)

B(2)(s) =|χ(p)|2p−α−β−γ−δ(χ(p)p−δ−γhp − χ(p)hpp−γ−δhp)p−2s(360)

Proof. We begin by computing

∑
j≥0

fα,β(pj, χ)fγ,δ(p
hp+j, χ)p−j(1+s).

We have

fα,β(pm, χ) =
∑

n1n2=pm

n−α1 χ(n2)n−β2

=
∑

0≤j≤m

p−α(m−j)χ(pj)p−βj

=
p−α(m+1) − χ(p)m+1p−β(m+1)

p−α − χ(p)p−β
.

(361)
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Therefore∑
j≥0

fα,β(pj, χ)fγ,δ(p
hp+j, χ)p−j(1+s)

=
∑
j≥0

(p−α(j+1) − χ(p)j+1p−β(j+1))(p−γ(hp+j+1) − χ(p)hp+j+1p−δ(hp+j+1))

(p−α − χ(p)p−β)(p−γ − χ(p)p−δ)
p−j(s+1)

Expanding the numerator out and performing the summation we have∑
j≥0

fα,β(pj, χ)fγ,δ(p
hp+j, χ)p−j(1+s)

=

(
p−α−γ(hp+1)

1− p−1−s−α−γ −
χ(p)p−β−γ(hp+1)

1− χ(p)p−1−β−γ−s −
χ(p)hp+1p−α−δ(hp+1)

1− χ(p)p−1−α−δ−s

+
|χ(p)|2χ(p)hpp−β−δ(hp+1)

1− |χ(p)|2p−1−β−δ−s

)
(p−α − χ(p)p−β)−1(p−γ − χ(p)p−δ)−1

which simplifies to(
p−γ(hp+1)

(1− p−1−s−α−γ)(1− χ(p)p−1−β−γ−s)

− χ(p)hp+1p−δ(hp+1)

(1− χ(p)p−1−α−δ−s)(1− |χ(p)|2p−1−β−δ−s)

)
(p−γ − χ(p)p−δ)−1

=
(
B(0)(s)− p−1B(1)(s) + p−2B(2)(s)

)(
(p−γ − χ(p)p−δ)(1− p−1−s−α−γ)

× (1− χ(p)p−1−β−γ−s)(1− χ(p)p−1−α−δ−s)(1− |χ(p)|2p−1−β−δ−s)

)−1

.

Setting hp = 0 and dividing the above by the resulting expression gives the result.

�

Recalling the formula for B′α,h,k(s, χ);

(362) B′α,h,k(s, χ) = B′α,β,γ,δ,h(s, χ)B′γ,δ,α,β,k(s, χ)

where

(363) B′α,β,γ,δ,h(s, χ) =
∏
p|h

∑
j≥0 χ(pj)σα,β(pj)σγ,δ(p

hp+j)p−j(1+s)∑
j≥0 χ(pj)σα,β(pj)σγ,δ(pj)p−j(1+s)

.

Following the same method as for Bα,h,k(s, χ) we get
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Proposition 2.8.2.

(364) B′α,β,γ,δ,h(s, χ) =
∏
p|h

(
B′ (0)(s)− p−1B′ (1)(s) + p−2B′ (2)(s)

(p−γ − p−δ)(1− χ(p)2p−2−α−β−γ−δ−2s)

)
where

B′ (0)(s) = p−γ(hp+1) − p−δ(hp+1),(365)

B′ (1)(s) = χ(p)p−γ−δ(p−α + p−β)(p−γhp − p−δhp)p−s,(366)

B′ (2)(s) = χ(p)2p−α−β−γ−δ(p−δ−γhp − p−γ−δhp)p−2s.(367)

2.9. Relating Terms

2.9.1. The Cases i = j. We now work on the terms in (347), putting them

in terms of Zα,h,k(s).

Lemma 2.9.1. We have

(368) hαkγC11,α,h,k(0) = B−γ,β,−α,δ,h,k(0).

This implies, by use of the functional equation (311), that

(369) hβkδC22,α,h,k(0) = Bα,−δ,γ,−β,h,k(0).

Proof. Once again, by symmetry it suffices to show

(370) hαC11,α,β,γ,δ,h(0) = B−γ,β,−α,δ,h(0).

We may first split the product in B−γ,β,−α,δ,h(0) over primes p|q and primes p - q.

If p|q then the local factor is given by pαhp . We may therefore remove a factor

of h(q)α from both sides of (370) and henceforth only consider the products over

primes p - q. The problem now reduces to showing

pαhp
C

(i)
11,α,β,γ,δ,h(0)

1− χ(p)p−α−δ
=
B

(i)
−γ,β,−α,δ,h(0)

pα − χ(p)p−δ

which reduces to showing

pαhpC
(i)
11,α,β,γ,δ,h(0) = p−αB

(i)
−γ,β,−α,δ,h(0)
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for i = 0, 1, 2 which can be checked by inspection. �

We now demonstrate the cancellation of the R terms of Proposition 2.7.1 with

the residue terms Proposition 2.2.1. We first work on the R terms with negative

coefficient.

Lemma 2.9.2. We have

(371) R

(
−α− γ

2

)
= J (1)

α,γ.

Proof. To prove this it suffices to show

1

2

Lα,β(χ)Lγ,δ(χ)ζ(1− α + β − γ + δ)

ζ(2− α + β − γ + δ)

(
h

k

)α−γ
2

×Q11

(
−α− γ

2

)
C11,α,h,k

(
−α− γ

2

)
=

Res2s=−α−γ(Zα,β,γ,δ,h,k(2s))

(hk)−
α+γ
2

=(hk)
α+γ
2 Res2s=−α−γ(Aα,β,γ,δ,q(2s))Bα,β,γ,δ,h,k(−α− γ)

(372)

which reduces to showing

(373) h−γC11,α,h

(
−α− γ

2

)
= Bα,β,γ,δ,h(−α− γ).

Once again we may remove a factor of h(q)−γ from both sides and the problem

reduces to showing that the following identities hold

(374) p−γhp
C

(i)
11,α,β,γ,δ,h(−(α + γ)/2)

1− χ(p)pγ−δ
=
B

(i)
α,β,γ,δ,h(−α− γ)

p−γ − χ(p)p−δ

for i = 0, 1, 2 which can be checked by inspection. �

Lemma 2.9.3. We have

R′
(
−β − δ

2

)
= J

(1)
β,δ
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Proof. We need to show

1

2

L−γ,−δ(χ)L−α,−β(χ)ζ(1 + α− β + γ − δ)
ζ(2 + α− β + γ − δ)

(
h

k

)β−δ
2

×Q22

(
−β − δ

2

)
C22,α,h,k

(
−β − δ

2

)
=(hk)

β+δ
2 Res2s=−β−δ(Zα,h,k(2s))

(375)

which reduces to showing

(376) h−δh(q)−γ+δC22,α,h

(
−β − δ

2

)
= Bα,h(−β − δ).

The required identities are thus

p−δhp
C

(i)
22,α,h

(−β−δ
2

)
1− χ(p)pγ−δ

=
B

(i)
α,β,γ,δ,h (−β − δ)
p−γ − χ(p)p−δ

for i = 0, 1, 2 each of which can be verified by inspection. �

The cancellation of the residue terms of I
(2)
D of proposition 2.2.1 is given by the

following.

Lemma 2.9.4. We have

(377) R

(
−β − δ

2

)
= −J (2)

β,δ , R′
(
−α− γ

2

)
= −J (2)

α,γ.

Proof. The first of these requires showing

1

2

Lα,β(χ)Lγ,δ(χ)ζ(1− α + β − γ + δ)

ζ(2− α + β − γ + δ)
hαkγ (hk)

−β−δ
2

×Q11

(
−β − δ

2

)
C11,α,h,k

(
−β − δ

2

)
=

Res2s=β+δ(Z−γ,h,k(2s))

(hk)
β+δ
2

(378)

which reduces to showing

(379) hαC11,α,h

(
−β − δ

2

)
= B−γ,h(β + δ).
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By (310) we have

(380) hαC11,α,h

(
−β − δ

2

)
= hβh(q)α−βC22,−γ,h

(
β + δ

2

)
but by (376) we have

(381) h−δh(q)−γ+δC22,α,h

(
−β − δ

2

)
= Bα,h(−β − δ)

and so by permuting the shift parameters we can conclude the result. The result

for R′
(−α−γ

2

)
requires

(382) hβh(q)α−βC22,α,h

(
−α− γ

2

)
= B−γ,h(α + γ)

but by (311) we have

(383) hβh(q)α−βC22,α,h

(
−α− γ

2

)
= hαC11,−γ,h

(
α + γ

2

)
.

In Lemma 2.9.2 it was shown that

(384) h−γC11,α,h

(
−α− γ

2

)
= Bα,h(−α− γ)

and so by permuting the shifts again we have the desired result. �

2.9.2. The Cases i 6= j.

Lemma 2.9.5. Suppose q|h. Then

(385) q−αMα,γ,h(0)hαkδC12,α,h,k(0) = B′−δ,β,γ,−α,h/q,k(0, χ)

Proof. We first equate the factors that are given by products over primes p|q.

By inspection of the Euler product of B′ we see that

(386) B′−δ,β,γ,−α,h/q,k(0, χ) = σγ,−α(h(q)/q)B′−δ,β,γ,−α,h∗(0, χ)B′γ,−α,−δ,β,k(0, χ).

But

(387) σγ,−α(h(q)/q) =
∑

m|h(q)/q

m−γ
(
h(q)/q

m

)α
=

(
h(q)

q

)α
Mα,γ,h(0)
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and so we’re done. As usual, for the products over primes p - q we must check

that the local factors of (h∗)αC12,α,h(0) and B′−δ,β,γ,−α,h∗(0, χ) match. The required

identities are thus

(388) pαhp
C

(i)
12,α,h(0)

1− p−α−γ
=
B

(i)
−δ,β,γ,−α,h∗(0, χ)

p−γ − pα

for i = 0, 1, 2 each of which is easily verified by inspection. �

By performing the substitutions h ↔ k, χ ↔ χ and α ↔ γ, β ↔ δ the above

equation becomes

q−γMα,γ,k(0)hβkγC21,α,h,k(0) = B′−β,δ,α,−γ,k/q,h(0, χ).

On recalling the equation B′α,h,k(0) = B′α,β,γ,δ,h(0)B′γ,δ,α,β,k(0) we acquire the fol-

lowing.

Lemma 2.9.6. Suppose q|k. Then

(389) q−γMα,γ,k(0)hβkγC21,α,h,k(0) = B′α,−γ,−β,δ,h,k/q(0, χ).

Combining the Lemmas of sections 2.9.1 and 2.9.2 with Propositions 2.7.1 and

2.7.2 respectively we get Proposition 2.2.2 and hence Theorem 1.





CHAPTER 3

The Moments Conjecture for the Dedekind Zeta Function

of a Galois Extension

In this chapter we extend the hybrid product method of Gonek, Hughes and

Keating to the Dedekind zeta function of a Galois extension. We start by deducing

the hybrid product itself (Theorem 2). Essentially, this states that there exists a

certain product over prime ideals PK(s,X), and a certain product over non-trivial

zeros ZK(s,X), such that

ζK(s) ∼ P (s,X)Z(s,X)

as |s| → ∞ where the parameter X allows one to mediate between the two prod-

ucts: taking X large (resp. small) gives a majority contribution from P (s,X) (resp.

Z(s,X)).

After proving the hybrid product we discuss its effect on moments. This begins

with the splitting conjecture (Conjecture 1). This claims that the main term of the

2kth moment of the product should split as the product of the moments. Under

this assumption, the problem is reduced to evaluating the moments of P and Z.

We first calculate the 2kth moment of PK(1
2

+ it,X) for Galois extensions.

We then conjecture the 2kth moment of ZK(1
2

+ it,X) for Galois extensions using

random matrix theory. The majority of this chapter lies in proving this conjecture

for k = 1 and K quadratic. Here, our main tool will be the formula of the previous

chapter. Finally, we give an alternative derivation of this last conjecture by using

a modification of the moments recipe of Conrey et al. The modification again

utilises work of the previous chapter.

113
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3.1. The hybrid product

In this section we prove Theorem 2. For this we require a smoothed version

of the explicit formula given in Lemma 3.1.3 below. This is based on a result

originally due to Bombieri and Hejhal [4]. The proof follows similarly to that of

the classical explicit formula and uses the following two Lemmas. As usual, we

denote the non-trivial zeros of ζK(s) by ρ.

Lemma 3.1.1. Suppose t 6= γ for any zero ρ = β+ iγ, 0 ≤ β ≤ 1, of ζK(s). Then

∑
ρ

1

1 + (t− γ)2
� log t.

This implies N1(t) := |{γ : |t− γ| < 1}| � log t.

Proof. By logarithmic differentiation of the Hadamard product (55) we have

ζ ′K(s)

ζK(s)
=B − 1

s− 1
− (r1 + r2)

Γ′( s+2
2

)

Γ( s+2
2

)
− r2

Γ′( s+3
2

)

Γ( s+3
2

)
+
∑
ρ

(
1

ρ
+

1

s− ρ

)
.(390)

Using the bound Γ′(σ + it)/Γ(σ + it)� log t, valid for |t| ≥ 1, we see

∑
ρ

<
(

1

ρ
+

1

2 + it− ρ

)
� log t+ <

(
ζ ′K(2 + it)

ζK(2 + it)

)
� log t.

The first result now follows on noting

∑
ρ

1

1 + (t− γ)2
�
∑
ρ

<
(

1

ρ
+

1

2 + it− ρ

)
.

�

Lemma 3.1.2. For −1 ≤ σ ≤ 2 and t 6= γ for any zero ρ we have

ζ ′K(s)

ζK(s)
=
∑
ρ

|t−γ|<1

1

s− ρ
+O(log t)
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Proof. Subtracting the logarithmic derivative of ζK(2 + it) from that of ζK(s)

using (390) gives

ζ ′K(s)

ζK(s)
=
∑
ρ

(
1

s− ρ
− 1

2 + it− ρ

)
+O(log t)

=

( ∑
ρ

|t−γ|<1

+
∑
ρ

|t−γ|≥1

)(
1

s− ρ
− 1

2 + it− ρ

)
+O(log t)

=
∑
ρ

|t−γ|<1

1

s− ρ
+O(N1(t)) +O

( ∑
ρ

|t−γ|≥1

(
1

s− ρ
− 1

2 + it− ρ

))
+O(log t)

=
∑
ρ

|t−γ|<1

1

s− ρ
+O

(∑
ρ

1

1 + (t− γ)2

)
+O(log t).

�

Lemma 3.1.3. Let u(x) be a real, nonnegative smooth function with compact

support in [1, e], and let u be normalized so that if

(391) v(t) =

∫ ∞
t

u(x)dx,

then v(0) = 1. Let

(392) û(z) =

∫ ∞
0

u(x)xz−1dx

be the Mellin transform of u. Then for s not a zero or a pole of ζK(s) we have

−ζ
′
K(s)

ζK(s)
=
∑
a⊆OK

Λ(a)

N(a)s
v(elogN(a)/ logX)−

∑
ρ

û(1− (s− ρ) logX)

s− ρ

− (r1 + r2)
∞∑
m=1

û(1− (s+ 2m) logX)

s+ 2m

− r2

∞∑
j=0

û(1− (s+ 2j + 1) logX)

s+ 2j + 1
− û(1− (s− 1) logX)

s− 1

(393)
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where Λ(a) is as in (138) and r1, r2 are, respectively, the number of real and

complex embeddings K → C. The sum over primes is finite and the other sums

are absolutely convergent.

Proof. Let c = max{2, 2−<(s)}. By absolute convergence we have

1

2πi

∫ c+i∞

c−i∞

ζ ′K(s+ z)

ζK(s+ z)
û(1 + z logX)

dz

z
=−

∑
a⊆OK

Λ(a)

N(a)s
1

2πi

∫ c+i∞

c−i∞

û(1 + z logX)

N(a)z
dz

z

=−
∑
a⊆OK

Λ(a)

N(a)s
v(elogN(a)/ logX).

Let MT (d) denote the rectangular contour with vertices (c − iT, c + iT,−d +

iT,−d− iT ), d > 0. Then, by the theory of residues we have

1

2πi

∫
MT (d)

ζ ′K(s+ z)

ζK(s+ z)
û(1 + z logX)

dz

z

=
ζ ′K(s)

ζK(s)
−
∑
|γ|≤T

û(1− (s− ρ) logX)

s− ρ
− (r1 + r2)

∑
m≤bd/2c

û(1− (s+ 2m) logX)

s+ 2m

− r2

∑
j≤b(d−1)/2c

û(1− (s+ 2j + 1) logX)

s+ 2j + 1
− û(1− (s− 1) logX)

s− 1
.

(394)

Since ∫ c+iT

c−iT
=

∫
MT (d)

−
∫ −d+iT

c+iT

−
∫ −d−iT
−d+iT

−
∫ c−iT

−d−iT

it remains to show that these other integrals vanish in the limit of large T and d.

We first consider the integral over the line (−d± iT ). Now as long as σ is negative

and bounded away from a negative integer we have

(395)
Γ′(s)

Γ(s)
� log(|s|+ 1).
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Hence by logarithmic differentiation of the functional equation of ζK(s) we have

ζ ′K(s)

ζK(s)
�ζ ′K(1− s)
ζK(1− s)

+
Γ′(s)

Γ(s)

�1 + log(|s|+ 1).

(396)

As such,

(397)
ζ ′K(z + s)

ζK(z + s)
� log(|z + s|+ 1).

Hence, if d is a half integer

(398)

∫ −d−iT
−d+iT

ζ ′K(s+ z)

ζK(s+ z)
û(1 + z logX)

dz

z
� T

log(|d+ s|+ 1)

|d|
max(u(x))

(d logX + 1)

and this vanishes as d→∞ through the half integers.

The behaviours of the other two integrals are equivalent so we only consider

the case in the upper half-plane. We split the line (−d + iT, c + iT ) at the point

b+ iT where b = −1−<(s). Then similarly to the above we have

∫ b+iT

−d+iT

ζ ′K(s+ z)

ζK(s+ z)
û(1 + z logX)

dz

z
� log |T + s|

T

∫ b

−d
û(1 + y logX)dy

�X,s
log T

T
.

(399)

For the integral over the line (b+ iT, c+ iT ) we restrict T in such a way that

|T − γ|−1 � log T . This is possible since N1(T )� log T . For such T we have

ζ ′K(σ + iT )

ζK(σ + iT )
=

∑
|T−γ|<1

1

σ + iT − ρ
+O(log T )� N1(T ) log T � log2 T.

Consequently,

(400)

∫ c+iT

b+iT

ζ ′K(s+ z)

ζK(s+ z)
û(1 + z logX)

dz

z
�X

log2 T

T
.

If we vary T by a bounded amount then the sum over zeros in (394) incurs

O(log T ) extra terms. These terms are all OX,s(T
−1) so if we want to relax the

restriction on T we must take an error of O(T−1 log T ). Since this is less than our

main error term we can let T →∞ after d.
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The support condition on u implies v(elogN(a)/ logX) = 0 when N(a) > X. Since

there are at most n prime ideals above the rational prime p we see the sum over

a ⊆ OK is indeed finite. By integrating û by parts l times we have

(401) |û(z)| � max
x
|u(l)(x)|emax(<(z)+l,0)(1 + |z|)−l.

Therefore, the sums over ρ, j,m in (393) are absolutely convergent. �

Theorem 2. Let X ≥ 2 and let l be any fixed positive integer. Let u(x) =

Xf(X log(x/e)+1)/x where f is a smooth, real, nonnegative function of total mass

one with support in [0, 1]. Thus, u(x) is a real, non-negative, smooth function with

mass 1 and compact support on [e1−1/X , e]. Set

U(z) =

∫ ∞
0

u(x)E1(z log x)dx,

where E1(z) =
∫∞
z
e−w/w dw. Then for σ ≥ 0 and |t| ≥ 2 we have

(402) ζK(s) = PK(s,X)ZK(s,X)

(
1 +O

(
X l+2

(|s| logX)l

)
+O(X−σ logX)

)
where

(403) PK(s,X) = exp

( ∑
a⊆OK

N(a)≤X

Λ(a)

N(a)s logN(a)

)

with

(404) Λ(a) =

logN(p) if a = pm,

0 otherwise,

and

(405) ZK(s,X) = exp

(
−
∑
ρ

U((s− ρ) logX)

)
,

where the sum is over all non-trivial zeros of ζK(s).
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Proof. Let rK(n) represent the number of ideals of OK with norm n. Then

(406) ζK(s) =
∞∑
n=1

rK(n)

ns
= 1 +

∞∑
n=2

rK(n)

ns
.

By a standard result of Dirichlet series (see Theorem 11.2, [1]) we have ζK(σ+it)→

1 as σ → ∞ uniformly in t. Integrating (393) along the horizontal line from

s0 = σ0 + it0 to +∞, with σ0 ≥ 0 and |t0| ≥ 2, we get on the left hand side

− log ζK(s0) if the line does not pass through a zero. If it does, then we define

log ζK(σ+ it) = limε→0+
1
2

(
log ζK(σ+ i(t+ ε)) + log ζK(σ+ i(t− ε))

)
. Also, we take

the principal branch of the logarithm so that limσ→∞ log ζK(σ + it) = 0. On the

right side we formally push the integrals through the sums. We then encounter

integrals of the form∫ ∞
s0

û(1− (s− z) logX)

s− z
ds =

∫ ∞
0

u(x)E1((s0 − z) logX log x)dx

=U((s0 − z) logX).

(407)

This equation holds as long as s0 − z is not real and negative (E1 has a branch

cut along the negative real axis). If it is, then again we define U((s0− z) logX) =

limε→0+
1
2

(
U((s0 − z) logX + iε) + U((s0 − z) logX − iε)

)
. We now have

log ζK(s0) =
∑
a⊆OK

Λ(a)

N(a)s0 logN(a)
v(elogN(a)/ logX)−

∑
ρ

U((s0 − z) logX)

− (r1 + r2)
∞∑
m=1

U((s0 + 2m) logX)

− r2

∞∑
j=1

U((s0 + 2j + 1) logX)− U((s0 − 1) logX)

(408)

where the interchange of integration and summation is justified by absolute con-

vergence. This equation is valid for all points <(s) ≥ 0 not equal to a zero of

ζK(s). We wish to estimate the last three terms of the above.

Suppose that u(x) = Xf(X log(x/e) + 1)/x where f is smooth, real, nonneg-

ative, of total mass one and with support in [0, 1]. Then |u(l)(x)| � X l+1 and
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therefore, by (401),

(409) û(s)� emax(σ,0)X l+1

(1 + |s|)l
.

This implies for x real

U((s0 − x) logX) =

∫ ∞
s0

û(1− (s− x) logX)

s− x
ds

� X l+1

loglX

∫ ∞
σ0

Xmax(x−σ,0)

|σ0 − x+ it0|l+1
ds

�X l+1+max(x−σ0,0)

(|s0 − x| logX)l

(410)

since |t0| > 2. Applying this estimate gives

log ζK(s0) =
∑
a⊆OK

Λ(a)

N(a)s0 logN(a)
v(elogN(a)/ logX)−

∑
ρ

U((s0 − z) logX)

+O

(
X l+2

(|s0| logX)l

)
.

(411)

On replacing s0 by s and exponentiating we now have

(412) ζK(s) = P̃K(s,X)ZK(s,X)

(
1 +O

(
X l+2

(|s| logX)l

))

where

(413) P̃K(s,X) = exp

( ∑
a⊆OK

Λ(a)

N(a)s logN(a)
v(elogN(a)/ logX)

)
.
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We note that this is not too different to PK(s,X). Indeed, since v(elogN(a)/ logX) = 1

for N(a) ≤ X1−1/X we have

P̃K(s,X) =PK(s,X) exp

( ∑
a⊆OK

Λ(a)

N(a)s logN(a)
(v(elogN(a)/ logX)− 1)

)

=PK(s,X) exp

( ∑
X1−1/X≤N(a)≤X

Λ(a)

N(a)s logN(a)
(v(elogN(a)/ logX)− 1)

)

=PK(s,X) exp

(
O

( ∑
X1−1/X≤p≤X

p−σ
))

=PK(s,X) exp

(
O

(
X−σ logX

))
=PK(s,X)(1 +O(X−σ logX),

where we have again used the fact that at most n prime ideals lie above the rational

prime p.

To remove the restriction that s not be a zero of ζK(s), we interpret exp(−U(z))

to be asymptotic to Cz for some constant C as z → 0 so both sides of (402) vanish

at the zeros. This interpretation is allowed by the formula

(414) E1(z) = −γ − log z −
∞∑
n=1

(−1)nzn

nn!
, | arg z| < π

where γ is the Euler-Mascheroni constant. �

In the same vein as [20] we can think of PK(s,X) as a truncated Euler product

and ZK(s,X) as a truncated Hadamard product. To clarify this, we first assume

the Grand Riemann Hypothesis. Denote the non-trivial zeros of ζK(s) by ρn =

1/2 + iγn, ordered by their height above the real axis. We set s = 1/2 + it so that

ZK(s,X) = exp

(
−
∑
ρn

U(i(t− γn) logX)

)
.
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Since the support of u is contained in [e1−1/X , e], which approaches the singleton

{e},

U(z) =

∫ ∞
0

u(x)E1(z log x)dx ≈ E1(z) ∼ −γ − log z

as z → 0. Hence, for the γn close to t we can expect exp
(
−U(i(t−γn) logX)

)
to be

roughly equal to i(t−γn)eγ logX. To see that the γn further away do not contribute

we first note that <E1(ix) = −Ci(|x|) for x ∈ R where Ci(z) = −
∫∞
z
w−1 cosw dw.

Therefore,

|ZK(s,X)| ≈ exp

(∑
ρn

Ci(|t− γn| logX)

)

and since Ci(|x|) decays as x→ ±∞, the only ordinates that contribute are those

close to t. In fact, for |x| > 1, the function Ci(|x|) is already close to 0 and is also

oscillating. We may therefore assume that the only real contribution to ZK(s,X)

comes from the γn such that |t− γn| < 1/ logX. Now, PK(s,X) is approximately

given by
∏

N(p)≤X(1 − N(p)−s)−1 (see the first line of formula (420) below) and

hence

(415) ζK(1
2

+ it) ≈
∏

N(p)≤X

(1−N(p)−1/2−it)−1
∏
γn

|t−γn|<1/ logX

(
i(t− γn)eγ logX

)
.

If we take X small then ζK(1
2
+it) is essentially given by a characteristic polynomial

and we recover the model of Keating and Snaith. On the other hand, taking X

large the major contribution comes from the primes. To get a contribution from

both, and thereby incorporate the primes into the Keating and Snaith model, we

take X in an intermediate range.

As an application of the hybrid product to moments, we can make the equiv-

alent of the splitting conjecture of Gonek, Hughes and Keating.
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Conjecture 1. Let X,T → ∞ with X � (log T )2−ε. Then for k > −1/2, we

have

1

T

∫ 2T

T

∣∣ζK (1
2

+ it
)∣∣2k dt

∼

(
1

T

∫ 2T

T

∣∣PK
(

1
2

+ it,X
)∣∣2k dt)( 1

T

∫ 2T

T

∣∣ZK
(

1
2

+ it,X
)∣∣2k dt).

The reasoning behind this follows much the same as in [20]. The basic point

is that ZK(1
2

+ it,X) oscillates faster than PK(1
2

+ it,X). Indeed, PK(1
2

+ it,X) is

approximately given by
∏

N(p)≤X(1−N(p)−1/2−it)−1 and each term in this product

is a periodic function of period 2π/ logX. However, ZK(1
2

+ it,X) vanishes at the

non-trivial zeros. By Proposition 1.1.6 there are approximately ([K : Q]T/2π) log T

such zeros between 0 and T and hence ZK(1
2
+it,X) oscillates on a scale of 2π/([K :

Q]T log |t|). If X = o(T ) then this oscillation is greater than that of PK(1
2

+ it,X).

It is this separation of scales that suggests they contribute independently to the

moments in leading order, which will be proven for k = 1 and K-quadratic in

Theorem 4. It should be noted that this separation does not necessarily occur

in lower order terms, and in general mixing can occur. Conjectures for the lower

order terms are often better viewed in the light of shifted moments (see [11] for

example).

3.2. Moments of the arithmetic factor

In this section we prove Theorem 3. Let K be a Galois extension with Galois

group G and recall that for a rational prime p we have the decomposition

(416) pOK =

g∏
i=1

pei

with

(417) N(pi) = pf
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for some positive integers e, f and g. We then have the identity efg = n = [K : Q].

The integer g is given by the index of the decomposition group Gpi in G for any

given pi lying above p.

Theorem 3 Let K be a Galois extension of degree n with Galois group G =

Gal(K/Q) and for a given prime p let gp denote the index of the decomposition

group Gp in G. Let 1/2 ≤ c < 1, ε > 0, k > 0 and suppose that X and T → ∞

with X � (log T )1/(1−c+ε). Then

(418)
1

T

∫ 2T

T

∣∣∣∣PK

(
1

2
+ it, X

)∣∣∣∣2k dt ∼ a(k)ψnk
2

K (eγ logX)nk
2

where ψK denotes the residue of ζK(s) at s = 1 and

(419) a(k) =
∏
p⊆OK

((
1− 1

N(p)

)nk2 (∑
m≥0

dgpk(p
m)2

N(p)m

)1/gp )

where dk(p
m) = dk(p

m) = Γ(m+ k)/(m!Γ(k)).

Proof. On raising PK(s,X) to the kth power we have

PK(s,X)k = exp

(
k
∑

N(a)≤X

Λ(a)

N(a)s logN(a)

)
= exp

(
k
∑
m

∑
N(p)m≤X

1

mN(p)ms

)
.

We wish to write this last sum in the exponential as a sum over rational primes.

Let gp(e) denote the number of prime ideals lying above the rational prime p whose

ramification index is e. This is just the number g in the identity efg = n; however

we need to make its dependence on p and e explicit since we’ll be summing over

all the possible values it can take. From the identity efgp(e) = n we see that gp(e)

must be a divisor of n, as must e. Therefore, by summing over all such possibilities
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and writing N(p) = pf = pn/egp(e) we acquire

PK(s,X)k = exp

(
k
∑
m

∑
g|n

g
∑
e|n
g

∑
p
mn
eg ≤X

gp(e)=g

1

mp(n/eg)ms

)

=
∏
g|n

∏
e|n
g

∏
p
n
eg≤X

gp(e)=g

exp

(
log(1− p−(n/eg)s)−gk −

∑
m

p
mn
eg >X

1

mp(n/eg)ms

)
.(420)

The outer products over the divisors of n and n/g are indeed over all divisors with

the inner product being empty if no such p match the condition gp(e) = g. We

now write the innermost product as the Dirichlet series

(421)
∑

l∈Le,g(X)

βgk(l)

l(n/eg)s

where Le,g(X) = {l ∈ Im(N) : p|l =⇒ gp(e) = g and pn/eg ≤ X}. We see

that βgk(l) is a multiplicative function of l, 0 ≤ βgk(l) ≤ dgk(l) for all l and

βgk(p
m) = dgk(p

m) if pm ≤ X.

For an integer l, let le,g denote the greatest factor of l composed of primes p

for which gp = g and whose ramification index is e. Then,

(422) PK(s,X)k =
∏
g|n

∏
e|n
g

( ∑
l∈Le,g(X)

βgk(l)

l(n/eg)s

)
=

∑
l∈W(X)

γk(l)

ls

where

(423) γk(l) =
∏
g|n

∏
e|n
g

βgk(l
eg/n
e,g )

and W(X) = {l ∈ Im(N) : N(p)|l =⇒ N(p) ≤ X}. The product representation

of γ is made possible by the fact that for integers l,m belonging to different

Le,g(X), we have (l,m) = 1. This would not necessarily be the case for non-

Galois extensions. For example, in a cubic extension we may have the factorisation

pOK = p1p2 and hence one of these ideals has norm p, whilst the other has norm

p2. We could then follow the previous reasoning whilst redefining the sets L with
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a consideration of this difference. However, we would then lose the coprimality

condition.

Since we want to apply the mean value theorem for Dirichlet polynomials we

split the sum at T θ where θ is to be chosen later and obtain

(424) PK(s,X)k =
∑

l∈W(X)

l≤T θ

γk(l)

ls
+O

( ∑
l∈W(X)

l>T θ

γk(l)

ls

)
.

Now for ε > 0 and σ ≥ c the error term is

�T−εθ
∑

l∈W(X)

∏
g|n
∏

e|n
g
dgk(l

eg/n
e,g )

nc−ε
= T−εθ

∏
N(p)≤X

(1−N(p)ε−c)−k

=T−εθ exp

(
O

(
k
∑

N(p)≤X

N(p)ε−c
))

= T−εθ exp

(
O

(
kX1−c+ε

(1− c+ ε) logX

))
where in the last line we have used the prime ideal theorem (51). If we let X �

(log T )1/(1−c+ε) then this is

(425) � T−εθ exp

(
O

(
k

log T

log log T

))
�k T

−εθ/2

and hence

(426) PK(s,X)k =
∑

l∈W(X)

l≤T θ

γk(l)

ls
+Ok(T

−εθ/2).

We now let θ = 1/2 and apply the Montgomery-Vaughan mean value theorem to

give

1

T

∫ 2T

T

∣∣∣∣ ∑
l∈W(X)

l≤T 1/2

γk(l)

lσ+it

∣∣∣∣2dt =(1 +O(T−1/2))
∑

l∈W(X)

l≤T 1/2

γk(l)
2

l2σ

=(1 +O(T−1/2))

( ∑
l∈W(X)

γk(l)
2

l2σ
+O(T−ε/4)

)
(427)

=(1 +O(T−ε/4))
∑

l∈W(X)

γk(l)
2

l2σ
.
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Therefore by (426) and the Cauchy-Schwarz inequality we have

(428)
1

T

∫ 2T

T

|PK (σ + it,X)|2k = (1 +O(T−ε/4))
∑

l∈W(X)

γk(l)
2

l2σ
.

We can now re-factorise the above Dirichlet series to give

(429)
∑

l∈W(X)

γk(l)
2

l2σ
=
∏
g|n

∏
e|n
g

( ∑
l∈Le,g(X)

βgk(l)
2

l2(n/eg)σ

)
.

Since βk(n) is multiplicative and satisfies 0 ≤ βk(n) ≤ dk(n) and βk(p
m) =

dk(p
m) if pm ≤ X we have

∏
p
n
eg≤X
gp=g

Np∑
m=0

dgk(p
m)2

p2(n/eg)mσ
≤

∑
l∈Le,g(X)

βgk(l)
2

l2(n/eg)σ
≤

∏
p
n
eg≤X
gp=g

∞∑
m=0

dgk(p
m)2

p2(n/eg)mσ

where Np = blogX/ log pc. The ratio of the left side to the right is

∏
p
n
eg≤X
gp=g

(
1−

∑
m≥Np+1 dk(p

m)2p−2(n/eg)mσ∑
m≥0 dk(p

m)2p−2(n/eg)mσ

)

=
∏

p
n
eg≤X
gp=g

(
1 +O

( ∑
m≥Np+1

dk(p
m)2

p2(n/eg)mσ

))
=

∏
p
n
eg≤X
gp=g

(
1 +O

(
p(Np+1)(ε−2(n/eg)σ)

))

=
∏

p
n
eg≤
√
X

gp=g

(
1 +O

(
p

logX
log p

(ε−2(n/eg)σ)
)) ∏

√
X<p

n
eg≤X

gp=g

(
1 +O

(
p2(ε−2(n/eg)σ)

))
.

The error term in the factor of the first product is equal to O(X−2(n/eg)σ+ε) which

is O(X−2σ+ε) since n/eg ≥ 1. Therefore, by the prime number theorem the first

product is equal to 1 +O(X−1/2+ε). The second product is

1 +O

( ∑
√
X<p

n
eg≤X

p−2(n/eg)+ε

)
= 1 +O

(
X−c

∑
p

p−2((n/eg)−c)+ε
)
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for some c. Using n/eg ≥ 1 and taking c = 1/2 − ε we see the second product is

also 1 +O(X−1/2+ε). Therefore,

(430)
∞∑

l∈Le,g(X)

βgk(l)
2

l2(n/eg)σ
= (1 +O(X−1/2+ε))

∏
p
n
eg≤X
gp=g

∑
m≥0

dgk(p
m)2

p2m(n/eg)σ
.

Now, the product on the right may be divergent as X →∞. In order to keep the

arithmetic information, we factor out the divergent part and write it as

(431)
∏

p
n
eg≤X
gp=g

((
1− p−2(n/eg)σ

)ngk2 ∑
m≥0

dgk(p
m)2

p2m(n/eg)σ

) ∏
p
n
eg≤X
gp=g

(
1− p−2(n/eg)σ

)−ngk2
.

In terms of divergence, the worst case scenario is when n/eg = 1. In this case if

gp = g < n then p is ramified and the product is finite. Therefore, we only need

consider the case g = n for which the above product equals

∏
p>X
gp=n

((
1− p−2σ

)n2k2
∑
m≥0

dnk(p
m)2

p2mσ

)
=
∏
p>X
gp=n

(
1− n2k2p−2σ + n2k2p−2σ +Ok(p

−4σ)
)

=
∏
p>X
gp=n

(
1 +Ok(p

−4σ)
)

=1 +Ok(X
−1/2+ε).(432)

It follows that we can extend the first product in (431) over all primes. Specialising

to σ = 1/2 and using the product representation in (429) we see

(433)
∑

l∈W(X)

γk(l)
2

l
= a(k)

∏
N(p)≤X

(1−N(p)−1)−nk
2

(1 +Ok(X
−1/2+ε)).

By Mertens theorem for number fields (52), we have

(434)
∏

N(p)≤X

(1−N(p)−1)−nk
2

= ψnk
2

K (eγ logX)nk
2

(1 +O(1/ log2X))

and the result follows. �
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3.3. Support for Conjecture 2

Our support for Conjecture 2 closely follows the arguments of Gonek, Hughes

and Keating [20] with one slight modification. Let us first restate the conjecture.

Conjecture 2. Let K be a Galois extension of degree n. Suppose that X,T →∞

with X � (log T )2−ε. Then for k > −1/2 we have

(435)
1

T

∫ 2T

T

∣∣∣∣ZK

(
1

2
+ it,X

)∣∣∣∣2k dt
∼ (eγ logX)−nk

2
∏
χ

G(χ(1)k + 1)2

G(2χ(1)k + 1)

(
log
(
q(χ)T dχ

))χ(1)2k2

where the product is over the irreducible characters of Gal(K/Q), G is the Barnes

G-function, q(χ) is the conductor of L(s, χ,K/Q) and dχ is its degree.

By (75), we have the factorisation

(436) ζK(s) =
∏
χ

L(s, χ,K/Q)χ(1)

where the product is over the non-equivalent irreducible characters of Gal(K/Q)

and L(s, χ,K/Q) is the Artin L-function attached to χ. For each character χ, the

associated L-function satisfies the functional equation

(437) Λ(s, χ) := q(χ)s/2γ(s, χ)L(s, χ) = W (χ)Λ(1− s, χ)

where W (χ) is some complex number of modulus one and q(χ) is the conductor,

for which we do not require an explicit expression. The gamma factor is given by

(438) γ(s, χ) = π−sdχ/2
dχ∏
j=1

Γ

(
s+ µj

2

)
with µj equal to 0 or 1. If we assume the Artin conjecture then L(s, χ) is an entire

function for all non-trivial χ. If χ is the trivial character then L(s, χ) equals the

Dedekind zeta function of the base field, which in our case is ζ(s). Under this
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assumption, Artin L-functions are in the Selberg class. Therefore, by Proposition

1.1.6 the mean density of zeros of L(β + it, χ), 0 ≤ β ≤ 1, is given by

(439)
1

π
log

(
q(χ)

(
t

2π

)dχ )
=

1

π
Lχ(t),

say. For each L(s, χ) in the product of equation (436), we associate to its zeros

γn(χ) at height T , a unitary matrix U(N(χ)) of size N(χ) = bLχ(T )c chosen with

respect to Haar measure, which we denote dµ(χ). After rescaling, the zeros γn(χ)

are conjectured [49] to share the same distribution as the eigenangles θn(χ) of

U(N(χ)) when chosen with dµ(χ).

In addition to the previous assumptions, we now also assume the extended

Riemann hypothesis. Let ZK(s,X) be given by (139). Since <E1(ix) = −Ci(|x|)

for x ∈ R, where

(440) Ci(z) = −
∫ ∞
z

cosw

w
dw,

we see that

1

T

∫ 2T

T

∣∣∣∣ZK

(
1

2
+ it,X

)∣∣∣∣2k dt
=

1

T

∫ 2T

T

∏
γn

exp

(
2k

∫ e

1

u(y)Ci(|t− γn| log y logX)

)
dydt

=
1

T

∫ 2T

T

∏
χ

∏
γn(χ)

exp

(
2kχ(1)

∫ e

1

u(y)Ci(|t− γn(χ)| log y logX)

)
dydt

(441)

where u(y) is a smooth, non-negative function supported on [e1−1/X , e] and of total

mass one. Since the zeros are conjectured to share the same distribution as the

eigenangles, we now replace the zeros with the eigenangles and argue that the

above should be modeled by

(442) E
[∏

χ

N(χ)∏
n=1

φ(kχ(1), θn(χ))

]
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where

(443) φ(m, θ) = exp

(
2m

∫ e

1

u(y)Ci(|θ| log y logX)

)
and the expectation is taken with respect to the product measure

∏
χ dµ(χ). We

now assume that the matrices U(N(χ)) can be chosen independently for any two

distinct χ. This corresponds to a ‘superposition’ of ensembles; the behaviour of

which is also shared by the distribution of zeros of a product of distinct L-functions

[34]. With this assumption, the expectation factorises as

(444)
∏
χ

E
[N(χ)∏
n=1

φ(kχ(1), θn(χ))

]
.

In [20] it is shown (Theorem 4) that for k > −1/2 and X ≥ 2,

(445) E
[ N∏
j=1

φ(m, θj)

]
∼ G(m+ 1)2

G(2m+ 1)

(
N

eγ logX

)m2 (
1 +Om

(
1

logX

))
.

Therefore, by forming the product over χ and using
∑

χ χ(1)2 = |Gal(K/Q)|= n

we are led to conjecture 2.

After combining this with our formula for the moments of PK(1
2

+ it,X) via

the splitting conjecture we gain the full conjecture for the moments of ζK(1
2

+ it).

Note that after using
∑

χ χ(1)2 = |Gal(K/Q)|= n the resulting expression in our

conjecture is ∼ c lognk
2

T for some determinable constant c. Now, in the paper

[9], Conrey and Farmer express the idea that the mean square of ζ(s)k should be

a multiple of the sum
∑

n≤T dk(n)2n−1, and that this multiple is the measure of

how many Dirichlet polynomials are needed to capture the full moment. Their

reasoning is based on a combination of the Montgomery-Vaughan mean value

Theorem and the form of the sixth and eighth moment conjectures given in [15].

Assuming this idea applies to other L-functions, we note the aforementioned result

of Chandrasekharan and Narasimhan [7]. They showed that for a Galois extension
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of degree n,

(446)
∑
m≤T

rK(m)2 ∼ cT logn−1 T,

where rK(m) is the number of integral ideals of norm m and c is some constant.

Applying partial summation we thus gain a result which supports our conjecture,

at least in the case k = 1 (we note the results of [7] should easily extend to general

k, and remain consistent with our conjecture). Alternatively, one could view our

conjecture as adding support to the idea of Conrey and Farmer.

3.4. The second moment of ZK for quadratic extensions

In this section we prove Theorem 4. For the most part, the remainder of this

chapter is concerned with quadratic extensions so we first restate some of the

useful facts. As mentioned in the introduction, ζK(s) = ζ(s)L(s, χ) where χ is

the Kronecker character. The modulus q of χ is given explicitly in terms of the

discriminant dK by formula (78). We shall have occasion to work with more general

(complex) characters χ mod q > 1 when the arguments in question work in such

generalities, although at some points we may specialise to the Kronecker character

without mention. We also recall the splitting of primes in quadratic extensions:

p is split (χ(p) = 1) : pOK = p1p2 =⇒ N(p1) = N(p2) = p

p is inert (χ(p) = −1) : pOK = p1 =⇒ N(p1) = p2

p is ramified (χ(p) = 0) : pOK = p2
1 =⇒ N(p1) = p.

At some points we shall use the notation ps, pi, pr to denote split, inert and ramified

primes respectively.

3.4.1. The setup. Our aim is to show the following.
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Theorem 4. Let K be a quadratic number field and suppose X,T → ∞ with

X � (log T )2−ε. Then

(447)
1

T

∫ 2T

T

∣∣ZK
(

1
2

+ it,X
)∣∣2 dt ∼ log T · log qT

(eγ logX)2 .

Since ζK(1/2 + it)PK(1/2 + it,X) = ZK(1/2 + it,X)(1 + o(1)) for t ∈ [T, 2T ],

it is enough to show that

(448)
1

T

∫ 2T

T

∣∣∣ζK (1
2

+ it
)
PK
(

1
2

+ it,X
)−1
∣∣∣2 dt ∼ log T · log qT

(eγ logX)2 .

To evaluate the left hand side we first express PK(1/2 + it)−1 as a Dirichlet poly-

nomial and then apply our formula for the twisted second moment. The means to

do this are given by the following sequence of Lemmas.

Lemma 3.4.1. Let

(449) Qs(s,X) =
∏
p≤
√
X

p split

(
1− p−s

) ∏
√
X<p≤X
p split

(
1− p−s +

1

2
p−2s

)

and define Qi(s,X) and Qr(s,X) as the same products except over the inert and

ramified primes respectively. Then for X sufficiently large, we have

(450) PK(s,X)−1 = Qs(s,X)2Qi(2s,
√
X)Qr(s,X)

(
1 +O

(
1

logX

))

and this holds uniformly for σ ≥ 1/2.
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Proof. First, note

PK(s,X)−1 = exp

− ∑
N(p)m≤X

1

mN(p)ms


=
∏
p≤X
p split

exp

(
− 2

∑
1≤m≤b logXlog p c

1

mpms

) ∏
p2≤X
p inert

exp

(
−

∑
1≤m≤b logX

2 log pc

1

mp2ms

)
(451)

×
∏
p≤X

p ramified

exp

(
−

∑
1≤m≤b logXlog p c

1

mpms

)

and so it suffices to consider just one of these products. Let A be a subset of the

primes and let Np = blogX/ log pc. Since Np = 1 if
√
X < p ≤ X we have

∏
p≤X
p∈A

exp

(
−

∑
1≤m≤Np

1

mpms

)
=
∏
p≤
√
X

p∈A

exp

(
log(1− p−s) +

∑
m>Np

1

mpms

)

×
∏

√
X<p≤X
p∈A

exp(−p−s).

Now, on noting that Np + 1 > logX/ log p we have for σ ≥ 1/2;

exp

( ∑
p≤
√
X

∑
m>Np

1

mpms

)
� exp

( ∑
p≤
√
X

1

pσ(Np+1)

)
� exp

(
X−1/2

∑
p≤
√
X

1

)(452)

and this is � 1 +O(1/ logX) by the prime number theorem. Also,∏
√
X<p≤X

(
1− p−s +

1

2!
p−2s − 1

3!
p−3s +O(p−4σ)

)

=
∏

√
X<p≤X

(
1− p−s +

1

2
p−2s

)(
1 +O(p−3σ)

)
(453)

=
∏

√
X<p≤X

(
1− p−s +

1

2
p−2s

)(
1 +O

(
1

logX

))
and so we’re done. �



3.4. THE SECOND MOMENT OF ZK FOR QUADRATIC EXTENSIONS 135

Lemma 3.4.2. We have

(454) PK

(
1

2
+ it,X

)−1

=

(
1 +O

(
1

logX

)) ∑
n∈W(X)

α(n)

n1/2+it

where W(X) = {n ∈ Im(N) : N(p)|n =⇒ N(p) ≤ X} and the behaviour of α at

primes is determined by

(455)

α(pjs) =



−2 if j = 1, ps ≤ X,

1 if j = 2, ps ≤
√
X,

2 if j = 2,
√
X < ps ≤ X,

0 if j ≥ 3,

α(p2j
i ) =



−1 if j = 1, p2
i ≤ X,

0 if j = 2, p2
i ≤
√
X,

1
2

if j = 2,
√
X < p2

i ≤ X,

0 if j ≥ 3

and

(456) α(pjr) =



−1 if j = 1, pr ≤ X,

0 if j = 2, pr ≤
√
X,

1
2

if j = 2,
√
X < pr ≤ X,

0 if j ≥ 3.

We also have the bound α(n)� d(n) for all n ∈ W(X).

Proof. We first note that the square of the product over split primes in (450)

is given by

Qs(s,X)2 =
∏
p≤
√
X

p split

(
1− 2p−s + p−2s

) ∏
√
X<p≤X
p split

(
1− 2p−s + 2p−2s +O(p−3σ)

)

=
∏
p≤
√
X

p split

(
1− 2p−s + p−2s

) ∏
√
X<p≤X
p split

(
1− 2p−s + 2p−2s

)
(457)

×
(

1 +O

(
1

logX

))
.

=Rs(s,X)

(
1 +O

(
1

logX

))
,
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say. On writing

(458) Rs(s,X)Qi(2s,
√
X)Qr(s,X) =

∑
n∈W(X)

α(n)

n1/2+it

we can read off the behaviour of α at the primes from the Euler products. �

Lemma 3.4.3. Let θ > 0. Then

1

T

∫ 2T

T

∣∣∣ζK (1
2

+ it
)
PK
(

1
2

+ it,X
)−1
∣∣∣2 dt

=

(
1 +O

(
1

logX

))
1

T

∫ 2T

T

∣∣∣∣ζK (1
2

+ it
) ∑
n∈W(X)

n≤T θ

α(n)

n1/2+it

∣∣∣∣2dt.(459)

Proof. First, we write

(460) QK
(

1
2

+ it
)

=
∑

n∈W(X)

n≤T θ

α(n)

n1/2+it
+O

( ∑
n∈W(X)

n>T θ

α(n)

n1/2+it

)
.

We can show, by using the bound α(n)� d(n) and a similar reasoning to that used

between (424) and (426), that if X � log2−ε T then the error term is � T−εθ/10.

Rewriting (460) as QK(1/2 + it) =
∑

+O(T−εθ/10) we see

(461)
1

T

∫ 2T

T

∣∣ζK (1
2

+ it
)
QK
(

1
2

+ it
)∣∣2 dt

=
1

T

∫ 2T

T

∣∣∣ζK (1
2

+ it
)∑∣∣∣2 dt+O

(
1

T 1+εθ/10

∫ 2T

T

∣∣ζK (1
2

+ it
)∣∣2 ∣∣∣∑∣∣∣ dt)

+O

(
1

T 1+εθ/5

∫ 2T

T

∣∣ζK (1
2

+ it
)∣∣2 dt).

The final term is� T−εθ/10 by Motohashi’s result (79). Using the Cauchy-Schwarz

inequality we can show that the second term is

� 1

T 1+εθ/10

(∫ 2T

T

∣∣∣ζK (1
2

+ it
)∑∣∣∣2 dt∫ 2T

T

∣∣ζK (1
2

+ it
)∣∣2 dt)1/2

� 1

T 1/2+εθ/20

(∫ 2T

T

∣∣∣ζK (1
2

+ it
)∑∣∣∣2 dt)1/2

(462)
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and the result follows. �

We are now required to show that for X,T →∞ with X � (log T )2−ε,

(463)
1

T

∫ 2T

T

∣∣∣∣ζK (1
2

+ it
) ∑
n∈W(X)

n≤T θ

α(n)

n1/2+it

∣∣∣∣2 =
log T · log qT

(eγ logX)2

(
1 +O

(
1

logX

))
.

So take a Dirichlet polynomial M(s) =
∑

n≤T θ a(n)n−s with θ ≤ 1/11− ε and let

w(t) satisfy the conditions of Theorem 1. Then, upon expanding, we have

(464)

∫ ∞
−∞

∣∣ζK (1
2

+ it
)∣∣2 ∣∣M (

1
2

+ it
)∣∣2w(t)dt

=
∑

h,k≤T θ

a(h)a(k)√
hk

lim
α,β,γ,δ→0

I(h(k), k(h))

where I is given by (154) and h(k) = h/(h, k). In order to evaluate this inner limit

we express Zα,β,γ,δ,h,k(0) as a Laurent series and express the other terms as Taylor

series. In doing this, the only real difficulty lies in calculating the derivatives of

Bα,β,γ,δ,h,k(0). For our purposes, which is to work over X-smooth numbers, we only

need upper bounds on these derivatives.

Proposition 3.4.4. Let M(s) =
∑

n≤T θ a(n)n−s with θ ≤ 1/11− ε. Then,

(465)
1

T

∫ 2T

T

∣∣ζK (1
2

+ it
)∣∣2 ∣∣M (

1
2

+ it
)∣∣2 dt

=
∑

h,k≤T θ

a(h)a(k)

hk
(h, k)

[
2∑

n=0

cn(h, k, T ) +O
(
T−

1
4

+ε (hkkh)
11/8+ε

)]

where the leading order term is given by

(466) c2(h, k, T ) =
6

π2
L(1, χ)2

∏
p|dK

(
1 +

1

p

)−1

× δ(h(k))δ(k(h))

[
log T · log qT +O(log T log hk

(h,k)2
)

]
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with

(467) δ(m) =


∏

p|m
p split

(
1 +mp

1−p−1

1+p−1

)
if minert is square

0 otherwise

where mp is the highest power of p dividing m and minert is the greatest factor of

m composed solely of inert primes. For the lower order terms we have

(468) c1(h, k, T )� δ(h(k))δ(k(h)) log T log log hk
(h,k)2

and

c0(h, k, T ) =c′0(h, k, T ) + 1q|h(k)χ(k(h))G(χ)Z ′
0,0,0,0,

h(k)
q
,k(h)

(0, χ)

+ 1q|k(h)χ(h(k))G(χ)Z ′
0,0,0,0,h(k),

k(h)
q

(0, χ)
(469)

with

(470) c′0(h, k, T )� δ(h(k))δ(k(h))(log log hk
(h,k)2

)2.

The Z ′ terms may be written as

Z ′0,0,0,0,m,n(0, χ) =
L(1, χ)4

L(2, χ2)
δ′(m)δ′(n)(471)

where

(472) δ′(m) =
∏
p|m
p split

(
1 +mp

p− 1

p+ 1

) ∏
p|m
p inert

(
1 +mp

p+ 1

p− 1

)
.
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Proof. To simplify things we work with I(h, k) instead of I(h(k), k(h)) and we

let β = α and γ = δ = 0. Then, by Theorem 1,

I(h, k) =

∫ ∞
−∞

(
h

k

)−it
ζK

(
1

2
+ α + it

)
ζK

(
1

2
− it

)
w(t)dt

=
1√
hk

∫ ∞
−∞

w(t)

(
Zα,α,0,0,h,k(0) + Z0,0,−α,−α,h,k(0)

(
t

2π

)−α(
qt

2π

)−α
+ Z0,α,−α,0,h,k(0)

(
t

2π

)−α
+ Zα,0,0,−α,h,k(0)

(
qt

2π

)−α
(473)

+ 1q|hχ(k)G(χ)Z ′
0,α,0,−α,h

q
,k

(0, χ)

(
t

2π

)−α
+ 1q|kχ(h)G(χ)Z ′

α,0,−α,0,h, k
q

(0, χ)

(
qt

2π

)−α)
dt+ E(T )

where E(T )� q1+εT 3/4+ε(hk)7/8+ε(T/T0)9/4. The various Z terms of the integrand

are given by

Zα,α,0,0,h,k(0) =
ζ(1 + α)2L(1 + α, χ)2

ζ(2 + 2α)

∏
p|q

(
1 +

1

p1+α

)−1

Bα,α,0,0,h,k(0),

Z0,0,−α,−α,h,k(0) =
ζ(1− α)2L(1− α, χ)2

ζ(2− 2α)

∏
p|q

(
1 +

1

p1−α

)−1

B0,0,−α,−α,h,k(0),

Z0,α,−α,0,h,k(0) =
ζ(1 + α)ζ(1− α)L(1, χ)2

ζ(2)

∏
p|q

(
1− p−1−α

1− p−2

)
B0,α,−α,0,h,k(0),

Zα,0,0,−α,h,k(0) =
ζ(1 + α)ζ(1− α)L(1, χ)2

ζ(2)

∏
p|q

(
1− p−1+α

1− p−2

)
Bα,0,0,−α,h,k(0),

Z ′
0,α,0,−α,h

q
,k

(0, χ) =
L(1, χ)2L(1− α, χ)L(1 + α, χ)

L(2, χ2)
B′

0,α,0,−α,h
q
,k

(0, χ),

Z ′
α,0,−α,0,h, k

q

(0, χ) =
L(1, χ)2L(1 + α, χ)L(1− α, χ)

L(2, χ2)
B′

0,α,0,−α,h, k
q

(0, χ)

where

Bα,β,γ,δ,h,k(0, χ) =
∏
p|hk

∑
j≥0 fα,β(pkp+j, χ)fγ,δ(p

hp+j, χ)p−j∑
j≥0 fα,β(pj, χ)fγ,δ(pj, χ)p−j
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and

B′α,β,γ,δ,h,k(0, χ) =
∏
p|hk

∑
j≥0 χ(pj)σα,β(pkp+j)σγ,δ(p

hp+j)p−j∑
j≥0 χ(pj)σα,β(pj)σγ,δ(pj)p−j

with

fα,β(n, χ) =
∑

n1n2=n

n−α1 n−β2 χ(n2), σα,β(n) =
∑

n1n2=n

n−α1 n−β2 .

As previously mentioned, we want to expand the Z terms as Laurent series (we

can just let the variables in the Z ′ terms tend to zero since these terms are holo-

morphic). The expansion of the B terms is facilitated by the following observation.

Since

fα,α(pm, χ) =
∑
d|pm

(pm/d)−αd−αχ(d) = p−αm
∑
d|pm

χ(d) = p−αmFχ(pm),

say, we have that

Bα,α,0,0,h,k(0) =
∏
p|hk

∑
j≥0 fα,α(pkp+j, χ)f0,0(php+j, χ)p−j∑

j≥0 fα,α(pj, χ)f0,0(pj, χ)p−j

=k−α
∏
p|hk

∑
j≥0 Fχ(pkp+j)Fχ(php+j)p−j(1+α)∑

j≥0 Fχ(pj)2p−j(1+α)

=k−αCh,k(α),

(474)

say. Note B0,0,−α,−α,h,k(0) = hαCh,k(−α). For the two remaining B terms we

cannot fully extract the powers of h or k. However they are similar enough that

we only need deal with a single function. Let Dh,k(α) := Bα,0,0,−α,h,k(0). Then

since

fα,0(pm, χ) = p−αmf0,−α(pm, χ),

we have Dh,k(α) = hαk−αB0,−α,α,0(0) and so B0,α,−α,0,h,k(0) = hαk−αDh,k(−α).

In expanding the Zα,α,0,0,h,k(0) term we write ζ(1+α) = 1/α+γ0 +αγ1 +O(α2)

and

L(1 + α, χ)2

ζ(2 + 2α)

∏
p|q

(
1 +

1

p1+α

)−1

= c0+αc1+O(α2), c0 =
L(1, χ)2

ζ(2)

∏
p|q

(
1 +

1

p

)−1
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for some constants γi, ci. We write Bα,α,0,0,h,k(0) = k−αCh,k(α) which in turn we

write as

(
1− α log k +

α2

2
log2 k +O(α3)

)(
Ch,k(0) + αC ′h,k(0) +

α2

2
C ′′h,k(0) +O(α3)

)

where the ′ in the C terms denotes differentiation with respect to α. This should

cause no confusion with meaning of the Z ′ terms since we never differentiate these.

The other Z terms are treated similarly. Also, we write Z ′0,α,0,−α,h/q,k(0, χ) =

Z ′0,0,0,0,h/q,k(0, χ) + O(α) again with a similar treatment for the other Z ′ term.

Finally, we let L = log(t/2π) and Q = log(qt/2π). Then, the integrand of (473) is

given by

(
1

α
+ γ0 + · · ·

)2(
c0 + · · ·

)(
1− α log k +

α2

2
log2 k + · · ·

)
×
(
Ch,k(0) + αC ′h,k(0) +

α2

2
C ′′h,k(0) + · · ·

)
+

(
− 1

α
+ γ0 + · · ·

)2(
c0 + · · ·

)(
1 + α log h+

α2

2
log2 h+ · · ·

)
×
(
Ch,k(0)− αC ′h,k(0) +

α2

2
C ′′h,k(0)− · · ·

)(
1− αL+

α2

2
L2 + · · ·

)
×
(

1− αQ+
α2

2
Q2 + · · ·

)
+

(
1

α
+ γ0 + · · ·

)(
− 1

α
+ γ0 + · · ·

)(
c0 + · · ·

)(
1 + α log

h

k
+
α2

2
log2 h

k
+ · · ·

)
×
(
Dh,k(0)− αD′h,k(0) +

α2

2
D′′h,k(0)− · · ·

)(
1− αL+

α2

2
L2 + · · ·

)
+

(
1

α
+ γ0 + · · ·

)(
− 1

α
+ γ0 + · · ·

)(
c0 + · · ·

)
×
(
Dh,k(0) + αD′h,k(0) +

α2

2
D′′h,k(0) + · · ·

)(
1− αQ+

α2

2
Q2 + · · ·

)
+1q|hχ(k)G(χ)Z ′0,0,0,0,h/q,k(0, χ) + 1q|kχ(h)G(χ)Z ′0,0,0,0,h,k/q(0, χ) + · · ·
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We note that log hk � log T and, as we shall see later, D
(i)
h,k(0)� Dh,k(0) logi hk,

C
(i)
h,k(0)� Ch,k(0)(log log hk)i. Collecting like terms this becomes

c0

[
Ch,k(0)LQ− L

(
Ch,k(0) log h−Dh,k(0) log

h

k
+D′h,k(0)

)
−Q

(
Ch,k(0) log h−D′h,k(0)

)
+

1

2

(
Ch,k(0)(log2 k + log2 h)

−Dh,k(0) log2 h

k
+ 2D′h,k(0) log

h

k
− 2D′′h,k(0)

)]
+ · · ·

= c0Dh,k(0)

[
LQ − L log hk + log h log k +

D′h,k(0)

Dh,k(0)
log

h

k
−
D′′h,k(0)

Dh,k(0)

]
+ · · ·

where we have used Ch,k(0) = Dh,k(0) and Q = L+ log q. The dots represent the

lower order (in t) terms and they are all seen to be holomorphic in α. We can

therefore let α→ 0. The above expression will give rise to the leading term (466)

once we show Dh,k(0) = δ(h)δ(k) and D
(i)
h,k(0) � Dh,k(0) logi hk. The estimates

for the lower order terms (468) and (469) will follow after showing C
(i)
h,k(0) �

Ch,k(0)(log log hk)i. We prove this latter estimate first.

Let

Gh,k(α, p) =
∑
j≥0

Fχ(pkp+j)Fχ(php+j)p−j(1+α)

where Fχ(pm) =
∑

d|pm χ(d) and let G(α, p) = G1,1(α, p) so that

Ch,k(α) =
∏
p|hk

Gh,k(α, p)

G(α, p)
.

By logarithmic differentiation we have

C ′h,k(α) = Ch,k(α)
∑
p|hk

[
G′h,k(α, p)

Gh,k(α, p)
− G′(α, p)

G(α, p)

]
and differentiating again gives

C ′′h,k(α) = Ch,k(α)

{(∑
p|hk

[
G′h,k(α, p)

Gh,k(α, p)
−G

′(α, p)

G(α, p)

])2

+
∑
p|hk

[
G′h,k(α, p)

Gh,k(α, p)
−G

′(α, p)

G(α, p)

]′}
.
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Now, since

(475) Fχ(pj) =



j + 1 if χ(p) = 1,

1 if χ(p) = −1 and j is even,

0 if χ(p) = −1 and j is odd,

1 if χ(p) = 0

we have

−
G′h,k(α, p)

Gh,k(α, p)
= log p

∑
j≥0 jFχ(pkp+j)Fχ(php+j)p−j(1+α)∑
j≥0 Fχ(pkp+j)Fχ(php+j)p−j(1+α)

� log p

∑
j≥0 jp

−j(1+α)∑
j≥0 p

−j(1+α)

� log p

p

where in the last line we have used
∑

j≥0 j
nx−j � 1/x for n ≥ 1. Similarly,

we find G′(α, p)/G(α, p) � p−1 log p and G′′h,k(α, p)/Gh,k(α, p) � p−1 log2 p. The

upper bound C
(i)
h,k(0)� Ch,k(0)(log log hk)i now follows if we can show

∑
p|hk

logi p

p
� (log log hk)i.

To see this last inequality, first note that the largest values of the sum occur

successively at the primorials i.e. when hk =
∏

p≤x p for some x. In this case we

have ∑
p|hk

logi p

p
=
∑
p≤x

logi p

p
= logi x+O(logi−1 x)

where we have used the well known result
∑

p≤x 1/p = log log x+O(1) and partial

summation. Since hk = exp(
∑

p≤x log p) = exp(x+O(1)) we have x� log hk and

we’re done.

Let

Hh,k(α, p) =
∑
j≥0

fα,0(pkp+j, χ)f0,−α(php+j, χ)p−j
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and H(α, p) = H1,1(α, p) so that

Dh,k(α) =
∏
p|hk

Hh,k(α, p)

H(α, p)
.

As in the case of Ch,k(α), the upper bounds of D
(i)
h,k(α) are determined by those of∑

p|hkH
(i)
h,k(α, p)/Hh,k(α, p). Let

f
(i,k)
α,−β(n, χ) =

∂i

∂αi
∂k

∂βk
fα,−β(n, χ) =

∑
n1n2=n

(− log n1)i(log n2)kn−α1 nβ2χ(n2).

Then

H ′h,k(α, p) =
∑
j≥0

[
f

(1,0)
α,0 (pkp+j, χ)f0,−α(php+j, χ)

+ fα,0(pkp+j, χ)f
(0,1)
0,−α(php+j, χ)

]
p−j

and

H ′′h,k(α, p) =
∑
j≥0

[
f

(2,0)
α,0 (pkp+j, χ)f0,−α(php+j, χ)

+ 2f
(1,0)
α,0 (pkp+j, χ)f

(0,1)
0,−α(php+j, χ) + fα,0(pkp+j, χ)f

(0,2)
0,−α(php+j, χ)

]
p−j.

Since f
(i,k)
α,−β(n, χ)� (log n)i+kfα,−β(n, χ) we see

H
(i)
h,k(α, p)�

(
(hp + kp) log p

)i
Hh,k(α, p)

and therefore

D
(i)
h,k(α)

Dh,k(α)
�
(∑

p|hk

H ′h,k(α, p)

Hh,k(α, p)

)i
+
∑
p|hk

H
(i)
h,k(α, p)

Hh,k(α, p)
� logi hk.

It remains to evaluate

Dh,k(0) =
∏
p|h

∑
j≥0 Fχ(pj)Fχ(php+j)p−j∑

j≥0 Fχ(pj)2p−j

∏
p|k

∑
j≥0 Fχ(pkp+j)Fχ(pj)p−j∑

j≥0 Fχ(pj)2p−j
.

Let us work with the product over p|h. We split the product over primes for which

χ(p) = ±1, 0 and apply formula (475). If χ(p) = 0 then Fχ(pm) = 1 regardless of
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m and so the product equals 1. Now suppose χ(p) = −1 and hp is even. Then

Fχ(php+j) equals 1 for even j and equals 0 for odd j. Since Fχ(pj) shares the same

behaviour with respect to j, the product equals 1 again. If however hp is odd i.e.

h contains a non-square inert prime, then j and hp + j cannot both be even and

the product is zero. Finally, if χ(p) = 1 then∑
j≥0 Fχ(pj)Fχ(php+j)p−j∑

j≥0 Fχ(pj)2p−j
=

∑
j≥0(j + 1)(hp + j + 1)p−j∑

j≥0(j + 1)2p−j

=1 + hp

∑
j≥0(j + 1)p−j∑
j≥0(j + 1)2p−j

=1 + hp
(1− p−1)−2

(1 + p−1)(1− p−1)−3
= 1 + hp

1− p−1

1 + p−1

and it follows that Dh,k(0) = δ(h)δ(k). A similar calculation gives the formula for

δ′(h) in (472). We now use w(t) to take smooth approximations to the character-

istic function of the interval [T, 2T ] with T0 = T 1−ε. Upon integrating the result

follows. �

3.4.2. Evaluating the main term.

Proposition 3.4.5. Let c2(h, k, T ) be given by (466) and let α(n) be defined as in

Lemma 3.4.2. Suppose X,T →∞ with X � (log T )2−ε. Then

(476)
∑

h,k≤T θ
h,k∈W(X)

α(h)α(k)c2(h, k, T )

hk
(h, k) = (1 + o(1))

log T · log qT

(eγ logX)2 .

Proof. Inputting the formula for c2(h, k, T ) we see that we are required to

show

S0 :=
∑

h,k≤T θ
h,k∈W(X)

α(h)α(k)δ(h(k))δ(k(h))

hk
(h, k)

[
log T · log qT +O(log T log hk

(h,k)2
)
]

=(1 + o(1))
π2

6
L(1, χ)−2

∏
p|dK

(
1 +

1

p

)
log T · log qT

(eγ logX)2 .

(477)
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We first group together the terms for which (h, k) = g. Replacing h by hg and k

by kg we obtain

(478) S0 =
∑
g≤Y

g∈W(X)

1

g

∑
k≤Y/g
k∈W(X)

α(kg)δ(k)

k

∑
h≤Y/g
h∈W(X)
(h,k)=1

α(hg)δ(h)

h

×
[

log T · log qT +O(log T log hk)
]

where Y = T θ. Let us first estimate the error term. We have∑
g≤Y

g∈W(X)

1

g

∑
k≤Y/g
k∈W(X)

α(kg)δ(k)

k

∑
h≤Y/g
h∈W(X)
(h,k)=1

α(hg)δ(h)

h
log (hk)

�
∑

g∈L(X)

d(g)2

g

∑
h,k∈L(X)

d(k)2d(h)2

hk
log hk

�
∑

g∈L(X)

d(g)2

g

( ∑
m∈L(X)

d(m)2 logm

m

)2

.

(479)

Writing f(σ) =
∑

m∈L(X) d(m)2m−σ the inner sum is −f ′(1). Since f(σ) =∏
p≤X(1 − p−σ)−4(1 − p−2σ) we see f ′(1) � f(1)

∑
p≤X log p/(p − 1) � log5X

and hence the above sum is � log14X. We can now turn to the main term and

consider

(480) S :=
∑
g≤Y

g∈W(X)

1

g

∑
k≤Y/g
k∈W(X)

α(kg)δ(k)

k

∑
h≤Y/g
h∈W(X)
(h,k)=1

α(hg)δ(h)

h
.

We define the function µ′ : Im(N)→ C, N(a) 7→ µ(a) where µ is the extension of

the usual möbius function to ideals given by

(481) µ(a) =


1 if a = OK,

(−1)r if a = p1p2 . . . pr,

0 otherwise.
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So basically; for split and ramified primes µ′(p) = −1 and µ′(pj) = 0 for j ≥ 2;

for inert primes µ(p2) = −1 and µ(p2j) = 0 for j ≥ 2, and µ′ is multiplicative.

Similarly to the usual möbius function we now have

(482)
∑
d|h
d|k

d∈Im(N)

µ′(d) =

1 if (h, k) = 1

0 otherwise

for h, k ∈ Im(N). Substituting this into the sum over h in S we see

S =
∑
g≤Y

g∈W(X)

1

g

∑
k≤Y/g
k∈W(X)

α(kg)δ(k)

k

∑
h≤Y/g
h∈W(X)

( ∑
d|h
d|k

d∈Im(N)

µ′(d)

)
α(hg)δ(h)

h

=
∑
g≤Y

g∈W(X)

1

g

∑
l≤Y/g
l∈W(X)

µ′(l)

l2

( ∑
m≤Y/gl
m∈W(X)

α(glm)δ(lm)

m

)2

.

(483)

Manipulating the sums in this way allows us to avoid the rather technical and

lengthy calculations involved in [20].

We wish to extend these sums over allW(X) and this requires some estimates.

These will follow in a similar fashion to that found between (424) and (426).

Throughout we use α(m), δ(m) � d(m) and d(mn) ≤ d(m)d(n). First, let b be

positive and small, then

1

d(g)d(l)2

∑
m>Y/lg
m∈W(X)

α(glm)δ(lm)

m
�

∑
m>Y/lg
m∈W(X)

d(m)2

m
�
(
Y

lg

)−b ∑
m∈W(X)

d(m)2

m1−b

�
(
Y

lg

)−b ∏
p≤X

(
1− p−1+b

)−4 (
1− p−2(1−b))

�
(
Y

lg

)−b
e8Xb/ logX � (lg)bT−bθ/2.

(484)

Second,

(485)
∑

m∈W(X)

α(glm)δ(lm)

m
� d(g)d(l)2

∑
m∈W(X)

d(m)2

m
� d(g)d(l)2 log4X.
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From these it follows that the square of the sum over m in (483) is

(486)

( ∑
m∈W(X)

α(glm)δ(lm)

m

)2

+O
(
d(g)2d(l)4(lg)2bT−bθ/4

)
.

Similarly we find

(487)
∑

l∈W(X)

µ′(l)d(l)4

l2−2b
� 1,

∑
l>Y/g
l∈W(X)

µ′(l)d(l)4

l2−2b
� gcT−cθ,

for some small c > 0, and

(488)
∑

g∈W(X)

d(g)2

g1−2b−c � T ε,
∑
g>Y

g∈W(X)

d(g)2

g1−2b−c � T−dθ

for some small d > 0. The above estimates give

S =

( ∑
g∈W(X)

−
∑
g>Y

g∈W(X)

)
1

g

( ∑
l∈W(X)

−
∑
l>Y/g
l∈W(X)

)
µ′(l)

l2

×
[( ∑

m∈W(X)

α(glm)δ(lm)

m

)2

+O
(
d(g)2d(l)4(lg)2bT−bθ/4

) ]

=(1 + o(1))
∑

g∈W(X)

1

g

∑
l∈W(X)

µ′(l)

l2

( ∑
m∈W(X)

α(glm)δ(lm)

m

)2

.

(489)

Now, since all coefficients in S are multiplicative we may expand the sum into an

Euler product:

S =(1 + o(1))
∏
p≤X
p split

G(p)
∏
p≤
√
X

p inert

G(p2)
∏
p≤X

p ramified

G(p)
(490)

with

(491) G(p) =
∑

i,j,u,v≥0

µ′(pj)α(pi+j+u)α(pi+j+v)δ(pj+u)δ(pj+v)

pi+2j+u+v
.
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Performing the various sums whilst using the support conditions of α and µ′ we

see

G(p) =1 +
2α(p)δ(p) + α(p)2

p
+

2α(p2)δ(p2) + α(p2)2 + 2α(p)α(p2)δ(p)

p2
.(492)

Recall that for a split prime p we have δ(pr) = 1 + r(p− 1)/(p+ 1) and hence

δ(p) = 2p/(p + 1) and δ(p2) = 2δ(p) − 1. We also have α(p) = −2 for all p ≤ X,

α(p2) = 1 for p ≤
√
X and α(p2) = 2 for

√
X < p ≤ X. A straightforward

calculation now gives

∏
p≤X
p split

G(p) =
∏
p≤
√
X

p split

(
(1− 1/p)4

1− 1/p2

) ∏
√
X<p≤X
p split

(
(1− 1/p)4

1− 1/p2
+O

(
1

p2

))

=
∏
p≤X
p split

(
(1− 1/p)4

1− 1/p2

) ∏
√
X<p≤X
p split

(
1 +O

(
1

p2

))

=(1 + o(1))
∏
p≤X
p split

(
1− 1

p

)4 ∏
p split

(
1− 1

p2

)−1

.

(493)

In evaluating the remaining products in (490) we note that α behaves the same on

square inert primes as it does on ramified primes. The same goes for δ since the

number 1 varies little. We describe the ramified case since the inert case is simply

handled by replacing p with p2.

For a ramified prime p we have δ(p) = δ(p2) = 1, α(p) = −1 for all p ≤ X,

α(p2) = 0 for p ≤
√
X and α(p2) = 1/2 for

√
X < p ≤ X. With this information
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we see ∏
p≤X

p ramified

G(p) =
∏
p≤
√
X

p ramified

(
1− 1

p

) ∏
√
X<p≤X

p ramified

(
1− 1

p
+

1

4p2

)

=
∏
p≤X

p ramified

(
1− 1

p

) ∏
√
X<p≤X

p ramified

(
1 +O

(
1

p2

))

=(1 + o(1))
∏
p≤X

p ramified

(
1− 1

p

)
.

=(1 + o(1))
∏
p≤X

p ramified

(
1− 1

p

)2 ∏
p ramified

(
1 +

1

p

)(
1− 1

p2

)−1

.

(494)

In extending this last product over all ramified primes we have used the fact that

a prime is ramified if and only if it divides dK and hence
∑

X<p|dK 1/p = o(1).

Similarly, for inert primes we find

∏
p≤
√
X

p inert

G(p2) =(1 + o(1))
∏
p≤
√
X

p inert

(
1− 1

p2

)

=(1 + o(1))
∏
p≤
√
X

p inert

(
1− 1

p2

)2 ∏
p inert

(
1− 1

p2

)−1
(495)

Collecting the infinite products in (493), (494) and (495) we acquire the factor

(496)
π2

6

∏
p|dK

(
1 +

1

p

)
.

The remaining terms are then given by

(497) (1 + o(1))
∏

N(p)≤X

(
1− 1

N(p)

)2

= (1 + o(1))(L(1, χ)eγ logX)−2

where we have used (52). �
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3.4.3. Estimating the lower order terms. By virtue of the upper bounds

(468), (470) and Proposition 3.4.5 we are only required to evaluate the sum of the

‘big O’ and Z ′ terms of formula (465). For the ‘big O’ term we have

T−
1
4

+ε
∑

h,k≤T θ
h,k∈W(X)

α(h)α(k)(h, k)

hk

(
hk

(h, k)2

)11/8+ε

�T−
1
4

+ε

( ∑
n≤T θ

d(n)n3/8+ε

)2

� T
11
4
θ− 1

4
+ε

(498)

and so taking θ ≤ 1/11− ε the error term is o(1).

We now estimate the sums involving the Z ′ terms. By (469) and (471) we see

that we must consider sums of the form

S ′ :=
∑
h,k≤Y

h,k∈W(X)

α(h)α(k)

hk
(h, k)1q|h(k)χ(k(h))δ

′(h(k)/q)δ
′(k(h))

=
∑
g≤Y

g∈W(X)

1

g

∑
k≤Y/g
k∈W(X)

χ(k)α(kg)δ′(k)

k

∑
h≤Y/g
h∈W(X)
(h,k)=1

1q|h
α(hg)δ′(h/q)

h
.

(499)

where Y = T θ. The innermost sum is given by

(500)
∑

h≤Y/qg
qh∈W(X)
(qh,k)=1

α(qhg)δ′(h)

qh
�

∑
h≤Y/g
h∈W(X)
(h,k)=1

α(hg)δ′(h)

h

where we have used |α(qm)| ≤ α(m) which follows from (78) and the definition of

α. We deduce that S ′ is � a sum of the form (480) with δ replaced by δ′. Using

the bound δ′(n) ≤ d(n2) we may follow the analysis of Proposition 3.4.5 to see

that

(501) S ′ � (1 + o(1))
∏
p≤X
p split

G′(p)
∏
p≤
√
X

p inert

G′(p2)
∏
p≤X

p ramified

G′(p)
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where

(502) G′(p) = 1 +
2α(p)δ′(p) + α(p)2

p
+

2α(p2)δ′(p2) + α(p2)2 + 2α(p)α(p2)δ′(p)

p2
.

For split and ramified primes we have δ′(pr) = δ(pr) and so we only need evaluate

G at the inert primes. For inert p we have δ(p2) = 1 + 2(p + 1)/(p − 1) ≤ 5 and

hence

(503) G′(p2) = 1 +O

(
1

p2

)
For the sake of argument we write

(504)
∏
p≤
√
X

p inert

G′(p2) = (1 + o(1))
∏
p≤
√
X

p inert

(
1− 1

p2

)2

and then combine this with the products over split and ramified primes given by

(493) and (494). This gives

(505) S ′ � (logX)−2.
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3.5. Conjecture 4 via the moments recipe

In this section we modify the recipe given in [10] to reproduce our main con-

jecture in the case of quadratic extensions.

Conjecture 4. Let K be a quadratic extension. Then

(506)
1

T

∫ 2T

T

|ζK(1
2

+ it)|2kdt ∼ a(k)L(1, χ)2k2
(
G(k + 1)2

G(2k + 1)

)2

(log T · log qT )k
2

where q is the modulus of the character χ in the equation ζK(s) = ζ(s)L(s, χ), G

is the Barnes G-function and

(507) a(k) =
∏
p⊆OK

((
1− 1

N(p)

)2k2
(∑
m≥0

dgpk(p
m)2

N(p)m

)1/gp )
.

The recipe in question is concerned with primitive L-functions, so cannot be

applied directly to our situation without some modification. Our modifications

are based on Theorem 1 and are in keeping with the reasoning of the original

recipe. Let us first describe the process as it appears in [10] with the Riemann

zeta function as the example.

Consider the shifted product

(508) Z(s,α) = ζ(s+ α1) · · · ζ(s+ αk)ζ(1− s− αk+1) · · · ζ(1− s− α2k)

We first replace each occurrence of ζ with its approximate functional equation

(509) ζ(s) =
∑
m

1

ms
+ κ(s)

∑
n

1

n1−s , κ(s) = π
1
2
−sΓ((1− s)/2)

Γ(s/2)

and multiply out the the expression to give a sum of 22k terms. We throw away

any terms that do not have an equal amount of κ(s+αi) and κ(1−s−αj) factors,

the reason being that these terms are oscillatory. Indeed, by (25) we have

(510) κ(s+ β1) · · ·κ(s+ βJ)κ(1− s− γ1) · · ·κ(1− s− γK)

∼
(

t

2πe

)−i(J−K)

ei(J−K)π/4

(
t

2π

)−∑
βj+

∑
γk
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which is oscillating unless J = K. In each of the remaining
(

2k
k

)
terms we retain

only the diagonal from the sum, which we then extend over all positive integers.

If we denote the resulting expression by M(s,α) then the conjecture is

(511)

∫ ∞
−∞

Z

(
1

2
+ it,α

)
w(t)dt ∼

∫ ∞
−∞

M

(
1

2
+ it,α

)
w(t)dt

for any reasonable function w(t).

To describe a typical term of M(s,α) let us first define the prototypical diag-

onal sum

(512) R(σ, α1, . . . , α2k) =
∑

m1···mk=n1···nk

1

mσ+α1
1 · · ·mσ+αk

k n
1−σ−αk+1

1 · · ·n1−σ−α2k
1

.

This is in fact the term acquired by taking the first sum of the approximate func-

tional equation in each ζ-factor of Z(s,α). If, for example, we were to take the

second sum in ζ(s+ α1) and the second sum in ζ(1− s− αk+1) whilst taking the

first in the rest we would acquire the term

(513)

(
t

2π

)−α1+αk+1

R(σ, αk+1, α2, . . . , αk, α1, αk+2, . . . , α2k).

It is then clear that the full expression will be a sum over permutations τ ∈ S2k, and

that any permutation other than the identity will swap elements of {α1, . . . , αk}

with elements of {αk+1, . . . , α2k} in the R terms. Since R is symmetric in the

first k variables and also in the second, we may reorder the entries such that the

subscripts of the first k are in increasing order, as are the last k. We thus see that

the full expression will be a sum over the
(

2k
k

)
permutations τ ∈ S2k such that

(514) τ(1) < . . . < τ(k), τ(k + 1) < . . . < τ(2k).

Denote the set of such permutations by Ξ. A typical term now takes the form

(515)

(
t

2π

)(−α1−···−αk+αk+1+···+α2k)/2

W (s,α, τ)



3.5. CONJECTURE 4 VIA THE MOMENTS RECIPE 155

with τ ∈ Ξ and where

W (s,α, τ) =

(
t

2π

)(ατ(1)+···+ατ(k)−ατ(k+1)−···−ατ(2k))/2

×R(σ, ατ(1), . . . , ατ(k), ατ(k+1), . . . , ατ(2k)).

(516)

Combining all terms we have

(517) M(s,α) =

(
t

2π

)(−α1−···−αk+αk+1+···+α2k)/2∑
τ∈Ξ

W (s,α, τ).

To recover the kth-moment conjecture for the Riemann zeta function we first

extract the polar behaviour of R. This gives

(518) R(σ, α1, . . . , α2k) = Ak(σ, α1, . . . , α2k)
k∏

i,j=1

ζ(1 + αi − αk+j)

where Ak is some Euler product that is absolutely convergent for σ > 1/4. Now,

in [10] it is shown (Lemma 2.5.1) that the sum over permutations in (517) can be

written as a contour integral. We reproduce this result here since we shall have

use for it later.

Lemma 3.5.1 ([10]). Suppose F (a; b) = F (a1, . . . , ak; b1, . . . , bk) is a function of

2k variables which is symmetric with respect to the first k and also symmetric

with respect to the second set of k variables. Suppose also that F is regular near

(0, . . . , 0). Suppose further that f(s) has a simple pole of residue 1 at s = 0 but is

otherwise analytic in a neighbourhood about s = 0. Let

(519) K(a1, . . . , ak; b1, . . . , bk) = F (a1, . . . , ak; b1, . . . , bk)
k∏

i,j=1

f(ai − bj).

If for all 1 ≤ i, j ≤ k, αi − αk+j is contained in the region of analyticity of f(s)

then ∑
τ∈Ξ

K(ατ(1), . . . , ατ(k);ατ(k+1), . . . , ατ(2k))

=
(−1)k

k!2(2πi)2k

∮
· · ·
∮
K(z1, . . . , zk, zk+1, . . . , z2k)

∆2(z1, . . . , z2k)∏k
i,j=1(zi − αj)

dz1 · · · dz2k

(520)
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where ∆ is the vandermonde determinant.

By the above Lemma and (517), (518) we see that M(1/2 + it,0) is given by

(−1)k

k!2(2πi)2k

∮
· · ·
∮
Ak(1/2, z1, . . . , z2k)

k∏
i,j=1

ζ(1 + zi − zk+j)

× ∆2(z1, . . . , z2k)∏2k
j=1 z

2k
j

exp

(
1

2
log(t/2π)

k∑
j=1

zj − zk+j

)
dz1 · · · dz2k

=Ak(1/2, 0, . . . , 0) logk
2

(
t

2π

)
(1 +O((log t)−1))

(−1)k

2k2k!2(2πi)2k

×
∮
· · ·
∮

∆2(z1, . . . , z2k)(∏
i,j=1(zi − zk+j)

)∏2k
j=1 z

2k
j

e
∑k
j=1 zj−zk+jdz1 · · · dz2k,

(521)

after a change of variables. It is then shown that Ak(1/2, 0, . . . , 0) = a(k), where

a(k) =
∏
p

(
1− 1

p

)k2 ∞∑
m=1

dk(p
m)2

pm
.

This is of course equal to our arithmetic factor (142) when K = Q. The conjecture

is then completed by showing that

(522)

(−1)k

2k2k!2(2πi)2k

∮
· · ·
∮

∆2(z1, . . . , z2k)e
∑k
j=1 zj−zk+j(∏

i,j=1(zi − zk+j)
)∏2k

j=1 z
2k
j

dz1 · · · dz2k =
G(k + 1)2

G(2k + 1)
.

We now turn our attention to the shifted product

Z(s,α,β) = Zζ(s,α)ZL(s,β)(523)

where

(524) Zζ(s,α) = ζ(s+ α1) · · · ζ(s+ αk)ζ(1− s− αk+1) · · · ζ(1− s− α2k)

and

(525) ZL(s,β) = L(s+β1, χ) · · ·L(s+βk, χ)L(1−s−βk+1, χ) · · ·L(1−s−β2k, χ).
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As before, we plan to substitute the respective approximate functional equations,

which we now write as

(526) ζ(s) =
∑
m

1

ms
+ κζ(s)

∑
n

1

n1−s ,

(527) L(s, χ) =
∑
m

χ(m)

ms
+ κL(s)

∑
n

χ(n)

n1−s .

We have

(528) κL(s) =
G(χ)

ia
√
q

(
π

q

)− 1
2

+s
Γ((1− s+ a)/2)

Γ((s+ a)/2)

and by (25) this is

(529) κL(s) =
G(χ)

ia
√
q

(
qt

2π

) 1
2
−s

eit+iπ/4
(

1 +O

(
1

t

))
.

If we now follow the recipe and treat the L-functions as if they were zeta functions,

then after expanding and throwing away the terms with an unequal amount of

κζ,L(s + γi) and κζ,L(1 − s − δj) factors, we are still left with some terms that

have a factor of q−it. Since this is oscillating we modify the recipe to throw these

terms away also. We note with this modification the recipe reproduces Theorem

1, which adds some justification.

One way of arriving at the resultant expression is is to apply the first step of the

recipe to Zζ(s,α) and ZL(s,β) separately. This procedure prevents the occurrence

of the extra oscillatory terms without throwing away any other terms unnecessarily.

When applying this step to ZL one can use the fact that G(χ)G(χ) = (−1)aq to

provide some cancellation. We then form the product to gain a sum of
(

2k
k

)2
terms

and retain only the diagonals, as before. Extending the sums over all positive

integers we then denote the resulting expression by M(s,α,β) and conjecture

that

(530)

∫ ∞
−∞

Z

(
1

2
+ it,α,β

)
w(t)dt ∼

∫ ∞
−∞

M

(
1

2
+ it,α,β

)
w(t)dt.
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Applying the modified recipe and using a similar reasoning given in the case

of the Riemann zeta function above, we see that

M(s,α,β) =

(
t

2π

)(−α1−···−αk+αk+1+···+α2k)/2(
qt

2π

)(−β1−···−βk+βk+1+···+β2k)/2

×
∑
τ,τ ′∈Ξ

W (s,α,β, τ, τ ′)
(531)

where

W (s,α,β, τ, τ ′) =

(
t

2π

)(ατ(1)+···+ατ(k)−ατ(k+1)−···−ατ(2k))/2

×
(
qt

2π

)(βτ ′(1)+···+βτ ′(k)−βτ ′(k+1)−···−βτ ′(2k))/2

×S(σ;ατ(1), . . . , ατ(2k); βτ ′(1), . . . , βτ ′(2k))

(532)

with

(533) S(σ;α1, . . . , α2k; β1, . . . , β2k)

=
∑

m1···mkm′1···m′k=

n1···nkn′1···n′k

χ(m′1) · · ·χ(m′k)χ(n′1) · · ·χ(n′k)

[
mσ+α1

1 · · ·mσ+αk
k

×m′1
σ+β1 · · ·m′k

σ+βkn
1−σ−αk+1

1 · · ·n1−σ−α2k
k n′1

1−σ−βk+1 · · ·n′k
1−σ−β2k

]−1

.

Since the condition m1 · · ·mkm
′
1 · · ·m′k = n1 · · ·nkn′1 · · ·n′k is multiplicative we

have

S(σ;α1, . . . , α2k; β1, . . . , β2k)

=
∏
p

∑
∑k
j=1 ej+e

′
j=∑k

j=1 ej+k+e′j+k

χ(pe
′
1) · · ·χ(pe

′
k)χ(pe

′
k+1) · · ·χ(pe

′
2k)

[
pe1(σ+α1) · · · pek(σ+αk)

× pe′1(σ+β1) · · · pe′k(σ+βk)pek+1(1−σ−αk+1) · · · pe2k(1−σ−α2k)

× pe′k+1(1−σ−βk+1) · · · pe′2k(1−σ−β2k)

]−1
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=Ak(σ,α,β)
k∏

i,j=1

ζ(1 + αi − αk+j)L(1 + βi − βk+j, |χ|2)

× L(1 + βi − αj+k, χ)L(1 + αi − βj+k, χ)

=Ak(σ,α,β)
k∏

i,j=1

ζ(1 + αi − αk+j)ζ(1 + βi − βk+j)

× L(1 + βi − αj+k, χ)L(1 + αi − βj+k, χ)

(∏
p|q

(
1− p−1−βi+βk+j

))

where Ak is an Euler product that is absolutely convergent for σ > 1/4. For

σ = 1/2 we have the following explicit expression for Ak:

Ak(1/2,α,β) =
∏
p

k∏
i,j=1

(1− p−1−αi+αj+k)(1− |χ(p)|2p−1−βi+βj+k)

× (1− χ(p)p−1−βi+αj+k)(1− χ(p)p−1−αi+βj+k)Bp(α,β)

(534)
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where

Bp(α,β) =
∑

∑k
j=1 ej+e

′
j=∑k

j=1 ej+k+e′j+k

χ(pe
′
1) · · ·χ(pe

′
2k)

pe1(1/2+α1) · · · pe′2k(1/2−β2k)

=

∫ 1

0

∑
e1,...,e2k
e′1,...,e

′
2k

χ(pe
′
1) · · ·χ(pe

′
2k)

pe1(1/2+α1) · · · pe′2k(1/2−β2k)

× e

((
k∑
j=1

ej + e′j −
k∑
j=1

ej+k + e′j+k

)
θ

)
dθ

=

∫ 1

0

k∏
j=1

∞∑
ej=0

1

pej(1/2+αj)
e(ejθ)

k∏
j=1

∞∑
ej+k=0

1

pej+k(1/2−αj+k)
e(−ej+kθ)

×
k∏
j=1

∞∑
e′j=0

χ(pe
′
j)

pe
′
j(1/2+βj)

e(e′jθ)
k∏
j=1

∞∑
e′j+k=0

χ(pe
′
j+k)

pe
′
j+k(1/2−βj+k)

e(−e′j+kθ)dθ

=

∫ 1

0

k∏
j=1

ζp

(
e(θ)

p1/2+αj

)
ζp

(
e(−θ)
p1/2αk+j

)
Lp

(
e(θ)

p1/2+βj

)
Lp

(
e(−θ)
p1/2−βj+k

)
dθ

(535)

with ζp(x) = (1− x)−1, Lp(x) = (1− χ(p)x)−1 and Lp(x) = (1− χ(p)x)−1.

Now, denote the holomorphic part of S(1/2,α,β) by

A′k(1/2,α,β) =Ak(1/2,α,β)
k∏

i,j=1

L(1 + βi − αj+k, χ)L(1 + αi − βj+k, χ)

×
(∏

p|q

(
1− p−1−βi+βk+j

))
.

(536)

Applying Lemma 3.5.1 twice to (531) we see that M(1/2 + it,0,0) is given by(
(−1)k

k!2(2πi)2k

)2 ∮
· · ·
∮
A′k(1/2, u1, . . . , u2k, v1, . . . , v2k)

×
k∏

i,j=1

ζ(1 + ui − uk+j)ζ(1 + vi − vk+j)
∆2(u1, . . . , u2k)∏2k

j=1 u
2k
j

∆2(v1, . . . , v2k)∏2k
j=1 v

2k
j

× e
1
2
L
∑k
j=1 uj−uk+je

1
2
Q

∑k
j=1 vj−vk+jdu1 · · · du2kdv1 · · · dv2k

(537)



3.5. CONJECTURE 4 VIA THE MOMENTS RECIPE 161

where L = log(t/2π) and Q = log(qt/2π). Since Ak(1/2,α,β) is holomorphic in

the neighbourhood of (α,β) = (0,0) after a change of variables this becomes

(
(−1)k

k!2(2πi)2k

)2 ∮
· · ·
∮
A′k

(
1/2,

u1

L/2
, . . . ,

u2k

L/2
,
v1

Q/2
, . . . ,

v2k

Q/2

)

×
k∏

i,j=1

ζ

(
1 +

ui − uk+j

L/2

)
ζ

(
1 +

vi − vk+j

Q/2

)
∆2(u1, . . . , u2k)∏2k

j=1 u
2k
j

× ∆2(v1, . . . , v2k)∏2k
j=1 v

2k
j

e
∑k
j=1 uj−uk+je

∑k
j=1 vj−vk+jdu1 · · · du2kdv1 · · · dv2k.

=A′k (1/2,0,0)Lk2Qk2
(

1 +O

(
1

L

))(
(−1)k

2k2k!2(2πi)2k

)2 ∮
· · ·
∮

× ∆2(u1, . . . , u2k)∏k
i,j=1(ui − uk+j)

∏2k
j=1 u

2k
j

∆2(v1, . . . , v2k)∏k
i,j=1(vi − vk+j)

∏2k
j=1 v

2k
j

× e
∑k
j=1 uj−uk+je

∑k
j=1 vj−vk+jdu1 · · · du2kdv1 · · · dv2k.

∼A′k (1/2,0,0)Lk2Lk2q

(
(−1)k

2k2k!2(2πi)2k

∮
· · ·
∮

× ∆2(u1, . . . , u2k)∏k
i,j=1(ui − uk+j)

∏2k
j=1 u

2k
j

e
∑k
j=1 uj−uk+jdu1 · · · du2k

)2

.

(538)

By (522) the quantity within parentheses is given by G(k+ 1)2/G(2k+ 1). It only

remains to show that A′k (1/2,0,0) = a(k)L(1, χ)2k2 where a(k) is given by (419).

Since,

(539) A′k (1/2,0,0) = Ak (1/2,0,0)L(1, χ)2k2
∏
p|q

(1− p−1)k
2
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we only need show that a(k) is equal to the quantity

b(k) :=Ak (1/2,0,0)
∏
p|q

(1− p−1)k
2

=
∏
p

[
(1− p−1)(1− |χ(p)|2p−1)(1− χ(p)p−1)(1− χ(p)p−1)

]k2
×Bp(0,0)

∏
p|q

(1− p−1)k
2

=
∏
p

[
(1− p−1)(1− χ(p)p−1)

]2k2
Bp(0,0).

(540)

In the case of quadratic extensions, a(k) is the product of the following three

factors:

∏
p split

(
1− 1

p

)4k2 ∞∑
m=1

d2k(p
m)2

pm
,(541)

∏
p inert

(
1− 1

p2

)2k2 ∞∑
m=1

dk(p
m)2

p2m
,(542)

∏
p ramified

(
1− 1

p

)2k2 ∞∑
m=1

dk(p
m)2

pm
.(543)

Now, since χ(p) = 1 for split primes, the relevant factor in b(k) is given by

∏
p split

(
1− 1

p

)4k2 ∫ 1

0

(
1− e(θ)

p1/2

)−2k (
1− e(−θ)

p1/2

)−2k

dθ.(544)

Since k is an integer we can expand the integrand into a double series. Upon

integration this is easily seen to be equal to the sum in (541) after using

(545)

(
m+ 2k − 1

2k − 1

)
=

(
m+ 2k − 1

m

)
= d2k(p

m).

For inert primes we have χ(p) = −1 and so the relevant factor is

∏
p inert

(
1− 1

p2

)2k2 ∫ 1

0

(
1− e(2θ)

p

)−k (
1− e(−2θ)

p

)−k
dθ,(546)
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which is again easily seen to be equal to (542). Finally, for ramified primes, or

equivalently the primes dividing q, we have χ(p) = 0. Therefore, this factor in

b(k) is given by∏
p ramified

(
1− 1

p

)2k2 ∫ 1

0

(
1− e(θ)

p1/2

)−k (
1− e(−θ)

p1/2

)−k
dθ(547)

which equals (543).





CHAPTER 4

Moments of general non-primitive L-functions

In this short chapter we suggest how the main ideas of this thesis can be applied

to general non-primitive L-functions. These are functions of the form

L(s) =
m∏
j=1

Lj(s)
ej

where the Lj(s) are distinct, primitive members of the Selberg class S and ej are

some positive integers. For each Lj(s) we assume a functional equation of the form

(548) ΛLj(s) = γLj(s)Lj(s) = εΛLj(1− s)

where

(549) γLj(s) = Q
s/2
j

dj∏
i=1

Γ(1
2
s+ µi,j).

with the set {µi,j} stable under complex conjugation for each j. Note we have set

λi,j = 1/2. This condition, along with the condition on {µi,j}, is required to apply

the moments recipe. Our conjecture takes the following form.

Conjecture 5. let αL,k(n) be the Dirichlet coefficients of L(s)k. Then for k >

−1/2 we have

(550)
1

T

∫ T

0

∣∣L (1
2

+ it
)∣∣2k dt ∼ aL(k)

m∏
j=1

G2(ejk + 1)

G(2ejk + 1)

(
log(QjT

dj)
)(ejk)2

where

(551) aL(k) =
∏
p

(
1− 1

p

)nLk2 ∞∑
n=0

|αL,k(pn)|2

pn

and nL =
∑m

j=1 e
2
j .
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A key point in both derivations of Conjecture 4 was that, aside from the arith-

metic factor, the leading term in the moment of ζ(1/2+ it)L(1/2+ it, χ) was given

by the product of the leading terms of the moments of ζ(1/2+it) and L(1/2+it, χ).

We believe this should be the case for general non-primitive L-functions too. In-

deed, by applying our modified moments recipe to non-primitive L-functions this

idea becomes more apparent.

The recipe for general non-primitive L-functions goes as follows. For each Lj(s)

in the product L(s) =
∏m

j=1 Lj(s)
ej we have the approximate functional equation

(552) Lj(s) =
∑
n

αLj(m)

ms
+ κLj(s)

∑
n

αLj(n)

ns

where

(553) κLj(s) =
γLj(1− s)
γLj(s)

= Q
1/2−s
j

dj∏
i=1

Γ((1− s)/2 + µi,j)

Γ(s/2 + µi,j)
.

Similarly to before, if we apply the original recipe we encounter terms of the

form (QjQj′)
−it which are oscillating. We can prevent the occurrence of these

terms by applying the first step of the recipe to each Lj(s) separately. We then

continue as in the original recipe up to the point where we write the expression

as a contour integral. It should be clear that the only element of this expression

that is dependent on all integration variables is what we would probably notate as

Ak(α1, . . . ,αm). Once again, this would be holomorphic in the neighbourhood of

(α1, . . . ,αm) = (0, . . . ,0) allowing us to use a similar change of variables to that

used in (538). After this, the expression would factorise and upon applying (522)

we acquire the main term in the form

Ak(0, . . . ,0)
m∏
j=1

G2(ejk + 1)

G(2ejk + 1)

(
log(QjT

dj)
)(ejk)2

.

Instead of directly evaluating Ak(0, . . . ,0) we derive the arithmetic factor (551)

via a somewhat simpler method below.
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In terms of the random matrix theory, let us assume that we have a hybrid

product for L(s). Since the Lj(s) are distinct their zeros are uncorrelated [34], and

so their associated matrices should act independently. Hence, when the moment

of the product over zeros is considered as an expectation, it will factorise. Let us

now provide some examples.

As we have already seen, the factorisation phenomenon occurs when considering

ζ(s)L(s, χ), at least when χ is the Kronecker character. We can restate Conjecture

4 in the more descriptive form

(554)
1

T

∫ T

0

∣∣∣ζ (1
2

+ it
)k
L
(

1
2

+ it, χ
)k∣∣∣2 dt

∼ aζL(k)
G(k + 1)2

G(2k + 1)
logk

2

T · G(k + 1)2

G(2k + 1)
logk

2

qT,

with

(555) aζL(k) =
∏
p

(
1− 1

p

)2k2 ∑
m≥0

|Fχ,k(pm)|2

pm
,

(556) Fχ,k(n) =
∑

n1n2=n

dk(n1)dk(n2)χ(n2).

We note that aζL(k) is indeed equal to a(k)L(1, χ)2k2 . To see this, we first split

the product

L(1, χ)2k2
∏
p⊂OK

(
1− 1

N(p)

)2k2

over split, inert and ramified primes. Inputting the relevant behaviour of χ we

see that this product equals
∏

p(1 − p−1)2k2 . Also, by considering Fχ,k(n) as the

coefficients of the Dirichlet series for ζ(s)kL(s, χ)k, we see that

(557)
∑
m≥0

|Fχ,k(pm)|2

pm
=


∑

m≥0 d2k(p
m)2p−m if χ(p) = 1,∑

m≥0 dk(p
m)2p−2m if χ(p) = −1,∑

m≥0 dk(p
m)2p−m if χ(p) = 0.
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Here, it may be helpful to note

ζ(s)kL(s, χ)k =
∏
p

(
1− 1

ps
− χ(p)

ps
+
χ(p)

p2s

)−k
.

As another example, we state a result to appear in a forthcoming joint paper

between the author and Caroline Turnage-Butterbaugh. Here it is established, by

an application of Theorem 1, that

(558)
1

T

∫ T

0

∣∣∣∣ζ (1
2

+ it
)
L
(

1
2

+ it, χ
) ∑
n≤T θ

1

n1/2+it

∣∣∣∣2dt
∼ aζ2L(1) log4 T · log qT

(
4θ3 − 3θ4

12

)
where

(559) aζ2L(1) =
∏
p

(
1− 1

p

)5 ∑
m≥0

|Hχ(pm)|2

pm
, Hχ(n) =

∑
n1n2=n

d(n1)χ(n2),

and θ < 1/11− ε. It is expected that Theorem 1 remains valid for θ = 1, in which

case the above relation reads as

(560)
1

T

∫ T

0

∣∣∣ζ (1
2

+ it
)2
L
(

1
2

+ it, χ
)∣∣∣2 dt

∼
aζ2L(1)

12
log4 T · log qT = aζ2L(1) · G(3)2

G(5)
log4 T · G(2)2

G(3)
log qT.

Clearly, this is consistent with our conjecture in the case L1(s) = ζ(s)2, L2(s) =

L(s, χ) and k = 1. Guided by these examples we are led to Conjecture 5 which,

after ignoring the conductors, we restate as

(561)
1

T

∫ T

0

∣∣L (1
2

+ it
)∣∣2k dt ∼ aL(k)gL(k)

Γ(nLk2 + 1)
lognLk

2

T

where nL =
∑m

j=1 e
2
j ,

(562) gL(k) = Γ(nLk
2 + 1)

m∏
j=1

G2(ejk + 1)

G(2ejk + 1)
d

(ejk)2

j ,
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and

(563) aL(k) =
∏
p

(
1− 1

p

)nLk2 ∞∑
n=0

|αL,k(pn)|2

pn
.

We remark that for integral k,

(564) gL(k) =

(
nLk

2

(e1k)2, . . . , (emk)2

) m∏
j=1

g(ejk)d
(ejk)2

j

where the first factor is the multinomial coefficient and the function g is defined

by g(n)/n2!= G(n+ 1)2/G(2n+ 1). It is shown in [9] that g(n) is an integer, and

hence gL(k) is an integer for integral k.

Let us cast this conjecture in the light of some of the Selberg’s conjectures.

First, we note that the integer nL is the same integer appearing in Selberg’s ‘reg-

ularity of distribution’ conjecture:

(565)
∑
p≤x

|αL(p)|2

p
= nL log log x+O(1),

as will be shown below. This is not so surprising since one expects the mean square

of L(1/2 + it) to be asymptotic to a multiple of the sum
∑

n≤T |αL(n)|2n−1. The

implication of (565) is that this sum is in fact ∼ (aL(1)/nL!) lognL T .

We can outline a verification of this last assertion allowing for integral k ≥ 1.

We assume the following two conjectures of Selberg [53]: For primitive F ∈ S we

have

(566)
∑
p≤x

|αF (p)|2

p
= log log x+O(1),

and for two distinct and primitive F,G ∈ S we have

(567)
∑
p≤x

αF (p)αG(p)

p
= O(1).

We also require that the functions

(568) Mj(s) =
∞∑
n=1

|αLj(n)|2

ns
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behave ‘reasonably’, in particular, that they posses an analytic continuation.

Now, given the factorisation L(s) =
∏m

j=1 Lj(s)
ej into primitive functions we

have

(569) αL,k(p) = k

m∑
j=1

ejαLj(p),

since the coefficients αLj(n) are multiplicative. Therefore,

∑
p≤x

|αL,k(p)|2

p
=
∑
p≤x

k2

(
m∑
j=1

e2
j |αLj(p)|2 +

∑
i 6=j

eiejαLi(p)αLj(p)

)
p−1

=nLk
2 log log x+O(1).

(570)

If M(s) =
∑
|αL,k(n)|2n−s, then the above equation implies a factorisation of the

form

(571) M(s) = Uk(s)
m∏
j=1

Mj(s)
(ejk)2

where Uk(s) is some Euler product that is absolutely convergent for σ > 1/2.

Therefore, we may analytically continue M(s) to σ > 1/2. Also, by applying

partial summation to (570) we see

(572)
∑
p

|αL,k(p)|2

ps+1
= nLk

2

∫ ∞
2

dx

xs+1 log x
+ · · · = −nLk2 log s+ · · · ,

for small σ > 0. If we write

M(s+ 1) =
∏
p

(
1 +
|αL,k(p)|2

ps+1
+
|αL,k(p2)|2

p2(s+1)
+ · · ·

)

=
∏
p

(
exp

(
|αL,k(p)|2

ps+1

)
+ Ek(p, s)

)

= exp

(∑
p

|αL,k(p)|2

ps+1

)∏
p

(1 + Fk(p, s)) ,

(573)

where Ek(p, s) and Fk(p, s) are both� p−2(σ+1)+ε, we see that M(s+1) has a pole

of order nLk
2 at s = 0. It is shown in [14] that on the assumption of Selberg’s

conjectures, if F ∈ S has a pole of order m at s = 1 then ζ(s)m divides F (s).
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Consequently, the residue of M(s + 1) at s = 0 is given by aL(k). The usual

argument involving Perron’s formula now gives

(574)
∑
n≤T

|αL,k(n)|2

n
∼ aL(k)

(nLk2)!
lognLk

2

T.

In order to emphasise the factorisation property of our conjecture we can use

a new notation and absorb the factor of (nLk
2)!. For a primitive L-function Lj of

degree dj we let

(575) fLj(k) =
G(k + 1)2

G(2k + 1)
dk

2

j

and for a general non-primitive L-function we just let

(576) fL(k) =
gL(k)

Γ(nLk2 + 1)
.

Then, according to our conjecture, for an L-function of the form L(s) =
∏m

j=1 Lj(s)
ej

with the Lj primitive we have

(577) fL(k) =
m∏
j=1

fLj(ejk).

It is of interest that the arithmetic factor does not possess such a complete

factorisation. Let αLj ,ej(n) denote the coefficients of Lj(s)
ej and note αLj ,ej(p) =

ejαLj(p). As mentioned previously we have

|αL,k(p)|2 =k2

(
m∑
j=1

e2
j |αLj(p)|2 +

∑
i 6=j

eiejαLi(p)αLj(p)

)

=
m∑
j=1

|αLj ,ejk(p)|2 + k2
∑
i 6=j

eiejαLi(p)αLj(p)

(578)

and so

(579)
∑
p≤x

|αL,k(p)|2

p
=

m∑
j=1

∑
p≤x

|αLj ,ejk(p)|2

p
+O(1)
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by orthogonality. Therefore, we may write

aL(k) =
∏
p

(
1− 1

p

)nLk2 ∞∑
n=0

|αL,k(pn)|2

pn

=
∏
p

[
m∏
j=1

(
1− 1

p

)e2jk2 ](
1 +

m∑
j=1

|αLj ,ejk(p)|2

p
+
∞∑
n=1

cL,k(p
n)

pn

)

=
∏
p

[
m∏
j=1

(
1− 1

p

)e2jk2 ∞∑
n=0

|αLj ,ejk(pn)|2

pn

]
∞∑
n=0

c′L,k(p
n)

pn

=

[
m∏
j=1

aLj(ejk)

]∏
p

∞∑
n=0

c′L,k(p
n)

pn

(580)

for some coefficients cL,k and c′L,k dependent on the Lj. Note

∑
p≤x

c′L,k(p
n)

pn
= O(1)

for n ≥ 1 and so the product

(581) bL(k) :=
∏
p

∞∑
n=0

c′L,k(p
n)

pn

is convergent. We can now re-phrase our conjecture in the form

(582)
1

T

∫ T

0

∣∣L (1
2

+ it
)∣∣2k dt ∼ bL(k)

m∏
j=1

1

T

∫ T

0

∣∣Lj (1
2

+ it
)ej ∣∣2k dt.

Here we can clearly see the independence between the L-functions in the geometric

sense. Indeed, as we have already noted

fL(k) =
m∏
j=1

fLj(ejk),

which can be thought of as a consequence of the independence, or uncorrelated-

ness, of the zeros. However the presence of bL(k) suggests a lack of arithmetic

independence between the Lj(s). In fact, it can be thought of as a measure of
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their arithmetic dependence in the following sense. Note that one of the larger

contributions to bL(k) is given by the sum

(583)
∑
p

αLi(p)αLj(p)

p

with i 6= j. If αLj(p) approximates αLi(p) frequently enough then this sum becomes

large since

(584)
∑
p

|αLi(p)|2

p

is unbounded. Consequently, the greater the arithmetic similarities between any

two L-functions Li and Lj, the larger bL(k) is; or put another way, the smaller

bL(k) is, the more distinct the Lj are in an arithmetic sense.





Notation

• Our complex variables are most frequently denoted s = σ + it with σ, t ∈

R.

• Line integrals of the form
∫ c+i∞
c−i∞ with c ∈ R, are abbreviated to

∫
(c)

.

• We represent very small quantities by ε. These may not be the same at

each occurrence in an equation although they may be notated as such.

The same goes for very large quantities, which we usually denote A.

• Primes are always, and exclusively, denoted by p.

• ed(x) := e2πix/d and e(x) := e1(x).

• All Dirichlet characters considered are primitive. We denote them by χ

and their moduli are denoted by q. The nth Gauss sum associated to χ

is given by G(n, χ) =
∑q

m=1 χ(m)eq(nm) and we write the usual Gauss

sum as G(χ) = G(1, χ). Two useful facts are

(585) G(n, χ) = χ(n)G(χ) for n ∈ Z,

and |G(χ)|2 = q. These may be used implicitly in some arguments.

• For a positive integer h we express its prime decomposition as
∏

p|h p
hp so

that hp is the highest power of p dividing h. This will mostly be used in

Chapter 2.

• n(m) := n/(n,m) where (n,m) is the greatest common divisor of n and

m.

• We denote ideals in gothic type and prime ideals are always, and exclu-

sively, denoted by p.
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