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Abstract 

The aim of this project was to benchmark energy utilisation of bread manufacturing 

and to provide methodologies and results with the aim of improving efficiency in 

commercial bakeries. The bread industry is an important provider of staple food 

products across the world. Owing to the large energy use in bread manufacturing, 

bakeries have come under increased scrutiny to reduce their environmental impact. 

The proving process exposes dough to heat and humidity in order to encourage 

yeast activation. Provers (responsible for 5 % of carbon emissions in bakeries) are 

over-engineered to the extent that energy costs impact upon performance. The 

industry standard practices that use large volumes of airflow to maintain food 

safety have not been scientifically justified. Experimentally validated 

Computational Fluid Dynamics (CFD) simulations showed the residence time 

distribution profiles for different numbers of air changes. The results have indicated 

that it is possible to reduce airflow by 33 % and electricity demand by over 70 %. 

A system-level thermodynamic analysis was developed in order to measure and 

model heat streams in industrial bread ovens. The model was subjected to a 

sensitivity analysis to ensure the calculations could be trusted to give suitably 

accurate results. A number of measurement techniques were employed and the 

methodology was designed to increase the potential for industry-wide use to assess 

the efficiency of ovens. The results showed that between 40 and 49 % of heat is 

wasted in industrial ovens. The model has been successfully distributed to industry. 

Experimental measurements of heat transfer for a range of regimes used in baking 

ovens were undertaken. The results were validated by previous correlations 

published in literature. Investigation focussed on three particular novel research 

areas. Firstly, comparisons between nozzle types showed that rows of circular jets 

could be approximated as slot nozzles for mean heat transfer. Secondly, the ratio of 

convective to radiative heat transfer was investigated. Thirdly, the prevalence of 

secondary peaks in local heat flux profiles was compared for two nozzle sets. These 

unique results can be used to help design baking ovens with energy efficient 

operating conditions.  
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Le	 Latent heat of evaporation J/kg 

 ሶ݉ 	 Mass flow rate kg/s 
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N	 Number of air changes per hour  /hr 

P	 Pitch between two sets of nozzles in the x-direction m 

P	 Pressure Pa 

q	 Heat flux W/m2 

r	 Pearson Product-Moment Correlation - 

R	 Universal gas constant J/(kg·K) 

RH	 Relative humidity - 

S	 Spacing between two round nozzles in the z-direction m 

S	 Source term in the Navier-Stokes equations - 

t	 Time s 

	̅ݐ Mean residence time s 

T	 Temperature K 

u	 Velocity vector m/s 

u,	v,	w	 Velocity in the x, y and z-directions respectively m/s 

V	 Volume m3 

 ሶܸ 	 Volumetric flow rate m3/s 

Vsen	 Voltage signal at sensor V 

W	 Width  m 

x	 Distance from nozzle centre m 

Greek symbols 

α Degree of starch gelatinisation - 

αk Thermal diffusivity as a function of temperature m2/s 

β Volumetric thermal expansion coefficient /K 

σ Stefan-Boltzmann constant W/(m2·K4)

σ Uniformity - 

ε Rate of dissipation of turbulence kinetic energy m2/s3 

εA Emissivity - 

μ Dynamic viscosity W/(m2·K4)

ω Turbulence frequency - 
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λ Thermal conductivity W/(m·K) 

ρ Density kg/m3 

υ Kinematic viscosity m2/s 

ϕ Interchangeable scalar variable for RANS equation - 

ΓM Fluid viscosity Pa·s 

ΓT Thermal conductivity in Navier-Stokes equation W/(m·K) 

Subscripts 

air Air 

amb Ambient 

atm Atmospheric 

bread Bread 

c Characteristic 

cen Centre nozzle 

crit Critical value 

D Dynamic 

e Evaporation 

elec Electricity 

gel Gelatinisation 

in Inlet 

l Lids 

Mx, My, Mz Momentum equation in the x, y and z directions  

noz Nozzle 

P Constant pressure 

s Surface of oven walls 

sen Sensor 

t Tins 

T Total 

w Water 

wall Oven wall 
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x, y, z Position in the x, y and z direction 

z1, z2, z3 Oven zones 1, 2 and 3 

Dimensionless groups 

Grashof  number:  
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߭ଶ
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Chapter 1 

Introduction 

Bread is one of the oldest known and most important food products, having been 

consumed worldwide for many millennia. The origins of bread can be traced back 

as far as the Palaeolithic Period (c. 30,000 BC), as evidence of processing starch 

has been has been found on ancient grindstones; it is thought bread was used as a 

travelling food for wandering nomads and thus helped to populate the earth 

(Revedin et al., 2010). It is believed that leavened (expanded dough produced by 

yeast fermentation) bread was probably not consumed until Neolithic times (the 

‘New Stone era’, c. 10,000 BC) when the chemical power of yeast was discovered 

(Kent, 2012). By around 3,000 BC, bread became part an Ancient Egyptian’s staple 

diet along with beer (Tannahill, 2002), and latterly became ubiquitous across the 

world in Roman times. In modern times, it is one of few food products consumed 

across both the developed and developing world and spans almost every culture.  

Perhaps the most comprehensive description of the history of bread is given in the 

book ‘Six Thousand Years of Bread, Its Holy and Unholy History’ that recalls the 

social and political importance of bread over the years (Jacob et al., 1944). The 

impact of bread upon society has been diverse; through religion: “Give us today 

our daily bread”, politics – not least in early 19th century Britain where the 

abolition of British corn laws made way for an international trade system (Kadish, 

1996) – and in everyday colloquialisms: “The best thing since sliced bread”, 

“Bread and butter”, “Bread-winner”, “Putting bread on the table”, “Dough”, etc.  

1.1 The Modern Bread Industry 

Commercial bread production occurs on a number of different scales, from artisan 

bakeries serving the local community, to the large commercial bakeries serving 

entire nations, as well as in-store/ supermarket bakeries, small chain outlets and 

other sized bakeries in between. The focus of this thesis is large commercial 
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bakeries; i.e. bakeries producing bread at a rate of several tonnes of finished 

product per hour on a continuous production process. The typical distribution range 

of a commercial bakery of this magnitude can be up to hundreds of miles.  

Although the core ingredients of bread are: flour, water, yeast, fat and salt, bread as 

a product varies vastly depending on the ratio of these ingredients, additional 

ingredients and production methods. The variations in taste and texture are 

particularly noticeable across country borders. For example the British standard 

loaf is largely unavailable in France, where the baguette is the mainstay product, 

and in Germany (one of the highest consumers per capita); where darker, denser 

products are often preferred. Further afield, Mediterranean bread is often 

influenced by olive flavours, Middle-Eastern and Asian cultures typically consume 

flat-bread type products whilst Latin-American countries consume more corn/ 

tortilla style baked products. 

In 2010, the global bread and rolls industry was worth US $168.9 billion (£106.8 

billion) per year and market value has been growing steadily by 2.2 to 2.4 % per 

year since 2006. Annually, 93 million tonnes of bread are manufactured across the 

world, of which 38 % is produced on an industrial scale, 48 % by artisan bakers, 9 

% in-store and 5 % tortilla production (Datamonitor, 2011b).  

The UK bread and rolls industry was worth US $4.9 billion (£3.1 billion) per year 

in 2010 and market value has been growing marginally above average when 

compared with global trends, at 2.4 to 2.6 % per year. Each year over 2.8 million 

tonnes of baked goods are produced in the UK. Contrary to the global market 

segmentation, a much higher proportion is produced in industrial bakeries (78 %), 

with a smaller section of production in-store (16 %), with artisan production (4 %) 

and tortilla production (2 %) making up the remainder (Datamonitor, 2011a). In 

terms of the importance of the bread industry to economic prosperity, a 2010 report 

stated that over 20,000 people are currently employed in UK bakeries (The 
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Federation of Bakers, 2010). Figure 1.1 shows graphically the difference between 

the market segmentation of the UK and worldwide bread industries. 

 

Figure 1.1 – Bar chart illustrating market segmentation of the worldwide and UK 
bread industries (Datamonitor, 2011b, Datamonitor, 2011a)  

The baking industry has historically put little effort into monitoring or reducing 

energy usage. However, with pressure mounting for industry as a whole to reduce 

carbon emissions, use of fossil fuels and environmental impact, it is important that 

commercial bakeries look to improve energy efficiency measures.  

1.2 The Global Energy Setting 

The global shortage of fossil fuels for energy generation and the harmful effects of 

greenhouse gas (GHG) emissions on the environment are well documented. This 

has forced policy-makers worldwide to devise strategies for reducing the 

environmental impact of the human race. The distribution of GHG emissions across 

all sectors in the UK is shown by Figure 1.2. Industrial processes have been 

responsible for between 2.9 and 4.8 % of emissions between 1990 and 2011. In this 

same period, industry reduced emissions by 47 % from 16.3 to 8.7 MTCO2e, whilst 

total UK emissions (excluding power generation) have decreased by 19.4 % from 

343.5 to 276.7 MTCO2e. 
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Figure 1.2 – Graph of UK GHG emissions by source between 1990 and 2011 
(Department of Energy and Climate Change, 2012) 

The member nations of the European Union and a host of other countries 

worldwide are committed to reducing carbon emissions over the next few decades 

as part of the Kyoto Protocol. The Kyoto Protocol was agreed in 1997 and is an 

important addition to the United Nations Framework Convention on Climate 

Change (UNFCCC) of 1994. As of June 2012, the Kyoto Protocol has been signed 

and ratified by 191 States worldwide – most notably excluding the United States of 

America and China. The Kyoto Protocol committed Annex I nations (including the 

UK) to reduce GHG emissions by 5.2 % before 2012, based on 1990 base levels. 

Furthermore, the UK Climate Change Act (2008) legally binds the UK government 

to reduce carbon emissions by 80 % by 2050 based on 1990 base levels. In order 

for these targets to be met, schemes such as the Climate Change Levy and the EU 

Emissions Trading Scheme put financial pressure on, or offer incentives to, 

industrial manufacturing sites to reduce carbon emissions. In addition to legislation, 

soaring energy prices and diminishing fossil fuel reserves are encouraging industry 

to reduce the amount of energy they use in order to cut costs and become more 

environmentally responsible in the medium to long-term future. For these reasons, 
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bakeries are one area of industry that has recently focussed efforts on energy 

management. 

1.3 Principles of Bread Production 

Bread production encompasses a number of fundamental biochemical, chemical 

and physical processes, such as: evaporation of water, volume expansion, 

gelatinization of starch, protein denaturation, crust formation, carbon dioxide 

production, formation of a porous structure and browning reactions (Purlis and 

Salvadori, 2009a). Bread production on a commercial scale is frequently a 

continuous manufacturing process, with short shutdown periods occurring on a 

weekly basis to allow equipment to be cleaned and maintained. Several 

engineering/ manufacturing issues in a commercial bakery need to be tightly 

controlled in order for it to be commercially successful. First and foremost, product 

quality is non-negotiable – this includes food safety, consistency of produce, taste, 

texture, appearance and shelf-life. Furthermore, other factors such as minimising 

interruptions to the manufacturing process to avoid wastage and keeping the 

production time at a minimum are important to keep financial costs low. Energy 

use is an increasingly important concern for commercial bakeries. 

Bread is produced in five key stages: 

1. Formation of dough: mixing and binding of raw ingredients and 

shaping the dough pieces. 

2. Proving: supplying the dough with heat and humidity to encourage the 

yeast to ferment and the dough to rise. 

3. Baking: heating the dough at high temperature to evaporate moisture 

and convert fragile dough to stable bread. 

4. Cooling: lowering the temperature of the bread to ambient. 

5. Slicing, packaging and distribution: the final preparations are made 

before the bread is delivered to the customer. 
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The manufacturing process, which typically takes around 4 hours, is shown 

diagrammatically by Figure 1.3: 

 

Figure 1.3 – Schematic diagram of the bread baking process 

1.3.1 Formation of Dough 

A typical bread recipe consists of flour, water, yeast, fat and salt. Mixing forms 

these raw ingredients together into a dough-piece through the following processes:  

 Moistening: the surface of the bread is coated in liquid (often brine) to 

prevent blistering. 

 Solubilisation: gluten proteins within the bread are dissolved into the dough 

structure. 

 Swelling: the starch structure created by the gluten proteins begins to absorb 

moisture and increase in volume. 

 Gluten formation: links between the proteins are formed which helps to 

dictate the crumb structure of the loaf. 

At this point the yeast begins to ferment which causes carbon dioxide gas cells to 

form and creates an aroma (Stear, 1990). 

All the major UK bread producers use the Chorleywood Bread Process (CBP) (or 

the Chorleywood Method), which is a dough preparation technique developed in 
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1961 by British Baking Industries Research Association (Beech, 1980). The 

principle of the CBP is to ensure a set amount of mechanical energy is put into each 

batch of dough in the mixing process at a much higher rate than historically used 

(Cauvain and Young, 2006); typically this is 44.6 kJ/kg (Stear, 1990). Mechanical 

energy is forced into the dough using large spiral mixers which allows the chemical 

binding processes to initiate faster, subsequently causing the dough temperature to 

increase. This temperature rise is not necessarily desirable in terms of nutrition; 

therefore some critics favour traditional techniques which allow the dough to 

develop more naturally with a much reduced energy requirement. Traditional 

techniques are particularly favourable in terms of reduced salt content (Blanchard, 

1965), which has led in part to the recent popularisation of artisan bread-making 

(Owen, 2012). Two alternatives to the CBP are bulk fermentation and continuous 

liquid fermentation (Fellows, 2009). 

Once mixed, the dough is formed into individual pieces which will eventually form 

the baked loaf. Depending on the product, the dough is either shaped using ‘4-

piece’ or ‘2-piece’ machining which affects product aesthetics, predominantly the 

position and alignment of the gas cells within the structure and therefore the 

direction of the crumb pattern – either across the width or height of a slice of bread. 

1.3.2 Dough Proving 

The proving (occasionally referred to as ‘proofing’) process prepares the dough for 

baking by subjecting it to an elevated temperature and a high level of humidity in a 

controlled environment. This process can take between as little as half an hour and 

as much as half a day. During proving, yeast in the dough fermentation produces 

carbon dioxide gas, thus expanding the size of the dough to roughly twice its 

original size (Stear, 1990). The dough temperature is typically raised from 

approximately 30 to 40 °C. Enzyme activity within the dough rapidly increases 

once the temperature reaches 35 °C, therefore it is beneficial to increase the dough 

temperature relatively rapidly to maximise the initial impact of the proving process.  
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Industrial provers can be up to 40 m in length. Provers in commercial bakeries are 

often located in the space above a bread oven in order to use bakery space 

efficiently and to indirectly recover heat from the oven roof, as indicated by Figure 

1.4. Pre-heating technology has been trialled to raise the dough temperature before 

the bread enters the prover, and thus reduce the energy load of the prover, however 

the success reported has been limited (Cauvain and Young, 1998).  

After proving the dough is in a fragile state as the carbon dioxide gas produced is 

retained within a skin that forms on the surface of the dough. Until this skin is set 

to become a crust (in the baking oven), the dough requires careful handling as any 

disturbance can cause the structure to collapse. 

 

Figure 1.4 – Photograph of an industrial bread prover located above an industrial 
oven (Warburtons Limited and Spooner Industries Ltd.) 

1.3.3 Bread Baking  

Baking encompasses a range of complex processes of simultaneous heat, water and 

water vapour transport within the product as dough is transformed into bread. In 

addition to dry heat, steam can also be used at the start of the baking process in 

order to increase glossiness on the bread surface (Altamirano-Fortoul et al., 2012). 

The main portion of the bake cycle subjects the dough to high temperatures in order 

to initially deactivate the yeast and form a skin on the product surface. It has been 

Prover 

Oven 
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suggested that the complexity of the process is due to the comparatively high 

temperature gradient and fast bake time in comparison with other drying processes 

(Marcotte and Grabowski, 2008). Due to this complexity, there is a careful balance 

throughout all parts of the manufacturing cycle to ensure that each process occurs 

in synchronisation in order to produce a consistent and satisfactory loaf of bread. 

Commercial bread ovens are typically tunnel-type ovens that can be up to 30 to 40 

m long. The oven is often split into three zones so the baker can alter the profile of 

conditions within the chamber, such as bake time, air velocity, air temperature and 

steam injection. The baking profiles are dependent on the type of product that the 

bakery is producing. Anecdotal evidence and experimentation has allowed 

experienced oven operators to set baking conditions depending on factors such as 

the ingredients, flavour/ texture required and expected weight loss. Photographs of 

a commercial oven are shown by Figure 1.5: 

(a)

  

  (b) 

 

Figure 1.5 – Photographs of an industrial oven: (a) side view along oven length 
and (b) view showing oven exit (Warburtons Limited and Spooner Industries Ltd.) 
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The main purpose of baking is to remove moisture from the dough, thus drying the 

surface and forming a crust, resulting in significant mass transfer in the oven 

(Klemes et al., 2008). Legislation for weight constraints for bread are tight 

(typically ± 50 g for an 800 g loaf (Cauvain and Young, 1998)), so control of 

moisture loss in the oven is critical. Excessive moisture loss from the product is 

undesirable as this requires an increase in the quantity of raw materials at the start 

of the manufacturing process and results in a higher energy demand to evaporate 

the water content in the oven. In addition, decreased moisture loss often results in a 

softer crumb and increased shelf life – two highly valued product characteristics 

(Ovadia and Walker, 1998).  

Once the dough temperature reaches 74 °C the gluten structure is set, therefore 

carbon dioxide gas cells are retained in place within the bread, ensuring a porous 

product (Fellows, 2009). Most academic researchers and industrialists agree that 

bread is cooked once the core temperature reaches 96 to 98 °C (Ahrne et al., 2007, 

Price, 2012, Purlis, 2011, Therdthai et al., 2002). 

1.3.4 Cooling 

The purpose of cooling is to lower the temperature of the bread in preparation for 

slicing, packaging and distribution. As this is often the most time consuming 

process in a bakery, coolers require a large quantity of physical space.  

Bread is cooled in a humid environment (RH > 75 %) to minimise moisture 

evaporation and the subsequent loss in mass. Due to this high level of humidity, it 

is critical to monitor the air quality for bacteria to ensure food safety in line with 

regulations. Product quality dictates that bread is usually cooled at atmospheric 

temperature using no additional refrigeration or chilling load – this process can take 

between 2 and 24 hours. 

Coolers can be of a tunnel-type or a spiral conveyor; the inside of a spiral conveyor 

cooler is shown by Figure 1.6. The bread travels on a conveyor in a helical motion, 
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often from bottom to top with the air flowing from top to bottom. This ensures a 

more uniform temperature gradient between the bread and the air, thus increasing 

the efficiency of the cooling process. 

 

Figure 1.6 – Photograph of the inside of a spiral bread cooler (Spooner Industries 
Ltd.) 

Typical conditions within a cooler are air temperature, Tair = 20 °C and air inlet 

velocity, uin = 1 m/s (Cauvain and Young, 1998). More radical technologies, such 

as vacuum cooling and active cooling (where the air temperature is chilled to below 

ambient) exist in the food industry; however, due to the traditional nature of bread-

making bakeries have not widely adopted these to date.  

Freezing of bread is possible, though it is well documented that this can have a 

negative effect on the crumb structure, which can be negated by including additives 

in the recipe (Ribotta et al., 2001). Food manufacturers are increasingly reluctant to 

use additives as they are unpopular with consumers and can impact upon other 

processes within the manufacturing cycle. 

1.3.5 Slicing, Packaging and Distribution 

The slicing, packaging and distribution phases of bread production make the bread 

ready for consumption. Mechanical slicing machines ensure uniform width of 

bread slices, depending on the product type, after which the loaf is placed into a 
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plastic bag or wax wrapped as appropriate and then it can be stored. Due to the 

very short shelf-life of many baked products (typically less than 2 weeks), 

production is very much governed on a supply-demand basis and very short stock 

is held. Where stock is held it is often for smaller products (for example burger 

rolls) and held in a freezer in anticipation of a production spike – which can occur 

on a public holiday or during extreme weather. Distribution networks for 

commercial bakeries can be vast (up to hundreds of miles), meaning delivery costs 

are high. These costs can be variable due to fluctuations in oil prices, as the 

majority of bread is delivered by road. Though this thesis does not address the 

energy costs of product distribution logistics, it is an area of increasing concern for 

bakeries for financial cost and environmental reasons. 

1.4 Research Aims and Objectives 

The aim of this study was to quantify the energy use in the proving and baking 

processes of bread production and to investigate methods and technologies that 

could be used to improve energy utilisation in the manufacture of bread on a 

commercial scale. 

The specific objectives of this research project were: 

 To understand the fundamental principles of heat and mass transfer, fluid 

flow, industrial instrumentation and Computational Fluid Dynamics (CFD) 

so that these analysis methods could be applied to investigate energy use in 

the bread baking industry. 

 To analyse current prover energy consumption and to provide scientific 

justification for quantifying the minimum number of air changes for a range 

of provers, thereby directly reducing the energy demand and carbon 

emissions of commercial bread proving. 

 To investigate the thermal energy efficiency of a variety of bread ovens and 

generate a system-level thermodynamic analysis model that could be 
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applied to commercial bread ovens by use of non-invasive measurement 

techniques to visualise opportunities for energy savings. 

 To conduct pilot-scale experimental heat transfer experiments to help 

identify an optimum set of conditions for jet impingement heat transfer with 

respect to energy usage that are practical for industrial bread baking ovens. 

This work has been conducted through the use of both experimental and numerical 

techniques to influence the engineering design and operational conditions of 

industrial process equipment, with the overarching aim of reducing the energy 

consumption and carbon emissions of the bread manufacturing process. 

1.5 Outline of Thesis 

This thesis addresses a number of key issues relating to energy use in bread baking. 

The background of energy consumption in relation to bread manufacturing on 

different scales is addressed in Chapter 2. Heat transfer as a general phenomenon is 

discussed in Chapter 3, which also goes into detail on how this relates to bread 

manufacture. Chapter 4 discusses the theoretical background of CFD and identifies 

how best to utilise these tools in the analysis of process equipment. Chapter 5 

presents an experimental and computational analysis of the energy consumption of 

an industrial bread prover. A system-level thermodynamic analysis model for 

baking ovens is described in Chapter 6. The methodology for, and results of, heat 

flux experimentation for conditions relating to industrial baking are carried out in 

Chapter 7. Finally, Chapter 8 discusses the implications of the work produced in 

this project and concludes this thesis with some suggestions for further work. 
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Chapter 2 

Energy Use in the Baking Industry 

Bread production is considered to be an energy intensive process (Klemes et al., 

2008). There are a range of issues that have historically prevented the adoption of 

energy efficient technologies in the baking industry, including: product quality, 

hygiene fears, resistance to change, lack of capital investment and insufficient 

resources to enable technologies to be trialled.  

The current global political climate represents an opportunity for bakeries to make 

step changes to lower the energy demand of baking bread. For instance, there are 

funding opportunities in the UK through organisations such as: the Carbon Trust, 

the Technology Strategy Board (TSB), the Engineering and Physical Sciences 

Research Council (EPSRC) and the Research Councils UK (RCUK) Energy 

Programme to both develop fundamental understanding and move innovations up 

the ‘technology readiness levels’. Within the EU there are also grants that can 

address these issues. 

2.1 Previous Studies 

A number of authors have addressed the issue of energy use in the baking industry. 

These vary from detailed analyses of process equipment (Carvalho and Nogueira, 

1997, Fuhrmann et al., 1984), to more general Life Cycle Assessments (LCAs) of 

the environmental impact of producing and distributing baked goods (Andersson 

and Ohlsson, 1999, Braschkat et al., 2003, Holderbeke et al., 2003). 

The 1973 oil crisis in the US meant that energy use in process industries was a high 

priority research area in the 1970s and early 1980s (Johnson and Hoover, 1977), 

hence, a number of energy audits of bakeries were published between 1977 and 

1984 (Beech, 1980, Casper, 1977, Christensen and Singh, 1984, Johnson and 

Hoover, 1977, Laukkanen, 1984, Whiteside, 1982). After the resolution of the oil 
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crisis, energy supply had become less of a global concern and research into this 

field appeared to decline. The recent intensification of research relating to energy 

use in the process industries is due to environmental concerns and rising energy 

costs. Bread ovens (and indeed other pieces of bakery equipment) have historically 

been designed with little regard to energy use, with the main focus being on 

product quality and production rates (Klemes et al., 2008).  

There is a moderate amount of published research in the area of energy use in the 

bread industry. Sections 2.1.1 to 2.1.4 summarise the findings of this published 

literature and to critically analyse the contributions and disagreements between 

authors in this field. As many of the most rigorous published methodologies and 

datasets are over 20 years old, part of this thesis updates findings previously 

reported for a modern industrial baking process. Although the principles of baking 

have not changed significantly, the progressive changes in processing equipment 

have had an impact on energy usage. 

The following literature review categorises the previous research under the general 

headings of: bakery energy audits, life cycle assessments, baking oven energy 

audits and other equipment. 

2.1.1 Bakery Energy Audits 

Johnson and Hoover (1977) conducted an audit of a large industrial bakery in the 

USA – this paper was published at the height of the oil crisis in the 1970s. The 

authors gave mean energy use as 7.36 MJ/kg bread; which (in 1977) equated to 3.7 

% of the product monetary value (US $0.0192/kg). As a proportion of the calorific 

energy content of bread, four times the electricity and heat energy is required in 

production. The recommendations presented in this report are generic, for example: 

“unconventional ovens, such as steam and microwave, should be examined”, but no 

specific improvements to process equipment were proposed. The suggestions for 

further research of interest included: redesigning the shape of tunnel ovens, 
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recovering heat from flue gases and further analysis into the dough mixing 

procedure. 

Beech (1980) quantified energy use in three Rank Hovis McDougall (RHM) (Hovis 

brand – now owned by Premier Foods) UK industrial bread plants, and compared 

the primary energy use with that of home baking. It was reported the average 

energy use in the bakeries was 6.99 MJ/kg, though the total energy use was 14.80 

MJ/kg when the analysis included all processes from the growing of the wheat to 

delivery to the consumer – i.e. the bakery processes accounted for 47.2 % of the 

total energy used to produce a loaf of bread. Home baking with a gas oven used a 

similar amount of energy, 7.84 MJ/kg, and with an electric oven 20.01 MJ/kg. The 

figures for home baking depend largely on the method used – for example batch 

size. This paper was critical of previous reports by Leach (1975) and Chapman 

(1975), pointing out that there were very large differences in their results due to the 

generalisations made by averaging out total energy use in the UK rather than 

conducting a full on-plant energy audits. 

Whiteside (1982) conducted energy audits of two bakeries in the USA. The specific 

energy consumption of each was 1.89 and 4.16 MJ/kg and heat accounted for 80 to 

82 % of the total energy. Although this report focussed mainly on the savings 

possible by optimising process equipment within the bakery, opportunities for 

energy savings were identified in the transportation of product. It is clear from 

studying this report that the baking industry has become more automated since 

1982 – for example the author makes reference to aligning processes according to 

operator shift patterns, however due to use of automated machinery, shift patterns 

no longer dictate production scheduling. The most pertinent energy saving 

initiative outlined was to recover heat from the oven flue gas for use in the prover 

via an air-to-air heat exchanger. The heating load of the prover and the amount of 

heat rejected by the oven is similar and both pieces of equipment are at a fairly 

constant heat load for the entire year. The idea is particularly feasible because of 
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the close proximity of the two units; therefore this solution is well suited for heat 

recovery. 

Laukkanen (1984) audited the energy use of 12 bakeries in Finland. The author 

found that specific energy consumption varied between 3.2 and 11.5 MJ per kg of 

bread produced (mean energy use was 6.5 MJ/kg). Energy costs in the bakeries 

were between 1.5 and 3.7 % of turnover (in 1984). The mean production across all 

bakeries was 1,220 tonnes per year for a range of production rates of between 88 

and 7,740 tonnes per year. For each bakery, electricity accounted for approximately 

a quarter of energy use, whilst the remaining fuel supply was light fuel oil. The 

author agreed with other publications that ovens accounted for around half the 

bakery energy use and further investigation on three different types of oven was 

pursued. The other main energy uses were found to be for boilers and refrigerators. 

It was reported that combustion in the ovens was inefficient because of air leaks to 

the burners. The main suggestion for improvement was to recover heat from the 

exhaust air; the danger of this is that the dust, flour and grease in the air could 

cause damage to the heat exchanger equipment. Suggested use of the waste heat 

included preheating supply air, using a heat pump to store the waste energy and 

heating of service water or domestic hot water. The proposals outlined resulted in 

potential 10 to 20 % reduction in energy consumption with payback periods of 

between three and six years. 

Probert and Newborough (1985) published an extensive article detailing the 

thermal performance of a large number of food processing operations, including 

bakery processes. Much of the paper focusses on relatively small-scale bread 

production environments – for example in-store style baking ovens. The author 

reported that the energy demand of bread manufacturing was 25 MJ per kg 

production. The study largely agreed with the consensus that close to half the 

primary energy demand of bread manufacture was within the bakery itself, and of 

this half (i.e. around 6 MJ/kg) was used by the oven.  
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Kannan and Boie (2003) have outlined management practices for small sized 

bakeries in Germany to reduce energy usage. Over 80 % of bakery produce is 

manufactured in small local bakeries in Germany, in contrast with many 

(particularly English-speaking) nations, where large industrial factories dominate 

the bread industry – as illustrated by Figure 1.1. The baking process itself 

accounted for 73 % of the total energy consumption, and 85 % was thermal energy. 

Hot water generation to 70 °C was possible through heat recovery off the flue gas 

from the oven, which improved efficiency by 10 to 15 %. It was also possible to 

pre-heat burner combustion air which saved energy, reduced moisture content of 

the air and reduced maintenance costs due to less tar build-up in the oil burners. 

Energy reduction was expected to be 6.5 %, though doubt was raised as to whether 

these cost savings were worthwhile as the capital cost was much greater than the 

energy cost, given they are on a small-scale. 

As part of a popular guide to energy auditing, an energy study on a US bakery was 

produced (Thumann and Mehta, 2008). Having surveyed the literature, the numbers 

presented in this book are in approximate agreement with the consensus, therefore 

Figure 2.1 shows a graphical breakdown of the data: 

 

Figure 2.1 – Pie chart showing energy utilisation in a US bakery (Thumann and 
Mehta, 2008) 
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Although a full detailed audit is not given, a breakdown of energy consumption 

shows the primary energy user is the oven, consuming 49.0 % of the total bakery 

use. Overall process energy totalled 73.7 % and domestic energy 26.3 %. Over a 

fifth of the domestic energy use was “space heating” – though this is not a large 

energy requirement in many bakeries located in milder climates. 

The UK-based government organisation, the Carbon Trust, initiated a project in 

2009 titled “Industrial Energy Efficiency Accelerator” (Carbon Trust, 2010). This 

project focussed on giving UK bakeries a forum to collaborate on energy savings 

ideas and to bring together research to improve process efficiency. This project 

encompassed the three main commercial bakers in the UK: Warburtons, Allied 

Bakeries (Kingsmill and Allinson brands), and Premier Foods (Hovis brand), 

alongside smaller bakeries, equipment suppliers, academics and environmental 

consultants. The initial report gave a solid overview of the UK baking industry. It 

was reported that the total energy consumption was 2,000 GWh and emissions 

were 570,000 TCO2/year. The breakdown of energy supply forms was: 560 GWh 

electricity, 1,400 GWh natural gas and 40 GWh fuel oil. When the cost differential 

between the three energy supply forms is taken into account, data for which is 

supplied by the Department for Energy and Climate Change (DECC) (Carbon 

Trust, 2012b) in the UK on a quarterly basis, this translates to energy cost of £38.2 

million electricity, £44.7 million natural gas and £2.38 million fuel oil. These 

numbers are is close agreement to the numbers discussed with technical 

management of industrial bakeries (Oakley, 2009). 

2.1.2 Life Cycle Assessments 

Life Cycle Assessment (also known as: life cycle analysis, cradle-to-grave analysis, 

integrated impact assessment or full cycle analysis) is a formal technique that 

measures the environmental, health and resource impact of the material extraction, 

production, use, recycle and disposal phases of a product (European Commission 

Joint Research Centre: Institute for Environment and Sustainability, 2010). The aim 
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of a LCA is “to enable the incorporation of environmental and social impacts into 

decision-making processes” (Sørensen, 2011). LCA principles, frameworks, 

requirements and guidelines are governed by two international standards: ISO 

14040 (International Organization for Standardization, 2006b) and ISO 14044 

(International Organization for Standardization, 2006a). LCAs typically result in a 

number of impact measurements, including: energy consumption, hazardous waste, 

industrial waste, water waste, air emissions, noise, radiation and consumption of 

raw materials (Rebitzer et al., 2004). 

Andersson and Ohlsson (1999) aimed to establish the environmental effects of 

producing bread on different scales in Sweden by use of LCA, by looking at home 

baking, a local bakery and baking on an industrial scale. The impact of each has 

been measured to include all processes from agricultural production, through to 

flour milling, bakery processes, packaging and distribution. It was found that a 

‘large’ industrial bakery (30,800 tonnes/year) had the highest carbon emissions and 

used the most primary energy, 22 MJ/kg – though it should be noted that a large 

industrial bakery in the UK may produce upwards of 200,000 tonnes/year. A 

smaller industrial bakery, producing 12,800 tonnes/year, had similar performance 

with relation to global warming, acidification and eutrophication as both home 

baking and a local bakery – the primary energy usage was 14 MJ/kg. The reason 

provided for the larger bakery using more specific energy was due to the large 

distribution area – as the analysis included both delivery of raw materials to the 

bakery and the delivery of the final product to the retail outlets and customers. In 

terms of the baking processes, the economies of scale allowed the actual baking 

process to be more efficient for the larger bakery. The authors suggested there was 

a balance between the size of the bakery and distribution area which would give the 

smallest possible environmental impact – the model for this would need to consider 

factors such as population density, transportation method and positioning of 

bakeries. 
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Three further LCA based papers were presented at the 4th International Conference 

on “Life Cycle Assessment in the Agri-food sector” in 2003, and were published in 

its proceedings (Braschkat et al., 2003, Holderbeke et al., 2003, Rosing and 

Nielsen, 2003). Braschkat et al. (2003) reported that a ‘large’ bread factory used 

around half the energy requirement of a bakery or home-production, however no 

definition of ‘large’ was given. Rosing and Nielsen (2003) looked at the 

environmental impact of different ways of making the holes in French bread for 

hotdogs – concluding that any environmental concern was less important than 

retaining the product brand and appearance. The study accounted for global 

warming, acidification, eutrophication and nature occupation from storage of 

ingredients to the storage of the finished product – thus, the processing and 

transport of the ingredients, and the distribution of the finished product is not 

included. Holderbeke et al. (2003), meanwhile reported that in the 19th century the 

environmental impact of bread production was up to four times worse, due to 

inefficient processes and the lack of quality fuels. 

2.1.3 Baking Oven Energy Audits 

As ovens have been shown to be the major energy users in bakeries, conducting an 

energy audit would be the natural starting point for analysing energy utilisation in 

the baking industry. Use of a rigorous scientific framework to measure energy 

streams can help quantify the energy (both heat and electrical) that is useful to the 

process and the energy wasted. Identifying waste energy streams and considering 

ways to reduce waste is often a natural starting point for companies to audit 

industrial equipment such as bread ovens. 

Two historical energy audits presented here, from 1977 and 1982, give a good 

baseline breakdown of heat distribution in industrial bread ovens. Although these 

reports are not recent, this data is helpful to compare current technology and to give 

an initial idea of thermal energy utilisation of commercial bread baking ovens. 

Firstly, Johnson and Hoover (1977) reported that the baking process accounted for 
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28 % of the total energy usage of the entire manufacturing process. Of the oven 

heat losses, 27 % was in flue gas and 10 % was through wall conduction. Only 15 

% of the heat went into directly heating the bread whilst a large bulk, 40 %, of heat 

was used to evaporate water from the dough. Whiteside (1982), however, 

calculated that between 61 and 62 % of the energy use of the two ovens was 

required for baking processes. Wall losses accounted for just 3 % whereas the 

largest losses were stack losses (24 %). Figure 2.2 graphically compares these two 

previous oven audits: 

 

Figure 2.2 – Graph of heat distribution in commercial ovens from literature 
(Johnson and Hoover, 1977, Whiteside, 1982) 
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oven manufacturers. Despite this, there is a good explanation of methods used for 

taking measurements and analysis. Mean specific energy use of the ovens was 
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MJ/kg. 44 % of heat input is lost through exhaust gas, ventilation and evaporation 

of moisture from the dough. Only 19 % of the heat was transferred to the bread. 

Heating of lids and pans was responsible for 17 % of the heat losses. Three main 

suggestions were made to improve energy efficiency: (i) optimise the ventilation of 

the ovens, (ii) review the materials used to manufacture pans and lids, and (iii) 

recover heat from flue gases. No detailed explanation is given on how best to 

approach realising these improvements. 

Fuhrmann et al. (1984) reported on energy optimisation of heat streams by 

recirculating hot air between different processes for a European-style baking 

process. This research was also commissioned by Werner and Pfleiderer, indicating 

potential for partiality. The innovation was centred on heat recovery; coupling the 

high temperature exhaust of the prebaking oven with the lower temperature baking 

oven. The authors suggested that heat recovery would make the bakery 3.7 % more 

efficient. There are thorough explanations of methods used and how the 

improvements were installed. The cost of making these improvements could only 

be justified if energy costs were suitably high. 

Carvalho and Nogueira (1997) analysed energy efficiency of furnaces, kilns and 

baking ovens. There is a particular focus on free/ forced convection techniques and 

variation in temperature profiles in these heating processes, thereby measuring heat 

flux to the bread. Although the title of the paper implies that it is optimising energy 

efficiency, the research focusses predominantly on global heat flux measurement in 

baking ovens, a topic that is discussed in further in section 3.4. 

Klemes et al. (2008) stated that baking is a large energy user in comparison to other 

similar drying operations, such as preservation of fruit and vegetables. This is 

because the thermal conductivity of bread is comparatively low and a large amount 

of heat is needed to evaporate a significant fraction of moisture from the product. 

The best measurement to gauge performance of baking ovens was reported to be 
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heat flux, which is dependent on the temperature gradient, air velocity and flow 

characteristics. Heat flux can be measured with local sensors which are becoming 

more commercially available and cost effective. Aside from offering opinions on 

heat recovery, the authors also suggest that significant energy savings can be made 

by optimising convective heat transfer within the ovens as this would reduce 

baking time. Design of strategically placed nozzles allows the baker to remove 

stagnant air from around the product and hence increase the rate of heat transfer. 

Suggested improvements are low investment and it was suggested that they could 

result in up to 20 % energy savings, however research is required to experimentally 

(or otherwise) identify optimum conditions for heat transfer.  

2.1.4 Other Bakery Equipment 

Aside from general bakery audits and specific investigations on bread ovens, there 

are other processes in bread manufacturing that have received little attention but 

which offer the potential for energy savings. 

Frank (2009) described recent attempts to reduce the energy consumption of the 

baking industry in a commercial periodical “Baking Management”. In addition to 

covering the widely-used industry techniques such as; boiler improvements, new 

chillers, correctly sized and routed pumps/ pipes, lighting and other domestic 

opportunities, interesting recent developments in the mixing process have been 

outlined. An American machinery manufacturer appears to have invested heavily in 

computational techniques to improve the mixing process by improving the cooling 

effect and altering the shape of the mixing bowl. The results to show that use of a 

variable-speed drive (VSD) to better control the mixing process can reduce energy 

use and improve product quality. Heat recovery was also listed as an area for 

further research, where a reduction of around 25 % of heat input can be realised. 

There has been very little published research relating to energy use in the proving 

process. Despite this, there is significant scope for reducing the energy use of 
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commercial bread provers, as shown by Paton et al. (2012a) and investigated in 

Chapter 5. Much of the research into industrial bread proving is focussed on the 

macroscopic changes to the dough structure as gas cells develop (Chiotellis and 

Campbell, 2003b, Chiotellis and Campbell, 2003a, Cordoba, 2010, Grenier et al., 

2003, Grenier et al., 2010). Considering proving is responsible for upwards of 5 % 

of the energy consumed in a bakery (Carbon Trust, 2010), the lack of scientific 

research in this area is deterring bakeries from taking proactive measures to 

optimise the process. 

Cooling of food products can be an energy intensive process, particularly if the 

temperature of a product needs to be reduced by a large amount, for example in the 

freeze drying of foods such as ready meals (Pimentel and Pimentel, 2008). The 

temperature gradient of cooling bread is comparatively large, and thermal 

conductivity is typically low due to the porous nature of bread, which would 

normally result in a high energy cost for cooling. However, the energy demand of 

cooling bread is surprisingly low, since food quality/ safety dictates that there is no 

requirement to cool bread quickly, nor is there a need to keep bread refrigerated or 

frozen. For this reason, bread can be cooled over a longer period of time at ambient 

temperature, resulting in a minimal energy demand. Despite this, in certain 

circumstances, energy intensive cooling processes can be appealing to bakeries due 

to the decreased cooling time and therefore potential to increase production rate 

causing a reduction in the physical space the cooler occupies in a bakery. The two 

most prominent alternative technologies to conventional methods are refrigerated 

cooling and vacuum cooling.  

Refrigerated cooling can be effective when the temperature difference between the 

product and the ambient temperature is low (i.e. around 30 to 40 °C). Refrigeration 

can significantly increase the temperature gradient and thus increase the cooling 

rate. When the temperature difference between the product and ambient is large, 

however, refrigeration does not increase the temperature gradient to a level where 
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the additional energy makes an impact to the cooling time. For this reason, two-

stage cooling has been recommended to initially reduce the temperature via 

ambient cooling and finish the cooling process through refrigeration (James and 

James, 2011).  

Although vacuum cooling has been used since the 1950s in the horticultural 

industry, much of the food industry has been reluctant to adopt vacuum coolers in a 

production environment, mainly due to technological barriers (McDonald and Sun, 

2000). The main benefits of vacuum cooling are: increased hygiene, improved food 

safety, low weight loss, quicker cooling times, and the consequent potential 

benefits of increased energy efficiency and a reduction in the size of machinery 

required (Wang and Sun, 2001).  
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Chapter 3 

Heat Transfer in the Bread Industry 

As with most food production operations, transfer of heat in bread manufacturing is 

of paramount importance to the success of the production process. Within the 

bakery, the raw ingredients must be mixed together at ambient temperature, 

exposed to humid conditions to encourage yeast fermentation, heated to 

approximately 100 °C, and cooled again to ambient temperature within a confined 

period of time, often in a continuous manufacturing environment. The major 

characteristic of bread production, when compared to other heating processes, is 

the porous nature of the product. Porosity is increased particularly during the 

proving phase, when the bread expands and density decreases – this means that 

thermal conductivity within the product is lower than many comparable heating 

operations involving solids and liquids, meaning control of heat transfer becomes 

critical. Many other physical changes in bread occur during the manufacturing 

process that make measuring the heat demand a challenging task, for example 

during proving the volume expands, during baking and cooling the moisture 

content decreases and during mixing the dough rheology is constantly evolving. 

3.1 Heat Transfer Fundamentals 

There are several established textbooks that explain the main aspects of heat 

transfer (Eckert, 1959, Incropera and DeWitt, 2007, Rohsenow et al., 1998, Russell 

et al., 2008). The three fundamental forms of heat transfer are conduction, 

convection and radiation – these are summarised in the following sections 3.1.1 to 

3.1.3. Due to the complex nature of heat and mass interactions in real systems, heat 

transfer is very rarely a result of just one of these three forms, although it is not 

uncommon to have an overriding mode of heat transfer which deems the other 

sources negligible. All three aforementioned modes have specific relevance to 

bread production. For example in a baking oven, heat is transferred to the bread 
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through a combination of convection and radiation, and then heat is conducted 

from the surface (crust) to the core of the crumb. 

3.1.1 Conduction 

Conduction is the transfer of heat from higher temperature to lower temperature 

through the vibration of molecules. For most simple applications of conduction, 

Fourier’s Law can be used. Fourier’s Law defines the rate of heat transfer as being 

proportional to the temperature gradient across a material, dT/dx, shown in one-

dimension by Eq. (3.1): 

ݍ  ൌ െߣ	ܣ
݀ܶ
ݔ݀

 (3.1) 

where q is heat flux (W/m2), λ is thermal conductivity (W/(m·K)), A is surface area 

(m2) and T is temperature (K). 

Heat conduction is usually most effective in solids, in particular metals, due to the 

molecular structure that allows a large number of electrons to vibrate and therefore 

transfer heat. Thermal conductivity is a material specific property that is dependent 

on factors such as temperature, phase and material structure. 

Midden (1995), described the success of a baking operation as being dependent on 

“the ability of the product to transfer heat from its outer surface to its center” i.e. 

the rate at which conduction occurs from crust to crumb. As the temperature at the 

core of the dough/ bread needs to be raised from ambient to approximately 100 °C, 

conduction within the bread has a great effect on the energy requirement of both 

the prover and oven. 

Bread is a poor conductor of heat due to the cellular structure of gas cells trapped 

within the dough/ bread. The thermal conductivity of dough/ bread varies with 

temperature due physical changes in the material structure, i.e. volume expansion, 

increase in porosity, decrease in density and moisture loss. Published temperature 

dependent values of thermal conductivity for white sandwich bread vary between 
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0.11 and 0.85 W/(m·K) (Monteau, 2008, Unklesbay et al., 1981, Wong et al., 

2007). A summary of these studies is shown graphically by Figure 3.1. As with 

other information presented in literature relating to the bread industry, the 

variability across different studies means that the reliability of using any of the 

reported data is compromised, therefore, for this study thermal conductivity values 

taken from literature have been corroborated with industry to check the reliability. 

 

Figure 3.1 – Graph of the thermal conductivity of bread as a function of 
temperature (Monteau, 2008, Unklesbay et al., 1981, Wong et al., 2007) 

3.1.2 Convection 

Convective heat transfer occurs when the movement of fluids causes momentum, 

energy and mass transfer (Bacon, 1989). Two types of convection are frequently 

discussed: free (or natural) convection and forced convection. Free convection is 

typically driven by buoyancy forces, for example when hot air molecules rise 

above cooler air due to temperature and density variations in an enclosed volume. 

Forced convection requires an external force to encourage the fluid flow, for 

example a pump forcing fluid to flow through a pipe or duct. The rate of convective 

heat transfer is given by Newton’s Law of Cooling, Eq. (3.2): 
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where the convective heat transfer coefficient, hc, is dependent on a number of 

physical characteristics of the fluid and flow parameters, thus, it is a difficult value 

to determine numerically or theoretically. Two methods are frequently used to 

calculate values – for simple flow problems it may be obtained by solving 

boundary layer equations, or for complex flow it can be correlated using 

experimental results (Incropera and DeWitt, 2007).  

Values of heat transfer coefficient for gases in free convection regimes are typically 

between 0.5 and 500 W/(m2·K), and for forced convection between 10 and 700 

W/(m2·K). Section 3.4.1 gives a full review of published values for hc for bread 

baking applications. For applications that use high velocity fluid flow and fluid 

temperatures less than 400 °C, convection is often the dominant mode of heat 

transfer. 

3.1.3 Thermal Radiation 

Thermal radiation is often considered the most complex mode of heat transfer 

(Turner, 1993) and occurs when high energy photons are emitted from a hot body 

in the form of electromagnetic waves. Unlike convection and conduction, no 

particles are involved in the transfer of heat. Every object that has a temperature 

greater than absolute zero (T = 0 K = -273.15 °C) will emit thermal radiation. A 

‘black body’ is described as an object that will absorb radiation from every 

wavelength and angle. The Stefan-Boltzmann Law (Eq. (3.3)) describes the heat 

flux of a black body as the energy being proportional to temperature to the power 

of four and shows that hotter and object is the more thermal radiation is emitted: 

ݍ  ൌ ସܶ	ߪ  (3.3) ܣ

where the Stefan-Boltzmann constant, σ, is equal to 5.670 x 10-8 W/(m2·K4). 

However, in reality objects will only absorb some of the heat available – these are 

termed ‘grey bodies’. In order to apply Eq. (3.3) to a grey body, the emissivity, εA, 

must be factored in and Eq. (3.4) is used: 
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ݍ  ൌ ߪ	஺ߝ ܶସ  (3.4) ܣ

Earle (2004) used this theory to estimate the heat transfer to a loaf of bread using a 

value for total radiation as shown by Eq. (3.5): 

஺்ߝ  ൌ
1

ቀ1 ஺௕௥௘௔ௗൗߝ ൅ 1 ஺௪௔௟௟ൗߝ ቁ െ 1
 (3.5) 

The results showed that the heat transfer from the oven walls to the surface of the 

bread was between 67.4 and 68.0 W (Earle, 2004). Table 3.1 shows emissivity 

values for some relevant metals at bread baking temperatures (200 to 232 °C): 

Material Temperature, T (°C) Emissivity, εA Reference 

Aluminium:    

smooth polished 227 0.05 (Brewster, 1992) 

smooth oxidised 227 0.12 (Brewster, 1992) 

rough oxidised 227 0.3 (Brewster, 1992) 

Gold:    

highly polished 200 0.03 (Aksyutov, 1974)

Stainless steel:    

type 316 polished 232 0.57 (Cverna, 2002) 

type 321 polished 149 to 815 0.18 to 0.49 (Cverna, 2002) 

Table 3.1 – Emissivity values for materials relevant to bread manufacturing 
equipment 

Values reported in literature generally agree on emissivity values for bread of 

between 0.74 and 0.9, as shown by Table 3.2: 

Temperature, T (°C) Emissivity, εA Reference 

150 0.9 (Yanniotis, 2008) 

* 0.9 (Hamdami et al., 2004) 

* 0.9 (Purlis and Salvadori, 2009b) 

177 0.85 (Earle, 2004) 

* 0.9 (Sablani et al., 1998) 

50 and 70 0.95 (Roberts et al., 2002) 

80, 82 and 84 0.82, 0.79 and 0.76 (Gupta, 2001) 

150 to 210 0.8 (Kress-Rogers and Brimelow, 2001) 

Table 3.2 – Emissivity values reported for bread from literature over a range of 
temperatures (* temperature not given) 
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3.2 Jet Impingement Heat Transfer 

Jet impingement heat transfer relies on fluid through an orifice (such as a nozzle) at 

high velocity onto a surface. Fluid jet impingement is a technique widely used 

across industry for drying, heating and cooling. Products manufactured using fluid 

jet impingement include: plasterboard, foodstuffs, metal, paper, thin films, coatings 

and packaging. High air velocity is used to increase heat and mass transfer rates, 

often at the expense of increased capital and operating cost of equipment. Due to 

this, impingement drying is only recommended for operations where a major 

proportion of moisture is being removed (Mujumdar, 2007).  

Jet impingement is an established technology in the food industry and has been 

used in baking operations worldwide for several decades. The advantage of fluid jet 

impingement is that the static boundary layer between the fluid and product is 

reduced in size, which reduces the insulating effect between the hot bulk fluid and 

cold surface and therefore allows higher rates of heat transfer. Moreira (2002) 

noted that impingement nozzles ensured that convection is the dominant form of 

heat transfer at the product surface. 

3.2.1 Impingement Nozzles 

Temperatures for applications of jet impingement have historically varied from -50 

to 400 °C. Air jet impingement is characterised by sets of nozzles discharging air at 

high velocity, typically between 10 and 50 m/s. It has been proved that for each 

system there is a limiting velocity beyond which the boundary layer does not 

decrease further, therefore heat transfer does not increase and using greater fluid 

velocities would have no effect (Erdoğdu and Anderson, 2010).  

The development of flow from a jet is of particular importance when designing an 

impingement heating or cooling device. There are four characteristic regions of 

flow of an impinging jet of air: the potential core, the free jet region, the 

impingement region and the wall jet region – see Figure 3.2. There are two 
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important dimensionless ratios to consider when designing impingement nozzles: 

dimensionless nozzle-to-surface distance, H/d, and dimensionless distance between 

the nozzles, P/d and S/d (P is the pitch between two nozzle sets in the x-direction, 

as shown in Figure 3.3 and S is the spacing between two round nozzles in the z-

direction). In addition, other geometric factors such as the nozzle shape contribute 

to the rate of heat transfer. 

 

Figure 3.2 – Diagram of the flow field of an impingement jet 

Jet impingement nozzles commonly use either arrays of round nozzles (ARN) or 

arrays of slot nozzles (ASN), although some applications may use a single slot 

nozzle (SSN) or a single round nozzle (SRN). Martin (1977) developed a universal 

set of correlations for all the aforementioned types of impingement nozzle. The two 

important correlations for this study – ASN and ARN, are given by Eq. (3.6) and 

Eq. (3.8) respectively. These equations use dimensionless numbers to calculate heat 

transfer from air velocity. Dimensionless heat transfer is displayed as Nusselt 

number, Nu and dimensionless air velocity is displayed as Reynolds number, Re.  
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where f is relative nozzle area the variable f0 is defined by Eq. (3.7): 
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1
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 (3.7) 

The correlation shown in Eq. (3.6) is valid for the below set of conditions:  

 1,500 ≤ Re ≤ 40,000 

 0.008 ≤ f ≤ 2.5·f0 

 1 ≤ H/d ≤ 40 
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where K(H/d, f) is a variable defined by Eq. (3.9): 
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The above correlation is valid for the below set of conditions: 

 2,000 ≤ Re ≤ 100,000 

 0.004 ≤ f ≤ 0.04 

 2 ≤ H/d ≤ 12 

3.2.2 Air Jet Impingement in the Baking Industry 

In baking, air jet impingement is generally directed from both the top and the 

bottom of the oven chamber onto the surface of the bread or tin, see Figure 3.3. 

Ovadia and Walker (1998) described impingement technology as having 

“revolutionised certain sectors of the baking industry”. At the time of the study it 

was estimated that some 100,000 impingement ovens were in use. Two types of 

impingement nozzles were described; short nozzles (orifices) and long thin nozzles 

(jet tubes). The advantage of jet tubes is that there is a greater pressure drop across 

the tube which increases airflow uniformity across an array of nozzles. Short 

nozzles take up less space so are commonly used in smaller plants, for example 

restaurants or in-store bakeries. Due to a smaller pressure drop, a more complex 

design is necessary to maintain uniform air distribution across a bank of nozzles. 

Yeast activation within the dough causes dough-based products to expand with 
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time (along the length of the oven). Due to this, the top surface of the bread rises 

and therefore the distance between the air jets and the top surface of the product, H, 

decreases. In some cases this is taken into account and the nozzle-to-surface 

distance down the length of the oven is gradually increased to maintain optimum 

H/d. 

  

Figure 3.3 – Diagram of air impingement nozzles in a baking oven 

A study by Sarkar and Singh (2004) considers factors such as hygiene and product 

quality when assessing the suitability of jet impingement heat transfer in the food 

industry. The authors note that jet impingement can often result in hot and cold 

spots on the food if not correctly designed. In order to avoid this, the H/d ratio must 

be carefully considered – it must be large enough to give an even distribution of air 

across the product and small enough to give optimum heat transfer rates for quality 

and efficiency purposes. 

The effect of jet impingement for both heating and cooling of food is investigated 

by Olsson and Trägårdh (2007), where CFD and experimental results were 

compared. The importance of ensuring that the interaction between multiple jets is 

modelled and validated experimentally is emphasised – as this has a significant 
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effect on the flow field and heat transfer to the product. The same authors presented 

two further CFD studies on heat transfer from impinging air jets onto cylinders 

(Olsson et al., 2004, Olsson et al., 2005). The cylinders have a diameter of 35 mm 

and were given the properties of a generic food product to represent the baking 

process. The jets investigated were slot jets with a width of 30 mm. The effect of a 

single jet, two jets and three jets were investigated, by varying the Reynolds 

number, distance between nozzles and exhaust opening area. It was found that there 

was a slight increase in heat transfer with a H/d ratio of 2 compared with H/d = 8, 

and there was a significant increase in heat transfer for higher Reynolds numbers – 

the correlation derived for Nusselt number was in the form of Reynolds number to 

the exponent 0.59. Larger exhaust openings resulted in significantly lower heat 

transfer. 

A number of authors describe the relation between nozzle parameters and heat 

transfer in technical detail (Das et al., 1985, Gardon and Akfirat, 1966, Lytle and 

Webb, 1994, Martin, 1977). Different spatial arrangements of jets, and distances 

between them can create stagnation points which will negatively affect heat 

transfer. The key parameters for ensuring efficiency of heat transfer are: fluid flow 

rate, nozzle diameter, nozzle spacing and the nozzle-to-surface distance. The 

relevance of this highly academic literature to industry is questioned by Marson 

(1999), who states that much of the derived correlations are for a single slot nozzle 

or a single round nozzle, whereas in reality industry uses arrays of nozzles for the 

vast majority of drying applications.  

In addition, ‘ASME Standard’ nozzles are almost always used for these 

experiments, which use geometries that are specifically designed to give very high 

discharge coefficients (close to unity) to generate flow streams close to 

theoretically calculated conditions. However, in reality nozzles can rarely be 

manufactured cost-effectively to this standard, in which case the flow 

characteristics used in commercial dryers are significantly different to those 
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published in theoretical papers. The dimensions of an ASME standard nozzle are 

shown by Figure 3.4, where the length of the nozzle, L is equal to the nozzle 

diameter, D. 

 

Figure 3.4 – Dimensions of an ASME standard nozzle 

3.3 Fluid Flow 

A key characteristic of fluid flow is whether it is laminar, turbulent or transitional. 

Laminar flow at a macroscopic level is orderly. Under transitional flow, the 

occurrences of fluctuations appear in the flow structure. Once these fluctuations are 

always present the flow is described as fully turbulent (Falkovich, 2011). The 

Reynolds number is an indicator of the degree of turbulence in fluid flow. 

Turbulence occurs when the Reynolds number increases beyond a critical value, 

Recrit. For example, for highly controlled pipe flow it is universally accepted that 

Recrit = 4,000 (Holman, 2002), although for real applications this value is highly 

problem dependent. The Reynolds number is affected predominantly by fluid 

velocities, fluid properties (density and viscosity) and the characteristic length scale 

– which is related to the flow boundaries. 

The type of fluid flow (according to the classification above) greatly affects the 

way in which it can be analysed. Laminar flow can be both measured and predicted 

with relative ease. However, the majority of engineering applications of fluid flow 
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result in some degree of transitional or turbulent flow, which can make measuring 

of predicting the flow characteristics more challenging. Experimental measurement 

of turbulent flow can result in unstable readings and whilst numerical predictions 

can be accurate on an overall basis, they are often unable to convey the degree of 

instability of the flow.  

The Euler equations are used as governing equations for fluid motion. The 

Bernoulli Equation is a common way to display the momentum part of the Euler 

equations, and is suitable for analysis of non-viscous, incompressible flow. Derived 

in the 18th Century by the Swiss scientist Daniel Bernoulli, Bernoulli’s Equation is 

useful for analysing flow as a function of pressure difference. Eq. (3.10) gives 

Bernoulli’s equation in one-dimensional format assuming no frictional losses and 

for incompressible, smooth fluid flow.  

 ଵܲ ൅
1
2
ଵଶݑߩ ൅ ଵ݄݃ߩ ൌ ଶܲ ൅

1
2
ଶଶݑߩ ൅ ଶ݄݃ߩ  (3.10) 

where P is total pressure (Pa), u is fluid velocity (m/s) and h is height (m). 

The Navier-Stokes Equations are again derived from the Euler Equations and 

define mass, momentum and energy conservation of fluid flow, and are used 

extensively in numerical modelling. Notably difficult to solve analytically, the 

equations become useful when predicting local properties of fluid within a domain 

and are discussed further in Chapter 4. 

3.4 Heat Flux Measurement 

Childs et al. (1999) discussed a number of techniques that can be used to determine 

the heat transfer to an object in a seminal paper on heat flux measurement. The 

methods vary in ease and intrusiveness to the process. The four methods discussed 

were: differential temperature, calorimetric methods, energy supply/ removal and 

mass transfer analogy. Differential temperature is the use of thermopiles to 

accurately measure the conduction of heat across a material. Calorimetric methods 
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use time-averaged measurements of temperature to conduct a heat balance by 

calculating the rate of change of thermal energy of a material. Energy supply or 

removal is when a known quantity of heat is transferred to or from the sample 

surface to create a thermal equilibrium to measure the heat flux. Finally, it is 

possible to measure mass transfer and relate this to heat transfer using 

mathematical relationships between the two related principles. The most suitable in 

the scope of this project was the differential temperature method as heat flux 

sensors using this theory are commercially available. This technique uses principles 

of Fourier’s Law, “temperature differential across a spatial distance within a 

medium”, which can infer heat flux by measuring the temperature gradient across a 

material with a known thermal conductivity.  

Carvalho and Nogueira (1997) analysed heat flux in bread baking ovens. In their 

study, radiation was found to be more significant as a mode of heat transfer than 

convection. Radiation was at least 57 % of the heat transfer, but was measured to 

be as high as 91 % for some sets of conditions. The high degree of radiation can be 

attributed to the comparatively low air velocity of 0.6 m/s. There were large 

differences in the heat flux profile between the top, bottom and sides of the loaves. 

Unfortunately, this report contains little detail on the methodology used to measure 

heat flux or how the results were obtained. The paper recommended further heat 

flux measurements, instead of measuring temperature profiles. For this study, there 

was a difference between experimental and numerical results of less than 15 %. 

3.4.1 Published Values for Convective Heat Transfer Coefficient 

The convective heat transfer coefficient, hc, determines the rate of convective heat 

transfer from the air to the product surface inside a baking oven. Due to the scope 

for large variations in conditions in which bread is baked, values for hc vary 

considerably for different studies. A summary of the values reported in literature is 

given below. 
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For the bread industry, the value of hc = 10 W/(m2·K) was first quoted by 

Rohsenow et al. (1998) and subsequently used by Zhang and Datta (2006). A 

further value of convective heat transfer coefficient of 100 W/(m2·K) was initially 

estimated by Therdthai et al. (2003) and subsequently quoted by Wong et al. 

(2007). Another study used a value of 14 W/(m2·K) for forced convection ovens 

with air velocities between 1.5 and 2.5 m/s (Monteau, 2008). Hamdami et al. 

(2004) and Zanoni et al. (1995a) quoted values of 17.53 and 20 W/(m2·K) 

respectively for bread baking applications but no details of how these values were 

obtained were given for either study. Šeruga et al. (2007) determined heat transfer 

coefficients for baking Croatian flat bread by correlating dimensionless Nusselt 

number, Grashof number and Prandtl number. The value of heat transfer coefficient 

calculated for free convection was 9.756 W/(m2·K) 

A number of authors have measured the convective heat transfer coefficient for the 

baking of cakes and biscuits, for which similar oven technologies are used for 

cooking batter, rather than dough. The most thorough of these studies was 

published by Baik et al. (1999), who produced a heat flux profile through a 25 m 

long oven, which showed heat flux to vary considerably (between 20 and 48 

W/(m2·K) along the length of the oven). Lower values, between 2 and 21 

W/(m2·K), were given for velocities of between 0.5 and 2 m/s (Sato et al., 1987) – 

this methodology was also used by Shibukawa et al. (1989) who reported the value 

of 29 W/(m2·K). Further heat transfer coefficient values measured in the cake 

industry are 20 and 40 W/(m2·K) for air velocities of 2.5 and 10.0 m/s respectively 

(Sumnu and Sahin, 2008). Nitin and Karwe (2001) measured heat transfer in a 

cookie oven and reported much higher values of between 100 and 225 W/(m2·K) 

for jet velocities of between 18 and 44 m/s. 

Due to the variation of the conditions in which they are measured, the convective 

heat transfer coefficient values published in relevant literature cannot be reliably 

applied to this study. This makes it necessary to determine the heat transfer 
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coefficients for the conditions relevant to this study experimentally, which is 

discussed in Chapter 7. 

3.5 Mass Transfer 

Mass transfer is the net movement of matter from one location to another. Mass 

transfer can occur within a medium or across a boundary – for example in bread 

baking the evaporation of moisture from within the dough, through the crust, to 

atmosphere, which dries the crumb of the loaf. As mass transfer is a vast and 

complex field, only the basic principles are discussed here, but a number of sources 

discuss the topic in greater detail (Baehr and Stephan, 1998, Eckert, 1959, 

Incropera and DeWitt, 2007). 

The transfer of mass occurs due to a gradient in concentration, pressure or 

temperature and can be diffusive or convective in nature. Convective mass transfer 

occurs in moving fluids (Nellis and Klein, 2009), and is synonymous to convective 

heat transfer in that is can be correlated for different flow regimes (Martin, 1977). 

Mass diffusion occurs due to concentration gradients and is caused by the 

macroscopic average movement of fluid molecules. Fick’s First Law, Eq. (3.11), 

describes mass diffusion in one dimension in a similar manner to Fourier’s Law of 

conduction (which is discussed previously in section 3.1.1): 

஺ܬ  ൌ െܦ஺஻
݀ ஺ܿ

ݔ݀
 (3.11) 

where JA is the diffusion flux of A in B (mol/(m2·s)), DAB is the diffusion coefficient 

(m2/s) and cA is the concentration of A (mol/m3). 

Mass transfer and heat transfer often occur simultaneously – indeed many practical 

heat transfers occur predominantly due to the transfer of mass (and vice versa) and 

combining the two processes can substantially increase the efficacy of both heat 

and mass transfer and thus energy efficiency – for example heat pipes which utilise 

phase changes of fluids to recover heat of flue gas exhausts – heat pipe heat 
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exchangers are increasingly being used in the process industries. Mass can 

commonly be transferred by physical processes such as: absorption, evaporation, 

distillation etc. Of these, moisture evaporation (a form of vaporisation) from the 

dough surface is the characteristic process required for bread baking. 

3.5.1 Vaporisation and Evaporation 

Vaporisation is the change in state of a fluid from liquid to gas, which as previously 

discussed occurs in baking ovens when the loaf is dried. More specifically, 

evaporation is the vaporisation of fluid from a surface. In order to instigate mass 

transfer in the form of evaporation, two forms of energy are required – the energy 

required to increase the fluid temperature to a point at which a phase change can 

take place, termed sensible heat, and the energy required to cause the phase change 

of the fluid from liquid to gas, termed latent heat of evaporation/ vaporisation. For 

water, the latent heat of evaporation at atmospheric pressure, Lew
, is 2,260 kJ/kg at 

100 °C (Bird and Ross, 2012). This latent heat, which is required to generate steam 

at atmospheric pressure, is much larger than the sensible heat required to raise the 

bulk temperature of water from ambient to boiling point, as the specific heat 

capacity, cPw
, is between 4.186 and 4.219 kJ/(kg·K) in the temperature region 20 to 

100 °C (Serway and Jewett, 2010). This is an important consideration for assessing 

the energy demand of baking bread. Steam tables and Mollier Diagrams help to 

calculate the required energy for vaporisation. 

3.6 Thermal Imaging 

Thermal imaging (or thermography) devices measure the temperature of an object 

by detecting the amount of infrared radiation being emitted from a surface. 

Thermal imaging cameras are highly specialist devices that include either cooled or 

uncooled sensors. These sensors have materials imbedded that are sensitive to 

infrared radiation. The temperature of the object is then inferred by measurement of 

the wavelength of the radiation received at the detector (Maldague, 2001). 
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Uncooled sensors operate at close to the lens temperature, whereas cooled sensors 

are cryogenically cooled devices that can operate at close to absolute zero. Cooled 

sensors are typically more expensive but typically have a wider spectral response 

and due to the large temperature difference are much more efficient at filtering out 

background noise. 

By providing the camera with surface information of the material being analysed 

(i.e. emissivity), internal software within the camera creates an image which 

graphically displays temperature distribution through use of isothermal contour 

lines. Thermal imaging cameras can typically map temperature changes of 0.1 °C 

and can operate in the temperature region of -40 to 2,000 °C and above (Thumann 

and Mehta, 2008). Accuracy is variable depending on the device used, but is 

typically within ± 2 °C. 

Thermal imaging is a non-destructive, non-invasive method, which is advantageous 

in a continuous manufacturing environment since analysis can be conducted 

without affecting production. Historically, a common use of thermography has 

been to detect faults, for example cracks in buildings, blockages in pipes and faults 

in electrical circuits. Additionally it has use for non-engineering tasks, such as 

marine navigation, security systems and for people or building detection by armed 

forces or police aircraft.  

Since 1970 thermal imaging cameras have become easier to use, more affordable 

and more precise when giving quantitative results, hence they have become suitable 

for use in thermodynamic analyses (Ingold, 2008). Ibarra-Castanedo et al. (2004) 

discuss analysis techniques of thermography – focussing on pre-processing and 

post-processing to ensure that defects in the image are detected. Use of thermal 

imaging for estimating heat transfer from a surface is described by Stafford et al. 

(2009) where the theory of energy conservation is used to estimate convective heat 

transfer using a heated thin foil surface. The method resulted in uncertainties in the 
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accuracy of heat flux measurement, particularly for high values of heat transfer 

coefficient. However, the results showed good accuracy (within ± 13 %) when 

secondary heat transfer mechanisms were accounted for – natural convection, 

conduction and radiation. 
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Chapter 4 

Computational Fluid Dynamics 

Assessing the energy efficiency of bakery equipment cannot be tackled by a single 

approach. The use of both computational methods and experimentation in 

situations where most appropriate can benefit industrial manufacturing, particularly 

in analysing energy use of process equipment. This chapter addresses the theory 

behind an important numerical method, Computational Fluid Dynamics (CFD), 

which is a computing tool used to predict fluid flow. 

CFD creates discretised forms of partial differential equations for fluid flow to 

solve the governing equations algebraically at a predetermined number of points 

that are specified by a grid of elements formed within a geometric boundary. CFD 

is described as “the analysis of systems involving fluid flow, heat transfer and 

associated phenomena such as chemical reactions by a means of computer-based 

simulation” (Versteeg and Malalasekera, 2007). It is a technique that has been used 

across a wide variety of industries since around the 1960s – most notably the 

aerospace industry. 

The advantages of using CFD techniques are numerous. Predominantly, it can 

result in time and cost savings in engineering design, but it is also used for 

addressing operational issues with equipment, conducting parametric studies, 

predicting flow in regions inaccessible to experimental measurements, and 

visualising flow fields (Donald F. Young et al., 2010). CFD is an analysis 

mechanism that should be used in conjunction with, rather than instead of 

experimental measurement. 

The proving, baking and cooling stages of commercial bread production all use 

airflow to transfer heat and/ or mass to/ from the product, making the application of 

CFD an appropriate method for analysing all three processes with respect to 
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energy. Bread manufacturing plants are highly automated and therefore access to 

operating equipment is severely restricted, making it intrinsically difficult to 

conduct experimental measurements. Strict rules regarding unnecessary use of 

instrumentation in the vicinity of ingestible food products limit opportunities to 

conduct experimental measurements on functioning machinery (Kress-Rogers and 

Brimelow, 2001). These factors, coupled with the reluctance of bakeries to 

shutdown plants due to the adverse economic impact of doing so, mean that often a 

non-invasive form of measurement is more suitable for analysis. CFD is a good 

example of a non-invasive analysis technique. 

4.1 Background 

The history of CFD can be traced back to the early part of the 20th century, when 

Richardson (1910) used hand calculations by workers performing up to 2,000 

operations per week to analyse the structural integrity of a 6 m high masonry dam. 

This is the first recorded instance of a scientist/ researcher dividing an object into 

cells and performing individual calculations at a predefined number of point to 

estimate local stress distribution properties. The same author went on to later use 

the same methodology on fluid flow to attempt to predict the weather (Richardson, 

1922). 

Many consider the first rigorous numerical simulation of fluid flow as the 

prediction of a flow field around a two-dimensional cylinder for Reynolds numbers 

of 10 and 20 (Thom, 1933). This study used an iterative series of hand calculations 

at a set number of points on a square grid to produce a visualisation of streamlines 

of equal velocity. Kawaguti (1953) notably spent 18 months with a hand calculator 

for 20 hours per week for a similar study on a cylinder for a higher Reynolds 

number, Re = 40. It was around this time that the early forms of computers were in 

development and so the prospect of more complex problems (for example three-

dimensional flow, non-uniform geometries etc.) could be envisaged. 
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The next major breakthrough in development of CFD was when the “Marker-and-

cell method” was developed in the 1960s. This allowed computers to graphically 

display fluid simulations – a method that has remained in use since (Harlow and 

Welch, 1965). The arbitrary Lagrangian-Eulerian methods were developed around 

the same time and combined the Lanrangian and Eulerian equations to increase the 

efficiency of the calculations being performed. This also allowed more parameters 

to be accurately predicted, such as heat transfer and interactions between fluids and 

solids. A key step in CFD development came with the invention of the k-ε 

turbulence model (Harlow and Nakayama, 1967); these equations were eventually 

standardised by Launder and Spalding (1974) and have been widely used since. 

The influential group of scientists from Imperial College London, which included 

Professor Brian Spalding, Professor Suhas Patankar and Professor Brian Launder, 

continued to work on a range of improvements to CFD methods, most notably the 

Semi-Implicit Method for Pressure-Linked Equations (SIMPLE) algorithm 

(Patankar and Spalding, 1972), which has become ubiquitous in commercial 

software ever since. 

Over the past four decades computer hardware has advanced technologically and 

software has evolved to become more user-friendly and efficient. Thus, the 

application of computational techniques to engineering challenges has become 

more widespread in diverse industries such as the food sector and is increasingly 

being used in the design of machinery, products and processes (Norton and Sun, 

2006). 

4.2 CFD in the Food Industry 

CFD has been successfully applied to many parts of the food industry, for example 

optimisation of the airflow distribution for chilling meat (Kondjoyan and Daudin, 

1997), analysis of airflow in sausage dryers (Mirade and Daudin, 2000), 

improvement in product quality in sterilisation of canned foods (Ghani et al., 
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1999b, Ghani et al., 1999a) and controlling the temperature profile in the 

pasteurisation of beer (Augusto et al., 2010). A number of review papers have 

summarised recent CFD studies in the food industry (Kaushal and Sharma, 2012, 

Norton and Sun, 2006, Norton and Sun, 2007, Scott and Richardson, 1997, Sun, 

2007, Wang and Sun, 2003). 

4.2.1 CFD in the Bread Industry 

This section reviews a cross section of papers that utilise CFD methods for problem 

solving in the bread industry, looking predominantly at airflow distribution and 

heat transfer characteristics in baking ovens. The main findings are summarised for 

comparison and critical analysis is given to a number of examples where CFD or 

experimental validation has been used inappropriately or inadequately. The list is 

not exhaustive, as there are in excess of 100 papers on the subject, but the most 

relevant and interesting studies are discussed here. 

In the bread industry, CFD has been used predominantly for analysis of airflow 

within baking ovens. For industrial ovens air distribution, air temperature and air 

velocity are all important factors to maximise heat transfer. Several CFD studies of 

baking ovens have been previously published, however there are significant issues 

affecting the accuracy of the results published in literature. Some of the differences 

in the results can be attributed to varying oven designs, operating conditions and 

product types. In addition there is also an issue regarding the type of modelling that 

has previously been used. Much of the modelling has assumed turbulent flow, 

however in reality, for these types of problems the flow can be transitional which 

complicates the set of solving equations. Laminar, turbulent and transitional flow 

regimes have been discussed in section 3.3. For much of the published material 

little or no effort is made to experimentally validate the results via accurate 

experimentation, for example by measurement of physical parameters such as air 

velocity at predetermined points within the baking chamber and comparison with 

predicted values. 
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A single zone batch pilot oven has been analysed using CFD and investigates the 

effect of inside wall temperature on radiant heat transfer (Boulet et al., 2010). The 

results were validated by using measurements taken with a commercially available 

heat transfer monitor and showed good agreement to the numerical predications. 

The results show that for the geometry analysed with low air velocity, radiation 

accounts for between 80 to 99 % of the total heat flux. Heat flux to the bread is 

highest at the start of the process when the temperature difference between the 

dough and oven is greatest, and at a minimum near the end of the oven cycle when 

the temperature difference is least. 

A study was conducted which investigated the effect of changing the location of 

the electrical heaters in a buoyancy-driven convection oven, similar to those found 

within in-store bakeries (Navaneethakrishnan et al., 2007). The aim was to find 

most efficient heater location for uniformity of temperature distribution and air 

circulation. It was found that heating from the bottom of the oven provided the 

highest degree of air circulation, however the most uniform heat distribution 

occurred with the heaters at the top of the oven. 

Two papers were published that study, via use of an experimentally validated CFD 

model, airflow in an electrically powered forced convection batch-scale oven. The 

results show the variation in both air velocity and temperature distribution fields for 

different positions within the oven. Oven velocity was in the region of 0 to 6 m/s 

and maximum air temperature was less than 240 °C. Validation was conducted 

through velocity measurement using hot-wire anemometry which gave an average 

22 % calculation error (Verboven et al., 2000a, Verboven et al., 2000b).  

Wall temperature, air temperature and air velocity profiles were estimated using 

CFD for a low-velocity industrial biscuit oven. The air temperature in the oven 

reached a peak of 245 °C towards the centre of the oven. Temperature profile 

results correlated closely with experimental ones, however velocity profiles were 
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more difficult to validate as velocity sensors for hot conditions were not easily 

available (Mirade et al., 2004). Although direct velocity measurement of hot gases 

is often difficult, it is possible to infer the values through pressure measurements, 

for example through use of a pitot tube and manometer. It is also possible to use 

specialised hot-wire anemometers for velocity measurement in baking ovens 

(Therdthai et al., 2004b). 

Time dependent bake and broil (or grill) cycles in domestic ovens were studied, 

showing temperature profiles and heat distribution after 6 and 15 minutes. 

Temperatures were in the region of 275 °C and natural convection was dominant 

for driving airflow. There was a more uniform temperature distribution during the 

bake cycle due to increased convection. Results were accurate compared to 

experimental trials – within 4 % for the bake cycle and 10 % for the broil cycle 

(Mistry et al., 2006). 

Two journal papers and a section of a book are dedicated to the analysis of a four 

zone U-shaped indirect-fired industrial bread oven. The papers used both two-

dimensional and three-dimensional geometries to investigate airflow within the 

oven. The air velocity within the oven was typically less than 1 m/s. The two-

dimensional analysis found that by altering the temperature profiles across the 

zones the shape and colour of the bread could be improved (Therdthai et al., 2003). 

The three-dimensional studies assessed the impact of the baking load on quality 

attributes such as weight-loss, core temperature and crust colour (Therdthai et al., 

2004a). Whilst these quality attributes were not directly predicted by CFD, a range 

of empirical relationships were formed from experimental measurements conducted 

in a baking oven operating under 125 different temperature profiles (Therdthai et 

al., 2002). The results of the CFD analysis showed that energy use can be reduced 

by 1.4 % and air velocity increased to generate an improved bake profile (Zhou and 

Therdthai, 2007). A similar oven configuration was analysed, again in two 

dimensions, which predicted air temperature and velocity profiles of airflow. The 
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computational simulations correlated closely with experimental results. The 

internal product core temperature profile was modelled and was found to be 

approximately linear, however, an ‘s-curve’ (characterised by a large temperature 

increase in the middle section of the oven and little temperature change in the first 

and last portion of the baking process) was measured experimentally (Wong et al., 

2007). 

Ousegui et al. (2010) developed a computational model of the baking process 

which found that convection was the main source of heat transfer for baking bread 

– a claim disputed by other authors. This model was able to compute moisture 

content and temperature. Validation was performed by comparing results with 

published experimental data collected from other authors. The focus of this study 

was the heating process of the product itself and the main difference between this 

paper and other related research papers is the author takes into account the porous 

nature of the bread. It is not practical to model porous dough/ bread fully as 

development of pore size and location cannot be predicted due to the random 

distribution of gas cells as they are generated during yeast fermentation, which is 

largely dependent on the dough formation stage. 

A specialised application of CFD modelling is design optimisation; whereby design 

variables and constraints are identified and software simulates a series of solutions 

based on these factors. The best solution that is generated in terms of an objective 

function can then be used to enhance the design of equipment. CFD optimisation is 

a rapidly growing research area. Therdthai et al. (2002) had previously performed 

an experimental optimisation of temperature profile for the least amount of weight 

loss (7.88 %) whilst maintaining other quality attributes, such as crust colour. 

Design optimisation of bread ovens using CFD has been carried out for temperature 

uniformity to achieve smaller baking times and minimise energy consumption 

(Khatir et al., 2012a, Khatir et al., 2010, Khatir et al., 2011a, Khatir et al., 2011b, 

Khatir et al., 2012d). 
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4.3 CFD Methodology 

In order to formulate a CFD analysis three common steps are used: (i) pre-

processing (ii) solving and (iii) post-processing.  

Pre-processing allows the user to define a problem for analysis and to design a set 

of conditions for which computer analysis is required to solve. The first step of pre-

processing is to define a geometry, which can be one, two or three-dimensional in 

nature. Geometries can often be imported from computer-aided design (CAD) tools 

or generated using specialised pre-processing software. From this, the solution 

domain can be created – this is the area in which fluid flow occurs and the 

boundary walls prevent flow outwards. A mesh (or grid) is generated from the 

solution domain, where the volume is divided into smaller shapes, or elements. The 

solving parameters are set for the problem which affects both the accuracy and 

processing time of the solution. Finally, boundary conditions (BCs) are applied at 

the open faces of the volume. BCs are often applied at inlets, outlets, walls and 

symmetry planes. 

A CFD solver firstly checks the pre-processing steps are compatible with the 

operations and equations that have been applied. The choice of turbulence model is 

made – turbulence models are sets of equations that have been devised to estimate 

flow characteristics of unpredictable three-dimensional fluid flow. Turbulence 

modelling is described in depth in section 4.7. The solution generated will never be 

exact – the residuals (degree of error) converge to approach the exact solution with 

an iterative approach. The computing part of the solving phase can use 

considerable time and resources, depending on: the parameters selected in the pre-

processing stage, the quantity and quality of the processor(s) used and the degree of 

convergence or stability required for the problem to be considered solved. 

Post-processing allows interpretation of results. Due to the magnitude of data that 

CFD solutions generate, post-processing requires careful thought and 
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understanding to display results in the most informative format. Results can be 

displayed in visualised format, numerical results, or graphically. The most common 

options to display results include: 

 Geometry or mesh 

 Vector plots 

 Contour plots 

 Surface or planar plots and x-y plots or graphs 

 Particle tracking 

Depending upon the problem specified in the pre-processing phase, outputs would 

usually be flow characteristics such as: pressure, velocity, heat transfer, lift, drag, 

or many other forces and fluxes. 

4.4 Discretisation 

Discretisation of the flow domain is necessary to solve the governing equations. 

Discretisation is used to divide the flow domain into many smaller volumes, which 

generates a mesh (or grid). Flow domain discretisation and mesh generation is an 

important part of CFD problem formulation as it determines exactly how many 

calculation points there will be and therefore the computational demand of the 

solution process. Mesh refinement at the proximity of the nodes affects the 

accuracy of the interpolation equations used to approximate the governing 

differential equations. Generally speaking, regimes of complex flow require fine 

grids to adequately resolve the large flow gradients associated with rapidly varying 

flow fields. 

Meshes can be one, two or three-dimensional, depending upon the nature of the 

flow problem. The mesh is made up of cells containing nodes at which the flow 

variables of interest will be determined. Solving discretised forms of the governing 

flow equations at each of these nodes allows the flow variables (for example 

velocity, pressure etc.) to be approximated. Interpolation between each node then 

allows surface plots of the flow variables to be generated. Depending on the 
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discretisation method chosen, the governing equations must be expressed in either 

integral or differential form. The three main discretisation methods are the Finite 

Difference Method (FDM), the Finite Volume Method (FVM) and the Finite 

Element Method (FEM). 

4.4.1 The Finite Element Method 

The FEM is often used in structural engineering or fluid dynamics problems where 

the fluid is interacting with a solid medium. The method uses shape functions to 

divide the geometry into a fixed number of elements (Zienkiewicz et al., 2005). 

The discretised equations of fluid flow are interpolated across each element to 

approximate a solution for nodes – this approximated solution is in the form of a 

set of algebraic equations which then require solving to determine the solution 

across the fluid volume. Commercial analysis software codes that use FEM include 

COMSOL (COMSOL, 2012). 

4.4.2 The Finite Difference Method 

The FDM is the oldest discretisation method and is typically best suited to 

structured meshes where the elements are less irregular. The method uses Taylor 

series expansion to approximate the finite differences using the governing 

equations (Tu et al., 2008). The FDM is generally only used for specialist CFD 

problems and is not frequently used in commercial software. 

4.4.3 The Finite Volume Method 

The FVM is the most popular method used in general purpose CFD packages. The 

geometry is divided into a series of cell volumes and the flow variables are applied 

to the centre of each element (nodal point) (Versteeg and Malalasekera, 2007). 

Integral forms of the governing flow equations are solved across each element. The 

FVM is used in software applications such as ANSYS Fluent and OpenFOAM 

(ANSYS Inc., 2009, OpenCFD Ltd., 2012) and is the most popular discretisation 

method as it conserves mass, energy and momentum at a cell level, which ensures 
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that these same three quantities are also consistently conserved for any given 

control volume. 

4.4.4 Mesh Generation 

The quality and efficiency of a mesh is highly dependent on the meshing software 

used and the skill of the operator generating the mesh. Meshes can be broadly 

categorised as ‘structured’, ‘unstructured’ or ‘hybrid’. Structured meshes, see 

Figure 4.1 (a), have uniformly-shaped elements applied across a volume, which 

simplifies the calculation matrices as better approximations to derivative terms in 

the governing flow equations allow for quicker and more accurate results. 

Unstructured meshes, see Figure 4.1 (b) are created out of different sized shapes 

fitted together and can be applied with greater ease to geometries with step 

changes. Structured meshes are more accurate but less geometrically flexible and 

vice versa for unstructured meshes. Hybrid meshes combine both structured and 

unstructured methods to allow the user to select an area to have either uniform or 

non-uniform elements which are combined together computationally into a single 

mesh (Thompson et al., 1999). 

 

Figure 4.1 – Diagram of two-dimensional meshes: (a) structured and (b) 
unstructured 

Three-dimensional meshes can be created using a variety of different element 

shapes depending on the relevance to the geometry in question – a selection of the 

types of shape that could be used are shown by Figure 4.2. Different mesh 

generation techniques may result in use of any type of polyhedral element. 

(a) (b) 
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Figure 4.2 – Three-dimensional elements commonly used for mesh generation: 
(a) hexahedra, (b) tetrahedra, (c) extruded triangles and (d) pyramids 

4.5 Governing Flow Equations 

CFD software uses algorithms to solve discretised forms of the governing 

equations of fluid flow for a designated geometry and set of BCs. The governing 

equations relate to three fundamental principles of fluid flow: 

 Conservation of Mass: states that the rate of change of mass is equal to the 

net inflow of mass. 

 Newton’s Second Law: states that momentum is conserved. 

 The First Law of Thermodynamics: states that energy is conserved in a 

closed system. 

Explicitly, the Navier-Stokes flow equations for a compressible Newtonian fluid 

are expressed below in Eq. (4.1) to (4.5) for mass, x, y and z momentum and 

energy: 

Mass: ߲ߩ
ݐ߲

൅ ܝߩ׏ ൌ 0 (4.1) 

where u is a velocity vector (m/s). 

x-momentum: ߲ሺݑߩሻ
ݐ߲

൅ ሻܝݑߩሺ׏ ൌ ሻݑ׏ሺΓெ׏ ൅ ܵெ௫ (4.2) 

where u is velocity in the x-direction (m/s), ΓM is fluid viscosity (Pa·s) and S is the 

source term. 

(a) (b) (c) (d) 
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y-momentum: ߲ሺݒߩሻ
ݐ߲

൅ ሻܝݒߩሺ׏ ൌ ሻݒ׏ሺΓெ׏ ൅ ܵெ௬ (4.3) 

where v is velocity in the y-direction (m/s). 

z-momentum: ߲ሺݓߩሻ
ݐ߲

൅ ሻܝݓߩሺ׏ ൌ ሻݓ׏ሺΓெ׏ ൅ ܵெ௭ (4.4) 

where w is velocity in the z-direction (m/s). 

Energy: ߲ሺܶߩሻ
ݐ߲

൅ ሻܝܶߩሺ׏ ൌ ሻܶ׏ሺΓ்׏ ൅ S் (4.5) 

where ΓT is thermal conductivity (W/(m·K)). 

The conservative form of the Navier-Stokes equations relating to the three 

fundamental principles of conservation of mass, momentum and energy is shown in 

vector form by Eq. (4.6), where the application of the scalar variable, ϕ, is 

interchanged depending on the principle applied.  

 
߲
ݐ߲
ሺߩ߶ሻ ൅ ሻܝ߶ߩሺ׏ ൌ ሻ߶׏ሺΓ׏ ൅ ܵథ (4.6) 

For application of Eq. (4.6) to Eq. (4.1) to (4.5), ϕ is substituted by 1, u, v, w and T 

respectively. The conservative transport equation is taken from Versteeg and 

Malalasekera (2007), who also describe the equation in words: 

 

4.6 Boundary Conditions 

BCs are applied at flow domain boundaries to give the solver start and end 

conditions that are necessary to compute the flow parameters within the 

computational domain. The importance of setting realistic BCs should not be 

underestimated – BCs that do not accurately represent the engineering problem 

Net rate of flow 
of ϕ out of fluid 

element 

Rate of 
increase of ϕ of 
fluid element 

Rate of increase 
of ϕ due to 
diffusion 

+ = 
Rate of increase 

of ϕ due to 
sources 

+ 
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being analysed are highly unlikely to give results that can be experimentally 

validated. 

The standard BCs available in most commercial CFD codes are listed below: 

 Inlet: velocity, pressure, mass flow rate 

 Outlet: velocity, pressure 

 Wall 

 Symmetry 

The above selection of BCs will be suitable for the vast majority of CFD studies; 

indeed most problems will only have inlets, outlets and walls, with symmetry 

planes where applicable. 

The magnitude and direction of flow at the inlet are the two key factors when 

specifying an inlet BC. Inlet BCs should be set so that the profile across a surface 

or edge is reflective of reality, for example some inlets may have uniform 

magnitude across a surface, whereas others may vary across a face (2 dimensions) 

or edge (1 dimension). The level of turbulence should also be quantified at the inlet 

BC. The presence of an inlet BC suggests mass flux into the fluid domain; 

therefore for steady state simulations, in order to comply with conservation of 

mass, an outlet BC must also be located within the fluid domain to expel an equal 

amount of fluid. 

Positioning of outlet BCs can have an important influence on the results of the 

computational model – this is classically illustrated by “a backward-facing step 

flow problem” study where a velocity inlet was placed opposite a pressure outlet, 

the study was repeated for three different distances between the step and the outlet 

(Tu et al., 2008). The author described the three scenarios, from the outlet being 

closest to the step to the outlet being furthest from the step: (i) unrealistic (ii) poor 

accuracy and (iii) good accuracy – where for good accuracy the distance between 

the step and outlet was greater than 10 times the step height (Tu et al., 2008). 
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4.7 Turbulence Modelling 

Turbulent flow is described as “unsteady irregular, seemingly random and chaotic” 

(Pope, 2000). Modelling turbulent flow is conducted by application of simplified 

equations that model the effect of turbulence in an average flow field, which are 

used in conjunction with the Navier-Stokes governing equations outlined in section 

4.5. The choice of turbulence model affects the accuracy of results and processing 

time. 

The majority of turbulence models use the RANS method to investigate turbulent 

effects on the average flow field. RANS equations are time-averaged (steady state) 

and are used in conjunction with a turbulence model in order to compute turbulent 

flow characteristics. Models that use RANS equations and are discussed below are: 

the standard k-ε model (Launder and Spalding, 1974), the Re-Normalisation Group 

(RNG) k-ε model (Yakhot et al., 1992), the realisable k-ε (RKE) model (Durbin, 

1996), and the k-ω model (Wilcox, 1988), all of which are two-equation models. 

RANS models can only be used for fully turbulent flow. 

The standard k-ε model (Launder and Spalding, 1974) was mentioned in section 4.1 

as a breakthrough in CFD development. Turbulence is described with two 

variables: k (turbulent kinetic energy) and ε (turbulent dissipation rate), which 

enables computation of both turbulent stress and the turbulent viscosity. The k 

equation is an exact definition, whereas the equation for turbulent dissipation rate is 

derived experimentally from correlations. It is the one of the simplest turbulence 

models to implement and has been widely applied to industrial applications, 

including instances of both confined and free-flow for low pressure gradients. It is 

considered by most to be the most established and validated CFD turbulence 

model. Occasions where this model has been previously found to be lacking in 

accuracy include unconfined flow with large pressure gradients (such as 

compressors), and when coarse meshes are specified in the near-wall region 

(Bardina et al., 1997). 
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Despite the advantages of the standard k-ε model, it is not recommended for cases 

with flow impinging on surfaces, since the turbulence energy may be over-

predicted at the stagnation point (Durbin, 1996). An improvement for such flows is 

the RKE model since it can be used for high Reynolds number flows in complex 

geometries (Shih et al., 1995). The RKE model can also be used for flow through 

round jets. There are two key differences between the standard and realisable 

models: (i) changes to the definition of dissipation rate, ε, which improves the 

predictions of energy transfer and (ii) a new formulation for variable eddy-viscosity 

via the addition of a variable, Cμ. The model has been substantially validated for 

most flow regimes; the main drawback of the RKE model when compared with the 

standard model is that it the solution is considered less stable (Andersson, 2012). 

The RNG k-ε model is a variation of the standard k-ε model which accounts for the 

effect of both small and large scale turbulence (Yakhot et al., 1992). The 

mathematical algorithms incorporated into the RNG method varies the length scale 

in the turbulent dissipation equation, thus allowing both small and large scale 

eddies to be predicted, which gives better approximations for swirling flows. The 

RNG model can also be used for flow regimes with lower Reynolds numbers; 

however caution is advised when doing so, due to near wall effects. However, 

unlike the RKE model there is no improvement on the standard model for flow 

approximation for impinging fluid jets (Andersson, 2012).  

For turbulent flow with low Reynolds numbers the k-ω model is most suited, where 

ω is turbulence frequency (Wilcox, 1988). This model was predominantly 

developed as a way to predict shear dominated flows – particularly for fluid jet 

configurations. The k-ω model also has good accuracy at high Reynolds numbers 

and has a similar processing time as the other RANS turbulence models described 

above. The main disadvantage of this model is that for reliable results the mesh 

needs to be fine due to the lack of any wall function. The shear-stress transport 

(SST) k-ω model, developed by Menter (1994), is similar to the standard k-ω 



- 61 - 
 

 

model but includes elements of the k-ε model to simulate flow in the free-stream 

region of the fluid flow. This gives the advantages of both aforementioned 

methods, however it has a tendency to over-predict turbulence at stagnation regions 

(Andersson, 2012). This important for modelling the manufacturing of bread as 

frequently impinging jets are used to process bread in both the proving and baking 

phases. 

4.8 Validation and Verification 

It is important for the user of CFD models to realise that any results obtained 

contain a degree of error and uncertainty, and a crucial part of CFD is recognising 

the degree of both error and uncertainty before using or presenting the results. 

Uncertainty is related to deficiencies due to lack of knowledge, whereas error is not 

(Versteeg and Malalasekera, 2007). Validation and verification are two techniques 

that help quantify the error and uncertainty in a computational model, without 

which results of a CFD study cannot be relied upon for either quantitative or 

qualitative results. The European Research Community on Flow Turbulence and 

Combustion (Casey and Wintergerste, 2000) and American Institute of Aeronautics 

and Astronautics (AIAA, 1998) provide guidelines that are widely accepted 

standards for verification and validation of computational modelling. 

Validation is the process that confirms whether or not the problem identified can be 

solved by use of the stipulations specified by the user and that the flow model 

captures the correct physics, this therefore determines the accuracy of the model. 

Verification addresses the mathematical legitimacy of the model itself and the 

degree of accuracy of the solution of the governing equations. The difference 

between validation and verification was described succinctly by Roache (1998), 

who used the famous phrase that validation is “solving the right equations”, 

whereas verification is “solving the equations right”. The types of error that can be 

expected in CFD analysis are generally classified as: numerical (for example 
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rounding, discretisation), coding or user errors. Uncertainty can be classified by 

input (for example BCs or fluid properties) or physical model uncertainties (for 

example simplifying assumptions). 

Validation of a model can be conducted by comparing results to an analytical 

solution or, where this is not possible, comparison with experimental data. As it is 

not possible to experimentally measure an entire flow field (hence the application 

of CFD to do this), validation is often conducted by comparing experimental results 

at particular points in the flow with the equivalent characteristics computed by the 

model. Often the most logical way to do this is to measure air velocity or pressure 

at a series of points and compare this with the computational results. 

Verification is more difficult to characterise, as each computational model differs 

with varying geometries, discretisation methods, turbulence modelling equations, 

BCs etc. Verification should usually be conducted early in the CFD study cycle – 

in order to ensure that the problem defined is suitable for the accuracy desired 

(Oberkampf and Trucano, 2002). One essential part of verification is to conduct 

convergence studies which assess the suitability of assumptions made, for example 

the difference between different turbulence models or the sensitivity of changing an 

inlet BC. One such type of convergence study that is almost always applied to CFD 

models is a mesh sensitivity analysis. Mesh sensitivity allows the user to analyse 

the effect of coarser or finer meshes on results, with the aim to reduce the number 

of elements (and therefore the compute time) whilst retaining as much accuracy as 

possible. The Grid Convergence Index was suggested as a standardised method for 

ensuring suitability of mesh selection (Roache, 1994). 

4.9 Summary 

CFD is an increasingly popular method for predicting fluid flow in industrial 

applications such as bread manufacturing. It is a powerful tool that can be used for 

both qualitative analysis of airflow distribution and quantitative interpretation of 
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results to assess performance in terms of engineering efficacy, product quality and 

energy efficiency.  

The range of industries in which CFD has been applied has diversified enormously 

since the 1960s, when aerospace companies and academics were developing the 

first useful CFD studies for analysing aircraft design. The increase in efficiency 

and usability of CFD techniques, combined with the exponential improvement in 

personal and cluster-based computing capabilities has meant that in many cases it 

has become easier and cheaper to analyse using CFD modelling than by manual 

experimentation. CFD techniques have been shown to provide process 

improvement in the food industry (Norton and Sun, 2007), as CFD makes it 

possible to investigate a far wider range of design scenarios than is possible with 

the traditional build-and-test approach, resulting in significant performance gains 

(Marcotte and Grabowski, 2008). 

The outputs of CFD can be used to drive design and/ or operation of engineering 

systems with potentially significant benefits in: energy efficiency, reliability, 

manufacturability or operational quality. Despite the obvious advantages of CFD to 

applications such as energy efficiency in food processing, care must be taken to 

ensure that the results generated are applicable to the physical problem identified. 

A level of attention must be exercised during the problem formulation to ensure 

that the solution methods chosen are suitable for the practical problem identified – 

this includes correct selection of turbulence model, BCs and convergence criteria. 

The final stage of CFD is to ensure the results obtained are representative of the 

solution desired – this is done by thorough experimental validation and verification, 

which ensure that: (i) the results bear resemblance to what is expected, and (ii) the 

methodologies used stand up to theoretical scrutiny. Without thorough validation 

and verification, the results cannot be relied upon. 
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Chapter 5 

An Experimental and Numerical 

Investigation of Industrial Bread Proving 

As discussed in section 1.3.2, proving is the second key process in bread 

manufacture and occurs after the dough is mixed and shaped. Although bread 

provers (also known as ‘proofers’ in some regions) come in a variety of 

configurations, the overall principle of introducing heat and humidity to the air that 

surrounds the product remains constant across all designs. The British standard loaf 

is larger and less dense than many of its foreign counterparts; thus, it contains a 

larger quantity of yeast and requires a higher degree of fermentation (i.e. more time 

and more energy). Therefore, the scale of the proving process is larger and more 

critical than elsewhere. 

Provers have a heat supply (either by electrical air heaters or gas-fired burners) and 

a steam supply (either produced by local steam generation units or via a steam ring 

main and a centralised boiler plant). High flow rates of air are used to distribute 

heat and humidity to the product, which requires an electrical load to power 

centrifugal air circulation fans. During the proving process the dough changes in 

size, density and porosity, although the mass remains approximately constant. The 

dough temperature increases to approximately 40 °C. The yeast is activated at 35 

°C and remains active until the dough temperature reaches 45 to 50 °C in the oven 

(Gelinas, 2006). 

Little research has been published relating to the industrial proving of bread. Of the 

limited number of publications in existence, the only topics covered address the 

internal chemical processes within the dough (Chevallier et al., 2012, Chiotellis 

and Campbell, 2003b, Chiotellis and Campbell, 2003a, Cordoba, 2010, Grenier et 

al., 2003, Grenier et al., 2006, Grenier et al., 2010, Lucas et al., 2010, Shah et al., 

1998). These are almost entirely mathematical models predicting gas cell size 
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within dough structures. As this project addresses the macroscopic issues 

concerning energy management of commercial scale provers, these models are of 

limited use. One reason for the scarcity of research relating to proving technology 

could be due to the fact that proving processes vary vastly across different regions. 

Another reason for the lack of scientific research into bread proving technology 

could be that the prover is a much smaller unit (not necessarily in terms of size but 

in terms of relative importance, maintenance, capital cost and running cost) than a 

bread oven – therefore the majority of resource amongst engineers and food 

scientists has historically been directed towards thermal efficiency of ovens. 

Despite this, dough proving is still of great significance to the production process 

as well as being a significant user of energy in an industrial bakery. 

This chapter aims to: (i) quantify the energy consumption of a typical industrial 

bread prover in order that these figures can be used to benchmark energy 

consumption; (ii) display experimental results of energy use and velocity 

distribution in an industrial bread prover, and (iii) perform a validated CFD study 

on a generic prover geometry that is applicable to industrial applications. The 

results from the CFD study are then used to make recommendations for changes in 

operating settings for the purpose of reducing the number of air changes per hour, 

N (/hr), and thus prover energy demand. This study is the first attempt to analyse a 

prover using CFD and residence time distribution analysis. 

5.1 Industrial Bread Provers 

Provers can either be ‘L-type’, ‘box type’ or ‘tunnel type’. For large production 

facilities provers are predominantly L-type. Provers are commonly manufactured 

with this geometry so that they can fit in the space above an oven to make best use 

of available space within a bakery. It is assumed in industry that the energy lost 

through the oven walls and roof is indirectly recovered to provide heat to the 

prover. 
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In an L-type prover the bread is initially raised vertically, ①, before travelling 

horizontally back and forth, ②, before being unloaded opposite the initial start 

point, ③, as shown in Figure 5.1. Industrial bread provers are typically around 30 

to 40 m long (denoted Lx), 4 to 6 m wide in the z-direction (Wz), have loading width 

(Wx) of between 2 and 5 m and thickness in the y-direction (Hy) of 2 to 4 m.  

 

Figure 5.1 – Diagram showing the shape and dimensions of an L-type prover 

The air change rate (or number of air changes per hour), N, is the measure that 

bakeries use to control airflow within the prover. This is a common measurement in 

building services engineering that defines airflow within a volume – for example to 

replace the air 10 times per hour (N = 10/hr) in a 1 m3 box would require a 

volumetric flow rate of air of 10 m3/hr. 

Box type provers are cuboid in shape, and have the advantage that the dimensions 

do not necessarily need to be matched to the oven, although they need to be sized 

to maintain the same level of throughput. Box type provers are less common in 

modern bakery environments due to the difficulty of cleaning inside the cavity. 

Tunnel type provers describe a system where bread is conveyed through a straight 

tunnel. These have lower manufacturing costs as they can be positioned without the 

need to be fixed to a frame above other equipment, but have large footprints as due 

to their size they are unsuitable to be positioned above an oven. Industrial bakers 
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have also described them as less energy efficient as indirect heat recovery from 

heat losses through the oven walls does not automatically occur (Price, 2012). 

5.2 Energy Use of Industrial Provers 

Proving is one of several important processes for baking bread. It has been 

previously noted that “proof-boxes” in a large US bakery use around 1.8 % of total 

site energy usage (Thumann and Mehta, 2008). Moreover, data collected by the 

Carbon Trust from a number of UK bakeries suggests that 5 % of CO2 emissions in 

a bread plant are due to the proving process (Carbon Trust, 2010). Both of these 

figures represent a substantial impact both environmentally and economically, and 

so the potential gains by optimising the prover design and operation are of interest 

to industry. For a typical large UK bakery, consuming 22.5 GWh of electricity and 

gas and emitting 6,405 TCO2 per year, the prover is responsible for over 400 MWh 

and 320 TCO2 per year. Economically, the yearly cost of this is in the region of 

£50,000 per prover. In the UK there are more than 90 industrial bakeries and in 

excess of 100 bread manufacturing lines. 

 

Figure 5.2 – Screenshot of online energy metering system for an industrial bakery 

The energy consumption trends of a bread prover presented in sections 5.2.1 and 

5.2.2 show new and unique metering data collected from an industrial bakery over 

Commercially 
sensitive data 

hidden 
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the period of twelve months. The industrial bakery was equipped with online 

energy monitoring software which read gas and electricity readings at hourly 

intervals, a screenshot of the software is shown by Figure 5.2 – this data was stored 

on an online database from which historic data could be extracted and processed – 

for example to present as weekly totals to show seasonal variations in energy use. 

5.2.1 Gas Consumption Trends 

Gas-fired burners are used to heat the air within a prover. Figure 5.3 shows the 

hourly trend for prover gas use over an arbitrary one week period – the week 

beginning Saturday 1st May 2010.  

 

Figure 5.3 – Hourly gas use of a prover over the period of one week with mean 
hourly gas use (4.1 m3) shown by red dashed line and the range of values within 1 

standard deviation shown by blue dashed line 

The most notable peak occurs late on Sunday and comes after a period of 

shutdown, which had occurred earlier in the day. The heat load required at this time 

to increase the prover air temperature to operating temperature is three times higher 

than the mean load; however it is still relatively small compared to other heating 

processes due to the mild temperature conditions specified in the prover. The graph 

also shows the range of points within one standard deviation of the mean usage 

value. The portion of points within one standard deviation of the mean is 77 % 
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which is a higher percentage than that expected for normal distribution (around 69 

%). 

Figure 5.4 shows the weekly burner gas consumption over a one year period – 

between September 2010 and August 2011. The usage trend from week-to-week is 

erratic, which reflects the flexible nature of the UK bread market. In weeks where 

supermarket discounts are offered there can often be a production spike. There is 

no strong trend to suggest that more energy is used in the winter periods, this is due 

to the bakery internal temperature (and therefore burner air inlet temperature) 

remaining approximately constant throughout the year largely due to heat losses 

from the oven.  

 

Figure 5.4 – Weekly gas use of an industrial prover over a period of one calendar 
year with mean weekly gas use (633.4 m3) shown by red dashed line and the range 

of values within 1 standard deviation shown by blue dashed line 

The mean weekly gas consumption of a prover is 633.4 m3/week and 69 % of 

values fall within one standard deviation of the mean – indicating normal 

distribution. When multiplied by the calorific value (or heat of combustion) for gas, 

CVgas = 40,000 kJ/m3, this equates to weekly energy consumption of 25.34 GJ 

(7,038 kWh). Yearly gas consumption is 33,026 m3 or 1,321 GJ (367 MWh). The 

annual financial cost for energy provided to a prover burner is around £9,000 based 
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on DECC figures of £0.0244/kWh gas (Carbon Trust, 2012b), or in the region of 

1% of the capital cost (approximately £1 million). The mean power consumption of 

the gas burner is 44.0 kW. 

5.2.2 Air Handling Unit Electricity Consumption Trends 

Distribution of air inside a prover is of critical importance to product quality and 

the uniformity of the proving profile, particularly across the width of the prover, 

Wz. Each loaf should be of uniform standard regardless of the position that it enters 

the prover. If non-uniform air distribution across the prover width were to occur, 

there would be a difference in product consistency depending on the conditions to 

which each loaf is exposed. Air handling units (AHUs) are located at the loading 

end of the prover and supply air via two ducts which run down the prover length, 

Lx. These ducts are located either side of the centre of the prover, where the warm, 

humid air is then fed into the inner volume of the prover through vents. The AHUs 

generate high air pressure in the supply ducts which helps to ensure air is 

distributed uniformly across the width and length of the prover. 

Figure 5.5 shows the constant electricity demand of a prover AHU for the same 

period as Figure 5.3, with the dip caused by downtime on Sunday when production 

ceases. It can be seen by comparing Figure 5.3 and Figure 5.5 that the electricity 

consumed by a prover AHU whilst operational is less variable than burner gas 

consumption. This is quantified by comparing the distribution of points for 

electricity consumption and gas consumption, with 95 % of values falling within 

one standard deviation of the mean for electricity, as opposed to 77 % for gas. The 

only values that do not fall within one standard deviation are the zero values that 

occur during the shutdown period. 

Figure 5.6 shows weekly electricity consumption of the prover AHU over a twelve-

month period. The mean electricity consumption is 3,747 kWh per week with 85 % 

of values falling within one standard deviation of the mean – again showing the 
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low degree of weekly change in electricity consumption, which in particular 

indicates that production fluctuations have little impact upon energy usage. The 

total yearly consumption is 195 MWh at an annual cost of around £15,000, based 

on DECC figures of £0.0755/kWh electricity (Carbon Trust, 2012b). This equates 

to approximately 1.5 % of the capital cost of a prover (~£1,000,000). The mean 

power consumption of the prover AHU is 23.4 kW. 

  

Figure 5.5 – Hourly electricity use of a prover AHU over the period of one week 
with mean hourly electricity use (23.4 kWh) shown by red dashed line and the 

range of values within 1 standard deviation shown by blue dashed line 

 

Figure 5.6 – Weekly electricity use of a prover AHU over a period of one calendar 
year with mean weekly electricity use (3,747 kWh) shown by red dashed line and 

the range of values within 1 standard deviation shown by blue dashed line 
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It can be observed that the electricity consumption is constant throughout the year, 

with two slight drops in late-November and mid-July and peaks in December, May 

and July. Reasons for the fluctuations in energy consumption have been suggested 

by industry to be related to production levels (Price, 2012). The drops would be due 

to production scheduling and/ or maintenance being carried out on the prover at 

these times. The first peak in electricity consumption, which occurs in December, 

has been attributed to a peak production period for a bakery due to the Christmas 

holidays. The other two peaks occur in May and July, which industry suggest could 

correspond to hot weather weekends during the year, when bread production tends 

to increase due to more barbeques occurring. Another explanation could be high 

quantities of produce required for supermarket promotions, causing a substantial 

short-term increase in production. 

5.2.3 Steam Consumption 

Steam is injected into the prover air supply duct via a ring-main connected to a 

centralised steam boiler which also provides steam to other bakery processes, as 

required. Steam is automatically injected into the prover when relative humidity at 

the sensor falls below the set point. Manual meter readings taken at the water 

supply to the boiler over a period of one day at hourly intervals indicate that the 

steam use of a prover is constant at 0.1 m3/hr of saturated steam at 8 bar (800 kPa) 

pressure. Therefore, it can be calculated that the quantity of steam supplied to the 

prover is 100 kg/hour (0.0277 kg/s). Using the industry standard steam tables 

(Rogers and Mayhew, 1988), it can be seen that the specific enthalpy of saturated 

steam at 8 bar is 2,759 kJ/kg. Using the resultant specific evaporation enthalpy, the 

mean steam consumption of the prover was 76.6 kW. Given average rates of shell 

boiler efficiency of 75 % (Carbon Trust, 2012a), the gas use is approximately 102.1 

kW. Again, using DECC figures for cost of natural gas in the UK, £0.0244/kWh 

(Carbon Trust, 2012b), and operating hours of 159 hours per week all year, the 
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annual financial cost of the portion of steam generation that is injected into the 

prover is £21,000. 

5.2.4 Overall Energy Usage 

The total energy use of the gas burner, AHU and steam consumption is shown by 

Figure 5.7, which is a culmination of the results presented in previous sections 

5.2.1 to 5.2.3. The total energy use is 144.0 kW. The total yearly financial cost of 

prover operation is in the region of £44,000. 

 

Figure 5.7 – Energy utilisation profile of an industrial bread prover 

In terms of CO2 emissions, the AHU (electricity) energy use has a 

disproportionately high environmental impact due to the inefficiency of electricity 

generation and distribution. This is highlighted by the Carbon Trust conversion 

factors as shown by Table 5.1. 

Fuel type Original unit
Equivalent carbon 
impact (kgCO2e) 

Electricity kWh 0.544 

Natural gas kWh 0.184 

Table 5.1 – Equivalent carbon impact conversion factors for electricity and natural 
gas (Carbon Trust, 2009) 

Gas
44.0 kW

26%

Electricity
23.4 kW

14%

Steam
102.1 kW

60%
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Figure 5.8 shows the environmental impact of a bread prover, by converting the 

primary energy use shown by Figure 5.7 into the equivalent mass of carbon dioxide 

emissions using the conversion factors from Table 5.1. An energy cost profile can 

provide a financial angle on the impact of energy usage – though this would be 

mainly of interest to a bakery to analyse the cost efficiency of the process. 

 

Figure 5.8 – CO2 emissions profile of an industrial bread prover 

5.3 Problem Formulation 

The conditions desired within a bread prover are dependent on the type of product. 

Typically the relative humidity is 65 % and the temperature is 50 °C. Temperature 

is controlled through modulating the fire rate of the gas burner and humidity is 

controlled by the amount of steam injection. The key challenge for both prover 

designers and bakeries alike is to ensure the conditions are constant across the 

prover width. Currently, to ensure this is the case, provers are over-engineered with 

large air handing units (AHUs) generating high pressure in the air supply, thereby 

ensuring airflow is distributed more uniformly. Aside from the energy losses 

relating to static pressure build-up in the ducts, the high rate of airflow means that a 

Gas
66938 kgCO2e

21%

Electricity
105248 kgCO2e

32%

Steam
155326 kgCO2e

47%
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larger quantity of warm, humid air is expelled to the exhaust resulting in a greater 

load on the gas burner and higher steam consumption. 

5.4 Computational Fluid Dynamics (CFD) Model Design 

Balancing temperature, humidity and air velocity distribution in three dimensions 

in a complex geometry is a difficult task. It is particularly challenging to make 

measurements and control conditions in a non-invasive and experimental manner. 

As discussed in Chapter 4, CFD is used to analyse fluid flow numerically and is 

becoming increasingly popular in the food industry, as it can be a quick, cost-

effective and non-invasive form of assessing the operational qualities of a wide 

variety of food processes (Sun, 2007). Although CFD is a method that has been 

applied to a wide range of food processes, including both baking and cooling 

processes in the food industry, the proving of bread is a completely novel 

application for this type of computational analysis (Paton et al., 2012a). CFD 

allows bakers an insight into the airflow within a prover which then has the 

potential to influence more energy efficient prover operation. 

The aim of this study is to provide the scientific evidence to encourage the 

commercial bread manufacturing industry to reduce the number of air changes in 

provers via use of an experimentally validated computational model. Reducing the 

number of air changes will reduce prover energy use but will also have an influence 

on the proving process in terms of product quality and food safety – these factors 

need to be quantified and offset to provide an energy efficient and quality-friendly 

solution for industry. This is the first such study to approach prover design and 

operation from a macroscopic and multi-objective perspective by use of both 

computational and experimental methodologies. 

CFD has been previously used in the baking industry to analyse airflows within 

ovens for both energy efficiency and process optimisation (Khatir et al., 2012c, 

Therdthai et al., 2004a, Verboven et al., 2000b). These techniques can be built 
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upon for the proving process for similar benefit. CFD will be used to study the 

proving component of industrial bread baking for the first time as there is no 

previously published work in this field. 

5.4.1 Geometry 

The prover analysed is a generic geometry developed by working with a 

commercial prover designer, Spooner Industries Ltd., UK. The box dimensions 

(refer to Figure 5.1) are: Lx = 30 m, Hy = 5 m, Wx = 5 m and Wz = 5 m. The total 

prover height is 10 m. The internal volume of the prover is 311.2 m3.  

 

Figure 5.9 – Geometry for prover CFD model generated with assistance from 
Spooner Industries Ltd. (Kirk, 2011) 

A typical throughput for such a prover would be around 8,000 kg/hr with a proof 

time in the region of 50 minutes. Air is supplied through two full length ducts with 

0.2 m x 0.2 m vertical square vents distributed evenly along the prover length at 1.5 

m intervals. The bread tins are modelled as solid 0.15 m x 0.56 m x 1 m blocks, and 

are pitched at 1.5 m intervals. Each block represents 10 tins, referred to as ‘straps’. 

Straps are attached to swings which are moved by chains to rotate the product 

around the perimeter of the prover. The computational domain is shown by Figure 

5.9. As the swings and chains have a negligible impact on airflow, and the velocity 
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of the tins is in the region of 0.01 m/s, the assumption is made that the straps are 

stationary and floating. The arrangement of the three ducts (2 x supply and 1 x 

return) can be seen by the cross section diagram in Figure 5.10. Also shown in the 

diagram are the straps of tins and arrows illustrating the intended path of airflow 

through the prover internal volume. 

 

Figure 5.10 – Cross section diagram of prover showing the air ducting 
arrangement, location of straps of tins and blue arrows illustrating the path of 

airflow 

5.4.2 Turbulence Model Selection 

As discussed in section 4.7, selecting a turbulence model is an important part of 

CFD modelling as it allows the user to generate sufficiently accurate results whilst 

ensuring that the time to compute is suitable. The intricate geometry of the prover 

suggests complex flow with impinging jets of air and stagnation points close to the 

walls and tins. Thus, for this application, the realisable k-ε (RKE) transport model 

was chosen. 

5.4.3 Boundary Conditions 

The inlet conditions selected for the model range between a minimum of 10 air 

changes per hour and a maximum of 100 air changes per hour, as shown in Table 

Inlet 
duct 

Inlet 
duct 

Return 
duct 
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5.2. The Reynolds number for each case is shown, based on characteristic length 

scale, Lc = 0.5 m. 

Case number 
Number of air changes, 
N (/hr) 

Inlet velocity,  
uin (m/s) 

Reynolds number at 
inlet, Re  

1 10 1.73 51,003 
2 20 3.46 102,007 
3 30 5.19 153,010 
4 40 6.92 204,014 
5 50 8.64 255,017 
6 60 10.37 306,021 
7 70 12.10 357,024 
8 80 13.83 408,028 
9 90 15.56 459,031 
10 100 17.29 510,035 

Table 5.2 – Inlet boundary conditions for prover CFD model 

 

Figure 5.11 – Partial view of prover CFD solution domain showing boundary 
conditions and symmetry plane 

The BCs and symmetry plane can be seen in Figure 5.11. The loading and 

unloading space is often covered with an air curtain which is brushed aside when 

tins pass through, and therefore there is no suitable BC to be applied. The model is 

three-dimensional and utilises a symmetry plane to reduce the processing time. The 

number of air changes is driven by the inlet air velocity, uin, which is a BC located 

0.5 m from the loading end on the top surface of the centre of the supply duct. The 

Patm 

uin 

Symmetry 
plane 
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outlet vent, which allows flow into the outlet duct, is in the centre of the return 

duct. The BC for the pressure outlet, Patm, is located co-planar to the inlet. 

5.4.4 CFD Solution Process 

The mesh was unstructured and generated using the ANSYS Workbench meshing 

tool, which uses the Finite Volume Method. Tetrahedral elements were used and 

the maximum element edge length was set at 0.05 m. Mesh refinement was 

specified in the areas close to the inlet and outlet at a maximum of half the element 

size of the rest of the prover, as this is where the highest degree of turbulence was 

expected. As the temperature was close to ambient and temperature fluctuations 

within the prover were considered negligible, the solution domain was assumed to 

be isothermal. Turbulence intensity at the inlet was set at 10 %, assuming a high 

degree turbulent flow due to the large velocity magnitude and length scale was 

selected as 0.0175 m based on guidance from the ANSYS User’s Guide (ANSYS 

Inc., 2009). The solution was considered converged once the continuity, x/ y/ z 

velocity, k and ε residuals reached 10-5, which took approximately 24 hours for 

each case using a desktop PC. 

5.5 Theory of Residence Time Distribution Analysis 

Residence time theory was originally developed by chemical engineers to quantify 

the degree of mixing of fluids inside fluid vessels. The seminal paper on residence 

time distribution analysis describes flow distribution in mixing tanks through C-

diagrams and F-diagrams (Danckwerts, 1953). F-diagrams give the fraction of the 

fluid flow that is mixed at the outlet with respect to time, whilst C-diagrams display 

the concentration of injected particles at the outlet with respect to time. For this 

study, C-diagrams are of more use as humid air is already mixed by the time it 

enters the prover and more important than the degree of mixing is identification of 

stagnation regions in the flow. A diagram of a mixing tank for illustration of the 

physical meaning of a C-diagram is shown by Figure 5.12. 
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Residence time is important to bread proving as it is directly related to the number 

of air changes per hour, N, which is the control that industrial bakeries use to 

ensure the processes meet their own strict criteria as well as important legislative 

constraints regarding food safety and health, safety and the environment (HSE). It 

is recommended that bakeries have air changes of at least 20 per hour (Brumbaugh, 

2011). The greater the number of air changes, the lower the mean residence time. 

This results in more energy losses as a result of replacing warm, humid air that has 

been exhausted to atmosphere and more electricity used by high fan loads. 

  

Figure 5.12 – Diagram of a mixing tank showing the concentration of the particles 
injected at the inlet (A) at the outlet (B) with respect to time 

C-diagrams for four representative flow types are shown by Figure 5.13. These four 

residence time distribution curves can describe most types of regular flow inside a 

vessel, although in reality fluctuations occur due to irregularities within the fluid 

domain. Figure 5.13 (a) shows piston flow, which is not possible for Newtonian 

fluids due to viscosity – for this prover example it would mean that all the flow 

exits the prover after the same amount of time. Piston flow with some longitudinal 

mixing, shown by Figure 5.13 (b), is realistically the best case scenario for flow 

within a prover, as it means all the flow exits the prover within a small space of 

time. This ensures the flow is well mixed and there are no stagnant zones of 

A B 

C(t) 
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recirculation. Figure 5.13 (c) and (d) show two types dispersed flow. Figure 5.13 

(c) is described as perfect-mixing which indicates immediate dispersal of particles 

upon injection to the volume. Figure 5.13 (d) shows dead water which is 

undesirable in a food production environment as it causes stagnation regions which 

can affect both food safety and product uniformity.  

 

Figure 5.13 – C-diagrams as described by Danckwerts (1953) for: (a) piston flow 
(b) piston flow with longitudinal mixing (c) complete mixing and (d) dead water  

The profile of the residence time distribution curve can be characterised by the exit 

age residence time function E(t), which is the quantity of fluid that has been in the 

system for between t and t + dt seconds (Coker, 2001). 

In order to generate a residence time distribution curve for airflow using 

commercial CFD software, ANSYS Fluent has a particle tracking feature which 

injects a set number of massless, sizeless ‘particles’ into the flow and tracks the 

path of each one at a set time step and range (ANSYS Inc., 2009). The number of 

particles passing through the outlet boundary after each time step can be extracted 

from the software. The time step associated with the particle escaping through the 

(a) (b) 

(c) (d) 

C(t) C(t) 

C(t) C(t) 

100 % 100 % 

t t 

t t 

100 % 100 % 



- 82 - 
 

 

outlet can be termed ‘residence time’ and therefore a distribution of residence time 

can be plotted. 

5.6 Verification and Validation of Computational Model 

Verification of the CFD model is performed via a mesh sensitivity analysis, where 

the minimum size of the mesh for reliable results is determined. In addition, an 

experimental validation of the air velocity through the prover air vents is 

conducted. 

5.6.1 Verification of Mesh Generation 

The size of mesh (or the number of elements) in a CFD geometry affects the 

accuracy and processing time of a computational problem. It is important to have a 

fine enough mesh to achieve sufficient resolution of results without wasting 

computing resources. Figure 5.14 shows the velocity profile across a prover vent 

for different numbers of elements.  

 

Figure 5.14 – Velocity profile across a single prover vent, the second closest to the 
loading/ unloading end, for five different mesh sizes/ numbers of elements 

It can be observed that the profiles for 9.20 x 104 and 3.39 x 105 elements have 

qualitatively less accurate velocity profiles when compared to the case with 1.39 x 

106 elements, thus implicating strong dependency of the solution on the mesh for 
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these two cases. The overall correlation between the vent velocity profiles is 

calculated by Pearson’s r coefficient and is shown by Figure 5.15 for the five 

different mesh sizes. The minimum value of r has been set at 0.975 to ensure 

quantitative validation. The two coarser meshes shown by Figure 5.14 of 9.20 x 104 

and 3.39 x 105 elements had r values of 0.792 and 0.963. Again, it is shown that 

meshes with more than ~6 x 105 elements have sufficient statistical correlation (r = 

0.978) combined with the qualitative agreement shown by Figure 5.14 to be used 

for analysis. Calculation time for the model with 6.14 x 105 elements was 

approximately 6 hours. This mesh size has satisfactory velocity profile accuracy 

and a realistically viable processing time and therefore this mesh was selected. 

 

Figure 5.15 – Pearson’s r correlation showing correlation with the finest mesh 
case (1.39 million cells) for velocity profile across a single prover vent 

5.6.2 Experimental Validation 

Experimental validation of the CFD analyses was carried out by measuring the air 

velocity at each outlet vent within an industrial prover. The experiments were 

conducted using a calibrated Testo 405 Thermal Anemometer (Testo Limited, UK). 

The accuracy given by the original equipment manufacturer (OEM) was ± 0.3 m/s 

+ 5 % of maximum velocity. The velocities measured were in the region of 3.3 to 
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10.0 m/s therefore the readings could be assumed with an accuracy of within ± 0.8 

m/s, giving a percentage error of between 8.00 and 24.24 %. 

The experimental measurements of mean air velocity from each duct are compared 

to the computational predictions in Figure 5.16. A good degree of validation can be 

inferred from these measurements, with a mean percentage difference of 7.50 % 

and a Pearson correlation value of r = 0.798. The correlation is particularly evident 

in the half of the prover closest to the loading end, x < 15 m, as flow in this region 

appears to be better predicted by CFD – the mean percentage difference between 

experimental results and computational predictions was 5.30 %. 

 

Figure 5.16 – Validation of velocity profile along prover length with error bars 
representing the experimental error relating to the apparatus used 

5.7 Results 

The results of CFD can be displayed visually (for example contour plots of air 

velocity) and numerically (in the form of graphs, tables etc.).  

5.7.1 Plots of Velocity Distribution  

This section presents results in the form of contour plots and velocity vector plots 

of air velocity, where yellow/ red colours show high velocity and cyan/ blue 
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colours represent areas of low velocity. A 3D contour plot of air distribution within 

the prover volume is shown by Figure 5.17. Nineteen planes normal to the x-axis 

are shown – one representing each pair of vents on the inlet duct. This plot gives an 

overall view of velocity distribution through each vent along the length of the 

prover. High air velocity is evident close to each air vent but especially for the 

vents in the centre of the prover, whereas low air velocity can be seen towards the 

loading and unloading areas in the prover and around the straps in the first quarter 

of the prover. These areas of low air velocity indicate dead regions of stagnant air 

and can have three particularly adverse effects for bakeries:  

(i) Lower rates of heat transfer to the product as the rate of convective heat 

transfer is proportional to air velocity. 

(ii) Less uniform air temperature and humidity. 

(iii) Lower air temperature and air velocity, as the stagnant air may cool 

down and the moisture may condense as it is replaced less often. 

 

Figure 5.17 – Isometric view contour plot of air velocity illustrating air 
distribution throughout the prover volume 

Figure 5.18 shows the same planes down the prover length from a top view. This 

contour plot highlights the degree of velocity uniformity at each vent. It can be 

seen that the air velocity through the central vents in the x-direction are larger than 

the velocities at both extremities. In addition, the effect of the interaction between 
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the air jets from the vents and the inside of the prover walls is shown, with air 

appearing to be artificially steered downwards towards the tins by the right-angled 

prover geometry. An inner geometry more conducive to directing flow towards the 

tins could be more applicable in this instance and would make an interesting 

parametric study with regards to optimising this airflow and assessing the 

associated additional manufacturing and cleaning costs. 

 

Figure 5.18 – Angled top view contour plot of air velocity showing air distribution 
down the prover length 

The velocity vector plot shown by Figure 5.19 shows the path and magnitude of air 

through a representative plane parallel to the yz-axis. The high magnitude of air 

velocity near to the vent illustrates the high degree of turbulence that is present in 

this area. Furthermore, the comparatively low airflow around the tins that is caused 

by the prover design with vents facing away from the product. This ensures that the 

delicate dough is not subjected to high-velocity air jets, which could cause the air 

cells within the dough to collapse. The vector plot shows that is some substance to 
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the assumption of prover designers that air deflects off the inside walls of the 

prover towards the product. 

 

Figure 5.19 – Velocity vector plot of air velocity showing flow paths of air through 
a prover vent and around the product for the 13th plane parallel to a vent from the 

loading end 

Figure 5.20 shows contour plots of velocity distribution around the tins for two 

planes perpendicular to the x-axis: (a) parallel to the vent closest to the loading end 

and (b) parallel to the 13th vent from the loading end. The range of air velocity 

shown is reduced to 0 < u < 0.8 m/s allowing further resolution to be shown for 

areas of low velocity – i.e. to enhance the visualisation of flow around the product. 

Contour plots of air velocity show similar trends for each of the 19 planes 

positioned in the centre of an inlet vent down the prover length. Figure 5.20 (a) 

shows explicitly the regions of low air velocity between the lower tins, indicating 

stagnation regions at the loading and unloading end of the prover, corroborating the 

conclusions drawn from Figure 5.17. This will not be a major concern for prover 

designers, as airflow is deliberately minimised near the loading and unloading ends 

of the prover to prevent heat and humidity losses to atmosphere. However, it is 

important to maintain airflow around the tins in the main sections of the prover – in 

the region shown by Figure 5.20 (b), which demonstrates undesirable stagnation 

regions above the upper straps and below the lower straps, though this is somewhat 

mitigated by the uniformity of airflow in between the straps of tins. Both contour 
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plots also illustrate the interaction between the prover air jets and the wall where 

prover designers intend to deflect air off the prover wall towards the product. 

(a)

 

 

(b)

 

 

Figure 5.20 – End-on view contour plot of air velocity showing airflow distribution 
around the tins for (a) the plane closest to the loading end, and (b) the 13th plane 

from the loading end 

5.7.2 Numerical Results 

The red line shown by Figure 5.21 is parallel to the xy-axis and in offset from the 

outlet vents by 5 mm. The air velocity distribution profile down the prover length 

on this line is shown by Figure 5.22. It is clear to see the peaks of u > 4 m/s at for 

each of the 19 vents 1.5 m intervals along the prover. The peaks are of different 
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magnitudes due to uneven air distribution through the supply duct. Modifying the 

internal geometry of the supply duct to force more air through the first three ducts 

would improve the uniformity of velocity, but may also force more air out of the 

loading/ unloading areas of the prover and thus contribute towards energy losses. 

The modification in geometry could be as simple as a decreasing cross section with 

x which would increase the relative total pressure towards x = 0 m and force higher 

velocities for these vents. 

 

Figure 5.21 – Prover section view from perpendicular to the xy-plane with red line 
passing through the centre of the air vents offset in the z-direction by 5 mm 

 

Figure 5.22 – CFD predictions showing the air velocity profile along the prover 
length for the red line shown in Figure 5.21 

5.8 Residence Time Distribution Curves 

Residence time distribution curves can be used to verify whether or not the number 

of air changes is suitable for production purposes. By tracking individual particle 

flow paths, it is possible to examine overall characteristics of the airflow. If a high 

0

1

2

3

4

5

6

7

8

0 5 10 15 20 25 30

A
ir

 v
el

oc
it

y 
(m

/s
)

Distance along prover (m)



- 90 - 
 

 

proportion of particles take a long time to escape through the pressure outlet there 

is a greater chance of a breach in quality standards. The specific standards have not 

yet been specified quantitatively by a regulatory body; therefore the results of this 

study could be used to guide future standards for the proving process of bread 

manufacture. 

A typical graph showing the residence time distribution for five cases is shown by 

Figure 5.23. This illustrates the time taken for each one of 2,469 particles to escape 

the prover cavity through the outlet after a maximum of 360 seconds. The particles 

are introduced at the inlet at equally spaced intervals. For all cases, the majority of 

particles exit the prover within 100 seconds. However, a small proportion of 

particles have a longer residence time indicating the presence of dead regions and 

stagnation zones within the flow. More positively skewed residence time 

distributions will reduce the possibility of mould spores occurring inside the 

prover, since this shows less proportion of particles stagnating. 

 

Figure 5.23 – Residence time distribution for 2,469 particles 

Mean residence time is of limited use to industry as it does not give an indication as 

to the residence time distribution spread, which means the prover operator will 

have little idea as to the portion of air that is stagnant and poses a food quality or 
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safety risk. Assuming all particles escape the system, there is no change in density 

and no backflow at the outlet, mean residence time can be calculated analytically 

by Eq. (5.1).  

̅ݐ  ൌ
ܸ
ሶ݉ ௜௡

ൌ න ݐ ሻݐሺܧ ݐ݀

௧

଴

 (5.1) 

A graph showing the analytical calculation of mean residence time alongside the 

CFD predictions is shown by Figure 5.24. The difference between the two curves, 

which is greater for lower numbers of air changes, can be attributed to the lower 

degree of mixing which occurs with lower airflow. The analytical solution will 

always assume fully mixed airflow. The exponential decrease in mean residence 

time with the number of air changes illustrates the careful balance of prover airflow 

which must be tightly controlled to maintain product integrity. 

 

Figure 5.24 – Mean particle residence time as a function of the number of air 
changes for both analytical and computational solutions 

The curve displayed by Figure 5.24 is a typical Pareto front. Pareto fronts are 

commonly used for analysing trade-offs in optimisation of engineering design to 
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minimise a particular cost (in this case energy) whilst maintaining minimum 

standards (in this case product quality and food safety). 

5.9 Energy Savings 

The stagnation of particles (for example as seen in Figure 5.20 in the loading/ 

unloading area of the prover) is emphasised by the number of particles remaining 

in the prover after 360 s, as shown by Figure 5.25. Bakers do not typically know 

the maximum percentage of particles that should have escaped after 360 s, but 

these results help to give confidence to prover operators when reducing the number 

of air changes in order to reduce the energy consumption of the prover. It has been 

suggested by industrialists that less than 1 % of particles remaining inside the 

prover cavity after 360 s may be an initial estimate to work with, which would 

immediately enable bakers to initially reduce the number of air changes from 90/hr 

to 60/hr (Price, 2012). 

 

Figure 5.25 – Percentage of particles not escaped the prover cavity after 360 s 
residence time for each case 

With current design, the easiest way to eradicate high residence time is to increase 

the number of air changes. Equally, for energy savings, adjustment of the AHU to 
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reduce the number of air changes will reduce the steam, gas and electricity demand 

of the prover. A reduction in the number of air changes from 90/hr to 60/hr 

potentially means significant energy savings for the bread industry. Bakeries are 

trialling this decrease at present as a result of this work and therefore it is too early 

to prove the year-on-year energy savings based on a full regression analysis. 

However, engineering estimates of the reduction in electrical load based on theory 

are possible. Firstly, the quantity of air to be moved by the fans will be 33 % less. 

By relating this to the power law of fan energy consumption, Eq. (5.2), the required 

energy can be calculated from the pressure difference between the duct and baking 

chamber: 

ሶܧ  ൌ ∆ܲ	ܳ ൌ ∆ܲ ݑ  (5.2) ܣ

where the pressure difference, ΔP (Pa), is calculated by the required inlet velocity 

by using Bernoulli’s equation, Eq. (5.3): 

 ଴ܲ ൌ
1
2
 ଶ (5.3)ݑߩ

Therefore, if the inlet velocity is reduced by 33 %, the fan power required would be 

reduced by over 70 %. Gas and steam use will also be lower as a result of a 

reduction in the number of air changes. However, quantifying these in generic 

terms is not practical as it depends greatly on the degree of recirculation of air at 

the return duct specified by individual bakeries. 

5.10 Summary 

This CFD study has allowed a large amount of quantitative data to be collected 

without the need for time consuming and expensive experimentation. A generic 

prover geometry design was developed alongside industrial prover manufacturers 

to predict isothermal airflow. A parametric study was conducted by varying the 

number of air changes 10/hr and 100/hr, which are conditions that are realistically 

feasible for industrial bread proving.  
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The model has been experimentally validated by measuring air velocity inside an 

operational prover. The results collected from the CFD model showed strong a 

correlation with the equivalent measurement points. A mesh sensitivity analysis 

was performed in order to verify the model, and the element-size beyond which the 

results converged was identified. 

Residence time distribution theory was used to quantify the distribution of number 

of particles escaped after each time step with respect to the number of air changes 

which has enabled bakeries to make informed choices about reducing the number 

of air changes to reduce the energy cost. It has been suggested that the number of 

particles not escaped after 360 seconds could be used by regulatory bodies to give a 

quality standard for food safety in the bread proving process to measure the 

probability of mould spores developing. 

The results suggest there is scope to reduce the number of air changes, depending 

on the product quality specifications dictated by the bakery. The number of 

particles that remain in the prover after 360 s of being injected is less than 1 % for 

N ≥ 60. A reduction from 90 to 60 air changes per hour represents a 33 % reduction 

in prover airflow. Savings in electricity for this reduction have been estimated at 

over 70 %. Gas and steam savings are likely to be made possible as a result – a 

regression analysis would be required to accurately quantify the energy impact of 

such changes.  
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Chapter 6 

System-Level Thermodynamic Analysis 

of Commercial Bread Baking Ovens 

As shown by previous reports and authors, ovens use half of the energy consumed 

in the bread manufacturing process (Carbon Trust, 2010, Thumann and Mehta, 

2008). It is naturally an area of interest for bakeries to reduce carbon emissions and 

energy costs. This chapter provides a methodology for modelling baking oven 

energy use. This system-level model has been widely used in industry to 

benchmark current ovens, and to identify areas for oven manufacturers to invest in 

new design in order to improve efficiency of current machinery. The methodology 

of this system modelling approach has been presented at the Sustainable Thermal 

Energy Management International Conference 2011 (Paton et al., 2011) and 

published in Applied Thermal Engineering (Paton et al., 2012b). 

The overall aim is to show how a methodology can be developed to drive forward 

equipment design and influence operating conditions in order to improve energy 

efficiency of bread baking ovens. The overall methodology enables the most 

promising opportunities for achieving significant reductions in carbon footprint and 

financial running cost that can benefit the baking industry to be assessed. 

6.1 Oven Configurations 

There are two main types of continuous tunnel ovens used in large industrial 

bakeries; direct-fired and indirect-fired. The important distinction between these 

two configurations relates to whether combustion products enter the baking 

chamber. For direct fired ovens the products of combustion do enter the baking 

chamber, whereas for indirect ovens the products of combustion remain separate 

from the baking chamber and heat is introduced to the surface of the bread via heat 

exchangers. Forced convection and ribbon burner are two types of direct-fired 

ovens. Radiant and turbo-radiant are two types of indirect ovens used in the 
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commercial baking industry. The differences between direct and indirect ovens are 

illustrated schematically by Figure 6.1: 

(a)

  

(b)

  

Figure 6.1 – Schematics of two different oven designs: (a) direct-fired forced 
convection and (b) indirect-fired radiant 

Ovens are typically gas, oil or electrically powered. Heat transfer systems include 

infrared, forced convection, radiation and halogen-lamp. Over the years alternative 

oven designs have been investigated, such as microwave oven technology (Norris 

et al., 2002) and hybrid ovens (Li and Walker, 1996).  
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Innovative oven design has been restricted by the desire of bakeries to use more 

traditional technologies to maintain product quality. Carbon emissions and cost 

concerns have forced bakeries and equipment designers to reassess oven design 

with the aim of baking bread in a more efficient manner. 

6.2 System-Level Energy Modelling 

System-level energy modelling is a topic identified by the UK Energy Research 

Centre (UKERC) as key to understanding the interdisciplinary nature of energy 

challenges that industry faces. When applied to bread baking, system-level 

thermodynamic modelling provides a methodology for balancing the flow of heat 

energy within the oven, and includes techniques for estimating the nature of energy 

losses within the process.  

The generic process of designing a whole energy system-level model can be 

described as follows: 

1. Identify the process energy and material flows and fuel supply points. 

2. Characterise the essential energy flows to the process and the waste energy 
streams. 

3. Define a system boundary around the system across which energy flows can 
be established. 

4. Devise a generic methodology that can be applied to different types of 
equipment for measuring or predicting energy use. 

5. Put methodologies into a form that can be easily applied by users (for 
example software). 

6. Apply the model to a live process. 

7. Perform a sensitivity analysis to evaluate the scope for error. 

8. Validate across a number of scenarios to ensure accuracy. 

9. Distribute for use. 

10. Interpret and present the results. 
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A full scale energy audit is often useful for industry to identify inefficient processes 

and make improvements; however these are often time consuming, costly, and give 

unnecessarily convoluted results in order to analyse a complete system. Although a 

system-level model will often encompass key components of an energy audit, the 

main aim is to include flexibility so it can be applicable to a number of scenarios 

without significant modification. The main benefit of system-level models is that 

they provide useful results to justify process improvements, whilst remaining cost 

effective and time efficient. 

6.3 Theory of Energy Audits 

There are a number of books that describe energy auditing techniques for industrial 

processes (Beggs, 2002, Gottschalk, 1996, Hansen and Brown, 2004, Kreith and 

Goswami, 2008, Marcotte and Grabowski, 2008, Mattsson and Sonesson, 2003, 

Thumann and Mehta, 2008, Thumann and Younger, 2003, Turner, 1993). These 

authors all outline practical techniques for quantifying energy streams in 

manufacturing processes, buildings and transportation systems. Turner (1993) 

describes the drivers for energy auditing as “to ensure survival, maximise profits, 

and enhance competitive positions”.  

Thumann and Mehta (2008) give a comprehensive description of industrial energy 

audits with a focus on site services and process optimisation, including: HVAC, 

lighting, electricity co-generation, heat recovery, control systems and thermal 

storage. In addition, transportation and envelope audits were discussed. Two phases 

are listed; “acquisition” and “analysis of data”, the results are then used to develop 

savings opportunities. There are a number of methods for analysing energy savings 

proposals over the life time of an installation. Such models are sensitive to 

changing fuel prices and economic circumstances giving an overall value to a 

business in terms of payback time. If the payback is deemed economically 

beneficial and installation is practical, priorities for investment proposals can be 
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made. It is important to continuously monitor and record energy consumption 

through use of submetering after changes have been introduced, in order to ensure 

performance is improved to the levels predicted.  

A large focus of Thumann and Mehta (2008) is on the worldwide legislation that 

has been brought into effect over recent years. There is a detailed analysis of 

different system measurement techniques and devices, of particular interest was the 

use of infrared thermal imaging to analyse heat losses. Heat recovery options are 

assessed – the process of directing waste heat streams through a heat exchanger, or 

otherwise, to reduce the energy losses in flue gases. For heat recovery purposes, 

heat from oven exhaust gasses can be categorised as within the low temperature 

range, i.e. less than 232 °C. This means heat recovery would not typically involve 

conversion of heat to mechanical power (for example Stirling engines), due to 

inefficiencies involved with low grade heat, but instead pre-heating fluid streams 

such as feed water. There are a variety of commercially available heat exchangers, 

which are explained and analysed for their functionalities. 

Beggs (2002) described the audit process in four stages:  

(i) collation of data 

(ii) analysis of data 

(iii) presentation of energy consumption 

(iv) assess priorities for energy efficiency savings 

The first three stages are the main processes necessary to establish the basic 

framework and strategy for energy usage and reduction. The fourth stage can be 

used to make necessary recommendations for detailed energy savings proposals. 

This is followed by a financial appraisal, using two different valuation techniques: 

“net present value” and “internal rate of return”. A cautious approach is advised for 

new installations; the author warns that the cost of running ancillary equipment, 

such as fans and pumps, could outweigh the financial and environmental benefit 
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gained through recovering waste heat. There is a comprehensive guide to heat 

exchangers and heat pumps, covering all the main flow types used in industry. 

Much of the book is relevant to supply of site services, cogeneration and building 

design. Overall, this book is a reliable reference from which to conduct an energy 

audit. 

6.4 System-Level Model of a Commercial Baking Oven 

The methodology presented here is generic; therefore it can be applied to any type 

of large production oven. The analysis was illustrated and validated for a standard 

800 g white loaf, though when applying this model practically the type of product 

being manufactured makes very little difference to the overall results of the model. 

The quantity of ingredients as a percentage of the weight of the while loaf recipe is 

(as a percentage of initial dough mass): 55.7 % flour, 1.1 % salt, 4.2 % yeast, 2.8 % 

sugar, 30.6 % water and 5.6 % other ingredients (Monteau, 2008). The model 

generated assumes steady-state operating conditions – an assumption that is 

justified given the continuous nature of bread baking operations.  

Several methodologies have been proposed for analysing the thermodynamic 

energy flows in processing equipment, according to the First Law of 

Thermodynamics. These methods combine a number of techniques outlined by 

energy audit books and aspects of pinch analysis as well as offering some novel 

approaches for quantifying heat losses (Wu et al., 2010, Wu et al., 2012).  

After surveying a number of industrial bread ovens and bakeries, it was possible to 

summarise the energy functions of a bread oven into ten key heat flows. There are 

two heat supply methods: heat in via the gas burner and steam injection. There are 

seven areas where the thermal energy is utilised or dissipated: cooking of the 

dough, evaporation of water from the product, starch gelatinisation, heat uptake of 

tins and lids, heat in exhaust gases, heat uptake of the conveyor and losses through 

the oven walls and roof. These are summarised in Figure 6.2 and Table 6.1. 
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Figure 6.2 – Diagram showing heat and mass flows within an industrial bread 
oven, as detailed in Table 6.1 

# Energy stream Remarks 

1 Fuel in Typically a natural gas burner, larger ovens have three 
or more burners. 

2 Air supply to the 
burner 

Burners in industrial ovens will operate with excess air, 
in order to remove moisture, dust and other unwanted 
products of combustion. 

3 Combustion products Hot air and products of combustion. 

4 Steam supply Static steam sections are used typically on some 
unlidded products to give the bread surface a glossy 
finish. 

5 Air drawn in from the 
oven ends  

Ovens are typically run at negative pressure, thus 
drawing ambient air in to the baking chamber. 

6 Bread Energy required to bake the bread. Larger bread plants 
can produce upwards of 5,000 kg/hr. 

7 Baking tins and lids Tins are heated to oven temperature during the bake 
cycle, only to be cooled in order to be recycled. 

8 Conveyor Heat losses occur when the conveyor protrudes out of 
the oven ends. 

9 Exhaust gases Contains air, combustion products, alcohols, flour dust 
and steam. 

10 Heat loss from oven 
walls 

Convective losses due to airflow around the oven and a 
temperature differential between the oven surface and 
ambient. 

Table 6.1 – List and explanation of energy flow streams for a typical commercial 
baking oven (see Figure 6.2) 
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The governing methodology, measurement techniques and related equations used 

to define the heat flows into and out of a bread oven are summarised in sections 

6.4.1 to 6.4.8. 

6.4.1 Heat in via Gas Burner 

The amount of energy supplied to the oven from the burner (Figure 6.2, flow 3) is 

calculated from the volumetric flow rate of fuel used in each of the three burners, 

multiplied by the calorific value of the natural gas. Because the supply air for oven 

gas burners is not typically preheated, the heat injected to the baking chamber 

through the gas burner is shown by Eq. (6.1).  

ሶଷܪ  ൌ ܥ ௚ܸ௔௦ ∙ ሶܸଵ (6.1) 

where ܪሶ  is the heat flow (kW) and ሶܸ  is volumetric flow rate (m3/s). The heat of 

combustion for natural gas, CVgas (J/m3), is supplied at 25 °C. The average 

temperature in a bakery is typically between 24 and 30 °C. In this temperature 

range, CVgas varies by less than 0.03 %; therefore the assumption that burner inlet 

air is temperature is 25 °C is suitable for this model. 

6.4.2 Heat in via Steam Injection 

Some baking processes require the injection of steam at the start of baking (flow 3), 

as bakers believe the condensed moisture on the top surface of the bread gives it a 

glossy (or glazed) finish (Altamirano-Fortoul et al., 2012). For these particular 

products, energy in via steam injection can be represented by Eq. (6.2). This 

equation takes into account the mass flow rate of steam and the evaporation 

enthalpy of water. 

ሶସܪ  ൌ ሶ݉ ଷሺܿ௉௪ ∙ ሺ ଷܶ െ ௔ܶ௠௕ሻ ൅  ௘௪ሻ (6.2)ܮ

where ሶ݉  is mass flow rate (kg/s) and is ܿ௉ is specific heat at constant pressure 

(J/(kg·K)) and the subscript w represents water. The latent heat of evaporation for 

water, Lew
, at atmospheric pressure is 2,260 kJ/kg at 100 °C (Bird and Ross, 2012). 
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6.4.3 Heat Required to Cook the Dough 

The heat required to cook the dough is given by the difference between the heat in 

the product at the end and at the beginning of the baking process (flow 6). This is 

calculated using Eq. (6.3): 

ሶ଺ܪ  ൌ ሶ݉ ଺ ∙ ܿ௉௕௥௘௔ௗ ∙ ሺ ௕ܶ௥௘௔ௗ௢௨௧ െ ௕ܶ௥௘௔ௗ௜௡ሻ (6.3) 

In addition, heat is required to gelatinise the starch within the dough, an irreversible 

process that is characterised by starch molecules absorbing water and setting the 

dough to create bread – thereby essentially defining the baking process (Fessas and 

Schiraldi, 2000). Starch gelatinisation is important for three reasons:  

(i) it provides an indication of when the bread is cooked 

(ii) it forms the dough together to create the crumb structure inside the loaf, 
and  

(iii) it controls the rate of the staling process of the bread (Yasunaga et al., 
1968).  

The heat required for starch gelatinisation is calculated by Eq. (6.4): 

ሶ௚௘௟ܪ  ൌ ሶ݉ ଺ ∙ ܿ௚௘௟ (6.4) 

where specific heat of starch gelatinisation, cgel = 1.2 kJ/kg baked product (Le-Bail 

et al., 2010). 

Assuming a constant temperature on the bread surface at the start of the baking 

process, the rate of temperature increase inside the dough/ bread can be modelled in 

a simplified manner by Eq. (6.5): 

 ∆ܶ ൌ
1

௞ሺܶሻߙ
߲ܶ
ݐ߲

 (6.5) 

Thermal diffusivity is given as a function of temperature (αk), assuming a constant 

dough/ bread density as obtained from Wong et al. (2007) – this is also shown in 

Figure 3.1. Zanoni et al. (1995b) developed a model to evaluate the degree of 

starch gelatinisation to predict the rate at which the bread is baked, Eq. (6.6): 
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ሻݐሺߙ  ൌ 1 െ ݁ ௄ೝ ௧	 (6.6) 

where α(t) is the degree of gelatinisation. The reaction rate constant, Kr, is 

calculated in terms of the Arrhenius equation: 

௥ܭ  ൌ ௢݁ܭ
ିாೌ

ோ்ൗ  (6.7) 

where the pre-exponential factor, K0, is 2.8 x 1018/s and the activation energy, Ea = 

139 kJ/mol. These equations have been used to develop a computational model for 

the prediction of bread temperature and the degree of starch gelatinization with 

respect to bake time (Khatir et al., 2012b). 

6.4.4 Heat Required for Moisture Evaporation 

The mass of moisture evaporated from the dough (flow 9) during baking is highly 

dependent on the product type, oven type and baking process. The heat required for 

evaporation is mostly due to the latent heat, as discussed in section 3.5. The system 

model uses Eq. (6.8) to calculate this energy load: 

ሶଽ,௩ܪ  ൌ ሺ ሶ݉ ଼ െ ሶ݉ ଺ሻൣܿ௉௪ ∙ ሺ ଽܶ െ ௔ܶ௠௕ሻ ൅  ௘௪൧ (6.8)ܮ

6.4.5 Heat Uptake of the Tins and Lids 

When the dough is transferred to the tin it is in a delicate state so recycled tins are 

often cooled to ambient temperature after the bake cycle to prevent scorching of the 

dough. Additionally, many products use lids which are useful to create a 

microclimate of moist air within the tins. The lids also control the shape of the top 

of the loaf as the dough expands. The energy required to heat the tins and lids (flow 

7) is given by Eq. (6.9): 

ሶ଻ܪ  ൌ ቂ ሶ݉ ଻,௧ሺ ଻ܶ,௧௜௡
െ ଻ܶ,௧௢௨௧

ሻ ൅ ሶ݉ ଻,௟ሺ ଻ܶ,௟௜௡
െ ଻ܶ,௟௢௨௧

ሻቃ ∙ ܿ௉௦௧௘௘௟ (6.9) 

 tins lids 
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6.4.6 Heat Uptake of the Oven Conveyor 

Conveyors in industrial ovens (flow 8) are typically large steel slats covered in a 

steel mesh to support the bread travelling through the oven. The mass flow rate of 

the slats is typically comparable to that of the mass flow rate of bread travelling 

through the oven, although feed and return temperatures are closer to the set point 

of the oven, due to the high thermal conductivity of steel – approximately 30 to 40 

W/(m·K), depending upon the exact grade (Kreith et al., 2011). The heat loss of the 

conveyor is calculated by Eq. (6.10): 

ሶ଼ܪ  ൌ ሶ݉ ଼ ∙ ܿ௉௦௧௘௘௟ሺ଼ܶ ௢௨௧ െ ଼ܶ ௜௡ሻ (6.10) 

6.4.7 Heat in the Flue Gas 

The exhaust flue (flow 9) mostly consists of hot air, water vapour and combustion 

products removed from the baking chamber. Other components such as grease and 

flour are neglected for the purposes of calculations. The flow rate of flue gas was 

measured using a pitot tube inserted into the exhaust duct. Measurements ideally 

should be completed at traverse points located at equal increments across the duct 

and averaged to obtain the most stable value. The mass flow rate is then used to 

calculate the heat losses from flue gases by using Eq. (6.11): 

ሶଽ,௔ܪ  ൌ ൫ ሶ݉ ଽ െ ሶ݉ ଽ,௩൯ܿ௉௔௜௥ ∙ ሺ ଽܶ െ ௔ܶ௠௕ሻ (6.11) 

where the simplification that specific heat of the exhaust gases is the same as the 

specific heat of air, cPair, as oven burners are purposely set to operate with large 

amounts of excess air (typically greater than 50 %). 

Hood exhausts are often positioned at the oven entrance and exit to extract hot air 

and combustion product to prevent these gases entering the bakery atmosphere. 

Hood exhaust gases are much lower in temperature than exhaust gases. Where 

relevant, these gases should also be included in flue gas energy loss calculation. In 



- 106 - 
 

 

order to do this, the quantity of fresh air and air that has over spilled from the oven 

should be quantified – which can be estimated by analysing the comparative 

temperature between ambient and the baking chamber. The fresh air that is 

exhausted from the oven should then be deducted from the total mass flow rate. 

The lower exhaust gas temperature can then be used in Eq. (6.11). 

6.4.8 Heat Loss from Oven Walls and Roof 

Heat losses from the surface of an oven (flow 10) are dependent on the surface 

temperature, ambient air temperature and airflow near the surface of the oven. To 

estimate the surface temperature, a thermal imaging camera was used 

(ThermaCAM™ SC640, FLIR Systems Ltd, UK), and validated using a surface 

thermocouple probe – more details are given in section 6.5. The convective heat 

losses through the vertical stainless steel oven walls were estimated using Eq. 

(6.12): 

ሶଵ଴ܪ  ൌ෍݄ܣሺ ௦ܶ െ ௔ܶ௠௕ሻ (6.12) 

where heat transfer coefficient, h (W/(m2·K)), is calculated from the Nusselt 

number: 

 ݄ ൌ
ݑܰ ∙ ߣ
௖ܮ

 (6.13) 

where λ is thermal conductivity (W/(m·K)). The Nusselt number, Nu, is highly 

dependent on the atmospheric conditions around a flat surface. Therefore, the 

Nusselt number is different for the vertical oven wall panels and the horizontal 

pressure relief panels situated on the oven roof. 

A correlation for heat transfer from the surface of vertical walls has been outlined 

by Incropera and DeWitt (2007) and is given by Eq. (6.14): 

ݑܰ  ൌ
4
3
∙ ൬
ݎܩ
4
൰
଴.ଶହ

 (6.14) ݎܲ݃
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where the Grashof number and the Prandtl number are both commonly defined 

dimensionless numbers used in a range of fluid dynamics and heat transfer 

problems. The Grashof number is the ratio of buoyancy to viscous forces in a fluid 

and the Prandtl number is ratio of kinematic viscosity to thermal diffusivity in a 

fluid. 

Heat transfer from the surface of horizontal pressure relief panels located on the 

oven roof can be estimated using the McAdams (1954) correlations – Eq. (6.15): 

ݑܰ  ൌ 0.15 ∙ ܴܽ
ଵ
ଷ (6.15) 

for Rayleigh numbers in the region of 107 < Ra <1011. The Rayleigh number for 

bakery conditions is typically 5 x 108 for roof panels. 

6.4.9 Total Heat Utilisation 

This analysis can be validated in a straight-forward manner since according to the 

First Law of Thermodynamics, the sum of energy flows into the oven must be 

equal to the sum of energy flows out of the oven, confirmed by Eq. (6.16): 

ሶସܪ  ൅ ሶଷܪ ≡ ሶ଺ܪ ൅ ሶ଻ܪ ൅ ሶ଼ܪ ൅ ሶଽ,௩ܪ ൅ ሶଽ,௔ܪ ൅  ሶଵ଴ (6.16)ܪ

In most practical cases Eq. (6.16) will not balance exactly, but the expectation is 

that both sides of the equation will be within ± 10 % of each other. The remaining 

balance, which is likely to be on the right hand side of the equation, can be 

attributed to ‘other’ heat streams that are not quantified. Depending on the oven 

this may be in one of several places. 

6.4.10 System-Level Thermodynamic Analysis Tool 

The equations presented above (Eq. (6.1) to (6.16)) are the fundamental building 

blocks for the system-level thermodynamic analysis tool that has been distributed 

for use in the baking industry. Screenshots of the interface with approximate values 

to protect commercial sensitivities are shown by Figure 6.3 and Figure 6.4.  
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Figure 6.3 – Input screenshot of oven thermodynamic energy analysis tool  

  

Figure 6.4 – Results screenshot of oven thermodynamic energy analysis tool 

The home screen, where the user inputs the values that have been measured from 

the baking oven, is shown by Figure 6.3. The results in tabular form are also 
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(instantaneously) displayed here. The results screen, shown by Figure 6.4 , gives a 

pie chart showing the breakdown of heat losses from the oven. The model also 

incorporates notes for the user to use as reference and shows the list of 

assumptions. 

6.5 Thermal Imaging 

Thermal imaging, the theory for which is discussed in section 3.6 of this thesis, is a 

useful tool for measuring temperature in a non-invasive manner. Whilst not 

formally required for the system-level model described in section 6.4, 

thermography techniques have been used to help estimate wall heat losses and to 

identify cost savings. 

The thermal imaging camera used in this study was a ThermaCAM™ SC640 

(FLIR Systems Ltd, UK), which has an accuracy of ± 2 °C in the range -40 to 1,500 

°C. Thermal imaging was used to measure surface temperature of the vertical oven 

walls and horizontal roofs in order to estimate heat losses using the methodology 

described in section 6.4.8. In order to quantitatively validate the surface 

temperature measurements, a number of validation checks were taken using a 

surface thermocouple – this was especially important given the large range of 

values for emissivity, as seen in Table 3.1. A direct temperature measurement at a 

set point on the oven surface could be compared with the indirect measurement 

given from the thermal imaging camera. The emissivity setting that the camera uses 

to adjust the temperature scale could then be altered to ensure the two temperature 

values are the same, within the range of emissivity values expected. 

Figure 6.5 shows thermal images imbedded in regular photographs for two 

different ovens; oven A and oven B. The mean and maximum temperatures are 

displayed and it can be seen that the mean surface temperature of oven B is 4.2 °C 

greater than that of oven A, and the deviation of the maximum temperature from 

the mean is higher, 3.3 °C compared with 0.4 °C. This indicates that there were 
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more ‘hotspots’ on the roof of oven B – potentially resulting from gaps in the 

mineral wool insulation. Another explanation is that the different insulation on the 

roof of oven A, which has a covering of metallic foil, thereby lowering the 

radiative emissivity of the roof and reflecting heat back towards the internals of the 

oven and providing another form of insulation – this can be observed in the 

photograph section of Figure 6.5 (a). 

 (a)

  

(b)

  

Figure 6.5 – Thermal images of the roofs of two industrial bread baking ovens 
showing the maximum (white text) and mean (green text) temperatures (°C) for two 

ovens: (a) oven A and (b) oven B 

Thermal images of the vertical oven walls for the same two industrial ovens are 

shown by Figure 6.6. The mean surface temperature for oven A is 36.1 °C and for 

oven B it is 39.3 °C. The difference in wall material can again be seen by the 

photographs – resulting in the mean surface temperature of oven B being 3.2 °C 

hotter than oven A. 
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(a)

  

(b)

  

Figure 6.6 – Thermal images of the outer walls of two industrial ovens: (a) oven A 
and (b) oven B 

6.6 Sensitivity Analysis of System-Level Model 

As with any model aiming to approximate the behaviour of a real system, it is 

essential to verify the applicability of the methodologies used in order to check the 

outputs can be relied upon. For this system model of heat energy use of bread 

ovens, the sensitivity of outputs is measured with respect to changes in input 

variables. In this case, two separate sensitivity analyses have been conducted which 

aim to quantify the consistency of the model generated.  

Firstly, as shown by Figure 6.7, each input variable was changed by ± 10 % and the 

resultant change on the output was recorded. The figure of 10 % was subjectively 

chosen as a value within which most measurements can be performed with little 

cost or specialist equipment.  

It can be seen that for changes in gas metering measurements, an equivalent change 

in the output is noted – therefore it is important that the gas metering values can be 

relied upon. As a safety and billing accuracy measure, gas meters are annually 

inspected by registered professionals to ensure the integrity of the readings. In 
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addition, a simple check is conducted by adding the sum of gas sub meters to 

ensure they equal the total of the main gas supply meter (the meter that energy 

supply companies use to formulate energy bills) will show any discrepancy in the 

metering data.  

 

Figure 6.7 – Sensitivity analysis showing the effect on outputs based on a 10 % 
change of each input variable 

Other input measurements that have a significant influence on the results (over 3 

%) are throughput, conveyor temperature (in and out) and final product 

temperature. Of these, throughput is calculated exactly by the bakery, as all 

produce and wastage is accounted for and the final product temperature as a quality 
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requirement is kept within ± 1 °C (< 1.05 %). Conveyor temperature is more 

difficult to accurately measure due to the inaccessibility of the slats due to the 

dangers of the chain mechanisms that drive the rotation, however the accuracy of 

measurement is still well within the 10 % boundary, resulting in a potential error 

accuracy of less than 5 %. Input variables that have little effect on the outputs 

include the oven dimensions (width and height), the percentage of starch in the 

product and the tin specifications/ temperatures. Although an increase in the oven 

width would result in a larger cavity to fill with hot air, the overall throughput of 

the oven would increase so a large increase in energy is not necessarily inevitable. 

The effect of the increase in oven height has little effect on the energy use as it is 

assumed that the volume of the baking chamber would be unaffected, therefore it is 

only the wall losses that are increased. 

Secondly, as shown by Figure 6.8, a compound sensitivity analysis was conducted. 

This analysis considered the maximum expected degree of error for each of the 

inputs – taking into account both procedural error and the accuracy of equipment 

given by the OEM – usually gathered from the technical manual provided.  

 

Figure 6.8 – Compound sensitivity analysis based on changing each input variable 
by the expected precision of the measurement and the instrument accuracy supplied 

by the manufacturer 
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In this case, the most sensitive outputs were the flue gas losses and conveyor 

losses. As experimental measurement of these two energy losses involved indirect 

measurements due to the harsh environment in which bread ovens operate, scope 

for error can be expected. Improvements to the measurement of conveyor 

temperature could be improved by permanently soldering a thermocouple to the 

conveyor slats and mounting a temperature-resistant wireless data logger to the 

conveyor. This would, however, require a significant amount of downtime for a 

bakery and would therefore damage the ease and applicability of the system model. 

Measuring the flue gas flow rate has historically been done by use of pitot tubes, a 

technique that can be less accurate than direct measurement of air velocity, as the 

flow rate is inferred from pressure. Other techniques for predicting flow include 

CFD modelling, acoustic velocimetry, laser anemometry or hot-wire measurement 

(Jahnke, 2000). However, due to the complexities and expense of these methods 

(which also rely on inference), it is doubtful that industry would adopt them for the 

purpose of system modelling of bread oven energy efficiency. 

6.7 Sample Results 

Two commercial bread ovens at separate sites have been analysed for energy 

efficiency for the purposes of this report in order to demonstrate the applicability of 

the system model. Oven A was installed in c. 2009 and oven B c. 2006, with 

product throughputs of 6,500 kg/hr and 9,000 kg/hr respectively. At the time of 

analysis both ovens were operating at steady state producing the same product 

recipe. 

The specific energy consumption of ovens A and B were 804 and 920 kJ/kg 

respectively. The minimum theoretical energy required to bake the bread that 

comes in three forms (heat the dough, evaporate moisture and gelatinise starch) is 

476 kJ/kg, which is equivalent to 59.2 % of the oven gas supply for oven A and 

51.7 % for oven B, making oven A significantly more efficient. Figure 6.9 shows 
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the distribution of energy losses, illustrating the main difference is the losses 

though the walls and roof, whilst the other losses are comparable. ‘Other’ losses are 

the remaining heat flows deduced from Eq. (6.16) – and can be predominantly 

attributed to hot air leaks from the oven. Ovens are designed with inner and outer 

walls, where hot air can flow in the volume between the two. This air has a 

tendency to escape from leaking joints, particularly in the roof area of the oven, 

where pressure-relief panels are joined to the solid frame structure. Hot air leaks 

can also occur around the access doors. Access doors and pressure-relief panels are 

both regulatory requirements. 

 

Figure 6.9 – Sample results of heat distributions obtained by system-level model 
for two commercial baking ovens 

6.8 Opportunities for Energy Savings 

Having assessed the distribution of heat loads for the oven, bakeries have looked to 

analyse where energy savings can be made for financial benefit and carbon 
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6.8.1 Oven Insulation 

One outcome based on this system model was to quantify the heat losses through 

the walls and roof – and it was found that the most significant heat loss from the 

oven surfaces for industrial ovens was through the roof. Whilst regulatory 

restrictions for pressure relief panels to be placed on the roof make it prohibitive to 

have the same level of insulation as the oven walls, it was found that for new 

designs of oven the insulation thickness for the whole oven could be increased by 

50 mm from 150 to 200 mm for minimal additional capital cost. Further 

investigation will be required to assess the efficiency gains as a result of this 

improvement. 

6.8.2 Conveyors 

Due to the thermal mass of the conveyors, energy losses are significant. One 

solution that is currently being trialled on a new generation of commercial ovens is 

to have ‘enclosed terminal ends’. This solution will help to ensure that the heat 

losses from the conveyor are recovered into the oven recirculation ducts. The 

technology provides an extension to the hoods that already cover the entrance and 

exit, and will completely eliminate the conveyor losses from the oven – though a 

full regression analysis over a prolonged period would need to be conducted to 

investigate whether the overall energy efficiency of the oven is improved. The 

disadvantage of this technology is that the oven internal volume is larger, requiring 

a greater quantity of hot air. 

6.8.3 Tins and Lids 

Due to the nature of square-edged loaves of bread, tins and lids are a necessary 

energy load. Since they are cycled through the baking process several times per 

day, they are required to be robust. Reduction to the mass or specific heat capacity 

of bread tins and lids with the aim to reduce energy losses has been an interest for 

bakers for many years. Although increasingly commonplace in home-baking, 

silicone tins have been deemed too weak to withstand long term use in a 
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commercial bakery. Furthermore, there is a perceived risk of product contamination 

from silicone coming into contact with food products. Efforts have already been 

made to reduce the mass of the current design of steel tins, though for full 

replacement there is a significant capital cost associated. 

6.8.4 Heat Recovery 

Heat recovery is an established way to reuse energy from waste heat streams for the 

same or another process – historic suggestions of ways to recover waste heat in 

bread baking are discussed in section 2.1.3. Heat recovery from flue gases is the 

most obvious form of recuperating energy for an industrial oven. There is a large 

quantity of heat being exhausted directly to atmosphere which does not require 

treating. Whilst the flue gas temperature is considered ‘low grade’, at temperatures 

less than 200 °C (Bending and Eden, 1984), there are still possibilities to recover 

heat. 

Processes that require heat in a bakery need to be identified before a heat recovery 

system can be designed. One use of waste heat can be to pre-heat burner inlet air – 

this is logical, as the flue is naturally located close to the burner fresh air supply. 

The main challenge is to ensure the burner is suitable to run off pre-heated air, 

though retrofitting or replacement of unsuitable burners can allow this. Washing 

systems; both industrial pan washing machines and Clean-In-Place (CIP) require 

heat and depending on the location, this can be feasible. Office and warehouse 

heating demand is seasonal and weather dependent, so is not an ideal heat recovery 

option. Finally, a study by the Campden & Chorleywood Food Research 

Association (CCFRA) and Bristol University (2008) analysed the opportunities in 

the food industry (including bread baking) to use waste heat to power Stirling 

engines thereby generating electricity for the factory. This was deemed unfeasible 

at the time due to insufficient technology to make the engines commercially viable. 

Furthermore, as the maximum theoretical efficiency was calculated to be 40 % 
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(excluding frictional losses), the majority of heat recovered mechanically in this 

way would still be wasted. 

Turner (1993) warns of the dangers of exploiting waste energy from a process to 

recover to a secondary process, advising the first process may suffer if the heat 

streams are not managed properly. In the 1990s a large plant bakery in the UK 

suffered a potentially dangerous explosion when trying to recover heat off an oven 

to supply heat to the prover. This was due to mismanagement of waste heat streams 

(Ward, 2010). 

6.9 Temperature and Velocity Profiles in a Pilot Oven 

Temperature and velocity profiling gives the local value down an oven length. In 

common with section 6.8, temperature and velocity measurements in commercial 

ovens are not strictly necessary for the system-level model described. However, 

these measurements can result in important diagnostic data that help bakers and 

oven designers to understand the effects of changes to plant equipment in their 

search for energy savings. 

This section presents profiles of temperature and velocity through a 9 m long pilot 

oven used by oven manufacturers to trial bake profiles of new products and 

experiment on new heating technologies. The oven is a scaled-down replica of an 

industrial oven and is approximately 30 % the size. The significance of temperature 

and velocity profiles in relation to energy is that there is an energy cost associated 

with increasing the airflow necessary to achieve greater airflow uniformity. 

6.9.1 Temperature Profiles 

Temperature profiling is a common technique used by chain bakeries and their 

oven manufacturers or installation engineers to benchmark baking characteristics in 

order to maintain product consistency between different ovens or sites. The 

advantage of measuring temperature, rather than other flow characteristics such as 
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air velocity, heat transfer coefficient etc., is that the cost of equipment is low and 

the sensor technology is well established, robust and reliable. 

For this study, temperature was logged using K-type thermocouples connected to a 

TCLink 6 Channel Wireless Thermocouple Node (Microstrain, Inc.). 

Thermocouples are subject to common measurement errors, including: reference 

junction inaccuracies, electrical noise, manufacturing imperfections and 

linearization approximations (Park and Mackay, 2003). These were minimised 

through calibration by placing thermocouples in boiling water and adjusting to 

check the instantaneous readout. K-type thermocouples specifically have a typical 

operating range of -50 to 300 °C and have accuracy of ± 0.3 % + 2 °C in the 

operating range used for this study (RS Components Ltd.), which is an acceptable 

level of accuracy. Once the oven reached set-point temperature a C9001 

Thermometer (Comark Ltd.) displayed an instantaneous temperature reading for 

the location of the thermocouple. Air temperature was logged at 5 positions (see 

Figure 6.10) on a strap of tins travelling thorough the oven.  

 

Figure 6.10 – Location of thermocouples across the oven width for a strap of five 
tins 

The air temperature at each of the five locations was recorded at 10 s intervals and 

the mean temperature at all five locations was used to plot temperature profile 

graphs. The distance between the thermocouples and the nozzles was changed to 

investigate whether the temperature varied with distance from the nozzle.  
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Figure 6.11 shows air temperature underneath the nozzles compared with the 

burner set point profile through the length of the pilot oven. The three zones are 

clearly recognizable by the temperature profiles, where Tz1 = 240 °C, Tz2 = 275 °C 

and Tz3 = 265 °C. Actual air temperature through the oven is consistently lower 

than the burner set point. Although there is a defined shape, there are local 

temperature variations, particularly further away from the nozzles. Fluctuations in 

temperature are to be expected for turbulent flow, though it can be observed that 

these fluctuations are localised, meaning the overall heat profile experienced by a 

loaf of bread is likely to be uniform down the length of the oven. The reason for 

these variations being slightly more noticeable further from the nozzle plates, i.e. 

for H = 80 and 100 mm, is that there is more mixing with the surrounding air and 

greater interaction with other nozzle jets. Also noticeable from Figure 6.11 is the 

temperature at the entrance and exit of the oven, which is significantly below set 

point temperature. This is caused by a negative pressure gradient which draws 

ambient air into the oven from the ends. There is little dependence on air 

temperature with relation to distance beneath the nozzles due to the strong turbulent 

mixing within the oven. 

  

Figure 6.11 – Graph of temperature profile through a pilot oven for different 
distances underneath the top nozzles: 20, 40, 60, 80 and 100 mm compared with 

burner set point temperature (solid red line) 
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The statistics for the temperature distribution profiles given in Table 6.2 show the 

degree of variation for each zone. As expected, the middle zone remains hotter than 

227 °C for the entire oven length, whereas the temperature in zones 1 and 3, which 

are exposed to the ambient air at the oven entrance and exit, drops to below 140 °C 

in both cases. The mean temperature for zones 1, 2 and 3 as a proportion of the 

burner set points are 88.3, 96.4 and 91.6 % respectively – consistently below the set 

point temperatures. The reason for this is because the thermocouple that controls 

the burner firing rate is located in the plenum above the nozzles, where the flow is 

not cross-mixed with other zones or ambient air and consequently the air 

temperature has not decreased. 

Zone 
Maximum 
temperature 
(°C) 

Minimum 
temperature 
(°C) 

Mean 
temperature 
(°C) 

Mean temperature as a 
proportion of set-point 
temperature (%) 

1 234.5 105.9 211.9 88.3 

2 270.6 227.0 265.0 96.4 

3 266.0 130.7 242.6 91.6 

Table 6.2 – Data statistics showing the variation of temperature in comparison 
with burner set points for each oven zone 

In an energy context, temperature uniformity throughout the volume of the oven is 

driven by the flow of air. For high airflow, temperature uniformity is increased due 

to a high degree of mixing, whereas for low airflow the opposite is true. Increasing 

air velocity has an associated energy cost which is discussed in section 6.9.2. 

6.9.2 Velocity Profiles 

Velocity profiles of commercial ovens are not routinely conducted on new 

installations, unlike temperature profiling. Equipment for velocity measurement in 

hot environments is expensive and often prohibitive due to manufacturing 

schedules and the delicate nature of the baking process. Measurements are 

therefore frequently made in cold ovens with recirculation and exhaust fans 
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running to imitate production conditions – the results presented in this section are 

velocity profiles for a cold oven. 

Velocity magnitude was inferred from dynamic pressure readings obtained using a 

pitot tube connected to a handheld 922 Airflow Meter Micromanometer (Fluke 

Corporation). The pressure measurement was taken at the nozzle exit and it was 

ensured that the measurement position was replicated for each nozzle as the pitot 

tube was fitted with a washer welded into place to guide it into place. Instantaneous 

dynamic pressures, PD, at the nozzle exit were converted to air velocity using Eq. 

(6.17): 

ݑ  ൌ ඨ
2 ஽ܲ

ߩ
 (6.17) 

Figure 6.12 and Figure 6.13 show the velocity profiles down the oven length for 

three positions for top and bottom nozzles; two at the extreme x-positions from the 

centre: A and C (top), and D and F (bottom) and one at the centre of the oven B 

(top), and E (bottom). The two peaks for each section for the top nozzles (Figure 

6.12) is due to the ducting arrangement where recirculation occurs between at the 

midpoint of each zone (i.e. y = 1.5, 4.5 and 7.5 m).  

 

Figure 6.12 – Time averaged velocity profile of the top nozzles for three positions: 
A – closest to the burner and C – furthest from the burner 
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Slightly more variable flow can be observed in the first and final sixth of the pilot 

oven (y < 1.5 m and y > 7.5 m), which can be attributed to the increase in mixing 

between the jets and the ambient air. The decrease in air velocity in the same 

regions for the bottom nozzles (Figure 6.13) is another feature of the design of the 

pilot oven – the plenum below the bottom nozzles is designed with ducting located 

nearer to the oven centre, which reduces the quantity of air escaping from the oven 

entrance and exit. 

 

Figure 6.13 – Time averaged velocity profile of the bottom nozzles for three 
positions: D – closest to the burner and F – furthest from the burner 

Figure 6.14 and Figure 6.15 show three-dimensional plots of velocity distribution 

for top and bottom nozzles respectively. Figure 6.14 further illustrates the non-

uniformity of velocity across the width for the top nozzles – where the velocity at 

the centre of the oven is consistently greater than that at the outer edges. 

Conversely, Figure 6.15 illustrates the large degree of uniformity across the width 

of the oven for the bottom nozzles, which occurs due to the plenum design. The 

uniformity of the velocity profiles can be expressed in terms of deviation from the 

centre nozzle velocity; for the top nozzles: -9 % < uB < 11 % and for the bottom 

nozzles -6 % < uE < 2 %.  
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Figure 6.14 – Three-dimensional profile of velocity through a pilot oven for top 
nozzles: A – closest to the burner and C – furthest from the burner 

 

Figure 6.15 – Three-dimensional profile of velocity through a pilot oven for bottom 
nozzles: D – closest to the burner and F – furthest from the burner 
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dictated by the electricity load required to operate the recirculation fans at a higher 

speed. The balance between the additional electricity load required for increased air 

distribution and the heat savings made possible as a result of a faster bake time are 

discussed further in Chapter 7. 

6.10 Summary 

The system-level thermodynamic analysis methodology presented here has been 

used to assess the energy performance of bread ovens. This is a rigorous scientific 

framework that has been developed via systematic research and has been widely 

used by bread manufacturers to measure, predict and reduce the energy demand of 

current ovens. Furthermore, oven designers have used the findings to influence the 

future design of the next generation of ovens. This work has been combined with a 

CFD optimisation to estimate annual savings of over £0.5 million and 5,000 TCO2e 

for the UK (Paton et al., 2011, Paton et al., 2012b). 

The use of thermal imaging to help determine surface temperature and thus 

calculate heat losses from the oven walls provides a new, non-invasive approach to 

quantify convective losses to atmosphere. Temperature and velocity profiles on a 

pilot oven provide an example of measurement techniques that can be used to 

pragmatically benchmark bread oven heat and airflow characteristics. Temperature 

and velocity uniformity are not only important quality constraints that dictate the 

consistency of products, but are also factors that have an impact on energy use of 

bread ovens, due to the increase in fan power required increase air distribution and 

the pressure drop across the plenum. The energy cost of this is investigated further 

in Chapter 7. 

A sensitivity analysis indicates the equations and methodologies used in the model 

are suitable, provided appropriately accurate instrumentation is used and careful 

experimental procedures are executed. The sample results show the validity of the 

model, and give an idea of the scale of the energy demand of bread ovens. The 
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widely reported figure that half the heat in a bread oven is wasted has been 

corroborated to an extent and uniquely, the losses to ambient have been quantified 

and incorporated into a flexible model that has been extensively used in industry.
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Chapter 7 

Experimental Measurements of Local and 

Global Heat Transfer Characteristics 

In the previous chapter, the methodology for a system-level thermodynamic 

analysis of industrial bread baking ovens was outlined. In addition to this, 

experimentation on the heat transfer characteristics inside commercial ovens is 

necessary to gain an appreciation of how airflow can affect product quality and 

energy efficiency. Experimental results allow equipment designers to develop 

ovens with optimum heat transfer rates. Optimum heat transfer means an 

improvement in energy efficiency whilst maintaining the essential product 

characteristics required by bakeries. 

This chapter describes experimental methods and presents novel results that are 

intended to be used by oven designers and bakery operators to influence both oven 

design and operating conditions to increase energy efficiency of commercial baking 

ovens. The aim of this chapter is to measure the radiative and convective heat 

transfer coefficient for jet impingement nozzle designs relevant to bread baking 

ovens. The heat transfer coefficient is directly linked to factors such as jet velocity 

and nozzle-to-surface distance – these relationships can be converted into an cost to 

determine an optimum heat transfer coefficient, which can then be translated into a 

set of operating conditions for an oven. 

7.1 Background 

According to Ovadia and Walker (1998) there are at least nine different ways to 

heat food; the three conventional methods outlined in section 3.1: conduction, 

convection and radiation, and four further modes: microwave, capacitive heating, 

electrical resistance heating and intense visible light. In general (and studied here), 

the bread baking process uses hot air to transfer heat to the dough surface through 

convection. Thermal radiation is also used to transfer heat between the internal 
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oven surfaces and the bread. Heat is then transferred to the centre of the dough via 

conduction.  

Relatively high rates of heat transfer can be achieved with comparatively low air 

temperatures through jet impingement heat transfer, which is discussed in detail in 

section 3.2. Although jet impingement heat transfer is a well understood 

phenomenon, little work has been published relating to local heat transfer 

characteristics specific to bread-baking regimes. As discussed in section 3.2, much 

of the previously published work on jet impingement heat transfer has focussed on 

generating correlations for ASME standard nozzles. Whereas in practice, baking 

ovens are designed in the most cost-effective manner, meaning the nozzles are, in 

reality, sharp-edged punched holes in sheets of metal. These sheets are attached to 

pressure plenums above and below the product surface. Due to this, the heat 

transfer characteristics of jet impingement nozzles in industrial applications can 

differ somewhat to those reported in literature. 

7.2 Experimental Apparatus 

In order to measure mean and local heat transfer rates in the regimes relevant to the 

baking industry, experiments on a scaled down baking oven were carried out. The 

pilot oven, named the ‘hand sampling machine’, located at Spooner Industries Ltd., 

Ilkley, was designed to carry out small scale experiments using jet impingement for 

the food, coating, paper, thin-film, and other drying industries. One of the main 

advantages of being able to use this specialised drying apparatus was the ability to 

reproduce a wide range of conditions that are relevant to bread baking. This 

included the use of different nozzle designs, air velocities and dimensions of 

important geometries such as nozzle-to-surface distance.  

Improvements in heat flux measurement technology over the past two decades have 

meant commercial sensors are now available that can measure and log heat transfer 

rates locally underneath nozzle orifices. The experimentation discussed in this 
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section makes use of these sensors to give correlations and results that are useful to 

oven designers and operators when assessing heat transfer in commercial ovens. 

7.2.1 The Pilot Oven 

A photograph of the oven used for the heat transfer experimentation is shown in 

Figure 7.1:  

 

Figure 7.1 – Partially labelled photograph of the pilot oven used for heat transfer 
experiments 

A labelled schematic of the pilot oven is shown by Figure 7.2, and the features are 

explained in Table 7.1. The overall dimensions of the oven were 2.5 m (height) x 4 

m (width) x 4 m (length). 100 mm thick insulation panels cover each face of the 

machine, ①. Banks of nozzles were attached to the baking chamber above and/ or 

below the sensor position by sliding plates into mounting slots and bolting into 

place, ② and ③. Heat was supplied from a natural gas burner (Comtherm Limited) 

(up to 500 kW), which was further insulated for health and safety reasons, ④. K-

type thermocouples located inside the oven plenum chamber fed into a PID 

controller which maintained consistent nozzle jet temperatures of up to 400 °C. The 

oven could reach steady set-point temperature within 30 minutes.  

Combustion air was circulated to the top and bottom nozzle banks via a centrifugal 

recirculation fan which used a VSD to control air velocity, ⑤. This system allowed 

Burner 

Oscillating 
arm 

Recirculation 
fan 
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nozzle exit velocities of between 10 and 60 m/s to be achieved. Manual dampers 

were located in the ducting between the recirculation fan and the nozzles which 

gave further control of air velocity to top and bottom nozzle banks, ⑥ and ⑦. For 

this study, only the top set of nozzles were used to give heat transfer rates of one 

set of impingement jets. An exhaust duct was located above the oven, which 

removed a proportion of the air to atmosphere to expel the products of combustion. 

The remainder of the air was recirculated in order to maintain oven temperature 

and airflow, ⑧. An integrated centrifugal exhaust fan was located in the exhaust 

duct, ⑨. The proportion of recirculated/ exhausted air was controlled by a manual 

air damper, ⑩.  

A heat flux sensor was used to measure and log the heat transfer characteristics 

created by the oven conditions, ⑪. The sensor was reciprocated below the top 

nozzle set by a specialised rig which used a motor, gearbox and extension arm to 

oscillate the sensor at a set frequency and displacement range, ⑫. 

 

Figure 7.2 – Schematic of the pilot oven used for heat transfer experiments
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# Equipment Description 

① 
 

Outer insulation: 100 mm thick outer insulation panels were used to 
maintain oven temperature and keep the operation of 
the pilot oven safe. 

② Top nozzle plate: Different nozzle banks could be attached to supply 
airflow above the product. 

③ Bottom nozzle 
plate: 

Different nozzle banks could be attached to supply 
airflow below the product. 

④ Burner: Natural gas was supplied to the burner and 
combustion air was regulated to maintain a constant 
quantity of excess air (typical AFR ~ 2). 

⑤ Recirculation fan 
and ducting: 

A 22 kW fan was used to distribute air to the top and 
bottom nozzle plenums. 

⑥ Top nozzle 
recirculation 
dampers: 

Manual dampers were used to control the flow rate of 
air to the top nozzle banks, and thus jet velocity.  

⑦ Bottom nozzle 
recirculation 
dampers: 

Manual dampers were used to control the flow rate of 
air to the bottom nozzle banks, and thus jet velocity. 

⑧ Exhaust duct: Hot flue gases were exhausted to a centralised duct to 
be safely released to atmosphere. 

⑨ Exhaust fan: A 7.5 kW fan was used to expel exhaust air and 
maintain the oven at negative pressure. This ensured 
there were no hot air leaks out of the oven entrance. 

⑩ Exhaust damper: A manual damper was adjusted to determine the ratio 
of air that was recirculated and air that was exhausted 
to atmosphere. 

⑪ Heat flux sensor: Commercially available sensor used to measure local 
heat flux profiles and deduce values for heat transfer 
coefficient. 

⑫ Reciprocating arm: A motor and gearbox connected to a VSD allowed the 
sensor to be oscillated at a set velocity and traverse 
range. An arm was attached to the gearbox drive 
chain at one end and the heat flux sensor at the other. 

Table 7.1 – Description of features of pilot oven 

7.2.2 Nozzle Types 

Two nozzle sets were used for comparison, an array of slot nozzles (ASN), 

consisting of rows of thin slots (or slits) and an array of round nozzles (ARN), 

consisting of rows of round holes. Both sets of nozzles were formed from 1.8 mm 

thick mild steel sheets. 
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The ASN arrangement, shown by Figure 7.3, consisted of a long array of 5 mm 

slots (more than 10 rows) pitched 230 mm apart in the x-direction. To maintain the 

slot width the folded metal sheets were welded together at a 5 mm gap at 200 mm 

intervals in the z-direction. ASNs are typically used for drying of food, paper, 

plastic film or metallic sheets (Wimberger, 1999). The reason for selecting this 

arrangement is that a number of correlations for heat transfer already existed for 

ASNs, meaning experimental results can be compared with the correlations 

reported in literature. 

 

Figure 7.3 – ASN arrangement for heat transfer experiments 

The ARN arrangement, shown by Figure 7.4, consisted of 36 x 12 mm diameter 

round holes spaced 22 mm apart across the width (z-direction), and pitched 230 

mm along the length of the oven (x-direction). The ARN arrangement used is 

typical of those used in bread baking and differs from many studies reported in 

literature as the distance between the holes were asymmetrically distributed (i.e. the 

distance between holes down the length of the oven, x-direction, 230 mm, was 

more than ten times the distance across the width of the oven, z-direction, 22 mm). 

The holes for this nozzle arrangement were made using a CNC (computer 

numerical control) laser cutting machine. 

 

Figure 7.4 – ARN arrangement for heat transfer experiments 
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For the ARN, relative nozzle area, f, was calculated using Eq. (7.1), which has been 

altered to incorporate the asymmetry of the nozzle set used: 

 ݂ ൌ
ଶ݀ߨ

ሺ4ܲ ∙ ܵሻ
 (7.1) 

The relative nozzle area for the ASN was calculated by Eq. (7.2):  

 ݂ ൌ
݀
ܲ

 (7.2) 

The specifications for the two types of nozzle under investigation are shown by 

Table 7.2: 

Nozzle type ASN ARN 

Nozzle diameter/ width, d (mm) 5 12 

Characteristic length, Lc (mm) 10 (= 2d) 12 (= d) 

Nozzle pitch, P (mm) 230 200 

Ratio of pitch to diameter, P/d 46.00 16.67 

Hole spacing, S (mm) n/a 22 

Relative nozzle area, f 2.174 % 2.235 % 

Table 7.2 – Dimensions and specifications for the nozzle configurations 
investigated 

7.2.3 The Heat Transfer Sensor 

The heat transfer sensor used in this study is a commercially available RC01 heat 

flux sensor (Hukseflux Thermal Sensors, c. 2010), see Figure 7.5: 

 

Figure 7.5 – Photograph of Hukseflux RC01 heat flux sensor (Hukseflux Thermal 
Sensors, c. 2010) 

① 

② 
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This sensor converts convective and radiative heat transfer into conductive heat 

transfer. Heat from the hot air jets heats two surfaces, one gold, ①, and one black, 

②. This heat is then transferred across a thin layer of filling material that has a 

known value for thermal conductivity across a wide range of temperatures, usually 

a plastic is used, such as Kapton (Azar et al., 2009). A thermopile accurately 

measures the temperature gradient across the filling material by locating alternate 

joints at the hot and cold faces of the material. A voltage output is generated which 

is directly proportional to the heat flux, Q, see Eq. (7.3): 

 ܳ ൌ ௦ܸ௘௡

௦௘௡ܧ
 (7.3) 

The sensor measured both convective heat flux and total heat flux; therefore 

radiative heat flux could be inferred. A diagram of the heat flux sensor is shown by 

Figure 7.6. Convective heat flux was measured by a gold-plated sensor, ①, which 

reflects the vast majority of thermal radiation as the emissivity of the surface in this 

regime is very low, εA < 0.05 (Aksyutov, 1974). Total heat flux was measured by a 

black sensor, ②, which absorbs radiation, εA = 0.85. The two calibration values, 

Esen, were determined experimentally by the manufacturer on 17/01/2011. In 

addition, two K-type thermocouples; one located above the sensors, ③, and one 

located below the gold sensor, ④, were used to log ambient air temperature and 

internal sensor temperature.  

 

Figure 7.6 – Diagram of heat flux sensor (Hukseflux Thermal Sensors, c. 2010) 
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The sensor was mounted onto a nickel heat sink to ensure high thermal 

conductivity away from the filling material to prevent both surfaces reaching 

thermal equilibrium. Underneath the heat sink was a water-cooled block which 

dissipated heat away from the system. 

The maximum temperature for measurement for this type of sensor is 250 °C, and 

the maximum flux that the sensor could be exposed to was experimentally 

determined for each particular regime. The accuracy of the heat flux sensor was 

given by the manufacturer as ± 10 % for total heat flux. 

The sensor was connected to a TL01 Heavy Duty Data Logger (Hukseflux, The 

Netherlands), which logged results at 2 second intervals from four separate 

channels: ambient air temperature, ①, internal sensor temperature, ②, heat flux at 

black plate, ③ and heat flux at gold plate, ④ (see Figure 7.6). The logger could 

store up to 47,662 readings (equivalent of 26 hours of data), which was sufficient 

for this study. Live readings and the status of the sensor could be viewed via 

specialised ‘TL01 Ovenlogger Application’ software connected via USB to a PC.  

Heat transfer sensors and the accuracy of their readings are discussed in detail by 

other authors: (Childs et al., 1999, Diller, 1993). For the purposes of this report, the 

heat transfer results are compared with literature to validate their accuracy. 

7.3 Methodology 

In order to conduct heat transfer experiments the conditions within the oven had to 

be carefully prepared. The exhaust fan on the pilot oven was turned on to ensure 

any unburned gas was expelled from the oven before the burners were ignited. This 

was done with all dampers fully open and the recirculation fan running to circulate 

air throughout the ducts and oven plenum chambers. Once the purge cycle was 

complete, the burners were ignited. Hot air and combustion products were 

recirculated until set temperature was reached. The oven was then left for 

approximately 30 minutes for the internal temperature to stabilise. 



- 136 - 
 

 

Nozzle exit velocity was calculated from two temperature corrected static pressure 

readings from the oven plenum. The first reading was from a mounted pressure 

gauge which was connected directly to the plenum chamber above the top nozzles. 

The second reading was taken from a P200UL Digital Manometer (Digitron 

Instrumentation Limited, UK) attached to a tapping point connected directly to the 

top nozzles. Mounted pressure gauges and tapping points were also located at the 

bottom nozzle plenum chamber. The velocity values inferred were corroborated by 

pitot tube measurements taken at the nozzle exit. The accuracy of the manometer 

measurements is given in the P200UL manual as ± 0.1 % FS + 1 digit, i.e. 0.02 

mbar. Measurements were between 0.13 and 2.00 mbar, giving potential percentage 

error in nozzle jet air velocity readings, unoz, of between 1.00 and 15.38 %. 

The heat flux sensor was housed in a square-shaped aluminium holding rig, with 

dimensions of 0.5 m x 0.5 m, made out of 1.8 mm thick aluminium sheet. This 

ensured the sensor was flush to the surface of the aluminium rig, thus not affecting 

the airflow field around the sensor. An adjustable bracket on the back of the sheet 

fixed the sensor in place. This rig was fixed to a steel frame which prevented the 

rig from bending under the high-velocity air jets and maintained consistent nozzle-

to-surface distances, H. 

The sensor and holding rig were reciprocated in the x-direction (the length of the 

oven) via a gearbox and motor configuration housed outside the pilot oven 

entrance. The velocity of the reciprocator could be altered using a VSD which 

controlled the motor speed. The minimum velocity of the reciprocating arm was 0.1 

mm/s and maximum velocity was 40 mm/s. For this study, a velocity of 0.25 mm/s 

was chosen, which gave a good balance of measurement profile resolution whilst 

being able to conduct a complete traverse of a standard nozzle arrangement (230 

mm pitch with a safety margin of at least 50 mm either side) in less than 30 

minutes. Taking into account the time required to set up the equipment and to 

adjust the rig between experiments, around six to eight experiments could be 
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conducted per day, which allowed time for the quantity of results presented here to 

be collected. 

In order for the sensor to remain functional during the tests, water cooling to the 

bottom surface of the sensor was necessary. Tests were conducted to show that the 

effect of using different water flow rates did not affect the results. Mains water was 

supplied, and warm cooling water (around 30 °C) was discharged to drain, via two 

5 m long, 5 mm inner diameter high-temperature flexible hoses. The volumetric 

flow rate of cooling water through the sensor was nominally 1 x 10-5 m3/s. 

When the heat flux sensor entered the pilot oven, it was left for approximately 5 

minutes to allow output readings to stabilise. The sensor traversed across more than 

one full nozzle pitch length in all cases. One nozzle pitch length, P, is shown 

diagrammatically by Figure 7.7: 

 

Figure 7.7 – Diagram showing minimum traverse range (P) of heat flux sensor 

7.4 Validation of Experiments 

An important part of this project was to validate the results of the sensor in terms of 

repeatability, symmetry about a nozzle orifice and correlation of results with those 

reported in literature. These issues are addressed in the following sections 7.4.1 to 

7.4.3. 

7.4.1 Repeatability 

In order to investigate the repeatability of the experiments, the sensor was traversed 

across the width of more than two complete pitch lengths of 5 mm slot nozzles (i.e. 

centre-to-centre of three nozzle sets). The conditions for the repeatability study 

P
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were: Temperature, T = 200 °C, Reynolds number, Re = 4,541 and ratio of nozzle-

to-surface distance over nozzle diameter, H/d = 6. The heat flux profile 

measurements for both convective and radiative heat fluxes have been shown to be 

repeatable by Figure 7.8: 

 

Figure 7.8 – Heat transfer graph indicating the degree of repeatability of the heat 
flux profile measurements 

It is standard practice in the field of jet impingement heat transfer to display results 

in dimensionless form, therefore the following results are given using this format, 

meaning hc and unoz are expressed as Nu and Re respectively.  

The Nusselt number profiles of the three nozzles traversed for Figure 7.8 are shown 

overlaid on each other in Figure 7.9, where x/d is the dimensionless distance from 

the nozzle centre. Again, it can be seen that in the region -13 < x/d < 13 the 

measurements are very similar, however in the regions x/d > 13 and x/d < -13 the 

Nusselt number profiles of the three nozzle sets are unsteady. This is because in 

this region the flow is interacting with the adjacent jets. Jet interaction can give 

unpredictable results depending on the internal ducting and fan arrangements in the 

pilot oven. It is important to note that the correlation between the three nozzle 

peaks is extremely high; the Pearson product-moment correlation coefficient 
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(Pearson’s r value) is between 0.972 and 0.991 for the three data sets. The mean 

Nusselt number values in the region -18 < x/d < 18 (the only region where all three 

data sets could be equally compared) were 16.46, 17.12 and 16.72 for nozzles sets 

1, 2 and 3 respectively. These values are all within 4 % error margin of each other 

indicating a high degree of repeatability. 

  

Figure 7.9 – Dimensionless heat transfer coefficient of three nozzle profiles 
overlaid on each other showing the degree of repeatability of the heat flux sensor 

7.4.2 Heat Flux Symmetry about Nozzle Centre 

The Nusselt number profiles presented in this chapter can be slightly asymmetric 

due to local flux fluctuations, particularly in the region between two sets of nozzles 

where external factors such as jet interaction, ducting arrangements and exhaust fan 

positioning can have a greater effect on heat transfer. In small scale experiments, 

these effects can be minimised by locating fans at the optimum position, however it 

is important to gather an appreciation of these effects for industrial applications 

using the pilot oven arrangement discussed here. 

For the nozzles studied in Figure 7.8 and Figure 7.9, the asymmetry of heat flux of 

nozzles 1, 2 and 3 in the region -18 < x/d < 18 is 6.54, 15.27 and 5.96 % 

respectively. This level of asymmetry is typical for heat transfer measurements of 
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arrays of jets due to the effect of interaction between jets (Geers et al., 2004). The 

values of Nu for x/d > 0 and x/d < 0 are shown graphically by Figure 7.10. It can be 

seen that in general slightly higher values are typically obtained for x/d > 0 than 

those obtained for x/d < 0. 

 

Figure 7.10 – Graph showing the degree of symmetry of heat flux measurements 
about the nozzle centre 

7.4.3 Nusselt Number Correlations Compared with Literature 

The effect of air velocity (Reynolds number) on mean heat transfer coefficient 

(mean Nusselt number) was investigated for ASN and ARN for the set of 

conditions outlined in Table 7.3. The purpose of measuring these values was to 

compare the results with literature. 

Nozzle type ASN ARN 

Jet temperature, T, (°C) 184 to 204 192 to 200 

Nozzle-to-surface distance, H (mm) 25 25 

Ratio of nozzle-to-surface distance over diameter, H/d 5.000 2.083 

Reynolds number, Re 
3,221 to 
10,902 

3,711 to 
13,129 

Table 7.3 – Range of conditions for correlations between Reynolds number and 
Nusselt number 
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Heat transfer correlations for ASNs are widely available. Since their profile is 

constant across the width of the oven they can be considered two-dimensional. In 

addition, the nozzle profiles can be easily and consistently manufactured from sheet 

metal making experimental measurements on different facilities comparable.  

Experimental values for mean Nusselt number, shown in Figure 7.11, match 

closely with the correlations in literature (Das et al., 1985, Hardisty and Can, 1983, 

Martin, 1977). The results particularly corresponded with Das et al. (1985), 

comparison with this data shows their correlation over predicted Nusselt number by 

a mean percentage error of 6.7 % and a maximum percentage error of 10.2 %, and 

Martin (1977), who under predicted Nu by a mean percentage error of 8.8 % and a 

maximum percentage error of 13.4 %. The correlation of Hardisty and Can (1983) 

was less applicable; it over predicted the Nusselt number by a mean of 30.2 % and 

a maximum of 40.7 %. The wide range of correlations highlights the need for 

experimental correlations to be made for the specific nozzle types under 

investigation. 

 

Figure 7.11 – Graph of Reynolds number against mean Nusselt number for ASN 
experimental results and correlations reported in literature 
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For the ARN used, there are no correlations in literature which capture the 

asymmetric nature of the hole distribution. For this reason, the results were 

compared with two of the Martin (1977) correlations; ARN and ASN. This was to 

test the assumption within industry that rows of closely spaced rows of round 

nozzles approximate ASNs. Table 7.4 shows the alterations to the dimensions that 

were necessary to approximate the correlation for ARNs as ASNs: 

Nozzle type ARN ARN as ASN  

Nozzle diameter/ width, d (mm) 12 5.141 

Characteristic length, Lc (mm) 12 (= d) 10.282 (= 2 d) 

Ratio of nozzle-to-surface distance over diameter, H/d 2.083 4.863 

Relative nozzle area, f 2.235 % 2.235 % 

Table 7.4 – Changes to dimensions for correlating the asymmetric ARN as an ASN 

Figure 7.12 shows that the non-symmetrical ARN behaves closer to the Martin 

(1977) ASN correlation than it does to the ARN correlation, particularly at lower 

Reynolds numbers (Re < 10,000). The mean difference between experimental 

results and the ASN correlation is 9.0 % and the maximum difference is 13.5 %, 

whilst the mean difference when compared to the ARN correlations is 28.3 % and 

the maximum difference is 33.2 %. 

 

Figure 7.12 – Graph of Reynolds number against mean Nusselt number for ARN 
experimental results and correlations reported in literature 
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7.5 Mean Heat Transfer Measurements 

Mean heat transfer correlations are useful to industry as they give an overall value 

to benchmark differences between heat transfer characteristics for a range of nozzle 

configurations. 

7.5.1 Correlation of Nusselt Number with Reynolds Number 

The results showing how the rate of heat transfer varies with air velocity (Re versus 

Nu) are shown in the previous section by Figure 7.11 and Figure 7.12. These results 

are reproduced below in Figure 7.13, with a correlation that represents a good fit 

when compared to both aforementioned data sets. For simplicity, the correlation to 

predict the Nusselt number from the Reynolds number is given by the power 

relation: 

ݑܰ  ൌ ܴ݉݁௡ (7.4) 

where, for the set of conditions used, m = 0.047 and n = 0.7. 

  

Figure 7.13 – Graph showing Nusselt number correlations for ASN and ARN 

The Coefficient of Determination (R2) value for these two sets of data when 

compared to Eq. (7.4) is shown by the regression plot, Figure 7.14. R2 values of 
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validity of the proposed correlation of Reynolds number and Nusselt number. The 

correlation developed is valid for the following range of conditions, which are 

relevant to bread baking applications: 

 3,200 < Re < 13,200  

 H/d = 5, d = 5 mm, f = 2.17 % for ASN 

 H/d = 2.083, d = 12 mm, f = 2.24 % for ARN 

 T = 200 °C 

 

Figure 7.14 – Regression plot to measure R2 value of data sets compared with 
correlation 

The correlation presented, predicts the Nusselt number as a function of Reynolds 

number. This enables commercial oven designers to balance the energy flows in a 

new design of oven. Heat transfer rates at greater air jet velocities will inevitably 

increase production rates and therefore reduce the gas consumption of the oven. 

However, this should be balanced against the additional electrical energy required 

for air distribution and product quality concerns, as discussed further in section 7.7. 

7.5.2 Variation of Heat Transfer with Nozzle-to-Surface Distance 

It has been widely reported that maximum heat transfer rates are achieved when 

H/d is between 2 and 8 (Mujumdar, 2007, Stephan, 1993), and that heat transfer 
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rates can be increased by 20 % by optimising H/d (Zuckerman and Lior, 2006). 

Figure 7.15 shows the Martin (1977) correlations for Nusselt number compared 

with H/d for Re = 5,000. The correlations show that for both ASN and ARN, heat 

transfer decreases when H/d > 2. 

 

Figure 7.15 – Martin (1977) correlations for dimensionless nozzle-to-surface 
distance (H/d) against Nusselt number for ASN and ARN 

Experimental results of Nusselt number using the ARN for 1.33 < H/d < 7.83 are 

shown by Figure 7.16. It can be seen again that these results align well with 

correlations from literature, in this case Martin (1977) ASN. The degree of 

accuracy of the approximation of the asymmetric ARN as ASN can be observed for 

a range of H/d ratios. The experimental results have a mean percentage difference 

in comparison with literature of 2.06 % and a maximum difference of 6.99 %. The 

trend of slightly decreasing Nusselt number with increasing H/d is observed. This 

trend is relevant to bread baking as decreasing the nozzle-to-surface distance would 

be desirable to achieve higher heat transfer rates whilst maintaining the same 

nozzle velocity, indicating the opportunity to decrease the baking time whilst using 

the same amount of energy. Decreasing the nozzle-to-surface distance presents a 

number of practical problems for bread baking; as the nozzles are closer to the 

conveyor, cleaning can be made more difficult and blockages in the oven can 
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become more frequent when two dough-pieces are accidentally stacked above one 

another. In order to manufacture ovens with optimum H/d ratios, these issues 

require addressing. 

 

Figure 7.16 – Comparison of experimental mean Nusselt number results for ARN 
at varying H/d ratio with Martin (1977) ASN correlations 

7.5.3 Mean Proportion of Radiation and Convection 

The quality parameters of bread are partially determined by the balance of heat 

transfer to the surface of the bread through radiation and convection in the oven 

(Williamson and Wilson, 2009). For a bakery chain with multiple ovens it is 

important to ensure that each oven produces the same product. This can be 

standardised by profiling the percentage of radiation and convection for different 

operating regimes. It is known that baking cookies with a higher proportion of 

radiative heat transfer results in a darker coloured product (Shibukawa et al., 1989), 

and it is believed, though it is not reported in literature, that the same phenomena 

applies to bread baking (Kirk, 2011). Other quality factors that are thought to be 

determined by the degree of radiation include taste and density. 

As the Reynolds number increases, the proportion of heat transfer due to 

convection increases and radiation decreases, as shown by Figure 7.17 and Figure 
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7.18, for ASN and ARN respectively. This is consistent with theory, as values of 

radiative heat transfer are unaffected by air velocity, whereas the convective heat 

transfer increases, therefore the relative proportion convection increases and 

radiation decreases. 

For both sets of nozzles, the proportion of radiation decreased linearly with 

increasing Reynolds number. Both graphs exhibit a strong trend, with R2 values of 

0.998 and 0.978 for ASN and ARN respectively. 

The linear trend line equations given for ASN and ARN give y-intercept values as 

11.428 and 10.271 % respectively. This implies that for regimes with very low 

airflow (Re < 500), only 10 to 12 % of heat transfer would be due to radiation – this 

seems unlikely. The proportion of heat transfer due to radiation for low Reynolds 

numbers would require validation, therefore the linear trends in Figure 7.17 and 

Figure 7.18 can only be valid for the set of conditions that have been tested in this 

study, the same as those in Table 7.3. The gradient of both trend lines is roughly 

equal, further indicating that closely spaced rows of round holes can be 

approximated as ASN. 

 

Figure 7.17 – Graph of Reynolds number against mean percentage of heat transfer 
due to radiation for ASN 
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Figure 7.18 – Graph of Reynolds number against mean percentage of heat transfer 
due to radiation for ARN 

7.6 Local Heat Transfer Measurements 

Local heat transfer measurements show the locations of maximum and minimum 

heat transfer rates and detailed profiles of heat transfer across the nozzle pitch can 

be observed. Local heat transfer profiles are particularly useful for oven designers 

to assess the difference between maxima and minima, thus indicating the degree of 

non-uniformity of the bake profile. For nozzles that are close together, or where 

H/d is small, interactions between flow fields can be identified, these can have 

positive or negative effects on local and mean heat transfer rates. 

As the heat flux profiles have been shown to be greater than 90 % symmetric about 

then nozzle centre, standard practice is followed for displaying local jet 

impingement heat transfer results and the local profiles are shown for half of the 

nozzle pitch (i.e. Nu only displayed for x/d ≥ 0). 

7.6.1 Local Profiles of Nusselt Number with Reynolds Number 

Figure 7.19 shows local dimensionless heat transfer coefficient distribution across 
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for H/d = 5 and T = 200 °C. There is one primary peak at x/d = 0. Either side of this 
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peak the Nusselt number decays exponentially until the middle point of two nozzle 

banks (x/d = ± 23), where the minimum value is reached. Subtle secondary peaks in 

Nusselt number can be identified at x/d ≈ ± 14, indicating a small amount of 

turbulence in the wall jet region; the insignificance of these peaks can be attributed 

to the H/d value (5), which is around the upper limit at which secondary peaks 

occur (Colucci and Viskanta, 1996). 

 

Figure 7.19 – Graph of local Nusselt number against dimensionless distance from 
the centre of the nozzle jet (x/d) for ASN for five different Reynolds numbers 

between 3,221 and 10,902 

The H/d ratio has a dominant effect on the occurrence of secondary peaks, as they 

only appear for low values (H/d < 5) (O'Donovan and Murray, 2007). This is due to 

a thinning effect of confining the airflow which causes a change from transitional 

to turbulent flow in the wall jet boundary layer. This increase in turbulence causes 

a peak in heat transfer (Fitzgerald and Garimella, 1998). The effect of air velocity 

on the appearance of secondary peaks is also well documented in literature – and is 

due to the illusion that higher Reynolds number has on reducing H/d. The potential 
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intensity, meaning the interaction between the jet and the surface behaves as if the 
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centres and thus, the development of secondary peaks (O'Donovan and Murray, 

2007). It can be seen that for both Figure 7.19 and Figure 7.20 secondary peaks are 

more prevalent at higher Reynolds numbers. 

Figure 7.20 shows local dimensionless heat transfer coefficient distribution across 

the ARN configuration for Reynolds numbers in the range of 3,711 ≤ Re ≤ 11,801, 

for H/d = 2.083 and T = 200 °C. Aside from the primary peak in the Nusselt 

number at x/d = 0, there are two distinct secondary peaks at x/d ≈ ± 7. Minimum 

heat transfer occurs at x/d ≈ ± 5 and 10. The three maxima at the centre of the 

nozzle exit and the locations of the two secondary peaks either side of the jet centre 

are clearly identified for the ARN. This is due to the effective 58.3 % reduction in 

H/d (5 to 2.083) from the ASN results shown by Figure 7.19. 

 

Figure 7.20 – Graph of local Nusselt number against dimensionless distance from 
the centre of the nozzle jet (x/d) for ARN for five different Reynolds numbers 

between 3,771 and 11,801 
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these results are from differing nozzle arrangements, they are not directly 

comparable, but the clarity of the secondary peaks is improved when H/d is 

decreased from 5 to 2.083. 

 

Figure 7.21 – Graph of local Nusselt number against dimensionless distance from 
the centre of the nozzle jet (x/d) for two different nozzle types and H/d values 

The local variation of Nusselt number for values 1.33 ≤ H/d ≤ 7.83 is shown by 

Figure 7.22. The constant conditions for these experiments were: Re = 3,211, T = 

200 °C and the set of nozzles used was the ARN.  

 

Figure 7.22 – Graph of local Nusselt number against dimensionless distance from 
the centre of the nozzle jet (x/d) for different values of H/d for ARN 
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It can be seen that for lower nozzle-to-surface distances, the Nusselt number has a 

higher peak at x/d = 0, but these decrease more rapidly with increasing x/d. At x/d ≈ 

2.5 all the profiles converge and secondary peaks can be observed for x/d values of 

between 4 and 6. 

7.7 Optimisation of Heat Transfer Coefficient for Energy 

Savings 

Heat flux correlations can be used to model oven energy use by using a three-

dimensional conduction model to predict the bake time for a range of heat transfer 

coefficients. The model used makes use of finite element analysis software, 

COMSOL Multiphysics (COMSOL, 2012), to predict bake time and is described 

fully in Khatir et al. (2012b). 

Once bake time is deduced, the throughput of product can be predicted if the 

capacity of the oven is known – for example if the bake time was 30 minutes 

(1,800 s) for an oven with a capacity of 5,000 kg the throughput would be 

5,000/1,800 = 2.78 kg/s. If the bake time were halved, the throughput would double 

whilst the oven will require the same amount of energy per kg of product to heat 

the dough, tins and conveyor, to gelatinise the starch and to evaporate the moisture 

from the product. The other heat losses – such as those through the roof, walls and 

exhaust, remain constant regardless of the oven throughput. The thermal energy 

efficiency saving can be calculated by assuming that approximately 19 % of oven 

heat is lost to ambient, using the methodology described by in Chapter 6. Therefore 

for a faster bake time the specific energy loss is reduced linearly with bake time.  

Whilst a faster bake allows throughput to increase, and thus thermal efficiency to 

increase, the higher air velocity required to increase convective heat transfer results 

in a larger electricity load to power recirculation fans to increase the pressure in the 

air supply ducts. The energy required to operate the fans given a certain required 

velocity can be estimated using Eq. (7.5): 
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ሶ௘௟௘௖ܧ  ൌ ∆ܲ ܳ (7.5) 

where ΔP is calculated using Bernoulli’s equation for a range of air velocities. 

The relationship between air velocity and heat transfer coefficient is given by the 

dimensionless correlation, Eq. (7.5). By balancing the heat saving (gas) with the 

additional energy load to power the fans (electricity), the optimum convective heat 

transfer coefficient for energy efficiency can be calculated – this graph is shown by 

Figure 7.23. It can be seen that when the heat transfer coefficient increases above 

40 W/(m2·K), there is a marked rise in electricity required to distribute the air. 

Conversely, with small values for heat transfer coefficient, the heat losses to 

ambient are more significant.  

 

Figure 7.23 – Predicted specific oven gas and electricity use as a function of heat 
transfer coefficient 

In terms of total specific energy in kJ/kg, the optimum value for heat transfer 

coefficient occurs for hc = 35 W/(m2·K). Using these conditions, the energy model 

gives specific energy savings based on using the reported value of hc = 10 

W/(m2·K) (Rohsenow et al., 1998) of 41.8 kJ/kg, which is composed of using an 

extra 2.9 kJ/kg of electricity in the fans to save 44.7 kJ/kg of heat losses to ambient. 

The total energy saving is 5.20 % based on the fact that the energy needed to bake 
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bread under typical operating conditions is at least 804 kJ/kg – as seen in section 

6.7. Depending on whether bakeries wish to prioritise reducing their energy use, 

financial cost of energy or carbon emissions may influence the measure used for 

energy efficiency. The carbon and financial cost penalties for electricity are 

currently greater than gas, meaning a lower value for heat transfer coefficient may 

be preferable. The carbon dioxide equivalent emissions per kg production graph, as 

shown in Figure 7.24, indicates an optimum value for lowering carbon emissions of 

30 W/(m2·K), i.e. 5 W/(m2·K) lower than optimising for energy consumption. 

 

Figure 7.24 – Predicted bread baking carbon emissions equivalent per kg as a 
function of heat transfer coefficient 
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ASN match closely with correlations proposed by Das et al. (1985) and Martin 

(1977). The ARN configuration was unique because of the asymmetric distribution 

of nozzles. The heat transfer characteristics were similar to the equivalent ASN 

correlations but not the symmetric ARN correlations proposed by (Martin, 1977).  

The mean dimensionless heat transfer coefficient (Nu) varies considerably under 

different regimes. This demonstrates the importance of experimental measurements 

to compare a specific regime to one of the many mean Nusselt number correlations 

that exist in literature. Interestingly, the ARN configuration, where there is a large 

degree of asymmetry of hole distribution can be effectively correlated as an ASN 

by using the relative nozzle area, f, to calculate the equivalent slot width.  

Local heat flux variations also exhibit interesting behaviours that should be 

understood when designing commercial bread baking ovens. The effect of variation 

in nozzle-to-surface distance can have little effect on the mean heat transfer, but 

locally the effect across the profile of a nozzle can be of importance. Local heat 

flux profiles also showed the prevalence of secondary peaks in a number of cases. 

The magnitude of these secondary peaks was greater for high air velocities and low 

H/d ratios 

Using the experimental results, it was possible to estimate the optimum value for 

heat transfer coefficient with relation to energy usage. It was found that by using hc 

= 35 W/(m2·K), energy use could be reduced by over 5 %. The results presented in 

this chapter may be of use to oven designers and bakery operators when selecting 

conditions for bread baking to maximise heat transfer. Increasing the rate of heat 

transfer could have a direct effect on lowering the baking time and therefore 

improving plant efficiency and reducing energy usage and carbon emissions. 
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Chapter 8 

Conclusions and Further Work 

This thesis presents research focussed on analysing energy utilisation in 

commercial bread baking – a manufacturing process that is responsible for 

significant carbon emissions and environmental impact – with yearly energy usage 

totalling 2,000 GWh and carbon emissions of 570,000 TCO2/year in the UK alone. 

This research has been conducted in collaboration with industrial partners 

Warburtons Limited, Spooner Industries Ltd. and SKM Enviros. Prior to the 

commencement of this research, comparatively few studies have addressed end-use 

energy demand and carbon emissions in the bread industry. Reasons for this 

include: the relatively low cost of energy supply until recent times, food quality/ 

hygiene concerns of changing the production process and the traditional nature of 

the industry. 

This thesis challenges some of the ingrained and inherently inefficient commercial 

practices used in the manufacture of bread. It provides rigorous scientific 

justification and analysis tools to drive change in an important and large-scale 

industry. These analysis tools have been actively used by industry in an attempt to 

reduce energy use in the bread industry. This chapter provides a summary of the 

contributions to new scientific understanding, methodologies, findings and key 

conclusions that this research has provided. 

8.1 Conclusions and Main Contributions to Scientific 

Understanding 

8.1.1 Computational Fluid Dynamic Analysis of Bread Provers 

This study is the first attempt to analyse airflow within industrial bread provers 

with the aim to reduce energy usage. Non-invasive measurement and predictive 

techniques, such as CFD, are particularly pertinent when assessing bakery 
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equipment, as disruption to the manufacturing processes can be financially 

expensive and leave the potential to cause food quality/ safety breaches. CFD has 

been used for the first time to mitigate the detrimental impact that direct 

measurements have to improve the energy efficiency of the bread proving phase. 

The number of air changes is the practical parameter bakeries use to ensure 

important food safety criteria are adhered to. A parametric study using ten different 

cases for air changes between 10/hr and 100/hr was used to predict airflow within 

the prover. Residence time analysis has shown the time taken for each individual 

particle out of 2,000 injected to leave the prover cavity. Experimental 

measurements of air velocity at the vent exits were obtained to validate the CFD 

predictions, providing the validation and credibility needed to encourage 

commercial bakeries to reduce the number of air changes. 

It has been shown that for the proving process, the number of air changes can be 

reduced by at least a third, from the previous level of 90/hr to 60/hr, without 

breaching any current legislative or quality-driven standards. This reduction will 

reduce the electricity demand of the prover air handling units by over 70 %. In 

addition, it is anticipated that fewer air changes will mean the prover retains heat 

and humidity, leading to reductions in the steam and gas burner energy demand. 

The results of the CFD simulations have been used by bread manufacturers to 

benchmark the number of air changes in industrial provers across a number of UK 

bakeries. Furthermore, it has been suggested that the results could be used to 

formulate a universal standard that would encourage bakeries to operate provers 

under more energy efficient conditions. 

8.1.2 System-Level Modelling of Industrial Bread Baking Ovens 

Energy system modelling is a well-documented methodology that is used to predict 

and measure energy streams. System models can lead to improvements in process 

efficiency since they take into account the key influences affecting energy. 

Initially, a system diagram of energy and material flows into and out of the oven 
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was generated, with reference to several different oven types, both indirect-fired 

and direct-fired. Measurements of fundamental flow characteristics in a baking 

oven, such as air velocity and temperature, were conducted to characterise oven 

behaviour and provide parameters to be input into the system model. This 

facilitated the formulation of the governing equations necessary to drive the 

system-level model. 

Thermal imaging, another form of non-invasive measurement, enabled surface 

temperature profiles to be established at places that were difficult to access. Careful 

configuration of the thermal imaging devices and software allowed reliable surface 

plots of temperature distribution to be generated, which were then used to estimate 

energy losses from the oven.  

The results were verified by performing a sensitivity analysis on the model, which 

used two separate scenarios to calculate the potential error. Firstly, each input to 

the model was varied by ± 10 % to show the effect this had on the output results 

and it was found that the variation of the majority of the outputs were within the 

range expected for a model of this type. Secondly, each input was varied by the 

expected accuracy of the measurement/ equipment used; again this showed 

accuracy to be sufficient to allow reliable interpretation of the results. The results 

of the analysis showed that energy use in bread baking can be reduced by 1.9 %. 

This energy saving on a large scale is significant, as explained in Paton et al. 

(2012b) the annual cost saving is estimated to be at least £0.5 million and carbon 

savings of more than 5,000 tonnes CO2 equivalent for UK industry. 

Energy system modelling is an increasingly popular technique that can be used to 

flexibly analyse energy flow streams. The work presented here uses a system 

model encompassed into a software framework that aims to provide direct benefit 

to the bread industry as well as unique contributions to the scientific community. 

The combination of novel measurement techniques to assess heat losses in 
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conjunction with a set of equations that can analyse the oven as a system has never 

been done before for the bread industry, and builds upon previous studies in other 

industries, both food and otherwise. The model has been used widely in industry to 

benchmark and predict energy utilisation of commercial ovens, and by equipment 

designers to identify opportunities for manufacturing the next generation of energy 

efficient baking ovens. 

8.1.3 Experimental Measurements for Air Jet Impingement Heat Transfer 

for Regimes Relevant to Bread Baking 

The novel experimental results showing mean and local heat transfer characteristics 

for jet impingement nozzles under conditions applicable to the baking industry are 

a valuable contribution of knowledge in the field of jet impingement heat transfer. 

Furthermore, the correlations developed can prove useful to commercial oven 

designers for developing a new generation of bread ovens where heat transfer can 

be optimised in terms of jet velocity and nozzle dimensions. Much of the previous 

experimental work carried out in this field was of little relevance to process 

engineers, largely due to the types of nozzles used. Consequently, the experiments 

described in this thesis intentionally used scaled-down industrially relevant 

apparatus, which has enhanced the applicability of the methodologies and results. 

The pilot oven facility enabled a wide range of conditions to be tested. The 

apparatus ensured the flow represented conditions commonly experienced in 

industrial baking and a turbulent regime under steady state conditions could be 

maintained. A commercially available heat flux sensor was used for this, which 

could measure convective and total heat transfer for typical conditions experienced 

in bread baking ovens. 

The mean heat transfer results agreed well with the seminal correlations of Martin 

(1977), which give credibility and validation to the results. The experimental 

evidence substantiates the assumption of the industry that asymmetric banks of 

round nozzles can be approximated as slot nozzles. This insight could prove 
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especially significant as it means that mean heat transfer rates for arrays of both 

round and slot nozzles can be modelled in two-dimensions, thereby reducing the 

complexity of analysis and the corresponding computational requirements. 

Theoretical optimisation of the heat transfer coefficient was conducted by 

balancing the additional electricity load required to increase air velocity with the 

subsequent reduction is baking time (and thus ambient heat losses per kg of bread) 

made possible as a result of higher heat transfer rates. It was found that increasing 

hc from the industry standard value of 10 to 35 W/(m2·K) resulted in energy 

savings of over 5 %. This saving equates to over 75,000 tonnes CO2 equivalent per 

year worldwide. This is a key finding that can help encourage the bread industry to 

increase air velocity, depending on the effect on the product, in order to reduce 

overall energy consumption. A further efficiency gain could be made if local 

cogeneration (combined heat and power) could be made feasible to meet bakery 

energy demand. 

8.2 Future Work 

The work presented in this thesis is not only relevant to the baking industry, but 

covers technologies that are used in a number of other drying industries. The future 

work that has been identified in this section reflects the adaptability of some of the 

analysis techniques to identify energy savings in the bread industry. 

8.2.1 Prover 

In order to measure the energy savings that have been made possible as a result of 

the CFD analysis presented in this thesis, a regression analysis of year-on-year 

energy use would be necessary. This would help to substantiate the scale of energy 

savings that have been estimated. Based on the magnitude of the energy savings for 

using a lower number of air changes, it may be advisable to rethink prover design 

and/ or retrofit technology in order to downsize the prover heating system (gas 

burners) and review the sizing of air handling units based on worst-case scenarios. 
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Further optimisation of airflow within the prover could be conducted using a CFD 

design optimisation study. Formal design optimisation, using methods such as 

genetic programming, is a computational approach used to find an optimal solution 

to an engineering problem. For multi-objective design optimisation, design 

variables are identified, which in the case of the prover could be factors such as: the 

number of air changes, the pitch between outlet vents, the size or shape of the 

outlet vents, the distribution of tins within the prover, positioning of inlet/ outlet 

ducts, air humidity etc. With current techniques, it is usually feasible to have no 

more than 3-4 design variables, therefore the specification of the problem would 

need to identify which variables are most practically varied and that are going to 

have the greatest impact on energy usage. The objective function should define the 

parameter to be maximised or minimised. For the prover, minimising the energy 

use would be the objective function, but with a set of critical quality objectives that 

would be required to ensure product quality and food safety. A simple graph shown 

by Figure 8.1 characterises a Pareto front, where a trade-off between two variables 

can be made. For this application, quality is a non-negotiable variable, therefore the 

critical value must be maintained – the related costs can then the estimated. Such 

approaches have been carried out in bread ovens. 

 

Figure 8.1 – Example of a Pareto front showing competing objectives: the 
objective function, minimising cost (blue) and a critical quality objective (red) 
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Figure 8.2 displays the three-dimensional surface response of the impact of two 

design variables, H/d and unoz, on the objective function, temperature uniformity 

(σT), for an industrial bread oven (Khatir et al., 2011b). 

 

Figure 8.2 – Surface response of CFD optimisation study for optimising airflow in 
and industrial bread oven (Khatir et al., 2013, Khatir et al., 2012d) 

8.2.2 Oven 

The thermodynamic system-level model has been distributed and widely used in 

Warburtons’ bakeries, the second largest grocery brand in the UK after Coca-Cola 

(Phillips, 2011). Whilst the fundamental principles behind the analysis does not 

change, as the software has evolved slight modifications have been made to the 

governing equations – either to improve the accuracy, increase the ease of 

operation or to simplify the methodology. It will be important for the legacy of the 

model to continue maintenance on the software. The model could also be expanded 

to form a life cycle assessment framework, where the cradle-to-grave 

environmental impact of bread production could be assessed by a bakery operator 

in a straightforward manner. The model will help industry to track improvements in 

energy efficiency as advances are made to baking oven technology, therefore 

continual use will help to highlight the change in energy utilisation as a result of 

process enhancements. 
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One particular area for improvement identified as a result of the aforementioned 

model, is in reducing the amount of heat being exhausted to atmosphere in flue 

gases. There are three ways to increase efficiency in this area. Firstly, reducing the 

flow rate of flue gases exhausted – this has been dismissed by industry, as a 

minimum portion of combustion products need to be removed from the oven to 

maintain safe manufacturing conditions. Secondly, reusing the heat for another 

process by directly pumping exhaust gases to another process – for example in the 

sugar industry waste heat from CHP incinerators is used to help grow tomatoes 

(Stark and Jarvis, 2009). Thirdly, using heat exchangers to transfer the energy from 

the waste flue gases to another form (solid, liquid or gas) to be used in another 

operation – for example in washing tins. None of these options have been 

implemented successfully despite numerous attempts over the years. However, 

advances in heat exchanger efficiency and reliability mean there is increased 

optimism that a commercially viable heat exchanger may be manufactured to 

recover heat from oven exhausts in the short-term future. 

Experimentation on heat transfer is a subject that can never be exhausted. The 

range of different operating conditions that are possible is virtually limitless. 

Although the subject of jet impingement heat transfer has been extensively covered 

by literature, there is no method that is totally reliable for assessing heat transfer, 

other than direct experimental measurement. Despite this, due to the expense of 

preparing meticulous experimental setups and conducting careful measurements, it 

is often more effective to use heat transfer correlations. Though it is clear that some 

of the correlations are applicable, it has also been found correlations are lacking in 

certain areas of parameter space – such as those used in bread baking. There has 

been little experimentation relating to analysing the proportion of convection and 

radiation with respect to air velocity based on measurements. This is a correlation 

that could be developed but would potentially be highly dependent on the apparatus 

used. Further studies could assess this by using different oven materials and 
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geometries to identify the relative ratio of convective to radiative heat transfer for 

different systems. Further investigation into how rows of asymmetric round nozzles 

can be approximated as slot nozzles would formulate completely novel research. 

Deeper understanding of this phenomenon would add to scientific knowledge and 

help designers of jet impingement systems to engineer nozzles that are both energy 

efficient and practical. 

Design of a completely new generation of baking ovens that are energy efficient is 

a current priority for the baking industry. To minimise the energy consumption of a 

new design of oven, it will be important for the previous work on heat transfer 

(such as that presented in this thesis) along with the practical design experience of 

those in the industry to be considered. 

8.2.3 Other Bakery Equipment 

Due to the large energy requirement of dough mixing since the advent of the 

Chorleywood Bread Process, there are significant challenges relating to minimising 

the mechanical energy used in dough mixers. Mixing using the this method uses 

approximately 5 % of the bakery energy load – in terms of financial cost this figure 

is greater due to the relative costs of electricity in comparison to other primary 

energy sources. As stated in the introduction to this thesis, some computational 

modelling work has been carried out in an attempt to optimise the mixing process, 

but further work can be done. A number of factors affect the mixing process 

(Frank, 2009), including: ingredients, dough rheology and temperature. Measuring 

the impact of these variables to produce dough with the same product 

characteristics would form an interesting piece of research. 

Formation of the dough into a loaf shape is another area where research can help to 

drive forward innovation in the bread manufacturing process. Dough-pieces are 

currently formed by flattening the dough into a thin sheet and rolling into a 

cylinder, before folding this into two or four sections. Little investigation has been 
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conducted to experiment with different ways of shaping the dough. The benefits of 

the technique described over shaping the dough into a sphere and stretching into a 

loaf shape have not been scientifically justified. Likewise, inventive solutions such 

as: layering thin sheets of dough into a loaf shaped stack, joining multiple cylinders 

or forcing the dough through a nozzle are all possibilities for modernising the 

dough formation phase of bread baking. The energy impact of dough formation is 

relatively low compared to the baking, proving and mixing stages; however, the 

way in which the dough is formed can also have an impact on other stages of the 

bread-making process.  

As discussed previously, there are several cooling technologies available in the 

food industry, many of which have been trialled to varying extents in bread-

making. It is important to fully understand the comparative benefits of different 

coolers in terms of: energy impact/ life cycle assessment, capital investment, 

operating costs, product quality (for example moisture loss), reliability, space 

requirements and ease of operation. Ideally this multi-objective trade-off analysis 

would be conducted on a commercial scale, to present the strongest possible case 

for the best technology to be universally adopted. However, it is unlikely that 

commercial bakeries would be willing to take the financial and operational risk 

necessary to acquire unproven equipment on a large scale. It would be more 

realistic to work with cooler manufacturers to understand the bakery requirements, 

optimise design and trial innovative technologies on a pilot-scale with the aim to 

revolutionise the cooling process. 

8.3 Summary 

The bread manufacturing process is traditional by nature, and as such it has been 

observed in literature and through collaboration with industry, that innovation has 

been limited over the past half-century. Carbon emission legislation and spiralling 

energy costs have encouraged bakeries and equipment suppliers to reduce the 
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environmental impact of their products. There is a significant challenge to do this 

whilst maintaining the product characteristics that have made bread a staple food in 

a modern society. Despite these barriers, opportunities for reducing energy 

utilisation are plentiful. The main challenge is to take theoretical performance gains 

and transform them into commercially viable opportunities for investment. 

Operational changes to the bread proving process have been suggested, with 

scientific substantiation obtained through CFD modelling techniques. Using 

residence time theory to analyse ten cases for different numbers of air changes has 

shown that bakeries can reduce prover AHU electricity consumption by an 

estimated 70 % whilst maintaining critical food safety and performance 

characteristics. Additional savings in natural gas and steam consumption will 

follow from this and can be quantified retrospectively. 

System-level energy analysis of bread ovens has analysed the heat streams within 

commercial bread ovens, showing that around 40 to 50 % of heat in the oven is 

wasted in losses to atmosphere. This novel approach has made benchmarking 

possible for both direct and indirect-fired ovens to compare energy efficiency using 

a scientifically rigorous framework. Furthermore, the results highlight opportunities 

for energy savings to be made – most notably in recovering waste heat from 

exhaust gases, improving oven insulation to reduce the wall/ roof losses and 

reducing energy losses from the conveyor. 

Experimental measurements of heat flux for nozzles and temperature/ velocity 

conditions relevant to the baking industry have corroborated many of the 

previously published correlations. Unique data on the proportion of convection and 

radiation shows, as expected, that the degree of convection is proportional to the jet 

velocity. Furthermore, local heat flux profiles of air jets have shown interesting 

behaviours that can be useful for oven designers. The prevalence of secondary 

peaks, which were more noticeable for round nozzles that slots, is an interesting 



- 167 - 
 

 

result and can be explained by the effect of a decrease in nozzle-to-surface distance 

due to the way the airflow develops for impinging jets. 

As bread is a staple food product across most of the globe it is important to keep 

availability high and retail prices low. The future prosperity of the bread baking 

industry is increasingly dependent on lowering the cost of manufacture. Recent 

years have seen the price of raw ingredients (in particular wheat) escalate rapidly, 

due to poor harvests in the UK, Canada and USA, squeezing profit margins of 

commercial bakers. Moreover, the fact that raw ingredients can be bought and sold 

as stocks in a commodities market can have a further negative impact when there 

are shortages of these ingredients.  

The main costs in an industrial bakery aside from raw materials are: capital 

expenditure, maintenance, staffing and energy. Of these four factors, capital 

expenditure is often necessary to improve process efficiency, maintenance is 

essential to avoid undue downtime and staffing levels have been reduced to an 

absolute minimum through increased automation. Energy is the last remaining cost 

that bakeries have largely neglected to address. The research presented here 

explores energy utilisation in the commercial baking industry in order to help 

mitigate the environmental impact and financial cost of bread manufacture. It is 

envisaged that this research will help secure the long-term commercial and 

environmental viability of one of the most historic and important of all industries. 
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