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Abstract

Electron Beams with Orbital Angular Momentum

ELECTRON VORTEX BEAMS are beams of freely propagating electrons that possess orbital angular
momentum. Recently predicted and experimentally verified, electron vortices are hoped to lead to
new developments in several areas, in particular electron microscopy, as well as other areas as
diverse as spintronics and quantum information. This thesis introduces and examines key concepts
relating to electron vortices, and as an introduction, the major developments relating to electron
vortices over the past few years are outlined and discussed.

The Bessel beam is derived as a suitable solution to the Schrédinger equation for an electron
beam carrying orbital angular momentum. The linear and orbital angular momenta of such a beam
are discussed alongside the use of electron vortices in manipulation of nanoparticles. Being a
charged particle the electron vortex carries electromagnetic fields; the magnetic field is found to
have an axial component, unique to the vortex beam. Coupling between the spin and orbital
angular momentum of the electron propagating within its own field is found to be negligible in
typical electron microscope contexts.

Electron vortices are found to have a similar form as the more widely known optical vortices, but
key differences between electrons and photons lead to fundamentally different behaviour in many
circumstances. The main differences between electron and optical vortices are outlined throughout
this thesis. Interactions between the electron and optical vortices and matter, in the form of a
hydrogenic atom, are considered. In contrast to the optical vortex, interactions between atomic
matter and the electron vortex are found to lead to transfer of orbital angular momentum, opening
the possibility of using electron vortices in the electron microscope to probe magnetism at nano- or
atomic-scales. The premise and requirements of such experiments are discussed.

ii



Table of Contents

ACKNOWLEDGEMENTS

AUTHOR’S DECLARATION

PUBLICATIONS

1 INTRODUCTION

1.1

1.2

1.3

1.4

1.5

Outline of Thesis Contents . . . . . v v v v v v v v v e e e e e e et e e e e e
Vorticesin ElectronBeams . . . . . . ... ... ... ... ... . ...
1.2.1  Vorticesand VortexDynamics . . . . . . ... ... ... .. .. .. ...
1.2.2  Non-Relativistic and Relativistic Electron Vortices . . . . . ... ... ..
Generation of Electron VortexBeams . . . . .. ... ... ... .........
1.3.1 ElectronOptics . . . .. ... ... . . o
1.3.2  SpiralPhasePlates . . . . .. ... ... ... o o o oL
1.3.3 HolographicMasks . . ... ......... ... ... ... ......
1.3.4 ForkedMasks . . . .. .. . . ... e
1.3.5  SpiralMasks . . . ... L
1.3.6  Other Methods of Generating Electron Vortices . . . ... ........
1.3.7  Vortex Propagation through Electron Optics . . . .. ... ... .....
Applications of Electron VortexBeams . . . . . . ... ... ... . ........
1.4.1  Electron Energy Loss Spectroscopy with Vortex Beams . . . . . .. .. ..
1.4.2  Vortex Propagation through Materials . . . . .. ... ... ........
DynamicsandFields . . . . ... ... ... . .. . .
1.5.1 Motionand Collisions . . . . . . . . . . . e e

1.5.2  Propagation through External Fields . . . . . ... ... ..........

2 VORTEX SOLUTIONS

2.1

2.2

2.3
2.4

Vorticity . . . . . o o o
Bessel Function Vortex Solutions . . . . . . ... ... .. .. L.
2.2.1  Non-Relativistic Electron Vortex Solutions . . . . . ... ... ... ...
2.2.2  Optical VortexSolutions . . . . . ... ... ... ... ... . ..
2.2.3  General Propertiesof Bessel Beams . . . . . ... ... ... .......
Laguerre-Gaussian Vortex Solutions . . . . . . ... ... ... ... . ...

Beyond the Schrédinger and Paraxial Helmholtz Equations . . . . . .. ... ...

iii

xi

xii

14
15
21
22
23
26
28
28
32
33
34
35



3

2.4.1  Relativistic Electron Vortices . . . . . . . . . . . . . e
2.4.2  Non-Paraxial Optical Vortices . . . . . ... .. ..............
2.5 Normalisation of the Electron Vortex Wavefunction . . . . . . ... ... .. ...
2.5.1  Infinite Normalisation . . . . . . . . . . . . . .. ...
2.5.2  Semi-Infinite Normalisation . . . . . . . . . . . .. ... ... .. ....

2.5.3  Finite Normalisation . . . . . . . . . . . . . . i i i

VORTEX FIELDS

3.1 Chargeand CurrentDensity . . . . . ... ... ... ... ... ... ......

3.2 ElectricField . . . . . . . . . e

3.3 MagneticField . ... ... ... ... . . . e
3.3.1  Azimuthal Component . ... ... .. ... ... ... ... ...
3.3.2  AxialComponent . . ... ... ... ... e
3.3.3 RadialComponent. . . . .. ........ . ... . . L.

3.4 Simulation of Electric and Magnetic Fields for the Bessel Beam . . . . ... .. ..
3.4.1 InfiniteBeam . . . . . . . . ...

3.4.2 FiniteBeam . . . . . . . . . . e

LINEAR AND ORBITAL ANGULAR MOMENTA OF THE VORTEX BEAM

4.1 Optical Vortices . . . . . . o .o 0o e

4.2 Electron Vortices . . . . . . v v v v v e e e e e e e e e e e e e
4.2.1  Mechanical Momentum . . . . . . . . .. ...
4.2.2  Electromagnetic Momentum . . . ... ... ...............

4.3 Mechanical Rotation ofa Nanoparticle . . . . .. ... ... ... .. ......

INTERACTIONS BETWEEN OPTICAL VORTICES AND ATOMS

5.1 The Coordinate System and Basis States . . . . ... ... ... ..........

5.2 Lagrangian and Hamiltonian Formalism . . . . . ... ... ... ... ......
s.2.1  Lagrangianformalism . . . ... ... ... ... ... ... .. . ...

5.3 Matrixelement and SelectionRules . . . . . ... ... ... .. ... .. ...,

5.4 Conclusions . . . . . . .. e e e

INTERACTIONS BETWEEN ELECTRON VORTICES AND ATOMS

6.1 Lagrangianand Hamiltonian . . . . . . ... ... ... ... ... .....

6.2 Multipolar Expansion of Hamiltonian . . . . . .. ... ... ... ........
6.2.1  Matrix Element in the Dipole Approximation . . . . . . .. ... ... ..

6.3 Multipolar Effective Operator . . . . ... ... ... ... o
6.3.1  TheEffective Operator . . . . . . .. ... ... ... .
6.3.2  Multipolar Expansion . . . . .. ... ... . ... oo L.
6.3.3 ZeroOrderTerms . . . . . . o v v i v i i e e e e e
6.3.4 Dipoleterms . . . . ... ... o
6.3.5  Spatial Dependence of the Dipole Matrix Element . . . .. ... ... ..

iv

57
57
58
59
60
61
62
62
62
63

68
69
72
72
74
75

78
78
81
81
86
88



6.4 Comparison of the dipole interaction in the Hamiltonian and wavefunction expan-
SIOMS & v v e e e e e e e e e e e e e e e e e e e e e

6.5 Analysis and application of the selectionrules . . . . ... ... ... .......

6.6 Comparison with optical vortexresults . . . . . . ... ... . ... ... ... ..

6.7 SUMMMAIY . . o v v v vttt ittt e e e e e e e e e

SPIN-ORBIT COUPLING IN THE ELECTRON VORTEX

7.1 TheDiracEquation . . . . . . . ... ... ... e

7.2 The Foldy-Wouthuysen Transformation . . . . ... ... ... ... .......
7.2.1  The Form of the Foldy-Wouthyusen Transformation . . .. ... ... ..
7.2.2  Expandingin Powersof (mc?)™! . . .. ... L L
7.2.3  The Foldy-Wouthyusen Hamiltonian . . . . ... ... ... .......

7.3  Non-Relativistic Limit of the DiracEquation . . . . . .. ... ... ... .....

7.4 Spin-orbitinteraction . . . . . ... ... Lo o
7.4.1  Intrinsic Spin-Orbit Coupling . . . . . ... ... ... ... ... ...
7.4.2  Spin-Orbit Coupling in an External Field . . . . .. ... ... ... ...

DiscussioN AND OUTLOOK
8.1 Outlook for Future Research Directions . . . . . . . . . v v v v v v v v v v v ..

82 ClosingRemarks . . ... ... ... ... . ... ... .. . . o .

OPTICAL VORTEX INTERACTIONS

A.1  Expansion of vector potential about centreof mass . . . . . ... ... ...

A.2  Electric Dipole MatrixElement . . . . . .. ... ... ... ... ......

A.3  Vector Potential MatrixElement . . . . . . . . .. .. .. .. .. ... ...

A.4 The Quadrupole Transition Matrix Element . . . . . ... ... ... ... ....
A.4.1  The Quadrupole Interaction Hamiltonian . . . . . . ... ... ... ...
A.4.2  Quadrupole SelectionRules . . . . .. .. ... . o oL,

ELECTRON VORTEX INTERACTIONS
B.1 Calculation of Dipole SelectionRules . . . . ... ... ... ... .. .....
B.2 Calculation of Quadrupole SelectionRules . . . . ... ... ...........
B.3 Nucleus-Vortex Coulomb Interaction . . . . .. ... ... ... . ........
B.4 The Matrix Element After First Expansion . . . . . . ... ... ... .......
B.s  Fourier Transform of Effective Operator . . . . . .. .. ... ... ........
B.6 Summationoverp,p’andu. . . . ... ...
B.7 Matrixelementfactors . . . . . . . . .. .. e e
B.7.1  Integral Factors for Nucleus-Vortex Coulomb Interaction . . . . . . .. ..
B.7.2  Integral factors for First Effective Operator . . . . . ... ... ... ...
B.7.3  Integral Factors for Zero Order Term . . . ... ... ... ........
B.7.4 Integral FactorsforDipole Term . . . . . ... ... ............

132
132
136
137
138
140
142
143
144
145

147
148

150

151
151
152
152
153
155
156



C REeLaTIVISTIC QUANTUM MECHANICS

C.1  The Dirac -y Matrices
C.2  Applying The Foldy-Wouthuysen Transformation
C.3 The Foldy-Wouthuysen Hamiltonian

C.4 Powers, time derivatives, commutators and anti-commutators

C.4.1 Powers

C.4.2  Time Derivatives

C.4.3 Commutator and Anti-Commutator

D CONFERENCES

L1ST OF ABBREVIATIONS AND SYMBOLS

Abbreviations . . . .

Mathematical Symbols

REFERENCES

vi

171
171
173
174
175
176
176
176

178

180
180

180

193



1.2.1
1.3.1
1.3.2
1.3.3
1.3.4
1.3.5
1.3.6
1.3.7
1.3.8

1.3.9

1.3.10

1.3.11
1.3.12
1.3.13
1.3.14
1.4.1
1.5.1

1.5.2

2.2.1
2.2.2
2.2.3
2.3.1
2.3.2
3.3.1
3.4.1
3.4.2
3.4.3
3.4.4
4.3.1

List of Figures

Edge and screw dislocations in wavefronts . . . . ... ... ... ... ...
Overviewofthe TEM . . . . . . . . .. .. o ittt
The condenserlenssystem . . . ... ... ... ... . ... . . ...,
Focusing in the condenserlenssystem . . . . ... ... ............
The objectiveaperture . . . . . . . . ... .. L e
The spiralphaseplate . . . . . .. ... ... . ... L . oL
Interference patterns for an [ = 1 Bessel beam interfering with a plane wave . . . .
Binarised interference pattern for/ = 1 Besselbeam . . . . ... ... ... ..
The far field diffraction pattern and phase distribution of the continuous [ = 1
holographicmask . . . ... ... ... ... . .. .. o o o
The far field diffraction pattern and phase distribution of the binary [ = 1 holo-
graphicmask . . .. ... L L o
The far field diffraction pattern and phase distribution of the binary [ = 3 holo-
graphicmask . . ... ... .. L L
Interference patterns and masks of vortices interfering with spherical waves . . . .
The experimental setup of a mode converter for an electron vortex. . . . . . ..
Electric and magnetic fields in g-filter device . . . . . ... ... ... .. ...
The evolution of the vortex beam passing through focus . . . . . ... ... ..
Set up and results of vortex dichroism experiment . . . .. ... .. ... ...
Dynamics of a ring vortex in a spherically symmetrictrap . . . . ... ... ..
Dynamics two vortex lines crossing or reconnecting’ . . . . . .. ... ... ..
The phase character of { = 1 and [ = 3vortexbeams. . . . . . ... ... ...
Bessel functionsofloworder . . . . . ... ... .. L o oL
Bessel function intensity pattern . . . . ... ... Lo oL
The Bessel Beam as plane waves propagatingonacone . . . . .. ... ... ..
Gaussianbeamfeatures . . . . . . . ... ..o Lo e
Laguerre-Gaussianmode functions . . . . . ... ... ... .. oL,
CaptionTitle . . . . ... ... . .

Electric and magnetic field of infinite Bessel Beam . . . . ... ... ... ...

Density plot of electric and magnetic field components of infinite Bessel Beam

Electric and magnetic field of finite Bessel Beam . . . .. ... ... ......

Density plot of electric and magnetic field components of finite Bessel Beam

Proposed experiments for nanoparticlerotation . . . . ... ... ... ...

vii

10
11

11
14
16
17

18

19



5.1.1  Coordinate frame of vortex-atom interaction . . . . . . . . . . ... ... .... 79

6.3.1 Expansion of Bessel wavefunction about atomicnucleus. . . . . . ... ... ... 100
6.3.2 Expansion of Bessel wavefunction about atomicelectron . . . . ... .. ... .. 102
6.3.3 p-modemodulationfactors . . . . . ... ... ... . 111
6.3.4 Transitions in the expanded wavefunction formalism. . . . ... ... ... ... 114
6.3.5 Spatial dependence of the dipole matrix elementfor/ =0 . . . . ... ... ... 11§
6.3.6  Spatial dependence of the dipole matrix elementfor{ = +1 . . . ... ... ... 116
6.3.7 Spatial dependence of the dipole matrix elementfor/ = +1 . . . . . . ... ... 117
6.3.8 Spatial dependence of the dipole matrix elementfor{ = +1 . . . . .. ... ... 119
6.3.9 Comparison of dipole matrix element magnitudesfor{ =0,£1. ... ... ... 120

6.3.10 Suggested experimental set-up for dichroism experiments using electron vortices . 122

6.3.11 Contributions to the observable signalfor/ = +1 . . . . ... ... ... .... 124
6.3.12 Contributions to the observable signalfor/ = —1 . . . ... ... ... ..... 125
D.o.1 Groupphoto of SOILM13 . . . . . . . oo ittt e e 179
D.o.2 Group photo of ICOAM 2013 . . . v v v v vt ittt e et 179

viii



4.2.1

4.2.2

6.3.1
6.3.2
6.3.3
6.3.4
6.5.1
7.4.1

List of Tables

Mechanical and electromagnetic contributions to the linear momentum of the elec-
tronvortex . . . . . . e e e e e e e e e e e e e e e e e e e e 75

Mechanical and electromagnetic contributions to the angular momentum of the

electronvortex . . . . . . . L. e e e e e 75
Conditions on indices for Bessel functions of positiveorder . . . . . . . ... ... 104
Conditions on indices for the zero-order interaction Hamiltonian . . . . . . . . .. 106
Conditions on indices for the dipole interaction Hamiltonian . . . . . . . ... .. 106
Conditions on indices for the quadrupole interaction Hamiltonian . . . . . .. .. 106
Allowed transitions in the Ly and L3 edges for atom-vortex interactions . . . . . . . 128
Energy splitting due to spin-orbit coupling in the electronvortex . . . .. ... .. 146



Acknowledgments

IN WRITING THIS thesis I have of course relied heavily on the expertise and guidance of my
supervisors, Prof. Mohamed Babiker and Prof. Jun Yuan, for which I am extremely grateful. Their
support, advice and encouragement has shaped my understanding of the physics within this thesis
(and beyond!), and helped me develop and grow from a shy student to a researcher with
self-confidence. It is a testament to their mentorship skills that I never once questioned my passion
for physics or my desire to continue research.

I have found the Department of Physics at the University of York to be an incredibly supportive
and welcoming environment, and I have felt fully integrated since I arrived in October 2010. The
administrative and academic staff have been extremely helpful and approachable at all times, and I
am also grateful for the financial assistance provided in the form of a studentship from the
Department. My fellow students have kept me sane throughout, especially the (thankfully few)
particularly stressful times. The friendships forged during my time at York will remain with me.

Attending conferences and summer schools throughout my Ph.D. has enabled me to keep in
touch with the frontiers of research in this area, and put my own work into a wider context, as well
as being introduced to new concepts. I am grateful for the opportunities I have had to present my
own work, and the many varied discussions I have had with people from many different fields have
opened my interest in several different areas, both related and unrelated to my current research. Of
particular note were the most recent two conferences I attended, Spin Orbit Interaction for Light
and Matter Waves, Dresden and the Second Internation Conference on Optical Angular
Momentum, Glasgow. Discussions at these conferences in particular allowed me to appreciate the
ongoing study and subtleties of orbital angular momentum, greatly influencing the writing of this
thesis.

I am also grateful to Dr. Claudia Eberlein, who was incredibly helpful with advice when I was
searching for a suitable Ph.D studentship, and was kind enough to put me in touch with Mohamed.

Finally, the soundtrack to this thesis is provided by Mr. David Bowie. Listening to the entire

back catalogue in chronological order kept the inspiration flowing during the final days of writing.



Author’s Declaration

I DECLARE THAT, except where stated, the work contained within this thesis represents the original
work of myself, including collaborative efforts between the members of the Electron Vortex Beam
research group at the University of York. The extent of group collaboration is laid out below.
Within the thesis references to the work of others are clearly stated and correctly referenced.

All original research contained herein was performed by myself under the direction and
guidance of my supervisors, Prof. Mohamed Babiker and Prof. Jun Yuan. Suggestions for specific
areas of research interest were made by my supervisors, who also aided in obtaining and
interpreting the results. The experiment mentioned in Section 4.3 was performed by Dr. Gnanavel
Thirunavukkarasu and Prof. Jun Yuan.

The investigation of the intrinsic electric and magnetic fields of the Bessel-type electron vortex
given in Chapter 3 was performed in collaboration with Mr. Callum Kerr-Edwards, as part of his
M.Phys. project work. These results have been presented by Callum in his M.Phys. dissertation. In
particular, the derivations of the electric and magnetic field expressions for the infinite Bessel beam
were obtained by Callum under my guidance.

Selected material from this thesis has been published in peer-reviewed journals, detailed overleaf.

References to these works are supplied in the relevant chapters dealing with the particular topics.

xi



-

Publications

. S.Lloyd, M. Babiker, and J. Yuan, Quantized Orbital Angular Momentum Transfer and
Magnetic Dichroism in the Interaction of Electron Vortices with Matter, Physical Review Letters

108, 074802 (2012).

. L. Clark, S. Lloyd, M. Babiker and J. Yuan, Electron Beams with a Twist, Journal of Physics:

Conference Series 371, 012005 (2012).

. S. M. Lloyd, M. Babiker, and J. Yuan, Interaction of electron vortices and optical vortices with
matter and processes of orbital angular momentum exchange, Physical Review A 86, 023816

(2012).

S. M. Lloyd, M. Babiker, J. Yuan, and C. Kerr-Edwards, Electromagnetic Vortex Fields, Spin,

and Spin-Orbit Interactions in Electron Vortices, Physical Review Letters 109, 254801 (2012).

. S.Lloyd, M. Babiker and J. Yuan, Reply to ‘Comment on “Quantized Orbital Angular
Momentum Transfer and Magnetic Dichroism in the Interaction of Electron Vortices with

Matter”, Physical Review Letters 110, 189502 (2013).

J- Yuan, S. M. Lloyd, M. Babiker, Chiral specific electron vortex beam spectroscopy, Physical
Review A 88,031801(R) (2013).

S. M. Lloyd, M. Babiker, J. Yuan, Mechanical properties of electron vortices, Physical Review A
88,031802(R) (2013).

xii



Introducion

HE TERM ‘VORTEX BEAM refers to a beam of particles - whether electrons, photons,
T or otherwise - that is freely propagating, and has the property of quantised orbital angular
momentum about its axis of propagation. Optical vortices have been a subject of much interest
over the last two decades, after the publication of the seminal work of Allen et al. in 1992 [1], in
which the quantised orbital angular momentum of a Laguerre-Gaussian laser mode was examined,
and a method for producing such beams proposed (the earlier discussion of optical vortices in laser
modes by Coullet et al. [2] did not emphasise the quantisation of the orbital angular momentum
about the propagation axis). Since then, optical vortices have led to many diverse applications
[3, 4], including optical tweezers and spanners for various applications [ s8], including
micromanipulation [9]; classical and quantum communications [ 10]; phase contrast imaging in
microscopy [ 11, 12]; as well as further proposed applications in quantum information and
metrology [ 10, 13]. The discussion of photonic spin and orbital angular momentum in various
situations, and the similarities and differences between the two has led to new ways of thinking
about, and examining orbital angular momentum in optics - the spin and vortex angular
momentum can not be clearly separated outside of the paraxial approximation [14-16], which
leads to the possibility of entanglement of the two degrees of freedom [17, 18].

The idea of particle vortices was first considered in 2001 by Bialynicki-Birula et al. [19~21], with
the specific properties of electron vortices and methods of their generation considered in 2007, by
Bliokh et al. [22], by analogy with the free orbital angular momentum of the optical vortex states.
Orbital angular momentum is well known in electrons in bound states - such as the hydrogenic
electron states and similar structures; the suggestion of freely propagating electron states with
quantised orbital angular momentum was novel. The work [22] suggested several principles by
which electron vortex beams may be generated - two examples are edge dislocations in crystals

acting as diffraction gratings, and spiral-thickness wave plates. Both these methods were



demonstrated experimentally shortly afterwards, in electron microscopes [23-25].

Electron vortex beams are hoped to lead to applications in microscopial analysis, particularly for
electron energy loss spectroscopy (EELS), in which the orbital angular momentum of the beam
will provide new information about the crystallographic, electronic and magnetic composition of a
sample [24, 25]. Magnetic EELS has already been demonstrated [24], and it is hoped that the high
resolution achievable in the electron microscope will lead to the ability to map magnetic
information at atomic or near-atomic resolution, as discussed in Chapter 6. Creating particular
superpositions of vortex states could open possibilities of investigation of directional bonds
through energy loss spectroscopy of crystalline materials [24]. Additionally, the phase structure of
the vortex suggests applications in high resolution phase contrast imaging, as required for
biological specimens with low absorption contrast [26]. Applications are not restricted to
microscopy - the orbital angular momentum of the beam may also be used for manipulation of
nanoparticles, [27, 28], leading to electron spanners analogous to the widely used optical tweezers
and spanners. There may also be applications of the electron vortex that are relevant to quantum
information, in particular the electron vortex may be used to impart angular momentum into
vortices in Bose-Einstein condensates. Certain of these applications will be discussed in more
detail in Section 1.4, and throughout this thesis.

The remainder of this chapter will provide an introduction to vortices and their general features,
as well as an outline of the main experimental and theoretical developments that have occurred
since 2010 in this fast expanding field. The properties of electron vortices will be specifically
considered, along with methods of their generation. The growing literature relating to the

application of electron vortices and additional considerations will also be reviewed.

1.1 OUTLINE OF THESIS CONTENTS

This thesis is organised as follows: the remainder of this chapter constitutes an introduction to
vortices, specifically electron vortices, with a discussion of the various methods generating electron
vortices within the transmission electron microscope (TEM). Applications of electron vortices are
discussed, in particular the growing body of literature concerning the use of vortex states in EELS
for magnetic and other chiral information is reviewed. Other aspects of the evolution of the vortex
state in different conditions are also presented, such as propagation in external fields and potentials,
or vortex-vortex or vortex-plane wave collisions. Particular solutions and specific physical
properties of the Bessel-type electron vortex are introduced in Chapter 2, and these normalised
solutions are used throughout the thesis to estimate the magnitude of particular effects for a typical
electron vortex, as would be created in a TEM. Also discussed are optical vortex solutions of a
similar spatial distribution, so as to enable comparisons to be made between the behaviour of the
electron and optical vortices in certain situations. Since the electron is a charged particle, the
motion associated with the electron vortex will lead to electronic and magnetic fields, with
characteristics particular to the vortex. These fields are discussed with estimated magnitudes in
Chapter 3. The nature and origin of the linear and orbital angular momentum carried by both
optical and electron vortices is explored in Chapter 4, with contributions to the momentum of the

electron vortex due to the electromagnetic fields included.



Many of the potential applications of the electron vortex will rely on their interactions with
matter. Inelastic interactions between a vortex and a hydrogenic atom are considered for the optical
vortex and the electron vortex in Chapter 5 and Chapter 6 respectively. Comparison of the
interactions shows that while the optical vortex may not exchange orbital angular momentum with
the atomic electron, this is possible for the electron vortex, which opens up possibilities of using
electron vortices for magnetic electron energy loss spectroscopy. The effect of the spin of the
electron is considered in Chapter 7, in which the coupling of the spin and orbital angular
momentum of single vortex electrons is considered. Finally in Chapter 8, the findings of this thesis
are summarised with reference to their potential for applications, and further development of the

field of electron vortex physics

1.2 VORTICES IN ELECTRON BEAMS

Electron vortices exhibit the expected behaviour of a phase vortex as is common to the optical
vortices, but also have their own unique properties that affect their interactions with matter and
fields. The interaction of the electron vortex with atomic matter is described in detail in Chapter 6,
and the influence of certain fields is considered in Chapter 7. Presented here are some of the
general properties of the vortices, how they arise in wave interference, and an introduction to the

specific properties of electron vortices.

1.2.1 VORTICES AND VORTEX DYNAMICS

Vortices in beams and wavefronts were first described by Nye and Berry in 1974 [29] as
dislocations in the wavefronts observed in interfering sound waves, though the analysis applies to
all kinds of waves, including optical and matter waves. The dislocations are defined as points at
which the amplitude of the wave is zero, with a phase change of a multiple of 27 along a circuit
about the dislocation. For two interfering waves A and B travelling at an angle, two particular types
of dislocations were described in [29], by analogy with defects in crystallography: the edge
dislocation, in which the two travelling waves interfere so as to periodically generate an ‘extra’
phasefront, and the screw dislocation, in which lines of destructive interference arise parallel to the
common axis of the beams. The phasefronts are shown schematically in Fig. 1.2.1 Mixed
dislocations, in which both the edge and screw types are apparent, are also possible; however it is
the screw dislocations that give rise to the helical wavefronts of the vortex beam of current interest.
For a screw dislocation, the phase of the two travelling waves, A and B must be arranged such that
there is destructive interference at the crossing of A and B, and the two waves are amplitude
modulated in anti-phase in the direction perpendicular to their travel (the y direction for the waves
in Fig. 1.2.1). The resulting interference pattern has a helicoid phasefront about each single

dislocation line, given in a cylindrical geometry r(p, ¢, z) as:
P(r) = kpeikz—wt=¢), (1.1)

where k is the momentum of the wave and w is the angular frequency. The vortex beams discussed

here take the form of a single screw dislocation line.



Such a screw dislocation may exist in the phase front of beams of particles or photons. The
optical vortices studied for the past two decades [3, 10] have the same phase structure as particle
vortices, such as the electron vortices that are the main focus of this thesis; since the specific
properties of the beam will differ due to the different physical characteristics, the general dynamics
of the vortex - such as creation and annihilation, motion and collisions - may not always have the
same form. Vortices may be created and annihilated by wave interference, and a time dependence
of the interfering fields will lead to motion of the vortex, for example if the wavelength of one of the
waves A or B is much larger than other, then the vortex line will move in a continuous periodic
fashion [29]. Additionally, the hydrodynamic formulation of quantum mechanics allows for the
spontaneous creation and annihilation of pairs of vortices in the probability ‘fluid’ of the quantum
particle [ 19-21]. More complicated vortex structures, involving looped and knotted vortex lines,
may also be created, either spontaneously or through interference, and their behaviour has been

discussed in [30, 31].

1.2.2 NON-RELATIVISTIC AND RELATIVISTIC ELECTRON VORTICES

The possibility of vortices existing in freely propagating particle waves was put forward in 2000 by
Bialynicki-Birula and collaborators [ 19~21]. Electron solutions to the Schrddinger equation were
considered explicitly by Bliokh in 2007 [22], before the first observation of such electron vortices
in 2010 [23-25]. The particle vortex is an eigenfunction of the angular momentum operator, with a
helical current density trajectory, additionally the charged nature of the electron lends the electron
vortex a magnetic moment ft = g/tplZ with the gyromagnetic ratio g = 1 taking the classical value
for an orbiting mass [32].

In an external magnetic field the magnetic moment p leads to a Zeeman interaction, splitting the
energy of the vortex states having orbital angular momentum aligned or anti-aligned along the
direction momentum of the beam. In any external field, the gross motion of the vortex electron
follows the same curved trajectory as that of a plane-wave electron, and the vortex structure also
curves so that the vortex axis follows this classical trajectory. As a result, an extra phase shift is
necessary to describe the evolution of the vortex phase due to the curved trajectory distorting the
vortex phasefront [32]. This distortion is described by the Berry curvature B(p) = V x A(p)
where A(p) =i (¢(p)|V,[¢)(p)) is the associated gauge field, or Berry connection. The phase
shift 7 is termed the Berry phase, and is found by integrating the curvature over the relevant

momentum surface:

- —/SB(p) .dS, = 2rl, (1)

so that the phase 7 has the form of a quantised ‘flux’ of the ‘magnetic-monopole-like field B(p), for
a ‘monopole’ of strength [ [22].

Solutions to the Klein-Gordon and Dirac equations for electrons with orbital angular
momentum have been written down for several situations - freely propagating relativistic vortices
[32, 33], electrons in a cylindrically symmetric potential [34] and in a circularly polarised
electromagnetic field [35]. The freely propagating relativistic vortices show spin dependent
perturbations of the current density, leading to a non-zero intensity at the core for one spin

polarisation, and a slight increase in the radius of the central dark core for the other [32]. In



principle, this is observable as a deviation of the intensity profile from the expected, scalar intensity,
however the magnitude of the effect is such that in current microscopes such an effect is not
measurable [36]. Additionally, in the paraxial limit, the relativistic effects become negligible [32],
further hindering observation in the electron microscope. Unlike the solutions to the
Schrodinger-Pauli equation the relativistic vortex is no longer an eigenstate of S, and L, separately,
but instead the total angular momentum .J, = S, + L. Selecting a particular .J, eigenstate using
holographic or other methods to generate vortices (see below) is not possible, as the effect relies on
discrimination between the two spin states - on passing through a typical electron optics system the
two spin states behave the same way so that direct generation of a .J, eigenstate cannot be achieved
for an un-polarised electron beam [36]. On the other hand, this is precisely the reason why the
eigenvalues of L, remain a good quantum number for electron vortices generated in electron
microscopes - in the un-polarised beam (L) coincides with (.J. ).

The effect of a strong, circularly polarised laser field on the dynamics of a relativistic particle
described by either the Klein-Gordon or the Dirac equation has also been investigated [35], and it
is found that although the average value of the orbital angular momentum is conserved, the effect of
the laser causes spin precession and spin-flips, so that the beam is no longer an eigenstate state of
(.J..). At high values of orbital angular momentum, the effect of spin precession on the total orbital
angular momentum is less significant, and (.J,) & [. The effect of strong laser fields on vortex
electrons with large [ has applications in both high-field non-linear quantum electrodynamics, such
as in radiative processes due to the high magnetic moment, and also high energy particle physics, as
the field provides a method by which vortex electrons or positrons could be accelerated to

ultrarelativistic velocities to investigate the effects of orbital angular momentum in collisions [35].



(b) Screw dislocations

Figure 1.2.1: Schematic representation of edge and screw dislocations in wavefronts
resulting from interference of two waves A (red) and B (blue) propagating with a
relative angle 2¢v in the z-z plane. Points of peak intensity are indicated by solid
lines, minima by dashed lines. In (a) A and B are amplitude modulated (indicated by
thickness of the lines) such that the amplitude of A increases along the propagation
direction, while B decreases, such that the waves have the same amplitude along the
x-axis. Above (below) the z-axis the amplitude of A (B) is greater than that of B
(A), so that, due to the destructive interference of A and B along the axis, new wave-
fronts appear to be generated at the x-axis. These edge dislocations are indicated

by ticks along the z-axis. In (b) the same two waves A and B are now amplitude
modulated in the y direction, with A (B) increasing (decreasing) in the positive y
direction so that their amplitudes match in the y = 0 plane, as shown. The verti-
cal black lines indicate the screw dislocations; in the y=o plane the amplitude along
these lines is zero, while the amplitude modulation causes the phasefront of the re-
sulting interference pattern to wrap around these lines, in a corkscrew fashion.



1.3 GENERATION OF ELECTRON VORTEX BEAMS

In the past few years several methods have been applied in the generation of electron vortices in a
TEM, including spiral phase plates, holographic diffraction masks and mode converters. The
principles of vortex generation using these methods will be outlined below. In order to illustrate the
details of vortex generation and propagation though a physical electron optics system, some basic
considerations of the optical system in the electron microscope are first discussed, with reference to

points of specific importance for generation of coherent vortex states.

1.3.1  ELEcCTRON OPTICS

The electron microscope system consists of three principal parts - the illumination system, the
specimen stage and the imaging system. An overview of an electron beam propagating through
these three stages is given in Fig. 1.3.1. Of principal importance for electron vortex microscopy is
the illumination system, consisting of the electron source and a focusing condenser system, in
which coherent, focused electron probes are generated. Some key points of the condenser lens and
apertures are discussed in view of the concerns for the efficient production of tightly focused vortex

probes of high quality.

THE ELECTRON SOURCE

The electron source in an electron gun is a fine tip or filament cathode from which electrons are
emitted through thermionic or field emission. The electrons generated at the gun are accelerated by
a high voltage, usually between 50-300 keV, through a narrow aperture, in order to limit the angular
spread of the beam. The beam current through the aperture is typically only 1% of the emission
current [37]. The particular source determines several key beam properties such as current,
brightness and energy spread. While a full discussion of the various beam sources is beyond the
scope of this thesis, the effects of energy spread and finite source size will be discussed, as they are
very important in the generation of high quality vortex probes, affecting the spatial and temporal
coherence of the beam.

In the emission process, electrons with a range of kinetic energies are produced, due to thermal
fluctuations of the source. For thermionic emission from heated cathodes this energy range is
typically 1-3 eV, whereas for Schottky or field emission processes the range is much smaller,
typically 0.2-0.7 eV [38]. The energy ranges stated refer to the full width at half maximum
(FWHM) of the energy distribution of the emitted electrons, typically described by a
Maxwell-Boltzman distribution [38]. The energy range leads to temporal incoherence within the
beam, as the electrons do not all have the same frequency. Though values of the energy spreading is
small compared to the acceleration voltage of the beam, this range causes deviations from the mean
energy so that the electrons in the beam have varying speeds, and leads to a spread of the electron
wavepacket along the optic axis [38]. This affects their transmission though the electron optics
systems, which depends on the electron velocity, as well as leading to a smearing of interference
patterns generated in diffraction, as various wavelengths are interfering. Another contribution to

the partial-temporal coherence of the beam is the Boersch effect [38], in which electron-electron
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Figure 1.3.1: Schematic overview of the main elements of the transmission electron
microscope operating in bright-field mode. Electrons are produced by an electron
gun and accelerated into the microscope by voltages of 50-300 keV. The virtual cross
over is the position of the virtual electron source. The beam of energetic electrons

is then focused into a small probe, and projected onto a sample in the specimen
stage. The electrons scattered through the sample at small angles are refocused by
the objective lens, and magnified into an image.



repulsion in regions of high current density, such as close to the electron gun, leads to energy shifts
within the beam. Any variations in the accelerating voltage will also lead to deviations from the
mean electron energy.

An ideal electron source would be a point emitter, emitting a perfectly spatially coherent wave
with a spherical wavefront profile. In practical electron microscopes the electron source has a finite
size, leading to only partial spatial coherence of the beam, since the wavefronts emitted from
different regions of the source are slightly out of phase. This is particularly important in diffractive
effects, as any detail on the order of the source size cannot be resolved as the beam is not coherent
over such length scales. The spatial distribution of the electron emission my be modelled as a
Gaussian distribution, with the source width given by the FWHM of the distribution. [38-40]

Due to fringe field effects at the anode used for accelerating the electrons, the beam is bent
through the aperture at the anode, and, for ray tracing purposes, may be considered to originate at a
virtual source some 20 cm or so from the electron gun [37]. The size of this virtual source is
typically 40 um [37], and it is the imaging of this virtual source that affects the spatial coherence -
the size of the virtual source relative to the size of the beam projected onto the sample - the probe
size - determines the level of spatial coherence within the probe. If the probe is much larger than
the virtual source then the beam is coherent; when the probe size is of the order of the size of the

virtual source then the beam is incoherent [38].

THE CONDENSER LENS SYSTEM

The condenser lens deals with focusing the electron source onto the sample in the specimen plane,
with a suitable probe current and area for the given application [38]. At least two lenses are
employed for these purposes, allowing for very fine control of the size of the beam, and the
magnification. The first lens is used to demagnify the virtual electron source, increasing the spatial
coherence of the beam. This requires a strong magnetic field, and the focal length of the lens is as
small as 2mm, resulting in a projected virtual source size of 0.1-1yim [37]. This virtual source is
then the object for the second condenser lens, which projects the source onto the sample. A
two-lens condenser system is shown in Fig. 1.3.2.

The second condenser lens and the condenser aperture are important for forming a probe of the
required diameter and current. The focus of the lens and the size of the aperture determine the
angle at which the electrons intersect the sample, with the correct focus giving the highest current
density and smallest probe diameter [38]. This is required for high magnification imaging, and
reduction of radiation damage to other areas of the sample. The focused situation is shown in
Fig. 1.3.3b. The back focal plane of the lens coincides with the specimen plane, with the beam
converging onto the sample at an angle of 2c.. The convergence semi-angle ., often simply called
the convergence angle, is the maximum angle of deviation of the beam from the optic axis. This is
always measured at the sample plane, even if the focal plane of the image is elsewhere, as in the
under- and over- focused situations depicted in Fig. 1.3.3a and Fig. 1.3.3¢c. From this it can be seen
that a larger convergence angle results in a smaller beam size, as the largest o, occurs for the fully

focused condition. It can also be seen that the finite size of the source leads to a broadening of the
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Figure 1.3.2: Schematic of a two-lens condenser system. The virtual electron source
has a diameter d;. The C1 lens demagnifies this virtual source to produce a smaller
probe, focused by the C2 lens. The aperture in the C2 lens adjusts the convergence
angle of the beam, and the size of the resulting probe in the specimen plane.

probe size even in the fully focused condition, leading to a limit on the probe diameter.

THE OBJECTIVE LENS SYSTEM

The imaging system focuses the beam transmitted through the sample onto the imaging and
viewing system of the microscope. The imaging system consists of a series of lenses, apertures and
diaphragms that allows selected parts of the beam to be collected. The first lens, the objective lens,
is the principal lens from which the image is formed, and must be very precise - subsequent lenses
magnify the image formed by the objective lens onto the viewing system. The objective aperture is
relatively large compared to the apertures of the successive lenses in the imaging system, since the
high resolution requires a smaller aperture. This means that any aberrations in the objective lens
must be corrected for, or they will significantly affect the image quality, whereas the smaller angles
in the subsequent lenses allow for the introduction of fewer aberration effects.

The objective aperture is inserted into the back focal plane of the objective lens. The aperture
blocks all electrons travelling along trajectories making an angle with the optic axis that is larger
than the objective aperture angle v,. This is illustrated in Fig. 1.3.4. Adjusting the aperture angle
determines the allowed scattering angles of the observed electrons, such that a low av, admits only
those electrons that have been scattered along or close to the optic axis. A forked holographic mask
(see below) may be placed inserted into the objective lens as the objective aperture, and the beam

transmitted through the sample is then separated into vortex components [24].

10



[
i,

(a) Under-focus (b) Focus (c) Over-focus

Figure 1.3.3: Focusing in the second condenser lens. The situations of under-focus,
focus and over-focus are shown in (a), (b) and (c) respectively. The convergence
angle o is measured as the maximum angle of deviation from the optic axis of those
electrons that converge on the axis at the specimen plane. The focused situation
leads to the largest convergence angle and the smallest probes size dy, in the speci-
men plane. In the under- and over- focused situations the focal point does not coin-
cide with the specimen plane, leading to smaller values of ., and a larger probe size
d,. Effects of finite source size broadening are indicated (blue dashed lines), for the
demagnified source width ds. Equivalently, reducing the aperture size gives a similar
effect in decreasing o, and also reduces the current reaching the sample.

Specimen
plane

Objective
aperture

Figure 1.3.4: The objective aperture is placed in the back focal plane of the objective
lens. The size of the aperture determines the maximum scattering angle v, admitted
to the imaging optics.
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LENSES AND ABERRATIONS

The lenses used to focus the electron beam use electric and magnetic fields to deflect and converge
the beam, based on the Lorentz force. The main focusing lenses applied for the condenser and
objective lenses are cylindrically symmetric magnetic fields, generated by current carrying wire
coils with specially designed polepieces so that the field is inhomogeneous within a short length.
Strong lenses, with short focal lengths, require high magnetic fields, up to 2 T [37]. The varying
radial component of the inhomogeneous field causes the electrons to spiral in towards the z axis,
focusing the beam along this axis. Changing the current in the coils changes the field strength and
adjusts the focal length of the lens. Various aberrations cause deviation from the perfect lens
behavior, which affect the probe size and the imaging resolution when they occur in the condenser
and objective lenses respectively. A few examples of the main aberrations affecting production of
vortex beams will be discussed below. It is also worth noting here that, similar to a Gaussian beam,
after passing through a focal point the electron beam will acquire a Gouy phase shift of 27 [37, 38].

Since the focusing action relies on the Lorentz force, the velocity of the electrons is important, as
electrons at different velocities will ‘see’ a lens with a different focal length. The partial temporal
coherence of the beam will thus cause the beam to not be fully in focus, leading to a ‘disk of
minimum confusion), as opposed to a point of focus. This is known as chromatic aberration. The
radius of the disk of confusion may be estimated for a beam with a certain energy spread AE
passing through a lens with chromatic aberration coefficient C. [38]

ré = 1aC’C ﬁ L Eﬂo

c 1R 1y 2

(13)

Relativistic factor

where « is the maximum angle of deviation from the optic axis on entrance to the lens, I is the
average beam energy, and L is the rest energy of the electron. The relativistic factor indicated is
approximately 1 for electrons of energy less than 200 keV. For weak lenses, Cc = f, the focal length
of the lens, with a minimum aberration coefficient of C'c ~ 0.6 f for high field lenses [37, 38].

The temporal coherence of the beam is affected by the source, as discussed above, but chromatic
aberrations are also important in the objective lens, due to scattering processes in the sample plane
leading to a range of energies that must be focused onto the image plane.

Spherical aberrations describe the deviation of a lens from a perfect lens which focuses all
parallel rays passing through the lens to a single point. Spherical wavefronts passing through a
spherical lens remain spherical, though they are inverted; for example diverging spherical
wavefronts are transformed to converging spherical wavefronts on exiting the lens. In a lens with
spherical aberrations, rays passing through the outer edges of the lens tend to be over-focused, with
the effect increasing farther away from the optic axis, so that the wavefronts are distorted from
spherical. Like the chromatic aberrations, this causes the focal point to be broadened into a disk, as
the rays originating from the edge of the lens are over-focused. The effect of spherical aberrations is
described by an additional phase factor X5 [38, 40] with

Osk}ZT4
Xs = —f4 . (1.4)
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On focusing a beam with o the maximum angle of deviation from the optic axis on entrance to
the lens, the radius of the disk of confusion at the focal point due to the spherical aberrations can be
estimated as [38]

rS = %C’sag, (1.5)

with Cf the coeflicient of spherical aberrations, typically of the order of 0.5 — 2 mm [37, 38]. In
modern electron microscopes correction of spherical aberration is possible via the use of multipole
lenses [37], which negate this broadening effect. Double aberration corrected microscopes have
spherical aberration correcting components in both the probe forming condenser lenses as well as
the image forming lens system.

The final lens aberration to be discussed here is axial astigmatism, which arises due to a breaking
of the cylindrical symmetry of the lens field, due to imprecisions in machining of polepieces or
other effects. This leads to there being different focal points along the optic axis for rays in the z-z
and y-z planes. Between these two points will be a disc of minimum confusion, so that the width of
the beam in the two planes is the same, and the beam is circular, rather than the elliptical profile

expected elsewhere. The radius of this disk is given by
N
re = EA fa (1.6)

where A f is the axial distance between the two focal points, of the order of 0.1-1 yum [38]. Axial
astigmatism may be corrected for with the use of weak quadrupole lenses to deflect the beam back
to a circular cross section. Using such a stigmator the deflection along the two axes may be adjusted

independently, and in certain cases it may prove useful to have an astigmatic lens.

COHERENT ILLUMINATION

As mentioned above, the energy spread at the source leads to a beam with only partial temporal
coherence. The spatial coherence of the beams is also an important factor in electron imaging,
particularly where diffraction effects are key. The electron source is small but finite, which leads to
only partial spatial coherence within the beam, as the electron source is not truly point-like. The
relative size of the condenser and objective apertures is important for determining the spatial
coherency of the beam; for coherent conditions the convergence angle must be smaller than the
aperture angle o, << «, [38]. Alternatively, the diameter of the virtual source in the condenser
aperture must be much smaller than the diameter of the beam probe, in order that the effects of
partial coherence are minimised [40]. For the small demagnified virtual source diameter imaged
onto the sample plane by the second condenser lens, the small angle approximation is valid, and the
half-angle of incoherence 0, is approximately the radius of the source. Magnification and
demagnification of the source in the first condenser lens thus affects the spatial coherence of the
beam.

The coherence of the beam is very important for the generation of probes with high quality
vortex structure, particularly for the diffractive methods described below. If the beam is very
incoherent, then the interference as the beam diffracts through the holographic mask will not lead

to pure states, but mixed vortex states with ill-defined angular momenta. In order to quantify the
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Figure 1.3.5: The spiral phase plate has a smoothly varying thickness in a helical
shape, such that there is as step between the thinnest and thickest parts of the plate.
The height of the step, and the material the plate is constructed from determine the
change in orbital angular momentum for a given wavelength. Image adapted from

[41].

partial-coherence of the beam, the source may be modelled as a Gaussian distribution with full

width at half maximum of order 0.1 A [38, 40].

1.3.2 SPIRAL PHASE PLATES

Spiral phase plates are constructed from refractive material having a thickness that changes
continuously, giving a helical shape to the surface of the plate. Generation of optical vortices using
spiral phase plates was first demonstrated in the mid-1990s [41, 42]. Spiral phase plates may be
produced for millimeter wavelengths down to optical wavelengths [ 10, 42, 43], however due to
precise refractive index and wavelength matching requirements the application of spiral phaseplates
is not as versatile as the holographic masks discussed below.

The main fabrication considerations for the spiral phase plate production of the smoothly
varying optical depth - usually by varying the thickness of the waveplate - since this is directly
related to the angular momentum to be conferred to the beam. For a phase plate with spiral height

h, as in Fig. 1.3.5, the change in orbital angular momentum between the incident and transmitted
beam Al is

Al = (ng —nl)g, (1.7)
where 11 and ng are the refractive indices of the external and phase plate materials respectively, and
A the vacuum wavelength of the beam. As can be seen, it is therefore important to balance the
phase plate material and the step height for the intended wavelength, so as to produce the desired
orbital angular momentum change. This is the limiting factor for the fabrication of spiral phase
plates suitable for electron beams; since the wavelength is so small - order of picometres - the step
height must also be of this order.

The stepped phase plate used by Uchida and Tonomura was made of spontaneously stacked
flakes of graphite, leading to a phase plate that changed thickness in steps - rather than continuously
[23]. The edges of the steps cause extra phase features, such as phase jumps, to appear at different
points in the beam cross-section - in addition to the sharp 27 phase change of the desired vortex
structure. This was observed in Uchida and Tonomura’s experimental results via interference

patterns and in-plane phase profile. The transmitted beam thus did not demonstrate the required

characteristics of a pure vortex state with integer orbital angular momentum, but was the first
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experimental demonstration of a freely propagating (mixed) vortex state with a phase singularity
and orbital angular momentum.

Due to the method of obtaining the phase plate, the defects in the phase structure of the beam
cannot be well controlled. Thus the spiral phase plate for electrons does not lend itself well to
reproducibility of results, as the particular arrangement of the graphene flakes cannot be properly
controlled. Additionally, being made of carbon, under the influence of the high energy electron
beam the flakes will be subject to damage and deformation, and the phase plate will lose its key
structure. So, even if a suitable spot of graphene may be found, it will not remain useful for

extended periods of beam illumination.

1.3.3 HOLOGRAPHIC MASKS

Holographic reconstruction is a well known technique in both optics and electron optics
(37, 38, 44]. By interfering a wave diffracted from an object, and a non-diffracted component of
that same wave, increased resolution is achieved by reconstructing the image from the interference
pattern of the two waves [38]. The same principles of holography may be used to reconstruct an
image or wavefunction from an input reference wave by passing the input wave though a hologram.
The hologram consists of the interference pattern between the reference wave and the desired
output, whether that output contains an image of an object, or a particular wave mode of interest.
The holographic techniques employed in vortex optics and electron vortex optics rely on generating
a vortex mode from an input plane wave, by passing the plane wave through a holographic mask
consisting of the interference pattern between the vortex mode and the plane wave.

Wave interference patterns are often complicated, and very difficult to reproduce exactly, so that
is it usually more practical to construct binarised holograms by selective clipping, resulting in a
pattern of steps or rectangular fringes of varying widths, such that the phase and amplitude
information may be encoded into the hologram in a variety of ways [45 ]. For the construction of
vortex modes, we are interested in the phase variation of the wave, rather than any particular spatial
variation of the mode, so the holograms to be generated concentrate on modifying the phase of the
incident beam, though the aperture and the phase singularity ensure that the resulting beam has the
desired Bessel-like or Laguerre-Gaussian-like amplitude profile.

The amplitude of a Bessel-type vortex mode travelling in the z direction with wavenumber

k(ignoring any normalisation factors) is given by
i) = Jilkip)ee™, (1.8)

where J;() is a Bessel function of the first kind. The hologram pattern is generated through
interference of this mode with a reference plane wave travelling at an angle, where £, is the

component of the plane wave momentum orthogonal to the z direction:

Py(r) = et (1.9)

Any component of the plane wave momentum in the z direction does not contribute to the

15



interference pattern. The interference is constructed by superposition:

I(r) = [ty + | (1.10)

This interference pattern is particular to the beam of interest. For the phase vortex, the
characteristic pattern is a edge dislocation, with [ edges - also known as a fork dislocation. The

interference pattern may then be binarised by clipping the pattern, for example

1 [ 2 1, r S Rmaxorr > Rmax
Iholo(r) — (1.11)
0 I< ]-,T < Rmax

for a maximum aperture radius [?.x. The interference pattern and corresponding binary
holographic mask for an [ = 1 Bessel-type vortex are shown in Fig. 1.3.6. The binary mask for an
[ = 3 Bessel beam is given in Fig. 1.3.7, showing the corresponding three edge dislocations. This
mask pattern is then embedded into something opaque to the radiation of interest - a printed film
[46, 47] or a spatial light modulator [ 10] for optical beams; or focused ion beam (FIB) etching of
metal or silicon nitride films for electrons [24, 25] - and placed into the path of a electron beam.

Diftraction of the beam though the mask produces the desired vortex beams.

I L

() (b)

Figure 1.3.6: Interference patterns foran! = 1 Bessel beam interfering with a
plane wave. High intensity is indicated by black, zero by white. The characteristic
interference fork can be seen in the centre of each image. (2) - the continuous in-

terference pattern, within an aperture of radius Rpmax. (b) - the binarised, apertured

interference pattern. For both masks, the parameters used are R,y = %ﬁ, and

ky =15k, withk| = 2.3 x 101 m~!. In each figure, high normalised intensity is
indicated by black, zero by white.

The far-field diffraction pattern resulting from transmission of a plane wave through the
holographic mask is given by the Fourier transform of the mask. This produces a non-diffracted,
zero-order beam, along with the a series of vortex beams and their complex conjugates. The mask

itself is not chiral, and so, unlike a phase plate, cannot impart orbital angular momentum to the

16



i

Figure 1.3.7: The binarised, apertured interference pattern for an [ = 3 Bessel vor-

tex interfering with a plane wave. High intensity is indicated by black, zero by white.

The central fork dislocation has three prongs. the parameters used are R, = %,

and k, = 15k, withk; = 2.3 x 1019 m~1.

transmitted beam by directly modulating the phase of the wavefront. Instead, the mask
decomposes the input plane wave into a basis of left-handed and right handed vortices, so that the
total orbital angular momentum of the incident plane wave is conserved.

The Fourier transforms of the [ = 1 continuous and binary masks of Fig. 1.3.6 and the binary
[ = 3 mask of Fig. 1.3.7 are given in Fig. 1.3.8, Fig. 1.3.9 and Fig. 1.3.10 respectively, along with the
corresponding phase. The direct Fourier transform is given in Fig. 1.3.8a and Fig. 1.3.93; plots of
the logarithmic intensity display the inner features of the diffracted beams more clearly in
Fig. 1.3.8b and Fig. 1.3.9b. It can be seen that the process of discretising the mask leads to a series of
diffracted beams, with various orders of orbital angular momentum. The resulting phase indicates
that the nth diffracted beam has orbital angular momentum nl#, as is clear on looking at the phase
of the second order diffracted beams of Fig. 1.3.10c, which have a phase change of 127.

The various diffraction orders propagate from the mask at some angle ¢, to the centre of the
mask, so that in the far-field the beams are well separated. The magnitude of £, relative to k,
determines the angle that the diffracted beams exit the hologram, such that a large &, increases the
separation between the different diffracted orders [25, 46]. The angle of the first order diffracted

beam is Yk
x
= 1.12
b= 5= (1.12)
for grating separation d. The nth order diffracted beam emerges at an angle n¢ while the zero-order
beam propagates along the original axis of the incident wave. A particular diffraction order of
interest may be realigned to this zero axis by illuminating the hologram with a beam with transverse

momentum nk, [40]. The transverse momentum of the vortex beam itself &, is determined by the
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Figure 1.3.8: The far field diffraction pattern and phase distribution of the continu-
ous ! = 1 holographic mask of Fig. 1.3.6a. (a) shows the diffracted beams, only the
zero and first order beams are apparent. The additional rings arise from diffractive
effects, since the masks are designed using only the inner ring of the Bessel function.
The log intensity plot of (b), show the fine structure of the centre of the diffracted
beams, though at this scale the central minima of the first order beams are not ap-
parent. The phase of the beams is shown in (c), the opposite direction of change of
phase of the two sidebands can be seen. In (a) and (b) high intensity is indicated by
white, zero by black; in (c) the rainbow scale indicates phase change from 0 (red) to
27 (purple).
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(b)

(c)

Figure 1.3.9: The far field diffraction pattern and phase distribution of the binary

I = 1 holographic mask of Fig. 1.3.6b. (a) shows the diffracted beams, with several
diffraction orders present. The log intensity plot of (b), shows the fine structure of
the centre of the diffracted beams, the central minima of the higher order diffracted
beams are apparent. The phase of the beams is shown in (c), the opposite direc-
tion of change of phase of the two sets of sidebands can be seen, with the nth order
beams displaying a phase change of 27rn. In (a) and (b) high intensity is indicated
by white, zero by black; in (c) the rainbow scale indicates phase change from 0 (red)
to 27 (purple).
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(b)

(c)

Figure 1.3.10: The far field diffraction pattern and phase distribution of the binary

I = 3holographic mask of Fig. 1.3.7. (a) shows the diffracted beams, with several
diffraction orders present. The log intensity plot of (b), shows the fine structure of
the centre of the diffracted beams, the central minima of the higher order diffracted
beams are apparent. The phase of the beams is shown in (c), the opposite direc-
tion of change of phase of the two sets of sidebands can be seen, with the nth order
beams displaying a phase change of 67rn. In (a) and (b) high intensity is indicated
by white, zero by black; in (c) the rainbow scale indicates phase change from 0 (red)
to 27 (purple).
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size of the mask aperture; for the Bessel beam we have

ki = grlnix (1.13)

with a1 & 3.81 the first zero of the Bessel function J;(). A similar relationship applies for the
Laguerre-Gaussian modes, with oy ; replaced by the relevant radius of the p = 0
Laguerre-Gaussian mode at z = 0.

The procedure described above may be used to produce holographic masks for
Laguerre-Gaussian vortex modes; however the difference between the binary masks and Fourier
transforms produced is very small [48]. The interference patterns have a slightly different spatial
form, however the differences are mostly eradicated by the binarisation process. Whether the
resulting beams are Bessel-like or Laguerre-Gaussian-like then depends on the diffraction
characteristics as the beam propagates.

As can be seen, the production of phase holograms is much more versatile and controllable than
the use of the spiral phase plates as described above. Even for the discrete binary masks, the beams
produced have integer orders of angular momentum in all cases, as they are the vortex ‘harmonics’
of the incident beam - by definition they are phase vortices of 27/. The masks may be constructed
out of materials that are resistant to beam damage, and will have a longer useful lifetime than a
spiral phase plate of graphene - in addition the results are directly reproducible, and in principle any
order of orbital angular momentum may be specified. On the other hand, it should be noted that
the mask itself will block much of the incoming beam, so that only 50% of the incident intensity is
transmitted. Approximately 25% of the incident intensity is channelled into the zero order beam,
with the higher order beam decreasing in intensity. The first order diffracted beams have

approximately % of the incident intensity.

1.3.4 FORKED MASKS

Forked apertures as described above have been used to generate electron vortices in transmission
electron microscopes (TEM) [24, 25, 39, 40]. The first proof of principle demonstration involved a
5 pm diameter mask cut from platinum foil, with a single fork dislocation generating left and right
handed [ = 1 beams. The second instance of this holographic vortex generation also involved a
mask with a 5 ym aperture, but with a much reduced grating period d [25], corresponding to an
order of magnitude increase in k,, of the plane wave used in calculating the interference pattern.
The silicon nitride films used by McMorran et al. allowed for FIB milling of very fine features, so
that the beam produced had a large angular separation, and also enabled the fine features of higher
order masks to be reproduced - a forked mask of topological charge [ = 25 was also demonstrated.
For structural stability of the mask, the edge dislocations were not cut directly into the centre of the
mask; instead the very centre of the mask was left solid, and the dislocations occurred at a small
radius. This did not seem to significantly impair the function of the mask, and vortices with clear
central dark cores were observed, with the fourth order diffracted beam carrying 100/ orbital
angular momentum [25], demonstrating the versatility of the uses of holographic masks over spiral
phase plates. The phase structure of the resulting beams was confirmed by observation of forked

Fresnel interference fringes of opposite orientation for the two different vortex helicities [24], and
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by the persistence of the central singular core of the vortex on propagation and diffraction [25]. A
beam that simply has an annular profile will spread radially both inwards and outwards, obliterating
the dark core at a certain distance from the focal point. A beam with a phase singularity must
preserve this singularity through the length of the beam, as the orbital angular momentum must be
conserved.

The first vortex beams produced using the forked masks were of the order of micrometre
diameters [24, 25 ], however the forked mask holographic technique has been used to demonstrate
that very small, atomic scale vortices may be generated in an electron microscope giving atomic
resolution in scanning transmission electron microscopy (STEM) [39, 40]. As discussed above,
the electron optics system is not perfectly coherent, so that the theoretical ideal of a point-like
probe is not experimentally achievable, not to mention the necessity of a finite beam radius for the
vortex beam. However, having a small spot size available for vortex beams is expected to be useful
in STEM applications such as spatially resolved EELS, so that magnetic information can be
accessed at the atomic scale. In a conventional TEM set-up, it is possible to make electron probes of
diameter 0.8 A [39, 49], using a highly coherent source with high convergence angle and corrective
lenses adjusting for spherical aberrations. Such an arrangement was used to generate [ = 1 vortices
with a FWHM of 1.2 A [39]. This diameter is larger than that for a similarly focused non-vortex
probe, due to the presence of the vortex core singularity; however, analysis of the intensity profile of
these Angstrom beams shows that the intensity of the vortex core is significantly increased from
zero intensity, and in the smallest beams the central minimum of the vortex is completely washed
out [50]. This is due to finite sources size effects and a level of incoherence in the electron source
[39, 40]. The effect of this is to degrade the integrity of the vortex produced - due to the relatively
high level of incoherence at these small scales, the probe formed is a mixed state, rather than a pure,
coherent vortex state. Defocusing the probe leads to an apparent reduction in the central intensity -
however this is not an improvement of the vortex state, since the incoherence remains [40]. The
Angstrom scale vortices attainable in current generation TEM are as such not suitable for
experiments that require high quality vortex states. On the other hand, the nanometre scale
vortices achieved using a lower convergence angle show a diffraction-limited situation where the

finite source size does not impair the vortex characteristics [39].

1.3.5 SPIRAL MASKS

The holographic mask production techniques outlined above may also be applied with different
reference waves. A common choice in optics is a wave with a spherical wavefront, sharing an axis
with the desired mode. This also produces a characteristic interference pattern, a spiral with [ arms,
as shown for the [ = 1 and [ = 3 vortices in Fig. 1.3.11, alongside the corresponding binarised
mask. The action of these holographic masks on an incident plane wave is very similar to that
described above for the forked mask, however instead of the beams being separated by an angle,
they are separated along the propagation direction. The reference spherical wave of Fig. 1.3.11a and
Fig. 1.3.11d is a Fresnel zone plate function, with focal length f. The vortex and zero-order modes
transmitted through the spiral hologram produced using this reference spherical wave will focus at
different points separated by a distance f [47, 51] - when the beam as a whole is properly focused

the zero-order beam will be in the focal plane, while the first order diffracted beams will also be
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focused at a distance f in front and behind the focal plane. For electron microscopy, this has the
advantage that over- or under-focusing the beam will enable the different vortices to be brought
into focus onto the focal plane, where they may then be utilised with minimum interference from
the other orders in the beam [51].

The use of a spiral holographic mask has been demonstrated for electron vortices [51]. In order
to produce a stable structure, the binary mask created using FIB milling of platinum film was
designed to have eight reinforcing struts subtending the diameter of the mask. It was found for
simulations and experimental results that this did not significantly impair the integrity of the
vortices produced [ 51]. However, one issue with the application of a spiral mask is that the coaxial
presence of the different diffraction orders leads to a relatively large background signal, causing the
intensity of the centre of the vortex to be increased from zero [ 51]. In order to reduce this effect as
much as possible, the focal length of the reference Fresnel zone plate function must be very long.
Achieving this requires very fine features in the holographic mask - similar to a large k,, giving a
high diffraction angle ¢5, and decreasing the grating separation (Eq. (1.13)), a long focal length f
requires the arms of the spiral to decrease in separation rapidly toward the edges of the aperture.
Additionally a highly coherent beam with a large convergence angle is required, stretching the

limits of current microscope and FIB technology.

Figure 1.3.11: Interference patterns and masks of vortices interfering with spherical
waves. (a) - in-plane intensity pattern for a spherical wave, with spherical wavefront
propagating outwards; binarisation of this intensity pattern, forming a Fresnel zone
plate, is shown in (d). (b) and (e) show the continuous and binarised interference
patterns respectively for an [ = 1 vortex interfering with the spherical wave. (c) and
(f) show the same for the [ = 3 vortex.

1.3.6 OTHER METHODS OF GENERATING ELECTRON VORTICES

Though the use of the holographic masks is currently the most widespread method for generating

electron vortices, there are many other possible methods for producing electron beams with orbital
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Figure 1.3.12: The experimental setup of a mode converter for an electron vortex. A
Hilbert phase plate is place in the front focal plane (FFP) of the astigmatic lens, so
that a rotated Hermite-Gaussian mode is projected through the lens. The astigmatic
lens focuses the 2 component of the beam zp, in front of the back focal plan (BFP),
and the y component 2 behind. The Laguerre-Gaussian beam profile is formed in
the back focal plane, with the beam widths in the = and y directions the same at this
point. Image from [52].

angular momentum. The holographic masks are versatile and relatively easy to produce; however,
they also have their drawbacks, principally that the mask itself diminishes the intensity of the
transmitted beam by 50%, resulting in the desired vortices having an intensity of ~12% of the
original plane wave - ~25% of the remaining intensity is passed to the zero order, non-vortex mode,
with the rest distributed between the various higher order modes. Additionally, since several
modes are produced, it is difficult to isolate a particular mode of interest for further application.
Other methods of generating vortices may overcome these limitations, leading to high intensity,

single mode electron vortex sources suitable for various applications.

ELECTRON VORTEX MODE CONVERTER

A mode converter for electron beams has been described [ 52 ], acting in an analogous way to laser
mode converters in optics. The Laguerre-Gaussian optical vortex mode may be described as a
linear superposition of two Hermite-Gaussian modes with a phase difference of 7. The
Hermite-Gaussian modes do not themselves carry orbital angular momentum, however by
exploiting the difference in Gouy phase for astigmatic Hermite-Gaussian modes, such a
superposition can be produced, resulting in a Laguerre-Gaussian mode with well defined orbital
angular momentum and phase singularity [53]. The experimental procedure for electron vortices
described by Schattschneider et al. [ 52] relies on a lens with variable astigmatism, so that the focal
points of the x and y transverse parameters may be set independently. Setting one focus to a
Rayleigh range 2, in front of the back focal plane, and one 2z behind leads to a circular beam
profile in the back focal plane, where the vortex mode is to be observed, with a relative Gouy phase
between the transverse beam profiles. This arrangement is shown in Fig. 1.3.12 This may then be
used to generate a Laguerre-Gaussian mode from a Hermite-Gaussian mode. The transverse axes of
the Hermite-Gaussian mode must be rotated by an angle of 45° to the transverse axes of the beam,
so the astigmatism acts on the two x and y component modes.

An approximation to a Hermite-Gaussian mode is generated using a Hilbert phase plate, which

imparts a phase-shift of 7 between the two halves of the beam, similar to the phase difference of 7
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between the two lobes of the Hermite-Gaussian mode. On passing through the astigmatic lens of
the mode converter, the difference in Gouy phase between the two sides of the beam alters the
phase shift to 7, so that at the back focal plane, a Laguerre-Gaussian profile is obtained [52]. A
proof-of-principle experimental result has been demonstrated, however though a phase singularity
is apparent at the centre of the back focal plane, the resulting profile does not have rotational
symmetry, and so is not a pure Laguerre-Gaussian mode. The discrepancy from the simulated
results arises due to defocus effects and, importantly, strong beam absorption in transmission
through the Hilbert plate [52]. Nevertheless, the electron vortex mode converter is an attractive
prospect if these effects can be overcome, as it enables the generation of electron vortices of high
intensity, of up to 9o% of the incident plane wave intensity, as opposed to ~12% using the
holographic masks. Additionally, the mode converter may be applied in reverse, leading to a
method of discriminating between the handedness of the incident vortex mode, by observing the
relative rotation of the resulting Hermite-Gaussian mode. This will be useful in, for example,
examining transfer of orbital angular momentum in experiments involving interactions with

various forms of matter.

SPIN TO ORBITAL ANGULAR MOMENTUM CONVERSION

Another possibility is the generation of electron vortices from spin-polarised electron beams using
so-called ‘g-filters’ g-filters, or g-plates have been applied in optics since 2006 [54], and have
applications in quantum information [ 55 ], The effect relies on a spatially varying optic axis,
achievable by patterning of liquid crystal arrays. Passing circularly polarised light beam through the
g-plate will result in a switch of the spin orientation of the beam, and a gain of orbital angular
momentum =£¢. For electron beams, the g-filters work via a similar principle, requiring spatially
varying electric and magnetic fields transverse to the beam propagation direction, in various
multipolar configurations [56]. These fields must exist over a particular distance in the optics
system, so that they act on the beam as it propagates. The direction and magnitude of the electric
and magnetic fields vary according to the same pattern, with a relative angle of 7, and field
magnitudes matched so that the average Lorentz force is negated. The particular field patterns for
some different values of g are shown in Fig. 1.3.13. If the length of the filter is correctly matched to
the beam momentum then a spin polarised beam passing though the filter will attain orbital angular
momentum of ' = [ & ¢, depending on the input polarisation +s [ 56, 57]. The filter works for
annular beams, so that it is more efficient to add or subtract ¢ units of orbital angular momentum
from a vortex beam, rather than create a vortex beam from a plane wave.

High brightness spin polarised electron microscopes are currently being developed [58];
application in the current generation of electron microscopes would involve non-spin polarised
states so that the beam produced will be a superposition of modes with s = —1,1' = [ + gand
s = +1,1' = | — q. On the other hand, the fact that the change in orbital angular momentum +¢
is correlated with the input spin polarisation opens the possibility of using such filters to produce

spin-polarised vortices or plane waves from unpolarised input vortices [ 56].
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Figure 1.3.13: The spatial variation of the electric (upper, red) and magnetic field
(lower, blue) vectors in a cross-section of a g-filter for some values of ¢. (a) - ¢ =
—2;(b)-q¢ = —2;(c)-q = 1;(d) - ¢ = 2. For a given g-filter the particular field
pattern of the electric and magnetic field differs only in a rotation of 5. Images from

[56].

DIFFRACTION CATASTROPHES

It has been shown that, under certain conditions in an electron microscope, the formation of
caustics through diffraction catastrophes [59] leads to arrays of vortices - more specifically,
vortex-antivortex pairs are formed in the presence of caustics [ 60]. Though this effect is highly
unlikely to lead to an efficient method of producing pure electron vortex states, it allows for the
possibility of creating topologically complex 3-dimensional phase structures, including loops and
knots [61] in electron waves [60], in order to study the complex behaviour of the topological
teatures, and how they behave under the influence of a periodic potential, such as in propagation

through crystalline materials.

1.3.7 VORTEX PROPAGATION THROUGH ELECTRON OPTICS

In order that useful analysis may be carried out using vortex beams in electron microscopy
situations, it is necessary that the evolution of the vortex state as it passes through the various
electron optical systems is well understood. This includes whether the state is preserved as it
propagates, and the influences of the aberrations and other effects of the lenses and imaging
systems.

The evolution of the vortex beam passing through the focal point was investigated in [25], and is
shown in Fig. 1.3.14. The vortex state has a phase singularity through the beam axis, which has an
indeterminate phase, so the beam intensity throughout the axis must be zero. As can be seen in the
focal series of Fig. 1.3.14, the vortex beam produced using the holographic mask has a core null
intensity that remains upon defocusing. As suggested above, the persistence of the dark core is
indicative of a vortex state possessing orbital angular momentum, rather than simply an annular
ring structure. The focal behaviour of the vortex appears to be Gaussian, with the radius of the
vortex core increasing by a factor of approximately v/2 over a Rayleigh range from the focal point
[25], as expected for a Laguerre-Gaussian type beam, suggesting that the Gaussian beams and

paraxial Gaussian optics used to describe the beam-lens systems to a first approximation [38]
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Figure 1.3.14: The evolution of the vortex beam passing through focus. The image
of the left shows a focal series of the —1, 0 and 1 order beams of an! = 15 mask.
The dotted green line shows the positions at which the line profiles were taken,
shown in the image on the right. These line profiles show clearly that the centre of
the beam contains a minimum, that is not washed out by defocus, which indicates a
true vortex state. Image adapted from [25].
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(i.e. without defects and aberrations) are also appropriate for the vortex beams.

The effect of spherical aberrations and partial spatial coherence on the vortex in the electron
microscope has been determined both theoretically and experimentally [39, 40, 62]. Simulations
of the resulting far field intensity profiles of a partially coherent electron beam diffracting through a
forked mask in the aperture of a condenser lens with spherical aberrations have been performed
[40, 62]. The effect of spherical aberrations is to increase the radius of the vortex, so that the
intensity peak of the vortex ring occurs at a larger distance from the centre, and the peak itself is
broadened [62]. This effect increases for larger mask apertures as expected, as more rays passing
through the edges of the lens are admitted through the aperture [62].

As already discussed, the effect of incoherent illumination is to increase the intensity of the
central dark core, and degrade the quality of the vortex state, resulting in a mixed, rather than pure,
vortex [ 39, 62]. The effect of varying spatial coherence can be simulated by modelling the source as
a Gaussian distribution, with the size of the source projected onto the aperture given by the
standard deviation of the Gaussian distribution [40, 62]. When the radius of the projected source is
over 10% of the aperture radius, the minimum of the vortex cannot be discerned [ 40], so that there
is a trade-off between the narrow apertures that will reduce the effects of spherical aberrations, and
the larger ones that reduce the effects of the finite source broadening. Simulations of the vortex
state in the electron microscope incorporating spherical aberrations and partial spatial coherence
show good agreement with experimental results, so that existing analytical techniques in TEM may

be directly applied to the vortex beams [40].

1.4 APPLICATIONS OF ELECTRON VORTEX BEAMS

Several experimental applications have been suggested for the electron vortex, particularly in
analytical TEM and STEM. These include obtaining magnetic and other chiral information from
various samples with atomic resolution using EELS, and improvements in phase contrast
microscopy. The experimental and theoretical progress towards such aims will be discussed, in
particular the key aspects and considerations of magnetic imaging at nanometre to atomic scales. A
significant issue affecting such a measurement is the contribution from atoms that are do not lie on
the axis of the vortex. Further complicating matters is the fact that TEM and STEM samples, while
necessarily thin, are typically on the order of 50nm thick, and propagation through crystalline

structures significantly affects the vortex characteristics.

1.4.1 ELECTRON ENERGY LOSS SPECTROSCOPY WITH VORTEX BEAMS

The first demonstration of the forked holographic mask technique to generate electron vortices was
accompanied by experimental results illustrating the possibility of using vortex beams to obtain
magnetic information using EELS [24]. A dichroism effect was observed in a thin film (50nm) of
magnetised iron, magnetised in the direction of the optic axis, due to positioning within the lens
fields. The experiment involved a region of the film with a diameter of approximately 250nm. The
incident electron beam was a plane beam, rather than a vortex; the beam transmitted through the
sample is decomposed into vortex components by a forked mask placed at a small defocus from the

back focal plane of the objective lens. This set up, and the resulting dichroism signal is shown in
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Fig. 1.4.1. The defocus of the beam onto the mask allows a larger patch of coherent beam to diffract
through the mask. Individually, the [/ = 1 and [ = —1 beams are imaged on the detector by means
of a selective aperture and a magnetic prism to separate the different energies from interaction with

the sample. Comparing the energy loss spectra of the two |/| = 1 vortex components of the
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Figure 1.4.1: The experimental arrangement and results of the dichroism experi-
ment performed by Verbeeck et al. [24]. The experimental arrangement is shown in
(a) The incident beam is a plane wave - after passing through the iron film sample
the resulting beam is transmitted through a forked aperture in the objective lens,
decomposing the post-interaction electrons into the vortex components. A second
aperture selects a particular vortex component to be imaged, while the magnetic
prism selects for electrons of particular energies to be detected, allowing a range of
energies to be scanned, and the energy loss due to the interaction to be determined.
Comparing the observed energy loss of the two different senses of rotation of vortex
gives the dichroism signal of (b), where it can be seen that at different energies one
or other of the two vortex components is absorbed preferentially. Images from [24].

transmitted electron beam shows a dichroism signal, in which one or other of the vortices is
preferentially absorbed at particular energies. These energies correspond to the Ly and L3 edge
transitions in iron [24], in which electrons in the iron are promoted from the 2p atomic states [63 ].
The vortex electron energy loss spectrum corresponds well to similar absorption spectra of
circularly polarised x-rays, so that the magnetism of the sample is clearly indicated by the energy
loss dichroism, as in x-ray magnetic circular dichroism (XMCD) experiments [64]. This
experiment gave a proof-of-principle result that vortex beams may be used in magnetic dichroism
experiments in the electron microscope.

In order to determine the mechanism and selection rules of the interactions involved in the
experiment above, the interaction between an electron vortex and atomic matter was investigated
[65-67] (see also Chapter 6). The principal contribution to the interaction was determined to be
the Coulomb interaction between the atomic and vortex electrons, acting as a perturbation to the

atomic electron state, and the selection rules for the interaction were found to take the same form
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in the dipole approximation as those of the circularly polarised x-rays used in XMCD. Of note is the
difference in selection rules between the optical vortex and the electron vortex - the mechanism of
the interaction is very different in each case and as such the result that orbital angular momentum
associated with the electron vortex may be directly transferred into the internal atomic motion is in
contrast to the optical vortex case, in which only spin angular momentum may be transferred
[14,68-71] (see also Chapter 5).

Due to the extrinsic nature of the orbital angular momentum of the vortex state [ 16], a rigorous
treatment taking into account the displacement of the atom from the vortex axis is necessary to
interpret the results of vortex based EELS in terms of the change in orbital angular momentum of
the incoming beam [67] (see also Section 6.3). This was not an issue in the experiment performed
by Verbeeck et al. The magnetisation within the iron sample is along the optic axis, so that the
orbital angular momentum of the vortex beams along the axis of magnetisation of the atom is the
same as along the vortex axis'. Since these axes are parallel, the complications described in Chapter
6 regarding the extrinsic nature of the orbital angular momentum of the vortex beam are not
apparent.

Since the demonstration of the possibility of the use of vortices for magnetic dichroism
experiments there has been much discussion as to whether vortex based magnetic dichroism will
soon be achievable in electron microscopes [67, 72—74]. Of particular interest is the use of vortices
as atomic scale probes in STEM, the use of which will lead to the ability to map the magnetism (or
other chiral activity) across the whole area of a sample with atomic resolution, potentially
identifying the magnetic moment of single atoms or columns of atoms.

A major issue with such a goal is the size of the vortex relative to atomic scales. High resolution
of 0.141 nm has been demonstrated using electron vortex beams in high angle annular dark field
STEM [51], though the signal to noise ratio using vortex beams in this case was much worse than
that of a non-vortex beam. In order to resolve magnetic information at atomic resolution is
necessary to have probes that are able to address single atoms, so that high quality vortices of
Angstrom scale are necessary. The demonstration of vortex beams with Angstrom diameter [39] is
suggestive of the opportunities of producing vortex STEM probes with atomic resolution, however
as discussed above source size effects significantly degrade the quality of the vortex. The smallest
possible vortex beams are those consisting of a single ring (rather than several nodes) for which
|I| = 1, with higher values of k| , as determined by the size of the aperture with phase defect. The
maximum resolution of a scanning vortex probe is given as d ~ 2R, + AR, where R, is the radius
of the peak intensity of the vortex beam, and A R is the FWHM of this peak. It has been suggested
that for a vortex beam with typical scanning probe parameters - o, = 30 mrad and electron energy
E = 100 keV - the aberration corrected resolution limitis d ~ 1.14 nm [72]. Increasing the
electron energy to 300 keV, and o, = 40 mrad gives d ~ 0.462 nm. These values of d are an order

of magnitude larger than similar non-vortex probes, and not low enough for atomic resolution, for

"The vortices measured in this experiment originate from the holographic mask, so that they are generated at
an angle to the optic axis. In this particular set up this is not a problem, as the vortex components of the beam are
separated after interaction with the sample - so that at the point of interaction, the axis of the iron magnetisation and
the axis of the beam are the same, namely the optic axis of the microscope. If this experiment were to be performed
with the mask before the sample, then the results would be different, as the change in axis leads to the breaking of
rotational symmetry [16]. Is is therefore important to find a way to generate vortices aligned with the microscope
axis, to avoid such issues
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which an acceleration voltage of 2 MV is purportedly necessary [72]. Nevertheless, it may be
possible to generate appropriately scaled vortices in the next generation of electron microscope
with smaller source sizes and higher acceleration voltages.

The theoretical possibility of application of vortices to magnetic dichroism has been considered
both on the ‘medium’ scale of 1-10 nm [74] and the atomic scale [67]. For both situations the
spatial dependence of the atom-vortex interaction in which orbital angular momentum is
exchanged has been considered in order to determine any observable dichroism due to
magnetisation in the atom. In both the nanometre and atomic scales the interaction is found to be
strongly dependent on the position of the atom relative to the axis of the vortex, due to previously
indicated complications regarding the extrinsic nature of the orbital angular momentum of the
vortex. It is found that when the atom is removed from the beam axis, there are several channels by
which the interaction may proceed, involving various forms of orbital angular momentum
exchange. This greatly complicates the interpretation of scattering results for an incident electron
vortex beam.

For the medium, nanometre scale, simulations of a particular interaction channel using an
incident vortex with a radius of 0.9 nm demonstrate that when the atom is on or near the beam
axis, a clear difference is observed between the outgoing states of the [ = 1 and [ = —1 vortices.
This difference is manifest in the spatial intensity of the scattered states. However, when the atom is
displaced from the beam axis the effect of the dichroism is greatly reduced and the transmitted
intensity profiles appear the same [74]. Additionally, when the vortex is incident on a
homogeneous sample, contributions from the atoms all around the beam axis destroy the
asymmetry observed in the intensity of the transmitted beams, and the dichroism is no longer
apparent. Thus Schattschneider et al. conclude that this renders any dichroism unobservable on the
nanometre scale, including nanoparticles larger than 1.5 nm [74].

The spatial dependence of the interaction between an atom and an atomic scale vortex does not
present such an insurmountable problem for atomic resolution dichroism. The specifics of the
inelastic interaction between an atom and an electron vortex are discussed in Chapter 6, but the key
points are summarised as follows: the displacement of the atom from the beam axis leads to
multiple channels by which orbital angular momentum may be exchanged between the beam and
the atom, and each of these channels has a different strength and spatial dependence. The exchange
of orbital angular momentum does not necessarily exhibit conservation of angular momentum
about the beam axis, due to the extrinsic vortex angular momentum. However in examining the
varying strengths of the different interaction channels it is found that the on-axis dipole
interactions for which the orbital angular momentum is strictly conserved are the strongest, with
the contributions from the other channels and higher multipoles an order of magnitude less. This
leads us to suggest an experimental set up that could be used to perform STEM EELS of magnetic
materials with atomic resolution, as detailed in Section 6.3.5. Using a confocal microscopy
arrangement, to further reduce the off-axis contributions, an electron vortex is scattered through a
magnetic sample. The resulting transmitted beam may then be passed through a vortex analyser in
the form of a forked holographic mask or similar. This analyser allows the selection of a particular
channel of interest, and an energy spectrum can be obtained through filtering though a magnetic

prism. Using such an arrangement, the incident vortex probe may be scanned over the sample,
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leading to an atomic resolution energy loss spectrum map that may be compared to the similar
spectrum obtained using the vortex with opposite winding number. Further details regarding the
experimental arrangement and expected observations are discussed in Section 6.3.5. It should be
noted here that this experiment will be very demanding on the microscope specifications, requiring
a highly coherent atomic scale beam in a scanning confocal arrangement in addition to the
complications of energy filtering of the selected mode after the vortex analyser. Such an experiment
will require development of the necessary technology. It is also worth noting that a post-sample
vortex analyser could be used with the medium scale EELS experiment described above, to filter
out the different channels and isolate the dichroic components of the transmitted beams. The
spatial structure of the beam - which is significantly altered by the passage through the forked mask
- is then not necessary to determine the relative strengths of the interaction with the two vortices.
This experiment is slightly less demanding, since the vortex probe need not be atomic sized,
however the issue with alignment and selection of the particular vortex modes for both scanning
and spectrum collection remains.

Vortex EELS may also have potential in determining the magnetic response - susceptibility and
permeability - of various materials, as a tool for characterisation of metamaterials [75]. The
electrical response of a sample may be measured by examining surface plasmons using EELS
(76, 77], and EELS with vortex beams would be a complementary technique, allowing both electric
and magnetic responses to be measured in a single experiment. Simulations show that the magnetic
signal obtained using a vortex beam is an order of magnitude smaller that typical EELS signals,
which should still be measurable, and since the resonances occur at different energies the electric
and magnetic information may be separated out [75]. Such a technique could be applied to study
magnetic plasmon resonances of metallic nanostructures with high resolution.

Another method by which atomic resolution magnetic information might be achievable in the
STEM involves the scattering of non-vortex probes through ultra-thin films, producing a phase
gradient when the beam is transmitted through an atom with a non-zero magnetic moment [73].
The transmitted beam is then a mixed vortex state, which may be observed in the electron
diffraction pattern by a shift and smearing of spots in the electron diffraction patterns; the direction
and size of the shift is sensitive to spin polarisation of the atom. A proof-of principle experimental
result has been obtained [73 ], allowing for the possibility of application of this method in the
reconstruction of the single atom magnetic moments, subject to minimisation of drift, noise,

aberrations and other factors that affect such a sensitive measurement.

1.4.2 VORTEX PROPAGATION THROUGH MATERIALS

In order that experiments involving vortices be appropriately interpreted, it is necessary that the
way the vortex propagates through crystalline structures is well understood. Any electron probe
propagating through a crystal will experience strong elastic scattering from Coulomb interaction
with the atomic nuclei, proportional to the thickness of the sample and tilt relative to the beam axis.
Multislice simulations of the vortex state propagating through the crystal demonstrate the change
in phase and amplitude of the beam as it passes through various thicknesses of material [78, 79]. It
is found that the phase and amplitude of the resulting wave exiting the crystal depends not only on

the thickness of the crystal, but also the location of the vortex axis relative to the atoms in the
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crystal cell. The scattering potential of the atomic columns distorts the phase structure of the beam,
and the beam is also channeled along the positive potential of the column [78], though the beam
remains well localised [79]. The potential of the crystal nuclei perturbs the structure of the vortex,
leading to tilts and shifts of the vortex axis [79].

The distortion of the phase front causes the orbital angular momentum of the beam to cease to
be well defined, since the orbital angular momentum operator does not in general commute with
the perturbing crystal potential, leading to local values of angular momentum that may be
significantly different from that of the incident vortex [ 78, 79]. This leads to the generation of
vortex loops within the crystal, originating along the atomic columns. These are manifest as
vortex-anti-vortex pairs in the z-y plane as the vortex forming the loop propagates in the
z-direction and then turns back on itself [ 79]. In addition to the loops formed in the propagating
wave, it is found that higher order vortices with [ > 1 may be decomposed into lower order
vortices in propagation, with the particular splitting determined by the value of [ and the symmetry
of the scattering potential [79]. This is related to the extrinsic nature of the orbital angular
momentum as discussed above, and indicates that atoms at different depths within the sample will
be subject to modes with different orbital angular momentum [78], similar to the cases discussed
for atoms that are far from the beam axis. For relatively thick samples then, particular care must be
taken in analysis requiring direct observation of phase and intensity contrast; however filtering the

separated scattered vortex states will go some way to ameliorating the phase complications.

1.5 DyNAMICS AND FIELDS

The freely propagating vortex as introduced in Section 1.2.1 is the simplest example of a vortex
state. In general, the vortex will move under the influence of external fields, in the presence of other
vortices, or both [19-21, 80, 81]. The specific case of an electron vortex with magnetic moment p
in a magnetic field was mentioned above; here the effect of such a field, or other types of potential,
on vortices with a general form is remarked upon.

Understanding the interaction and dynamics of the electron vortex in external fields is
particularly important in electron microscopy applications, where various fields are required to
focus the beam. Any shifts of the beam motion or distortion of the intensity due to interaction of
the field must be accounted for in the interpretation of data collected using the vortex beam. The
effects of the electron vortex in external fields typical of magnetic lenses has been discussed by
several authors [82—84] and angular momentum dependant rotations due to the fields have been
observed in the electron microscope [85].

In addition, the electron vortex is found to possess intrinsic electric and magnetic fields, due to
the helical trajectory of the charge current density [86]. The orbital angular momentum of the
beam leads to the presence of a component of the magnetic field in the 2 direction, as well as the
azimuthal component and the radial electric field expected for a linearly propagating charge. Full
details of the derivation and characteristics of the field of a Bessel-type electron vortex are given in

Chapter 3.
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Figure 1.5.1: The dynamics of a ring shaped vortex line in a spherically symmetric
harmonic trap. The vortex rotates at the trap frequency w, and expands and contracts
with a frequency of 2w. Image from [19].

1.5.1 MoTION AND COLLISIONS

The motion of charged vortices in a uniform magnetic field has been considered in a general case by
Bialynicki-Birula et al. [ 19]. The rotation of the vortex line - described above as the classical
electron trajectory in magnetic field - is observed as a precession of the vortex line about an axis
parallel to the direction of the field. Vortices in other types of external fields have also been studied
- in particular the harmonic and rotating harmonic traps [ 19—21] that are important for the
confinement of Bose-Einstein condensates in which quantised vortices can be sustained [87]. The
dynamics of vortices in such environments depend on the particular configurations of the vortices
under study, for example it is found that a vortex ring in a spherically symmetric harmonic trap
rotates and expands, as shown in Fig. 1.5.1. The behaviour of vortices in a rotating harmonic
oscillator depends strongly on the configuration of the trap and the vortices. Examples given in
[21] concern two parallel vortices, with co- and counter-circulation. In the first case, the vortex
lines remain parallel and linear as they rotate with the trap, whereas the behaviour of the
counter-circulating vortices is much more complicated - leading to distortion of the vortex lines
[21]. The treatment of [ 19, 21] is quite general, concerning solutions to the Schrodinger equation
that contain one or more vortex lines, rather than individual twisted particle states. For a
Bose-Einstein condensate this description is appropriate, although interactions between the
constituent particles modify this single wavefunction picture. Studying the behaviour of vortices in
wavefields of particles with interactions - both long-range harmonic and short-range scattering
interactions - shows that interatomic forces do not significantly alter the qualitative behaviour,
displaying the universal features of vortex physics [20].

The evolution of wavefields containing several vortices may be very complex, even if there are
otherwise no external potentials acting [ 19, 21, 80, 81]. Annihilation of two counter-circulating
vortices may occur or, indeed, creation of a vortex and anti-vortex pair, while vortex lines taking the
form of a ring may be spontaneously created or annihilated [ 19, 80]. Two vortices approaching each
other will distort, and intersect - at the point of intersection the vortex lines ‘swap’ [ 19, 80, 81], as

shown in Fig. 1.5.2, a process termed ‘reconnection’ of vortex lines by Berry et al. . For two vortices
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Figure 1.5.2: Dynamics two vortex lines crossing or ‘reconnecting’. Two curved

AR

vortices approach each other; in the first panel of the second row one vortex is above
the other, without intersecting. After the point of intersection (between fifth and
sixth panels, second row) it can be seen that the separated vortices do not follow

the same trajectories as before the collision. The two vortices swap sides, in a vortex
reconnection. Image from [19].

existing in the same plane, the reconnection is final, and the two vortices propagate away from the
collision having been apparently reflected at an angle of 7. The more general case of non-coplanar
vortices shows a double reconnection event, so that the net result is that after the collision, the
vortices continue on their original trajectory [81]. Such reconnection events also occur in the
collision of three vortex lines, in which reconnection leads to the creation of a ring vortex that is
subsequently spontaneously annihilated; as well as collisions between a line and a ring, and two
rings [21]. The result in each case is the apparently unperturbed motion of each of the vortices,
except in the vicinity of the collision, where the multiple reconnection events make the behaviour
very complicated indeed [81]. Such dynamics might have implications for the behaviour of the
superpositions of vortices in fields, or motion of the electron vortex through a crystal potential.
Collisions between vortices and plane waves may also be considered [88]. In the general case,
for scalar beams of particles or photons head on collision events between vortex beam and plane
wave can be shown to result in scattered states consisting of a vortex and a plane wave, or two
vortices [88]. The linear and angular momentum of the two scattered states is entangled, though
since the orbital angular momentum of the vortex is an extrinsic quantity the total orbital angular
momentum conservation of the two final states is non-trivial, and the resulting angular momentum
depend strongly on the scattering angles involved. Such scattering events could potentially be
useful in generating various species of entangled vortex pairs, including electron-electron and
electron-photon entangled states. In addition it may be possible to generate vortex proton states by
colliding a vortex electron beam with high energy protons, opening up the possibility of exploring

vortex states in high energy particle physics [88].

1.5.2 PROPAGATION THROUGH EXTERNAL FIELDS

Solving the Schrodinger equation in the presence of a magnetic field directed along z gives two
possible results, depending on the particular field - a single line of flux along 2 gives a Bessel
function [84], while a uniform field leads to a Laguerre-Gaussian solution [82-84]. The
Laguerre-Gaussian solutions in the uniform field are of particular interest as they resemble the

electron vortices propagating in microscope fields. The particular characteristics of the
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Laguerre-Gaussian beam, such as the waist and Rayleigh range, depend on the strength of the field,
such that [83, 84].

5 h 2V Em ( )
Wa = Wr = . Zp = 2p = . 1.1
0 B B[’ R B eB| 4

In both field arrangements, the vector potential of the field A circulates about the 2 axis, having the
form of a vortex. Depending on the direction of B, the circulation of the vector potential may be in
the same direction as, or counter to the direction of circulation of the vortex, which may either
increase or diminish the orbital angular momentum relative to the freely propagating state. The
canonical angular momentum of the Laguerre-Gaussian solutions in the presence of fields becomes
[84]

(Lo) =(rx(p—eA)) =h(£2p+[l[£1), (1.15)

where the = relates to the direction of the magnetic field. Due to this, electron vortices of opposite
topological charge [ are affected quite differently by the presence of the field, and (L) ., # (L.)_,.
The energy of the solutions in the magnetic field form Landau levels, determined by [ 83, 84]

h?k?
E = +ﬁwL(2p—|— | +1) — lhwy, (1.16a)
h2k72
= sz — hwy (L) (1.16b)
with wy, the Larmor frequency wy, = l | . The second and third terms of Eq. (1.16a) are

respectively the contributions from the Gouy phase and the Zeeman interaction between the
electron magnetic moment and the external field. This effect can be combined into the effect of a
Zeeman interaction between the field and the total angular momentum (L. ), as shown in

Eq. (1.162). The Zeeman and Gouy terms lead to phase shifts Af acquired as the beam travels in

the z direction, in addition to the usual propagation phase k. 2:
A =hwr (2p+ I +1)—=1) = (1.17)

This phase shift results in rotation of the beam as it propagates through the field [82-84]. For the
cylindrically symmetric vortex modes, such rotation is not observable; however the rotation is
observable for superpositions of vortices, which in general have discrete rotational symmetry.
There are two classes of vortex superposition - superpositions of vortices having opposing
topological charge for which the net topological charge is zero, i.e. [; + I3 = 0; and the more
general case involving vortices having differing topological charges with {1 + [5 # 0.

The resulting intensity patterns of the superpositions of the ==/ modes have a ‘petal*like
structure, with 2|/| nodes forming a ring. As the beam propagates through the field, the two
different £/ modes are affected differently by the field, leading to an [-dependent rotation ¢, = =~

The combined rotation of the two modes lead to a phase difference that varies with propagation

[83,84],
A(b :EMQE'MLZ (1.18)
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where the = relates to the direction of the magnetic field. This causes the petal interference pattern
to rotate as the mode propagates, with a longitudinal dependence characterised by the Larmor
frequency. The situation for the superpositions with net topological charge displays different
behavior depending on whether the resulting angular momentum is aligned or anti-aligned with
the magnetic field. When the field is aligned the resulting rotation of the interference pattern is
double that of Eq. (1.18), and characterised by the cyclotron frequency w. = 2wy, whereas for the
anti-aligned case the combined effect of the Zeeman and Gouy phase contributions leads to no net
rotation [84]. The three different cases of rotation - with characteristic frequencies w,, wy, and zero
- are experimentally observable [85].

In the lens system of the electron microscope, the effects of the Zeeman and Gouy phase shifts
may be almost completely decoupled and independently adjusted [85]. As mentioned above, the
Gouy phase is known as a phase shift when the Gaussian beam passes through focus, and has the
strongest effect in the second condenser lens when the beam is sharply focused with a wide
convergence angle and the Rayleigh range is small. This allows the effect of the Gouy phase to be
observed by altering the defocus. The condenser lens does not produce significant magnification,
so that the magnetic field is relatively weak compared to the high magnification imaging lens. Thus,
while the Zeeman phase shift is not eliminated in the condenser lens, its effect is considerably
smaller than within the imaging system, and is less significant than the Gouy phase. Similarly, the
imaging system produces a strong Zeeman interaction due to the high field, but since the beam is
projected at large magnification onto the image plane, the Gouy phase shift is negligible.

Superpositions of the different vortex modes may be created using specifically designed
holographic masks as described above. In [85] the behaviour of the superposition of the [ = £3
modes was observed to show the expected rotation due to the Zeeman interaction (the Gouy phase
does not contribute to the rotation in this case as it is equal for both the vortices). The non-zero
orbital angular momentum superpositions were also observed using an aperture to block off half
the mask - of the resulting three diffracted beams, one had net angular momentum of 3, one —3 and
the other zero. Thus, the three different rotations with characteristic frequencies w,, wy, and zero
described above were confirmed [ 85 ].

If the Laguerre-Gaussian mode is not an eigenstate of the field, but instead has a width wy # wp
then in addition to the rotation of the beam, the width of the beam may also be affected as it
propagates through the field [83 ]. The waist of the beam oscillates with characteristic frequency w..
between w and the field-characteristic width wp. This oscillation is due to the interplay of
diffractive effects acting to expand the beam, which are dominant at the small widths with
w < wp, and the constraining of the beam by the magnetic field, which is the dominant effect at
w > wg [83]. For more complicated superpositions of eigenfunctions of the field, and for other
modes that are not eigenmodes the rotation of the beam and such width oscillations will take more
complicated forms, characterised by frequencies between 0 < w < w, and possible distortion of

the shape of the beam. [84].
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Vortex Solutions

THEORETICAL description of the behavior of the electron vortex requires a suitable
wavefunction. Similarly, in order to make relevant comparisons between the electron and

optical vortex, it is necessary to compare vortices of similar spatial distribution. The Bessel beam
vortex is chosen as the particular distribution to compare the optical and electron vortices as it has
the simplest spatial distribution suitable for carrying orbital angular momentum, so that the
relevant behaviour will be due solely to the vortex. The electron and optical vortex solutions
demonstrated here will be used throughout the rest of this thesis to compare the interaction
between the two kinds of vortices and atomic matter, and determine the mechanical and
electromagnetic properties of the electron vortex.

In this chapter the principal features of a vortex beam and some particular classes of vortex
beams are discussed. Section 2.1 presents some general properties of vortex beams, and the
necessary conditions for vorticity. The Bessel beam is derived as a suitable optical and electron
vortex mode function in Section 2.2, and the specific properties of Bessel beams are discussed, with
reference to the constraints of the paraxial approximation. The Laguerre-Gaussian beam is also a
suitable mode function for paraxial electron and optical vortices, as shown in Section 2.3. The
electron and optical solutions shown here, and applied throughout the rest of this thesis, are given
within the paraxial approximation and, for the case of the electron vortex, the non-relativistic limit.
These approximations are discussed in Section 2.4. At several points throughout this thesis, it will
be useful to demonstrate results using a ‘typical’ electron vortex beam based on experimental

parameters - a normalised wavefunction describing such a beam is defined in Section 2.5
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2.1  VORTICITY

Optical vortices were first described by Nye and Berry [29] in light reflected from a rough surface.
Interference causes phase structure within the resulting wave that is topologically different to the
incident plane wave. These phase structures were characterised as edge, screw, or
mixed-dislocations, in analogy with crystal defects. The vortices described here in optical and
electron waves are of a screw type - in which the phase front of the wave describes a helix about the
axis of propagation [29] such that the phase is dependent on the angular position about the axis.
The topological charge [ quantises this winding such that there are [ twists about the beams axis, or
equivalently a phase change of 27! during a full rotation about the axis, as shown in Fig. 2.1.1. The
phase factor of €% that gives rise to this helical phase structure is a characteristic feature of orbital

angular momentum. The vortex beam propagating in the 2 direction then has the general form
G, 1) = ulp, ), (21)

where (1, t) may stand for the electron wavefunction in the case of electron vortices, or for the
optical vortex the electric field mode function such that E(r, t) = )€ for some wave polarisation
vector €.

The helical phase structure leads to the phase at the core of the beam being indeterminate - since
it is connected to all possible phases of the wave. This central phase singularity is not physically
viable, and is compensated by the intensity of the wavefunction being zero at the location of the
singularity - throughout the centre of the vortex. This has led to the nickname of ‘doughnut’ beams
for a particular class of vortex beam - the Laguerre-Gaussian vortices with radial index p = 0, being
a bright ring surrounding a central, dark core.

A zero-intensity at the centre of the beam is not sufficient to describe a vortex - there must be
some topological difference between an area of the beam containing the vortex, and an area that
does not [29]. For the present purposes, the topology of the vortex describes the connectedness of
the phasefronts. The phasefront of the vortex is topologically distinct from that of a plane wave, as
one cannot be transformed into the other through continuous deformations. Similarly, the [ = 1
phasefront cannot be deformed into the | = 2 or any other  phasefront, so that the winding
number [ may also be termed the topological charge, characterising the ‘strength’ of the vortex. The
phasefront of any vortex is characterised by ¢/, leading to a phase singularity along a line through
the origin. A closed loop integration of the normalised probability current density j(r) along a path

C encircling this line gives a quantised value [19]

i —@ 2.2
F:j{CJ(r)-ds—ml, (2.2)

where m is the mass of the particle. For the vortex beam given in the form Eq. (2.1) we have the

normalised probability current density

= = ¢+ k.2

P

_ th VY =iV h (l g ) . (2.3)
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(a) Spiral phase front for ! =1 (b) Phase change in
theplanefor! = 1

(c) Spiral phase front for [ = 3 (d) Phase change in
the plane for! = 3
Figure 2.1.1: The phase character of [ = 1and! = 3 vortex beams. (a) shows
the phasefront of an/ = 1 vortex - the phasefront wraps around the axis once.

The phase change on rotation about the 2 axis is 27, leading to a phase jump, as
shown in the plane in (b). For the [ = 3 vortex there are three surfaces of constant
phase, each wrapping once around the axis as shown in (c). This leads to three phase
discontinuities, as shown in (d).
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Integrating this about a loop enclosing the z axis gives — %ﬁl , while any other closed path gives
zero, showing the topological distinction between a region of space containing the vortex and one

that does not. Thus, on traversing the z-axis an additional phase of 27{ is acquired.

2.2 BESSEL FUNCTION VORTEX SOLUTIONS

The relevant equations of motion for electrons and photon in free space or linear media are the
Schrédinger and vector Helmholtz equations respectively. Suitable vortex solutions will be derived
for optical and electron vortices, and their properties discussed. The Schroédinger and Helmholtz
equations have the same functional forms, so that the electron vortex wavefunctions will be found
to have the same spatial dependence as the components of the electric field vector of the optical
vortex. Suitable vortex solutions are described below in the paraxial approximation and, for the
electron vortex, the non-relativistic limit.

The Bessel function is a solution to both the full Schrédinger and Helmholtz equations, and their
paraxial forms. The Bessel beam will be derived as a solution to the full equation, with the specific

requirements for the paraxial and non-paraxial solutions discussed below in Section 2.4.

2.2.1 NON-RELATIVISTIC ELECTRON VORTEX SOLUTIONS

The Schrédinger equation for a free electron of energy & reads

h2
2m

ihot(r,t) = EP(r,t) = ———V2(r, 1). (2.4)
We look for freely propagating solutions having the phase factor €%, as associated with the vortex.
It is natural to describe beam-like solutions in a cylindrical coordinate system, choosing

propagation along the z-axis, such that the solutions will have the form

Ui(r,t) = Nu(p, z)e'Pett==e =41, (25)

with /N; a normalisation factor, and frequency w = % The simplest solution exhibiting vortex

structure will have u(p, z) = u(p); applying Eq. (2.4) gives

. , h (1 1 o ,
Eu(p)e'Peik=ze it — ~5. (;@) (p0,) + ?83) + 83) u(p)eett=z et (2.6)

_ h? u//( )—l—lu’( )_ﬁu( )—k2u( ) eil¢eikzze—z’wt ( )
= T, W) H Julp) = pulp) = kulp » (27

which reduces to the second order differential equation
2

u"(p) + %U”(p) + ku(p) — %u@ — k2u(p) = 0, (28)
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5 £ has been used. Additionally, the relationship between the

longitudinal and transverse momenta of the particle is k* = k% + k2, so that

where the relationship kK2 =

)+ 00) + Wt~ St =0 (29)
This has the form of the differential equation
@+ 2@+ (0 S )i =0 o)
with
a=0, b=k, c=0; (2.11)

i.e. Bessel’s differential equation. The solutions to Eq. (2.10) are of the form y = 2 Z,(bz°) [89],
giving

u(p) = Zi(kLp), (2.12)
where Z;(k p) is a generic Bessel function of order [ - either of the first kind .J;(k p), or second
kind Y;(k, p), or a linear combination of the two. The Bessel functions of the second kind have a
singularity at the origin and are therefore not suitable solutions for a physical beam wavefunction.
The Bessel functions of the first kind, with the exception of Jy(x), have a magnitude of zero at the
origin, and so meet the criteria for carrying orbital angular momentum as described above. The full

wavefunction of the Bessel-type electron vortex is then
YP(r,t) = NiJj(kyp)ePeih==e=it (2.13)

up to a normalisation factor. Normalisation of the electron vortex Bessel function is described in
Section 2.5.
2.2.2 OPTICAL VORTEX SOLUTIONS

The full vector Helmholtz equation for the electric field in free space has the form
V2E(r,t) + k*E(r,t) = 0. (2.14)

For an optical vortex, the solutions E(r, t) represent the electric field vector for a polarised
electromagnetic wave. Choosing a Cartesian coordinate system, with transverse polarisation unit

vector € and propagation along the z-axis, the vortex solutions take the form:

E, (I‘, t) — U(SL’, v, Z)eil arctan(y,x)eikzze—iwté. (2.15)

where we allow the polarisation vector to have the general form &€ = ax + Y. Again, it is possible

to restrict the spatial mode function u(z, y, z) to be a function of  and y only. Applying the
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Helmholtz equation to the solution with mode function u(z, y) gives

V2E,(r,t) + K2 E,(r,t) = 0; (2.16)
0

7 (2.17)

each describing a scalar Helmholtz equation. We are looking for cylindrically symmetric solutions
such that F,(r,t) = E,(r,t),and |a| = | 3], allowing for the possibility of circular polarisation.
From here it is more convenient to switch to cylindrical coordinates. The mode function is a

function of p only, as the vortex structure requires ¢ dependence only in the phase factor ¢/, This

gives
k2u(p)efet=emit — (;@, (p0,) + ?33, + 82) u(p)ePeth=z et (2.18)
" 1 ! l2 2 o ikzz —iwt
=—|u(p) + Pl (p) — EU(p) — kZu(p) | e 7e™™, (2.19)

which may be written in the same form as Eq. (2.8) above; thus the solutions take the same form as

that of Eq. (2.12) to give the Bessel solutions:
EP(r,t) = EoJi(kip)e'?eit=2e~ig, (2.20)

where £ is the field amplitude. Since the orbital angular momentum of the optical vortex is
quantised as [/ per photon, it is sensible to quantise the optical field itself. With dL ;and ay
respectively the creation and annihilation operators for a Bessel photon of momentum k, we may

write
E? _ éEOJl(k'J_P) <€ll¢61kz'z€_wt&k7l + €_Zl¢€_lkzzelw'5&;l> ) (2'21)

It will be useful to have the optical Bessel vortex in the form of a vector potential. The vector

potential is found using

E}(r) = —Vo(r) — 9,A}(r), (2.22)

as the scalar potential is zero for an optical field with no charges. Thus, the vector potential for the

optical vortex can be written as

AP(r) = TOJZ(k:Lp)ezwe’kzze_Wt. (2.23)

This vector potential field may also be quantised, so that we may now write

AP(r) = ETOJl(k;Lp) (elwezkzze_“"tak,l + e_Zld)e_Zkzzez“taL’l) : (2.24)

2.2.3 GENERAL PROPERTIES OF BESSEL BEAMS

Bessel beams have been known in optics since 1987; the zero order beam that carries no orbital
angular momentum was first observed [90], and the higher order beams with angular momentum
followed shortly after [91]. Since the spatial distribution does not change with propagation, such

beams exhibit non-diffractive properties - there is no radial spread of the beam as it propagates in
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Figure 2.2.1: The behaviour of the first few Bessel functions. The Bessel function of
the first kind .J;(p) oscillates about zero with a decreasing amplitude. Bessel func-
tions with [ = 0, 1,2 are shownin (a),and [ = 1,5, 10, 15 are shown in (b). The

| = 0 Bessel function has a maximum at p = 0, and so is unsuitable for carrying
orbital angular momentum. For [ # 0, the Bessel function hasanodeatp = 0,
with the maxima of successive .J;(p) decreasing in magnitude with [ and occurring at
larger values of p.

the z-direction. The sense in which Bessel beams are non-diffracting is that the central maximum
or minimum persists with very little spreading [91].

The Bessel functions of the first kind are a class of oscillatory functions denoted by .J; (), where
the order [ may take any value. Since we are interested in physical vortex solutions with well defined
quantised orbital angular momentum, we concentrate on functions with integer /, as the Bessel
function diverges at z = 0 for non-integer [ and so does not satisfy vortex criteria. The order of the
beam is identified with the angular momentum within the beam, as is made apparent in Chapter 4.
The behaviour of the first few Bessel functions are shown in Fig. 2.2.1. Unlike the higher orders, the
zeroth Bessel function does not meet the criteria for carrying orbital angular momentum, due to a
maximum at the origin, Jy(0) = 1. The points at which are the magnitude of the function is zero
are denoted the zeros of the Bessel function, so that « , is the nth zero of the Bessel function, with
Ji(au ) = 0. The oscillations about zero decrease in amplitude with z, so that .J;(c0) = 0;

however the integral between successive zeroes - or the area under each node - has the same value.
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Figure 2.2.2: Plots of the intensity of a Bessel beam with (a) [ = 1and (b) [ = 3.
Intensity is given by [/ (r)|? for the electron wavefunction, or |[EP (r)|? for the
optical Bessel vortex. For the electron Bessel beam with k; = 2.3 x 1019 m~1,
as discussed in Section 2.5, the above plots have a scale of 0.66 nm to each side. The
Bessel modes having [ < 0 will have the same intensity distributions as shown
above, however the phase (not shown) will have the opposite sign.

For a beam with intensity proportional to .J? (), the successive maxima and minima of the
Bessel functions lead to a series of rings about the origin, with each ring carrying the same power,
or current in the case of electrons [91]. This structure is depicted in Fig. 2.2.2. As can be seen, the
magnitude of successive rings decreases, such that most of the power of such a beam will be
concentrated in the first few inner rings about p = 0. However, the infinite number of rings within
a Bessel function implies infinite power being carried by the beam, which is of course physically
unrealistic. What is meant by a physical Bessel-type beam is a beam that has amplitude modulation
similar to a Bessel function, over a finite radius, and whose core components behave
non-diffractively over a reasonable, but finite, propagation length [91]. These are achievable by
several methods in optics including axicon lenses, annular apertures and holograms [91]. Thus far,
the observed electron vortex beams appear to be Laguerre-Gaussian in profile , with a well defined
waist at the focal point [25] (Laguerre-Gaussian vortex beams are discussed in more detail below);
however if the Rayleigh range is sufficiently large then the beam may be described as approximately
Bessel-like.

The optical and electron Bessel beams given above each have the spatial distribution
u(r) = Jy(kyp)ePet==. (2.25)

The Fourier transform of the Bessel beam u;(r) will be found by applying the Fourier-Bessel
transform for cylindrically symmetric functions [92]. Writing r(p, ¢, z) and K'(k',, ¢, k), the
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Fourier transform of Eq. (2.25) is

~ 1 ik,z il¢p —ik/-r
(k') :(27r)3 /d?’rJl(/ﬁp)e ke il o ik

1 27 o o0 X . , _p . .
_ d d dooJ (k ilg i(kz—k,)z ,—ik'| p(cos ¢ cos ¢+sin ¢ sin @)
|, 0 [ doontbipeteett

5]{32—]{?; 2 * il —ik', pcos(p—
ZW /0 dg /0 dppJi(kyp)e®eHipeoso=e); (2.26)

writing — cos(p — ¢) = cos(m — ¢ + @), and lettingov =7 — ¢ + ¢

ok, — k. 2m o U
ﬁl(k/) _ ( (27_[_)2 z) /0 da/o dple (k,Lp>€zk‘LpCosae—zlaezltpezlﬂ
6 kz - k; Z_l e 7 il
:%/ dppJi(kLp)Ji(K\ p)e?e” (2.27)
0

where we have made use of the Bessel function integral identity [93 ]

1 21 ) )
Jy(x) = / doe'™ e, (2.28)
0

2me

The Bessel function of order —! may be written as a Bessel function of positive order using the

following identity [93]:

J_(x) = e""J,(z); (2.29)
so that we now have
N 6k, — k)i~ > :
(k') = <(T))d¢/ dppJy(kp)Ji(K| p)e. (2.30)
0

Finally, the Bessel function orthogonality relation [94] is applied

| e oyade = o0 = 515 (1)

so that the Fourier transform of the Bessel beam function Eq. (2.25) is given as

~ 1. ittty / /

The physical interpretation of this momentum representation is of a superposition of plane waves
of varying k| such that k = \/k? + k2 for each wave. For a given k, the possible &, lie on a ring
on the surface of constant k, so that there is a cone of plane waves that constitute the Bessel beam
[32, 91], the phase of which is given by €!/#. This is shown in Fig. 2.2.3. The picture of the Bessel
beam as waves propagating on a cone relates nicely to the generation of vortices as screw
dislocations discussed in Section 1.2.1. The interference pattern of two waves propagating at an
angle 20 to each other contains a series of screw dislocations parallel to the z axis. By having not
merely two interfering waves but a cone, the zero-amplitude lines along the screw dislocation are

swept out into cylinders, forming the nodes of the Bessel beam. This conical propagation leads to
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ky

Figure 2.2.3: The Fourier transform of the Bessel beam results in a set of waves of
fixed £k and varying k, and £y, such that k| = k2 + k; The vortex Bessel beam

illustrated here has a phase factor €'/, so that the phase changes by 27l on rotation
about the k, axis. This is illustrated for [ = 1. The relationship between k, and k|
fixes the cone angle 6.

another interesting property of the Bessel beam; namely that the original spatial distribution is

reconstructed after propagation past an obstruction [91, 95].

2.3 LAGUERRE-(GAUSSIAN VORTEX SOLUTIONS

The Bessel beams described above are the simplest type of vortex beam, as their spatial
distributions depend only on the transverse distance from the beam axis. In practise, this ideal is
not the case in laser and electron optics systems that are described by Gaussian beams (up to
aberration corrections) [38, 44]. The Laguerre-Gaussian beams have a Gaussian envelope,
modified by a Laguerre polynomial distribution and a phase factor so that they are suitable for
carrying orbital angular momentum. The Laguerre-Gaussian solutions will be given in the paraxial
approximation for the electron vortex using the Schrédinger equation, but as before, these results
will be directly applicable to the optical vortex solutions.

By analogy with the paraxial Helmholtz equation [96] we have the paraxial Schrodinger
equation

(V2 + k) — (V2 + 2ik0,) S = 0 (2.33)

with the Laguerre-Gaussian wavefunction taking the form

lLG<r7 t) = u(ﬂa ¢a Z)eikzze_th' (2-34)
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Figure 2.3.1: The general features of a Gaussian beam near focus. The beam has a
characteristic width wq, and the width increases away from the focal plan (here set
at z = 0) according to w(z). The Rayleigh range, zp, is the distance at which the
beam width has increased from wg to v/2wg. On the left hand side of the figure the
curvature of the wavefronts is sketched - close to z = 0 the wavefronts are planar,
ie. R(z) — o0, while for large z the wavefronts approach a spherical profile, such
that R(z) ~ z for z > zp. The minimum radius of curvature is R(zg) = 2zp.

The Gaussian beam parameters of beam width w(z) and Rayleigh length 2z, are defined as [44]

w(z) = wo(2)y[1 - ( > ) (235)

k. w?
kw2
2

ZR = (2.36)

The beam width w(2) describes the spread of the beam away from the focal point, or waist, at
which the beam width has a minimum denoted by wy. The width w(2) is defined as the radius at
which the intensity is 1 /e of the maximum intensity in that plane. The Rayleigh length describes
the distance from the focal point at which w(z) = v/2wy. The wavefronts associates with Gaussian
beams are curved; at 2z from the beam waist, the radius of curvature of the beam is 2z . These

features are illustrated in Fig. 2.3.1. The Laguerre-Gaussian solution takes the form [ 1, 96]

l
N 2 2p° , :
16(r,t) = R V2 L;( f )el’fﬂem
V2E+ 22 \w(z) w2(2)

2 ; 2
p ik.p°z . . <
X exp {—w2<z) e ilg+i(2p + 1 + 1) arctan (ZR) } , (2.37)

where Lé(:c) is the generalised Laguerre polynomial, with azimuthal index [ and radial index

p > 0. These describe modes with the Gaussian beam profile in the z-direction, as depicted in
Fig. 2.3.1, and a radial beam profile that varies with the indices p and [. The azimuthal index [
indicates the orbital angular momentum of the beam, similar to the Bessel beam above, and may
take any integer value. The radial index specifies the number of rings in the radial intensity
distribution, such that the beam has p 4 1 nodes, for |/| > 0 (for [ = 0, the beam has a central
spot, and p additional nodes). Laguerre-Gaussian distributions are shown in Fig. 2.3.2 for various

orders of [ and p. As can be seen, the modes with |/| > 0 have a central minimum, and Eq. (2.37)
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has the appropriate €' phase factor, indicating that the Laguerre-Gaussian modes are suitable
vortex functions. Another phase factor of interest is the Gouy phase, given by the factor

exp {i(Zp + [+ 1) arctan (i) } , which describes the phase change of the Gaussian beam after
passing through focus. The Gouy phase is common to all beams with Gaussian distributions, and
reflects phase inversion on passing through the focal point [44]. Though the Gouy phase change is
dependent on [, it does not contribute to the orbital angular momentum of the beam, and does not

affect the vortex features of the beam.

(a) LGoo (b) LG1g (c) LGao

(d) LGoy (e) LG111 (f) LGoy

(8) LGo2 (h) LG12 (i) LGao

Figure 2.3.2: Intensity distribution patterns for the LG, modes, shown in the
z = 0 plane. Intensity is given by |11)%“G |2. The concentric ring structure of the

orbital angular momentum carrying modes is clear, with p + 1 nodes (or spots).
Colour scale shows the intensity variation within individual modes (not the relative
intensity variation across all modes). The Laguerre-Gaussian modes having ! < 0
will have the same intensity distributions as shown above, however the phase (not
shown) will have the opposite sign.

The Bessel mode electron wavefunction and electric field distribution will be used in the rest of
the work presented within this thesis. The Bessel function is simpler to work with, as the
z-dependence is restricted to the wave propagation factor. The features of interest are those arising
due to the vortex phase factor of ¢/'¢, which is the sole ¢ dependence of both mode functions, so
the Bessel function will illustrate the appropriate vortex behavior. We note that, with one exception,
the qualitative results of the following chapters will apply directly to the Laguerre-Gaussian optical

and electron modes; application of the appropriate methods discussed will yield the correct
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quantitative results for the Laguerre-Gaussian modes. However, the results of Section 6.3 rely on a
particular property of the Bessel function, so that in order to extend this to the case of the

Laguerre-Gaussian beam, the beam must be expanded as a series of the Bessel function basis states.

2.4 BEYOND THE SCHRODINGER AND PARAXIAL HELMHOLTZ EQUATIONS

The paraxial approximation of ray optics consists of rays travelling at a small angle to the
propagation axis and polarised in the transverse direction, such that the variation of the beam’s
spatial distribution along the axis is small [96, 97]. For the optics case this leads to the paraxial

Helmbholtz equation

(V% + Qikaz) u(r) =0 (2-38)

which, for the Bessel beam, is equivalent to the transverse variation restriction imposed on the
mode function u(p) and u(x, y) for the electron and optics derivations above respectively. In
optics, the problem with the paraxial approximation is that, for a mode polarised in, say, the
x-direction, the spatial distribution should not then have any dependence on x in order to satisfy
Maxwell’s equations [97]. For Gaussian beams, this is resolved by considering the full mode
function as an expansion in a small parameter, the beam width wy, to find that the paraxial beams
are the zeroth order terms in the expansion [97, 98]. Thus, the paraxial Helmholtz equation and its
solutions are valid in this limit, and provide a very good approximation to the experimental
intensity patterns of laser modes of Gaussian and Laguerre-Gaussian modes [97, 99].

The Bessel beams are not Gaussian, and so do not require the specific paraxial equations, being
solutions to the full Schrédinger and Helmholtz equations as shown above. They satisfy the
paraxial requirement that the distribution function vary slowly with 2 - indeed, the Bessel mode
function is z-invariant - however the rays are not directed along the z-axis, as shown in Section
2.2.3. The momentum representation of the Bessel function in Fig. 2.2.3 gives a clear idea of the
paraxial approximation for the Bessel beam - the angle 6 of the cone of the k-vectors must be

restricted to small angles such that k; < k, [32].

2.4.1 RELATIVISTIC ELECTRON VORTICES

The electron vortex Bessel beam described above was found in the non-relativistic limit, via the
Schrédinger equation. The full, non-paraxial, relativistic electron vortex wave solutions were
described by finding vortex solutions to the Dirac equation [32] (the Dirac equation is discussed

further in Chapter 7). For electrons with spin polarisation given by the 2-spinor w, the relativistic
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vortex solutions take the form

1 1+ 2w\ .
: V2| \ ko, cos Ow (kLp)
0 0
0 . 0 ' ‘ .
+1 _ el(l—l)d’qu(/ﬂp) Ry 62(1+1)¢Jl+1(kLp) pikzz—iwt
— Bk sinf 0
0 aksing

(2.39)

W = Z ; “:\/1_%7 (2.40)

with || + || = 1 and angle 6 describing the opening angle of the cone of Bessel plane waves as

with

discussed in Section 2.2.3. It can be seen that two ‘extra’ modes arise in the relativistic electron
vortex solutions, making the relativistic electron vortex a mixed state of [ and [ = 1 Bessel modes
for spin s = =£1. These modes give contributions in the small components of the Dirac spinor; in
the non-relativistic limit & — 0, and in the paraxial limit we have sin # — 0 so that these modes
vanish and the pure [ mode is recovered.

Bliokh et al. describe the existence of these modes J;11 (k1 p) as a manifestation of coupling
between the spin and orbital angular momenta of the electron, leading to a spin-dependent
splitting of the beam energy states, but also a difference in spatial distribution of the charge and
current densities [ 32 ]. However, this is not the traditional spin-orbit interaction of the electron in a
radial field, as in the familiar spin-dependent energy splitting of the electron orbiting the hydrogen
nucleus [100], though the symmetry properties under parity transformations remain the same
[32]. The energy splitting of the non-relativistic electron vortex due to its intrinsic electric field is
discussed in Chapter 7.

Instead, the spin-orbit coupling described in [32] arises from the electron motion through a
gauge field - the Berry connection - associated with the adiabatic parallel transport of the electron
state vector about a closed circuit in a parameter space [ 101, 102]. The Berry connection has a
non-zero curl - the Berry curvature - which means that the gauge field has some circulation. If the
Berry curvature turns out to be zero, then the ‘Berry connection’ is not a proper gauge field and can
be compensated by an appropriate gauge transformation. Integration of the Berry curvature around
the closed circuit in the parameter space yields extra phase factor which cannot be eradicated
though choice of gauge - the Berry phase. The Berry connection leading to the spin-orbit coupling
effect of [32] is a relativistic and non-paraxial effect, arising from the momentum dependence of

the axis about which the spin and orbital angular momenta are defined.
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2.4.2 NON-PARAXIAL OPTICAL VORTICES

The electric field of a non-paraxial light beam propagating in the z-direction should take the form
[15,97]

EY? = (Er(z,7) + E.(2,9, 2)) e*+
= {(ax + By) Ex(z,y) + 2E.(z,y,2)} €%, (2.41)

with Er(z,y) and E,(z, y, z) chosen such that V - EN? = 0. Each component of Eq. (2.41)

must satisfy the Helmholtz equation - solving this results in the Bessel mode solutions [15]

k
BT = / dk (<af< + 89) Dk Lp)e®
0
.k

, i1-1)¢
+ Z—Q(k;2 ~ ki)% ((W + B)Ji—1(kip)e

. . 1
(i = 8)aa(hp)e ) (e
(242)

The integral over k| leads to non-paraxiality, as this is equivalent to varying the cone angle

0 < 0 < 27. These solutions show features similar to the non-paraxial, relativistic electron vortex
Bessel modes, namely a coupling of the spin polarisation degree of freedom (controlled by v and 3)
and the orbital angular momentum. However, due to the transversality condition the z polarised
waves propagate in the 2-y plane, rather than along the z-axis as is the case for the electron modes.
We note that the non-paraxial solutions for transverse magnetic modes have been demonstrated in

[70] and that the non-paraxial Laguerre-Gaussian modes are also presented in [15]

2.5  NORMALISATION OF THE ELECTRON VORTEX WAVEFUNCTION

The electron vortex Bessel beam described above must be properly normalised in order to describe
realistic electron vortices in an electron microscope. There are several ways of achieving
normalisation, depending on the particular beam of interest. Firstly, the infinite Bessel beam is
considered, which is taken to be a beam described by Eq. (2.13) that is of infinite radial and axial
extent. Secondly, a semi-infinite beam of infinite axial extent but finite radial width is considered,
and finally a finite beam restricted both radially and axially. The restriction of the radial extent of
the beam implies a finite number of rings of high intensity - ignoring the creation of rings due to
other factors in the electron optics, holographic masks may be designed to reproduce a certain
number of rings of the Bessel beam.

The finite and semi-infinite beams may be related to the experimentally measurable beam

parameters of energy and axial current. We define the ‘typical electron vortex beam to have the
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following properties:

Beam energy: W = 200 keV;

Beam current: I, =1uA;
Axial wavevector: k, = 229104 x 10" m™;
Radial wavevector: k, =2.29104 x 10" m™!.

such that k£, = 0.01k,, well within the paraxial approximation. The normalisation is shown for
beams having [ = 1, but the same procedure may be applied for beams having [ > 1, as is required

in Chapter 3.

2.5.1 INFINITE NORMALISATION

The infinite Bessel beam described by Eq. (2.13) is normalised using delta functions such that

(Wo(r) [, (r)) = O (kL — K\ )o(k. — K2). (2.43)

Applying this normalisation condition gives

2 [e'e) [e'e)
(tho(r) | ) (r)) = |N|? / 1% g / eih==h)z / J(kip)Jv (K p)pdp  (2.44)
0 —00 0
— INPARS8(h ~ 1) [ Ikesp) (K, p)od. (2.45)
0

This last integral can be evaluated using the Bessel function orthogonality condition of Eq. (2.31),

so that Eq. (2.45) becomes

(0ule) | 040) = NPTk — K3k = K, ). (246

Comparing this with Eq. (2.43) gives

NP =

as the squared modulus of the normalisation factor. This factor must have the units of inverse
volume - writing the delta functions in terms of dimensionless quantities will allow this to be

checked. We have the relationship

d(ax) = —d(x), (2.48)
(0) = rordle)

which allows us to write )
ok, —K)) = ?5(/@) — li;) (2.49)

P
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where | and k| represent the magnitude and direction of the radial wavevector respectively.

Similarly, for the axial wavevector

1
ok, — k) = kT(S(/{Z —KL). (2.50)
Each of the delta functions now clearly has the units of a length [L], so that the full vortex

wavefunction is now given by

Vki

Lk Lp)eet, (251)

Py(r) =

with the appropriate dimension of [ -3,

2.5.2  SEMI-INFINITE NORMALISATION

As noted above, the infinite Bessel beam is unphysical. The normalisation process here will focus
on a beam with a fixed diameter, but no constraint on the z-axis - i.e the single vortex electron

stretches out to infinity. The beam diameter is given as 2p; ;, where

_
ki

Pr1 (2-52)

and oy is the first zero of the Bessel function of order [, so that only the single high intensity inner
ring is present, physically similar to placing an aperture in front of the beam. The semi-infinite

Bessel beam wavefunction is described as

Uo(r) = NiJy(kip)e™e®=0(p.,) (2.53)

with ©(z) the Heaviside step function. The normalization factor /N, is different to that of the
infinite Bessel beam above, so that this apertured wavefunction must be now normalized. The

normalization condition is now

(Vo [Y) = 0o (ks — KL); (2.54)

substituting the wavefunction of Eq. (2.53) gives

o o o
(o] ) = | N2 /0 -0 g / ikt g /0 Tkeip) e (kiplpdp  (255)

PL,1
= |N,|* 4720, 16 (k. — K.) / JE(kLp)pdp (2.56)
0
2 2 / 1
= |Nl| 47 51}1/(5(1{& — kZ)k_ZIl (2.57)
1

where the last integral has been written in the dimensionless form

(o781
Ii— [ la)eds, (2.58)
0
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to be evaluated numerically for an [ = 1 beam:
7, =1.91. (2.59)

The normalization factor for the beam with typical energy described above is thus

ki
Ny =— .6
l o Tz (2 0)

with correct units of [ L] =2 as before. Evaluating this for the [ = 1 beam gives
N, =334 x 10°m™2. (2.61)

2.5.3 FINITE NORMALISATION

An electron vortex beam created in an electron microscope will have finite length, as well as width.
The finite beam may be related to the axial electric current 7, denoting the flux of the axial

component of the current density through a cross section of radius p; ;:

7, [ hk,
I, = 2me|N, Zk—Ql ( - ) , (2.62)
1

where 7, is the same as Eq. (2.58). Standard normalisation techniques give the result

ki
N = ——— .6
l \/m? (2’ 3)

where L is the finite linear extent of the electron wavefunction; however, rearranging Eq. (2.62)

allows the normalisation factor /V; to be found in terms of the beam current [, a measurable

quantity;
LEim
2 2N
= — .6
' " 2neLihk, (264)
For the [ = 1 beam this gives
N, = 4.06 x 10'° m 2. (2.65)
The axial extent of the electron may now be approximated by
hk,
L="° : (2.66)
mel,
=425 % 10"% m. (2.67)

This classical calculation indicates the spatial separation of point-like electrons travelling at
approximately 0.8c. In the transmission electron microscope the samples are of a typical thickness
of 10 — 100 nm, so that only one electron is interacting with the sample at any one time [103], and
our single electron normalised wavefunction is an appropriate description of the beam in the region
of the sample. As a first approximation, the full, multi-electron beam is viewed as a ‘stack’ of these
single electron wavefuctions passing sequentially though the electron optics and the sample.

Though the quantum nature of the electron leads to a spatial spread of the wavefunction - so that the
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electron probability distribution is not the point-like Dirac delta distribution implicitly assumed in
Eq. (2.67) - the relatively large separation of &~ 4 cm indicates that the effects of electron-electron
interactions, such as the repulsive Boersch effect, may be neglected at these currents.

The electron beam in an electron microscope is not truly monochromatic, and the electrons
within the beam have an energy spread of order of 0.1-1 eV, depending on the electron source
[103]. This energy spread affects the temporal coherence of the electron, leading to a broadened
wavepacket with envelope spanning some length 0z [38]. In the rest of this thesis we will assume
monochromatic electron beams so as to simply illustrate the dynamics arising due to the existence

of the vortex.
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Vortex fields

HE ELECTRON VORTEX beam consists of charged particles, with net motion in the z-direction
T of propagation. This implies that they should have associated electric and magnetic fields, as
any linear current would, but there are also characteristics of the field that arise due to the specific
vortex properties of the beam. These fields are explored for electron Bessel vortices of various
values of [, in order to demonstrate the effect of winding number on the field characteristics, and
illustrate those features arising due to the orbital angular momentum within the beam.

The electric and magnetic fields are found from the charge and current density of the electron
wavefunction using Maxwell’s equations. The general expressions for the charge and current
densities of the vortex beam are shown in Section 3.1. Section 3.2 shows the derivation of the
general form of the electric field of the Bessel vortex from the charge density, while the magnetic
field is found from the beam’s current density, as shown in Section 3.3. The expressions achieved
for each field are then applied to specific cases of Bessel beam - varying the winding number [ and
the physical extent of the beam using the normalised wavefunctions of Section 2.5 - with the results
shown in Section 3.4.

The expressions found for the electric and magnetic fields of the electron vortex, specifically the

finite beam with [ = 1, have been published in [86].

3.1  CHARGE AND CURRENT DENSITY

The field of the electron vortex will be found from the charge and current density of the Bessel

beam by careful application of Maxwell’s equations. Using standard quantum mechanical
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techniques [ 100] the electron vortex wavefunction has charge density p;(r) given by

pu(r) = —elthy (r)|*
= —e|N[*J}(kyp), (3.1)

and current density J (r) of the form

. h
Jl(I‘) = _62m i (d}:vd)v - 1/JUV¢;)
— NP gtk (64t (32)
Me p

The electric and magnetic fields of the vortex may now be found for the electron vortex described
by the Bessel function of order [. The Bessel function distribution gives a cylindrically symmetric
charge and current density, each varying only as a function of radial distance p. This indicates that
the electric and magnetic fields will each also have such cylindrical symmetry.

These charge and current densities will be determined for the cases of the infinite, semi-infinite
and finite Bessel beams discussed in Section 2.5, and expressions for the electric and magnetic
fields found. For the infinite beam, the densities are given by the exact expressions above, however
the beams of finite radial extent require slight modifications in order to convey the correct spatial

distribution. This is accomplished by writing the wavefunction of the apertured beam in the form

Yy (r) = i(r)O(p1 — p) (3-3)

where O(z) is the Heaviside step function representing the beam having a finite width, with a cut
off at the first zero of the [th order Bessel function ensuring a smooth, continuous wavefunction.

The corresponding charge and current densities have the similar form

pi(r) = pu(r)O(p11 — p); (3.4)
3 (r) = 3i(r)0(p11 — p), (3:5)

so that the general methods shown below are applicable to each of the normalised vortex beams.

3.2 ELECTRIC FIELD

The electric field will be found from the charge density p using Gauss’ law:

[EC)-ds == [ spav. (3:6)
S €o Jv

Due to the cylindrical symmetry of the beam, a suitable surface S will be a cylinder of constant
radius p, and height L, centred on the origin. For the Bessel beam of infinite length it is clear that

there will be no net field in the z direction' so that the electric field has a single component in the

"The beam of finite length described in Section 2.5 has a radius of order 1079 m, and a length of order 1072
m. Provided the area of interest is towards the centre of the beam, this ratio is sufficiently large to ensure that the z
component of the resulting field is very small. Additionally, as described above, the beam in an electron microscope
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radial direction, and we may write

/ / p)pdzde = — 6|N|2/ //Jl ki) o dp dzdg. (3.7)

The full electric field is thus given by

p
| e (3:)

€op Jo
Evaluating this? gives the electric field for the infinite Bessel beam of order [:
_¢|N|?
E = —
(p)=—p 2%,

p (JP(kLp) = Jima(kip)Jiea(kip)) (3.9)

as the electric field of the electron Bessel beam. This is valid for any /, so may also be applied to the

non-vortex Bessel beam of [ = 0.

3.3 MAGNETIC FIELD

Evaluation of the magnetic field is slightly more involved, and requires a more careful choice of

limits in the use of the integral form of Ampere’s law:

B0t = o [ 30) i85+ e [ T2
e s g Ot

The electric field has no time dependence, so the second term on the right hand side of Eq. (3.10)

- dS. (3.10)

may be discarded. The remaining may now be split into three separate expressions, detailing the
magnetic field arising from each component of the current. The current passing through each of the
surfaces in Fig. 3.3.1 gives a contribution to the line integral of the component of magnetic field in
the direction of the path, so that identifying the field and current components relevant to each

surface allows us to write:
o [ T (0)pdodp = 4  [Balwpdo+ By (x)d] (5.11)
w [ J J(e)paoz = A  [Bele)pdo + B.(r) (3.12)
m [ e = f [B,(x)dp + B.(r)d] (313)

where the expressions on the right hand side of Egs. (3.11), (3.12) and (3.13) indicate the line
integrals sketched around the surfaces of Fig. 3.3.1. These expressions may now be evaluated
piecewise, for chosen limits, to obtain the full magnetic field. The cylindrical symmetry of the

situation allows us to infer that the magnetic field components, like the electric field, are functions

is considered to consist of a constant current of these electron wavefunctions of finite length, passing through the mi-

croscope in succession. Accordingly, the fields experienced by a thin TEM sample will be constant in the z direction,

so that the results derived here are applicable to the physical case, necessitating only a suitable multiplicative factor.
Evaluation of this expression is achieved though symbolic integration using Mathematica.
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of p only. However, so as to define the line integrals clearly, the magnetic field components will be

given as explicit functions of position, i.e. B(p, ¢, z).

(a) Surface S (b) Surface Sy

s %

(c) Surface S3

Figure 3.3.1: The surfaces (shaded) over which the current density components are
integrated, bounded by the paths (blue, direction indicated with arrows) over which
the magnetic field is integrated. (a) corresponds to Eq. (3.11), (b) corresponds to
Eq. (3.12), and (c) corresponds to Eq. (3.13).

3.3.1 AzIMUTHAL COMPONENT

Writing Eq. (3.11) in full gives:

p1

P2 P2 @2 p2
" / / J.(t)pdpdd = | Balpr, é,21)pde + / B, (p, 69, %1 )dp
p1 1 b1

1 p1
/B¢(p2,¢,zl)p2d¢+/ By(p, ¢1,21)dp.  (3.14)

P2

Reversing the limits of the final integral over p, and recognising that B,(p, ¢2, 21) = B,(p, ¢1, 21)
due to the symmetry of the current density the two integrals over p on the right hand side cancel,

leaving

P2
Mo/ J.(r)pdp = p1By(p1, ¢, 21) — p2By(p2; ¢, 21).- (3.15)
p1
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Choosing limits will allow By to be found - choosing p1 = 0; p2 = p is a natural choice, which

gives the general form

kN2 L

B = h
¢(P) Ello —

p
/ JE(kLp)p'dp'. (3.16)
0

The remaining integral is identical to that of Eq. (3.8); explicitly the azimuthal component of the

magnetic field of the infinite beam is then

k.| N;|?

2m,

By(p) = epoh p (JE(krp) = Jioa(kip) Jii(kop)) - (3.17)

3.3.2 AXIAL COMPONENT

From Eq. (3.13), we have

P2 fz2 P2 22
Ho / / J¢(I‘)d2dp :/ Bp(p> ¢7 Zl)dp + / Bz<p27 ¢7 Z)dZ
P1 z1 P1

21

P1 <1
+/ Bp(p7¢>z2)dp+/ Bz(p1a¢>z)d’z‘ (3-18)

P2 z2

Once again, the contributions involving B, (p, ¢, 2) may be eliminated to give

P2
1o / Jo(r)dp = B.(p2, ¢, 2)dz — B.(p1, ¢, 2)dz. (3.19)
p1
Here, the limits are again chosen so as to eliminate one of the terms on the right hand side. The
infinite Bessel beam may be thought of as a set of concentric infinite solenoids, so that the
contribution to the field in the z direction at p comes from the circulating current j¢ enclosed
within the radius p. The magnetic field should tend to zero as p — o0, since J;(00) — 0, giving a

sensible limit as p; = p; p2 = o0. This gives

UN2 [ J2(k,
B.(p) = epoh 1V / %ﬂ))dﬂ’- (3.20)
e Jp

Evaluating this® for an infinite Bessel beam of order [ gives

Bz (p) = 6M0h

|V, |2 AT By [{L 1+ 51 {0+ 1,1+ 1,20 4 1}; —p?)
om, - 2T (1)]2 ;o (3.21)

where ,F[{a;...a,};{b1...b,}; 2] is the generalised hypergeometric function, and I'(z) the
gamma function. This general form reduces to a series of products of Bessel functions for particular

values of [.

*Evaluation of this expression is achieved though symbolic integration using Mathematica.
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3.3.3 RaADIAL COMPONENT

In both the calculations above, the radial component of the magnetic field was neglected without
issue. This suggests that there is no radial component to the net magnetic field generated by the
vortex current; continuing the analogy of the vortex beam with a solenoid shows that this is the
case. The current density of Eq. (3.2) has a helical form. A classical helical current carrying infinite
wire is expected have a magnetic field directed through the centre of the helix in the z-direction due
to the circulating current, as well as a field in the azimuthal direction, due to the linear charge
transport. No radial component is expected, unless the helix itself is deformed, breaking the

cylindrical symmetry.

3.4 SIMULATION OF ELECTRIC AND MAGNETIC FIELDS FOR THE BESSEL BEAM

The electric and magnetic field expressions found above are used to find the quantitative
electromagnetic fields of the normalised Bessel beam wavefunction of Section 2.5. The fields for
each case of the infinite and finite beams (the semi-finite beams shows the same spatial variation,
with reduced magnitudes due to the different normalisation factor) are evaluated for [ = 0, 1,3
and 10, so as to show how the characteristics of the field change with increasing orbital angular
momentum. Comparison with [ = 0 will indicate the specific characteristics that are unique to the

vortex beam with orbital angular momentum.

3.4.1 INFINITE BEAM

The infinite beam has the straightforward spatial form

Vki
2T

Ui(r) = Ji(kip)e™Zet?. (3.22)
The general results of Eq. (3.9), Eq. (3.17) and Eq. (3.21) are directly applicable to the infinite
beam. The resulting fields for various values of [ are plotted in Fig. 3.4.1 and Fig. 3.4.2, for each
beam having transverse momentum k; = 2.3 X 10 m~!. These plots were generated in
Mathematica by straightforward substitution into the relevant expressions.

The electric field and the ¢-component of the magnetic field have a similar spatial distribution -
as can be seen each node of the beam leads to a local maximum of the field amplitude at a radius
enclosing the node. This gives the fields an oscillatory character. It is clear that the amplitudes of
E, and B, tend to a finite value, due to the charge and current densities having a non-zero value
everywhere except at p — 00. The z-component of the magnetic field exists only for those beams
with [ > 0 - as discussed above this field component arises due to the circulation of current within
the beam, which requires vortex characteristics. This axial field has a maximum at the centre of the
beam, dropping off quickly to approach zero. This field also shows oscillations; again, the total
current contained within each node is the same, so that the local current density within each ring is
greatly reduced with p, and the oscillations quickly become small.

The magnetic field plots of Fig. 3.4.1 show the two components of the magnetic field on the
same graph. Note that B, (p) is two orders of magnitude smaller than B, for all values of [. The
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field magnitudes are found to decrease with increasing [, due to the overall decrease in amplitude of
the Bessel beam probability wavefunction, as shown in Fig. 2.2.1. The spatial variation of the fields
is plotted in the 2 = 0 plane in Fig. 3.4.2; the electric field plots for each value of [ are plotted with
colour scale relative to the electric field for the [ = 0 beam, and similarly the plots of both By (p)
are scaled to By(p) for [ = 0. The B, (p) plots are scaled to 1% of By (p) for [ = 0 in order to
ensure that detail is visible. The magnitudes of the fields found for the infinite beam are very small,
since the infinite beam represents a single electron wavefunction spread over all space, so the charge
and current densities are very small. When the extent of the electron wavefunction is restricted, as

with the finite beam, the magnitude of the field become more reasonable.

3.4.2 FINITE BEAM

As indicated above the wavefunction of a finite beam normalised with respect to a total axial

current, I, has the form

o [Zkime ik.z il
Uy (r) = Wtﬁ(kip)e “e"?O(pi,1 — p). (3.23)

Evaluating the fields for such apertured Bessel beam of order [ = 0, 1, 3 and 10 and

kL =23x100m™! gives the fields shown in Fig. 3.4.3 and Fig. 3.4.4. In order to obtain to
correct spatial distributions for the fields, the expressions Eq. (3.8), Eq. (3.16) and Eq. (3.20) were
re-evaluated using the charge and current densities for the apertured wavefunction, as given in

Eq. (3.4) and Eq. (3.5).

The main difference compared to the infinite fields of Section 3.4.1 is that the fields are no longer
oscillatory, and tend to zero since the current and charge density are both zero outside of p; ;. The
single node of the apertured Bessel beam leads to single maximum in each of the £,(p) and By (p)
fields, which then fall off to zero since no further change or current density is enclosed. Similarly,
B.(p) is now exactly zero at p; 1, as there is no current outside this radius to contribute to the field.

The relative magnitudes of the fields of the finite Bessel beam are shown in Fig. 3.4.4. Again, the
increase in [ leads to a decrease in the overall field strength; however the overall magnitude is much
larger than that of the infinite fields, and closer to what would be expected for an experimentally
realisable electron vortex. The magnetic fields are of the order of 1075 T for the azimuthal field,
and 1078 T for the z-component. These fields are very small, but scale linearly with current, so that
larger fields could be produced experimentally. The z-component is particularly interesting, as it is
unique to the vortex beam, and is very localised in a region of A order. This indicates that the vortex
beam could potentially find applications in investigation quantum mechanical phase effects due to

localised magnetic fields and flux quanta, such as the Aharonov-Bohm effect [ 104].
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Figure 3.4.1: The electric and magnetic fields of the Bessel beam of infinite radial
and axial extent. For beams with [ = 0, 1, 3 and 10 the electric fields are shown in
(), (c),(e) and (g) respectively, with the magnetic fields shown in (b), (d),(f) and
(h). Note that the z-components of the magnetic fields are two orders of magnitude
smaller than the ¢-component.
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Figure 3.4.2: Density plots of the electric and magnetic fields for the infinite Bessel
beam. Plot colour of E,(p) and By (p) is scaled to the corresponding fields of the

| = 0 beam, with high field shown as yellow, and low as dark blue (order reversed for
negative electric field). B, (p) is plotted scaled to 1% in order to show detail.
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Figure 3.4.3: The electric and magnetic fields of the Bessel beam of finite radial and
axial extent. For beams with [ = 0, 1, 3 and 10 the electric fields are shown in (a),
(c),(e) and (g) respectively, with the magnetic fields shown in (b), (d),(f) and (h).
Note that the z-components of the magnetic fields are two orders of magnitude
smaller than the ¢-component.
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Figure 3.4.4: Density plots of the electric and magnetic fields for the infinite Bessel
beam. Plot colour of E,(p) and By(p) is scaled to the corresponding fields of the

[ = 0 beam, with high field shown as yellow, and low as dark blue (order reversed for
negative electric field). B, (p) is plotted scaled to 1% in order to show detail.
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Linear and Orbital Angular Momenta of the Vortex

Beam

LECTRON AND optical vortex beams both possess quantised orbital angular momentum. The
E precise density distribution of this orbital angular momentum depends on the structure of
the beam, and its distribution. In this chapter, the linear and angular momenta of the electron and
optical Bessel and Laguerre-Gaussian vortices are derived and discussed. It is found that for an
optical vortex beam with either the Bessel or Laguerre-Gaussian distribution has total momenta -
both linear and axial - in the z-direction only, despite the presence of other components in the
momentum density. This is also found for the electron vortex beam case. Since both the optical and
electron vortices are shown to induce rotational motion, in particles acting under their influence
(5,27, 28, 105] the conclusion must be that the momentum density of each vortex is important.
For the optical spanner effect, it is the momentum density of the fields penetrating the particle that
produces the rotation [ 105 ], whereas for the electron vortex, the rotation is thought to be a
mechanical effect arising due to elastic collisions between the object and the vortex mass current
density [27].

Knowledge of the momentum densities of the electron and optical vortices is therefore
important for discussion of the rotation of particles in such fields. The linear and angular
momentum densities of an optical vortex of general distribution are given in Section 4.1, leading to
the total linear and angular momenta. The linear and angular momentum densities of the electron
vortex are also found, however the electron vortex is found to have two contributions - one
mechanical, due to the mass flux, and one electromagnetic, due to the fields associated with the
electron vortex. These are evaluated and compared in Section 4.2. Finally, the magnitude of the
rotation of a nanoparticle induced by the mechanical influence of the electron vortex is estimated in

Section 4.3, and the potential use for electron vortices to investigate friction forces on nanoscale
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particle is discussed.

4.1 OPTICAL VORTICES

The momentum density of an electromagnetic field can be found from the energy flux density of
the field, the Poynting vector S. For a periodically varying field, such as the case of the optical

vortices considered here, the Poynting vector must be averaged over a wave-cycle

1
S=—(ExB). (4.1)
Ho
For the linear momentum density, we have
1
P= —28 (4-2)
c
=¢c0(E x B). (43)

Similarly, the angular momentum density is found to be

L=rxP (4.4)
=¢eor X (Ex B). (45)

The total linear and angular momenta of the beam will be found by integrating the corresponding
density over the extent of the beam. This will be applied to the optical vortex solutions of Chapter

2, here given in the form:
E(r,t) = FEou(p, z)e'?e=2e~i¢, (4.6)

for some polarisation €. The functions u(p, z) may be either the Bessel or the Laguerre-Gaussian

mode functions without the phase factor e/#*i*=

us(p) =Ji(kLp); (47)
uL(p, %) :\/% (;{3) L, (%)
X exp {—wf(zz) — 2(2{;) +i(2p + 1 + 1) arctan (i) } . (a8)

The linear and angular momentum densities will be found for optical vortices of the form given

in Eq. (4.6) for circularly polarised fields having spin 0 = +1. The polarisation vector € is then

g=210Y (4.9)
2
_ e7%p — ioce" 7% (4.10)
5 : :
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giving

E(r,t) = TOu(p, z)etkezemiwt (e”(”")“bp — zgez(l"’)“bqb) ) (4.11)

The magnetic field of the optical vortex is found from the electric field vector using Faraday’s law

VXE:—%—?; (4.12)

giving the corresponding magnetic field as

EO eikzze—iwt

B = 5 [ﬁaei<l—0)¢ (ik.u + O,u) — ipe’T? (iku + O,u)
w
) ) l )
—Z (ge’(l_”)‘z’u + ae’(l_”)¢0pu + —( +9) 6l(l+a)¢U>] . (4.13)
p p

The electric and magnetic fields may now be used to find the momentum density, using
€
PZEO(E*XB+E><B*). (4.14)

The linear momentum density of the optical vortex is found to be

E2 |- [ , A A .
POV _ €0l ¢{2< + U)u*u+ gu*u (627,U¢ + e—?zad)) + O'U*apu (6210(15 + 6—220(75) }
4w p p
(i | | A
— PZO‘( + U) wtu <62w¢ _ 6—2w¢) + 4Zk‘zu*u] : (4.15)
P

which simplifies to become

7w sin(2¢)

+ qAb{ wu+ Zutu cos(2¢) + ou"d,u cos(2¢)} + 22kzu*u] :
P p
(4.16)

From this, we may now find the total linear momentum, by integrating over all space. However, the
momentum density must first be given in a fully independent coordinate representation, as the
precise directions p and qAS depend on position. It will be convenient to express the unit directions
in independent Cartesian coordinates, but perform the integration using cylindrical polar

coordinates. The unit direction p can be expressed in Cartesian coordinates as

o x A ) A
p = X+ Yy,
/132 + y2 /.T2 + y2
= cos ¢X + sin ¢y; (4.17)
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similarly, the unit ¢ direction is written as

é it ———
= - X Yy,
/332 + y2 /.’13'2 + y2
= —sin ¢X + cos ¢y. (4.18)
The total linear momentum of the beam is now given as
P= /dV}E (P, cos ¢ — Pysing) +y (P,sin ¢ + P, cos ¢) + 2P, (4.19)

It can be seen that, regardless of the specific functional form of P, or Py, the integration over ¢ will

yield zero for all X and y terms. Thus the linear momentum is found to be in the Z direction only:

E2
Poy = 2020 / wudV, (4.20)
w

which, for a properly normalised single photon wavefunction gives the result
Pov = zhk,. (4.21)

The angular momentum density of the beam may also now be found, by applying Eq. (4.5) to

the linear momentum density of Eq. (4.16),
Loy = —pzPs+ ¢ (2P, — pP.) + 2pP,. (4.22)
The angular momentum density then has the form

EOES
2w

Lov =

- f)z{ (L+ U)u*u + Zutu cos(2¢) + ou"0,u cos(ng)}
P P

+ (}{z ( ; 7) uusin(2¢) — kazu*u}

+ Zp{ ( ;U)u*u + %u*u cos(2¢) + ou"0,u cos(2¢) }] :
(4-23)

This may now be integrated over the beam volume to find the total angular momentum within the
beam. Again, the (}5 and p unit directions must be transformed to Cartesian unit vectors; it can be
seen that neither the p or the qAS components will contribute to the total angular momentum after
integration. As for the Z component, due to the presence of factors of cos(2¢) in the second and
third terms, only the first term will contribute to the total angular momentum. Thus, the total
angular momentum within the beam is given as

~ EoEg
LOV =Z

(l+0) /u*udV; (4-24)

w
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for the normalised single photon wavefunction this gives
Lov = zh(l + o). (4.25)

Similar to the linear momentum, this is in the axial direction only despite there being transverse
components to the angular momentum density. These results are consistent with the results of
previous investigations into the momentum density of Bessel beams of various transverse

polarisations [105].

4.2 ELECTRON VORTICES

The electron vortex has two sources of momentum, both linear and angular. The mechanical
motion of the electrons within the beam gives rise to the momenta associated with the mass flux of
the beam, including the orbital angular momentum [7; however since the beam is charged it also
possesses an electric field, and a magnetic field due to its motion, as shown in Chapter 3. As shown
above, the electromagnetic fields also have associated linear and angular momenta. For the Bessel
electron vortex, these field contributions to the beam momenta will be evaluated, and compared to

their mechanical counterparts.

4.2.1 MECHANICAL MOMENTUM

The total linear and angular momenta associated with the mass flux of the electron vortex solutions
of Chapter 2 will be found from the corresponding momentum densities. Similar to above, the

electron vortex wavefunction is written in the form
U(r, t) = Nu(p, z)e’"?e*=Ze=", (4.26)

where again u(p, 2) stands for either the Bessel or the Laguerre-Gaussian beam mode functions,
given in Eq. (4.7) and Eq. (4.8) respectively, and each mode is assumed to be properly normalised.
Using standard quantum mechanical techniques, the probability current density is given by

th

2me

J=—

(V" —pVp*). (4.27)

Applying this to the electron vortex beam of Eq. (4.26) gives the general vortex current density in

the form

ih| N |?
2m,

~ 21l
J= p (u*0u — ud,u*) + ¢—Zu*u +z (U 0,u — udu* + 2ik,u u) | . (4.28)
p

For the electron vortex the linear momentum density is given by the mass current density, found

from the probability current density by

Prv = meJ. (4.29)
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Similar to above, the angular momentum density is found using
LEV =TI X ,PEV‘ (4.30)

The total linear momentum of the general electron vortex wavefunction of Eq. (4.26) is found to

be
AN |?

PEV = 9

/ (tud,u™ — 1w 0u + 2k, u*u) dV; (4.31)

once again, only the Z component contributes, due to the vanishing integral over ¢. For the Bessel

beam of Eq. (2.13) the total angular momentum is

P2, = 2nhk, LT)| N |*z
— hk,z, (432)

using the normalisation of the electron vortex in Section 2.5. For the Laguerre-Gaussian beam, the
situation is a little more complicated, due to the complex z-dependence of the mode function

urg(p, z). The linear momentum becomes

2 2 (.2 2
PLG — @ / <— kzzp ((52 :;}25))2 —2(2p+1+1) ﬁ + 2kz> wudV.  (4.33)
In the limit of a Laguerre-Gaussian beam with infinite length the contribution of the first term and
second terms goes to zero, recovering the expected momentum of /k.. We note here that the
Bessel beam is an eigenstate of the momentum operator p, = —ih0,, while the
Laguerre-Gaussian beam is not.

The angular momentum density of the Bessel beam is found from the linear momentum density

in the same way as before; we have

RN | -
Ley = | 2” ¢ {iz (v Opu — ud,u™) + ip(ud.u* — u*d.u + 2k uu)}
20, .,
+;(z — p)utu|. (4.34)

Again, the unit vectors p and q;ﬁ are replaced by the Cartesian vectors Eq. (4.17) and Eq. (4.18), so

that the total orbital angular momentum of the beam is found to be

Lgy = lh|Nl|2/u*udV

= hlz (4.35)

for both the Bessel and Laguerre-Gaussian electron vortices, as expected. Both modes are

eigenfunctions of the angular momentum operator L.
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4.2.2  ELECTROMAGNETIC MOMENTUM

The electromagnetic fields of the Bessel vortex were shown in Chapter 3 to have the following form

E(p) =p— [ nlp)p'dp, (4-36)

for the electric field, and

~

B(p) = po {05; /0 ' J(p)p'dp’ + 2 /p ) j¢(p’)dp’] (4.37)

for the magnetic field. We will now apply the same treatment as in Section 4.1, using the Poynting
vector to determine the linear and angular momentum densities. For the linear momentum density,

we have

P = =0 (—9E,B. +2E,B,) (4:39)

which implies for the angular momentum density
Lo = 0 (p2E,B. + $pE,By — 2pE,B. ) . (439)
Once again, the p and dA) components vanish after integration over ¢, leaving

Pey = Zao/EpB¢dV; (4.40)

Ley = ieg/pEszdV. (4.41)

These may now be evaluated for the typical electron vortex beam of Section 2.5, using the relevant
electric fields of Chapter 3. This is carried out for the beams of finite radius and length, having
[ = 0,1, 3 and 10, using the expressions for electric and magnetic fields obtained using the finite
wavefunction of Eq. (3.23). The integrals of Pgy and Ly should be evaluated over all space;
however, as described in Section 2.5.3 the beam is considered to consist of a ‘stack’ of single
electron wavefunctions, so the integral over 2 may be restricted to the beam length L ~ 4cm, in
order to find the contribution per electron. It is not sensible to evaluate the total momentum of the
beam of infinite radial extent; since the Bessel beam contains an infinite number of nodes, with
each node carrying the same total current. Thus, the electric and magnetic fields approach a
non-zero value at infinity, leading to an infinite total linear or angular momentum within the beam.
The results of the total linear and angular momenta for the finite beams' are summarised in Table
4.2.1 and Table 4.2.2 respectively. For the linear momentum, it is found that each beam carries

approximately the same linear momentum in its field, and the minor discrepancies are considered

'In order to obtain the linear and angular momenta, the integrals of Eq. (4.40) and Eq. (4.41) were performed
numerically using Mathematica. For the linear momentum the upper limit of the radial of Eq. (4.40) integral should
be infinity, however it was found that the expression E, B p did not converge sufficiently quickly to obtain a sensible
result. Instead, the limits for each integral have been set to 108 p1,1, which is of the order of cm. Extrapolation of the
fields to this point shows that they are effectively zero, being 10® times smaller than the field maximum, so that this
limit is sufficient to show the order of magnitude of the electromagnetic momentum. For the angular momentum,
this is no longer a problem, as the relevant magnetic field is identically zero outside of the beam radius, so that setting
the upper limit to p; 1 yields an exact result.
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PM(kgms_l) PEM(kgms_l) Py /Py
=0 hk, —6.12 x 1073*  —2.53 x 10712
=1 hk, —6.04 x 1073 —2.50 x 10712
=3 hk, —6.00 x 1073*  —2.48 x 10712
=10 hik, —5.95 x 1073 —2.31 x 10712

Table 4.2.1: Magnitude of the mechanical and electromagnetic contributions to the total linear
momenta of the electron vortex Bessel beams with [ = 0, 1, 3 and 10.

Ly(Js) Lem(Js) Lgym/Liv
=0 0 0 -
=1 h —1.59 x107%® —1.51 x 107"
=3 3h —353x 107 —1.12x 10 ™
=10 10h —352x107* —334x10°%"

Table 4.2.2: Magnitude of the mechanical and electromagnetic contributions to the total
angular momenta of the electron vortex Bessel beams with [ = 0, 1, 3 and 10.

to arise from the approximation made in the numerical calculation, since the total charge and
current contained in each Bessel beam is the same. The ratio of electromagnetic to mechanical
angular momentum appear to decrease with an increase in orbital angular momentum. Both Py
and Ly, are extremely small compared to their mechanical counterparts; at these currents of 1 1A

they are negligible.

4.3 MECHANICAL ROTATION OF A NANOPARTICLE

The electron vortex has been shown to cause rotation of nanoparticle placed within the beam,
however the precise mechanism causing the rotation is as yet unclear [27, 28]. The exact
mechanism of interaction will depend on the particularities of the nanoparticle, such as its shape
and composition. For a dielectric medium, extra effects due to the fields of the vortex may arise,
while for metallic particles excitations such as plasmon resonances may modify the interaction,
though these effects will be small relative to the mechanical effects of elastic collisions between the
electrons and the particle, since the probability of inelastic interactions is small for small particles.
The observations of Verbeeck et al. and Gnanavel et al. show conclusively the electron vortex
induced rotation of nanoparticles [27, 28]. The confirmation of rotation in both cases was achieved
by observation of the rotation of the crystal planes of the nanoparticle, however due to frictional
forces the observed rates of rotation were very small, so that the particle achieved a rotation rate of
the order of a few mrads ™" to tens of mrads'. Though the effect is small, the influence of the
electron vorticity is clear, as the direction of rotation changes for beams with opposite vorticity.
However, (unpublished) experimental observations at York show that the net rotation is
accompanied by oscillations in both directions such that on small timescales the direction of

rotation switches. It is also noted that in order to obtain any rotation, the nanoparticles must be
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subject to the beam for some time, so that the support on which the particles are resting is damaged,
making minimal contact with the particle [28]. These observations suggest that friction plays large
role in these experiments. Since friction on the nanoscale is not well understood, it is difficult to
obtain quantitative results regarding the elastic interaction of electron vortices with particles.

Two possible experiments for observation of nanoparticle rotation in the absence of friction are
sketched below in Fig. 4.3.1. Both experiments involve a nanoparticle suspended in the field of the
electron vortex - in the first scenario, depicted in Fig. 4.3.1a this is accomplished by laser trapping,
while the particle in the second scenario is levitated by the combined action of two
counter-propagating beams, as shown in Fig. 4.3.1b. The magnitude of possible rotation induced

may now be estimated for both cases.

() (b)

Figure 4.3.1: Proposed experiments to explore electron vortex induced rotation of
nanoparticles in the absence of friction. (a) shows a cylindrical nanoparticle of ra-
dius and height R suspended in the laser field of optical tweezers (red), illuminated
from above by an electron vortex (yellow). (b) shows the same nanoparticle bal-
anced in the centre of two counter-propagating electron beams, one approaching
the particle from above (yellow) the other from below (blue). The opposite orbital
angular momentum of the counter-propagating beams gives a total angular momen-
tum of [T = 2. In both cases, the effect of elastic collisions with the beam induces a
rotation with angular frequency 2.

The laser-levitated particle of Fig. 4.3.1a is taken to be made of silica, with
R=10"%m M = pomR? (4.42)

with the mass density of fused silica approximately pp, = 2.2 x 10> kg m™®. The particle is placed
into an optical trap, so that it is suspended in free space, and there are no friction forces acting.
Illumination of the nanoparticle with an electron vortex will induce rotation with angular

frequency
Q=—, (4.43)



with L the total angular momentum transferred to the particle, and I the moment of inertia of the
cylindrical particle. The angular frequency of the particle will increase with the continuous transfer
of angular momentum from the beam, and the angular acceleration can be estimated by assuming a
certain rate of transfer from the beam with a particular current /. Simulations indicate that a
typical transfer would be expected to be approximately 0.1/ per electron [51], this suggests an

average angular momentum transfer rate of

0.1n1,

Lg = (4.44)

The angular acceleration is then

0.1A1,
el

For the silica nanoparticle the angular momentum transfer gives an angular frequency of

(4-45)

o =

approximately 30 Hz after interaction with a single electron. In a beam with a current of I, = 1 nA
this suggests an angular acceleration of 1.9 x 10! s™2. This is extremely large, as despite the small
beam current a large number of electrons pass through the beam in a second. This in line with the
‘in principle infinite rotational energy’ mentioned in [27], though in practice this will be limited by
experimental factors.

This analysis may also be applied to the scenario involving counter-propagating beams depicted
in Fig. 4.3.1b, in which the particle is constrained by the oppositely acting axial forces of the two
beams. Assuming the beams are otherwise identical (same current, energy, momentum), and if the
forward propagating beam has a winding number of [ and the reverse propagating beam —/ then
the total angular momentum of the beam will be 2/. Assuming the same transfer of 0.1% per
electron suggests the resulting angular velocity and angular acceleration will be double those found
above, namely 60 Hz and 3.8 x 10! s72 respectively for the silica nanoparticle, or 3.5H z and
2.2'% s73 for a gold nanoparticle of the same dimensions.

Experiments of this type could be used to explore the effect of nanoscale friction, by providing a
control environment in which to measure the unhindered motion to compare with the effect of
interactions with various surfaces. Similar experiments may also be considered to explore viscous
forces, for example by using nanoparticles suspended in liquids in a liquid-cell sample holder. The
electron vortex provides a method by which particles may be moved transverse to a surface, so that
friction between various surfaces and particles may be investigated directly; this transverse motion
may also find application in nanomanipulation for various uses. In addition, such experiments may
provide an opportunity to explore the effects of the transverse components of the linear and
angular momentum densities, by slightly displacing the particle from the beam axis and studying

the subsequent motion.
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Interactions Between Optical Vortices and Atoms

HE INFLUENCE OF optical vortices on matter has been investigated by several authors
T [14,66,68-71, 106] via several different methods. It is accepted that to leading order
interactions, the optical vortex cannot couple to the internal degrees of freedom, including the
atomic electron motion, via exchange of orbital angular momentum [ 14, 66, 68, 69, 71], and these
results have been confirmed experimentally [ 107, 108], in both the paraxial and non-paraxial
regimes.

The mechanism of an interaction between an optical vortex and atomic-type matter is
considered here, in the paraxial approximation. The coordinate frame of the interaction and basis
states of the vortex and atomic system is introduced in Section 5.1, before the full Lagrangian of the
interacting system is presented in Section 5.2 and used to find the full system Hamiltonian,
including vortex-atom interactions. In Section 5.3 the matrix element of the interaction
Hamiltonian is used to determine the orbital angular momentum selection rules, and these results
are discussed with reference to the theoretical and experimental literature in Section 5.4

The schematic of the interaction described here will form the basis for investigation of the
similar interaction between atomic matter and an electron vortex. As such, the coordinate system
introduced here will be common to both optical and electron vortex interactions, though we will

show that the mechanism and results are drastically different.

5.1 THE COORDINATE SYSTEM AND BASIS STATES

The coordinate frame of the interaction has its origin at the centre of the vortex beam, and is the
cylindrical frame used previously to describe the vortex. The atom is free to move within the beam,
and it is assumed that the electric field is approximately uniform over scales of the order of the

atomic radius so that the dipole expansion is valid (as is shown in Section A.4 the gradient of the

78



center

beam position of mass

atomic
electron

Figure s.1.1: The relevant coordinate frames in the description of the interaction
between a two-particle neutral system and Bessel-type optical or electron vortex
beam (schematic). The vortex position variable, r,, relative to the laboratory frame
is given in cylindrical coordinates; R is the position variable of the atomic center of
mass, and q stands for the position variable of the internal (electron-type) motion,
described in cylindrical coordinates about r),. The projections of the three position
vector variables on the xy plane are seen to have azimuthal angular coordinates ¢,,,

® R, and ¢, respectively.
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field contributes to the quadrupole interaction). The centre of mass of the atom is located at
position R(pg, ¢r, zr) relative to the origin, while the nuclear and atomic electron positions are
denoted by r,,(pp, ¢p, 2p) and re(pe, G, 2e) respectively. Position within the beam is indicated by
ry(pu, Gu, 2y). The atomic electron is described slightly differently - with respect to a spherical
coordinate system centered on the nucleus as is usual for the hydrogen atom. The position in this

atomic frame is denoted by q(p,, ¢4, 0,), such that

r,+q=r.. (5.1)

The centre of mass position is defined as

Mele + Mply

R = (52)

M
where M = m, + m,, is the total mass of the atom. The particle position variables are given in
terms of g and R by
m me
r.=R+ —Lq; r,=R—-—q. .

Additionally, in this frame of reference the two-particle system possesses a total charge density
given by
pa(r) = ed(r —r,) —ed(r —r,.). (5-4)

This set up is demonstrated in Fig. 5.1.1, and is common to the atomic interactions of both the
optical and electron vortex, and will be referred to in Chapter 6.
The quantum state of the atom is taken to be a product state of the eigenstates of the motion of

both the atomic electron and atomic centre of mass:

|¢atom> - |wq(Q); wR(R» ’ (5-5)

where 1,(q) and )z (R) are the electronic and centre of mass eigenstates respectively. The

internal electronic type motion is considered to be in a well defined hydrogenic state,

Vg (Q)) = [¥g(pg: 0, Bg)) = Nn,é,an(pq>Pém(COS(9q))eim¢q7 (5.6)

where the integer / is the internal orbital angular momentum (not to be confused with [, the vortex
orbital angular momentum quantum number about the beam axis); m is the internal magnetic
quantum number (such that —¢ < m < /), and n is the principal quantum number of the internal
motion. Q,,(p,) describes the radial part of the hydrogenic wavefunction.

The eigenstates of the centre of mass are taken to be product states of both its translational and

rotational motion

[Ur(R)) = Ni [¥r(pr, Or, 2r)) = R(pr)e™+rre! retton, (5.7)

where the subscript [? indicates centre of mass coordinates relative to the laboratory frame. K
and K, are centre of mass wavevectors for the in-plane translational motion and motion along the

z-axis, such that the total linear momentum of the centre of mass is given by K = K? + K2. Lis
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the orbital angular momentum quantum number of the centre of mass about the beam axis, such
that the atom is free to rotate about the beam.

Treatment of the interaction proceeds from a Lagrangian formalism, from which the full
Hamiltonian H, including the interaction Hamiltonian H2Y, is derived. The transition matrix
element ML}, is found from:

My = (w5 [ Hot | vi). (5-8)

and will yield the orbital angular momentum selection rules of the interaction. From these
selection rules it is possible to determine which final states are accessible from a specified initial
state, from which it will be seen whether it is possible to access a final state in which orbital angular

momentum is transferred between the vortex and the atom.

5.2 LAGRANGIAN AND HAMILTONIAN FORMALISM

In the coupling of initial and final atomic states by the optical vortex field we consider a minimum
coupling prescription such that the interaction Hamiltonian takes the form p - A. The interaction
here will be fully quantised such that the magnetic vector potential A (R) takes the form of
Eq. (2.24)

A(r,t) = A(r,t)ay, . + A*(r,t)a) . . (5.9)

with dL ; and ay ; respectively the creation and annihilation operators for a vortex photon with
k = \/k* + k2 and orbital angular momentum lh. For notational brevity, the hat notation for
operators will be dropped.

5.2.1 LAGRANGIAN FORMALISM

The full Lagrangian of the atomic system coupled to the optical vortex may be written as

L=Ly™+ LYV + LY. (5.10)
where Ly is the component of the Lagrangian associated with the kinetic energy of free particles,
LS the component associated with the existence of the electromagnetic field, and L;, that
associated with the interaction of the charged particles with the field. Following standard
Langrangian techniques such as [ 109] the full Lagrangian of any system of particles and

electromagnetic fields may be written as

1
L= Za: Mat,2 + % / Z; (E2(r) — ¢®Bi(r)) d’r + ; (¢ata - AY(ra) = gady(ra)),

e '

LK LEM LInt

(5.11)

for collection of particles indexed by ¢, and fields indexed by 7. Lk denotes the kinetic energy from
the particle motion, Lgy the energy associated with the presence of the electromagnetic fields, and
Ly, the interaction energy between the particle and fields. This general form will be applied to the
atomic-optical vortex system described in Section 5.1. For our purposes here we consider a system

of bound charges, rather than free, so we also require a term associated with the Coulomb potential
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between the charged particles, which we write as V3(r,, ), indicating the Coloumb potential at
position I, due to charge g3 at r3. The standard Lagrangian of Eq. (5.11) then becomes

Z Ml Z 7aV3(ra) %/Z (Ez(r) — ’By*(r)) d’r

a<f

+ Z (QOcI"a : A/V(ra) - Qa¢7(ra)) . (5-12)

ayy

The scalar potentials Vj3(r,, ) are given by

1 qs
Vi(ry) = —— , .
5(ra) P — (5.13)

This is responsible for the binding potential that holds the particle system together (i.e. the
Coulomb potential within the atom), and is distinct from the scalar potential of the external

electromagnetic field, ¢(r) (in this case the vortex potential). The Lagrangians L™, LSV and LYY

int

may now be separated as

L™ = Zma anv/g (ra); (s.14)

a<f
LoV — %/Z (B2(r) — @B (r)) dr- (s.15)
Ly = Z (¢aTa - Ay(ra) = qady(ra)) . (5.16)

o,y

The electric and magnetic fields E. (r) and B, (r) may be written instead in terms of the associated

scalar and vector potentials, ¢ (r) and A, (r).

B,(r) =V x A,(r); (5.17)
E,(r) = _A'y(r) — Vo, (r), (5.18)

which allows Eq. (5.15) to be written

Lov /Z ( )+ Vo (r ))2 — 2 (V x Av(r))z) &r. (5.10)

Finally, the full Lagrangian of the system is

LOV — Latom + LOV + LOV

int

= —Zmar anvg ry)

a<f

/Z ( )+ Vo, (r ))2 —*(V x A,Y(r))Q) Pr

+ Z Qara : Qa(bfy(ra)) . (5-20)
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This general form is now applied to the specific case of the optical vortex and the hydrogenic
system. The two particles &« = 1, 2 are the atomic electron and proton, with the familiar properties,
and position vectors defined as in Fig. 5.1.1, while the single electromagnetic field v = 1 in this

case is that of the optical vortex. Applying this to Eq. (5.20) gives

1 1 1 €2
I == .9 = 6.2 c
gty T gele 4meg |q]
£ . 2
+ 50 ((on(r) + ngov(r)) — (V x on(r))Q) d>r

+ —ef, - Aov(re) + epov(re)
+ e, - Aoy(r,) — edov(ry), (5.21)

with

1 €2

— 5.22
471'80 |q| ( )

atom 1 W 1 :
L™ = §mpr; + §merg +

2
LSIY = —ef'e . on(re) + €¢Ov(rov) + 61"7, . on<rp) — €¢Ov(rp) (524)

LoV == ((on(r) + V¢0V(r)>2 — A (V x on(r))2) &r (5.23)

Writing the Lagrangian of Eq. (5.21) in terms of the centre of mass of the hydrogenic system will
make it simpler to determine any transitions involving centre of mass states. Making use of

Eq. (5.3), this gives

1 . M . 2 1 . M, .\ 2 1 e?
L= gmy (R=Fra) +gme (R+ Jra) + dmeo Jal
€0 . 2 2 2 3
+2 ((on<r) + ngoV(r)) — 2 (V x Agy(r)) ) &r
— e (R+T24) - Aov(r.) + edov(r.)
+e(R-22q) - Aov(r,) — edov(ry), (529)

where the relevant field dependencies have been left in terms of r. and r, for ease of reading.

Expanding:

1. - 1 1 e?
L =-MR? + ~pug? —
2 Topd dreg |qf

2 [ ((Bovte) + Voou(s)) " = (9 % Aoule)?)

+ 2
—eR-AA—eq-EA—I—eA¢ (5.26)
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where /1 is the reduced mass of the atomic system, and the following shorthand has been introduced

Ay = AOV(re) - on(rp>; (5.27)
Sa = T Aov(re) + - Aov(r,) (5:28)
Ay = Pov(re) — ¢0v(1"p)- (5.29)

The dynamical coordinates are now those of the centre of mass motion, R, and internal coordinate
q. This is now a suitable Lagrangian from which to construct a Hamiltonian relevant to the states
Eq. (5.7) and Eq. (5.6), such that the states are eigenfunctions of the Hamiltonian without
interactions.

The full Hamiltonian is defined from the Lagrangian as
H= Zpa-i'a—l—/zrl,y(r) A (r)dr — L, (5.30)
a v

where p,, is the generalised momentum of the particle coordinates r,,,

0L

Pa = 8_1'“0(’ (5-31)

and IL, (r) is the generalised coordinate momentum for the continuous field A, (r)

oL
I, (r) = oA (1) (5-32)

with £ the Lagrangian density, such that L = [ L£d’r. For the Lagrangian of Eq. (5.25) we find
that the generalised momenta py and p, are in the form
pr= MR —eAy; (533)
Py = g — eXa. (5.34)

This allows the Hamiltonian to be written as

1 2

B 471'80@ B

+ 60/ (A%V(r) + (V¢OV(I‘))2 + PV x on(r)) d’r (s.35)

H=pr-R+p, q e,

It can be seen that this Hamiltonian includes the interactions of the optical vortex field with the
centre of mass and the atomic electron by eliminating the velocities R and ¢ in favour of the

generalised momenta:

{pR+eAA]2+ [pg+eSa® 1 &
2M 2p dmeg |q|

e / (A2u(r) + (Voou())? + AV x Aoy(x)) d'r. (s5.36)

H =

€A¢
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Finally, expanding gives

1 e?

47’(’60@ B

pz P2 e e
H——R+—‘1+—pR.AA+;pq-EA+e2A§,+eQE?4— eAg

C2M  2u M
te / (A34(0) + (Voou(0)* + &V x Agy(r)) d'r. (5.37)

and we may now write the Hamiltonian in the form

nt int
identifying the following terms in Eq. (5.3 7) with the ground state and interaction Hamiltonians:

(@) _ pg L e

0o - @ - 47T€OH; (5-39)
(R) P?z
Hy" = W% (5.40)
HYV = 50/ (Azov(r) + (ngov(r))2 + 2V x on(r)> dr: (5.41)
e
Hi?ly(m = ppq +Xa+ 6221 — epov(re); (5.42)
e
HoY™ = PR Ap+ A% + edov(ry). (5.43)

The terms involving the vector potential, A 4 and ¥ 4, are defined in terms of the value of A (r)
at the location of the atomic constituents, i.e. A(r.) and A(r,) have been left in terms of the
position vectors of the electron and proton, instead of the center of mass and atomic coordinate
relations of Eq. (5.3). When these relations are substituted, the vector potential may be expanded

about the centre of mass position R. Up to second order this gives

A(r) = A(R) + 22(q- V)A(R)... (5.44)
A(r)) ~ A(R) - 5(q- V)A(R)... (5.45)

(see Appendix A.1 for full details). The leading order terms lead to the dipole approximation - it
will be shown that only this term will give first order in q, the atomic coordinate, in the interaction
Hamiltonian of Eq. (5.42). Thus, in the dipole approximation, the relevant interaction

Hamiltonians that will affect the atomic states are!

2e
Hgy " = 2y A(R): (546)
e
Hyy™ = —pr-(a- V)A(R), (5.47)

. . . '
The interaction Hamiltonian H gp (@)

this will be the focus hereafter. The Hamiltonian H g;]

will induce transitions between the atomic internal states, so

(R will affect the centre of mass motion of

the atom, due to its dipole moment [ 110], though this interaction is typically much smaller than

"Neglecting the potential ¢ov(r), as this will simply introduce an energy shift, and neglecting also terms non-
linear in A (r), as we are interested in single-photon processes only.
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the coupling of Eq. (5.46) [111].

5.3 MATRIX ELEMENT AND SELECTION RULES

The matrix element of this interaction will now be evaluated, to determine the selection rules of the
internal atomic interactions induced by the optical vortex field. The matrix element for this process
is given by

ov = <7/’f< )i ¢R( )i ”ov ‘ Hc(l)i;,(q)

(@) VR(R)s by ) (5.48)

where the superscripts 7 and f denote initial and final states respectively and n the number state

V(g)

of the optical vortex field. The interaction operator HS dip couples different atomic states via the

atomic momentum operator, p,. In the Coulomb gauge, A (R ) and p, commute. Additionally, we
1Me

have the standard relationship p, = “3=[H, (()Q), qJ; this allows the interaction Hamiltonian to be

written )
ov(g) _ 2iem,

dip A L

This commutator operator acts on the atomic electron wavefunction only - applying this yields

A(R) - [H",q]. (5.49)

<w§(q)‘ §7.q] \w >=<¢f(q)‘HSQ)q—qHéq) é(q)> (5.50)
= (& = &) (Yl(a) |a|vi(a)), (s-51)

where £ and &; are respectively the initial and final energies of the atomic electron. This allows the
full matrix element of Eq. (5.48) to be split into two parts, one acting on the atomic electron

wavefunction, and the other acting on the centre of mass and optical vortex states:

2i(Er — &) (me +my)
hm

Mby = (] (@)fe - dlvy(@) (Ur(R): nby| AR) U (R); ngy)

(5.52)

The first part of the matrix element is simply the atomic transition dipole moment, with d = eq,

P

the electric dipole moment. A(R) is the scalar operator of the vortex vector potential, the optical
polarisation vector € being incorporated into the dipole matrix element, (€ - d) 7i- This separation
of the optical vortex potential from the atomic electron states shows that the optical vortex will not
be able to induce internal transition of the atom, at least in the dipole approximation.

Both parts of Eq. (5.52) must be evaluated to determine the selection rules for the full
interaction. The details of this evaluation are given in Appendix A.2 and Appendix A.3. The full
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matrix element of this dipole interaction is now

Mgy :26E0(5f —&)(me +my)

N;N; A

hwm,,

X nhyo(K, — K. + kz)é(L,L’—l)é(névyngV—l)

— by + 18(K. = KL = k) 0000,0p e

X — iy
2

A;t(sm,m’+1 + 2~/425m,m’ ; (5-53)

with the factors Ag, Aflt ,and Ag arising from the full space integration, and defined in Appendix
A.2 and Appendix A. 3. For this interaction, there are two possible sources of orbital angular
momentum exchange between the atom and the optical vortex field. Firstly, angular momentum
may be transferred between the optical vortex and the centre of mass, by absorption or emission of
a vortex photon, leading to changes in the rotational state of the centre of mass. Conservation of
orbital angular momentum is ensured by the Kronecker deltas & (,z/—1) and ) (L,L/+1), giving an
exchange of [ 1. Total linear momentum is also conserved in the interaction, such that absorption or
emission of a vortex photon changes the linear momentum of the centre of mass by £hk..

Secondly, the internal state of the atomic electron may exchange orbital angular momentum with
the light field, but this is only possible if the optical vortex is circularly polarised. In this case, the
orbital angular momentum may change by 4=, due to the spin polarisation of the photon. This
electric dipole interaction is the standard optical dipole interaction, as exploited in measurement
techniques such as x-ray magnetic circular dichroism, and is not an effect of the vortex features of
the light. It is found that it is not possible to transfer orbital angular momentum from the vortex
directly to the internal electronic motion, even via quadrupole interactions (as shown in Appendix
A.4).

In the case of the quadrupole interaction, the orbital angular momentum of both the electron
and the centre of mass may couple together, such that a change of Am = £1 is possible, and the
internal motion may also couple to the spin angular momentum of the light field so that a total
change of up to £2h is possible. However, the orbital angular momentum of the photon again only
directly affects the centre of mass. This is the same result as that achieved by van Enk [14] and
Babiker et al. [ 68]. The position of the centre of mass is required to act as a dynamical variable in
order for any orbital angular momentum (distinct from the photon spin angular momentum) to be
transferred to the internal electronic motion. We note also that, in the dipole approximation, the
centre of mass must be free to rotate in order that any interaction occur. Thus the conclusion is that,
barring transfer of photonic spin angular momentum, any angular momentum transfer between

atomic matter and the optical vortex hinges on the rotational freedom of the centre of mass motion.
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5.4 CONCLUSIONS

This result is consistent with previous theoretical calculations of interactions between atomic and
molecular matter and Laguerre-Gaussian optical modes [ 14, 68—71, 106], using a variety of
methods of analysis. The minimal coupling scheme applied here is similar to that used in [14], in
which interaction between cold atoms and optical vortices were found to induce centre of mass
motion, but not internal transitions. These same results are shown using a Power-Zienau-Woolley
interaction formalism [68, 71], and also derived via symmetry considerations [69]. These results
all show that the interactions mechanisms pertaining to the spin and orbital angular momenta of
the beam are quite distinct, and in the dipole approximation it is solely the spin angular momentum
of the beam that affects the internal motion, rather than the total spin and angular momenta
combined. The full and meaningful separation of spin and orbital angular momentum is valid only
within the paraxial approximation [15], however even beyond this approximation it is also found
that a hydrogenic atom may emit (and therefore absorb) a Bessel photon such that only the orbital
angular momentum of the atomic centre of mass is changed [70]. Even outside of the paraxial limit
it is the field polarisation, rather than the photon orbital angular momentum, that affects the
internal motion of the atom.

In contrast to those results discussed above, results found by Alexandrescu et al. for ionised
molecular matter show that, in the dipole approximation, it is possible to couple the internal
electronic orbital angular momentum with the other rotational degrees of freedom of the molecule
[106], though the optical vortex angular momentum still does not directly couple to the internal
motion. It is found that, for ionised molecules such as H, orbital angular momentum may be
transferred between the optical vortex and the three molecular angular momentum subsystems -
internal electronic motion, centre of mass motion, and rotation of the molecule about the centre of
mass axis - such that the internal angular momentum changes by one unit, with a corresponding
reverse change in the rotational angular momentum, assisted by the centre of mass motion [106].
This result displays a similar mechanism to that of the quadrupole interaction discussed above for
the hydrogenic atom - in the molecular case the rotational degree of freedom may couple directly to
the vortex angular momentum, alongside coupling between the internal and rotational angular
momentum. The existence of the extra degree of freedom in the molecular rotation allows the
interaction to occur in the dipole interaction. This result is yet to be shown experimentally.

To date, experimental results have shown that orbital angular momentum cannot be transferred
from the optical field to the internal electronic motion [ 107, 108]. Optical vortices do not allow for
observation of optical activity of chiral materials, as demonstrate by Araoka et al. in the comparison
of absorption of light by chiral molecules having various spin and orbital angular momentum
polarisations [ 107]. The samples chosen for the investigation were the (+)- and (—)-enantiomers*
of a helicene bisquinone derivative that exhibits significant chiral optical activity at a wavelength of

514.5nm, giving a chiral dichroism signal of CD = 60 — 90 mdeg * [107]. In this experiment, the

2An enantiomer being one of the particular forms of a the two spatial structures available for a chiral compound.
*Here, a chiral dichroism signal, indicates a difference in absorption of the two different spin polarisations of light

[107])

Ia:+1 - IO'

=10y, (5.54)

CD = 7=+~ fo=—1
Iomi1 + 15—
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chiral dichroism CD is measured for both enantiomers for light with orbital angular momentum

[ = 0, £1. The total angular momentum flux of the light has contributions from both the spin and
orbital angular momentum, such that the CD signal will be significantly altered if the chiral
molecule interacts with the fotal angular momentum of the light. This is due to the presence of
orbital angular momentum breaking the symmetry of the total orbital angular momentum on the
exchange of left and right circular spin polarisations.

The results of this experiment found no such symmetry breaking. For both (+)- and
(—)-enantiomers the measured (spin) chiral dichroism signals were the same for the non-chiral
Hermite-Gaussian HGg and the Laguerre-Gaussian [ = 1 vortex beams, LG; and LGy, . This
result indicates that only the spin polarisation of the beam is relevant for the optical activity of the
sample, and confirms the theoretical predictions that the optical orbital angular momentum does
not couple to the internal degrees of freedom responsible for molecular chirality [69].

The later experiment by Loffler et al. [ 108] sought to determine whether this still holds in the
non-paraxial regime, in which spin and orbital angular momentum are inseparable from the total
orbital angular momentum [15]. The investigated samples in this case were cholesteric polymer
films of a mixture of chiral and achiral polymers, which are arranged in helical planes of parallel
molecules, so that the overall structure has spatial chirality, in addition to the molecular chirality.
This cholesteric structure arises from alignment of polymer molecules in layers, the orientation of
which changes layer by layer such that eventually a full, 27 rotation of orientation occurs. The
presence of the chiral polymers allows this to happen in this case - cholesteric films are not formed
by achiral molecules. For such a film, the optical activity is such that light of a particular circular
polarisation will be reflected, and the other transmitted, leading to 50% transmission of linearly
polarised light. The reflection wavelength at which this effect occurs is tunable by the ratio of chiral
to achiral polymers [108].

The optical vortex light was generated by a spatial light modulator acting on linearly polarised
light, and was then focused through a high numerical aperture lens, to ensure non-paraxiality. The

normalised transmission signal was then measured:

_ CDi=yp — CDi=—;

A =
CDj—y, + CDi

(5.55)

and it was found that A = 0 for all frequencies, including the chiral dichroism reflection resonance
frequency. Thus, no effect of the orbital angular momentum on the spin optical activity was
observed, in agreement with the earlier experiment of Araoka et al. . The experiment of Loftler et
al. confirmed these previous results with an order of magnitude increase in precision, and also
showed that the spin to orbital angular momentum conversion in a high numerical aperture lens is
not a reversible process [112].

Further to the experimental verification that, to leading order, orbital angular momentum may

not be transferred to internal degrees of freedom, it is now experimentally established that coupling

where [,—11 is the light intensity transmitted by the sample, with conversion coefficient C, having units mdegs.
The chiral dichroism signal effectively represents the degree of elliptical polarisation that will be induced in a beam of
initially unpolarised light transmitted through the sample, and as such has the units of an angle. The two enantiomers
will respond oppositely to each polarisation, so that their chiral dichroism signals should be, barring other effects,
equal in magnitude, and opposite in sign.
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the rotation of a particle’s centre of mass to an optical vortex beam is possible [ 5 ]. This fact has
formed the basis for the application of optical vortex beams to optical tweezers, producing optical
spanners that rotate the particle in the light field. These optical spanners have found applications in
micromanipulation [8, 9] as well as in fundamental experimental studies of the action of optical

vortices on matter [ s—7].
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O God, I could be bounded in a nut shell and count my-
self a king of infinite space, were it not that I have bad

dreams.

W. Shakespeare, Hamlet, Act II Scene II

Interactions Between Ele@ron Vortices and Atoms

HE RESULTS OF EELS in magnetised iron published by Verbeeck et al. [24] are very
T interesting, as they indicate an electronic transition induced by the vortex beam acting on the
atoms in the sample, in contrast to the optics interaction shown in Chapter 5. We seek here to
explain the underlying interaction, and to investigate the conclusion of Verbeeck et al. that the
interaction dipole-like, as in the XMCD case. This is achieved by the study of the simplest possible
interacting system - the Bessel electron beam and a hydrogen-like atom. Additionally, the
interaction mechanism considered is the Coulomb interaction only; as the energy of an electron in
an electron microscope is much greater than that within the atom, exchange effects can be
neglected. As indicated above, we find that the interaction may indeed proceed via a dipole
transition, unlike the case of an optical vortex [ 14, 66, 68—70, 106]. In the following analysis, we
look predominantly at the angular effects of the interaction - to determine whether, in principle,
orbital angular momentum may be exchanged between the vortex beam and atom.

Using a similar method as in Chapter s, the interaction Hamiltonian is derived from the full
Lagrangian of the interacting system and presented in Section 6.1. Two different methods are used
to obtain the dipole selection rules of the interaction Hamiltonian. Firstly, a direct multipolar
expansion of the Hamiltonian is considered in Section 6.2. This method proceeds similarly to the
analysis of the optical interaction of Chapter 5 and the selection rules obtained by this method my
be directly compared with those for the interaction with the optical vortex. Secondly, the selection
rules are obtained by constructing an effective Hamiltonian incorporating an expansion of the
electron vortex wavefunction itself, shown in Section 6.3. This method has the advantage that the
spatial dependence of the interaction is clear, leading to a suggestion of a novel application of
electron vortex beams to EELS chiral dichroism experiments. In Section 6.5 the selection rules
obtained in each case are used to analyse the results of the Verbeeck experiment, by explicit analysis

of the specific core-level transitions in the iron Ly and L3 edges. A comparison of the results
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obtained via the two expansion methods is made in Section 6.4, while the selection rules of the
electron vortex interaction are compared with those of the optical vortex interaction of the previous
chapter in Section 6.6.

The results obtained via the Hamiltonian expansion have been published [65, 66]. A
comparison of the electron and optical vortex-atom interactions, and the explicit analysis of the

particular transitions in magnetised iron were also included in [66].

6.1 LAGRANGIAN AND HAMILTONIAN

The theoretical framework here is similar to that described in Section 5.1. The physical system is
again described as a vortex beam interacting with a hydrogenic atom, with well defined electronic
and centre of mass states. Rather than the vector potential of the optical vortex, the electon vortex
is described by a wavefunction; the Coulomb interaction between the vortex and the hydrogenic
atom is evaluated as an interaction Hamiltonian meidating the transition between two distinct
initial and final product states of the vortex, atomic electron and atomic centre of mass system. In
order to find the interaction Hamiltonian, we describe the system by first writing directly the
Lagrangian of the system, as was the case for the interaction with the optical vortex. The atomic
part of the Lagrangian takes the same form, however the vortex and interaction components now

become

1 . 1. e? 1 1 . ~
L = Emeri + Emprz% T dmeolr, — §mer3 - /PA(r)CI’(r)dgr, (6.1)
D e

where p (1) is the atomic charge density given by
ﬁA(r) = 65(1‘ - rp) - 66([‘ - re)> (5-4)

and the Coulomb potential, ®(r) is

e 1
4reg v, — 1|’

[mwewaer = = (- ). (63)

~ dweg \|r, — 1| |r, — 1,

d(r) = (6.2)

such that

As we are interested in the effects of the interaction on the atomic electron, the atomic electron
coordinate r, = r, 4 q may be substituted to give
e

LY = lme(f +q)2+1m i°2+1mel"2+ : L ! ) (6.4)
2 p 2 Pep 2 v 47'('60 ’I‘U—I'p’ \I‘U—I'p—(ﬂ ‘q’

As before, we find the interaction Hamiltonian using standard Lagrangian techniques [109]

H:Zpi'f‘z'—L7 (6.5)
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where conjugate momenta in this case are

oL . . .
Pp= = me (T, + q) + myr, (6.6)
p
oL . .
= 7. — M +q), 6.
Pq 8(31 m (rp CI) ( 7)
oL
Py = = mei'v- (6'8)
or,
This gives the full Hamiltonian as
1 1 1 e? 1 1 1
HEV:_M'2 - e'2 - 6-2_ o _ 6.
2 rp—|—2mq+2mrv 4reg \ |ry — 1| \rv—rp—q]+|q| . (69)

where M = m,, + m,, the total atomic mass. The interaction Hamiltonian is thus

R 2 1 1
- ) (6.10)

dmeg \ |ty — 1, —q|  |r, — 1]

The interaction Hamiltonian found in this way is precisely the Coulomb interaction between the
three particles in the system, as can be written directly from the relative positions of the particles.
However, this is not a ‘gpod’ Hamiltonian to apply to the centre of mass states of Eq. (5.7), asit is
not given in terms of the centre of mass position, but rather the nuclear position. As before, we may
find a suitable Hamiltonian by writing the atomic electron and nucleus positions as in Eq. (5.3):
Me

m
re:R+_pq; I'p:]-:{_]\/[q (5-3)

M

Applying this to the Lagrangian of Eq. (6.1) gives a Lagrangian of the form

1 - m 1 . 1
em 2 P2, L C Me .o Lo
277’L6(R+—]\/[q) + 2mp(R Mq) +gmety
N e? ( 1 1 n 1) (6.11)
— ) o . 11
dreg \ |ty — R+ T2q| |r, —R—F2q|  |q|

The canonical momenta of the generalised coordinates r,, R and q are then

Pr = m.R; (6.12)
Py = H4; (6.13)
Pv = mel.‘v; (6-14)

so that the Hamiltonian is then given by

1 ., 1 1
HM = §m6R2 + 5;@2 + §mef3

o2 ( 1 1 n 1 > (6.15)
_ —— — — |, (6.5
47reg |I'1, — R+ ﬁq‘ |rv -R - qu’ |q|
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with

e? 1 1
HM _ _ _ = . 6.16
Int 47eg (|I‘U -R+%5q |r,—R— M”q|) (¢20)

We now have two distinct Hamiltonians for the same interaction. H-M, the Hamiltonian
involving the centre of mass coordinate, is the appropriate Hamiltonian for finding the selection
rules via multipolar expansion of the interaction Hamiltonian, and can be compared directly to the
optical vortex results of the previous chapter; while it will be shown that for the second approach,
involving multipolar expansions of the wavefunctions themselves, the basic Coulomb Hamiltonian
of Eq. (6.9) is appropriate.

As before, we evaluate the transition matrix element of the interaction Hamiltonian, in order to
determine the selection rules of the interaction. In this case, the initial and final wavefunctions are
product states of the electron vortex wavefunction as well as the atomic electron and the

wavefunctions of either the centre of mass or nucleus, so that the matrix element is found from

My = (wlslvh,

AR |l s by ) (617)

The wavefunctions of the electron vortex beam are those described above in Section 2.2: the Bessel
beam vortex functions of (2.13). In the current notation, as developed in Section 5.1, the vortex
wwt

wavefunctions are written (the time dependent factor of e ~"“* is irrelevant to current purposes, and

can be dropped),
’va(pv, ¢va zv) = NlJl(kJ_pv)eil(bveikzzv- (6.18)

We now proceed to evaluate the above matrix element by expansion into a multipolar series. This
will allow the dipole and other multipoles to be identified and compared to the dipole interaction
of the optical vortex in Section 5.3. Two methods for doing so are here presented: firstly, the
Hamiltonian is expanded in a multipolar series and secondly, an effective Hamiltonian is
constructed by expanding the vortex wavefunction about the atomic nucleus. The first case is a
general treatment, as it does not depend on the nature of the vortex wavefunctions, while the
second relies on specific properties of the Bessel function. The advantage of the second method is
that the variation of the interaction strength with location of the atom relative to the beam axis is

more readily apparent.

6.2 MULTIPOLAR EXPANSION OF HAMILTONIAN

The Hamiltonian of Eq. (6.16) may be expanded about the atomic centre of mass, expressing the
interaction as a series of multipolar interaction terms in powers of the dipole length of the atomic
electron, p,. The first term in Eq. (6.16) can be written as

1 1

_ (6.19)

U_R & m. m
|I‘ + Mq| \/(I‘U—R)Q—l-Qﬁq(I‘v—R)-l-M%qQ
1

q-(rv*R)+m_2 q?
|ry—RJ|? M? |r,—R|?

(6.20)

1 .
=Rl -2

Me
M
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The square root in (6.20) can now be expanded as a Taylor series. Expanding up to second order

we have
2 . _
1 1 1_ Limg q n 2%01 (r, —R)
r, —R 4 %= ] lr, — R 2 ]\42 ]rv R|? M |r, — RJ?
L3(m gt mifa(r—R))’
8 Yr,-R* M* (r,—R)*

m} g’ (q- (r, —R))
Ve |I'U — R]4 )] . (6.21)

Similar expansion of the second term yields
1 Lo e ma(n-R)
r, —R—%2q| |r, — R| 2\ M?|r, — RJ? M |r,—RJ]?

+§Zﬁ_iﬁ—44ﬁf@4”—RW
8\ M*|r, —RJ* M*  |r, — RJ?

m, q*(q- (r, —R))\ |
2]\/[3 v, —R[ )] : (6.22)

subtracting Eq. (6.22) from Eq. (6.21) gives

oM e? 1 1 (m?—m?2) g 9 (me —my)q- (r, — R)
" dregr, —R[ | 2 M2 |r,— RJ? M lr, — R|2
2
L3(lme—my) qt  (mi—mj)(q-(r,—R))
8 MY |r, - R M*4 v, — R[4

+2

(mé —mp) q’ (q- (r, — R))
IVE |I'v — R|4 >] . (6.23)

The Hamiltonian of Eq. (6.16) has now been expanded in powers of g, allowing us to write

Hyo = HYp 4 fpaud | freex (6.24)

int int int

where the dipole terms have been identified as those of first order in g, the quadrupole as those of

second order etc., so that

qap € (mp—me)q- (r, —R)
Hdlp _ P e v . 6.
Int 471'60 M ‘rv . R‘3 ) ( 25)
Hquad _ 62 (mz - mz) q2 + 3<m3 - mé) (q ' (rv - R))2 (6 26)
™ "8y | M2 [ -RF ° M1 |5, -RP |

We can now look at the possibility of an atomic electron transition being induced by the
interaction with the vortex beam, and the selection rules of such an interaction, using Eq. (6.17).
Here, the key piece of information we are looking for is whether any exchange of orbital angular

momentum between the components of the system is possible. In order to determine this, we can
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look simply at the azimuthal angular parts of the matrix element, since it is these that are affected by

the angular momentum in the system.

6.2.1 MATRIX ELEMENT IN THE DIPOLE APPROXIMATION

Here, we focus on the vortex interaction with the atom via the dipole interaction Hamiltonian of
Eq. (6.25). This will enable clear comparisons to be made with the results of the optical vortex
interaction of the previous chapter and previous investigations [ 14, 68].

Similar to the optical vortex interaction, the dipole matrix element may be written as a scalar
product of two separate matrix elements - splitting the Hamiltonian into the factors that affect the

atomic electron, and those that affect the vortex and the centre of mass states:

62

(mp]\;%) (W (a)|alvi(a))
: <w5 (ro); ¥/ (R)

ML =
EV 471'50
r, — R

r, — R

G URR) ) (627)
The first part of this matrix element may be expressed as the electric dipole matrix element,

D = (Yl (q) |a|vi(a)), (6.28)

This electric dipole matrix element is well understood for the hydrogen atom [113], and other
atoms treated in a hydrogenic approximation [ 63 ]. The dipole matrix element is also a component
of the full matrix element for the interaction of the optical vortex with the hydrogenic atom, as in
Section 5.3. The form of the dipole matrix element gives the atomic selection rules, and is

dependant on circular polarisation in the atomic electron position vector (see Appendix A.2 for

details):

X —
2

X+

i
9 yA;t(Sm,m’—l +

iy 5
D = NnNn/( A§5m7m+1 + zAgdmm/). (6.29)
As can be seen, this matrix element allows unit changes in the atomic orbital angular momentum
projection via circular fields. The strengths of the forward and reverse transitions, Am = =+1 are
the same, provided there are suitable final states available.
The second matrix element of Eq. (6.27) may now be evaluated; expressing the result in

Cartesian coordinates will allow direct calculation of the product with D;

(r, —R)  (pycos(¢,) — prcos(dr))X + (p,sin(@,) — prsin(¢r))y + (2, — 2r)2

v, —RP (F (P, 20, prs 28) — Glpu, pr) cos(dy — dr)]2 ’
(6.30)

with the functions F and G do not contain azimuthally relevant factors (see Appendix B.1). the

operator Eq. (6.30) may now be inserted between the initial and final states of the electron vortex
and the centre of mass states. Expressing the sines and cosines of Eq. (6.30) as exponentials, and

making the substitution y = (¢, — ¢r) allows the matrix element to be written in terms of generic
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integrals of the form
6i(lfluroz)y

2
ygﬁ) —
/0 (‘F(pva Zvy PRy ZR) - g(pva pR) COS(¢’U - ¢p))

dy, (6.31)

@

before integrating between the initial and final states to find (see Appendix B.1 for full details)

r,— R 1) (s | in
<m> = Bl( ) (X + Zy) 5[(L+Z),(L/+l’+1)]
v fZ

1) s on 0)s
+ B (% = i9) S 1) + B 20wy vy (6:32)

The factors Bl(_l) , B I(H) and BZ(O) are numerical factors arising from the integration over the
non-azimuthal degrees of freedom. The superscripts refer to the induced change in orbital angular
momentum of the combined vortex-centre of mass system. For a given [, we find the relationship
B = B,

From here, we may now examine the full matrix element, by combining Eq. (6.32) with the

electric dipole matrix element,

Ml = € <m”];[me)1>-< r”_R> . (6.33)
fi

dreg r, — R|?
Putting this together we have

e (my—me)

My = Ireg MM (Coa0(( L1y, (L4141 Omm—1
+ C_10((140),(1/4+1—1)]Ommr+1 + CoO(L40) (/1Y 0mm ) (6.34)
with
CH =B AE; (6.352)
C/t=BAY; (6.35b)
C) = BZOAS. (6.35¢)

Interpretation of the selection rules brings us to the conclusion that orbital angular momentum
may be transferred between the electron vortex beam and the atom. In the dipole approximation,
transfer of a single unit, /2 is possible. The delta functions indicate conservation of angular
momentum quanta, and allow for the forward (gain of /1) and reverse (decrease of /1) transfer of
orbital angular momentum into the atom. The forward transition is accompanied by the loss of a
unit of angular momentum from either the electron vortex, or the orbital motion of the centre of
mass, which combine to form a single orbital angular momentum system. Likewise, the reverse
transition indicates a gain of orbital angular momentum for the vortex-centre of mass motion.
Additionally, there are possible interactions in which no orbital angular momentum is exchanged at
all. Since | B;!| = |BZ}*|, we have |C;"'| = |CZ}*|, so a forward transition induced by a beam with

orbital angular momentum [ will have the same strength as a reverse transition induced by a beam
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of —I.

The quadrupole Hamiltonian has also been analysed, and is presented in Appendix B.2. The
quadrupole selection rules found in Appendix B.2 show very similar features - they show the
possibility of transitions in which one unit of angular momentum is exchanged between the atomic
electron and the beam or the centre of mass, as well as those transitions in which no angular
momentum is exchanged. Additionally, there is also the possibility of the exchange of two units of
angular momentum. This is expected - the quadrupole approximation allows for quadrupole-like
transitions in which the orbital angular momentum projection of the atom changes by 2A. It is
apparent that higher orders multipole terms of Eq. (6.23) of order n will allow for interactions in
which up to 7 units of orbital angular momentum may be transferred.

These selection rules may be compared directly with those obtained in Chapter 5 for the
interaction with the optical vortex. In both cases, the atom is described by the wavefunction
relating to the internal motion of the atomic electron and that relating to the centre of mass motion.
The dipole and quadrupole selection rules have been explicitly demonstrated in each case. The
selection rules for the interaction of this atom with an optical and electron vortex are found to be
quite different - the electron vortex interaction directly allows for the change of the orbital angular
momentum of the internal state as well as the centre of mass motion, while the optical vortex may

only directly affect the centre of mass.

6.3 MULTIPOLAR EFFECTIVE OPERATOR

The selection rules obtained above are useful for determining the general features of the interaction,
but further information - such as the spatial dependence of the interaction and the relative strengths
of the multipolar terms - is not readily apparent. In order to make these features clearer, a second
analysis of the interaction is carried out via an expansion of the wavefunctions themselves. This is
possible due to certain properties of the Bessel function - however these results may be generalised
to other types of vortex through expansion of the particular vortex into a Bessel-mode basis.

As mentioned above, the interaction Hamiltonian applied here is the direct Coulomb

Hamiltonian of the system’s constituent particles,

e? 1 1
oy, = ( - ) . (6.36)

dweg \|ry —Te| |1y — 1)

where here r, has been left, rather than r. = rj, + q. Rather than centre of mass states, this will
now be applied to atomic wavefunctions involving the nuclear kinetic states. For notational
simplicity, these states will take the same form as those given in Eq. (5.7), so that we have let

R — Ip:
[p(ry, = R)) = [¢p(pr, O, 2R)) = Rp(pr)e K rPretmneilon, (6.37)

The transition matrix element is then

2

e 1 1
_ Fohod 618
o (ree o) [ ) o

M = <¢§;¢§,;¢Ev
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The first term of the Hamiltonian may lead to internal transitions within the atom as well as
transitions between states of the centre of mass, while the second may only lead to transitions of the
centre of mass wavefunctions.

The second term is relatively simple to evaluate (see Appendix B.3), since both position vectors
r, and R and the relevant wavefunctions are properly specified about the same reference frame -
that of the beam’s origin. It is apparent that this term will affect only the centre of mass, and will not
lead to transitions between the internal atomic states. For the first term, we again have the problem
that the wavefunction of the atomic electron and the beam electron are naturally described about
very different frames. We now seek to find the influence of the electron vortex on the atomic states

|q(a); ¥p(R)), through the matrix element

M = <¢é; wEV|

> : (6.39)

47?5 |ty — 1|

The aim is to write this in terms of some effective multipolar operator O acting on the atomic states
M = Qs | Ol (6.40)

This is achieved by considering the Neumann addition theorem for Bessel functions [ 114]. This
addition theorem describes a Bessel function about a certain origin in terms of a series of Bessel

functions about another, displaced axis, with appropriate weighting:

W\IJJ Z Jyim (@) I (y )em@. (6.41)
Here, the original Bessel function (on the left hand side) is .J,,(2), and on the right hand side the
expansion is given about the new axis by the Bessel functions .J,,, (/) with weighting functions
Jyim ().
Applying the theorem to our situation, we take the triangle made by the origin, the position
vectors of the atomic nucleus and the vortex position r,,, shown in the plane in Fig. 6.3.1. Applying

the addition theorem to the electron vortex spatial distribution function J;(k p, ) gives
Tikipy) = e 3" Jip(kipr) Ty (kop,)e™?. (6.42)
p=—00

so that the spatial distribution function is now described about an origin centered on the atomic
nucleus - i.e. the vortex and the atomic electron are now described in the same coordinate frame.

The angles 1) and ¢ are the inner triangle angles as shown in Fig. 6.3.1. Application of simple
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Figure 6.3.1: The triangle formed in applying the Neumann addition theorem for
Bessel functions. The expansion angles 1) and ¢ are shown - these are expressed in
terms of the relevant anglesas U = ¢, — ¢pand ® = 7 — ¢ + ¢r, where
¢!, denotes the angle between the vortex electron and the xz-axis at the new pole,
centred on the atomic nucleus. After expansion, the wavefunction is expressed in
terms of a sum of J,(k p),), about the nucleus. The original and expanded beams
are shown schematically.

trigonometry allows these angles to be related to the known angles in the interacting system "

U = ¢, — ¢r; (6.43)
® =7 — ¢, + ¢r. (6.44)

where the new angle ¢/, is the azimuthal angle of the new position vector r;, about the atomic

nucleus. Applying this to Eq. (6.42) gives
Ji(kipy) = e Z Jrp(kLpr)Jp(kypl,)ePme PR PP (6.45)
p=—00

Now, since p runs from positive to negative infinity, we may reverse the sign of p without loss of

generality. Letting p — —p gives

Ji(kipy) = e o0 Z Jl_p(k‘LpR)J_p(klp;)e_ip”ei(l_p)"b’%eip‘z’,v. (6.46)

p=—00

Using Eq. (2.29), the relationship between Bessel functions of positive and negative order, we may

The angle definition is dependant on the orientation of this triangle within the external coordinate frame of the
vortex beam. There are two principal choices, effectively the right-handed and left-handed orientations - both are valid.
We choose the angles here such that the factor €?/%* may be eliminated (rather than squared) in the final expanded
Bessel wavefunction of Eq. (6.48).
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finally write the expanded Bessel function as

JikLpe) = €7 > " Jip(kipr)dp(kop,)e - Pome?o, (6.47)

p=—00

where the original Bessel function is now expressed as a sum of Bessel functions centered about the
centre of mass, i.e. a shift in origin.
This new shifted Bessel function may now be incorporated into the electron vortex wavefunction

of Section 2.2 to give

Ypy = Nie®=Crt=le= et N (ks pr) Jy(kypl,)eltPORreoh, (6.48)

p=—00

The Bessel functions J, (ko)) describe the new vortex wavefunctions that the atomic electron
‘sees’ in its coordinate frame, such that the atomic electron may now interact with the new vortex
wavefunction having p units of orbital angular momentum. The other Bessel function .J;_, (k1 pr)
gives the weighting factor of the shifted vortex, describing its strength as a function of distance
from the origin of the initial vortex beam J;(k p, ). As expected, if pr — 0 then p/, — p,, and the
only contribution comes from p = [, since at pr = 0 the only non-zero Bessel function is that of
the zero order. Otherwise, all terms in the expansion must be considered. Note that the full
wavefunction has been expressed about the new centre of mass origin, including the z dependence,

so that z, — zr + 2.

6.3.1 THE EFFECTIVE OPERATOR

This transformed wavefunction may now be used to find the an effective operator and selection
rules for the interaction between the vortex and the hydrogen atom when the atom is situated a

distance from the beam origin. As suggested above, we have

Myi = < é;%%

0| ufivh), (6.40)

where the effective operator O is the product of the new; shifted initial and final wavefunctions, and

the Coulomb interaction operator, integrated over the vortex electron degrees of freedom:

2
O _ (& NliNl,]/cei(ww’)t/d?)r;ei(kZk‘lz)(ZR+Z{})
47T€0
o0
(] k / J’ k:/ / 5 !/ / ; / /
x Z Ji—p(k1pRr)Jr—p (K pR) plkrt) va)fiz(l*l ORI (6.49)

I
o v, —d
where the distance between the atomic electron and the vortex electron |r, — r.| has been
rewritten as the equivalent vector |1/ — q| in the centre of mass frame, and the distance between
the vortex electron and the centre of mass has [/ — R| been replaced with |r/ |. This is written in

the form

47’(’60

/ —
D' =—00

2 o
NS _C il LU oy’
O = N/ N} —¢ =) § I (6.50)
p
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Figure 6.3.2: The triangle formed in applying the Neumann addition theorem a
second time. The expansion angles ¢/ and ¢ are shown - these are expressed in terms
of the relevant angles as U/ = ¢) — ¢, and &' = 7™ — ¢/, + P,, where ¢, denotes
the angle between the vortex electron and the z-axis at the new pole, centred on the
atomic electron. After expansion, the wavefunction is expressed in terms of a sum
of Ju,(k,p),), about the atomic electron, allowing the series to be expanded in terms
of ¢, making the multipolar nature of each contribution to the interaction clear. The
original and expanded beams are shown schematically.

where we have introduced the shorthand
Fllél/%pl _ ei(kz—k’z)zR Jl—p(kLpR)Jl’—p’(klpR)ei(l_l,_p—i_p/)(va (6.51)

and

[g,p’ _ / ei(kz—k’z)z; Jp(kLP;)Jp’ (klp;) i(p—p’)qﬁg,d?)r;. (6.52)

rod
The first term, [’ }l;;l/’p > , relates to the centre of mass motion, and may be integrated in the context of
the Dirac brackets of Eq. (6.40) in the usual fashion. The second term, I7 7' relates to the Coulomb
interaction between the atomic and vortex electrons. The matrix element of this effective operator
may be directly evaluated (see Appendix B.4). When R is considered as a dynamical variable, and

the atom is free to move about the beam axis we find the selection rule
Al + AL = —Am. (6.53)

This demonstrates general orbital angular momentum conservation at all R, and encompasses all
possible transitions, from all multipolar contributions, since as yet, no information regarding the
multipolar nature of the transition has been obtained. This general expression of orbital angular
momentum conservation does not specify which transitions are dipole allowed. In order to

determine this, a further wavefunction expansion is made, in a similar manner to above.
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6.3.2 MULTIPOLAR EXPANSION

As shown in Fig. 6.3.2, the centre of mass, the atomic electron and the vortex electron make a
triangle similar to that shown in Fig. 6.3.1. Expansion of the Bessel functions within this triangle
allows the multipolar expansion of the interaction to be found. In the above, the original Bessel
function was expanded into a summation of Bessel functions about a new origin, with new position
vector ;. We may now use the same technique to expand these Bessel functions in terms of the
electron position from the centre of mass, g, leading to an intuitive multipolar interpretation.
Returning to the matrix element as described in Eq. (6.50), (6.51) and (6.52), we define a new

vector I'; as the separation between the atomic and vortex electrons, such that

r, =1, —q; (6.54)

(6.55)

SIS

Irl| = (,01,2 + 22 4+ ¢* — 2 qcos 0, — plqsin b, cos(¢, — qbq))

Using this, the Bessel functions J,(k 7, ) may now be expanded in terms of 7"}, in the same way as

before. In this case the expansion angles are found to be

U = ¢, — by (6.56)
O =7—¢. + bq, (6.57)

so that performing the expansion gives *

To(kip) = e ®% N Ty (kiqu) Ju(kypl)el P 0ae™or, (6:58)

U=—00

with ¢ the magnitude of the atomic position vector in the plane, i.e.

g1 = pgsinb,. (6.59)

The full wavefunction of the Bessel vortex, after both expansions is now

Ypy = N tkz(zrtzq+25) o —iwt Z Jl—p(kLpR)ei(l_p)(bR

p=—00

X Z Jp—u(kjLQL)Ju(kLp;)ei(p_U)¢q€iu¢;7 (6'60)

U=—0Q

2At this point the reason for using the Hamiltonian H2, rather than the centre of mass Hamiltonian HSM will be

n
made clear. In the centre of mass formalism, the atomic electron coordinate relative to the centre of mass is %q, and

the first wavefunction expansion may be made either about the centre of mass, or about the atomic nucleus, with the

relevant position "7 r;,. For notational simplicity then, this expansion is carried out in the limit that the centre of mass

is coincident with the nuclear position. In either case, the main features of the selection rules will be the same, with
the addition of multiplicative factors involving the particle masses. In the centre of mass formalism |r/, — q|~! —
|r) — %q\*l , and there are two options for the wavefunction expansions, since the original wavefunction may
be expanded about either the centre of mass or the atomic nucleus. In the first case, the first expansion takes the
same form as that given above, and the second expansion about the atomic electron takes the form J,_,, (k1 pq) —
Jp—u(kL ”X—qu). The alternate method involves the first expansion being made about the atomic nucleus, so that

Ji—p(kipr) = J1—p(kL"5F pp), and the second expansion has the same form as shown above.
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P u p,p —u
<p,p <o 0<u<oo positive if p, p’ > u
negative if p, p’ < u
—00 < u < —1 positive forall p, p/, u
—c0o<p,p <0 0<u<o0 negative for all p, p’, u
—o0 <u < —1 positiveifp,p’ > u
negative if p, p’ < u

D,
0

Table 6.3.1: Summary of the separate conditions on the indices p, p’ and u, and the sign of the
order of the Bessel function given by Jj, ,y (k1 q1 ).

where again, the z-dependence has been changed to reflect the new centre of expansion so that
2y = Zp + 24 + 2.
Putting this into the matrix element of Eq. (6.40) gives an effective operator O of the form

(e e}

2 [o¢]
. e . ot YA NG / ’ ’
(9/ _ NZN]:' ez(k‘z k’z)zqe z(w w )t F Ry Ip,p YU U (6.61)
L 47T€0 R ! ’
p,p'=—00 u,u'=—00

with

Ig’p/’%w _ /ei(kzké)z;Jp—u<kj_q1_)Jp’—u’<kﬁ_q1_)

% Ju<kl_p;>’]’u’< ,Lp,s> i(p—u—p’+u’)¢q6i(u—u’)q§’sd3r;‘

- e (6.62)
Tyl

This expression may be simplified, using the Fourier transform for the Coulomb potential (see

Appendix B. 5)to give
ppugu / (p—1')g u’ e
et =g (k Jp—ulk e\PTP )P df——, 6.6

where )(/3) is the total linear momentum transfer between the initial and final states of the
electron vortex wavefunction, as a function of the angle 3 between the incoming and outgoing
states. This leads to the condition that u = /, so that the full effective operator is now

oo

2 o0
e . ’ . ’ ’ / /
O = N} Nj ——¢ih= =)z gmilw—uwht FEpP (6.64)
4 q
o p,p'=—00 u=—00

In order to see clearly the multipolar nature of this expression, the Bessel functions of p, may be
Taylor expanded. Since our interest lies in the dipole term, expansion to first order is sufficient,

giving the asymptotic limit of the Bessel function. This is valid for small arguments

0<z<<+vVa+1[o93115]:
Jalz) et (2) fora e N (6:65)
QZNF(OH_l) 5) fora .65

We have z = k p,sin 0, =~ k, ao. For the typical electron vortex described in Section 2.5 we have
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ki = 2.3 x 101 m™, so that z is of order unity. The dominant terms in the expansion will have
a = 0, so that this is not a good approximation, nevertheless, k| is a tunable parameter (for
example, by changing the widths of the bars in the forked masks). However, reducing k|
corresponds to increasing the radius of the beam, so that atomic resolution may not then be
possible. A k| &~ 107° m~! would produce a beam satisfying Eq. (6.65), and suitable for probing
atomic transitions at the nanoscale, with good resolution.

The expression Eq. (6.65) is valid for Bessel functions of positive integer order only, which
occurs under certain conditions of p,p’ and u (see Table 6.3.1). For the remaining cases of p,p’ and
u we apply the relationship between Bessel functions of positive and negative order of Eq. (2.29),

i.e. for the case when both p, p’ and w are positive, but p, p’ < u, thenp, p’ — u < 0, we must write

Jp—u(krqr) = (_1>|p_u|‘]lp—u\(kj_qj_)' (6.66)

In this way, the triple sum over p, p’ and u is divided into eighteen individual terms, with strict

conditions, and we may write the full effective operator as

O/ — N;N']/c ei(szk/z)zqe*i(wfw/)tzp,p,’uFgl »D5P Kg,p/,u,u7 (667)

47780
with Fgl/’p’p/ given by Eq. (6.51), and

i(p—p')pq 27 —iuf
KPP — € €

q N Sk

with ¥,/ ,, representing the eighteen sums over the different combinations of p, p and v,

(6.68)

displayed in full in Appendix B.6. We may now apply the asymptotic limit of Eq. (6.65), and then
explicitly examine the conditions that lead to the individual terms in the multipolar expansion of
the effective Hamiltonian (O'. The zero order terms are those for which the power of ¢, is zero,
while the dipole and quadrupole terms contain ¢! and ¢? respectively. This leads to particular
conditions on p, p’ and u, which are summarised in Tables 6.3.2 - 6.3.4. The effective operator is

now expressed in terms of a multipolar series
/ / / /
O = Z0 + Odipole + Oquadrupole e (6'69)

where the matrix element of each can now be evaluated carefully to see the orbital angular
momentum selection rules suggested for / and m. We note here that the identification of ‘dipole’
and ‘quadrupole’ etc. relates to the in-plane excitations, such as angular momentum transfer only, as
this ¢; = p, sin 0, is not the only source of p, dependence - the out of plane excitation factor
eilk=—ko)za — pilk=—kZ)pa cosO yil] also affect the atomic electron states. However, since we are
interested in the transfer of orbital angular momentum it is sufficient to consider the in-plane
factors, and for convenient nomenclature these are identified as the multipolar terms, since they
will affect the orbital angular momentum in a similar way. Below, the zero order and dipole terms

are explicitly considered.
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6.3.3 ZERO ORDER TERMS

The zero terms are those having qffu)qflfu) = ¢Y (and similar, see Appendix B.6 and Table

6.3.2), and this gives directly the condition p = p’ = u. These zero order terms cannot lead to
orbital angular momentum exchange between the vortex and the atom, however since there is
dependence on p, in the out-of plane excitation factor €/(¥+=#2)% transitions between different
initial and final states of the atomic electron are possible.

The zero order term cannot lead to exchange of orbital angular momentum between the atomic
electron and the p state that the atom interact with, so the difference in orbital angular momentum

between the ingoing and outgoing Bessel beam must be zero, i.e.:
Ap=p—p =0. (6.70)

For all sets of conditions on p and w this gives that p = p" = w. This condition is valid for just two
terms in Eq. (B.34) and all indices cancel, leaving only one term in each sum. Thus, the zero order

terms are

2
; (& ; / ; ’
R VAN i(kz—k.)zq ,—t(w—w')t
/o= NiNI-< ¢ ‘e

47'['80
0o —1
1 L Ll
X F ) 7p7pr7p7p7p F ) 7p7pr7p7p7p
rrm 27 e 2 e
p=0 p=—00
2 (e.)
. € . , . / ’
_ leNl]fFgoez(kz—kz)zqe—z(w—w )t Z F}l%,l 7p7ng7p,p,p‘ (6.71)

p=—00

! /
The sums over p do not disappear completely - there are further factors in K7 Pt and F Il%l Pb

involving the indices and these must still be summed over. However, the sums have now been

/
collapsed by these conditions to give K)*PP* and F’ Il;él Pp

Writing the functions F' ]l{il PP and KPPPP explicitly, we find

NINJ €2 .. . R
! L _© ithe kL) (za2m) g—ilw—w)t Z Ji—p(k1pr)Jr—p(K'\ pr)

20— V2m3 4meg

p=—00

(1~ —p+p)br ,i(p—P)d mo e (6.72)
x e\ T TPTPIOR pVPTP qJ/ dg . (6.72
0 Q*(53)

~
azimuthal factors

The factors that will affect orbital angular momentum transfer are indicated as the azimuthal terms.
It is clear here that in general the orbital angular momentum of the beam directly affects the motion
of the centre of mass, while the atomic electron is affected by the shifted Bessel beam - in this zero
order interaction p = p’ so it is obvious there is no orbital angular momentum transferred to the
atom, as expected. Incorporating these azimuthal factors into the relevant part of the full matrix

N .
element M, gives the selection rules:

) 62 o] , 2m e—ip,B
Ml,l — § 6171 7p(__)ZO / d —6m m/ 5 / N, 6-73
20 50\/% p=00 5 ! 0 ﬁQ2(ﬁ> TN () ( )
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such that the zero term allows transfer of orbital angular momentum between the electron vortex
!
and the nuclear rotation only. The factors @%l ? and @qzo contain the integrals over the remaining

degrees of freedom, and are stated in full in Appendix B.7.3.

6.3.4 DIPOLE TERMS

The dipole interaction Hamiltonian that is single order in p, will allow the transfer of orbital
angular momentum to the atom, and the 2 component of the electron angular momentum may
change [113]:

Am =0, £1. (6.74)

Accordingly, for present purposes we identify the dipole terms as being single order in ¢ and have
the following selection rule for p,

Ap = =+1,0. (6.75)

Since orbital angular momentum is conserved when the atomic electron interacts with the vortex
wavefunction, so that Am = Ap. The conditions for p, p" and u obtained by these requirements

are indicated in Table 6.3.3. Applying these conditions leads to®

_ f pilh—hL)zq —i(w—w)t 9L
leOle Nl Nl’ 47.(_50 € < 9 >
o0 1 ,
< | Fu,p,p 1Kp,p 1,p—1,p—1 k' FLipptl rpptlpp
lZr * p;om)r(z) R a

S —1) ' =1 rpp (D) e
k/ ( Fl,l 0P 1Kp,p 1,p,p k F VPPt Kp7p+1ap+1»p+1

p=0
-1 -1

1 LU pp—1 —1p—1p— LU 1
k FLtpp=1 pepp 1,p—1,p—1 k' Fb 0P+ K PpptLpp
Tk D ’ D e q

p=—00 p=—00

-1 -1
(=1 1 pppe (=1
"‘kl Z F(—FR, DD lKg,p 1’p’p+/ﬁ_ Z WFPL ,p7p+1K5,p+1,p+Lp+1 ’
p=—00

(6.76)

which reduces to

2
_ N Nl{; pilhe—hL)zq o =it <q_i)

dlpole 50 2

o
l)l,7 ) -1 - - - lvllv ). 1
x | k| § : FR DsP Kg,p 1,p—1,p—1 —k, E FR D,p+ Kg,p+1,p+1,p+1

p=—00 p=—0Q

o0 oo
/ LU p,p+1 1-pp+1,p.p ’ LU pp—1 1-p,p—1,p,p
+k E Fy Kq -k E Fy Kq . (6.77)

p=—00 p=—00

. . ! / LUp.p .
Once again, we may expand the functions K77 and F'g ", and isolate the relevant

*Note that certain terms of Eq. (B.34) fulfill the requirements of Table 6.3.3 for very specific numerical conditions
of p, p’ and u, leading to a single term with no summation. These contributions have been excluded, as they are found
to lead to double counting when the sums are contracted to a single variable.
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azimuthal factors. This gives

in S 2
;o NiNy e
dipole — \/_ 47T€0

2 o—i(p—1)B
/ e
(kL §  Jip(kLpr) Jo—pi (K pr) 00 VoR el p“)‘z’,/ dB—r
0

_G itk =) (atan) i)t (%)

N Q*(B)

p=—00 azimuthal factors

S / (-1 1 . ) 2 o—i(p+1)B
— kL Z Jip(kLpR) Jy—p1 (K pr) PP loneie—p- mx/ dﬁQQ—@
- 0

p=—00

N 2T —i(p)B
1 i(p—p— c
+ K\ Z szp<kJ_PR)J1/7p71(klpR)\el(l et 1)%’/ d5Q2(ﬁ)
0

p=—00 e
—i(p)B
— kL Z Jip(k1pR) Ju—pi1 (K pr) 700~ Domelopt D9 ﬁ Q*(B) )
p=—00
(6.78)

Applying this to the matrix element of Eq. (6.40) is more difficult than in the zero order case, and
specific circumstances must be considered. We will first focus on the case when the atom is located
on the axis of the beam, such that R = 0, so as to illustrate the general features of the interaction.
When the atom is displaced from the beam axis other effects are apparent due to the presence of
the p modes about the atom. The general properties of this off-axis interaction are discussed below,

with a quantitative treatment of the full dipole interaction give in Section 6.3.5.

AtoM ON-AXIS

When the atom is on axis, we have R, = 0, so the Bessel function factors in Eq. (6.78) are non-zero
only when they are of order 1. This gives conditions on the relationship between /, " and p, and

each of the summations over p collapses into a single term:

in S
o NING € i) e it (‘LL)
dipole \/ﬁ 471'5(] 2
. . 2 —i(l-1)B 2m o—ilB
< |80 et QPR 0 [ [ d G—_k/ dBf——
[““” L em TR L Yem

) ) 27 le,B 2m 71(l+1),8
F et (kL/o e R e )1 (679)

This can be expressed as

e2

Oclilpole = Nle (.Aﬂpq ¢R€ d)q(S[l V41 -+ .A Pq 6 )¢R€7i¢q5[l,l/_1}) , (6.80)

271')%80
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with

2 —i(l-1)8 2 ilf
o B d 81
A l/o ) L/o o) (6:52)

2 e—ilp e—t+1)B
Aﬂ:m/cw h/ 5 . (6.82)
0

Note that for this on-axis case, no orbital angular momentum may be transferred between the
vortex and the centre of mass, as expected. For the special case when [ = (), it can be seen that
A$t = — A", For the general case, with [ # 0, we find that A"' = — A}, so that the forward
and reverse transitions induced by oppositely polarised vortices have the same strength.

This operator may now be applied to find the full matrix element of the on-axis dipole

interaction:
2

. € s _
Gy = EOmGRGS‘P (Af15[m,mf_1]5[z,z'+1] + A, 16[m,m’+1]6[l,l’—1]>7 (6.83)

with expressions for O  and @;ﬁp given in Appendix B.7.4. It can be seen that again, the dipole

term admits interaction in which the magnetic quantum number of the atom may change by 0 or 1
units. In this case, no dipole interactions are possible in which the orbital angular momentum of

the atomic electron does not change.

AToM OFF-AXIS

When the atom is off-axis, there are contributions from the expanded wavefunction having p # [
and p’ # !/, and for a given atom location p = [ is not necessarily the dominant term. The factors
F Il%’l/’p ' of Eq. (6.51) give the weighting of each p-mode at different positions pg, with the relevant
spatial dependence given by J,_,,(k pr). Plotted in Fig. 6.3.3 are these Bessel function prefactors
for the first few p modes about p = [, for the £ = 200 keV vortex beam with £, = 2.23 x 10*°
m~ !, described in Section 2.5. Since the Bessel function of order zero has the largest maximum,
with the successive decrease of the maxima of the higher order Bessel functions, those modes close
to p = [ will always be the most significant in the interaction with the atomic electron - however,
depending on the actual atomic position, the other modes may not be negligible. For the [ = +£1
the first zero p; ; occurs at approximately 0.17 nm. It is clear from Fig. 6.3.3 that within this radius
other orders of orbital angular momentum are not negligible, so that these extra channels of orbital
angular momentum transfer will become significant.

The full spatial dependence of the dipole interaction is given in Eq. (6.78). Each p mode
contributes a channel for orbital angular momentum exchange to the interaction, in which one unit
of orbital angular momentum is transferred. However, this also opens up channels in which orbital
angular momentum about the beam 2-axis does not appear to be conserved; since the atom and
vortex are described about different axes the orbital angular momentum of each cannot be

simultaneously conserved. The full matrix element may again be written in the form

Mg’fp - \/_@dlp (Al sip.r Ofm,mr 1] + A;§p7l,5[m,m,+1]>, (6.84)
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where now the factors affecting the transition strengths consist of sums over p and the final beam

pR,DIM

Figure 6.3.3: The vortex modes .J, (k| p,,) about the atomic centre of mass are mod-
ulated by the prefactor J;_, (k| pr). This prefactor is plotted above for the indicated
values of p, showing the relative significance of the various modes as the atom is
moved away from the beam axis. Near the beam axis, the mode p = ! dominates,
while it can be seen that farther from the axis, several p-modes must be taken into
account in the analysis of vortex-atom interactions.

angular momentum ':

with

with @l p given in Appendix B.7.4, and we have |©},

zzp,z' = Z Z Al 0pd (6.85)

p=—o0l'—

lEp,l’ = Z Z All/,p, (6.86)

p=—0o0l'=—00

—i(p—1)8 o iPB
/ LU p,+ L _ ) . .
iy = O ( L/o B L/o Yow) Y
it (0 [T 2 e—z<p+1>ﬂ>
o= O% (/ﬁ/o dﬁ—sz) lu/o dﬂ—Qz(ﬁ) : (6.88)

rid M= |@l’l/’p’_ |. Since the sums over p

and [ are symmetric about zero, and A} I 1* "1, we have that | A S, vl =1AZ 2p7l,|

Note that the delta functions relating [ and [" are no longer present, and the factor pertaining to the

centre of mass states is included in the sum over [/, as the azimuthal factor e’ "/+19x jn Eq. (6.78)

affects the nucleus rotation. In the case when the interaction occurs off axis the resulting I’ modes

are not restricted to !’ = £1. This point is important for experimental considerations, since it

means that a dipole transition, in which Am = =1, contributes to signals in all I’ channels, not

simply the I’ = %1 as would be expected from simple conservation of angular momentum about

the beam axis. However, when the nuclear position vector is taken to be a dynamical variable

orbital angular momentum conservation about the vortex axis is apparent.

In the situation when the atom is free to rotate about the beam axis, and the nucleus is in a well

defined rotational eigenstate, the conservation of orbital angular momentum is straightforward,
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and the transfer of orbital angular momentum to the atom may be inferred by looking at the I’
states. As an example, the p = | — 1 mode may be scattered to the state p’ = p + 2, viaa
quadrupole or higher order interaction. Relating this p state to the final beam state, I’ requires some
knowledge of the atomic orbital angular momentum eigenstate, characterised by L, or at least ¢, is

required to be a dynamical variable. Assuming L = L/, we have

M, O</d3pRJ+1(kLPR)JV—z—1(%PR)GW_Z%WR, (6.89)

as the part of the matrix element dependent on the distance of the atom from the beam axis.
Performing the azimuthal integration here indicates I’ = [ + 2, as expected for the atomic change
of Am = —2. However, it will not be clear through examination of the [ states the type of
transition induced in the atom. Tables 6.3.2 - 6.3.4 show that both the zero order and the
quadrupole interactions may occur with no transfer of orbital angular momentum. It is clear that
even orders of ¢ - such as the zero order and quadrupole etc. - will allow transfer of even integer
units of orbital angular momentum, while odd orders - dipole, octopole, etc. - will allow odd integer
units of angular momentum to be transferred.

As mentioned above, in the case when the atom is fixed off axis the orbital angular momentum
about the beam axis is not necessarily a conserved quantity. A consequence of this is that when the
atom is situated off-axis the change in magnetic quantum number of the atomic state is not
necessarily reflected in the change of orbital angular momentum of the electron vortex. This is
illustrated in Fig. 6.3.4, in comparison to the simpler case of the atom on-axis. For the on-axis case,
the only contribution to the interaction is from the p-modes having p = [ and the resulting final
state must have p’ = [, and so the atomic change is directly reflected in the exiting beam. However,
for the off-axis case, the contributions from several different p-modes induce transitions within the
atom causing exchange of orbital angular momentum of different orders. The resulting p’ modes
may be re-cast as I’ modes, by expanding back to the vortex beam axis, such that each [’ mode
contains contributions from several different p’ modes. This makes it very difficult to determine the
change in orbital angular momentum of the atom by examining the orbital angular momentum of
the beam about the original z-axis.

For experimental applications, it is important to understand the relative strengths of the different
possible interactions and determine the most probable change in orbital angular momentum of the
atomic electron. This is affected by the relative strengths of the incoming p-modes, and the relative
strengths of the multipole transitions, <wg | g etin?a ‘ ¢;> For an atom in an m = 0 state,

i.e. with no net magnetic moment, the transitions with £7 are of equal strength, with the
interactions of lowest order in ¢ having the highest strength [113]. It can be seen from Fig. 6.3.3
that the modes having p = [ & s have equal strength, so illuminating the atom with an [ = 0 beam
will show dichroism in the resulting [’ states only when the atom has a net magnetic moment.
However, if the atom is allowed to interact with a beam with [ £ 0, there will be a difference in
distribution of the resulting states {". This is because, although the modulating factor .J;_, (k| pr)
will be the same, the Bessel functions describing the p-modes are not symmetric about [ # 0, so
the modes p; = | + sand ps = | — s will not have the same spatial distribution for [ # 0. Since

we have AL, = —Afl*zp 1, it will be possible to observe dichroism effects by comparing the

D,l
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resulting I’ distributions of beams with =/ as, barring density of states considerations in the atomic
dipole matrix element, the distribution of final modes I’ should be the same. For certain values of [
and !’ the relative magnitude of the different contributions to particular I’ modes is discussed
quantitatively in Section 6.3.5.

The apparent breaking of orbital angular momentum conservation is due to the extrinsic nature
of the orbital angular momentum in this case [16], and the effect may be viewed as a mode
broadening. Simply transforming the beam from one axis to another, parallel axis is not enough to
make the extrinsic nature of the orbital angular momentum apparent, however. The orbital angular

momentum of a vortex beam about a displaced axis is found to be [116]
L,—L,+z-Rx(P)) (6.90)

where (P | ) is the total transverse momentum (or current), measured about the new axis. In the
situation here, the two axes are parallel, and as shown in Chapter 4 the total momentum of the
electron vortex has a component only in the 2 direction. Thus (P ) = 0, and the angular
momentum of the beam about the new axis is simply /5. On the other hand, the interaction with
the atom at this new axis makes the extrinsic nature of the vortex orbital angular momentum
apparent - due to its spherical symmetry the z-axis of the atom is arbitrary”, so that the transverse
momentum of the beam about the z-axis is not necessarily zero, leading to a change in the orbital
angular momentum of the beam about the atomic axis. This is responsible for the apparent

non-conservation of the beam orbital angular momentum.

6.3.5 SPATIAL DEPENDENCE OF THE DIPOLE MATRIX ELEMENT

For the dipole term, the full spatial dependence of the matrix element is contained in Eq. (6.78).
The first and fourth terms represent interaction in which the orbital angular momentum of the
atom may increase by one unit, while the second and third terms represent interactions in which it
may decrease by one unit. For both these interactions the change in the orbital angular momentum
of the beam may be either +/ or —F, with the two possibilities having different spatial dependence.
These spatial dependence of ]./\/lihll; ?
the different combinations of Am = +1and Al = £1in Fig. 6.3.5, Fig. 6.3.6 and Fig. 6.3.7. The

are plotted for electron vortex beams having [ = 0, 1, for

plots of |./\/lfill; |? show the strength of a given interaction process at different positions within the
beam, such that the centre of the beam is always at the centre of the plot. The beams are modelled
using the same parameters of the typical Angstrom size electron vortex as described in Section 2.5,
withk, =2.3x 102 m'and &k, = 2.3 x 10'°m™! for the incoming beam, and £, = k.,

' = 0.5k, in each case’.

*In making the transformation shown in Fig. 6.3.2 it appears that we ‘fix’ the atomic electron angle ¢, to lie in a
plane transverse to the beam axis. In doing this we have rotated the atomic coordinate system to the frame that best
suits our purposes - the ‘natural’ z-axis of the atom may be quite different - so that ¢4 and 6, in this rotated frame are
different to those in the natural atomic basis.

The plots were generated using Mathematica 8. For each forward or reverse atomic transition, the relevant terms
in Eq. (6.78) were calculated over a 256 x 256 sample grid of atomic positions R.. For each individual calculation (one
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Figure 6.3.4: Schematic showing contributions of the expanded wavefunctions to
transitions of an off-axis atom, compared to those in the atom lying on the axis. In
the on-axis case the change in orbital angular momentum of the atom is directly re-
flected in the change in the orbital angular momentum of the beam. In the off axis
case, the atom interacts with the p-vortex modes arising after the expansion of the
beam about an axis through the atomic nucleus. The p-modes may interact via a
multipolar transition, leading to a change in the atomic orbital angular momentum
Ap = —Am. However, when the orbital angular momentum of the vortex is mea-
sured after the interaction, it is measured about the original beam axis - in transform-
ing the post interaction p/ states back to this axis the direct connection to the atomic
states is lost. However, by examining the relative strengths of the atomic multipolar
transitions the change in the atom can be determined.
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Figure 6.3.5: The spatial dependence of the strength of the matrix element for the
interaction between a hydrogen-like atom and the electron vortex beam with | = 0,
across a nanometre scale (see text for relevant parameters). (a) and (b) show the
interaction for which Am = +1,with Al = —1and Al = +1 respectively. (c)
and (d) show the interaction for which Am = —1,with Al = —1land Al = +1
respectively. Plots are normalised such that for each individual plot blue is the lowest
value (zero) and yellow is the highest. The relative strengths for each plot may be
seen in the line graphs of 6.3.8a
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Figure 6.3.6: The spatial dependence of the strength of the matrix element for the
interaction between a hydrogen-like atom and the electron vortex beam with [ =
+1, across a nanometre scale (see text for relevant parameters). (a) and (b) show
the interaction for which Am = +1, with Al = —1 and Al = 41 respectively. (c)
and (d) show the interaction for which Am = —1,with Al = —1land Al = +1
respectively. Plots are normalised such that for each individual plot blue is the lowest
value (zero) and yellow is the highest. The relative strengths for each plot may be
seen in the line graphs of 6.3.8b
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Figure 6.3.7: The spatial dependence of the strength of the matrix element for the
interaction between a hydrogen-like atom and the electron vortex beam with [ =
—1, across a nanometre scale (see text for relevant parameters). () and (b) show
the interaction for which Am = +1, with Al = —1 and Al = 41 respectively. (c)
and (d) show the interaction for which Am = —1,with Al = —1land Al = +1
respectively. Plots are normalised such that for each individual plot blue is the lowest
value (zero) and yellow is the highest. The relative strengths for each plot may be
seen in the line graphs of 6.3.8¢
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As can be seen in each figure, those interactions for which the orbital angular momentum about
the beam axis is conserved - i.e. having Am = £1 and Al = F1 - are the dominant processes in
the centre of the beam, while those that do not conserve orbital angular momentum about the
z-axis are the off-axis interactions, as described qualitatively above. In the following we will refer to
the former as ‘ordinary’ interactions, and the latter as ‘irregular’. For the case of the incident | = 0
beam, shown in Fig. 6.3.5 the ordinary interactions - with Am = — Al - have the same magnitude
for both the forward and reverse atomic transition, as do the other, irregular transitions. It is this
symmetry that led to the clear and unambiguous dichroism result of Verbeeck et al., in their
experiment on magnetised iron films [24]. This symmetry is not apparent in the transitions of the
vortex beams with [ = =1 when comparing the ordinary and irregular transitions within each
beam; however when considering the ordinary and irregular forward and reverse transitions of the
vortex beams of opposite winding with [ = £-1, the symmetry is again apparent. The ordinary
forward transition for the [/ = +1 beam has the same magnitude and spatial profile as the ordinary
reverse transition for the [ = —1 beam, and vice versa, with the same relationships for the irregular
transitions, such that | A;"'| = |.A~;*|, as shown for the on-axis dipole interaction in Section 6.3.4.
This suggests that future dichroism experiments using electron vortex beams should compare the
transition rates between oppositely vortex beams with opposite signs of orbital angular
momentum. An experimental scheme for such a dichroism experiment is suggested below.

Fig. 6.3.8 shows the relative magnitude of the square modulus of the matrix element for each
interaction with the different vortex beams having [ = 0, +1. Foran [ = 0 beam it is found that
the probability of scattering to either the Am = +1 or Am = —1 by an ordinary transition is the
same, with the corresponding change in [ being Al = —1 or Al = +1 respectively. Similarly, the
irregular transitions also have the same probability, though this probability is much smaller than
that of the ordinary transitions and is of course zero on-axis. For the [ = 1 incident beam, the
forward ordinary transition has the largest magnitude, and is an order of magnitude larger than the
reverse ordinary transition. Similarly, the reverse ordinary transition is the largest of the | = —1
beam induced transitions, as expected from the symmetry in the beam interactions discussed
above. These are the largest contributions to the overall matrix element for the [ = 31 beams, and
as such will contribute the largest to the signal obtained in an electron energy loss spectroscopy
experiment. The other channels will contribute to a background signal, in the experiment proposed
below only the small irregular channel with the same Al as this main signal will contribute to the
measured background signal. As can be seen in Fig. 6.3.9, the strengths of the dominant
interactions for the vortex beams are significantly larger than (approximately double) the
equivalent interactions for the [ = 0 beam, suggesting that dichroism experiments comparing with
incident vortex beams will give stronger signals than the similar experiment with incident plane
wave, and post-selection using a vortex analyser, as in [24].

Such a dichroism signal could be measured using the experimental set-up depicted in Fig. 6.3.10.

pixel) the atomic position R is fixed, so that the factor eI=U'E)¢r contributes only a magnitude factor in each case.
Since the interaction is not a coherent process, and the atom may only interact with one p-vortex, the magnitude of
|Mé’ig |2 for an interaction at position R was found by summing | M i;l/ |? for the relevant conditions of 1 and I, where
|M;{;l/ |2 is the square modulus of the effective operator of Eq. (6.78) for a given p. This was done for —11 < p < 11,
as outside this range the modulation factors J;_,, (k1 pr) lead to negligible contributions for the sampled range of R.
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Figure 6.3.8: The relative strength of the interactions with Am = =1 for incident
beamswith! = 0, +£1.

For the [ = 0 incident beam it can be seen in (a) that the

two ordinary transitions have the same strength and spatial profile, as do the two
irregular transitions. The incident vortex beam with [ = +1 each have a dominant
ordinary transition - approximately double the strength of those of the [ = 0 beam

- with the other ordinary and two irregular transitions greatly suppressed. Plots are
given in arbitrary units.
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Figure 6.3.9: The magnitude and spatial variation of (a) the Am = +1, Al = —1
transition, and (b) the Am = —1, Al = +1 transition. It can be seen that for the
Am = +1 atomic transition, the matrix element is an order of magnitude greater
for the | = +1 beam, and vice-versa for the Am = —1 transition.
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Using this arrangement, electron energy loss spectroscopy using electron vortex beams could be
used to obtain chiral information from various samples. An incident vortex beam of vorticity [ = 1
is focused via a scanning confocal lensing system onto a point on the sample. The confocal set-up is
required to reduce the contributions from neighbouring oft-axis atoms that will interact with the
vortex through irregular transitions, though these cannot be completely eliminated. The sample
will interact with the electron vortex, whether by core-shell excitations or other chiral activity,
changing the total orbital angular momentum within the beam. This beam is transmitted through
the sample, and passed though a forked holographic mask, acting as vortex analyser. This will
decompose the beam into the different vortex states, and the relative integrated intensity of the
different vortex states can be measured, and compared with the same experiment performed with a
vortex beam of opposite orbital angular momentum. A spatially resolved electron energy loss
spectrum will be obtained by scanning the focused probe across a sample to obtain an energy loss
map - comparison with the oppositely polarised electron vortex will lead to spatially resolved chiral
information about the sample, with the possibility of nanometre resolution.

To illustrate this, consider the [ = 1 beam interacting with an atom; the dominant interaction
will induce a Am = +1 transition within the atom, and scatter the vortex state to I’ = 0. The
transmitted beam is now passed through the vortex analyser, splitting the beam into components
having vorticity 0, 1 and 2. Since the dominant interaction is that for which Al = —1 (but this
interaction is weak), it is expected that there will be the largest signal in the post-analyser [ = 1
channel (i.e. no diffraction), and significant signal in the | = 0 channel, with very little having
[ = 2. The signal of interest is that in the [ = 0 channel, as this contains those electrons that have
undergone an interaction with the atom. To obtain an energy loss spectrum, this will be compared
with the similar signal obtained using an [ = —1 incident vortex beam. In this case, the signal of
interest is also the post-analyser [ = 0 signal, as this is comprised of electrons that have been
scattered by the sample to Al = +1 though an atomic interaction with Am = —1, the dominant
interaction for the [ = —1 beam. Comparison of these two signals at various energies will give
electron energy loss spectrum results, and characterise the chiral activity of the sample.

An energy loss spectrum obtained in this way depends on the signals in the post-analyser [ = 0
beam, for both incident beams. In both cases, this beam will be comprised of the dominant,
ordinary interaction, and a smaller contribution from the irregular transition having the same Al
but opposite Am. This irregular contribution arises due to off-axis interactions and may cause
issues with resolution if its magnitude becomes comparable to that of the desired ordinary
interaction. For the incident [ = +1 and [ = —1 beams respectively, Fig. 6.3.11 and Fig. 6.3.12
show the square modulus of the matrix elements contributing to each post-analyser channel, and
the sum of these matrix elements. The sum determines the probability that a interaction observable
in that channel occurs, and directly relates to the signal that will be measured in that channel, with
the measured signal proportional to the spatial integral of the total squared matrix element. By
comparing the relative contributions to the total squared matrix element it can be seen that for the
desired ordinary interaction in each case the signal will be much stronger, comprising the main part
of the total, measured signal. The irregular signal has a maximum at approximately 0.1 nm, due to

off axis interactions, and while this will contribute to background signal it should not be significant
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Figure 6.3.10: Suggested experimental set-up for electron energy loss dichroism
experiments using electron vortex beams. The sample, shown as a point in this
schematic, is illuminated by a focused electron vortex. The transmitted beam is
passed through a holographic forked filter, acting as a vortex analyser, so that the
beam is split into the different vortex components. Collection of the different vortex
components and comparison with those obtained with a beam of opposite vortex
polarisation will enable chiral information about the sample to be obtained.
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enough to greatly impair the resolution. Thus, this method should be able to provide chiral
dichroism spectra at high resolution, with appropriately focused vortex beams. As discussed in
Section 1.3.4 the limitations of creating vortex beams with Angstrom resolution lead to beams that
have the central minima washed out [39] - nevertheless, the suggested experiment described here
should provide an accessible method for obtaining nanometre resolution electron energy loss
chiral dichroism spectra. With the development of specific corrective software for this particular
experimental set-up, an increase in resolution may potentially be achievable by utilising the chiral
information contained in the other post-analyser channel (though this signal is predicted to be very
small), or by correction for the off axis contributions to the total signal. Correction of off-axis
contributions will require further simulations to be carried out with more experimentally feasible
vortex beam profiles, by expansion into the basis set of the ideal Bessel beams considered here, and
also analysis of contributions from the quadrupole and higher multipole terms, though these are

expected to be small.

6.4 COMPARISON OF THE DIPOLE INTERACTION IN THE HAMILTONIAN AND WAVE-

FUNCTION EXPANSIONS

The selection rules for the interaction of atomic matter with an electron vortex have now been
determined using two different methods - a direct multipolar expansion of the interaction
Hamiltonian, and the use of an effective operator that has been expanded into a multipolar series.
Several key differences have been found using these two methods. We note that the idea of a
multipolar expansion in the two cases is not quite the same - in the first case the Hamiltonian is
expanded into a ‘true’ multipolar series, whereas the second method utilised an expansion in
powers of ¢ , the in-plane component of the atomic position vector, with the dependence on g,
not included in the expansion. This leads to some, but not all, of the differences between the two
methods. Because of this, the full magnitudes of the transition matrix elements for the two
methods have not been compared in this analysis, as the selection rules obtained are in quite
different formats. For the Hamiltonian expansion method the full matrix element has been derived
to achieve the selection rules; for the multipolar expansion method the selection rules are apparent
at operator level, before applying the specific atomic states.

The dipole term of the expanded interaction Hamiltonian is found to allow interactions in which
zero or one units of orbital angular momentum many be exchanged. The orbital angular
momentum of the electron vortex and the centre of mass of the atom combine to form a separate
system that may exchange orbital angular momentum with the atom. The combining of the angular
momenta of the vortex and the gross atomic motion is also found using the effective operator
method when the atom is free to rotate about the beam axis. In this case, the general features of the
two sets of selection rules is the same - orbital angular momentum is conserved about the beam
axis and the dipole terms in each case may mediate interactions in which one unit is exchanged.
The zero order term of the effective operator may be compared with the multipolar expansion
dipole interaction in which no units of orbital angular momentum are exchanged - this is not a

teature of the effective operator ‘dipole’ term due to the difference in definition of dipole between
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Figure 6.3.11: The matrix elements of the relevant regular or irregular interactions
contribute to the signal observed in the indicated post-vortex analyser channels.
The signal is proportional to the integrated matrix element. For the [ = 41 beam
the transition of interest is that with Al = —1, Am = +1. This will be ob-
served in the | = 0 channel, shown in (2), and the off-axis irregular transition with
Al = —1, Am = —1 does not contribute a significant amount. The interaction
probability contributing to the [ = 2 channel, shown in (b), is very small so that this

dichroism effects are not expected to be apparent in this channel. Plots are given in
arbitrary units.
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Figure 6.3.12: The matrix elements of the relevant regular or irregular interactions
contribute to the signal observed in the indicated post-vortex analyser channels.
The signal is proportional to the integrated matrix element. For the [ = —1 beam
the transition of interest is that with Al = +1, Am = —1. This will be ob-
served in the | = 0 channel, shown in (2), and the off-axis irregular transition with
Al = —1, Am = +1 does not contribute a significant amount. The interaction
probability contributing to the [ = 2 channel, shown in (b), is very small so that this

dichroism effects are not expected to be apparent in this channel. Plots are given in
arbitrary units.
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the two methods.

A key difference is the ‘dipole’ term of the effective operator permits interactions in which any
amount of orbital angular momentum may be exchanged. This is found when the atom is fixed at a
distance from the axis. This should be reproducible in the multipolar Hamiltonian by calculating
the matrix element at different positions R without integrating the centre of mass states. However
in order to obtain any spatial information about the interaction, this must be evaluated on a
point-by-point basis. The effective Hamiltonian method allows for more immediate determination
of the spatial profile of the interaction.

Using both methods, for the interactions in which exchange is possible, the matrix elements of
the “forward” and “reverse” exchanges, .Af and A}{ respectively, are found to have magnitudes such
that AT = A®%. Aslong as there is no net magnetic moment of the atom that would disallow either
the forward or reverse transitions (i.e. the atom is in the highest or lowest 1 state) the transition
rate of both would be the same, and no net dichroism would be observed in an EELS experiment
such as that demonstrated in [24] using an incident [ = 0 beam, or that suggested above using
oppositely polarised incident vortex beams. The interaction mechanisms for both the Hamiltonian
and wavefunction expansions are directly comparable to the action of circularly polarised light on
the atom. For the Hamiltonian expansion method, this is apparent in the atomic dipole matrix
element D, which shows explicit dependence on circular polarisation, while the operator p,e=*%s

of the wavefunction expansion may also be expressed in terms of projection onto a circularly

; 4 X + iy
P = w iy, =1, - ( y) . (6.91)

polarised basis

2

The advantage of the wavefunction expansion is that the change in interaction with the distance
of the atom from the beam axis is readily apparent, via the modulating functions .J;_,(k pg). For
the Hamiltonian expansion, the Hamiltonian is dependent on R; this serves to illustrates the limits
of the validity of the dipole approximation. The expansion is valid for |q| < |r, — R|; when
satisfied, the dipole term is then dominant. Outside this limit, however, this dipole Hamiltonian is
not applicable, and higher order terms must be considered. The wavefunction multipolar
expansion avoids this issue; the atom interacts with p-modes weighted according to the distance
from the axis, which dictates the significant multipolar interactions. Due to the asymptotic limit of
the Bessel function, which requires 0 < k| g, < v/I + 1, this approach applies best in the case of
small atoms, |q| & ao, and high . Although k| ay ~ 1 for the typical 200 keV Bessel beam, k| can
be increased by altering the mask shape, such that this method of analysis is applicable for the [ = 1

beam interacting with the hydrogen atom.

6.5 ANALYSIS AND APPLICATION OF THE SELECTION RULES

The following analysis is applicable to the results of the both the Hamiltonian and wavefunction
multipolar expansions, since we find that the forward and reverse transitions contribute the same
magnitude to the interaction matrix element. The analysis will be presented in terms of general
functions Ulo’il , which represent the magnitudes of the contributions to the matrix element for

Am = 0, =£1 for each of the multipolar expansions, i.e. the CO EL of Eq. (6.34), and the Al spl ©
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Eq. (6.84).

It has been demonstrated experimentally that electron vortex beams can exhibit dichroism in
their absorption by matter [24]. This is due to the internal electronic structure of the material
under study - whether it has a magnetic moment - and is not due to the structure of the beam itself.
A dichroic signal is observed when one vortex polarisation is absorbed preferentially over the other.
The transition (or absorption) rate, I, is proportional to the modulus square of the matrix element,
and the density of the final states p accessible via the interaction. This is expressed as Fermi’s

golden rule:

21 R
I'= €|Mfz|2pf (6.92)

The transition rates for electron vortex beams with two different senses of rotation may now be
found, using the selection rules of (6.34) and (6.80) (and those for the off-axis case) above. For
simplicity, we choose the beams | = +1, and examine scattering in both cases to the state ' = 0,
noting that the process of an [ = ( vortex scattering to [ = =1 is equivalent, and the experimental
process in [24]. Additionally, the centre of mass motion can be restricted, as it would be in a solid,
for example, so we may write L = L' and examine only the transfer between the vortex beam and
the atomic electron.

The hydrogen atom may seem like a very simple model, however the results derived above may
be generalised for a many-electron system, such as an iron atom, by considering the total orbital
angular momentum of the atomic electron configuration [63]. In the LS coupling regime, the total
angular momentum of the atomic electron wavefunction is given by J = L + S, with
|L — S| < J < L + S being the relevant orbital angular momentum quantum number, and
—J < m; < J the associated magnetic quantum number. 1 7, the projection onto the atomic
z-axis, will be affected by the exchange of orbital angular momentum with the electron vortex. The
total angular factors of the multi-electron wavefunction can be described by the product of the
spherical harmonics of the occupied states in a hydrogenic model; since the products of spherical
harmonics may be written as linear combinations of spherical harmonics the many electron
wavefunction can be described as a linear combination of spherical harmonics of the form ijj
[117], for individual electrons with total angular momentum j = [ + s and projection m;. Here,
numerical and phase factors arising from the coupling of the atomic electrons will be neglected,
without loss of generality. The coefficients of the spherical harmonics describing the multi-electron
wavefunction are calculated using Wigner 3-j symbols; the symmetry properties of the 3-j
symbols means that there is merely a difference in phase factor between states having 72; and —m,
and the magnitude of the coefficients is the same.

The possible excitations that can be induced by the | = %1 electron vortex in the iron Ly and L3

edges are summarised in Table 6.5.1. Each forward transition that may be induced in the [ = +1

interaction has a corresponding reverse transition which may be induced by the [ = —1 vortex,
such that m;-H) = —mg_l) and mf}H) = —mﬁ_l). The spherical harmonics are normalised such
that

(—1)“mY,; ™0, 6) = Y (6, ), (6.93)

and this, along with the symmetries of the Wigner 3-j symbols, shows that the strength of the
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forward and reverse transitions contributing to the matrix element will be the same.
The total transition rate of the Ly and L3 edges, as observed in [24], is given by the sum of the

transitions rates for the possible transitions in each edge. Explicitly, for the Ly edge, we have

_ 2w Lo(a) (2 ~ (b
FlL2+1 - f|ul+1|2(|“4+21( )|2P3d3/z(mj=+1/2) + |A+1 )| p3d3/2 my= +3/2)) (6.94)
and
__ Lo
Fle = W |2(’~A 7 | P3d3/2(m3:—1/2 )+ ’A | P3d3/2 mi=— 3/2)) (6.95)

which, will be equal as long as the densities of final states are the same in each case,

€. P3dy o (my=+1/2) = Padys(my=—1/2) A0 P3dy 15 m;=+3/2 = P3d; j»,m;=—3/2 as it has been
established above that |AJLr21| = |.A%2], and U] = [U;|. Note that the atomic matrix elements
AL 1, take slightly different forms for the two expansion methods; we have, for the Hamiltonian

multipolar expansion:

A — <2p1/2,mj = —1/2|q|3dsj2,m; = +1/2); (6.96a)
ALz(b = (2p12(m; = +1/2) | q | 3d3/2, m; = +3/2); (6.96b)
Al = <2p1/2,mj = +1/2| a 3ds,m; = ~1/2); (6:96¢)
AR = (9p1 0, my = ~1/2] a| 3dsjp,m; = —3/2); (6.96d)

while in the on-axis case the matrix elements for the effective operator formalism take the form:

i(kz—Fk.)(2q+2R)

Aiﬁ(a) = <2p1/2,mj =—1/2]e pqei‘z’q

3dz/2,mj = +1/2> ; (6.97a)

A0 — <2p1/2( = +1/2) | eik=mRIGatzr) p %o | 3y 0 m; = +3/2>; (6.97b)
Afi(a) <2p1/2;mg (hem ko) Gatzm) p o100 3ds /o, m; = —1/2> : (6.97¢)
AR = <2p1/2a mj = ihemh)Catem) =0 | Bdly iy = —3/2> . (6.97d)

The operator is more complicated due to the summation in the off-axis case, but the result that
|A%2| = | A3 ] is the same.

This shows there is no inherent dichroism expected due to the interaction on a fundamental
level, it is the available density of final states that leads to the dichroic signal observed. It is readily
shown that this holds true for higher values of /, when comparing I'y;, although, as indicated above,
there will be difference in the absorption rate when comparing interactions for which |l1| # |l5]. It
is clear then that the reason for the dichroism observed by Verbeeck et al [24] is the magnetic
nature of the iron used in the experiment. The non-zero value of the magnetic quantum number m
causes there to be a difference in the available final states of the atomic electron; the rate of

absorption reflects this.
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6.6 COMPARISON WITH OPTICAL VORTEX RESULTS

It has been shown here that, in the dipole approximation, the electron vortex can induce atomic
transitions in which the orbital angular momentum projection of the atom changes, i.e. there is
some Am # 0. In the previous chapter it was shown that the optical vortex cannot induce such a
transition via the dipole interaction, though the quadrupole interaction allows for indirect
exchange through the centre of mass participating. As such, for a stationary atom the interaction
may proceed for the electron vortex case, whereas for the optical vortex there will be no transfer
possible, as the centre of mass must be free to move [ 14, 66]. The results of the Hamiltonian
expansion for electron vortices are directly comparable to the results obtained for the optical
interaction, since the definition of the dipole term is the same in each case - the dipole interaction
term has a linear dependence on q and no other dependence.

Comparing the atom-vortex interaction for the optical vortex and the multipolar Hamiltonian
formalism for the election vortex may both be written in the form (eq) ;; - (f,(r)). This suggests
that the condition for orbital angular momentum transfer is for (f,(r)) to exhibit chirality in the
form of circular polarisation, as is the case for the electron vortex interaction. The long-range
Coulomb interaction is able to couple the dipole moment of the electron to the electric field of the
vortex beam through apparent circular polarisation, while the optical vortex interaction only
depends of the local value of the vector potential at the electron position, which has no chiral
features. We note that the effective operator formalism leading to transfer of orbital angular
momentum also shows this circularity, in the form of the factorr - %(f{ + ¥), as mentioned above.

As previously discussed in Section 5.4, the results for the interaction with optical vortices has
been confirmed, and the experiment of Verbeeck et al. [24] gives experimental confirmation of the
results of the electron vortex interactions discussed above for the [ = 0 case, however experiments
so far have not directly confirmed or disproved the feasibility of the experimental set-up described

in Section 6.3.5 (other experiments pertaining to dichroism using electron vortices are discussed

below).

6.7 SUMMARY

Direct analysis of the Coulomb interaction between an electron vortex and the internal dynamics of
the hydrogenic atom has shown that it is possible to transfer orbital angular momentum between
the atom and the electron vortex, in contrast to the result of the similar interaction between optical
vortices and atomic matter. This difference in behaviour of the optical and electron vortices is
important in demonstrating that, despite the similarities due to the vortex structure, the two
phenomena are quite distinct. Though the applications and successes of optical vortices will guide
the development of the field of electron vortices, there will be many new applications in which
optical vortices are not relevant, but electron vortices may be successful. To this end, an
experimental configuration has been proposed that would enable the use of electron vortices in
electron energy loss spectroscopy to obtain chiral information. This suggestion builds on the
previous experimental results of Verbeeck et al. [24], who used a non-vortex beam as the incident

probe, and a holographic mask as a vortex analyser after interaction with the sample [24], and

130



simulations by Schattschneider et al. [ 74] who simulated chiral activity of atomic matter by
studying the spatial profile of the transmitted intensity after interaction with an vortex probe.

The experiment of Verbeeck et al. provides a proof-of principle result that the electron vortex is
able to transfer orbital angular momentum to the atom. The theoretical exploration above confirms
that the interaction is similar to the action of spin-polarised optical beams on atomic transitions,
such as via the x-ray magnetic chiral dichroism effect. The analysis above (for example Fig. 6.3.82)
confirms that, for [ = 0, the interaction rate of the forward and reverse transitions will be the same.
However, if vortex beams are used as probes, the interaction for the desired forward (reverse)
transition for the = 1 (I = —1) beam is greater than that of the [ = 0 beam for the same
transition, so that the signal should potentially be larger. As shown in Section 6.3.5, relative to the
transition of interest, the irregular transitions and additional ordinary transition are suppressed
when using a vortex beam as an incident probe, so that the signal to noise ratio obtained using this
suggested set-up would be increased over using non-vortex beams as probes.

The dichroism experiments discussed and simulated by Schattschneider et al. [74] seek to
determine the dichroism activity of atomic matter by examining the spatial intensity variation of
the transmitted beam. Their conclusion is that the necessary spatial information is lost, due to
effects of the many possibilities of off-axis transitions. This is very different to the experiment
outlined here, in which the dichroism effects will become apparent through comparison of vortex
components of the transmitted beams. Since, in the experiment proposed here, the transmitted
beam is passed though a holographic mask the signal to noise ratio will be increased, as the desired
signal is isolated from the rest of the transmitted beam as discussed above, making the dichroism
effects much more apparent than the small spatial variations required in [74]. Additionally, the
spatial information comes not from the transmitted beam, but from the scanning of the probe
across the sample, with the signal obtained from the total integrated intensity at each scan point - or

pixel - so this requires a high resolution scanning vortex probe.
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Spin-Orbit Coupling in the Electron Vortex

HE ELECTRON vortex, having both spin angular momentum and orbital angular momentum,
will exhibit spin-orbit coupling in a similar manner whereby the spin and orbital angular
momenta of the bound atomic electron couple to shift the electron energy. In this chapter, the
origin of the coupling is derived by applying the Foldy-Wouthuysen transformation to the
relativistic Dirac equation, to achieve the non-relativistic limit in which spin-orbit coupling is
apparent. The Dirac equation is introduced in Section 7.1 as the relativistic generalisation of the
Schrédinger equation. The main features of the solutions are discussed, and the minimal coupling
prescription for the interaction with electromagnetic fields is shown to arise naturally from the
requirement that the Dirac equation be Lorentz invariant. The Foldy-Wouthuysen transformation
is introduced in Section 7.2, and applied to the Dirac equation in the presence of fields to obtain a
non-relativistic equation suitable for treating particles with spin. This is shown to have the same
form as the Schrodinger-Pauli equation. The spin-orbit interaction term is then applied to the
electron vortex to determine the magnitude of the intrinsic spin-orbit coupling of the electron due
to its electric field, and to the case of the electron moving past an external potential, such as an ionic
impurity.
The investigation into the spin-orbit coupling of the [ = 1 electron vortex - both the intrinsic

coupling and that due to an external field - has been published in [86]

7.1 THE DIRAC EQUATION

The Schrédinger equation is, in essence, a wave equation, and is not suitable for a description of
particles that have a large enough momentum so as to be considered relativistically. Additionally,
the Schrodinger equation does not allow for consideration of the particle spin, so on these two

counts it is not sufficient for a full description of electron motion. The Dirac equation extends the
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Schrédinger equation in order to overcome these deficiencies. To find such a relativistic formalism,
the classical energy relations upon which the Schrodinger equation is based may be replaced by
their relativistic counterparts, such that the basic principles of quantum mechanics formalism

remain intact [ 118]. These principles include:

1. The full description of the system is to be contained within the wavefunction v, identified as

the probability amplitude of the system. The probability density is given as |)|* > 0.

2. Physical observables are represented by Hermitian operators, the eigenvalues of which

represent a set of possible measurement outcomes of the operator.

3. The wavefunction of any system may be expanded into a suitable linear combination of a
complete orthonormal set of states that are each eigenfunctions of a complete set of

commuting operators.

4. The time-evolution of the system is expressed in the Schrédinger formalism
1thoy) = H1. (7.1)

In addition, in order to satisfy the requirements of special relativity, the theory must also be
Lorentz covariant so that Lorentz boosts result in the appropriate transformation laws for scalar,
pseudo-scalar, vector and pseudo-vector quantities [119].

Replacing the terms in the relativistic energy momentum relation £? = p?c? + m?c* with the

appropriate quantum mechanical operators gives the Klein-Gordon equation

(ih0;)* ¢ = (A (—ihV)? + c¢'m?) ¢ (7.2)
OPp = (02V2 —~ ;—zm2> . (7.3)

using the Einstein summation convention, 0, = (01, 02, 03), with the indices representing the
Cartesian unit vector basis. This equation displays the Lorentz covariance required for relativistic
motion, however it is not suitable to describe particles having non-zero spin, and as such was
originally discarded as a useful equation [ 118]. The Klein-Gordon equation does have application
to spin-0 particles such as the pion or the Higgs boson [ 118, 120]. Solutions to the free
Klein-Gordon equation above have the form of plane waves; however the forms of the probability
density derived from application of Noether’s theorem is not positive definite, as it is proportional
to £/, which may take negative values. This apparent inconsistency with point 1 above is resolved by
considering those solutions with negative energy as corresponding to anti-particles, having
negative energy and charge [118, 119, 121]. The anti-particle solutions have negative energy when
interpreted as particle solution propagating forward in time; however when considering
anti-particles propagating backwards in time the anti-particle energy is positive, and the

meaningful, positive definite probability density and current are recovered [118, 119, 121].
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The relativistic quantum mechanical equation suitable for describing the free spin-% electron is

the Dirac equation, having the form

Hy = (ca-p+c*Bm) (7.4)

lafw = <—a -V — i—cﬂm) Y (7:5)
c h

where @ and [3 are matrices, determined by the requirement that a free Dirac particle must satisfy

the energy-momentum relation. In the Dirac representation & and 3 are 4 X 4 matrices, written as

0 o ]12 0
a= SNCES : (7.6)
o 0 0 — ]]_2
with o the vector of Pauli spin matrices and 1,, the n X n identity matrix. The energy-momentum
relations then have the form of the ‘square root’ of the Klein-Gordon equation, where the matrices
allow for the negative and imaginary roots. The Dirac equation is more commonly given in the

concise covariant form

(ihy"0, — em)p =0 (7.7)

with the four-vector derivative 0, = (%@, V), and v* = (3, Sar) the Dirac y-matrices (see
Appendix C.1).

In the Dirac representation there are four linearly independent solutions of the Dirac equation,
which have the form of spinors with four components, corresponding to two positive energy
particle solutions, and two negative energy anti-particle solutions; the solutions take the form of

plane waves

= Nue P (7.8)

with a normalisation constant 7 and 4-spinors u written as

co-p
XS El|+ 2 XS
Us = co-p 3 Us+2 = [Blme ) (7-9)
E+m02 XS XS

with s = 1, 2. Only two components of u are independent; this is indicated by the inclusion of the

two independent 2-spinors X s:

1 0

= , = . 7.10
X1 0 X2 1 (7.10)

The solutions u and us 2 of Eq. (7.9) are identified with the particle and antiparticle solutions

respectively. In the non-relativistic limit the quantity % has the approximate form

co-p 1 oV

(7.11)

E+me2 " 2me c

which is small, hence these components of 1, and 1,2 are termed the ‘small components’ and may

be neglected in the non-relativistic limit so that u — .
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It turns out that the two states X ; represent the projection of the particle spin on the direction of
motion, and the four solutions u are eigenfunctions of the helicity operator
. p h{Z2 0

A= — 2| Ipl ’ (7.12)

op
pl  2\0

with eigenvalues :I:g. Thus the four solutions of the Dirac equation describe the particle and
anti-particle excitations, each with two possible helicity states [118, 119, 121]. In the case of
propagation in the z-direction only, the helicity eigenstates :i:% are identified with the spin-up and
spin-down spinors X 2 respectively. Even in this restricted case it can be seen that spin and helicity
are distinct, since it is always possible to perform a Lorentz boost to a frame in which the
momentum is reversed; the helicity will be reversed but the spin will remain the same, as for a
massive particle spin is always given in the particle’s rest frame [ 122]. Helicity may also be defined
for a particle with total angular momentum J, by letting ¥ — J = L + X. The helicity operator
commutes with the Hamiltonian, ensuring helicity is a conserved quantity. Helicity is then a ‘good,
or ‘better’ quantum number up to transformation in which p changes sign, in contrast with spin or
total angular momenta, which depend on the frame of reference [121, 122]. In the following
discussion of spin-orbit coupling, the term ‘spin’ is taken to be synonymous with helicity as defined
in Eq. (7.12), since we take the non-relativistic limit and define p = (0,0, p, ), such that A — 0.
In the same manner as with the Schrédinger equation, the interaction with external fields is
incorporated in the minimal coupling scheme, with a similar form to that used in Chapter 5. In
relativistic quantum mechanics this coupling arises naturally following the requirement that local

transformations of solutions to the Dirac equation, of the general form

U(z) = ey (a), (7.13)

preserve the Lorentz invariance of the Lagrangian, or Lagrangian density [119, 121]. The

Lagrangian density for the Dirac electron reads

L = ikp0,up — emapip, (7.14)

where 1) = 1140 is the adjoint spinor, which transforms as

P(z) — eiia(m)z/;(x). (7.15)

The result of this transformation then is an ‘extra’ term in the Lagrangian density, since for the local
function J,,(z) # 0. This violates Lorentz covariance, since the Lagrangian density must take the

same form in all reference frames. In order to address this, the introduction of the covariant

derivative, '
te
D, =0, — %Auv (7.16)
requires the introduction of a gauge field A, = (%, —A), which transforms as
h
Ay — A+ Eauoz. (7.17)
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which fixes the ‘extra term’ of the original Lagrangian density. However the energy of the gauge

field must also now be included in the Lagrangian density, giving

_ - 1
L = ih)py" D) — emapp — 4—FWF“”, (7.18)
Ho
with F'#” the electromagnetic field tensor. This is the fully covariant Lagrangian of quantum
electrodynamics, describing charged, massive spin-% particles interacting with the photon field A

[119, 121]. The corresponding equation of motion for the particle field in the presence of a gauge

field A* is then
(ihy"0, — ey* A, — em)y = 0. (7.19)

We are now in a position to consider the non-relativistic limit of the Dirac equation in the
presence of fields. This will enable us to describe the spin of the vortex electron using the 2-spinors
Eq. (7.10) and the aim is to describe the difference in behaviour of the two spin states in the

interaction with an electromagnetic field.

7.2 THE FOLDY-WOUTHUYSEN TRANSFORMATION

The Foldy-Wouthuysen theory deals with a unitary transformation applied to the Dirac equation,
to yield the non-relativistic limit in such a way that the particle and anti-particle spinor solutions
are not mixed. As discussed above (c.f. Eq. (7.11)), in the non-relativistic limit the small
components may be neglected, so in essence what we look for in this transformation is to present
the Dirac equation in a form that will decouple upper and lower components of the spinor
solutions, producing two equations acting on the 2-spinors of the non-relativistic particle and anti
particle solutions separately. This allows us to treat the positive and negative energy solutions of the
Dirac equation separately, and ensures that transitions between the positive and negative energy
states are suppressed, as is the case in the non-relativistic limit [ 118].

The Dirac equation in the presence of an external field is given by

9

H"Lp = Zha

= (Bmc® + ca- (p — €A) + e®) 1. (7.20)
The three terms in the Dirac Hamiltonian are of two different types, designated as ‘even’ or ‘odd’.
Even terms, such as 3mc? and e®, are operators that do not couple the large and small spinor
components, whereas odd terms facilitate mixing of the spinor components. Since  is odd,

ca - (p — eA) is an odd operator. In applying the Foldy-Wouthuysen transformation, the aim is to
determine a new Hamiltonian, H’, such that all odd operators are removed. Any operator A acting
on a Dirac spinor may be uniquely decomposed into the sum of an odd and even operators Aeyen
and Aggq [123], such that

A = Aeven + Ao,

with
Auen = 2 (A+ 64D Avsa = 5 (A~ 54B). (721)
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The even and odd operators respectively commute and anticommute with (3

(8, Aeven] = 0; {B, Acaa} = 0. (7.22)

It turns out that there is an exact transformation to obtain an even Hamiltonian H’ only in the
case of no external fields. For an electron in the presence of external fields application of the
Foldy-Wouthyusen transformation yields an expansion of operators in increasing powers of
(mc?)™1, such that the magnitude of higher order terms progressively decreases. In this way, odd

operators can be removed up to a desired order in (mc?)~!. Here, this will be done up to order

(mc?)73.

7.2.1 THE FORM OF THE FOLDY-WOUTHYUSEN TRANSFORMATION

We write the transformation in terms of a time dependant unitary operator U = €**(*), where S(t)
is an odd, self-adjoint operator, the form of which is to be subsequently determined. This is applied

to the state function ¢ (r, t) to yield a new, transformed state function

U (x,t) = e Oyp(x,1); (7.23)
noting that 1 (r, t) = e7*®y)/(r, t), the Hamiltonian H may be written

Hip = ihdy(e 5Oy (7.24)
= ih(0e D) 4 ihe D,y (7.25)

identifying 170, = H'1)’, we may rearrange and multiply from the left by ¢**(*) to find
H'(t) = W (H(t) — ihd,) e W, (7.26)

This is the essence of the transformation [118]. In application of this transformation, it is
convenient to suppress the time and space dependence of the operators. For any linear operators A

and B acting in the same vector space we have the relation [123, 124]

o0

1
eABe 4 = —'Qn(A, B), (7.27)
n!
n=0
where the operator €2,,(A, B) is defined as
with
QO(Av B) = B> (7'29)
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so that the function €2,,( A, B) consists of n — 1 nested commutators. This expansion is now

applied to Eq. (7.26) to give (see Appendix C.2 for details)
= H+ hz L[S, H] - atS). (7.30)

This expression may be simplified by separating the even and odd operators in Eq. (7.30). We write
H=mcB+T+YV, (7.31)

where

T=ca-(p—-ecA), V =ed, (7.32)

are odd and even operators respectively. We may also define, for any operator A [123, 124]

A=dtA— %[A, V. (7.33)

Applying the expansion Eq. (7.30) to Eq. (7.31), we have

H =mc®B+T+V+ Z %Qn(s, S, mc?B))
£ nz 5.15.5)
—V + me? nzzo< , > (S,T) hz n+1) :2,(5, (S, 9)).

(7.34)

Making use of the fact the .S is odd, we write

2 S o0 ‘n .
H = V—l—chﬁZ : Z — 425, (7.35)

0

which gives the general form of the Foldy-Wouthyusen transformation to be applied to the Dirac

Hamiltonian. This transformation will be applied to obtain a Hamiltonian for which all terms up to

order (mc?) ™2 are even.

7.2.2  EXPANDING IN POWERS OF (mc?) ™!

-2

The Foldy-Wouthuysen transformation will be carried out to order (mc?) ™2, so that all odd terms

~2 are eliminated; however the even terms of (mc?) ™ will be included in the

up to order (mc?)
final Hamiltonian. In the non-relativistic limit the terms of order (mc?) 3 are small relative to the
energy F' ~ mc?, but as will be shown certain of the even (mc?) ™ terms lead to important

relativistic corrections to the Schrédinger equation. The Hamiltonian will now be decomposed

138



into even and odd terms. It can be seen that

even forevenn;

odd foroddn,

s =

and

5 even foroddn;
odd forevenn.

This allows the even and odd parts of the Hamiltonian, H| . and H,, respectively, to be written

even

225 >
H.. =V +mds Z Z Q S, T — -1.9); (7.36)
n even nodd '
, 9 225 N B
Hggq = mc”ff Z + Z an(S,T — 1) (7.37)
n odd n even

Expanding the full Hamiltonian Eq. (7.35) in powers of (mc?) ™

H' =mc*B + an(mCQ)_k. (7.38)
k=0

The Hamiltonian will be even up to order K ifall terms (7;...7]},...7) ) are even. In order to see the
odd and even terms of each order in (mc?) !, the operator S is now written as an expansion in

powers of (mc?)~L:

S = Z Sk(mc2)*]C and S = Z Sk(mc2)7k; (7.39)

using these relations with Eq. (7.36) and Eq. (7.37) will enable the odd and even terms of the
different orders of (mc?) ! to be determined. Evidently, the Hamiltonian will be even to order K

if all odd terms up to and including that order cancel. We now seek .S’ such that all odd terms of

0 2

order (mc2) p (mCQ)_1 and (mCQ)_ are zero.

Expanding the odd Hamiltonian Eq. (7.37) up to S and 52, will ensure that all odd term up to

—2

and including order (mc?) 2 are present:

(—2i8)3

H(’,dd:mczﬁ( 215 + i

. 1 .
) +Q(S, T — hS) — 5QQ(S,T —19)...  (7.40)
Collecting terms by order in mc?, we have

H = Nodd,0 T (m02)71770dd,1 + (m02)72770dd,27 (7.41)
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with

Nodao = — 2ic*BS; + T (7.42)

Nodd1 = — 2ic*BSy — hSy; (7.43)
. 4. : 1

Todd,2 = — 2262ﬁ53 + 510255:13 — hS; — 5[51, [517 T]] (7-44)

H{ will be even if 1),44.0 = 0, allowing the form of S; to be determined:

S, = ’82—? (7.45)

Similarly, 7o44.1, Toad,2 must also be zero so that 77; and 7, are even. This allows us to find Sy and S:

KBS
2= 2
hT
= W; (7.46)
and, noting that (37")® = —BT? and [S1, [S1, [T]]] = —4(2:)2BT3:
2 he -
S =251~ 08, U1, 15,7

_ 2, T T T
T 55(22‘)3 MECHERICHE
_P %T?’Hﬁ’ (7.47)
TP \3 ‘ [

This fixes 19 + (mc?)n; + (mc?)?ny to be even, so that up to order (mc?) 2, the Hamiltonian is
now completely described by the even expansion of Eq. (7.36). As mentioned above the even

terms of order (mc?) ™3 will also be included in the final Hamiltonian.

7.2.3 THE FOLDY-WOUTHYUSEN HAMILTONIAN

Now that the odd terms up to order (m.c?) ™2 have been transformed away, the Hamiltonian is

given by Eq. (7.36) up to order (mc?)~3:

(-2i8)° , (=2i8)"

H =V B (1
—l—mcﬁ(—l— 5 1

) +1iQ (S, T)+
§93<S, 7) ~ Z0,(5.8) + O((me)™); (748)

separating the powers of (mc?) ™! gives

H/ =T + (ch)flm + (m02)72772 + <m02>7377even,37 (7-49)
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so that

no =V; (7.50)
m =— 2857 +i[S1,T); (7.51)
N2 = — 20{S1, Sz} +i[S2, T] + i[5, T] — ﬂ[sh Su); (7.52)

2 )
77ev&-‘:n,3 = - 26{S17 53} - 25522 + gﬁsf + Z[S&T]

- é[sn [S1, [S1, T]) — %[5’17 So) — %[52,52]- (7.53)

Substituting S, S> and S (see Appendix C.3 for details) gives

o =V; (7.54)
T2
h = 57; (7.55)
ih .

Ny = —g[T, T7; (7.56)

1 h? ..

even -9 T4 - T4 T, T s .

Neven,3 = 85 16{ } (7.57)

so that the final transformed Hamiltonian is expressed as

h2
16m3ch

BT? if : 1
T,T] —

H =mdf+V + BT — {T,T} (7.58)

2mc?  8m?2ct

What remains is to express this using the definitions of 7" and V/, Eq. (7.32) above. Evaluating the

powers, time derivatives, commutators, and anti-commutators of 7" yields the following results (see

Appendix C.4)
T? = *(p — eA)? — 2ec’Y - B, (7.59)
T =c'(p — eA)' — BPe*c'B* — 2ec* {(p — eA)*, = - B}, (7.60)
. 2ec?
[T,T] = —ieh*V - E + Z;C 3. ((p —¢A)XxE—-Ex (p— eA)> , (7.61)
.. 9 . 2iec? . .
{1.1} = ec{p — eA, E} + —=3. ((p—eA) «E+E x (p—eA)) . (7.62)

The Foldy-Wouthyusen Hamiltonian Eq. (7.58) may then be written as

(p—eA)?
2m

_252.]3_
m

—eA :
AN - e )
—fp%. < x (p —eA)+(p—eA)><E)

e?h? eh?
8m3c? pB* 8m?2c?
Y2-(Ex(p—eA)—(p—cA)xE). (7.63)

H' = Bmc® 4 ed + 3

834

+—58{(p— A’ DB} -

V-E
e
Am?2c?
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7.3 NON-RELATIVISTIC LIMIT OF THE DIRAC EQUATION

All terms in Eq. (7.63) are even, so that the upper and lower component of the 4 component Dirac
spinor 1) will remain separate after application of H'. This Hamiltonian is now suitable for applying
to the Dirac solutions in the non-relativistic limit, as the positive energy particle solutions are not

coupled to the negative energy anti-particle solutions. In the non-relativistic limit the spinors u

s 0
™ = (X ) L= ( ) . (7.64)
0 Xs

This separation allows the 4 X 4 Hamiltonian matrix of Eq. (7.63), to be written as two different

may be written

2 X 2 matrices acting on bispinors. The upper left portion of Eq. (7.63) acts only on the particle
solutions, u} ", while the lower right part acts on the anti-particle solutions u} ;. We are interested

in the electron particle solutions, so we may write J and X as

B = (I;Q —?12> — 1y; (7.65)

h{o 0 h
¥ = — :
5 (0 U) — 20, (7.66)

Similarly, for the anti-particle solutions we have we have 5 — —15and ¥ — ga. Applying
Eq. (7.65) and Eq. (7.66) to Eq. (7.63) gives

—eA)? (p—eA)* eh eh?
H' = md? d (p—c — ——0-B—-—V-E
me et 2m 8m3c? 2ma 8m202V
(B (p—cA)— (p—cA) X E) — —T(p— A B)
4m2020 p—e¢ p—e¢ 16m3ct P e
ih%e . .
eh e2h?

{(p—eA)’ o B} — B* (7.67)

8m3c2 8m3c?

The first seven terms are familiar as the Pauli equation - the non-relativistic Schrédinger equation in
the presence of fields with relativistic corrections [ 125 ]. The fourth term represents the correction
to the kinetic energy, due to the relativistic mass increase, the fifth is the Zeeman term, the
magnetic dipole energy of the electron in a magnetic field, the sixth is the Darwin term, due to
Zitterbewegung, or fluctuation about the electron centre of motion causing fluctuations of the
potential felt by the electron. The seventh term will be shown to lead to the spin-orbit coupling of
the electron; the last four terms are not common in the literature, but represent further, small
corrections to the kinetic and potential energy due to high order contributions from the magnetic

field and the time derivatives of the electric field [ 124].
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7.4  SPIN-ORBIT INTERACTION

We focus here on the spin-orbit interaction, and on applying this to the electron vortex Bessel beam
wavefunction. Using the non-relativistic spinors 1, the vortex wavefunction of a non-relativistic

electron with spin % is

Uy = NJi(k,pp)e'@e=7e ! () (7.68)
= @, (7.69)

where the spin state of the vortex electron are given as eigenfunction of the z-component of spin

XH = (1) ; X = (1) (7.70)
The spin orbit interaction term in the non-relativistic limit, as found above, is
Heo = —— " 6 (B x (p—cA)— (p—cA) x E)
B 2
:;;—ZLCQO'-(EXV—VXE)—F%U-EXA. (7.71)

These spin-orbit interaction terms will be applied to the finite paraxial Bessel beam electron vortex
solutions of Chapter 2, to find the energy difference between the aligned and anti-aligned spin
states W;.. This will be investigated in two situations, firstly the intrinsic coupling of the vortex
orbital angular momentum and the electron spin, via the electric field, and secondly by an external
potential, such as an ionic impurity in an otherwise uniform crystal.

Since we are interested in the effect on the energy of the spin states aligned or anti-aligned with
the electron’s motion, only a field transverse to this motion will affect the coupling. The cylindrical
symmetry of the vortex field and the ion field leads to no azimuthal field components, so that it is
the radial field that is important. The intrinsic electric field of the electron vortex is purely radial,
and has only radial dependence. The situation with the ionic field is slightly different - this potential
has spherical symmetry, so that the magnitude of the radial component changes along the z-axis.
The ion will be assumed to be situated at 2 = 0, so that the field increases and then decreases along
the length of the beam from —% to %

The radial component of the intrinsic vortex field and the ionic field may both be written in the

general form

E=E,p. (7.72)

The fields we are interested in are Coulombic, so that A = (), additionally neither of the fields has a

time-dependent contribution to the magnetic field, so that V x E = 0. The spin-orbit interaction

may then be written
ieh? R
Hso = —WU : Epp x V (7-73)
eh .
M e Epxp (274)
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The operator for the z-component of the orbital angular momentum is givenas L, = p X p, and

the spin angular momentum operator is given by S = 20‘, so Hgo may be written as

e 1
Hso = ——-E,S-L.. .
Writing
e 1
=— = 76
the spin orbit Hamiltonian can be written in the form
Hso = &S - L, (7.77)
so that the energy shift due to this spin-orbit interaction is found from
AEi == <\Ifi ‘ SS . Lz ‘ \Di> . (7.’78)

Unlike the well known spin-orbit interaction in atomic physics the orbital angular momentum in
the electron vortex is firmly aligned parallel (or anti-parallel) to the z-axis, such that L = [hz.
Thus, the result of S - L, is simply the z-component of the spin, multiplied by the orbital angular

momentum quantum number:

AEL = (Vi |ES.L, | Py) (7.79)
l
= L (5]€]v). (750)
This represents the deviation of a particular spin state from the expected kinetic energy, 200eV in

the case of the electron vortices to be considered here. The magnitude of the energy splitting

between the two spin states is

0 =AFE, —AFE_ (7.81)
—1(]€]v). (782)

This general expression will now be used to determine the magnitude of the spin-orbit interaction
within the electron vortex, as it propagates within its own field, and the external field of an ionic

impurity.

7.4.1 INTRINSIC SPIN-ORBIT COUPLING

The magnitude of the intrinsic spin-orbit coupling will be determined for the finite electron vortex

of Section 2.5. As shown in Chapter 3, the field of the finite vortex is given by

e LKEm 1

E(p) = —pa 27TeﬁkZIl;

P
/ Ji(k1p)©(pi1 — p)p'dp. (7.83)
0
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Using this field, and the apertured Bessel beam with Eq. (7.82), the spin-orbit splitting is
determined for the electron vortices with [ = 1, 3 and 10. The results are shown in Table 7.4.1. As
can be seen, the magnitude of the splitting is particularly small and, unexpectedly, decreases with
increasing /. This is due to the rather complicated [-dependence of the beam wavefunction and the
electric field; the peak of the magnetic field occurs at a greater radius than the peak of the amplitude
distribution of the beam, and this lag increases with /, so that the overlap between the field and the
beam is reduced at higher values of /, leading to the decrease in magnitude of the energy splitting.

Since both the field and | V;|? are linearly proportional to the axial current I, this effect will
increase with current. Increasing the current to 1 ;1A should lead to a coupling energy of order
1077 eV; however at higher current the effect of electron-electron interactions such as the Boersch
effect [126] will become significant, as the distance between electrons is now of the order of ym.
Additionally, such an increase in current is not possible with current electron microscope
technology, for which typical currents are in the range 1072 A- 107 A [103]. Even this 6-orders
of magnitude increase of the spin orbit interaction energy is far below the typical microscope
energy resolution, in the range of 0.1-1 eV [ 126], and this energy spread increases for higher
currents due to the Boersch effect. Thus the effect of spin-orbit coupling is determined to have no
measurable effect on the energy spread of the electrons, and so will not lead to any decrease in
image resolution in the use of non-spin polarised electron vortex beams. We note here that the
spin-orbit coupling described above is intrinsic to the single vortex electron, and not a feature of
the electron-electron interactions throughout the vortex beam. As discussed in Section 2.5.3 the
electrons within the beam are well separated, and direct electron-electron interaction such as the
Coulomb repulsion leading to the Boersch effect may be generally neglected in this theoretical
treatment. The multi-electron spin orbit coupling within the beam due to the interaction of nearby
electrons is thus expected to be small.

This intrinsic spin-orbit coupling is not related to the spin-orbit coupling described by Bliokh et
al. in the non-paraxial relativistic electron vortex [ 32]. The spin-orbit interaction described here is
a general feature of the electron’s motion within its own field, whereas the spin-orbit interaction of
Bliokh et al. arises as a perturbation in the small components of the spinor solutions describing the
relativistic electron vortex in the non-paraxial limit. In the non-relativistic limit, the non-paraxial
contributions to Eq. (2.39) are small, and the beam may be described by the paraxial Bessel beam
with spin, as has been done above. In the relativistic limit, the full, non-paraxial vortex solution of
Eq. (2.39) will be subject to the effect of the intrinsic coupling due to the vortex electric field, and
each component of Eq. (2.39) will acquire a spin dependent energy shift.

7.4.2  SPIN-ORBIT COUPLING IN AN EXTERNAL FIELD
In cylindrical coordinates the field of a point charge of Ze is given as

Ze? ) R 2
3P+
2 (P42

~

57 | . (7.84)
2

Bz =
meo \ (7 +2%)

""This was done using Mathematica, to evaluate and integrate the expressions for the electric field. Since the vortex
wavefunction is identically zero outside of p; 1 the numerical integration is exact.
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5})eam (10—13 ev) 5lexterna] (10—13 eV)

[=1 2.53 9.327
[=3 1.88 5.087
[=10 0.894 2.047

Table 7.4.1: Magnitude of the energy split of the aligned and anti-aligned spin states for the

intrinsic spin-orbit coupling, 5}’”“’, and spin-orbit coupling in the presence of an external field,
5beam
i

As discussed above, only the radial part will contribute to the spin-orbit interaction. The energy
splitting due to this field calculated for the finite electron vortices with [ = 1, 3 and 10 is shown in
Table 7.4.1. As before, the magnitude of the coupling decreases with increasing [. This effect arises
due to the increase in beam radius leading to a smaller overlap between the beam and the electric
field of the point charge. The magnitude of the energy splitting due to the coupling is slightly larger
than that found for the intrinsic field, but is still very small, so as to be negligible. This indicates that
the energy of non-spin-polarised vortex beams will not be significantly disturbed by propagation

past charged points or defects in crystals.
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Discussion and Outlook

HIS THESIS has examined several aspects of the new phenomenon of electron vortex physics.

Though many aspects of the physics and dynamics of vortices in wave fields are universal
[19-21, 80, 81], others depend on the particular wave field in which the vortex exists [22, 66].
Areas of similarity and disparity between optical and electron vortices have been highlighted
throughout this thesis, but the principal differences relate to the behaviour of the vortices in the
presence of fields or interacting with matter: the charge of the electron leads to an intrinsic
magnetic moment, which modifies the trajectory of the vortex in an external field; the motion of
the charged electron generates electric and magnetic fields, which have an axial component
particular to the vortex; and the electron and photon interact with matter via a different
mechanism, leading to substantial differences between atomic selection rules. In addition, the small
wavelength of the electron matter wave means that practical applications of the electron vortex
include investigation of the dynamics of vortices on the nanoscale. On the other hand, the linear
and angular momenta of the electron vortex have been shown to display the same characteristics as
those of the optical vortex, demonstrating the universality of the properties associated with the
vortex rather than the vortex-carrying medium.

The main results of this thesis are the demonstration of the fields of the electron vortex, resulting
in a general form applicable to all charged Bessel beams. This is also relevant in the study of particle
vortices consisting of ions, which, along with atomic vortex beams [ 127] could have potential
applications in etching and lithography. The demonstration of the selection rules of the interaction
of an electron with atomic matter was a significant triumph for this thesis, in that it allows a clear
interpretation of the experimental results of Verbeeck et al. [24] to be made. In addition to allowing
the clear interpretation of the published results, and comparison with the well known XMCD
effect, the detailed study of the complex spatial dependence of the interaction has also allowed the

suggestion of a method by which atomic resolution magnetic spectra may be obtained in the
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electron microscope.

The aims of this thesis were to put the study of electron vortices on a sound theoretical footing,
in order to better utilise the potentials afforded by the new branch of physics. These aims have been
met, in that a theoretical formalism of paraxial, non-relativistic vortex beams has been presented,

however there is a great deal more to explore. Some areas of particular interest are outlined below.

8.1 OUuTLOOK FOR FUTURE RESEARCH DIRECTIONS

Application of the electron vortex requires an accurate theory describing the quantum mechanical
vortex state. The Bessel states used within this thesis are the simplest form of vortex to treat
theoretically, and thus give a good overview of the properties of the electron vortex; however they
are not necessarily the most physically relevant states. In general, electron optics is well described
using Gaussian beams, and the long range propagation of the electron vortex has been shown to
have the behaviour of a Gaussian beam as it passes though focus [25]. On the other hand, the
divergence of the electron beam can be made small over the few-hundred nanometer thickness of a
sample due to the small convergence angles of the order of mrads [38]; this fact and the application
of other techniques, such as the use of annular apertures behaving as axicon lenses [91] may lead to
well behaved Bessel beams in the electron microscope. Further experimental work is required to
determine the particular ranges of experimental parameters within which the electron may be
considered Bessel-like or Laguerre-Gaussian like.

The Laguerre-Gaussian beams give the best approximation to the cavity laser modes relevant for
optical vortices [97, 99], and it may well turn out that the practical applications of electron vortices
in the electron microscope require a description in terms of Laguerre-Gaussian modes, particularly
in regards to propagation through the electron optics system, determining image formation and
interpretation. In that case, the result shown here must be adapted to be relevant for such states -
whether through a new formalism or an expansion in terms of the complete Bessel function basis
states. The general features in such cases are not expected to be drastically different, but for
example the intrinsic electromagnetic fields of the vortex will have a different spatial dependence,
and the magnitude of the spin orbit coupling will be different. Of particular importance is the
spatial dependence of the vortex atom-interactions, specifically the dipole interaction term. This
could be determined by expanding the Laguerre-Gaussian vortex state in terms of Bessel functions,
and applying the Bessel function addition theorem formalism laid out in Section 6.3, or by a ‘brute
force’ application the Hamiltonian of Section 6.2, calculating numerical values for the matrix
element at different values of the centre of mass position vector R. Relative to the Bessel beam of
infinite radial extent the charge density of the Laguerre-Gaussian beam is localised near to the beam
axis, so that the effect of the off-axis contributions is expected to be reduced, though not eliminated
since the Coulomb interaction is long ranged. If this is the case the prospects for chiral
spectroscopy as described in Section 6.3.5 are improved, as the noise contributions from off-axis
atoms will be reduced.

As was shown in Chapter 4 the orbital angular momentum density of the electron vortex has
components in the radial and azimuthal directions. The electron vortex has already been applied in

interactions with nanoparticles to show that the vortex beam will induce rotation of the
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nanoparticle [27, 28], similar to the optical spanner effect, though the rotation induced in the
nanoparticles was hampered by friction forces. The rotation experiments proposed in Section 4.3
would provide a method by which friction could be eliminated, and the interaction between an
electron vortex and nanoparticles of various materials could be studied in isolation. Alternatively,
friction between various species of nanoparticles on different surfaces could be studied by
examining the behaviour under the influence of the electron vortex, using the suspended particle
system as a control to quantify the friction involved. Friction on the nanoscale is poorly
understood [128], and an important issue for nanomanipulation [ 129] and many aspects of
molecular biophysics [ 130, 131], so that electron vortices utilised in such a way would become a
valuable tool in characterising friction interactions.

The orbital angular momentum of the vortex is not the same as the well known orbital angular
momentum of the atomic electron. The orbital angular momentum of the vortex is fixed to be
aligned or anti-aligned with the direction of motion of the electron, which in a magnetic field leads
to the accumulation of Berry phase along the curved trajectory of the vortex line, as described in
Section 1.2.2. The fixed one dimensional nature of the vortex that this represents requires a valid
quantum mechanical description - while the 2 component of the orbital angular momentum takes
the same form as that of the spherically symmetric atomic case, what are the relevant raising and
lowering operators for orbital angular momentum in the cylindrical geometry? For the
Laguerre-Gaussian optical vortex beam such operators have been defined [ 132], but the relevant
operators for the vortex fermions will take a different form. Such operators may be defined for both
the Bessel and Laguerre-Gaussian electron vortices, with the Laguerre-Gaussian operators having
2-dependence due to their divergence.

A major focus for electron vortex beams is their suitability for use in spectroscopy experiments,
as discussed in Section 1.4.1 and Section 6.3.5. There are many technical aspects that affect the
potential of electron vortices in such experiments, not least the difficulty of generating highly
coherent electron vortices with suitable intensity. If spectroscopy involving electron vortices is to
be successful, then new technological implementations of dedicated vortex generators are required.
As indicated in Section 1.3, a major obstacle to the generation of high quality atomic scale vortices
is the beam coherence, due to the finite size of the electron source. Another issue is that although
the holographic mask technique currently produces the most robust vortices, limitations of the
technique mean that the intensity of the beam is greatly reduced from typical (non-vortex) electron
beams, and so the scattering rate of the inelastic collisions required for core-loss spectroscopy is
greatly reduced. Optimisation of the production of electron vortices is necessary for their efficient
practical application, and a driving goal of current active research [ 52, 55].

So far, the most promising spectroscopic applications relate to using electron vortices to
determine chiral information within the electron microscope, including chirality that is either
magnetic or structural in origin. Both structural and magnetic chirality can be discerned in the
electron microscope using current technology - in the case of structural chirality this requires a
careful study of the sample from multiple angles [ 133 ], whereas for magnetism, energy loss
magnetic chiral dichroism (EMCD) is an established technique [ 134, 135], but requires large
scattering angles, making detection difficult. Electron vortices offer improvements over both these

techniques - the inherent chirality of the electron vortex means that fewer measurements will be
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required to fully characterise the chirality of the structure, and in the case of magnetic dichroism
the relevant atom-vortex interaction has been shown to be dipole active, so that smaller scattering
angles are required. If suitable vortex beams are made available, then atomic resolution electron
energy loss spectroscopy will be achievable by means of the experiment suggested in Section 6.3.5.
Such an experiment could be performed in current electron microscopes by careful arrangements
of suitable masks within the condenser and objective lenses of an STEM; though atomic resolution
may be possible, the nanometre scale vortices currently available still promise high resolution
magnetic information. Such experiments must be performed in order to demonstrate the potential,
and fuel interest in the necessary technological development. To date, the only experimental
endorsement of the application of vortices to spectroscopy applications is the experiment of
Verbeeck et al. [24]. Magnetic imaging in the electron microscope would be extremely useful in
materials characterisation for many applications, including evaluation of spintronic devices. Other
than magnetic information, the phase structure of the electron vortex beam also presents the
possibility of high resolution phase contrast microscopy, as is important for biological specimens
[26, 136, 137] without the need for the introduction of additional phase shifts using absorbing
phase plates, and the smooth phase ramp of the electron microscope will lead to an increase in the
phase contrast [26].

Further work considering the interactions of the electron vortex with other forms of matter is a
priority for determining other potential applications. This includes electron vortex states
propagating in semiconductor and metallic and half-metallic materials of varying dimensions,
which may lead to developments in spintronics, and novel conductance effects, such as orbital
angular momentum dependent densities of states and Hall effects relating to the orbital angular
momentum [ 138, 139]. Additionally, in metallic structures the electron vortex will excite plasmon
resonances, and these could potentially include resonant states with orbital angular momentum.
The vortex applications are not limited to bulk matter and spintronics - quantum gases may be
imaged using electron microscopes [ 140], and quantised vortices are an important phenomenon in
Bose-Einstein condensates [87] so electron or optical vortices might prove the perfect tool with

which to prepare and image specified phase states in quantum gases.

8.2 (CLOSING REMARKS

The breakthrough of the prediction and subsequent experimental verification of electron vortices is
predicted to lead to a great many new applications, some of which have been mentioned above, and
some which are yet to be discovered. Though electron vortices bear similarities to the more widely
know optical vortices, their material and charge properties lead to a great many differences. While
this means that known results cannot just be ‘borrowed’ from the optics case, it also opens up
possibilities of new practical applications and physical phenomena that will further shape the

understanding of orbital angular momentum. In short, there remains a lot of work to be done.

150



Optical Vortex Interactions

A.1  EXPANSION OF VECTOR POTENTIAL ABOUT CENTRE OF MASS

The interaction Hamiltonians Eq. (5.42) and Eq. (5.43) are given in terms of the vector potential at

r. = R+ Z2qandr, = R + T2q. Expanding A (r) about R in a series of terms of increasing
overs of q will enable the Hamiltonians to be written as a multipolar series. Taylor expansion of a
vector function F'(x) is achieved by [141]

(a- V)’

+ —F(x')

F(x+a)=F(x)+ (a-Vy)FX) — 9

(A1)

x=x"""

For the interaction between the optical vortex vector potential and the atomic electron we need

" . . V) .

AR +aq)=AR)+a(q-Ve)A)|,_g + az%A(r’) R (A.2)
where, for determining the expansion of A(re) and A(rp) o may be 52 and — ¢ respectively.
Thus, the leading order dipole term is given simply by A(R) , with the second order term,

(q- V) A(I" )|,s_g identified as leading to the quadrupole interaction term. These will
contribute to the interaction Hamiltonian through A 4 and ¥ 4
Ay =A(r,) - A(r,) (5.27)
my Me «
Yu= MPA(re) + MA(rp). (5.28)
After the expansion, we have
Ax=(q-Vy) A(r/) =R T (myp —me) (a- Vr’>2 A(r/) r'=R (A3)
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Sa=2A(R) + oM

(@ Vo) AlY)

R (A.4)

so that the only contribution to the dipole interaction are the first terms in Eq. (A.3) and Eq. (A.4),
as these will give terms that are linear in . The other terms in Eq. (A.3) and Eq. (A.4) will lead to

terms of second order in q, and contribute to the quadrupole term (see Appendix A.4).

A.2  ELEcTRIC DIPOLE MATRIX ELEMENT

Here, the azimuthal components electric dipole matrix element will be explicitly shown, in order to

infer the selection rules for an atomic transition. Writing the dipole matrix element as

(€-d); = et - (Yi(a)|a|v)(a)) (As)

and separating into Cartesian coordinates, we have
27
A N ENYES| i(m—m/
(€ - d>fi = eNpomNu o - | XA, / e m=m)q og Gqdd,
0

27 27
+ yA;tl / pim=m")eq i Gqddg + ZAS/ el(m—m')¢q¢qd¢q]
0 0
(A.6)

with the factors Ag’il containing the integrals over the other spatial variables p, and 0,:

A= [ Qup)Qulpiin, [ P (costy) P cost) s 0,8, (a7)

A0 — /0 Qn(pq)Qn/(pq)pgdpq / Pg,”/(cos 6,)FP;" (cos8,) sin 6, cos 0,d0,. (A.8)

0

Calculating the ¢, integrals for each case gives the standard result of circular polarisation induced

atomic transitions

X+ 1y

2 2 +1
<8 ’ d>fz = eNn,E,mNn’,B’,m’e ) Aq 6m,m’—1

% — iy A
+ TA;tl(stn/_,_l + ZAqu(Sm,m/ . (AQ)

This is dependent on the polarisation of the light field, and not the topological character of the

vortex itself.

A.3  VECTOR POTENTIAL MATRIX ELEMENT

The second part of the matrix element of Eq. (5.52) has the form

(A®R)) = WR): by AR)UL(R): ). (A10)
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This will be explicitly evaluated to determine the effect of the vortex interaction on the centre of

mass states. The centre of mass states take the form given in Eq. (5.7), so that

(AR)) =20 (o | hpnye e | i) (b |, . | )

W
33 —ikyz —i i A
+ 70 <7/11{ ‘ Ji(kLpr)e hezemil®n 77Z)R> <”év ) all,kz

”%v> : (A1)
when evaluated, this yields

<A(R)> _ By,

pw novd (K. — KL+ k2)o(z,1-)0

("évv”é)v_l)

Y. noy + 16(K, — K — kz)5(L7L’+l>5(n{,wngv+1)] , (Aa2)

as the selection rules for the interaction, with

Ar = /DOO R'(pr)R! (pr)(pr)Ji(k1pr)prdpER. (A.13)

The first term in Eq. (A.12) indicates the absorption of a vortex photon by the centre of mass, while
the second term is that of emission of a vortex photon. Angular and linear momentum is conserved
in each case, and it can be seen that the angular momentum of the centre of mass is allowed to

change - rotation about the centre of mass may be induced by interaction with an optical vortex.

A.4 THE QUADRUPOLE TRANSITION MATRIX ELEMENT

In order to examine the selection rules arising from the quadrupole term, the transition matrix
element of the quadrupole terms identified in Section A.1 is calculated explicitly. To do this, all
quantities will be expressed using Cartesian coordinates so that derivatives of unit vectors are not

an unnecessary complication. We write the position vector as

q = Xpgsin(fy) cos(dg) + ypg sin(by) sin(dg) + 2p, cos(b,);

and the vector potential operator as

A(R) = A('TRa YR, ZR) = _‘sZUOJl(kJ_ x%{ + y%{) <elkzzR€zl arctan(yR,;pR)ak

—ikyzg —ilarctan(yg,zr) AT
+e e R, .
The expansion of Eq. (A.2) will now be explicitly evaluated up to second order (giving terms of
order q), so as to determine the quadrupole interaction Hamiltonian, and examine the selection

rules for orbital angular momentum exchange. The first two terms of Eq. (A.2) are, in Cartesian

coordinates,
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AR+ aq) = A(R) + ap,sin(b,) cos(¢,)0,A(z, y, 2)

R

T apysin(0y) sin(@g)0,A (2, 2)| + apycos(8)0Alz,y, 2)

R

(A.14)

R

The final term, the 0, component, is evaluated simply as

Ey
— —82; (’l,k Jl (kL\/M) zk‘zzRezlarctan(yR,xR) an
+ Zl{ZZJl (l{u_@) eikzzReilarctan(yR@R)dl];)
. Ey

_ U (k Jl(kj_pR) ’LkzZRe’Ll@Rak + k Jl(kLpR) 7szZR€_ichR&Z:) ;

8ZA(1', Y, 2)

R

however the 0, and 0, terms are slightly more complicated; looking first at the 2 terms, we have

a’rA(wa Y, 2)| = —K10:J; (lﬂ VvVt + ?ﬁ) gt erctan(y.)
R
+ I%anJl <kj_\/m) efil arctan(y,z) ’
R
withk; = z@ k=20, € and Ko = z —ikazg Ts This gives
. , kx
axA(J},y,Z) - R, (ezlarctan(y,z) —J (k’i /:p2+y )
R Va?+y? l
+ il Jy(k /3% + y2)e! Tann g arctan(y, ))
R
N ; k
+ Ry e—zl arctan(y,z) J‘_x ‘]l/(kJ— \/m)
/ 12 + y2
— il Jy (k22 + y2)e el g arctan(y, ))
R
The derivatives of the arctan(y, x) function are
__ Y . _ X
0, arctan(y, x) = oL Oy arctan(y, x) = “Er (A.1s)

Thus, we now have

azA(x, Y, %)

; ki x
_ L il arctan(yr,TR) LR / 2 2
(e (1)
ilyr ( / il arct
+ —Jl kJ_ [E2 + y2) etlare an(yr,TR)
% + Yk oo
; k /S
o '%2 (ezlarctan(yR,xR) ( 2L$R : Jl/ <]€J_ x% 4 y;{))
VIRt YR
ZlyR il
-7 Tk (L’Q + 2> et arctan(ygr,TR) :
24 42 ! ( L\ TR T YR

TR R
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returning to cylindrical coordinates gives

. E
O A(z,y,2)| = —i;oé
R
. . 1 sin(®
X {e”q’Re’kzszk (/ﬁ_ cos ®rJ] (ki pr) + ! su;( ) J (/ﬁ_pR))
R
il Sil’l(q)R)

— ¢ UerpTikeERGT (/@_ cos ®rJ] (k1pr) — Ji (/QPR)) } (A.16)

PR

as the x derivative of the vector potential. Similar treatment of the y term gives

. E
0,A(z,y,2)| =—i—¢
R w
‘ ' 1 d
% [elléRezkzzRak (kl sin®rJ] (k1pr) — MJZ (/ﬁ,OR))
PR

il cos(PR)

_ emilPre-ikzngt <lgL sin ®p.J; (kLpr) + P
R

Ji (hmﬁ) } ; (A7)

so that finally, up to second order in the expansion, we have

~ ~

AR +aq) = A(R)

iOoné

w

{Pq sin(6) cos(¢g)

il sin((I)R)

o {eil%eikzm&k (lﬂ cos ®pJ] (kipr) +
PR

Ji (h%))

. ‘ /[ sin(P
— ¢ 1Prgmikezngl (I@ cos ®rJ] (kipr) — M«]z (MPR)) }

+ pgsin(f,) sin(¢,)

‘ . 1) o
X |:€Zlq)R€Zkzszk (/CJ_ sin (I)RJZI (kLpR) — m

Ji (kJ_PR))
— efilbeefikzsz}; (/ﬁ sin ®pJ] (kLpr) + Mjl (/ﬂpR)> }
~ pycos(6,)
y K’”(“) ey (kp))} }
(A.18)
as the expanded vector potential about R.
A.4.1 THE QUADRUPOLE INTERACTION HAMILTONIAN

The quadrupole term of the interaction Hamiltonian is found from the terms in Eq. (5.37) that are
second order in . Two such terms arise, the second terms of Eq. (A.3) and Eq. (A.4). The focus
here will be the quadrupole term directly affecting the atomic electron, i.e. that from Eq. (A.4),
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since the other contribution will be very small. Thus, we have

rini(a) _ C(1mp — me) A
Hoy" = P, (a- V)A(R) (A.19)
MpMe
as the quadrupole interaction of interest. Once again, the momentum operator is written as the

commutator of the atomic electron Hamiltonian and position operators, and the matrix element is

found to lead to selection rules:

a_ e (my —me)
Myt = ST

(&r—&) (V] (@) A (R);ndy

a- (a- V)AR)| i(@); Gh(R); by )

(A.20)

h mpym,

separating the polarisation vector € from the optical potential once again, we have

Mqou\z’td _ ie (mp )

(&= (@) ol (R);ndy

S G0 AR) | v (a): v (R)inby )
(A.21)

I3 MpMe

A.4.2 QUADRUPOLE SELECTION RULES

The point of interest here is the possibility of transfer of orbital angular momentum between the
optical vortex and the atomic electron. As such, the orbital angular momentum selection rules will
be explicitly evaluated via the azimuthal integration of the matrix element of Eq. (A.21). The
atomic position operator and vector potential gradient are expanded in Cartesian coordinates, so
that any dependence on the circular polarisation of the optical vortex field is made clear. The
selection rules found after integration over ¢, and @, are found to be:

ire(m, —m

Mquad 6) Nn,é,mNn’7€’7m’ (gf - gz)

hm,,

) X+ iy e ‘
XE - { ( 5 > [ nov<(A + ZB)d(m,m’)(S(L,L’—s-l—l)

+ (A - iB)é(m,m/+2)5(L,L’1l))5( I omi 1)

Nov:"ov
-V n%)V +1 ((A* - iB*)g(m,m’)(S(L,L’JrlJrl)

+ (A" 4+ 0B)0(mmr +2)0(L, 1/ 1+Z)) Otnd

oy oy +1)

+ 2 ngVC5(m7m/+1)6(L’L/,l)5

(”(j)vvnév_l)

X + iy ~ j
+ ( 2 y) [ %v((A = 1B)0mm) Oz 1-1-1)
+ (A + 1B)d(mm—2)0(L, /41— l>) g

— 1/ né)v + 1 ((A* -+ iB*)(S(m,m’)d(L,L’—l-H)
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-+ (A* _ iB*)(5(m,m’—2)5(L,L’+1+l)> 5(”£v»"6v+1)

+ 2 nngd(mm/,l)é(L,L/,l)(S

(”(J;vvngv_l)

—2y/noy +1C *5(m,m'1)5<L,L'+z>5(ngv,ngv+1)]
\/ Noy ((A/ + iB")0(mm'—1)0(L, L/+1-1)

— (A" + iB’)(S(m,m/H)5(L,L'—1—Z)) O

—/ Noy + 1 ((A/* — iB")0(m,m—1)0(L, 1/ +141)

— (A — iB/*)(5(m,m’+1)5(LvL/_1+l)> Oy +1)

} (A.22)

+2

évv”évfl)

+ 24/ iy C" S(om ) (1,17 1) O

Vrngvfl)
- 2WC”*%M5(L7L'+l>5<n£wn6v+1>

where A, A', B,B’, C'and (" are the non-azimuthal factors from the integration:

A=k, / Qu (pq)Qn(pq>P3d:0q/ Py (cos 0,) Py (cos ) sin® 0,d6),
0 0

/ Ri(pr) B (o) T} (ko) predpnd (K. — K. — k)
0

A=k / Qu (Pg)@n (pq>p3d:0q / Pyi" (cos 0,) P (cos 6,) sin® 0, cos 0,d6,
0 0

/ Ri(pr) B (pr) Tt (ko) prdprd (K. — K.+ k)
0

B = il/ Qu (Pq)@n(pq>/)3dpq/ Py (cos 0,) Py (cos ) sin® 0,d0),
0 0

/ Ri(pr) R (o) Ji (k. pr)dprd (K. — K. — k)
0

B = il/ Qn (pq)Qn(pq)p;ldpq/ Pp (cos 6,) P™(cos 6,) sin? 8, cos 6,d6),
0 0

/ Ri(pr)R! (pr)Ji(k1pr)dprd(K. — K. + k)
0

C= —k:z/ Qn (pq)Qn(pq)pédpq/ PJ (cos 6,) P™(cos 6,) sin? 8, cos 0,d6,
0

0

/ Ri(pr)R! (pr)Ji(kLpr)dpro(K, — K., — k.)
0

C'= —k:z/ Qn/(pq)Qn(pq)pédpq/ P} (cos 0,) Py (cos 6,) sin 6, cos® 8,d6,
0

0

/ Ri(pr)R! (pr)Ji(k1pr)dpro (K, — K. + k).
0

These quadrupole selection rules are rather more complicated than the dipole case. The orbital

angular momentum projection of the atomic electron is allowed to change by one or two units in
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this quadrupole interaction, but once again, the circular polarisation of the optical vortex plays a
key role. For the linearly polarised field - Z-polarised - the atomic electron may exchange one unit of
angular momentum with the centre of mass, such that Am = =£1. It can be seen that this does not
depend on the vortex field, as both these processes are allowed for both absorption and emission of
a vortex photon by the centre of mass, and here, only the centre of mass may directly exchange
orbital angular momentum with the vortex. This is also the case for the interactions involving a
circularly polarised field, in which exchanges of Am = 42 are possible. The centre of mass may
exchange [ orbital angular momentum with the vortex, and the atomic electron may exchange one
unit with the centre of mass, and one with the polarisation angular momentum of the field, giving a
total change of Am = =£2. The centre of mass of the atom may also exchange angular momentum
with the spin polarisation of the photon. All the interactions described above rely on centre of mass
motion.

If the interacting photon were not a vortex photon, then the exchange processes between the
centre of mass and the atomic electron would still be possible. The quadrupole term allows the
centre of mass and atomic electron angular momenta to couple directly (the weaker dipole term of
Eq. (5.47) allows coupling between the electron and centre of mass such that Am = £1 and
AL = F2, with the ‘extra’ unit from the circular polarisation of the photon). If the light field were
not circularly polarised, then exchange of one unit would still be possible. However, the presence of

orbital angular momentum [ in the light field does not directly affect the atomic electron.
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Ele&ron Vortex Interactions

B.1 CALCULATION OF DIPOLE SELECTION RULES

Here, the Coulomb matrix element of Eq. (6.27) will be explicitly evaluated. We write the
shorthand

(g, = (e ®IE R s®) e

from Eq. (6.30) we have

(r, —R) 1

r, —R[* [F — G cos(®, — @R)]%

(&—;zf’) (pve—ifbv B pRefich)

n <X —21y> (pvelrbv . pRGi(DR)] (B.2)

Making the substitution y = ®,, — ® p allows for mixing of the orbital angular momentum of the

electron vortex and the centre of mass motion, and requires generic integrals of the form
ei(l—l'-‘ra)y

yéﬁ) _ /27T
0 (-F(pva Zvy PR ZR) - g(pva pR) COS((I)U - q)R))

@dyv (6-31)

so that the integral over d®,, is now replaced by the integral over dy. For the dipole terms, c takes

the values 0, &=1. The full matrix element becomes
L - N / &R / dp / d=
|I‘U R| 3 v (%
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X

()2+i§f

5 ) (Iijyil — IjRRyg) L~ ~1) @,

<X _2Zy> (Iijyil . IjRRyg)) ei(l+L7llfL/+1)<I>R

% (IjzRyg . Z‘jRZyg)) ei(lJrLfl/,L/)@R (B3)

where the factors from the relevant wavefunctions have been written using the following
shorthand:

F=py+ Pk + (20— 2r)", (B.4a)

G = 2pupr; (B.4b)

T, = Ji(k1pv) Ju (K pu)po, (B.4c)

T = Ji(kipo)Jv (K py), (B.4d)

J = e'tk=mk)zo g (B.4e)

T, = e'k=—h2)z 2od 2y, (B.4f)

R = R'(pr)R! (pr, zr)e' KrKrloneill:~K2)zr (B.4g)
Rp = Ri(pR)Rf(pR>ei(KR—Kiz)pRei(Kz—Ké)szR’ (B.4h)
R, = Ri(pR>Rf(pR)ei(KR_KEQ)pPei(Kz_K,,z)zRZR’ (B.4i)
N = NIN/NLNL. (B.4j)

In order to examine the possibility of orbital angular momentum transfer, we may now evaluate

the azimuthal integral over @, to find

r, — R —1) /1 A
< Ir, — R|? > - Bl( ) (X +2¥) 0Ly, (Lr+141)]
v f’L

+ B (% = i9) Oy -1y + B 28y vy (6:32)

with the factors B3; containing the non-azimuthal factors integrated over the remaining degrees of

freedom
B = @/ / PR / dp, / dz, (LIRY?, — TTR,V3) (B.sa)

Bt = @/ / &R / dp, / dz, (LIRY?, — TTR,V3) (B.sb)

B =2z N / d°R / dp, / dz, (ZTRYS — TTR.V3) (B.sc)

It can be seen that |Bl(+1)| — |Bl(_1)*|-
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B.2 CALCULATION OF QUADRUPOLE SELECTION RULES

Here, we find the selection rules for the quadrupole potential terms using the same method as in

Appendix B.1. The quadratic interaction potential terms are

Frquad
Hl‘ixt = 87e, + 3

e |(mp—mg) o (m¢ —my) (q- (r, — R))* (6.26)
M |, — R M r, — R[S .

which is expanded in vector components as

2 2 4 4
“rquad e” p 3(me —m ) . .
A — -~ Mq [ i, = R]5p sin 0,2 cos® (¢, — ®,) + sin® 0,p% cos* (¢, — Pr)
— 2sin*0,p,p, cos(¢, — ®,) cos(®, — Pp)
+ 25sin 6, cos 0,p,(z, — 2gr) cos(p, — @)

— 2sin 6, cos Oypr(z, — 2r) cos(¢, — Pr)

(mj; —m7)
—+ COS2 Qq(ZU — ZR)2> —+ m (B6)

Expanding the azimuthal angular functions into exponential functions, so that the orbital angular

momentum exchange will be apparent, we have

Frquad : i(Pg—Po —2i(pg— Do
HE = M| Tr,—RP —sin? 0, p2 (e*(Pa=P) 4 e72il0aP0) 4 1)

4 4
62 pg 3(me _mp) 1
ot 8meg M 4

1 . .
+ 1 sin® 0,p% (621(%—%) 1 e 2i(ba—PR) 4 1)

- %SiHQ equpU (ei(2¢q_q)R_¢'v) + e—i(2¢q_q)R—’~I>v)
B )

—sin 6, cos 0,py (20 — 2r) (@i(¢q—‘1>v) + 6—i(¢>q—<1>u))
— sinf, cos,pp(z, — 2,) (€% PR) 4 71 (PamPR))
(mi —m?)

+ COS2 9q(zv — Zr)2> + W

] (B.7)

As before we have,

1 1
r, =R [F+ Geos(®, — p)]? (B2)
and similarly
S ! (B9)

r, =R[°  [F+Gcos(®, — Pg)]2
so that we can once again make the substitution y = ®,, — ® g, and make use of the integrals of

Eq. (6.31). Evaluating the full matrix element gives the following Kronecker delta functions that

161



form the basis of the selection rules:

- 3627.‘.2<m3 _ m4> 63615 7707_3,0:)23 1¢3 07_3,0y5
M%Vd _ §4 5(l+L),(l’+L'+2)5m,m’f2( vSRSq 2 + fnggqn 0
o 4 4
B E2ERENOTHOVD
2
Sehe TV ety
O4L),(+L —2)Omm/ +2 1 + 1
- 535%&77073’037{’)
2

0 dmm—t (E2€REN TV — EEREM' TV

s - (26hEM TV — €LRE 7105

3ele p0r30ys  glede 073,035
5([+L)7(l/+Ll)5m7m/ <£ éRfQZ 0 + 5 gquz 0
| SGETV _ Seen Y]
2 2
- fsiféfqnzr“yé)]
3e’m?(m2 — m?)
o 8117+ 1) O E L E REPT OV (B.10)
with the non-azimuthal integrated factors given by
o
&0 = [ Hkp) B K, pi)oldp (B.112)
0
W= [ RG)R o (B.11b)
0
&= / Q1 (pg) Qu (Pg)Pytlpy (B.11c)
0
?7§") = / / ei(kz*k/z)zvei(Kz*K;)ZR(Zv — 2g)"dz,dzR (B.11d)
7)) = / P"(cos 8,) P (cos 6,) sin™ 8, cos™ 6,,d6, (B.11e)
0

B.3 NUCLEUS-VORTEX COULOMB INTERACTION

The second term of the interaction Hamiltonian of Eq. (6.38) will not affect the internal electron
state of the atom, but it may induce transitions between different states of the atomic nucleus. In
particular we are interested in the transfer of orbital angular momentum, and so we will look for

changes in the rotational states of the nucleus. We have

i od L i e’ 1 f
ME = — (WL vl PRy Y] ¢§;¢R;¢g> (B.12)
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Since both 9}, and v}, are specified in the same coordinate frame no transformation is necessary.

Once again, we have

r, — R| = \/p% + p% + (20 — 2r)? — pupr cos(P, — Pp) (B.13)
= [F + Gcos (®, — )7, (B.14)

with the functions F and G that same as previously give in Eq. (B.42) and Eq. (B.4b). The

azimuthal factors of the matrix element are then given by

i(0—0)y i(L-L)O R il
/ d¢q/ d<I>R/ 0P, ~ (Bas)
[F + Gcos (P, — Pg)|2

Again, the substitution y = ®,, — @ is made, and the matrix element is written in terms of the

integrals of Eq. (6.31). Evaluating this gives the selection rule

2

Mfz @R 1172/@ Om m’5l+L VL (B.16)
€0

where expressions for O ,, , and O are given in Appendix B.7.1, and since the atomic electron

wavefunction is not affected, we have 276, = 1.

B.4 THE MATRIX ELEMENT AFTER FIRST EXPANSION

The effective operator of Eq. (6.49) may be directly integrated to find the full selection rules of the
interaction for the special case when the atom is free to rotate about the beam axis. This is carried
out by integration with the atomic states using the same technique as before, the y-integrals of
Eq. (6.31). The relevant factors to be integrated are, as before, the azimuthal terms for both the
vortex and atomic electron wavefunctions, along with the Coulomb interaction factor. Allowing
the nuclear coordinate to act as a dynamical variable we have, from the effective operator and the

relevant states

2 2w Li(p—p') @, pi(m—m/) g
My o / / AP de,. (B.17)
v, — g
Similar to above, the Coulomb interaction may be expanded as
1 1
v —q = T (B.18)
—d (02;2 + 27+ Py — 2,pq €08 g — pi,pgsin O, cos(P;, — ¢q)) ’
1
= 1 (B'lg)
(F" = G cos(P, — ¢))*
So that the azimuthal integral becomes
2 e—io—p)Y o .,
My o / : / gimtp—m'=p )%dgbq (B.20)
0 (F'+ G cos(P, — ¢,))? Jo
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where the substitution ¢y’ = ®/ — ¢, has been made in the same manner as before, and

]:/(pinpmz:neq) :p;,2+21/,2+p2 (B'ZI)
G'(p,, pg, 04) = pypgsinb,. (B.22)

The full matrix element is then

2 oo

€ § : L pp" opp’
/o Ok G)q,v’,y’(SlJrL—JDJHLL’—p/577"Hr107m’+p’ + ORwyO0mm O+L),w+1) |
o 2T

p=0o0

Myi =

(B.23)

where the factors O g, O,/ ,/, O R0, and O are numerical factors arising from integrating over
the remaining spatial degrees of freedom, and the matrix element of the Coulomb interaction
between the vortex electron and the nucleus has been included (see Appendix B.3). Full
expressions for the O factors are given in Appendix B.7.1 and Appendix B.7.2. The vortex-nucleus
interaction contributes a channel in which the orbital angular momentum of the atomic electron
may not change, but the rotational state of the nucleus may exchange angular momentum with the
vortex. For the interaction in which the exchange with the atomic electron is possible, the selection

rule of orbital angular momentum conservation are

m—m'=—(p—7p). (B.24)
This selection rule only pertains to the particular p vortex wave that the atomic electron interacts
with. This may be related to the original orbital angular momentum of the vortex beam [ only if the
initial and final orbital angular momentum states of the centre of mass are known. As before, we
consider the centre of mass in an orbital angular momentum eigenstate, with initial and final states
having L and L’ units of angular momentum respectively. Eq. (6.51) contains the relevant factor
for these centre of mass eigenstates, and when integrated over the centre of mass coordinates we
find the selection rule
I-U'+L—-L=p—p (B.2s)

such that the full selection rule of the interaction is found to show the same general orbital angular
momentum conservation as that obtained in Section 6.2 using the multipolar expansion of the

interaction Hamiltonian, namely

Al+ AL = —-Am; (B.26)

however, this is much less restrictive regarding the change of orbital angular momentum of the
atom. This selection rule encompasses all possible transitions, from all multipolar contributions,
since as yet no information regarding the multipolar nature of the transition has been obtained.
This general expression of orbital angular momentum conservation does not specify which
transitions are dipole allowed. In order to find this, a further wavefunction expansion is made.

We note here that, for the case when the atom position R is not a dynamical variable and the
atom is held fixed, there is no selection rule relating Al and Am. In these situations, the orbital
angular momentum transfer to the atom may take any value, as —00 < p < o0, and the change in

orbital angular momentum of the beam is similarly unbounded. The consequences of this are
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explored in Section 6.3.4 and Section 6.3.5 for the dipole terms of the interaction found from the
multipolar expansion.
B.s FOURIER TRANSFORM OF EFFECTIVE OPERATOR

The effective operator may be expressed in terms of the total linear momentum transfer Q(3)

between the beam and the atomic electron:

Q) =k -k
=(k—K)2=Vk24+k? -2k K

_ W? k2 — 2k K, cos(B) — 2k.k, (B.27)

where 3 = ¢} — ¢. Writing the effective operator in this is accomplished in a way that recalls the
method for Fourier transform of the Coulomb potential [ 142]. From Eq. (6.62)

Ju(kip,)Jw (K p))

]

e — [ () gy (K)

X ei(P—U—Pl'i‘u/)‘ﬁq 6i(u—u’)<1>; (6.62)

we may write the effective operator as a function of Q. In order to do so, the Bessel functions may

be written in integral form using:

1 2 ] ]
Jy(z) = /o eizeosl@eiva e, (2.28)

o 2m
Writing the Bessel functions J,, (k. p’,) J, (k') p’,) in integral form gives

1 27 ) , ‘
Ju(kLpls>JU’( lpls> = —)“'/ ek Pl cos(a) gina oy
0

 Am2u(—i

2m
S N A
/ e zl<:J_p§cos(oz)6 wle g0/ (B.ZS)
0

where the function .J, (K, p,) has been written in terms of a complex conjugate. The angles « and
o/ may be identified with the angles between the position vector p/, and the transverse momenta,

k and k'] respectively, so as to allow the scalar product to be written later:

1 271— ; / o / N /
T AT ) = gy [ oo g,
0

2
/ oKLl cos(6,— @) =it (=) 45! (B.5)
0

Combining this with Eq. (6.62) gives

1

P / ilp—u—p'+tu)pg __  —
[gp = Jp—u(kJ_QJ)Jp’—u’(quJ-)e P b 47r22‘u(_7;)u’
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2 27
/dB // d¢k/ d¢/ 6sz_pS cos(pr—D%) fzk:Lpscos(qb;CfCD’s)

z(k —kL)z, z(u u') P
" (B~ L) i (6~ @)
]
1

= Jp—u(kJ_QJ_)Jp —u (/ﬁ‘ﬂ) o)t A2 (—i)v

5 z(kfk/)-r’ L
/d / d¢k/ Ao it ePre™ % (B.30)

Using this the linear momentum transfer vector Q(3), we may write

1
47r22'“(—i)“'

27 2 —zQ
/d3 // dﬁ/ d(ﬁk | ,| ezu u)d)kefzu/o’

QB

— ki) Ty (K )0 [ / g |,| e (Bay)

This now has a similar form as the Fourier transform of the Coulomb potential. Evaluating this

IV = (k1) Jy - (K g e ®mem? )%

using the standard result [142]
- 1 1 . 21
k) = d3 e tkex _ \/j— B.

—zuﬁ
[5,p’,u,u =

pfu(kJ_qJ)Jp’fu(leJ_) o= P)¢q\/ﬁ/ ﬂ . (6-63)

gives

B.6 SUMMATION OVER p, p/ AND U

In order to achieve the multipolar expansion, the asymptotic limit of the Bessel function is applied.
Since this is valid for Bessel functions of positive order only, it is necessary to write the expanded
wavefunctions in such a was that they are always of positive order, even for p < 0. This leads to the
conditions on p, p and u, as given in Table 6.3.1. Applying these conditions leads to a set of

eighteen restricted sums over " and u:
g »Dp

yp st Z ( Z Z Jp—u(krqr) Sy —u(kiqL)

u=0 \ p=0,p>u p/—O p’>u

5 DD SN IARTR TS

p=0,p>u p’=0,p’'<u

+ Z i (_l)lp/_u‘Jp—u(k‘lJ-qJ-)JkD/*u‘(qul)

p=0,p>u p’=—c0

T i i (=) gy (k1 qr) Ty —u(k1qr)

p=0,p<u p’=0,p'>u
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oo

+ Z Z (_1)‘p_u|+|p/_U|J\p—u|(kLQL)J|p’—u\(kLQL)

+ Z Z (_1>|p7u|+‘p/7u|t}|p—u|(kJ_qj_)le’—UI(kJ_QJ_)

p=0,p<u p'=—o0

+ i Z (_1)|p_u“]|P*UI(kJ_QJ_)Jp’—u(kJ_QJ_)

p=—00 p'=0,p'>u

n Z Z 1)lpul+lr’ U\J‘ ul(BLqr) Dy —u(krqL)

p=—00 p'=0,p'<u

i i (—1)Pu|+|17/u|J|p_u|<kJ_qL)J|p/_u(kj_ql>>

p=—00 p'=—00

+ i <22Jp_u(l€qu)Jp/_u(kLQJ_)

u=—oo \ p=0 p/=0

o0

+Z i Jp—ulkrqr)Jy—u(kiqL)

p=0 p'=—o00,p'>u

S (kg Ty (kig)

p=0 p'=—o00,p'<u

—1 o0
+ Z ZJp,u(quL)quu(kLQL)

p:_oo7p2u p,:()

—1 -1
+ Z Z Jp_u(k?LQL)Jp’—u(kLQL)

p=—00,p2>u p'=—00,p' >u

+ _Z _Z (_1)@/—“'Jp—u(quJ->J|p’—u\(kj_qj_)

S —

p=—00,p2u p'=—0c0,p'<u

+ i Z(_l)‘piul Jip—u)(k1q1) Ty —u(k1qL)

p=—00,p<u p’=0

+ i i <_1)|p_UI‘]\p*UI(kLQL)Jp’—U(kLQL)

p=—00,p<u p'=—00,p'>u

+ _Z _Z <_1)|p_u+|p/_uJ|p—u(kJ_QJ_)Jp’—u|(kJ_QJ_)> . (B33)

p=—00,p<u p’'=—00,p'<u

The Bessel functions written in each term above are now each of positive order, and are suitable for

expanding in powers of ¢, . Applying the asymptotic limit of Eq. (6.65) gives

Zp,p’,u _ 1 kiqL php'=2u
_Z Z Z —u+1)F(p’—u—|—1)( 2 >

u=0 \ p= 0p>up 0p’>u

1)|p ul kg, p—u+|p'—ul
£y > 0 —u+1> <rp—u\+>( )

p=0,p>u p’=0,p'<u
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50 -1 (_1)\p/_u| kgL p—u+|p’—u]
DI r(p—u+1>r<|p'—u|+1>( 2 )

(—1)lp—ul quL> lp—ul+p'—u
+
Z Z Ip—UI+1) (p’—u+1)( 2

p= 0p<up 0p’>u

)Ip u|+]p’ —ul kiq. [p—ul+[p’ —ul
+
Z Z F|p—7~bl+1) ([p/ —ul+1) )

p=0,p<u p’ 0p<u

pUI+|p —u
P TR N

p=0,p<u p’=—o00

)
' Z Z Ip—u|+3p(;l—u+ <kuﬂ)lp o
)

lp—ul+|p"—ul

p=—o00 p'=0 p’>u

)Ip ul+[p' —ul kiq. [p—ul+Ip’ —ul
_|_
Z Z FIP—UIJrl) (Ip/ —ul +1 )( 2

p=—oop’ Op<u
\p ul+[p' —ul N [p—ul|+|p’ —ul
Z Z F!p—UI+1) (\p’—UI+1)( 2 )

p=—00 p'=—00

2 (S ()

U=—00 p= Op’ 0

Fp—u+ DI —u+1) 2

p=0 p'=—o00,p'>u

00 -1 (_1)\p’—u| kiq,
+Z Z F(p—u+1)r(|p'—ul‘|’1)( 2

p=0 p’—foo p'<u

)
R e e o

p=—00,p>up’'= 0

1 k pHp'=2u
i Z Z 1491
F'p—u+ DI —u+1) 2

p=—00,p2u p'=—00,p' >u

-1 -1 (_1)|p'_u| kiq. p—u+t[p'—ul
3 2 F(p—U+1)T(!p’—U\+1)( 2 )

p=—00, p>u p'=—o00,p'<u

)|p ul ka_QJ_ lp—ul+p’ —u
- Z Z |p—u|+1> <p'—u+1>( 2 )

p=—00,p<u p’=0

(_1)|p—u| kLQL [p—ul+p'—u
Yy r<|p—u|+1>r<p'—u+1>( 2>

p=—00,p<u p'=—00,p'>u

-1 -1 (_1>|p—u|+\p’—u| kiq. [p—u|+|p"—u]
* Y Y a5 (B34)

p=—o00,p<u p'=—00,p' <u

In order to determine the particular terms in the full multipole expansion, the specific relationships
between p, p’ and u that give the desired powers of ¢, are found for each multipole term. These
relationships are specified in Table 6.3.2, Table 6.3.3 and Table 6.3.4 for the zero order, dipole and

quadrupole terms respectively.
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B.7 MATRIX ELEMENT FACTORS

In the following, the explicit expressions for the integrals arising in the evaluation of the matrix
element are given. These are from the non-azimuthal factors of the wavefunctions in each case, and
the precise value depend on the particular initial and final states of the electron vortex, atomic

electron and nuclear wavefunctions.

B.7.1 INTEGRAL FACTORS FOR NUCLEUS-VORTEX COULOMB INTERACTION

The matrix element of the Coulomb interaction between the electron vortex and the atomic

nucleus is given in Appendix B.3. The relevant integral factors take the following form:

00 00 00 o) 2
@R,v,y = NRN/RNlNl'/ dpR/ dZR/ dpv/ dZU/
0 —00 0 —o0 0

o R™(pr)R (pr)Ji(k1py) Jv (K po)
[F + G cosyl2
> ei(KJ_7K’L)pRpvaei(Ksz;)zRei(szk’z)zv ei(lfl’)y; (B.35)

0, = Nu o Now o /0 dp, Q77 (pg) 9, (pg)ps /0 df, P (cos 0,) P (cos 6,) sin 6.
(B.36)
’ . . . . . .
Oy, is simply the overlap integral of the radial and polar functions of two hydrogenic electron states.
Since the nucleus-vortex interaction cannot affect the internal state of the atom the set of quantum

numbers 7, [, m for initial and final hydrogenic states must be the same and we have 270, = 1.

B.7.2 INTEGRAL FACTORS FOR FIRST EFFECTIVE OPERATOR

After the first expansion of the electron vortex wavefunction about the atomic nucleus, the matrix
element and selection rules may be directly evaluated. This is shown in Appendix B.4, with the

relevant integral factors given as:

@%l’p’p/ = NRNszNz// dprprR™* (pr) R (pr)Ji—p(kLpRr) i —p (K pR)

0
> ! !
></ dzpe’FthemKamh)zr, (B 37)

o0

@s’i) B NanN 10 m / dpv/ dZ / dpq/ de

I i (klpv)‘] (kj_pv)
< Qi) @) T e
x P"(cos 0,) P (cos )PP gitk—ke)z (B.38)

pqpv sin 0,
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B.7.3 INTEGRAL FACTORS FOR ZERO ORDER TERM

The matrix element and selection rules of the zero order term found in Section 6.3.3 have the
following factors arising after the integration over the non-azimuthal degrees of freedom of the

atomic electron and nucleus, as well as the integral over the total momentum transfer:

020 = NotsNsoe [ dpy [ 0,010 @i00) PP cos ) P (c0s0,)

X pz sin qui(kz*klz)pq csfs  (B.39)

@%l’p = 27TNRN1/{N1NI’/ dZR/ dprprJi—p(kLpr)Jy—p(kLipr)
—00 0

X RS (pr) R (pr)e! e the K kn (B.40)

B.7.4 INTEGRAL FACTORS FOR D1iPOLE TERM

For the dipole terms of Section 6.3.4, there are two different matrix elements illustrated - one for
the case when the atom is located along the beams axis, and one for the off-axis case. The dipole
matrix element of the atomic electron, and so @gip, is common to each of them, whereas ©  and

/
@lél P apply to the on-axis and off-axis scenarios respectively.

@gip = Nn7£7mNn’7£’7m// dpq/ quQJLT(Pq)QZ(pq)PKm(COS 9q>P£r'n/(COS 0,)
0 0

X pg sin @, cos B¢ k= R=)pacosfa (B 41)

o0

Or = NRN}/%/ dpRRf*(pR)Ri(pR)PR/ dzpe!Ks keI mh)zr (B.42)
0 —00
G%Imi = NRNJ/%NZNZ’/ dZR/ dprprJi—p(k1pr)Jy—pi1(kipR)
—00 0

2w
XRf*(pR)Ri(pR)ei(Kz-i—kz—Kz—kz)zR/ o=l =p+pF1)
0

(B.43)

Due to the relationship between Bessel functions of positive and negative order given by (2.29) we

have |@lél/’p’i\ = ]@I}l’_l/’_p’qE
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Relativistic Quantum Mechanics

C.1  THE DIRAC 7y MATRICES

The ~-matrices are useful in writing a fully Lorentz covariant form of the Dirac equation and other
relativistic field quantities, including the Lagrangian for quantum electrodynamics. The y-matrices
form the 4-dimensional (three space and one time) representation of the Lorentz algebra for

1

Lorentz boosts and rotations of spin-; particles. [119]. In the Dirac representation the four

~-matrices are defined as

1 0 ) 0 o

0 2 )

v = ; = . Ca
(0 —]lz> 7 (—02 O) ( )

or, equivalently, 7* = (3, Sar). Though this notation is suggestive, the y-matrices themselves are

not 4-vectors - instead the matrices act on true 4-vectors to give a Lorentz invariant quantity [119].
The commutation and anti-commutation of the y-matrices are their defining characteristics -

they must satisfy the algebra of the Lorentz group, in order to represent Lorentz transformations.

‘We have
{77} = 29"y (C.2)

where the metric tensor g"” is given as

g = (C3)

o O o =
)
|
—_

The Lorentz transformations are then defined elegantly by the commutators of the ymatrices, so
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that we may write boosts and rotations respectively in the form [118, 119]

S ihoﬁj] _ ¢ (J] 0 ) (C.4a)

0 —o’

S = 1"y = 5evet (C.4b)

with %% the Levi-Civita permutation symbol, and ¥ the spin operator for Dirac particles

hfo 0
2:§<0 a). (C.s)

The y-matrices are Hermitian, however the generators of Lorentz transformations Eq. (C.4) are not
meaning that the transformation generators S*” are not unitary, so that transformed quantities are
no longer Hermitian [ 118, 119]. This means that, for a Dirac spinor ¢)11) # 1 after a Lorentz boost.

In order to resolve this, the adjoint Dirac spinor is introduced

P =iy’ (C.6)
While the Dirac spinor ¢ transforms as
b A=y, (C.7)
for some small parameter 9, the adjoint spinor transforms as
9 = (WA = e 0, (C8)
From Egq. (C.4), the following relations can be found:

SOt — _SOJ" St — Sij;
{2 [T =0;

and it can then be seen that S*T70 = 4981 S that the quantity /1) transforms as

) —(PTAT) Ay
it 1 vt 0 . 1 v
ot (a0 (1 s o

= ¢Ty° <1 + %55#”) (1 — éas#”> W
= ¢ AT AY
=

Thus 1) is a Lorentz scalar, invariant under transformations. Similarly it can be shown [119] that
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@/jauz/) is a Lorentz vector, so that the Lagrangian density for the Dirac field 1 is written
L= iﬁzﬁ@,ﬂb — AEmah. (C.9)

On applying the Euler-Lagrange equations for 1 and 1 this yields the field equations of motion;
respectively the Dirac equation of Eq. (7.7) or the adjoint Dirac equation

10, 07" +map = 0. (C.10)

C.2  AprpPLYING THE FOLDY-WOUTHUYSEN TRANSFORMATION

The Foldy-Wouthuysen transformation takes the form
H'(t) = 5 (H(t) — ihd,) e 5O, (C.11)

This will now be written into a convenient form, and applied to the Dirac Hamiltonian in the
presence of fields. In application of this transformation it is convenient to suppress the time and
space dependence of the operators. For any linear operators A and B acting in the same vector

space we have the relation [ 123, 124]
4
etBe 4 = EOHQTL(A’ B) (C.12)

where the operator 2,,(A, B) is defined as
02,(A,B) =[A,Q,-1(A, B)] (C13)
with
20(A,B)=DB (C.14)

so that the function €2,,(A, B) consists of n — 1 nested commutators. This is now applied to
Eq. (C.11). For the term e*® H (t)e~*3(") we have simply

SO ($)e50 — Z_'Qn( S, H). (C.1s)
n.

n=0

The second term ¢*()ii0;e~"®) is slightly more tricky, but noting that
e, = —ie'99,5e7 " (C.16)

suggests that we may look for an expansion in terms of €2, (5, 0;S). By comparing the first few

terms in the expansions of J; and 0;S,up ton = 2,

QQ(S, at) == @ == 0 QO(S, (9,:5') - 8t5'
Ql(S, at) — [S, 8t] — —atS Ql(S, atS) — [S, 8t5]
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92(57 3t) = _[57 8tS] = —91(57 at5> 92(57 8t5) = [S> [Sa 8t5]]

it is clear to see that

Q,(5,0;) = —Qy—1(S, 0,5);

so that we may write
iS —iS
eS9e = Z S0 (S5.,0))

= — Z EQnil(S’ &S)

——Z 2(5,0,9).
n= 0

Putting this together with Eq. (C.11) and Eq. (C.15) gives

o0

T s Z S, 0tS);

n=0

this can be consolidated into a single summation:

— H—i—i%{)nl( hz (S, 0tS)

—H+hz 8, H] — 0t8),
giving the full expansion in terms of the original Hamiltonian /.

C.3 THEFoOLDY-WOUTHUYSEN HAMILTONIAN

(C17)

(C.18)

(C.19)

Application of the Foldy-Wouthuysen transformation has resulted in an expansion in powers of

(mc?) ™1, for which all terms of order (mc?) 2 and below are now even. This Hamiltonian has the

form

H =mc®B+V + (me®) '+ (me®) n2 + (mc?) *Nevens

where the operator coeflicients are given in terms of the transformation matrices .S, :

m =— 285} +i[S), T

no = — 20{S1, So} + i[Sa, T| + i[Ss, T] — iL[Sh S

2 )
77even,3 = - zﬁ{sla 53} - 2ﬁ522 + gﬁsf + Z[S?):T]
1h . th

— 5150, (51, 181, TT) = S [Sh, Sal — 5 [S2, S5,
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The transformation matrices have been determined by the reduction of the odd operators of order

(mc?)°, (mc?)~1, and (mc?) 72, the S operators are given by

1= % (7-45)
i
Sy = (QZ,T)Q (7.46)
Sy = (25)3 (ng + h2T> . (7.47)

so that substituting Eq. (7.45)-Eq. (7.47) into Eq. (7.50)-(7.53) will give the Foldy-Wouthuysen
Hamiltonian in terms of the odd and even operators 7" and V' from the original Hamiltonian.

Substituting the Beginning with 7);, we have

— 25 (M) + LT

2 2
_ b1
=5 (C.20)
since (3 anti-commutes with the odd operator 7. 173 becomes
2hp : h
= o300 T e T T
.
= —%[T, TJ; (C.21)
and finally,
_ _i % 3 AL 2h26 r g B 4
B s (20 {/BT’ 37T ”wT} it T 3my L)
7 4 o g i
b |07 LT = o T BT [T,
ih? . ihQ

1 h? .
= BT — BT, T},

where we have made use of the fact that even powers of 1" are even operators, and that 5 commutes

with even operators. The final form of the Foldy-Wouthuysen Hamiltonian is then

h2
16m3ct

BT? il : 1

_ T 7 —
2mc? 8m264[ X 8m3cb

H =mc*B+V + BT — {T, T} (C.22)

C.4 POWERS, TIME DERIVATIVES, COMMUTATORS AND ANTI-COMMUTATORS

Here, explicit expressions for the operators 72, T, [T, T] and {7, T} are found by substituting for
T from the original Hamiltonian, Eq. (7.20). We have

T=a-(p—-cA), V =ed; (7.32)
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and it will also be necessary to make use of the relationships [123, 124]

(a-C)(a-D):C-D—I—%Z-CXD; (C.23)
h h{fo 0

E—Eaxa—i <0 a), (C24.)

pxC+Cxp=—ihV x C. (C.25)

C.4.1 POWERS

The Foldy-Wouthuysen Hamiltonian of Eq. (7.58) has even powers of 7', which are even operators.
Squaring the odd operator 1’ gives

T? = (ca - (p — eA))’
=c*(p—eA) —iec?T - (p x A+ A x p)
=c*(p — eA) —iec’T - B. (C.26)

Squaring this to obtain 7™ gives

( —eA) —iec’y - B)
=c ( —eA)* +eh’ct(E-B)® —ehc' {(p — eA)*, T - B}. (C27)

C.4.2 TiME DERIVATIVES

The first and second order time derivative of 1" are required in the transformed Hamiltonian. Using

the definition Eq. (7.33) we have

T:%,ﬂ—@T
%[6@ co- (p — eA)| + Oy(ca - (p — eA))
= eca (OV — VP) — ecaA
— e E (C.28)

Using Eq. (7.33) a second time to obtain the second order time derivative gives

T:%uﬂ+@T
= %[e@, eca - E] — Oy(eca - E)

=eca- E (C.29)

C.4.3 COMMUTATOR AND ANTI-COMMUTATOR

The product of 7" and T'is an even operator. Evaluating the commutator between the two gives
[T,7] = [ca- (p — eA), eca - E]
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=e*(p-E-—E -p)+iec?T-(px E—Exp)—e’*(A-E—-E-A)
—ie’?T - (AXE-E x A)
=ec’[(p—eA),E] +iec’T - ((p—eA) x E—E x (p —eA)). (C.30)

Similarly, the anti-commutator between 7" and T gives the even operator

{T, 17} = {ca -(p—eA), eca - E}
—eca- (p—eA)(a-E)+ec(a-E)a- (p—eA)
= ec{p — eA,E} +iecX - ((p —eA)xE+Ex (p— eA)) (C31)
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Conferences

In 2013 L attended two conferences specifically relating to the orbital angular momentum of light
and electrons, namely the Spin Orbit Interaction for Light and Matter Waves workshop at the
Max-Planck-Institut fiir Physik Komplexer Systeme, Dresden, Germany and the Second
International Conference on Optical Angular Momentum conference held at The Burrell Collection,
Glasgow, Scotland. I found these conferences particularly inspiring, and I greatly appreciated the
passionate and varied discussions I was a part of at these meetings. It was also inspiring to meet
with the distinguished authors of seminal articles in the field with which I was already familiar, and
to discover new works and appreciate the richness of the field. The knowledge gained in attending
these conferences has directly contributed to this thesis. Reproduced below are the conference

photographs from both meetings. As can be seen, the sun shone on both these events.
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Figure D.o.1: Conference photo of the Spin Orbit Interaction for Light and Matter
Waves workshop at the Max-Planck-Institut fiir Physik Komplexer Systeme, Dres-
den, Germany, 15th-19th April 2013.

Figure D.o.2: Conference photo of the Second International Conference on Optical

Angular Momentum conference held at The Burrell Collection, Glasgow, Scotland,
3rd-sth June 2013.
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List of Abbreviations and Symbols

ABBREVIATIONS

BEP Back Focal Plane
EELS Electron energy loss spectroscopy
EMCD Energy loss magnetic circular dichroism
FFP Front focal plane
FIB Focused ion beam
FWHM Full width at half maximum
STEM Scanning transmission electron microscopy
TEM Transmission electron microscopy
XMCD X-ray magnetic circular dichroism

MATHEMATICAL SYMBOLS

o Index ['(x) Gamma function
o Maximum angle of entrance 0 Spin-orbit interaction energy shift
« General variable Oy Kronecker delta
e Dirac @ matrix o(z) Dirac delta distribution
a(x) Gauge transformation parameter A Normalised orbital angular momentum
o Convergence angle dichroism signal
Q Objective aperture angle Ay See p.82
Qarp nth zero of Bessel function J; () Ay See p.82
15} Index A  Phase shift of beam in magnetic field
15} General variable JAN) Observable beam rotation in
6] Angle between intial and final magnetic field

wavevectors AFE Energy spread of beam
15} Dirac (3 matrix Af  Axial displacement between two focal
v Index points
o Dirac 7y matices Al Change in orbital angular momentum
r Integrated vortex circulation strength AR FWHM of vortex node
r Transition rate n Foldy-Wouthuysen transformation

180



expansion coefficient

19 ,i”) See p.160
5 Unit wave polarisation vector
€0 Vacuum permittivity
glik Levi-Civita tensor
O(x) Heaviside step function
S See p.167
o See p.168
0 See p.168
@Z:g,y See p.168
Or See p.168
ORv,y See p.167
@%l’p’p See p.167
@% P See p.168
@l}’zl,’p’i See p.168
K12 See p.152
A Wavelength
Helicity operator

W Reduced mass
7 index
140 Vacuum permeability
v Index
13 Spin orbit interaction parameter (see
p-141)

55”), 1(;), &(,n) See p.160

IL, (r) Generalised field momentum

p Unit vector in p direction
Pf Density of available final states
prn  Radius of nth Bessel zero for J; (k1 p)
pa(r) Charge density of atom
pi(r) Charge density of Bessel beam
p5(r)  Charge density of apertured Bessel

beam
o Photon spin (o = +1)
o Vector of Pauli spin matrices
X Spin operator
YA See p.82
() See p.160
o) Scalar potential
gAb Unit vector in ¢ direction

¢ l-dependent rotation in magnetic field

Os Separation angle of hologram
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reconstructed beams
o Bessel function expansion angle
ol Bessel function expansion angle

®(r) Coulomb potential for electron vortex

Xs Spin spinor
Xs Phase shift due to spherical aberrations
Y General wavefield
Y Adjoint Dirac spinor

¢atom
Y;(r) Initial (7) or final (f) wavefunction

Atomic wavefunction product state

(1) Vortex wavefunction
Uy (ry) Vortex wavefunction
Y,(q) Atomic electron wavefunction

1 r(R) Atomic centre of mass wavefunction
(e Apertured Bessel-type wavefunction
VP Bessel-type wavefunction
Wy Plane wave wavefunction
¥ Non-relativistic spinor vortex solution
v Bessel function expansion angle
v’ Bessel function expansion angle

W, Relativistic Bessel electron wavefunction

w (Angular) mode frequency
wr, Larmor frequency
We Cyclotron frequency (2wy,)
Q Nanoparticle rotation frequency
Q, See p.135
Vr Transverse Laplacian
1, n X n identity matrix
a Index
a General variable
ag Bohr radius
A Linear operator
AA Seep.155
A, Gauge field 4-vector
A(r) Vector potential
A;t,Ag See p.150
Alﬂ See p.108

Af’ R Matrix element factors for forward

(F) and reverse (R) transitions

Alj,%p,l’ See p.109
Alj,tl},p See p.109
Agr Seep.151



b Index

b General variable
B Linear operator
B, B Seep.155
B(r) Magnetic field
By Azimuthal component of magnetic field
B, Axial component of magnetic field
Blﬂ’o Seep.158
c Speed of light in vaccuum
c Index
c General variable
C Path of integration
c,c’ Seep.155
Cy Elliptical polarisation conversion

coeflicient
Ce Coeflicient of chromatic aberration
Cg Coefficient of spherical aberration
CD Chiral dicroism signal
Cli 10 See p.9s
d Resolution of scanning probe
d Grating separation
d Atomic electron dipole moment eq
ds Path element
dsS Surface element
av Volume element
Oy Partial derivative with respect to x
O 4-vector derivative

D Electric dipole matrix element (see p.94)

D, Covariant derivative
e Electron charge
E Average beam energy
E(r) Electric field vector
ENP Non-paraxial vortex electric field
vector

Ey Electron rest energy
Ey Optical electric field amplitude
E, Radial component of electric field
& Energy of a free electron
Eiy Atomic electron energy; initial (i),
final (f)

f Lens focal length
F General vector function
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P
Ll p,p’
Fy

oFol{ar. . ap};{b1... b} 7]

Generalised hypergeometric function

Electromagnetic field tensor

See p.100

F Seep.158
F' Seep.162
gt Metric tensor
g Seep.158
g See p.162
h Height
h Reduced Planck’s constant
H' Transformed Foldy-Wouthyusen
Hamiltonian

H SQ) Unperturbed atomic electron
Hamiltonian

H (()R) Unperturbed centre of mass
Hamiltonian

HE, Electron vortex-atom interaction
Hamiltonian, atomic nucleus states

H Sf’l Electron vortex-atom interaction
Hamiltonian, centre of mass states

HEV Full Hamiltonian for electron

vortex-atom system
Hdip, quad, hex

int

Dipole, quadrupole, hexapole

electron vortex-atom interaction

Hamiltonians

Hgo Spin-orbit interaction Hamiltonian
HYY Unperturbed optical vortex
Hamiltonian

HOSY  Hamiltonian for optical vortex-atom

interaction

H, ifl’t" @) Hamiltonian for optical vortex-atom

interaction, affecting atomic electron

H ;i);/ (@) Dipole interaction Hamiltonian
affecting atomic electron
H qou\:éq) Quadrupole interaction

Hamiltonian affecting atomic electron
77OV

it Hamiltonian for optical vortex-atom

interaction, affecting centre of mass

1 Moment of inertia
I(r) Interference pattern
Io—11 Transmitted intensity



]5’1’/ See p.100
I, Axial current
v Seep.158
7, Dimensionless Bessel moment (see p.52)
Z, See p.158
j(r) Normalised probability current density
J Total angular momentum vector
J Total angular momentum quantum

number
J(r) Probability current density

Ji(x) Bessel function of the first kind,

of order [
J (r) Charge current density of Bessel beam
()

Charge current density of apertured

Bessel beam
J Seep.158
J- Seep.158
k Wavenumber
k Index
k(k,, ke, k) Wavevector
k(ky, ky, k) Wavevector
k, Axial wavevector
k, Transverse wavevector
ki Transverse wavenumber
K Maximum index

K(K,, K;4, K,) Centre of mass wavevector

Ké”p/’“ See p.103
K,  Centre of mass transverse wavevector
[,I'  Orbital angular momentum quantum
number

o0 Atomic electron orbital angular
momentum quantum number

L Length of finite Bessel beam
L Axial length of cylindrical surface
L Centre of mass orbital angular

momentum quantum number
L Angular momentum transfer per electron
L Total orbital angular momentum

quantum number

L Total angular momentum vector
L Angular momentum operator
LM Full Lagrangian for electron
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vortex-atom system with centre of

mass states

LEY Full Lagrangian for electron
vortex-atom system
LoV Full Lagrangian for optical
vortex-atom system
Lo Unpertubed atomic Lagrangian

LYY Unpertubed optical vortex Lagrangian
Loy

ot Interaction Lagrangian for optical

vortex-atom system

Ltg  Rate of angular momentum transfer
Lgy  Total angular momentum of electron
vortex

Lov Total angular momentum of optical
vortex

L Lagrangian density
L Angular momentum density
Lev Angular momentum density of
electron vortex

Loy Angular momentum density of optical
vortex

<£Z> Angular momentum expectation
value in the presence of fields

m Mass (usually electron)
m Atomic electron magnetic quantum
number

Me Electron mass
my Proton mass
my Total angular momentum magnetic
quantum number

My, Matrix element
Mq&;d Quadrupole matrix element for
optical vortex-atom interaction

./\/lfi’il; Matrix element for dipole interaction
on-axis  Matrix element for on-axis dipole
interaction

M% Matrix element for zero order
interaction

index, integer

Atomic electron principal quantum

number

N1, No Refractive index



i?f

ngy Photon occupation; initial (i), final (f)
Ny, N/, N ! Normalisation factor for
vortex electron

Nyom Normalisation factor for
atomic electron

N Seep.158
(@ Effective operator after expansion
o Effective operator second expansion
dip Dipole effective operator
quad Quadrupole effective operator
70 Zero-order effective operator

p Radial index for Laguerre-Gaussian beam

p,p Index
D General variable
Pa Generalised coordinate momentum
Py Atomic proton momentum
Pq Atomic electron momentum
Pv electron vortex momentum
(P)) Expectation value of transverse

momentum
P (cos @) Generalised Laguerre

polynomial
P Linear momentum density

Prv Linear momentum density of electron

vortex
Pov Linear momentum density of optical
vortex
q g-plate charge
a(pgs ¢q.0,) Position vector of atomic

electron (relative to atomic nucleus)
¢ In-plane atomic electron radius, p, sin 0,
Q(5)
Qn(a)
r(p,¢,z)
r(z,y,z)
Te(pe, Pe, 2e)

electron (relative to beam origin)

r,(Pps Ops 2p)

Total wavevector transfer
Radial state of atomic electron
Position vector

Position vector

Position vector of atomic

Position vector of atomic
proton
v’ (pl, L, 2L) Electron vortex position

relative to atomic electron

rr ( PR, PR, 2 R) Position vector of centre
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of mass

ry(pu, O, 20) Position vector of vortex
electron

v (o, ¢, 2) Electron vortex position

relative to atomic nucleus

r, Transverse position vector
r2 Confusion radius for axial astigmatism
r¢ Confusion radius for chromatic

aberrations
rd Confusion radius for spherical

aberrations
R Nanoparticle radius

R. Radius of peak intensity of vortex beam

Rmax

Maximum radius of holographic

aperture

R(pr) Radial state of centre of mass
wavefunction

R Seep.158
Rr Seep.158
R. Seep.158
S Total spin quantum number
S Foldy-Wouthuysen transformation
operator

S Spin angular momentum vector
SH Lorentz transformation
S Poynting vector
t Time
T Odd operator
w, u’ Index
Ug 542 Dirac spinor solutions
UL sy o Non-relativistic spinor solutions
u(p),u(p, z) Spatial mode function
uP  Spatial mode function of Bessel beam
u*s Spatial mode function of
Laguerre-Gaussian beam

L{lo’il General matrix element factors
\4 Velocity
V Volume
Vv Even operator
Vs(ry) Coulomb potential
Wo Minimum Gaussian beam waist



wp Characteristic Gaussian beam waist in a

magnetic field

w(z) Gaussian Beam waist

b’e Unit vector in z direction

Y Angle difference between vortex and
centre of mass

Yy’ Angle difference between vortex and

atomic electron

185§

A

y Unit vector in y direction

Yi(z)

Bessel function of the second kind,

of order
Y ™0, ¢) Spherical harmonic function
yéf” Seep.158
2R Rayleigh range
A Atomic number
Zy(x) General Bessel function
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