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Abstract

Applications and services in distributed environments are an increasingly

important topic. Hence approaches to security issues in such applications

are also becoming essential. Crucial information is needed to be protected

properly and mechanisms must be developed for this protection.

Access control is one of the topics that underline security problems. It

concerns assuring that data or resources are accessed by the correct entities.

A commonly used access control approach is called access control lists, which

is widely applied in most operating systems. However, this approach has

some weaknesses with regard to scalability, and so it is not very suitable for

distributed environments that usually have variable populations. Capabilities

on the other hand offer scalability and adaptability advantages over access

control lists. Capabilities are unforgeable tickets that can be propagated

between entities, and fit well in distributed environments. But capabilities

also have limits due to their simple structure. They grant infinite number of

accesses for given types of actions, but are not able to capture sequences and

branches of actions, which may be called ‘aspects of behaviours’.

In this thesis, behaviour control approaches are introduced, through Vis-

tas to Treaties. Vistas can provide explicit access control for each component

of objects, and provide primitive control over action sequences. Treaties de-

velop behaviour control further by containing behaviour descriptors which

can specify those sequencing, branching and terminating aspects, and hence

can provide much finer control over behaviours. Because treaties inherit the

scalable attributes of capabilities, they also fit well in distributed environ-

ments.

An interesting feature in treaty systems is that they allow users to re-

fine the specifications of behaviours and generate new treaties from existing
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ones. A number of treaty combinator operations are proposed to realize this

functionality, and they are shown to be safe with respect to the security of

access control.

A novel issue created by the treaty approach is identified in the thesis.

The new problem is called the duplication problem, which could cause users

being able to gain more permissions than they should have by making copies

of unprotected treaties. Any treaty systems must provide solutions to this

problem. Three models which solve the duplication problem are proposed,

with an analysis of their differences, and advantages and disadvantages.

Treaties are a general concept and in real cases they can be represented

in various ways. There are components in treaties that have given a variety

of implementation options, and the developers of services and applications

can choose to combine these options to fit their special requirements. This

makes treaties more flexible and adaptable.

The implementations of concreted treaties and treaty systems are intro-

duced, and these implemented treaties are used to test their behaviour con-

trol abilities. Evaluations for different treaty representations are provided to

compare their performance. Scalability of treaty systems is also evaluated,

showing that treaties are good to be deployed in distributed environments.
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Chapter 1

Introduction

Access control is an important concept in computer science. It provides safety

for different users when accessing resources in systems. In the early days of

computer science, programs and resources were only available to individual

users, hence there was little need to restrict users’ access to resources —

they were simply the owner of those resources. But as the systems evolved,

programs and resources that were visible to multiple users appeared. These

new applications encourage communication and coordination among users in

systems, but this introduces the new problem of controlling users’ actions,

based on their identities. Hence access control concepts were developed as

solutions for the problem. In most access control schemes users have to first

provide their identities to a central authority, and then the authority (which

we may also call the kernel) would decide to allow or deny the access request.

However, as systems grow even larger and more complex, the populations

of users also increase greatly, and the structure of systems change. Simple

access control schemes cannot keep up with the development of these systems,

thus new ideas are proposed by researchers for providing more sophisticated

functionalities to guarantee the security of systems. This work is part of this

trend. The thesis introduces a finer control approach aiming towards the

1
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control of behaviours in distributed environments. These behaviours include

predefined sequences of actions and repetitions of executions for some type

of actions. The improvement is made by changing the data structure in

the capability approach for access control. This work is concerned more

about system structure and organization than authentication, verification or

validation.

In the following sections, we will introduce the general ideas of access

control, pointing out the limitations that appear in traditional access control

approaches that motivate our research. This introduction concludes with an

outline of the thesis, briefly explaining each chapter.

1.1 Approaches to Access Control

Access control “constrains what a user can do directly, as well as what pro-

grams executing on behalf of the users are allowed to do. In this way access

control seeks to prevent activity that could lead to breach of security” [56].

In principle, access control works by specifying which user can do what ac-

tions on the resources. It is important to note that access control itself is not

enough for securing systems from invalid accesses, since it has to be com-

bined with other security services. A key area of security schemes that needs

to be provided other than access control, is authentication, which allows the

kernels to ensure the sender of a request is the actual entity that it declares

itself to be. Authentication is necessary before access control happens, be-

cause access control initially works with the identity of the requester, and it

has to assume that the identity has been correctly verified by the authenti-

cation mechanism. Moreover, the whole process needs audit control, which

will record and analyse the actions taken by users to observe any adverse

behaviours.

Traditional access control is based on the identity of each user who re-
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quires access to files or objects. In such schemes each object needs to hold

the information for all users that would access it, explicitly defining all valid

action types that each user is allowed to perform. This works fine if the scale

of the system is small, and it provides a very strict and precise control cov-

ering all resources for all users. However, when the applications grow larger

and more complex, it is hard to maintain explicit access control information

for all users. In a system there might be applications that are available to a

number of users, and they have different roles that define different responsi-

bilities and different privileges. It would be infeasible for each object to hold

access control information for a large number of users individually, and to

maintain the same information for users in the same roles would be a redun-

dancy for the system. New requirements appear as systems evolve [63]. As

a result of these considerations, Role-Based Access Control schemes [55, 21]

emerged.

Role-based access control (RBAC) splits users of an application into sev-

eral groups, each of which carries a different role for the application. Each

role takes a different responsibility and hence different access rights. With

role-based access control, the administrator of the system can simply define a

number of roles and assign different permissions according these roles. When

new users are added into the system and passed the authentication, they

will be specified as belonging to a certain role according to their identity,

and gain the appropriate permissions. Now, with such a scheme, each object

or application in the system only needs to hold the access control informa-

tion for a small number of roles instead of the large number of users, thus

saving the kernel’s load greatly. Although role-based access control loses the

individuality of users to some extent, it is still a very suitable model for man-

agement in companies and organizations, therefore it has become the major

option in the area of access control.

Original access control schemes and the RBAC approach are all based on
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central control, as they strongly rely on kernels to administrate the access

control information. The most widely used approach in centralized access

control is the Access Control List, which implies having kernels possess lists

of users or user groups, and defining access permissions for objects for each

of the users/groups. As the access control lists adopt the centralized con-

trol model, where all the information is strictly managed by kernels, it can

strongly guarantee the security of the whole process of accesses. Hence the

access control list approach is applied by most services and applications which

involve access control, including hardware, middleware and software.

1.2 Distributed Environments: the Motiva-

tion

The access control introduced in the previous section faces more challenges

when systems become even larger and more complex. In recent years, services

and applications in distributed environments [2, 68] have become popular

and widely used. Distributed environments may include many different ar-

eas, such as parallel computing, distributed computing and cloud computing.

Applications in these environments could have a very large number of partic-

ipants or active processes, and these entities can communicate with others.

Meanwhile, the growth of the population of users causes the workload of

kernels to increase dramatically as well. It is much more difficult to upgrade

the performance of a single kernel/server device than to increase the number

of kernels/servers, as there will be a limit to the maximum performance of

single chips due to physical limitations. Hence the option of distributing the

kernels and users in the systems becomes necessary. All these make strictly

centralized control unfit for modern computer developments, since the pop-

ulation of users in such environments (especially open systems) is extremely
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variable: there are always new users joining the systems and other users quit-

ing. The changes of users are so frequent that it is very difficult to have the

kernels manage these changes — the maintenance of user lists becomes too

expensive. On the other hand, traditional access control using centralization

is suitable for managements in companies and organizations, but nowadays

individual-oriented services and applications (which means their purpose is to

serve each individual user) are becoming more and more important. The lack

of individuality in RBAC makes it hard to adapt the requirements of these

applications. Therefore, a different approach to access control, capabilities,

has shown its attractiveness.

Capabilities [56] are another access control technique. The major differ-

ence between capabilities and centralized access controls is that capabilities

are held by users. They are only presented to kernels when the holder of a

capability wants to access resources. Hence, kernels no longer need to main-

tain access control information for each user, but only to check the validity

of capabilities when they are shown. Thus this approach reduces the load on

kernels greatly. Moreover, capabilities can be propagated among users with-

out the necessity of notifying kernels. This makes the capability approach

more dynamic in spreading the permissions for resources than centralized

access control approaches, and is particularly suitable in distributed envi-

ronments. We will introduce the capability ideas and their advantages and

drawbacks in detail in Chapter 2.

Although capabilities show some attractive properties for access control

in distributed environments, there are still aspects that could (and should)

be improved. In capabilities there are only independent permissions. They

cannot, for instance, define specific sequences of actions. In real cases we

often have to do things in a number of steps, and the order of these steps

cannot be altered. These ordered actions constitute procedures, or what

we call the behaviours. Simple capabilities cannot specify the control of



6 Chapter 1. Introduction

behaviours in the way that centralized access control could, where the kernels

could define and change the valid permissions for users or user groups, as all

access control information is held by kernels. However, in the capability

approach access control information is stored in capabilities that are held by

users, hence it is difficult for kernels to control the sequence of user actions

in the same way as centralized control. To provide behaviour control in

distributed environments, we need further research and development, and

that is the main motivation for the work presented in this thesis.

In this work, we will explore the capability approach to access control

in distributed environments, and propose new ideas and approaches that

can cope with the behaviour control aspect addressed above. The develop-

ment of behaviour control in our research is divided into Vistas and Treaties,

which aim towards a finer behaviour control. Vistas extend the capabil-

ity approach by splitting the control to per-attributes and per-functions in

the target resource, and Treaties provide finer behaviour control by specify-

ing the sequences, branches and terminations of actions to target resources.

There are new security problems that arise from the components in the new

approaches, and possible solutions are presented to overcome these problems.

1.3 Contributions

The main goal of this work is to develop new approaches for coping with

behaviour control in distributed environments. The approaches of Vistas

and Treaties are proposed that aim to provide the functionality of behaviour

control. In this thesis we present the following:

� The concept of Vistas and Treaties, how they are structurally evolved

from capabilities, and why these evolutions are beneficial.

� Combinator Operations for vistas, and for treaties, which form new
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access control and behaviour control specifications. These operations

provide the functionality of allowing users to refine their behaviour

specification after the vistas or treaties are produced, and hence further

increase the dynamic control over accesses and behaviours.

� A proof of the correctness of treaty combinator operations using the

idea of behaviour sets that shows that refining treaties with treaty

operations will not destroy the safety of behaviour control.

� A new issue called the duplication problem arising from the behaviour

control approaches, suggesting solutions that solve this problem. The

performance of the candidate solutions for the duplication problem are

also tested and compared.

� The various implementation options for treaties and treaty systems

that allow developers and service providers to satisfy their particular

requirements.

� Implementation examples of capabilities, vistas and treaties. We have

realized the functionality of behaviour controls and the refinement of

behaviour specifications using treaty operations, have evaluated the

correctness of behaviour control using treaties, and have evaluated the

computational requirements for implemented treaty components. Fi-

nally, we have evaluated the scalability of treaty systems to show the

practicality of treaties.

1.4 Thesis Organization

Here the content of each chapter will be briefly introduced by their organi-

zations, providing an overall view of the thesis.
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Background In this chapter the required knowledge will be introduced.

The major content of this chapter will be an examination of the access

control schemes and especially capabilities, which are an access con-

trol approach that is particularly suitable to be applied in distributed

environments. The advantages and disadvantages of capabilities will

be discussed, and we point out the limitation that capabilities do not

provide adequate behaviour control.

Vistas This chapter will propose an approach called Vistas that extends the

idea of capabilities, and provides a finer access control scheme. We show

the extra functionalities of combining vistas with defined operations,

and suggest some use-cases that would benefit from vistas. Vistas show

progress towards behaviour control but which is still not precise enough,

thus indicating that further development is needed.

Treaty Concepts The ideas of capabilities and vistas are extended further

to Treaties in this chapter. We introduce the concepts, definitions and

structures of treaties in an abstract way. Like Vistas, Treaties also

have combinator operations to change the specifications of behaviours.

There emerges a new issue that treaties cause, called the duplication

problem. We discuss the reasons and the situations that might cause

this problem.

Representations of Treaties This chapter discusses treaties in a more

concrete way. Several components of treaties and treaty systems can

have different implementation options that can be chosen by developers

and service providers to satisfy their special requirements. An example

of a complete treaty system implementation is shown in the chapter,

in which all options have been fixed.

Implementation In this chapter the way the behaviour control scheme of
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treaties is implemented using Java is presented. We introduce compo-

nents of treaties and systems to be implemented as classes, and some

of the field values and methods are also discussed. The key algorithms

of treaty combinator operations are illustrated by pseudo-code.

Evaluation We evaluate our treaty systems according to their integrity on

behaviour control, their time and space consumption, and their scal-

ability in distributed environments. The efficiency of combinator op-

erations in Finite-State Machine (FSM) and Regular Expression (RE)

representations are compared, and the performance of different models

to solve the duplication problem are also evaluated.

Conclusion This chapter reviews the whole thesis and emphasizes the es-

sential contents. It addresses the contribution of this work again, and

discusses topics that have not been included in this thesis but could be

a good direction for future work.
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Chapter 2

Background

In this chapter the background and literiture that contributes relevant knowl-

edge is presented. A main area to be introduced is Capabilities that are a

dynamic access control approach for distributed environments. We will look

at the positives and negatives that the capability approach brings, and differ-

ent uses and modifications that are applied on capabilities for various cases.

It also suggest the limitations which indicate the need for further researches.

2.1 Capabilities vs ACLs

The prime work of this project will largely be based on the idea of capabilities.

The term capability in the context of computer science generally refers to

object access control. The concept was invented several decades ago, and the

debate on the applicability and effectiveness of capabilities has also lasted for

a long period. Therefore, to illustrate the proposed working directions of the

project, it is necessary to look at the concept of capabilities and capability-

related research work.

In the context of security systems in computer science, the word ‘capa-

bility’ means a particular approach to address and protect data or resources.

11
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user Read Write eXecute
Alice - - -
Bob

√
-

√

Carol
√ √ √

David - -
√

Table 2.1: Example ACL for a file f

The main classification of this approach is access control. In the traditional

methods of access control, the most commonly used approach is the Access

Control List (ACL), whose variants have been applied to Unix and many

other systems [70, 10]. This mechanism is implemented by attaching an ac-

cess rights list to items of data, each list specifying the particular access

rights for every user or process in the system. These lists are used to inform

the kernel whether an action to a file, say, from a user is valid. Table 2.1

shows an example of an access control list for an individual file. Assume

this list has been applied to file f, then any access from Alice to f will be

denied, and any access from Carol is allowed. David only has the permission

to execute while modification from Bob is invalid.

The capability approach also provides an access control mechanism be-

tween users and data, but it does this the other way: instead of attaching

the access control information on the data side, capabilities are stored on

the user’s device or storage spaces. Capabilities are unforgable keys that are

created by the kernel, and can be passed among users or processes. They are

not allowed to be modified, but reproduction is legal [46]. In the classical

approach a capability contains two major parts: a reference to the particular

data item, and a set of access rights that this capability is granting. The

use of capabilities acts like ticket verification. Suppose in a capability based

system there is a user or process that wants to read a file f, it must possess

a capability c which has the reference to f, and in c the read right is in the
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rights set. Then the user or process may hand the capability c to the kernel

and tell it that it want to access file f with a read operation. After the

kernel has checked the validity of c (that it is not forged) and the read right

is in the set of access rights, this read action can be allowed and performed.

Fig. 2.1 shows the capability approach in the same case of that in Table 2.1.

Figure 2.1: Example Capabilities for a file f

The key difference of the capability approach from the ACL approach is

that, these capability objects are possessed by the subjects (users or pro-

cesses), and subjects are responsible for propagating capabilities. Initially,

a capability c is created by the kernel when a new file f is created, and the

kernel will pass this capability c to the creator of the new file. Usually the

new capability c contains the full set of access rights to file f at this stage.

Then, if the creator of the file wants to share f with other users or processes,

it can pass a capability c′ referencing for f to others. This capability c′ is



14 Chapter 2. Background

generated from c. They have the same reference to f, but the set of rights

in c′ can be either the same as that in c, or it can be a subset. Then other

subjects having c′ can also pass capability c′′ generated from c′ to others, and

so on. The information contained in capabilities is visible to their possessors,

so that the possessors know what access actions are valid to them.

The original capability idea came from Dennis and Van Horn’s work back

in the mid 1960s, and it was illustrated in their work [17]. Although this

paper has been widely recognized as the introduction of the capability idea,

it is in fact not purely about this, and the capability concept is rather like

a by-product. In the paper the authors discussed the Multiprogrammed

Computation System (MCS), which is a kind of operating system related to

programming and concurrency. Dennis and Van Horn used capabilities as

the addressing and protection tool. In an MCS there are many processes

running at the same time, and each process should have a list of capabilities

called a C-list. Capabilities in the C-list contain all references to the data

or computing objects that the process needs. It also contains the set of

access rights of combinations of readable, writeable and executable. The

paper defines a computation as “a set of processes having a common C-

list such that all processes using that same C-list are members of the same

computation”. In other words it is the group of processes computing over

the same objects. Capabilities are used here to protect data from incorrect

or meaningless modification. If any process wants to write over a piece of

data D through some routine, there must be the capability in its C-list that

shows the validity of writing D.

There are some important rules that have been generally agreed. The

most significant one is that: one can never edit the contents of any capability.

This basic rule shall always be applied. Two major principles are contained

in the rule. First, the possessor of capabilities cannot replace the references

to the object by other references. Second, one cannot increase, reduce or
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replace the rights in the set of rights part of capabilities. The behaviour of

increasing and replacing permissions are especially forbidden. The reason for

this rule is that if the possessor can replace the references in capabilities, he

is able to easily access an object to which he has only restricted actions by

creating a new object with full permissions and change the reference of the

new object to the restricted object. Similarly forbidden in the behaviour of

changing set of rights, as the possessor could increase the available access

rights which go beyond the level issued by the kernel. Although reducing the

rights in a capability seems to do no harm to the capability system, it is an

action that brings no benefits to the holder of this capability, thus this can

also be omitted.

However, capabilities can be changed to generate new capabilities, and

these are referred as operations on capabilities. The set of rights in a ca-

pability can be increased in case of its possessor also having another valid

capability referring to the same object, and has some issued rights that are

not in the first capability. We call this a combination of capabilities. The

new capability generated by the combining operation results in a reference

to the object that the two combining capabilities both pointed to, and a set

of rights that is the union of the right sets of the two combining capabil-

ities. This combination operation is useful when the possessor gained two

capabilities from two paths or at different times.

Another valid capability operation is subtraction. This operation can be

performed from any capability that does not have an empty set of rights. The

capability derived by a subtraction operation contains the reference pointing

to exactly the same object as the original capability, and a subset of the set of

rights from the original capability. This has no benefits to the holder himself,

but it can be used in a case when a user is willing to pass a capability to share

the object with others, but he does not want to give the full permissions that

he has to other users. With the subtraction operation, the possessor can
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keep the same capability he has and give a restricted version out.

The capability approach in general is just a concept. In practice, there

is more than one way to implement a capability model, and because of their

differences, they can be used in different applications.

A simple way of using the capability features without any complex mech-

anism is to follow the original invention, which is proposed in the original

work [17], in the age before object-oriented ideas had become popular. In

this style, capabilities are just a set of attribute values grouped together in

each process. There are no real organized structures defining capabilities,

and they are statically handled by processes themselves. To use a capability

the process needs to find out the correct attribute values among the locations

of all capabilities that are reachable, and understand what these data repre-

sent. This approach is appropriate for a closed system, where there are no

dramatic changes in computing processes, and processes and their executing

styles tend to be homogeneous. Otherwise it requires some interpreters to

work for the synchronization.

Another way of implementing capabilities, in a network environment, is to

adopt the ideas from network security: encryption. Gifford [25] introduced

the idea of sealing information using cryptography to enhance the secrecy

and authentication of the system. This is done by first generating a pair of

asymmetric keys, and the owner of the information uses one of the pair of

keys to encrypt the secrets as a ‘sealed’ object, and then places it in some

publicly accessible storage. Only by using the other key in that pair, the

information in the sealed object can be decrypted. Thus people possessing

the decryption key can read the information, while others will only get the

name and size of the object but nothing else. There are many operations

for combining and redirecting features that were introduced in the paper as

well, and these operations make this approach more feasible for information

sharing among multiple users having different key pairs. This cryptography
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can be implemented to apply for many different uses, including access control

lists, capabilities and information flow controls.

Treating capabilities as objects is a third way of representing the capa-

bility approach. This is applicable for those modern programming languages

with object-oriented features. Each capability is an object now, and we can

define capabilities using special class declarations with clear attribute values,

using different levels of protection over the functions to restrict the accessi-

bility to these field values. Because capabilities are actual objects in this way,

they can be passed among users and processes conveniently, so it really cor-

responds with the property of user propagation of the capability approach.

The accessibility of capability objects needs to be carefully defined. The users

and processes are allowed to do the combining or subtracting operations over

capabilities, but they are allowed neither to directly access the field values

that represent permissions, nor to change the validity of capabilities. In gen-

eral, the approach of treating capabilities as objects is quite appropriate for

open systems that have frequently changed population.

2.2 Issues of Capabilities

As has been mentioned, the major difference between the capability approach

and the ACL approach is the place where access control information is stored.

We can have a comparison between these two approaches and thus find the

advantages and disadvantages for each one.

In the ACL approach, the information is stored on the resource side, and

the kernel has complete knowledge for this. Every time a user comes up with

an access operation to a certain file, the kernel will check the access list of

that file to see if the user is on the list, and then to check if the operation type

has been granted to this user. The good point of this approach is the control

power of the kernel. The kernel can actively change the access information
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and user groups, and this gives an easy control mode.

However, there is a problem with this: if an unknown user comes to the

system, any operations from him will be denied, as the user is not on the

access control lists. Therefore, to allow new users to join the system, it must

update all lists of all files every time the user set changes. It is clear to see that

the cost could be high, especially in systems where there is a big possibility

for changes of users. A common solution is to have user groups, which means

users can be divided into administrators, common members and visitors and

so on, and in the access control lists only these groups are recorded. When

new users join the system, the kernel can simply place them into the proper

group and there is no need to update ACLs. But this solution only deals with

a small number of groups, so it does not support a wide variety of users, and

thus is not fit for complex systems.

The capability approach on the other hand has the opposite features

compared with ACLs. Since capabilities themselves contain the access infor-

mation, they have been released from the control of kernel. The propagation

of the capabilities is the job of users, and the kernels need only do the work

of producing capabilities, passing them to the initial owners of the resources,

and checking the validity and issued permissions of the capabilities that are

handed in by users who require access to resources. It is clear that in this

approach the kernel side needs to know nothing about the users and their

changes. The entry and exit of users has no effect on the kernel’s operations,

thus a more dynamic system has been achieved, and the system structure

becomes more flexible.

The capability approach also has its own shortcomings. The supporters

on the ACL side argue that there are some major problems that the ca-

pability approach cannot overcome easily. First, people say that there are

usually many more resources or files than users, so to implement the capa-

bility approach means that every user or process has to maintain a huge list
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resource1 resource2
Alice

√ √

Bob
√

-
Carol -

√

Table 2.2: Reference Relations

of resource references, plus all issued permissions along each reference, and

this could be a space problem. Second, it is widely believed that capabilities

cannot enforce confinement [5, 39, 40]. The confinement problem refers to

how to prevent systems from leaking data to untrusted users or subjects.

Because the propagation of capabilities is managed by users, it cannot be

controlled by the kernel, so people worry that capabilities can go anywhere,

even to someone who is not trusted [44]. Another doubt over the capability

approach is called the revocation problem [27, 41]. People believe it is not

possible to get back the capabilities you gave out to somebody previously, as

they now have the complete control over those capabilities, and you cannot

destroy them on other users’ machines because of security reasons [28, 42].

With respect to the above comments, Miller and co-workers have managed

to give answers in their work [47, 48, 49]. Miller was trying to show that

these major problems of capability approach can be overcome using some

special mechanisms. First he stated that capabilities have more optimized

referencing structure than the traditional ACL approach. Table 2.2 shows

referencing relations between a group of users and a group of resources. It

used to be thought that the referencing structures of the two approaches

had little difference, as it is just the question of in which way to look at the

table: a vertical view for the ACL approach and a horizontal view for the

capability approach. But Miller argues if we take a deeper view of the actual

references between these two groups, the difference is clear (see Fig. 2.2).

In the ACL approach, references from both directions are needed: the users
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need to know where the resources are and the resources need to know who

can access them. But in the capability approach this has been simplified into

one direction: the capabilities themselves contain both references and the

access control information. This is believed by Miller to be an optimization.

Figure 2.2: Actual referencing relations

Secondly, for the confinement problem, Boebert emphasized the concept

of *-property [9]. Briefly speaking this property means that in a secure

system, information should flow only from the side of a lower security level

to the side of an equal or higher security level, but never the other way.

Boebert showed that an unmodified capability machine cannot gain this *-

property. Miller’s counter argument is illustrated by: assume Carol possesses

the resource and Alice has the capability to access them. Now Alice wants

to pass this capability to Bob. In order to do this, Alice must be herself

authorized to both Bob and Carol. So if Alice passes something to Bob,

it means that Alice and Bob have already built a trustworthy connection,

which has already gained the confinement. All the trustworthy connections

build up a safe environment for capabilities to be propagated, which Miller
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calls the Arena. To enter the arena, users must have agreed some terms of

entry for confinement. However, it can be argued that this is not a pure

unmodified capability approach.

Figure 2.3: Using Caretakers to Solve the Revocation Problem

Finally, Miller discussed the revocation problem. He stated that by in-

troducing a small modification, this problem can be solved (See Fig. 2.3 that

is shown in Miller’s Work [49]). To pass Carol’s capability to Bob, Alice

can modify the capability: it carries a caretaker, which will always check a

gate value before it can access Carol. This gate was set up by Alice, and it

is Alice’s business to switch this gate between enabled or disabled. When

disabled, the capability to Carol is ineffective. Again, people on the ACL

side argue that it is not a pure capability approach but using some ACL

techniques, while people on the capability side suggest that at least this is

an advantage over attaching access control information to resources.
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The debate of ACL vs. capability with respect to their advantages and

shortcomings could still continue for a long time.

2.3 Authentication

Authentication is a term with the meaning of confirming that something

is the entity it claims to be [52, 12]. In other words, it is the problem of

how to know that a subject (human, computer user, process, etc.) is itself.

Authentication is a general term in the field of security in computer science,

especially in the topic of networking. In traditional access control models, the

authentication processes happens just before the access control processes. In

the original pure capability approach, authentication is not such a big issue,

as the central unit needs only to check the validity and permission sets of

the capabilities themselves, but nothing about the agents who are presenting

the capabilities. However, considering the confinement problem and other

security problems, it is often necessary to modify capability based systems

to recognize the holders. Thus it is worth looking at the authentication issues

that may relate to capabilities.

There are some issues that show the need for authentication for capa-

bility systems. The confinement problem was introduced in the previous

paragraphs. It is never a good idea to give too much permission to untrusted

users, so before any propagation of capabilities, an authentication process

is required. In this case, the authentication processes should happen at the

users’ end, but depending on the implementation of the system, the ker-

nel may also join in this mechanism, e.g. some capability systems could be

implemented so all propagations of capabilities must be confirmed by the ker-

nel. Another situation in which the kernel needs to know the holders of the

capabilities is where systems need to implement garbage collection. Before

removing garbage resources the kernel must make sure there are no refer-
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ences to the garbage, but in classical capability approaches the kernel does

not have such knowledge. Therefore changes might be needed when kernels

need to know whether users possess references to some extent (although we

do not want the kernel to have full knowledge of users or processes, as this

may destroy the scalability of the capability approach).

One of the ideas involving authentication issues is to assign each possible

possessor an identity. This has been proposed in Li Gong’s work [28], and in

this paper the author suggested the mechanism of identity-based capability

system (ICAP), which added an identity value into each capability in the

system. The identity is created by the kernel or server when a new object

is created by a user, and it is a value generated by a one-way function. The

parameters of the function include the authentication information of the user

(maybe the user’s ID), the new object, issued permissions and an issuing

number that is generated and stored together with the new object. The key

difference of the ICAP from traditional capabilities is that any other user

with a different ID cannot use this capability to access the object, because

when accessing is being required the server will check the validity regarding

the user’s ID. In this way it enforces the control of the server over capabilities

and prevents the use of stolen capabilities. To legally propagate the ICAPs,

the original user will issue a message explaining that he agrees to pass the

capability to the receiving user. Then when the receiving user wants to use

this capability, he needs to present both the capability and the message to the

server, and the server will check the validity of the capability and message.

If all these tests are passed, the server will create a new capability for the

receiving user, by using his ID to assign the issuing number, and after this

the receiving user can use his own capability to access the object. In this

paper the author also proposed an enhanced version of ICAP introducing the

ancestor algorithm. The idea is that every time a capability is propagated,

the server will generate a new issuing number using the previous issuing
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number and the sending user’s ID. Therefore when a user wants to revoke any

capabilities that he passed out previously, he can simply inform the server

and the server can reject any capabilities of his descendants. The ICAP

system is claimed to be able to solve confinement and revocation problems

to a certain degree [28].

However, authentication is a much more complex question than this. It

is never guaranteed that only capabilities can be stolen. Assuming the user’s

ID has been leaked to the threatening agent, these protections could be

greatly weakened. Moreover, assuming that a threatening agent has got the

full information of a user, the agent can completely pretend to be the user.

There are no ways to discover this fake identity, unless the real user and the

threatening agent appear in the system at the same time. But the point is,

this is an uncommon situation. It is very difficult to steal all information

even from a low-level protected user device. On the other hand, this is a

situation beyond all protections. If the full information has been leaked to

another agent, no protection mechanisms can deal with this threat - not just

capability systems.

Another problem is, suppose a user carelessly lost his identification, how

can he prove to the server that he is the valid user but has lost the iden-

tifying information? How does an identity prove him to be himself? The

general problem of authentication is too big to discuss within the scope of

this work, and we assume procedures of authentication happens before proce-

dures of access control. Therefore, this work will not focus on authentication

problems.

2.4 Uses of Capabilities

Although there are always debates about capabilities, their advantages are

still attractive. Thus, since the invention of capabilities, this concept has been
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applied to many fields. The most straight forward application is following

the original ideas from Dennis and Van Horn [17] of operating systems. Ca-

pabilities are used as an alternative to access control lists to protect resources

in the system. Any users or processes that want to access data in the system

must provide valid capabilities in order to be granted access. Henry Levy

wrote a book in 1984 [45] in which he demonstrated many capability-based

computing systems, and discussed their histories and evaluations. These sys-

tems include some early examples, the Plessey System 250, the Cambridge

CAP, Hydra, StarOS, IBM System/38 and Intel iAPX 432. It is obvious that

some major research institutes and manufacturers gave attention to the idea

of capabilities. Kain and Landwehr [38] give a set of definitions of different

concepts in capability-based systems.

A more recent example was proposed by Shapiro and his colleagues. They

wrote several papers introducing a capability-based operating system called

EROS [59, 60, 61, 62]. In the evaluation part of the paper the authors

made a comparison between EROS and Linux over some major measurements

(pipe latency, pipe bandwidth, create process time, context switch time, heap

growth, page fault and trivial syscall). From the result of their experiments,

6 out of 7 measurements of EROS return a better performance than those of

Linux. Shapiro and colleagues believe that this proves that capability-based

systems can do as good as Linux, without any specialized hardware assists.

Another modern use of the capability concept is in memory management.

This relates to the compiling and running of programs. The researchers on

this topic use capabilities as a protection for memory regions against un-

matched type accesses. In region-based memory management the memory is

divided into regions and does not trace the structure of the heap, so it avoids

some complexity for garbage collection. Walker et al. [69] show a way of us-

ing capability protection to provide safe region operations, and Charguéraud

and Pottier [13] extend this to include the idea of type preservation. The



26 Chapter 2. Background

authors defined their variation of capabilities as a pair {α : θ}, where α rep-

resents a region in memory, while θ describes the type of the structure in

that region. The abstraction can be clearly seen here: it is no longer a set

of rights, but a type matching. Only if the capability represents the same

type or sub-type of the type in that region, can the access be validated. This

checking can be performed at both compile and run time.

A wider use of capabilities as a method of access control is in the field of

distributed environments and systems, and especially in open systems. Open

systems are systems where users or nodes may join and leave frequently,

i.e. they are opened to all users. This feature of the system means that

the population can be large and extremely unpredictable. This could be

a disaster for the traditional ACL approach of access control as it would

have to update and maintain a huge list again and again. The advantage of

the dynamic properties of the capability approach becomes obvious in these

systems, thus it is a great choice for distributed systems. Another reason that

might make distributed systems prefer capabilities is that, in a distributed

open system there might be many more users than resources, which addresses

the point that people used to treat as a weakness of capabilities when there

are more resources than users. In an open system, having everybody carry

a small set of capabilities seems to be better than letting the resources hold

huge lists of users, in both storage and load comparisons.

LINDA-like tuple space systems [8, 23, 24, 66, 67] are good models of

distributed open systems. It has been shown that to build a private channel in

open system could not be achieved in traditional ways. Alan Wood proposed

a mixed system combining ACL and capability techniques to deal with this

problem in 1999 [71]. A comparison between ACL and capability approaches

in LINDA-like systems is also contributed in this paper.

Recent work on the use of capabilities in distributed environments has

been reported by Gorla and Pugliese [29]. They proposed a language call
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µKLAIM, which is a modification to KLAIM. The original KLAIM also

adopted a tuple space approach, but it has the weakness of static access

control which cannot handle the dynamic changes during the programs ex-

ecuting while nodes join and leave. So the authors exploit capabilities to

overcome the weakness, and propose a combination of dynamic and static

approaches.

An interesting use of capabilities was explained in a paper in 2008 [57]. In

the paper the authors took capabilities into an Internet-based virtual envi-

ronment called Second Life.1 This is a kind of network program where users

can interact, communicate and trade in a shared environment. Participants

can use the provided tools to create their buildings and vehicles and so on.

Second Life uses the ACL approach to restrict the accesses. The authors

of the paper experimented with this kind of virtual environment using the

capability approach to replace ACLs. This work also uses caretakers to deal

with the revocation problem. One of the main points that was highlighted in

this work is the idea of facet, which is a pattern “to create capabilities that

only allow certain messages to be sent to the target object”. This starts to

bring the concept of behaviour into capabilities. It allows users to predefine

certain simple access patterns and reject any messages outside the facet def-

inition. However, this is still a simple model of behaviours, as it only defines

the type of accesses without any order or sequences.

Capabilities can also be used to integrate external uniqueness of object-

oriented systems. Haller and Odersky in their work [30] suggest adding some

semantics on the language of Scala [31] to ensure the uniqueness of the mes-

sages in distributed environment. This work also aim to “ensure race safety

with a type system that is simple and expressive enough to be deployed in

production systems by normal users”.

1http://www.secondlife.com
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2.5 Modifications of Capabilities

Recall the original structure of the capabilities that has been agreed for tens

of years: each capability consists of two parts of a reference to an identified

object and a set of rights (permissions). This is the standard representation

of capabilities. However, this is not a fixed definition. Capabilities can be

structured differently, and various workers have modified the representations

of capabilities to fit their own requirement.

ICAP [28], which has been mentioned in previous sections, is a good

example illustrating the modification of the structure of capabilities. In this

concept, there are three parts that constitute an ICAP capability: reference

to the object and the set of rights as usual, but a new identifying value which

is generated from the former two parts of the capability, the user’s identity

and a random value that is stored together with the object. This identity

feature is added to fulfill the aim of solving the confinement and revocation

problems.

Another example of the modification of capabilities is called split capa-

bilities [42]. In this work, capabilities are split into two parts: file locks and

keys (in original words, “ handle to the resource being accessed and a handle

to a separate resource representing the access rights being requested”). The

lock part is attached to the files. These locks are generated by the system,

and define the subjects able to unlock these locks. The lock part of the split

capabilities acts rather like an ACL feature, and it groups the subjects by

rights. The key part can be propagated by users, thus it follows the approach

of traditional capabilities. Every time a new access permission is assigned,

the system will generate the key with its value (ID), and add this value to

the lock part of the object that allows the access, and then distribute this

key to the user who is allowed to perform this accessing action. Now the

user is free to pass this key, or new keys generated from it, to other users.
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When a user requests the system to access a certain file, he should show his

key. The system then checks the value of the key to see if it is on the lock

part of the file, without knowing which user is doing this request and how he

got the key. If the value is correct, the system unlocks the protection for the

file and the access is granted. An interesting feature of split capabilities is

that each key also has an access action and that is the ‘Destroy’ operation.

It performs also as a lock, and can be unlocked by other keys. The split

capability approach is claimed to be able to achieve the *-property [9] and

solve the revocation problem. However, the disadvantage of this approach

is that there is still information attached to the objects, thus it decreases

the flexibility to some degree. But it still an improvement over ACLs as the

locks do not list all users, but only keys which could be much fewer than the

number of users, compared to the traditional ACL approach.

Multicapabilities [65] modifies the capability structure in another way.

This work proposed by Udzir is based on LINDA systems [8, 23, 24, 66,

67]. LINDA systems are distributed systems that adopt tuple space ideas.

In tuple spaces there are tuples which are unnamed entries, and users or

processes input and output tuples by using templates. It is clear that the

traditional capability approach cannot be directly applied to LINDA systems,

as the unnamed tuples cannot be referred by capabilities. Udzir solves this by

introducing the idea of multicapabilities, which instead of referring to a single

named object, they can match a number of tuples in the same template. The

structure of multicapabilities is given by a triple {u t p}, where p is the set of

permissions, t stands for the template and u is a unique tag to identify this

group of tuples (compare to the structure of traditional capabilities: a pair

{o p}, as o for object reference and p for set of permissions). The work of

multicapabilities moves towards introducing the class concept to capabilities,

and the contributions of this work have applications in the fields of garbage

collection, deadlock breaking, private channels and replication and caching.
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2.6 Limitations of Capabilities

As has been mentioned repeatedly, the main use of capabilities is access con-

trol which can be applied in different environments, in either centralized or

decentralized systems. They can also protect resources or memory regions

and filter valid or invalid accesses over different permissions. However, the

potential of the capability approach is greater than just access control. We

would like a more powerful dynamic control for accesses and other actions,

and maybe some of these requirements cannot be expressed using the tra-

ditional capability concept due to the simple structure. That is, there are

some limitations to capabilities.

The confinement and revocation problems have been discussed earlier:

they are the well known limitations. Now let us look at something more.

Traditional capabilities use the notion of permission sets. There is a naive

premise: these permissions have been assigned permanently, and users can

use their capabilities to access objects at any time and any number of times,

if the capabilities are valid. This is good enough where it meets require-

ments of systems. However, people often do not do things like this, as we

have different situations and conditions, and we do different behaviour at

different times. Take an example: assume one has just opened a new bank

account, so in the capability view, he now should have the rights to deposit

and withdraw money to and from the account. But in fact it is not allowed

to withdraw anything until one has saved a certain amount into his new ac-

count. Apparently, in this case it is a matter of sequence of actions, and the

objects usually have their states. In different states there are different possi-

ble actions. These sequences of actions cannot be represented by traditional

capabilities. In order to make capabilities able to handle these behaviours,

an upgrade is necessary, and this is exactly the topic this work is looking at.

We will explore this in following chapters.
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2.7 Session Types

Session Types [33, 43, 54, 58] provide mechanism that “allows the specifica-

tion of a protocol to be expressed as a type” [58]. In many communications

between two parties, the interaction is likely to last for some time, and hence

they should be treated differently from a ‘one-time only’ style of communi-

cation (e.g. call-return, pass-away, etc.). The session type theory can de-

fine communications with a prescribed conversation plan, which specifies the

types of individual messages and the allowable sequences of messages. When

a communication with session types is established, the communicating par-

ties will have expectations of the following message exchanging pattern and

the type of values being sent and received. With session types, it is ensured

that the two parties are communicating with the same and correct protocol;

that the sent messages or values are received by the opposite party; that the

types of messages and the communication patterns are agreed in advance;

that branching and looping flow control are correctly implemented by both

parties [54].

The session type theory provides an approach that describes the types

and sequences (including branching and looping) of messages in interactions.

This is similar to the concept we defined as behaviours, so it is worth cou-

pling with this project. However, the session type theory has a different

orientation from the research that is presented in this thesis. Firstly, the

session types define types and sequences on communications between two

parties, while the behaviour access control evolved from the capability ap-

proach concerns data being accessed by multiple entities, who may share

common behaviour patterns and propagate access permissions. Secondly,

session types are mainly used for verifying the correct implementation and

use of communication protocols at compile-time, while the capability-like

approaches are more practical components that have their effectiveness at
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run-time.

2.8 Summary

Capabilities, being an approach to access control, has been introduced in this

chapter. Compared with the traditional access control approach of ACLs,

capabilities show less dependence on kernels and central controls. In such

systems, capabilities are components that contain access control informa-

tion, and provide it to kernels when necessary. They are held by users and

processes, which means there is less load on kernels. Moreover, the holders

of capabilities can pass them to other entities in the system, such that the

permissions for accessing objects can be propagated instantly when they are

required, and do not need to inform kernels (or less information is needed to

notify kernels). These makes capabilities a better choice of access control ap-

proaches in parallel and distributed systems. Capabilities have a number of

advantages over ACLs, and good properties of dynamic access control, thus

the idea of capabilities has been applied to various areas such as operating

systems, building private communication channels, etc.

However, capabilities also have some drawbacks that need to be solved,

such as the confinement problem and the revocation problem. Researchers

have been working on this and have proposed a number of solutions, most

of them involving changing the structure of capabilities. There are also lim-

itations on capabilities in that they only provide simple permission controls,

and are not precise enough in controlling sequences of actions, or behaviours.

This motivates us to develop better solutions that have finer behaviour con-

trol functionalities.

We will see a progressed development of access control approach that is

extended from capabilities in the next chapter called Vistas, which show the

direction of evolving towards the behaviour controlling.
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Vistas

The Capability concept for access control is quite abstract, as components

in such systems are defined implicitly. It just describes a mechanism in

principle: agents carry some sets of permissions and each set of permissions

refers to a target. There are many gaps in this which have not been finalised

and have been left for developers to adjust to get a specified capability-based

system that best fits. These spaces include: how do the set of permissions

and the reference to the target group to form a capability; how do references

in capabilities link to targets; what are targets, etc. It is because of these

parameters that the modifications of capabilities becomes feasible.

Taking the advantage of capabilities in dynamic control, we would like to

keep extending this idea to make it more applicable in distributed environ-

ments. Since capabilities have been proposed as an access control approach,

they are used for protecting objects from invalid operations. However, as

more sophisticated applications are developed, these objects become more

and more complex. An object may contain a set of data, many references

to other objects, field variables that indicate the current state of the object,

large data blocks, and so on. It can be far beyond a simple file that only

needs permissions to read and write. Hence it is worth expanding the simple

33
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idea of capabilities to catch such complexity of objects, and Vistas are such

a development.

Vistas focus on the relationship between references in capabilities and

components in objects, and are a step towards better behaviour modelling

and control.

3.1 Vista Ideas

It has been mentioned that an object may have many field variables, each

representing some particular information that may or may not be accessed

by agents or users. Then to the access control view, the accesses to different

field variables shall be treated individually. Thus we define a visibility to be

a pair consisting of: a) an object reference, and b) one of its variables, or

names (or a sequence of names, see the operation of product in the following

section). The object reference can be held by several users, and having this

visibility means a user can access to the variable or name that is referred.

If we take a relational view [73, 74] of visibilities, then clearly it means

that a name in an object is mapped from one object reference by the ‘relation’

of visibilities, and a collection of visibilities becomes a relation from the set

(domain) of object references held by users to the set (codomain) of names (or

name chains) in targeted objects. We call this collection a vista. Vistas are

first-class reified runtime objects that are used for access control. Users hold

vistas to claim their rights to access those targeted objects. Since visibilities

in vistas are not ordered, and the number of appearances of a visibility has no

influence on the permissions granted by the vista, it can be seen that vistas

are sets of visibilities. This set view of Vistas could be useful, as it means

that we can apply properties and operations in set theory [36, 1] to our Vista

concepts. This is particularly important when we come to the topic of Vista

Combinator Operations.
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Figure 3.1: An Illustration of How Vistas Refer to Objects
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It should be noted that a vista may contain visibilities to multiple objects,

which means that with one vista the holder is able to operate on many

objects if he wants. Another notable thing is that one vista does not need

to contain visibilities for all names for a targeted object. This means the

case is possible that the holder of a vista can only access part of its targeted

object. These properties make vistas more precise when controlling accesses

for those complex objects, compared with capabilities. For example, imagine

there is an object having the profile of a student in a university, and there are

methods that can view and change the content or status of different parts in

this profile. The university has the vista that contains all visibilities to every

part of this object of profile, which means the administration of the university

can freely access, view and change the profile. The student himself can be

given a vista which only has permissions to methods of ‘apply for a course’.

There can also be a vista that open to the public, and with it the holder can

view some data of the student such as name, gender and the programme he

is taking.

Vistas are collections, and so there is no difference between a user hav-

ing one vista containing all visibilities he is holding, or having many vistas

grouped by partitions of the set of all visibilities — the permissions for ac-

cesses are the same. However, it is still possible for a user to have multiple

vistas at some point of time. This will be illustrated in the following sections.

3.2 Vista Combinator Operations

As defined, vistas are first-class objects, and they can be operated on in the

same way as other objects, in object-oriented systems. Assuming there is a

vista α and an action read, then we can use α.read to express a read action

using the vista α. However, according to the property of vistas described in

the previous section, a vista might contain references to multiple targeted
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objects, and it is possible that more than one object is permitted to be read

by this vista. This would not be a fault though, as it allows the possibility of

executing one command on multiple targets. This introduces an interesting

feature of forcing the users to execute actions to multiple targets at the same

time. For instance, imagine there is a user u1 writing an article, and for

some reason he cannot finish it. Thus he would like to let another user u2 to

continue writing the article instead of him, but he still want to keep a private

copy of the article such that he can read it when u2 append new contents

into the article. With the multiple targets of vistas we can realize this by: u1

make a copy a2 from the original article a1 and save it privately, and giving

a1 and a vista v containing both visibilities of the write permission to a1

and the write permission to a2 to u2. When u2 performs a write action

using v, it will simultaneously update both a1 and a2. Fig. 3.2 illutrates how

this process happens. Note that we do not want u2 to prevent a2 from being

written simultaneously, because this is exactly what u1 wants to ensure that

u2 behaves correctly. To achieve this the system/language implementing this

vista approach must be able to handle multiple selection.

There are a number of ways to obtain a vista. As vistas are extensions of

capability ideas, the methods used to obtain capabilities are also inherented

by vista systems [72].

- Initiality. Some vistas will be available to an entity (agent or user) on

its creation or when joining the system. These vistas are likely to cover the

access visibilities for the new entity itself (so that other entities can use these

visibilities to access this new one).

- Parenthood. Vistas for a newly created object are available to the creator

of this object. It is assumed that this vista contains visibilities to all names

in the object.

- Endowment. The creator of new objects can pass any vistas he holds

to these new objects. In object-oriented systems this corresponds to passing
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Figure 3.2: Process of Applying Multiple Targets Aspect
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vistas as arguments to the constructor of the new object.

- Introduction. An entity can pass vistas to another by sending messages

containing vistas, either by actively giving out or passively replying to re-

quests from other entities. In non-distributed object-oriented systems this

process corresponds to parameters and returned results for methods. In dis-

tributed systems this can be realized by physical conmmunication between

two entities.

Other than these, there is a new path to obtain vistas:

- Combination. An entity can use vistas he is holding to produce new

vistas, using some operations. Entities can use these operations to adjust

permissions as required and send the new vista to other entities.

Before any operations can be introduced, there are two fundamental re-

quirements that must be kept.

Requirement 1 Visibilities cannot be increased.

Requirement 2 Vistas cannot be forged.

The first requirement implies that however the vista operation is designed,

the resulting vista must not contain visibilities that do not exist in the vistas

the creator is holding. Not satisfying this requirement means entities can

gain more access than already assigned to them. The second requirement

ensures that entities cannot obtain vistas by ways other than the proposed

ones. Again this protects systems from illegitimate accesses.

Table 3.1 shows a general view of the four basic vista operations that

could be useful for entities to combine and create new vistas. And more

detailed explanation is given below:

Sum is the very operation that makes a vista refer to multiple objects.

Taking the set view of vistas, the result of a sum operation is a set

of visibilities, which is the union of the two original vistas i.e. sets of

visibilities. As for the requirements, the summed vista is the largest set

of any sets that result from any binary vista operation, as it contains
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Sum α + β is a vista representing all the visibilities of α
and β.

Difference α−N ,
α− β

is a vista containing the visibilities of α with-
out those, if any, referring to the names con-
tained in the set N , or in the vista β. Since
a vista can be regarded as a set of visibilities,
this operation is naturally overloaded to allow
a vista as its second argument.

Intersection α ∧ β,
α ∧N

is the vista containing visibilities, if any, that
are common to α and β. This is extended to
work with a set of names N as in the case of
difference.

Product α× β is a vista that represents ordered pairs of vis-
ibilities from α and β.

Table 3.1: Four Basic Vista Operations

all visibilities from the two original vistas. Vistas combined from other

operations can only be a subset of the result of a sum.

Difference works like the difference operation in set theory. The result

of α − β will have all visibilities of α without those in β. The vista

operation of difference can use a set of names as the second operand, in

which case the result will not contain any visibilities refereing to names

in the given set.

Intersection between two vistas acts as the intersection of these two sets

of visibilities. In the intersected vista there are only visibilities that

appear in both of the original vistas. Again intersection can also have

a set of names as its second operand, in which case the resulting vista

will contain visibilities referring to names in this set only.

Product performs differently from the other three operations, and it gives

a taste of behaviour modelling. A product between two vistas means

‘the holder must perform actions in the two vistas consecutively’, and
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this consecutive execution shall not be intercepted by other actions. In

the resulting vista of a product between α and β, there are no longer

simple visibilities, but a collection of pairs/strings of visibilities. The

first part of visibilities represented in these pairs is from α and the

second part of visibilities is from β. These pairs/strings become tied

actions that will be executed in order atomically. In an object oriented

view, to use a product vista α, some command like α.<f,g >will be

called. There are cases when the first action in this pair may not be

executed properly, which could be caused either by the user not having

the permission to perform this action, or errors or exceptions happening

while the action is processing. In the former case it is suggested to deny

the second action in the action pair as well, but in the latter case it

may be acceptable to let the second action being normally performed

if it will not be affected by the error of the first action.

In vistas, although one can keep using the product produce strings/chains

of actions to have a ‘taste’ of behaviours, they are still very simple. These are

only sequences, and as they are performed atomically, once the tied actions

started, it cannot be interrupted and turn to other actions. The aspect

of behaviour should include branches that would let the actor to choose

actions. Controlling behaviours will be examined later in the context of

Treaties (Chapter 4).

3.3 Use-Cases

Due to the difference between vistas and capabilities, there are some new

ways of applying vistas in practice. In this section some examples of novel

use-cases which use vistas are introduced.

Instant Messaging
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Consider a simple chat system with users distributed across the network.

Users are allowed to communicate peer-to-peer, and they are also able to

create chat rooms divided by topics, and these rooms allow multiple users to

‘broadcast’ their messages to all other users in the same room at the same

time. In a capability-like system, to send a message to another user you will

need to obtain write access to him. To send one message to multiple targets,

copies of the message will be sent one by one.1 In a vista-based system, we

can realize this function by using the operation of sum (shown in Fig. 3.3).

To initialize, an entity sends the vista including his write visibility to the

manager of the chat room (either the creator of the room or the server), and

the manager sends this vista to members of the room, then these members

return acknowledge with their vistas for write. Each member now uses the

sum operation to combine their newly obtained vista with their room vista

topic. To broadcast a message, members can execute topic.write(message),

and the message will be spread to all members in the chat room. At the

implementation level, how the system will actually do this action depends

on the facilities of the language. If the language supports concurrency or

multicast functionality, then it can broadcast the message to all members.

To terminate, the member can do a topic.leave action which informs

other members of his leaving, and then the other members can use a difference

operation to remove the exiting member’s write visibility.

Security Proxy

Imagine a new student, Alice, is enrolled by a university. She will need to

set up an account so that her tuition fees can be saved and collected; the fees

are provided by her parents. But rather than a simple account, the parents

would like to add some control on it so that the account is guaranteed to be

1Actually there is another way of dealing with this, and it is to create a new object that
represents the chat room, and let each member in the room have both read and write

permission to this room object, but this requires extra resources supplied by the system.
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Figure 3.3: Difference Between Using a Set of Vistas and a Summed Vista
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used for tuition fees only. The specified requirements are: Alice can view the

balance of the account and deposit money in it (in case she may do some

part-time jobs), and the University can withdraw money from it and also

deposit into it (rewards or new sponsorship), while the deposit permission

is open to the public (for donations). The parents have full permissions

including save, withdraw and (view) balance.

Assume the full vista is called account. A simple way of achieving the

requirements would be to create the vista (account∧{save,balance}). How-

ever, due to the properties of vistas, these visibilities could be propagated

and other entities may access to the balance of the account. Thus as well as

the account object, the bank provides an extra security object called guard.

This object can examine the identity information of entities by a login ac-

tion with the entities’ details. Now an enhanced version of Alice’s vista can

be produced by using product operation:

alice = (guard.login(aliceDetails)× account.balance) + account.save

Using this vista, anyone who wants to view the balance will have to

provide Alice’s details, so a stronger security is provided. And because the

save permission is not restricted by guard, Alice can distribute the vista to

others for any donation and presents.

Similarly, the financial office of the university will be offered a vista like:

fees = guard.login(uniDetails)× (account ∧ {withdraw,save})

which means the university will need to provide relevant information be-

fore access to the tuition account, but viewing balance is not available to the

university. Vistas held by different roles in this case are shown in Fig. 3.4.
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Figure 3.4: Users Holding Different Vistas Access to a Same Object
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3.4 Summary

In this chapter the idea of Vistas has been introduced which has been fur-

ther described in the previous published paper [72]. Vistas are access control

components that extend the capability approach a further step. In the Vista

approach access control is made finer by specifying accesses to the field val-

ues and methods (in object-oriented sense) in each target object, and these

explicit accesses are represented by visibilities. Each visibility is a pair con-

sisting of a reference to the target object and the identifier of one of the field

values or methods in this object. The holder of a visibility can view and

modify the field value or call the method in the referred object. Vistas are

sets of any visibilities one holds, hence a vista can grant accesses to multiple

objects.

Vistas can be constructed using vista operations, by regrouping visibil-

ities inside. With the constructed vistas, users can define different access

patterns. This enhances the services such that the holder of the vista can

access different sets of target objects, or he can pass the vista to other users

with the access pattern specified by him.

The product operation in vistas realizes sequences of accesses, and this

shows a particularly interesting development: controlling the accesses in a

behavioural way. In the real world many behaviours exist, made by humans,

machines and many other active objects. These behaviours usually include a

number of actions happening in particular orders and patterns. For example,

the behaviour of someone going home after work: he will unlock the door

first, then walk into the house, lock the door from inside, then either take off

his coat then shoes, or take off his shoes first then coat. The behaviour stops

here, followed by other behaviours such as cooking and taking a shower. It

would be nice if we could take control over accesses step by step so that we

can force the actions taken by entities to become meaningful behaviours.
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Vistas formed by product operations can make sequences of actions that

show an aspect of behaviours, but they are still not able to simulate the

‘choices’, or branches, of actions. They cannot allow and then stop accesses

to variables in objects, as vistas also grant unlimited number of accesses like

capabilities. It is necessary to look for a new approach of making behaviour

control to make development progress.

The following chapters will introduce an extension to vistas which allow

a more complete control over behaviours.
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Chapter 4

Treaty Concepts

Treaties extend the capability and vista ideas to a new level. Capabilities

and vistas only deal with rights. These rights in capabilities are indepen-

dent, unlimited and unordered. For example, assuming there is a capability

containing both read and write rights, the two access rights are not depen-

dent on each other, and the holder of the capability can do read or write

an unlimited number of times, and in any order. This is a straight-forward

mechanism that is suitable for simple systems. However, as services become

more sophisticated, the simple mechanism is no longer satisfactory for com-

plex system requirements. There are many cases that require the access

actions to be in certain orders, or a limited number of times. We call these

sequences of actions behaviours. Clearly capabilities are unable to specify

behaviours, except in the most trivial sense. Vistas make one step towards

behavioural control, by the product operation, but they are still too simple:

there is only sequencing of actions. Hence we need to find new ways to fit the

behavioural specifications, such as sequences, choices and limited repetitions

of actions. We will introduce the solution in this chapter.

49
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4.1 What Treaties Are

Recall our motivation of progressing from action control to behaviour con-

trol: the simple capabilities can only do the former control. In capabilities,

there are only sets of action types that allow the holder of the capability to

perform actions of types defined in the set to the referred object. The valid

actions granted by the capability are independent, unlimited and unordered,

which means, performing an action will not be affected by the performing

of other actions, these actions in the action set can be performed as many

times as users like, and the performance of these actions has no particular

sequence. These properties cannot completely define behaviours, which are

characterised by sequences, branches and terminations. Capabilities have

such a simple structure that they are not capable of controlling behaviours,

therefore we intend to upgrade them to solve this problem, and we call our

solution Treaties.

Treaties evolved from the idea of capabilities and vistas, and so they can

also be used as access control components. This inheritance implies that

treaties adopt many properties from capabilities:

� They are structures that define the rights to operating on resources.

� They are not centrally controlled, but are held by user-level agents.

� In treaty systems a user must present an appropriate treaty to the

kernel (middleware) in order to perform actions on the resource that

he is accessing.

� Only kernels can create the initial treaty to a certain resource - users

cannot forge any treaties.

� Treaties shall also inherit the aspect of dynamic access control of ca-

pabilities, as they can be propagated throughout systems.
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The aspect of dynamic access control is characterised by the fact that: a

user who possesses a treaty can pass it to another user, and the receiver of

the treaty then gains the same rights to access the object it refers to. In this

way the permissions can be distributed without notifying the kernels, as in

the case of capabilities. This means that treaties are suitable to be deployed

in distributed environments as well.

The key function that treaties provide is ‘behaviour control’. This differs

from the ‘rights-only’ mode of capabilities in the sense that a treaty can allow

or deny different actions at different times or stages, depending on the current

state of the treaty or current stage of the process/behaviour (capabilities are

stateless entities, and so cannot control sequences of actions. See Fig. 4.1).

With treaties, sequences of allowed actions are specified and enforced, in

order to form behaviours.

Figure 4.1: Structure of Capabilities and Treaties

As an example of a behaviour as a sequence of actions from everyday-

life, in the morning we sign-in to our email services, read new emails, reply

to senders and finally shut-down mail boxes. This is exactly a simple but
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typical behaviour. At the beginning, one cannot read or compose mails but

only log in. After logging in one can read and compose an unlimited number

of times, until logging out, after which only logging in is allowed. Treaties

aim to capture these attributes of behaviours, such as sequencing, branching

and terminating.

States are a vital part of the Treaty concept. A behaviour can have

multiple states, and these states are connected by actions/accesses. Every

time a user performs a valid action over a resource, a transition between the

current state and the target state is made (keep in mind that these are not

necessarily two distinct states). The current state is a pointer or indicator

to one of states in the behaviour contained in a treaty. This is similar to

finite-state machines [11, 14, 15], and in fact an FSM is a good option for

representing behaviours [76].

Abstractly, treaties are access control components that provide specifica-

tions of behaviours that can be followed for a number of resources, together

with the current state of the evolution of the behaviours. As fundamental

requirements, treaties shall:

� refer to resources.

� provide information to a kernel to enable it to allow or deny an action

request.

� not be strictly bound to agents, i.e. kernels do not need to check their

holders’ identities in order to grant or deny actions.

� be able to ‘evolve’ behaviours according to their specifications, i.e. main-

tain and update the current state.

Therefore each treaty can be seen as consisting of three components: the

reference pointing to the resource (or resources), the behaviour descriptor
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modelling the behaviours permitted by the treaty, and the current state of

the behaviour in this treaty. From this, we can see that that capabilities are

a special type of treaty, in which there is only a single behavioural state, and

all allowed actions are reflexive transitions on this state.

In a treaty-based system, the usual process of using treaties can be as

follows:

1. a user U requires the kernel to create a resource R;

2. the kernel creates the resource R and returns a treaty T to user U ,

where T contains all possible action types regarding to the resource R

with unlimited number of accessing repetitions;

3. user U can refine the behaviour model represented by the behaviour

descriptor in T so that specific treaties T1...Tn are constructed;

4. U can pass these treaties (both newly refined and that have been exe-

cuted) to other users U1...Un to distribute the right to access R;

5. Um who received Tm can show this treaty to the kernel to access R, if

this action is validated by Tm.

4.1.1 Terms and Definitions in Treaty Systems

Before any formal definitions can be given, we will need to understand the

following terms that will be or have been used, to avoid any confusion.

Kernel - Also referred to as server. This is the unit that processes requests

from users. In traditional approaches kernels act as the role of admin-

istration, and in the capability and treaty approach kernels still do the

important job of checking validity and addressing objects.
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Subject - The holder of treaties, including users and processes, depending

on different types of systems. Subjects can exchange treaties among

themselves, and will show treaties to kernels when they need to access

objects.

Object - Can also be called resources or files. Objects are the part that

is protected by treaties. Note that in distributed systems, objects are

usually not located centrally, but on devices of different subjects. And

in some cases, subjects themselves can be objects, where ‘send message’

is the possible accessing action, and need to be protected by a treaty.

Subjects and Objects are both entities in systems.

Action - This is the term used to call a single access. For example, in a file

system, read and write can be two types of actions. The following —

to read from a file, then append (write) some information to the file,

and finally read the file again — is regarded as three actions.

Behaviour - We define a behaviour as a sequence of actions. Each behaviour

contains an ordered list of actions. The mentioned ‘read-write-read’

example is a behaviour. The number of actions in a behaviour can be

any non-negative integer, including zero (empty behaviour) and infinity

(might be a loop of actions).

Behaviour Model - Sometimes we need to describe behaviours instead of

listing them one by one. A behaviour model defines a group of be-

haviours using sequencing, branching and terminating. One behaviour

model contains multiple behaviours, and we can say these behaviours

are modelled by the behaviour model.

Behaviour Descriptor - This term is used with regards to implementa-

tions, and behaviour descriptors are a component of treaties. A be-

haviour descriptor represents one behaviour model (or more than one,
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depending on the choice of referencing style which will be discussed

later).

Current State - This is used to indicate the current point in a behaviour

model. Each time a valid action is performed, it will cause a move or

transition from the current state (may move back to the same state).

Again the current states are a component of treaties.

Example of the structure of a treaty system is shown in Fig. 4.2. In

this simple case there are three users: user1, user2, user3, which are in the

classification of subjects. There are also three objects of resource1, resource2,

resource3, and users possess treaties that contain permissions to some of

the objects. Two kernels exist in this system and each of them directly

communicates with some entities (either subject or objects). If user3 want

to access resource2 (assuming he has the correct permission), he will first

report to kernel2 and hand in the treaty:R2, and kernel2 will communicate

with kernel1. Kernel1 then checks the premissions in treaty:R2, and grant

the action requested by user3.

Treaties and their representing behaviours can be also seen as regular

languages [20, 75]. All action types for the resource can be seen as the

alphabet of the language, and the behaviours are strings in the language (we

will use [α ]to represent the behaviour set given by the treaty α). Taking

an example, suppose there is a treaty α which allows its holder to do only

three actions ‘read-write-read’ to the resource consecutively, then the valid

behaviour set [α ]granted by α, i.e. the valid string set in this language is:

{ε, read, read.write, read.write.read}. ε is the empty behaviour that

means doing nothing, and it will exist in any behaviour set defined by any

behaviour model.
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Figure 4.2: An example of the Structure of a Treaty-based System

We define a behaviour model M on an object as

M = (Q,Σ, t, q)

where Q stands for the set of all states in this model; Σ is the set of all

action types for the type of the targeted object; t represents the set of all

action transitions between pairs of states in (a subset of) Q ; q the current

state of this behaviour model. If we take a look at the definition of finite-

state machines [15] we find that in our definition of behaviour model, there

is no set of accepting states F. This is because our behaviour model is used

for access control, and in access control systems the actions are dealt with

individually. Every time a subject asks the kernel for a single action, the

kernel will return the validation result of it, and no future actions concerned,

which means it does not consider whether there will be a next action and

what it is — the validation process is only based on the current state of
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the behaviour. The subject can stop performing actions at any state in the

behaviour model and this is perfectly valid. Thus, any state in behaviour

models could be seen as an accepting state, i.e. F = Q.

4.2 Operations and the Rule of Treaties

As has already been mentioned, when a new resource object is created, the

kernel provides the creator of this object a ‘complete’ treaty, which con-

tains all possible action types with unlimited repetitions, i.e. a capability.

To transform the complete treaty into a treaty that specifies more refined

behaviours, we need a number of combinator operations. However, there is

a fundamental rule for these treaty combinator operations. To keep the in-

tegrity of treaty systems, we must ensure the action permissions held by a

user would never exceed the scope of permissions that have been assigned to

him.

Rule. An agent cannot increase the totality of behaviours defined by the

treaties it holds.

This is the core requirement of treaty operations, all operations and their

results must obey this rule, in any representation and implementation of

treaty systems.

4.2.1 The Five Basic Operations

Corresponding to attributes of behaviours of sequencing, branching and ter-

minating, there are three basic operations: concatenate, join and restrict.

In addition, two operations of intersect and difference are also introduced

below:

Restrict is a unary operation that can decrease the number of times a

certain type of action can be executed to an assigned number. The
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actual way of designing this operation can be varied depending on dif-

ferent representations of treaty systems. For a treaty α, restrict will

be shown: [α]an, where a is the type of action to be restricted, and n is

the maximum number of times that a can be performed.

Difference (−) operates between two treaties, or a treaty and action type.

For two treaties α and β, α− β contains behaviours in α that are not

in β. α− a removes all a actions from α.

Concatenate (·) is a binary operation which connects behaviours in two

treaties in order. α · β is a treaty that allows all behaviours consisting

of a behaviour allowed by α followed by a behaviour allowed by β.

Intersect (u) is a binary operation which results in a treaty whose be-

haviour is the intersection of the behaviours of the two original treaties.

Treaty α u β specifies behaviours that are allowed by both α and β.

Join (t) is also a binary operation which constructs a treaty from two

original treaties, so that the holder can choose to perform a behaviour

from either of the original treaties. Treaty α t β allows all behaviours

in α and β.

To help understanding, Fig. 4.3 demonstrates how the four binary oper-

ations perform. Assuming there are two behaviour models in two treaties,

in each figure the left circle denotes the starting state of the result, and the

right circle denotes the finishing state. The path between the two states is

the valid behaviour model that results from the two original ones. In the

case of intersect operation the path is the region with slashed lines, and for

the difference operation the path is the shadowed region.
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Figure 4.3: Graphical Illustration of Binary Treaty Operations
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4.2.2 Using Behaviour Sets to Prove Correctness of

Operations

In order to make sure these operations do not break the rule, it is necessary

to know the upper bound of the behaviour set that the holder of the original

treaties can do. Assume one has two independent treaties α and β. Let

treaty α contain only two consecutive actions read;write, and treaty β

contain two consecutive actions execute;rename. As these actions in two

treaties are independent, the sequences of performing actions can be in any

order, and all sequences are given by:

read;write;execute;rename

read;execute;write;rename

read;execute;rename;write

execute;read;write;rename

execute;read;rename;write

execute;rename;read;write

From this observation we find that the upper bound of the behaviour

set by two independent treaties is a shuffle [26, 37, 6] of the two original

behaviour sets.1 Generally speaking, the shuffle operation produces a set of

expressions from two expressions such that in the resulting expression every

letter will follow its sequence in the original expression, but the order of

letters from two different expressions are completely independent.

There is, however, another point that needs to be noticed. The be-

havioural accesses allow users to perform actions in some order as the be-

haviour model defines, but it does not mean that to complete a behaviour

one must perform all actions until the model reaches a terminating state

(in fact many models do not have such states). In treaty-based access con-

trol systems, all users need to do is to ask the kernel whether they can do

1Here it is assumed each action is separated, and there is no notion of atomicity in
treaties in the abstract treaty concept.
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an action before it is performed, and users can stop performing actions at

any point in behaviour models, regardless of the following actions. In other

words, every state in behaviour models is an ‘accepting’ state. From this,

we have found a property of behaviour sets defined by behaviour models:

these sets are prefix closed [53], which means that if a sequence of actions

(behaviour) is in a behaviour set, then its prefix is also in this set:

let an action a ∈ Σ

let a behaviour B ∈ Σ∗

for a behaviour set S, if B.a ∈ S, then B ∈ S

Let us define a shuffle operation between two treaties that will produce a

prefix-closed shuffled behaviour set from the two treaties, using the symbol

�. Let α and β be the two original treaties, u(α) be any unary operation

over α and } be any binary treaty combinator operator, we can rewrite the

fundamental rule formally as the following:

[u(α) ]⊆ [α ]

[α} β ]⊆ [α� β ]

Consequently, it must be shown that the treaty operations conform to

this rule.2 Note that shuffle is a commutative operator, i.e. α� β = β � α.

Restrict From the definition of restrict it is clear that restrict operation

will only decrease behaviours from the original treaty, thus it certainly

obeys the rule.

[[α]an ]⊆ [α ]

Concatenate Because the shuffle operation allows actions from different

sets of behaviours to be performed in arbitrary order, it is perfectly

valid to let actions from the first treaty to be performed before the

2For now, let us assume treaties that are applied by operations should refer to the same
target object.
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second treaty, which is exactly what the concatenate operation does.

Hence:

[α · β ]⊆ [α� β ]

Join and Intersect Since the behaviour sets are prefix closed, we have

[α ]⊆ [α · β ],

as behaviours in α are prefixes of behaviours in α · β. Since ‘⊆’ is

transitive, we have

[α ]⊆ [α� β ],

and similarly

[β ]⊆ [α� β ].

By the definition of the join and intersect operations

[α t β ]= [α ]∪ [β ],

[α u β ]= [α ]∩ [β ].

Due to the set theory, [α ]∪ [β ]⊆ [α � β ], [α ]∩ [β ]⊆ [α � β ].

Thus

[α t β ]⊆ [α� β ],

[α u β ]⊆ [α� β ].

Difference For the difference operation, taking a naive view, we might

think that [α − β ]= [α ]\ [β ](set minus). However, assuming there

are two treaties γ and δ referring to a same target, γ allows a read

action then a write while δ allows only a read.

[γ ]= { ε, read, read.write }

[δ ]= { ε, read }

Thus
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[γ ]\ [δ ]= { ε, read.write }

This set is not a prefix closed set, so it does not conform the prop-

erty of behaviour sets. This illustrates that the operation of difference

cannot simply be defined to be a set difference between two treaties.

All behaviours that have prefixes in the behaviour set defined by the

second operand treaty must also be taken from the behaviour set from

the first operand treaty. This is also naturally reasonable, as if one is

banned from doing something, one will certainly not be allowed to do

anything that must be preceded by the banned behaviour.

Thus, the difference operation α − β is defined by removing all non-

empty behaviours in [β ]and the behaviours that have these β-behaviours

as prefixes from [α ]:

[α− β ]= [α ]\ { x | x = b.Σ∗, where b ∈ [β ]and b 6= ε}

And since it is a set minus from α, and [α ]⊆ [α� β ], we can get

[α− β ]⊆ [α� β ]

Therefore we have shown all the five basic operations obeys the rule of

treaties, and hence they are safe to be used for behaviour model refinement.

We provide the formal definition for the five operations in Table 4.1 using

the concept of behaviour sets. a@b denotes the number of times that action

a appears in behaviour b.

4.2.3 Laws of Treaty Operations

Basic treaty operations have been conceptually defined, and by their defi-

nitions we can find a number of algebraic laws that are followed by these

operations. Assume there are three treaties α, β and γ, and we define an

empty treaty which allows its holder to do nothing as φ, then
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join α t β [α t β ] = [α ] ∪ [β ]

intersect α u β [α u β ] = [α ] ∩ [β ]

difference α− β [α− β ] = [α ] \ { x | x = b.Σ∗, b ∈ [β ], b 6= ε}

concatenate α · β [α · β ] = { x | x = b1.b2, b1 ∈ [α ], b2 ∈ [β ] }

restrict [α]an [[α]an ] = { x | x ∈ [α ], a@x ≤ n }

Table 4.1: Formal Definitions for Treaty Operations

α t β = β t α (4.1)

α u β = β u α (4.2)

(α t β) t γ = α t (β t γ) (4.3)

(α u β) u γ = α u (β u γ) (4.4)

α t φ = α (4.5)

α u φ = φ (4.6)

α− φ = α (4.7)

φ− α = φ (4.8)

φ · α = α (4.9)

α · φ = α (4.10)

[φ]an = φ (4.11)

α− α = φ (4.12)

α t α = α (4.13)

α u α = α (4.14)

These laws can be used to examine the correctness of different represen-

tations and implementations of treaty systems. We can prove these using

the formal definitions of treaty operations. Join and intersect are defined

directly using set theory, hence they inherit the properties of set operations,

thus:

(4.1) [α t β ] = [α ] ∪ [β ] = [β ] ∪ [α ] = [β t α ]

(4.2) [α u β ] = [α ] ∩ [β ] = [β ] ∩ [α ] = [β u α ]

(4.3) [(α t β) t γ ] = ([α ] ∪ [β ]) ∪ [γ ] = [α ] ∪ ([β ] ∪ [γ ])

= [α t (β t γ) ]

(4.4) [(α u β) u γ ] = ([α ] ∩ [β ]) ∩ [γ ] = [α ] ∩ ([β ] ∩ [γ ])

= [α u (β u γ) ]
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By definition of φ we also have [φ ] = {ε}, and ε exists in every behaviour

set, i.e. [φ ] ⊆ [α ], thus:

(4.5) [α t φ ] = [α ] ∪ [φ ] = [α ]

(4.6) [α u φ ] = [α ] ∩ [φ ] = [φ ]

(4.7) [α− φ ] = [α ] \ { x | x ∈ [φ], x 6= ε} = [α ] \Ø = [α ]

(4.8) [φ− α ] = [φ ] \ { x | x = b.Σ∗, b ∈ [α ], b 6= ε} = [φ ]

(4.9) [φ · α ] = { x | x = b1.b2, b1 ∈ [φ ], b2 ∈ [α ] }
= { x | x = ε.b2, b2 ∈ [α ] } = [α ]

(4.10) [α · φ ] = { x | x = b1.b2, b1 ∈ [α ], b2 ∈ [φ ] }
= { x | x = b1.ε, b1 ∈ [α ] } = [α ]

(4.11) [[φ]an ] = { x | x ∈ [φ ] and a@x ≤ n } = { ε } = [φ ]

And for the operations where both their operands are the same:

(4.12) [α− α ] = [α ] \ { x | x = b.Σ∗, b ∈ [α ], x 6= ε}
= [α ] \ ([α ] \ { ε }) = { ε } = [φ ]

(4.13) [α t α ] = [α ] ∪ [α ] = [α ]

(4.14) [α u α ] = [α ] ∩ [α ] = [α ]

Hence all the laws are shown to be correct.

From the laws we may find that it is not beneficial to make a binary treaty

operation over a treaty to itself (αtα and so on), except for the concatenate

operation that is not specified in these laws. However, to concatenate a

treaty with itself may cause more serious problems, as it will be explained in

Section 4.3. Hence we can make the decision that one should never use binary

treaty operations between treaties and themselves, as they only produce:

treaties that have no difference from the operands of the operations, an empty

treaty that does nothing, or treaties that break the assurance of behaviour

control schemes.
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4.2.4 A Use-Case Example

Consider an on-line voting system, where each voter can vote exactly once,

and can check the current result at any time. But in contrast to ordinary

voting, the organizer of this system would like to make vote actions available

only up to the deadline set by himself. If we think in terms of our behaviour

models, there will be three states and three types of actions in the behaviour

model for each voting treaty, as shown in Fig. 4.4 part a). Note that vote

and check are to be performed by voters, but the timeout action, which

will stop the system from accepting voting, is triggered by the timer in the

voting system. Thus this behaviour model needs to be separated into two

parts held by users and the timer respectively, as shown in Fig. 4.4 part b).

To construct this, the organizer of the voting can first obtain a com-

plete treaty α containing two types of action vote and check with unlimited

repetitions, and get the ordinary voting treaty by performing the restrict op-

eration [α]vote1 . Then there is a treaty with a single action timeout created

by restricting another complete treaty β containing unlimited timeout rep-

etitions to [β]timeout1 . These two processes are shown in Fig. 4.4 part c) and

d). The overall behaviour model of the voting, which is shown in Fig. 4.4

part a), is produced by performing a concatenate operation to the two re-

stricted treaties. In general, the operations of constructing the overall voting

behaviour model can be represented as:

[α]vote1 · [β]timeout1

With such a behavioural design, a voter can either vote or not, but once

the set deadline has passed, the kernel automatically performs this timeout

action to prevent any further votes being accepted.

Now the organizer of the election can further refine the treaties to produce

separated behaviours for voters and the timer. Let the treaty containing
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Figure 4.4: Behaviour Models for a Timed Voting System
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overall behaviour model shown in Fig. 4.4 part a) be denoted as γ. We can

produce the voter held treaty by:

γ − β

or simply

γ − timeout

Similarly, the timer treaty is produced by:

γ − check− vote

Hence treaties containing behaviour models that are shown in Fig. 4.4

part b) are generated. Note there are states that are not reachable using any

individual treaty in both behaviour models, but it is valid. Neither of voters

and the timer can solely complete the whole voting process, as they rely

on and are affected by each other’s actions, and this is exactly the desired

behaviour.

4.3 Novel Issues Generated by Treaties

Treaties extend vistas, and thus capabilities, in functionality, and so there

arise some new practical and theoretical issues that need to be considered.

It must also be remembered that treaties not only inherit positive attributes

from capabilities such as their flexibility and scalability, but also some nega-

tive issues such as the confinement and revocation problems that have been

introduced in Chapter 2, since treaties can also be propagated. Thus the

development of treaty systems needs to concern these together with their

particular challenges.

A main challenge that results from the new functionality of treaties is the
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duplication problem. Treaties require state descriptors to keep track of the

evolution of behaviours. This means that protecting the state information

is crucial. According to the rule of treaties, we must ensure that allowed

behaviours cannot be increased. A rollback of the current state may destroy

this rule in treaties that are access-repetition sensitive, which means in these

treaties there are types of actions that are only allowed to be performed with

a limited number of times. If the current state in such treaties is permitted

to be rolled back to one of the previous states, and between these two states

there are actions with limited repetitions, to rollback the current state to

the previous state means these actions can be performed once more. This

repetition is not counted to the assigned and limited access times, so the

rollback indirectly increases the possible access times, and this breaks the

rule.

Assume that a user is holding a treaty which allows him to perform a

read action exactly once. Then the challenge is how to prevent him from

‘validly’ performing more than one read by making a duplicate of the treaty.

If this treaty is a piece of data (bit-string) completely stored in an agent’s

memory, there is no way of preventing the holder from making a copy of it

before using it for any accesses. Then the holder can access the targeted

resource using the copied treaty, and keep the unused original piece so that

he can do the same thing next time he wanted to do read on the resource.

In this way this user gains an unlimited number of accesses, which clearly

breaks our rule.

The duplication problem does not only arise in this way. Taking another

example of the same treaty, assume the holder A sends (a copy of) his treaty

to another user B, and then uses his copy of the treaty to perform the action.

Later, B sends his treaty back to A, and A now has the original treaty again!

This example demonstrates that, even when they are held by different users,

treaties generated from the same original one must be maintained in the
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same state. The two cases of causing the duplication problem is illustrated

in Fig. 4.5

Figure 4.5: Two Cases that may Cause Duplication Problem

For similar reasons, if we were allowed to do a concatenate operation

between a treaty and itself as being mentioned in Section 4.2, and in the

treaty there are actions with limited number of executing repetitions, this

will cause a duplication problem and increase the valid number of executions.

This is the main reason why using binary treaty operations between treaties

and themselves should not be allowed.
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Moreover, the situation can be seen to be even more profound when

considering treaties which have been formed by the combination operations

outlined in previous sections. For instance, assume user A has received a

treaty from B which allows him to do a write then a read, and has received

another treaty from C that allows him to do a write then an execute, both

referring to the same resource. If A were to do a join of the two treaties

and send the result to D, and D were to request the kernel to perform a

write action, whose treaty, B’s or C’s, is the correct one to be synchronized?

Thus the concurrency issue also affects the design and construction of treaty

operations.3

Generally speaking, the most important new challenges of treaties are

related to states, and their management in a scalable fashion in a distributed

system. This is unsurprising, as behavioural states are exactly the novel

feature that treaties provide.

To solve such a problem, it seems that central control will have to act as

a key part. The crucial information including the current state shall be held

somewhere that is handled by the kernel, so that users cannot freely create in-

dependent copies without any restrictions. Although this may produce some

centralization problems, it still grants the property of treaty propagation,

and kernels do not need to identify all users, hence it is not an unacceptable

cost.

4.4 Summary

In this chapter the concept of treaties has been introduced. Treaties are ac-

cess control components that aim to support behaviour control in distributed

3This could be solved if we can distinguish the two write actions. If they are generated
from the same action, then there is no need for concern — both treaties of B and C should
be synchronized. If the two write are distinct, then D should tell the kernel which write

he wants to perform.
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environments. They use behaviour descriptors to capture the features of se-

quences, branches and terminations. The behaviour descriptors can show

different states that the represented behaviour may be in. There are four

basic characteristics that treaties hold, which are:

� refer to objects;

� provide access control information;

� not strictly bound to holders;

� can show different states in behaviours at different times.

The components that fit these characteristics can be regarded as treaties. The

definitions of the components in a treaty system are given in the chapter.

Treaties have associated operations that allow the holder of treaties to

refine the behaviours described by treaties. Five initial operations have

been suggested which are restrict, concatenate, intersect, difference and join.

There is a fundamental rule that treaty operations must obey: an agent can-

not increase the totality of behaviours defined by the treaties it holds. We

have used the idea of behaviour sets to show that the initially suggested op-

erations will not break this rule, and this work was also provided in previous

published paper [77].

The introduction of state has brought a new issue, called the duplication

problem. This problem is caused by making copies of treaties. Treaties may

have actions that are limited to certain access repetitions, and to make a copy

without any protection could increase the number of accesses and exceed the

allowance, which means the breakdown of access control. Any treaty system

must provide some kind of solution to the duplication problem to ensure its

integrity.

In this chapter only the abstract concepts of treaty systems have been

given, without any details of representing and implementing actual systems.
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These issues will be explained and illustrated in following chapters.
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Chapter 5

Representations of Treaties

The concept of Treaties introduced in Chapter 4 is quite abstract. It only

states the basic characteristics of treaties, and some implicitly defined oper-

ations. Any system or service that meets the requirements and enforces the

rule of treaties can be considered as a treaty system. There, nothing of how

to organize a treaty system was explained, and in practice treaties can be

represented in many ways, and there are a number of options for each treaty

component. In this chapter we will extend the abstract ideas of Treaties and

show how to convert these ideas into practice. The various choices or options

for the structure of treaties will need to be defined. Each option has its

strengths and weaknesses, so service providers can choose to combine differ-

ent kinds of representation depending on their requirements. We call a type

of structurally defined Treaty a Treaty Representation. Different represen-

tations of Treaties may have different characteristics which match different

cases. The representations of treaties may also affect the ways of solving the

duplication problem. These options and structures for representing treaty

systems will be examined in this chapter.

75
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5.1 Object Referencing

Options for the style of referencing concern the number of resources that one

treaty can refer to, and the relation and structures of these references. In the

abstract concept of Treaties mentioned in the previous chapter, each treaty

can only refer to one object, but it is valid to allow treaties referring to multi-

ple objects to upgrade the functionality of treaties. Hence there are a number

of different options. For example, we can choose to let each treaty refer to

only one object, as in the capability approach. This is a simple choice that

provides straightforward resource references, and no additional facilities are

needed to identify mappings between actions and objects. Conversely, this

choice means that it is not possible to operate on multiple objects, whether

simultaneously or non-simultaneously. If a user wants to do the same action

to many objects of the same type, he would need to pass treaties for each

of these objects separately which, in a large-scale distributed environment,

would limit efficiency. Possible applications to deploy this kind of treaty

referencing style would be systems where objects are independent and sepa-

rately accessed, such as in an office environment, having printers, scanners,

telephones and a clock with alarm. Assuming that none of these machines

needs to interact with others, then the treaties used to access them would be

separately dealt as well.

Another choice would be to allow treaties to refer to multiple objects, but

hold the behaviour descriptor separately (this would be similar to a set of

single-reference treaties). It would then be possible to deal with actions on

multiple target objects, but since behaviour descriptors are independent, they

are not capable of describing sequences of actions among different objects.

This choice is particularly suitable for applications that have a number of

objects of a same type. A good example when this referencing style could

be useful is the administration of a university. It holds data for a large
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number of students, and the profile of each student is of the same type.

The administration may want to change or update information for single or

groups of students, but would not need to do these in a particular order, and

thus no sequences among these student objects are required.

The third choice is to let a treaty be a ‘mix’. These treaties’ behaviour

descriptors would include actions on multiple objects, making it possible to

describe sequences over different objects. Clearly this is the most general, and

powerful option, as behaviours specified by the other two options can only

refer to a unique object. The disadvantage of this choice is that each action

in a treaty’s behaviour specification would have to identify the target object,

so the complexity of the structure would increase greatly. An example where

this referencing style could be applied is: assuming a user needs to transfer

a file from a public source to a local storage, but he would like to have a

check whether for any harmful contents are in the file before it is transfered

to the local storage. Treaties that grant this process will need to access three

targets of public source, the guard that provides the security check and the

local storage, and these actions are needed to be in sequence: first get the file

from the source, then go through the check, and finally save into the storage.

Only mixed-referencing of treaties can do this.

5.2 Behaviour Descriptors

Behaviour descriptors are required to define specifications of behaviours. Be-

haviours are defined as a group of actions that are combined in a certain order

and pattern, where an action is a single operation on a resource. Any logic,

mechanism or language that is able to represent behaviours of this form can

be a candidate in the behaviour descriptor part.

One obvious candidate is the finite-state machine (FSM), which is a

widely-understood concept. If FSMs were chosen to represent treaty speci-
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fications, then transitions in an FSM would represent actions. The FSM is

ideal for representing repetitions, sequences, branches and so on.

Regular expressions [22] would also be a convenient way of representing

treaty representations. As regular expressions, actions are represented by

characters, boolean ‘|’ for branching and ‘*’ for repetition. These two op-

tions will be discussed further and their implementations are introduced in

Chapter 6.

We may also use Process Algebras to represent behaviours, as Process

Algebras are designed for representing interactions, behaviours and com-

munications for independent processes, and have algebraic laws for process

operations.

Choices of behaviour descriptors can be made depending on different ap-

plications, as different options result in different effects.

5.2.1 Finite-State Machines

Using finite-state machines to represent the behaviour descriptors in treaties,

states are explicit. A behaviour descriptor represented by an FSM will have

a finite number of states (at least one), and a finite number of transitions

that represent accesses or actions. Each transition links two states (which do

not need to be distinct), one denotes in which state this action can happen,

and the other denotes which state the behaviour descriptor will be in after

this action happens. In an FSM representation of behaviour descriptors,

the current state is also maintained. This indicates the state of the holder of

this treaty by pointing to one of the states in the FSM represented behaviour

descriptor. As it has been mentioned, the FSMs used as behaviour descriptors

will not have any ‘accepting states’, as the access control scheme only cares

about whether the user’s required action is valid or not, but not when the
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actions should stop.1

The advantage of using an FSM representation is the precisely defined

states. They are directly contained as components in the behaviour descrip-

tors, so it is possible to add information to states to provide more control.

For example, we could mark some essential states, and the kernel would get

immediate notification when these states were reached. For example, imagine

in a house there are a number of electronic products, and there are treaties

controlling the power of these machines. States in treaties represents the

number of machines that are on. When there are too many machines turned

on, the fuse would blow. Hence when the specified state of the critical point

is reached, the kernel will be notified, and it can produce an alert telling

the danger. This idea also benefits the treaty combinator operation of follow

which will be introduced in Section 5.4.

5.2.2 Regular Expressions

In the Regular Expression (RE) representation, accesses or actions are rep-

resented by literal characters, or words, and we will use concatenation, al-

ternation and Kleene star to represent aspects of behaviours. There are no

explicit components that represent states in RE behaviour models. The cur-

rent state pointer in RE representations can be modelled by the ‘remaining’

expressions, and changes when the actions are performed and the expres-

sions are processed. For instance, the current state of an RE represented

behaviour can be ‘(read.write)|(execute)’ that means the holder can do

an execute, or a read then write, and after an action of read is performed,

the remaining expression and the current state is ‘write.’

Compared with the FSM representation, RE representation is easier for

human reading and writing/typing, especially when constructing the be-

1In other words, every state in a treaty is an accepting state.
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haviour model directly from a line of input. The main difference between

the two representations is the appearance of explicit state components. The

RE representation may have limits due the lack of identifiable states, as the

current state in the RE representation is denoted by the remaining expres-

sions. It is possible that there are two remaining expressions that are exactly

the same, but they came from two different paths (for example, ‘a.b’ that is

obtained from ‘x.a.b’ where x had been executed, and ‘a.b’ that is obtained

from ‘y.a.b’ where y had been executed) and should have different prompts

to users and kernels — in the RE representation it cannot distinguish the

two states (while the FSM representation can, as in that representation the

states are explicit). Despite this limitation, the RE representation is still a

good choice if the application does not require such functionalities. Besides,

no state components means simpler structures, and may allow treaties in

this representation to have smaller space requirements and faster processing

speed.

5.2.3 Process Algebra

Process Algebra (or Process Calculus) is the concept that is used for ‘the

study of the behaviour of parallel or distributed systems by algebraic means’

[3]. A process algebra is usually used for formally modelling concurrent

systems where multiple processes exist and interact. It provides the descrip-

tion for the consequences, communications and synchronizations for those

processes or agents, in algebraic ways. As the algebra laws are involved,

a process algebra is particularly applicable for analyzing and reasoning the

behaviours of processes in distributed systems. The most famous process

algebras are CSP [32], CCS [51], ACP [7] and π-calculus [50].

Take CSP as an example. The Communicating Sequential Process is a

formal language for describing interactions in concurrent system, and is par-
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ticularly used for providing a way to model behaviours in distrbuted environ-

ment. If we use CSP notions, a simple read-once action can be expressed as

‘read→ Stop’, and a process of consecutive actions is made by having event

(action) appended to the head, e.g. ‘write → (read → Stop)’. Sequences of

processes uses symbol ‘;’, hence ‘P ;Q’ denotes ‘behaves as P until it termi-

nates, then behaves as Q’. The branch or choice aspect in CSP is denoted

by ‘u’ (internal choice) and ‘�’ (external choice), and they are nondeter-

ministic and deterministic respectively. In context of access control oriented

branches, the deterministic ‘�’ seems more suitable. The process of choosing

between left or right is expressed by ‘(left → Stop)�(right → Stop)’. The

loop behaviours can be defined by recursive processes, e.g. ‘UPDATE =

read → (write → UPDATE)’. More tutorials for using CSP can be found

in Davies’s work [16].

CSP and Process Algebras are widely studied in many other researches

as an independent topic. Since they have relatively complete and complex

structures, it will take much more effort in learning and applying CSP in this

project. Therefore we will not look in deep for this option in the thesis.

5.3 Storage Location of Treaties

The storage location of treaties directly affects the solution to the duplica-

tion problem. As has been mentioned, if treaties are completely held in users’

(private) memory, it is possible that they could copy a treaty and gain unau-

thorized behaviours. We can choose to store treaties in a different location

to avoid this problem. Otherwise, treaties can be left in users’ devices, but

the critical data of treaties still needs to be protected by kernels.

A simple solution is to store treaties centrally. There would then be a

central storage for all treaties in the service provided, and users would only

hold references to these treaties. When users needed to access resources,
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they would present the references to the kernel, and the kernel would check

the corresponding treaties to allow or deny this access. Since only references

would be held by users, it would no longer be necessary to manage how users

copy and propagate them. However the side effect of this option is obvious:

the centralization management significantly restricts the scalability of sys-

tems, and the performance will heavily depend on the storage’s processing

speed, bandwidth, etc. It also becomes fatal if the central storage fails, where

all accesses will be denied.

The option of allowing users to hold treaties together with their cur-

rent state has the highest scalability, which is very attractive in distributed

systems. However, it has been shown in Section 4.3 that this could be dan-

gerous, as it might cause the duplication problem and destroy the behaviour

control provided by treaties. It is still possible to distribute (the major part

of) treaties to users though, providing that the critical information of these

treaties are in the control of kernels. It is clear that only the current state of

treaties needs to be protected from duplication or interference. Consequently

a promising compromise approach is to have this state managed by the ker-

nel, but the reference and behavioural specification parts made available for

(safe) user management.

5.3.1 Centrally Stored Treaties and References

A very simple way of solving the duplication problem is to take treaties away

from users completely. In this case, users cannot access treaties directly any

more, and thus are not able to make copies of treaties or send them to other

users. Treaties will now be held in somewhere that can only be accessed

by kernels. In return, users will only have references to those treaties. In

this approach, together with the behaviour descriptor and the current state

and the reference to the target object, there will be a fourth part in treaties:
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a unique identifier for each treaty. The identifier will also be contained in

treaty references held by users. Users can copy and send these references as

many times as they like, as treaties are still kept unique on the kernel side.

Fig. 5.1 shows an example of the structure of a treaty system that applies

the reprensentation of centrally stored treaties.

Figure 5.1: Structure of a Centrally Stored Treaty System

The process for preparing behavioural access control in such a model

would be:

� A user process sends a request to the kernel, to create an object.

� The kernel creates the object, and creates a ‘complete treaty’ (unlimited

accesses to all available action types for the object). This treaty will

be stored in the treaty container that is managed by kernels, and the

reference to this treaty, with the unique treaty identifier, will be given

to the creator of the object.
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� Then the creator can refine the behaviour descriptor by telling the

kernel how he will use treaty operations.

� The kernel then constructs a new treaty and stores it in the container,

and sends the new reference back.

� The creator can now send copies of this reference to other users, so that

they share the access rights to the created object.

The process of performing an action on an object would be:

� A user needs to send a request together with the treaty reference.

� Upon receiving the request, the kernel then uses the identifier contained

in the reference to locate the proper treaty, and checks whether the

requested action is valid according to the behaviour descriptor in the

treaty.

� If it is permitted, the action will be performed on the target object,

otherwise the kernel will send a denying message implying that the

action is not valid at this time.

This model is simple, but it has a weakness. In real cases it is quite possi-

ble that users do not know the current valid actions regarding the behaviour

descriptors. And without access to the treaties, they will have to either a)

send access requests without any knowledge of treaties or, b) send a query

asking what types of actions are available at the moment. In both cases, the

number of messages used for communication will increase.

However it needs to be mentioned that, in the case of option b, the re-

turned ‘available’ types of actions might not be granted when the users try

accessing objects. This is because there is another user who also has a ref-

erence to the same treaty, and he made an action using this treaty after the

kernel returns the available action set and before the first user makes the
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accessing request. This is the non-deterministic problem that many concur-

rent systems may suffer, where processes share common resources and may

disturb each other. A possible solution is to include locking scheme, and this

will be discussed in future work part of Section 8.2.

5.3.2 User-held Treaties and Treaty Entries

Figure 5.2: Structure of a Treaty System with Entry List

In contrast to the previous implementation which locates treaties on the

kernel side, this model lets users hold treaties, and kernels only keep a list

containing a number of entries, each of which stores the information for a

treaty. Treaties still have their unique identifiers, and they are contained in

entries as well, so that kernels can link them to treaties. Each entry consists

of two parts: in addition to the treaty identifier, there is the current state of

the related treaty. Although users can make copies and distribute treaties,

these copies still have the same identifier and current state, which prevents
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the duplication problem happening. This approach also indicates that for a

particular behaviour descriptor, all states are distinguishable. Each state is

tagged to show the identity that makes the state different from other states

in this behaviour descriptor. Fig. 5.2 shows an example of the structure of a

treaty system that uses the entry list option.

To initiate the creation process:

� A user sends a request for creating a new object.

� The kernel creates the object and the complete treaty for the user, and

an entry containing the identifier and the initial state for the treaty.

� The entry is added to the entry list, and the complete treaty is sent to

the creator of the object.

� The creator can use treaty operations to refine the complete treaty by

using treaty combinator operations.

� Before these refined treaties can be sent to other users, they must be

first sent to the kernel for registration.

� The kernel assigns identifiers to these treaties, and records them by

adding corresponding entries to the list.

� Now these treaties are ready for propagation.

If the user does not make the registration of their newly refined treaties to

kernels, the kernels will not hold any information of these treaties. When

users use these unregistered treaties to access objects, kernels simply deny

these requests.

The process to access objects in this approach:

� A user needs to send the request with the correct treaty.
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� When receiving the treaty in the request, the kernel first looks for its

entry, and then checks whether the current state represented in the

treaty is the same as represented in the entry.

� If the two states are the same, and the requested action is valid in this

state, the kernel will update both states in the treaty and the entry to

the new state according to the performed action, and return the treaty.

� If the two states are different, the kernel will synchronize them by

updating the current state in the treaty with the state in the entry,

and return this treaty to the user, notifying that this treaty has been

updated.

Such an approach reduces the communication messages to some extent,

as users can check the possible current state from treaties they are holding.

Though there may still be cases where users get outdated information when

the real state in the entry held by kernels has been changed by other users,

it is suitable for applications which have few users sharing objects. This is

also because when multiple users share the same object, the copy each of

them holds is a treaty. Larger number of users holding treaties means larger

consumption for overall space/memory, compared to references held by users

in the previous approach.

5.4 Operations and Executions

Treaty operations need not only be restricted to the five types given in Chap-

ter 4. Any useful operations could be included in treaty systems, as devel-

opers and service providers can introduce new treaty operations to fit their

own requirement, as long as they do not break the rule. Also, the way of

executing commands and operations can also be varied.
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5.4.1 More Operations

Here some possible additional treaty operations are suggested that could be

appended to treaty systems. There are certainly more available choices, but

these ones may be commonly used.

Interleave A frequently seen situation would be that a user may receive

treaties from multiple sources and would therefore hold a number of

treaties. It could be a mess if he need to perform an action, and tried

to find the correct treaty that will provide the corresponding permission

from the treaties he is holding. Hence it is more convenient if there were

an operation that combines treaties into one, with the result allowing

the holder to do all behaviours from the original treaties in parallel.

This cannot be realized by the join operation, which would only allow

one to choose one of the behaviours from the original treaties but not in

parallel. This interleave idea has been mentioned in Section 4.2 indeed,

and is the concept of shuffle. The shuffle idea was used for the largest

behaviour set that the result of any treaty operations should not go

beyond.

Obviously the result of interleave fits the rule of treaty operations,

as this operation produces the maximum behaviour set from the two

operand treaties, which is the equal set of the upper bound set.

Follow The follow operation is similar to the concatenate operation except

that, given the behaviours in two original treaties, concatenate allows

behaviours from the second operand treaty to act after any behaviours

from the first operand treaty, while the follow operation only allows

behaviours from the second operand treaty to act when behaviours from

the first operand treaty have reached a certain point. For example,

given two treaties, α: (read.write) and β: (execute), if we do a
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concatenate operation to α and β, the behaviour set of the resulting

treaty would be:

{ε, read, execute, read.write, read.execute, read.write.execute}

Now let us label one of the states in α to make it a ‘reach point’ state.

A reach point state is the state in which we can start performing be-

haviours from the second operand treaty of the follow operation. In

treaties resulting from the follow operation, the behaviours from the

second operand treaty will not be available to perform (unlike concate-

nate where behaviours from the second treaty can start at any time),

until the behaviours from the first operand treaty has reached the reach

point state. If we have defined a reach point state for α after the write

action, and we now do a follow operation to α and β, the behaviour

set of the resulting treaty would be:

{ ε, read, read.write, read.write.execute }

We use • to denote the follow operation, and the formal definition for

the follow operation between treaty α and β at state s in α is given by

(b1 . s denotes the behaviour b1 ends at state s):

[α • β ] = { x | x = (b1 . s).b2 where b1 . s ∈ [α ] and b2 ∈ [β ]}

This operation also fits the rule of treaty operations, as it is a special

type of concatenate. That is,

[α • β ] ⊆ [α� β ], thus [α • β ] ⊆ [α · β ]

We may find the operation of follow more often used when we want to

refine behaviour models, as it can explicitly define the connecting point

between the two behaviour models. However to realize this operation,

the option chosen for behaviour descriptors must provide the function-

ality to support specifying the reach point. In the FSM representation

of behaviour descriptors, we can simply use state identifiers to do this.
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In the RE representation, we can only set the reach point as the ‘finish’

of the expression, where the behaviours in the expression have reached

their ends.

Loop This is the operation for creating loops of actions so that actions in

the refined behaviours can be potentially infinitely performed. In RE

representation style, if we have a treaty α: (read.write), the result

of loop operation is simply ((read.write)*). However this operation

must be specified carefully, because it may easily produce unlimited

actions and break the rule of behaviour control. The loop operation

can only be valid if the holder of the treaty already has a treaty that

provides the loop of actions which one wants to contain in the created

loop. At this stage of the research, we only allow this right of creating

loops with loop operation to open to users who possess the complete

treaty that allows them to do anything to the object with unlimited

number of repetitions.

5.4.2 Command Executions

We may also want the system to have different semantics for executing the

same command. For instance, assume there is a treaty that has references

to multiple targeted objects, such that all of them are allowed a read action

by this treaty. When presented with this treaty, a read request could mean:

to do a read on one of the objects, or to some of the objects, or all of the

objects. Developers can have different definitions for the executions of the

read command to realize the options above, depending on their preferences.

For instance, if a university wanted to change the grade information for all

of the students (since normally all students get upgraded at the same time),

it could choose to make an upgrade action that is executed to all objects of

student data simultaneously. However it might be the case that some of the
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students fail to pass examinations and will not get an upgrade. Hence here

the university needs to perform a degrade action to that group of student

after the upgrade is made. Actions executed to a single object are also

required, such as a ChangeInfo action can be performed if there is a student

pointing out that his record in the university system is wrongly inputted, and

this action should affect the student information object of only this student.

5.5 An Example of Organized Treaty Repre-

sentation

In this section a representation of treaties will be proposed. It is called the

‘Two-layered Referring FSM Representation’. This representation of treaty

systems has fixed choices to the options mentioned in previous sections to

give an complete example. In particular, it proposes a new option by com-

bining options given in Section 5.3, and provides a different solution for the

duplication problem.

As indicated by the name, the representation chooses finite-state ma-

chines as the behaviour descriptor, hence each time a valid action is per-

formed, an explicit state transition happens in relevant treaties. The five

treaty combinator operations of join, follow, intersect, difference and re-

strict are supported by this representation, and they will operate in ways as

defined. The key novelty of the Two-layered Referring FSM Representation

is shown in its storage location choice. In this representation, treaties are

neither stored centrally, nor completely distributed. Instead, there are two

different categories of treaties appearing in the system.

The first kind is called ‘source treaties’. These treaties are stored on the

kernel side, and each one can only refer to one object. Source treaties can

be accessed by kernels and the owner of the referred object (the creator of
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Figure 5.3: Two-Layered FSM Representation
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the object and those users who are allowed to share the high privilege by

the creator), but not any other users. Actions granted by the source treaties

will be represented by transitions in the finite-state machine acting as the

behaviour descriptor.

The other kind of treaties in the Two-layered Referring FSM Represen-

tation is called ‘combined treaties’. These treaties are generated from source

treaties, and they are distributed to users that are not the creator of ob-

jects. This is how this scheme of ‘Two-layered referring FSM representation’

transmits the permissions to other users.2 In combined treaties there are also

finite-state machines acting as behaviour descriptors, but combined treaties

do not directly refer to any objects. Instead, each transition in behaviour

descriptors of combined treaties refers to one transition in a certain source

treaty. When the holder of a combined treaty uses it to perform a permitted

action on the targeted object, both the corresponding transition in the com-

bined treaty and the referred transition in the source treaty will be processed.

Fig. 5.3 and 5.4 illustrate the structure of this representation.

To initialize, a user will apply to the kernel to create an object. The kernel

creates the object, and returns a complete source treaty granting unlimited

repetitions for all actions that are available to this type of object. After

this, the creator of the object can use this complete source treaty to create

treaties with more limited behaviour models, using treaty operations. At

this stage all treaties created by the creator of the object are source treaties.

When a behaviour model is obtained as a result of a treaty operation, the

creator can store it in the storage of the kernel for distribution uses. Each

source treaty can be used as a model to build a combined treaty having

exactly the same finite-state machine states and transitions that represent

the behaviour. Each transition in the generated combined treaties refers to

2It is possible for the creators to send the source treaties out as well, in which case the
receiver of the source treaty also becomes an owner of the created object and is allowed
to refine the behaviours in the source treaty.
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Figure 5.4: Referencing Structure between Two Categories of Treaties
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the original transition in the source treaty.

After this, the creator can send out copies of combined treaties either

actively or by request, and these copies are built from the source treaties

this creator is holding. When other users have received multiple combined

treaties, they can use treaty operations to refine the behaviour model to

generate new combined treaties and send them out as well. This also indicates

that there may be transitions in the same combined treaty that refer to source

treaties of different objects, which means that the referencing style of the

Two-layered Referring FSM Representation is mixed multiple referring (see

Section 5.1).

The reason for this design is that however users make copies and prop-

agate to duplicate combined treaties, their transitions will still refer to the

transition in source treaties which are not duplicated. And after one user

performed an action transition, the other users will not be able to do the

same transition because the transition in the source treaty that grants this

action has been processed. In this way, the duplication problem has been

solved in this representation.

The five support operations will be implemented as follows:

� restrict limits the given type of action to a specified number for a source

treaty, and for a combined treaty one can choose to restrict the given

type of action only on one specified object or restrict over all objects

that are contained.

� The operation of join will return a treaty whose current state is a union

of the two original treaties, which means it will accept actions in either

original treaty at the current state.

� The operation of intersect returns a treaty that allows sequences of

actions that are valid in both original treaties. When operated over

combined treaties, only transitions from the two original treaties that
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refer to the same transition in a source treaty will be counted as com-

mon actions.

� difference does the operation in just the opposite way as intersect,

as common actions will be removed from the resulted treaty. And

the consecutive actions following these common actions will also be

removed, as they are no longer reachable from the current state of the

resulting treaty.

� The operation of follow connects the current state of the second operand

to the reach point state of the first operand. To perform such a con-

catenation, the first operand must have had specified a reach point

state.

The situation of concatenating two identical treaties will not cause the

duplication problem, since when concatenating a combined treaty to itself,

duplicated action requests will not be granted because of the two-layered

structure, and concatenating a source treaty to itself is completely legal be-

cause operations on source treaties can be only made by the owners of the

targeted object and the owners have full permissions which allow them to do

any number of accesses to that object.

Note that these binary operations are only valid between two source

treaties or two combined treaties, and the result treaty is of the same kind

as the original treaties.

These five are the fundamental operations that are provided by the Two-

layered Referring FSM Representation, but it is perfectly possible to add

other treaty operations into the model. However, as usual, the new operations

must obey the rule of treaty operations, and ensure that we can never get

source treaties from combined treaties.
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5.6 Summary

In this chapter we have discussed the representations of treaties and treaty

systems. Treaties as proposed in Chapter 4 were general concepts, without

any details of actual systems and applications. In the design of treaty systems

there are several areas that give a number of options, and each option may

have different aspects from others such that they can be prefered to be chosen

in some cases. The parts that can be varied in different options are: the choice

of referencing styles, the choices of behaviour descriptors, the location where

treaties are stored, and treaty operations and ways of executing actions other

than the basic ones that were introduced in the previous chapter. Treaties or

treaty systems that have these parts defined are called treaty representations.

Developers and service providers can chooes to combined these options and

produce treaty systems according to their requirements.

� The choice of referencing styles means that one treaty can be set to refer

to only one target object, or separately referring to multiple objects, or

having a mixed referencing style such that treaties can define sequences

of actions over different objects.

� Behaviour descriptors in treaties can be chosen to be displayed in differ-

ent tools such as finite-state machines or regular expressions, or other

choices that can express the aspects of behaviours, and these choices

of behaviour descriptors may have effects on the performance of treaty

systems.

� The location where treaties are stored can affect the memory and band-

width occupation of those systems. We may choose to store treaties

on the kernel side, or to store them in the possession of users, but in

either case attention must be paid to solving the duplication problem

discussed in Chapter 4.
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� Developers and service providers can define new treaty operations and

choose the way of executing actions in their treaty systems, as long as

these decisions maintain the integrity requirements of treaty systems.

Sections 5.1 and 5.2 mainly address the inner structures of treaties, whereas

Sections 5.3 and 5.4 are more focused on the structure and processing of

treaty systems. Section 5.5 provides a example of a treaty system named

‘Two-layered Referring FSM Representation’, in which all options have been

defined. The discussion of solutions to the duplication problem was also

introduced in the previous published work [78].

Options to combine treaty representations have been discussed, and now

we can put these into implementation. How treaties are structured and how

the algorithms of treaty operations are designed will be introduced in the

next chapter.
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Implementation

In this chapter the implementation of treaty systems will be introduced.

These implementations cover the several options of treaty representations

discussed in the previous chapter. The main aspect of treaties that differs

from capabilities is their use of behaviour descriptors, hence this should be

emphasized. Two options for behaviour descriptors, finite-state machines

and regular expressions, have been chosen to be implemented and used for

testing. The implementation of other aspects of treaties is also shown in the

chapter.

Before any details are given, it is necessary to clarify that in this imple-

mentation, it is assumed that capabilities, vistas and treaties are unforge-

able by entities that hold these access control components. The encryp-

tion or other mechanisms that protect these components from being falsified

should be provided, and we presume this protection already exists. Hence no

anti-forging issues will be addressed in the implementation part. Similarly,

concurrency control is also out of the scope of the implementation. It is as-

sumed there are other concurrency control mechanisms provided. There is

some discussion about concurrency issues in Section 8.2.3.

99
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6.1 Implementation Overview

The implementation platform chosen is Java which is a widely-used object-

oriented language. As there are various kinds of entities in treaty systems

— kernels, users and files, and treaties — the object-oriented concept is

particularly suitable in this situation. Most terms that have been defined in

Chapter 4 are implemented as classes in Java.

The implementation of treaties is based on two representations that differ

in the choice of behaviour descriptor: finite-state machine (FSM) representa-

tion and regular expression (RE) representation. Being the essential part of

treaties, behaviour descriptors affect their structure and the design of algo-

rithms for treaty operations. The reason for choosing the two representation

is that they are well-understood in computer science, and are easy to ap-

ply and present. The actual structure of finite-state machines and regular

expressions in this implementation is coded by me instead of using any pro-

vided tools, as it gives a better customization and can have more adequate

evaluations when having experiments. We will introduce both of the repre-

sentations, including the required classes with their purposes, the fields and

methods in these classes, and the treaty combinator operations.

Other components to simulate treaty systems will also need to be im-

plemented, including kernels and users, and the objects that are used to be

accessed by users. There are also classes that are used for supporting eval-

uations, such as simple capabilities and vistas that will be used to compare

performance with treaties.

The simulation of a distributed environment will use the SimJava tool

[35]. SimJava is a toolkit for building working models of complex systems.

As its name indicates, this is a tool that is written in Java and supports other

Java applications. Using SimJava a framework of entities can be produced

in systems by implementing entities as subclasses of the defined classes in
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SimJava packages. There are a number of built-in methods that help to

simulate the communications among these entities. Functions for producing

evaluation reports are also included in this toolkit.

Instead of implementing the concatenate operation introduced in Chap-

ter 4, the follow operation introduced in Chapter 5 is chosen to be coded.

This is because that when refining behaviour models in treaties, the follow

operation is more useful and applicable than the simple concatenate opera-

tion, as the follow operation requires the ‘reach point’ component to connect

two behaviour models, and this makes the refining of the treaties more pre-

cise. Since we allow the empty behaviour in all treaties, if we perform a

concatenate operation, it means behaviours in the second operand can start

before any actions in the first operand are performed. In case of follow, it

can set the behaviours in the second operand starts only after actions in the

first operand has reach the defined point.1

6.2 FSMs as Behaviour Descriptors

The first implemented representation of treaty systems is chosen to use the

finite-state machine representation. In this representation, the behaviour

descriptors in treaties specify the steps of behaviours by a number of states,

and each valid action as a transition between states. There is a pointer

referring to the current state in the behaviour specified by the descriptor.

The class where object references are placed depends on referencing styles

(see Section 5.1). If it is single-object referencing, then a treaty can have

one reference which is placed in the class of Treaty. If it is multiple-objects

referencing, then each of the behaviour models in the treaty will have an

object reference. In our implementation, we choose the latter option which

1But remember that follow needs support from behaviour descriptors to specify reach
points, while concatenate is a more general expressed operation without special require-
ments. Hence concatenate would still be the basic treaty operation.
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is to place the object reference within the behaviour descriptor. Fig. 6.1

shows the structure of classes and methods in the FSM implementation in

UML style.

Figure 6.1: FSM Treaty classes in UML form
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6.2.1 System Components and Classes

An FSM style treaty consists of several components to be implemented by

classes in Java. Below these components are described:

ActionType This is the class that is used for different types of actions. Ex-

amples of action types could be: read, write, vote, etc. The field

variables in this class are unique, and it is the name of the type of

actions.

Model This class represents the behaviour descriptor part of treaties (recall

that the behaviour descriptor describes behaviour models). In the FSM

implementation the Model class contains a set of states, and a set of

transitions that connect pairs of states. It also contains the current

state pointer referring to one of the states in this Model instance. There

is another state pointer called openState which records the reach point

that connects other models when executing the follow operation.2

ObjRef This class is the object reference that is contained in treaties referring

to the target resource. There are two field variables: the pointer to the

target object, and the unique identifier which should be distinguished

from any other instances of ObjRef. The instances of the ObjRef class

are not only used for referring to resources, but are also available to

act as treaty references when required.

State This specifies states in the FSM representation for behaviour descrip-

tors. Each instance of the State class simply has one field variable

called stateID, which can help when indexing states. The stateID

only needs to be distinct in the same instance of Model class, but they

2In this implementation we assume we can only define one reach point in a behaviour
model at a time. If multiple reach points are needed, they are done with follow operations
one by one. This is not an optimized approach.
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are independent from states in other Model instances and hence can be

identical.

Transition An instance of the Transition class denotes an action applied

by users and a transition between two states in the FSM representa-

tion. Three field variables are contained in this class: the from and

to variables are two instances of the State class, and the aType is a

variable of ActionType class.

Treaty This class integrates all classes mentioned above to implement FSM

represented treaties. There are different options of referencing styles

that can be chosen. For the simple case of single object referencing,

an instance of Treaty contains one instance of Model which acts as

the behaviour descriptor, having one ObjRef instance for the target

resource and one current state pointer.

6.2.2 FSM Accessors and Access Methods

To get and set the field variables in these components, there are accessor

methods where needed. For different types of components, some additional

methods are defined according to their roles in treaty systems.

For ActionType, ObjRef, State and Transition classes, there are get

accessors for all the field variables, but there are no set accessors as these

values are fixed when the instances of these classes are created. There is also

a special method called isIdentical(), which takes an instance of the same

class as the parameter, and returns a boolean value identifying whether the

two instances are the same. Note that the two instances that are recognized

as identical by this method can be two distinct objects - just having the same

variable values.

In the Model class, the current state has both set and get accessors, as

the current state changes when valid actions are made. To add a state or
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transition into a model, there are the addState() and addTransition()

methods. The transiting() method takes a transition as the parameter,

and checks if this transition is identical to one of the transitions contained in

the model, and makes the transition happen if it is found to be valid. There

a also a cloneModel() method which returns a separate copy of the current

Model instance so that it can be used for another target object having the

same behaviour model.

The Treaty class contains the get accessors for the ObjRef instance,

and the method performAction() which grants or denies the requests of

user accesses. It takes the reference of the target object and the action

type of the access as the parameters, and returns a boolean value specifying

whether this action has been granted or not. There is another method called

checkValidity(), which also takes parameters of the target object and the

action type of the access, but it will check all reachable states to find available

transitions, and returns 0 if the action can be performed immediately, or 1 if

the action cannot be granted now but may be valid at some point in future,

or -1 if the action will never be granted.

6.2.3 Treaty Operations in the FSM Representation

The treaty combinator operations will interact with the behaviour specifica-

tions modelled in the Model instances. In the FSM style representation, the

states and transitions will need to be changed, and for the binary operations

combined states may need to be constructed which come from states in dif-

ferent treaties, and special transitions to connect them. To help in producing

such states and transitions, there is a class called StateCombiner that is used

for restructuring the behaviour specification.

In the StateCombiner class, there are two inner classes, which are called

MultilabelState and MLTransition. Instead of containing a stateID like
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the State class, MultilabelState use an array of integers such that one in-

stance can label multiple states from different treaties. MLTransition does

similar things as the Transition class, but variables from and to will have

the type of MultilabelState. The StateCombiner class has five other meth-

ods in addition to the constructor, they are:

addCombinedState() takes an array of integers as the parameter and adds

a MultilabelState instance into this StateCombiner instance.

addTransition() takes parameters of two arrays of integers to be the from

and to states and the ActionType instance to be the action type that

triggers this transition. It returns a boolean value to indicate whether

this action succeeds.

find() is a private method taking an array of integers as the parameter and

returning a boolean value indicating whether this combined state has

already existed in this StateCombiner instance.

visitAll() is a recursive private method that sets a flag for all reachable

MultilabelState instances. This is used for simplifying the model.

toModel() uses visitAll() to remove all unreachable states and then turn-

ing this StateCombiner instance to an instance of Model class.

With the help of StateCombiner class, these operations can be im-

plemented. In the Treaty class there are methods of restrictTreaty(),

joinTreaty(), intersectTreaty(), differenceTreaty() and

followTreaty() that do the processing of treaty operations. We assume

there are two operand treaties α and β, and the algorithms in pseudo-code

of the five treaty operations are given below.
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join - Two methods are related to the join operation. Their prototype in

Java is defined by:

public Treaty joinTreaty(Treaty other)

private void joinTraverse(Model m, State s, State l, State[]

from, StateCombiner sc)

The first method is used to do the join operation with another treaty,

and the second method is used to be recursively called to support the first

method. Here is the pseudo-code of these methods.

public Treaty joinTreaty(Treaty other)

1 IF (this.reference != other.reference)
2 RETURN NULL;
3 sc = new StateCombiner instance;
4 m1 = this.model;
5 m2 = other.model;
6 s1 = this.currentState;
7 s2 = other.currentState;
8 ss = a new combined state consisting s1 and s2;
9 add ss to sc;
10 joinTraverse(m1, m1.currentState, s1, ss, sc);
11 joinTraverse(m2, m2.currentState, s2, ss, sc);
12 get model m from sc;
13 RETURN new Treaty instance constructed with m;

private void joinTraverse(Model m, State s, State l, State[]

from, StateCombiner sc)

1 v = set of all valid transitions the start from s;
2 FOR EACH transition t in v
3 create the combined state ss consisting l and t.to;
4 IF (ss not in sc)
5 add transition with (from, ss, t.actionType) into sc;
6 create the combined state sto consisting l and t.to;
7 joinTraverse(m, t.to, l, sto, sc);
8 ELSE
9 add transition with (from, ss, t.actionType) into sc;
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follow - The prototype and the pseudo-code of the follow operation is

given below. The openState is the identified state that acts as the ‘reach

point’ state mentioned in Section 5.4.

public Treaty followTreaty(Treaty other)

1 IF (this.reference != other.reference)
2 RETURN NULL;
3 m1 = this.model;
4 m2 = other.model;
5 IF (m1.openState has not been set)
6 RETURN NULL;
7 sc = new StateCombiner instance;
8 FOR EACH state s in m1 and m2
9 add s into sc;
10 FOR EACH transition t in m1 and m2
11 add t into sc;
12 FOR EACH transitions t2 that (t2.from = m2.currentState)
13 add transition with (m1.openState, t2.to, t2.actionType)

into sc;
14 get model m from sc;
15 create a new treaty tr constructed with m;
16 RETURN tr;
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intersect - There are also two methods that are used for performing the

intersect operation, and they are similar to those for the join operation. One

method is used to be called from the holder of this treaty, and the other one

is a recursive method to support the former method.

public Treaty intersectTreaty(Treaty other)

1 IF (this.reference != other.reference)
2 RETURN NULL;
3 sc = new StateCombiner instance;
4 m1 = this.model;
5 m2 = other.model;
6 add a combined state consisting m1.currentState and

m2.currentState into sc;
7 intersectTraverse(m1, m1.currentState, m2, m2.currentState,

sc);
8 get model m from sc;
9 RETURN new Treaty instance constructed with m;

private void intersectTraverse(Model m1, State s1, Model m2,

State s2, StateCombiner sc)

1 v1 = set of all valid transitions that start from s1 in m1;
2 v2 = set of all valid transitions that start from s2 in m2;
3 FOR EACH transition t1 in v1
4 FOR EACH transition t2 in v2
5 IF (t1.actionType is the same as t2.actionType)
5 sf = combined state consisting t1.from and t2.from;
6 st = combined state consisting t1.to and t2.to;
7 IF (st not in sc)
8 add st into sc;
9 add transition with (sf, st, t1.actionType) into sc;
10 intersectTraverse(m1, t1.to, m2, t2.to, sc)
11 ELSE
12 add transition with (sf, st, t1.actionType) into sc;
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difference - Again, two methods are used for performing the difference

operation, one method is used to be called from the holder of this treaty, and

the other one is a recursive method to support the former method.

public Treaty differenceTreaty(Treaty other)

1 IF (this.reference != other.reference)
2 RETURN this;
3 sc = new StateCombiner instance;
4 m1 = this.model;
5 m2 = other.model;
6 add a combined state consisting m1.currentState into sc;
7 v1 = set of all valid transitions that start from s1 in m1;
8 v2 = set of all valid transitions that start from s2 in m2;
9 FOR EACH transition t1 in v1
10 FOR EACH transition t2 in v2
11 IF (t1.actionType is the same as t2.actionType)
12 same = true;
13 IF (same != true)
14 sf = combined state consisting t1.from;
15 st = combined state consisting t1.to;
16 IF (st not in sc)
17 add st into sc;
18 add transition with (sf, st, t1.actionType) into sc;
19 differenceTraverse(m1, t1.to, sc);
20 ELSE
21 add transition with (sf, st, t1.actionType) into sc;
22 get model m from sc;
23 RETURN new Treaty instance containing m;

private void differenceTraverse(Model m, State s, StateCombiner

sc)

1 v = set of all valid transitions that start from s in m;
2 FOR EACH transition t in v
3 sf = combined state consisting t.from;
4 st = combined state consisting t.to;
5 IF (st not in sc)
6 add st into sc;
7 add transition with (sf, st, t.actionType) into sc;
8 differenceTraverse(m, t.to, sc);
9 ELSE
10 add transition with (sf, st, t.actionType) into sc;
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restrict - Two methods for the restrict operation:

public Treaty restrictTreaty(ActionType at, int times)

1 IF (times < 0)
2 RETURN NULL;
3 sc = new StateCombiner instance;
4 levels = size (times+1) array of states with distinct id;
5 m = this.model;
6 add a combined state consisting levels[0] and

m.currentState into sc;
7 FOR EACH state s in m
8 FOR 0 to (levels.length - 1)
9 add a combined state consisting levels[i] and s into sc;
10 visited = new empty collection of arrays of states;
11 restrictTraverse(m.currentState, sc, at, times, 0,

visited);
12 get model m from sc;
13 RETURN new Treaty instance containing m;

private void restrictTraverse(State cs, StateCombiner sc,

ActionType at, int times, int level, Vector<State[]> visited)

1 FOR EACH array of states v in visited
2 IF (v[0].id == level and v[1] is the same as cs)
3 RETURN;
4 sLevel = state with id of level;
5 thisCS = array of states consisting sLevel and cs;
6 FOR EACH transition t that (t.from = cs)
7 IF (t.actionType is the same as at)
8 IF (times > 0)
9 sNext = state with id of (level+1);
10 ss = combined state consist of sNext and t.to;
11 add transition with (thisCS, ss, at) into sc;
12 restrictTraverse(t.to, sc, at, times-1, level+1,

visited);
13 ELSE
14 ss = combined state consist of sLevel and t.to;
15 add transition with (thisCS, ss, at) into sc;
16 restrictTraverse(t.to, sc, at, times, level, visited);

Fig. 6.2 and Fig. 6.3 gives a more direct view of how treaty operations in

the FSM implementation are performed.
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Figure 6.2: Illustration of Binary Treaty Operations
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Figure 6.3: Process of the Restrict Operation
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6.3 Regular Expressions as Behaviour Descrip-

tors

In the regular expression (RE) implementation, the behaviour descriptors

are represented in a different style. These no longer explicitly defined states,

and the actions are represented by expressions, which can be grouped to

form more complex expressions. The process of performing an action is like

matching regular expressions.

There are also treaty combinator operations in the regular expression

representation of treaties. Some of these operations can be realized quite

straight forwardly, because of the structure of regular expressions. This is one

of the advantages that the regular expression representation brings. Fig 6.4

shows the structure of classes and methods in the RE implementation in

UML style.

6.3.1 Classes and Field Values

There are some components in the RE representation that are exactly the

same as in the FSM representation of treaty systems. The main difference

is that we use expressions to replace the Model class. The classes and their

field values are as follows:

ActionType and ObjRef - same as those in the FSM representation. Used

to model the type of actions and the reference to a particular object.

Exp - this is the class that represents expressions. However it is abstract.

There is no constructor in this class and all instances of expressions

are constructed by its subclasses. In class Exp there is the field value

named expType, which indicates which type (defined by subclasses) this

expression actually is. There are also four static final constant values
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Figure 6.4: RE Treaty classes in UML form
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called ACCESS, CONCAT, ALTER and STAR and they represent the types

of expressions.

ExpAccess - a subclass of Exp. This class represents atomic expressions that

only contain one action. The only field value is named aType which

indicates the action type.

ExpConcat - a subclass of Exp. The instances of this class consist of a se-

quence of expressions. In other words these expressions are concate-

nated as a chain. The field value exps is a Vector instance which

contains a number of expressions in sequences. These actions can only

be performed consecutively.

ExpAlter - a subclass of Exp. This class also has exps which is a Vector

instance of expressions as the field value, but these expressions are

alternatives. One can perform any of the expressions in the vector.

ExpStar - a subclass of Exp. This class acts as the Kleene star in regular

expressions. The field value exp is an expression for a certain type of

Exp. Instances of ExpStar mean one can perform the expression zero

or more times.

TreatyRE - the treaty in RE representation. Two field values are contained

here, one is named bExp which is declared in the Exp class so that it

represents the behaviour descriptor, and the other is named oref which

is declared in the ObjRef class and refers to the target object.

6.3.2 RE Accessors and Access Methods

In the RE representation, fewer accessors are needed than for the FSM rep-

resentation. In class Exp and its subclasses, there is the getActionType()

method which returns the type of the expression instances. No set method
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for expressions are provided as the type of an expression is fixed when it is

constructed. There are no public ways to access inner expressions contained

in the Exp instances, but they can be accessed in the scope of protected

declaration.

The access() method is available for all Exp classes. It takes an instance

of ActionType as the parameter, and returns an expression that results from

this action. If the action is not valid, the returned expression has exactly

the same Java object reference as the original expression, hence the entity

that calls the access() method can simply use ‘==’ comparison to know

whether the access is granted or denied.

There is a findValidActions() method in all Exp classes that helps en-

tities to know what are the available actions. This method returns a vector

instance of ActionType.

Another two methods that act as key part in Exp classes are simplify()

and tokenizer(). The simplify() method does simplification on the spec-

ified expression. There are simplification rules that are only relevant to this

implementation of RE representation. These rules are:

1. If the inner expression in an ExpStar instance is also an instance of

ExpStar, then they are combined into one, e.g. (a∗)∗ = a∗.

2. If an inner expression in an ExpConcat instance is also an instance

of ExpConcat, then the inner sequence of expressions will join the se-

quence of the outer one, e.g. a.(b.c).d = a.b.c.d.

3. If an inner expression in an ExpAlter instance is also an instance of

ExpAlter, then the inner expressions will join the outer ones to be

chosen together, e.g. a|(b|c)|d = a|b|c|d.

4. In the ExpAlter class, the expressions will be simplified to be deter-
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ministic, e.g. (a.b)|(a∗) = a.(b|(a∗)).3

The tokenizer() method will read a String in a particular format and

return an instance of Exp. In case the input is not valid, it returns null.

In the TreatyRE class, there are getObjRef() and getExp() methods as

the accessors for the field values. There are also access() and

findValidActions() methods that communicate with the expression con-

tained in the treaty. The access() method in the TreatyRE class is different

from the one in the Exp classes as it also takes an ObjRef instance to execute,

and returns a boolean value to indicate the result of this access.

There is an issue that needs to be carefully considered in the implementa-

tion of RE represented treaties, which happens when there is an ExpConcat

object which is a string of expressions (Exp objects), and the first expression

(or first several expressions) is/are of ExpStar type. In normal cases when

we want to get the set of valid actions at the current state, only the first

expression needs to be examined, but in cases where Kleene star expressions

are at the head of the concatenations, it is necessary to examine the follow-

ing expressions as well, as the Kleene star expressions are allowed to ‘skip’

executing and pass to the next expression. For example, in an expression

(a∗).b, the valid action at the moment is not only a, but b as well. The issue

appears in cases where the findValidActions() or the access() methods

are called.

Hence in the implementation when we need to get the set of valid actions,

and the first several sub-expressions in the instance of ExpConcat is of type

ExpStar, we also need to check the following sub-expressions, which involves

the while loops.

3Note that these two expressions are not equal in the context of pure regular expressions.
But this simplification is valid in RE represented treaties, as we only care about the traces
of behaviours described by the behaviour descriptors. The behaviour sets provided by the
two expressions are the same.
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6.3.3 Treaty Operations in the RE Representation

In the RE representation of treaties, some of the operations become very easy

to realize. The behaviour descriptor part of the RE representation is formed

by combining expressions, and treaty operations are used for combining the

behaviour specifications in treaties. Hence there are operations that can

directly work on the expressions in these RE represented treaties.

join - The join operation works to perform a ‘boolean-OR’ like process.

To make a join operation in RE representations, we can simply create an

instance of ExpAlter from the expressions in the two original treaties.

follow - Similar to join, it can be simply made by creating an instance of

ExpConcat from the expressions in the two original treaties.

intersect - The main difficulty in designing the algorithm of intersection

in RE is how to deal with loops (Kleene stars). If we simply take common

actions from two expressions without any solutions for loops, it may become

non-terminating. In this implementation the loop issue is solved by keeping

track of processed common actions and the remaining patterns, and creating

ExpStar objects immediately when repeat patterns have been found.

public TreatyRE intersectTreaty(TreatyRE other)

1 IF (this.reference != other.reference)
2 RETURN NULL;
3 e1 = this.exp;
4 e2 = other.exp;
5 v1 = new empty Exp collection;
6 v2 = new empty Exp collection;
7 trace = new empty ActionType collection;
8 e = Exp instance resulted from e1.intersect(e2, v1, v2,

trace);
9 RETURN new TreatyRE instance constructed with e;
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public Exp intersect(Exp other, Vector<Exp> trace1, Vector<Exp>

trace2, Vector<ActionType> traceA)

1 v = new empty ActionType collection;
2 v1 = all valid actionType at this.currentState;
3 v2 = all valid actionType at other.currentState;
4 FOR EACH actionType a1 in v1 and actionType a2 in v2
5 IF (a1 is the same as a2)
6 add a1 into v;
5 IF (v.size == 0)
6 RETURN NULL;
7 result = new empty Exp collection;
8 depth = trace1.size;
9 FOR EACH actionType a in v
10 e1 = Exp instance resulted from this.exp.access(a);
11 e2 = Exp instance resulted from other.exp.access(a);
12 IF (e1 == NULL and e2 == NULL)
13 add a new ExpAccess instance constructed with a into

result;
14 ELSE
15 remove all elements whose index greater than depth in

trace1, trance2 and traceA;
16 FOR i = 0 to trace1.size
17 IF (e1 is the same as trace1[i] and e2 is the same as

trace2[i])
18 add new ExpStar instance constructed with traceA[0] to

traceA[i] into result;
19 found = true;
20 IF (found != true)
21 add e1 into trace1;
22 add e2 into trace2;
23 add a into traceA;
24 tail = Exp instance resulted by e1.intersect(e2,

trace1, trace2, traceA)
25 IF (tail != NULL)
26 add new ExpConcat instance constructed with new

ExpAccess instance of a and tail into result;
27 ELSE add new ExpAccess instance constructed with a into

result;
28 RETURN new ExpAlter instance constructed with all elements

in result;
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difference - The operation of difference between two RE represented

treaties is given by subtracting any valid actions in the second operand treaty

from the valid actions (and their followings) in the first operand treaty.

public TreatyRE differenceTreaty(TreatyRE other)

1 IF (this.reference != other.reference)
2 RETURN this;
3 cloned = an Exp object cloned from this.exp;
4 v1 = all valid actionType at current state of cloned;
5 v2 = all valid actionType at current state of other.exp;
6 FOR EACH actionType a1 in v1
7 FOR EACH actionType a2 in v2
8 IF (a1 is the same as a2)
9 result = this.exp.difference(a1);
10 RETURN new TreatyRE instance constructed with result;

public Exp difference(ActionType at)

1 SWITCH (expType of this.exp)
2 CASE (ExpAccess):
3 IF (this.exp.actionType is the same as at)
4 RETURN NULL;
5 ELSE RETURN this;
6 CASE (ExpConcat):
7 IF (this.exps[0].difference(at) != this.exps[0])
8 RETURN NULL;
9 ELSE RETURN this;
10 CASE (ExpAlter):
11 FOR EACH Exp e in this.exps
12 IF (e.difference(at) != e)
13 remove e from exps;
14 IF (elements removed from exps)
15 RETURN new ExpAlter instance containing remaining

expressions;
16 ELSE RETURN this;
17 CASE (ExpStar):
18 diffed = this.exp.difference(at);
19 IF (diffed == this.exp)
20 RETURN this;
21 ELSE IF (diffed == NULL)
22 RETURN NULL;
23 ELSE
24 RETURN new ExpStar instance constructed with diffed;
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restrict - The problem with implementing the restrict operation in the

RE representation is that: if we apply the restrict to the expression with an

ExpAlter instance followed by other expressions, and the sub-expressions in

ExpAlter instance return different remaining number of actions, then when

we keep doing the restrict to the following sub-expressions, we cannot de-

cide which number to use. To solve this, there is a support class called

ExpRestrict, which contains two Vector instances, one stores the expres-

sions that were applied with the restrict operation, and the other stores the

remaining number of actions after the respective expressions in the former

vector are restricted.

public TreatyRE restrictTreaty(ActionType at, int times)

1 result = ExpRestrict instance from this.exp.restrict(at,
times);

2 ea = new ExpAlter instance constructed with elements in
result.exps;

3 RETURN new TreatyRE instance constructed with ea;

public ExpRestrict restrict(ActionType at, int times)

1 SWITCH (expType of this.exp)
2 CASE (ExpAccess):
3 es = new empty Exp collection;
4 is = new empty integer collection;
5 IF (this.actionType is the same as at)
6 IF (times > 0)
7 add this into es;
8 add (times-1) into is;
9 ELSE
10 add this into es;
11 add times into is;
12 RETURN new ExpRestrict instance with (es, is);
13 CASE (ExpConcat):
14 current = new ExpRestrict instance constructed with (at,

times);
15 FOR EACH Exp e in this.exps
16 tempRes = new empty ExpRestrict instance;
17 FOR i = 0 to current.exps.size
18 result = e.restrict(current.exps[i],

current.remain[i]);
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19 add all pairs in result into tempRes;
20 current = tempRes;
21 RETURN current;
22 CASE (ExpAlter):
23 result = new empty ExpRestrict instance;
24 FOR EACH Exp e in this.exps
25 tempRes = e.restrict(at, times);
26 add all pairs in tempRes into result;
27 RETURN result;
28 CASE (ExpStar):
29 tempRes = this.exp.restrict(at, times);
30 result = new empty ExpRestrict instance;
31 FOR i = 0 to tempRes.exps.size
32 IF (tempRes.remain[i] == times)
33 add (new ExpStar instance with tempRes.exps[i], times)

into result;
34 ELSE
35 next = (new ExpStar instance with

this.exp).restrict(at, tempRes.remain[i]);
36 For j = 0 to next.exps.size
37 ea = new ExpConcat instance constructed with

(tempRes.exps[i] and next.exps[j]);
38 add (ea, next.remain[j]) into result;
39 RETURN result;

It is important to note that, after the treaty operations, these newly

formed expressions must be simplified before use. But it is not necessary

to call the simplify() method each time an operation is performed. To

produce a required behaviour specification it usually takes several steps of

treaty operations, and the simplify() method can be called only once, after

these operations have been done.

6.4 Other Components

To build the system for evaluation, there are several other components to

be implemented. The SimJava tool was used for simulation of a distributed

environment with a number of kernels and users or processes.
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6.4.1 Classes and Field Values

Kernel - simulating kernels or middleware or servers in the system. This

class extends the Sim entity class in SimJava, and acts as an entity

that can send and receive messages with other entities. The class in-

cludes field values of inport and outports. They are instances and

collections of Sim port which is the port provided by SimJava used for

message communications. The Sim entity class also contains a name

field that is used to identify instances, and Kernel inherent this value.

User - simulating the users or processes who send action requests in the

system. This is also a subclass of Sim entity, with a name String as

its identifier. In instances of User, there is only one outport and one

inport of Sim port, as a user will only communicate with one kernel

that processes requests. When the system is running, the inport of a

user is bound to one of the outports of its kernel, and the outport of the

user is bound to the inport of that kernel. There is another field value

named treaties of type Vector, and which stores all the treaties this

user entity holds.

Request - the class that simulates the access request from a user to a kernel.

The field values it contains are: a String of name as the identifier of

the sender of the request; an instance of ObjRef indicating the target

object of this access; an instance of ActionType indicating the type of

action in this request; and a treaty that the user used for granting this

access.

Capability - the class used to model the Capability approach of access con-

trol. This is used to compare with the treaty approach. There is an

ObjRef instance indicating the target object, and a Vector instance

named rights indicating the types of permissions granted by this ca-
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pability instance.

Vista - the class used for model the Vista approach of access control. This

is also used for comparison with treaties. Each instance contains a

Vector instance storing a number of Visibility instances.

Visibility - represents the visibilities in the Vista approach. There are two

field values of a ObjRef instance referring to the target object and a

ActionType instance indicating the names to be accesses in the target

object.

Other Classes - These classes are used for simulating objects and resources

to be accessed. They depend on applications hence there are no fixed

definitions of classes. But they will contain the ObjRef instance as the

identifier of the object, and the corresponding access methods for those

access types.

Here are simple examples in pseudo-code to show how kernels behave

when receiving messages from users in capability, vista and treaty systems.

kernels behaving in capability systems

1 m = message received from user u;
2 SWITCH type of m;
3 CASE CREATE:
4 create object o according to u’s requirement

specified in m;
5 create capability c refer to o;
6 send c to u;
7 CASE ACCESS:
8 a = required action specified in m;
9 c’ = capability attached in m;
10 IF a is valid by c’;
11 perform the access action;
12 send result to u;
13 ELSE send denying message to u;
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kernels behaving in vista systems

1 m = message received from user u;
2 SWITCH type of m;
3 CASE CREATE:
4 create object o according to u’s requirement

specified in m;
5 create vista v refer to o;
6 send v to u;
7 CASE REFINE:
8 obtain vistas v1 and v2 attached in m;
9 perform the vista operation specified in m

to v1 and v2 to get v3;
10 send v3 to u;
11 CASE ACCESS:
12 a = required action specified in m;
13 v’ = vista attached in m;
14 IF a is valid by v’;
15 perform the access action;
16 send result to u;
17 ELSE send denying message to u;

kernels behaving in treaty systems

1 m = message received from user u;
2 SWITCH type of m;
3 CASE CREATE:
4 create object o according to u’s requirement

specified in m;
5 create complete treaty t refer to o;
6 send t to u;
7 CASE REFINE:
8 obtain treaties t1 (and t2) attached in m;
9 perform the treaty operation specified in m

to t1 (and t2) to get t3;
10 send t3 to u;
11 CASE ACCESS:
12 a = required action specified in m;
13 t’ = treaty attached in m;
14 IF a is valid by t’;
15 perform the access action;
16 update the current state in t’;
17 send result and updated t’ to u;
18 ELSE send denying message to u;
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6.4.2 Methods in Classes

There are only a few methods in these classes as we only need to simulate

the relevant part when running the system, hence functionalities that exceed

the scope of treaty systems are abandoned.

In the Capability class, there is the getObjRef() when capabilities are

used for accessing. The access() method is certainly implemented to deal

with the checking validity process. The other method in this class is called

reduce() which takes an instance of ActionType, and removes it from the

set of rights.

In the Vista class, there is the addVisibility() that adds a Visibility

instance into this Vista instance. The checkVisibility() method checks

whether a visibility is in this instance. Four methods sumVista(),

differenceVista(), intersectVista() and productVista() represent the

vista combinator operations.

In the Kernel class, there is a method named addPort(). This method

is performed when a new user joins the kernel, and the corresponding port

communicating with the newcomer is created. The body() method overrides

the method inherented from Sim entity, and this is the main body to process

communicating messages and events.

The User class is similar to the Kernel class as they are both subclasses of

Sim entity, and there is the body() method for processing communications.

No addPort() method is contained in this class as in our simple system

model, we define that one user needs to connect to only one kernel, and the

port has already been declared as a field value.
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6.5 Summary

We have introduced the implementation of treaty systems. The implemen-

tations described were split into two main parts: one is based on the FSM

representation of the behaviour descriptors in treaties, and the other is about

the RE representation. The two representations have clearly different ways

of describing behaviour models, hence they also affect how treaty operations

act in their representations.

In the FSM representation each treaty contains one behaviour model that

refers to a particular object. In the model there is a collection of states

and a collection of transitions. Each transition has a label for the action

type that causes this transition to happen. There is a special class called

StateCombiner which supports the simplification of the FSM representations

of the model and many treaty operations. To perform an action, the holder

of the treaty needs to specify the object reference and the action type of the

access together with the treaty. A successful access will cause the current

state pointer in the model to change its target.

In the RE representation, we also let one treaty refer to one object, and

the regular expressions that act as the behaviour descriptors are organized in

a tree structure. Expressions are divided into four categories of single actions,

concatenations, alternations and Kleene stars (loops), the latter three kinds

contains other expressions. In this way expression trees are constructed. To

perform an action, the holder of the treaty also needs to specify the object

reference and the action type of the access. This shows that FSM and RE

representations only differ in the structure of behaviour descriptors, and they

can be used in exactly the same way. A successful action may cause the

expression tree to change its shape.

The implementation of other components in the system such as kernels

and users are also introduced in this chapter. With these components and
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the implemented treaties we can carry out experiments to simulate the treaty

systems and get evaluation results. These will be explained in the next

chapter.
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Chapter 7

Evaluation

Since treaties are proposed mainly for behaviour control in distributed en-

vironments, the evaluation for this project will cover the following aspects

of treaty systems: the correct behaviour control ability, time for kernel(s) to

deal with requests, and resources in systems that apply the treaty approach.

Being an escalation of a security mechanism, the correct behaviour control

ability is still essential as if it leads to fault behaving, the escalation would be-

come useless. The time cost would be a major concern from the users’ point

of view as we do not want the access request to be executed slowly. The re-

source occupation is also one of the major concerns, from kernels, users and

bandwidth’s point of view. Hence the evaluations in this chapter concentrate

on how time and space consumption changes when different factors change.

The evaluations also show how the treaty combinator operations perform,

and the comparisons between FSM represented treaties and RE represented

treaties.

Most data shown in figures are average values resulted from multiple rep-

etitions of experiments. The error bar in graphs are the standard deviation of

those experiments. For data that are shown in more than one figure for dif-

ferent observations, only the figure that is more appropriate (may be clearer

131
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for view or better comparison) is chosen for displaying the error bar.

7.1 Evaluation of Behaviour Control

Behaviour control is the major functionality that treaties provide, compared

to access control by capabilities. Therefore, to ensure that treaties will give

permissions and grant accesses correctly, especially in cases where the du-

plication problem may appear, it is essential to examine the correctness of

accesses with treaties, within a large number of requests and user actions

that may lead to the duplication problem. These user actions include using

copied treaties to try to gain more permissions, and propagation of treaties

among users letting multiple users hold the same treaty to request the same

actions.

A system has been built to test the behaviours controlled by treaties.

There are a large number of users that behave legally, and a small number

of malicious users who try to perform actions that are not allowed by the

system. These illegal behaviours may contain action types that do not exist in

the set of valid actions for the given resource type, or repeatedly performing

those actions which only allowed a limited number of times. The proportion

of malicious users to overall users will be varied to examine whether any

illegal behaviours are granted by the systems. Table 7.1 illustrates the result

for this evaluation. We count the number of valid actions that are rejected

by the kernel, the invalid actions that are accepted by the kernel and the

actions which are allowed to perform only limited numbers of times but are

requested more times than the limitation. The proportion of malicious users

has changed from 1% to 100%, and the fault number of all three categories are

0, which means there are no fault behaviours allowed by the treaty system in

our test. This experiment result does not guarantee the implemented system

is faultless, but it shows that the treaty system behaves correctly and satisfies
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Malicious users Valid actions Invalid actions Limited actions
in the population being denied being allowed being over-performed

1% 0 0 0
10% 0 0 0
50% 0 0 0
100% 0 0 0

Table 7.1: Behaviour Control Evaluation when Malicious Users Exist

the security requirements of behaviour control to some extent.

7.2 Evaluation of Time Costs

The time taken for verification is also an important criterion for evaluating

treaty systems. Although treaties provide more powerful controls than simple

capabilities, users will not be happy if the response time for their requests

becomes too long. We need to make comparisons between the performance

of treaties and capabilities, particularly on time and resource consumption.

It is unavoidable that the verification time for treaties is longer than the

verification time for capabilities, as it takes more steps to check permissions

in treaties. Moreover, the time for verification should be significantly less

than the time for accessing files, for both treaties and capabilities.

As the structures of behaviour descriptors in finite-state machine repre-

sentation and regular expression representation are different, the action pro-

cessing and treaty operations also have different execution methods. Hence

the efficiency of the two representations is worthy of evaluation. We will build

the evaluation system for FSM-style treaties and RE-style treaties under the

same conditions, and calculate and compare the creation time, refinement

time and execution time for these two representations. We will also compare

the operating times for each type of treaty operations.
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7.2.1 Access Time for Capabilities, Vistas and Treaties

In this evaluation we will test and measure the access times for all the ac-

cess control components that have been introduced in this work: Capabilities,

Vistas, Treaties of FSM representation and Treaties of RE representation. To

keep a fair contest, all the four candidates are implemented in simple struc-

tures with only their necessary components and no additional functionalities

described in Chapter 5 are applied, and they all grant the same permissions.

In the implemented capabilities there are only single references to the target

object and a set of action types that a capability grants. In the implemented

vistas there are a set of visibilities, each of which contains one reference to

the same target object and one action type for accessing the object. The sim-

ple treaties in this part of the evaluation take no account of the duplication

problems, and they are only single-object referencing. The FSM represented

treaties only have one state, and a number of transitions that represent those

action types. The RE represented treaties contain a Kleene star expression

over an alternation expression, which consists of all valid action types.

Since each single access only takes a very short time that is hard to

observe, to get a clearer view on how the time consumption of using the four

candidates to access objects grows, we do the test a large number of times

and evaluate the overall time for each candidate. Fig. 7.1 shows the time

consumption of the access time using Capabilities, Vistas, FSM represented

treaties and RE represented treaties, where there is only one valid action type,

and the request for access is granted (i.e. the requested action is the same as

the valid action type in these access control components). Fig. 7.2 shows the

time consumption of the access time using the four control components with

only one action type, but this time we try an invalid action (which is different

from the valid action type in the components). Finally Fig. 7.3 shows the

time consumption of the access time using the four control components with

ten valid action types.
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Figure 7.1: Times for successful accesses, for Capabilities, Vistas, FSM
Treaties and RE Treaties with a Single Action

Figure 7.2: Times for failed accesses, for Capabilities, Vistas, FSM Treaties
and RE Treaties with a Single Action
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Figure 7.3: Times for successful accesses, for Capabilities, Vistas, FSM
Treaties and RE Treaties with 10 Actions

From these observation we see that the time consumption for using capa-

bilities and visibilities are almost the same, while vistas take sightly more.

In cases with fewer actions, the RE representation takes even less time than

capabilities to grant or deny a request, and the time for the FSM represented

treaties is the most of the four. However, when the number of action types

increases, the time cost of using treaties in RE representation increases signif-

icantly, and it becomes higher than the FSM representation. The capability

and vista approaches have a steady time cost for accesses, where the number

of action types does not have a big effect on them.

The time cost of successfully accessing using treaties is apparently higher

than the time cost of failure to access by treaties. This shows that in treaty

approaches, when a valid action is made, extra time is needed for changing

the current state in behaviour models in treaties.

This evaluation is purely about the validation time for the candidates.

It is worth mentioning that the significance of the time difference between

treaties and capabilities/vistas can be much reduced if we include the prop-
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agation time of messages, which means there will be another value added to

the validation time, and in most cases the propagation time is much bigger

than the validation, and hence makes the difference of time consumption

between treaties and capabilities/vistas discountable.

7.2.2 Time Cost for Stages of Using Treaties

We examine the time consumption for each stage of using treaties in this

part: creating treaties, refining treaties and accessing with treaties. Treaties

are initially created to be complete treaties which contain all the types of

action available to the created object, and with an unlimited number of

repetitions. We call this the ‘creation’ stage. The ‘refinement’ stage is the

part when creators of objects use treaty combinator operations to refine

behaviour models to get new treaties. In the ‘access’ stage users can use

treaties distributed by the creators of objects to access those objects.

We will test the time consumption of the three stages in a use-case. The

use-case of creating voting treaties was selected. In this case, the kernel

will originally create a complete treaty containing action types of vote and

check, and refine it to fit the required specification using treaty operations

(as shown in Fig. 7.4). Then a behaviour of ‘check-vote-check’ will be

performed using this refined treaty.

Figure 7.4: Refining a Complete Treaty

Fig. 7.5 and Fig. 7.6 show the time consumption for each of these steps

in the FSM and RE representations. Since it takes a very short time to

complete such a process for one treaty, we did the test for a number of times
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Figure 7.5: Time Consumption for Creation, Refinement and Access Stages
in FSM Representation Treaties

Figure 7.6: Time Consumption for Creation, Refinement and Access Stages
in RE Representation Treaties
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and observed the total time. The horizontal axis represents the number of

processes that were performed, and the vertical axis represents the total time,

in milliseconds. From the result we see that the creation and access of treaties

takes similar times and is relatively low, while the refinement takes most time

of the process. However it should be noted that the refinement of treaties

is usually an ‘infrequent’ job that only happens a few times, compared with

accesses which will happen frequently during a long period of time.

Fig. 7.7 shows the time consumption of these stages in both representa-

tions to give a comparison view. We can see in this figure, the time consump-

tion in the FSM representation is much greater than the time consumption in

the RE representation. The time consumption is greatly affected by the use

of classes implementing the Collection interface in Java. In the implemen-

tation of the FSM representation, states and transitions are implemented as

concrete objects as they were addressed in Section 6.2, and they are stored in

collections (in our case, instances of the Vector class). On the other hand,

in the RE representation there are no collections used in some types of ex-

pression classes. It takes much more time to access the elements in these

collections using their indexes (positions in the collections) than to directly

access an object with its explicit reference. This produces the difference

between the performance of the FSM and RE representations.

However, Vector is a list-type of collection, as it stores elements as a chain

of objects, and accesses them using an index. There is the alternative of using

hash-type collections, which use chosen keys to access the stored elements,

and hence improve the efficiency of accessing elements so decreasing the

time consumption. It is possible that the time consumption of RE treaties

in Fig. 7.3 would be reduced greatly and become lower then that of FSM

treaties. But there are two things that need to be mentioned: first, using hash

tables requires each stored element to have an identifiable key, which could

mean adding extra data for elements that have no identifiable attributes;
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Figure 7.7: Time Consumption for Creation, Refinement and Access Stages
in both Representation

second, there are places where we cannot change list-type collections to hash-

type collections, e.g. the chain of sub-expressions that are connected in the

relationship of concatenation in the RE representation.

7.2.3 Evaluating Treaty Combinator Operations

In this part we will evaluate the time consumption of treaty operations for

both FSM and RE representations. We do the evaluation not on the simple

number of run times for each operation, but instead, we change the number of

actions in treaties, in other words, the evaluation is based on the complexity

of the treaties’ behaviour models.

Fig. 7.8 shows the time comsumption of operations in the FSM repre-

sented treaties. In each evaluation the number of actions in the behaviour

model used for the test is increased by 20, and we run the operation for 20

times. From the figure it can be seen that in FSM represented treaties, the

time for all the five operations does not show big differences, which means

the efficiency for FSM operations is quite steady.
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Figure 7.8: Time Consumption for Operations in FSM represented Treaties

Figure 7.9: Time Consumption for Operations in RE represented Treaties



142 Chapter 7. Evaluation

Figure 7.10: Time Consumption for Operations in RE represented Treaties

Figure 7.11: Time Consumption for Join in RE represented Treaties
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Fig. 7.9 shows the time comsumption of operations in RE represented

treaties. We use same factors as those used in the FSM evaluations, in

which the number of actions is increased by 20 and 20 runs of tests are

evaluated. This figure shows that the join, follow, difference and restrict

operations take very little time to be performed, but the operation of intersect

is obviously much slower. We saw in Section 6.3.3 that the algorithm for the

intersect operation needs several collections to execute, and they are accessed

frequently. Moreover, for each intersect operation, every sub-expression is

needed to be compared with all the previous sub-expressions, all of which

need to access the collections, and this gives the complexity of the algorithm

nearly O(N2). This causes the intersect operation in the RE representation

to take far more time.

Since it is to difficult to observe the trend for the join, follow, difference

and restrict operations in RE representations in the resolution we used for

FSM evaluations, we have to change the factor to redo the tests. Here we

increase the number of actions in RE represented treaties by 100 and run the

operation for 100 times in each test. Fig. 7.10 shows the time comsumption

of operations follow, difference and restrict.

For the operations of join, we have to change the resolution again. Fig. 7.11

shows the time comsumption of operation join, where we increase the num-

ber of actions in RE represented treaties by 10000 and run the operation

for 10000 times in each test. It shows that the time consumption for the

operation of join in the RE representation is not affected by the complexity

of the behaviour models in treaties.

Fig. 7.12 – 7.16 show the direct comparisons of the five operations between

FSM and RE represented treaties using the same factor. For the operations

of join, follow, difference and restrict, the RE representation performs far

better than the FSM representation. The only exception is the intersect

operation, for which the FSM representation gives a better performance.
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Figure 7.12: Time Consumption for Concatenate Operations

Figure 7.13: Time Consumption for Join Operations
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Figure 7.14: Time Consumption for Intersect Operations

Figure 7.15: Time Consumption for Difference Operations
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Figure 7.16: Time Consumption for Restrict Operations

Again, the collections used in the intersect in the RE representation are

accessed more frequently than those in the FSM representation, which results

in this exception. Moreover, the time consumption for the intersect operation

of RE treaties shown in Fig. 7.14 would not be benefited from changing

Vector collections to hash-type collections, since the algorithm of intersect

in the RE representation relies on the sequences of actions so only list-type

collections are valid.

7.3 Evaluation in a Distributed Environment

In this part of the evaluation our treaty systems are applied to a simulated

distributed environment. In the evaluation, kernels and users are all entities

in the system, and they can communicate with other entities using messages.

With this environment we will carry out evaluations to examine the per-

formance of models aiming to solve the duplication problem introduced in

Section 4.3. We will also examine the scalability of these implementations in
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the context of such environments.

7.3.1 Models towards Duplication Problem

We have proposed several models that are designed for solving the duplication

problem, and they will be examined and compared for their performance with

respect to time and memory consumption. The treaties and related compo-

nents were implemented in Java, and they were installed in the discrete event

simulation tool SimJava [35] which is also used for network and distributed

environment simulation. The voting system use-case is chosen again, and the

behaviour model is as shown in Fig. 7.4.

Figure 7.17: Example of Voting System Structure

An example of system structure of the evaluation is shown in Fig. 7.17.

There are kernels and users whose communications include requests from
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Figure 7.18: Time Consumption while Number of Users Changes

Figure 7.19: Time Consumption while Number of Kernels Changes
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users and acknowledgements from kernels. There is an object counting the

voting result, which can only be accessed by kernels. When processing, each

user starts by sending a request for creating a treaty to the kernel. Upon

reception of the treaty (or treaty reference), the user chooses to perform the

vote action, and the kernel then changes the result in the counting object,

until all requests have been made and processed. This process is repeated

for models of centrally stored treaties, entry lists and Two-layered Referring

FSM Representation as were proposed in Section 5.3 and 5.5, as all the three

models provide solutions to the duplication problem.

Fig. 7.18 shows the time consumption when using one kernel to process

different numbers of voters in our three models. The horizontal axis is the

number of voters and the vertical axis is the total time consumed in mil-

liseconds. From this it can be observed that the time spent by the central

store approach and the entry list approach is almost the same, while the

two-layered treaty approach takes about 40% more. Fig. 7.19 shows the time

consumption when using multiple kernels to process 100 voters in the three

models. The result for multiple kernels does not show a great improvement

from single kernel processing, as the total amount of work processing the

common voting resource by all kernels is nearly unchanged

Fig. 7.20 shows the memory consumption when having one kernel and

one user, with one treaty. The vertical axis is the memory consumed in

bytes. In the central store approach most of the memory consumption lies

on the kernel side, while in the entry list approach the memory use is shared

equally between users and kernels. The two-layered treaty approach costs

more memory space than the other two. Fig. 7.21 shows the memory con-

sumption when there are 10 kernels and 100 users with 100 treaties. We can

see that in the central store approach, the kernel load is very heavy, as it still

takes more memory than the sum of user space. In the entry list approach,

most of the memory consumption goes with user processes. Again the two-
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Figure 7.20: Space Consumption Comparison in Small Scaled Case

Figure 7.21: Space Consumption Comparison in Larger Scaled Case
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layered treaty approach costs more memory space than the other two, but it

should be noted that this approach has the extra functionality of modelling

sequences among multiple objects (as discussed in Section 5.1).

7.3.2 Scalability of Treaty Systems

The scalability of treaty systems is a very important measurement in this

project, as treaties are proposed to work in distributed environments where

the number of users is dynamic and varies widely. However, there is a prob-

lem before any evaluation can be carried: the concept of scalability has not

yet been formally defined as common knowledge. Scalability in parallel com-

puting was originally used to describe the enhancement of processing speed

when multiple processing units are involved in a computation. But as the

area of parallel and distributed computing develop and applications and ser-

vices in these fields keep varying, there is no single, commonly agreed way of

measuring the ‘scalability’ for different systems.

Thus it is best to define the meaning of scalability in treaty systems to

carry out any evaluations. The chosen measurement of ‘scalability’ shall

be suitable for illustrating the performance of systems when the number

of kernels and users changes in distributed environments. We define treaty

system to be ‘scalable’ if the consumption of key measurements of the system

increases linearly (or approximately linearly) while the population in the

system increases linearly, which means the ratio between increased amount of

consumption for resource and the increased amount of entities in the system

is approximately constant.

There are two major measurements that are selected for evaluating the

performance of treaty systems, they are the additional resource on kernels

and the processing time for requests. The additional resource on kernels is

mainly used for storing state information of treaties, as it has been explained
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that there must be some information stored by kernels to solve the duplication

problem. Ideally, the resource should have a linear increase with the number

of behaviour models, and we can certainly call treaty systems in this situation

‘scalable’. However, in practice it is always hard (or impossible) to reach the

ideal case. We will need to trace the trend of increases of resources in kernels

as the number of users increases (assuming each of them sets up a separate

treaty).

The processing time for requests is another measurement that can reflect

the performance of treaty systems in distributed environments. In this part

of evaluation we would like to examine the average processing time for each

request, which is calculated by having the overall processing time divided by

the number of requests. We will trace changes in this average value when

users and requests keep growing to evaluate the scalability on processing time.

This differs from the evaluation in the previous section which compares the

processing time among capabilities, vistas and treaties. In the ideal case, the

average processing time for a single request should be relatively steady while

the number of users changes.

Fig. 7.22 shows the average time per message when users in the system

increase. We still do the comparison among the three models that aim to

solve the duplication problem. The messages that are counted in this exper-

iment includes the request from users to kernels for obtaining a treaty, the

request from users to kernels for accessing the object using the treaty, and

the acknowledgment message from kernels to users that reply to the former

two kinds of requests. We can see from the figure that as the experiments

go, there are fewer factors that disturb the evaluation result, so the aver-

age time consumption for processing each message becomes steady in later

stages. This shows that when the number of users increases, the processing

time for requests is not much affected, which implies good scalability in time

consumption for our proposed models.
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Figure 7.22: Average Time Consumption per Message

Figure 7.23: Kernel Memory Occupation
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Fig. 7.23 shows the kernel space occupation when the number of users

in the system increases. From the result we can see that all the three mod-

els have a linear increase in the space occupation on the kernel side. This

also shows that treaty systems have a good scalability in additional resource

consumption on kernels.

Note that in these approaches, the entry list approach has the lowest

central resource occupation among the three, which seems to be the better

choice in the context of distributed environments. But the central memory

occupation is not the only consideration in such environments, and there is

the other factor of bandwidth consumption. For the network load, the more

the data transfered, the heavier the bandwidth consumption would be. For

the three approaches, the centrally-stored treaty method would only require

the entities wanting to access resources to send treaty references, which are

relatively small in size. The entry list approach and the two-layered FSM

treaty approach both need the treaties to be sent, hence they have much

higher bandwidth consumptions. Generally speaking, the developers and

service providers need to balance their trade-offs. If the application is more

critical in server load, it is advised to choose the entry list approach; if

the application requires lower bandwidth occupation, the centrally stored

approach seems to be the better choice.

7.4 Summary

In this chapter several tests have been made and illustrated. We have shown

how effectively treaties can control the behaviours by denying invalid re-

quests from malicious users. The validation of candidates of access control

and behaviour control approaches are evaluated by their validating time.

Evaluations of the time consumptions for different stages when using treaties

has also been given, and it was shown that the refinement stage consumes
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more time than the creation of complete treaties and using treaties to access

objects. However, refinement of treaties, unlike accesses, does not happen

frequently.

We also made evaluations on treaty operations when the treaties have

varied their number of actions. Some interesting results showed that the

performance of operations in the FSM representation are almost the same,

while those of the RE representations perform much better most of the time,

except for the case of the intersect operation. The join operation in the RE

representation is approximately constant time as it is not affected by the

number of actions in the operand treaties.

These results also show that the time consumption of these implementa-

tions is greatly affected by the number and frequency of user of the collection

data structures. To improve the performance of systems it is suggested to

minimize using collections when possible.

The models for solving the duplication problem that were introduced in

Chapter 5 were also tested in distributed fashion. The number of users and

kernels in the system were varied and the evaluation of the performance for

the three models demonstrated the differences among those models. It shows

that the entry list representation has the lowest kernel load. Meanwhile these

models are also used to evaluate the scalability of treaty system. According

to the result, treaty systems show a good scalability in both time and space

consumption. The overall result illustrates that treaties are feasible to be

applied in the control of distributed environments.

All parts of the research have been shown in the thesis. Now we can

have an overall view and point out any potential topics that could be further

developed in the treaty systems in the next chapter.
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Chapter 8

Conclusion

Access control is an essential concept in the security administration process.

It guarantees the resources are accessed by the correct entities. Traditional

access control approaches use Access Control Lists that provide centralized

control, as it stores the access information with objects. However this ap-

proach is not very applicable in distributed environments, where the popula-

tion of users changes frequently, and it is expensive to maintain such dynamic

user lists. Capabilities provide another solution to dynamic access control.

This is achieved by having capabilities as concrete components which are

held by users. Users can then pass these capabilities to other users to dis-

tribute the permission for accessing objects. The kernels no longer need to

store the access control information, but only need to check the validities of

capabilities when they are presented by users. Hence capabilities are more

suitable in distributed environments.

But capabilities are still quite simple in their structure. There are only

sets of rights that grant unlimited repetitions of valid actions — there is

no way of specifying subsequences of actions. In the real world there are

cases where the actions must happen in particular orders, and there are

cases where some actions only have a limited number of repetitions. We
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call these behaviours. Thus, it is beneficial to investigate behavioural control

approaches in distributed environments. We propose the ideas of Vistas and

Treaties in this thesis which provide the behaviour control.

8.1 The Proposed Work and Contributions

Vistas are extended from the idea of capabilities. This approach is suggested

because the complexity of objects in modern applications has evolved, and

there may be a variety of field values and methods inside an object. In vistas

there are sets of visibilities, each of which is a reference to the targeted object,

together with the permission to access one of the field values or methods in

the object. This means in a vista, there might be visibilities that refer to

different objects. An important functionality that is provided in the Vista

approach is the vista combinator operations that can be used to change the

set of visibilities contained. In the content of this thesis, the product is a

particularly important vista operation, since it produces a chain of actions,

which provides an aspect of behaviour specifications. However there are

more aspects that the idea of behaviour carries and vistas cannot embody

all of these. Thus further development is needed, which leads to the idea of

treaties.

Treaties are also an extension of capabilities and vistas, which are even

better in modelling behaviour specifications. In treaties there are behaviour

descriptors that can record the states of the defined behaviour model, and

a pointer to the current states. The current state changes when actions are

successfully performed using a treaty. There are also combinator operations

in treaty systems to refine behaviour specifications while these treaties are

being held by users, and this makes treaties a dynamic behaviour control

approach that is suitable for distributed environments. However it needs

to be kept in mind that there is a rule in treaty systems for those treaty
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operations, which is: an entity cannot increase the totality of behaviours in

the treaties it holds. The rule must be kept by all treaty operations. We

have proven our proposed basic operations will not break this rule using the

concept of behaviour set.

A new issue has been brought about by the new aspect of states in treaties,

and that is called the duplication problem. In treaties there might be actions

with a limited number of repetitions, and if there are no security mechanisms

provided, to duplicate such a treaty could increase the number of allowed

actions. The duplication problem may be caused by copying of treaties,

passing treaties among users and doing a concatenate operation of a treaty

to itself. Any systems that implement treaties must provide solutions to the

duplication problem to avoid this issue. A number of models that aim to

solve the duplication problem have been proposed in the thesis.

In treaties and treaty systems there are several parts that are not fixed,

and implementation options are provided to developers and service providers

such that they can choose to create a treaty system that best fits their require-

ments. These parts include: object referencing style, the way to represent

behaviour descriptors, the location for storing treaties, additional treaty op-

erations, and ways for executing commands. A complete example of a treaty

system that has every part fixed has been presented in the thesis.

Treaties and relevant components in treaty systems has been implemented

in Java, including methods for treaty combinator operations. The imple-

mented systems were used to evaluate the performance. We compared the

time consumption for accessing resources with various access control com-

ponents, and tested the time consumption of different components of these

implementations. The performance of treaty operations in the FSM and RE

representations are compared to show the differences in the two representa-

tions. We also proposed three different models that aim to solve the duplica-

tion problem, and evaluated their time and space consumptions. They were
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also used to evaluate the scalability of the implemented treaty systems. The

result showed that these treaty systems scaled well, and hence are suitable

for distributed environments.

The main contributions of this thesis are:

� Developing the concept of vistas and treaties, how they are structurally

evolved from capabilities, and why these evolutions are beneficial.

� Investigating operations that could be used to combine vistas or treaties

to form new access control and behaviour control specifications. These

operations provide the functionality of letting users refine their be-

haviour specification after the vistas or treaties are produced, and hence

further increase the dynamic control of accesses and behaviours.

� Providing a proof of the correctness of treaty operations using the idea

of behaviour set to show that refining treaties with treaty operations

will not destroy the safety of behaviour control.

� Pointing out the new issue called the duplication problem that arises

with the behaviour control approaches, and suggesting possible solu-

tions that could solve this problem. The performance of the candidates

of solutions for the duplication problem were also tested and compared.

� Demonstrating that treaty implementations can have various options

that developers and service providers can choose for treaties and treaty

systems to satisfy their particular requirements.

� Presenting implementations of vistas and treaties. We realized the

functionality of behaviour controls and the refinement of behaviour

specifications using treaty operations, have evaluated the correctness

of behaviour control using treaties, and have evaluated the time con-

sumption for the components of treaty implementations. Finally we
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evaluated the scalability of treaty systems to show the practicality of

treaties.

8.2 Future Work

Using treaties to provide behaviour control in distributed systems is a novel

approach, and there are still many areas that can benefit from further re-

search. Here we will introduce some of these areas.

8.2.1 Behaviour Pattern Matching

In Section 4.2 we have shown the treaty combinator operation restrict, which

can produce new behaviour models in which the occurrence of the given type

of action has been limited to a certain number. This is useful when cases

need to have some actions restricted in repetitions, but at this stage, it only

concerns actions. From time to time we can find situations where it is not

a single action that needs to be restricted, but a sequence of actions. For

instance, one is allowed to smoke, and to go to the petrol station, but it

is never allowed to go to the petrol station and smoke. This indicates that

we may need to restrict a pattern of behaviours instead of single actions.

The same can be applied to other treaty operations, such as observing the

common pattern of behaviours in two treaties (the intersect operation), or

eliminating a certain pattern of behaviour from the treaty (the difference

operation). All these need pattern matching mechanisms.

It is difficult to perform a pattern matching in FSM represented treaties,

and not an easy task for RE representations either (there are various works

towards RE matching [64, 34, 4], but keep in mind that in our context it also

includes sub-expression matching). But it is still worth applying some effort

to finding a pattern matching mechanism for treaties with good efficiency,
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due to the reasons addressed in the previous paragraph.

8.2.2 Reducing Parameters of Target Object

The efficiency of using capabilities and treaties in programming languages is

also an issue that could be explored. In a treaty based system, to access any

object there must be one or more attached treaties as parameters. Assuming

an object-oriented language, a possible expression for accessing an object

(this access can be a method to read or write the field values of the object)

could be:

o.m(p, t);

where o stands for the object (in fact it is the reference to this object),

m is a method or function, p some parameters and t is the treaty used to

access o. Assume t is a single-object reference treaty (recall the structure of

treaties: they consist of references to objects and the behaviour descriptors).

Therefore we can see that in the line of code above, the reference to the

object o occurs twice (as o, and in t), which causes a redundancy since the

duplication of reference is unnecessary. Thus, a more elegant line of code

representing the same meaning could be:

t.m(p);

There still exists other duplication in the line of code. The method m, as-

suming it is an operation like read or write, is the action which the holder of

treaty t thought to be valid. That is, the method m is already contained in

the treaty t, which means m also appears twice. At the moment it is not fair

to say this is also a redundancy, since there may be more access types than

m in the valid actions in t, and an indication of which action to be chosen is

needed. But, can this duplication be simplified as well? The answer might
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be yes, but modifications might be needed to the structure of treaties.

8.2.3 Non-deterministic Problem and Semaphore-like

Scheme

As mentioned in Section 5.3, in treaty systems the non-determinism problem

also appears. Since there might be multiple users requiring to perform actions

on the same object, and in treaties there are sequences of actions, it is possible

that the access control information being held by users is outdated. Assuming

the treaty α allows its holder to do actions a then b to its targeted object

o, and copies of α are held by users u1 and u2. u1 believes he can do a

to o and sends this request to the kernel, but the kernel denies his request,

because u2 had already done the a action to o. The kernel then tells u1 he

can do only b now. However, even this acknowledgment from the kernel is

possibly outdated. When u1 then asks for the action of b, the kernel may

still reject it, because after the former acknowledgment from the kernel and

before the second request from u1, u2 has made the request of b in front once

again. Not providing solutions to this problem may cause a great number of

invalid request and the denying acknowledgment messages, which could take

up significant system resources.

We may possibly improve the situation by adapting the semaphore ideas

[18, 19]. The binary semaphore can be simply applied in treaty systems by

flagging the resource to be ‘occupied’ while a user want to access it. Taking

the example in the previous paragraph, before u1 makes the actual request

of action, he can first asking the kernel ‘what can I do to o’. The kernel then

flags object o, and tells u1 that the action b is available right now. Then u1

can either make this valid action or waive this occupation of the resource.

Whatever the choice he makes, the kernel will release the flag for o after the

communication with u1 comes to an end.
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This scheme, however, faces problems that ordinary semaphores have,

such as users occupying resources without releasing them. Thus further re-

search needs to be done to find a satisfiable solution.

8.3 Coda

The vista and treaty ideas have been proposed in the thesis. They evolved

step by step, aiming to provide finer descriptions of actions and better se-

curity control in distributed environments. But behaviour controls in such

environments is still a topic that is deep enough for other approaches to fill.

The effort illustrated in this thesis takes a small step in this direction, but

has sketched an initial picture to be worked with.
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