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Abstract

Polarisation has proven to be an effective method in the analysis of light reflection in

computer vision. It plays an important role in separating reflectance components using

cross polarisation settings. Some polarisation based methods have also been presented in

the literature for surface orientation estimation, where the incident light is unpolarised.

This thesis aims at exploiting the polarising properties of surface reflection for com-

puter vision applications. In particular, we focus on developing a framework for mea-

suring the shape and reflectance information based on polarisation data. The polarised

images are acquired using simple and low-cost devices, and the estimates are satisfac-

tory compared with other surface characteristic methods such as shape from shading and

stereo approaches. Statistical methods are also used to aid the computations, such as blind

source separation (BSS), mutual information estimation, the iterated conditional modes

method, etc.

Chapter 2 surveys the related literature in the fields of polarisation, reflectance func-

tion analysis, shape recovery, and pattern recognition. We also discuss other shape recov-

ery techniques, such as shape from shading, photometric stereo, and geometric stereo. We

make comparisons between these approaches to show their advantages and drawbacks.

In Chapter 3, we introduce the method of BSS, and show how to incorporate it into po-

larisation state estimation. The traditional method of using polarisation models for shape

recovery and polarisation state estimation usually requires more than three images, nor-

mally 10 or more pictures in different polarisation angles. The proposed method solves

these problems, and provides a robust way to measure polarisation state and refractive

index information using only three images, and without the need to have polarisation

angle information. We also demonstrate in the experimental section that the estimates us-

ing the proposed method offer significant improvements over existing polarisation based
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approaches.

In Chapter 4, we extend the work in the Chapter 3 in a number of ways. Firstly, we

present detailed review of the Fresnel theory in polarisation vision, and propose a novel

polarisation model which considers both diffuse and specular reflections. Secondly, we

develop a new novel criterion functions to be used in the Chapter 3, which improves its

robustness and accuracy.

In Chapter 5, we also explore the shape recovery method using the polarised light.

When the polarised light is transmitted through the polariser, it becomes fully polarised.

The specular reflection part can be fully eliminated using the setting of “cross-polarisation”.

In this case the methodology is changed accordingly. This leads us to develop a new

framework which firstly uses BSS for reflectance component separation, and then applies

a polarisation model built specifically for this case. The polarisation model is based on

Fresnel equation and Malus’s law, which describes the reflection of polarised light when

transmitting through the polariser in front of the viewer. It is also noted that the proposed

framework reduces the noise in the zenith angle estimate, which we demonstrate in the

experiments.

In Chapter 6 we consider an alternative way to estimate shape and reflectance proper-

ties using polarised light. Using the separated diffuse and specular reflection components

obtained in Chapter 5, we use parametric reflectance models, that relate the reflectance

intensity with the zenith angle when the parameter values are given. The reflectance mod-

els are only applied for either diffuse or specular reflections, and the two zenith angle

estimates from the two components should be identical as they describe the same object.

We use mutual information estimation and Newton’s method to find their similarities and

their parameter values measured by model fitting. The two estimates then are combined

using a mixture model. We choose six reflectance models and compare their performance

in this framework.
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Chapter 1

Introduction

Accurately estimating and reproducing surface appearance is a task of pivotal importance

in computer vision and graphics. Applications include the analysis and classification of

surfaces based on estimates of the physical properties of the materials, and the render-

ing of realistic images from the estimates. The appearance of surfaces is determined by

shape, colour and reflectance [36]. These intrinsic surface properties are independent of

each other and affect the observed image intensity in a complicated way. There have been

a number of attempts in the literature aimed at accurately measuring surface shape and

reflectance. Many existing reflectance estimation methods are limited by their requiring

high cost measurement systems, and a large number of input images. The direct measure-

ment of the BRDF requires a gonioreflectometer [60]. The typical model is designed by

Murray-Coleman and Smith, which is shown in Figure 1.1. It is cumbersome to use and

quite expensive, so few facilities in the world can afford it.

Other available methods use complicated devices such as light stages and geometric

domes to build reflectance functions from image intensity variations under different light

source directions [25]. Recently Ma et al. [64] presented a method to estimate surface

normal maps of an object using four spherical gradient illumination patterns from either

diffuse or specular reflectance components. The technique relies on structured light, and

hence adds scanning time and system complexity to the overload.

For shape reconstruction there are shape from shading [45], shape from focus [48],

shape from texture [101], photometric stereo [37], geometry stereo [10], etc. Shape from

shading and stereo methods are widely used in shape recovery, but they have drawbacks
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1.1 Polarisation

Figure 1.1: The gonioreflectometer having movable light source and photometer [60].

which make them unsuitable for our work. Shape from shading is proved to be an ill-

posed problem, requires many constraints on input images to ensure the robustness of the

performance, and is known to produce poor estimates. Stereo techniques, such as LiDAR,

Mesa and Kinect, require complicated algorithms support, and special acquisition devices

which are usually high cost.

In this thesis we consider polarisation methods for shape and reflectance estimation,

as it is relatively simple for acquisition and estimation, and can produce fairly decent

results, as shown in [2]. Our goal here is to investigate the polarisation vision and employ

statistical methods into the traditional ways of shape from polarisation, which can improve

the robustness and accuracy of the estimation.

1.1 Polarisation

The polarisation of light is one of the wave properties which describes oscillation direc-

tions of the particles [46]. It was first discovered by the mathematician Étienne-Louis

Malus in 1808, who also developed Malus’s law introduced in Chapter 5. In our daily

life many lights are partially or fully polarised, though we are unable to observe it since

human eyes are insensitive to this phenomenon. Figure 1.2 shows the transmission of a
2



1.1 Polarisation

light ray through a linear polariser. When the polariser is rotated to a specific orientation,

part of the light whose wave orientation is perpendicular to the polariser angle is blocked.

Figure 1.2: Transmission of a light-wave through a linear polariser.

The best known application of polarisation technology is polarised sunglasses based

on the principles of Brewster’s angle, which are made of one linear polarisation filter set

in vertical direction. As the wave vibration directions of most lights that make people

glare are horizontal, therefore it is blocked by the sunglasses, and protect the eyes from

harmful sunshine.

Polarisation is also widely applied in photography, in which the photographers usu-

ally use a polariser to eliminate specularity glare from the surfaces, such as water or other

non-metallic objects. There are two types of polarisers: linear and circular, which trans-

form unpolarised light into linearly and left-handed circularly polarised light, respectively.

These two different kinds of light can hardly be distinguished by the human eyes. Figure

1.3 shows the effect when using a polariser, which is quite useful when a photographer

wants to eliminate specularities from the lake and make the scene under the water visible.

In academic domains, polarisation is applied as a measurement tool in the research

areas of astronomy, optics and crystallography [116]. The first contribution of polarisation

to computer vision was proposed by Koshikawa in [57], in which the underlying physics
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1.1 Polarisation

(a) Unpolarised Image

(b) Polarised Image

Figure 1.3: Difference between images that are taken with or without polariser. Bright-

ness in (b) is adjusted to show that the specularity of the lake is removed and the stones

underneath become visible.
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1.1 Polarisation

of polarisation imaging is outlined. Koshikawa developed a polarisation reflectance model

for measuring shape based on Mueller calculus and the Stokes vectors.

Later, Wolff and Boult developed the Fresnel reflectance model for polarisation vi-

sion. It is based on the Fresnel theory, which predicts the way in which polarised light

interacts with surface layers [117]. For dielectrics, polarisation may arise in two differ-

ent ways. In the case of specular polarisation, initially polarised light is reflected in the

specular direction. For diffuse polarisation, initially unpolarised light is refracted into the

surface and then re-emitted, thereby acquiring a degree of spontaneous polarisation. In

both cases, the zenith angle of the reflected or re-emitted light is constrained by the degree

of polarisation, and the azimuth angle is constrained by the phase angle. Figure 1.4 shows

the diagram of the azimuth and zenith angle with respect to the surface of the object. The

azimuth angle of the surface normal is the angle between the direction of surface normal

projection onto the image plane and a selected reference direction, whose value ranges

from 0◦ to 360◦. The zenith angle, on the other hand, is the angle between the surface

normal and the viewing direction, the range is from 0◦ to 90◦.

Figure 1.4: The diagram of the zenith and azimuth angle.

However, there are several problems for polarisation based methods: firstly, they re-

quire several polarised images taken in different polariser orientations, meaning the inputs

are acquired at different times, which becomes problematic when measuring human faces

and palms that are not static. The problem is exacerbated as the existing shape from polar-

isation methods usually needs more than 10 pictures to achieve robustness against noise

from CCD sensor of camera or other factors. [71].
5
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It is noted that in this thesis we proposed a blind source separation algorithm in Chap-

ter 4 which requires only three input images for the polarisation estimation. In the experi-

mental section we demonstrate its robustness. There are six polarised images in all for the

selected objects, whose polariser angles are 0, 30, 60, 90, 120 and 150 degrees. We select

three images as input for the method and check if the results are stable. We have tested

all combination and the results are presented in Figure 4.11. The phase angles results are

stable, the difference are mainly caused by noise in the input image but they are sufficient

for process of shape recovery and other computer vision applications. In the future work

we will also concentrate on testing its robustness by running parallel optical channels in

the camera.

Secondly, there are two ambiguity issues that have to be resolved in the computa-

tion: the first is for the specular Fresnel model, which has two zenith angle solutions

corresponding to one DOP value; the second is the phase angle ambiguity which is de-

scribed in Chapter 6. Thirdly, the problem of reflectance estimation using polarisation

is rarely addressed. Atkinson and Hancock [4] proposed a method for reflectance func-

tion estimation, but it only considers the diffuse Fresnel model and is only applied for

constant-albedo Lambertian surfaces.

1.2 Contribution

This thesis presents research on reflectance and shape estimation using polarisation. The

material of objects under study is assumed to be dielectric, and the surface is optically

smooth, its albedo is uniform. We have developed frameworks when the incident light

is polarised or unpolarised, using statistical methods to aid the process of computation,

which can solve the problems outlined in the last section.

The polarisation methods we propose are aimed at incorporating blind source separa-

tion (BSS) into the polarisation estimation. The traditional method of using a polarisation

model on shape recovery and polarisation state estimation usually requires more than

three images, normally 10 or more pictures in different polarisation angles, whose values

should also be known. The proposed method solves these problems, and provides a robust

way to measure the polarisation state and refractive index value using only three images,
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1.2 Contribution

and without the need to have information about the polarisation angles. We use the BSS

method in Chapter 3 and Chapter 5, and the criterion functions are built accordingly to

the polarisation vision theory.

Next, we show how to cast the problem of shape from polarisation from the degree of

polarisation (DOP) estimates. According to dichromatic theory there are two reflection

types: diffuse and specular. Existing polarisation models are created based on these two

reflectance, but they both have advantages and weaknesses. In Chapter 4, we present

a novel polarisation model that considers both types and combines them together using

a mixture model. In Chapter 5, as the incident light is polarised, we develop another

polarisation model based on Malus’s Law, and show in this case that the noise is also

reduced.

In this thesis we have provided shape and reflectance estimation frameworks for two

cases: using unpolarised or polarised incident light. When the light source produces un-

polarised light, the viewer will observe reflected light from the object which is partially

polarised. The zenith angle can be estimated using traditional Fresnel reflectance mod-

els, and the specularity generally can hardly be eliminated. On the other hand, if the

incident light is polarised before being reflected from the surface, it will become fully po-

larised, the highlight is eliminated using cross-polarisation settings, and existing Fresnel

reflectance models cannot be used directly for shape recovery. In Chapter 3 and Chap-

ter 4 we focus on the case using unpolarised light, while in Chapter 5 and Chapter 6 we

use polarised incident light instead, and blind source separation method is applied for

reflectance component separation.

We have also developed a novel two-step method for reflectance parameter estimation

in Chapter 6. In the first step, we determine the parameter values for the diffuse and spec-

ular reflectance models. In the second step we use a probabilistic framework to recover

the shape from the estimated reflectance components. We make comparisons between six

parametric reflectance models to decide which are the most suitable for the framework.

We also present two applications that utilise the estimation results: one is to observe the

reflectance properties variance on the surface, and the other is to use the estimates for

feature extraction.
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1.3 Thesis Outline

The remainder of this thesis is organised as follows:

In Chapter 2 we provide an overview of the relevant literature, which covers a num-

ber of research fields: polarisation, blind source separation, reflectance modelling, and

statistical methods. We also discuss other shape recovery techniques, such as shape from

shading, photometric stereo and geometric stereo. We compare these approaches to show

their advantages and drawbacks.

In Chapter 3 we introduce the method of blind source separation (BSS), and show

how to incorporate it into polarisation state estimation. In order to find accurate results

in a fast way, we consider Newton’s method for the iterative process, which guarantees

rapid (quadratic) convergence. We also demonstrate in the experimental section that the

method offers significant improvements over existing polarisation algorithms.

In Chapter 4 we extend the work in Chapter 3 in a number of ways. Firstly, we present

a detailed review of the polarisation vision theory, and propose a novel polarisation model

which consider both diffuse and specular reflections. Secondly, we provide an improved

criterion function of Newton’s method based on a different strategy in Chapter 3, which

solves the problems of the BSS method introduced in Chapter 3, and its robustness and

accuracy has also been improved.

In Chapter 5, we also explore the shape recovery method using the polarised light.

When the polarised light is transmitted through the polariser, it becomes fully polarised.

The specular reflection part can be fully eliminated using the setting of “cross-polarisation”.

In this case the methodology is changed accordingly. This leads us to develop a new

framework which firstly uses BSS for reflectance component separation, and then applies

a polarisation model built specifically for this case. The polarisation model is based on

Fresnel equation and Malus’s law, which describes the reflection of polarised light when

transmitting through the polariser in front of the viewer. It is also noted that the pro-

posed framework reduces the noise in the zenith angle estimate, which we show in the

experiments.

In Chapter 6 we consider an alternative way to estimate shape and reflectance prop-

erties using polarised light. Using the separated diffuse and specular reflection compo-

nents obtained in Chapter 5, we employ parametric reflectance models, that relate the
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1.3 Thesis Outline

reflectance intensity to the zenith angle when the parameter values are given. The re-

flectance models are only applied to either diffuse or specular reflections, and the two

zenith angle estimates from the two components should be identical as they describe the

same object. We use mutual information estimation and Newton’s method to find their

similarities and their parameter values measured by model fitting. The two estimates then

are combined using a probabilistic model. We choose six reflectance models and compare

their performance in this framework.

Chapter 7 gives the conclusion of the thesis. A brief summary is presented on the in-

troduced approaches, and we mention some applications that can use the proposed meth-

ods, and improvements which can be achieved based on this thesis.
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Chapter 2

Literature Review

In this thesis, our goal is to develop frameworks which recover shape and reflectance

properties using polarisation and statistical methods. The optic properties of polarisation

become different when the incident light is polarised or unpolarised. We present two

corresponding methodologies for the estimation. In Chapter 3 and Chapter 4 we show

the approaches using unpolarised light, whilst in Chapter 5 and Chapter 6 the proposed

methods use images taken under polarised light. In this chapter, we focus on the literature

of polarisation vision in shape recovery, and present a survey of the existing literature that

is involved in this thesis.

We commence in Section 2.1 with a brief introduction of polarisation and its theory

in computer vision domain. In Section 2.3 we give details of current shape reconstruc-

tion techniques and the related references. In Section 2.4 we provide literature related

to reflectance functions and modelling. In Section 2.5 we show the overviews of three

statistical methods, that are widely used in this thesis, which are blind source separation,

mutual information estimation and maximum a posteriori method.

2.1 Polarisation Light and Vision

In computer vision, polarisation is mainly recognised as a tool to separate reflectance

components. When the incident light is polarised, the specular reflection will maintain

the polarisation state, while the diffuse component that is scattered underneath or in the

surface will be depolarised. Therefore, the two reflectance components can be separated
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2.1 Polarisation Light and Vision

using two images acquired in the cross polarisation setting [25]. The first image is ob-

tained by placing a vertical polariser on the light source and a horizontal polariser in front

of the camera, while the second one is taken by placing both vertical polarisers on the two

devices. The specularities in the first image will have only diffuse component without

specularities, and the specular component can be calculated by the comparison of the two

images. The effect of using cross polarisation setting is shown in Figure 2.1.

It is noted that Fresnel theory also plays an important role when the incident light is

polarised, as the brightness of the image is also related to the surface normal informa-

tion and refractive index value. Therefore in Chapter 5 we propose a novel polarisation

model which includes the Fresnel coefficients and Malus’s law, that describes the prop-

erties when polarised light is reflected from the surface of objects. Diffuse and specular

reflection types of Fresnel magnitudes are included in the model as both cannot be neg-

ligible when using polarised light. Full details of the model can be found in Chapter 5,

which describes the relationship between degree of polarisation value, zenith angle and

refractive index information in Equation 5.11.

Nayar et al. [71] provided an algorithm for the separation of specular and diffuse

reflections from images. The method adopts both techniques in color detection and po-

larisation to improve robustness. Ma et al. [64] utilised the method of polarisation in

a higher level by using four spherical gradient illumination patterns to estimate surface

normal maps apart from reflectance. They also presented two polarised lighting tech-

niques, which allowed the diffuse and specular normal maps of an object to be measured

independently.

Polarisation can also be applied to infer information concerning the reflectance prop-

erties of surfaces. For instance, Atkinson and Hancock have shown in [7] how diffuse

polarisation can be used to estimate the bidirectional reflectance function. However, their

method is computationally demanding, using simulated annealing to estimate the BRDF.

There have been a number of attempts in the literature, aimed at surface orientation

estimation of objects using polarisation, where the incident light is unpolarised. The spec-

ular and diffuse reflections from the objects become partially polarised, and their values

analysed by placing a linear polariser in front of the camera and rotating its orientation.

Such effects can be exploited for shape recovery, which was first studied by Koshikawa
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2.1 Polarisation Light and Vision

(a) full specularity highlights

(b) highlight removed

Figure 2.1: The images of human palm, the first image has both specular and diffuse

reflections, while the other image has its specularities removed using cross polarisation

setting.
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2.2 Fresnel Theory

in [57]. He proposed a polarisation model based on Mueller calculus. The method is com-

plicated and requires circular polarised incident light. In early days of polarisation vision

Stokes vector is also used to represent the polarisation state, which has four components:

image intensity, degree of polarisation, phase angle and circular polarisation [43]. The

last parameter is negligible for most situations, and is not considered in this thesis [2].

Currently, Fresnel theory is widely used for shape from polarisation, since the zenith an-

gle of the reflected or re-emitted light can be constrained by the degree of polarisation,

and the azimuth angle can be computed from the phase angle. Compared with the early

work, methods based on Fresnel theory do not require circularly polarised lights and the

use of Mueller calculus. Section 2.2.3 provides summary of the approaches that apply

Fresnel theory for shape from polarisation.

The main problem of polarisation methods is the number of input images and the time

spent for acquisition and calibration. Using a digital camera and a linear polariser, three

or more images with different polariser orientations are needed [71]. The images must

be in alignment, and this can be difficult to achieve if the object under study is not static.

This problem is exacerbated for human subjects. One of the solutions to this problem

is to construct purpose built polarisation cameras which shorten the image acquisition

time [116] and by using PLZT (Polarised Lead Zirconium Titanate) devices [94]. In this

thesis we focus on solving the problem by reducing the number of images requried for

the measurement to three, which can also shorten the time of image acquisition.

2.2 Fresnel Theory

In this section, we present a thorough overview of Fresnel theory, which was firstly used in

polarisation by Wolff and Boult to describe the direct reflection of electromagnetic waves

with the given polarisation state of the incident light [117]. The technique is developed

based on Fresnel reflection, which was discovered by Augustin-Jean Fresnel in 1819 for

predicting reflection and refraction properties of light moving through different materials

[56]. Here we start by introducing refractive index, which is one of the important concepts

in Fresnel theory. Then we explore the theories of reflection and refractive rays that are

relevant to Fresnel theory, and the approaches that apply Fresnel theory to shape from
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2.2 Fresnel Theory

polarisation.

2.2.1 Refractive Index

Refractive index is the ratio of the light’s speed when it is transmitted from one medium

to the other. The value of the refractive index is theoretically constant for all points in

the surface, which generally ranges from 1 to 2.5. It is noted that the vacuum has the

refractive index of 1, theoretically there is no known media whose value is less than 1.

Refractive index varies in different wavelengths of incident light, and temperatures of

the observed materials. According to [75] the refractive index value can be regarded as

a complex number, its imaginary part represents the amount of light loss from material

absorption during refraction. In this thesis we only discuss the real part of the refractive

index, and ignore the influences of wavelength and temperature factors.

When the refractive index is measured, its value can be used for the process of ma-

terial identification, surface shape estimation using Fresnel equations, and image ren-

dering in computer graphics. However, the problem of estimating refractive index is

rarely addressed in computer vision and image analysis. The measurement is particularly

complicated when the shape of an object is not planar and surface normal has to be ob-

tained beforehand [90]. Existing methods can be found in [91] and [40]. Tominaga and

Tanaka [104] measured the refractive index using the Phong model. Later they proposed

another estimation method in [105] which obtains the refractive index value on specu-

lar highlights from different illumination and viewing directions. The method requires

high-cost devices and therefore cannot be implemented in our work.

Another attempt was addressed by Atkinson and Hancock [3], who used a refractome-

ter for refractive index estimation. During acquisition the device emits a laser light to the

object, which is reflected, then transmitted through a linear polariser and projected upon

a white screen. When the incident light direction is equal to the Brewster angle, denoted

as θB, the reflected light disappears as it is blocked by the polariser. The refractive index

value can be computed from the Brewster angle using Snell’s law n = tan θB, which is

introduced in the next section. The work of Saman and Hancock [90] focuses on using

photometric stereo, and assumes that the value of the refractive index is variable for dif-

ferent locations on the surface. The approach requires 19 images for each object, which
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is not suitable in our works.

Recently, we have proposed a blind source separation framework for estimating po-

larisation in [123, 124], which can also be used in recovering refractive index value. The

estimate is sensible for smooth objects such as plastic and fruit. However, the value be-

comes underestimated when the material of surfaces is sponge and plaster, as the degree

of polarisation value is reduced by their roughness. We show the details of BSS approach

in Chapter 3 and Chapter 4.

2.2.2 Refraction and Reflection

When the light arrives at a surface, part of its energy is reflected back to the air while the

rest penetrates through the surface. The energy proportion of reflection and transmission

can be predicted by Fresnel theory. The foundation of this theory is the Fresnel coeffi-

cients r⊥ and r‖, which has two components representing the lights that are perpendicular

and parallel to the plane of incidence respectively. Given the refractive index values of a

surface’s medium, the reflection and transmission coefficients are computed with the aid

of Snell’s law. The Fresnel reflection model is created by the Fresnel coefficients with the

degree of polarisation value, which can be applied for surface estimation.

Most of the lights from natural illumination are unpolarised, their wave oscillation

directions are randomly distributed [43]. The two Fresnel coefficient values are identical

for unpolarised light. The reflected light is partially polarised, which is a superposition of

two parts. One remains unpolarised while the rest becomes fully polarised. The oscilla-

tion directions of waves for fully polarised light are identical and related to the azimuth

angle of the surface normal. The orientation can be measured using a linear polariser,

so that only part of the light which fits a particular polarisation state can be transmitted

through the device.

The reflection and refraction of incident light when impinging on a surface is shown

in Figure 2.2. It is noted that denote ψi and ψt as the incident and transmitted angles,

the incident linearly polarised light can be fully transmitted through the medium with no

reflections when it follows ψi+ψt = 90◦ [52]. Such an indent angle is equal to Brewster’s

angle [28], which can be estimated using Snell’s law. Snell’s law, also called the law of

refraction, is used for predicting the incidence and refraction angle with the refractive
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index values of the media under study [12]. The equation is given as follows:

ni sinψi = nt sinψt (2.1)

where refractive index ni and nt represent the media of air and transmitted surface re-

spectively. When the incident light is in the air, we can assume ni ≈ 1. Substituting

ψi + ψt = 90◦ into Equation 2.1, the equation is rewritten as

tanψi = nt (2.2)

where it is concluded that the Brewster’s angle ψB can be estimated from the refractive

index value of surface’s medium, using ψB = arctannt.

Figure 2.2: The incident, reflected and refracted rays.

2.2.3 Shape Estimation

One of the main contributions in this thesis is to propose novel frameworks for shape from

polarisation based on Fresnel theory. In this section we presents a survey of the existing

literature in the above field, and discuss their advantages and limitations. There are two

common aspects in the recently published works on shape from polarisation methods [2].
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Firstly, polarisation state is measured by several input images taken on different polariser

angles. The intensity of the polarised image is changed by rotating a linear polariser

placed in front of the digital camera, or liquid crystals as introduced in [116]. Secondly,

“the phase of polarisation takes a central role” for the convenience of polarisation estima-

tion.

According to [3] Fresnel theory can be applied to both diffuse and specular reflection

types. Currently, there are two Fresnel polarisation models. These have been developed

based on their corresponding reflection properties. Details of these two equations are

presented in Chapter 4. The specular reflection is observed as a highlight area which does

not occur across the whole surface. Therefore a special device is needed during image

acquisition for the specular polarisation method. Saito et al. [88] resolve this problem

by placing the subject inside a spherical diffuser, which is illuminated by several external

lights in all directions. This ensures that the object receives the incident lights which are

diffused by the device, and specularities are occured across the whole surface.

Another issue for shape from specular polarisation is that there is an ambiguity prob-

lem when measuring the zenith angle information. Wolff recovers the shape by combining

the polarisation information from two views [115], Atkinson and Hancock [5] introduced

a novel framework which solves the ambiguity problem with the aid of reflectance func-

tion analysis and image processing techniques, and doesn’t require “salient surface fea-

tures to obtain correspondence”. The work of Miyazaki et al. [68] also takes pictures from

two different views and compares their polarisation data. The method is applied for trans-

parent surface, which is highly useful as shape information from transparent material is

particularly hard to be estimated when using other shape recovery methods, such as SFS

and stereo. Some geometric stereo techniques are also employed to improve estimation

accuracy.

Diffuse reflection is occurred when the light that arrives at the surface is not reflected

back directly, but re-emitted after several internal scattering in the surface. Compared

with the method described above, the advantage of shape from diffuse polarisation method

is that only a standard linear polariser, a light source and a standard camera are needed

during image acquisition. Besides, the diffuse Fresnel model is much simpler and does not

have the issue of the ambiguity problem. Early development includes the work of Wolff
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and Boult in [117], which demonstrated how the diffuse polarisation model is applied in

determining the surface orientation, especially in the part near the limbs of the objects

under study.

Miyazaki et al. [69] proposed a systematic framework which measures shape, re-

flectance and texture map from the object under investigation. Firstly the surface normal

is estimated from the degree of polarisation values using the Fresnel model, then the re-

flectance is measured using the simplified reflectance models and shape estimates. They

also introduced an algorithm which computed a shading-free texture map based on the

works of Tan et al. [102]. However, the framework requires large number of polarised

images, and constraints are imposed in reflectance estimation process. Drbohlav and

Sara [29] also proposed an approach using diffuse polarisation but the methodology lacks

credibility as the experimental object presented is only a single opaque sphere. Atkinson

and Hancock [3] introduced a shape from diffuse polarisation method which is similar to

the works of Miyazaki et al. . However, it considers the inter-reflection phenomenon on

the surface which is of significance for shape recovery, whilst in [69] it is ignored.

The drawbacks of using diffuse model are that the estimates are inaccurate due to

noise in the degree of polarisation (DOP) measurements, which are small at most loca-

tions on the surface. Besides, it is also quite sensitive to the value of refractive index,

therefore the measurement of refractive index information is required before the polari-

sation estimation, while as it can be negligible for specular reflection [2]. Rahmann and

Canterakis [83] [84] avoid the problem by using only the phase angle information of the

reflected light. The proposed method requires images taken from two views, and both

diffuse and specular reflections are considered. However, there is no demonstration of its

performance on objects with complicated geometry.

To solve the problem of weak tolerance on noise mentioned above, in this thesis we

concentrate on applying the Fresnel theory on images using polarised light instead, with

the aid of Malus’s law. As far as we are concerned there is few literature concerning this

topic, as the models using unpolarised light cannot be fitted in this case, and new polar-

isation model has to be proposed instead. Both the diffuse and specular reflections have

to be considered, as the specular reflectance component in the image is no longer negli-

gible. Besides, the specular component is fully polarised, while as the diffuse component
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Reference Proposed by Reflection Type Brief Description

[88] Saito et al. Specular Using a spherical diffuser in image acquisition to ensure

that specularities can cover the whole surface.

[115] Wolff Specular Taking images from two views for resolving the zenith angle ambiguity problem.

[5] Atkinson and Hancock Specular Based on [115], with reflectance analysis and image processing techniques.

[68] Miyazaki et al. Specular Based on [115], optimised for transparent materials.

[117] Wolff and Boult Diffuse Demonstrating how to estimate shape from diffuse polarisation.

[69] Miyazaki et al. Diffuse Based on [117], provides framework for reflectance, texture and shape estimation,

constraints are made in zenith angle histogram.

[3] Atkinson and Hancock Diffuse Based on [69], considers the inter-reflection phenomenon on the surface.

[83] [84] Rahmann and Canterakis Specular and Diffuse Discarding refractive index information, images are taken from two views,

no proof of validity to be applied for general objects.

Table 2.1: The list of shape from polarisation methods based on Fresnel theory.

remains depolarised. Mueller [70] investigates and compares the difference of reflections

when using polarised and unpolarised light, and shows how to eliminate specular surface

reflectance in both cases. However, the work only concentrates on reflectance separation

instead of shape recovery. Terrier and Devlamik [103] introduced a polarisation model

which considers Fresnel equations, and estimated polarisation orientations from images

using polarised light, with a polarising cube beam splitter to separate Fresnel coefficients.

Also this work does not consider the application of shape recovery. Debevec et al. [25]

proposed a method which recovers shape using polarised light by separating reflectance

components using cross-polarisation setting, and estimated the surface normal by BRDF

reflectance models. In Chapter 5 we proposed a novel polarisation model for shape re-

covery which considers the Malus’s law, and demonstrate its validity in the experimental

section.

It is also noted that one of the disadvantages of shape from polarisation methods is

that there is a two-way ambiguity when estimating azimuth angle from the phase of po-

larisation. Further discussion is in Section 3.2.2, in this thesis we attempt to resolve this

with the aid of shape from shading method, which is proposed in Section 6.3.3. Table 2.1

summarises the shape recovery methods mentioned in this section which include Fresnel

theory.
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2.3 Shape Reconstruction

Shape estimation from images is a key problem in computer vision which has been studied

for several decades. It is requisite for reflectance estimation, as it determines the geometry

of light reflection from an object. In this section, we only concentrate on the methods of

shape from shading and stereo, which are relevant to the proposed methods in this thesis.

The main difference between the two methods is that the stereo requires more than one

image in different acquisition conditions, while only one image is enough for shape from

shading. It is noted that shape from polarisation method can also be regarded as one of the

stereo techniques, as it also requires more than one image input, and faces similar issues

with stereo.

2.3.1 Shape from Shading

Shape from shading (SFS) was first formulated by Horn [45] for finding the brightness

equation, which is the reflectance model that is related to the surface normal estimates.

Many SFS methods use the Lambertian model for its simplification [119], but it pro-

duces incorrect results when recovering shapes from surfaces that have specular high-

lights. Ragheb and Hancock [81] focused on incorporating a specular reflectance model

using an iterated conditional modes algorithm, and separating reflectance components for

surfaces without colour variations.

The SFS method has been proven to be an ill-posed problem [98], meaning it is theo-

retically impossible to recover shape from general objects using only shading information.

Its performance is vulnerable to surfaces if containing complicated textures, as it is hard

to distinguish grey colour texture from the shading. There are also two problems for shape

from shading methods. First is the bas-relief ambiguity problem [11], in which the sur-

face height cannot be obtained directly using the method. Secondly, the convex-concave

ambiguity problem [18], from which SFS will produce incorrect results if it is unknown

whether the object has convex or concave surface. These two problems render it imprac-

tical for recovering shape from general objects. Therefore, assumptions should be made

on the surface geometry, illumination conditions and reflectance properties.

However, SFS still plays an important role in applications where strong constraints
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are made, accuracy is not highly required, and only one image can be provided. For

example, SFS was applied for measuring the surface height map of the moon [86], and

is now widely applied in terrain analysis [15]. Many SFS methods are developed in

face shape recovery, in which the shape of faces is known as convex, the albedo map

is not complicated, and the surface height is roughly known. Smith and Hancock [99]

introduced a framework that applies statistical methods on shape recovery, which can

recover satisfactory shape information.

2.3.2 Stereo

Stereo can be divided into two categories, photometric stereo and geometric stereo. Using

photometric stereo technology, the images acquired have different illumination directions,

while the location of the viewer is fixed. On the other hand, for geometric stereo the view-

ing directions are different in each input, while their illumination conditions are identical.

Compared with the polarisation-based method, which requires only one camera and one

light source, the requirements of devices for photometric stereo and geometric stereo are

much higher.

In the geometric stereo method, an algorithm is needed to match the pixels in one

image to the points in the other inputs having the same locations on the surface. There are

several methods suggested in literature for this matching problem, which can be classified

into two categories: local and global [19]. For local methods only small regions or points

in each image are compared, which include block matching, gradient-based optimisation

and feature matching [19]. The weakness of local method is that the process can be dis-

turbed by regions that have uniform texture. The block matching method compares only

a small specific region between the input images using variants of cross-correlation or

robust rank metrics. Gradient-based optimisation compare the regions using differential

equation and squared differences. Feature matching overcomes the weaknesses of block

matching and gradient method which are sensitive to locally ambiguous regions, that it

firstly chooses the regions for comparisons by feature extraction from the images. Lowe

introduced the shape-invariant feature transform (SIFT) in [63], in which the points are

matched regardless of the scale and rotation of images.

For the global method, the constraint is relaxed and focused instead on the entire im-
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age area. There are several stereo matching approaches which are regarded as global

methods: dynamic programming, intrinsic curves and graphs cuts. The most widely

used method is dynamic programming, which compares the scan-line of input images

and makes the ordering and smoothness constraints for optimisation. Graph matching is

the most promising method, which firstly transforms images into graphs and finds similar-

ities between the estimates. Details of method development can be found in [21]. Global

method can solve the problems that are occurred in local method, though they requires

more computational works and is thus less efficient. Further details are not discussed here

as the proposed methods in this thesis are not related to the geometric stereo.

The photometric stereo method uses the reflectance model that considers incident light

direction. The surface normal information is computed from the intensity values of the

images using the model, the estimates from all images are combined and the error is

corrected [122]. Ma et al. [64] introduced a rapid acquisition method for surface nor-

mal information using four images taken under different gradient illumination conditions.

The first three light directions follow x, y and z coordinate orientations. For the fourth

condition, incident lights are emitted from all directions which have identical brightness.

Thus the image is eliminated of shading and only albedo information remains. Basri et

al. [8] recovered shape information in uncalibrated photometric stereo, in which the light-

ing condition is unknown. Principal component separation is used to extract features from

the images acquired, which is transformed in the form of a four harmonics matrix.

Unlike geometric stereo, the photometric stereo method can be developed easily, and

produces results that are better than SFS. Another advantage is that the computation is

relatively fast compared with geometric stereo, as the process of matching is usually time-

consuming. However, the method of geometric stereo plays a better role in capturing

shape information from moving objects, as during image acquisition several cameras are

placed in different locations which can take pictures simultaneously.

There are two weaknesses for the stereo methods compared with the SFS method.

Firstly, it requires more than one image and in many cases such a requirement is impossi-

ble to meet. Secondly, the majority of stereo methods require complicated devices such as

the geometry dome and the light stage described in [25]. However, due to its performance

in acquiring accurate shape and reflectance information, the stereo method is now widely

22



2.4 Surface Reflectance Acquisition

used in the film industry and 3D game development. Besides, there are some technologies

of stereo which can reduce the size and cost of the acquisition device, such as Kinect [97].

2.3.3 Surface Height Acquisition

The methods of shape recovery introduced in this chapter generally only recover sur-

face normal information, which is the orientation on any positions of the surface in the

form of needle map. The height map, or sometimes regarded as the depth map, can

be computed using integration methods. The easiest implementation is to use gradient

computation, which can only be applied to synthesised images and is very sensitive to

noise [17]. Frankot and Challappa [35] developed a much more robust approach, which

also measures surface depth by using gradient fields and projecting them onto the near-

est integrable solution. The method is implemented by the Fourier basis function, which

makes it tolerable to noise.

The alternative way for measuring surface height, which is mostly used in this thesis,

is the shapelets method that was introduced by Kovesi [58]. The method is simple to

implement and tolerate noise much better than the approach proposed by Frankot and

Challappa. It treats the azimuth and zenith angles separately in the process of surface

height acquisition. Therefore, the method can deal with azimuth angle ambiguity, or even

produce the results without the need of azimuth angle estimate. It is very convenient for

shape from polarisation method, as the azimuth angle is hard to obtain. In Chapter 4 and

Chapter 5 we apply the shapelets method in recovering surface height from the zenith

angle estimates. The results produced have demonstrated its validity.

2.4 Surface Reflectance Acquisition

The reflectance of an object is generally defined as the angular distribution of light re-

flected from the object surface for a specific incident illumination [33]. Research into the

reflectance estimation in computer vision has attracted a significant amount of attention

for several decades. In this section we provide a brief summary on the existing literature.

There are two categories of methods in this field: firstly the measurement based on re-

flectance functions, which are described in Section 2.4.1 and Section 2.4.2. Secondly, we
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use the dichromatic model which assumes there are diffuse and specular components in

the reflectance, and reflectance can thus be measured using parametric reflectance models.

2.4.1 Reflectance Functions

Reflectance is usually quantified by either the bidirectional reflectance distribution func-

tion (BRDF) or the bidirectional surface scattering reflectance distribution function (BSS-

RDF). The BRDF was first introduced in the 1970s [73]. BRDF assumes that for every

material surface, the light is reflected from the same position as it arrives at the surface.

This approximation has the advantage in its simplicity, and is valid for describing the

properties of materials like metal, but fails for translucent materials and neglects the ef-

fect of subsurface scattering.

The function of BRDF contains six variables to be considered, two for incident angles

ψi, γi and two for reflected angles ψr, γr. The other two are the wavelength and polari-

sation of the incident radiation, which is considered as one parameter ehd for simplicity.

The equation is written as follows [73]:

Lr(ψr, γr) =

∫ 2π

0

∫ π/2

0

Li(ψi, γi) ehd(ψi, γi;ψr, γr) cosψi sinψi dψi dγi (2.3)

The BSSRDF extends the BRDF to incorporate the effects of subsurface scattering,

which relaxes the assumption and enables subsurface scattering. The light penetrates

through the surface at one position and is scattered in the subsurface until it is reflected

back at somewhere else. In computer graphics, using the BRDF reflectance models can

only render the appearance of objects which are hard and opaque without translucent

effects, such as metal and plastic. Reproducing reflectance properties for materials like

human skin and leaves is beyond its capacity. In theory, BSSRDF can be used to solve

the problem, but its weakness lays in this complexity when solving the full radiative

transfer equation. Early time of study in BSSRDF uses technologies of Monte Carlo ray

tracing [59] or photon mapping [27], which are all time-consuming.

The utility of the BSSRDF was significantly increased by Jensen et al. [53], who sim-

plified the subsurface light scattering problem by using a dipole approximation. BSSRDF

measurement is complex and applied mainly on specialised acquisition devices [114]. In
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this thesis the objects under study are assumed as dielectric materials, therefore only two

reflection coefficients are considered, which are specular and diffuse lights, and we only

focus on surface characteristics estimation using the BRDF.

Materials of metal are also not concluded for estimation, which is quite different from

the dielectrics in the reflectance properties [113]. The metallic surfaces have a distinct ap-

pearance from the dielectric materials due to the electrical productivity of metals, while as

the dielectrics lack. Besides, the reflectance of metal surfaces contains a high proportion

of specularity, whose brightness is independent of the incident angle. On the other hand,

dielectrics have a relatively low specular reflectance.

2.4.2 Reflectance Measurements

There have been a number of attempts in the literature aimed at accurately measuring

reflectance. The direct measurement of the BRDF requires a gonioreflectometer [60],

which is designed according to the formulation in BRDF, and has four degrees of mechan-

ical freedom to measure the complete function. The data acquired from comprehensive

BRDF measurements is quite essential for the correct modelling of surface reflectance.

However, the reflectance estimation using gonioreflectometer is difficult and high cost.

There is another device developed by the lighting systems research group at Lawrence

Berkeley laboratory (LBL), which used imaging technology for BRDF measurements and

produced the results relatively fast and simple. Ward [112] presented a detailed introduc-

tion about this LBL imaging gonioreflectometer, the methods for the measurements, and

also the problems that occurred. The technology is limited in that it can only estimate

the reflections near grazing angles, and does not have much capacity in measuring “more

polished surfaces with sharp specular peaks”.

Later, Marschner [67] introduced a new image-based process for measuring the BRDF

of homogeneous surfaces ”rapidly, completely, and accurately”. In the method several

pictures need to be taken in various directions of illumination light with constant view

and posture of the object. It only needs a light source and a digital camera, and the

calibration process has to be done beforehand. Marschner also measured the reflectance

of human skin, and put a baseball cap on the subject’s head to be captured, to be the

reference for the relative positions of the camera, the human subject and the light source.
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Sato et al. [91] developed a method which resembles geometric stereo. It can acquire the

images with the same source light locations and directions while the sample rotates, and

uses a simple reflectance model to fit to the data.

Measuring subsurface scattering properties of the skin is necessary, as the informa-

tion in age is hidden behind the thickness of skin layers [30] [24], which is one of the

main aspects that affect the lights scattered inside the skin. Revealing such information

would help the research in finding the relationships between age and the reflectance of the

subjects. Schmitt et al. [92] measured reflectance of skin surface by placing two optical

fibres on both sides of the subject, and used a photoamplifer to measure the outgoing ra-

diances from the fibbers. Weyrich et al. [114] presented a measurement system using the

BSSRDF model, and assumed that the surface is homogeneous and of a high density. The

system uses a linear fibber detector designed by [32], which was proved to be suitable for

human skin subsurface scattering reflectance measurements.

Debevec et al. [25] introduced the method to measure the reflectance variations in hu-

man skin from thousands of light sources with different viewpoints. Then they used the

database as a reflectance model to render the image of the subject under different illumi-

nation backgrounds. The rendered images are hard to distinguish from the pictures taken

from the real-world, but the costs of the experiment and establishment of the database is

quite huge.

2.4.3 Diffuse and Specular Reflections

In order to provide a simpler and more practical way for reflectance estimation and im-

age rendering in computer vision, Shafer [93] proposed the dichromatic reflection model

(DRM) which is an approximation to the BRDF function. In this case, parametric re-

flectance models are employed for shape recovery and reflectance measurements. The

model assumes that reflection can be classified into two categories: diffuse and specular.

Consider I as the image intensity, and Is and Id as the specular and diffuse components,

the equation is written as follows:

I = Is + Id = ksfs(ψs, γs,Es) + kdfd(ψd, γd,Ed) . (2.4)
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where ks and kd are specular and diffuse albedo maps representing colour variations in-

dependent of shading, and fs and fd are reflectance models related to the zenith angle ψs

ψd, azimuth angle γs γd and parameter set Es Ed respectively. When light arrives at a

surface, part of it undergoes isotropic subsurface scattering before being re-emitted which

is denoted as diffuse reflection. The remainder is reflected in a specular manner. Figure

2.3 shows their way of reflecting. It is noted that the intensity distribution of specular

reflection is affected by the viewing direction, while it is not for the diffuse case.

Figure 2.3: The reflections of diffuse (left) and specular (right).

The specular spike is the area on the surface which is highlighted, whose direction

is decided by both viewing and incident light orientation. Denote
−→
L as the light-source

direction, and
−→
V as the viewing direction, the reflected orientation of specular spike is

−→
NS =

(
−→
L +

−→
V )

||
−→
L +

−→
V ||

. (2.5)

The geometry of the specular reflection is shown in Figure 2.4.
−→
H is the bisector

of angle between
−→
L and

−→
V , proposed by Blinn as one of the parameters in the Blinn-

Phong model [14] for describing the specular reflectance. It is shown in the figure that

viewing direction must be known before estimating
−→
NS as, it is influenced by both

−→
L

and
−→
V . Compared with the diffuse components, it is more difficult to measure surface

normal information from specular reflections. In this thesis we simplify the problem that

all the images used for experiments are acquired following the retro-reflection setting, as

the viewing and light directions are identical.

The ratio of intensities between specular and diffuse in the image is mainly decided by

the surface roughness. In extreme case that the object is made of metal and ideally smooth,

there are no diffuse reflections available, and the specular component becomes a tiny
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Figure 2.4: The direction of specular reflection from the surface.

shinning highlight on the surface. On the other hand, for surfaces of full roughness such

as plaster and terracotta, hardly any specularity can be observed and the whole reflectance

intensity follows Lambert’s law.

Only a few surfaces have only either diffuse or specular reflection [34]. When per-

forming reflectance estimation from images, the process can be simplified if the two com-

ponents are separated beforehand. Polarisation is the ideal solution for this work. The

components can be separated accurately and robustly following the cross polarisation set-

ting introduced in Section 2.1. The approach does not need information on refractive

index, however it requires at least two polarised images whose polariser angles are 0 and

90 degrees. However, in many cases only one image input is available for estimation.

Ragheb and Hancock [78] present the method to remove highlights, or specul1ar parts,

in the pictures without using polarisation but method of SFS instead. There is only one

image required but the method is only suitable for objects without complicated textures.

Lin and Lee [61], on the other hand, separate the diffuse and specular components

using photometric stereo, whilst simultaneously recovering surface height. In common

with Ragheb and Hancock, they also used the Cook-Torrance model for reflectance model

fitting, but eventually opted for the Lafortune model for reasons of greater flexibility

when dealing with multiple reflection components. Wu and Tang [121] have extended this

method to deal not only with specular and diffuse components, but also with a subsurface
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scattering component.

After reflectance components separation, we employ parametric reflectance models

for shape recovery and reflectance measurements. In this thesis we use the following

models which are widely used: Lambertian model [34], Phong model [76], Torrance-

Sparrow model [106], Cook-Torrance model [22], Oren-Nayar model [74] and Beckmann

and Kirchhoff model [9].

2.4.4 Parametric Reflectance Models

There are many parametric reflectance models available in the literature, among which the

simplest and best known is probably Lambert’s law [34]. This model of diffuse reflectance

ignores the presence of roughness and specularities, together with all other reflectance

properties, except the albedo and the two orientations of incidence and surface normal of

the object. Denote kL as the diffuse albedo map, and ψ the zenith angle, the zenith angle

distribution of Lambertian model is written as

IL(ψ) = kL cosψ . (2.6)

The Phong model, which focuses on modelling the distribution of the specular re-

flectance component, is also well known for its parametric simplicity [76]. It is one of

the oldest reflectance models that consider specular reflection. The Phong model assumes

that the surface is smooth, and controls both the shininess of the specular highlight and the

size of the specularity area on the surface by the parameter eP . It is an empirical model,

which was not developed following physical laws. Denote kP as the specular albedo

maps, the equation of specular term used in this thesis for the zenith angle distribution of

Phone model is:

IP (ψ) = kP coseP ψ . (2.7)

Roughness is an important reflectance property, which leads modifications through

angular blur of the specular component together with the intensity distributions for the

diffuse component. There are two reflectance models that use parameters to specify the

roughness of a surface. The first is the Torrance-Sparrow (T-S) model [106] and the
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second is the Oren-Nayar model [74]. The T-S model simplifies the reflectance mea-

surements by assuming that the surface consists of mirror-like micro-facets in random

orientations. It was developed for accurate performance, especially for non-Lambertian

objects. Therefore, the equation of the T-S model is much more complicated than that

of the Phone model. In order to obtain more robust results, the reflectance equation is

simplified following two constraints. Assuming that the value of the Fresnel term is equal

to one, and denoting kTS as the specular albedo map, the zenith angle distribution of the

specular term of simplified reflectance model becomes

ITS(ψ) =
kTS
π

Y ·OTS(ψ)

cos2 ψ
. (2.8)

where Y is the geometrical attenuation factor given by Y = min[1, 2 cos2 ψ], and OTS is

the facet slope function, modelled using a Gaussian distribution given by

OTS = exp(−ψ2/e2
TS) . (2.9)

Cook and Torrance (C-T) modified the T-S model by using the Beckmann distribution

to model the facet slope distribution. The improvements in the Cook-Torrance model

make it more robust for the reflectance estimation process. The facet slope function of the

C-T mode is denoted as OCT , which is given as follows [22]:

OCT =
exp(− tan2(ψ)/e2

TS)

πe2
TS cos4(ψ)

. (2.10)

Another reflectance model based on the C-T model was proposed by He et al. in

[42], which is a comprehensive physical model that considers many physical phenomena

such as polarisation, surface roughness, masking/shadowing and energy. Ngan et.al. [72]

conducted a survey of the existing BRDF reflectance models, which are the Phong model,

the C-T model, the T-S model, the He model and etc. . They compared the performance

of the reflectance models using a metal ball. The experimental results showed that the

C-T model and the He model performed best. In this section, we decided not to use the

He model in the reflectance model, as the complexity of the equation is unsuitable for the

reflectance fitting process.

The Oren-Nayar (O-N) model has been proven to accurately predict the reflections

of rough surfaces, such as concrete, plaster, sand and etc. . The model has extended
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Lambert’s law by adopting the roughness parameter, and has estimated the reflectance by

derivation from the micro-facet model, introduced by Torrance and Sparrow in [106]. The

roughness property of the surface is specified by the parameter eON , which is the standard

deviation value of the Gaussian distribution for the facet slope, with ranges within [0, π
2
].

Denote kON as the diffuse albedo map, we simplify the zenith angle distribution of O-N

model, which is given by

ION(ψ) =
kON
π

cos(ψ)[α(eON) + β(eON) sinψ tanψ] . (2.11)

where α and β are parameter coefficients for the O-N model defined in [74]. The approx-

imation of the two coefficients is written as

α(eON) = 1− 0.5
e2
ON

e2
ON + 0.33

, (2.12)

β(eON) = 0.45
e2
ON

e2
ON + 0.09

. (2.13)

Another reflectance model that also considers roughness was introduced by Beckmann

and Kirchhoff (B-K) [9]. The B-K model is a purely physics-based model, which is well

known in optics physics. However, limited work has been done in applying the model to

reflectance estimations. In [82], the B-K model is suitable for predicting the reflection

of a surface that is either smooth, slightly rough or very rough. The equation of the

B-K model is different in these two cases, in this section we consider only the one for

estimating slightly rough surface.

The weakness of the B-K model is that it fails to predict the reflection of wide-angle

scattering and large angles of incidence [80]. Vernold and Harvey proposed a modified

version of the B-K model which solves the problem [82]. They replaced the geometrical

factor in the B-K model with a Lambertian term (cosψ). This modification relies on

empirical observations, and does not follow any physical laws. In [82] it is shown that,

for some materials the B-K model performs better for reflectance estimation than the O-

N model. Here, we apply the Vernold-Harvey version of the B-K model for estimating

specular reflections, and the performance is demonstrated in [80]. Ragheb and Hancock

proposed a simplified B-K model following several constraints [82], given as:
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IBK(ψ) =
e2
T e

2
λ

16πeAe2
ρ cosψ

exp(
−e2

T tanψ2

4e2
ρ

) . (2.14)

where the roughness parameter of the B-K model is denoted as eρ, which is the root-mean-

square height deviation of the surface. eλ is the wavelength. eA is the parameter which

determines the roughness category of the plane sheet [100]. eT is the correlation length

that the values of either the Gaussian or the exponential correlation function is lower than

1/e. Assume that the parameter eA is a constant value, and denote kBK = e2
λ/(4πe

2
A) and

eBK = e2
T/(4e

2
ρ), the simplified zenith angle distribution of the B-K model is given as:

IBK(ψ) = kBKeBK exp(−eBK tan2 ψ)/ cosψ . (2.15)

In Chapter 6 we introduce a shape and reflectance measurement framework, in which

there are two reflectance models required to estimate from diffuse and specular compo-

nents respectively. In this thesis they are chosen from the above six models, and several

experiments have been conducted to demonstrate if which are mostly compatible with the

proposed framework.

2.5 Statistical Methods

One of the novel contributions for the shape and reflectance estimation methods in this

thesis is that the algorithms are developed with the aid of statistical methods. Therefore,

the methods proposed have improvements in robustness and accuracy over traditional

ways. In this section we provide literature for the following three technologies, which are

mostly used in this thesis: blind source separation, mutual information estimation, and

maximum a posteriori method.

2.5.1 Blind Source Separation

The method of blind source separation (BSS) was first formulated in [54]. In BSS we aim

to extract the underlying source signals from a set of linear mixtures, where the mixing

matrix is unknown [55]. The input mixture is regarded as a multivariate data matrix, and

linear transformations are applied to identify the underlying geometry. There are several
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widely used linear transformations, including principal component analysis (PCA) and

independent component analysis (ICA). PCA locates the directions of maximal variance

in the input matrix. ICA estimates the similarities between the extracted components

using a mutual information criterion and produces a more robust separation.

BSS has been exploited in several domains including signal processing, neural net-

works and speech source separation. In computer vision, BSS has been applied to a num-

ber of reflectance separation problems, including the removal of reflections from trans-

parent glass surfaces. Examples include the works in [31] and [16], which use sparse ICA

to perform the separation and achieve better results at the expense of a more complicated

algorithm. Umeyama and Goldin have extended the method of Bronstein et al, using two

polarised images, and separated the diffuse and specular reflectance components [110].

The method requires two polarised images using different polariser angles, mutual in-

formation estimation is applied as a criterion function for separation, and the unknown

polariser orientation information can also be obtained. However, there are two problems

with their method. Firstly, it can only be used in cases where the brightness of specular-

ities for the two input images is different, which is difficult to meet if the source light is

unpolarised, for example the input images shown in Figure 3.7. Secondly, the information

contained in the phase angle is not used. This is an important factor in polarisation vision,

and compromises the accuracy of the separation. Our work of BSS method is based on the

method of Umeyama and Goldin, which was developed following the polarisation vision

techniques, and solved the problems addressed above.

2.5.2 Mutual Information Estimation

Mutual information is one of the main topics in information theory, its notion is discussed

in [1, 23]. In computer vision and image processing the techniques of measuring mutual

information are generally applied in image similarity estimation [87], image alignment

[111] and image registration [65]. It was first developed by Woods et al. [118] in the

1990s, and further extended by Hill et al. [44]. They developed a 2D joint histogram

that describes intensity distributions of two images and their relationship in plots. The

advantage of using mutual information is that large differences in small areas of image

inputs only have a little influence on the similarity result, therefore it can tolerate error.
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However, it considers only the values of pixels instead of their positions; therefore, the

method is unable to estimate image geometry similarity. Russakoff et al. [87] solved

this issue by introducing the regional mutual information method which also considers

neighbourhood regions of pixels.

The methodology of mutual information is based on the concept of entropy, which is

regarded as the amount of information the observed input can provide [77]. For example

the image, which has the constant intensity value for all pixels, has the lowest entropy

value. There is almost no information inside. On the other hand, when the intensities of

image are randomly distributed, a high entropy value can be yielded from it. It was origi-

nally studied in the domain of information theory, and Hatley [41] applied it in computer

vision for measuring information quantity during image transmission. The weakness of

the method proposed is that it assumes all information has the same priority, which makes

it unusable in application. Shannon improved the model in [96] which has weighted co-

efficients computed by the probability of the information that occurs. Shannon entropy is

now widely used during the process of mutual information estimation, which is presented

in Chapter 4.

2.5.3 Maximum a posteriori Estimation

The optimisation method is applied for the process of estimating maximum a posteriori

(MAP) probability information. Besag [13] introduced the iterated conditional modes

(ICM) algorithm for analysis on the dirty pictures. The ICM method is an iterative process

which calculates local maximum results following a “greedy strategy”. It is simple and

effective, though the optimisation results are notoriously poor.

Ragheb and Hancock [79] developed a MAP estimation method for separating specu-

lar and diffuse reflectance by estimating their mixing proportions using a Bayesian frame-

work, and hence recovered improved shape from the diffuse component. However, the

method is confined to situations in which the there is little variation in surface albedo,

i.e. there is little or no surface texture. This renders it in-practical for real world applica-

tions. However, their ideas do provide the starting point for a more robust probabilistic

algorithm based on the use of polarisation information. In this thesis we have developed

several ICM methods for estimating MAP using probabilistic models.
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2.6 Conclusions

In this chapter we have presented literature in computer vision which is relevant to our

work. The methods are compared with the alternatives, and we have analysed their

strengths and limitations. We summarise them in this section and propose our possible

solutions, which are the contributions introduced in the subsequent chapters.

Shape and reflectance estimation has been studied for decades and huge amounts of

methods have developed accordingly. In this thesis we investigate four shape reconstruc-

tion methods, which are SFS, photometric stereo, geometric stereo and shape from po-

larisation method. All of these approaches have their own advantages and weaknesses.

SFS is widely used for its low requirements of acquisition devices, and only one image

is enough for the process. However the method itself is an ill-posed problem [98]. Many

constraints have to be made and its applications are usually limited to constant-albedo

Lambertian surfaces and simple illumination environment. The shape estimate also lacks

accuracy and is not reliable enough to be used in further processes.

Photometric stereo and geometric stereo, on the other hand, have the strength which

the SFS method lacks. As previously mentioned, both methods perform perfectly in

recovering shape information, but also require high-cost devices for acquisition. The

method of geometric stereo is more difficult to develop as images taken from cameras in

different locations have to be matched. In this thesis we have mainly used polarisation

technologies, and shape from shading methods in some parts of the proposed frameworks.

We haven’t used stereo methods as those are beyond the scope of this thesis.

Polarisation has been demonstrated to be an effective method for shape reconstruction

using Fresnel theory. After three polarisation states are measured from several polarised

images taken in different polariser orientations, there are two Fresnel polarisation models

available for computing zenith angle from value of degree of polarisation. The diffuse

model is preferred in polarisation vision, as the ambiguity problem for specular model has

to be resolved and the spherical diffuser introduced in [68] is a prerequisite for acquisition.

The advantages of the polarisation-based method are as follows: firstly, unlike stereo

methods, it only requires one light source and one camera for capturing photos, thus the

cost for the experiments can be greatly reduced. Secondly, the results produced are far

superior to the SFS method. However, it still needs several image inputs which cannot be
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taken simultaneously, which might be troublesome for non-static subjects, such as human

faces and palms. Another problem is the ambiguity problems for estimating azimuth

angle from the phase angle estimate. Besides, the shape from polarisation method cannot

produce results with the same accuracy as the stereo.

Broadly speaking there are two different ways of reflectance estimation: using spe-

cial devices such as the gonioreflectometer or geometry dome for measuring reflectance

functions directly, or using dichromatic models, which is more convenient and low-cost.

In this thesis, we choose the solution of dichromatic models and applied parametric mod-

els for the measurements. According to the dichromatic model, the reflectance can be

classified into two components: diffuse and specular. The two components have their

corresponding reflectance models which can compute zenith estimate from component

intensity, as shown in Section 2.4.4. The proposed method is based on an assumption,

that if the parameter values of the chosen models are correct, the two zenith angle esti-

mates from the diffuse and specular components become identical.

Using mutual information estimation and Newton’s method, we develop an iterative

method, that in each step the zenith angle estimates from diffuse and specular components

are compared, and the parameter values of the reflectance models are adjusted using New-

ton’s method, to make the two estimates as close to each other as possible. The criterion

function in the Newton’s method is the mutual information estimation of the two zenith

angle results. Details of the contributions are presented in 6.

In this thesis, we used polarisation-based methods for shape and reflectance estima-

tion, as it perfectly suits our needs. Although the polarisation approaches have problems

as described above, they can be resolved with the aid of statistical methods. We used the

BSS method proposed in Chapter 3, so that the number of images required is reduced

to only three. This can greatly speed up the acquisition process and thus the alignment

problem is avoided. In the BSS algorithm we applied mutual information estimation to

measure the similarities, which gives a better result than least square fitting as also shown

in Chapter 3. We have constructed three probabilistic models using the ICM method

presented in Chapter 4, Chapter 5 and Chapter 6.
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Chapter 3

Polarisation Estimation using Blind

Source Separation

In this chapter we focus on estimating polarisation status from images taken under un-

polarised light. Traditional methods apply the Fresnel theory on shape from polarisation,

which use the Fresnel coefficient for predicting ratios of reflected and transmitted light

when it arrives at a surface. Theoretically three images are enough for polarisation mea-

surements. However, in practice more images are required for de-noising.

We propose a novel method which incorporates statistical methods (especially BSS)

and Newton’s method into the estimation of the polarisation image. It does not require the

polariser angle information, thus we can use polarising filters for shape from polarisation

instead of relying on polariser, making the technology of shape from polarisation more

convenient in some applications. The two key ideas underpinning the approach are to

use weighted singular value decomposition (SVD) to compute the polariser angles, and

to use a mutual information criterion function to optimise the weights. We calculate the

surface normal information using the Fresnel equation, and iteratively update the values

of weighting matrix and refractive index to a recover surface shape. In this chapter we

also give a brief overview on the polarisation vision and BSS which are relevant to the

proposed method.

As mentioned in Chapter 2 the Fresnel theory can estimate surface shape from both

diffuse and specular reflections. Both the two corresponding Fresnel models have advan-

tages and disadvantages and can be applied in different cases. In this chapter we only
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focus on the diffuse model, as it only requires simple image acquisition devices. In Chap-

ter 4 more sophisticated discussions and analysis are presented, in which we develop

another criterion functions for Newton’s method, and a novel Fresnel model is proposed

which considers both diffuse and specular reflections.

Contribution

The principal contributions in this chapter are:

• Commencing from the method of Umeyama and Goldin introduced in Section 2.5.1,

we show how to accurately estimate polarisation state without prior knowledge of

the input polariser orientations.

• Our method is based on a mutual information criterion, which is optimised with re-

spect to determine the polariser angles and other parameters using Newton’s method

rather than exhaustive search, thus giving a relatively fast iterative procedure.

• Our method is also referred from the Fresnel theory. This leads to an iterative

process that interleaves the processes of estimating shape based on the current po-

larisation state measurement, and updating the polarisation estimation based on the

current shape estimate.

• We also show how to use the proposed method to estimate refractive index, and

prove that the results are physically reasonable.

Chapter Outline

The outline of this chapter is organised as follows. We commence by introducing polar-

isation vision and BSS, and show how to incorporate them into the proposed method in

Section 3.1. Section 3.2 presents a brief overview of Fresnel theory and how it is applied

to estimate the zenith and azimuth angle from the polarisation state estimates. Section

3.3 provides the iterative process based on Newton’s method, and Section 3.4 shows the

details of experimental results.
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3.1 Polarisation Estimation

3.1 Polarisation Estimation

In this section we show how to estimate polarisation using BSS. We commence by us-

ing a sequence of images collected with varying polariser angles. From these we aim to

robustly estimate the polarisation states from the reflected light, which is also known as

polarisation image. The polarisation image plays an important role in this thesis which

consists of three components, namely mean-intensity Ī , degree of polarisation (DOP) ρ

and phase φ. It is noted that human vision is insensitive to the phase and DOP intensi-

ties. Wolff [116] measured the polarisation image information from only three images

collected with polariser orientations of approximately 0, 45 and 90 degrees. Denote I0,

I45 and I90 as the three inputs, the three parameters of polarisation are obtained using the

following equations

φ = (1/2) tan−1(
I0 + I90 − 2I45

I90 − I0

) + 90◦ (3.1)

if (I90 < I0)[ if (I45 < I0)φ = φ+ 90◦ else φ = φ− 90◦] ,

Ī = I0 + I90 , (3.2)

ρ =
I90 − I0

(I90 + I0) cos 2φ
. (3.3)

The application is limited due to its specific requirement on polariser angles. An alterna-

tive approach is to use the transmitted radiance sinusoid (TRS) equation [117]. Here more

than three images can be used to estimate the polarised image and eliminate the effects of

noise. However, the method cannot be applied when the subjects are not static, as it will

become problematic for image alignment. Recently [89] introduced a method to estimate

the polarisation image in a robust way, which improves the results when the number of

the images taken is large, but still performs poorly when only three polarised images are

used in computation.

3.1.1 Observations through the Polariser

As stated in Chapter 2, polarisation is the wave properties of light describing its oscillation

directions. When the unpolarised light impinges on a surface, part of the light is reflected

which becomes partially polarised. Such effects can be observed by using a linear polar-
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3.1 Polarisation Estimation

ising filter, as the light intensity has a transmitted radiance through the polariser, which

oscillates sinusoidally as the polariser angle θ is rotated [117]. The polariser orientation

ranges from 0 to 180 degrees. The pixel brightness is maximum when the polariser is

aligned with the phase angle (which corresponds to the angle of maximum transmission),

and is minimum when the polariser angle is set to the Brewster angle (at which the light

becomes perfectly polarised). Denote Imax as the maximum brightness, Imin the minimum

brightness and φ the phase angle of the reflected light, the measured intensity follows the

TRS equation [71]:

I(θ) =
(Imax + Imin)

2
+

(Imax − Imin)

2
cos(2θ − 2φ) , (3.4)

=
(Imax + Imin)

2
+

(Imax − Imin)

2
cos 2θ cos 2φ+

(Imax − Imin)

2
sin 2θ sin 2φ .

where θ is the polariser angle. Figure 3.1 illustrates this relationship. It is noted that

without the linear polarised component the TRS equation becomes a constant value for

every polariser angles, whereas if there is no unpolarised component the value of Imin

reaches 0.

Figure 3.1: The equation of transmitted radiance sinusoid.

In this chapter we work with three Nx×Ny images captured under different polariser

orientations θ1, θ2 and θ3. Each image is converted into a long-vector of length NxNy.
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3.1 Polarisation Estimation

The long-vectors are the columns of the observation matrix X , which is composed of the

following column vectors:

X = [x1, x2, x3] . (3.5)

where xi is the long-vector formed by stacking the columns of the i-th polarisation image.

Consider the matrix

C = [(
Jmax + Jmin

2
), (

Jmax − Jmin
2

cos 2φ), (
Jmax − Jmin

2
sin 2φ)]

= [c1, c2, c3] . (3.6)

where Jmax and Jmin are long-vectors of length NxNy that contain Imax and Imin as ele-

ments. The three components of C are represented by c1, c2 and c3, hence we can have

Jmax, Jmin and φ by

φ =
1

2
tan−1(

c3

c2

) , (3.7)

Jmax = c1 +
√
c2

2 + c2
3 , (3.8)

Jmin = c1 −
√
c2

2 + c2
3 . (3.9)

Define A as the mixing coefficient matrix determined by the three polariser orienta-

tions, which is written as

A =


1 cos 2θ1 sin 2θ1

1 cos 2θ2 sin 2θ2

1 cos 2θ3 sin 2θ3

 . (3.10)

Hence c1, c2 and c3 can be determined by

X = CAT . (3.11)

As the input matrix X is known, the polarisation state can be obtained if the three

polariser angles measurements are correct.
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3.1.2 The Method of Blind Source Separation

In this paper we use the method of BSS to find the unknown parameters (i.e. the polariser

angle settings). It is generally applied to separate mixed signals into independent compo-

nents, where the mixtures are linear. Usually problems of BSS are solved by ICA, which

was developed for extracting features from non-linear data [50]. Detailed information

about ICA and its developments are summarised in [49]. The method is extended from

PCA, which was invented by Karl Pearson as a linear dimension reduction technique [51].

The difference between PCA and ICA is that PCA finds uncorrelated components

from the matrix with the largest variances, therefore it can be applied in de-noise process.

On the other hand, the components extracted from ICA may not be the principal features

from the input data, but as nearly statistically independent of each other as possible. There

is no order among the components computed from ICA. Several methods in computer

vision utilise ICA for computing independent components, e.g. Tsumura et al. [107–109]

developed a framework of skin colour from Asian subjects and applied ICA to separate

hemoglobin and melanin pigmentation layers. In brain signal processing it is used for

analysing EEG and MEG signal process [66].

Our aim is to find the correct mixing matrix A, in which the values Jmax, Jmin and

φ follow the constraints provided by the theory of polarisation. For our framework the

approach of ICA is inappropriate to be applied as there is no proof that the three compo-

nents c1, c2 and c3 are independent. To implement BSS, we commence by applying SVD

to the data matrix X , which is also known as Karhunen-Loève transform, or the Hotelling

transform [26]. This method is one of the main steps from PCA, and is generally used to

decompose the input matrix into two smaller matrices. We choose it for feature extrac-

tion as it can eliminate noises and unwanted features from the image inputs, and produce

robust results.

When performing component analysis, it is normal to centre the data matrix. How-

ever, here we cannot perform this operation since it will distort the diffuse reflectance

component. Also, as [110] shows, using SVD for component separation without whiten-

ing remains valid according to experimental results. The SVD of the data matrix X gives

X = UDV ′T . (3.12)

42



3.1 Polarisation Estimation

where U is the NxNy×3 left eigenvector matrix, D the 3×3 diagonal matrix of singular

values, and V the 3 × 3 right eigenvector matrix. We let S′ = U D to simplify the

equation. V ′ is given as

V ′ =


v11 v12 v13

v21 v22 v23

v31 v32 v33

 . (3.13)

Our aim in this chapter is to adjust V ′ and S′ so that they can be equal to A and C,

which are the two matrices we need to obtain. There are two steps needed in the proposed

method, firstly the determinant values of V ′ and S′ are corrected, and secondly we use

a weight matrix W to adjust the values in the two matrices, while as their determinants

remain unchanged. We employ a scaling coefficient µ in the first step, V and S are the

results using the following equations

S = µS′ , (3.14)

V = µ−1V ′ . (3.15)

When the determinant of S is correct, the component s1 in S = [s1, s2, s3] should

be equal to c1 in C = [c1, c2, c3], which is the mean value of maximum and minimum

intensity as shown in Equation 3.6. Here we assume that the mean value of three input

images denoted as x̄ = (x1 + x2 + x3)/3 is equal to c1, therefore we have a simple

expression for computing the scaling factor µ:

µ = mean(
x̄

s1

) . (3.16)

In the second step, denote W as a 3× 3 weight matrix, then we can write

S = CW−1 , (3.17)

V = AW T . (3.18)

We impose the constraint that the value of the determinant of W is unity, which leads

to the following condition
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3.2 Shape Estimation

|A| = |V | . (3.19)

where we assume that the correct value of the determinant of A is equal to that of V , as

given in [110]. Experimentally, we find that without this constraint, the estimation process

becomes unstable and the recovered results are inconsistent with the image contents. Thus

the elements of S can be determined by SVD, giving the unknown elements of the matrix

A which are determined by θ1, θ2 and θ3. In fact, the value of θ3 can be obtained when

the values of θ1 and θ2 are known using Equation 3.10, Equation 3.18 and the constraint

Equation 3.19, which gives

|


1 cos 2θ1 sin 2θ1

1 cos 2θ2 sin 2θ2

1 cos 2θ3 sin 2θ3

 | = |V | . (3.20)

Therefore, the number of parameters required to be estimated is reduced to 2.

3.2 Shape Estimation

When the incident light is unpolarised, after subsurface scattering and remission from the

surface it becomes partially polarised. Generally speaking the polarisation state of the

outgoing light has four degrees of freedom, which are the intensity of reflected light, the

phase angle, DOP and the circular polarisation, which is considered to be negligible here.

The mean intensity represents the image brightness if acquired without the polarising

filters. The phase angle is the polariser orientation that maximum light transmission is

permitted. As the oscillation orientation of the polarised light corresponds to the azimuth

angle, it is also related to the value of the phase angle.

The degree of polarisation measures the proportion of how much initially unpolarised

light becomes linearly polarised on reflection. It becomes 1 when the light is fully po-

larised, and 0 if unpolarised. Its value is determined by Imin and Imax, the maximum

and minimum intensities of the TRS, which is described in Section 3.1.1. The difference

Imax−Imin shows the magnitude of reflected light that is linearly polarised. The definition

of DOP is given as follows [3]:

44



3.2 Shape Estimation

ρ =
Imax − Imin

Imax + Imin

. (3.21)

3.2.1 Zenith Angle Estimation

In this chapter we choose the diffuse Fresnel polarisation model for surface estimation,

as the equation has no zenith angle ambiguity problem and the devices for image acqui-

sition are simple and low-cost. The model is based on the works in [3], [117] and [69].

According to the Fresnel theory [117] the diffuse polarisation occurs when part of the un-

polarised light penetrates the surface, gets refracted back after subsurface scattering and

becomes partially polarised. Therefore, the DOP value is relatively lower than specular

polarisation, and harder to measure. It is also noted that multiple scattering from micro-

facets can also produce diffuse reflection, which although small for most of the smooth

materials, cannot be predicted by the diffuse polarisation model.

As mentioned in Chapter 2, the Fresnel polarisation model is constructed from Fresnel

coefficients. As there are two refractions which occur in diffuse polarisation, we employ

Snell’s law [69] as it describes the direction of light when transmitted from one medium

to the other. The diffuse Fresnel model introduced in [3] shows that the polarisation

is determined by two parameters: the refractive index n and the zenith angle ψ. The

refractive index is the measure of the ratio of the speed of light in a vacuum to that in a

medium. It is an important physical property that determines the optical characteristics of

the observed material. The zenith angle is one of the values in surface normal, which is

the angle between the light source direction and surface normal. The equation is written

as follows:

ρ =
(n− 1/n)2 sin2 ψ

2 + 2n2 − (n+ 1/n)2 sin2 ψ + 4 cosψ
√
n2 − sin2 ψ

. (3.22)

It is concluded from Equation 3.21 and Equation 3.22 that if the refractive index n is

known, the zenith angle ψ can be determined by measurements of Imax and Imin. A more

sophisticated overview of Fresnel theory is presented in Chapter 4.
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3.2.2 Azimuth Angle Estimation

As mentioned in Section 3.2 the azimuth angle can be computed using the phase angle

of the polarisation image. However, since the phase angle only ranges from 0◦ to 180◦, a

directional ambiguity must be resolved beforehand.

One way of resolving the ambiguity is to use two views and combine information

so as to constrain the plane orientation. Rahmann computes the polarisation states sepa-

rately from both views and compares the results [83], the technique is further investigated

and applied to transparent objects in [68]. Atkinson and Hancock [7] used photometric

stereo to solve the ambiguity problem. The method is proved robust, although it requires

additional images collected at different illumination orientations.

A second approach is to make the assumptions concerning object shape based on local

convexity or concavity [3, 69]. However, this approach lacks robustness. The ambiguity

problem is one of the main issues in shape from polarisation. In this chapter it is beyond

the scope of discussion as we only concentrate on polarisation status measurements. In

Chapter 6 we present a method which can solve the ambiguity problem in a robust way,

with the aid of shape from shading.

3.3 Iteration Process

In this section we present the iterative method to estimate shape and polarisation informa-

tion. There are three parameters to be estimated which are the polariser angles θ1, θ2 and

the refractive index n. We may calculate them by exhaustive search [110], which will give

a globally optimal solution, but is also time-consuming. Here we solve the problem by

employing the Newton’s method for its rapid (quadratic) convergence. Stated succinctly,

we use the quasi-Newton algorithm to find the local maximum and minimum values in

the given function.

3.3.1 Newton’s Method

Newton’s method requires initial values of the parameters for estimation, and criterion

function to be minimised. We initialise the parameters by setting n(0) = 1.4 as this is
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typical of the materials studied, and use the following constraint to compute θ(0)
1 , θ(0)

2 and

θ
(0)
3 :

A(0) = V . (3.23)

where the superscript is the iteration number. The second factor to be considered is the

criterion function, as Newton’s Method uses it to correct the values of three parameters.

In this chapter we propose a strategy that estimates the similarity between the average

intensity Ī(0) = [I
(0)
min + I

(0)
max]/2 and the diffuse reflectance component. The two estimates

are similar with each other over most of the surface, except in the proximity of highlights.

Ignoring specularities, we use Lambert’s law to link diffuse reflectance to the estimated

surface normal direction. As a result we can write

Ī(0) ∝ cosψ(0) . (3.24)

We let Z(0) = cosψ(0), where the superscript is the iteration number. According to

(3.24), for every pixel in the image the value of Z(0) is monotone increasing with intensity

value Ī(0). As texture and highlight information is contained in Ī(0), it is inadvisable to

directly fit the values of Z(0) to Ī(0) using Lambert’s Law. Least square fitting method

therefore is inappropriate to be applied here, as it is too sensitive to the case where there

are large differences in relatively small areas of input images. The difference in the high-

light area in this case will ruin the results. Instead, here we gauge their similarity using

mutual information between their distributions as it can tolerate this problem. The aim is

to find the set of parameters that maximise the distributional mutual information.

3.3.2 Mutual Information Estimation

To compute the mutual information the probability density functions for the two measures

together with their joint distribution function are required. We compute the distributions

of Z(0) and Ī(0) using their associated normalised histograms, denoted as δ and ζ , re-

spectively. The histogram presents the grey value distribution of the image, which is

computed by counting the number of pixels available for every bin range, and dividing

those numbers by the total sums of pixels in the image.
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Both histograms are quantised into λ bins. It is noted that the value of λ determines

the speed of estimation and accuracy of results. It cannot be too low as the information

provided will become insufficient to the histogram. However, if it gets too large the

histogram will be too sparse and vulnerable to the image noise. Rajwade et al. [85]

proposed an approach which assumes the inputs as continuous surfaces. Here we simply

set the number of λ as 100 as the process of Rajwade’s approach is time-consuming. The

Shannon entropy for the probability density functions is:

H =
λ∑
i=1

ps(i) log
1

ps(i)
= −

λ∑
i=1

ps(i) log ps(i) . (3.25)

where ps(i) is the probability of density for bin i computed from the normalised his-

togram. According to the first definition of the Shannon entropy in Equation 3.25, the

term log 1
ps(i)

shows that the information amount is inversely related to the entropy value

H . It is sensible because when the information provided is rarer, its importance becomes

more to the whole data. For each information of the input data, the Shannon entropy equa-

tion also adds ps(i) as the weight representing the probability of information occurrence.

In this chapter we use the second definition of Shannon entropy in Equation 3.25 for its

simplicity.

The joint entropy describes the relationship between the two inputs, and it becomes

minimised when the two inputs have one-to-one mapping. Denote H(δ, ζ) as the joint

entropy, and the two probability density of two images as pδ and pζ , respectively. The

equations of the joint entropy H(δ, ζ), and the entropies for the two images H(δ) and

H(ζ) can be calculated using the Shannon entropy written as

H(δ) = −
λ∑
i=1

pδ(i) log pδ(i) , (3.26)

H(ζ) = −
λ∑
i=1

pζ(i) log pζ(i) , (3.27)

H(δ, ζ) = −
λ,λ∑

i=1,j=1

pδ,ζ(i, j) log pδ,ζ(i, j) . (3.28)

To compute the joint probability distribution, we construct the joint normalised his-

togram pδ,ζ , whose size is defined as λ × λ. The relationship between pδ,ζ , pδ and pζ
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is

pδ(i) =
λ∑
j=1

pδ,ζ(i, j) , (3.29)

pζ(j) =
λ∑
i=1

pδ,ζ(i, j) . (3.30)

Hence the mutual information between the distributions is given by

B(Z(0); Ī(0)) = H(0)(δ) +H(0)(ζ)−H(0)(δ, ζ) . (3.31)

which leads to the joint entropy of these distributions.

3.3.3 Update Equation

In optimisation, Newton’s method is applied to find the point whose gradient is equal to

zero in the given function. The equation of Newton’s method used in the iterative process

can be generalised as follows:

Θ(t+1) = Θ(t) − ηQ[B(t)]−1∇B(t) . (3.32)

where Θ is the set that includes the parameters to be updated. In this section we have

Θ(t) = (θ
(t)
1 , θ

(t)
2 , n(t))T . η is the step size and, in this thesis, we set η = 1, so that the

Newton’s method can converge quadratically.

Newton’s method employs the inverse of the Hessian matrix to update the parameter

values. Here the Hessian of the error-function is Q[B(t)], and ∇B is its gradient. The

Hassian matrix is a square and symmetrical matrix, which describes the local curvature

of the given function. For example, in this section there are three parameters to update,

and the criterion function is the mutual information estimation equation B(F ; Ī). The

Hassian matrix Q, therefore, is written as

Q =


∂2B
∂θ21

∂2B
∂θ1∂θ2

∂2B
∂θ1∂n

∂2B
∂θ2∂θ1

∂2B
∂θ22

∂2B
∂θ2∂n

∂2B
∂n∂θ1

∂2B
∂n∂θ2

∂2B
∂n2

 . (3.33)
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When there are more parameters to be calculated in Newton’s method, the dimension

of the Hassian matrix becomes higher, and it is time-consuming to compute its inverse

matrix. Therefore, the quasi-Newton method, which is based on Newton’s method, is pro-

posed for solving this problem [95]. The advantage of using the quasi-Newton method is

that it does not require the computation of inverse matrix of Hassian. Instead, it uses some

methods that are the approximation of the Hassian matrix, such as DFP, BFGS and etc.

Further discussion of the quasi-Newton method is beyond the scope of this thesis, here we

use the Matlab implementation of the quasi-Newton method for computing parameters.

To conclude, the process of blind source separation method in this chapter is listed in

Algorithm 3.1.

3.4 Experiments

In this section, we present an experimental evaluation of our novel method for shape

recovery and refractive index estimation, and compare it with alternative methods. Firstly

we introduce the approaches of image acquisition which are widly applied in this thesis.

The only difference of image acquisition techniques in Chapter 5 and Chapter 6 is that

they use polarised light instead of unpolarised light. We have ensured that all the issues

in images acquisition are investigated and summarised in Section 3.4.1. Next we show

the estimation results using the BSS method in this chapter, and demonstrate its validity

by showing the error distribution of the estimates with the ground truth. We choose TRS

fitting and method of Saman and Hancock for comparison, our proposed method is proved

to perform better than the alternatives.

3.4.1 Image Acquisition

In the thesis we have three experimental devices for image acquisition, which are the light

source, polariser and camera. Each one has some issues that might influence the intensi-

ties of input data. We have summarised all the problems which need to be investigated,

and our solutions to fix those issues in Table 3.1.

Details of the solutions and experiments are provided, which are summarised into four

parts: firstly we present the experimental set-up of the devices using the diagram, and our
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Algorithm 3.1: The BSS method using Newton’s method for polarisation estima-

tion.
Input: The input matrix X containing intensities of three random polarisation

images, using unpolarised light.

Output: Maximum and minimum intensities Imax and Imin, refractive index n,

phase angle φ.

1 begin

2 Set the iteration t = 0;

3 Compute V using SVD method in Equation 3.12;

4 Initialise n(0) = 1.4, and mixing coefficient matrix A(0) using the constraint in

Equation 3.23;

5 Initialise θ(0)
1 , θ(0)

2 and θ(0)
3 using Equation 3.10;

6 repeat

7 Compute C(t) using Equation 3.11;

8 Compute J (t)
max and J (t)

min using Equation 3.6, and convert into I(t)
max and I(t)

min,

respectively;

9 Compute ρ(t) using Equation 3.21;

10 Compute ψ(t) using Equation 3.22;

11 Compute Z(t) = cosψ(t), and Ī(t) = [I
(t)
min + I

(t)
max]/2;

12 Compute mutual information estimation between Z(t) and Ī(t), the result is

B(Z(t); Ī(t));

13 Update θ(t+1)
1 , θ(t+1)

2 and n(t+1) using equation of Newton’s method:

Θ(t+1) = Θ(t) − ηQ[B(t)]−1∇B(t), where Θ(t) = (θ
(t)
1 , θ

(t)
2 , n(t))T ;

14 Update θ(t+1)
3 using the constraint in Equation 3.20;

15 Set iteration t = t+ 1;

16 until [B(t) −B(t−1)]2 < ε;

17 Compute A using Equation 3.10;

18 Compute C using Equation 3.11;

19 Compute Jmax and Jmin and φ using Equation 3.6, and compute Imax and Imin

from Jmax and Jmin, respectively;

20 end
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Device Issue Our solution

Polariser attenuate light so camera hard to focus and images dim use manual focus and fixed exposure.

Light Source has wavelength distribution, might produce polarised light test to confirm the properties of the source light.

Camera distorted image brightness in jpeg file by gamma correction use raw file and dcraw software to prevent the correction.

Table 3.1: The list of problems during image acquisition and the solutions.

solution to the polariser’s problem. Then we have two experiments for demonstrating the

properties of the source light, which is the wavelength and polarisation status respectively.

In the end we describe the solution to the issue of camera, and show how the image are

pre-processed to meet the requirements of the proposed methods.

Experimental Set-up

In order to demonstrate the performance and robustness of the proposed method, we

have explored it on a variety of objects. Each object was illuminated in the camera view-

ing direction using an unpolarised collimated light source. A polariser is placed in front

of the camera, and three images for each object are collected with different polariser an-

gles. It is noted that we have lowered the position of the light source so that the angle κ

between viewing and light direction is as small as possible, in order to fit retro-reflection

settings. However, it cannot be so low that the light is then blocked by the camera.

We use manual focus, fixed shutter speed and aperture during the image acquisition.

The reason is that the autofocus system is not working well as the light is attenuated, and

the acquired image is dim when the light is transmitted through the polariser. Besides,

the camera’s auto focus and metering functions will try to adjust the settings every time it

starts photographing, if manual focus and fixed exposure is not set.

Figure 3.2 shows the experimental set-up for the polarised image acquisition, which

is also used in Chapter 4. The image acquisition setting in Chapter 5 and Chapter 6 is

similar with what is shown in Figure 3.2, except that there is also a polarising filter placed

in front of the light source. In order to avoid light influence from the environment, the

images are taken in a dark room where the walls are painted black and the desk is covered

with black cloth that absorbs light.
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Figure 3.2: The experimental setup for image acquisition.

Figure 3.3: The plot of spectrum information for the halogen light used in this thesis.

Wavelength Property of the Light Source

The source light used in image acquisition is a halogen lamp1, which consists of a

glass filled with gas such as argon or nitrogen, and a tungsten filament. The wavelength

spectrum of a typical halogen light is shown in Figure 3.3.

From Equations 3.21 and 3.22 it is clear that the measured polarisation depends on

both the zenith angle of the surface and the refractive index of the material from which

the surface is composed. It has been observed experimentally that the refractive index

exhibits a wavelength dependence. Hence there is potentially variation of the measured

polarisation at corresponding locations on the surface with wavelength.

The degree to which refractive index varies with wavelength depends on the mate-

rial. For instance, the phenomenon is responsible for chromatic aberration in lenses. In

Table 3.2 we give values of refractive index at different wavelengths taken from the lit-

erature for borosilicate glass and gypsum. Figure 3.4 shows how the polarisation varies

1Product information is in the web page: http://www.ld-didactic.de/phk/a.asp?a=45063&L=2
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Table 3.2: Estimated refractive index of glass and gypsum using three different colour

filters.

Colour Wavelength Glass Gypsum

Red 671nm 1.51 1.52

Green 589nm 1.52 1.52

Blue 486nm 1.54 1.53

with zenith angle for refractive indices in the at wavelengths 671nm, 589nm and 486nm,

which are typical of red, green and blue light. It is clear that in the case of gypsum,

the variation in refractive index is very small, and the has an insignificant effect on the

diffuse polarisation. In the case of borosilicate glass, the variations are larger, but the

effect on polarisation is again small. Given that these to materials span the range of di-

electrics studied in this thesis, the effect of wavelength variation is small and the halogen

source can be used without a filter. Finally, it is also noted that Phuoc, Robles-Kelly and

Hancock [47] have incorporated the wavelength dependence of refractive index into their

spectro-polarimetric method for surface height recovery, and have found benefits when

using a wide range of wavelengths extending beyond the visible.

Polarisation Status of the Light Source

Before we start the image acquisition, the source is tested to ensure that the light

produced is unpolarised. To demonstrate we take photos of the light from the collimated

source, with the polariser placed in front of the camera. There are seven images taken

whose polariser angles are: 0◦, 30◦, 60◦, 90◦, 120◦, 150◦, 180◦. We compute the sum of

intensities in each image and plot the values in Figure 3.5. The coefficient of variation,

which is the ratio of the standard deviation to the mean of seven intensity values, is 0.0068,

which shows that the difference between each image is too small and is mainly caused by

noise. The plots in the figure do not follow the TRS equation, which also demonstrates

that the light is unpolarised.
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(a)

(b)

Figure 3.4: Functions of DOP versus zenith angle using red, green and blue lights. The

first figure is for glass, while as the second one is for gypsum.

Figure 3.5: The sum of intensities from captured images in different polariser angles for

demonstrating the property of source light.
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Image Pre-processing

After image acquisition, we have obtained RGB colour images in which each of the

pixels has three values representing the intensities of red, green and blue. In this thesis,

we convert them to grey level and only focus on surface characteristics estimation from

monochrome image inputs, as it is simple for computation. The intensities of the input

images range from 0 to 1. The images are taken as raw files, so that its brightness comes

directly from the sensor, and is not compressed and modified by the softwares in the

camera.

We use the software dcraw to convert the files from raw format to JPEG so that they

can be read by softwares such as Matlab in the computer. One of the advantages of

using dcraw instead of other conversion software is that it can prevent the modification

of gamma curve, which is a non-linear correction to the image intensities to fit with what

human eyes observe the light. Figure 3.6 shows the gamma correction, the y axis shows

the intensities of the raw file, while the x axis shows the intensities of JPEG file modified

by the camera based on the raw file. The blue dots in the figure stand for the same points in

the two files, which follows the gamma curve that can influence the shape and reflectance

estimation process.

Following the instruction of dcraw software we use “-4” parameter in the command

line, which “generates a linear 16-bit file instead of an 8-bit gamma corrected file” 2. To

ensure its validity we photographed a fixed scene and varied the exposure time of the

camera, while as all the other settings remained unchanged. We have plotted exposure

time versus pixel brightness for each pixel, which shows that the relationship was linear

until the point of saturation.

3.4.2 Polarisation Result

The first experiment conducted is to estimate the shape and polarisation state using the

proposed BSS method, following Algorithm 3.1. The objects under study are made from

different materials, which are a plastic yellow duck, a porcelain bottle, a sponge ball

and a plaster owl. Figure 3.7 shows the three input images of sponge ball taken under

2Quoted from the online manual of dcraw: http://www.guillermoluijk.com/tutorial/dcraw/index en.htm.
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Figure 3.6: The gamma correction using dcraw. The red line shows when the intensity of

the input image is equal to the correction result. The blue dots follows the gamma curve,

which is used to convert images from raw data in the camera.

polariser angles of 0, 60 and 120 degrees, and we plot the intensity distribution of the

row across the centre of the three images. The three images are similar with each other

and hard to be distinguished by the eyes. Differences which are such small increases the

susceptibility to noise in the estimation process. It is noted that input images for other

objects have the same issue. Figure 3.8 shows the results. The four rows show the input

image, polarisation, phase angle, and zenith angle for surface normal, respectively. The

shape information in the fourth row is consistent with the subjective object shape. This

demonstrates that the estimation process works well without the information concerning

the polariser angles.

Next we explore the robustness of the method by randomly selecting three images

from a longer sequence for the ball object, and check if the results remain unchanged.

The polarisation orientations of the three sequences are: a)30◦, 90◦, 150◦, b)60◦, 90◦, 120◦,

c)0◦, 30◦, 120◦. The results are presented in Figure 3.9. Polarisation and zenith angles are

stable under the selection of different polariser angles. However, there is an offset of 90

degrees in the phase angle. This suggests that we need to use constraints to consistently
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(a) (b) (c)

(d)

Figure 3.7: The input images taken under the polarisation orientations of 0, 60 and 120

degrees using unpolarised light (a,b,c). Figure (d) shows the intensity distribution of the

row across the centre of the three images.

resolve this problem.

Then we compare our method with alternatives. We consider two methods, namely

TRS fitting proposed by Nayar et al. [71] and the method of Saman and Hancock [89]

in Section 2.2.1. We use the same three images to these two methods, and check whose

results can correctly recover the polarisation information. In TRS fitting we use the curve

fitting function in Matlab for computing the three polarisation parameters in TRS equa-

tion, while in Saman and Hancock we apply the method of moments using only three

images. Figure 3.10 shows the results for the three methods for the sponge ball, the first

row is for DOP and the second the phase angle. There are no significant differences be-

tween the three methods for estimating DOP, while our proposed method performs best

for the phase angle, in which the distribution of the intensities is valid when representing

the azimuth angles for the objects that range only from 0 to 180 degrees.

It is noted that we do not consider the method of Wolff in this experiment, because the

TRS equation is actually extended from the Wolff’s equation, and can be reformulated to

be Wolff’s equations in Equation 3.1, Equation 3.2 and Equation 3.3, when using three

images whose polariser angles are 0, 45 and 90 degrees. Therefore we use TRS fitting
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Input

POL

Phase

Zenith

Figure 3.8: The result for shape from polarisation, the first column is one of the input

images for each object, the second for DOP, the third for phase angle, and the fourth is for

the result of zenith angle for the surface normal. Four rows are for different experimental

objects. The brightnesses for all graphs are adjusted to be displayed clearly.
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POL

(a) Ground Truth (b) Sequence a (c) Sequence b (d) Sequence c

Phase

Figure 3.9: The result for the estimation from different sequences, graphs for the first

column stand for ground truth data from synthetic data, the rest three columns are for

sequence a, sequence b and sequence c respectively.

instead of Wolff’s method in this experiment.

Figure 3.11 shows the error distribution of the results in Figure 3.10 compared with

the ground truth data. The plots in the figures represent the mean value of the error, while

the error bar is the standard deviation value of the distribution. It is demonstrated that

our method performs the best as the error of the results is much lower than the other two

approaches.

Finally, we explore the application of our method to refractive index estimation. In

Table 3.3 we compare the measured refractive index values nest with the tabulated val-

ues nref from five different materials. For the smooth surfaces, the results delivered by

our method are all consistent with the tabulated results. However, for rough or indented

surfaces such as sponge and plaster the results do not agree well. We attribute this to the

effects of surface indentations which cause departures from Lambertian reflectance [3].

Rough surface is considered as microfacets whose orientations are randomly distributed.

The external scattering between the facets will reduce the intensity of reflection to the

viewer, and the partial polarisation value becomes lower than expected. It is concluded

that our method gives relatively accurate results for the refractive index of smooth objects.
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POL

(a) Ground Truth (b) TRS fitting (c) Saman&Hancock (d) Proposed Method

Phase

Figure 3.10: The result for the three methods, the brightnesses of all figures have been

adjusted.

POL

(a) TRS fitting (b) Saman&Hancock (c) Proposed Method

Phase

Figure 3.11: The error distribution of the POL and phase angle estimates from three

methods with the ground truth data, with the error bar representing the value of standard

deviation of the error.
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Table 3.3: The list of refractive index estimation results.

Material nref nest

Plastic 1.28 1.23

Apple 1.20 1.17

Plaster 1.46 1.27

Porcelain 1.51 1.56

Sponge 1.48 1.31

3.5 Conclusions

In this chapter we provide a novel method for shape from polarisation and refractive index

estimation, which is based on blind source separation. Two constraints are made for the

method, firstly the determinant value of matrix W is unity to ensure the stability of the

method, and the Equation 3.24 for Newton’s method. The proposed method only requires

three images without knowing their polariser orientations, which is very convenient when

the objects observed are not static, such as human palm and faces. We choose Newton’s

method instead of exhaustive search in iterative process, for its relatively faster process. In

experiment section we demonstrate that the proposed method is both robust and reliable,

and performs better than alternative methods. We also show that the method can be used

for refractive index estimation, if the surface of the object under study is smooth.

There are several weakness of the works introduced in this chapter which can be im-

proved. Firstly, when developing criterion function we only focus on using the Lam-

bertian model, which is known for its simplicity, but quite weak in predicting reflection

and cannot be applied for surfaces that contain strong highlight area. Secondly, we have

proved in the experiment section that the method is more robust than the traditional shape

from polarisation method, by comparing their performances in phase angle estimation,

and using different sequences of three polarised images. However, whether it can retain

robustness when the polariser angles are very close to each other is still questionable.

Thirdly, in this chapter we only focus on using diffuse Fresnel polarisation model, which

has its own weakness as it is vulnerable to noises. It is necessary that we consider other

polarisation models for shape recovery.
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The solutions of all of these problems are presented in Chapter 4, in which we present

a more thorough discussion on some of the issues in polarisation and blind source sepa-

ration, and novel frameworks are introduced to improve the performances.
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Chapter 4

Polarisation Model and Criterion

Function

As shown in Chapter 3, we have presented a novel framework that can recover polarisation

states using only three images, when their polariser angles are unknown. It has been

demonstrated experimentally that the proposed method is capable of calculating robust

shape information. In addition, the results are better than with alternative approaches

based on the same inputs, especially when the polariser orientations are 0, 60 and 120

degrees.

However, experiments show that the performance of the estimation method in Chapter

3 is reduced when choosing other sequences of three images. Besides, we found experi-

mentally that when the polariser angles of the chosen inputs are very close to each other,

such as 0, 30 and 60 degrees, the produced results become unsatisfactory.

Another drawback is that the zenith angle estimates in the previous chapter have resid-

ual noise, which occurs for shape from diffuse polarisation, because the values of DOP

estimated in this case are low in most pixels, and can be easily influenced by noise from

the camera’s CCD sensor.

Contribution

The main contribution of this chapter is that we solve the problems addressed above in

two different ways: Firstly, we give a detailed overview of Fresnel theory and show how

to develop the diffuse and specular polarisation models, which are now widely used. We
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discuss their advantages and weaknesses, and propose a novel polarisation probabilistic

model that considers diffuse and specular reflections. The probability coefficients in the

model are estimated using an iterated conditional modes algorithm, which is an extension

of the work of Ragheb and Hancock in [79].

Secondly, we present an improved strategy for developing a criterion function, which

is different from the method proposed in Chapter 3 [124]. We show in the previous chapter

that the method is not robust enough in estimating phase angle on different sequences of

three images, so the criterion function introduced here concentrate on stabilising the vari-

ation of phase angle estimation. It has been developed with the aid of SFS; the methodol-

ogy is presented in Section 4.3.

Chapter Outline

The remainder of this chapter is organised as follows: We start by introducing the Fresnel

theory, with the descriptions of Fresnel coefficients and the diffuse and specular polarisa-

tion models in Section 4.1. In Section 4.2 we show how to use the proposed probabilistic

model and ICM to combine the two polarisation models, and apply the model to shape

from polarisation method. In Section 4.3 we present a novel criterion function which im-

proves the estimation of the method described in Chapter 3, with the aid of techniques in

SFS. In Section 4.4 we present some experimental results that demonstrate the methods

proposed in this chapter.

4.1 Fresnel Theory

In this section we concentrate on investigating Fresnel theory and show how it can be

utilised in shape estimation. The Fresnel theory has been mentioned and summarised in

Chapter 2 and Chapter 3. Here we focus instead on describing how to develop Fresnel re-

flection models using Fresnel coefficients and diffuse and specular reflectance properties.

The relevant equations are presented and the two Fresnel models are constructed follow-

ing the works in [3, 6, 116, 117]. Furthermore, we compare the two models and discuss

their advantages and drawbacks.
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4.1.1 Fresnel Coefficients

The Fresnel equations have been discussed in the following literature [6,12,43]. Here we

describe the parts of the Fresnel theory that are relevant to this thesis, as the rest is beyond

the scope of our research.

Consider the incident light which is resolved into two components whose oscillation

directions are parallel to and perpendicular to the plane of incidence as Υi⊥ and Υi‖,

and the corresponding two reflected wave components as Υr⊥ and Υr‖. The amplitude

coefficient for the light polarised perpendicular to the plane of incidence r⊥ is defined as

the ratio of its reflected wave amplitude Υr⊥ to the incident wave amplitude Υi⊥, which

is written as follows:

r⊥(n, ψi, ψt) =
Υr⊥

Υi⊥
= (cosψi − n cosψt)/(cosψi + n cosψt) . (4.1)

where the angles ψi and ψt are the zenith angle for incident and reflected light directions,

and n is the refractive index for the surface. Similarly the other amplitude coefficient for

the light polarised parallel to the plane of incidence r‖ is defined as

r‖(n, ψi, ψt) =
Υr‖

Υi‖
= (n cosψi − cosψt)/(n cosψi + cosψt) . (4.2)

It is noted that ψt can be replaced by ψi using Snell’s law addressed in Chapter 2,

which is

sinψi = n sinψt . (4.3)

Therefore the two Fresnel intensity coefficients are obtained byR⊥ = r2
⊥ andR‖ = r2

‖.

Figure 4.1 shows the Fresnel intensity coefficients for a typical dielectric as a function of

the incident angle ψi. Both the reflection and transmission coefficients are shown, where

the latter refers to the ratios of transmitted to incident powers and are defined as follows

T⊥ = 1−R⊥ , (4.4)

T‖ = 1−R‖ . (4.5)

Figure 4.1 shows the reflection and transmission coefficients. It is noted that the point

where R‖ = 0 corresponds to the Brewster angle.
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Figure 4.1: Reflection and transmission coefficients for a typical dielectric(n = 1.5).

4.1.2 The Fresnel Polarisation Models

As stated in the previous chapter, the Fresnel theory can be applied to both diffuse and

specular reflections, and thus there are two polarisation models based on the two reflection

types. According to [117] we have the four magnitudes of the perpendicular and paral-

lel components for specular and diffuse reflections respectively, denoted as Ms⊥(n, ψ),

Ms‖(n, ψ), Md‖(n, ψ) and Md⊥(n, ψ). The equations are given as follows:

Ms⊥(n, ψ) =
R⊥(n, ψ)

R‖(n, ψ) +R⊥(n, ψ)
Ls , (4.6)

Ms‖(n, ψ) =
R‖(n, ψ)

R‖ +R⊥(n, ψ)
Ls , (4.7)

Md‖(n, ψ) =
1−R‖(1/n, ψ)

2−R‖(1/n, ψ)−R⊥(1/n, ψ)
Ld , (4.8)

Md⊥(n, ψ) =
1−R⊥(1/n, ψ)

2−R‖(1/n, ψ)−R⊥(1/n, ψ)
Ld . (4.9)

where Ls and Ld are the radiances for specular and diffuse components, whose values are

influenced by the object albedo and direction of source light, and are not constant across

the surface. It is noted that when the incident light is unpolarised, we denote Ismax =
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Ms⊥(n, ψ) and Ismin = Ms‖(n, ψ) as the maximum and minimum intensity values in the

transmitted radiance sinusoid (TRS) equation for the specular reflection. Similarly for the

diffuse reflection we have Idmin = 1−Md⊥(n, ψ) and Idmax = 1−Md‖(n, ψ).

Substituting the above equations into the Equation 3.4, we have two models for shape

recovery based on diffuse and specular reflection types. The equations for the two Fresnel

polarisation models are given as follows:

ρs(n, ψs) =
Ismax − Ismin
Ismax + Ismin

,

=
2 sin2 ψs cosψs

√
n2 − sin2 ψs

n2 − sin2 ψs − n2 sin2 ψs + 2 sin4 ψs
, (4.10)

ρd(n, ψd) =
Idmax − Idmin
Idmax + Idmin

,

=
(n− 1/n)2 sin2 ψd

2 + 2n2 − (n+ 1/n)2 sin2 ψd + 4 cosψd
√
n2 − sin2 ψd

. (4.11)

4.1.3 Discussion

In polarisation vision the diffuse polarisation model is much more widely used than the

specular model. There are several reasons for that. Firstly, as shown in Figure 4.1(a), the

specular polarisation model has two real solutions for ψ. The ambiguity must be solved

beforehand, which is very difficult to do. The second reason, as addressed in Chapter

2, is that special devices are required for determining shape from specular polarisation

method. As specular highlight cannot occur over the entire object surface from a single

light source, Miyazaki et al. [68] used a global light diffuser to solve this problem.

On the other hand, there are also several drawbacks when using the diffuse polarisation

model. Firstly, as observed from Figure 4.1(b) most of the DOP values are quite small

except when ψ becomes large, especially when n is also low. The estimate accuracy

is influenced by noise caused by image quality. Secondly, the diffuse model is much

more sensitive to the estimate of refractive index than the specular model. Therefore both

polarisation models are unsatisfactory for shape recovery using polarisation measurement.

It is also noted that both diffuse and specular reflections are affected by roughness. A

rougher surface will reduce the values of DOP, and therefore the zenith angle estimates

are underestimated.
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(a) Specular Fresnel Model

(b) Diffuse Fresnel Model

Figure 4.2: Polarisation model for (up) specular and (down) diffuse reflections, n = 1.5.
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4.2 Probabilistic Model for Shape Recovery

As previously mentioned, both the diffuse and specular Fresnel polarisation models are

not ideal for shape recovery. In this section we explore solutions to this problem by devel-

oping a probabilistic polarisation model that considers the diffuse and specular reflections

simultaneously. The proposed framework is constructed based on the work of Ragheb

and Hancock in [79], who introduced a maximum a posteriori probability framework for

SFS and reflectance component separation. There are many constraints on object surface

appearance in the framework. As a result it can only be applied to smooth surfaces with

little or no surface texture. Here we utilise the methodology introduced in [79], and show

how it can be applied to shape from polarisation method.

4.2.1 Probabilistic Model

According to the two Fresnel polarisation models described in Equation 4.11 and Equa-

tion 4.11, the two polarisation parameters ρs and ρd are related to their corresponding

reflectance components, whose values are different. In our probabilistic model we define

the measured DOP value by considering both diffuse and specular reflections. As a result

the measured value of ρ is related to both the values of ρs and ρd by a probabilistic model,

which is written as follows:

ρ = P (ωs|ψs, ψd, ρs)ρs + P (ωd|ψs, ψd, ρd)ρd . (4.12)

where ωs and ωd are the class identities meaning that the result estimation ρ is equal

to ρs or ρd, respectively. The P (ωs|ψs, ψd, ρs) and P (ωd|ψs, ψd, ρd) are the a posteriori

probabilities that ρ belongs to the class of ωs or ωd respectively. The two a posteriori

probabilities satisfy the following constraints


P (ωs|ψs, ψd, ρs) + P (ωd|ψs, ψd, ρd) = 1 ,

0 ≤ P (ωd|ψs, ψd, ρs) ≤ 1 ,

0 ≤ P (ωs|ψs, ψd, ρs) ≤ 1 .

(4.13)

We also impose a constraint, that for every location in the image the value of ρ is

intermediate between ρs and ρd, given as
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4.2 Probabilistic Model for Shape Recovery

min(ρs, ρd) ≤ ρ ≤ max(ρs, ρd) . (4.14)

Substituting Equation 4.11 and Equation 4.11 into Equation 4.12, we have the prob-

abilistic model which relates the measured DOP value ρ to the zenith angle estimates,

which is the mixture equation as follows:

ρ = P (ωs|ψs, ψd, ρs)
2 sin2 ψs cosψs

√
n2 − sin2 ψs

n2 − sin2 ψs − n2 sin2 ψs + 2 sin4 ψs

+P (ωd|ψs, ψd, ρd)
(n− 1/n)2 sin2 ψd

2 + 2n2 − (n+ 1/n)2 sin2 ψd + 4 cosψd
√
n2 − sin2 ψd

.(4.15)

where the zenith angle ψd and ψs are theoretically identical, because they describes the

surface normal information which is measured from the same object.

4.2.2 Iterated Conditional Modes

Our goal in this section is to compute the two a posteriori probabilities P (ωs|ψs, ψd, ρs)

and P (ωd|ψs, ψd, ρd) in Equation 4.15, which is to obtain the mixing proportions for dif-

fuse and specular DOP estimates. Here, we apply the ICM algorithm for the estimation.

The ICM method was developed for solving the MAP problem. It is an iterative process,

which avoids the exhaust search of the MAP estimation that is time-consuming for com-

putation. The method was introduced in computer vision by Besag [13] for restoring the

pixel values and eliminating noise. It was also applied to the SFS framework in [79], as it

is simple to implement and can produce relatively decent results.

The ICM algorithm interleaves two computational steps in each iteration. Firstly, we

estimate the MAP based on the current zenith angle measurement, and then updates the

surface normal information based on the current a posteriori probabilities estimates. We

develop the ICM method based on the following strategy: in each iterative step we firstly

compute ρ(t)
s , ρ(t)

d , ψ(t)
s and ψ(t)

d , then compute the zenith angle estimate ψ′(t) according to

the Equation 4.24. Next, we use ψ′(t) to compute ρ′(t)s and ρ′(t)d and compare them with the

corresponding ρ(t)
s and ρ(t)

d , using the least square fitting method given by
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4.2 Probabilistic Model for Shape Recovery

ε(t)
s = [ρ′(t)s − ρ(t)

s ]2 , (4.16)

ε
(t)
d = [ρ

′(t)
d − ρ

(t)
d ]2 . (4.17)

When we found the correct a posteriori probabilities of P (ωs|ψs, ψd, ρs)(t) and

P (ωd|ψs, ψd, ρd)(t), the measured ψ′ is the correct zenith angle result, thus ρ′s is equal to ρs

while ρ′d is equal to ρd. Defining ε as the constant number to determine when convergence

is reached, we have the criterion function of the ICM method written as follows

[ε(t) − ε(t−1)]2 < ε . (4.18)

The two probability distributions are defined as p(ωs|ψs, ψd, ρs)(t) and p(ωd|ψs, ψd, ρd)(t).

In this section, they are computed using the error function ε(t)
s and ε(t)

d , as given by

ε(t)
s = p(ωs|ψs, ψd, ρs)(t) , (4.19)

ε
(t)
d = p(ωd|ψs, ψd, ρd)(t) . (4.20)

With the probability distributions p(ωs|ψs, ψd, ρs)(t) and p(ωd|ψs, ψd, ρd)(t) to hand,

we develop their a posteriori probabilities according to the ICM method, namely P (ωs|ψs, ψd, ρs)(t)

and P (ωd|ψs, ψd, ρd)(t) respectively. Denoting the set Ω = (d, s) which consists of the

diffuse and specular labels, the two a posteriori probabilities are updated using the Bayes

formula given as

P (ωs|ψs, ψd, ρs)(t+1) =
p(ωs|ψs, ψd, ρs)(t)P (ωs|ψs, ψd, ρs)(t)∑

Λ∈Ω p(ωΛ|ψs, ψd, ρΛ)(t)P (ωΛ|ψs, ψd, ρΛ)(t)
, (4.21)

P (ωd|ψs, ψd, ρd)(t+1) =
p(ωd|ψs, ψd, ρd)(t)P (ωd|ψs, ψd, ρd)(t)∑

Λ∈Ω p(ωΛ|ψs, ψd, ρΛ)(t)P (ωΛ|ψs, ψd, ρΛ)(t)
. (4.22)

4.2.3 Iterative Process

At initialisation of ICM method, we apply the shape from diffuse polarisation method

in Equation 4.11 to obtain the shape estimate, which we assume is equal to the specular

zenith angle ψ(0)
s . Therefore the corresponding specular DOP value ρ(0)

s can be computed
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4.3 Improved Criterion Function

using Equation 4.11. We impose the constraint in the initialisation step that the values

of P (ωs|ψs, ψd, ρs)(0)ρ
(0)
s and P (ωd|ψs, ψd, ρd)(0)ρ

(0)
d are identical and equal to half of the

DOP ρ, which is given as follows

P (ωs|ψs, ψd, ρs)(0)ρ(0)
s = P (ωd|ψs, ψd, ρd)(0)ρ

(0)
d = ρ/2 . (4.23)

Using the constraint we can compute P (ωs|ψs, ψd, ρs)(0) by P (ωs|ψs, ψd, ρs)(0) =

ρ/[2ρ
(0)
s ], then P (ωd|ψs, ψd, ρd)(0) by the constraint in Equation 4.13, next ρ(0)

d by ρ(0)
d =

ρ/[2P
(0)
d ], and P (ωd|ψs, ψd, ρd)(0) by using the inverse function of the diffuse polarisation

model in Equation 4.11. It is noted that we decided not to estimate ψ(0)
d first, but instead

choose ψ(0)
s , as in that case ψ(0)

s has to be computed by the inverse function of the specular

polarisation model in Equation 4.11, which has an ambiguity problem to be solved. The

third constraint we make in this framework is that the zenith angle ψ is estimated by the

mean values of estimates from two reflections ψd and ψs, given by

ψ′(0) = [ψ
(0)
d + ψ(0)

s ]/2 . (4.24)

The method of iterated conditional modes is summarised in Algorithm 4.1. It is noted

that the proposed algorithm is not used for computing DOP, but demonstrates how to

use the proposed polarisation model for shape recovery, when the estimate of DOP and

refractive index is known. Here we impose the constraint that the refractive index n is

constant for all pixels in the image. We also assume that n = 1.4, which is typical of

most commonly occurring surfaces [3]. Future work will focus on shape recovery using

the proposed polarisation model without the information of refractive index.

4.3 Improved Criterion Function

In this section we develop an improved criterion function in the Newton’s method pro-

posed in Chapter 3 by following a different strategy. In the last chapter, the criterion

function is constructed to measure the similarity between the estimates from shape from

polarisation and the Lambertian model. This guarantees the correctness of the refractive

index and zenith angle estimate, but the phase angle information is neglected. Therefore

in the experimental section of previous chapter the phase angle results are not satisfactory.
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4.3 Improved Criterion Function

Algorithm 4.1: The ICM method for shape recovery using probabilistic model and

unpolarised source light, considering both diffuse and specular reflections.
Input: The degree of polarisation value ρ.

Output: zenith angle result ψ.

1 begin

2 Set iteration t = 0;

3 Initialise n = 1.4,P (ωs|ψs, ψd, ρs)(0)ρ
(0)
s = P (ωd|ψs, ψd, ρd)(0)ρ

(0)
d = ρ/2;

4 Initialise ψ(0)
s using Equation 4.11 and the given ρ, then compute ρs using

Equation 4.11;

5 Compute P (ωs|ψs, ψd, ρs)(0) by P (ωs|ψs, ψd, ρs)(0) = ρ/[2ρ
(0)
s ];

6 Compute P (ωd|ψs, ψd, ρd)(0) by the constraint (Equation 4.13);

7 Compute ρ(0)
d by ρ(0)

d = ρ/[2P (ωd|ψs, ψd, ρd)(0)];

8 Compute ψ(0)
d by Equation 4.11;

9 Initialise ψ′(0) = [ψ
(0)
d + ψ

(0)
s ]/2;

10 repeat

11 Compute diffuse and specular DOP values ρ′(t)s and ρ′(t)d from the specular

and diffuse polarisation models, using the refractive index value n = 1.4

and the zenith angle estimation ψ′(t);

12 Compute error functions using least square fitting: ε(t)
s = [ρ

′(t)
s − ρ(t)

s ]2 and

ε
(t)
d = [ρ

′(t)
d − ρ

(t)
d ]2;

13 Update the a posteriori class probabilities

P (ωs|ψs, ψd, ρs)(t+1) = exp[−ε(t)s ]

exp[−ε(t)s ]+exp[−ε(t)d ]
and

P (ωd|ψs, ψd, ρd)(t+1) =
exp[−ε(t)d ]

exp[−ε(t)s ]+exp[−ε(t)d ]
;

14 Update ψ(t+1)
s = ψ′(t), and update ψ(t+1)

d using the measured

P (ωs|ψs, ψd, ρs)(t+1), P (ωd|ψs, ψd, ρd)(t+1) and the Equation 4.15;

15 Compute error function ε(t) =
∑

x,y[ε
(t)
s (x, y) + ε

(t)
d (x, y)];

16 Set iteration t = t+ 1;

17 until [ε(t) − ε(t−1)]2 < ε;

18 end
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4.3 Improved Criterion Function

Here our criterion function measures the squared difference between the estimated

phase angle φ(0) with the target phase angle distribution φ′. The BSS adopting this cri-

terion function also has some changes. Here we commence by determining the polariser

angles based on polarisation theory. Then we use the estimated polariser angles to esti-

mate the degree of polarisation, from which we compute the refractive index using the

Fresnel equation.

4.3.1 Phase Angle Estimation

We compute φ′ by applying a SFS algorithm to the mean brightness computed from the

three input polarised images, which is Ī = (Imax + Imin)/2 mentioned in Section 3.3.1.

For the measured surface normals we compute the azimuth angle. SFS recovers surface

shape by analysing intensity variations over a single input image. It has been extensively

studied for several decades [119, 126]. There are several methods available, and in this

paper we choose the geometric SFS algorithm introduced in [119], for its simplicity and

robustness.

The azimuth angle information we obtain from SFS method is denoted as γ′. Next we

calculate its corresponding phase angle φ′ based on its definition described in [7]. The

least square fitting method is used to compare φ′ with the estimated phase angle φ, the

error function for the Newton’s method is given by

ε =
Nx∑
i=1

Ny∑
j=1

[φ(i, j)− φ′(i, j)]2 . (4.25)

The equation for updating the parameter values in Newton’s method is similar with

the Equation 3.32 in the last chapter. The only difference is that the refractive index value

n is not included in the parameter set Θ. Its estimation method is presented in the next

section. The process of the phase angle estimation in this section is given in Algorithm

4.2.

4.3.2 Refractive Index Measurement

After the computation of Newton’s method described above, the phase angle estimates

are obtained, with the polariser orientations of three input images θ1, θ2 and θ3. Using
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Algorithm 4.2: The BSS method using the improved criterion function for estimat-

ing polariser angles.
Input: The input matrix X containing intensities of three random polarisation

images, using unpolarised light

Output: The polariser angles θ1, θ2 and θ3

1 begin

2 Set the iteration t = 0;

3 Compute V using SVD method;

4 Initialise A(0) using the constraint in Equation 3.23;

5 Compute θ(0)
1 , θ(0)

2 and θ(0)
3 using Equation 3.10;

6 repeat

7 Compute C(t) using Equation 3.11;

8 Compute φ(t) using Equation 3.6;

9 Compute error function ε(t) =
∑Nx

i=1

∑Ny

j=1[φ(t)(i, j)− φ′(i, j)]2;

10 Update θ(t+1)
1 and θ(t+1)

2 using equation of Newton’s method:

Θ(t+1) = Θ(t) − ηQ[ε(t)]−1∇ε(t), where Θ(t) = (θ
(t)
1 , θ

(t)
2 )T ;

11 Update θ(t+1)
3 using the constraint in Equation 3.20;

12 Set iteration t = t+ 1;

13 until [ε(t) − ε(t−1)]2 < ε;

14 end
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the equations introduced in the previous chapter the corresponding DOP value can be

computed. Here we show how to measure the refractive index values when the improved

criterion function is adopted in the BSS.

Different from the refractive index estimation method in the last chapter, the approach

introduced here is greatly simplified as the DOP value is already known, denoted as ρ.

The mutual information criterion still measures the similarity of the average intensity

Ī(0) = [I
(0)
min + I

(0)
max]/2 and the diffuse reflectance component. This applies over most of

the surface, except in the proximity of highlights.

The process of mutual information estimation is similar to the method described in the

last chapter; therefore its description is not repeated here. The only part which is different

is the equation of Newton’s method for updating the parameters presented in Equation

3.32. The parameter set Θ(t) is replaced with a refractive index value n(t). The process of

refractive index measurement is presented in Algorithm 4.3

4.4 Experiments

In this section, we present an experimental evaluation of the two methods proposed in

this chapter, and compare them with alternative methods. Input images are the same

as what are used in Chapter 3. We start by investigating the performance of the novel

Fresnel polarisation model, and compare its performance with the traditional shape from

diffuse polarisation method. Next we show the estimation results using BSS adopting the

improved criterion function, and demonstrate its robustness by testing its performance on

three randomly chosen polarised images.

4.4.1 Probabilistic Model Result

Firstly we use the proposed probabilistic model for shape recovery from the degree of

polarisation estimate following Algorithm 4.1, Figure 4.3 shows the results. The objects

under study are a plastic duck, a porcelain bottle, two terracotta canteens, a red apple, a

plaster owl, a yellow pear and a sponge ball. For each object we take three polarised im-

ages, their polariser angles are all 0◦, 60◦ and 120◦. The first row from left to right shows

the input images whose polariser orientations are 0 degree. The second row contains the
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Algorithm 4.3: The BSS method using the improved criterion function for estimat-

ing refractive index.
Input: The input matrix X containing intensities of three random polarisation

images using unpolarised light, the measured polariser angles θ1, θ2 and θ3.

Output: The refractive index n.

1 begin

2 Set the iteration t = 0;

3 Compute A using Equation 3.10;

4 Compute C using Equation 3.11;

5 Compute Jmax and Jmin using Equation 3.6, and convert into Imax and Imin,

respectively;

6 Compute ρ using Equation 3.21;

7 Initialise n(0) = 1.4;

8 repeat

9 Compute ψ(t) using Equation 3.22;

10 Compute Z(t) = cosψ(t), and Ī(t) = [I
(t)
min + I

(t)
max]/2;

11 Compute mutual information estimation between Z(t) and Ī(t), the result is

B(Z(t); Ī(t));

12 Update n(t+1) using equation of Newton’s method:

Θ(t+1) = Θ(t) − ηQ[B(t)]−1∇B(t), where Θ(t) = n(t);

13 Set iteration t = t+ 1;

14 until [B(t) −B(t−1)]2 < ε;

15 end
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Input

Zenith

Figure 4.3: The result for shape from polarisation using the probabilistic model, the first

row is for the input polarised image, and the second is for the results of zenith angle. The

eight columns are for different experimental objects. The brightness of all figures has

been adjusted to be displayed clearly.

zenith angle estimates. The results produced are all decent, which prove the validity of

the proposed probabilistic model, that it can be applied in the process of shape recovery.

Next we compare the performance with the alternative approach, in which we choose

shape from diffuse polarisation. We use plaster owl object for the experiment, and the

comparison results are shown in Figure 4.4. The zenith angle estimate on the left is com-

puted from diffuse model, whereas the other one is from the proposed model. Observed

from the figures, the performance of the novel probabilistic model performs similar with

the alternative polarisation model. We compute their difference and show the error distri-

bution in Figure 4.5, the plots in the figure represent the mean value of difference between

the two zenith estimates, with the error bar for the value of variance. The figure also shows

that the two results are nearly equal to each other in the range from 9 to 58.6 degrees. It

is sensible as research shows that shape estimate using diffuse polarisation model has

already been relatively accurate [6].

However, the zenith angle result from the probabilistic model still has residual noise,

which can also be seen in Figure 4.3. We attribute this to the fact that the diffuse reflection

covers the whole surface, while the specular occurs only in a small area. Therefore diffuse

components in the probabilistic model plays a more important role in shape estimation

than the specular component. The residual noise in the diffuse DOP value therefore still

influence the zenith angle estimate. This suggests that we need to find another way in

shape from polarisation for solving this problem.
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(a) (b)

Figure 4.4: The comparison of estimation results between shape from diffuse polarisation

(left) and the proposed method (right).

Figure 4.5: The difference distribution of two estimates shown in Figure 4.4. The X axis

is the zenith angle from the diffuse polarisation model ranges from 0 to 90 degrees, the Y

axis represents the mean value of computed difference between the two results, with the

error bar for the variance.
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Input

DOP

Phase

Figure 4.6: Results for shape from polarisation using improved criterion function from

eight experimental objects. The first row is for the input polarised image, the second for

DOP, and the third is for the result of phase angle for the surface normal. The brightness

for all figures has been adjusted to be displayed clearly.

4.4.2 Improved Criterion Function Result

Here we concentrate on demonstrate the validity of the BSS method using the improved

criterion function. The first experiment conducted is to estimate the shape of the viewed

object together with the polariser angles using the proposed method described in Algo-

rithm 4.2 and Algorithm 4.3. Figure 4.6 shows the results. There are 8 objects in all,

which are a plastic duck, a porcelain bottle, two terracotta canteens, a red apple, a plaster

owl, a yellow pear and a sponge ball. The three columns show the input polarised image,

the estimated DOP and the phase angle. This demonstrates that the estimation process

works well without information concerning the polariser angles.

We compare our method with some alternatives. We consider two methods, namely

the TRS fitting [71] and the method of Saman and Hancock mentioned in Section 3.1.

In order to compare their produced results in a clear way we test the methods using the

sponge ball and assume that its shape is completely round. Therefore we create the ground

truth zenith angle data for the round object and its phase angle estimate following the

theory of polarisation.

Figure 4.7 shows the results for the three methods for the object with ground truth

data for reference. The first row is the degree of polarisation and the second the phase

angle. There are no significant differences between the three methods for the estimation
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Zenith

(a) Ground Truth (b) TRS Fitting (c) Saman&Hancock (d) Proposed Method

Phase

Figure 4.7: The result for the three methods, the brightness have been adjusted.

of the degree of polarisation. However, our proposed method performs better for the phase

angle.

Figure 4.8 shows the measured versus ground truth values of zenith and phase angles

for the three methods as scatter plots. Ideally the points in the figures should fall on a line

of unit slope and zero intercept, commencing at (0, 0) and ending at (180, 180). The main

differences between the three methods are in the phase angle. The line in the first graph

starts at (0, 30) and ends at (180, 150), while as the estimate for the second is completely

wrong. Of the alternatives, our method gives the best regression line.

We also compare the results of three methods in Figure 4.7 with the ground truth data,

and Figure 4.9 shows the error distribution with the error bar representing the standard

deviation of the comparison. The figure also demonstrates that the results of proposed

method are closest to the ground truth data.

We also compare the use of alternative linear transformation algorithms namely PCA

and ICA in the BSS. To implement ICA we use the FastICA method introduced in [50],

which uses a fixed-point iteration scheme that has a rapid rate of convergence. Figure

4.10 shows the comparison for phase angle estimate, from which the differences between

the performances of the three methods can be seen. The results produced by the proposed

method are better aligned with the ground truth than those produced by PCA and ICA.

Next we explore the robustness of the method to choice of polariser angle setting. We

do this by randomly selecting three images with different polariser angles from a longer
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Zenith

(a) TRS Fitting (b) Saman&Hancock (c) Proposed Method

Phase

Figure 4.8: The figures of scatter plots which represent the differences between the

ground-truth and the results of three methods. The first row shows the zenith angle esti-

mates and the second row is for the phase angle measurements.

Zenith

(a) TRS fitting (b) Saman&Hancock (c) Proposed Method

Phase

Figure 4.9: The error distribution of the zenith and phase angle estimates from three

methods with the ground truth data, with the error bar representing the value of standard

deviation of the error.
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(a) Ground Truth (b) PCA (c) ICA (d) Proposed Method

Figure 4.10: The comparison for the phase angle estimates with the synthesised ground-

truth, the brightnesses have been adjusted to be displayed clearly.

sequence and check if the results are valid. There are six polarised images in all for the

selected object (a ball), whose polariser angles are 0◦, 30◦, 60◦, 90◦, 120◦ and 150◦.

We have tested all combinations of polariser angles, and the results are presented in

Figure 4.11. The DOP results are not shown, as the differences between them are imper-

ceptible. The estimated phase angles for all 20 combinations appear sensible since they

are all consistent with the ground truth image shown in Figure 4.10. This demonstrates

that the new criterion function introduced in this chapter can improve the robustness of

the BSS method.

The differences between the results are mainly caused by noise in the input images.

We have also tested the extreme cases, where the differences of three polariser angles are

less than 30 degrees. As the intensity differences between the input images are small, the

results produced do not remain stable.

We have also shown the application of our method in refractive index estimation.

Similar with what is shown in Chapter 3 we compare the measured refractive index values

nest with the tabulated values nref from five different materials. The estimation results

are shown in Table 4.1. The proposed method gives decent results for smooth objects,

while it fails to estimate refractive index for rough surfaces, such as sponge and plaster.

The reason is the same as given in the last chapter, the roughness of the surface makes the

diffuse polarisation model underestimate the correct refractive index values.

4.4.3 Height Map Recovery

In this section the experiment conducted is to use the zenith angle estimates shown in

Figure 4.6 for 3D meshes and height map estimation. As we lack the azimuth angle in-
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(a) 0◦, 30◦, 60◦ (b) 0◦, 30◦, 90◦ (c) 0◦, 30◦, 120◦ (d) 0◦, 30◦, 150◦

(e) 0◦, 60◦, 90◦ (f) 0◦, 60◦, 120◦ (g) 0◦, 60◦, 150◦ (h) 0◦, 90◦, 120◦

(i) 0◦, 90◦, 150◦ (j) 0◦, 120◦, 150◦ (k) 30◦, 60◦, 90◦ (l) 30◦, 60◦, 120◦

(m) 30◦, 60◦, 150◦ (n) 30◦, 90◦, 120◦ (o) 30◦, 90◦, 150◦ (p) 30◦, 120◦, 150◦

(q) 60◦, 90◦, 120◦ (r) 60◦, 90◦, 150◦ (s) 60◦, 120◦, 150◦ (t) 90◦, 120◦, 150◦

Figure 4.11: The phase angle result for the estimation from different sequences.
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Table 4.1: The list of refractive index estimation results using the improved criterion

function.
Material nref nest

Plastic 1.28 1.20

Apple 1.20 1.19

Plaster 1.48 1.28

Porcelain 1.51 1.57

Sponge 1.48 1.28

formation for the objects, we use the shapelets method instead [58], which can produce

results without the need for the azimuth angle. Figure 4.12 shows the 3D meshes from the

zenith angle results presented in Figure 4.6. We have also rendered them in Figure 4.13

using Matlab and a 1.2GHz CPU computer. The results of 3D modelling are sensible, es-

pecially for the complex shape objects. However, there are two problems existed in those

estimates. Firstly, the residual noise from the zenith angle estimates has also influenced

the process of height map recovery. For example, in Figure 4.13(g) the sponge ball has a

smooth surface, but the recovered height map shows a rough surface instead. Secondly,

as the azimuth angle information lacks, the shapelets method cannot decide whether the

surface is convex or concave. As shown in Figure 4.13(e), the nose of the owl is replaced

with a hole on its face.

4.5 Conclusions

In this chapter we concentrate on providing solutions to the two problems encountered

in the previous chapter. Firstly, we further explore the Fresnel theory and propose a

probability polarisation model that considers both diffuse and specular reflection types.

To compute the probability coefficients we utilise the iterated conditional modes in the

work of Ragheb and Hancock [79].

However, the experimental results show that the performance of the proposed proba-

bilistic model has little or no improvements over the traditional shape from diffuse polar-

isation method. There is still residual noise in the zenith angle estimate and we therefore
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(a) (b) (c)

(d) (e) (f)

(g)

Figure 4.12: The mesh 3D model recovered from the estimated surface normal.
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(a) (b) (c)

(d) (e) (f)

(g)

Figure 4.13: The height maps recovered from the estimated surface normal.
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need to look for another method for shape recovery using the polarisation method. In the

next chapter we present another probability polarisation model, which solves this prob-

lem.

We also propose a new criterion function, which improves the robustness of the BSS

method given in the previous chapter. It is developed based on a different strategy; we

focus on how to produce correct phase angle estimates in this chapter. In the experimental

section we demonstrate its performance, and prove that the phase angle results are much

better than those shown in Chapter 3.

It is also noted that the refractive index value is assumed to be 1.4 for all the general

objects when using the probabilistic model, therefore the algorithm can be simplified.

When estimating polarisation using the improved criterion function, the method can also

measure the refractive index values, and the results are shown in Table 4.1.
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Chapter 5

Shape Recovery using Polarised Light

In this chapter we investigate the techniques using polarised light, and show how the Fres-

nel polarisation model can be applied here for shape recovery. When the incident light is

unpolarised, its reflected ray is partially polarised, meaning that it is difficult to eliminate

the specular highlight from the surface. Placing a polarising filter in front of the source

light, the objects under study are taken under polarised light. While the diffuse reflectance

component remains depolarised, the specular component becomes fully polarised. When

the polariser angle is rotated to be perpendicular to the polarising filter orientation, the

image taken has no specularities as the specular component is blocked by the polariser.

Besides, the Fresnel polarisation models, which are proposed in the previous chapter, can

only be applied to the case where the incident light is unpolarised.

We present a novel polarisation model based on Fresnel theory shape recovery that is

different from the probabilistic model in the last chapter. Our goal is that the proposed

new model for shape recovery can be applied for the images taken under polarised light,

and the zenith angle estimate can have its residual noise eliminated. In this chapter we

show how to apply the novel model for shape recovery, which is a two stage process.

Firstly diffuse and specular components are separated from the input images which are

required for the estimation, secondly the proposed polarisation model is used for shape

recovery, with the aid of an optimised ICM method, Torrance-Sparrow reflectance model

and two reflectance component intensities.

Contribution
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We introduce a comprehensive polarisation model, which can recover shape from the DOP

using polarised light. The traditional shape from polarisation method has the drawback

that the diffuse component remains unpolarised except near occluding contours, where

the zenith angle ψ is large. Therefore the DOP values are small for the most part of the

image, and the estimation process is strongly influenced by noise, which in turn results

in inaccurate surface normal estimations. The proposed model improves the results, as

the DOP values are greatly larger in polarised light. However, there are two solutions

of zenith angle corresponding to most DOP values. In this chapter we solve this zenith

angle ambiguity problem, by using the zenith angle estimates from the chosen parametric

reflectance models as a reference.

There are two steps for obtaining this estimate. The process of detailed estimation

based on reflectance models can be simplified if the specular and diffuse components are

separated beforehand. In the first step we acquire the images in the experiment of polar-

isation, and separate the components of reflection by applying the method of BSS. We

extend the work in Umeyama et al. [110] and propose the BSS method whose criterion

function is developed specifically for this case. We show in Section 5.3 that the pro-

posed method is capable of separating reflectance components and obtaining phase angle

estimates simultaneously.

Secondly we explore the framework, which measures the reflectance properties using

parametric reflectance models. With the two reflectance components intensities in hand,

we impose the constraint that if the chosen models can accurately describe the reflectance

in the surface and the parameters are correct, the surface normals recovered from the

two components should have the largest similarity. We choose the Lambertian model

for diffuse reflections, and a simplified version of the Torrance and Sparrow model for

specular reflection.

When the ambiguity problem is solved, we use a probabilistic framework to recover

the zenith angle using the proposed polarisation model, which can be implemented with-

out knowing their parameters. The framework introduced here is also developed based

on the work of Ragheb and Hancock in [79]. However, it is optimised for the process of

shape from polarisation in this chapter, which is different from the probabilistic model

approach introduced in the last chapter. We describe the details of the methodology in

91



5.1 Polarisation Vision

Section 5.2.

Chapter Outline

The organisation of this chapter is as follows. Section 5.1 presents a comprehensive

model based on the Fresnel theory introduced in Chapter 4 for shape recovery. Next we

introduce the methodologies to recover shape using the proposed model in Section 5.2.

Finally, Section 5.3 presents the details of experimental results.

5.1 Polarisation Vision

In Chapter 4 we have summarised the polarisation models available for shape recovery

by using the values of refractive index and DOP. In this section we show how the Fresnel

theory can be applied when the images are taken under polarised light. Here Malus’s

law is adopted which describes the properties when polarised light is reflected from the

surface of objects. According to the Malus’s law, part of the fully polarised light intensity

I0 transmitting through the polariser is blocked. Denote the light intensity that passes

through as I , the equation of the Malus’s law is given by

I = I0 cos2(θ) . (5.1)

where θ is the polariser angle. In order to develop the polarisation model, here we also

adopt the four magnitudes of the perpendicular and parallel components for specular and

diffuse reflections presented in the last chapter, which are given as follows

Ms⊥(n, ψ) =
R⊥(n, ψ)

R‖(n, ψ) +R⊥(n, ψ)
Ls , (5.2)

Ms‖(n, ψ) =
R‖(n, ψ)

R‖ +R⊥(n, ψ)
Ls , (5.3)

Md‖(n, ψ) =
1−R‖(1/n, ψ)

2−R‖(1/n, ψ)−R⊥(1/n, ψ)
Ld , (5.4)

Md⊥(n, ψ) =
1−R⊥(1/n, ψ)

2−R‖(1/n, ψ)−R⊥(1/n, ψ)
Ld . (5.5)

Following the work of Wolff and Boult in [117], we have the general expressions for

the magnitude of diffuse and specular reflections as
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Md(n, ψ) = Md‖(n, ψ) cos2 θ +Md⊥(n, ψ) sin2 θ , (5.6)

Ms(n, ψ) = Ms⊥(n, ψ) sin2 θ +Ms‖(n, ψ) cos2 θ . (5.7)

Here we impose the constraint that Md(n, ψ) and Ms(n, ψ) are regarded as the in-

tensities of diffuse and specular components, which is also stated in [117]. Suppose that

the texture of the objects under study is simple, according to the dichromatic model [93]

the image intensity I(n, ψ) is decided by the diffuse and specular components using the

following equation

I(n, ψ) = Md(n, ψ) +Ms(n, ψ) . (5.8)

When polarised light is reflected from a surface, the specular component maintains the

polarisation state whilst the diffuse component becomes depolarised. As a result the spec-

ularity is eliminated in the image when we have the polariser placed in front of the source

light, and angles of the two polarisers are perpendicular to each other [25]. Observed

from the Malus’s law in Equation 5.1, any electric wave whose direction is perpendicular

to the incidence plane are blocked, therefore in this case Is⊥ is zero. The magnitude for

the specular reflectance component becomes

M ′
s(n, ψ) = Ms‖(n, ψ) cos2 θ . (5.9)

as a result, the intensity of image is related to the zenith angle and refractive index values

using the following equation

I(n, ψ) = Md‖(n, ψ) cos2 θ +Md⊥(n, ψ) sin2 θ +Ms‖(n, ψ) cos2 θ . (5.10)

In [71] the intensity values in the polarised images are related to the polariser angle θ

and the phase angle φ by the TRS, the equation is introduced in Equation 3.4 of Chapter 3.

We replace the maximum and minimum intensity values Imax and Imin in TRS equation,

with the Fresnel coefficients in Equation 5.10 to relate ρ to the zenith angle ψ using the

following polarisation model
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ρ =

R‖(n,ψ)

R‖(n,ψ)+R⊥(n,ψ)
Ls +

R‖(1/n,ψ)−R⊥(1/n,ψ)

R⊥(1/n,ψ)+R‖(1/n,ψ)−2
Ld

Ld +
R‖(n,ψ)

R‖(n,ψ)+R⊥(n,ψ)
Ls

. (5.11)

The novel polarisation model is shown in Figure 5.1. It is noted that in the extreme

cases, if the radiance Ls becomes zero, the specular magnitudes in the polarisation model

are eliminated. Therefore Equation 5.11 is equal to the diffuse polarisation model intro-

duced in [3], as there is only the diffuse component available which is partially polarised.

The polarisation model in that case is shown in (b). On the other hand, when Ld is 0, the

DOP ρ becomes 1 for all the values in the matrix as the image is fully polarised, as is

shown in (c).

5.2 Methodology

We now consider how the polarisation model can be used for estimating shape from the

captured images. As shown in Figure 5.1 there are two ψ values for most values of ρ. This

ambiguity problem has to be solved before shape estimation is attempted. In this section

we firstly obtain the diffuse and specular reflectance components, then we use numerical

inversion of the chosen reflectance models to estimate the zenith angles ψd and ψs, which

are combined as ψ′ = (ψd +ψs)/2. Let the two zenith angle results from the estimated as

ψ1 and ψ2, the ambiguity is resolved by taking the one that is closer to ψ′.

In this section our first goal is reflectance component separation, for which we pro-

pose a novel BSS algorithm using three polarised images without polariser orientation

information. The advantage of using BSS method over cross-polarisation setting is that

the phase angle can also be obtained, which can be used for computing azimuth angle

of the surface normal. The BSS method is developed following a different strategy from

what is introduced in Chapter 3. The second goal in this section is for shape recovery us-

ing the proposed polarisation model. The probabilistic model approach presented in the

last chapter is adopted here. We consider Ld and Ls as the two probability coefficients for

the probabilistic model, which is the proposed polarisation model. Therefore the iterated

conditional modes algorithm can be applied in this section for estimating values of Ld and

Ls.
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(a) Ls=1.5,Ld=1

(b) Ls=0,Ld=1

(c) Ls=1.5,Ld=0

Figure 5.1: The proposed polarisation model, the refractive index n is set to be n = 1.4.

Figure (a) is the function when the two coefficient values are set as Ls=1.5,Ld=1. Figure

(b) and Figure (c) are two extreme cases, the first shows when the specular component

is not available, while as the second shows when the diffuse component is none in the

reflectance.
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5.2.1 Reflectance Component Separation

When scattered light is measured through a linear polarising filter, the intensity changes

as the polariser angle θ is rotated [38]. The measured intensity follows the TRS equation

introduced in Chapter 3. There are four parameters in the equations, Imax is the maximum

brightness, Imin is the minimum, and φ is the phase angle, that corresponds to the angle

of maximum transmission.

According to the TRS equation in Equation 3.4 the maximum pixel brightness is ob-

served when the polariser is aligned with the angle of polarisation, i.e. I(θ = φ) = Imax,

and the minimum is observed when the polariser is rotated by a further 90 degree in either

direction, i.e. I(θ = ψ ± 90◦) = Imin. In [71] when using polarised incident light, part of

the specular component, denoted as Isv, is changed with the polarisation angles, while as

the rest remains constant Isc.

Following the definition in [71] where the diffuse component is Id = Imin, and assum-

ing the specular component Is = Imax − Imin = 2Isc = 2Isv, the TRS equation can be

rewritten as

I(θ) = Id +
Is
2

+
Is
2

cos 2θ cos 2φ+
Is
2

sin 2θ sin 2φ . (5.12)

Our method requires three Nx × Ny images captured under polariser orientations as

θ1,θ2 and θ3. Each image is converted into a long-vector of length NxNy, and the ob-

servation matrix X is denoted as (x1, x2, x3), where xi is the long-vector by stacking

the columns of the i-th polarisation image. We capture the two-components reflectance

process using the matrix

C = [(Jd +
1

2
Js), (

1

2
Js cos 2φ), (

1

2
Js sin 2φ)] = [ca, cb, cc] . (5.13)

In the above, Jd and Js are long-vectors of length NxNy that contain the diffuse and

specular reflectance components Id and Is as elements. In this section we adopt the BSS

method which is introduced in Chapter 3 to compute Jd and Js. There are two difference

between the two BSS approaches presented here and in Chapter 3. Firstly, the method

introduced before is applied in the case using unpolarised light, while in this chapter we

use polarised light instead. As previously stated, differences between the images taken in
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these two illumination environments cannot be neglected. Secondly, the BSS algorithm

we apply in Chapter 3 is for polarisation state estimation, while in this section we are

aiming at reflectance component separation, the purpose is also different from each other.

Therefore, we develop a new novel BSS method, which meets the requirements in this

section.

We still apply the Newton’s method for measuring the parameter values, while the

criterion function is developed following the requirements addressed above. Here we use

a smoothness criterion based on the local variance of the diffuse component of intensity.

Firstly, we select a set of pixels within the regionG(0), where the intensities in the specular

component J (0)
s are higher than its mean value. That is

i ∈ G(0), if J (0)
s (i) ≥ J̄ (0)

s , i = 1, ..., NxNy . (5.14)

where J̄ (0)
s = 1

NxNy

∑NxNy

i=1 J
(0)
s (i). Our error criterion is based on the variance of the in-

tensities of the diffuse component over the image regionG(0). For iteration t, we therefore

have

ε(t) =
∑
i∈G(t)

[J
(t)
d (i)− J̄d

(t)
]2 . (5.15)

where J̄d
(t) is the arithmetic mean of J (t)

d (i) for all i ∈ G(t). When we have correct separa-

tion, the intensities of the diffuse component in that region should become approximately

uniform. This means that there is neither specularity nor shading information present

in G(t), and ε reaches a minimum. The process of reflectance component separation is

presented in Algorithm 5.1.

5.2.2 Shape Estimation

In this section we show how to use the proposed polarisation model for shape recovery.

Firstly we use numerical inversion of the Lambert and simplified Torrance-Sparrow mod-

els [69] to estimate the zenith angles ψd and ψs, the equations are mentioned in Chapter

2. The parameter value es in the Torrance-Sparrow model is computed using the mutual

information estimation method presented in the next chapter. We impose the constraint
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Algorithm 5.1: The BSS method for reflectance component separation.
Input: The input matrix X containing intensities of three random polarisation

images, using polarised light

Output: The separated reflectance components Id and Is.

1 begin

2 Set the iteration t = 0;

3 Compute V using SVD method;

4 Initialise A(0) using the constraint in Equation 3.23;

5 Compute θ(0)
1 , θ(0)

2 and θ(0)
3 using Equation 3.10;

6 repeat

7 Compute C(t) using Equation 3.11;

8 Compute J (t)
d and J (t)

s using Equation 5.13, and convert into I(t)
d and I(t)

s ,

respectively;

9 Compute mean value of intensities in J (t)
s , denoted as J̄ (t)

s ;

10 Set image region G(t) in which J (t)
s > J̄

(t)
s ;

11 Compute error function ε(t) =
∑

i∈G(t) [J
(t)
d (i)− J̄d

(t)
]2;

12 Update θ1 and θ2 using equation of Newton’s method:

Θ(t+1) = Θ(t) − ηQ[ε(t)]−1∇ε(t), where Θ(t) = (θ
(t)
1 , θ

(t)
2 )T ;

13 Update θ(t+1)
3 using the constraint in Equation 3.20;

14 Set iteration t = t+ 1;

15 until [ε(t) − ε(t−1)]2 < ε;

16 Compute A using Equation 3.10;

17 Compute C using Equation 3.11;

18 Compute Jd and Js using Equation 5.13, and convert into Id and Is,

respectively;

19 end
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that the zenith angle estimate ψ′ is obtained by the mean values of ψd and ψs, which is

given by

ψ′ = (ψd + ψs)/2 . (5.16)

Let the two estimates of zenith angle candidates as ψ1 and ψ2, the ambiguity is re-

solved by choosing the one that is closer to ψ′. Consider the correct zenith angle as ψ(0),

it is computed using the following equations

ψ(0) =

 ψ1, |ψ1 − ψ′| ≤ |ψ2 − ψ′| ,

ψ2, |ψ1 − ψ′| > |ψ2 − ψ′| .
(5.17)

Value of DOP ρ is needed for shape recovery, we use the two reflectance component

intensities Id and Is, and compute the maximum and minimum intensities using the con-

straints made in Section 5.2.1, which are Id = Imin and Is = Imax − Imin. Then we

compute ρ following Equation 3.21. There are three parameters to be considered when

using the proposed model for shape recovery, which are the refractive index n of the sur-

face and the two radiances Ls and Ld. To compute the two radiances we use a method

similar to ICM to estimate the posterior mean zenith angle. We commence by developing

a probabilistic model, which is written as:

ψ = P (ωs|Ls, Ld, ψs)ψs + P (ωd|Ls, Ld, ψd)ψd . (5.18)

where P (ωs|Ls, Ld, ψs) and P (ωs|Ls, Ld, ψd) are the a posteriori probabilities of the

specular and diffuse components, satisfying

P (ωs|Ls, Ld, ψs) + P (ωd|Ls, Ld, ψd) = 1 , (5.19)

0 ≤ P (ωs|Ls, Ld, ψs) ≤ 1 , (5.20)

0 ≤ P (ωd|Ls, Ld, ψd) ≤ 1 . (5.21)

where ωs and ωd are the class identities for the specular and diffuse radiance class. For

every location in the image the value of ψ is intermediate between ψs and ψd, which is

min(ψs, ψd) ≤ ψ ≤ max(ψs, ψd) . (5.22)
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The iterative process used for estimation is similar with the ICM method introduced in

the last chapter. There are several changes in the ICM method which is implemented here,

firstly the polarisation model proposed in this chapter is different from the probabilistic

model in Chapter 4. Secondly, the input data here is the zenith angle estimates from

diffuse and specular components, which are used here as the reference for computing the

zenith angle by the proposed polarisation model. Therefore we develop the ICM method

based on a strategy which is different from the approach proposed in Chapter 4. The

iterative process is given in Algorithm 5.2.

Algorithm 5.2: The ICM method for probabilistic model using polarised light
Input: DOP value ρ, the diffuse and specular zenith angle estimates ψs, ψd.

Output: zenith angle result ψ.

1 begin

2 Set iteration t = 0;

3 Initialise n = 1.4, P (ωs|Ls, Ld, ψs)(0) = P (ωs|Ld, Ld, ψs)(0) = 0.5, and ψ(0)

using Equation 5.18;

4 repeat

5 Compute I(t)
s and I(t)

d using ψ(t) and the Lambertian and Torrance-Sparrow

model using the parameter es;

6 Let ε(t)
s = [Is − I(t)

s ]2 and ε(t)
d = [Id − I(t)

d ]2, then the updated a posteriori

class probabilities are P (t+1)(ωs|Ls, Ld, ψs) = exp[−ε(t)s ]

exp[−ε(t)s ]+exp[−ε(t)d ]
and

P (t+1)(ωd|Ls, Ld, ψd) =
exp[−ε(t)d ]

exp[−ε(t)s ]+exp[−ε(t)d ]
;

7 Update ψ(t+1) using Equation 5.18;

8 Update L(i+1)
s and L(i+1)

d using the proposed polarisation model in Equation

5.11;

9 Compute error function ε(t) =
∑

x,y[ε
(t)
s (x, y) + ε

(t)
d (x, y)];

10 Set iteration t = t+ 1;

11 until [ε(t) − ε(t−1)]2 < ε;

12 end
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Figure 5.2: The experimental setup for image acquisition using polarised lights. Notice

that a polarising filter is attached in front of the source light.

5.3 Experiments

In this section we present the experiments with our new method for estimating shape.

We commence by demonstrating the performance of proposed method for reflectance

component separation, the estimates are vital for the shape recovery in this chapter. Next

we use the novel polarisation method and ICM method introduced in the last section for

shape recovery, and compare the zenith angle estimate with the result computed using

traditional shape from diffuse polarisation. In the end we provide the 3D meshes and

height map from the surface normal estimates.

During the acquisition we placed a vertical polarisation filter in front of a collimated

light source, so that the objects are illuminated by polarised light in the direction of the

camera (frontal illumination). There was also a polariser in front of the camera, which can

be rotated and change the intensities of input images following the equation of transmitted

radiance sinusoid (TRS) introduced in Section 3.1.1. Figure 5.2 shows the devices used

for image acquisition.

5.3.1 Separation Result

The first experiment conducted is reflectance component separation from input images

taken using a polarised light source, following Algorithm 5.1. There are three experimen-

tal objects under study, which are a green apple, a yellow pear, and an orange. Figure 5.3

shows the three input images of the green apple under the polariser angles of 0, 60 and

120 degrees, and we plot the intensity distribution of the row across the centre of the three

images. Differences between the three input images are much larger than the three input
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images taken using the unpolarised light, which are shown in Figure 3.7. The results of

this experiment are presented in Figure 5.4. The first column shows the image obtained

with the incident light polariser at an angle of 0 degrees (vertical), the specular and dif-

fuse separations are shown in the second, third and fourth columns, and the phase angles

in the fifth column. The standard method uses the Equation 5.12 of TRS to perform the

separation, which requires the polariser angle information of the input images.

Comparing the results of our method with that of the standard one, it can be seen that

some specularity remained on the surface of the apple using the TRS fitting. Using our

method by contrast, the shininess has been fully eliminated. The results clearly demon-

strate therefore, that using our method the knowledge of polariser angle is not required,

while the result of separation remains quite satisfactory. We also compare our result with

another traditional approach, which is cross-polarisation setting introduced in Chapter 1.

Figure 5.5 shows the differences between the two methods, the first figure is the diffuse

component from the proposed method, while the second figure is taken following the

cross-polarisation setting. It is shown that the two results are hard to be distinguished,

which is also demonstrated in Figure 5.6, in which the mean value of difference between

the two estimates is less than 0.008, which can be considered as trivial.

Next we explore the application of our method to colour images. Here we have inves-

tigated samples of human skin. The colour images are decomposed into red, green and

blue channels, and the separation process is applied to each channel in turn. The specular

and diffuse components in the different channels are then recombined to give composite

separations [34]. Figure 5.7 shows the results obtained, with the usual column ordering.

The specular separation is good, and removes the shininess from the surface of the skin.

5.3.2 Shape Recovery Result

In this section we use the novel polarisation model and the ICM method proposed in this

chapter to recover shape, following Algorithm 5.2. We have used 12 objects for exper-

iments, which are green and red apples, a sponge ball, two human faces, two terracotta

models, one human palm and a plaster owl. The experimental results are shown in Fig-

ure 5.8. The figures demonstrate that the estimation process works well using the new

polarisation model.
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(d)

Figure 5.3: The input images taken under the polarisation orientations of 0, 60 and 120

degrees using polarised light (a,b,c). Figure (d) shows the intensity distribution of the row

across the centre of the three images.

(a) Original (b) Specular (c) Diffuse(BSS) (d) Diffuse(TRS) (e) Phase

Figure 5.4: Results for selected objects under polarised incident light. Columns from

left-to-right, example input image (0 degree polariser), diffuse, specular and phase-angle.

Images in the third and fourth columns are the comparison of diffuse component between

our method and the standard method. The image contrast has been adjusted to improve

clarity.
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(a) Proposed method

(b) Cross-polarisation

Figure 5.5: Comparison between the proposed method(a) and cross-polarisation set-

ting(b).

Figure 5.6: The difference distribution of two estimates shown in Figure 4.4. The X axis

is the intensity of diffuse component from cross-polarisation method ranges from 0 to 1,

the Y axis represents the mean value of computed difference between the two results, with

the error bar for the variance.
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(a) Original (b) Specular (c) Diffuse (d) Phase

Figure 5.7: Example results for colour images.

Input

(a) (b) (c) (d) (e) (f) (g) (h) (i) (j) (k) (l)

Zenith

Figure 5.8: The shape results for 12 objects. The first row shows the input images and the

figures in the second row show the surface normal estimations.
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(a) (b)

Figure 5.9: The comparison of estimation results between shape from diffuse polarisation

(a) and the proposed method (b).

Next we compare our method with the alternatives. In Figure 5.9 the left figure is

the zenith angle estimated using the shape from diffuse polarisation using linear polariser

described in [3], whilst the right hand figure is the result of using the method reported

in this chapter. There is a significant amount of noise in the left hand figure, while the

surface in the right hand figure is much smoother. It should also be noted that although

such noise can be eliminated using simple smoothing process in [3], the details of the

surface are eroded by this process. Difference between the two estimates is shown in

Figure 5.10.

Finally, we provide experiment to recover the height map and 3D meshes for the ob-

jects using the surface normal estimates. There is two information required for surface

normal of the surface, one is zenith angle which is shown in Figure 5.8, the other is the

azimuth angle which theoretically can be computed from the phase angle estimates. Be-

cause of the problem of azimuth angle ambiguity described in Chapter 3, it is very difficult

to obtain the azimuth angle in the polarisation vision. We also use the shapelets method

introduced in [58], which does not require the need of azimuth angle when computing

height map.

Figure 5.11 shows some of the results in the form of meshes, and we have rendered
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Figure 5.10: The difference distribution of two estimates shown in Figure 5.9. The X axis

is the zenith angle estimate from diffuse polarisation model that ranges from 0 to 1, the Y

axis represents the mean value of computed difference between the two results, with the

error bar for the variance.

them in Figure 5.12 using Matlab program and a 1.2GHz CPU computer. Compared

with the results shown in the last chapter, the surfaces of objects become much smoother,

though it is not much improved. The simple objects, such as apples and balls, were

not performed well, as shown in Figure 5.11(a) and Figure 5.11(f), where the surfaces are

slightly distorted. It is also noted that without the azimuth angle information, the shapelets

method cannot accurately determine whether the given surface is convex or concave. For

example, in Figure 5.11(h) and Figure 5.11(c), the nose shapes of the human face and

plaster owl are concave instead of convex. With the azimuth angle information to hand,

such problems can be easily solved.

5.4 Conclusions

In this chapter, we show how to use the Fresnel theory in shape recovery, using the images

taken under polarised light. We have investigated Malus’s law, and constructed a new

novel model, which is completely different from the alternatives in polarisation vision. We

demonstrate experimentally that the proposed method can be applied for shape recovery
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(a) (b) (c)

(d) (e)

(f) (g)

(h)

Figure 5.11: The mesh 3D model recovered from the estimated surface normal.
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(a) (b) (c)

(d) (e)

(f) (g)

(h)

Figure 5.12: The height map recovered from the estimated surface normal.
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using polarised light, and it produces results which are better than the traditional shape

from diffuse polarisation method.

We also present a novel BSS method for reflectance component separation. Only three

polarised images are required for computation and the phase angle estimates can also be

obtained, which is impossible for the cross-polarisation approach. The separated compo-

nents can also be used for reflectance estimation and shape recovery; the methodology

is presented in the next chapter. Furthermore, the height map recovered is unsatisfactory

because the azimuth angle information is lacking during computation. We present an

algorithm in Chapter 6, where we also concentrate on solving this problem.
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Chapter 6

Shape and Reflectance Recovery

In this chapter we introduce the parametric reflectance models used in our method and

show how to estimate their parameter values. With the separated reflectance components

estimates in Chapter 5 to hand, the zenith angle of the surface normal can be inferred from

the relevant reflectance model together with its estimated parameter values. We develop

a novel two-step method for reflectance parameter estimation and shape-recovery. In the

first step, we determine the parameter values for the diffuse and specular reflectance mod-

els. In the second step we use a probabilistic framework to recover the shape from the

estimated reflectance components. We present experiments to demonstrate the validity of

the proposed method for a variety of materials, and we show that the proposed method is

capable of accurately estimating both shape and reflectance information.

Contribution

Our goal in this chapter is to propose a novel framework for reflectance and shape

estimation in polarisation vision. Theoretically, the zenith angle estimate can be com-

puted directly from the reflectance component using the inverse function of the reflectance

model. However, due to the limited capacity of the chosen models, the estimates obtained

are usually unsatisfactory. The proposed framework recovers shape from two reflectance

components. Firstly the zenith angle estimates from diffuse and specular components are

compared and the parameter values of the reflectance models are adjusted to make the

two estimates as close to each other as possible. We also apply the iterated conditional

models algorithm introduced in Chapter 4 and Chapter 5 for recovering the correct shape
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6.1 Reflectance Estimation

information from the two estimates. The details are presented in Section 6.2.

There are two other contributions in this chapter. Firstly, we introduce a novel ap-

proach for solving azimuth angle estimation, which is one of the main issues in the shape

from polarisation field. Existing methods measure the azimuth angle using the stereo

method, which requires extra devices and more images are taken during image acquisi-

tion [7] [68]. The proposed method used the SFS algorithm, which is simple and low-cost

to use. We show its performance in Section 6.2.2.

Secondly, we show how to use the proposed method in other computer vision fields.

There are two applications in Section 6.3.4 and Section 6.3.5, we start by relaxes assump-

tion about constant reflectance. Next we show how to extract features from reflectance

estimates, in which we have 35 fruits for seven categories under study.

Chapter Outline

The remainder of this chapter is organised as follows: Section 6.1 shows the mutual

information estimation used here for reflectance measurement. In Section 6.3 we demon-

strate the validity of the proposed method, and present two applications in the computer

vision field.

6.1 Reflectance Estimation

In this chapter we apply those six reflectance models for reflectance measurement, in

which the models of Lambertian, O-N and B-K are more suitable for estimating diffuse

component in the images, whilst the Phong, T-S and C-T models are generally used for

specular component estimation. We invert the reflectance function to recover shape, i.e.

surface normal zenith angle, information. It is noted that the original reflectance models of

Phong, T-S and C-T contain diffuse component which is actually the Lambertian model.

Here we only use their specular component for the estimation. Our aim is to show if those

three models can use O-N or B-K model as the diffuse part, and if such combination can

improve the estimation results.

The reflectance models are also simplified according to the following two constraints.

Firstly, the incident and viewing directions follow the retro-reflection constraint, in which
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6.2 Shape Recovery

the two orientations are identical. Secondly, the images are acquired in the front view,

therefore the azimuth angle of the incident and viewing directions are equal to zero. We

show in the experiment section that the image acquisition setting follows these two con-

straints.

Let the specular and diffuse reflectance models as fs(ψs,Es) and fd(ψd,Ed), respec-

tively, and let Es and Ed be their parameter value sets. The estimated surface normal

zenith angles for the two models are ψs and ψd. Associated with each model is a scaling

coefficient, denoted by ks and kd. The separate reflectance components are Is and Id.

Hence we can write

Is = ksfs(ψs,Es) , (6.1)

Id = kdfd(ψd,Ed) . (6.2)

Upon inversion the two zenith angles are

ψs = f−1
s (Is/ks,Es) = f−1

s (I ′s,Es) , (6.3)

ψd = f−1
d (Id/kd,Ed) = f−1

d (I ′d,Ed) . (6.4)

We compute ks and kd so that the two components I ′s = Is/ks and I ′d = Id/kd are

normalised. Since they correspond to the same image location, the two zenith angles

should correspond, i.e. ψs and ψd should be identical. As Is and Id are known, the

parameter values can be found when the distributions of ψs and ψd are closest to each

other. Because of its rapid (quadratic) convergence we use Newton’s method to estimate

the parameters Es and Ed. The criterion function used as input to Newton’s method

is defined by a mutual information criterion B for the distributions of ψd and ψs. The

values of E(0)
s and E

(0)
d are initialised according to the properties of the corresponding

reflectance models. The process of mutual information estimation is given in Algorithm

6.1.

6.2 Shape Recovery

In this section we introduce the method for estimating surface normal information, which

consists of zenith and azimuth angles. We commence by showing how to estimate the
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Algorithm 6.1: Newton’s method for recovering parameters of reflectance models,

using the mutual information estimation between two zenith angle results from dif-

fuse and specular components.
Input: The diffuse and specular components Id and Is, albedo coefficients ks and

kd.

Output: The parameter values of reflectance models Es and Ed.

1 begin

2 Set the iteration t = 0;

3 Initialise E(0)
s and E

(0)
d ;

4 repeat

5 Compute ψ(t)
s and ψ(t)

d using Equation 6.3 and Equation 6.4;

6 Compute mutual information between ψ(t)
s and ψ(t)

d , the result is

B(ψ
(t)
s ;ψ

(t)
d );

7 Update E(t+1)
s and E

(t+1)
d using the equation of Newton’s method:

Θ(t+1) = Θ(t) − ηQ[B(t)]−1∇B(t), where Θ(t) = (E(t)
s ,E

(t)
d )T ;

8 Set iteration t = t+ 1;

9 until [B(t) −B(t−1)]2 < ε;

10 end
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zenith angle, when the parameter values of the chosen reflectance models have been ob-

tained. As previously stated, the two estimates ψs and ψd should have identical distri-

butions since they originate from the same surface, but via estimation methods based on

different reflectance models. However, there are inevitably some differences between the

two estimates due to the limited capacities of the selected reflectance models to accurately

reproduce the behaviour of real-world surfaces. Concrete problems include the influence

of texture and shadows. Here we use the iterated conditional method which estimates the

zenith angle information from the two estimates ψs and ψd using the probabilistic model.

The azimuth angle can be computed from the phase angle estimate, which can be ob-

tained using the proposed frameworks in the previous chapters, as we have demonstrated.

However, there is an azimuth angle ambiguity problem, which needs to be solved be-

forehand. Some of the existing methods recover azimuth angle by making constraints on

surface shape [69] [3], whilst the others use stereo methods instead [68] [5]. Both have

weaknesses that render them impractical for shape recovery. In this section we solve this

problem by firstly using the SFS method to obtain an azimuth angle estimate, and then

comparing it with the phase angle.

6.2.1 Zenith Angle Estimation

We commence by developing an information theoretic framework for recovering the un-

derlying surface shape as captured by the zenith angle ψ. We assume that the observed

zenith angle is drawn from a probabilistic model over the diffuse and specular compo-

nents. Each probabilistic component has an associated zenith angle estimate ψd and ψs.

We take the posterior mean of the two estimates, that is

ψ = P (ωs|Is, Id, ψs)ψs + P (ωd|Is, Id, ψd)ψd . (6.5)

where P (ωs|Is, Id, ψs) and P (ωs|Is, Id, ψd) are the a posteriori probabilities of the spec-

ular and diffuse components, satisfying P (ωs|Is, Id, ψs) + P (ωd|Is, Id, ψd) = 1, 0 ≤

P (ωs|Is, Id, ψs) ≤ 1 and 0 ≤ P (ωd|Is, Id, ψd) ≤ 1. ωs and ωd are the class identities

meaning that the result estimation ψ is equal to ψs or ψd, respectively.

For every location in the image the value of ψ is intermediate between ψs and ψd,

i.e. min(ψs, ψd) ≤ ψ ≤ max(ψs, ψd). Applications of probabilistic models generally
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are in the fields of clustering, generative component models and density estimation [62].

Here our aim is to find the mixing proportions for the two surface normal estimates and

calculate their posterior mean ψ.

The idea underpinning the approach is to iteratively interleave the two processes of

calculating the reflectance components recovered from the current shape estimate ψ, and

update ψ based on the error between the input components with the current estimated

reflectance. The main difference between the iterated conditional modes (ICM) method

applied in this section and the approach introduced in Chapter 5, is that in this chapter

there is no polarisation model included in the probabilistic model. Therefore the algorithm

can be simplified. The iterative process of ICM is listed in Algorithm 6.2.

6.2.2 Azimuth Angle Estimation

When the reflected light is polarised, the part that becomes fully polarised has its wave

oscillation directed to a single orientation. The direction is equal to the azimuth angle

on the surface. Therefore when it is transmitted through a linear polariser, maximum

light transmission is allowed if the polariser angle is parallel to the oscillation orientation.

Denote φ as phase angle, in Equation 3.4 of TRS the intensity becomes maximum when

the polariser angle ψ follows ψ = φ or ψ = φ + 180o. Define γ as surface azimuth,

which is the angle between the direction of surface normal projected onto the image plane

and the y-axis. Therefore we have two ambiguity angle candidates γ1 and γ2 from phase

angle, which is written as follows

γ1 = φ γ2 = φ+ 180o . (6.6)

Our goal is to recover the azimuth angle from the two candidates. We commence

by estimate azimuth angle using the SFS method, which is denoted as γ′ here. As de-

scribed in Chapter 2, SFS methods are not robust for recovering shape from dielectric

materials, but are simple and require only one input image. We utilised Worthington and

Hancock [119] algorithm here for its simplicity and relatively efficient performance in

shape recovery. When the estimate γ′ is obtained, we measure the correct azimuth angle

γ by selecting the candidate whose value is closer to γ′, which is given by
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Algorithm 6.2: The ICM method using diffuse and specular components for zenith

angle estimation.
Input: The diffuse and specular separated reflectance components Id and Is, and

the Ed and s computed using Algorithm 6.1, and ks and kd.

Output: zenith angle result ψ.

1 begin

2 Set iteration t = 0;

3 Initialise P (ωs|Is, Id, ψs)(0) = P (ωs|Id, Id, ψs)(0) = 0.5;

4 Compute ψd and ψs using the two reflectance models, with their parameter sets

Es and Ed, and their scaling coefficients ks and kd;

5 Compute ψ(0) using Equation 6.5;

6 repeat

7 Compute I(t)
s and I(t)

d using the chosen two reflectance model;

8 Compute error functions ε(t)
s = [Is − I(t)

s ]2 and ε(t)
d = [Id − I(t)

d ]2 using least

square fitting;

9 Update the a posteriori class probabilities

P (t+1)(ωs|Is, Id, ψs) = exp[−ε(t)s ]

exp[−ε(t)s ]+exp[−ε(t)d ]
and

P (t+1)(ωd|Is, Id, ψd) =
exp[−ε(t)d ]

exp[−ε(t)s ]+exp[−ε(t)d ]
;

10 Update ψ(t+1) using Equation 6.5;

11 Compute error function ε(t) =
∑

x,y[ε
(t)
s (x, y) + ε

(t)
d (x, y)];

12 Set iteration t = t+ 1;

13 until [ε(t) − ε(t−1)]2 < ε;

14 end
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γ =

 γ1 |γ1 − γ′| ≤ |γ2 − γ′| ,

γ2 |γ1 − γ′| > |γ2 − γ′| .
(6.7)

6.3 Experiments

In this section we demonstrate the validity of the proposed method for estimating re-

flectance and shape. All the image acquisition settings are as described in Chapter 5. We

commence by testing the performances of six chosen reflectance models by using them

in the estimation framework. The two best-performed reflectance models are chosen and

we show their zenith angle results. The azimuth angle estimation method is also demon-

strated experimentally. We also give two applications of proposed methods in computer

vision: firstly we intend to construct a reflectance parameter map for the surface. Next

we show how to extract features from reflectance estimates, which can further applied in

object classification.

6.3.1 Zenith Angle Estimation from Six Chosen Models

Here the experiment conducted is to show the zenith angle estimates from the diffuse

and specular components respectively, and the results using ICM method following Al-

gorithm 6.2. There are 12 objects in various materials used for the experiments, including

human face, palm, apple, plaster, etc. For each object we used six reflectance models

for testing, which are Lambertian (L), Oren-Nayar (O-N) and Beckmann-Kirchhoff (B-

K) models for diffuse component estimation, and Phong (P), Torrance-Sparrow (T-S) and

Cook-Torrance (C-T) models for the specular component. We show our surface normal

estimations for a human palm in Figure 6.1 and Figure 6.2 obtained from the diffuse com-

ponent and from the specular component, respectively. The zenith angle results using the

probabilistic model is shown in Figure 6.3.

6.3.2 Reflectance Models Comparison

There are two experiments conducted for the comparison of six reflectance models. Firstly

we presents reflectance functions of diffuse and specular components based on the re-
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(a) P & L (b) T-S & L (c) C-T & L

(d) P & O-N (e) T-S & O-N (f) C-T & O-N

(g) P & B-K (h) T-S & B-K (i) C-T & B-K

Figure 6.1: The estimated zenith angle result from the diffuse component of the palm

images.

(a) P & L (b) T-S & L (c) C-T & L

(d) P & O-N (e) T-S & O-N (f) C-T & O-N

(g) P & B-K (h) T-S & B-K (i) C-T & B-K

Figure 6.2: The estimated zenith angle result for the specular component of the palm

images.
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(a) P & L (b) T-S & L (c) C-T & L

(d) P & O-N (e) T-S & O-N (f) C-T & O-N

(g) P & B-K (h) T-S & B-K (i) C-T & B-K

Figure 6.3: The zenith angle estimation results of the palm using ICM method.

flectance model parameters and zenith angle estimates in Figure 6.3, and compare them

with the other reflectance functions based on two input components Id and Is and the

zenith angle results.

Figure 6.4 shows the comparisons for diffuse components, and Figure 6.5 for specular

components. The red curves in the figures represent the estimated component intensities

with the zenith angle, while the blue curves show the input component intensities. The

two chosen reflectance models perform the best when the two curves are closest to each

other. We found that for the palm object, using P and O-N model will give the best zenith

angle estimation.

In the second experiment we compute the average degree differences between each ψd

and ψs for every combination of the chosen models from 12 objects under study. Table

6.1 shows the comparison results, with the three lowest values in each row marked. In

the last row, the number of values which are marked for every column are counted and

displayed; this is where we found the two reflectance models C-T & B-K which exhibited

the most robust performance for all the test objects. We show all the estimation results

using these two reflectance models in Figure 6.6.

The third experiment in this section is to compare the zenith angle results from Chapter

3 to Chapter 6 with the ground truth data. Their profiles are shown in Figure 6.8, the red

line represents the zenith angle of the ground truth in Figure 6.7, the black line is for the
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(a) P & L (b) T-S & L (c) C-T & L

(d) P & O-N (e) T-S & O-N (f) C-T & O-N

(g) P & B-K (h) T-S & B-K (i) C-T & B-K

Figure 6.4: The reflectance functions showing estimated (red) and input (blue) diffuse

intensities vs. incidence angle (degrees) for the 9 combinations of 6 models.

Object P & L T-S & L C-T & L P & O-N T-S & O-N C-T & O-N P & B-K T-S & B-K C-T & B-K

(a) 10.0933 11.6628 8.3871 14.7469 11.9407 8.3784 12.7077 11.0268 2.7073

(b) 5.5659 8.1981 8.1834 6.1119 10.1287 8.1781 16.0189 6.0387 2.7969

(c) 11.7387 11.7114 8.6117 16.1290 14.2806 8.7929 9.0234 4.7555 3.1386

(d) 11.2333 10.4713 12.8066 11.7740 12.0234 10.4854 3.9226 5.0487 4.2480

(e) 11.5318 13.8986 11.3075 11.6007 12.5497 11.3162 14.7635 20.7186 3.4637

(f) 11.8937 14.1800 13.8163 12.5334 18.1971 13.8165 10.8185 9.7094 5.2193

(g) 14.2579 14.3202 15.8556 14.0307 13.9955 16.1079 17.7225 11.0234 6.9204

(h) 16.4035 15.4444 15.0133 13.0860 15.8120 12.8245 15.6969 19.8582 5.7076

(i) 7.3221 6.5468 11.0542 6.9148 6.6644 11.0160 10.9366 4.9092 4.3284

(j) 15.7758 9.7315 10.0429 5.5467 9.4252 10.1020 12.1209 17.3663 3.2221

(k) 13.4805 14.6278 9.8023 11.2663 11.4619 9.8050 21.8432 21.5365 3.9133

(l) 10.2859 10.3647 10.6280 5.5744 5.6535 11.5517 4.7663 4.3278 3.9820

Count of Best 1 1 4 2 2 4 3 7 12

Table 6.1: The average degree differences between surface normal estimations from dif-

fuse and specular components, each row represents the corresponding object shown in

Fig.6.6. The three lowest values for each row are marked, and the last row shows the

number of values in every column that are marked.
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(a) P & L (b) T-S & L (c) C-T & L

(d) P & O-N (e) T-S & O-N (f) C-T & O-N

(g) P & B-K (h) T-S & B-K (i) C-T & B-K

Figure 6.5: The reflectance functions showing estimated (red) and input (blue) specular

intensities vs. incidence angle (degrees) for the 9 combinations of 6 models.

Input

(a) (b) (c) (d) (e) (f) (g) (h) (i) (j) (k) (l)

Zenith

Figure 6.6: The shape results for 12 objects. The first row contains the unpolarised images

and the figures in the second row show the surface normal estimations.
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Figure 6.7: The zenith angle information of the ground truth data of porcelain bottle.

method using BSS, the pink line is the result using the polarisation probabilistic model in

Chapter 4, the blue line is the estimate using BSS and improved criterion function which

is close with the black line, the cyan line is for the method of novel polarisation model

in Chapter 5, and the green line is for the method of reflectance model. The first two are

computed using unpolarised light, while as the rest two use polarised light. It is shown

that the lines of estimates are generally following the ground truth, although the accuracy

is less pronounced than what are expected for general objects. The work of Atkinson [6]

is focused on optimising the polarisation estimates, combining the techniques with the

proposed frameworks will greatly improve the results of estimation, which will be one of

our research goals. It is also noted that noises of estimates in Figure 6.8 can be eliminated

using smoothing approaches.

6.3.3 Surface Azimuth Recovery

In this section we present experiment for azimuth angle estimation following Section

6.2.2. We have provided three objects for the estimation: a china vase and two apples.

Figure 6.9 shows the results: the first row presents the images for the experimental objects,

the second row shows their phase angle estimates and the third row contains the azimuth

angle results. The methods perform well for the simple objects, while for the china vase

123



6.3 Experiments

Figure 6.8: The zenith angle profiles of the porcelain bottle, the red line represents the

ground truth data, and the rest are estimates using methods proposed in this thesis. Black

line is the result using Algorithm 3.1, pink line is Algorithm 4.1, blue line is Algorithm 4.2

and Algorithm 4.3, cyan line is Algorithm 5.1 and Algorithm 5.2, green line is Algorithm

6.1 and Algorithm 6.2.
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the estimate for the neck part is incorrect. The proposed method is not robust enough to

be applied to general objects of dielectric materials, especially when the surface shape is

complicated. Figure 6.10 shows the images for which the azimuth angle is not correctly

recovered. The reason for this is that the SFS method proposed by Worthington and

Hancock, produces fairly poor azimuth angle results which influences the final estimation,

as shown in (c). Therefore a better SFS method should be found or developed in future

research.

6.3.4 Reflectance Parameter Map

Experiment in this section is to make constraint that the surface of the objects under study

does not have the uniform reflectance properties, and demonstrate the approach to recover

parameter value map based on the zenith angle estimates, which can be used for material

analysis and many other applications in computer vision. With the zenith angle estimate ψ

to hand, and assuming that all albedo information on the surface is constant, the parameter

values can be computed using the reflectance models. We use the two models described in

Section 6.3, which are the O-N and the Phong model, because of their simplicity. We have

computed the parameter maps using other models such as T-S model, B-K model and C-K

model. However, their results are incorrect as the complexity of the models influence the

computations.

Figure 6.11 shows the estimation results. We have used five experimental objects with

no complicated textures: a potato, a red apple, an orange, a green apple and a satsuma.

The results are sensible and the mean values of reflectance parameter maps are close to

the parameter estimates measured by the proposed method in Section 6.1 and Section 6.2.

However, the variances of the parameter values in the maps are larger than expected, we

attribute this to the limited capacity of chosen reflectance models and influences from

texture information. Future research will focus on developing reflectance models to solve

these problems.
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Input

(a) (b) (c)

Phase

Azimuth

Figure 6.9: The azimuth angle results for three object. The first row are the image inputs,

the figures in the second row show the phase angle results, and the third row show the

azimuth angle estimates.
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(a) Input Image (b) Proposed Method (c) SFS

Figure 6.10: The failed azimuth angle result. The body of the duck, which should be

convex, is shown as concave in the figure. Notice that estimate from SFS is so poor that

it influences the performance of proposed method .

Input

(a) (b) (c) (d) (e)

Diffuse

Specular

Figure 6.11: The reflectance parameter map results. The first row shows the input images,

and the second and the third rows present the diffuse and specular reflectance parameter

maps, respectively. The brightnesses of the figures have been adjusted to be shown clearly.

Negative values in the paramter maps are considered as 0 in the figures.
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6.3.5 Reflectance Feature Extraction

In this section the experiment conducted is to extract features from reflectance functions

of objects under study. Feature extraction transforms the input data into a set of features

which are applied to other works. It can be applied in a variety of fields in computer

vision and pattern recognition domains including object recognition and classification.

There are several methods available for feature extraction, such as PCA, ICA, locally

linear embedding (LLE) [39] and curvilinear component analysis [20].

In this section we apply three statistical methods to the data for feature extraction.

These are the traditional method of PCA, and the improved approaches which includes

weight map, that are weighted PCA (WPCA) and supervised weighted PCA (SWPCA).

The weight map indicates the importance of different locations in discriminating objects,

thus the accuracy of results produced by feature extraction methods can be improved. The

methods were developed based on the work of Wu et al. [120]. The methodology details

can be found in our work of [125].

The reflectance functions for each experimental objects are created by using the method

described in [99]. For every pixel in the image, its intensity has the corresponding value

of the surface radiance function given by

g(ψ(x, y)) = I(x, y) . (6.8)

By tabulating these two values against each other, we have a dense but noisy sampling

of the function g. Then we bin the values of g(ψ(x, y)) into bins whose width is τ . Let

Γi = (x, y)|(i− 1)τ ≤ ψ(x, y) < iτ be the set of pixels (x, y) for which ψ(x, y) falls into

the ith bin. For ith bin we find the median value of g denoted by h(i), using the equation

written as

h(i) = median
(x,y)∈Γi

I(x, y) . (6.9)

The reflectance function is thus stored as a long vector (h(1), ..., h(η)), which is used

for feature extraction. There are 35 fruits in seven different categories for the experiments,

and there are five objects in each class. The experimental objects include red and green

apples, oranges, pears, tomatoes, lemons and apricots, we show the input images of all
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objects in Figure 6.12, which are taken when the polarisation orientation is 0 degree. The

results of reflectance functions for all inputs are shown in Figure 6.13 and Figure 6.14.

The reflectance information of fruits in different classes is hard to distinguish, as it is

easily influenced by dirt such as dust and oil.

In Figure 6.15 we show the feature extraction results using the three methods, i.e.

PCA, WPCA and SWPCA. Observed from the figures, the feature extraction is not satis-

factory, which we attribute to the measured reflectance functions. It is noted that if other

information of the objects is to hand, such as colour and shape, the feature extraction

results will be much improved. Besides, using techniques such as nearest neighbour or

SVM, the feature extraction results considering reflectance, colour and shape can be used

for object classification. This is one of the topics for future research.

6.4 Conclusions

In this chapter we proposed a shape and reflectance estimation framework based on the

separated reflectance components. Using the parametric reflectance models, the zenith

angle estimates can be obtained if the parameter values of the corresponding reflectance

models are known. We used Newton’s method and mutual information estimation to com-

pute the parameters, which are regarded as the reflectance properties for measurement. We

also apply the ICM method to compute the zenith angle information from the two shape

estimates from diffuse and specular components, and we demonstrated in experimental

section that the results are sensible and the proposed framework is robust for estimation

of dielectric materials.

We also presented two applications using the estimates from the proposed framework.

Firstly we constructed the reflectance parameter map, which shows the distribution of

parameter values of reflectance models for all pixels in the image. Next we presented

how to extract features from the reflectance functions, in which we applied the methods

of PCA, WPCA and SWPCA. Both applications demonstrate that the proposed estimation

framework can be widely applied in computer vision, though some problems still remain

in the applications. More details are discussed in Chapter 7.
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Apricot

Green

Apple

Lemon

Orange

Pear

Red

Apple

Tomato

Figure 6.12: The input image of polariser angle 0 degree for 35 fruit objects.
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(a) Green Apple (b) Orange

(c) Tomato (d) Red Apple

(e) Apricot (f) Lemon

(g) Pear

Figure 6.13: The estimated reflectance functions for 35 fruit objects. Figures from (a) to

(g) shows the five objects in each class of fruit.

131



6.4 Conclusions

Figure 6.14: The estimated reflectance functions for 35 fruit object, which shows the mean

values of seven classes, with the error bar representing the value of standard deviation.
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(a) PCA of Ref.

(b) WPCA of Ref.

(c) SWPCA of Ref.

Figure 6.15: The three feature extraction methods used for three characters of fruit surface

appearance.
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Chapter 7

Conclusion and Outlook

In this chapter we summarised the contributions from Chapter 3 to Chapter 6, and pre-

sented the strengths of the proposed methods. The weaknesses and problems described in

this thesis are also discussed. Following the analysis we introduce the future work, some

focusing on how to solve the problems in the proposed methods, others investigating the

applications related to our work.

7.1 Summary of Contributions

This thesis presents research on shape and reflectance estimation using polarisation, and

provides advanced techniques and models which are constructed based on the Fresnel

theory and statistical methods. Generally there are two different illumination conditions

when using polarisation on surface characteristic estimation: Polarised and un-polarised

light source. When the incident light is unpolarised, the reflected light captured by the

camera is partially polarised, therefore the traditional Fresnel models can be applied for

shape recovery. However, when the polarised light is reflected, part of it becomes fully

polarised and there is currently no suitable Fresnel models available to be used in this

circumstance. In this thesis we consider both cases, in Chapter 3 and Chapter 4 we dis-

cuss the methods using unpolarised light, while in Chapter 5 and Chapter 6 the proposed

approaches can be applied for images taken under polarised light. The flow diagram in

Figure 7.1 shows the thesis’ structure.
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Figure 7.1: Flow diagram summarising the methods presented in the thesis.

Another main contribution of this thesis is that, we employ several statistical meth-

ods which greatly improve the performance of estimation methods in a number of ways.

According to the TRS equation, there are three parameters for the polarisation states.

Therefore, theoretically three input images in different polariser orientations are suffi-

cient for measuring polarisation information. However, more images are required as the

noise encountered by image qualities influence the accuracy of estimation. We utilise

the BSS method which requires only three images without information on their polariser

orientations in Chapter 3 and Chapter 4. In Chapter 5 the BSS method is also applied to

reflectance component separation, therefore the phase angle can also be obtained, which

the traditional cross-polarisation technique fails to do.

Traditional polarisation methods estimate shape by using polarisation models con-

structed based on Fresnel theory. There are two weaknesses: firstly both diffuse and

specular Fresnel models are not perfect for shape recover, secondly there is no model

available for the illumination condition of polarised light. We also develop novel polar-

isation models for shape recovery based on Fresnel theory. There are two new models

presented in the thesis, one is applied using unpolarised light described in Chapter 4, the

other is for images taken under polarised light in Chapter 5. We demonstrate their per-

formances in the experimental sections, and show that both models can produce sensible

results.
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The technique of SFS is adopted in the polarisation methods to improve its perfor-

mance. The SFS method is not robust enough for shape recovery from dielectric mate-

rials, since the results produced lacks accuracy. However, as it only requires one input

image and can be implemented in a simple way, we use its estimates as a reference in

Chapter 4 and Chapter 6. In Chapter 4 the results from the SFS method are utilised in the

criterion function of the Newton’s method, in order to stabilise the phase angle estimates

from randomly chosen polarised images. In Chapter 6 we apply it to solve the azimuth

angle ambiguity problem. Experiments show that incorporating SFS into the polarisation

method can improve its performance.

In this thesis we also present a method to estimate shape and reflectance using sepa-

rated reflectance components. Miyazaki et al. [69] also presented a similar work, but it

is only applied using unpolarised light, and requires a number of input images. In Chap-

ter 6 we use Newton’s method and mutual information estimation to measure reflectance

properties from the components using parametric reflectance models. Then we apply

ICM method to recover zenith angle information from the diffuse and specular shape esti-

mates. We also present two application works using the proposed estimation frameworks,

firstly we investigate the variation of reflectance parameter values for different locations

in the image. Next we show how to estimate reflectance functions using the information

of zenith angle and image intensity, and provide three statistical methods that can extract

features from a set of reflectance functions. It can be further applied in object classifica-

tion and recognition.

7.2 Weaknesses of the Thesis

There are a number of weaknesses and problems in the proposed methods, that have not

yet been solved, which are summarised as follows:

• We expect that by using the BSS method in Chapter 3, not only can the polarisation

information be recovered, but the polariser orientations of the input images should

also be measured. However, the estimation results are unsatisfactory and unreliable,

especially when the polariser angles are close to each other. We attribute this to the

noise in the images that affects the computation. The polariser angle estimation
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does not improve much in Chapter 4 using the improved criterion function.

• The refractive index estimation in Chapter 3 and Chapter 4 is incorrect when the

surface is rough. The reason is that the Fresnel model used for the measurement

does not consider the surface property of roughness. Values of DOP become lower

than its correct value and so is the estimated refractive index. Besides, texture

information on the surface also influences the estimation, therefore it would better

be eliminated beforehand.

• All the images are taken following the retro-reflection settings, in which the viewing

and source light directions are identical. This restricted acquisition condition limits

the methods to be applied in the computer vision field. Actually this requirement

is even difficult to meet in the laboratory, as shown in Figure 3.2 and Figure 5.2.

We also ignore the inter-reflection and self-shadowing in the images, which are

important factors to consider in shape and reflectance recovery.

• The proposed method for estimating azimuth angle in Chapter 6 remains unreliable

for estimating dielectric materials, which is the reason we decide to use shapelets

method instead to recover depth map in Chapter 4 and Chapter 5. One possible

improvement is to use alternative SFS method, which is better performed than the

approach of Worthington and Hancock.

• There are some problems in the two applications presented in Chapter 6. Firstly the

distribution of the parameter map shown in Figure 6.11 is incorrect in some areas,

which is caused by the chosen reflectance models which cannot perfectly describe

the reflections. Secondly, it is difficult to distinguish the recovered reflectance func-

tions in Figure 6.13, and the feature extraction results in Figure 6.15 are also not

satisfactory. We attribute this to the fact that unlike the properties of shape and tex-

ture for the objects, the reflectance information can be easily influenced by oil, dust

and water.
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7.3 Outlook

In this section we outline our future research, which intends to solve the problems dis-

cussed in the previous section. Some applications relevant to the works in shape and

reflectance estimation will also be implemented.

A major goal for our future work is to solve the problem of azimuth angle estimation,

and recover the depth map using a more reliable approach. An alternative way is to use

the photometric stereo method, which can recover accurate azimuth angle information.

However, it requires more images for computation, and more devices are needed during

image acquisition. Besides, it becomes meaningless if the shape can be recovered by

photometric stereo itself. We intend to concentrate on finding a SFS method that is reliable

enough to be applied, or develop an algorithm if needed.

In Chapter 6 we make constraint that during image acquisition step the source and

view angle are the same, and use it to simplify the equations of reflectance models. How-

ever, the two angles cannot be equal or the light from the source will be blocked by the

camera. In our future work we focus on solving this problem, therefore the accuracy of

estimation results can be improved.

With the shape and reflectance estimates to hand, these can be further exploited in the

application of object classification and recognition. We show in Chapter 6 how to extract

features from the estimated reflectance information. In our future work we focus on ap-

plying classification methods, such as nearest neighbour, SVM and so on. In addition to

reflectance estimation , the shape and texture map in object classification is also consid-

ered. Our work in [125] shows how to measure the shape and texture information from

the objects and extract features from the estimates.

The proposed methods exploit BSS to speed up the time of image acquisition, which

can be applied for objects that are not static, such as human faces and palms. We have

shown some results using the proposed methods. In our future work we focus on how to

measure the subsurface scattering component, following the work proposed by Weyrich

et al. [114]. Besides, the influences of cosmetics on the reflectance of human faces will

also be studied. Also other statistical methods can be considered in shape and reflectance

estimation using polarisation in the future, such as Markov chain Monte Carlo (MCMC),

particle filtering and etc.
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List of Symbols

−→
L ,
−→
N s,
−→
V ,
−→
H direction of light source, surface normal, viewer

and bisector of angle between
−→
L and

−→
V in Equation 2.5

I(x, y) the image intensity at the point (x, y)

Imax, Imin maximum and minimum intensity

Ī , Z Ī = (Imax + Imin)/2 and Z = cosψ in Section 3.3.1

Jmax, Jmin maximum and minimum intensity in long vector form

Nx, Ny width and height length of the input image

X observation matrix

U ,D,V ,S′ results after SVD process of X , S′ = UD in Section 3.1.2

C,A results after BSS process of X

µ,S scaling coefficient in method of BSS, S = µS′

W weighting matrix in method of BSS

ρ degree of polarisation

θ polariser angle

ψ zenith angle

φ phase angle

γ azimuth angle

n refractive index

H Shannon entropy for the probability density function

δ, ζ two normalised histograms in Section 3.3.2

λ bin number of histogram

B mutual information estimation

t step number of the iteration

Θ, η,Q parameters of update equation in Newton’s method of Equation 3.32
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ps probability coefficient in Shannon entropy of Equation 3.25

Υi,Υr incident and reflected wave amplitude in Equation 4.1 and Equation 4.2

r amplitude coefficient in Fresnel equations

R, T reflection and transmission Fresnel coefficient

p probability distribution in ICM method

P a posteriori probability coefficient in ICM method

ω class identity in ICM method

M magnitude in the Fresnel equations

L radiance

Isc, Isv two components in specular reflectance in Section 5.2.1 following [71]

G image region in Section 5.2.1

k(x, y) the albedo value at the point (x, y) in Section 6.1

O facet slope function for T-S and C-T model

e parameter in the six reflectance models in Section 6.1

f(ψ,E) reflectance model using zenith angle ψ and parameter set E

ε a constant used to determine when convergence is reached

g, τ,Γ, h parameters of surface radiance function in Section 6.3.5

κ bisector of angle between viewing direction and incident light direction

in Figure 3.2 and Figure 5.2

Subscripts
i Incidence

t Transmittance

r Reflectance

d Diffuse

s Specular

⊥ Perpendicular

‖ Parallel
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