
 

Characterisation of genomic islands 

in �eisseria meningitidis 

 

 

Maria Chiara Erminia Catenazzi 

 

 

 

A Thesis Submitted for the Degree 

of Doctor of Philosophy (PhD) 

 

University of York 

Department of Biology 

August 2013 



 

i 

Abstract 

�eisseria meningitidis asymptomatically colonises the nasopharynx of about 10 % of 

the human population. This bacterium is an accidental pathogen, with �. meningitidis 

serogroup B being the main cause of meningitis and septicaemia in developed 

countries. Strain MC58 has a genome size of 2,272,360 bp and contains 2160 ORFs, 

more than half of which have already been assigned a function. Nine conserved 

genomic islands that are absent from the closely related commensal species �. 

lactamica were identified and comprise 38 genes. Of these, 14 still encode proteins 

of unknown function. Two of these islands (pathogenic islands 4 and 8) were 

investigated, and the genes crucial for two further islands (pathogenic islands 3 and 

5) involved in polyamine biosynthesis were successfully knocked out in this work. 

Genomic island 4 contains six genes, which encode proteins that are involved in the 

2-methylcitrate pathway; these genes are clustered together to form the prp operon. 

Several genes belonging to this pathway (prpC, �MB0432 and ackA-1) were 

knocked out, and the resulting mutants were unable to utilise propionic acid, which is 

the substrate for the pathway being investigated. Saliva from over 300 healthy 

students was analysed for propionic acid content, and the data were compared to the 

meningococcal carriage status. No significant correlation, however, was found 

between the concentration of this fatty acid and the carriage status. Genomic island 8 

contains coding sequences for the two hypothetical proteins NMB1048 and 

NMB1049. NMB1049 has been shown to regulate the expression of the divergently 

transcribed �MB1048 but not prpC. NMB1049 is, in fact, a putative LysR-Type 

transcriptional regulator. Both genomic islands were also investigated for their 

involvement in �. meningitidis carriage or infection. Human blood samples from 

several healthy individuals were inoculated with �. meningitidis MC58, and results 

showed that only half of the blood samples had bactericidal effects. These results 

were independent of the strain used, as they were similar for the wild-type and the 

mutants in the prpC and �MB1049 genes. The catabolism of propionic acid seems to 

give an advantage to �. meningitidis in colonising the adult nasopharynx.
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Chapter 1  - General introduction 

1.1 Microflora present in the oral cavity 

Humans are always surrounded and inhabited by an enormous number of bacteria. It 

is estimated that an adult is permanently in contact with 1012 bacteria through skin 

contact, that 1010 bacteria inhabit the mouth and throat, and that an even greater 

number of bacteria, approaching the 1014 range, live in the gastro-intestinal tract 

(Tlaskalová-Hogenová et al., 2004). 

Measuring microbial biodiversity has always been very challenging. In the past, in 

fact, studies for identifying bacterial strains involved the cultivation of the bacteria. 

However, only a very small percentage of bacteria can be cultured in the laboratory, 

since more than 99 % of bacteria are not able to grow in vitro for lack of appropriate 

cultivation conditions or because specific culture methods are yet to be developed 

(Hugenholtz & Pace, 1996, Amann et al., 1995). Bacteria present in the oral cavity, 

for example, can form polymicrobial communities, which then lead to biofilm 

formation. Some of the bacteria present in a specific biofilm will most likely depend 

on metabolites generated from other members of that community, and might 

therefore not be able to grow when cultured on their own in vitro (Jenkinson & 

Lamont, 2005). In order to overcome culturing single strains belonging to a 

community, more recent studies tested co-cultures of bacteria known to belong to the 

same community. One specific study included the inoculation of nine different 

organisms which are usually found in dental plaque, such as Streptococci spp. and 

Veillonella, in order to investigate biofilm formation. These studies confirmed that 

some bacteria, such as Streptococcus sanguis and �eisseria spp., needed to be 
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inoculated more than once, probably indicating that they could survive in this 

specific environment only when the other bacteria were already established in 

communities (McKee et al., 1985). 

Current developments include a more accurate estimate of bacterial populations 

present in a specific environment, as they do not rely on cultured bacteria. In fact, the 

microbiome can be studied more thoroughly by direct PCR amplification and 

pyrosequencing using universal primers. These primers are designed to be able to 

sequence the full 16S ribosomal DNA gene for drawing accurate phylogenetic trees 

for the new species discovered, or are designed to target the hypervariable regions 

within this highly conserved gene (Yang et al., 2011, Chakravorty et al., 2007). 

Over 750 different bacterial species have been identified to date that compose the 

microflora of the oral cavity of healthy individuals, with the most predominant 

species detected being Gemella, Granulicatella, Streptococcus and Veillonella (Aas 

et al., 2005). The nostrils are mainly composed of two phyla: Firmicutes and 

Actinobacteria, which have similarities to the distribution of bacteria in the skin, 

whereas the oropharynx comprises mainly the following three phyla, which are 

analogous to the ones present in the saliva: Firmicutes, Proteobacteria and 

Bacteroidetes (Lemon et al., 2010). Propionibacteria spp. are also found as an 

important part of the oral flora (Bojar & Holland, 2004). All these bacteria are 

usually found colonising the host without causing any disease. Despite usually being 

innocuous, however, sometimes bacteria can take advantage of susceptible 

individuals such as elderly and immunocompromised people, and become therefore 

opportunistic pathogens: Streptococcus pneumoniae, �eisseria meningitidis and 

Haemophilus influenzae are just a few examples of microbes that can be found in the 
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mouth and that can give evidence of this change of behaviour (Schoen et al., 2008, 

Hava & Camilli, 2002, Turk, 1984). 

1.2 Bacteria and the role of propionic acid 

1.2.1 Propionic acid abundance 

Propionic acid is a compound that has anti-bacterial properties and strongly inhibits 

cellular growth of most microorganisms and fungi (Brock & Buckel, 2004, Matlho et 

al., 1997, Salmond et al., 1984). This in fact explains why propionic acid and its 

sodium, calcium and potassium salts are usually added in both animal feed and 

human food as a preservative agent (E280-E283). The legislation regarding food 

additives implemented by the European Commission allows propionic acid to be 

added into bread in amounts varying between 0.1 and 0.3 % of the food total weight, 

corresponding to a final concentration of between 13 and 40 mM 

(European_Commission, 2011). 

The concentration of propionic acid in human saliva is very variable, as it depends on 

many disparate factors, such as food intake, diet, oral hygiene, stimulation of saliva, 

sex, time and method used for collection of the samples, etc. In one particular study, 

propionic acid content was measured from the saliva of over 100 people, and gave a 

range of values starting from just above null to up to 600 µM (Takeda et al., 2009). 

When gingival crevices were taken into consideration for studying the amount of this 

volatile fatty acid, however, it was concluded that the presence of propionic acid was 

directly dependent on the person’s periodontal state: healthy gingival crevices had 

undetectable levels of propionic acid, whereas mild and severely diseased gingival 
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crevices could contain an average concentration of 0.5 and 10 mM propionic acid 

respectively (Niederman et al., 1997). 

1.2.2 Bacteria that synthesise propionic acid 

The skin and pharynx of humans can host several species of microorganisms that use 

an alternative metabolic pathway, and produce propionic acid as the main end 

product. Propionibacteria spp. and Veillonella spp. are amongst these 

microorganisms, and are able to synthesise propionic acid thanks to genes coding for 

unusual transcarboxylase enzymes (Lewis & Yang, 1992, Distler & Kröncke, 1981). 

Propionibacteria spp. are ubiquitous, slow growing, non-motile, anaerobic but 

aerotolerant Gram-positive bacteria that can synthesise propionic acid through 

fermentation of several carbon sources, such as lactate, glycerol and glucose (Liu et 

al., 2011, Piveteau, 1999). These bacteria are most numerous in and around sweat 

and sebaceous glands, but can also be found on the skin, oral cavity and 

gastrointestinal tract of humans and animals. Propionibacteria are commensals, but 

can occasionally cause skin conditions, such as acne (Brüggemann et al., 2004). The 

number of these bacteria remains almost constant on the skin and increases only 

slightly, whereas it significantly rises in the nostrils through aging. The increase in 

number of Propionibacteria in the nostrils is followed by an increase in number 

present in the throat (Mourelatos et al., 2007). 

Veillonella spp. are anaerobic, non-motile Gram-negative bacteria that can synthesise 

propionic acid through fermentation of lactate (Ng & Hamilton, 1971). They are 

present in the oral cavity and in the respiratory and intestinal tract of both humans 
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and animals as part of the normal flora, but can occasionally become pathogens 

leading to osteomyelitis and endocarditis (Singh & Victor, 1992, Rogosa, 1964). 

The bacteria discussed in this section produce propionic acid as a by-product of 

fermentation. They usually inhabit the oral cavity and, as a consequence, this could 

indicate a rise in the concentration of propionic acid in the mouth and throat. The 

possibly higher concentration of propionic acid in the mouth would have a negative 

effect on many other bacteria which do not possess genes for catabolising this fatty 

acid. To overcome this noxious weak fatty acid, in fact, some bacteria have 

developed an alternative pathway that enables them to break propionic acid down to 

the final products succinate and pyruvate through the 2-methylcitrate pathway, as 

discussed in Section 1.7.2. 

1.2.3 Pathways generating propionyl-CoA and propionic acid 

Propionyl-CoA can be generated through several different routes. The most common 

route utilised by bacteria is the methylmalonyl-CoenzymeA pathway, which 

decarboxylates succinyl-CoA into propionyl-CoA with the help of specific enzymes 

(Figure 1.2.3-1). This pathway is used by several bacteria including Propionibacteria 

spp. and Veillonella spp., and in these bacteria it is responsible for catabolising 3 

molecules of lactate into 2 molecules of propionate, 1 molecule of acetate, CO2 and 

H2O through fermentation (Seeliger et al., 2002). This pathway is occasionally 

referred to as the succinate-propionate pathway, when succinate is produced by a 

reversal of the TCA cycle starting from oxaloacetate, or as the glyoxylate-

methylmalonyl pathway when, in an anaerobic condition, succinate is formed with 

glyoxylate from isocitrate (Yagci et al., 2003). 
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Figure 1.2.3-1: The Methylmalonyl-CoA pathway. 

There are two specific genes that encode proteins involved in the methylmalonyl-

CoA pathway. This pathway is involved in the formation of propionic acid. 

Abbreviation:  MCM: methylmalonyl-CoA mutase. PCC: propionyl-CoA 

carboxylase (Figure adapted from Swick & Wood, 1960). 

 

There are other metabolic pathways used by some bacteria to ferment lactate or other 

carbon sources into propionate. One example is the 3-hydroxypropionate cycle, also 

known as the acrylyl-CoA pathway, which converts 3-hydroxypropionate to 

propionyl-CoA through three specific reactions that include formation of the 

intermediate acrylyl-CoA (Alber & Fuchs, 2002, Seeliger et al., 2002). Even 

catabolism of the amino acids isoleucine, methionine, valine and glutamate produces 

propionyl-CoA as an intermediate of succinyl-CoA (Maerker et al., 2005, Plugge et 

al., 2001). 
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Propionyl-CoA is thought to be highly cytotoxic, and accumulation of this compound 

is associated with the inhibition of coenzyme A-dependent enzymes, such as 

pyruvate dehydrogenase, succinyl-CoA synthetase and ATP citrate lyase (Brock & 

Buckel, 2004). Addition of acetate or sodium bicarbonate to the medium, however, 

has been shown to restore the bacterial growth rate, as acetate is a means of 

supplying acetyl-CoA needed for growth and bicarbonate ions stimulate degradation 

of propionyl-CoA to methylmalonyl-CoA via the propionyl-CoA carboxylase 

enzyme (Maruyama & Kitamura, 1985). A decrease of propionic acid, and therefore 

of propionyl-CoA, can also be achieved through a specific metabolic pathway which 

breaks propionic acid down, the 2-methylcitrate pathway (Brämer & Steinbüchel, 

2001). This pathway is present in several bacteria and also in many �eisseria 

species. 

1.3 Overview of the genus �eisseria 

The genus �eisseria was named after Albert Neisser, a bacteriologist who discovered  

�eisseria gonorrhoeae in 1879 (Ligon, 2005). This genus belongs to the family of 

the �eisseriaceae and comprises all �eisseria species, which constitute a substantial 

part of the β-proteobacteria (Tønjum et al., 2005). 

The genus �eisseria is mainly composed of a group of closely related cocci with a 

diameter ranging between 0.6 and 1.9 µm. These cocci can be found as single cells, 

as pairs or as tetrads. However, there are a few bacteria belonging to this genus, such 

as �. elongata and �. weaveri, which are found as short rods 0.5 µm wide and are 

frequently arranged as diplobacilli or in chains (Garrity et al., 2005). 
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�eisseria spp. are primarily commensal organisms of the normal flora in mammals. 

A growing number of species has been associated with animals, such as �. canis and 

�. weaveri (cats, dogs and humans’ wounds caused by bites of both animals), �. 

dentiae (cows), �. iguanae (lizards), �. macacae (rhesus monkeys), �. ovis (sheep) 

to name a few (Allison & Clarridge., 2005, Sneath & Barrett, 1996, Barrett et al., 

1994, Andersen et al., 1993, Vedros et al., 1983, Lindqvist, 1960). 

There are 14 �eisseria species that are currently known to exclusively colonise 

mucosal surfaces of humans (Feil et al., 2001). Three amongst these are of 

outstanding clinical interest as two species, �eisseria gonorrhoeae and �eisseria 

meningitidis, are exclusive human pathogens which are most closely related to the 

third species, �eisseria lactamica, a common harmless human commensal (Snyder & 

Saunders, 2006). 

Several strains belonging to �eisseria gonorrhoeae, �eisseria meningitidis and 

�eisseria lactamica have been fully sequenced, and all resulted in a comparable 

genome size of around 2.2 Mbp (Maiden, 2008). Three quarters of their genes, 

corresponding to about 1.7 Mbp, have been associated with the core neisserial 

genome, as they are present in all the �eisseria’s isolates so far sequenced. Less than 

5 % of their genome has been defined pathogen-specific, as genes were only 

observed in �. gonorrhoeae and / or �. meningitidis. Less than 1 % of the genome 

was shared only between �. meningitidis and �. lactamica (Perrin et al., 2002). As 

these three species strictly colonise humans, investigating them should constitute an 

advantage as there is no need to take into consideration other animals or the external 

environment. Their specific niche, however, makes it harder to study their mode of 

action during colonisation and pathogenicity, as animal models have failed to 
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harbour these bacteria so far. Recently, however, a new animal model involving 

monkeys has been successfully investigated. The rhesus macaque looks like a 

promising model, as this monkey has over 90 % sequence identity with humans and 

is anatomically and physiologically similar too. It can also be naturally colonised by 

two different species of �eisseria which are similar to human commensals, making it 

an ideal host for studying �eisseria – host interactions, colonisation, transmission 

and horizontal gene transfer (Weyand et al., 2013). 

�eisseria spp. are usually grown on Mueller-Hinton Agar or Chocolate Agar plates 

at 37 ºC in a CO2 enriched atmosphere, and they are oxidase-positive. To isolate 

pathogenic �eisseria, bacteria can be grown on selective plates containing colistin. 

In this way, however, a few other commensal species such as �. lactamica and �. 

subflava are also able to grow. For this reason, colony morphology and a few further 

tests that measure acid production from various carbohydrates can be carried out to 

differentiate more carefully the various species (Knapp, 1988). 

1.3.1 �eisseria lactamica 

�. lactamica is a Gram-negative diplococcus that harmlessly colonises the human 

nasopharynx, and is carried especially by young children. Half of the children 

worldwide, in fact, will harbour this bacterium within the first two years of life, and 

its colonisation slowly decreases over time and reaches approximately 15 % in 

adolescents (Olsen et al., 1991). This pattern of colonisation may be reflected by the 

fact that, when compared to other �eisseria species, �. lactamica is unique in its 

ability to ferment lactose, a sugar that is widely present in young children as they 

usually consume larger volumes of milk. �. lactamica, in fact, produces β-D-

galactosidase (Knapp, 1988). 
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�. lactamica is the non-pathogenic species that is the most closely related to the two 

pathogenic �eisseria species that are described below. �. lactamica is of particular 

clinical relevance, as clear correlations have been found that show an inverse 

relationship between colonisation by �. lactamica and by �. meningitidis. Carriage 

of �. lactamica, in fact, is at its peak in young children, where �. meningitidis is 

generally not present. On the contrary, �. meningitidis peaks in adolescents and 

young adults, where the level of �. lactamica has already drastically dropped (Figure 

1.3.1-1) (Bennett et al., 2005). As a consequence, carriage of �. lactamica results in 

a decreased carriage of �. meningitidis, and this will therefore lower the incidence of 

invasive meningococcal disease in childhood. Protective immunity against �. 

meningitidis has also been demonstrated more recently by inoculating �. lactamica 

in healthy non-carriers (Evans et al., 2011). 

 

Figure 1.3.1-1: Carriage of �. lactamica and �. meningitidis. 

These graphs show the carriage incidence of �. meningitidis (A) and �. lactamica 

(Β) according to age and sex. The main difference in colonisation is highlighted by 

the age groups rather than the sex of the individuals (Figure adapted from Olsen et 

al., 1991). 
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1.3.2 �eisseria gonorrhoeae 

�. gonorrhoeae, also known as the gonococcus, is a Gram-negative diplococcus that 

is responsible for gonorrhoea, one of the major sexually transmitted diseases 

affecting both males and females equally in many countries worldwide. This 

bacterium colonises the urogenital tract, causing an infection that can be transmitted 

from one person to another through oral, vaginal or anal sexual relations. If left 

untreated, it may spread from the prostate or cervix throughout the body, ultimately 

affecting genitals, joints, vision and even heart valves (Ryan et al., 2010). This 

pathogen is non-motile but possesses a type IV pilus that extends towards the host’s 

cell surface and retracts upon contact, dragging the bacterium towards the host via 

the so-called “twitching motility” (Wolfgang et al., 1998). 

Signs of infection from �. gonorrhoeae can already appear after an incubation period 

of 2 to 10 days and, despite 30 to 60 % of the infected population showing none or 

very mild symptoms, it usually exhibits the first side effects 4 to 6 days after 

contraction (van Duynhoven, 1999). This species gives positive results to oxidase 

tests and can be differentiated from �. lactamica and �. meningitidis by 

hydroxyprolylaminopeptidase, as this enzyme is only produced by the gonococcus 

(Knapp, 1988). 

�. gonorrhoeae has very high similarity to the other pathogen of this genus, �. 

meningitidis. 

1.3.3 �eisseria meningitidis 

�. meningitidis, also known as the meningococcus, is a Gram-negative diplococcus 

that was first identified as causative agent of bacterial meningitis by Anton 
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Weichselbaum in 1887 (Branham, 1940). This bacterium is a pathogen that usually 

colonises asymptomatically the human nasopharynx and oropharynx, but can be 

transmitted from one person to another through direct contact of nasal or oral 

secretions or through the inhalation of contaminated droplets (Caugant et al., 2007). 

The meningococcus is often carried asymptomatically, as people who harbour this 

bacterium rarely develop the disease. Its acquisition into the bloodstream, however, 

may result in an invasive disease, causing meningitis or septicaemia especially in 

susceptible people (Hill et al., 2010). As an accidental pathogen, the meningococcus 

shows its often fatal effects between 1 to 14 days after contraction. However, it 

mostly only leads to a simple commensal asymptomatic colonisation, known as the 

carriage state (Stephens, 2007). This carriage state is thought to prevent the invasive 

form of the disease by inducing the human naturally acquired immunity against �. 

meningitidis (Goldschneider et al., 1969). 

�. meningitidis colonise approximately 10% of the total adult population at any 

given time, even though increased carriage rates have been observed during 

epidemics and close interactions (Caugant et al., 1994). The highest incidence of 

meningococcal disease occurs amongst children under the age of four, when their 

immune system is still developing, or in teenagers and young adults, most likely as a 

result of an increased exposure to environmental risk factors, such as the number and 

closeness of contacts (Riesbeck et al., 2000, Imrey et al., 1995). 

Like �. gonorrhoeae, this opportunistic pathogen is non-motile, possesses a type IV 

pilus and is oxidase-positive (Knapp, 1988). 
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1.4 Microbiology of �eisseria meningitidis 

�. meningitidis is a heterotrophic and facultative anaerobic Gram-negative β-

proteobacterium, which can occur as a single coccus or, more often, as a diplococcus 

with the adjacent sides flattened. It ranges between 0.6 to 1.9 µm in diameter and is 

an obligate human pathogen with optimal growth temperature of 35 - 37°C (Garrity 

et al., 2005). 

�. meningitidis possesses a typical Gram-negative cell envelope that is composed of 

two membranes, the inner- and outer- membranes, which surround the periplasm 

(Rosenstein et al., 2001). The periplasm is formed of a peptidoglycan layer and a 

number of proteins. The inner membrane is made of a phospholipid bilayer 

containing proteins mainly implicated in the transport of nutrients and proteins 

through the inner membrane, whilst the asymmetrical outer membrane is primarily 

composed of lipopolysaccharides (LPS) on the outer leaflet and phospholipids on the 

inner leaflet. The outer membrane also includes various outer membrane proteins 

(OMPs), the most recurrent being Porin A (PorA), Porin B (PorB), opacity proteins 

(Opa, Opc), reduction-modifiable protein M (RmpM) and lactoferrin receptor 

proteins, all of which are mostly linked to meningococcal virulence (Ekins et al., 

2004, Massari et al., 2003, Rosenstein et al., 2001). �. meningitidis is often protected 

by a polysaccharide capsule that confers virulence. �. lactamica and �. gonorrhoeae, 

however, never have a capsule, and this suggests that the genes encoding the capsule 

might have been acquired by �. meningitidis from another virulent species by 

horizontal gene transfer (Schoen et al., 2008, Claus et al., 2002). 
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1.5 Carriage and pathogenicity of �eisseria meningitidis 

Meningococci are obligate commensals of humans, and can colonise the mucosa of 

the upper tract of the respiratory system, usually without causing invasive disease. �. 

meningitidis can be passed between people, but this requires close contact, as the 

bacterium is very sensitive to dessication. Carriage rates are very variable amongst 

the population, and it is thought that almost everybody at some point in their life 

have been colonised by these bacteria. In fact, carriage rates can dramatically 

increase to nearly 100 % in closed or semi-closed environments, such as military 

training camps and schools (Caugant et al., 1994, Caugant. et al., 1992). 

By a mechanism that is still unknown, and usually within less than ten days from 

first exposure, some �. meningitidis strains are able to cross the epithelial cells of the 

mucosa and consequently enter the bloodstream, from where they can start to 

reproduce and can cause a variety of mild clinical symptoms, such as chills, fever 

and muscle aches. Within hours of contraction, however, this state might rapidly 

degrade into life-threatening diseases such as septicaemia, if the bacteria cause a 

whole-body inflammation, or meningitis, if the bacteria manage to cross the blood-

brain barrier (Van Deuren et al., 2000). Depending on the strain and on the location, 

annual incidence rates during outbreaks could vary between 1 and 1,000 for every 

100,000 people, killing on average about 10 % of the patients affected (Hill et al., 

2010). For this reason, understanding how �. meningitidis can be both a harmless 

commensal and a harmful human pathogen is still a challenge to date. 

Nowadays, over half of the people affected by invasive meningococci can recover, if 

antibiotic treatments are followed promptly. In fact, the death rate can decrease to 
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about 10 % for the people affected by meningitis and to 30 % for the patients with 

sepsis (Brandtzaeg & van Deuren, 2012). Early antibiotic treatments, however, need 

to be administered as soon as possible once clinical diagnosis has confirmed 

meningococcal meningitis, since antibiotics can stop the propagation of �. 

meningitidis without delay. 5 – 20 % of the surviving patients, though, will suffer 

from severe permanent damage, such as amputation of limbs, mental retardation, and 

deafness (Van Deuren et al., 2000). 

Population predisposition for meningococcal survival and invasive infection is a key 

factor in the development of the disease. People with immunodeficiency problems, in 

fact, are an optimal target, as they lack circulating antibodies that protect them 

against these bacteria (D'amelio et al., 1992). Other factors leading to predisposition 

involve respiratory tract infections, number and closeness of social contacts, age and 

active or passive smoking (MacLennan et al., 2006). Carriage rates correspond to 

about 10 % of the total population, but it is not spread evenly worldwide. In Africa, 

for example, there is a more variable age distribution, whereas in Europe and North 

America carriage rates are low in the first years of life but suddenly increase in 

adolescents, with a peak at about 15 – 20 years of age (Trotter & Greenwood, 2007). 

Meningitis outbreaks still occur in clusters and localised epidemics around the world, 

and with particular extent in poorer countries (Moore, 1992). 

The meningococcal invasive disease is believed to depend on the combination of 

several genes or genetic allelic variants, which may also exist in strains that are less 

invasive (Yazdankhah & Caugant, 2004). The genes that encode the capsule, for 

example, are considered a major virulence factor. However, despite conferring 

protection to the bacteria during infection, the real role of the capsule is still 



Chapter 1 – General introduction 

16 

ambiguous: its expression is considered necessary but not sufficient for illness, as 

only a few capsule variants do actually cause invasive diseases. Moreover, rare cases 

of virulence caused by non-capsulated �. meningitidis have been detected. In 

contrast with the strains that cause disease, half of the isolates derived from carriers 

do not express a capsule, and half amongst these do not even possess a gene that 

encodes it (Schoen et al., 2008). Moreover, �. meningitidis comprises several other 

gene clusters, most of which have still unknown functions but are associated with 

virulence. These gene clusters are referred to as pathogenic islands (Stabler et al., 

2005, Tettelin et al., 2000) and will be discussed in Section 1.7.2. 

Meningococci are classified in thirteen different serogroups: serogroups A, B, C, D, 

29E, H, I, K, L, Y, W-135, X and Z. These serogroups are based on differences in the 

structure of the polysaccharides that are present on the capsule, as polysaccharides 

are considered primary targets for mucosal humoral immunity (Yazdankhah & 

Caugant, 2004). However, only six serogroups, serogroups A, B, C, W135, X and Y, 

are accountable for the majority of the invasive diseases and are linked with 

endemics and epidemics (Boisier et al., 2007, Yazdankhah & Caugant, 2004). These 

serogroups show regional distributions: serogroup A has disappeared from Europe 

and North America since World War II but is still predominant in the sub-Saharan 

belt, also referred to as the “Meningitis Belt” (Chippaux, 2008). Serogroup B is a 

primary concern in industrialised countries (Racloz & Luiz, 2010). Serogroup C 

outbreaks are observed worldwide, specifically targeting adolescents and young 

adults (Van Deuren et al., 2000). Serogroups X, which has only recently revealed an 

epidemic potential, and W135 have both been accountable for epidemics in the sub-

Saharan belt over the past ten years (Boisier et al., 2007, Mueller et al., 2006). 
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Serogroup Y has been a major cause of infection in North America in the last decade 

(Racoosin et al., 1998). 

Despite the absence of flagella, these virulent strains are usually protected not only 

by the capsules, but also by protruding fimbriae, called type IV pili. These fimbriae 

are filamentous proteins that play a number of fundamental roles in �. meningitidis, 

such as their natural capability for transformation and movement, the initial 

attachment to human host cells (Coureuil et al., 2009, Rayner et al., 1995) and 

biofilm formation (Yi et al., 2004). Type IV pili, however, are not suitable as vaccine 

candidates despite being immunogenic, as they have a very high degree of antigenic 

variability (Nassif et al., 1993). 

1.6 Vaccine candidates for �eisseria meningitidis 

Several vaccines against �. meningitidis have already been commercially available 

since the early 1970’s and many others are still under development. These vaccines 

do not consist of killed or live but attenuated pathogens; instead, they are composed 

of purified protective components which directly target the polysaccharides present 

in the capsule of the virulent meningococci (Ulmer et al., 2006). With this method 

there are fewer undesirable side-effects caused upon administration, compared to 

when the whole cell vaccines are used. Because they are composed of only capsular 

polysaccharides linked to protein carriers, vaccines are harmless and can be injected 

to infants that are just a few months old. Moreover, our immune system responds 

more effectively to proteins than sugars and, as a result, conjugate vaccines can 

trigger a long-lasting immune response. In this way, however, newborns need a 

vaccine boost a few years after first administration (Snape & Pollard, 2005). 



Chapter 1 – General introduction 

18 

The monovalent MenC conjugate vaccine is consistently used in all the industrialised 

countries, and has become routinely used for immunisation against serogroup C 

meningococci in Europe. Since its introduction just over a decade ago, meningitis 

caused by serogroup C has dramatically fallen and nowadays this strain accounts for 

less than 10 % of meningitis cases (Snape & Pollard, 2005). 

The quadrivalent MenACWY conjugate vaccine has been developed more recently. 

The quadrivalent vaccine contains four of the six serogroups that are responsible for 

over 90 % of meningitis cases worldwide. In fact, it contains polysaccharides from 

the serogroups A, C, W135 and Y, which are major causes of meningitis outbreaks in 

developed countries. Several versions of this vaccine have been developed so far, 

where differences included the length of the meningococcal oligosaccharides used 

and the selection of the carrier protein and / or the chemistry of the conjugation (Pace 

et al., 2009). Three quadrivalent MenACWY conjugate vaccines, which use different 

carriers such as diphtheria toxoid, diphtheria mutant toxin carrier  protein (CRM197) 

and tetanus toxoid, have just recently been licensed (Khatami et al., 2012). 

No successful vaccines against serogroup B meningococci have been made available 

yet, but several studies are under way. The capsular polysaccharide of �. 

meningitidis serogroup B cannot be used for the preparation of vaccines, as it 

contains polysialic acid residues, which could activate an autoimmune response in 

the human host (Holst, 2007). Polysialic acid is, in fact, a polysaccharide that is 

widely distributed in humans and that helps to protect autologous cells from 

complement attack (Horstmann, 1992). Other approaches for finding a suitable 

working vaccine are currently being explored. Outer membrane vesicle (OMV) 

vaccines have shown to be harmless and effective, as they induce strong protective 
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serum bactericidal antibodies (SBA) activity in humans. Porin A (PorA), which is the 

main component of the OMV, is the most expressed outer membrane protein of 

almost all meningococci. PorA, however, is hypervariable and therefore this protein 

potentially decreases the vaccine’s efficacy (Granoff, 2010). For this reason, other 

outer membrane protein antigens such as porin B (PorB) (Urwin et al., 2002), factor 

H-binding protein (fHbp, previously referred to as GNA1870) (Masignani et al., 

2003), opacity protein (Opc) (Jolley et al., 2001), Neisserial surface protein A 

(NspA) and �. meningitidis adhesion A (NadA) (de Filippis, 2009) are being 

investigated as potential vaccine candidates. 

Research is moving towards the study of recombinant protein vaccines, which could 

be administered either alone or mixed with other antigens. These vaccines are in late-

stage clinical development and might work against most of the serogroup B strains. 

The new 4CMenB vaccine, for example, contains fHbp, NadA, Neisserial Heparin 

Binding Antigen (NHBA) and OMV. This vaccine was designed as a result of 

reverse vaccinology, where potential surface-exposed proteins were not determined 

from microbiology techniques, but from all the genomic data widely available to 

date. These specific proteins were chosen because they were present in all of the 

serogroup B strains analysed during the study, and they might therefore induce 

bactericidal antibodies in all bacteria tested (Figure 1.6-1). This vaccine is promising, 

as it results in an increase in serum bactericidal antibodies (SBA) indeed and is in the 

final stages of the trial (Caesar et al., 2013, Serruto et al., 2012). 
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Figure 1.6-1: �. meningitidis surface virulence factors. 

Schematic representation showing the main immunogenic protein antigens present on 

the cell surface of �. meningitidis. These surface virulence factors have major roles 

in conferring the ability to colonise and eventually infect the human host. 

Abbreviations used: NadA: �eisseria adhesin A. LOS: lipoologosaccharide. NHBA: 

Neisserial Heparin Binding Antigen. fHBP: factor H Binding Protein. Opa: opacity 

protein (Figure from(Caesar et al., 2013). 

 

1.7  Genomic differences between �. meningitidis and the other 

bacteria 

1.7.1 Genomic differences between �. meningitidis and E. coli 

The genome size of �. meningitidis is fairly small, as it is approximately 2.2 – 2.3 

Mb, and corresponds to about 2100 genes. The genome of E. coli, on the other hand, 

is much larger and is composed of 4.5 – 6 Mb, averaging about 5000 genes. One 

important aspect of this difference in the number of genes is given by the genome 

dynamics: �. meningitidis only inhabits the mucus layer that protects the naso- and 
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oropharynx of humans, hence this bacterium only needs a small number of regulatory 

proteins, whereas E. coli can colonise many environments between and within 

different hosts and therefore requires many more regulatory proteins in order to assist 

it with the diverse environmental conditions. The genome of �. meningitidis is 

hypervariable and continually undergoes mutational events. These mutations can be 

caused by horizontal gene transfer, by phase and antigenic variation, by 

recombination, etc. In fact, to help the bacterium survive in the hostile environment 

and evade the immune system, �. meningitidis contains approximately 100 genes 

that are involved in phase and antigenic variation, whereas the more stable E. coli 

genome contains less than 10 of those genes. Other probable differences in the 

survival strategy of �. meningitidis compared to E. coli involve a reduced DNA - 

repair capacity, and the presence of a very high number, approaching 2000, of the 10 

bp DNA-uptake sequences (DUS) (Davidsen & Tønjum, 2006). 

The bacterial strains that survive are those that are able to elude detection by the host 

immune system and its innate immune killing. For this reason, �. meningitidis 

possesses secretory proteins that are involved both in the adherence to host cells and 

in the suppression of the host’s defence mechanisms. Site-specific proteases in �. 

meningitidis, for example, are responsible for cleaving several human proteins, such 

as immunoglobulin A1 (IgA1), a protein involved in the first line of defence in the 

mucosal membranes as it helps to prevent adhesion and colonisation of bacteria to 

the surface (Vitovski & Sayers, 2007). 
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1.7.2 Genomic differences between �. lactamica, �. gonorrhoeae and �. 

meningitidis 

Studies of the genetic material have failed to identify consistent genomic differences 

amongst the �eisseria species. Most of the genome, in fact, is shared amongst �. 

meningitidis, �. gonorrhoeae and �. lactamica, despite their different relationship 

with the human host (Maiden, 2008). The genes that are communal between the 

commensal �. lactamica and the pathogenic �. meningitidis, for example, may be 

involved in the colonisation of the host’s specific niche, whereas the genes that are 

only present in the meningococcus could possibly lead to the virulence of this 

bacterium (Snyder & Saunders, 2006). 

Sequencing analysis of all three species resulted in the discovery of nine conserved 

genetic islands which are always present in �eisseria meningitidis and occasionally 

in �. gonorrhoeae, but are always absent from its closely related commensal 

�eisseria lactamica (Figure 1.7.2-1). As these nine genetic islands, composed of two 

or more genes, were only present in the pathogens, they can also be referred to as 

pathogenic islands. Several genes belonging to these 9 pathogenic islands still 

encode unknown proteins and therefore, to investigate their function, a BLAST 

analysis of all 38 genes and their proteins belonging to �. meningitidis strain MC58 

was carried out. Most of these islands have been very likely acquired by horizontal 

gene transfer (HGT), as their flanking genes are found next to each other in �. 

lactamica. 
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Figure 1.7.2-1: Genomic islands present in �. meningitidis and absent from �. 

lactamica. 

This circular representation of the �. meningitidis strain MC58 genome shows the 9 

genomic islands which are found in all �. meningitidis strains. Gene numbers 

correspond to the numbering given in the MC58 complete genome, where the 

number within each arrow is preceded by “NMB” (NCBI GenBank accession 

number AE002098.2) (Figure from James Moir). 

 

All genes belonging to the nine pathogenic islands and their flanking genes from �. 

meningitidis strain MC58 (NCBI GenBank accession number AE002098.2) were 

compared to the genomes of �. gonorrhoeae strain FA 1090 (NCBI GenBank 

AE004969.1) and �. lactamica strain 020-06 (NCBI GenBank FN995097.1). Gene 

numbers in all the figures below correspond to the numbering given in the NCBI 

GenBank, where genes in A are preceded by “NMB0”, in B are preceded by “NGO” 

and in C are preceded by “NLA_”, unless stated otherwise. 
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The first pathogenic island, composed of three genes, is involved in the oxidation of 

D-amino acids with the help of the D-amino acid dehydrogenase enzyme (Figure 

1.7.2-2). 

 

Figure 1.7.2-2: Genomic island 1 is involved in the oxidation of D-amino acids. 

BLAST analysis using the three genes from �. meningitidis as a query indicates that 

�. gonorrhoeae lacks the putative zinc transporter encoded by �MB0175 and �. 

lactamica lacks all three genes. �. lactamica, however, contains three genes 

encoding hypothetical proteins which are absent from the genome of both pathogens. 

NMB0175: zinc transporter (ZupT) protein. NMB0176: D-amino acid 

dehydrogenase small sub-unit. NMB0177: putative sodium / alanine symporter. 
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The second pathogenic island is thought to be involved in the metabolism of urea and 

amino acids, and contains the allophanate hydrolase sub-units 1 and 2 (Figure 

1.7.2-3). 

 

Figure 1.7.2-3: Genomic island 2 is involved in urea and amino acids 

metabolism. 

BLAST analysis using the seven genes as a query indicates that this pathogenic 

island is exclusive to �. meningitidis, and several of the genes still encode 

hypothetical proteins. NMB0225: IS30 family transposase. NMB0226: hypothetical 

protein. NMB0227: transmembrane transport protein. NMB0228: LamB/Ycsf family 

protein. NMB0229: hypothetical protein. NMB0230: allophanate hydrolase sub-unit 

1. NMB0231: hypothetical protein. 
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Pathogenic island 3 comprises two enzymes that are involved in polyamine 

biosynthesis, which are spermidine synthase and spermine synthase. This island and 

the knockout for �MB0240 are referred in Appendix – A (Figure 1.7.2-4). 

 

Figure 1.7.2-4: Genomic island 3 is involved in the synthesis of spermine. 

This island is present in both pathogens and absent from �. lactamica. The flanking 

gene upstream of the island (�MB0238) is absent from �. lactamica, and a gene 

rearrangement occurred between these three species around the gene cluster, as 

�MB0237 is found in different locations within the genome of both �. gonorrhoeae 

and �. lactamica. �LA_20220 is present in both pathogens, and corresponds to �. 

meningitidis �MB2127 and �. gonorrhoeae �GO1963. Abbreviations used: 3: 1753. 

2: 1752. NMB0239: spermine synthase. NMB0240: spermidine synthase. 
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Genomic island 4, found in both �. meningitidis and �. gonorrhoeae, but absent 

from �. lactamica, is involved in the putative metabolic 2-methylcitrate pathway, a 

pathway that will be further discussed in Chapter 3. This pathogenic island is the 

largest amongst the nine that are found in all �. meningitidis strains, as it contains 

9329 bp. This island has most likely been acquired by HGT in �. meningitidis or has 

followed selective gene loss in �. lactamica. In fact, both genes that are present in 

either side of the island in the two pathogens correspond to the same genes that are 

found flanking each other in �. lactamica (Figure 1.7.2-5). 

 

Figure 1.7.2-5: Genomic island 4 encodes genes for the 2-methylcitrate pathway. 

BLAST analysis using the six genes forming the 2-methylcitrate pathway and their 

flanking genes from the �. meningitidis strain MC58 genome reveals that all the 

genes are also present in �. gonorrhoeae but only the two flanking genes are found, 

adjacent to each other, in �. lactamica. NMB0430: 2-methylisocitrate lyase. 

NMB0431: 2-methylcitrate synthase. NMB0432: hypothetical membrane protein. 

NMB0433: Aconitate hydratase. NMB0434: AcnD - accessory protein PrpF. 

NMB0435: Propionate kinase (acetate kinase). 
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Pathogenic island 5 is thought to be involved in polyamine biosynthesis, as it 

catabolises L-arginine to putrescine. Putrescine is the substrate for pathogenic island 

3. This island is absent from the commensal �. lactamica (Figure 1.7.2-6). 

 

Figure 1.7.2-6: Genomic island 5 is involved in putrescine biosynthesis. 

BLAST analysis using the two genes involved in polyamine biosynthesis and their 

flanking genes from the �. meningitidis strain MC58 genome reveals that all the 

genes are present in �. gonorrhoeae but only �MB0467 and �MB0471 are present, 

adjacent to each other, in �. lactamica. NMB0468: L-arginine decarboxylase. 

NMB0469 agmatinase. NMB0470: C4-dicarboxylate transporter. 
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Pathogenic island 6 is involved in biotin synthesis. This island is absent from the 

commensal �. lactamica (Figure 1.7.2-7). 

 

Figure 1.7.2-7: Genomic island 6 is involved in biotin synthesis. 

BLAST analysis using the three genes involved in biotin synthesis and their flanking 

genes from the �. meningitidis strain MC58 genome reveals that all the genes are 

also present in �. gonorrhoeae. The two flanking genes are present in �. lactamica 

too, where they are separated by a 1359 bp gene that encodes a putative tRNA 

methyltransferase. The �LA_5070 gene does not have similarities with any genes 

from �. meningitidis nor �. gonorrhoeae but it includes a 95 bp fragment that is 

present between �MB0471 and �MB0472.  NMB0472: 8-amino-7-oxononanoate 

synthase. NMB0473: hypothetical protein. NMB0474: putative biotin synthesis 

protein (BioC). 
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Pathogenic island 7 is composed of six genes, all of which have hypothetical 

functions (Figure 1.7.2-8). 

 

Figure 1.7.2-8: Genomic island 7 encodes five hypothetical proteins. 

This island is present in both pathogens and absent from �. lactamica. The flanking 

genes are found in both �. gonorrhoeae and �. lactamica, even though there was a 

change of gene arrangement between species around these gene clusters. 

Abbreviations used: A - 6: 856. 7: 857. 8: 858. 9: 859. 0: 860. 1: 861.  B – 2: 162. 3: 

163. 4: 164. 5: 165. 6: 166. NMB0856: hypothetical protein. NMB0857: hypothetical 

protein. NMB0858: hypothetical protein. NMB0859: hypothetical protein. 

NMB0860: hypothetical protein.  NMB0861: hypothetical membrane protein. 
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Pathogenic island 8, which is also found in �. gonorrhoeae, contains two genes that 

have hypothetical functions. Gene �MB1049 encodes a hypothetical protein which 

has high sequence identity with LysR-type transcriptional regulator (LTTR). This 

genomic island and NMB1049 are further investigated in Chapter 4 and Chapter 5 

(Figure 1.7.2-9). 

 

Figure 1.7.2-9: Genomic island 8 contains a putative LysR-Type transcriptional 

regulator. 

This island is present in both pathogens and absent from �. lactamica. The flanking 

genes, with the exception of �MB1050 which is only present in �. meningitidis 

strains, are found in both �. gonorrhoeae and �. lactamica. The island and the genes 

downstream appear to have been acquired by HGT in both pathogens, as both 

flanking genes are found in different locations within the genome of �. lactamica. 

NMB1048: putative membrane protein. NMB1049: putative LTTR protein. 
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Pathogenic island 9, the second largest acquisition in �. meningitidis genome, 

contains 5771 bp and comprises seven genes, the majority of which encode proteins 

with hypothetical functions. Two proteins have similarity to secretion proteins 

(Figure 1.7.2-10). 

 

Figure 1.7.2-10: Genomic island 9 contains secretion proteins. 

The complete island is found only in �. meningitidis. The three genes that are also 

present in �. gonorrhoeae encode proteins with hypothetical functions. There was a 

change in gene arrangement between the two pathogens around these gene clusters. 

The island and flanking genes are absent from �. lactamica. Abbreviations used: A – 

8: 1738. 9: 1739. 0: 1740. 1: 1741. 2: 1742. 3: 1743.  B – 0: 1170. 9: 1169. 

NMB1737: secretion protein. NMB1738: secretion protein. NMB1739: hypothetical 

protein. NMB1740: hypothetical protein. NMB1741: hypothetical protein. 

NMB1742: hypothetical protein. NMB1743: hypothetical protein. 
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1.8 Aims and objectives of this work 

The nine genomic islands just described might be of major importance to the carriage 

and / or survival of �. meningitidis in their exclusive natural habitat, the human host. 

Genomic islands 4 and 8 have not yet been fully characterised and are the focus of 

the work presented in the following chapters. 

This thesis aims to characterise a number of genes, homologues of which have 

already been characterised in other bacteria, but which are still only putatively 

involved in the 2-methylcitrate pathway in �. meningitidis. It also aims to identify 

and characterise new genes present in this pathway in the pathogenic �eisseria 

solely, as they are absent from all other microorganisms that have been sequenced so 

far. Studies of other genes belonging to a yet unknown pathway comprising a 

probable transcriptional regulator will be carried out, and potential genes regulated 

by this protein will also be identified. Finally, the mutants generated as part of this 

work will be used to examine their role in the survival of �. meningitidis ex vivo. 

The work executed in this thesis aims to contribute to the understanding of the 

carriage and infection of �. meningitidis, so that new approaches could be taken into 

consideration for fighting against this pathogen. 
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Chapter 2  -  Materials and Methods 

2.1 Bacterial strains and plasmids used in this work 

2.1.1 Bacterial strains used in this work 

Strain Genotype and Description Source / Ref 

Escherichia coli 
DH5α 

General cloning strain carrying F-φ80dlacZ∆M15 
∆(lacZYA-argF)U169 recA1 endA1 hsdR17(rk

-, 
mk

+) phoA supE44 thi-1 gyrA96 relA1 λ- 
Invitrogen™ 

Escherichia coli 
BL21 (DE3) 

Cells for protein expression. General cloning 
strain carrying F- ompT hsdSB (rB

-mB
-) gal dcm 

araB::T7RNAP-tetA 
Invitrogen™ 

�. meningitidis 
MC58 

Wild-type, clonal group ET-5, serogroup B 
McGuinness 

et al., 1991 

�. meningitidis 
�MB0240::Spec

R 
MC58 with disrupted genomic copy of �MB0240 
by insertion of spectinomycin resistance cassette 

This work 

�. meningitidis 
prpC::Spec

R 
MC58 with disrupted genomic copy of �MB0431 
by insertion of spectinomycin resistance cassette 

This work 

�. meningitidis 
�MB0432::Spec

R 
MC58 with disrupted genomic copy of �MB0432 
by insertion of spectinomycin resistance cassette 

This work 

�. meningitidis 
�MB0432::Tet

R 
MC58 with disrupted genomic copy of �MB0432 

by insertion of tetracycline resistance cassette 
This work 

�. meningitidis 
ackA-1::Spec

R 
MC58 with disrupted genomic copy of �MB0435 
by insertion of spectinomycin resistance cassette 

This work 

�. meningitidis 
�MB0468::Spec

R 
MC58 with disrupted genomic copy of �MB0468 
by insertion of spectinomycin resistance cassette 

This work 

�. meningitidis 
�MB1048::Spec

R 
MC58 with disrupted genomic copy of �MB1048 
by insertion of spectinomycin resistance cassette 

This work 

�. meningitidis 
�MB1049:: Chl

R 
MC58 with disrupted genomic copy of �MB1049 
by insertion of chloramphenicol resistance cassette 

This work 

�. meningitidis 
�MB1049::Spec

R 
MC58 with disrupted genomic copy of �MB1049 
by insertion of spectinomycin resistance cassette 

This work 

�. meningitidis 
�MB432:: Tet

R
   

1048:: Spec
R 

MC58 with disrupted genomic copy of �MB0432 
by insertion of tetracycline cassette and of 

�MB01048 by insertion of spectinomycin cassette 
This work 

Veillonella spp. Veillonella species isolated from mouth washes S. Fergusson 
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2.1.2 Plasmids used in this work 

Plasmid Description 
Source / 

Ref 

pET-28b(+)-�MV_1164 

Vector for expressing 6x His-tagged proteins 
containing a kanamycin resistance (KanR) 

cassette and a genomic copy of �MV_1164 from 
�. meningitidis 8013 

Dr V. 
Pelicic 

pCR®-Blunt II- 
TOPO® 

Linearised plasmid cloning vector containing a 
kanamycin resistance cassette, for blunt end 

cloning of PCR products 
Invitrogen™ 

pCR®-Blunt II-
TOPO®- �MB0240 

Vector with a kanamycin cassette and a genomic 
copy of �MB0240 from �. meningitidis MC58 

This work 

pCR®-Blunt II- 
TOPO®- prpC 

Vector with a kanamycin cassette and a genomic 
copy of �MB0431 from �. meningitidis MC58 

This work 

pCR®-Blunt II- 
TOPO®- �MB0432 

Vector with a kanamycin cassette and a genomic 
copy of �MB0432 from �. meningitidis MC58 

This work 

pCR®-Blunt II- 
TOPO®- ackA-1 

Vector with a kanamycin cassette and a genomic 
copy of �MB0435 from �. meningitidis MC58 

This work 

pCR®-Blunt II- 
TOPO®- �MB0468 

Vector with a kanamycin cassette and a genomic 
copy of �MB0468 from �. meningitidis MC58 

This work 

pCR®-Blunt II- 
TOPO®- �MB1048 

Vector with a kanamycin cassette and a genomic 
copy of �MB1048 from �. meningitidis MC58 

This work 

pCR®-Blunt II- 
TOPO®- �MB1049 

Vector with a kanamycin cassette and a genomic 
copy of �MB1049 from �. meningitidis MC58 

This work 

pHP45Ω 
pHP45 plasmid containing spectinomycin 
resistance cassette, also called Ω cassette 

Prentki & 
Krisch, 1984 

pCMT18 Vector containing tetracycline resistance cassette C. Tang 

pST2 
Vector containing chloramphenicol resistance 

cassette 
S. Turner 
et al, 2003 

pCR®-Blunt II-TOPO®- 
�MB0240::Spec

R 
Vector with Kan

R cassette and disrupted genomic 
copy of �MB0240 encasing a Spec

R
 cassette 

This work 

pCR®-Blunt II-TOPO®-  
prpC::Spec

R 
Vector with Kan

R cassette and disrupted genomic 
copy of �MB0431 encasing a Spec

R
 cassette 

This work 

pCR®-Blunt II-TOPO®- 
�MB0240::Spec

R 
Vector with Kan

R cassette and disrupted genomic 
copy of �MB0432 encasing a Spec

R
 cassette 

This work 

pCR®-Blunt II- TOPO®-
�MB0432::Tet

R 
Vector with Kan

R cassette and disrupted genomic 
copy of �MB0432 encasing a Tet

R cassette 
This work 
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Plasmid Description 
Source / 

Ref 

pCR®-Blunt II- TOPO®-
ackA-1::Spec

R 
Vector with Kan

R cassette and disrupted genomic 
copy of �MB0435 encasing a Spec

R
 cassette 

This work 

pCR®-Blunt II- TOPO®-
�MB0468::Spec

R 
Vector with Kan

R cassette and disrupted genomic 
copy of �MB0468 encasing a Spec

R
 cassette 

This work 

pCR®-Blunt II- TOPO®-
�MB1048::Spec

R 
Vector with Kan

R cassette and disrupted genomic 
copy of �MB1048 encasing a Spec

R
 cassette 

This work 

pCR®-Blunt II- TOPO®-
�MB1049::Spec

R 
Vector with Kan

R cassette and disrupted genomic 
copy of �MB1049 encasing a Spec

R
 cassette 

This work 

pCR®-Blunt II- TOPO®-
�MB1049::Chl

R 
Vector with Kan

R cassette and disrupted genomic 
copy of �MB1049 encasing a Chl

R cassette 
This work 

 

2.2 Growth of bacterial strains 

2.2.1 Preparation of Escherichia coli DH5α and BL21 (DE3) competent cells 

In this study, chemically competent E. coli DH5α cells were used to facilitate the 

uptake of the pCR®-Blunt II- TOPO® plasmid (Invitrogen™) containing the full 

gene of interest, and chemically competent E. coli BL21 (DE3) cells were used as a 

protein expression host to facilitate the uptake of pET-28b(+)-�MV_1164 plasmid 

(Dr V. Pelicic). Both E. coli DH5α and E. coli BL21 (DE3) competent cells were 

prepared from original Invitrogen™ aliquots following the Hanahan method 

(Hanahan, 1983), and were stored as single use aliquots at -80 ºC. 

Fresh colonies were grown on LB plates at 37 ºC overnight. A few colonies were 

then inoculated in 50 ml Lysogeny Broth (LB) medium and incubated at 37 ºC in an 

Innova 2300 Platform Shaker (New Brunswick Scientific) at 200 rpm for several 

hours, until the OD at 600 nm reached 0.3-0.6. Cells were harvested in a 50 ml 

cellstar® tube (greiner bio-one) at 4000 rpm at 4 ºC for 20 minutes using an 
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Allegra™ X-22R bench-top centrifuge (Beckman Coulter™). The pellet was 

resuspended in 15 ml of ice-cold RF1 Buffer (buffer composition described in Table 

2.2.1-1) and centrifuged at 4000 rpm at 4 ºC for 10 further minutes. The cells were 

finally resuspended in 5 ml of ice-cold RF2 Buffer (Table 2.2.1-1) and incubated for 

15 minutes on ice prior to being stored at -80 ºC as single use aliquots. 

 

Table 2.2.1-1: Composition of Buffers RF1 and RF2 used for competent cells 

preparation. 

Buffers were filtered and stored at 4 ºC. 

RF1 Buffer Amount 
Concentration 

(final) 

KCl (Fisher Scientific) 2.4 g 160.94 mM 

MgCl2•6H2O (Fisher Scientific) 2.4 g 59.02 mM 

K acetate (Melford) 0.6 g 30.57 mM 

CaCl2•2H2O (Fisher Chemical) 0.3 g 10.20 mM 

Glycerol (Fisher Chemical) 30 ml 15 % (w / v) 

Deionised H2O Added to final 200 ml and to pH 5.8 
 

RF2 Buffer Amount 
Concentration 

(final) 

0.5 M MOPS, pH 6.8 

(Acros organics) 
4 ml 2 % (w / v) 

KCl (Fisher Scientific) 0.3 g 20.12 mM 

CaCl2•2H2O (Fisher Chemical) 2.2 g 74.82 mM 

Glycerol (Fisher Chemical) 30 ml 15 % (w / v) 

Deionised H2O Added to final 200 ml and to pH 5.8 
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2.2.2 Growth of Escherichia coli DH5α 

E. coli strain DH5α was used in this work as an intermediate host for overproducing 

plasmids containing the desired inserts or ligations. 

E. coli bacteria from the -80 ºC stock or from the liquid cultures were grown on 

Lysogeny Broth (LB) agar plates at 37 ºC overnight. LB agar plates were prepared 

by pouring 20 ml of molten LB agar suspension (cooled to 50 ºC) into 85 mm 

diameter plastic Petri dishes (Sterilin®). E. coli was streaked or spread onto these 

plates once they had set. 

E. coli bacteria for liquid cultures were grown aerobically in 8 ml Lysogeny Broth 

(LB) in 30 ml polystyrene universal tubes (Sterilin®). Cultures were incubated at   

37 ºC overnight in an Innova 2000 shaker (New Brunswick Scientific Ltd.) at 220 

rpm. 

LB medium for agar plates and liquid growth was prepared as described in Table 

2.2.2-1, and antibiotics to screen for mutant strains were eventually added during 

plate preparation or just prior to incubation in liquid growth. 

Table 2.2.2-1: Composition of Lysogeny Broth (LB) medium and plates. 
 

 
LB Medium  

[g/L] 

LB Agar plates 

[g/L] 

Tryptone (Formedium™) 10g 10g 

Yeast Extract (Formedium™) 5g 5g 

NaCl (Fisher Scientific) 5g 5g 

Agar Technical (Agar no. 3) (Oxoid) - 15g 

Deionised H2O Added to final 1L Added to final 1L 
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2.2.3 Growth of Escherichia coli BL21 (DE3) for overexpression of the protein 

?MV_1164 

E. coli strain BL21 (DE3) was used in this work as the host for the plasmid 

containing the �MV_1164 gene. This transformed pET-28b(+) plasmid was kindly 

donated by Dr Vladimir Pelicic, Imperial College London. pET-28b(+), which 

contains a kanamycin resistance gene, is a vector that is generally used for 

expressing 6x His-tagged proteins. 

E. coli was streaked onto LB agar plates once they had set and was incubated at 37 

ºC overnight. LB agar plates were prepared by pouring 20 ml of molten LB agar 

suspension (cooled to 50 ºC) supplemented with 50 µg / ml kanamycin into 85 mm 

diameter plastic Petri dishes (Sterilin®). Starting liquid cultures of plated E. coli 

were grown aerobically the following day in 5 ml Lysogeny Broth (LB) with the 

addition of 50 µg / ml kanamycin at 37 ºC for several hours in 30 ml polystyrene 

universal tubes (Sterilin®), with shaking at 220 rpm in an Innova 2000 shaker (New 

Brunswick Scientific Ltd.). LB medium for both agar plates and liquid growth was 

prepared as described in Table 2.2.2-1. 

Once the OD reached 0.8 – 1 at 600 nm, the 5 ml starting culture was transferred into 

a 2 L flask containing auto-induction medium (Table 2.2.3-1). All the solutions that 

were used for preparing the auto-induction medium are described in Table 2.2.3-2 

and Table 2.2.3-3. The flask was then incubated at 30 ºC overnight, shaking at 180 

rpm with a Lab-Shaker (Adolf Kühner AG Schweiz). The auto-induction medium 

was used for over expressing the putative protein NMV_1164, following the method 

of Studier et al. (Studier, 2005). 
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Table 2.2.3-1: Preparation of the auto-induction medium. 

The auto-induction medium was prepared just prior to inoculation with E. coli BL21 

(DE3) starter culture. Solutions 2-5 and the Trace Metals mixture 1000 x were added 

into the 2 L flask containing Solution 1. 

 

Auto-Induction Medium (1 x) 
Stock 

concentration 

Final 

concentration 

Solution 1 (ZY Medium 1 x) 590 ml 1 x 

Solution 2 (NPS 20 x) 31 ml 1 x 

Solution 3 (50x52 50 x)  12.5 ml 1 x 

Solution 4 (MgSO4 1000 x) 630 µl 1 x 

Trace Metals 1000 x 630 µl 1 x 

Solution 5 (Kanamycin 1000 x) 630 µl 1 x 
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Table 2.2.3-2: Preparation of Solutions 1-5 for the auto-induction medium. 

All stock solutions were stored at room temperature, except for the 50 mg / ml 

kanamycin solution (Solution 5), which was stored at -20 ºC. 

 

 Chemicals used 
Stock 

concentration 

Final 

concentration 

Solution 1 

ZY Medium 

(1x) 

Tryptone (Formedium™) 10 g / L 1 x 

Yeast Extract (Formedium™) 5 g / L 1 x 

Dissolved in 590 ml of deionised H2O, stirred at room temperature 

for 10 minutes in 2 L flasks prior to autoclaving 

Solution 2 

?PS 

(20x) 

(NH4)2SO4 (Fisher Scientific) 0.5 M 25 mM 

K2HPO4 (Fisher Chemical) 0.78 M 40 mM 

Dissolved in deionised H2O, stirred at room temperature for 10 

minutes prior to autoclaving 

Solution 3 

50x52 

(50x) 

Glycerol (Fisher Chemical) 25 % (w / v) 0.5 % (w / v) 

Glucose (Fisher Scientific) 0.14 M 2.8 mM 

α-Lactose monohydrate 

(Sigma-Aldrich®) 
0.28 M 5.6 mM 

Dissolved in deionised H2O, stirred at room temperature for 10 

minutes prior to autoclaving 

Solution 4 

MgSO4 

(1000x) 

MgSO4•7H2O (Sigma-

Aldrich®) 
1 M 1 mM 

Dissolved in deionised H2O, stirred at room temperature for 10 

minutes prior to autoclaving 

Solution 5 

(1000x) 

Kanamycin (Sigma-Aldrich®) 50 mg / ml 50 µg / ml 

Dissolved in deionised H2O and stored at -20 ºC 
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Table 2.2.3-3: Preparation of the Trace Metals mixture (1000 x). 

Solution 2: the compound was dissolved in ~ 0.1 M HCl and filter sterilised. 

Solutions 3-11: each stock solution was prepared by dissolving the specific 

compound in deionised H2O and then autoclaved. All solutions were stored at room 

temperature. The combined Trace Metals mixture 1000 x was prepared by adding the 

required volume of each solution in ascending order, to avoid precipitation, and was 

stored at room temperature. 

 

 
Chemicals used Volume MW 

1 x 

concentration 

1 deionised autoclaved H2O 18 ml - - 

2 0.1 M FeCl3 (Sigma) 25 ml 162.21 50 µM Fe 

3 
1 M CaCl2•2H2O (Fisher 

Scientific) 
1 ml 147.02 20 µM Ca 

4 
1 M MnCl2•4H2O (BDH 

Laboratory Supplies) 
0.5 ml 197.91 10 µM Mn 

5 
1 M ZnSO4•7H2O (FSA 

Laboratory Supplies) 
0.5 ml 287.56 10 µM Zn 

6 0.2 M CoCl2•6H2O (Aldrich®) 0.5 ml 237.95 2 µM Co 

7 0.1 M CuCl2•2H2O (Sigma) 1 ml 170.49 2 µM Cu 

8 
0.2 M NiCl2•6H2O (Sigma-

Aldrich®) 
0.5 ml 237.72 2 µM Ni 

9 
0.1 M Na2MoO4•2H2O (Sigma-

Aldrich®) 
1 ml 241.98 2 µM Mo 

10 0.1 M Na2SeO3•5H2O (Fluka) 1 ml 263.03 2 µM Se 

11 0.1 M H3BO3 (Fisher Scientific) 1 ml 61.83 2 µM B 
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2.2.4 Growth of �eisseria meningitidis 

�. meningitidis strain MC58, which was kindly donated by Prof. Robert Read from 

the University of Sheffield, was used as wild-type control and as source of genomic 

DNA for mutant strain constructs. Its complete genome has been sequenced, 

published and annotated (Tettelin et al., 2000). 

MC58 �MB0240::Spec
R
, prpC::Spec

R
, �MB0432::Spec

R
, �MB0432::Tet

R
, 

�MB0435::Spec
R
, �MB0468::Spec

R
, �MB1048::Spec

R
, �MB1049::Chl

R
 

�MB1049::Spec
R gene knockout mutant strains and the double mutant 

�MB0432::Tet
R
-�MB1048::Spec

R
 were generated in this study. All liquid handling 

steps were carried out inside a Category 2 flow hood to ensure aerosols of the 

bacteria were not released into the open air. 

All �. meningitidis stocks, stored at -80 ºC, were streaked on Columbia Blood Agar 

Base plates (CBA) and incubated at 37 ºC overnight in a 5 % CO2 atmosphere in 

order to enhance bacterial growth, as described by Heurlier (Heurlier et al., 2008). 

CBA plates were prepared by adding 5 % Defibrinated Horse Blood (TCS 

biosciences) to cooled molten Columbia Agar Base (Oxoid) at 50 ºC. 20 ml of this 

suspension was poured into each 85 mm diameter plastic Petri dish (Sterilin®). 

Liquid cultures of plated �. meningitidis were grown in Mueller Hinton Broth 

(MHB) (Oxoid) or in Chemically Defined Medium (CDM) modified from the 

method described by Catlin (Catlin & Schloer, 1962). MHB was prepared as 

recommended by the manufacturer and CDM was prepared as described in Table 

2.2.4-1. Both media where supplemented with 10 mM NaHCO3 prior to incubation. 

Liquid cultures were routinely grown from a starting OD reading of 0.05 at 600 nm. 
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Cultures were grown in triplicates in 30 ml polystyrene universal tubes (Sterilin®) 

under aerobic conditions in a total volume of 15 ml of medium, and were shaken at 

200 rpm at 37 ºC in a microbial C25KC incubator shaker (New Brunswick Scientific 

Ltd.) over a 24h period. Growth in the presence of propionic acid was induced by the 

addition of propionic acid (Sigma-Aldrich®) to a final concentration of 5 mM into 

the 15 ml media prior to incubation. 

 

Table 2.2.4-1: Composition of the Chemically Defined Medium (CDM). 

All stock solutions were stored for up to one month at room temperature, except for 

solution 4b, which was stored for an indefinite period at 4 ºC. The final CDM 

solution was prepared by addition of stock solutions 1, 2, 3, 4a or 4b, and 5 to 

autoclaved deionised H2O just prior to growth of liquid culture. The pH of the final 

medium was checked and eventually adjusted to be between 7 and 7.5. Solution 6 

was only added to some of the cultures. 

CDM Chemicals used 
Stock 

concentration 

Final 

concentration 

Solution 1 

(Fe sol.) 

(40x) 

MgCl2 (Sigma-Aldrich®) 78 mM 1.95 mM 

CaCl2 (Sigma-Aldrich®) 8.15 mM 0.20 mM 

Ferric citrate (Sigma-Aldrich®) 6.5 mM 0.15 mM 

Dissolved in deionised H2O, stirred at 50 ºC for 3h approx., pH 

adjusted to 7 and filter sterilised 

Solution 2 

(salts sol.) 

(20x) 

NaCl (Sigma-Aldrich®) 2 M 100 mM 

K2SO4 (Sigma-Aldrich®) 114.8 mM 5.75 mM 

K2HPO4 (Sigma-Aldrich®) 460 mM 23 mM 

NH4Cl (Sigma-Aldrich®) 360 mM 18 mM 

Dissolved in deionised H2O, stirred at room temperature for 10 

minutes prior to autoclaving 
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CDM Chemicals used 
Stock 

concentration 

Final 

concentration 

Solution 3 

(aa sol.) 

(20x) 

Glycine (Sigma-Aldrich®) 75.6 mM 3.8 mM 

L-cystine (Sigma-Aldrich®) 8.3 mM 0.4 mM 

L-arginine (Sigma-Aldrich®) 14 mM 0.7 mM 

L-glutamine (Sigma-Aldrich®) 80 mM 4 mM 

L-serine (Sigma-Aldrich®) 95 mM 4.75 mM 

Dissolved in deionised H2O with the addition of a few drops of 

NaOH, stirred at 40 ºC for 1 hour and filter sterilised 

Solution 4a 

(224x) 

Glucose (Sigma-Aldrich®) 560 mM 2.5 mM 

Dissolved in deionised H2O, stirred at room temperature for 10 

minutes prior to autoclaving 

Solution 4b 

(40x) 

Na pyruvate (Sigma-Aldrich®) 200 mM 5 mM 

Stirred at room temperature for 30 minutes and filter sterilised 

Solution 5 

(100x) 

NaHCO3 (Sigma-Aldrich®) 1 M 10 mM 

Dissolved in deionised H2O, vortexed until complete dissolution 

of sodium bicarbonate and filter sterilised 

Solution 6 

(200x) 

Propionic acid                

(Sigma-Aldrich®) 
1 M 5 mM 

Dissolved in deionised H2O, then adjusted to pH 7 prior to filter 

sterilisation 

 

 

Occasionally, liquid cultures of �. meningitidis MC58 were grown in an enriched 

medium. When this was case, bacteria were grown in MHB and CDM media as 

described above, but with the addition of amino acids or Vitox. The pH of each 

medium was adjusted to between 7 and 7.5 prior to the start of the growth. Amino 

acids stock solutions were prepared fresh on the day by dissolving each amino acid 

separately in deionised H2O to 100 mM (making a 20 x stock), and then by filter 
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sterilising them with a 0.22 µm filter (Millipore). To help dissolving the amino acids, 

a few drops of concentrated HCl were usually needed. 2.5 ml of the desired amino 

acid stock solutions were added into the growth medium to obtain a final 5 mM (1 x) 

concentration, except for L-cysteine hydrochloride in all media and L-tyrosine in 

CDM medium, where only 0.5 ml were added to achieve a final 1 mM concentration. 

At 5 mM, in fact, �. meningitidis’ growth with these two amino acids was severely 

impaired. Some amino acids were used together, whilst others were used singularly, 

as follows: 1: L-alanine, L-isoleucine, L-leucine, L-methionine, L-valine. 2: L-

phenylalanine, L-tryptophan. 3: L-aspartic acid, L-glutamic acid. 4: L-lysine, L-

proline. 5: L-asparagine. 6: L-cysteine hydrochloride. 7: L-threonine. 8: L-histidine. 

9: L-tyrosine. std (standard amino acids solution): same amino acids and 

concentrations as in Solution 3 in the Table above. All amino acids were supplied 

from Sigma-Aldrich®. 

Commercial Vitox (Oxoid) was used to enrich growth media at the concentration 

recommended by the supplier. It came into two separate vials, one containing a 

concentrate of essential lyophilised growth factors, whose final concentration in the 

growth medium is detailed in Table 2.2.4-2, and the other containing 0.55 M glucose 

dissolved in 10 ml of distilled water, which was needed to dissolve the lyophilised 

growth factors. Final concentration of glucose into the growth medium was 11.10 

mM, as the commercial Vitox was made to supplement 500 ml of growth medium. 

The content of the two vials was mixed aseptically, and was ready for use on the day 

or was stored at – 20 ºC in single use aliquots. Laboratory Vitox was prepared by 

dissolving the 11 separate solutions in deionised water to a stock concentration of 

100 x. Serial dilutions were occasionally made, but the stock concentration was 

always 100 x. 500 µl of each component were then added into a 50 ml final volume 
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of growth medium to give the desired 1 x concentration. The pH of the final medium 

was checked and eventually adjusted to be between 7 and 7.5. 

 

Table 2.2.4-2: Composition of Vitox. 

Commercial Vitox was aseptically diluted on the day of use with its hydration fluid 

(made of distilled water and 0.55 M glucose). Laboratory Vitox was prepared fresh 

on the day by dissolving the same components present in Vitox to 100 x with 

deionised H2O and with the occasional addition of a few drops of concentrated HCl 

to help dissolution. Each solution was filter sterilised with a 0.22 µm filter 

(Millipore). All chemicals were from Sigma-Aldrich® except p-Aminobenzoic acid 

(ICN Biochemicals Inc) and commercial Vitox (Oxoid). 

 

 Vitox Components 

Final 

concentration 

(1x) 

1 Vitamin B12  0.148 nM 

2 L-glutamine 1.37 mM 

3 Adenine 150 nM 

4 Guanine 3.97 nM 

5 p-Aminobenzoic acid (PABA) 1.90 nM 

6 L-cystine 91.55 nM 

7 NAD (Coenzyme 1) 7.54 nM 

8 Cocarboxylase 4.34 nM 

9 Ferric nitrate 0.99 nM 

10 Thiamine 0.20 nM 

11 L-cysteine hydrochloride 3.29 mM 
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2.2.5 Growth of Veillonella spp. for co-culture with �eisseria meningitidis 

Veillonella spp. isolated from mouth washes by Dr. Stacey Fergusson (James Moir’s 

lab) was used for co-culture growth experiments with �. meningitidis. Bacterial stock 

stored at -80 ºC was streaked on Columbia Blood Agar Base plates (CBA) and 

incubated at 37 ºC overnight, in a 5 % CO2 atmosphere. CBA plates were prepared as 

explained in Section 2.2.4. 

Liquid cultures of plated Veillonella spp. were grown in Chemically Defined 

Medium (CDM) with the addition of 5 mM sodium L-lactate instead of Solutions 4a 

or 4b. CDM was prepared as described in Table 2.2.4-1 and 1 M sodium L-lactate 

(Sigma) stock was prepared by dissolving the compound in deionised H2O, then 

adjusting it to pH 7 prior to filter sterilisation and storage at 4 ºC. Liquid cultures 

were grown from a starting OD reading of 0.05 at 600 nm. Cultures were grown in 

triplicates in 30 ml polystyrene universal tubes (Sterilin®) under aerobic conditions 

in a total volume of 20 ml of medium, and were shaken at 200 rpm at 37 ºC in a 

microbial C25KC incubator shaker (New Brunswick Scientific Ltd.) over a 32h 

period. Growth in the presence of �. meningitidis was achieved by mixing 10 ml of 

Veillonella spp. with an OD reading of 0.1 at 600 nm, with 10 ml of �. meningitidis 

strain MC58 with an OD of 0.1. 

2.2.6 Ex vivo growth of �eisseria meningitidis in human whole blood 

Human venous blood was collected from seven healthy adult volunteers (four 

females and three males) following Echenique-Rivera’s studies (Echenique-Rivera et 

al., 2011). An anti-coagulant agent, heparin, was instantly mixed in the blood at a 

concentration of 17 U / ml. Samples were obtained from Wayne Burrill, University 
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of Bradford, the morning subsequent to collection. �. meningitidis MC58 wild-type, 

prpC::Spec
R and �MB1049::Spec

R mutants were grown on CBA with 5 % 

Defibrinated Horse Blood (TCS biosciences) plates at 37 ºC overnight in a 5 % CO2 

atmosphere with the method described by Heurlier (Heurlier et al., 2008). A few 

colonies for each strain were inoculated the following day into fresh MHB 

supplemented with 10 mM NaHCO3 in 30 ml polystyrene universal tubes 

(Sterilin®), and grown under aerobic conditions in a total volume of 15 ml of 

medium. These were shaken at 200 rpm at 37 ºC in a microbial C25KC incubator 

shaker (New Brunswick Scientific Ltd.) for few hours until they reached an OD at 

600 nm of about 0.3, which corresponded to approximately 3 x 108 bacteria / ml; this 

meant that the bacteria had entered the early log phase. Bacteria were consequently 

diluted to approximately 106 or 2 x 106 CFU / ml into fresh MHB containing 10 mM 

NaHCO3 and 10 µl of these suspensions were inoculated in triplicates into 190 µl of 

100 % human whole blood, resulting in a starting experimental concentration of 

between 50000 and 100000 CFU / ml. Whole blood infected with bacteria was then 

incubated over a period of two hours in a 96-Well Optical Reaction Plate (Applied 

Biosystems) at 37 ºC with shaking at about 110 rpm to avoid red blood cells 

sedimentation. At each predetermined time point (0, 30, 60, 90 and 120min), 20 µl of 

every sample were removed and spread onto CBA plates. The number of viable 

bacteria was determined by CFU counts by plating serial dilutions onto CBA plates 

and incubating at 37 ºC in a 5 % CO2 atmosphere overnight, and was expressed as 

CFU / ml. Colony growth was checked again four days after incubation. Bacteria 

survival was determined by comparison of the viable count at the different time 

points with the control time 0, where survival rate corresponded to 100 %. 
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2.2.7 Bacterial growth curves 

�eisseria meningitidis growth studies were conducted in MHB or CDM liquid media 

supplemented with 10 mM NaHCO3, but without addition of the selective antibiotic, 

under aerobic conditions as described in Section 2.2.4. The cultures were incubated 

at 37 ºC in a microbial C25KC incubator shaker (New Brunswick Scientific Ltd.) at 

200 rpm, and growth was monitored by measuring the increase in optical density at 

600 nm in disposable 1.5 ml cuvettes (Kartell Labware) with a Jenway 6305 

Spectrophotometer (Jenway). Samples were typically diluted two to four fold with 

the corresponding growth medium not to compromise the cultures’ volume, as many 

measurements were taken by the end of each growth curve. Experiments were 

conducted in triplicate and repeated on several occasions. 

2.2.8 Preparation of E. coli cell stocks 

E. coli DH5α wild-type and mutant strains generated in this study were grown on 

standard or selective LB agar plates at 37 ºC overnight. Liquid cultures were grown 

in LB liquid medium containing the relative antibiotics at 37 ºC overnight, shaking at 

220 rpm in an Innova 2000 shaker (New Brunswick Scientific Ltd.). The cells were 

then harvested for stocks preparation: 500 µl growth cultures were mixed with 500 µl 

50 % LB / 50 % glycerol solution into sterile 1.5 ml Eppendorf tubes (Sarstedt), and 

the 1 ml bacterial stock aliquots were stored at -80 ºC. 10 µl were subsequently taken 

from each newly prepared -80 ºC stock solution and spread on LB +/- antibiotics 

plates to check for purity or contaminations prior to further use. 
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2.2.9 Preparation of wild-type and mutant �. meningitidis cell stocks 

All �. meningitidis strains were grown on CBA plates without addition of antibiotics 

at 37 ºC overnight, in a 5 % CO2 atmosphere. Liquid cultures were then grown at 37 

ºC for several hours to late exponential phase in MHB supplemented with 10 mM 

NaHCO3 and the corresponding antibiotic, shaking at 200 rpm in a microbial C25KC 

incubator shaker (New Brunswick Scientific Ltd.). 1 ml bacterial stock aliquots were 

then prepared by mixing 500 µl of growth cultures to 500 µl of 50 % MHB / 50 % 

glycerol solution into sterile 1.5 ml Eppendorf tubes (Sarstedt), and were stored at -

80 ºC. 20 µl were subsequently taken from each newly prepared -80 ºC stock solution 

and spread on CBA +/- antibiotics plates to check for purity, bacterial health or 

contaminations prior to further use. 

2.2.10 Preparation of antibiotic selective media 

For preparing selective media, antibiotics were directly added into cooled molten 

agars (at 50 ºC) or into liquid media. The final concentration of antibiotics used for 

E. coli and �. meningitidis is shown in Table 2.2.10-1. 

 

Table 2.2.10-1: Antibiotic concentrations used in this work. 
 

Antibiotic E. coli �. meningitidis 

Chloramphenicol (Chl) 25 µg / ml 2 µg / ml 

Tetracycline (Tet) 20 µg / ml 2.5 µg / ml 

Kanamycin (Kan) 50 µg / ml 50 µg / ml 

Spectinomycin (Spec) 50 µg / ml 50 µg / ml 
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2.3 Molecular techniques 

2.3.1 Polymerase chain reaction (PCR) 

The polymerase chain reaction (PCR) was used throughout this work for amplifying 

desired DNA fragments and for screening constructs. 

Primers used for amplification and their relative nucleotide position within the �. 

meningitidis MC58 genome following the annotated GenBank accession number 

AE002098.2 from NCBI (Tettelin et al., 2000) are shown in Table 2.3.1-1. Primers 

were synthesised by Eurofins MWG Operon. Template DNA was obtained from �. 

meningitidis MC58 genomic DNA stock or from plasmid DNA, which were stored at 

-20 ºC. Colony DNA was obtained by slightly dipping a 10 µl micropipette tip into a 

single bacterial colony, and suspending it directly into the reaction mix. 

A standard PCR mix was prepared with GoTaq® Flexi DNA Polymerase kit 

(Promega) and 10 mM dNTPs (Fermentas) as shown in Table 2.3.1-2. The PCR 

amplification was carried out using a Techne TC-3000 Thermal Cycler (Techne) and 

the program described in Table 2.3.1-3. Occasionally, the annealing temperature and 

extension time were changed depending on the primers used and PCR products 

length expected. When these changes occurred, they were annotated next to the 

specific experimental description. PCR products were then separated using agarose 

gel electrophoresis to check for amplification of correct fragment sizes (Section 

2.3.7) and were eventually purified using the QIAquick PCR Purification Kit 

(QIAGEN) and a Sigma 1-13 microcentrifuge (Sigma), following the manufacturer’s 

instructions.  
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Table 2.3.1-1: Primers designed for PCR amplification. 

Primers labelling and nucleotide position refer to the annotated genome and the 

primer’s relative position in the �. meningitidis MC58 (AE002098.2). bis: primers 

used only for colony pick PCR of the prpC::Spec
R
 mutant strain.  prot: primers used 

for NMV_1164 protein work. Underlined red characters correspond to mismatches. 

Abbreviations used: for: forward; rev: reverse. 

PCR Primer Primer Sequence (5’ ���� 3’) 
?ucleotide 

position 

NMB0240-for CAGAAAGGATGGATATAGTGAAC 244652-244674 

NMB0240-rev ACCCTTTCAGACGGCTAAATCCC 246167-246145 

NMB0240bis-for CTGTTTGATTTCTGCTGCTG 245187-245206 

NMB0240bis-rev CAGATAGGCACGTTCGATG 245481-245463 

NMB0430prot-for CCTTGTTTTCTTCTTGTCTG 440212-440231 

NMB0430prot-rev TCGGGCATCCCAATCCAATC 440341-440322 

NMB0431-for CCAAGCTTGTGTCGAAGCC 440942-440960 

NMB0431-rev TTTCAGACGGCCTTTCCAATAAGG 442631-442608 

NMB0431bis-for GCAACGATTTGAGCTATCGC 441488-441507 

NMB0431bis-rev GCATACAGAATCAGTGAAACG 441965-441945 

NMB0432-for TTCTCTGCCGTTTCCTACCAA 442351-442371 

NMB0432-rev ATGTCGGTTCTCCTGTGGAT 443559-443540 

NMB0435-for TTGACGTAGCATGGGTTTGC 448138-448157 

NMB0435-rev ACGCCCGAAATTCAAAATCC 450072-450053 

NMB0468-for CTTTTCAACACGACAGACGG 488122-488141 

NMB0468-rev GCTTCAGACGGCATATCCGATG 490079-490058 

NMB1048-for TTGAATATCCGGTTGAAGCC 1064359-1064378 

NMB1048-rev TGTTTGTATTGCAGCAGGGA 1066439-1066420 

NMB1048prot-for CCATTATGTTTTTCCATAAC 1065941-1065960 

NMB1048prot-rev GTTTTATTGCCTGTTTGGGC 1066070-1066051 

NMB1049-for AAACCGCAATCGAAATGCC 1065528-1065546 

NMB1049-rev CCGAATCCAAGATGCTTTGA 1067570-1067551 

NMB1049prot-for GCCCAAACAGGCAATAAAAC 1066051-1066070 

NMB1049prot-rev TGTGCAATCGAAATCTTTTAG 1066180-1066160 
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Table 2.3.1-2: PCR reactions used for template D?A and colony pick D?A. 

Concentration of starting DNA was variable and depended on plasmid concentration 

or amount of colony picked. For template DNA 0.5 µl were always sufficient. 

Reagent 
Final 

concentration 
Amount 

5 x Green GoTaq® Flexi Buffer 0.5 x 5 µl 

25 mM MgCl2 1.5 mM 3 µl 

10 mM dNTPs (each) 200 µM (each) 1 µl 

sterile deionised H2O - 38 µl 

100 µM Forward primer 2 µM 1 µl 

100 µM Reverse primer 2 µM 1 µl 

Template DNA 

(or colony pick from a plate) 
- 

0.5 µl 

(or tip dipped into 
the colony) 

GoTaq® DNA polymerase 5 U / µl 0.5 µl 

Final volume - 50 µl 

 

Table 2.3.1-3: Standard PCR thermal cycler program used in this work. 

The standard program was run with the details entered in this table. The annealing 

temperature (*) and extension time (**) were occasionally changed depending on the 

primers used and PCR products length expected. The annealing temperature was 

derived from the oligonucleotides’ melting temperature (Tm) and the extension length 

was approximated to 1 minute per kb of DNA to be amplified. 

Thermal cycler step # Thermal cycler program Thermal cycler program 

Step 1 Initial denaturation 95 ºC – 5min 

Step 2 

 

35 
cycles 

  Denaturation 95 ºC – 30sec 

  Annealing* 58 ºC – 30sec 

  Extension** 72 ºC – 4min 

Step 3 Final extension 72 ºC – 8min 

End Storage 16 ºC –   
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2.3.2 pCR® -Blunt II- TOPO® cloning and transformation 

Zero Blunt® TOPO® PCR Cloning Kit (InvitrogenTM) was used for cloning the 

genes under study into the pCR®-Blunt II-TOPO® vector, which contains a 

kanamycin resistance cassette. The orientation of the inserted genes was not certain, 

as the procedure consisted of blunt end cloning, but was checked by sequencing. 

Each cloning reaction, which was set up in a 1.5 ml Eppendorf tube (Sarstedt), was 

prepared by mixing 3.5 µl sterile deionised H2O, 1 µl Salt solution, 1 µl Control PCR 

Product or purified PCR product, and 0.5 µl pCR®-Blunt II-TOPO® vector. This 

mixture was then incubated for 5 minutes at room temperature to allow ligation and 

was subsequently kept on ice until further use. Plasmid maps illustrating the possible 

expected ligations with the gene being investigated is shown in Figure 2.3.2-1. As 

the ligations were blunt ended, there was a 50 % chance that the gene was inserted in 

the opposite direction, but this would not affect my studies. 

 

Figure 2.3.2-1: Plasmid map of the pCR®-Blunt II-TOPO® ligated with the 

gene being studied. 

Plasmid map of the 3519 bp long pCR®-Blunt II-TOPO® vector (in gray) is shown 

with its relevant features (gray box and gray arrow) and with successful ligation of 

the gene under study (blue arrow). A-B: show the possible orientation of the inserted 

genes under investigation. ori: origin of replication. Kan
R: kanamycin resistance 

gene. 

A

B
KanRori

�M gene

KanRori

�M gene
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2.3.3 Transformation of E. coli strain DH5α 

To introduce plasmid DNA into competent E. coli DH5α cells, an aliquot containing 

50 µl of competent cells was quickly thawed on ice and added to the 6 µl cloning 

reaction prepared in Section 2.3.2. The reaction was then incubated on ice for 30 

minutes, heat shocked at 42 ºC for 90 seconds and, finally, cooled on ice for 2 further 

minutes. After addition of 800 µl of LB liquid medium, the reaction was incubated at 

37 ºC for 1 hour, shaking at 200 rpm in a SSL1 shaker (Stuart®). At this stage, the 

reaction was centrifuged at 13000 rpm for 60 seconds, and the harvested pellet was 

resuspended in 100 µl of fresh LB liquid medium, prior to plating on LB + 50 µg / ml 

kanamycin agar plates. Plates were then incubated at 37 ºC overnight. Only colonies 

with the newly acquired vector, containing the kanamycin resistance gene, were able 

to grow. 

2.3.4 Isolation of plasmid D?A 

In order to isolate plasmid DNA, transformed E. coli DH5α colonies were picked 

from the selective plate and grown in 8 ml of LB liquid medium in 30 ml polystyrene 

universal tubes (Sterilin®). Selective antibiotics were added into the growth medium 

to allow selection of cells containing the desired plasmid. Mini-preparations were 

grown aerobically with shaking at 220 rpm in an Innova 2000 shaker (New 

Brunswick Scientific Ltd.) at 37 ºC overnight. Cells were then harvested at 4500 rpm 

at 4 ºC for 10 minutes in an Allegra™ X-22R centrifuge (Beckman Coulter™), and 

plasmid DNA was extracted and purified using the QIApreparation Spin Miniprep 

Kit (QIAGEN) with a Sigma 1-13 microcentrifuge (Sigma), following the 

manufacturer’s instructions. Purified plasmids were stored at -20 ºC until further use. 
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2.3.5 Preparation of pHP45Ω, tetracycline and chloramphenicol cassettes 

pHP45Ω cassette from Prentki and Krisch (Prentki & Krisch, 1984), which conferred 

spectinomycin resistance, was prepared by plating 5 µl of the -80 ºC frozen stock of 

E. coli DH5α containing pHP45Ω on LB agar plates with 50 µg / ml spectinomycin. 

Plates were incubated at 37 ºC overnight, and mini-preps and plasmid purification 

were then carried out as explained in Section 2.3.4. The purified plasmid was 

digested with SmaI, as restriction sites for this enzyme were present at both ends of 

the 2 kb spectinomycin resistance cassette, as described in the next section. 

Preparation of tetracycline resistance cassette, which conferred tetracycline 

resistance, was carried out by plating 5 µl of the -80 ºC frozen stock of E. coli DH5α 

containing the pCMT18 plasmid from Professor Christoph Tang, Imperial College 

London, on LB agar plates with 20 µg / ml tetracycline. This plasmid was obtained 

by Dr Karin Heurlier (Moir’s lab). Plates were incubated at 37 ºC overnight, and 

mini-preps and plasmid purification were then carried out as explained in Section 

2.3.4. The purified plasmid was digested with EcoRV, following Heurlier’s method 

(Heurlier et al., 2008), as restriction sites for this enzyme were present at both ends 

of the 2.5 kb tetracycline resistance cassette. Restriction digest is described in the 

next section. 

Preparation of chloramphenicol resistance cassette, which conferred chloramphenicol 

resistance, was carried out by plating 5 µl of the -80 ºC frozen stock of E. coli DH5α 

containing the pST2 plasmid generated from Susan Turner (Turner et al., 2003) on 

LB agar plates with 25 µg / ml chloramphenicol. Plates were incubated at 37 ºC 

overnight, and mini-preps and plasmid purification were then carried out as 

explained in Section 2.3.4. The purified plasmid followed standard PCR preparation 
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and amplification, as described in Section 2.3.1. The primers used were Chloram-for 

(AAGAATTGGAGCCAATCAATTC) and Chloram-rev (TACACTAAATCAGTA 

AGTTGGC), and were synthesised by Eurofins MWG Operon. The 2 kb 

chloramphenicol resistance cassette was excised from the gel, was purified, and was 

ready for ligation. 

2.3.6 Endonuclease restriction digestion of D?A 

Restriction enzymes were carefully chosen so that their restriction sites were present 

only in the genes investigated, and not in the pCR®-Blunt II-TOPO® plasmid to 

which they were ligated. All restriction digests were performed under the conditions 

recommended by the manufacturers’ instructions. Standard restriction reactions were 

set up in a 0.5 ml Eppendorf tube (Sarstedt) and were prepared by mixing 12 µl 

sterile deionised H2O, 5 µl purified plasmid DNA, 2 µl 10 x Restriction Buffer 

specific for the enzyme used, and 1 µl restriction enzyme. In a few occasions, when 

recommended by the manufacturer, 0.2 µl BSA 100 x (NEB) were added to the 

digests. Reactions were then usually incubated at 37 ºC for 2 hours, unless otherwise 

specified in the results chapters. When digests resulted in sticky end products, and 

needed filling of 5’ overhangs to form blunt end DNA, 0.5 µl DNA polymerase I 

(Klenow) (NEB) and 0.5 µl dNTP 10 mM (each) (Fermentas) were added 30 minutes 

before the end of the incubation period. Double digests were carried out using the 

same standard restriction reactions just described, but with the additional 1 µl of the 

second restriction enzyme and in the NEB restriction buffer that gave the highest 

activity for both enzymes combined. Restriction enzymes and buffers used were 

from Promega and New England Biolabs®. 
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2.3.7 Agarose gel electrophoresis and D?A gel extraction 

Agarose gel electrophoresis was used to estimate the size of DNA fragments 

following PCR (Section 2.3.1) or restriction digests (Section 2.3.6). 

0.8 % agarose gel was routinely prepared by fully dissolving 0.48 g of agarose 

(Molecular Biology Grade, Melford) in 60 ml of 0.5 x TBE buffer in a microwave at 

full power for 1 minute. 0.5 x TBE buffer, also known as Tris / Borate / EDTA 

buffer, was prepared as shown in Table 2.3.7-1. 

 

Table 2.3.7-1: Preparation of 0.5 x TBE buffer. 

The medium was dissolved and stored at room temperature for several months. 

 

Reagent 
Final 

concentration 
Amount 

UltraPureTM Tris (Invitrogen™) 45 mM 54.5 g 

Boric acid (Fisher Scientific) 45 mM 27 g 

EDTA (Fisher Chemical) 1 mM 3.72 g 

deionised H2O - 5 L 

 

The molten agarose was cooled down at room temperature for a few minutes, then 7 

µl SYBR® Safe DNA gel stain 10,000 x concentrate (Invitrogen™) were added, 

resulting in a final 1 x concentration of 1 mg / L which corresponds to 50 µg. The 

solution was mixed gently in order to avoid introducing too many air bubbles, and 

was immediately poured into a 10 cm wide and 11 cm long gel casting tray with a 
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comb. The tray was left to cool at room temperature for approximately 30 minutes, 

time needed for the gel to set. The gel tray was then placed into an electrophoresis 

tank and covered with 0.5 x TBE buffer. At this stage, 5 µl of each PCR sample was 

loaded directly onto the gel, as the 5 x Green GoTaq® Flexi Buffer used during the 

PCR already contained blue and yellow DNA loading dyes. The 20 µl DNA samples 

from the restriction digests, however, were mixed with 5 µl of the 5 x DNA loading 

buffer (YORBIO), before loading the full amount onto the agarose gel. One lane of 6 

µl Q-Step 4 Quantitative DNA ladder (YORBIO) was also loaded on each gel to 

compare DNA band sizes. The gel was run at 100 V at room temperature for 60 to 90 

minutes with a Power Pac 300 apparatus (BIO-RAD), then the DNA was visualised 

by UV illumination using the GeneGenius Bio Imaging System apparatus (Syngene) 

and the GeneSnap software. A digital picture was saved as a JPEG file. 

Desired DNA fragments visualised on the agarose gel were excised from the gel 

using a clean scalpel and were placed into 1.5 ml Eppendorf tubes (Sarstedt). The 

DNA was then extracted using the QIAquick Gel Extraction Kit (QIAGEN), 

following the manufacturer’s instructions. 

2.3.8 Ligation of D?A fragments 

Reactions for ligating the plasmids containing the genes under investigation with the 

chosen antibiotic resistance cassette were prepared by mixing together 5 µl gel 

extracted antibiotic resistance gene, 3 µl linearised gel extracted plasmid DNA, 1 µl 

T4 DNA Ligase Buffer 10 x (Promega) and 1 µl T4 DNA Ligase (Promega). 

Ligation reactions were incubated at room temperature overnight, and were then 

transformed into 50 µl E. coli DH5α competent cells by heat shock in the same way 

as described in Section 2.3.3. This time, however, each sample was plated onto LB 
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agar plates that contained both kanamycin and the antibiotic for the resistance 

cassette that has just been ligated to a final concentration described in Table 2.2.10-1. 

Ligations were incubated at 37 ºC overnight, then colonies were picked, mini-

preparations were grown overnight, and plasmid DNA was purified as described in 

Section 2.3.4. Possible plasmid maps resulting from positive ligations are shown in 

Figure 2.3.8-1. 

To check if the ligations worked, restriction digests with BamHI were performed by 

mixing 12 µl sterile dH2O, 5 µl of the transformed plasmid, 2 µl Restriction buffer E 

10 x (Promega) and 1 µl BamHI (Promega). The reactions were incubated at 37 ºC 

for 1 hour and then run on an agarose gel with also a control lane composed of 1.5 µl 

of the corresponding uncut plasmid. If the expected DNA fragment sizes were seen, 

the purified samples were sent for sequencing. 

 

Figure 2.3.8-1: Plasmid map of the pCR®-Blunt II-TOPO® vector containing 

the gene under study disrupted with an antibiotic resistance cassette. 

A-B: show the possible orientation of the inserted gene under investigation. The 

TOPO plasmid (gray) containing the gene under study (blue) was disrupted with an 

antibiotic resistance cassette (pink). The transformed plasmid contained cassettes for 

kanamycin and for the new antibiotic gene. ori: origin of replication. Kan
R: 

kanamycin resistance gene. 

KanRori

antibioticR�M                                                                       gene

A

B
KanRori

antibioticR�M                                                                       gene
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2.3.9 TSB transformation of �. meningitidis strain MC58 

�. meningitidis MC58 is a naturally competent cell that actively uptakes DNA which 

is followed by homologous recombination with its own chromosome. 

�. meningitidis MC58 wild-type was grown from -80 ºC frozen stocks on CBA 

plates at 37 ºC overnight in an atmosphere containing 5 % CO2. Several colonies 

were used to inoculate an aerobic culture to a starting OD reading of 0.05 at 600 nm 

in 7.5 ml of MHB medium supplemented with 10 mM NaHCO3 in a 30 ml 

polystyrene universal tube (Sterilin®). Cultures were grown at 37 ºC shaking at 200 

rpm for approximately 5 hours, until they reached an OD reading of approximately 

0.5 at 600 nm. Once reached the desired density, 2 ml of culture per transformation 

and for the control were harvested at 8000 rpm for 5 minutes in 2 ml Eppendorf 

tubes (Sarstedt) with a Sigma 1-13 microcentrifuge (Sigma). Cell pellets were 

subsequently resuspended in 200 µl ice cold Transformation and Storage Buffer 

(TSB) following Dr Melanie Thomson’s protocol (which was adapted from Dr Willa 

Huston’s method, personal communication, 2004), and were incubated on ice for 10 

minutes. TSB was composed of MHB with 10 % PEG 4000, 10 mM MgCl2, 10 mM 

MgSO4, 5 % DMSO at a final pH of 6.5. This solution was filter sterilised with a 

0.22 µm filter (Millipore) and stored in 1 ml single use aliquots at -80 ºC. 

After the 10 minutes incubation, 10 µl of the purified plasmid DNA containing the 

disrupted copy of the gene under study was added into the cell suspension and was 

incubated on ice for 50 minutes in order to allow transformation into �. meningitidis 

MC58; for the control, no plasmid was added. For each transformation, 1.5 ml MHB 

medium with 10 mM NaHCO3 was pre-warmed into a 30 ml polystyrene universal 

tube (Sterilin®) for a few minutes. The transformation reaction then transferred into 
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the pre-warmed medium and cultured for 1.5 hours at 200 rpm at 37 ºC. Cells were 

harvested by centrifugation at 8000 rpm for 5 minutes and pellets resuspended in 100 

µl fresh MHB medium, before being plated on CBA plates containing the antibiotic 

disrupting the gene under study. The control was split in half and plated on CBA 

plates with and without the selective antibiotic. Plates were incubated at 37 ºC 

overnight in an atmosphere containing 5 % CO2. Mutant colonies were picked for 

both colony PCR and re-plating for overnight incubation on CBA plates containing 

the selective antibiotic. Several colonies per transformation were checked by PCR as 

described in Section 2.3.1. Re-plating was carried out because a double band, one for 

wild-type and one for the mutant, was often seen during PCR from the 

transformation plate. This was due to dead wild-type bacteria in the plate 

background. With re-plating the wild-type band disappeared from the agarose gel. If 

the PCR from the second plate resulted in the expected DNA fragment size, a stock 

solution was prepared and stored at -80 ºC. 

2.3.10 Determination of D?A or R?A concentration 

The concentration of the nucleic acids was measured using a NanoDrop® ND-1000 

Spectrophotometer (Thermo Scientific), and was based on the absorbance at 260 nm, 

on the selected wavelength-dependent extinction coefficient for the nucleic acids and 

on a baseline correction at 340 nm. The extinction coefficients used were derived 

from a modified Beer-Lambert equation, resulting in 50 ng-cm / µl for double-

stranded DNA (DNA-50) or 40 ng-cm / µl for RNA (RNA-40). After blanking the 

instrument with 1.2 µl Nuclease-Free dH2O (Ambion®), 1.2 µl of the DNA or RNA 

sample was pipetted onto the spectrophotometer. The absorbance was then measured 
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and automatically converted into the final DNA or RNA concentration by the ND-

1000 v3.7.1 software. 

2.3.11 D?A sequencing and data analysis 

The plasmid DNA to be sequenced was diluted to approximately 100 ng / µl with 

dH2O and was then handed to the Technology Facility at the University of York for 

sequencing with an ABI3130xl Genetic Analyzer with a 16-capillary electrophoresis 

instrument and with the 3130xl Data Collection Software. Data was then analysed 

with the Sequencing Analysis version 5.2 software (Applied Biosystems). Data was 

finally exported to a word document with the Chromas version 1.41 Software, and 

was ready for analysis by BLAST. 

Primers used for sequencing the full or disrupted genes transformed in the pCR®-

Blunt II-TOPO® vector came with the cloning kit and were SP6: 

CGATTTAGGTGACACTATAG (forward primer) and T7: TAATACGACTCAC 

TATAGGG (reverse primer). 

2.3.12 Preparation and purification of total R?A from �. meningitidis 

Total RNA from wild-type and mutant strains of �. meningitidis MC58 was 

extracted for quantitative real-time PCR (RT-PCR) experiments. 

Bacteria were incubated on CBA plates overnight, and then cultures were grown in 

MHB or CDM media for up to 12 hours. 1 ml of each sample was collected into a 1.5 

ml Eppendorf tube (Sarstedt) at different time points and centrifuged for 5 minutes at 

12000 rpm with a Sigma 1-13 microcentrifuge (Sigma). Due to the instability of 
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bacterial RNA, the pellet was stored immediately at -80 ºC, until the last sample was 

collected. 

The following stock solutions were prepared prior to starting total RNA purification: 

Tris-EDTA Buffer 100 x (Sigma-Aldrich®) was diluted to 1 x with Nuclease-Free 

dH2O (Ambion®) and stored at room temperature indefinitely. 10 mg / ml lysozyme 

stock solution was prepared by dissolving and filtering lysozyme Ultrapure (nuclease 

free) (usb®) kept at – 20 ºC in Nuclease-Free dH2O (Ambion®), and was stored at – 

20 ºC for several months. A stock solution of Buffer RLT / β-mercaptoethanol was 

prepared by mixing 10 µl of β-mercaptoethanol (Sigma-Aldrich®) per 1 ml of Buffer 

RLT (QIAGEN) and was stable for up to a month at room temperature. 

From this point onwards, all steps of the procedure were performed at room 

temperature without interruption. The protocol followed for the next few steps was 

an adaptation of Protocol 1 (Enzymatic Lysis of Bacteria version 12/2005) 

(QIAGEN): frozen pellets were resuspended in 1 ml RNAprotect® Bacteria Reagent 

(QIAGEN) and incubated at room temperature for 10 minutes. During the incubation 

time, each sample was vortexed for 10 seconds every 2 minutes. The samples were 

then centrifuged for 5 minutes at 13000 rpm and the pellet was resuspended in 180 µl 

Tris-EDTA Buffer 1 x before adding 1 mg / ml lysozyme. At this stage, samples 

were incubated at room temperature for another 10 minutes and were vortexed for 10 

seconds every 2 minutes again, after which 700 µl Buffer RLT / β-mercaptoethanol 

solution were added. The samples were vortexed briefly and, if a particulate material 

was visible, were centrifuged at 13000 rpm for 2 minutes and only the supernatant 

used. 500 µl ethanol 100 % were added to the lysed cells and mixed gently by 

pipetting, prior to transferring the lysate onto the spin-column provided with the 
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RNeasy® Mini Kit (QIAGEN). Total RNA was subsequently purified using the 

manufacturer’s instructions for Protocol 7 (Purification of Total RNA from Bacterial 

Lysate Using the RNeasy Mini Kit version 12/2005) (QIAGEN) and with the 

optional on-column DNase digestion from Appendix B (Optional On-Column DNase 

Digestion Using the RNase-Free DNase Set version 12/2005) (QIAGEN). 

The purified total RNA of each sample was quantified using a Nanodrop 

spectrophotometer as described in Section 2.3.10, and was then stored at -80 ºC, with 

the exception of the few µl that were needed to synthesise cDNA. 

2.3.13 Preparation of cD?A 

A cDNA copy of the total RNA was synthesised with the SuperScriptTM II Reverse 

Transcriptase kit (InvitrogenTM) according to the manufacturer’s instructions. Each 

reaction was set up in a 1.5 ml RNase-free Eppendorf tube (Sarstedt) using 1 µl 

Random Primers (500 µg / ml) (Promega), 1 µl 10 mM dNTP Mix PCR Grade 

(Invitrogen™) and 10 µl total RNA. On a few occasions the total RNA added was 

diluted with Nuclease-Free dH2O (Ambion®), because its concentration was higher 

than the recommended concentration range of 1 ng - 5 µg. At this point, the reactions 

were incubated at 65 ºC for 5 minutes, and then quickly chilled on ice for 1 minute, 

prior to adding 4 µl of 5 x First-Strand Buffer, 2 µl 0.1 M DTT and 1 µl 

RNaseOUT™ Recombinant Ribonuclease Inhibitor (40 units / µl) (InvitrogenTM). 

The reactions were incubated at 30 ºC for 2 minutes and, after addition of 1 µl 

SuperScriptTM II RT (200 units), were incubated at 30 ºC for 10 further minutes, 

before increasing the temperature to 42 ºC and incubating for 1 hour and 50 minutes. 

At the end, the enzyme was inactivated by heating the reactions at 70 ºC for 15 

minutes. 
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To remove RNA complementary to the cDNA, 0.5 µl RNase H (5000 units / ml) 

(New England Biolabs®) were added into these 20 µl reactions. cDNA was 

incubated at 37 ºC for 20 minutes, and RNase H was inactivated by heating the 

samples at 65 ºC for 20 minutes. The cDNA was finally stored at -20 ºC. 

2.3.14 Quantitative Real-Time PCR (RT-PCR) and analysis of gene expression 

Transcript levels of the target genes were measured by RT-PCR. The chosen target 

genes were those involved in the 2-methylcitrate pathway: prpC (�MB0431), a gene 

encoding a hypothetical protein (�MB0432), acnD (�MB0433), and prpF 

(�MB0434). A control gene involved in the citrate pathway (gltA) and two further 

putative genes (�MB1048 and �MB1049) were also analysed. metK (�MB1799), 

which encodes S-adenosylmethionine synthetase, was selected as an endogenous 

housekeeping gene because it is always expressed at the same level, independently of 

the different conditions in which wild-type or mutant �. meningitidis MC58 were 

grown. Differences in gene expression could therefore be compared between the 

different samples, and were not influenced by the amount of starting cDNA in the 

reactions. 

Reactions for each well were prepared by mixing 12.5 µl Power SYBR® Green Mix 

2 x (Applied Biosystems), 5.5 µl Nuclease-Free dH2O (Ambion®), 5 µl diluted 

cDNA sample (0.1 x) and 2 µl primer pair mix (10 µM each). Primers for the desired 

target genes were designed using the Primer Express® Software for Real-Time PCR 

version 3.0 (Applied Biosystems) and were synthesised by Eurofins MWG Operon. 

Primers are listed in Table 2.3.14-1.   
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Table 2.3.14-1: Primers designed for RT-PCR amplification. 

Nucleotide position refers to the primer’s relative position in the �. meningitidis 

MC58 genome (AE002098.2). Abbreviations used: for: forward; rev: reverse. *: 

primers used only for PCR amplification of the intergenic region between two 

adjacent genes, and not for RT-PCR. 

RT-PCR Primer Primer Sequence (5’ ���� 3’) ?ucleotide 

position 

RT-NMB0428-for* GCCCGCCCTGCTTTATGT 439543-439560 

RT-NMB0428-rev* CGTCATATCGTCCCAATCAATATC 439612-439589 

RT-NMB0430-for* GCCGTGAAAGAATCGAATCC 440460-440479 

RT-NMB0430-rev* TGGCCAATCGTGCAAAATAA 440526-440507 

RT-NMB0431-for GCCATGCACGTTTCACTGAT 441937-441956 

RT-NMB0431-rev CGCGGGCGGTAAAGGTA 442003-441987 

RT-NMB0432-for TGCAATCTTGGTTCGCTATCG 443247-443267 

RT-NMB0432-rev CCATCGTTGCCGCAATC 443316-443300 

RT-NMB0433-for CGCCCGTCGTCCAAGTC 444114-444130 

NMB0433b-for* AGGCTTCGAGCGTATCCAC 445870-445888 

RT-NMB0433-rev TGAGTCAGTACCGACGCAGGTA 444175-444154 

RT-NMB0434-for AGCTCGACGGCGTAACGT 447445-447462 

RT-NMB0434-rev CGTCGGCTGGATCAAGAAAT 447507-447488 

RT-NMB0435-for* CGCATGATTATTGCCCACTTAG 449150-449171 

RT-NMB0435-rev* GACGGATTTGCCGTTTTTGA 449215-449196 

RT-NMB0436-for* GAAGACGGCGAACCATTGA 450552-450570 

RT-NMB0436-rev* TCGACGGCGTGTTCCAA 450613-450597 

RT-NMB0954-for GCACGAGATGATTAGCGATCCT 967362-967383 

RT-NMB0954-rev GCGTTCCGAACCGGTATAAAG 967431-967411 

RT-NMB1048-for ACCCATCGCCACACACAAG 1064548-1064566 

RT-NMB1048-rev CAGTGCGCAATTAGGTTTCG 1064623-1064604 

RT-NMB1049-for GAAGCACCTGCACCAGTTTTG 1066812-1066832 

RT-NMB1049-rev GGGTAGTCGCACAAGATCTGTTT 1066880-1066858 

RT-NMB1799-for GCCTGCCAATACGCACAAG 1888530-1888548 

RT-NMB1799-rev GCGCAAGACCCAAAAGCA 1888598-1888581 
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Several 96-Well Optical Reaction Plates (Applied Biosystems) were run in an ABI 

7000 Sequence Detection System Analyser (Applied Biosystems) for relative 

quantification, according to the manufacturer’s instructions. Each sample was run in 

triplicates to avoid errors, and transcript levels were quantified using the ABI 7000 

System Sequence Detection Software version 1.2.3. The software worked by 

quantifying the transcript levels of the cDNA using the threshold Cycle (CT) method 

relative to the expression of the metK housekeeping gene. 

2.3.15 Collection and handling of human saliva 

Saliva fluid samples were collected from over 300 students by Professor Robert 

Read’s group at the University of Sheffield. Participants rubbed their bottom gums 

with a sponge for 1 minute. The sponge was subsequently centrifuged at 1000 rpm 

for 5 minutes in order to collect the saliva sample. 100 µl of each supernatant was 

placed into a new Eppendorf tube and stored at - 80 ºC. Once all the samples were 

collected, they were promptly sent to me in dry ice thanks to Dr. Alice Deasy. These 

samples were stored at - 80 ºC upon receipt. 

Once defrosted, all the samples were spun down for 1 minute at 13000 rpm in a 

Sigma 1-13 centrifuge (Sigma Laborzentrifugen GmbH) in order to get rid of any 

particulate present in the saliva, as this would ruin the gas chromatography column. 

20 µl of the supernatant were mixed with 80 µl of 132 mM potassium phosphate (pH 

3) in a 200 µl VerexTM Crimp-Top Vial (Phenomenex). At this point the samples 

were ready for being injected into the 6890 N Network GC system gas 

chromatograph (Agilent Technologies) for propionic acid measurements, as 

explained in Section 2.4.1. 
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2.4 Analytic chemistry techniques 

2.4.1 Gas chromatography (GC) 

Gas chromatography was used for separating the volatile propionic acid compound 

from the growth medium, so that the total concentration of propionic acid in the 

culture could be measured at any given time. 

Bacteria were incubated on CBA plates overnight, and liquid cultures were grown as 

described in Section 2.2.4. 500 µl of each sample were collected at different time 

points over a period of 24 hours, centrifuged at 12000 rpm for 5 minutes with a 

Sigma 1-13 microcentrifuge (Sigma) and the supernatant was stored at -80 ºC until 

the last sample was collected. Each sample to be analysed was then mixed with 132 

mM potassium phosphate (pH 3) as described in Section 2.3.15. 

At this point, 0.5 µl of freshly acidified samples were sucked into a syringe, the 

syringe needle was positioned into a hot injector port of the 6890 N Network GC 

system gas chromatograph (Agilent Technologies), and the sample was injected. The 

injector was previously set to a temperature of 250 ºC, which corresponded to a 

higher temperature than the component’s boiling point of 141 ºC, allowing it to be 

transformed into its gaseous phase inside the injector. Helium, a carrier gas, was then 

flowed through the injector at a constant flow of 2.2 ml / min in order to push all the 

components of the growth medium that were transformed into vapours onto the 150 

ºC GC column (Alltech® AT-1000 Capillary Column), where partitioning of the 

components occurred. The detector was reached at different times, and this was due 

to variations in the separation between stationary and mobile phases. Signals were 

recorded with the GC ChemStation Rev. A.09.03 [1417] software (Agilent 
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Technologies) and resulted in peaks, whose area was relative to the number of 

molecules that were producing the signal. Graphs showing the area of propionic acid 

present in the samples measured at different time points were automatically drawn by 

the software. The area measured by the software was then converted to the actual 

concentration of propionic acid with the help of a standard curve. 

A standard curve was established by comparing the areas of propionic acid measured 

by gas chromatography to the known amounts of propionic acid that had been 

previously added to each control sample. A y = αx + β equation was obtained, where 

α slope and β y-intercept values were automatically extrapolated by the excel 

software. The chromatograph values obtained for the area of propionic acid for each 

saliva sample were then applied to the graph’s equation as the y values. The 

unknown x values, corresponding to the concentration of propionic acid in the 

sample, were derived from the equation and plotted in excel. 

2.5 Protein techniques 

2.5.1 Disruption of cells and preparation of soluble extract 

After growing bacteria in auto-induction medium at 30 ºC in a Lab-Shaker (Adolf 

Kühner AG Schweiz) overnight, cells were harvested by centrifugation at 4500 rpm 

for 15 minutes at 4 ºC using a Sorvall 6000 (Sorvall® EvolutionRC, Kendro 

Laboratory Product) and then were resuspended in 30 ml HEPES Buffer A (Table 

2.5.2-1). At this stage the cells could be stored at -20 ºC. After thoroughly thawing 

them, cells were sonicated for 2 minutes using a 10 seconds on/off cycle with a 

power output of approximately 70W using a Sonicator®3000 (Misonix), until the 

solution became homogenous. The solution was then transferred in a 35 ml 
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centrifuge tube and centrifuged at 48000 g at 4 ºC for 20 minutes using a Rotor JA-

25.50 and an Avanti® J-26 XP Centrifuge (Beckman Coulter®). The supernatant 

was transferred in a 50 ml cellstar® tube (greiner bio-one) and was ready for protein 

purification. 

2.5.2 Protein purification 

Protein purification was achieved with a HisTrap HP 1 ml column (GE Healthcare), 

which was prepacked with the affinity medium Nickel Sepharose 6 Fast Flow, and an 

ÄKTAprime plus apparatus (Amersham Biosciences) and was performed at room 

temperature. Graphs were automatically plotted by the PrimeViewTM 5.0 Software 

(GE Healthcare). Before connecting the 1 ml HisTrap column, the ÄKTAprime plus 

apparatus was carefully washed with water. The column was then primed with 

HEPES Buffer A binding buffer (Line 1) at a flow rate of 1 ml per minute for about 

20-30 minutes until it was stabilised, then the 30 ml soluble fraction protein 

suspension prepared in Section 2.5.1 was run through the column (Line 8), and was 

followed by running HEPES Buffer A for about 25 minutes until the column was 

stable to elute non-specifically bound proteins. In order to elute the protein, an 

increasing gradient of HEPES Buffer B elution buffer (Line 2) was passed through 

the column until the final concentration of imidazole reached 1 M (corresponding to 

100 % HEPES Buffer B). HEPES Buffer B was prepared as described in Table 

2.5.2-1. The flow rate passing through the column was of 1 ml per minute for all the 

solutions, and the gradient was manually set as follows: set length = 40 ml; set target 

B (HEPES Buffer B) = 100 %; Fraction size = 5 ml; Buffer valve position left to 

Line A. 5 ml fractions containing the protein of interest, which were visualised with 
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a graph automatically plotted by the PrimeView 5.0 software, were collected and run 

on a 15 % SDS gel to verify that the protein of interest was there. 

 

Table 2.5.2-1: Preparation of HEPES Buffer A and HEPES Buffer B. 

The solutions were prepared fresh on the day and were filter sterilised. HEPES 

Buffer A was dissolved in 500 ml of deionised H2O, whilst HEPES Buffer B was 

dissolved in 200 ml of deionised H2O. The solutions were stirred at room 

temperature for 10 minutes prior to filter sterilising. 

Chemicals used 
HEPES Buffer A 

Final concentration 

HEPES Buffer B 

Final concentration 

HEPES, Free acid (Melford), 

pH 8.3 
20 mM 20 mM 

Imidazole (Sigma) 15 mM 1 M 

β-Mercaptoethanol (Sigma) 3 mM 3 mM 

NaCl (Fisher Scientific) 1 M 1 M 

Glycerol (Fisher Chemical) 1 % (w / v) 1 % (w / v) 

 

2.5.3 SDS-PAGE 

To check that the correct protein was collected, a 15 % SDS-PAGE gel was run in 1 

x SDS Buffer. The SDS-PAGE was prepared as described in Table 2.5.3-1. The 

Resolving gel Buffer was prepared by dissolving 1.5 M UltraPureTM Tris 

(Invitrogen™) at pH 8.8 and 0.4 % (w/v) SDS. The Stacking gel Buffer was made by 

mixing 0.5 M UltraPureTM Tris (Invitrogen™) at pH 6.8 and 0.4 % (w/v) SDS. The 

gel size was 6 cm long from the bottom of the wells, 8 cm wide and 1.0 mm thick, 
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and was cast between two Mini-Protean® System Glass Plates (BIO RAD). The 1 x 

SDS Buffer was composed of 25 mM UltraPureTM Tris (Invitrogen™), 125 mM 

Glycine (Fisher Chemical) and 1.75 mM SDS (Melford). Protein samples to be run 

were set up by mixing 10 µl of each elution of interest and the soluble fraction 

protein control with 5 µl 2 x SDS Loading Buffer containing 5 mM β-

mercaptoethanol. Samples were heated for 5 minutes at 95 ºC in order to denature the 

protein and were then run with a lane containing 5 µl PageRulerTM Plus Prestained 

Protein Ladder (Thermo Scientific) on a 15 % SDS-PAGE using a Power PAC 300 

(BIO RAD) at 30 A for 60 minutes at room temperature. 

Table 2.5.3-1: Preparation of the 15 % SDS-PAGE gel. 

The gel was usually prepared fresh on the day, but could be stored at 4 ºC for two 

days. Both Resolving gel and Stacking gel were mixed gently in order to avoid air 

bubbles slowing acrylamide polymerisation, and were prepared with an interval of 30 

minutes to allow the Resolving gel to have fully polymerised in the gel plates before 

adding the Stacking gel. 

Chemicals used Resolving gel Stacking gel 

Deionised H2O 2.4 ml 3.2 ml 

Resolving gel buffer 2.5 ml - 

Stacking gel buffer - 1.3 ml 

Ultra Pure ProtoGel® 30 % (w / v) 

Acrylamide / 0.8 % (w / v) Bis-

acrylamide stock solution (37.5 : 1) 

(National Diagnostics) 

5 ml 0.5 ml 

10% (w/v) APS (Sigma) 50 µl 25 µl 

TEMED (Fluka) 8 µl 8 µl 
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2.5.4 Coomassie Staining of SDS gels 

SDS gels were stained for about 40 minutes to 1 hour with Coomassie Brilliant Blue, 

then were quickly rinsed with water and destained for 1 to 2 hours until the protein 

bands were visible. During this process, the gels were rocking at 15 rpm with a Gyro-

Rocker® STR 9 (BIBBY Stuart). Once the background was removed, the gel was 

quickly rinsed with water and the protein bands were visualised using the 

GeneGenius Bio Imaging System apparatus (Syngene) and a digital picture was 

saved as a JPEG file. Coomassie Brilliant Blue Stain was prepared by mixing 20 % 

Methanol (Sigma-Aldrich®) and 10 % Glacial Acetic acid (Fisher Scientific) in 

deionised water and then by adding 0.1 % (w/v) Coomassie Blue R350, following the 

method from Maniatis (Maniatis, 1989). SDS Destain solution was prepared by 

mixing 10 % Ethanol (Fisher Scientific) and 10 % Glacial Acetic acid (Fisher 

Scientific) in deionised water, and the solution was stored at room temperature for an 

indefinite time. 

2.5.5 PD-10 Buffer exchange 

A PD-10 Desalting Column (GE Healthcare) was used to buffer exchange the 

fractions that showed the presence of the correct protein band in the SDS gel, in 

order to prevent or delay precipitation of the protein of interest. In case of protein 

precipitation, the fractions were centrifuged at 4500 rpm at 4 ºC for 15 minutes using 

an Allegra™ X-22R (Beckman Coulter™) centrifuge. At this stage, the PD-10 

column was equilibrated by running through approximately 25 ml Elution Buffer, 

followed by 2.5 ml of the supernatant of the chosen protein fraction that has just been 

centrifuged and by 3.5 ml Elution Buffer. These last 3.5 ml flow-through were 

collected, as they contained the protein. The Elution Buffer used was Binding Buffer 
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for half of the protein fraction and TBE 0.5 x for the other half of the fraction, as 

TBE was anticipated to make the protein more stable. The buffer-exchanged proteins 

were stored at 4 ºC overnight. Elution Buffer components are described in Table 

2.5.5-1. 

 

Table 2.5.5-1: Preparation of the Elution Buffers used for the PD-10 column. 

Both Binding Buffer and TBE were dissolved in deionised H2O, stirred at room 

temperature for 30 minutes and filter sterilised. These buffers were stored at room 

temperature for several months. 

[Stock] Chemicals used Amount Final conc (1 x) 

Binding 

Buffer 

(1 x) 

HEPES, Free acid (Melford), pH 7.9 0.30 g 2.5 mM 

NaCl (Fisher Scientific) 0.15 g 5 mM 

MgCl2 (Fisher Scientific) 0.025 g 0.25 mM 

 

[Stock] Chemicals used Amount Final conc (0.5 x) 

TBE 

(10 x) 

UltraPureTM Tris (Invitrogen™) 54.5 g 45 mM 

Boric acid (Fisher Scientific) 27 g 45 mM 

EDTA (Fisher Chemical) 3.72 g 1 mM 

 

2.5.6 Quantification with Bradford Assay and storage of proteins 

The concentration of the purified and buffer-exchanged proteins was determined 

using a Quick StartTM Bradford Protein Assay (BIO RAD). This assay consisted of 

mixing 1 ml Quick Start ™ Bradford Dye Reagent, 1 x (BIO RAD), once warmed at 

room temperature, with 20 µl of the buffer-exchanged protein in disposable 1.5 ml 
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cuvettes (Kartell Labware). In order to mix thoroughly the two reagents, the cuvette 

was vortexed and then incubated at room temperature for about 5 to 10 minutes. The 

OD at 595 nm was measured with a Jenway 6305 Spectrophotometer (Jenway) 

against a blank, where the protein was replaced by deionised water. 

The protein concentration was extrapolated from a standard curve of known 

concentration of Bovine Gamma Globulin, which had previously been plotted by 

replacing the 20 µl protein with several amounts of known Bovine Gamma Globulin 

2 mg / ml (BIO RAD). Proteins were then stored as 500 µl aliquots at - 80 ºC. 

2.5.7 Electrophoretic Mobility Shift Assay (EMSA) with D?A 130-mers 

In order to determine if the protein under study interacts with specific sites in the 

DNA of �. meningitidis, an Electrophoretic Mobility Shift Assay (EMSA) was 

carried out using a native gel. 

Primers for the promoter regions of the three genes under investigation were 

designed by Amie Williamson (James Moir’s Lab), and are shown in Table 2.3.1-1 

as NMB0430prot, NMB1048prot NMB1049prot. These primers were used for 

amplifying a region of 130 bp in length. PCR reactions and the program used were 

described in Section 2.3.1, but the extension time was decreased to 30 seconds and 

the final extension to 5 minutes. Agarose gels were prepared and run as described in 

Section 2.3.7 for 60 minutes, but a lower voltage of 80 V was used to get a sharper 

band separation. Band sizes were checked by applying 5 µl PCR products onto the 

gel and, if the size was correct, the PCR products were purified using the QIAquick 

PCR Purification Kit (QIAGEN) with a Sigma 1-13 microcentrifuge (Sigma). If 

multiple bands were seen, the entire PCR sample was loaded onto the gel and the 
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expected band was excised from the gel and DNA was purified. Concentrations of 

the purified promoter fragments were measured with a NanoDrop® ND-1000 

Spectrophotometer (Thermo Scientific) and diluted to a concentration of 45 ng / µl 

with nuclease-free water (QIAGEN). The samples were then stored at -20 ºC. 

Just before preparation of the protein samples to be loaded onto the native gels, a 

Bradford protein assay was carried out on the buffer-exchanged proteins stored into 

0.5 x TBE buffer. Reactions were then prepared by mixing 5 picomoles of DNA to 

either a two-fold (10 picomoles) or a five-fold (25 picomoles) molar excess of the 

protein under study, to ensure that the protein was in excess and would saturate the 

promoter fragments. The DNA stock was diluted to a concentration of 45 ng / µl, and 

10 µl were then used per reaction. This amount corresponded to 450 ng, which was 

converted to picomoles with the Life Science Calculator for DNA 

(http://calculators.mybiomath.com/nucleic_acid_calculators/convert-double-strand-

dna-from-micrograms-to-picomoles/), where the parameters added were 130 bp as 

length of DNA and 0.45 µg as amount DNA. This resulted in approximately 5 

picomoles of DNA added per reaction. The amount of the 6x His-tagged NMV_1164 

protein to add was either 10 or 25 picomoles, and was calculated with the Life 

Science Calculator for Proteins (http://calculators.mybiomath.com/category/ 

protein_calculators/). Parameters added to the calculator were 34.2 kDa protein size, 

and 10 or 25 picomoles protein amount, which resulted in 0.34 and 0.86 µg 

respectively. 100 µl of the protein were approximately diluted from 330 µg / ml to 

100 µg / ml in 0.5 x TBE buffer. From the freshly made 100 µg / ml stock, 0.34 and 

0.86 µg were needed, and these corresponded to 3.4 and 8.6 µl. To make up a 

reaction volume of 50 µl, with either 1 : 2 or 1 : 5 DNA to protein molar ratio, 10 µl 

of 45 ng / µl DNA were mixed with either 3.4 or 8.6 µl of the 100 µg / ml protein, 5.2 
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or 0 µl 0.5 x TBE buffer. 2 x Gel Shift Reaction buffer was mixed with an equal 

amount of DNA-protein solution, to obtain a final 1 x buffer concentration. 500 µl of 

2 x Gel Shift Reaction buffer was prepared fresh by mixing 12 µl 1 M HEPES, 4 µl 1 

M Tris, 2 µl 0.5 mM EDTA pH8, 5 µl 100 mM DTT, 60 µl 50 % (w / v) glycerol and 

417 µl deionised H2O, giving a 1 x final buffer concentration of approximately 

24mM HEPES, 8 mM Tris, 2 µM EDTA pH8, 1 mM DTT, 6 % (w / v) glycerol. At 

this stage, 4 x Native PAGE Loading buffer was added to the reactions to a final 1 x 

concentration, and samples were incubated for 20 minutes at room temperature. 4 x 

Native PAGE Loading buffer was prepared with 100 ml 100 % (w / v) glycerol, 6.25 

ml 1M Tris-HCl pH6.8, 0.375 ml 1% Bromophenol Blue dissolved in 100% Ethanol 

and 8.38 ml dH2O. 30 µl of each reaction was loaded onto the EMSA gel. All the 

chemicals used in this section were provided by Fisher Scientific / Fisher Chemical 

and by Sigma-Aldrich®. 

In order to resolve differences in mobility that might be caused by retardation of the 

130-mers DNA due to DNA-protein interactions, a 12.5 % polyacrylamide gel was 

prepared instead of an agarose gel. The native gel was prepared with 0.5 ml filtered 

50 % (w / v) glycerol (Fisher Chemical), 2 ml filtered 10 x TBE, 4.4 ml filtered 

deionised H2O, 3.2 ml Acrylamide / Bis-acrylamide 40 % solution (19 : 1) (Sigma-

Aldrich®), 150 µl 10 % (w / v) APS (Sigma) and 10 µl TEMED (Fluka). Solutions 

were filtered using a 0.45 µm filter (Millipore). The gel size was 6 cm long from the 

bottom of the wells, 8 cm wide and 1.0 mm thick, and was cast between two Mini-

Protean® System Glass Plates (BIO RAD). Once set, the gel was pre-run for 30 

minutes at 200 V in 0.5 x TBE running buffer and, after the 20 minutes incubation, 

30 µl samples were loaded onto the gel, which was run for further 4 hours at 200 V 
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using a Power PAC 300 (BIO RAD). The gel was run at 4 ºC in order to prevent 

heating effects from disrupting the stability of the protein : DNA complex.  

2.5.8 Sybr® Safe and Silver Staining of EMSA gels 

The native gel was stained in 50 ml 0.5 x TBE with 5 µl SYBR® Safe DNA gel stain 

10,000 x concentrate (Invitrogen™), giving the SYBR® Safe DNA gel stain 1 x 

solution a final concentration of 1 mg / L, which corresponds to 50 µg. The gel was 

subjected to gentle rocking at 15 rpm using a Gyro-Rocker® STR 9 (BIBBY Stuart) 

for about 30 minutes, and then rinsed with water. The DNA was visualised using the 

GeneGenius Bio Imaging System apparatus (Syngene) and the GeneSnap software, 

and a digital picture was saved as a JPEG file. 

For an increased detection of the protein bands, a Silver Staining of the native gel 

was performed after SYBR® Safe DNA gel staining. The gel was rinsed with water 

and then immersed in fixing solution, which was composed of 50 % Ethanol (Fisher 

Scientific) and 10 % Glacial Acetic acid (Fisher Scientific) overnight at room 

temperature, whilst rocking at 15 rpm. The gel was subsequently stained with the 

ProteoSilverTM Silver Stain Kit (Sigma) by following the Technical Bulletin for 

PROT-SIL1 included within the kit. At the end, the gel was developed for about 4 to 

5 minutes until the protein bands were clearly visible, before adding the ProteoSilver 

Stop Solution (Sigma). All these washes were performed whilst the gel was gently 

rocking. A picture of the gel was then taken with the GeneGenius Bio Imaging 

System apparatus (Syngene) and the GeneSnap software, and a digital picture was 

saved as a JPEG file. 
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2.5.9 Fluorescence Anisotropy 

Fluorescence anisotropy was used to study the interactions between the protein 

NMV_1164 from �eisseria meningitidis strain 8013 and its potential binding sites 

within the promoter regions for �MB0430, �MB1048 and / or �MB1049. Three 

potential binding sites for �MB1048 were also checked for preferential binding of 

the protein. A negative control lacking a binding site for the protein, which was used 

for separate studies within the group, was designed by James Edwards (James Moir’s 

Lab) and was tested for comparison. 

Four complementary sets of primers for the promoter regions of all three genes were 

designed by Amie Williamson (James Moir’s Lab), and are shown in Table 2.5.9-1. 

One oligonucleotide within each set contained a 5’ hexachlorofluorescein (HEXTM) 

label. Each 100 µM stock of complementary oligonucleotides, was mixed in an 

equimolar ratio and heated for 5 minutes to 95 ºC to denature secondary structures 

within the single stranded oligonucleotides, then cooled for 10 minutes to room 

temperature to allow the complementary strands to anneal. The resulting double 

stranded oligonucleotides, of 50 µM each, were further diluted to 0.5 µM with 

deionised filtered water. 
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Table 2.5.9-1: Primers designed for fluorescence anisotropy. 

Nucleotide position refers to the primer’s position relative to the starting codon of 

genes �MB0430 and �MB1048 in �. meningitidis MC58. NMB1048a-c refers to the 

intergenic regions between �MB1048 and �MB1049. �arP was used as negative 

control. Underlined red letters correspond to mismatches. Yellow highlights indicate 

potential binding consensus. Abbreviations used: for: forward; rev: reverse. HEX: 

hexachlorofluorescein. 

Primer Primer Sequence (5’ ���� 3’) 
?ucleotide 

position 

HEX_NMB0430_ for ATATCAATAAGATAATTTTCC -135 / -115 

NMB0430_ rev GGAAAATTATCTTATTGATAT -115 / -135 

HEX_NMB1048a_for CCAATCTTTTTTTTTGATAAC 113 / 133 

NMB1048a_ rev GTTATCAAAAAAAAAGATTGG 133 / 113 

HEX_NMB1048b_for ATCATCCGGAAAACTGATACA 135 / 155 

NMB1048b_ rev TGTATCAGTTTTCCGGATGAT 155 / 135 

HEX_NMB1048c_ for ACAATCCACCTAAAAGATTTC 194 / 214 

NMB1048c_ rev GAAATCTTTTAGGTGGATTGA 214 / 194 

HEX_NarP_for 

(control) 

ATTTATTGTAATTTTATTGCTGTC

ATATTCATTAGAAGTATCATTTTA

AGTTC 

- 

NarP_rev          

(control) 

GAACTTAAAATGATACTTCTAAT

GAATATGACAGCAATAAAATTAC

AATAAAT 

- 

 

 

A fluorescence cuvette (Precision cells of Quartz Suprasil®, Hellma®) was prepared 

by mixing 976.4 µl 1 x binding buffer prepared in the previous sections (2.5 mM 
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HEPES Free acid pH 7.9, 5 mM NaCl, 0.25 mM MgCl2) with 5 µl 1 M DTT, 6 µl 60 

mg / ml acetylated BSA, 2.6 µl of 1 µg / ml DiDC (polydeoxyinosinic-

deoxycytidylic acid) and 10 µl of 0.5 µM double stranded oligonucleotides, giving a 

final concentration of 0.98 x binding buffer (2.45 mM HEPES Free acid pH 7.9, 4.9 

mM NaCl, 0.245 mM MgCl2), 5 mM DTT, 360 µg / ml acetylated BSA and 0.0026 

µg / ml DiDC and 5 nM each of the double stranded oligonucleotides. The method 

followed was adapted from James Edwards’ protocol (Edwards et al., 2012). 

Fluorescence anisotropy measurements were carried out at 20 ºC using a FluoroMax-

3 spectrofluorometer fitted with autopolarisers (Horiba Jobin Yvon). The excitation 

wavelength was set to 535 nm and the emission wavelength was set to 556 nm, with 

entrance and exit slits of 5 nm for both excitation and emission. The integration time 

was set to 0.1 seconds. The protein previously buffer-exchanged in 1 x Binding 

buffer (Section 2.5.5) was used, and anisotropy for 10 readings for each titration 

point was measured using the FluorEssence version: 3.0.0.19 software and Origin 

Version: 8.0951 (Horiba Jobin Yvon). Every time an aliquot of protein was added, 

the solution was mixed and left to equilibrate for 2 minutes before starting the new 

readings. 
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Chapter 3  -  Defence against propionic acid 

toxicity in �eisseria meningitidis 

3.1 Introduction 

There are 9 conserved genetic islands which are found in all �eisseria meningitidis 

strains, but are absent from its closely related commensal �eisseria lactamica, as 

previously described in Section 1.7.2. One of these islands is involved in the putative 

metabolic 2-methylcitrate synthase pathway. This pathway is composed of several 

adjacent genes that are often referred to as the prp gene cluster (Horswill et al., 

2001). In �. meningitidis these genes still have putative functions, but these have 

been extrapolated by similarities with the gene sequences of other bacteria. The 2-

methylcitrate cycle is used by several bacteria to oxidise a short chain fatty acid, 

propionic acid, to propionyl-CoA and to the pathway’s end-products pyruvate and 

succinate (Garvey et al., 2007). 

In this chapter, several genes that are associated with the 2-methylcitrate synthase 

pathway will be investigated. 

3.2 The prp operon 

The 2-methylcitrate cycle is used by several bacteria to catabolise propionic acid, a 

short chain fatty acid, to the end-products of this pathway, which are pyruvate and 

succinate (Garvey et al., 2007, Grimek & Escalante-Semerena, 2004) as shown in 

Figure 3.2-1. This pathway is needed to support bacterial growth in the presence of 

propionic acid or to limit toxicity of this compound to the cell, and is catabolised by 
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several enzymes clustered together, the prp gene cluster (Brämer & Steinbüchel, 

2001), which form an operon (Upton & McKinney, 2007). These enzymes, however, 

may vary structurally between the different microorganisms, and their different 

organisations are shown in Figure 3.2-2. In �. meningitidis these enzymes still have a 

putative function. 

 

Figure 3.2-1: The 2-methylcitrate pathway with its intermediates. 

The 2-methylcitrate pathway (black) is shown with its substrate, propionic acid. 

Propionic acid is oxidised to the end-products succinate and pyruvate with the help 

of pathway-specific enzymes (blue), and these products are both needed in the 

tricarboxylic acid cycle (TCA cycle) (red). Oxaloacetate, derived from the TCA 

cycle, enters the 2-methylcitrate cycle and is needed to break down propionyl-CoA 

into the pathway-specific compound 2-methylcitrate. The gene encoding PrpE is not 

present in all bacteria. Some bacteria possess the gene encoding PrpD, whereas in 

others prpD is replaced by AcnD and prpF. Abbreviations used: 2-MC: 2-

methylcitrate. 2-MCA: 2-methyl-cis-aconitate. 2-MIC: 2-methylisocitrate (Figure 

adapted from Garvey et al., 2007 and Grimek & Escalante-Semerena, 2004). 
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Figure 3.2-2: Comparison of the structural variations of the prp operon in 

several bacteria. 

A: Salmonella enterica serovar Typhimurium, Escherichia coli. B: Ralstonia 

eutropha CH34, Shewanella oneidensis. C: �eisseria meningitidis and �eisseria 

gonorrhoeae. “X”: gene encoding a putative hypothetical protein. D: Ralstonia 

eutropha HF39, Bordetella pertussis, Pseudomonas aeruginosa, Pseudomonas 

putida KT2440. E: Vibrio cholerae. F: Corynebacterium glutamicum (Figure 

adapted from Grimek & Escalante-Semerena, 2004). 

 

Several studies have been carried out in order to verify the function of the genes 

belonging to the prp gene cluster in several organisms, but this has not yet been 

followed up with �. meningitidis. The prpB and prpC genes have been found to 

encode for enzymes that are specific to the 2-methylcitrate pathway, and are 

therefore always found adjacent to each other in all bacteria that have this pathway. 

prpB encodes the 2-methylisocitrate lyase (PrpB) (Grimek et al., 2003) and prpC 

encodes the 2-methylcitrate synthase (PrpC) (Horswill & Escalante-Semerena, 
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1999b). The prpD gene encodes for the Fe/S-independent 2-methylcitrate 

dehydratase (PrpD) (Horswill & Escalante-Semerena, 2001), but it is not always 

present in the prp gene cluster, as it is often replaced by two less specific enzymes 

that have overlapping activities. These two enzymes are encoded by the genes acnD 

(translating into aconitate hydratase) and prpF (translating into aconitate hydratase – 

accessory protein, PrpF) (Garvey et al., 2007, Grimek & Escalante-Semerena, 2004). 

When non ortholog addition or replacement of prpD with acnD and prpF was 

investigated, the 2-methylcitrate cycle was confirmed to be still functional, showing 

that both enzymes were active, and were needed together, in order to replace the 

function of PrpD (Grimek & Escalante-Semerena, 2004). The first step in the 2-

methylcitrate cycle, which consists in the conversion of propionate to propionyl-

CoA, is achieved by the prpE gene (encoding propionyl-CoA synthetase, PrpE) 

(Horswill & Escalante-Semerena, 1999a). This gene is only found in a few bacteria 

containing the 2-methylcitrate pathway and, when present, is always found as the 

most downstream gene of the prp operon. 

Several studies published, which included mutants for inactivation of specific genes 

belonging to the 2-methylcitrate pathway, confirmed the involvement of each gene to 

this pathway, as the knockouts resulted in a slow down or eventual arrest of bacterial 

growth when propionic acid was supplemented in the growth medium: the 

knockouts, in fact, generated accumulation of toxic metabolites within the cell, such 

as propionyl-CoA or 2-methylcitrate (Plassmeier et al., 2007, Brock & Buckel, 

2004); prpE deficient mutants, however, were able to carry on growing, even though 

to a lesser extent, as propionyl-CoA could be formed by an acetyl-CoA synthetase 

ortholog (Palacios et al., 2003). No homologues of PrpE are present in �. 

meningitidis: the presence of the ackA-1 gene (�MB0435) (encoding a 
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propionate/acetate kinase) within the prp gene cluster suggests that it could replace 

prpE but with a lower affinity, as AckA-1 transforms propionate to propionyl 

phosphate. Propionyl phosphate is subsequently metabolised into propionyl-CoA 

with the help of the pta gene (�MB0631) (encoding a phosphotransacetylase; Pta). 

The supposition that AckA-1 has a lower affinity to propionate compared to PrpE is 

based on the evidence from studies from Starai using acetate kinase versus acetyl-

CoA synthetase, rather than propionate kinase versus propionyl-CoA synthetase 

(Starai & Escalante-Semerena, 2004). Therefore, an analogous relationship in 

propionate activation was inferred here. Two possible pathways showing affinity of 

an AckA / Pta reaction compared to the acetyl-CoA synthetase are shown in Figure 

3.2-3. 

 

Figure 3.2-3: Pathway for the conversion of acetate to acetyl-CoA. 

Affinity is defined by the concentration of acetate in the medium that is optimally 

used by each pathway. A: The low affinity pathway (AckA / Pta) is used when 

acetate concentrations are high (� 30 mM). B: The high affinity pathway (acetyl-

CoA synthetase) is used when acetate concentrations are < 10 mM (Figure adapted 

from Starai & Escalante-Semerena, 2004). 
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3.3 Characterisation of prpC and the prp operon in �. meningitidis 

A prpC gene was identified in �. meningitidis strain MC58 following a BLAST 

search (NCBI) and was annotated in the genome sequence as a methylcitrate 

synthase (�MB0431) (Tettelin et al., 2000). The prpC gene of �. meningitidis strain 

MC58 is 1155 bp long and is predicted to encode a protein of 384 amino acids with a 

theoretical molecular weight of 42.819 kDa. The putative PrpC protein from �. 

meningitidis revealed between 75 and 78 % similarity to the amino acid sequence of 

the PrpC proteins of several other β-proteobacteria, such as Ralstonia spp. and 

Burkholderia spp. 

prpC is always found in bacteria that possess the 2-methylcitrate pathway. It is found 

within a cluster of a variable number of genes, and is defined as belonging to the prp 

operon. Table 3.3-1 shows all the genes that belong to the putative prp gene cluster 

in �. meningitidis MC58, and their annotated names. To test if the prp gene cluster is 

functional and forms an operon in �. meningitidis MC58, several genes belonging to 

this pathway were disrupted with an antibiotic resistance cassette, and the different 

mutants were investigated and described later on in this chapter. 
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Table 3.3-1: Genes involved in the 2-methylcitrate cycle in �eisseria meningitidis 

MC58. 

All these genes have still a putative function. 

Locus 
Gene 

abbreviation 
Protein common name 

�MB0430 prpB 
2-methylisocitrate lyase 

(carboxyphosphoenolpyruvate phosphomutase) 

�MB0431 prpC 2-methylcitrate synthase 

�MB0432 - No putative function predicted 

�MB0433 acnD Aconitate hydratase 

�MB0434 prpF AcnD - accessory protein PrpF 

�MB0435 ackA-1 Propionate kinase (acetate kinase) 

�MB0631 pta Phosphotransacetylase (Pta) 

 

3.4 Distribution of the prpC gene in �eisseria 

The prpC gene is found in most, but not all, �eisseria spp. that have been sequenced 

so far (�. elongata, �. flavescens, �. gonorrhoeae, �. meningitidis, �. mucosa, �. 

sicca, �. subflava, �. wadsworthii and �. weaveri), even though the genome 

sequence of the majority of these strains is not fully available yet. Isolates from 

several of these human-specific bacteria, such as �. flavescens, �. sicca and �. 

subflava, were occasionally found in immunocompromised patients and eventually 

lead to endocarditis, meningitis or septicaemia (Heiddal et al., 1993, Sinave & 

Ratzan, 1987, Pollack et al., 1984). 
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The prpC gene is not found in the most closely related commensal �eisseria, such as 

�. lactamica. This gene is also absent from the other close commensal �. cinerea 

and �. polysaccharea. prpC and the gene cluster to which it belongs are probably an 

adaptation that might have occurred to help �. meningitidis survive in human adults 

which, unlike human infants, are rich in anaerobic bacteria producing propionic acid. 

Alternatively, �. lactamica may have gone through selective gene loss, as the prp 

gene cluster may be less important in this species. Infants, in fact, are the optimal 

environment for �. lactamica‘s growth, and the nasopharynx of human infants 

contains fewer anaerobic bacteria that synthesise propionic acid. Investigations for 

understanding if the gene was needed in pathogenicity or survival will be discussed 

in Chapter 6. The relationship between the 10 of the most common �eisseria species 

is shown in Figure 3.4-1, where phylogeny was based on 636 completely conserved 

core neisserial genes (Marri et al., 2010). 

 

Figure 3.4-1: Phylogenetic relationship between �eisseria spp. 

Phylogeny was based on 636 core genes from �eisseria spp. and the outgroup 

Chromobacterium violaceum (Figure adapted from Marri et al., 2010). 

A: other �eisseria (occasional pathogens)

B: other �eisseria (commensal)

C: �. lactamica (closest commensal)

D: �. gonorrhoeae (closest pathogen)

E: �. meningitidis
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3.5 Construction of knockout mutants of the prpC, �MB0432 and 

ackA-1 genes of �. meningitidis 

In order to investigate the role played by PrpC, by the conserved hypothetical protein 

NMB0432, and by the putative propionate / acetate kinase NMB0435, all three 

belonging to the prp cluster, knockouts of prpC, �MB0432 and ackA-1 genes from 

�. meningitidis strain MC58 were constructed in this study. Construction of each 

single mutant knockout was achieved by inserting a spectinomycin or tetracycline 

resistance cassette within each gene of interest (Figure 3.5-1). 

To generate the knockouts, the three genes with their flanking regions were amplified 

using the primers described in Table 2.3.1-1. The prpC gene (�MB0431) was 

amplified using primers NMB0431-for and NMB0431-rev (Figure 3.5-2). The 

conserved hypothetical gene adjacent to the prpC gene (�MB0432) was amplified 

with primers NMB0432-for and NMB0432-rev (Figure 3.5-3). The third gene, the 

ackA-1 gene (�MB0435) was amplified with NMB0435-for and NMB0435-rev. 

ackA-1 was the only gene that was flanked by the �. meningitidis DNA uptake 

sequence, GCCGTCTGAA (Figure 3.5-4). The relevant restriction sites where the 

spectinomycin or tetracycline cassette was inserted are also shown in these figures. 
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Figure 3.5-1: The ORF map of the prp gene cluster of �. meningitidis MC58, 

with primers and plasmid used for the construction of knockouts. 

A: The relevant region of �. meningitidis MC58 genome representing the genes 

belonging to the prp gene cluster (dark blue arrows) and its flanking genes (light blue 

arrows) is shown with the orientation of each gene. Gene numbers correspond to the 

numbering given in the MC58 complete genome, where the number within each 

arrow is preceded by “NMB0” (NCBI GenBank accession number AE002098.2). B: 

The position of the three sets of primers used for constructing the knockouts is 

shown with black arrows. C: The pCR®-Blunt II-TOPO® vector (gray) is shown 

with its relevant features (gray box and gray arrow) and with the place of insertion of 

the mutant gene (blue arrow). The spectinomycin and tetracycline resistance 

cassettes and their place of insertion are also shown in the diagram (pink arrow). NM 

MC58: �. meningitidis strain MC58. Conserved hyp.: gene coding for a conserved 

hypothetical protein. 429, which corresponds to �MB0429, encodes a very short 

hypothetical protein. 
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GAACTTCGTGATTATGGCGCGTACCGATGCGCTGGCGGTAGAAGGTTTGGATGCCGCTATCGAACGCG
CCCAAGCTTGTGTCGAAGCCGGTGCGGACATGATTTTCCCTGAAGCCATGACCGATTTGAACATGTAC
CGCCAATTTGCAGATGCGGTGAAAGTGCCCGTGTTGGCGAACATTACCGAGTTTGGTTCCACTCCGCT
TTATACCCAAAGCGAGCTGGCTGAAAACGGCGTGTCGCTGGTGCTGTATCCGCTGTCATCGTTCCGTG
CAGCAAGCAAAGCCGCTCTGAATGTTTACGAAGCGATTATGCGCGATGGCACTCAGGCGGCGGTGGTG
GACAGTATGCAAACCCGTGCCGAGCTGTACGAGCATCTGAACTATCATGCCTTCGAGCAAAAACTGGA
TAAATTGTTTCAAAAATGATTTACCGCTTTCAGACTGCCTTTCAACAAATCCGCATCGGTCGTCTGAA
AACCCGAAACCCATAAAAACACAAAGGAGAAATACCATGACTGAAACTACTCAAACCCCGACCCTCAA
ACCTAAAAAATCCGTTGCGCTTTCTGGCGTTGCGGCCGGTAATACCGCTTTGTGTACCGTTGGCCGTA
CCGGCAACGATTTGAGCTATCGCGGTTACGACATTCTGGATTTGGCACAAAAATGCGAGTTTGAAGAA
GTCGCCCACCTGCTGATTCACGGCCATCTGCCCAACAAATTCGAGCTGGCCGCTTATAAAACCAAGCT
CAAATCCATGCGCGGCCTGCCTATCCGTGTGATTAAAGTTTTGGAAAGCCTGCCTGCACATACCCATC
CGATGGACGTAATGCGTACCGGCGTATCCATGCTGGGCTGCGTTCATCCTGAACGTGAAAGCCATCCG
GAAAGTGAAGCGCGCGACATCGCCGACAAACTGATCGCCAGCCTCGGCAGCATCCTCTTGTACTGGTA
TCAATATTCGCACAACGGCAAACGCATTGAGGTTGAAAGCGACGAAGAGACCATCGGCGGTCATTTCC
TGCAACTGTTGCACGGCAAACGCCCAAGCGAATCACACATCAAAGCCATGCACGTTTCACTGATTCTG
TATGCCGAACACGAGTTCAACGCTTCTACCTTTACCGCCCGCGTGATCGCCGGTACAGGCTCTGATAT
GTACTCCAGCATTACCGGAGCAATCGGCGCGTTGAAAGGTCCGAAACACGGCGGCGCGAACGAAGTGG
CTTACGATATTCAAAAACGCTACCGCAATGCCGACGAAGCTGAAGCCGACATCCGCGAACGCATCGGC
CGCAAAGAAATCGTGATCGGTTTCGGTCATCCGGTGTACACCATTTCCGACCCTCGCAACGTTGTCAT
TAAAGAAGTGGCACGCGGTTTGAGCAAAGAAACCGGCGATATGCGCCTCTTTGACATTGCCGAACGTT
TGGAAAGCGTGATGTGGGAAGAGAAAAAAATGTTCCCGAATCTGGACTGGTTCTCTGCCGTTTCCTAC
CAAAAATTGGGCGTACCGACCGCTATGTTCACACCGCTGTTCGTAATTTCCCGTACAACCGGTTGGAG
CGCACACGTTCTTGAGCAACGCAAAGACGGCAAAATCATCCGTCCGAGCGCAAACTACACAGGCCCTG
AAGATTTGGCGTTTGTGGAGATTGAAGAACGATAATTGAAGAATGCAATAGCAGTTTGTTCTTTAATT
TCGGTATGCAAAGCTAAGGATTTCAGACGACCTTGCCTTATTGGAAAGGTTGTCTGAAATAAGTTTAA
TCTAATAGGAGAAGATAATCCTGTATTGGCGCAAGTAACAGGATAAGAAACATGGAAGATTTATATAT 

Figure 3.5-2: The prpC sequence with its flanking regions used for constructing 

the mutant. 

The prpC gene (blue) with the ATG start codon (green) and the TAA stop codon 

(red) and its flanking regions (black) give a product 1690 bp long. Primers 

NMB0431-for and NMB0431-rev were used (highlighted in yellow). The reverse 

primer’s mismatches are also shown (red), where “TT” in the sequence was 

considered “CC” in the primer. The PsiI site (TTATAA) is also shown (highlighted 

in blue) with the two bases within which the restriction enzyme cuts (brown). 

Primers NMB0431bis-for and NMB0431bis-rev were used for colony pick PCR 

screening in �. meningitidis (underlined in blue). 
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TGCGCCTCTTTGACATTGCCGAACGTTTGGAAAGCGTGATGTGGGAAGAGAAAAAAATGTTCCCGAAT
CTGGACTGGTTCTCTGCCGTTTCCTACCAAAAATTGGGCGTACCGACCGCTATGTTCACACCGCTGTT
CGTAATTTCCCGTACAACCGGTTGGAGCGCACACGTTCTTGAGCAACGCAAAGACGGCAAAATCATCC
GTCCGAGCGCAAACTACACAGGCCCTGAAGATTTGGCGTTTGTGGAGATTGAAGAACGATAATTGAAG
AATGCAATAGCAGTTTGTTCTTTAATTTCGGTATGCAAAGCTAAGGATTTCAGACGACCTTGCCTTAT
TGGAAAGGTTGTCTGAAATAAGTTTAATCTAATAGGAGAAGATAATCCTGTATTGGCGCAAGTAACAG
GATAAGAAACATGGAAGATTTATATATAATACTCGCTTTGGGTTTGGTTGCGATGATTGCCGGATTTA
TCGATGCGATTGCGGGCGGGGGTGGTTTGATTACGCTGCCCGCACTCTTGTTGGCAGGTATTCCTCCC
GTGTCGGCAATTGCCACCAACAAGCTGCAAGCAGCCGCTGCTACGTTTTCAGCTACGGTTTCTTTTGC
ACGCAAAGGTTTGATTGATTGGAAGAAAGGTCTCCCGATTGCCGCAGCATCGTTTGTAGGCGGCGTGG
CCGGTGCATTATCGGTCAGCTTGGTTTCCAAAGATATTCTGCTGGCGGTCGTGCCGGTTTTGTTGATA
TTTGTCGCACTGTATTTTGTGTTTTCGCCCAAGCTCGACGGCAGTAAGGAAGGCAAAGCCAGAATGTC
TTTTTTTCTGTTCGGGCTGACGGTCGCACCGCTTTTGGGTTTTTACGACGGTGTGTTCGGACCGGGTG
TCGGCTCGTTTTTTCTGATTGCCTTTATTGTTTTGCTCGGCTGCAAGCTGTTGAACGCGATGTCTTAC
ACCAAATTGGCGAACGTTGCCTGCAATCTTGGTTCGCTATCGGTATTCCTGCTGCACGGTTCGATTAT
TTTCCCGATTGCGGCAACGATGGCGGTCGGTGCGTTTGTCGGTGCGAATTTAGGTGCGAGATTTGCCG
TCCGCTTCGGTTCGAAGCTGATTAAGCCGCTGCTGATTGTCATCAGCATTTCGATGGCTGTGAAATTG
TTGATAGACGAGAGAAATCCGCTGTATCAGATGATTGTTTCGATGTTTTAAACCCTTTCAGACGACCC
CTTCAAAACGTCGGCTGAAACCTCAAACCACAAGAAAAACAGATCCACAGGAGAACCGACAGGCTGCC
AACCAACGTTACCGCAAACCGCTGCCCGGTACGGATTTGGAATACTACGACGCGCGTGCGGCGTGTGA 

Figure 3.5-3: The �MB0432 gene with its flanking regions used for constructing 

the mutant. 

The �MB0432 gene (blue) with the ATG start codon (green) and the TAA stop 

codon (red) and its flanking regions (black) give a product 1208 bp long. Primers 

NMB0432-for and NMB0432-rev were used (highlighted in yellow). The ClaI site 

(ATCGAT) and AclI site (AACGTT) are also shown (highlighted in blue) with the 

site where the restriction enzymes cut (brown). 

  



Chapter 3 – Defence against propionic acid toxicity in �. meningitidis 

96 
 

 

CGGACAATGGACGGCCACCAAAGCGGTCATGAGCCGTAGCGCACGCGTGATGATGGAAGGTTGGGTCA
GGGTGCCTGAGGATTGTTTTTAAATTGACGTAGCATGGGTTTGCCCGCGAGCCATAAAAAGGTCGTCT
GAAAAACAAGTAAACATCAAATCACTGACCATTCCTTTCCCTTGCCCTGTGGCGGAAGGCGGCAAATC
ACAAGGAAGAACACGGAAACCCCGATAAAAGACAGCTTCCCGTATTACCGTCATTCCCGCGCAGGCGG
GAATCCAGACCTGTCAATATGGAGGATTGGCAGGGGAAAACAGGTTTCGTGAGTTCTACATTCTGGAT
TCCCGCCACAGCCTGTCCTCGCGTAGGCGGGGACGGAATAACGATAGAAAATGCGGCATACGCTTTGC
CCAAAGAGGCCGTCTGAAACACCTTGCGCCTGATGTCTGCCTTTTTCAGACGACCCCACACCAAAAAA
ACAACCACAAACTACAAGGAGAAACATCATGTCCGACCAACTCATCCTCGTTCTGAACTGCGGCAGTT
CATCGCTCAAAGGCGCCGTTATCGACCGAAAAAGCGGCAGCGTCGTCCTAAGCTGCCTCGGCGAACGC
CTGACCACGCCCGAAGCCGTCATTACGTTCAACAAAGACGGCAACAAACGCCAAGTTCCCCTGAGCGG
CCGAAATTGCCACGCCGGCGCGGTGGGTATGCTTTTGAACGAACTGGAAAAACACGGTCTGCACGACC
GCATCAAAGCCATCGGCCACCGCATCGCCCACGGCGGCGAAAAATACAGCGAGTCTGTTTTGATCGAC
CAGGCCGTAATGGACGAACTCAATGCCTGCATTCCGCTTGCGCCGCTGCACAACCCCGCCAACATCAG
CGGCATCCTTGCCGCACAGGAACATTTCCCCGGTCTGCCCAATGTCGGCGTGATGGATACTTCGTTCC
ACCAAACCATGCCGGAGCGTGCCTACACTTATGCCGTGCCGCGCGAGTTGCGTAAAAAATACGCTTTC
CGCCGCTACGGTTTCCACGGCACCAGTATGCGTTACGTTGCCCCTGAAGCCGCACGCATCTTGGGCAA
ACCTCTGGAAGACATCCGCATGATTATTGCCCACTTAGGCAACGGCGCATCCATTACCGCCATCAAAA
ACGGCAAATCCGTCGATACCAGTATGGGTTTCACGCCGATCGAAGGTTTGGTAATGGGTACACGTTGC
GGCGACATCGATCCGGGCGTATACAGCTATCTGACTTCCCACGCCGGGATGGATGTTGCCCAAGTGGA
TGAAATGCTGAACAAAAAATCAGGTTTGCTCGGTATTTCCGAACTTTCCAACGACTGCCGCACCCTCG
AAATCGCCGCCGACGAAGGCCACGAAGGCGCGCGCCTCGCCCTCGAAGTCATGACCTACCGCCTCGCC
AAATACATCGCTTCGATGGCTGTGGGCTGCGGCGGCGTTGACGCACTCGTGTTCACCGGCGGTATCGG
CGAAAACTCGCGTAATATCCGTGCCAAAACCGTTTCCTATCTTGATTTCTTGGGTCTGCACATCGACA
CCAAAGCCAATATGGAAAAACGCTACGGCAATTCGGGCATTATCAGCCCGACCGATTCTTCTCCGGCT
GTTTTGGTTGTCCCGACCAATGAAGAACTGATGATTGCCTGCGACACTGCCGAACTTGCCGGCATCTT
GTAGCCAAAAAAGGGACGAGTCCGCAAAAATGCCGTCTGAAACCCCAAACGCCCGATTAGGCTGATGA
GGATTTTAGACGGCATTGTTCATTTTTTTGTTATCTTGCATTTTTGTGCGGACGGTGGAATTTCATCC
TGTAAACATAAATATTTGTCGGAAAACAGAAACCCTCCGCCGCCATTTCTACGAAAGCAGGAAACCAG
CAACGCAAAGCGACAGGGATTTGTTGGAAATGACCGAAACCGAACGAACCGGATTCCCGCCTGCGCGG
GAATGACGGGATTTTCTGTTTTTGTGGAAATGACGGGATTTTGAATTTCGGGCGTACAATACGGAAAA
CATGACGATAAGGAAACAAACCATGGCACAGTTTTTCGCTATTCATCCCGACAATCCCCAAGAACGCC 

Figure 3.5-4: The ackA-1 gene with its flanking regions used for constructing the 

mutant. 

The ackA-1 gene (blue) with the ATG start codon (green) and the TAG stop codon 

(red) and its flanking regions (black) give a product 1935 bp long. Primers 

NMB0435-for and NMB0435-rev were used (highlighted in yellow). Just outside the 

gene of interest there are two �. meningitidis DNA uptake sequences (orange). The 

BsmI site (TGCATTC) and ClaI site (ATCGAT) are also shown (highlighted in 

blue) with the site where the restriction enzymes cut (brown). 
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After amplification of each gene of interest using neisserial genomic DNA from 

strain MC58 and GoTaq® DNA polymerase as described in Section 2.3.1, the PCR 

products obtained corresponded to the expected fragment sizes of 1690 bp for the 

prpC gene, 1208 bp for the �MB0432 gene, and 1935 bp for the ackA-1 gene. 

Correct amplification of the three genes was confirmed by the agarose gels (Figure 

3.5-5). The resulting blunt-ended PCR products were subsequently purified and 

cloned into the 3519 bp pCR®-Blunt II-TOPO® vector (Invitrogen™), which 

contained a kanamycin resistance cassette (Kan
R). The vector was transformed into 

Escherichia coli DH5α by heat shock, and E. coli was then grown at 37 ºC on 

selective LB agar plates. Only bacteria with successfully transformed plasmids were 

able to grow in the presence of kanamycin. 

Mini-preparations of two colonies per transformed E. coli plate were grown in liquid 

LB medium with kanamycin overnight; bacteria were then harvested and plasmid 

DNA was purified as described in Section 2.3.4. Positive insertion of the genes of 

interest in the new plasmid was investigated at this stage by EcoRI restriction digest. 

The pCR®-Blunt II-TOPO® vector, in fact, has two distinct recognition sites for 

EcoRI, and these sites are located just a few bases before and after the inserted genes 

under study, whilst the three genes did not contain any EcoRI restriction site. After 

restriction digest, two fragments were generated, one of which was the original 3.5 

kb TOPO vector and the other corresponded to the inserted PCR product, which was 

less than 2 kb in size for all the three genes under study (Figure 3.5-6). Sequencing 

results confirmed that the prpC, the �MB0432 and the ackA-1 regions were 

amplified correctly and without introducing any error. 
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Figure 3.5-5: PCR products of the prpC, �MB0432 and ackA-1 genes with their 

relative flanking regions from �. meningitidis MC58. 

The correct PCR products, fragments expected to be 1690 bp long for prpC (Lane 

A), 1208 bp for �MB0432 (Lane B) and 1935 bp for ackA-1 (Lane C), were 

successfully amplified. The Q-Step 4 Quantitative DNA ladder (YORBIO) (Lane L) 

was loaded on both gels to confirm the size of each DNA band. 

 

 

Figure 3.5-6: EcoRI screening for insertion of the genes prpC, �MB0432 and 

ackA-1 in the pCR
®
-Blunt II-TOPO

®
 vector. 

pCR®-Blunt II-TOPO® plasmids containing the genes under study, undigested and 

digested with EcoRI, were loaded on the gels. In the digested lanes (Lanes E) the top 

band corresponded to the 3.5 kb TOPO vector and the lower band corresponded to 

each gene of interest.  The Q-Step 4 Quantitative DNA ladder (YORBIO) (Lane L) 

was loaded on all gels to confirm the size of the DNA bands. U: undigested plasmid. 

E: plasmid digested with EcoRI. 
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Once confirmed that the pCR®-Blunt II-TOPO® vectors were containing the genes 

under study, these were digested with different restriction enzymes that would cut 

only within each gene. The prpC gene was digested with PsiI, which cuts only once 

within the gene, and this was confirmed by sequencing (Figure 3.5-7A). The 

�MB0432 gene was digested with ClaI and AclI, which would each cut just once 

within the gene, and the resulting fragment of 489 bp in length was eliminated, as 

shown in the gel and then confirmed by sequencing (Figure 3.5-7B). The ackA-1 

gene was digested with BsmI and ClaI, which would each cut only once within the 

gene, but only the BsmI enzyme worked, as confirmed by sequencing and by the 

missing small 389 bp fragment in the gel (Figure 3.5-7C). The three restriction 

enzymes AclI, BsmI and ClaI were creating sticky ended DNA, and therefore digests 

containing those enzymes were incubated with DNA Polymerase I (Klenow) and 

dNTPs during the last 30 minutes of the restriction digest incubation, in order to 

create blunt ended DNA needed for ligation with an antibiotic resistance cassette. 

The 5209 bp, 4238 bp and 5454 bp fragments were then purified from the gel for 

ligation with the spectinomycin resistance gene cassette (Spec
R) or the tetracycline 

resistance cassette (Tet
R). 

The spectinomycin resistance gene cassette (Spec
R), also referred to as Ω cassette, is 

1980 bp in size, and in this work it was generated from the digestion of the pHP45Ω 

plasmid, about 4.3 kb in size, with the SmaI restriction enzyme. This digest also 

created a second fragment, the pHP45 plasmid, which was 2320 bp long (Figure 

3.5-8A). The tetracycline resistance gene cassette is 2.5 kb in size, and it was 

generated from the digestion of the pCMT18 plasmid with the EcoRV restriction 

enzyme (Figure 3.5-8B). Both cassettes were purified from the gel for ligation with 

the genes under investigation. 
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Figure 3.5-7: Restriction digests for the pCR
®
-Blunt II-TOPO

®
 vector and its 

inserts, genes prpC, �MB0432 and ackA-1 for generating the knockouts. 

pCR®-Blunt II-TOPO® plasmids containing the genes under study, undigested and 

digested with different restriction enzymes, were loaded on the gels. In the digested 

lanes (Lanes A-C) the top band corresponded to the 3.5 kb TOPO vector with most / 

all of the insert and the lower band present in Lane B, corresponded to part of the 

�MB0432 gene. Lane A: plasmid digested with PsiI. Lane B: plasmid digested with 

ClaI and AclI (both sites in the �MB0432 sequence were cut, thus the presence of the 

489 bp fragment). Lane C: plasmid digested with BsmI and ClaI (only the BsmI site 

in the ackA-1 sequence was cut). The Q-Step 4 Quantitative DNA ladder (YORBIO) 

(Lane L) was loaded on all gels to confirm the size of the DNA bands. U: undigested 

plasmid. A-C: plasmid digested with restriction enzymes. 
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Figure 3.5-8: Spectinomycin and tetracycline resistance cassettes. 

A: Lane U represents the undigested 4.3 kb pHP45Ω plasmid containing the 

spectinomycin resistance cassette (Spec
R). Lane S comprises the 1980 bp Spec

R 

cassette derived from the pHP45Ω plasmid after SmaI digest (lower band), and the 

2320 bp pHP45 plasmid (upper band). B: Lane U represents the undigested pCMT18 

plasmid containing the tetracycline resistance cassette (Tet
R). Lane S comprises the 

2.5 kb Tet
R cassette derived from the pCMT18 plasmid after EcoRV digest (lower 

band), and the actual plasmid (upper band). The Q-Step 4 Quantitative DNA ladder 

(YORBIO) (Lane L) was loaded to confirm the size of the DNA bands. 

 

At this stage, the spectinomycin resistance cassette was ligated to each of the three 

digested genes within the pCR®-Blunt II-TOPO® plasmids overnight at room 

temperature, and ligations were then transformed into E. coli DH5α with the heat 

shock procedure. The same procedure was also carried out with tetracycline 

resistance cassette and the �MB0432 gene. The mutants were selected by plating 

each transformation onto selective LB agar plates containing 50 µg / ml of 

kanamycin and either 50 µg / ml spectinomycin or 20 µg / ml tetracycline. Mini-

preparations of two colonies per transformation were grown in liquid LB medium 
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with both antibiotics overnight, and plasmid DNA was then extracted and purified as 

described in Section 2.3.4. An agarose gel was run after restriction digest with 

BamHI, in order to check for successful ligations with the Spec
R cassette. The pCR®-

Blunt II-TOPO® vector, in fact, has one recognition site for BamHI just before the 

location of insertion of the genes under study, and the spectinomycin resistance 

cassette has two recognition sites at either ends of the cassette, whilst the three genes 

did not contain any BamHI restriction site. Positive ligation, therefore, resulted in the 

three fragments shown in Figure 3.5-9. A gel for the ligation of the �MB0432 gene 

with the tetracycline cassette was not carried out; the colonies containing Tet
R, 

however, were verified by sequencing. 

Sequencing results of the four new transformants confirmed that the three genes were 

disrupted with the spectinomycin resistance cassette, and that the �MB0432 gene 

was disrupted with the tetracycline resistance cassette. Moreover, the �MB0432 gene 

was inserted in the correct direction (plus / plus strand), but the prpC gene and the 

ackA-1 gene were both inserted in the 5’ to 3’ direction (plus / minus strand) 

compared to the database sequence (NCBI GenBank accession number 

AE002098.2). A map of the pCR®-Blunt II-TOPO® plasmid showing the direction of 

insertion of each gene under study which was knocked out following ligation to the 

Spec
R or Tet

R cassette is shown in Figure 3.5-10. Direction was confirmed by both 

sequencing data and fragment sizes derived from BamHI digest. 



Chapter 3 – Defence against propionic acid toxicity in �. meningitidis 

103 
 

 

Figure 3.5-9: BamHI screening for insertion of the spectinomycin resistance 

cassette in the constructed plasmid containing prpC, �MB0432 and ackA-1 

genes. 

pCR®-Blunt II-TOPO® plasmids containing the genes under study disrupted with the 

spectinomycin cassette are shown both undigested and digested with BamHI. In the 

digested lanes (Lanes B) the top band corresponded to the 3.5 kb TOPO vector plus 

part of each gene under study, the middle band corresponded to the spectinomycin 

cassette and the lower band corresponded to the other part of each gene of interest. 

The Q-Step 4 Quantitative DNA ladder (YORBIO) (Lane L) was loaded on all gels 

to confirm the size of the DNA bands. U: undigested plasmid. B: plasmid digested 

with BamHI. 
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Figure 3.5-10: Plasmid maps of the pCR
®
-Blunt II-TOPO

®
 vector containing 

the prpC, �MB0432 and ackA-1 gene, which were knocked out by the insertion 

of an antibiotic resistance cassette. 

Two BamHI sites are found in both sides of the 2 kb spectinomycin resistance 

cassette, but none is found within the tetracycline resistance cassette. Another site is 

found just outside the location of insertion of the genes under study. A-D: direction 

of insertion of each gene under investigation from �. meningitidis MC58 (blue 

arrow) within the pCR®-Blunt II-TOPO® vector (gray). Spectinomycin or 

tetracycline resistance cassettes (pink arrows) disrupting the genes under study and 

the kanamycin resistance cassette (gray arrow) are also shown. Black vertical lines: 

BamHI cutting sites. 

 

All three successful gene knockouts were transformed into wild-type �. meningitidis 

strain MC58 following the TSB method, as described in Section 2.3.9. The mutant 

strains were selected on CBA plates containing 5 % horse blood and either 50 µg / 

ml spectinomycin or 2.5 µg / ml tetracycline after overnight incubation at 37 ºC in a 
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5 % CO2 atmosphere. Several colonies grown on each plate were screened by colony 

pick PCR for disruption of the genes by insertion of the 2 kb spectinomycin 

resistance cassette (Figure 3.5-11) and the 2.5 kb tetracycline resistance cassette 

(Figure 3.5-12). The original primers used for generating the knockouts were used 

for colony pick PCR for �MB0432 and ackA-1 disrupted genes. The prpC disrupted 

gene, however, failed to amplify in �. meningitidis and for this reason a new set of 

primers, primer NMB0431bis-for and primer NMB0431bis-rev (described in Table 

2.3.1-1) was used to amplify the prpC::Spec
R gene from colony pick. Amplifying a 

smaller region, as the annealing site for both forward and reverse primers was 

located within the actual prpC gene, gave the expected results. 

 

 

Figure 3.5-11: Colony pick PCR screening for prpC, �MB0432 and ackA-1 genes 

disrupted with spectinomycin cassette in �. meningitidis strain MC58. 

Lanes A1-A3: prpC deficient mutants containing the 1980 bp spectinomycin 

resistance cassette. Lanes B1-B3: �MB0432 deficient mutants (without the removed 

489 bp fragment) containing the 1980 bp spectinomycin resistance cassette. Lanes 

C1-C3: ackA-1 deficient mutants containing the 1980 bp spectinomycin resistance 

cassette. The Q-Step 4 Quantitative DNA ladder (YORBIO) (Lane L) was loaded on 

all gels to confirm the size of the DNA bands. WT: wild-type gene under study of �. 

meningitidis MC58. 
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Figure 3.5-12: Colony pick PCR screening for the �MB0432 gene disrupted 

with tetracycline cassette in �. meningitidis strain MC58. 

WT: wild-type �MB0432 gene of �. meningitidis MC58. Lanes D1-D3: �MB0432 

deficient mutants (with the removed 489 bp fragment) containing the 2.5 kb 

tetracycline resistance cassette. The Q-Step 4 Quantitative DNA ladder (YORBIO) 

(Lane L) was loaded on the gel to confirm the size of the DNA bands. 

 

Picking from the actual transformation plates resulted in amplification of both �. 

meningitidis wild-type and mutant genes (example for the ackA-1::Spec
R mutant is 

shown in Figure 3.5-13). However, after re-plating the same colonies onto fresh 

plates and picking them again, the wild-type band disappeared and only the bands for 

the mutant strains were visible, confirming that the three genes were disrupted. The 

wild-type band seemed to have been caused by the background of the wild-type 

bacteria that did not transform and were plated following the transformation process. 
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Figure 3.5-13: Comparison of the colony pick PCR screening from the first plate 

after transformation into �. meningitidis and after re-plating. 

Three colonies were picked from the first plate after transformation for colony pick 

PCR (Plate – Day 1). The same colonies were re-plated and picked again the 

following day (Re-plate – Day 2). The wild-type background band has disappeared 

from the re-plated colonies. Lanes C1-C3: ackA-1 deficient mutants containing the 

1980 bp spectinomycin resistance cassette. The Q-Step 4 Quantitative DNA ladder 

(YORBIO) (Lane L) was loaded on all gels to confirm the size of the DNA bands. 

WT: wild-type gene under study of �. meningitidis MC58. 

 

3.6 Effects of propionic acid on growth of �. meningitidis 

To test the effects of propionic acid on toxicity or increased sensitivity in �. 

meningitidis, both wild-type and prpC::Spec
R strains were grown in rich medium 

supplemented with varying concentrations of propionic acid. 

Bacteria were incubated in Mueller Hinton Broth (MHB) medium with 10 mM 

NaHCO3 at 37 °C with shaking at 200 rpm for 24 hours. Growth was monitored by 

taking optical density measurements for triplicate cultures at 600 nm every 60 

minutes. The results showed that 10 mM propionic acid were harmful and strongly 
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inhibited bacterial growth in both strains. However, no significant differences were 

noticed in growth rate when lower concentrations of propionic acid were added to the 

medium, as both strains were able to grow, and grew steadily, in a similar growth 

pattern (Figure 3.6-1). This indicated that prpC was not contributing to an increased 

resistance to the toxic effects of propionic acid. Inactivation of the prpC gene was 

therefore not fatal and did not increase sensitivity to propionic acid in the 

prpC::Spec
R strain. 



Chapter 3 – Defence against propionic acid toxicity in �. meningitidis 

109 
 

 

Figure 3.6-1: Growth curve for wild-type and prpC::Spec
R
 strains of �. 

meningitidis MC58 in rich medium with increasing concentrations of propionic 

acid. 

A: Growth curve for wild-type bacteria. B: Growth curve for the prpC mutant strain. 

Bacteria were grown in Mueller Hinton Broth medium supplemented with varying 

concentrations of propionic acid. In both cases bacteria showed strong inhibition in 

growth when in the presence of high concentrations of propionic acid. When none or 

lower concentrations of propionic acid were used, both strains were able to grow. 
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As no significant differences were noticed between the two strains when grown in 

rich medium, further studies were carried out in Chemically Defined Medium 

(CDM), which was prepared as described in Table 2.2.4-1. Where neither Solution 

4a (glucose) nor Solution 4b (sodium pyruvate) were added to the CDM, no cell 

growth occurred, even when propionic acid was supplemented into the medium, 

confirming that propionic acid cannot be used as sole source of carbon (Figure 

3.6-2). 

 

 

Figure 3.6-2: Growth curve for wild-type and prpC::Spec
R
 strains of �. 

meningitidis MC58 in minimal medium supplemented with only propionic acid. 

A: Growth curve for wild-type bacteria. B: Growth curve for the prpC::Spec
R mutant 

strain. Both strains are not able to grow on chemically defined medium supplemented 

with propionic acid, but lacking glucose and sodium pyruvate. 

 

In CDM with 2.5 mM glucose wild-type and prpC::Spec
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propionic acid reached the stationary phase after approximately 8 hours incubation 

and started to die afterwards, suggesting that carbon depletion was initiating at that 

point. Wild-type bacteria that were grown with the addition of 5 mM propionic acid, 

however, were able to continue their growth, instead of entering the stationary phase 

(Figure 3.6-3A). These results suggested that propionic acid could supplement 

growth in �. meningitidis. 

The absence of prpC in the prpC::Spec
R strain did not bring about deleterious effects 

on the mutant’s growth, as prpC::Spec
R in CDM with 2.5 mM glucose grew 

similarly to the wild-type when propionic acid was absent, reaching stationary phase 

after about 8 hours growth. When the mutants were grown in medium supplemented 

with 5 mM propionic acid, however, they had the same phenotype as when they were 

grown in medium with no propionic acid (Figure 3.6-3B). This behaviour indicated 

that the prpC::Spec
R mutant strain was unable to metabolise propionic acid, and also 

confirmed that the prpC gene is directly involved in propionic acid catabolism. 
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Figure 3.6-3: Growth curve of MC58 wild-type and prpC::Spec
R
 strains of �. 

meningitidis in CDM with 2.5 mM glucose and propionic acid. 

A: Bacterial growth of wild-type �. meningitidis, with enhanced growth when in the 

presence of propionic acid. Instead of entering the stationary phase after 8 hours, 

wild-type bacteria used propionic acid for continued growth. B: Bacterial growth of 

prpC::Spec
R strain. Propionic acid did not have any influence in the mutant’s growth, 

as the mutant was unable to utilise propionic acid due to the absence of the prpC 

gene. 
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 Only the wild-type bacteria that were supplemented with 5 mM propionic acid 

started to break propionic acid down as an alternative source of carbon and were able 

to continue growth when bacteria under other conditions had already entered 

stationary or death phase. This was probably induced by the limiting glucose in the 

environment, which was used by all bacteria, and by the inability of the mutants to 

use propionic acid even when it was supplemented in the growth medium. 

At this stage, new studies were carried out with CDM containing 5 mM sodium 

pyruvate. A double concentration of pyruvate (5 mM) was used compared to glucose 

(2.5 mM), in order to keep the number of carbon atoms added identical between the 

two minimal media. In this way, any divergence in phenotype between the two 

strains and the different media were easier to compare. 

Bacteria grown in CDM supplemented with sodium pyruvate behaved similarly to 

bacteria grown in CDM with glucose: only wild-type bacteria were able to use 

propionic acid as an extra source of carbon to keep growing. Wild-type bacteria 

lacking propionic acid in their growth medium (Figure 3.6-4A) and prpC::Spec
R 

under all conditions (Figure 3.6-4B) started to die after approximately 6 hours 

incubation. The optical density of bacteria grown in CDM with sodium pyruvate was 

considerably lower compared to the one measured for CDM with glucose: bacteria 

incubated without propionic acid grew to an OD of 0.8 with glucose and only 0.4 

with pyruvate. Therefore, sodium pyruvate was demonstrated not to be as good a 

substrate for �. meningitidis growth as glucose, and the effect of added propionic 

acid could be very clearly seen. 
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Figure 3.6-4: Growth curve of MC58 wild-type and prpC::Spec
R
 strains of �. 

meningitidis in CDM with 5 mM sodium pyruvate and propionic acid. 

A: Bacterial growth of wild-type �. meningitidis, with enhanced growth when in the 

presence of propionic acid. Instead of entering the stationary phase, wild-type 

bacteria used propionic acid for continued growth. B: Bacterial growth of 

prpC::Spec
R strain. Propionic acid did not have any influence in the mutant’s growth, 

as the mutant was unable to utilise propionic acid due to the absence of the prpC 

gene. 
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As mentioned above, MC58 wild-type and prpC::Spec
R mutant strains of �. 

meningitidis grew similarly when their growth in the same medium, supplemented 

with or lacking propionic acid, was compared, until the wild-type bacteria in minimal 

medium without propionic acid or the mutant strain under both growth conditions 

entered stationary phase. At this point, only wild-type bacteria started to utilise 

propionic acid. From the figures shown above, both strains seemed to have a similar 

doubling time when grown in the same medium with or without propionic acid 

during the exponential growth phase. The doubling times for each dataset were 

extrapolated from the linear equations that were derived from plots of Log10(OD600) 

against time. The gradient of the linear trendline during exponential growth phase 

was automatically calculated by excel and given within the equation, as shown in the 

example graph below (Figure 3.6-5). The doubling time was then calculated by 

dividing log10 (2) by each gradient. Results were then averaged with each 

corresponding datasets (Table 3.6-1 and Figure 3.6-6). 
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Figure 3.6-5: Log10 OD of MC58 wild-type and prpC::Spec
R
 strains of �. 

meningitidis in CDM supplemented with 5 mM sodium pyruvate and propionic 

acid. 

A logarithmic graph was plotted for the OD values gathered during the growth curve. 

Trendlines for exponential growth phase were added to the graph, and the gradient 

was automatically calculated by excel. The doubling time of each strain under each 

condition was then extrapolated from the equations by dividing log10 (2) by their 

relative gradient. WT+: wild-type bacteria grown in CDM with pyruvate and 5 mM 

propionic acid. WT-: wild-type bacteria grown in CDM with pyruvate. prpC+: 

prpC::Spec
R mutants grown in CDM with pyruvate and 5 mM propionic acid. prpC-: 

prpC::Spec
R mutants grown in CDM with pyruvate. 

 

Similarity in doubling time was confirmed and fell within the values from Table 
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easier to compare the doubling times for each growth medium. The doubling times 

were comparable within both strains for every growth medium: they were 

significantly shorter in rich MHB medium (approximately 80 minutes), but were 

similar within the two chemically defined media (100 and 110 minutes for CDM 

with glucose and pyruvate respectively) (Figure 3.6-6). 

 

Table 3.6-1: Doubling time of MC58 wild-type and prpC::Spec
R
 mutant strains 

of �. meningitidis in the three different growth media with the addition of 

propionic acid, during exponential growth phase. 

The summary of the doubling times was obtained from at least 5 independent sets of 

data for each strain. Both strains showed a shorter time of duplication when grown in 

rich medium compared to minimal medium. Doubling time of both strains grown in 

either minimal medium was not significantly different. -: growth medium not 

supplemented with propionic acid. +: growth medium supplemented with 5 mM 

propionic acid. 

Doubling time 

[hours] 

Strain                    . 

Average 

in MHB 

Average in 

CDM+glucose 

Average in 

CDM+pyruvate 

MC58 WT - 1.27 ± 0.12 1.72 ± 0.19 1.76 ± 0.19 

MC58 WT + 1.31 ± 0.06 1.59 ± 0.14 1.76 ± 0.17 

prpC::Spec
R - 1.21 ± 0.10 1.70 ± 0.08 1.78 ± 0.22 

prpC::Spec
R + 1.32 ± 0.12 1.65 ± 0.09 1.84 ± 0.24 
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Figure 3.6-6: Doubling time of MC58 wild-type and prpC::Spec
R
 mutant strains 

of �. meningitidis in the three different growth media with the addition of 

propionic acid, during exponential growth phase. 

A: Doubling time for growth in rich, MHB medium. B: Doubling time for growth in 

minimal medium, CDM with 2.5 mM glucose. C: Doubling time for growth in 

minimal medium, CDM with 5 mM sodium pyruvate. At least 5 independent sets of 

data were used for extrapolating the average doubling time of each strain. Doubling 

time was extrapolated from the exponential growth. Wild-type (blue columns) and 

prpC::Spec
R mutant (red columns) showed similar doubling times when the strains 

were compared within the same growth medium, independently of the presence or 

absence of propionic acid. -: growth medium not supplemented with propionic acid. 

+: growth medium supplemented with 5 mM propionic acid. 

 

The delay in propionic acid utilisation in minimal media could be explained by the 

fact that wild-type bacteria needed several hours to be able to adapt to the new media 

containing propionic acid in order to activate the 2-methylcitrate pathway and, 

consequently, to be capable of starting to catabolise propionic acid. Another possible 

explanation for the delay in propionic acid utilisation could be due to the fact that the 
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prp gene cluster needs to be activated, possibly by the presence of the 2-

methylcitrate compound within the cell (Palacios et al., 2003). In order to build up an 

optimal concentration of 2-methylcitrate for activating this pathway, enough 

propionyl-CoA needed to be raised first, as this compound is the substrate of prpC, a 

crucial enzyme belonging to the pathway being investigated. The prpC::Spec
R 

mutant confirmed this result by being unable to metabolise propionic acid, a 

substrate needed in the metabolic pathway which was disrupted by the prpC gene 

knockout. 

3.7 Utilisation of propionic acid in �. meningitidis 

As shown in the previous section, propionic acid appears to be utilised as an extra 

source of carbon during late exponential phase in �. meningitidis MC58. To confirm 

these findings, samples for both strains and from all three growth media were 

collected at 60 minute intervals, and the content of propionic acid was measured by 

gas chromatography (GC). Chromatograms were automatically plotted and the area 

for propionic acid was extrapolated. A representative chromatogram is shown in 

Figure 3.7-1, where samples for bacteria grown in CDM with 2.5 mM glucose and 

none or 5 mM propionic acid were collected at the start of the growth curve.  

Initially, propionic acid controls containing varying amounts of propionic acid were 

measured by gas chromatography, in order to check for differences in the readings 

which were caused by the different growth media compared with standard controls 

made with deionised water. Reproducibility of data, threshold levels for propionic 

acid detection and its volatility in the media over an extended period of time were 

checked. GC results for the controls were comparable independently of the growth 
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medium used. Moreover, the presence of propionic acid resulted in different peak 

sizes, depending on the amount of propionic acid that was added in solution. To 

check how volatile the short fatty acid was, controls were made with all three growth 

media, Mueller Hinton Broth, Chemically Defined medium with 2.5 mM glucose and 

Chemically Defined medium with 2.5 mM sodium pyruvate, supplemented with 5 

mM propionic acid but which were not inoculated with bacteria, and were incubated 

in 30 ml polystyrene universal tubes (Sterilin®) at 37 ºC to replicate an extended 

growth culture over a three days period; GC readings taken twice per day, starting at 

time 0 when the incubation was just set up, showed that there was no significant loss 

in concentration of propionic acid. This control experiment confirmed that the 

decrease in concentration of propionic acid during bacterial incubation was due 

solely to its actual utilisation by the bacteria present in the medium, and not by its 

volatility. 

Samples for both MC58 wild-type and prpC::Spec
R strains that were grown in media 

where propionic acid was not added were checked too. Gas chromatography results 

were always null, as no propionic acid was ever detected from cultures which were 

not supplied with propionic acid. When propionic acid was added into the media 

prpC::Spec
R mutant bacteria, as anticipated, were not able to use propionic acid 

under any growth condition. Wild-type bacteria, however, showed some differences. 

When incubated in Mueller Hinton Broth medium, neither wild-type nor 

prpC::Spec
R bacteria used the propionic acid that was supplemented in the medium 

(Figure 3.7-2). Both strains entered quickly the exponential growth phase and did not 

need to utilise propionic acid for enhancing bacterial growth, as the medium was 

already rich in carbon. Major differences, however, were seen when bacteria were 
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grown in Chemically Defined Medium (CDM) with either 2.5 mM glucose or 5 mM 

sodium pyruvate supplemented with 5 mM propionic acid. MC58 wild-type bacteria 

started to use propionic acid after 5 to 6 hours incubation, independently of the CDM 

used (Figure 3.7-3). Growth curves from the previous section (Figure 3.6-3 and 

Figure 3.6-4) showed that wild-type bacteria supplemented with propionic acid 

followed enhanced growth, thus avoiding entering stationary phase, after 

approximately 7-8 hours in CDM with glucose, and already after 5-6 hours in CDM 

with pyruvate. This meant that propionic acid utilisation began in late exponential / 

stationary phase in CDM supplemented with glucose, and concomitant with entry 

into stationary phase in CDM supplemented with pyruvate. 

 

Figure 3.7-1: Representative GC chromatograms showing the absence / 

presence of propionic acid. 

Bacteria were grown aerobically overnight at 37 ºC in media containing none or 5 

mM propionic acid. Samples were collected every 60 minutes and GC 

chromatograms were checked for the area of propionic acid. No peak for propionic 

acid was detected in samples where this fatty acid was not added (A) and varying 

peak sizes were detected over time in the media where propionic acid was added and 

utilised (Β). 
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Figure 3.7-2: Propionic acid was not utilised in MHB medium. 

Gas chromatography results for a few samples of MC58 wild-type and prpC::Spec
R 

showed that the amount of propionic acid in the rich medium remained constant 

throughout the 24 hours incubation period. 
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Figure 3.7-3: Propionic acid was utilised in minimal media. 

Concentration of propionic acid versus time for bacteria grown in CDM media with 

2.5 mM glucose (A) and 5 mM sodium pyruvate (B), with or without addition of 5 

mM propionic acid. In both panels, gas chromatography results for MC58 wild-type 

and prpC::Spec
R �. meningitidis showed that propionic acid supplemented in both 

chemically defined media was utilised only by the wild-type strain, and was 

completely depleted after 24 hours growth. Controls where no propionic acid was 

added showed that propionic acid was not present throughout the growth curve for 

both bacteria. -: No propionic added to the medium. +: 5 mM propionic acid added at 

the start. 
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Samples from both MC58 wild-type and prpC::Spec
R bacteria that were grown 

where propionic acid was not added to the media were checked by gas 

chromatography and results, which showed that no propionic acid was detected 

throughout the whole growth curve, demonstrated that propionic acid is not 

synthesised under any experimental conditions that were investigated in this work. 

Moreover, prpC::Spec
R mutant bacteria were never able to utilise propionic acid, 

indicating that the 2-methylcitrate pathway is not functional on inactivation of the 

putative methylcitrate synthase prpC gene �MB0431. This result confirmed the 

involvement of the prpC gene in the pathway, and showed that the gene is 

indispensable for the pathway to be functional. 

3.8 prpC gene expression in �. meningitidis in the presence of 

propionic acid 

To check if the 2-methylcitrate pathway was activated during growth in media 

supplemented with propionic acid, and to check therefore if prpC gene expression 

increased in the same manner as propionic acid was being catabolised by the wild-

type �. meningitidis MC58, as shown by gas chromatography, time course studies of 

the expression of the prpC gene were performed in all three media. 

Wild-type bacteria were grown either in rich medium or in minimal medium, which 

was supplemented with none or 5 mM propionic acid, at 37 °C and shaking at 200 

rpm over a period of 12 hours. An initial 1 ml aliquot was removed from each culture 

after 4 hours incubation, and every 2 hours following that, until the last 12 hours 

samples were collected. Each aliquot was spun down for 60 seconds at 12000 rpm 

with a Sigma 1-13 microcentrifuge (Sigma), and the pellets were immediately stored 

at - 80 ºC overnight, until RNA was extracted and reverse transcribed to cDNA for 
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Quantitative Real-Time PCR (RT-PCR) studies. All the procedures used in this step 

were described in Sections 2.3.12 – 2.3.14. 

RT-PCR studies were carried out to check the expression level of the prpC gene in 

MC58 wild-type, and expression was then compared to the one from the prpC::Spec
R 

strain. The data obtained from each study was calibrated with the wild-type bacteria 

grown in MHB which was not supplemented with propionic acid. The data was also 

compared and normalised to the housekeeping metK gene (�MB1799), which 

encodes S-adenosylmethionine synthetase, so that discrepancies due to different 

amounts of starting total RNA extracted from each sample could be eliminated. The 

expression of the gltA gene (�MB0954), encoding the citrate synthase, was also 

checked as an extra control, and was then compared to the prpC gene. Data for the 

average fold change in expression of the triplicates that were set up in each 96-Well 

Optical Reaction Plate (Applied Biosystems) were plotted on a logarithmic scale in 

base 10. 

Wild-type bacteria that were initially grown in Mueller Hinton Broth (MHB) 

medium with propionic acid showed a gradual increase in prpC expression, despite 

not using propionic acid for growth. Interestingly, also the culture that was grown 

without this fatty acid behaved similarly, and this could be explained by the 

expression of prpC not being induced directly by propionic acid. gltA levels did not 

vary much, but the increase in its  expression coincided with increase in the prpC 

gene (Figure 3.8-1A). 

Wild-type bacteria grown in minimal media had a higher expression of the gene 

earlier in the growth curve compared to those grown in rich medium. Bacteria 
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incubated in CDM with 2.5 mM glucose showed a similar pattern of prpC expression 

to the ones grown in MHB. Expression in this second case, however, started earlier, 

as after 8 hours growth its levels were significantly higher than in MHB. Expression 

level was also very pronounced, as 40-fold (without propionic acid) or 20-fold (when 

the medium was supplemented with propionic acid) increase in expression was seen 

(Figure 3.8-1B). A major increase in expression level happened between 6 hours and 

8 hours growth, and this corresponded to the turning point seen at 8 hours, when 

wild-type bacteria had already started to utilise propionic acid for supporting growth 

instead of entering the stationary phase. 

In CDM with 5 mM sodium pyruvate, prpC gene in wild-type bacteria was highly 

induced during the whole growth: a large amount of expression was already obvious 

when the first sample was collected after 4 hours incubation. Increase varied between 

5 and 25-fold when compared to the calibrator (Figure 3.8-1C). The high levels of 

the gene expression under study that were recorded at all times might have been due 

to the fact that bacteria struggled to grow in pyruvate, and therefore they might have 

activated the 2-methylcitrate pathway sooner, in order to be able to catabolise 

propionic acid as an extra source of carbon. In fact, bacteria that were not supplied 

with propionic acid, when grown in this medium, started to die already after only 5 

or 6 hours incubation. 
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Figure 3.8-1: Average fold change of prpC and gltA gene expression in MC58 

wild-type �. meningitidis in different growth media in a time course experiment. 

Relative expression of prpC was plotted for wild-type cultures grown in MHB (A) 

and in CDM with 2.5 mM glucose (B) or 5 mM sodium pyruvate (C) with 0 or 5 mM 

propionic acid. Data was normalised with metK and calibrated with the wild-type 

culture that was grown for 6 hours in MHB without propionic acid. Expression of 

prpC increased throughout the time course, and this was independent of the absence / 

presence of propionic acid. Expression level was higher in minimal medium; the 

gene was constantly expressed in CDM with pyruvate. Expression of gltA (encoding 

citrate synthase) did not vary much, and followed the pattern of prpC gene 

expression, but to a much lower extent. - / +: growth media with 0 / 5 mM propionic 

acid added at the start. 

0.10

1.00

10.00

100.00

4h- 6h- 8h- 10h- 12- 4h+ 6h+ 8h+ 10h+ 12h+F
o

ld
 c

h
a

n
g

e 
in

 e
x

p
re

ss
io

n

prpC

gltA

0.10

1.00

10.00

100.00

4h- 6h- 8h- 10h- 12- 4h+ 6h+ 8h+ 10h+ 12h+F
o

ld
 c

h
a

n
g

e 
in

 e
x

p
re

ss
io

n

prpC

gltA

B

0.10

1.00

10.00

100.00

4h- 6h- 8h- 10h- 12- 4h+ 6h+ 8h+ 10h+ 12h+

F
o

ld
 c

h
a

n
g

e
 i

n
 e

x
p

r
e
ss

io
n

prpC

gltA

A

B

C



Chapter 3 – Defence against propionic acid toxicity in �. meningitidis 

128 
 

prpC gene expression was higher when nutrient availability was poor: the poorer the 

nutrient availability, the higher the prpC gene expression. In fact, when �. 

meningitidis was entering stationary phase or when the growth medium did not have 

a good carbon substrate, the gene was always highly expressed. Moreover, the prpC 

gene expression for the prpC::Spec
R mutant was always down-regulated, as 

expected, since the gene was knocked out. 

3.9 Role of �MB0432 and ackA-1 in propionic acid utilisation 

The genes �MB0432, encoding a conserved hypothetical protein, and ackA-1 

(�MB0435), encoding an acetate (or propionate) kinase, from �. meningitidis MC58 

were knocked out with insertion of either a tetracycline resistance cassette 

(�MB0432) or a spectinomycin resistance cassette (�MB0432 and ackA-1) within 

the genes being investigated, as described in Section 3.5. 

Growth curves under the same conditions tested with the MC58 wild-type and the 

prpC::Spec
R strain from the previous sections were investigated, and the three new 

mutants, �MB0432::Tet
R, �MB0432::Spec

R and ackA-1::Spec
R showed the same 

phenotype as prpC::Spec
R. This meant that, when grown in rich medium, all strains 

grew similarly over the 13 hours incubation. In chemically defined medium with 

either 2.5 mM glucose or 5 mM sodium pyruvate, bacteria grew similarly and, in 

both cases, only wild-type bacteria supplemented with 5 mM propionic acid were 

able to grow further (Figure 3.9-1). 

At this stage, propionic acid utilisation within CDM medium containing pyruvate 

was investigated with gas chromatography. As expected from the growth curve 

results and from the identical behaviour noticed with the prpC::Spec
R strain, the 
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three mutants were unable to catabolise propionic acid, and only the wild-type 

bacteria did (Figure 3.9-2). 

 

 

Figure 3.9-1: Growth curve of MC58 wild-type, �MB0432::Spec
R
/Tet

R
 and 

ackA-1::Spec
R
 strains of �. meningitidis in CDM with 5 mM sodium pyruvate 

and propionic acid. 

Propionic acid was necessary for continued growth of wild-type �. meningitidis in 

minimal medium. The three mutant strains that were grown either with or without 

supplementation of propionic acid, as well as the wild-type strain that was grown 

with no propionic acid, all entered stationary and death phase several hours earlier 

than wild-type bacteria supplemented with propionic acid. Strains tested here were 

�MB0432::Tet
R and �MB0432::Spec

R, where the �MB0432 gene was knocked out 

either with tetracycline or with spectinomycin resistance cassette, and ackA-1::Spec
R, 

where the ackA-1 gene (�MB0435) was knocked out with insertion of a 

spectinomycin resistance cassette. -: CDM medium with 5 mM sodium pyruvate and 

no supplementation of propionic acid. +: CDM medium with 5 mM sodium pyruvate 

and 5 mM propionic acid added at the start of the bacterial growth. 
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Figure 3.9-2: Propionic acid utilisation in MC58 wild-type, 

�MB0432::Spec
R
/Tet

R
 and ackA-1::Spec

R
 strains of �. meningitidis in CDM with 

5 mM sodium pyruvate and propionic acid. 

Propionic acid was utilised only by the wild-type strain grown in 5 mM propionic 

acid. The three mutant strains were not able to use it. Strains tested here were MC58 

wild-type, �MB0432::Tet
R
 and �MB0432::Spec

R, where the �MB0432 gene was 

knocked out either with tetracycline or with spectinomycin resistance cassette, and 

ackA-1::Spec
R, where the ackA-1 gene (�MB0435) was knocked out with insertion 

of a spectinomycin resistance cassette. -: CDM medium with 5 mM sodium pyruvate 

and no supplementation of propionic acid. +: CDM medium with 5 mM sodium 

pyruvate and 5 mM propionic acid added at the start of the bacterial growth. 

 

The results illustrated in this section showed that both �MB0432 and ackA-1 genes 

were directly involved in the catabolism of propionic acid as, when they are 

disrupted, bacteria were not able to utilise the short fatty acid. Moreover, as they 

behaved in the exact same way as bacteria with the disrupted prpC gene, these genes 

appeared to belong to the 2-methylcitrate pathway. This was an interesting point as 

�MB0432 has no predicted role associated with this pathway. In fact, this gene, 
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which contains a predicted permease domain, is absent from the prp operon in the 

other bacteria that possess the 2-methylcitrate pathway, with an exception of its 

closely related �eisseria gonorrhoeae. The �MB0432 gene, therefore, might be a 

late addition to the prp gene cluster of �eisseria for helping them with propionic acid 

acquisition, due to the specific niche where these bacteria live. Likewise, the ackA-1 

gene is not found within the prp operon in any other bacteria, so it could be needed 

for adaptation in �eisseria. 

3.10 The prp gene cluster is an operon 

In order to check if the genes predicted to belong to the prp operon in �. meningitidis 

MC58 were actually organised in a fully functional operon, several mutants with 

disrupted genes from the prp gene cluster were tested. 

From the previous sections within this chapter, I have demonstrated that the prpC, 

�MB0432 and ackA-1 (�MB0435) genes were all needed to catabolise propionic 

acid, which is the substrate for the 2-methylcitrate pathway, and this pathway is 

composed of genes belonging to the prp gene cluster. Because of being involved in 

the 2-methylcitrate pathway, these genes were checked for expression levels in 

Chemically Defined Medium containing 5 mM sodium pyruvate and 5 mM propionic 

acid. This medium was chosen because it was shown to be overexpressing the prpC 

gene more consistently than the other media, so that exact timing for expression 

levels was not so important (refer to Figure 3.8-1C). Total RNA was extracted from 

1 ml of each culture grown for 6 hours, and cDNA was then reverse transcribed for 

expression studies. Mutants analysed were prpC::Spec
R (for gene �MB0431), 

�MB0432::Spec
R and ackA-1::Spec

R (for gene �MB0435), where the gene under 
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study was disrupted with a spectinomycin cassette. An extra mutant for the gene 

�MB0432, �MB0432::Tet
R, was created by disrupting this gene with a tetracycline 

cassette. 

When grown in CDM with pyruvate for 6 hours, all strains except prpC::Spec
R did 

indeed confirm that the prpC gene was up-regulated compared to the calibrator 

control, the calibrator being wild-type bacteria grown for 6 hours in MHB without 

supplementation of propionic acid. 

In wild-type bacteria, the three genes contiguous and downstream of the prpC gene 

were also similarly expressed to the prpC gene, independently of the presence or 

absence of propionic acid within the medium (Figure 3.10-1A). Expression data also 

confirmed that the prpC gene (�MB0431) in the prpC::Spec
R mutant was down-

regulated, and the same was valid for the two following genes, �MB0432 and 

�MB0433. Expression levels for the gene �MB0434 was not checked for this strain 

(Figure 3.10-1B). 

When both �MB0432 mutant strains were analysed, the gene upstream of �MB0432 

was expressed similarly to the prpC gene (�MB0431) from the wild-type, as 

expected. The disrupted gene, however, behaved in two different ways: in the 

�MB0432::Tet
R strain the �MB0432 gene and its downstream genes were still up-

regulated, whereas in the �MB0432::Spec
R strain these genes, including �MB0432, 

were down-regulated (Figure 3.10-1C). This difference in behaviour was due to the 

fact that the tetracycline cassette has no transcriptional terminators, but the 

spectinomycin cassette possesses two of them, one at either end of the cassette  

(Prentki & Krisch, 1984). 
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ackA-1::Spec
R did not affect gene expression of the genes analysed and appeared to 

behave in the same way as wild-type bacteria. This was due to the fact that ackA-1 

(�MB0435) is the last gene within the prp gene cluster, and therefore this mutant did 

not have any effect in any of the genes upstream from it (Figure 3.10-1D). 

 

Figure 3.10-1: Average fold change in expression of several genes from the prp 

gene cluster in wild-type and mutant strains in �. meningitidis MC58. 

Relative expression of the prpC gene (�MB0431) and the three downstream genes 

was plotted for wild-type cultures and for several single mutant strains with 

mutations in the genes from the prp gene cluster. All cultures were grown in CDM + 

5 mM sodium pyruvate with or without supplementation of 5 mM propionic acid, 

and samples were collected after 6 hours growth. Data was normalised with metK 

and calibrated with the wild-type culture that was grown for 6 hours in MHB without 

addition of propionic acid. All downstream genes of each mutant in question were 

down-regulated, except for the �MB0432::Tet
R (tetracycline cassette, unlike the 

spectinomycin cassette, has no transcriptional terminators). -: medium with no 

supplementation of propionic acid. +: medium with 5 mM propionic acid. Bacterial 

strains used: MC58 wild-type and single mutant strains for prpC (disrupted with 

Spec), �MB0432 (disrupted with Tet or Spec) and �MB0435 (disrupted with Spec). 

prpC: encodes 2-methylcitrate synthase. metK: gene encoding S-adenosylmethionine 

synthetase. ND: no data collected for �MB0434 in prpC::Spec
R mutant. 
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Gene expression showed that the adjacent genes studied here were linked together, as 

they were regulated in the same way and down-regulated by disruption with 

antibiotic resistance cassettes containing transcriptional terminators. However, in 

order to confirm once more if they were expressed as an operon, total RNA was 

extracted and cDNA generated prior to analysis by running a PCR to amplify all 

intergenic regions present in the operon. Only the intergenic regions between 

polycistronically expressed genes would be amplified and, therefore, seen when run 

on an agarose gel. 

Total RNA from wild-type �. meningitidis MC58 grown in CDM with 5 mM sodium 

pyruvate and 5 mM propionic acid was extracted and purified. Purified total RNA 

was then reverse transcribed to cDNA using the SuperScriptTM II Reverse 

Transcriptase kit (InvitrogenTM) as described in Section 2.3.13, and stored at -80 ºC 

to avoid degradation. The strain and the medium for growth were chosen because the 

genes in the prp gene cluster were up-regulated under those conditions. A PCR with 

reactions prepared as described in Section 2.3.1 and with primers from Table 2.3.14-

1 was run with both purified total RNA and the corresponding cDNA, and a 0.8 % 

agarose gel was consequently run for 60 minutes (Figure 3.10-2). Bands were 

expected to be seen only from the cDNA samples, as the RNA would not be able to 

amplify unless contaminated with genomic DNA. Primers were chosen so that each 

pair would amplify the region located between each gene belonging to the prp gene 

cluster. The intergenic regions just before the start or just after the last gene of the 

prp cluster were amplified too, to verify that the two adjacent genes were not 

transcribed together as part of the same operon. 
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PCR reactions worked fine, as cDNA amplified correctly. The first and last lane of 

the cDNA samples did not show any band, and this was due to the fact that both 

regions were found outside the prp gene cluster. All other regions amplified 

correctly, despite one lane resulting in a smeared product. RNA should not have 

amplified at all, but products for two of the intergenic regions were present, even 

though in a much lower intensity compared to the same samples for cDNA. This 

meant that both samples were probably contaminated with genomic DNA, despite all 

RNA samples having been treated with the On-Column DNase Digestion (QIAGEN) 

during RNA purification (Figure 3.10-3). Nonetheless, the increase in band intensity 

in the cDNA lanes indicates that messenger RNA contained the intergenic region 

between each of the genes in the prp cluster. Moreover, despite the intergenic region 

between genes �MB0433 and �MB0434 failing to amplify, these two genes were 

confirmed to belong to the same prp gene cluster: in fact, they were up-regulated or 

down-regulated similarly in all �. meningitidis mutant strains tested, as previously 

shown in Figure 3.10-1. 
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Figure 3.10-2: ORF map of the prp gene cluster of �. meningitidis MC58, with 

primers used to amplify the intergenic regions. 

A: The relevant region of �. meningitidis MC58 genome representing the genes 

belonging to the prp gene cluster (dark blue arrows) and its flanking genes (light blue 

arrows) is shown with the orientation of each gene. Gene numbers correspond to the 

numbering given in the MC58 complete genome, where the number within each 

arrow is preceded by “NMB0” (NCBI GenBank accession number AE002098.2). B: 

The position of all sets of primers used to amplify the intergenic regions within and 

adjacent to the prp gene cluster (black arrows) and the products’ relative length 

(black lines). NM MC58: �. meningitidis strain MC58 wild-type. Conserved hyp.: 

gene coding for a conserved hypothetical protein. 429, which corresponds to 

�MB0429, encodes a very short hypothetical protein. 8: �MB0428; 0: �MB0430; 1: 

�MB0431; 2: �MB0432; 3: �MB0433; 4: �MB0434; 5: �MB0435; 6: �MB0436. F: 

Forward primer. R: Reverse primer. 

984 bp                     1380 bp                               1638 bp                      1464 bp

8F            0R           1F              2R                   3bF                4R          5F                6R

1544 bp                    929 bp                                     1771 bp 

0F                 1R          2F         3R                          4F                  5R         

--- ---
NM MC58

hyp.      x   prpB prpC hyp.          acnD prpF ackA-1    hyp. 
Conserved                              Conserved Conserved

Primers

A

B

428     429 430       431       432            433               434         435      436

PCR length

Primers

PCR length
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Figure 3.10-3: Amplification of cD?A versus R?A for the intergenic regions of 

the prp operon in wild-type �. meningitidis MC58. 

Amplification of the intergenic regions of the prp operon was run using cDNA as 

template, and RNA as negative control. Wild-type bacteria grown in Chemically 

Defined Medium supplemented with 5 mM sodium pyruvate and 5 mM propionic 

acid were chosen because the genes are overexpressed under those conditions. In 

lanes 1C and 7C no bands were expected, as they corresponded to the intergenic 

regions just outside the prp gene cluster. Lane 5C failed to amplify the correct 

product and resulted in a smeared product, whereas lanes 2R and 4R showed little 

contamination in the samples. Intergenic regions between the genes analysed and 

their corresponding PCR fragment sizes for the cDNA are as follows: 1: �MB0428-

�MB0430, no fragment expected (which would be 984 bp in length). 2: �MB0430-

�MB0431, 1544 bp. 3: �MB0431-�MB0432, 1380 bp. 4: �MB0432-�MB0433, 929 

bp. 5: �MB0433-�MB0434, 1638 bp. 6: �MB0434-�MB0435, 1771 bp. 7: 

�MB0435-�MB0436, no fragment expected (which would be 1464 bp). C: cDNA. 

R: RNA. The Q-Step 4 Quantitative DNA ladder (YORBIO) (Lane L) was loaded on 

the gel to confirm the size of the DNA bands seen. 

L       1C     2C     3C    4C     5C    6C     7C    1R     2R    3R    4R    5R     6R     7R 

Size
[bp]:

10000

2000
1500
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3.11 prpC gene expression in enriched growth medium 

prpC gene expression for bacteria that were grown in both rich and minimal medium 

after supplementation of several amino acids or Vitox was investigated. As already 

shown in Figure 3.8-1, expression of the prpC gene after 6 hours growth was lower 

in Mueller Hinton Broth (MHB) medium when compared to CDM containing 5 mM 

sodium pyruvate. This result indicated that prpC gene expression was greater when 

bacteria were grown in a poor medium. In order to try to understand what makes the 

expression in rich medium 6-fold lower, several amino acids and Vitox were added 

into both growth media, and their effect was checked. 

Initially, �. meningitidis was grown for 6 hours with supplementation of different 

amino acids. Samples were collected, RNA extracted and reverse transcribed to 

cDNA as described in Sections 2.3.12 – 2.3.14. The data collected from the RT-PCR 

run were calibrated with the wild-type bacteria grown in MHB without propionic 

acid, and were normalised to the housekeeping metK gene (�MB1799). Wild-type 

bacteria that were grown in MHB medium supplemented with amino acids usually 

showed a decrease in prpC expression compared to the control, and this decrease 

depended on the various amino acids that were added in the medium, with L-cysteine 

hydrochloride having the most down-regulating effect (Figure 3.11-1A). Addition of 

amino acids into CDM with pyruvate, however, did not induce a significant change 

in prpC gene expression (Figure 3.11-1B). Even L-cysteine hydrochloride, in this 

case, did not alter the gene regulation. 

At this stage Vitox, a commercially available culture medium supplement, was 

investigated instead. Vitox was supplemented at the manufacturer’s recommended 
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concentration in all three growth media (MHB and CDM with either glucose or 

sodium pyruvate). As Vitox (Oxoid) contains essential growth factors, it was 

hypothesised that even growth in minimal medium should have a down-regulating 

effect over the prpC gene. prpC gene expression was down-regulated indeed (Figure 

3.11-2A). Further investigations for underpinning which compound was more likely 

to be responsible for reducing expression were carried out. A laboratory-made Vitox 

was prepared fresh on the day, and all components that were present in the 

commercial Vitox were used at the same final concentration (Table 2.2.4-2). The 

samples of five independent growth curves were collected, and each time all Vitox 

components were made up fresh. prpC expression in CDM with 5 mM sodium 

pyruvate did not decrease, and was comparable to the expression of wild-type 

bacteria grown in minimal medium without Vitox (Figure 3.11-2B). Even when �. 

meningitidis was grown in minimal medium with only some of the reagents found in 

Vitox, expression did not change. 
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Figure 3.11-1: Average fold change of prpC gene expression in MC58 wild-type 

�. meningitidis in growth media enriched with amino acids. 

Relative expression of prpC (encoding 2-methylcitrate synthase) was plotted for 

wild-type cultures grown in MHB (A) and in CDM with 5 mM sodium pyruvate (B) 

with supplementation of 5 mM amino acids (or 1 mM when specified). Data was 

normalised with metK (S-adenosylmethionine synthetase) and was calibrated with 

the wild-type culture that was grown for 6 hours in MHB without propionic acid. 

Expression level was higher in minimal medium: the gene was constantly expressed 

in CDM with pyruvate, but it was down-regulated in the presence of certain amino 

acids in MHB. Abbreviations used: m: MHB. p: CDM with 5 mM sodium pyruvate. 

std: amino acid solution always present in minimal media (see Table 2.2.4-1, 

Solution 3), but here also added to MHB. 1: L-alanine, L-isoleucine, L-leucine, L-

methionine, L-valine. 2: L-phenylalanine, L-tryptophan. 3: L-aspartic acid, L-

glutamic acid. 4: L-lysine, L-proline. 5: L-asparagine. 6: L-cysteine hydrochloride. 7: 

L-threonine. 8: L-histidine. 9: L-tyrosine. 
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Figure 3.11-2: Average fold change of prpC gene expression in MC58 wild-type 

�. meningitidis in growth media enriched with Vitox. 

Relative expression of prpC (2-methylcitrate synthase) was plotted for wild-type 

cultures grown in MHB (Vm), in CDM with glucose (Vg) and in CDM with sodium 

pyruvate (V1-V4, 4 independent repeats) enriched with commercial Vitox (A); in 

CDM with sodium pyruvate and laboratory prepared Vitox (1-5, 5 independent 

repeats with freshly prepared Vitox each time) (B); and in CDM with sodium 

pyruvate and some of the components present in Vitox (C): adenine and guanine (in 

lane A), vitamin B12, PABA, cocarboxylase, thiamine hydrochloride (in lane B) and 

thiamine hydrochloride alone (in lane C). prpC gene expression decreased when 

using commercial Vitox, but remained unchanged when laboratory Vitox and split 

components were used. The control (last lane) was wild-type bacteria grown in CDM 

with 5mM pyruvate. Data was normalised with metK (S-adenosylmethionine 

synthetase) and was calibrated with the wild-type culture that was grown for 6 hours 

in MHB without propionic acid. 

 

Amino acids did not influence regulation in poor medium, but prpC gene expression 

was higher when nutrient availability was poor, and this was confirmed by a 

significant down-regulation of the prpC gene expression in all media containing 

0.01

0.10

1.00

10.00

Vm Vg V1 V2 V3 V4 1 2 3 4 5 A B C ctrl

F
o

ld
 c

h
a

n
g

e 
in

 e
x

p
re

ss
io

n

prpC

Commercial                 Lab              Split     Control           
Vitox Vitox Components               

A                      B              C



Chapter 3 – Defence against propionic acid toxicity in �. meningitidis 

142 
 

commercially available Vitox. Interestingly, though, expression was not affected 

when all components of Vitox were made up in the laboratory, despite having added 

them into the growth medium at the same concentration found in the commercial 

Vitox. To avoid chemicals becoming inactive or solutions decaying, all chemicals 

were ordered new for the purpose of this study and all components were prepared 

fresh on the day. Gene expression, however, did not decrease. Further investigations 

on the effects of Vitox are needed. The start point could be to test prpC gene 

expression in bacteria grown in CDM with a higher concentration of glucose, as 

commercial Vitox was dissolved in distilled water containing 0.55 M glucose, which 

was subsequently diluted into the growth medium to a final concentration of 11.10 

mM glucose. Laboratory Vitox, instead, did not contain any glucose as chemicals 

were dissolved directly in deionised water. 

3.12 Co-culture of �. meningitidis with Veillonella 

In the previous sections it was shown that the prp gene cluster present in �. 

meningitidis MC58 was needed to catabolise propionic acid in minimal medium: in 

wild-type bacteria it supported growth whilst wild-type grown in an environment 

lacking this short fatty acid and all mutants grown with or without it reached 

stationary phase. 

Veillonella spp. isolated from mouth washes by Dr. Stacey Fergusson (James Moir’s 

lab), were used for co-culture growth with �. meningitidis wild-type and with the 

prpC::Spec
R mutant strain. Both bacteria were grown in Chemically Defined 

Medium with the addition of 5 mM sodium L-lactate instead of glucose or propionic 

acid, as Veillonella spp. needed lactate for growth (Rogosa, 1956) and �. 



Chapter 3 – Defence against propionic acid toxicity in �. meningitidis 

143 
 

meningitidis could utilise lactate as an important energy source, especially during 

colonisation and growth in the nasopharyngeal tissue (Exley et al., 2005). 

Veillonella spp. metabolise lactate by breaking it down to propionate through 

fermentation, following the equation: 3 lactate � 2 propionate + 1 acetate + 1 CO2 + 

1 H2O, thus supplying propionic acid into the minimal medium. Only wild-type �. 

meningitidis would be able to use it as a carbon source for growth and, for this 

reason, the hypothesis that was formulated stated that co-culture of both bacteria 

would show an enhanced growth in wild-type bacteria, but not in the prpC::Spec
R 

mutant strain. 

Veillonella spp., which constitute an important part of the normal flora found in both 

intestine and nasopharynx of humans, are Gram-negative anaerobic cocci, whereas 

�. meningitidis are aerobic but facultative anaerobic bacteria. For this reason, initial 

studies involved growth of both bacteria microaerobically, where they were grown in 

20 ml of medium and were shaken at 90 rpm at 37 ºC in a microbial C25KC 

incubator shaker (New Brunswick Scientific Ltd.) over a three-day period. All 

bacteria, however, struggled to grow. Further studies involved growth under the 

same conditions just described, but with shaking at 200 rpm instead of 90 rpm. In 

this instance, all bacteria except Veillonella that was grown on its own were able to 

proliferate. Co-culture of both bacteria resulted in an enhanced growth, detectable 

after already 6 hours incubation (Figure 3.12-1). From this preliminary experiment it 

was not possible to distinguish the role of each bacterium during growth, but a 

possible explanation would be that bacteria grown together were able to form a sort 

of symbiosis to help them proliferate. This symbiosis, however, did not depend on 

the propionate that could have been produced by Veillonella’s catabolism of lactate, 
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as both co-cultures, either containing MC58 wild-type or prpC::Spec
R mutant strain 

of �. meningitidis, grew similarly, without significant differences. 

 

 

Figure 3.12-1: Growth curve of MC58 wild-type and prpC::Spec
R
 strains of �. 

meningitidis, and co-culture with Veillonella spp. 

Co-culture of Veillonella and �eisseria resulted in a delay in entering stationary 

phase, even for the prpC::Spec
R strain, as continued growth was still seen after 10 

hours incubation. Wild-type �. meningitidis did not seem to utilise propionic acid for 

enhanced growth, as they entered stationary phase after 6 hours, as all other 

�eisseria. Bacteria were grown in CDM supplemented with 5 mM sodium L-lactate 

and, when stated, with an additional 5 mM propionic acid. WT: wild-type �. 

meningitidis MC58. prpC::Spec
R: �. meningitidis MC58 with disrupted prpC gene 

(�MB0431). 

 

Preliminary studies with co-cultures of Veillonella spp. and �. meningitidis showed 

that �. meningitidis was able to grow in an aerobic environment in minimal medium 
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with addition of 5 mM sodium L-lactate, and growth in this medium was similar to 

growth in CDM medium containing 5 mM sodium pyruvate. 

Co-culture supported further growth compared to single strains, as the latter entered 

stationary phase sooner, and this was independent of supplementation of 5 mM 

propionic acid to the medium. However, at this stage, it was not possible to 

determine if the product contained both Veillonella spp. and �. meningitidis. 

Bacterial growth curves showed that propionic acid was probably not used in 

minimal medium with lactate, as wild-type bacteria that were supplied with it entered 

stationary phase at the same time as the prpC::Spec
R mutant strain, and as co-culture 

of the mutant strain did not show a decreased growth. 

Further investigations need to be carried out by repeating bacterial growth curves. 

Samples for the wild-type �. meningitidis MC58 grown in medium that was 

supplemented with propionic acid should be collected at different time points, and 

propionic acid content could be measured by gas chromatography to verify if wild-

type �. meningitidis are indeed unable to use propionic acid when grown in the 

presence of lactate, or if the growth pattern is just an artefact due to lactate in the 

medium. Co-cultures could also be plated every few hours during the growth curve, 

and both bacteria could be counted from each plate, in order to verify if the growth 

seen is due to the presence of both bacteria. 

3.13 Discussion 

In this chapter the putative 2-methylcitrate pathway, needed for the catabolism of 

propionic acid, was investigated. In �. meningitidis strain MC58, a BLAST search 
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revealed that this pathway is composed of 6 genes, two of which are crucial to the 

pathway (�MB0430 and �MB0431), as they are found in all bacteria that possess the 

2-methylcitrate pathway (Suvorova et al., 2012, Upton & McKinney, 2007, Brämer 

& Steinbüchel, 2001). These genes encode 2-methylisocitrate lyase and 2-

methylcitrate synthase respectively. A knockout for �MB0431 (prpC::Spec
R mutant) 

was created in this work, and it confirmed its involvement in this pathway, since in 

the absence of this gene bacteria were not able to use propionic acid under any 

condition tested. 

Another two genes belonging to this pathway in �. meningitidis MC58 (�MB0433 

and �MB0434) replace the more specific prpD gene present in other bacteria, and are 

both needed for metabolising 2-methylcitrate to 2-methylisocitrate (Grimek & 

Escalante-Semerena, 2004, Horswill & Escalante-Semerena, 2001). 

The following two genes, however, were found associated with the prp gene cluster 

only within �eisseria spp. The putative �MB0432 gene, with no assigned function, 

was exclusively present in just three neisserial strains: �. meningitidis, �. 

gonorrhoeae and �. flavescens, even though the presence of the other genes 

encoding for enzymes belonging to the 2-methylcitrate pathway was confirmed in 10 

different strains so far. The ackA-1 gene (�MB0435), instead, was present in all 10 

�eisseria spp. containing the prp gene cluster, and partly replaced the more specific 

prpE gene present in other bacteria, which encodes propionyl-CoA synthetase, an 

enzyme responsible for catabolising the first reaction amongst the pathway (Horswill 

& Escalante-Semerena, 1999a). As both genes were present only in three �eisseria 

species, knockouts of �MB0432 (�MB0432::Spec
R and �MB0432::Tet

R mutant) and 
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�MB0435 (�MB0435::Spec
R) were investigated as part of this work to check if they 

were involved in the pathway indeed. 

Growth curves for the wild-type and mutant strains showed that bacteria did not need 

propionic acid to grow in rich medium, but propionic acid was needed for optimal 

growth in minimal medium. Only the wild-type could achieve a more favourable 

growth, and this was confirmed with the mutants, which were not able to utilise 

propionic acid, showing that �MB0431, �MB0432 and �MB0435 were crucial for 

the 2-methylcitrate pathway. This hypothesis was further confirmed when samples 

from bacterial growth curves that were collected every hour were analysed by gas 

chromatography: propionic acid content measured from both chemically defined 

media studied revealed that only the wild-type strain was able to metabolise this 

short chain fatty acid, and this started to be utilised earlier when in the presence of a 

poorer carbon source, suggesting that expression of the genes belonging to the 2-

methylcitrate pathway might be controlled by poor nutrient availability. These results 

were consequently confirmed with studies of the expression of prpC in wild-type 

bacteria, as expression was clearly higher in chemically defined media, especially 

when supplemented with sodium pyruvate, a poorer carbon source than glucose. 

Gene expression studies for all mutants containing the spectinomycin cassette 

confirmed that the genes that were knocked out and their downstream genes were co-

regulated, enhancing the hypothesis that these genes belong to an operon. The 

spectinomycin cassette, in fact, contained strong transcriptional terminators in each 

side (Prentki & Krisch, 1984). The mutant containing the tetracycline cassette, 

however, did not stop up-regulation of the genes downstream, as the cassette did not 

have transcriptional terminators (Heurlier et al., 2008). Despite this, propionic acid 
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could not be utilised in �MB0432::Tet
R mutant, as confirmed by gas 

chromatography. 

The hypothesis that all six genes were organised as an operon was further confirmed 

when amplification of the intergenic regions between the six genes from cDNA 

extracted from cultures grown under conditions that enhanced prpC expression, gave 

a clearly visible PCR product, whereas the intergenic region flanking both sides of 

the operon failed to amplify. 

BLAST analysis using �MB0432 as a query indicates that this gene is homologous to 

TauE, a family of integral membrane proteins that are involved in the transport of 

anions across the cytoplasmic membrane during the metabolism of taurine. TauE 

belongs to the tauE gene cluster, which appears to be fully absent from �. 

meningitidis. Other bacteria possess TsaS or CysZ, which are the most closely 

related proteins of known function, but still have low sequence identity with TauE. 

These proteins are involved in the uptake of sulphates or sulfonates. For this reason, 

it was hypothesised that proteins with similarities to TauE could be involved in the 

transport of anions across the membrane (Weinitschke et al., 2007). This could 

suggest transport of propionic acid into the cell, and is in line with the inability of the 

mutants for this gene to utilise propionic acid, even when the gene was disrupted and 

did not block transcription of the downstream genes. Putative transmembrane helices 

for �MB0432 were predicted using a transmembrane helices programme based on a 

hidden Markov model (TMHMM) (Appendix D). TMHMM output predicted 8 

transmembrane helices for NMB0432 and that both N-terminal and C-terminal are 

located in the cytoplasm. 
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Since �eisseria lack prpE, and ackA-1 translates into a propionate kinase and is 

responsible only for generating propionyl phosphate, a second enzyme, Pta, a 

phosphotransacetylase, has been related to the second part of the reaction, involving 

the production of propionyl-CoA. Thus these two enzymes are needed for replacing 

the full activity of prpF, even though with a lower affinity (Starai & Escalante-

Semerena, 2004). In �eisseria Pta has similarity to the �MB0631 gene, which is not 

specific to the 2-methylcitrate pathway. PrpE has a high affinity for propionate, and 

in Salmonella enterica its KM corresponded to approximately 20 µM (Horswill & 

Escalante-Semerena, 2002), whereas acetate kinase from Corynebacterium 

glutamicum gave a much higher KM of about 15 mM (Reinscheid et al., 1999). These 

numbers showed that acetate kinase had a much lower affinity to propionate than 

PrpE. For this reason, an active transport of propionate towards the cytoplasm might 

be more important in �eisseria than in other bacteria. 
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Chapter 4  -  Investigations of a pathogen-

specific genetic island in �. meningitidis 

4.1 Introduction 

There are 9 conserved genetic islands which are found in all �eisseria meningitidis 

strains, but are absent from its closely related commensal �eisseria lactamica, as 

previously described in Section 1.7.2. One of these pathogenic islands is composed 

of two genes, �MB1048 and �MB1049 in �. meningitidis MC58. These two genes 

are divergently transcribed and still have putative functions. The product NMB1048 

belongs to a family of bacterial proteins that are functionally uncharacterised and 

which are usually between 489 and 517 amino acids in length. NMB1048 

corresponds to a protein that is 489 amino acids long and it has similarities to 

predicted membrane proteins and a family of putative transporters or permeases. The 

second gene, �MB1049, encodes a 304 amino acids uncharacterised LysR-Type 

transcriptional regulator. 

Following a protein BLAST search (NCBI), these two genes appeared to also be 

present in four other �eisseria species: �. gonorrhoeae, �. elongata, �. sicca and �. 

wadsworthii, even though high identity (99 %) was seen only with �. gonorrhoeae. 

In fact, BLAST of the other three species resulted in poor identity (varying between 

59 and 64 %). The pathogenic �. gonorrhoeae is often associated with gonorrhoea, 

whereas the other three bacteria were occasionally found in immunocompromised 

patients and eventually led to endocarditis, meningitis or septicaemia (Heiddal et al., 

1993, Wong & Janda, 1992). 
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As this genetic island is not present in the majority of commensal �eisseria spp. but 

only in the occasional pathogens, it could potentially serve as an adaptation that 

might have occurred to help �. meningitidis survive in human adults during 

infection. Investigations for understanding if this genetic island was needed in 

pathogenicity or survival into the human blood are later discussed in Chapter 6, 

where the �MB1049 gene was further analysed. 

In this chapter, the two genes (�MB1048 and �MB1049) belonging to an 

uncharacterised pathogenic island from �eisseria meningitidis strain MC58 have 

been knocked out and their effects on growth and gene expression were compared to 

the wild-type bacteria. 

4.2 Construction of knockout mutants for the putative �MB1048 

and �MB1049 genes of �. meningitidis 

In order to investigate the role played by NMB1048 and NMB1049, both belonging 

to a yet uncharacterised pathogenic island, knockouts of both genes from �. 

meningitidis strain MC58 were constructed in this study. Construction of each single 

mutant knockout was achieved by inserting a spectinomycin resistance cassette 

within each gene of interest (Figure 4.2-1). 

In order to generate the knockouts, the two genes with their flanking regions were 

amplified using the primers described in Table 2.3.1-1. The sequence of the putative 

�MB1048 gene, which encodes a hypothetical integral membrane protein, is shown 

in Figure 4.2-2. The sequence for the putative �MB1049 gene, which encodes a 

hypothetical LysR-Type transcriptional regulator, is shown in Figure 4.2-3. Only 

�MB1048 was flanked by the �. meningitidis DNA uptake sequence, 
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GCCGTCTGAA. The relevant restriction sites where the spectinomycin cassette was 

inserted are also shown in these figures. 

 

Figure 4.2-1: The ORF map of the uncharacterised pathogenic island of �. 

meningitidis MC58, with primers and plasmid used for the construction of 

knockouts. 

A: The relevant region of �. meningitidis MC58 genome representing the genes 

belonging to the uncharacterised gene cluster (dark blue arrows) and its flanking 

genes (light blue arrows) is shown with the orientation of each gene. Gene numbers 

correspond to the numbering given in the MC58 complete genome, where the 

number within each arrow is preceded by “NMB” (NCBI GenBank accession 

number AE002098.2). B: The position of the two sets of primers used for 

constructing the knockouts is shown with black arrows. C: The pCR®-Blunt II-

TOPO® vector (gray) is shown with its relevant features (gray box and gray arrow) 

and with the place of insertion of the mutant gene (blue arrow). The spectinomycin 

resistance cassette and its place of insertion are also shown in the diagram (pink 

arrow). NM MC58: �. meningitidis strain MC58. Conserved hyp.: gene coding for a 

conserved hypothetical protein. 
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TGCCGAATCGATGGGGTGGATAATGCCCAAACTGGTCTCTTCCGAATAATCGCCTGCCAGCGTTTTGG
CAAAATGCTCCAGCTTGTGTTTGTATTGCAGCAGGGATTCCGCTTCGGGCAACAGTATTTCGCCCGCC
CGCGTCAATACCATGCCTTTCCCCGTGCGCCTGAACAGCGGCGTGCCGACATATTCTTCAAGGGCTTT
AATTTGGGCAGAAACGGCAGGCTGGGAAAGGAAAAGTCGTTTGGCGGCTTGGGTAAGGTTGCCCTCGT
GCGCGACGGCGACAAATGATTTTAATTGTACGGCATCCATATATCCCTCCTTGTGCGGATGTTTTCTA
TATTTGTGCAATCGAAATCTTTTAGGTGGATTGTTGCTGAAAATTAACTTTTTAATCAAGTGGTTTGT
AAATTGTATCAGTTTTCCGGATGATGGTTATCAAAAAAAAAGATTGGTTTTATTGCCTGTTTGGGCTT
TAAATGGGGTTACGGCTTCCGAACGCAGCCCGTATCAAAAAGAAAAGTCATGCGCCCCTTTTACGAGG
CGCGATATATAAGGAGGAAGGTTATGGAAAAACATAATGGGACTTATCGGGATTTGCACCGTCCAGCT
TCGGAATTTGCGACGCGGGACGAATATTTGGAACATGAATTGCAGATTATGCAACCAAAACGCTGGCG
GCCCAACCTGCCCTTTCGCGATTACCGCTTCGAGTGGGAGGATTTGATTCCTGCGATGGCGGGAACGA
TTGGAAAAGTGGTGATGGTGGGGGCGGTGGCGGCGGCGTTTGCCGCACCTTTGGGGCTGCCTGACAGC
TTTGTACTGGAAAATGTGCGCTATGAGCTTTTAATCGCCGCCGCGTTTATCTTATTGGTATCGGGCTT
TTTTCTGCCCGGCGCCAACCTGCCCGGTACGCACGGGCCGCTGATTCCGATGATTCCCATCGTTGTGT
CGGCAGGCGGGCATCCTTTGGCGTTCGGCATTTCGATTGCGGTTTTAGGTCTGCTGATGGCTTTATTT
CGCGGCGGCAGTATTATGGCGAAGCTGACAAGCAACGGCGTATGCGGCGGATTATTACTCTATTTGGG
CTTTATCGGCACGACGGGGCAGGTAAAAAAATTGTTTTCGTGGGCAGGCGGTTTTAATATGCCCTACA
TCGCTTTTACCGTCATTATTGTAACGATTGTGATGTACGCTTTGTTGGAGCATTGGAAAAAACGCTGG
TTAGCCGTGCCTTTGGGATGCTTGATTGCCGGTGTGGTGGCATTTGCATTGGGTGCGCCGTTTGAGTT
TCACACCGCCCCCGGCCTGCCTCCAATGAGTCCTGCTTATTGGTGGGGTGAAAACAGCGGCTGGCATC
TGGGGTTGCCGACGGCAGAAAGTTTTTTGGTTGTCTTTCCATTTGCGGTATTGGCTGTTGCAATGTGG
TCGCCCGATTTTTTAGGACATCAAGTGTTCCAAAAAATCAGCTATCCGGAAAAAACCGATAAGGTATT
GATGAATATAGACGACACCATGACAAGTTGTTCTGTCCGTCAAGCAGTGGGTTCTATTTTAGGGGGTG
CAAATTTTACCTCTTCTTGGGGAACTTATATCGTACCGGCATCGATTGCCAAACGCCCCATTCCGGGC
GGTGCGGTTTTAACGGCGGTTTTATGTATTATCGCCGGGTTATGGGGCTATCCGATGGACTTGGCGAT
TTGGCAGCCGGTATTGAGCGTAGCCTTGGTCGTAGGCGTATACTTACCGCTTTTGGAAGCGGGCATGG
AAATGACGCGCAAAGGCAAAACCACCCAATCCGCCGCCATCGTGGTGTTCTCTTCCGCCTTGGTCAAT
CCGGTTTTCGGCTGGGCGTTGACGATGCTGTTGGATAATTTGGGCTTAATCGGCTGCAAAGAGCGCAG
TGCGCAATTAGGTTTCGCCGGACGCGTGTTGATACCCGCAGTAGGTTTCTTGATCTTGTGTGTGGCGA
TGGGTGCGGTCGGGATGCTGCCCGGTATCCCGCCGTTTTTGGAACACTTCAAATCTTTGGGCTAGGCT
GAAATCGGAAATGCCGTCTGAACCGCTTTCAGACGGCATTTTTGCAAACAGGCAAAATGACGGCGGCG
GGATTTTTTATTTTCCCGATTGAAGTATAATGTTGCCGGGCTTCAACCGGATATTCAAAACGGTTTGT
TCCAACACTCGGAACGGCGCATAAAACGCCGCCCTTCGCGTTATCCCGAACGGGGCGGCTAATCAGAT 

 

Figure 4.2-2: Reverse complement of �MB1048 gene with its flanking regions 

used for constructing the mutant. 

The �MB1048 gene (blue) with the ATG start codon (green) and the TAG stop 

codon (red) and its flanking regions (black) give a product 2081 bp long. Primers 

NMB1048-for and NMB1048-rev were used (highlighted in yellow) to generate the 

knockout. The same primers were used for colony pick PCR screening in �. 

meningitidis. One �. meningitidis DNA uptake sequence (orange) is found just 

outside the gene of interest. The ClaI site (ATCGAT) and SspI site (AATATT) are 

also shown (highlighted in blue) with the site where the restriction enzymes cut 

(brown).  
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GATAAAGCCCAAATAGAGTAATAATCCGCCGCATACGCCGTTGCTTGTCAGCTTCGCCATAATACTGC
CGCCGCGAAATAAAGCCATCAGCAGACCTAAAACCGCAATCGAAATGCCGAACGCCAAAGGATGCCCG
CCTGCCGACACAACGATGGGAATCATCGGAATCAGCGGCCCGTGCGTACCGGGCAGGTTGGCGCCGGG
CAGAAAAAAGCCCGATACCAATAAGATAAACGCGGCGGCGATTAAAAGCTCATAGCGCACATTTTCCA
GTACAAAGCTGTCAGGCAGCCCCAAAGGTGCGGCAAACGCCGCCGCCACCGCCCCCACCATCACCACT
TTTCCAATCGTTCCCGCCATCGCAGGAATCAAATCCTCCCACTCGAAGCGGTAATCGCGAAAGGGCAG
GTTGGGCCGCCAGCGTTTTGGTTGCATAATCTGCAATTCATGTTCCAAATATTCGTCCCGCGTCGCAA
ATTCCGAAGCTGGACGGTGCAAATCCCGATAAGTCCCATTATGTTTTTCCATAACCTTCCTCCTTATA
TATCGCGCCTCGTAAAAGGGGCGCATGACTTTTCTTTTTGATACGGGCTGCGTTCGGAAGCCGTAACC
CCATTTAAAGCCCAAACAGGCAATAAAACCAATCTTTTTTTTTGATAACCATCATCCGGAAAACTGAT
ACAATTTACAAACCACTTGATTAAAAAGTTAATTTTCAGCAACAATCCACCTAAAAGATTTCGATTGC
ACAAATATAGAAAACATCCGCACAAGGAGGGATATATGGATGCCGTACAATTAAAATCATTTGTCGCC
GTCGCGCACGAGGGCAACCTTACCCAAGCCGCCAAACGACTTTTCCTTTCCCAGCCTGCCGTTTCTGC
CCAAATTAAAGCCCTTGAAGAATATGTCGGCACGCCGCTGTTCAGGCGCACGGGGAAAGGCATGGTAT
TGACGCGGGCGGGCGAAATACTGTTGCCCGAAGCGGAATCCCTGCTGCAATACAAACACAAGCTGGAG
CATTTTGCCAAAACGCTGGCAGGCGATTATTCGGAAGAGACCAGTTTGGGCATTATCCACCCCATCGA
TTCGGCAAAACTCGTCGCGCTGACGGACAATATCGGTCAAACAGCCCCCAAAACGCGCCTGCACATCC
AATACGGAATGAGCGGCGAAATCCTCTCGCGCATCCAACACAAAACCCTGCACGGCGGCTTTATACTC
GGCAACGCCGCCCAACGCGGCATCCGCAGCGTATTCCTGCAAAACCTGACCTACGCGCTGATTTGCCC
GCAAAGCCAATATCCCCATCTGACCCGCTCCCTTCCGCAGAGCCTGCAAGAATGCGTATGGATAGAAA
TGTCGGGCGTGTCCGGAAGTAGGAAGCACCTGCACCAGTTTTGGCGCAGCAACCGGCTCTCACCCAAA
AAACAGATCTTGTGCGACTACCCCCAAACCATTATCGATTTGGTTGCAGGCGGTATAGGTGTGGCAAT
GGTGCCGGGAAACAAAGCCGAAGCGGCGGCAAAAGAAGGCGCGGGCGTGGCTATTATCGAATCGTGCC
GCCACAGTATGCCGCTCAATTTCATTTATGCGGAAGAATACGAGGATAATCCCCACGTCTCACTCCTG
CTCGAGTGCATTGAAAAAGTATGGGGAGTGCAGGCGGTGCAGCCGCCCGTTGTCTCGGACAACTGAAA
TAAATCCTGCTTTGCTGATTGTTTTAAAATAGAAATTTGAATTTTATCACGCTGAAAACACTGAAAAC
GCCATCCGCATTCTCTCAAATACGGCTTAAAATGCCCTTTGGAAATGCCGTTATAGTGGATTAACAAA
AATCAGGACAAGGCGACGAAGCCGCAGACAGTACAAATAGTACGGAACCGATTCACTTGGTGCTTCAG
CACCTTAGAGAATCGTTCTCTTTGAGCTAAGGCGAGGCAACGCCGTACTGGTTTTTGTTAATCCACTA
TAAACTGACGCAAATACCGTTTTGCACAATTCCAAAAGTTTTCAATTCCGTTAATGCGATTTTGCCGT
TTGGCGAAATGCGTACTGTTCCAGTCGTGGATTGAACCCCCACCCTGTATAGTTCTTTCGAAGCATTG
GGGTATTGTTTTTTCAAAGCATCTTGGATTCGGATTTCAAGTGCAACACTAGTGTATTAGTGGTTGGA
ACAGATTCAAGAATAAAACACTTGGCGTTTCGTAGCCAAGTGTTTTTCTTGGTCGGTGGTTCAACTCA 

 

Figure 4.2-3: �MB1049 gene with its flanking regions used for constructing the 

mutant. 

The �MB1049 gene (blue) with the ATG start codon (green) and the TGA stop 

codon (red) and its flanking regions (black) give a product 2043 bp long. Primers 

NMB1049-for and NMB1049-rev were used (highlighted in yellow) to generate the 

knockout. The same primers were used for colony pick PCR screening in �. 

meningitidis. The two BspEI sites are also shown (highlighted in blue) with the two 

bases within which the restriction enzyme cuts (brown). 
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Following amplification of both genes using neisserial genomic DNA from �. 

meningitidis strain MC58 and GoTaq® DNA polymerase as described in Section 

2.3.1, the PCR products obtained corresponded to the expected fragment sizes of 

2081 bp for the �MB1048 gene and 2043 bp for the �MB1049 gene. Correct 

amplification of the genes was confirmed by agarose gel (Figure 4.2-4). The 

resulting blunt-ended PCR products were subsequently purified and cloned into the 

3519 bp pCR®-Blunt II-TOPO® vector (Invitrogen™), which contained a 

kanamycin resistance cassette (KanR). The vector was transformed into Escherichia 

coli DH5α by heat shock, and E. coli was then grown at 37 ºC on selective LB agar 

plates. Only bacteria with successfully transformed plasmids were able to grow in the 

presence of kanamycin. 

Mini-preparations of two colonies per transformed plated E. coli were grown in 

liquid LB medium with kanamycin overnight; bacteria were then harvested and 

plasmid DNA was purified as described in Section 2.3.4. Positive insertion of the 

genes of interest in the new plasmid was investigated at this stage by EcoRI 

restriction digest, as the pCR®-Blunt II-TOPO® vector contains two restriction sites 

just a few bases before and after the inserted genes under study. After restriction 

digest, two fragments were generated, one of which was the original 3.5 kb TOPO 

vector and the other corresponded to the inserted PCR product, which was just over 2 

kb in size for both genes under investigation (Figure 4.2-5). Sequencing results at 

this stage confirmed that both �MB1048 and �MB1049 genes have been inserted in 

the vector and that they were amplified correctly, without introducing any error. 
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Figure 4.2-4: PCR products of the �MB1048 and �MB1049 genes with their 

relative flanking regions from �. meningitidis MC58. 

The correct PCR products, fragments expected to be 2081 bp long for �MB1048 

(Lane A) and 2043 bp for �MB1049 (Lane B), were successfully amplified. The Q-

Step 4 Quantitative DNA ladder (YORBIO) (Lane L) was loaded on both gels to 

confirm the size of each DNA band. 

 

Figure 4.2-5: EcoRI screening for insertion of the genes �MB1048 and 

�MB1049 in the pCR
®

-Blunt II-TOPO
®
 vector. 

pCR®-Blunt II-TOPO® plasmids containing the genes under study, undigested and 

digested with EcoRI, were loaded on the gels. A: In the digested lane the top band 

corresponded to the 3.5 kb TOPO vector and the lower band corresponded to the 

�MB1048 gene. B: Partial digestion in lane E, where the top band corresponded to 

the undigested plasmid, the middle band was the 3.5 kb TOPO vector and the lower 

band was the �MB1049 gene. The Q-Step 4 Quantitative DNA ladder (YORBIO) 

(Lane L) was loaded on both gels to confirm the size of the DNA bands. U: 

undigested plasmid. E: plasmid digested with EcoRI. 
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Once confirmed that the pCR®-Blunt II-TOPO® vectors were containing the genes 

under study, these were digested with different restriction enzymes that would cut 

only within each gene. The �MB1048 gene was digested with ClaI and SspI, which 

would each cut just once within the gene, and the resulting fragment of 971 bp in 

length was eliminated, as shown in the gel and then confirmed by sequencing (Figure 

4.2-6A). The �MB1049 gene was digested with BspEI, the recognition site of which 

was present in two different locations within the gene, and a fragment size of 705 bp 

in length was eliminated, as shown in the gel and then confirmed by sequencing 

(Figure 4.2-6B). Two restriction enzymes, ClaI and BspEI, were creating sticky 

ended DNA, and therefore digests containing those enzymes were incubated with 

DNA Polymerase I (Klenow) and dNTPs during the last 30 minutes of the restriction 

digest incubation, in order to create the blunt ended DNA needed for ligation with 

the antibiotic resistance cassette. Both 4629 bp and 4857 bp fragments were then 

purified from the gel for ligation with the spectinomycin resistance gene cassette 

(Spec
R). 

The spectinomycin resistance gene cassette (Spec
R), also referred to as Ω cassette, 

was generated from the digestion of the pHP45Ω plasmid, about 4.3 kb in size, with 

the SmaI restriction enzyme. This digest created two fragments, the pHP45 plasmid 

which was 2320 bp long, and the spectinomycin resistance gene cassette which was 

1980 bp in size, as shown previously in Figure 3.5-8A. The 1980 bp fragment was 

purified from the gel for ligation with �MB1048 and �MB1049 genes. Successful 

ligation of the antibiotic resistance to each gene was needed in order to disrupt the 

function of the genes. 
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Figure 4.2-6: Restriction digests for the pCR
®
-Blunt II-TOPO

®
 vector and its 

inserts, genes �MB1048 and �MB1049 for generating the knockouts. 

pCR®-Blunt II-TOPO® plasmids containing the genes under study, undigested and 

digested with different restriction enzymes, were loaded on the gels. In the digested 

lanes (Lanes A and B) the top band corresponded to the 3.5 kb TOPO vector with 

part of the insert and the lower band corresponded to the deleted part of the gene 

under study. Lane A: plasmid digested with ClaI and SspI. Lane B: plasmid digested 

with BspEI, which cut twice within the gene. The Q-Step 4 Quantitative DNA ladder 

(YORBIO) (Lane L) was loaded on both gels to confirm the size of the DNA bands. 

U: undigested plasmid. A-B: plasmid digested with restriction enzymes. 

 

At this stage, the spectinomycin resistance cassette was ligated to the digested genes 

within the pCR®-Blunt II-TOPO® plasmids at room temperature overnight, and 

ligations were then transformed into E. coli DH5α by heat shock, as explained in 

Section 2.3.3. The mutants were selected by plating each transformation onto 

selective LB agar plates containing 50 µg / ml kanamycin and 50 µg / ml 
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spectinomycin. Mini-preparations of two colonies per transformation were grown in 

liquid LB medium with both antibiotics overnight, and plasmid DNA was then 

extracted and purified as described in Section 2.3.4. An agarose gel was run after 

restriction digest with BamHI for the genes knocked out with the spectinomycin 

resistance cassette, in order to check for successful ligations. The pCR®-Blunt II-

TOPO® vector has one recognition site for BamHI just before the location of 

insertion of the genes under study. The spectinomycin resistance cassette has two 

recognition sites for BamHI at either ends of the cassette. Positive ligation, therefore, 

resulted in three fragments, which corresponded to the 3.5 kb TOPO vector plus part 

of each gene investigated, the 2 kb spectinomycin resistance cassette, and a small 

fragment with the rest of the gene (Figure 4.2-7). 

Sequencing results of the new transformants confirmed that each gene was disrupted 

with the spectinomycin resistance cassette. The �MB1048 gene was inserted in the 

correct direction (plus / plus strand). The �MB1049 gene, however, was inserted in 

the 5’ to 3’ direction (plus / minus strand) compared to the database sequence 

(GenBank AE002098). A map of the pCR®-Blunt II-TOPO®plasmid showing the 

direction of insertion of each gene under study which was knocked out following 

ligation to the spectinomycin cassette is shown in Figure 4.2-8. Direction was 

confirmed by both sequencing data and fragment sizes derived from BamHI digest. 
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Figure 4.2-7: BamHI screening for insertion of the antibiotic resistance cassette 

in the constructed plasmids containing �MB1048 and �MB1049 genes. 

Both gels show the pCR®-Blunt II-TOPO® plasmids containing the genes under 

study disrupted with the spectinomycin cassette. In the digested lanes (Lanes B) the 

top band corresponded to the 3.5 kb TOPO vector with part of each gene under 

study, the middle band corresponded to the spectinomycin cassette and the lower 

band corresponded to the other part of each gene of interest. The Q-Step 4 

Quantitative DNA ladder (YORBIO) (Lane L) was loaded on all gels to confirm the 

size of the DNA bands. U: undigested plasmid. B: plasmid digested with BamHI. 
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Figure 4.2-8: Plasmid maps of the pCR
®
-Blunt II-TOPO

®
 vector containing the 

�MB1048 and �MB1049 genes knocked out by insertion of an antibiotic 

resistance cassette. 

Two BamHI sites are found in both sides of the 2 kb spectinomycin resistance 

cassette, and the third site is found just outside the location of insertion of the genes 

under study. Gray: pCR®-Blunt II-TOPO® vector. Gray arrow: gene belonging to the 

vector that confers resistance to kanamycin. Blue arrow: � meningitidis MC58 gene 

under investigation, and its direction of insertion into the plasmid. Pink arrow: gene 

that confers resistance to spectinomycin. Black vertical lines: BamHI cutting sites. 

 

Both successful gene knockouts were transformed into wild-type �. meningitidis 

strain MC58 following the TSB method, as described in Section 2.3.9. The mutant 

strains were selected on CBA plates containing 5 % horse blood and 50 µg / ml 

spectinomycin after overnight incubation at 37 ºC in a 5 % CO2 atmosphere. Several 

colonies grown on each plate were screened by colony pick PCR for disruption of the 

genes by insertion of the 2 kb antibiotic Figure 4.2-9. The original primers used for 

generating the knockouts were used for colony pick PCR for both �MB1048 and 

�MB1049 disrupted genes. 
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Picking from the actual transformation plates resulted in amplification of both �. 

meningitidis wild-type and mutant genes (an example with the �MB1049::Spec
R 

mutant is shown in Figure 4.2-10). Mutants grew overnight and showed several 

colonies on the CBA plate already the following day, except for the 

�MB1049::Spec
R mutant which needed two days incubation before showing any 

colonies from the original transformation plate. After picking several colonies and 

re-plating them into fresh plates, however, the wild-type band disappeared and only 

the bands for the mutant strains were visible, confirming that the genes being 

investigated were disrupted. The background wild-type band seemed to have been 

caused by the wild-type bacteria that did not transform but that were plated during 

the transformation process. 

 

Figure 4.2-9: Colony pick PCR screening for �MB1048 and �MB1049 genes 

disrupted with spectinomycin resistance cassette in �. meningitidis strain MC58. 

Lanes A1-A3: �MB1048::Spec
R mutants containing the 1980 bp spectinomycin 

resistance cassette (with the removed 971 bp fragment). Lanes B1-B3: 

�MB1049::Spec
R mutants containing the 1980 bp spectinomycin resistance cassette 

(without the 705 bp fragment from the gene, which had been previously removed). 

The Q-Step 4 Quantitative DNA ladder (YORBIO) (Lane L) was loaded on all gels 

to confirm the size of the DNA bands. WT: wild-type gene of �. meningitidis MC58 

under study. 
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Figure 4.2-10: Comparison of the colony pick PCR screening from the first plate 

after transformation into �. meningitidis and after re-plating. 

No colonies were visible in the first plate after transformation for colony pick PCR 

after overnight incubation, but three picks at random within the plate gave wild-type 

colonies (Plate – Day 1). After two days incubation, several colonies were grown, 

and three were picked (Plate – Day 2). The same three colonies were picked and re-

plated again the following day (Re-plate – Day 3). The wild-type background band 

has disappeared from the re-plated colonies. Lanes B1-B3: �MB1049::Spec
R mutants 

containing the 1980 bp spectinomycin resistance cassette. The Q-Step 4 Quantitative 

DNA ladder (YORBIO) (Lane L) was loaded on all gels to confirm the size of the 

DNA bands. WT: wild-type gene under study of �. meningitidis MC58. 

 

A knock-out of the �MB1049 gene with the chloramphenicol resistance cassette was 

also created, as shown in Appendix C. Investigations of this mutant, however, still 

need to be carried out. 

4.3 prpC and �MB1048 gene expression in �. meningitidis MC58 

under different growth conditions 

In this chapter, studies were carried out to investigate if the NMB1049 protein was 

responsible for regulating the expression of the prp gene cluster and the �MB1048 
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gene. Several RT-PCRs were performed to check the expression levels of the prpC 

gene, which is crucial to the 2-methylcitrate pathway, and the �MB1048 gene in 

MC58 wild-type, and expression was then compared to the one obtained from the 

�MB1049::Spec
R mutant strain. The data obtained from each study was calibrated 

with the wild-type bacteria grown for 6 hours in MHB which was not supplemented 

with propionic acid (control sample). The data was also compared and normalised to 

the housekeeping metK gene (�MB1799), which encodes S-adenosylmethionine 

synthetase, so that discrepancies due to different amounts of starting total RNA 

extracted from each sample could be eliminated. Data for the average fold change in 

expression of the triplicates that were set up in each 96-Well Optical Reaction Plate 

(Applied Biosystems) were plotted on a logarithmic scale in base 10. 

Initial RT-PCR results seemed to show that the NMB1049 protein was both up-

regulating the expression of �MB1048 and down-regulating prpC (�MB0431) gene 

expression. A preliminary model was built following these outcomes, where it was 

hypothesised that NMB1049, a hypothetical LysR-Type protein, was responsible for 

regulating both the prp gene cluster (genes �MB0430-�MB0435) and the divergently 

transcribed �MB1048 gene (Figure 4.3-1). The signal molecule was thought to 

involve C3 compounds, such as sodium pyruvate or propionic acid, as both genes 

under study were constantly highly expressed when wild-type bacteria were grown in 

the presence of sodium pyruvate or under propionic acid conditions. 
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Figure 4.3-1: Hypothetical model for genes regulated by ?MB1049. 

Model showing that the LysR protein, encoded by �MB1049, might up-regulate 

transcription of �MB1048 and down-regulate the expression of the prp operon when 

in the presence of a signal molecule. Gene numbers correspond to the numbering 

given in the MC58 complete genome, where the number within each arrow is 

preceded by “NMB” (NCBI GenBank accession number AE002098.2). 

 

Further data collection and analysis, however, showed that there was a lot of 

variability in gene expression within the same bacterial strains, even when they were 

run under the same conditions, when samples were collected and RNA was extracted 

on different days. This variability between sample repeats could be due to some or all 

of the steps carried out starting from sample collection after 6 hours incubation 

during growth to the cDNA run on a different 96-Well Optical Reaction Plate 

(Applied Biosystems) on an ABI 7000 Sequence Detection System Analyser 

(Applied Biosystems). Analysis was done as a relative quantification and was 

directly compared to the data that had been collected previously, therefore both 

experimental and machine-specific variability were to be kept into account. As the 

steps just described introduced a lot of variability in gene expression within each 

strain and under the same conditions, data collected in this way could not be used to 
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support the model. A few examples of the gene expression variability just described 

are clearly shown in Figure 4.3-2. In this specific case wild-type bacteria were grown 

for 6 hours in MHB over four different days. 

 

Figure 4.3-2: Variability of gene expression between independent repeats under 

the same conditions. 

In this example, four independent repeats for wild-type bacteria grown in MHB 

medium were measured for gene expression after 6 hours incubation. Each sample 

was both collected and run in different days and showed a lot of variability. The data 

was normalised with metK gene (encoding S-adenosylmethionine synthetase).           

-: MHB medium not supplemented with propionic acid. +: MHB medium 

supplemented with 5 mM propionic acid. 

 

In order to overcome all the variability seen in gene expression due to the samples 

being collected after 6 hours incubation from a number of independent growth 

curves, the data for each culture was now collected several times over a period of 12 
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hours. 1 ml aliquot was removed from each culture after 4 hours incubation, and 

every 2 hours following that, until the last 12 hours samples were collected. Total 

RNA was then extracted and an RT-PCR was run with the newly reverse transcribed 

cDNA, as described in Sections 2.3.12 – 2.3.14. 

Wild-type bacteria that were initially grown in Mueller Hinton Broth (MHB) 

medium with propionic acid showed a gradual increase in both prpC and �MB1048 

gene expression, despite not using propionic acid for growth. Interestingly, the 

culture that was grown without this fatty acid also behaved similarly. The gradual 

increase seen with the �MB1048 expression, however, was more pronounced as it 

reached over 20-fold up-regulation. The �MB1049::Spec
R mutant strain showed 

similar gene expression for prpC. However, expression of �MB1048 was induced to 

a much lower extent in the �MB1049 deficient mutant (Figure 4.3-3A). 

Wild-type bacteria grown in minimal media had a higher expression of the �MB1048 

gene earlier in the growth curve compared to the rich medium. Bacteria incubated in 

CDM with 2.5 mM glucose showed a similar pattern of prpC expression to the ones 

grown in MHB. Expression in this second case, however, started earlier, as after 8 

hours growth its levels were significantly higher than in MHB. Expression level was 

also very pronounced, as a 40-fold (without propionic acid) or a 20-fold (when the 

medium was supplemented with propionic acid) increase in expression was seen. 

�MB1048 gene expression, instead, was high throughout the whole growth curve, 

and reached a 65-fold (without propionic acid) or a 30-fold (with propionic acid) 

increase. In this case, prpC expression in the �MB1049::Spec
R mutant strain was 

comparable to the one for the wild-type bacteria, whereas �MB1048 expression was 

considerably lower in all the time points measured (Figure 4.3-3B). A major increase 
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in expression level, particularly with the prpC gene, happened between 6 hours and 8 

hours growth, and this corresponded to the turning point seen at 8 hours, when wild-

type bacteria had already started to utilise propionic acid for supporting growth 

instead of entering the stationary phase. 

In CDM with 5 mM sodium pyruvate, both prpC and �MB1048 genes in wild-type 

bacteria were highly induced during the whole growth: a large amount of expression 

of both genes was already obvious when the first sample was collected after 4 hours 

incubation. prpC expression varied between 5 and 25-fold, whereas NMB1048 

expression was usually higher and varied between 6 and 75-fold (except for one data 

point) when compared to the calibrator. Once more, the expression of the prpC gene 

in the �MB1049::Spec
R mutant strain was comparable to the one for the wild-type 

bacteria, whereas �MB1048 expression was considerably lower in all the time points 

measured (Figure 4.3-3C). The high levels of gene expression seen at all times for 

both genes in wild-type bacteria might be explained by the fact that bacteria find 

pyruvate to be a poor carbon substrate for growth, and therefore started to catabolise 

propionic acid sooner, as an extra source of carbon. In fact, bacteria that were not 

supplied with propionic acid, when grown in this medium, started to die already after 

only 5 or 6 hours incubation. Alternatively, the constantly high expression level of 

the prpC gene throughout the period of growth in pyruvate can explain the early 

utilisation of propionic acid in these cultures, compared to cultures grown in CDM 

with glucose or in MHB, where expression was lower. 
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Figure 4.3-3: Average fold change of prpC and �MB1048 gene expression in �. 

meningitidis MC58 wild-type and �MB1049::Spec
R
 mutant strain. 

Relative expression of prpC (2-methylcitrate synthase) and �MB1048 was plotted 

for wild-type cultures grown in MHB (A) and in CDM with 2.5 mM glucose (B) or 5 

mM sodium pyruvate (C) with 0 or 5 mM propionic acid. Data was normalised with 

metK (S-adenosylmethionine synthetase) and was calibrated with the wild-type 

culture that was grown for 6 hours in MHB without propionic acid. Expression of 

prpC and �MB1048 increased throughout the time course, and this was independent 

on the absence / presence of propionic acid. prpC expression level was similar in 

wild-type and �MB1049::Spec
R mutant. �MB1048 expression level was 

considerably lower in the �MB1049::Spec
R mutant. - / +: growth media with 0 / 5 

mM propionic acid added at the start. 
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Both prpC and �MB1048 gene expressions were higher when nutrient availability 

was poor. In fact, when �. meningitidis was entering stationary phase or when the 

growth medium did not have a good carbon substrate, these genes were always 

highly expressed. As a consequence, it could be deduced that prpC and �MB1048 

were co-regulated, but also that prpC was not regulated by NMB1049, as there was 

no change in prpC expression between the wild-type and the �MB1049::Spec
R 

mutant. A new model was therefore built following these results, where NMB1049, a 

hypothetical LysR-Type protein, was only found responsible for regulating the 

divergently transcribed �MB1048 gene (Figure 4.3-4). The idea that the signal 

molecule, which was thought to involve C3 compounds such as sodium pyruvate or 

propionic acid in preliminary studies, could involve propionic acid was now 

discarded, as the �MB1048 gene under investigation did not have any significant 

changes in expression due to the presence or absence of this short fatty acid. 

 

Figure 4.3-4: Actual model for genes regulated by ?MB1049. 

LysR protein, encoded by �MB1049, up-regulates transcription of �MB1048 when 

in the presence of a signal molecule. 1048 corresponds to �MB1048, whose 

nomenclature was given in the MC58 complete genome (NCBI GenBank accession 

number AE002098.2). 

 

1048       lysR 

LTTR operon

signal LysR
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Preliminary results showed that NMB1049 was likely to be a repressor of the prp 

operon, as in the �MB1049::Spec
R mutant strain expression of prpC was higher than 

in wild-type bacteria. This hypothesis, however, was studied further because of the 

high variability between experiments, and was soon discarded when gene expression 

was measured as a time course. Time course gene expression, in fact, showed that 

prpC was always similarly expressed in both bacterial strains under investigation. 

The uncharacterised pathogenic island under study is composed of genes �MB1048 

and �MB1049. NMB1049 has similarity to a LysR-Type transcriptional regulator 

(LTTR), as it contains the two functional domains typical of LTTR proteins, the N-

terminal Helix-Turn-Helix domain and the C-terminal substrate-binding domain. 

LTTRs typically regulate genes that are adjacent and transcribed divergently in the 

genome. �MB1048 is adjacent and divergently transcribed to �MB1049. Moreover, 

�MB1048 gene expression has been shown to be more up-regulated in the wild-type 

strain, as the mutant strain deficient in �MB1049 did not have such high expression. 

For this reason, it can be hypothesised that NMB1049 is an activator of �MB1048. 

This 2-genes pathogenic island could be facilitating transport into the bacterial cell of 

the C3 compound sodium pyruvate. NMB1048, in fact, has similarity to an 

uncharacterised putative transmembrane protein. When wild-type �. meningitidis 

bacteria were grown in minimal medium and especially when in the presence of 

sodium pyruvate, there was a constant up-regulation of the expression of �MB1048, 

whereas in the �MB1049::Spec
R mutant the expression of �MB1048 was induced to 

a much lower extent. 



Chapter 4 – Investigations of a pathogen-specific genetic island in �. meningitidis 

172 
 

4.4 Effects of the different media on growth of �. meningitidis 

To test if NMB1048 can be a sodium pyruvate transporter and to confirm the results 

shown in the previous section, which were suggesting that the prp operon was still 

fully functional and that propionic acid did not have any effects on this 

uncharacterised pathogenic island composed of genes �MB1048 and �MB1049 as 

the �MB1049::Spec
R mutant did not have any effect on the expression of prpC, �. 

meningitidis MC58 wild-type, �MB1048::Spec
R and �MB1049::Spec

R strains were 

grown in all media with or without propionic acid.  

Bacteria were incubated in Mueller Hinton Broth (MHB) medium with 10 mM 

NaHCO3 at 37 °C with shaking at 200 rpm for 24 hours. Growth was monitored by 

taking optical density measurements for triplicate cultures at 600 nm every 60 

minutes. The results showed that all three strains were able to grow, and grew 

steadily, independently on the addition of propionic acid into the culture (Figure 

4.4-1). Inactivation of �MB1048 or �MB1049 genes was therefore not fatal and did 

not increase sensitivity to 5 mM propionic acid in the mutant strains, as shown in the 

previous chapter. 
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Figure 4.4-1: Growth curve for wild-type, prpC, �MB1048 and �MB1049 

mutant strains of �. meningitidis MC58 in rich medium with propionic acid. 

All strains of bacteria grown in Mueller Hinton Broth medium supplemented with 

none or 5 mM propionic acid grew steadily. 

 

As no significant differences were noticed between wild-type and the mutant strains 

when grown in rich medium, further studies were carried out in Chemically Defined 

Medium (CDM), which was prepared as described in Table 2.2.4-1. In CDM with 

2.5 mM glucose wild-type, �MB1048::Spec
R and �MB1049::Spec

R bacteria grew 

similarly when no propionic acid was added: all strains reached stationary phase after 

approximately 8 hours incubation and started to die afterwards, suggesting that 

carbon depletion was initiating at that point. Bacteria that were grown with the 

addition of 5 mM propionic acid, however, were able to continue their growth and 

did not enter stationary phase, except for the prpC::Spec
R mutant (Figure 4.4-2A). 

These results suggested that propionic acid could supplement growth in �. 

meningitidis and, despite inactivation of genes �MB1048 and �MB1049, propionic 
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acid was still utilised. This behaviour confirmed that both genes belonging to the 

uncharacterised island under investigation were not directly involved in propionic 

acid catabolism. At this stage, new studies were carried out with CDM containing 5 

mM sodium pyruvate. Compared to glucose, a double concentration of pyruvate was 

used in order to keep the number of carbon atoms added identical between the two 

minimal media. In this way, any divergence in phenotype between the two strains 

and the different media was easier to compare.  

When grown in CDM supplemented with 5 mM sodium pyruvate and 5 mM 

propionic acid all bacteria grew continually for a period of over 10 hours, except for 

the prpC::Spec
R mutant strain which started to die after approximately 6 hours 

incubation, and this growth was comparable to when bacteria were grown in minimal 

medium with glucose and propionic acid. In the absence of propionic acid, all strains 

started to die after approximately 6 hours incubation, like the prpC::Spec
R mutant 

that was unable to use propionic acid as an extra carbon source (Figure 4.4-2B). The 

optical density of bacteria grown in CDM with sodium pyruvate was considerably 

lower compared to the one measured for CDM with glucose: bacteria incubated 

without propionic acid grew to an OD of 0.8 - 1 with glucose and only 0.4 with 

pyruvate. Therefore, sodium pyruvate was demonstrated to be not as good a substrate 

for �. meningitidis growth as glucose, and the effect of added propionic acid could 

be very clearly seen. Sodium pyruvate appeared to be utilised at the same rate in 

wild-type and the mutant strains, as growth and doubling time was comparable. This 

suggested that �MB1048::Spec
R and �MB1049::Spec

R mutant strains were probably 

not directly involved in the transport of sodium pyruvate. 
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Figure 4.4-2: Growth curves for wild-type, prpC, �MB1048 and �MB1049 

mutant strains of �. meningitidis MC58 in CDM media with propionic acid. 

All bacterial strains grown in both minimal media used propionic acid as an extra 

carbon source for continued growth, with the exception of the prpC::Spec
R mutant 

strain. 

 

Both �MB1048::Spec
R and �MB1049::Spec

R mutants grew in a similar way as the 

wild-type MC58 strain in all media and under all conditions investigated. Moreover, 

from the figures shown above, all strains showed a similar doubling time when their 

0.000

0.200

0.400

0.600

0.800

1.000

1.200

0 2 4 6 8 10 12 14 16 18 20 22 24

O
D

6
0

0

Time [h]

0.000

0.200

0.400

0.600

0.800

1.000

1.200

1.400

1.600

0 2 4 6 8 10 12 14 16 18 20 22 24

O
D

6
0

0

Time [h]

WT  +

prpC::Spec  +

�MB1048::Spec  +

�MB1049::Spec  +

WT  -

prpC::Spec  -

�MB1048::Spec  -

�MB1049::Spec  -

SpecR+

SpecR -

SpecR+

SpecR -

SpecR+

SpecR -

B: growth in CDM + 5 mM Na pyruvate

A: growth in CDM + 2.5 mM glucose

WT  +

prpC::Spec  +

�MB1048::Spec  +

�MB1049::Spec  +

WT  -

prpC::Spec  -

�MB1048::Spec  -

�MB1049::Spec  -

SpecR+

SpecR -

SpecR+

SpecR -

SpecR+

SpecR -



Chapter 4 – Investigations of a pathogen-specific genetic island in �. meningitidis 

176 
 

growth was compared to the same medium with or without propionic acid during the 

exponential growth phase. Similarity in doubling time was confirmed and fell within 

the values from Table 4.4-1, where the actual doubling times calculated were 

extrapolated from at least 4 independent datasets. The same datasets were also 

plotted visually, where it was easier to compare the doubling times for each growth 

medium. Doubling times were significantly shorter in rich MHB medium 

(approximately 80 minutes), but were similar within the two chemically defined 

media (approximately 100 minutes) (Figure 4.4-3). The doubling time for each 

dataset was extrapolated in the same way as described in Figure 3.6-5. 

Table 4.4-1: Doubling time of MC58 wild-type, �MB1048::Spec
R
 and 

�MB1049::Spec
R
 mutant strains of �. meningitidis in the three different growth 

media with the addition of propionic acid, during exponential growth phase. 

The summary of the doubling times was obtained from at least 4 independent sets of 

data for each strain. All strains showed a shorter time of duplication when grown in 

rich medium compared to minimal medium. Doubling time of all strains grown in 

either minimal medium was not significantly different. -: growth medium not 

supplemented with propionic acid. +: growth medium supplemented with 5 mM 

propionic acid. 

 

Doubling time 

Strain            [hours] 

Average in 

MHB 

Average in 

CDM+glucose 

Average in 

CDM+pyruvate 

MC58 WT - 1.27 ± 0.12 1.72 ± 0.19 1.76 ± 0.19 

MC58 WT + 1.31 ± 0.06 1.59 ± 0.14 1.76 ± 0.17 

�MB1048::Spec
R - 1.30 ± 0.09 1.56 ± 0.25 1.70 ± 0.07 

�MB1048::Spec
R + 1.21 ± 0.15 1.62 ± 0.19 1.76 ± 0.15 

�MB1049::Spec
R - 1.24 ± 0.13 1.66 ± 0.13 1.56 ± 0.13 

�MB1049::Spec
R + 1.17 ± 0.14 1.50 ± 0.11 1.57 ± 0.20 
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Figure 4.4-3: Doubling time of MC58 wild-type, �MB1048::Spec
R
 and 

�MB1049::Spec
R
 mutant strains of �. meningitidis in the three different growth 

media. 

A: Doubling time for growth in rich medium (MHB). B: Doubling time for growth in 

minimal medium, CDM with 2.5 mM glucose. C: Doubling time for growth in 

minimal medium, CDM with 5 mM sodium pyruvate. A minimum of 4 independent 

sets of data were used for extrapolating the average doubling time of each strain. 

Doubling time was extrapolated from the exponential growth. All three strains 

showed similar doubling times when the strains were compared within the same 

growth medium, independently of the presence or absence of propionic acid. -: 

growth medium not supplemented with propionic acid. +: growth medium 

supplemented with 5 mM propionic acid. 
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bacteria, the hypothesis that propionic acid could still be used by the mutants was 

still valid. 

4.5 Effects of propionic acid on �MB1048 

As shown in the previous section, propionic acid does not have any direct effects on 

the uncharacterised pathogenic island composed of genes �MB1048 and �MB1049, 

and appears to be utilised as an extra source of carbon during late exponential phase 

in �. meningitidis MC58 wild-type, �MB1048::Spec
R and �MB1049::Spec

R mutants 

when bacteria were grown in minimal medium. To confirm these findings, samples 

from all growth media were collected every 60 minutes, and the content of propionic 

acid was measured by gas chromatography (GC). 

When incubated in Mueller Hinton Broth medium, neither wild-type bacteria nor 

prpC::Spec
R, �MB1048::Spec

R nor �MB1049::Spec
R mutant strains used the 

propionic acid that was supplemented in the medium (Figure 4.5-1). All strains 

entered quickly the exponential growth phase and did not need to utilise propionic 

acid for enhancing bacterial growth, as the medium was already rich in carbon. 

Major differences, however, were seen when bacteria were grown in Chemically 

Defined Medium (CDM) with either 2.5 mM glucose or 5 mM sodium pyruvate 

supplemented with 5 mM propionic acid. MC58 wild-type bacteria started to use 

propionic acid after 5 to 6 hours incubation, independently of the CDM used (Figure 

4.5-2). Growth curves from the previous section (Figure 4.4-2) showed that wild-

type bacteria supplemented with propionic acid followed enhanced growth, thus 

avoiding entering stationary phase, after approximately 7-8 hours in CDM with 

glucose, and already after 5-6 hours in CDM with pyruvate. This meant that 
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propionic acid utilisation began in late exponential / stationary phase in CDM 

supplemented with glucose, and concomitant with entry into stationary phase in 

CDM supplemented with pyruvate. 

 

Figure 4.5-1: Propionic acid was not utilised in rich medium. 

Gas chromatography results for �. meningitidis MC58 wild-type and all mutant 

strains tested showed that the amount of propionic acid in MHB medium remained 

constant throughout the 24 hours incubation period. 
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Figure 4.5-2: Propionic acid was utilised in minimal media. 

Concentration of propionic acid versus time for bacteria grown in CDM media with 

2.5 mM glucose (A) and 5 mM sodium pyruvate (B), with or without addition of 5 

mM propionic acid. In both panels, gas chromatography results showed that 

propionic acid supplemented in both chemically defined media was utilised by all 

strains tested, with the exception of the prpC::Spec
R mutant, and was completely 

depleted after 24 hours growth. Controls where no propionic acid was added showed 

that propionic acid was not present throughout the growth curve for any bacteria. -: 

No propionic added to the medium. +: 5 mM propionic acid added at the start. 

B: growth in CDM + 5 mM Na pyruvate

A: growth in CDM + 2.5 mM glucose
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Samples taken from all strains tested in the absence of propionic acid showed that no 

propionic acid was detected throughout the whole growth curve, demonstrating that 

propionic acid is not synthesised under any experimental conditions that were 

investigated in this work. When 5 mM propionic acid was added into either minimal 

media, there was no significant difference in propionic acid utilisation between wild-

type and both �MB1048::Spec
R and �MB1049::Spec

R mutant bacteria, suggesting 

that the absence of this uncharacterised pathogenic island did not have any direct 

negative influence on the functioning of the 2-methylcitrate pathway. 

4.6 Studies of the �. meningitidis double mutant for genes 

�MB0432 and �MB1048 

�MB1049, which encodes a putative LTTR protein, has been shown in this chapter 

to be involved in the regulation of the �MB1048 gene. �MB1048, which encodes a 

putative transmembrane protein, has been speculated here to be involved in the 

transport of sodium pyruvate, as gene expression showed that this gene was highly 

expressed in wild-type but not in the �MB1049::Spec
R mutant strain when grown in 

minimal medium supplemented with sodium pyruvate. Despite inactivation of 

�MB1048 or �MB1049, however, sodium pyruvate appeared to be still used at a 

similar rate. This meant that the absence of the putative transporter NMB1048 did 

not appear to have any negative influence on sodium pyruvate uptake. 

One possible explanation on why the absence of �MB1048 did not seem to have any 

effect in the transport of sodium pyruvate could be due to this putative transporter 

being redundant and replaced by another transporter. The uncharacterised �MB0432 

gene belonging to the prp gene operon, which is a putative transporter and has been 

demonstrated to be directly involved in the 2-methylcitrate pathway and to be crucial 
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for propionic acid metabolism in Chapter 3, could be a C3 compound transporter for 

propionic acid and sodium pyruvate. Therefore, a strain containing disrupted copies 

of both �MB0432 and �MB1048 genes might grow poorly on sodium pyruvate. 

To understand if �MB0432 and �MB1048 genes were involved in sodium pyruvate 

transport, a double mutant for both genes was created. The double mutant was 

constructed as described in Section 2.3.9. During the TSB transformation, however, 

wild-type bacteria were replaced with the �MB1048::Spec
R mutant strain, which was 

spread on CBA plates containing 5 % Defibrinated Horse Blood (TCS biosciences) 

and 50 µg / ml spectinomycin. The gene to be inserted into this strain was the 

�MB0432 that was previously disrupted with tetracycline (described in Section 3.5). 

The new transformants were spread onto CBA plates containing also 2.5 µg / ml 

tetracycline. Double mutants were screened by PCR, where several colonies grown 

on the plate were picked twice, once for checking that the gene �MB1048 was 

actually disrupted with spectinomycin, and once for verifying positive insertion of 

the �MB0432 gene containing the tetracycline resistance cassette. New stocks for 

this �MB0432::Tet
R-�MB1048::Spec

R double mutant strain were stored at - 80 ºC. 

Growth curves under the same conditions tested with the �. meningitidis MC58 wild-

type and the mutant strains for �MB0432 and �MB1048 were investigated, and in 

rich medium the new double mutant grew similarly to all the bacteria tested over the 

13 hours incubation period, showing that absence of the two genes at the same time 

was not fatal. When grown in chemically defined medium with 5 mM of both sodium 

pyruvate and propionic acid, the double mutant strain showed the same phenotype as 

the �MB0432::Tet
R mutant, and this meant that it was not able to catabolise 

propionic acid.  Moreover, the double mutant grew at the same rate as wild-type 
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bacteria in the absence of propionic acid, therefore sodium pyruvate was probably 

entering the cell and being used normally (Figure 4.6-1). 

At this stage, propionic acid utilisation within the CDM medium containing pyruvate 

was investigated with gas chromatography. As expected from the growth curve 

results and from the identical behaviour noticed with the �MB0432::Tet
R strain, the 

double mutant was not able to catabolise propionic acid, unlike the wild-type and the 

�MB1048::Spec
R mutant bacteria (Figure 4.6-2). 

 

Figure 4.6-1: Growth curve of MC58 �. meningitidis wild-type, �MB0432::Tet
R
 

and �MB01048::Spec
R
 compared to the double mutant. 

Propionic acid was necessary for continued growth of wild-type �. meningitidis and 

�MB01048::Spec
R in minimal medium. The other two mutant strains that were 

grown either with or without supplementation of propionic acid, as well as the wild-

type and mutant for �MB1048 that were grown with no propionic acid, all entered 

stationary and death phase several hours earlier. The double mutant had the same 

phenotype as the single mutants for �MB0432. -: CDM medium with 5 mM sodium 

pyruvate and no supplementation of propionic acid. +: CDM medium with 5 mM 

sodium pyruvate and 5 mM propionic acid added at the start of the bacterial growth. 
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Figure 4.6-2: Propionic acid utilisation in MC58 �. meningitidis wild-type, 

�MB0432::Tet
R
 and �MB01048::Spec

R
 compared to the double mutant. 

Propionic acid was utilised only by the wild-type and �MB01048::Spec
R strain 

grown in 5 mM propionic acid. The double mutant strain, like the �MB0432::Tet
R
 

strain, was not able to catabolise it. -: CDM medium with 5 mM sodium pyruvate 

and no supplementation of propionic acid. +: CDM medium with 5 mM sodium 

pyruvate and 5 mM propionic acid added at the start of the bacterial growth. 
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�MB0432::Tet
R mutant, instead, had all genes downstream of �MB0432 only 

slightly down-regulated, as the tetracycline resistance cassette does not contain 

transcriptional terminators (Heurlier et al., 2008). Further investigations need to be 

carried out, as this was based on samples taken on one single occasion and run in 

triplicates (Figure 4.6-3). 

 

Figure 4.6-3: Average fold change in expression of several genes from the prp 

gene cluster in wild-type and mutant strains in �. meningitidis MC58. 

All cultures were grown in Chemically Defined Medium with 5 mM sodium 

pyruvate with (+) or without (-) supplementation of 5 mM propionic acid, and 

samples were collected after 6 hours growth. Data was normalised with the metK 

gene and was calibrated with the wild-type culture that was grown for 6 hours in 

MHB without addition of propionic acid. Level of expression of each gene depended 

on the strain tested. The double mutant shows a net decrease of gene expression, and 

this includes the prpC (�MB0431) gene. ND: no data collected for �MB0434 in 

�MB1048::Spec
R mutant. 
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Down-regulation of expression of the genes tested (�MB0431-�MB0434) belonging 

to the prp operon in the �MB0432::Tet
R
-�MB01048::Spec

R double mutant compared 

to the wild-type and single mutants could be suggesting that the putative �MB0432 

and �MB1048 transporters can compensate for each other’s absence regarding the 

expression of the prpC gene. Why exactly this happens, however, is still unclear, as 

it has been shown not to depend on sodium pyruvate. 

4.7 prpC and �MB1048 gene expression in enriched growth 

medium 

prpC and �MB1048 gene expression for wild-type bacteria that were grown in both 

rich and minimal medium after supplementation of Vitox was investigated. �. 

meningitidis was grown for 6 hours and samples were collected, RNA extracted and 

reverse transcribed to cDNA as described in Sections 2.3.12 – 2.3.14. Vitox (Oxoid) 

is a commercially available culture medium supplement and was added at the 

manufacturer’s recommended concentration in all three growth media (MHB and 

CDM with either glucose or sodium pyruvate). Laboratory Vitox was prepared by 

adding each component to the same final concentration as the commercial Vitox. The 

concentration of each component is described in Table 2.2.4-2. The data collected 

from the RT-PCR run were calibrated with the wild-type bacteria grown in MHB 

without propionic acid, and were normalised to the housekeeping metK gene 

(�MB1799). 

As already shown in Figure 4.3-3, expression of both genes after 6 hours growth was 

considerably lower in Mueller Hinton Broth (MHB) medium when compared to 

CDM containing 5 mM sodium pyruvate. This result indicated that expression of 

prpC and �MB1048 genes was greater when bacteria were grown in a poor medium. 
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When commercial Vitox (Oxoid) was added to the media under investigation, 

expression of both genes was down-regulated even further, as Vitox contains 

essential growth factors. However, when laboratory Vitox or the split components, 

which are composed of only a few chemicals present in the Vitox, were tested, both 

genes were up-regulated as much as when wild-type bacteria were grown in minimal 

medium with sodium pyruvate. Laboratory-made Vitox appeared not to have any 

effect on bacterial growth (Figure 4.7-1). 

The same phenotype for prpC gene expression was seen in both wild-type and 

�MB01049::Spec
R mutant. The second gene under study, which is �MB1048, was 

down-regulated in the mutant when compared to the wild-type under the same 

conditions. In the mutant strain, however, a modest up-regulation was seen in 

minimal medium when grown in the presence of either the commercial or the 

laboratory-made Vitox. �MB1048 expression in the mutant was similar to the one 

seen in rich medium with or without addition of Vitox (Figure 4.7-1B). 
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Figure 4.7-1: Average fold change of prpC and �MB1048 gene expression in 

growth media enriched with Vitox. 

Relative expression of prpC (2-methylcitrate synthase) and the putative �MB1048 

was plotted for wild-type and �MB01049::Spec
R mutant cultures grown in MHB 

(Vm), in CDM with glucose (Vg) and in CDM with sodium pyruvate (V1-V3, 3 

independent repeats) enriched with commercial Vitox; in CDM with sodium 

pyruvate and laboratory prepared Vitox (1) with freshly prepared components each 

time; and in CDM with sodium pyruvate and some of the components present in 

Vitox: adenine and guanine (in lane A) and vitamin B12, PABA, cocarboxylase, 

thiamine hydrochloride (in lane B). prpC gene expression was always down-

regulated when using commercial Vitox, but remained unchanged when laboratory 

Vitox and split components were used. �MB1048 gene expression was down-

regulated with commercial Vitox in wild-type bacteria but increased about two-fold 

compared to the calibrator in the �MB01049::Spec
R mutant. The control (last lane) 

was wild-type bacteria grown in CDM with 5mM pyruvate. Data was normalised 

with metK (S-adenosylmethionine synthetase) and was calibrated with the wild-type 

culture that was grown for 6 hours in MHB without propionic acid. 
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prpC and �MB1048 gene expression were higher when nutrient availability was 

poor, and this was confirmed in wild-type bacteria by a significant down-regulation 

of both genes in all media containing commercially available Vitox. Interestingly, 

though, expression was not affected when all components of Vitox were made up in 

the laboratory, despite having added them into the growth medium at the same 

concentration found in the commercial Vitox. 

4.8 Discussion 

In this chapter the uncharacterised pathogenic island from �. meningitidis strain 

MC58, composed of the �MB1048 and �MB1049 genes, was investigated. A 

BLAST search revealed that this pathway is rare in other �eisseria spp. but is always 

present in �. meningitidis strains. 

�MB1048 encodes a protein that has similarity to the DUF3360, a family of 

uncharacterised proteins which are probably transporters. Putative transmembrane 

helices for �MB1048 were predicted using a transmembrane helices programme 

based on a hidden Markov model (TMHMM) (Appendix E). TMHMM outputs 

predicted 11 transmembrane helices and suggested that the N-terminal is located 

outside and the C-terminal is located in the cytoplasm. �MB1049 encodes a putative 

LysR-Type transcriptional regulator. LTTRs are known to up-regulate their adjacent 

gene, which is divergently transcribed within the genome. In this case the divergently 

transcribed gene from �MB1049 is �MB1048. 

Knockouts for �MB1048 (�MB1048::Spec
R) and �MB1049 (�MB1049::Spec

R) 

were created in this work, and they both showed the same phenotype as the wild-type 

bacteria under any conditions tested. Growth curves and gas chromatography 
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analysis confirmed that the mutants did not need propionic acid to grow in rich 

medium, but they were able to use propionic acid for optimal growth in minimal 

medium. 

As already mentioned in Chapter 3, expression of the genes belonging to the 2-

methylcitrate pathway might be controlled by poor nutrient availability, as propionic 

acid started to be utilised earlier when in the presence of a poor carbon source. This 

hypothesis was further confirmed in this chapter, as prpC gene expression was 

constantly high in minimal medium. �MB1048 gene expression led to similar results 

in the wild-type strain, as the gene was highly up-regulated in a similar manner as 

prpC. In the �MB1049::Spec
R mutant strain, prpC showed to have the same 

regulation as in wild-type bacteria, but expression of �MB1048 was consistently 

lower than in the wild-type bacteria. These results indicated that the putative LTTR 

encoded by �MB1049 is responsible for regulating expression of �MB1048 but not 

prpC. 

prpC and therefore �MB0432, as the latter gene always has similar expression as 

prpC, and �MB1048 were always highly up-regulated in minimal medium, 

especially when the medium was supplemented with sodium pyruvate. Both 

�MB0432 and �MB1048 encode for proteins that have putative functions, and could 

be transporters. As they were regulated similarly, a double mutant was created 

(�MB0432::Tet
R-�MB1048::Spec

R mutant). �MB1048, encoding a putative 

transmembrane protein, was thought to be replaced, at least partially, by another 

gene, �MB0432. This second gene, �MB0432, has been confirmed to be 

fundamental for propionic acid metabolism in Chapter 3 and it encodes a protein that 

has similarities to putative transporters. The �MB0432 gene, containing a predicted 
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permease domain, might be a late addition to the prp gene cluster of �eisseria for 

helping these bacteria acquiring propionic acid, due to the specific niche where these 

bacteria live. However, as these genes were highly expressed in minimal media, 

especially in the presence of sodium pyruvate, and because they both have 

similarities to transporters, it was hypothesised in this work that they could both be 

involved and have overlapping functions in the transport of the C3 compound 

sodium pyruvate. Growth curves showed that absence of both genes simultaneously 

was not lethal. Gas chromatography revealed that propionic acid was not utilised, as 

it was already seen with the �MB0432::Tet
R strain. 

prpC gene expression was constantly highly regulated after 6 hours incubation in 

minimal medium with sodium pyruvate, independently of the supplementation of 

propionic acid in the medium, in all strains tested with the exception of the double 

mutant. In this strain, all downstream genes from, and including the prpC gene 

(�MB0431-�MB0434), were shown to be down-regulated. The strain deficient in 

�MB1048, instead, had all genes up-regulated like the wild-type bacteria and the 

strain deficient in �MB0432 had the genes downstream of the prpC (�MB0431) only 

slightly down-regulated, as the tetracycline cassette has no transcriptional 

terminators (Heurlier et al., 2008). Despite not being regulated by NMB1049, both 

prpC and �MB1048 appeared to be co-regulated. Low expression of both genes in 

the double mutant could indicate that �MB0432 and �MB1048 are possibly 

compensating for each other, as expression of either of the two genes in the 

�MB0432::Tet
R and �MB1048::Spec

R mutants is high and similar to the wild-type 

bacteria. 
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A possibility as to why both prpC and �MB1048 genes are highly up-regulated in the 

wild-type strain in minimal medium could be explained by a fairly recent study, 

where it was discovered that �MB0573 is responsible for up-regulating both prpC 

and �MB1048 (Ren et al., 2007). �MB0573 encodes the Lrp protein (leucine-

responsive regulatory protein), which is a global regulator that consists of an 

adaptive response to nutrient poor conditions. The expression of �MB1048, 

therefore, is activated by both NMB1049, as shown in this work, and Lrp. Whilst the 

regulation of �MB1048 and prpC is similar in response to growth conditions, co-

regulation of both genes could also be explained by Lrp. 
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Chapter 5  - Investigations of a pathogen-

specific regulator in �. meningitidis 

5.1 Introduction 

There are 9 conserved genetic islands which are found in all �eisseria meningitidis’ 

strains, but are absent from its closely related commensal �eisseria lactamica. One 

amongst these islands is composed of two genes (�MB1048 and �MB1049 in �. 

meningitidis MC58) that are divergently transcribed. This island has been previously 

described in Section 1.7.2 and in Chapter 4. 

When subjected to BLAST, NMB1048 was shown to belong to a family of bacterial 

proteins that are functionally uncharacterised. The sequence of NMB1049, however, 

resulted in specific hits for two conserved domains that are always present in LysR-

Type transcriptional regulators: the Helix-Turn-Helix (HTH) domain and the LysR-

Type transcriptional regulator (LTTR) substrate-binding domain (Figure 5.1-1). The 

HTH domain recognises and binds to the DNA that is regulated by this protein, 

whereas the LTTR substrate-binding domain is responsible for the different 

regulation of the gene to which it has bound, thanks to a co-factor binding motif 

(Schell, 1993). The LTTR protein can usually have a dual activity, meaning that it 

can both up-regulate a certain gene or cluster of genes and down-regulate a different 

gene or operon. This family of proteins usually activates the expression of the 

adjacent and divergently transcribed gene or of genes found elsewhere within the 

genome, whilst repressing its own expression due to negative auto-regulation (Figure 

5.1-2) (Pérez-Rueda & Collado-Vides, 2001). 
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Figure 5.1-1: LysR-Type conserved domains in ?MB1049. 

The relevant region of �. meningitidis MC58 genome representing the genes 

belonging to the �MB1048-�MB1049 pathogenic gene cluster (dark blue arrows) is 

shown with the orientation of both genes. Conserved domains in NMB1049 have 

similarities to a LysR-Type Transcriptional regulator (LTTR) protein and comprise a 

Helix-Turn-Helix (HTH) domain at the N-Terminus and a LTTR substrate-binding 

domain at the C-Terminus. Gene numbers correspond to the numbering given in the 

MC58 complete genome (NCBI GenBank accession number AE002098.2). 

Conserved hyp.: gene coding for a conserved hypothetical protein. 
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Figure 5.1-2: Classical model for LTTR-dependent transcriptional regulation. 

A: The LysR protein binds to its own promoter and represses its gene regulation. B: 

Once the LysR protein dissociates from its promoter, the lysR gene starts being 

transcribed. C: Abundance of LysR protein is more likely to bind upstream of the 

promoter region of the divergently transcribed target gene. D: When the co-inducer 

is present and interacts with LysR, transcription of the target gene is activated 

(Figure adapted from Maddocks & Oyston, 2008). 

 

LTTR proteins are folded in a similar manner and are, therefore, thought to be 
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et al., 1988). The highest similarity amongst LTTRs is given by the amino acid 
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sequence forming the Helix-Turn-Helix domain, which consists of 66 N-terminal 

residues. Amongst these residues, amino acids 23 to 42 have sequence identity of at 

least 40 % between all LTTR proteins with the HTH binding motif (Schell, 1993). 

LysR-Type transcriptional regulators are the most abundant types of transcriptional 

regulators and are composed of between 276 and 324 amino acids. They have a 

regulatory function over genes with different disparate functional roles, such as 

genes implicated in metabolic processes, virulence, quorum sensing, oxidative stress 

response, attachment and secretion, etc. (Maddocks & Oyston, 2008). In �. 

meningitidis strain MC58, for instance, three LTTRs are found following protein 

BLAST search, and these are OxyR (NMB0173), which is responsible for activating 

genes for the defence against oxidative stress; CrgA (NMB1856), which is needed 

for down-regulating genes involved in pili and capsule formation upon contact with 

the host’s epithelial cells in order to enhance adhesion; and MetR (NMB2055), 

which regulates the expression of methionine biosynthetic genes (Sainsbury et al., 

2012, Ieva et al., 2008, Deghmane et al., 2002). OxyR and MetR are found in all 

�eisseria spp. sequenced so far, whereas CrgA is present only in the three closely 

related �. meningitidis, �. gonorrhoeae and �. lactamica. The putative NMB1049 

protein, which is 305 amino acids in length, has similarities to the type 2 periplasmic 

binding protein which is usually coupled to transporters or chemotaxis receptors, but 

no actual genes have been identified to be regulated by NMB1049 to date. 

In this study, the protein NMV_1164 from �eisseria meningitidis serogroup C strain 

8013 has been overexpressed and purified for its characterisation. NMV_1164 is a 

33.4 kDa protein which, in this work, contains 6x His-tag residues. This protein has 

100 % identity with NMB1049 from �eisseria meningitidis serogroup B strain 
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MC58 and, for this reason, NMV_1164 has been chosen for studying the protein’s 

possible interactions with �MB0430, �MB1048 and �MB1049. Preliminary studies 

from chapter 4 hypothesised that this gene encoding a LTTR was responsible for 

regulating both the prp gene cluster (genes �MB0430-�MB0435) and the divergently 

transcribed �MB1048 gene (Figure 5.1-3). For this reason, this hypothesis was 

further studied in this chapter by investigating the interactions between the 

NMV_1164 (NMB1049) protein and the intergenic regions of DNA where possible 

promoter regions for LTTR were found. The choice for promoter regions will be 

investigated in Sections 5.5 and 5.6. 

 

Figure 5.1-3: Hypothetical model for genes regulated by ?MB1049. 

LysR protein encoded by �MB1049 might regulate transcription of �MB1048 and 

the prp operon when in the presence of a signal molecule. Three possible promoter 

regions were found in the intergenic region between �MB1048 and �MB1049, and 

one promoter region was found upstream of the prp operon. Gene numbers 

correspond to the numbering given in the MC58 complete genome, where the 

number within each arrow is preceded by “NMB” (NCBI GenBank accession 

number AE002098.2). 
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5.2 Transformation of �MV_1164 

The �MV_1164 gene cloned into pET28b (+) vector was kindly donated by Dr 

Vladimir Pelicic, Imperial College London, and was transformed into E. coli BL21 

(DE3) following the standard heat-shock procedure. Positive insertion was confirmed 

by sequencing, where primers T7 term (TATGCTAGTTATTGCTCAGCGGT) and T7 

(TAATACGACTCACTATAGGG) from the Technology Facility (University of York) 

were used. Sequencing results gave 100 % identity with the original sequence for 

that specific gene and, therefore, also for �MB1049. 

5.3 Expression and purification of ?MV_1164 

NMV_1164 transformed into E. coli BL21 (DE3) was successfully overexpressed in 

auto-induction medium, following the protocol from Section 2.2.3. All the following 

steps and reagents’ preparation used for extracting and purifying the protein were 

carried out as described in Section 2.5. Purification was performed on an 

ÄKTAprime plus apparatus (Amersham Biosciences) and the flow-through was 

monitored by absorbance at 280 nm with the Primeview 5.0 Software. After initial 

equilibration of the 1 ml HisTrapTM column (GE Healthcare) with HEPES Buffer A 

(HBA) binding buffer (with an imidazole concentration of 15 mM), the soluble 

fraction protein suspension was flowed through the column. Non-specific proteins 

were not retained by the column, thus giving high absorbance readings at 280 nm. 

After running the protein suspension, the HisTrapTM column was equilibrated with 

binding buffer again, and the column was then washed with an increasing gradient of 

HEPES Buffer B (HBB) elution buffer (with an imidazole concentration of 1 M). 

The rising concentration of imidazole, which reached 1 M value after 40 ml of initial 

addition of the elution buffer B, allowed the His-tagged protein of interest to depart 
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from the column. Several 5 ml fractions were collected during the elution step. 

Fractions 4 and 5 appeared to be containing the most NMV_1164 protein, as the 

absorbance peak reached its summit at that moment (Figure 5.3-1). At that point only 

about 40 % of HBB elution buffer, and therefore 60 % HBA binding buffer, had 

passed through the column, suggesting that about 400 mM imidazole were required 

for the protein to unbind from the column. Fractions 4 and 5 were further analysed 

by SDS-PAGE and Coomassie Brilliant Blue Staining (Figure 5.3-2).The 

NMV_1164 protein was successfully purified, as the fraction collected showed a 

clear band corresponding to approximately 35 kDa. The expected 6x His-tagged 

protein of interest is, in fact, 34.2 kDa in size. All the fractions containing the protein 

of interest, however, also showed the presence of a second, weaker band, above the 

expected band. This extra band seemed to be just below 70 kDa in size, which could 

probably correspond to NMV_1164 protein dimers. Fractions 4 and 5, which showed 

the most intense protein band, also appeared to contain a third and much fainter band 

at approximately 100 kDa. This extra band could have been caused by the correct 

protein aggregating and forming protein trimers or other higher order oligomers. 



Chapter 5 – Investigations of a pathogen-specific regulator in �. meningitidis 

200 
 

 

Figure 5.3-1: Purified ?MV_1164 protein in fractions 4 and 5. 

Absorbance measurements at 280 nm (blue line) and amount of HEPES Buffer B 

elution buffer added during elution (red line) are shown for the protein being 

purified. The sharp peak and its matching elution fractions (black circle) show that 

fractions 4 and 5 contain most of the protein when approximately 40 % of the 

HEPES Buffer B is running through. “Buffer Line #” (brown) indicate which buffer 

is running through the column. Buffer Line 1: HEPES Buffer A binding buffer. 

Buffer Line 8: Soluble fraction protein. Buffer Line 2: HEPES Buffer B elution 

buffer added with an increasing concentration and HEPES Buffer A binding buffer 

added with a decreasing concentration. Green numbers at the bottom right: elution 

tubes collected. B [%]: percentage of HEPES Buffer B used, where 0 equals to 15 

mM imidazole (from HEPES Buffer A) and 100 % equals to 1 M imidazole (from 

HEPES Buffer B). 
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Figure 5.3-2: Purified protein fractions. 

Purification of the protein of interest showed that the expected band of 34.2 kDa was 

present, and that protein fractions 4 and 5 contained most of the protein. L: 

PageRulerTM Plus Prestained Protein Ladder (Thermo Scientific). SP: Soluble 

fraction protein suspension. F#: fractions collected during the protein purification 

step, corresponding to the fractions collected in Figure 5.3-1. 

 

The bands present in the SDS-PAGE gel clearly showed that the correct protein was 

collected, but they also suggested that protein oligomers, especially dimers, were 

present despite having used SDS load Buffer containing 5 mM β-mercaptoethanol. 

Polymers could have formed due to the presence of five cysteine residues in the 

amino acid sequence of the NMV_1164 protein. These cysteine residues could have 

covalently bonded to each other to form disulphide bonds, linking more than one 

protein together. 
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5.4 Buffer-exchange and quantification of ?MV_1164 

The fractions shown to contain a high concentration of NMV_1164 protein were 

cloudy, and this meant that the protein was unstable and already started to 

precipitate. Cloudy fractions were centrifuged upon collection in order to get rid of 

the precipitated proteins and were then buffer-exchanged into 1 x Binding Buffer or 

0.5 x TBE (both solutions were prepared as described in Table 2.5.5-1 with a PD-10 

Desalting Column (GE Healthcare) to prevent any further loss of the protein. At this 

stage the protein was quantified with a Quick StartTM Bradford Protein Assay (BIO 

RAD). The assay was carried out by measuring the OD at 595 nm, and the value 

obtained was then added to an equation derived from a standard curve which was 

previously plotted by diluting a Bovine Gamma-Globulin Standard of known 

concentration, as described in the manufacturer’s protocol (Figure 5.4-1). The OD 

value obtained was applied to the graph’s equation as y value, and the concentration 

x was consequently extrapolated by re-arranging the equation as follows: protein 

concentration [µg / ml] = (OD 595 nm – 0.0137) / 0.0005 (Table 5.4-1, column 3). 

Protein concentration in µM was then derived from the following formula: Molar 

concentration [mol / L] = concentration [g / L] / protein molar mass [Da], where the 

6x His-tagged protein molar mass is 34235 Da (Table 5.4-1, column 4). 
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Figure 5.4-1: Standard curve for Bradford Protein Assay. 

Concentration of standard measured using Bradford Protein Assay and Bovine 

Gamma-Globulin Standard. An equation was automatically created for the best line 

of fit of the linear trendline. 

Table 5.4-1: Protein concentration from the Bradford Protein Assay. 

OD values were measured at 595 nm in triplicates. BB: 1 x Binding Buffer (2.5 mM 

HEPES Free acid, pH 7.9, 5 mM NaCl and 0.25 mM MgCl2). TBE: 0.5 x TBE (45 

mM UltraPureTM Tris, 45 mM Boric acid and 1 mM EDTA). 

Protein fraction OD595nm [Protein] (µg / ml) [Protein] (µM) 

Fraction 4 in BB 0.165 ± 0.01 302.60 ± 28.84 8.84 ± 0.84 

Fraction 5 in BB 0.238 ± 0.01 448.60 ± 16.37 13.10 ± 0.48 

Fraction 6 in BB 0.154 ± 0.01 279.93 ± 18.90 8.18 ± 0.55 

Fraction 7 in BB 0.033 ± 0.01 37.93 ± 15.01 1.11 ± 0.44 

Fraction 4 in TBE 0. 179 ± 0.01 329.93 ± 26.63 9.64 ± 0.78 

Fraction 5 in TBE 0. 250 ± 0.01 473.27 ± 23.01 13.82 ± 0.67 

Fraction 6 in TBE 0.141 ± 0.01 254.60 ± 29.05 7.44 ± 0.85 

Fraction 7 in TBE 0.052 ± 0.02 76.60 ± 30.20 2.24 ± 0.88 
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5.5 Electrophoretic Mobility Shift Assay (EMSA) with D?A 130-

mers 

Preliminary results suggested that protein NMB1049 might be binding to the 

promoter regions of genes �MB0430, �MB1048 and / or �MB1049. In order to 

verify if this was the case, an Electrophoretic Mobility Shift Assay (EMSA) was 

carried out by using the homologous NMV_1164 protein, and checking its possible 

interactions with the promoter regions of all three genes belonging to �eisseria 

meningitidis MC58. �MV_1164 from �eisseria meningitidis strain 8013, as 

previously stated, has 100 % identity with �MB1049 from �eisseria meningitidis 

MC58. 

Promoter regions for studying the interactions between the DNA (possible LTTR 

boxes) and the protein of interest (LysR-Type transcriptional regulator) were chosen 

because they were next to or contained the following interrupted palindromic 

sequence: ATC–N9–GAT. This sequence and the most generally accepted T–N11–A, 

in fact, are conserved amongst LysR-Type transcriptional regulators and are known 

as the LTTR box, to which the LysR-Type transcriptional regulators bind (Maddocks 

& Oyston, 2008). The intergenic region preceding the prp operon contains just one 

palindromic sequence which is very similar, and within acceptance, to the expected 

one (ATC–N5–GAT) (Figure 5.5-1A). The intergenic region between the two 

divergently transcribed genes �MB1048 and �MB1049, instead, contains three 

perfectly matching palindromic sequences (Figure 5.5-1B). Primers used to amplify 

the intergenic regions containing the LTTR boxes are described in Table 2.3.1-1 and 

were designed by Amie Williamson (Moir’s lab). The presence of three LTTR boxes 

near to each other could suggest that either the protein NMB1049 (and therefore 
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NMV_1164) has a higher affinity for one of these sequences or the protein binds to 

the intergenic region between �MB1048 and �MB1049 in the form of a homodimer 

or homotrimer. LTTR proteins are known to sometimes aggregate in multimers when 

in the presence of the correct co-inducer (Maddocks & Oyston, 2008). 

A 

ATGAAACCAATTCAGATGTTTTCCCCTTTTCTGAATAATCCCCTTGTTTTCTTCTTGTCTGCGGTTTT
GCCGCATAATTCCGAACGGTCTGCTGTTTTTCTTTGATTCGTTTTAAATATCAATAAGATAATTTTTC
CCATATATTTTTAATGATTGGATTGGGATGCCCGACGCGTCGGATGGCTGTGTTTTGCCGTCCGAATG
TGATGGAAGCCTGTCCATACTGAAAAAAAGTCTATAAAGGAGAAATATGATGAGTCAACACTCTGCCG
GAGCACGTTTCCGCCAAGCCGTGAAAGAATCGAATCCGCTTGCCGTCGCCGGTTGCGTCAATGCTTAT 

B 

CGCCAGCGTTTTGGTTGCATAATCTGCAATTCATGTTCCAAATATTCGTCCCGCGTCGCAAATTCCGA
AGCTGGACGGTGCAAATCCCGATAAGTCCCATTATGTTTTTCCATAACCTTCCTCCTTATATATCGCG
CCTCGTAAAAGGGGCGCATGACTTTTCTTTTTGATACGGGCTGCGTTCGGAAGCCGTAACCCCATTTA
AAGCCCAAACAGGCAATAAAACCAATCTTTTTTTTTGATAACCATCATCCGGAAAACTGATACAATTT
ACAAACCACTTGATTAAAAAGTTAATTTTCAGCAACAATCCACCTAAAAGATTTCGATTGCACAAATA
TAGAAAACATCCGCACAAGGAGGGATATATGGATGCCGTACAATTAAAATCATTTGTCGCCGTCGCGC
ACGAGGGCAACCTTACCCAAGCCGCCAAACGACTTTTCCTTTCCCAGCCTGCCGTTTCTGCCCAAATT 

Figure 5.5-1: Intergenic regions containing possible LTTR boxes. 

A: The intergenic region (black) between genes �MB0429 and �MB0430 (blue) is 

shown with the ATG starting codons for both genes (green) and the TGA stop codon 

for �MB0429 (red). Primers NMB0430prot-for and NMB0430prot-rev (highlighted 

in yellow) were used to amplify the DNA region containing the possible LTTR box 

(orange). B: The intergenic region (black) between the divergent genes �MB1048 

and �MB1049 (blue) is shown with both genes’ starting codons (green). Primers 

NMB1048prot-for (1st yellow highlight) and NMB1048prot-rev (2nd yellow 

highlight) and primers NMB1049prot-for (2nd yellow highlight) and NMB1049prot-

rev (3rd yellow highlight) were used to amplify the DNA region next to or containing 

the three possible LTTR boxes (orange). 
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Potential promoter regions for �MB0430, �MB1048 and �MB1049 of �eisseria 

meningitidis MC58 containing possible LTTR boxes were successfully amplified by 

PCR. The 130 bp bands were clearly visible from the 0.8 % agarose gel (Figure 

5.5-2) and therefore samples were subjected to PCR purification (QIAGEN). One of 

the products, however, showed an extra band at about 600 bp and, for this reason, the 

full PCR product was run on a gel and the expected 130 bp band was excised and gel 

extracted (QIAGEN). Concentrations of the purified promoter fragments were 

measured with a NanoDrop® ND-1000 Spectrophotometer (Thermo Scientific) and 

diluted to a final concentration of 45 ng / µl with nuclease-free water (QIAGEN). 

The DNA was then stored at -20 ºC until ready to be used. 

 

Figure 5.5-2: Potential promoter regions for use with EMSA. 

The expected fragment size of all three products was 130. A: promoter region for 

�MB0430. B: promoter region for �MB1048. C: promoter region for �MB1049. L: 

Q-Step 4 Quantitative DNA ladder (YORBIO). 
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The three promoter regions just purified and fraction 5 of the protein of interest that 

was buffer-exchanged in 0.5 x TBE buffer in Section 5.4 were mixed together in a 

DNA to protein molar ratio of 1 : 2 and 1 : 5. The binding reactions were established 

by using 450 ng of DNA (which corresponded to 10 µl of the 45 ng / µl DNA stocks, 

giving 5 picomoles DNA per reaction) and a two-molar or 5-molar excess of 6x His-

tagged NMV_1164 protein (resulting in 10 or 25 picomoles protein per reaction). 

To make up a reaction volume of 50 µl with either 1 : 2 or 1 : 5 DNA to protein 

molar ratio, 10 µl DNA (45 ng / µl stock) were mixed with either 3.4 or 8.6 µl protein 

(100 µg / ml stock) and the volume was adjusted to 18.6 µl with 0.5 x TBE buffer. At 

this point, 18.6 µl 2 x Gel Shift Reaction buffer and 12.8 µl 4 x Native PAGE loading 

buffer were added to each reaction, as described in Section 2.5.7. Each reaction was 

incubated at room temperature for 20 minutes prior to being loaded onto the native 

gel that had been pre-run at 200 V in 0.5 x TBE running buffer. The gel was then run 

for four further hours and stained in 1 x SYBR® Safe DNA gel stain 10,000 x 

concentrate (Invitrogen™) for 30 minutes. The DNA was then visualised by UV 

illumination (Figure 5.5-3). The lane where only the protein was added did not show 

any band, as expected. All the other lanes, however, showed only one band of DNA, 

suggesting that no protein-DNA complex has been formed. To further investigate 

this result, and to check that the protein was present in the gel and not trapped in the 

well, a Silver Staining of the same EMSA gel was carried out and the protein-DNA 

interaction was checked (Figure 5.5-4). This result confirmed that there were no 

protein-DNA interactions and that the protein was running through the gel, as all the 

lanes that were loaded with it showed a smear, whereas the lanes containing only the 

DNA did not show any smear. 
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Figure 5.5-3: EMSA results after SYBR® Safe staining. 

The 130-mer promoter regions of �MB0430, �MB1048 and �MB1049 with or 

without the 6x His-tagged NMV_1164 protein show no differences in running 

distance through the gel. 1: Protein only. 2: �MB0430. 3: �MB0430+prot (1:2). 4: 

�MB0430+prot (1:5). 5: �MB1048. 6: �MB1048+prot (1:2). 7: �MB1048+prot 

(1:5). 8: �MB1049. 9: �MB1049+prot (1:2). 10: �MB1049+prot (1:5). 

 

Figure 5.5-4: EMSA results after Silver Staining. 

The 130-mer promoter regions of �MB0430, �MB1048 and �MB1049 with or 

without the 6x His-tagged NMV_1164 protein show smears in the lanes where the 

protein is present. 1: Protein only. 2: �MB0430. 3: �MB0430+prot (1:2). 4: 

�MB0430+prot (1:5). 5: �MB1048. 6: �MB1048+prot (1:2). 7: �MB1048+prot 

(1:5). 8: �MB1049. 9: �MB1049+prot (1:2). 10: �MB1049+prot (1:5). 

1 2        3        4         5        6        7         8        9       10
�MB0430              �MB1048              �MB1049-

1 2        3        4         5        6        7         8        9       10
�MB0430              �MB1048              �MB1049-
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All the protein lanes showed smears, thus suggesting that the conditions for running 

the EMSA gel were not ideal despite the sharp bands obtained with the DNA. The 

final salt concentration in each EMSA reaction might have still been too high, or the 

protein was not stable enough and was already starting to dissociate inside the well 

or whilst running within the gel. Moreover, only a small percentage of the protein 

could still be functionally active, or the protein might even be requiring some 

unknown co-factors before being able to bind to DNA. 

5.6 Fluorescence anisotropy 

Fluorescence anisotropy was used to quantitatively analyse the strength of the 

interactions in solution between the purified protein fraction 5, containing the 6x His-

tagged NMV_1164 protein that was buffer-exchanged in Binding buffer in Section 

5.4, and the fluorescently tagged DNA containing the sequence for the protein’s 

potential binding site. 

Fluorescence anisotropy allows measurements of the rate of tumbling in solution, 

where the small molecules rotate very rapidly and the emitted light is depolarised. 

This means that when the DNA marked with a fluorophore is not bound to the 

protein, the DNA will rotate fast and the fluorescence anisotropy ratio, which is the 

ratio between polarised and depolarised light emitted, results in a low value. When 

the DNA marked with a fluorophore binds to the protein, however, the newly formed 

complex will move slower due to the higher molecular weight, and therefore the 

fluorescence anisotropy value increases. Fluorescence anisotropy should give a better 

idea of the interactions occurring between the protein and the DNA, as the possible 

artefacts due to the gel when running an EMSA gel are eliminated. 
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Potential sequences of DNA where the protein could bind were found once within 

the promoter region of �MB0430 and three times between the promoter regions of 

the two divergently transcribed �MB1048 and �MB1049 genes, as already explained 

in the previous section, and corresponded to the palindromic sequences that formed 

the potential LTTR boxes (Figure 5.6-1). The primers used are described in Table 

2.5.9-1 and were designed by Amie Williamson (Moir’s lab). The DNA thought to 

be binding to the protein under study and a control DNA that was completely 

unrelated to it were labelled at the 5’ end with a hexachlorofluorescein (HEXTM). 

A 

ATGAAACCAATTCAGATGTTTTCCCCTTTTCTGAATAATCCCCTTGTTTTCTTCTTGTCTGCGGTTTT
GCCGCATAATTCCGAACGGTCTGCTGTTTTTCTTTGATTCGTTTTAAATATCAATAAGATAATTTTTC
CCATATATTTTTAATGATTGGATTGGGATGCCCGACGCGTCGGATGGCTGTGTTTTGCCGTCCGAATG
TGATGGAAGCCTGTCCATACTGAAAAAAAGTCTATAAAGGAGAAATATGATGAGTCAACACTCTGCCG
GAGCACGTTTCCGCCAAGCCGTGAAAGAATCGAATCCGCTTGCCGTCGCCGGTTGCGTCAATGCTTAT 

B 

CGCCAGCGTTTTGGTTGCATAATCTGCAATTCATGTTCCAAATATTCGTCCCGCGTCGCAAATTCCGA
AGCTGGACGGTGCAAATCCCGATAAGTCCCATTATGTTTTTCCATAACCTTCCTCCTTATATATCGCG
CCTCGTAAAAGGGGCGCATGACTTTTCTTTTTGATACGGGCTGCGTTCGGAAGCCGTAACCCCATTTA
AAGCCCAAACAGGCAATAAAACCAATCTTTTTTTTTGATAACCATCATCCGGAAAACTGATACAATTT
ACAAACCACTTGATTAAAAAGTTAATTTTCAGCAACAATCCACCTAAAAGATTTCGATTGCACAAATA
TAGAAAACATCCGCACAAGGAGGGATATATGGATGCCGTACAATTAAAATCATTTGTCGCCGTCGCGC
ACGAGGGCAACCTTACCCAAGCCGCCAAACGACTTTTCCTTTCCCAGCCTGCCGTTTCTGCCCAAATT 

Figure 5.6-1: Primers were designed to include possible LTTR boxes. 

A: The intergenic region (black) between genes �MB0429 and �MB0430 (blue) is 

shown with the ATG starting codons for both genes (green) and the TGA stop codon 

for �MB0429 (red). Primers HEX_NMB0430_ for and NMB0430_ rev (highlighted 

in yellow) corresponded to the double stranded DNA region containing the possible 

LTTR box (orange). The mismatch of both primers is shown (highlighted in red), 

where “T” in the sequence was considered as “C”. B: The intergenic region (black) 

between the divergent genes �MB1048 and �MB1049 (blue) is shown with both 

genes’ starting codons (green). The three sets of primers HEX_NMB1048_for and 

NMB1048_ rev (distinguished as a, b and c) corresponded to the double stranded 

DNA regions containing one possible LTTR box each pair (orange). 
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Anisotropy readings were taken using a fixed amount of double stranded 21-mer 

DNA (5 nM) and varying concentrations of the protein under study, which was 

continuously added into the same cuvette after intervals of every 10 readings. 

Anisotropy readings for DNA only were also taken, where the varying amounts of 

proteins added were replaced by varying amounts of 1 x Binding Buffer (2.5 mM 

HEPES Free acid, pH 7.9, 5 mM NaCl and 0.25 mM MgCl2), the buffer in which the 

protein was stored. A graph for visualising the binding affinity of the NMV_1164 

protein to the various DNA sequences was then drawn using SigmaPlot, where the 

actual values plotted were obtained by subtracting the values from the background 

given by the DNA only to the values obtained for each sample containing both DNA 

and protein (Figure 5.6-2). 

 

Figure 5.6-2: Binding affinity for the ?MV_1164 protein with its potential 

LTTR boxes. 

Average anisotropy for 10 repeats was plotted against the concentration of 

NMV_1164 in the presence of 5 nM DNA 21-mer duplex. The highest anisotropy 

values were seen when the protein was added to the �MB1048a binding site. A 

control DNA lacking the binding site for the protein under study was also tested, and 

its anisotropy values were similar to the ones seen for the �MB0430 LTTR box. 
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Fluorescence anisotropy appeared to have partially worked, as there was an increase 

in its value with all double stranded DNA tested, and the binding curve showed that 

saturation was almost achieved when over 5 µM protein was added. Anisotropy 

increase, however, was also evident with the control DNA. Control DNA was 

predicted to give a steady flat line with no anisotropy variation, as the protein should 

not have interacted with DNA at all. The binding curve for NMV_1164 with the 

�MB1048a DNA showed that the curve approached saturation at a lower 

concentration of protein and this suggested that, despite the non-optimal conditions, 

the protein was likely to be interacting with the DNA indeed. The equilibrium 

dissociation constant (kd) for each interaction was automatically calculated by 

SigmaPlot, and corresponded to the following values: kd (NMB1048a): 1.98 µM; kd 

(NMB0430): 2.14 µM; kd (control): 4.70 µM. This low value of over 4 µM confirmed 

that interactions between NMV_1164 and the control DNA were very weak. When 

anisotropy was tested with DNA only, which meant that the solution was composed 

of either �MB0430 or �MB1048a and that the protein was replaced with 1 x Binding 

Buffer, all readings showed no change in anisotropy, as expected (results not shown). 

The weak affinity suggested that there were more factors which were influencing 

fluorescence anisotropy that needed to be taken into consideration, other than the 

expected specific interactions of the protein with its potential binding sites. In fact, 

despite having been added in excess, not all the NMV_1164 protein might have 

remained active after purification, thus impeding full saturation of DNA, or only a 

weak binding was occurring and therefore more protein was required for achieving 

full saturation. The apparent low affinity could also be due to the protein requiring 

multiple sets of the inverted repeats, and therefore binding to DNA as a trimer. 
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5.7 Conclusions on the expression and characterisation of 

?MV_1164 

The 6x His-tagged NMV_1164 protein from �eisseria meningitidis serogroup C 

strain 8013 has been successfully purified, but was unstable in vitro and started 

forming aggregates soon after purification, making it difficult to work with. After 

centrifugation to eliminate the precipitated proteins, however, the concentration of 

the protein under investigation was still high enough. A stock solution of 100 µg / ml 

was made in 0.5 x TBE, allowing the protein to be easily added to the 450 ng DNA 

in a two-fold or five-fold molar excess. The protein in excess would allow for 

maximum interactions and binding of the protein-DNA complex. When diluted in 0.5 

x TBE the protein showed an increased stability compared to when it was diluted in 1 

x Binding Buffer, the reason being that TBE contained a low salt concentration and a 

slightly basic pH, conditions that improve nucleic acids handling and electrophoretic 

techniques. 

This protein is found as a probable homodimer or homotrimer when run in a SDS-

PAGE gel, despite the use of a reducing agent (5 mM β-mercaptoethanol). This does 

not necessarily mean that the protein exists in bacteria as a homooligomer, but that 

this could be the case. In fact, when subjected to BLAST, this protein had high 

identities with the LysR-Type transcriptional regulators, and the ones that have been 

characterised so far typically consist of several identical sub-units, most likely to be 

tetramers or dimers, as these would increase the affinity and specificity of the protein 

to its DNA binding site compared to their monomeric form (Knapp & Hu, 2010, 

Klemm et al., 1998). When the purified NMV_1164 protein is heated to 95 ºC, 

however, it denatures and unfolds, possibly leading to an exposed hydrophobic core 
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that could interact with the hydrophobic core of another NMV_1164 protein, and so 

on, thus forming the homodimer or homotrimer seen in the gel. In order to avoid this 

oligomerisation, samples could also be tested and run after incubation at room 

temperature, and compared to the heated ones. The intergenic region between 

�MB1048 and �MB1049 contains 3 matching LTTR boxes (ATC–N9–GAT), which 

could explain why the protein might be able to form dimers or trimers. 

Further investigations to test the interactions between the protein under study and the 

DNA need to be carried out, starting with changing the conditions under which the 

protein is run in the EMSA gel. Salt concentrations in the protein stock or in the Gel 

Shift Reaction buffer can be lowered in order to increase electrostatic stabilisation. A 

higher amount of glycerol or other stabilising agents could be added during gel 

preparation, and a decrease in the time from when the samples are added in the well 

before entering the gel could all help in reducing possible protein aggregation or 

dissociation and smearing (Vagenende et al., 2009, Hellman & Fried, 2007). 

During fluorescent anisotropy the protein did not show a fully saturated binding 

curve and even the negative control behaved in a similar way, suggesting that 

changes in anisotropy were not due to protein-DNA interactions solely but also to 

interactions within the cuvette. Fluorescence anisotropy values are dependent on 

several factors, and not only on the binding of the protein to the DNA. The factors 

that could make a difference in the readings, in fact, are non-specific bindings 

forming the protein-DNA complex, shape, size and motion, and even protein 

aggregates. An increased amount of BSA could also be added to the cuvette in order 

to decrease non-specific binding. The difference in size was only due to the double 

stranded DNA used, which was a 21-mer for both �MB0430 and �MB1048 binding 
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sites, and a 53-mer for the control. This size difference could lead to a decrease in the 

movement of the control DNA even when not bound to the protein, thus increasing 

anisotropy values. A more appropriate control could be given by testing an unrelated 

DNA containing a HEX fluorophore that is 21 base pairs long. Alternatively, a 

longer experimental DNA of approximately 53 base pairs could be tested too. The 

fluorophore chosen, or its location within the DNA, could also have affected the 

affinity with the protein, and therefore a different position or fluorophore selection 

might lead to a positive assay. 

From this work it cannot be clearly determined if the NMV_1164 protein regulates 

the expression of �MB0430, �MB1048 or �MB1049 by binding to their promoter 

regions. However, following fluorescence anisotropy a lower kd was obtained when 

the protein was added in solution with one of the LTTR boxes for the �MB1048 gene 

(�MB1048a). The other two LTTR boxes found between �MB1048 and �MB1049 

(which are referred to as �MB1048b and �MB1048c in this work) still need to be 

tested, and they might reveal that a stronger interaction could be formed between 

either of these sites and the protein, thus saturating the DNA more readily and 

decreasing the kd value even further, allowing the protein-DNA interactions to reach 

the plateau sooner. 

More studies could also be performed regarding the motion of protein and DNA. By 

adding more protein, viscosity might also increase, as more Binding buffer is added 

together with the protein into the cuvette. Further investigations could be performed 

by changing some components in which the protein in stored (Moerke, 2009, 

Kuimova et al., 2008). Alternatively, the protein could be concentrated using 

centrifugation devices following the ÄKTAPrime Plus purification. Finally, changes 
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in anisotropy could be due to aggregation of the protein in solution, which was not 

visible by eye as the concentration of the protein added into the cuvette was 

relatively low (8.5 µM maximum value). Precipitation of the protein, in fact, was 

very obvious straight after purification, when the protein was at its highest 

concentration. 

To try to improve the protein solubility, NMV_1164 could be cloned into a vector 

that contains a soluble tag, such as maltose-binding protein (MBP) or glutathione S-

transferase (GST) (Lichty et al., 2005). One point to take into consideration, 

however, is that the protein might start to aggregate once the tag is cleaved off. 

Once the protein is more stable, other biophysical experiments such as native mass 

spectrometry (NMS) or analytical ultracentrifugation (AUC) could be used to obtain 

information about the NMV_1164 protein and to investigate the ability of the protein 

to form homooligomers in solution, as there are three LTTR boxes present in the 

intergenic region between genes �MB1048 and �MB1049 (Heck, 2008, Lebowitz et 

al., 2002). 
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Chapter 6  -  Role of propionic acid metabolism 

in colonisation and disease models 

6.1 Introduction 

The 2-methylcitrate pathway is present in a few opportunistic pathogens, including 

�eisseria meningitidis, and is involved in the catabolism of propionic acid. To study 

the correlation of this pathway from �eisseria meningitidis with carriage or infection 

in the population, saliva and blood samples from several healthy individuals were 

investigated. 

In this work, just over 300 saliva samples have been analysed for propionic acid 

content by gas chromatography and then compared to �eisseria meningitidis carriage 

using the Mann-Whitney U Test. It is known that carriage of �. meningitidis is 

present in 10 to 35 % of the population at any time (Caugant. et al., 2007), but its 

correlation with the amount of propionic acid has never been investigated. A number 

of studies, however, have been performed to check short-chain fatty acid 

concentrations in dental plaque formation and accumulation, resulting in propionic 

acid ranges varying between 0.8 mM in mildly affected and 9.5 mM in severely 

affected individuals (Niederman et al., 1997). Plaque formation studies, however, did 

not look into carriage of �. meningitidis during periodontal diseases, as this 

bacterium is not related to plaque. A hypothesis for this work stated that there was a 

statistical difference in the amount of propionic acid present in the saliva of carriers 

and non-carriers, and was then tested. 
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Despite colonising asymptomatically the nasopharynx of humans, �eisseria 

meningitidis can occasionally enter the bloodstream, thus becoming pathogenic. 

During infection, bacteria change their natural environment, and must therefore adapt 

to the new and more limiting environment of the host. Many studies of the infection 

have been performed by inoculating the bacteria in mice and rats (Yi et al., 2003, 

Sun et al., 2000). Results obtained from animal models, however, would probably 

not be as accurate in mimicking what happens in the bacteria’s natural environment, 

as �eisseria meningitidis is an exclusively human pathogen. Improvements in mice 

models, though, are achieved through generating transgenic mice with human 

versions of CD46, for example, or by xenotransplanting human dermal microvessels 

(Melican et al., 2013, Johansson et al., 2003). Studies performed in human whole 

blood, on the other hand, would be more precise for checking the overall 

transcriptional changes of �. meningitidis during bacteraemia (Hedman et al., 2012, 

Echenique-Rivera et al., 2011). When studying human whole blood, however, a 

choice of the right anti-coagulant was needed, as it was important to take into 

consideration the effects caused by its addition to the blood so that it would not 

interfere with the serogroup under study (Ison et al., 1995). 

As an important part of this work, it was necessary to study the 2-methylcitrate 

pathway involvement in survival or virulence of the pathogen in human blood, as this 

pathway is only present in pathogenic �eisseria. Moreover, another gene belonging 

to a different pathogenic island, the �MB1049 encoding a Lys-R Type transcriptional 

regulator, was also taken into consideration. Human whole blood from seven healthy 

individuals was infected ex vivo with wild-type, prpC::Spec
R and �MB1049::Spec

R 

mutant strains and a time-course growth of bacteria was monitored by counting 

colony forming units. 
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6.2 Collection and handling of human saliva 

Saliva samples were collected by Professor Robert Read’s group at the University of 

Sheffield as part of a trial investigation of meningococcal carriage. Healthy 

individuals were screened for any �eisseria species present in their oropharynx and 

Dr. Alice Deasy, University of Sheffield, gave access to the data where the various 

students were tested for �. meningitidis colonisation. Of the 302 student’s saliva 

tested, 235 tested negative, whereas 67 tested positive to �eisseria meningitidis. 

6.3 Correlation between propionic acid and �. meningitidis 

carriage 

Propionic acid present in all saliva samples collected from both carriers and non-

carriers for �eisseria meningitidis was measured by the 6890 N Network GC system 

gas chromatograph (Agilent Technologies) and compared to a standard curve. 

Control samples for plotting the standard curve were prepared by mixing a known 

amount of propionic acid to deionised water, and were acidified with 132 mM 

potassium phosphate (pH 3) prior to injection into the chromatograph. The y = 

39.002x equation was extrapolated from the graph, and the concentration of 

propionic acid was calculated as follows:  propionic acid [mM] = (area of propionic 

acid) / (39.002) (Figure 6.3-1). 

The concentration of propionic acid present in the saliva of carriers and non-carriers 

for �. meningitidis was then used to visually check the distribution of the two 

datasets, and statistical tests were then performed to find a correlation between the 

amount of propionic acid and the presence of the bacterium. 
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Figure 6.3-1: Standard curve showing the areas of propionic acid and their 

relative concentration. 

The area of propionic acid was automatically measured by gas chromatography and 

plotted versus the concentration of propionic acid added in each control sample. 

Control samples were made up of deionised water and a known amount of propionic 

acid. R2 is a measure of the goodness of fit for the given set of data. R2 here is near to 

its maximum value of 1, implying that the regression line fits the data nicely and that 

the resulting equation is accurate. 

 

Frequency distribution for the two datasets was plotted in a histogram by organising 

the values into bins of 0.1 mM intervals (Figure 6.3-2). Neither of the two datasets 

looked normally distributed, but this result could have just been an artefact of the 

choice of bins. Data distribution was therefore double checked and the same results 

were confirmed by the SPSS Statistics software, version 19 (IBM), which 

automatically generated a Q-Q (quantile – quantile) plot for each dataset (Figure 
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6.3-3). The SPSS program calculated the expected theoretical value for each data 

point based on the distribution of the whole dataset. Q-Q plots visually showed that 

both datasets deviated from the straight line when compared to their theoretical 

values, and these plots also showed bias to the right. This meant that the data were 

not following normal distribution. This method was more reliable than the 

histograms as the results did not depend on bin choices. 

 

 

Figure 6.3-2: Frequency distribution for carriers and non-carriers of �eisseria 

meningitidis. 

Both datasets are not normally distributed and have a strong tail on the right. NM-: 

non-carriers of �eisseria meningitidis. NM+: �eisseria meningitidis carriers. 
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Figure 6.3-3: Quantile – Quantile Plots for probability distributions. 

A: data distribution for non-carriers of �eisseria meningitidis. B: data distribution 

for �eisseria meningitidis carriers. The straight line corresponds to the y = x 

equation. Both datasets were not normally distributed as they deviated from the 

straight line and showed a strong tail at the right. 

 

The SPSS Software also performed two non-parametric statistical tests, the 

Kolmogorov-Smirnov and Shapiro-Wilk normality tests in order to confirm the 

results previously obtained with the histogram and Q-Q plots. The null hypothesis 

corresponded to both datasets being normally distributed for the significance level of 

0.05. As these tests gave a significance p-value of 0 for non-carriers of �eisseria 

meningitidis and between 0 and 0.003 for �eisseria meningitidis carriers, the null 

hypothesis was rejected, meaning that the data were not normally distributed. For the 

data to be normally distributed, in fact, the p-value should have been greater than 

0.05 (Table 6.3-1). 

  

A B 
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Table 6.3-1: ?ormality tests for the carriers and non-carriers datasets. 

Kolmogorov-Smirnov and Shapiro-Wilk tests showed that neither of the two datasets 

was normally distributed as the p-values were smaller than significance level chosen 

of 0.05 and therefore the null hypothesis of the datasets to be normally distributed 

was rejected. NM negative: non-carriers of �eisseria meningitidis. NM positive: 

�eisseria meningitidis carriers. 

 

 

Differences between carriers and non-carriers of �eisseria meningitidis were 

graphically drawn in excel with a box-and-whisker plot. This type of visualisation 

did not depend on the statistical distribution of the two datasets and was, therefore, a 

non-parametric way of showing neatly the key values for both datasets (Figure 

6.3-4). The medians corresponded to 0.44 for non-carriers and 0.42 for carriers of the 

bacterium. As they both fell within the interquartile range of the other plot and their 

value was so close to each other, no significant difference was seen between them. 
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Figure 6.3-4: Frequency distribution of the concentration of propionic acid for 

carriers and non-carriers of �eisseria meningitidis. 

This box plot summarises the five key numbers and the mean for the two datasets. 

Lower bar is the minimum and top bar is the maximum observed concentration of 

propionic acid, bottom of box is first quartile, middle bar is median value, top of box 

is third quartile. In green: the mean for each group. The key numbers were also 

summarised in the table. NM-: non-carriers of �eisseria meningitidis. NM+: 

�eisseria meningitidis carriers. 

 

The two datasets were then checked with the SPSS Software for statistical 

differences using the Mann-Whitney U test, as the data was non-parametric and 

could be ranked. The null hypothesis stated that there was no difference between the 

two groups and a significance level of 0.05 was set. For a p-value smaller than 0.05 

the null hypothesis was set to be rejected, whereas for a p-value greater than 0.05 the 

null hypothesis was set to be accepted. In this study, the test gave a p-value of 0.180 

for the Mann-Whitney one-tailed U test, thus accepting the null hypothesis that there 

was no significant difference between carriers and non-carriers in respect to the 

propionic acid amount present in the saliva (Table 6.3-2). In order to be able to use 
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this test, however, both independent samples needed to be checked for distribution. 

For the test to be valid, in fact, the samples are required to have similar distribution. 

A one-way ANOVA test was performed for this reason, as it is considered a robust 

test against the normality assumption. For significance level of 0.05, the assumption 

made was that a p-value greater than 0.05 would imply that the two datasets were not 

statistically different. The SPSS Software computed a p-value of 0.5 so the data were 

confirmed not to be statistically different and, consequently, had similar distribution 

(Table 6.3-3). 

Table 6.3-2: Rejected statistical difference for propionic acid for both carriers 

and non-carriers datasets. 

Mann-Whitney one-tailed U test showing that the datasets failed to reach statistical 

significance (highlighted in red) as the p-value was greater than the chosen 0.05 

significance level, the null hypothesis for which there was no difference between the 

two groups, was accepted. NM negative: non-carriers of �eisseria meningitidis. NM 

positive: �eisseria meningitidis carriers. Grouping variable: carriage or non-carriage 

of �eisseria meningitidis. 

 

.180
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Table 6.3-3: Similar distribution between carriers and non-carriers datasets. 

Similar distribution for the two groups was confirmed by the one-way ANOVA test. 

Significance level of 0.05 was chosen with the assumption that for p-value greater 

than 0.05 both datasets has similar distribution. 

 

 

6.4 Growth of �. meningitidis in human whole blood 

In order to mimic the in vivo disease as closely as possible, bacteria were grown in 

vitro in Mueller Hinton Broth, a rich growth medium, supplemented with 10 mM 

NaHCO3 until they reached a concentration of approximately 108 bacteria; this 

corresponded to bacteria which had entered early exponential phase. Following a 

first dilution in fresh MHB to a magnitude of 106 cells, bacteria were mixed to 100 % 

human whole blood to a concentration of 50000 CFU / ml (for blood from donors 1-

4) or to 100000 CFU / ml (for blood from donors 5-7) and were grown at 37 ºC for 

two hours. Survival rate in the blood was investigated by counting the colony 

forming units (CFU) for each strain every 30 minutes over a 120 minutes incubation 

period. At time 0, the 20 µl inoculum spread onto each plate was expected to grow 

1000 or 2000 CFU respectively. 
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6.5 Survival rate in human blood 

Blood from the seven individuals was subdivided into two distinct groups following 

the results seen when counting the number of colonies grown in the plates: the first 

group was composed of bactericidal blood and the second was non-bactericidal. The 

records for both groups, with bactericidal blood belonging to four individuals and 

non-bactericidal blood belonging to three individuals, were averaged in order to 

obtain the two single datasets for each time point. 

For the bactericidal blood group, the number of bacteria consistently dropped 15 / 20 

- fold within the first 30 minutes following inoculation, and bacteria were not able to 

replicate over the full length of the experiment anymore, suggesting that blood was 

indeed involved in the killing of bacteria. After the two hours incubation, less than 

10 % of all bacteria survived (Figure 6.5-1A). For the non-bactericidal blood group, 

however, bacteria tripled in number within the first 30 minutes and kept increasing, 

even though in a slower rate, until the end (Figure 6.5-1B). In both groups, bacterial 

counts for the prpC::Spec
R and �MB1049::Spec

R mutants showed no significant 

difference compared to the MC58 wild-type strain. This was indicating that both 

genes were not essential for survival and growth of �eisseria meningitidis in whole 

human blood. 
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Figure 6.5-1: Mean survival of MC58 wild-type, prpC and �MB1049 mutant 

strains in human whole blood expressed as percent of initial inoculum. 

A: Blood from donors 1, 2, 3 and 7 showed bactericidal activity. B: Blood from 

donors 4, 5 and 6 showed that bacteria were not sensitive to blood and were capable 

of replicating. 

 

The big overlapping error bars present in the mean percentage survival graph for the 
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added into the three whole bloods. Bacterial viable count for two bloods with starting 

inoculum size of 100000 CFU / ml resulted in similar growth, whereas viable count 

for the smaller 50000 CFU / ml starting inoculum size, other than colony count 

throughout the experiment, resulted in less pronounced growth in the first hour 

(Figure 6.5-2). Lower starting material within the blood could have accounted for the 

different rate of neisserial growth. Wild-type and �MB1049::Spec
R
 strains showed a 

plateau between 30 minutes and 1 hour growth, indicating that these bacteria were 

under stress and were probably switching expression of some of the genes during that 

lapse of time, whereas the prpC mutant strain was behaving differently. 

 

 

Figure 6.5-2: Growth of �eisseria meningitidis in non-bactericidal human whole 

blood. 

Growth of meningococci in donors 5 and 6 was shown as a mean value for each 

strain, as the numbers of colonies grown in the plates over time were comparable. 

Bacterial growth for donor 4 (shown at the lower end of the graph as pale lines) was 

shown separately, as the starting inoculum size was half in respect to the inoculum 

size for the other two donors, and this discrepancy in starting material could account 

for the different rate of overall neisserial growth. 
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6.6 Discussion 

Working with saliva and blood from real donors has revealed to be a harder task than 

expected, as the samples were not taken from a closed and controlled environment. 

Results obtained could therefore depend on many external but also individual-

specific factors. 

In regards to the saliva samples, the data for both carriers and non-carriers of 

�eisseria meningitidis were statistically not different from each other, and therefore 

propionic acid was not altered on meningococcal carriage. There were several 

possible reasons that could explain this lack of difference, such as the large rate of 

variation within the population, the time of the day when the saliva samples were 

collected, the type of diet of each individual, and specific bacterial colonisation in the 

nasopharyngeal region. More samples, especially for carriers of �eisseria 

meningitidis, could be collected and included in the statistical tests, to check whether 

higher sample sizes would give significant statistical difference amongst the two 

larger datasets. 

The initial hypothesis made in this chapter was that a higher amount of propionic 

acid was expected in individuals that were colonised by �eisseria meningitidis. This 

carboxylic acid, in fact, is a substrate needed for the 2-methylcitrate metabolic 

pathway and can be utilised as an alternative substrate for growth (as explained in 

more details in Section 1.7.2 and Section 3.2. Likewise, an alternative hypothesis 

could speculate the fact that bacteria present in the carriers would be able to use 

propionic acid, thus leading to a lower concentration of this acid. The median for 
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both groups, however, was almost identical, as it had a value of 0.44 mM for non-

carriers and 0.42 mM for carriers. 

Despite the little difference for the median, the data showed positive bias, implying 

that there were several individuals whose saliva contained concentrations of 

propionic acid that were higher than normal, and these higher values were present in 

a larger number in non-carriers of �eisseria meningitidis. The saliva samples of 13 

non-carriers contained over 1.5 mM propionic acid, versus two samples only for the 

carriers. This difference in the number of individuals could, however, be an artefact 

due to the size of the datasets, as individuals that were not colonised by the bacteria 

were over three times more abundant as compared to carriers (which corresponded to 

235 versus 67 individuals). 

A few saliva samples for the non-carriers, but none for carriers of �. meningitidis, 

contained a high concentration of at least 2.5 mM propionic acid. As mentioned 

above, this difference could be explained by chance, such as the varied food intake of 

the individuals, but it could also be explained by a higher presence of bacteria that 

produce propionic acid, such as Propionibacteria. The absence of �eisseria 

meningitidis carriage in these individuals would also imply that propionic acid 

cannot be utilised, as the 2-methylcitrate pathway is not present in non-carriers, this 

giving higher readings in the gas chromatograph. 

Bacteria present in the saliva samples could be checked by pyrosequencing, where 

their diversity could be tested with 16S ribosomal RNA primers and all the data 

analysed (Yang et al., 2011, Li et al., 2010). A preliminary PCR was already run as 

described in Section 1.3.1 to check whether enough DNA could be gathered from the 
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saliva samples that were used above and which were stored at - 80 ºC. Several 

samples were chosen from both carriers and non-carriers of �eisseria meningitidis, 

and they had also been selected to include the full range of propionic acid: a few 

samples of each group containing very low, medium and maximum concentrations of 

propionic acid were chosen. Saliva samples were centrifuged for one minute with a 

Sigma 1-13 microcentrifuge (Sigma) to gather the particulates at the bottom of the 

tube, and 0.5 µl were mixed with 20 µl EB buffer (QIAGEN). Saliva samples at this 

stage were ready for use with PCR amplification and were stored at - 80 ºC. The 

universal primers U8F (5'-AGAGTTTGATYMTGGCTCAG-3') and U785R (5'-

GGACTACCVGGGTATCTAAKCC-3') were used to amplify 16S bacterial rRNA, 

and the PCR amplified enough bacterial DNA from all saliva selected samples 

(Figure 6.6-1). One clear band was visible for each sample, and seemed to 

correspond to the expected 777 bp fragment. Pyrosequencing results of these samples 

might elucidate why the concentration of propionic acid was not statistically different 

between the two groups and could also help in finding a clear correlation between 

carriage of Propionibacteria and �eisseria, and the amount of propionic acid found in 

the saliva. 
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Figure 6.6-1: Amplification of 16S bacterial rR?A from human saliva samples. 

The expected 777 bp fragment was amplified and confirmed that enough bacterial 

RNA was present in all saliva samples for future pyrosequencing studies. L: Q-Step 

4 Quantitative DNA ladder (YORBIO). Increasing amounts of propionic acid were 

present from left to right for both groups. A-D: �eisseria meningitidis carriers with 

0.11 - 0.83 - 0.95 - 2.04 mM propionic acid. E-H: non-carriers for �eisseria 

meningitidis with 0.08 - 0.97 - 1.39 - 2.95 mM propionic acid. 

 

Wild-type, prpC::Spec
R and �MB1049::Spec

R strains tested in blood in this chapter 

showed a significant sensitivity to being killed by about 60 % of the human whole 

blood from the donors tested. This result was very high when compared to the very 

little likelihood of the bacteria to cause septicaemia in vivo, but could be explained 

by the fact that a fairly high amount of bacteria was inoculated directly into the 

blood, most likely mimicking the incidence of disease once �. meningitidis has 
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already reached the blood, as in the reality only a small incidence of bacteria would 

enter the blood vessels in vivo. 

As many as 109 �eisseria meningitidis bacteria can be present in 1 ml of blood from 

patients with fulminant disease. In studies ex vivo it was also shown that the number 

of bacteria inoculated into the blood had a direct effect on the blood’s own bacterial 

killing effects. When bacteria were mixed with bactericidal blood at a starting 

concentration of 107 CFU / ml, they started to die straight away. When the starting 

concentration was increased to 109 CFU / ml, they went through a 45 minutes lag 

phase, before increasing in growth number (Hedman et al., 2012). In my work I used 

a starting inoculum size of 0.5-1*105 CFU / ml, which was well below the 109 CFU / 

ml loss of sensitivity to bactericidal blood tested. This meant that the bactericidal and 

non-bactericidal bloods seen here could be considered as such, and they would 

probably not behave differently if they were found in a similar situation in vivo. 

Despite having been collected from seven healthy adult volunteers, the blood showed 

two radically different results in �eisseria meningitidis phenotype, independently of 

each strain tested. This difference in bacterial killing activity could be explained by 

some complement deficiencies or to other factors specific to the non-bactericidal 

blood donors. It is known that there are individuals that are more susceptible to 

septicaemia and meningitis, such as people with immunodeficiency problems. These 

people are an optimal target, as they have complement deficiencies or lack 

circulating antibodies that protect them against the meningococci (Skattum et al., 

2011, Tedesco, 2008). 
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Chapter 7  - General conclusions and future 

directions 

Nine genomic islands of two or more genes have been identified in �eisseria 

meningitidis. As these islands are always absent from the closely related commensal 

�. lactamica, they can also be referred to as pathogenic islands. Their role in 

pathogenicity has been investigated for two islands in this work. 

The role in pathogenesis for genomic island 4, composed of six genes (�MB0430-

�MB0435), and genomic island 8, composed of two genes (�MB1048-�MB1049), 

has been clarified by growing �. meningitidis in human whole blood, thereby 

mimicking the conditions of infection. The results showed that both islands are not 

involved in pathogenicity per se, as knockouts for crucial genes within these 

pathways did not decrease blood bactericidal activity compared to the wild-type 

strain. 

Genes belonging to the genomic island 4 encode proteins with still unknown 

functions or proteins with putative functions, which were extrapolated by BLAST 

search for similarity with genes present in other bacteria. In this work it has been 

shown for the first time that �. meningitidis can catabolise propionic acid as an extra 

carbon source, and that this is achieved through the six genes �MB0430 – �MB0435 

belonging to the 2-methylcitrate pathway (Figure 7-1). Knockouts of several genes 

amongst this pathway, in fact, led to the inability of the bacteria to use the short 

chain fatty acid. The results of this study indicate that the methylcitrate pathway 

plays an important role when �. meningitidis is grown in poor media, as it helps 
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bacteria to grow more. This pathway could give the meningococcus a survival 

advantage in the adult nasopharynx, which is rich in anaerobic bacteria producing 

propionic acid, or might be especially useful in vivo once it enters the blood vessels, 

as �. meningitidis will need to adapt quickly to the new challenging environment. 

Blood, in fact, contains fewer free nutrients, and propionic acid is amongst these. 

Propionic acid present in the blood derives from either food intake, as it is used as a 

common preservative, or from digestion of odd chain fatty acids and some amino 

acids. Moreover, propionic acid is produced by bacteria present in periodontal 

pockets. The main source of this short chain fatty acid, however, comes from 

bacteria present in the normal flora of the gut, where they produce it as metabolic 

end-product. Therefore, concentrations in the gut are always as high as 17.5 – 25 mM 

(Sellin, 1999). Propionic acid can then readily enter the blood by crossing the blood-

gut barrier or the epithelial cells in the upper digestive tract, and is found in the blood 

in ranges varying between 3 – 5 mM (Wolever et al., 1997). In a recent study, gene 

expression of the prp operon in �. meningitidis MC58 wild-type grown in human 

blood was shown to be up-regulated (Echenique-Rivera et al., 2011). This meant 

that, when bacteria were grown in blood, they behaved similarly to when they were 

grown in poor medium, as documented in my results. 

�MB0432, encoding a putative transporter, has been demonstrated in this work to be 

crucial in the 2-methylcitrate pathway. Propionic acid cannot be utilised by the 

mutant strain, even when this gene is disrupted by an antibiotic cassette lacking 

transcriptional terminators. This means that �MB0432 is potentially involved in the 

transport of the fatty acid into the cell. For this reason, it would be interesting to 

study the protein structure and see whether propionic acid can actually physically 

bind and be transported into the cell. 
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ackA-1 (�MB0435) encodes a propionate kinase and, as with �MB0432, it has been 

demonstrated here to be necessary for propionate metabolism. From the database 

(NCBI GenBank accession number AE002098.2) it appears, however, that �. 

meningitidis MC58 contains two putative acetate kinases: ackA-1 (�MB0435) and 

ackA-2 (�MB1518). In this work, ackA-1 was hypothesised to be a propionate 

kinase, as it is found as an integral part of the prp operon in all �. meningitidis 

strains. For this reason, ackA-2 is thought to be coding for a real acetate kinase. 

Studies designed to confirm this suggestion could be carried out by overexpressing 

both AckA-1 and AckA-2 in E. coli strain BL21 (DE3). A kinase assay could then be 

used to determine the activity of both proteins with propionic acid and acetic acid. 

Some work in this area has already begun in James Moir’s laboratory, where Iain 

Wallace has measured affinity to acetate but none to propionate for the AckA-2 

protein. This is in line with the results regarding the mutant for the ackA-1 gene, 

where the 2-methylcitrate pathway was not functioning, and also confirms that ackA-

2 is an acetate kinase. AckA-1, on the other hand, has been found to have affinity 

with both propionate and acetate substrates. 

As the KM of the propionate kinase in �. meningitidis strain MC58 has been 

measured to be 20 mM for propionate, and the concentration of propionate found in 

the natural habitat of these bacteria is considerably lower, active transport of this 

fatty acid into the cell may be required, and is probably achieved through NMB0432. 

This could also explain why other microorganisms that utilise the 2-methylcitrate 

synthase pathway and that contain a gene encoding propionyl-CoA synthetase (PrpE) 

do not need to encode a protein for an active transport for propionate. PrpE, in fact, 

has a much higher affinity to propionate, as it has a KM value of about 20 µM 

(Horswill & Escalante-Semerena, 2002). 
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Genes belonging to the genomic island 8 (�MB1048 and �MB1049) encode two 

proteins with unknown functions. NMB1049 contains domains similar to the LysR-

Type transcriptional regulators and has been shown in this work for the first time to 

be directly involved in the regulation of �MB1048 (Figure 7-1). Moreover, the 

NMB1049 protein was successfully overexpressed as part of this research, but its 

binding to �MB1048 was unsuccessful, probably due to inactivation of the protein. A 

development of the method of purification should therefore be carried out in order to 

keep the protein in its native functional state. The protein could therefore be cloned 

into a vector that contains a soluble tag such as glutathione S-transferase or maltose-

binding protein (Lichty et al., 2005). 

Additional studies of the nine genomic islands will give more insights into the 

pathogenicity or survival capabilities of �. meningitidis and this could be very 

important, as it could help in the development of vaccines, especially those needed 

for the bacteria belonging to the serogroup B. These genomic islands are absent from 

�. lactamica, and therefore the design of new vaccines targeting the products of 

these genes would be advantageous, as they would not interfere with the colonisation 

of �. lactamica. �. lactamica, in fact, has already been proved to be important in 

stopping colonisation of �. meningitidis (Evans et al., 2011). 
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Figure 7-1: �eisseria meningitidis MC58 metabolism in regards to pathogenic 

islands 4 and 8. 

The prp gene cluster (pathogenic island 4) is organised in an operon and the six 

genes it encodes (in blue) are all involved in the catabolism of propionic acid. 

NMB0432 is involved in the 2-methylcitrate pathway and is homologous to TauE, a 

family of integral membrane proteins. Pathogenic island 8 (in green) comprises two 

hypothetical genes, one of which encodes an LTTR protein. The LTTR protein 

activates the expression of the 2nd gene, �MB1048, which has still no function 

assigned to, but which belongs to the family of uncharacterised proteins DUF3360. 

The LTTR does not have any influence on the expression of the prp operon. Both 

pathogenic islands are regulated sharply by nutrient deprivation, which may be a 

prevalent problem for �. meningitidis in vivo. Gene numbers (430-435 in blue) 

correspond to the numbering given in the MC58 complete genome, where the 

number is preceded by “�MB0”. X (gray): unknown activator protein that binds to 

the prp operon promoter. 

 

Another way forward to eradicating �. meningitidis, and therefore to eliminate the 

chances of infection and death caused by this bacterium, could involve analysing the 
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oral microbiome of infants, children and older people, and comparing it to the 

microbiome of young adults, as this is the age range most prone to infection caused 

by �. meningitidis. Several studies have already been carried out in separate 

laboratories, where bacterial swabs were taken with different techniques and at 

different locations within the mouth. These showed that children contained mostly 

aerobic bacteria (Bogaert et al., 2011) and older people colonised an increasing 

number of anaerobic bacteria (Segata et al., 2012). More accurate studies could 

therefore involve swabs taken from the same place within the mouth or throat and 

could be analysed by pyrosequencing. The data obtained in this way would then lead 

to more comparable results, which could contribute to the effective inoculation of 

beneficial bacteria that would stop �. meningitidis colonisation. 

 



Appendices 

241 
 

Appendices 

Appendix  -  A 

Construction of the �MB0240::Spec
R
 mutant of �. meningitidis 

MC58 

The putative pathogenic island composed of genes �MB0239 and �MB0240 is 

thought to be involved in polyamine biosynthesis (Figure A-1). The first gene of this 

pathway, �MB0240, encodes spermidine synthase and has been successfully 

knocked-out with a spectinomycin resistance cassette, which was inserted after 

restriction digest with SspI (Figure A-2). 

 

Figure A-1: The spermine synthase pathway with its intermediates. 

Both �MB0239 and �MB0240 genes are specific to this pathway. Abbreviations 

used: dSAM: decarboxylated S-adenosylmethionine. SAM: S-adenosylmethionine 

(Figure adapted from Wimalasekera et al., 2011). 
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CCTTATATTTTTTCAACACTTTGGGTGCGGCACTCGGATCGCTTGCCGCCGCCGAATTTTTCTACGTC
TTTTTTACCCTCTCCCAAACCATTGCGCTGACAGCCTGCTTTAACCTTCTGATTGCTGCTTCAGTATG
GCTGCGTTACAGAAAGGATGGATATAGTGAACACTAAACCGAATACTAGTTTGATTTATATGCTTTCT
TTCCTTAGCGGCTTATTGAGCTTGGGTATAGAAGTCTTGTGGGTGAGGATGTTTTCGTTCGCAGCACA
GTCCGTGCCTCAGGCATTTTCATTTACCCTTGCCTGTTTTCTGACCGGTATCGCCGTCGGCGCGTATT
TTGGCAAACGGATTTGCCGCAGCCGCTTTGTTGATATTCCCTTTATCGGGCAGTGCTTCTTGTGGGCG
GGTATTGCCGACTTTTTGATTTTGGGTGCTGCGTGGTTGTTGACGGGTTTTTCCGGCTTCGTCCACCA
CGCCGGTATCTTCATTACCCTGTCTGCCGTCGTCAGAGGGTTGATTTTCCCGCTCGTACACCATGTGG
GTACGGATGGCAACAAATCCGGACGACAGGTTTCCAATGTTTATTTCGCCAACGTTGCCGGCAGTGCA
TTGGGTCCGGTCCTTATCGGCTTTGTGATACTTGATTTCTTGTCCACCCAACAGATTTACCTGCTCAT
CTGTTTGATTTCTGCTGCTGTCCCTTTGTTTTGTACACTGTTCCAAAAAAGTCTCCGACTGAATGCAG
TGTCGGTAGCAGTTTCCCTAATGTTCGGCATCCTCATGTTCCTACTGCCGGATTCTGTCTTTCAAAAT
ATTGCTGACCGTCCGGATAGGCTGATTGAAAACAAACACGGCATTGTTGCGGTTTACCATAGAGATGG
TGATAAGGTTGTTTATGGGGCGAATGTATACGACGGCGCATACAATACCGATGTATTCAATAGTGTCA
ACGGCATCGAACGTGCCTATCTGCTACCCTCCCTGAAGTCTGGCATACGCCGCATTTTCGTCGTTGGA
CTGAGTACAGGTTCGTGGGCGCGCGTCTTGTCTGCCATTCCGGAAATGCAGTCGATGATCGTTGCGGA
AATCAATCCGGCATACCGTAGCCTTATCGCGGACGAGCCGCAAATCGCCCCGCTTTTGCAGGACAAAC
GTGTTGAAATTGTATTGGATGACGGTAGGAAATGGCTGCGTCGCCATCCTGATGAAAAATTCGACCTG
ATTTTGATGAATACGACTTGGTACTGGCGTGCCTATTCCACCAACCTGTTGAGTGCGGAATTTTTAAA
ACAGGTGCAAAGCCACCTTACCCCGGATGGTATTGTAATGTTTAATACCACGCACAGCCCGCATGCTT
TTGCTACCGCCGTACACAGTATTCCCTATGCATACCGCTATGGGCATATGGTAGTCGGCTCGGCAACC
CCGGTAGTTTTCCCTAATAAAGAACTGCTCAAGCAACGTCTCTCCCGGTTGATTTGGCCGGAAAGCGG
CAGGCACGTATTTGACAGCAGCACCGTGGATGCTGCAGCACAAAAGGTTGTCTCTCGTATGCTGATTC
AGATGACGGAACCTTCGGCTGGGGCGGAAGTTATTACCGACGATAATATGATTGTAGAATACAAATAC
GGCAGAGGGATTTAACCGTCTTAAAGGGTTTCAGGCAACGCAGGTTTTAGGTAACGTCCTGCTAGTTC
AAAAAAACCGCATCACAGCAGTCGGGACAAAATGGTTTAAACATTTTGTCCCGAATTCTTATTCCTAT
ATATAGTGGATTAACAAAAATCAGGACAAGGCGACGAAGCCGCAGACAGTACAAATAGTACGGAACCG 

 

Figure A-2: The �MB0240 sequence with its flanking regions used for 

constructing the mutant. 

The �MB0240 gene (blue) with the ATG start codon and the TAA stop codon (both 

in green) and its flanking regions (black) give a product 1516 bp long. Primers 

NMB0240-for and NMB0240-rev were used (highlighted in yellow) to generate the 

knockout. The reverse primer’s mismatches are also shown (highlighted in red), 

where “A” and “T” in the sequence were both considered as “G” during the primer’s 

design. The SspI site is also shown (highlighted in blue) with the two bases within 

which the restriction enzyme cuts (brown). Primers NMB0240bis-for and 

NMB0240bis-rev were used for colony pick PCR screening in �. meningitidis 

(underlined in blue). 
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Appendix  -  B 

Construction of the �MB0468::Spec
R
 mutant of �. meningitidis 

MC58 

The putative pathogenic island composed of genes �MB0468 and �MB0469 is 

thought to be involved in polyamine biosynthesis (Figure B-1). The first gene of this 

pathway, �MB0468, encodes arginine decarboxylase and has been successfully 

knocked-out with a spectinomycin resistance cassette, which was inserted after 

restriction digest with AclI (Figure B-2). Sequencing results of the new transformant 

confirmed that the gene was disrupted with the spectinomycin resistance cassette. 

From sequencing it cannot be determined if the restriction enzyme cut all three sites 

or just once, however, the spectinomycin cassette has been partially sequenced 

starting from the 3rd AclI site. 

 

Figure B-1: The putrescine synthesis pathway. 

Both �MB0468 and �MB0469 genes are specific to this pathway (Figure adapted 

from Stalon & Mercenier, 1984). 
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ATCGCTGACTCCTTTGATGGAAAGATGAACCAAAATGCCGTCTGAAGCGTTCAGACGGCATTTTGCCT
GTTCCTCATCAGGTATGAGGCAGGCTTTTCTTATTAAAAAAATGACATTTCACGCTGATTTGTTATAA
TCATTCCTTTTCAACACGACAGACGGAGCAGGTTTATTATGCCTATCCTTACCATCCGTGAAGTGTGC
AACATTAATCATTGGGGCATAGGTTATTATGATGTTGACGATTCCGGCGAAATCATCGTCCGCCCCAA
TCCCTCGCAACACAATCAAACTGTTTCACTGCAAAAACTGACTGAAGCCGTGCAACAAAAACATCAGG
CGCGCCTGCCTGTTTTGTTTTGTTTTCCGCAAATCCTCGAACACCGCCTCCGCGACATTAACCGCGCC
TTTCAGACGGCACGGGAAGAGTGCGGCTATAAGGGCGGTTATTGTTTGGTTTACCCTATCAAGGTCAA
CCAACACCGCCGCGTCATCGAATCGCTTATGTCAAGCGGACAACCGCATGGTTTGGAAGCTGGTTCTA
AAGCCGAACTGATGGCGGTTTTGGCACACGCCGGCAACCGGCAAACATTAATCGTCTGCAACGGCTAT
AAAGACCGTGAATATATCCGTTTCGCCTTGATGGGCGAAAAACTGGGGCATCAGGTTTATTTGGTGAT
TGAGAAGCTGTCCGAAATACAAATGGTATTGGAAGAGGCGGAAAAACTCGGCATCAAGCCCCGTTTGG
GTGTGCGCGCCAGACTGGCTTCCCAAGGTTCGGGAAAATGGCAGTCTTCGGGTGGGGAAAAATCAAAA
TTCGGCTTGTCGGCTTCCCAAGTTTTGCAACTGGTCGATATTTTGAAACAAAAAAACAGGCTGGATTG
CCTGCAGCTTTTGCATTTCCATTTGGGCTCGCAGCTTGGGAACATCCGTGATGTTGCCACAGGTGTAC
ACGAATCGGCTCGGTTTTATGTTGAGTTGCACAAACTGGGGGTAAATATCCGCTGTTTTGATGTAGGC
GGCGGGCTTGGCGTGGATTACGAAGGAAACCGCACACAATCGGATTGTTCCGTTAATTACAGCCTCAA
CGAATATGCCGCCACAGTCGTATGGGGCATCAGTCAGGCTTGTCTCGAACACGGGCTGCCGCATCCGA
CAATCATCACCGAGAGCGGGCGCGGCATTACCGCACATCACGCCGTTTTGGTTGCTAATGTTATAGGC
GTTGAACGTTACAAACCGCGCCGGCTGGATGCGCCATCGCCCGAAGCACCGCGTGTGTTGCACAGTAT
GTGGGAAACTTGGACGGATATTTCCGCCTCGCGGGAAAAACGTTCCTTACGCAGCTGGATACACGAAG
GGCAGTTTGATCTTGCTGATGTGCATAATCAGTATAATGTCGGGCTGTTGAGTTTGGCGCAACGTGCG
TGGGCGGAGCAACTGTATTTAAATATCTGTCATGAAGTCGGCGAATTGTTTAATGAAAAACACCGGTC
TCACCGAACCATTATTGACGAATTGCAAGAACGTTTTGCCGATAAGCTGTATGTCAATTTCTCACTCT
TCCAATCTTTGCCCGATGCTTGGGGCATAGATCAACTTTTCCCTGTTTGTCCCATTACCGGTTTGAAT
GAACCGATTGCGCGCCGCGCCGTGTTGTTGGACATTACCTGCGATTCAGACGGTACGATTGACCACTA
CATCGACGGAGACGGCATCGCCGGTACGATGCCTATGCCTGATTATCCCGAAGAAGAGCCGCCGCTTT
TAGGCTTTTTTATGGTGGGAGCATATCAGGAAATACTCGGCAATATGCACAATCTTTTCGGCGACACT
GCCACTGCCGATGTTGTTGTAGGGGAAGACGGACAATTTACCGTCATCGATTACGATGAAGGAAACAC
CGTTGCCGATATGCTCGAATACGTTTATCAAGATCCGAAAGAGCTGATGAAACGCTATCGCGAACAAA
TCGAACATTCAGACCTTCCTGCCTCGCAGGCTATGTCTTTCTTAAAAGAACTCGAAGCGGGGCTTAAT
GGTTATACCTATTTGGAAGACGAATAGACGCATCAAGGCATCGGATATGTCGTCTGAAGCCCGATTTT
CTTACTCAAACACCAATCATCACGACCGATTGAAACCAATTACAAGGAATCATTACGATGCAATACAG
CACACTGGCAGGACAAACCGACAACTCCCTCGTTTCCAATAATTTCGGGTTTTTGCGCCTGCCGCTTA 

 

Figure B-2: The �MB0468 sequence with its flanking regions used for 

constructing the mutant. 

The �MB0468 gene (blue) with the ATG start codon (green) and the TAG stop 

codon (red) and its flanking regions (black) give a product 1958 bp long. Primers 

NMB0468-for and NMB0468-rev were used (highlighted in yellow) to generate the 

knockout. The reverse primer’s mismatch is also shown (highlighted in red), where 

“T” in the sequence was considered as “C” during the primer’s design. The same 

primers were used for colony pick PCR screening in �. meningitidis. The three AclI 

sites are also shown (highlighted in blue) with the two bases within which the 

restriction enzyme cuts (brown).  
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Appendix  -  C 

Construction of the �MB1049::Chl
R
 mutant of �. meningitidis MC58 

The putative �MB1049 gene that encodes a LysR-Type transcriptional regulator has 

been knocked-out with a spectinomycin resistance cassette, as described in Chapter 

4. This gene, however, has also been successfully knocked-out with a 

chloramphenicol resistance cassette. 

The chloramphenicol resistance gene cassette (Chl
R) was generated by PCR 

amplification of the pST2 plasmid with the primers Chloram-for (5’-

AAGAATTGGAGCCAATCAATTC-3’) and Chloram-rev (5’-

TACACTAAATCAGTAAGTTGGC-3’). The resulting PCR fragment for 

chloramphenicol resistance gene was approximately 2 kb in size. This fragment was 

purified from the gel and subsequently used for ligation with �MB1049, in order to 

disrupt the function of the �MB1049 gene. 

The resistance cassette was inserted after restriction digest of �MB1049 with BspEI 

(Figure C-1). Sequencing results showed that the 705 bp fragment was eliminated 

after digest with the restriction enzyme. Sequencing of the new transformant 

confirmed that the �MB1049 gene was disrupted with the chloramphenicol 

resistance cassette. 
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GATAAAGCCCAAATAGAGTAATAATCCGCCGCATACGCCGTTGCTTGTCAGCTTCGCCATAATACTGC
CGCCGCGAAATAAAGCCATCAGCAGACCTAAAACCGCAATCGAAATGCCGAACGCCAAAGGATGCCCG
CCTGCCGACACAACGATGGGAATCATCGGAATCAGCGGCCCGTGCGTACCGGGCAGGTTGGCGCCGGG
CAGAAAAAAGCCCGATACCAATAAGATAAACGCGGCGGCGATTAAAAGCTCATAGCGCACATTTTCCA
GTACAAAGCTGTCAGGCAGCCCCAAAGGTGCGGCAAACGCCGCCGCCACCGCCCCCACCATCACCACT
TTTCCAATCGTTCCCGCCATCGCAGGAATCAAATCCTCCCACTCGAAGCGGTAATCGCGAAAGGGCAG
GTTGGGCCGCCAGCGTTTTGGTTGCATAATCTGCAATTCATGTTCCAAATATTCGTCCCGCGTCGCAA
ATTCCGAAGCTGGACGGTGCAAATCCCGATAAGTCCCATTATGTTTTTCCATAACCTTCCTCCTTATA
TATCGCGCCTCGTAAAAGGGGCGCATGACTTTTCTTTTTGATACGGGCTGCGTTCGGAAGCCGTAACC
CCATTTAAAGCCCAAACAGGCAATAAAACCAATCTTTTTTTTTGATAACCATCATCCGGAAAACTGAT
ACAATTTACAAACCACTTGATTAAAAAGTTAATTTTCAGCAACAATCCACCTAAAAGATTTCGATTGC
ACAAATATAGAAAACATCCGCACAAGGAGGGATATATGGATGCCGTACAATTAAAATCATTTGTCGCC
GTCGCGCACGAGGGCAACCTTACCCAAGCCGCCAAACGACTTTTCCTTTCCCAGCCTGCCGTTTCTGC
CCAAATTAAAGCCCTTGAAGAATATGTCGGCACGCCGCTGTTCAGGCGCACGGGGAAAGGCATGGTAT
TGACGCGGGCGGGCGAAATACTGTTGCCCGAAGCGGAATCCCTGCTGCAATACAAACACAAGCTGGAG
CATTTTGCCAAAACGCTGGCAGGCGATTATTCGGAAGAGACCAGTTTGGGCATTATCCACCCCATCGA
TTCGGCAAAACTCGTCGCGCTGACGGACAATATCGGTCAAACAGCCCCCAAAACGCGCCTGCACATCC
AATACGGAATGAGCGGCGAAATCCTCTCGCGCATCCAACACAAAACCCTGCACGGCGGCTTTATACTC
GGCAACGCCGCCCAACGCGGCATCCGCAGCGTATTCCTGCAAAACCTGACCTACGCGCTGATTTGCCC
GCAAAGCCAATATCCCCATCTGACCCGCTCCCTTCCGCAGAGCCTGCAAGAATGCGTATGGATAGAAA
TGTCGGGCGTGTCCGGAAGTAGGAAGCACCTGCACCAGTTTTGGCGCAGCAACCGGCTCTCACCCAAA
AAACAGATCTTGTGCGACTACCCCCAAACCATTATCGATTTGGTTGCAGGCGGTATAGGTGTGGCAAT
GGTGCCGGGAAACAAAGCCGAAGCGGCGGCAAAAGAAGGCGCGGGCGTGGCTATTATCGAATCGTGCC
GCCACAGTATGCCGCTCAATTTCATTTATGCGGAAGAATACGAGGATAATCCCCACGTCTCACTCCTG
CTCGAGTGCATTGAAAAAGTATGGGGAGTGCAGGCGGTGCAGCCGCCCGTTGTCTCGGACAACTGAAA
TAAATCCTGCTTTGCTGATTGTTTTAAAATAGAAATTTGAATTTTATCACGCTGAAAACACTGAAAAC
GCCATCCGCATTCTCTCAAATACGGCTTAAAATGCCCTTTGGAAATGCCGTTATAGTGGATTAACAAA
AATCAGGACAAGGCGACGAAGCCGCAGACAGTACAAATAGTACGGAACCGATTCACTTGGTGCTTCAG
CACCTTAGAGAATCGTTCTCTTTGAGCTAAGGCGAGGCAACGCCGTACTGGTTTTTGTTAATCCACTA
TAAACTGACGCAAATACCGTTTTGCACAATTCCAAAAGTTTTCAATTCCGTTAATGCGATTTTGCCGT
TTGGCGAAATGCGTACTGTTCCAGTCGTGGATTGAACCCCCACCCTGTATAGTTCTTTCGAAGCATTG
GGGTATTGTTTTTTCAAAGCATCTTGGATTCGGATTTCAAGTGCAACACTAGTGTATTAGTGGTTGGA
ACAGATTCAAGAATAAAACACTTGGCGTTTCGTAGCCAAGTGTTTTTCTTGGTCGGTGGTTCAACTCA 

 

Figure C-1: The �MB1049 sequence with its flanking regions used for 

constructing the mutant. 

The �MB1049 gene (blue) with the ATG start codon (green) and the TGA stop 

codon (red) and its flanking regions (black) give a product 2043 bp long. Primers 

NMB1049-for and NMB1049-rev were used (highlighted in yellow) to generate the 

knockout. The same primers were used for colony pick PCR screening in �. 

meningitidis. The two BspEI sites are also shown (highlighted in blue) with the two 

bases within which the restriction enzyme cuts (brown).  
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Appendix  -  D 

TMHMM for the ?MB0432 protein of �. meningitidis MC58 

The putative NMB0432 protein containing 262 amino acids has similarities to TauE, 

a family of integral membrane proteins. A search with the TMHMM Server v. 2.0 for 

the NMB0432 protein sequence resulted in 8 transmembrane helices. 

 

Figure D-1: TMHMM prediction for ?MB0432. 

The protein encoded by �MB0432 contains 8 transmembrane helices.   
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Appendix  -  E 

TMHMM for the ?MB1048 protein of �. meningitidis MC58 

The putative NMB1048 protein containing 489 amino acids belongs to the 

DUF3360, a family of proteins of unknown function. A search with the TMHMM 

Server v. 2.0 for the NMB1048 protein sequence resulted in 11 transmembrane 

helices. 

 

Figure E-1: TMHMM prediction for ?MB1048. 

The protein encoded by �MB1048 contains 11 transmembrane helices.  
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