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Abstract 

The drainage of ice-dammed lakes produces floods that can pose hazards, 

waste water resources and modulate ice flow. In this thesis I investigate 

several aspects of ice-dammed lake drainage through the development and 

analysis of mathematical models.  

After an introduction in the first chapter and a description of the 

mathematical background to the thesis in the second, the third chapter 

investigates the mechanisms behind observed variability in the size and 

timing of subglacial floods from ice-dammed lakes. In particular, I examine 

how environmental controls like the weather and the shape of glaciers 

affect floods. 

In the next chapter, I quantify how well simple models can predict the 

dates of floods from an ice-marginal lake in Kyrgyzstan. I find that 

incorporating environmental controls into models improves their 

prediction ability.  

Next I investigate the coupling between subglacial drainage and glacier 

motion during ice-dammed lake drainage by developing and analysing a 

model which couples a marginal lake, glacier sliding, subglacial drainage 

through a channel and subglacial drainage through a distributed system of 

cavities. I show how changes in lake level cause the rate at which a glacier 

slides to increase during the first half of floods and decrease during the 

second half. 

The next two chapters are concerned with two lake-drainage scenarios that 

involve water flowing as an open stream: firstly, the subglacial open-

channel flow that occurs after a marginal lake drains completely during a 

flood, and secondly, the drainage of supraglacial lakes across the surface of 

ice sheets.  

I end the thesis with a summary of my findings and some suggestions of 

theoretical and field-based investigations that are worthwhile pursing in 

the future. 
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Chapter 1 Introduction 

Interactions between water and ice result in many interesting phenomena. A classic 

example, well-studied by glaciologists, is the formation and drainage of ice-dammed 

lakes. Ice-dammed lakes form next to, on the surface of, and beneath glaciers and ice 

sheets. Some lakes drain catastrophically, producing high-magnitude floods (e.g. 

Björnsson, 2002; Hewitt and Liu, 2010; Liestøl, 1956; Post and Mayo, 1971; Roberts, 

2005; Thorarinsson, 1953; Tweed and Russell, 1998). People care about this because 

floods pose hazards (e.g. Richardson and Reynolds, 2000), waste water resources 

(Mamatkanov and Mingtszyan, 2011) and can modulate the flow of the adjacent ice 

(Anderson et al., 2005; Bartholomaus et al., 2011; Das et al., 2008; Magnusson et al., 

2011; Mayer and others, 2008; Sugiyama et al., 2008).  

Studying this phenomenon helps us better understand other ice-water interactions such 

as glacier surging (Björnsson, 1998), seasonal evolution of drainage systems 

(Bartholomaus et al., 2011; Bartholoemew et al., 2012; Nienow et al., 1996) and 

drainage through vertical conduits in glaciers called moulins. This is important because 

glacial meltwater is a vital resource for millions of people worldwide (e.g. Barnett et al., 

2005; Kehrwald et al., 2008) and contributes to sea-level rise (Bindoff et al., 2007). 

Glaciers and ice sheets are currently responding to a changing climate and a better 

understanding of ice-water interactions is needed if we are to predict the future of this 

response.  

Thus, in this thesis I aim to increase our understanding of ice-dammed lake drainage, 

aiding efforts to mitigate its negative consequences and contributing to global efforts to 

understand how water and ice interact in glacial systems. I start with an overview of 

what we already know about ice-dammed lake drainage and how to mathematically 

model it before outlining this thesis’ contributions and structure.  

Fig. 1.1 illustrates several ways in which ice-dammed lakes form in and around mountain 

glaciers (Costa and Schuster, 1988; Tweed and Russell, 1998; Roberts, 2005). At the 

glacier terminus, proglacial lakes can form when glacier runoff is dammed by a moraine 

(e.g. Richardson and Reynolds, 2000). Hence, the observed proliferation of such lakes is 

associated with mountain glacier retreat (e.g. Bajracharya and Mool, 2009; Komori, 

2008). These lakes can drain catastrophically through mechanical and thermal erosion of 

their moraine dams (Ding and Liu, 1992; Richardson and Reynolds, 2000) and the 

resultant floods can have peak water discharges in excess of 30000 m3 s-1 and propagate 

hundreds of kilometres down-valley (Richardson and Reynolds, 2000). These floods pose 
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significant hazards (e.g. Bajracharya et al., 2007; Vuichard and Zimmermann, 1986), but 

they tend to be one-off events because they completely destroy the moraine dam. 

In contrast, some lakes drain via the enlargement of pathways through or over glacier 

ice. Because ice flows under its own weight, these pathways can close after lake 

drainage, allowing regularly repeating floods to emanate from the same lake. The other 

three kinds of lake shown in Fig. 1.1 – subglacial, marginal and supraglacial lakes – can 

behave in this way and it is these I focus on in this thesis.  

Subglacial lakes form between the bottom surface of a glacier and its substrate – usually 

bedrock or glacial till. Because subglacial water usually flows from high to low hydraulic 

potential and this potential is determined by the ice thickness and the bed elevation 

(e.g. Cuffey and Paterson, 2010; Shreve, 1972), subglacial lakes generally form in 

bedrock depressions or in regions where the ice surface is locally depressed (Björnsson, 

2002; Clarke, 2005; Livingstone et al., 2012). The latter can result from locally increased 

basal melting due to geothermal heating, which also provides a source of water. While 

so-called subglacial lakes in alpine systems can often be partially open to the 

atmosphere (e.g. Björnsson, 2002; Capps et al., 2010), true subglacial lakes, isolated 

from the atmosphere by the overlying ice, are common beneath modern ice sheets (e.g. 

Carter et al., 2007; Fricker et al., 2011; Siegert et al., 2005; Smith et al., 2009; Wright and 

Siegert, 2011) and are hypothesised to have been common beneath past ice sheets (e.g. 

Evatt et al., 2006, Livingstone et al., 2012). 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 1.1. Several kinds of ice-dammed lakes. Adapted from Roberts (2005). 
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Marginal lakes can form at the confluence of two glaciers, or, as shown in Fig. 1.1, in an 

ice-free tributary valley against a glacier that occupies a main valley. An example of a 

lake in the former setting is Gornersee in Switzerland that forms at the confluence of 

Gornergletscher and Grentzgletscher (Huss et al., 2007). Examples of lakes in the latter 

setting are: Hidden Creek Lake, Alaska (Anderson et al., 2003), Grænalón, Iceland 

(Roberts et al., 2005), Merzbacher Lake, Kyrgyzstan (Mayer et al., 2005;Ng and Liu, 

2009), Hazard Lake, Canada (Collins and Clarke, 1977), Summit Lake, Canada (Clarke, 

2003; Mathews, 1973; Post and Mayo, 1971), Strupvatnet, Norway (Aitkenhead, 1960; 

Liestøl, 1956; Whalley, 1971) and Øvre Messingmalmvatn, Norway (Engeset et al., 2005).               

All the marginal lakes mentioned above are particularly well-studied because they have 

been observed to drain. Drainage can occur subglacially. Because subglacial floods are 

common in Iceland they are often referred to by their Icelandic name jökulhlaups. Fig. 

1.2 displays a water discharge time series observed during a typical subglacial jökulhlaup 

from a lake called Grimsvötn in Iceland. Grimsvötn forms in a subglacial caldera beneath 

Vatnajökull ice cap. It is fed by meltwater produced in an adjacent volcanically active 

area and, although usually referred to as a subglacial lake, it is only partially covered by a  

thick floating ice shelf (Björnsson, 1992, 2002; Ng and Björnsson, 2003; Nye, 1976). 

 

 

 

 

Fig. 1.2. Hydrograph of a jökulhlaup from subglacial lake Grimsvötn, Iceland in 
1991. Reproduced from Björnsson (1998). Accuracy is 10 %. This hydrograph is 
typical in shape for subglacial jökulhlaups, with a relatively slow exponential 
rising limb and a rapid falling limb. 
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Floods are thought to almost always occur through ice-walled channels at the ice-cap’s 

bed. The jökulhlaup hydrograph in Fig. 1.2 is typical of subglacial floods from marginal 

and subglacial lakes in magnitude and shape (Roberts, 2005); discharge increases 

approximately exponentially over one or two weeks and decreases relatively rapidly 

following a peak of up to several thousand cubic metres per second. Theory suggests 

that this shape results from the way in which the size of an ice-walled subglacial 

channel, assumed to convey the floods, evolves over time through a competition 

between enlargement through melt caused by the flowing water and closure due to the 

flow of ice (Nye, 1976).  

Lake drainage affects the dynamics of glaciers (e.g. Magnusson et al., 2011). Glaciers 

slide over their beds at a rate that depends on the basal water pressure. Many large 

glaciers permanently have water at their beds, but changes in subglacial water flux 

associated with lake drainage can alter water pressure and sliding. This is interesting for 

glaciologists trying to understand how longer-term changes in water flux might affect ice 

dynamics. Excitingly, this coupling between ice dynamics and lake drainage, already 

known about in alpine glaciers (e.g. Anderson et al., 2005; Magnusson et al., 2011; 

Mayer et al., 2008; Riesen et al., 2010; Sugiyama et al., 2010) has recently been 

observed in Greenland (Das et al., 2008; Zwally et al., 2002) and Antarctica (Stearns et 

al., 2008). 

In Greenland, this coupling is between ice dynamics and supraglacial lakes (Fig. 1.1). 

Supraglacial lakes form in topographic depressions on the Greenland Ice-sheet’s surface 

(e.g. Echelmeyer et al., 1991; Lüthje et al., 2006; Sundal et al., 2009; Selmes et al., 2011; 

Reynolds, 1981) and are often observed to drain through hundreds of metres of ice to 

the ice-sheet’s bed (e.g. Das et al., 2008). Drainage results in an increase in basal water 

pressure and in the ice-sheet’s sliding velocity. These observations have led some to 

hypothesise that a positive feedback – between surface melt, lake drainage to the ice-

sheet’s bed, enhanced sliding and dynamic ice-sheet thinning – has the potential to 

cause significant mass loss in Greenland (e.g. Pritchard et al., 2009; Rignot and 

Kanagaratnam, 2006). 

Jökulhlaup-like drainage occurs beneath Antarctica and may have occurred beneath 

paleo–ice-sheets (e.g. Evatt et al., 2006; Fricker et al., 2007, Livingstone et al., 2012; 

Wingham et al., 2006). Antarctic subglacial lakes were first discovered in the 1970’s 

using airborne radio-echo sounding and satellite altimetry (e.g. Robin et al., 1970; 

Siegert, 2000; Siegert et al., 1996; Siegert et al., 2005), but little was known about their 

time evolution until Wingham et al. (2006) detected temporal changes in the elevation 

of the East Antarctic Ice Sheet near Dome C (135oE, 74oS). He concluded that these 
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changes were the result of corresponding changes in the volume of water impounded in 

a small group of subglacial lakes in the Adventure Subglacial Trench. Evatt et al. (2006) 

modelled this hypothesised jökulhlaup-like drainage and concluded that lakes beneath 

ice sheets can drain via large periodic floods, lasting years, rather than weeks as is 

observed in smaller alpine jökulhlaup systems. With lake drainage appearing inherently 

unstable and episodic in their model, they suggested that jökulhlaup-like drainage is 

common today beneath Antarctica. Since their modelling study, numerous observations 

have confirmed this suggestion (e.g. Fricker et al., 2007; Fricker et al., 2009; Fricker et 

al., 2010; Smith et al., 2009; Winberry et al., 2009). Furthermore, just as in mountain 

glaciers, lake drainage has been observed to affect the dynamics of the overlying ice 

(Stearns et al., 2008).  

Observations show that lake drainage can be a recurring phenomenon. Returning to 

jökulhlaups from mountain glaciers and ice caps, Fig. 1.3 shows time series of lake level 

(above sea level, Fig. 1.3a) and lake depth (above the lake bed; Fig. 1.3b) from two 

jökulhlaup lakes. The data in the top panel is from Grimsvötn (reproduced from 

Björnsson, 2002) and the data in the bottom panel is from Merzbacher Lake (Ng and Liu, 

2009) – a marginal lake in Kyrgyzstan that I describe in detail in Chapter 4. At both lakes, 

periods of lake filling are separated by floods, seen in the time series records as abrupt 

drops in the lake level and depth. Hydrographs from floods from both systems usually 

have a shape similar to that displayed in Fig. 1.2. In both panels the horizontal dashed 

lines indicate the height (Fig. 1.2a) and depth (Fig. 1.2b) the lakes need to reach in order 

to cause their ice dams to float. This ‘flotation depth’ is roughly equal to the ice-dam’s 

height above the lake’s bed multiplied by the ratio of the densities of ice and water, 

≈9/10 (Tweed, 2000).  

With regard to these time series, several observations are revealing of important 

differences and similarities between the two systems. Firstly, the ‘shoulders’ visible in 

Fig. 1.3b, indicating times when lake-depth rise is temporarily slower than at other 

times, are absent from Fig. 1.3a. They correspond to the winter months and their 

absence in Fig. 1.3a alludes to an important difference between the systems. Both lakes 

are filled by meltwater but the sources of heat used in melting ice to produce this 

meltwater are different in each case. At Grímsvötn this heat source is predominantly 

geothermal (Nye, 1976), the rate at which the lake fills is therefore almost independent 

of the seasons. In contrast, Merzbacher Lake is filled by runoff from an up-valley glacier 

which melts at a rate predominantly determined by weather conditions. Hence the slow 

filling during the winter when sub-melting-point temperatures mean that the only input 

to the lake is from ice calving off the ice-dam, which is assumed constant for this 

reconstruction.  
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Secondly, although this is not made obvious by the vertical scale in Fig. 1.3a, Grímsvötn 

does not empty during floods; floods terminate while there is still water in the lake. In 

contrast, Merzbacher Lake does empty (Ng and Liu, 2009). This is reflected in the 

reconstruction; after each flood the lake depth begins increasing from zero. This is 

common in marginal lakes in alpine systems (e.g. Bartholomaus et al., 2011; Collins and 

Clarke, 1977; Huss et al., 2007).  

Lastly, floods are fairly regular, but in both systems there is variability in the length of 

lake-filling periods, in the maximum depth each lake reaches before floods begin and, 

allthough not visible in the figure, in the peak discharge of floods. At Merzbacher Lake 

(Fig. 1.3b) there is inter-flood variability that Ng et al. (2007) linked to variations in the 

weather and its effect on meltwater input to the lake. Ng and Liu (2009) investigated the 

Fig. 1.3. Time series of (a) the observed lake level above sea level of Grímsvötn 
subglaial lake, Iceland, and (b) the reconstructed (see chapter 4) depth of 
Merzbacher Lake, Kyrgyzstan. The timeseries in (a) is taken from Björnsson 
(2002), who recontructed lake level from observations of the surface of the water 
and ice shelf. The red clouds indicate the approximate timing of subglacial 
volcanic eruptions. The time series in (b) is reconstructed following the methods 
of Ng and Liu (2009), described later in section 4.3.4. In both panels, the dashed 
horizontal lines represent the lake level and depth the lakes must reach to float 
their ice dams. They are placed approximatly based on Björnsson’s (2002; 2009) 
statements that Grimsvötn jökulhlaups typically start when the lake i s 60–70 m 
below the flotation level and Ng and Liu’s (2009) estimate of 120 m for the height 
of Merzbacher Lake’s ice dam.  
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temporal dynamics of Merzbacher Lake floods further and found that they could explain 

many features of the sequence of flood dates using the concept of a ‘flood initiation 

threshold’. At Grímsvötn (Fig. 1.3a), filling periods that usually last 5-10 years are 

sometimes interrupted by floods caused by subglacial volcanic eruptions, indicated in 

the figure by the red clouds. The increase in meltwater input associated with these 

eruptions clearly has a dramatic effect on the size of floods. Moreover, Fig. 1.3a shows 

how the lake reached the flotation depth (dashed line) just once during the period 

shown. This occurred in November 1996, just before the largest flood ever recorded 

from Grimsvötn and after a month of rapid lake filling caused by a large subglacial 

volcanic eruption (Björnsson, 2002; Gudmundson et al., 1997). This flood was not only 

larger than any other ever observed from Grimsvötn, peaking at ~40000 m3 s-1, it also 

reached its peak unusually rapidly. Hence, this flood’s hydrograph was very unlike the 

typical jökulhlaup hydrograph (Fig. 1.2). The unusual hydrograph, the lake reaching the 

flotation depth (Fig. 1.3a) and other observational evidence indicating widespread over-

pressurisation (basal water pressure that exceeds the overburden pressure of the ice) 

suggest that this flood started and developed in a very different manner than typical 

Grimsvötn floods and floods from other systems (e.g. Merzbacher Lake (Björnsson, 

2002; Flowers et al., 2004; Jóhannesson, 2002). 

This anomalous Grimsvötn flood stimulated research into a long-standing unresolved 

question: how do jökulhlaups begin? Answering this would constitute a significant step 

towards an ability to predict flood size and timing. Initially, when people observed these 

floods from downstream, they were unsure if they occurred subglacially; Kerr (1934) and 

Maag (1963) hypothesised that ice-marginal lakes overtopped their ice dams and 

drained by incising a channel in the ice surface. This style of drainage is observed from 

supraglacial lakes (e.g. Raymond and Nolan, 2000) and occasionally from marginal lakes 

(Werder et al., 2009), but many other observations show that marginal and subglacial 

lakes often drain subglacially (e.g. Collins and Clarke, 1977; Higgins, 1970; Liestøl, 1956; 

Whalley, 1971). With the most common style of drainage established as being 

subglacial, the question of how subglacial drainage starts remained. Thorarinsson (1953) 

supposed that lakes reach the flotation level, lifting the ice dam and allowing water to 

drain beneath it. Glen (1953) and Liestøl (1956) pointed out that, as such 

flotation-initiated drainage progresses, it would lower the lake’s level and the ice dam 

would come to rest on its bed again, halting drainage; the result being steady drainage 

controlled by the input to the lake. But Aitkenhead (1960) thought that the bed was 

unlikely to come to rest in exactly the same place on its bed and so water flow could 

continue to flow through gaps between the ice and rock, enlarging a channel by friction 

as was also suggested by Liestøl (1956). Glen (1953) proposed a different mechanism. 
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When water pressure is sufficiently greater than the ice overburden pressure at the base 

of an ice-dam the ice will flow in response to the unbalance in horizontal stresses, slowly 

opening a drainage pathway. This mechanism requires that the ice dam does not float 

when the lake depth exceeds the flotation depth. This seems improbable given 

observations of floating portions of ice dams (e.g. Marcus, 1960; Mayer et al., 2005; 

Walder et al. 2006) and floods that have certainly been initiated by ice-dam flotation 

(Björnsson, 2002, 2009; Jóhannesson, 2002). Floatation could be prevented if the 

density of the ice dam were larger than that of pure ice, perhaps due to a high content 

of rock (Tweed, 2000). How floods start remains a gap in our understanding (Ng et al., 

2007; Ng and Liu, 2009). With the exception of Fowler (1999), who built on seminal 

theoretical work by Nye (1976), few people have developed theoretical models which 

try to fill this gap.   

Nye’s (1976) theory represented a step-change in our understanding of jökulhlaups. He 

built on Röthlisberger’s (1972) theory of steady-state water flow through an ice-walled 

channel to model lake drainage through a time-evolving channel at the glacier bed. 

Nye’s model, described in detail in the next chapter, successfully explained the shape of 

the rising part of floods from Grimsvötn, showing that it arises through a feedback 

between channel enlargement by frictional dissipation of heat in the flowing water, the 

size of the channel and the water flux.  

Nye’s theory has been the basis for all subsequent theoretical jökulhlaup work. Studies 

have tried to improve the model – by removing simplifying assumptions, improving how 

the model describes processes and adding descriptions of new processes – and have 

aimed to apply the model to numerically simulate observed floods (e.g. Björnsson, 1992; 

Clarke, 1982, 2003; Evatt, 2006; Evatt et al., 2006; Flowers et al., 2004; Fowler, 1999, 

2009; Ng, 1998; Ng et al., 2007; Spring and Hutter, 1981, 1982; Pimental and Flowers, 

2011). 

Nye assumed a straight, uniform channel and that the water in the lake is at the melting 

point. Also, he ignored heat conduction in the water and through the surrounding ice, 

and the water’s kinetic energy. Spring and Hutter (1982) developed a more general 

model of water flow through an ice-walled channel from first principles of continuum 

mechanics, which made none of these simplifications. In particular, their model allowed 

the channel’s size and curvature to vary in space and time and the lake water to be 

warmer than the melting point. This general model was simplified by Spring and Hutter 

(1981) to numerically simulate jökulhlaups through a straight, stationary channel, but 

despite their simplifications, numerical stiffness posed difficulties in their investigations 

(Clarke, 2003). 
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Like Spring and Hutter (1982), Clarke (1982) set out to improve Nye’s model, but he took 

a simpler approach. He too removed Nye’s assumption that the lake is at the melting 

temperature, but his approach separated the heat that melts the channel walls into two 

contributions: one from the heat dissipated in the turbulently flowing water and another 

from the sensible heat of the lake. Unlike Spring and Hutter (1981), he assumed that 

floods are throttled by one spatially-fixed constriction in the channel near the lake. 

Hence, after also assuming the water pressure gradient in the channel can be 

represented by its spatially-averaged value, spatial dependence could be removed and 

the model could be reduced to two ordinary differential equations. These could be 

solved without numerical difficulty to simulate floods from Hazard Lake, Canada. 

Later, Clarke (2003) combined his separation of heat sources idea with Spring and 

Hutter’s (1981) spatially dependent model to simulate floods from Grimsvötn, Iceland, 

Hazard Lake, Canada and Summit Lake, Canada. He found that the numerical difficulties 

experienced by Spring and Hutter were due to multiple wave solutions to the equations 

having vastly different propagation speeds. He allowed the water in the channel to be 

slightly compressible, damping out the rapidly propagating wave solutions which had 

caused the problems. Although this modification is unphysical, it was found to have no 

discernable effect on simulations. He concluded that previous models which assume 

flow is controlled by a spatially-fixed channel constriction (Clarke, 1982; Ng, 1998; Ng 

and Björnsson, 2003), do not adequately capture many of the dynamics of jökulhlaups. 

One of Clarke’s (2003) aims was to investigate how best to parameterise water-to-ice 

heat transfer in the channel, particularly when the lake is warmer than the melting 

point. He used his separation-of-heat-sources approach to tackle this, but others have 

taken different approaches. Originally Nye (1976) used the empirical Dittus-Boelter 

equation to parameterise water-to-ice heat transfer. Björnsson (1992) and Jóhannesson 

(2002) suggest that this underestimates the rate at which the sensible heat of the lake’s 

water is transferred to the channel walls. Evatt (2006) points out that the heat transfer 

coefficient in the Dittus-Boelter equation used by Nye was derived from experiments 

with Reynolds number ~105 (McAdams, 1951). Perhaps, Evatt suggests, heat transfer is 

more efficient at the much higher Reynolds numbers expected during jökulhlaups ~107. 

Using results from newer experiments (Insenko et al., 2005), Evatt (2006) modifies Nye’s 

(1976) heat equation to try and improve its representation of heat transfer. Simulations 

made with the modified model suggest that lake temperature plays only a minor role in 

controlling jökulhlaup size which led Evatt et al. (2006) and Fowler (2009) to ignore this 

parameter. In contrast, Ng et al.’s (2007) investigation of the climatic controls on 

jökulhlaups showed that warmer weather increases the size of floods in several ways, 

one being the extra heat contained in warm lake water contributing to channel 
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enlargement. Their work reveals a link between weather conditions and flood size, and 

they suggest that a key control on the variability in floods from Merzbacher Lake (Fig. 

1.3b) is the weather.  

The complication of a deformable bed in glacial drainage was considered by Walder and 

Fowler (1994) and Ng (2000), and sediment transport during floods was modelled by 

Fowler and Ng (1996). Fowler and Ng (1996) also removed the assumption of a circular 

(or semi-circular) ice-walled channel. This allowed a spatially varying channel shape and 

showed that with high water pressure, a wide, low roofed canal cut into a till substrate 

can exist.  

All the thermo-mechanical jökulhlaup models mentioned so far have followed Nye 

(1976) in side-stepping the question of how floods start. They assume the existence of a 

small channel from the beginning of simulations whose evolution controls the simulated 

flood. One shortcoming of this approach is that, for a particular initial lake depth, the 

initial size of this channel must be chosen arbitrarily. Because initial channel size strongly 

affects the size and timing of a simulated flood, these models are useless for predicting 

the dates of floods. Indeed, Ng (1998) and later Ng and Björnsson (2003) have shown 

that the Nye (1976) model formulated with time dependence only and no space 

dependence – like Clarke’s (1982) model – simulates repeating floods but their size 

grows unstably with time. The channel gets increasingly miniscule between floods and 

the peak discharge of each flood is larger than the last’s. This behaviour is unphysical 

and not observed in real systems. For example, the size of floods from Grimsvötn varies 

but does not appear to grow unstably over time. Clearly, if one aims to understand why 

a flood begins when it does or how environmental conditions between floods affect 

their size, models need to be able to simulate complete cycles of lake filling, flood 

initiation, flood development and flood termination in a physically plausible way.  

Fowler (1999) tackled this by making some modifications to Nye’s model, most 

important of which was allowing the discharge to become negative between floods – 

that is, allowing water to flow upglacier towards the lake. I describe this in more detail 

during the next two chapters. In brief, this modification allows a water divide to form 

beneath the ice dam when the lake level is low. This suppresses the unstable growth of 

floods found by Ng (1998) and the divide’s dynamics control the size of floods. In the 

model, floods initiate because this divide moves towards the lake in response to lake 

filling. When the divide reaches the lake a flood initiates and grows through Nye’s 

feedback mechanism. Fowler’s (1999) aim was to explain why Grimsvötn reached the 

flotation depth in November 1996 whereas it typically starts to drain before it reaches 

this depth. It turns out that Fowler’s (1999) ideas can be extended to studying variability 

in the size and timing of ‘typical’ floods.  
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I have outlined what we already know about ice-dammed lake drainage; observations 

and modelling studies of the phenomenon have uncovered much of its governing 

physics. However, in key areas – like flood initiation and termination, prediction of flood 

timing and magnitude, and the interaction between floods and glacier motion – 

understanding is lacking. Understanding can be improved through further mathematical 

modelling of the mechanisms that underlie lake drainage and I pursue this in this thesis.  

By focussing on several aspects of this large topic, I aim to push forward our 

understanding of ice-dammed lake drainage in general and contribute to answering 

some specific questions along the way. Throughout I ignore the complication of a lake 

with a temperature warmer than the melting point. As discussed above, this interesting 

topic has been investigated thoroughly and I choose to focus on other mechanisms.  

The approach I take throughout is to setup models of physical systems and analyse them 

to reveal and explain physically qualitative features of the system’s behaviour. 

Therefore, except during an optimisation exercise in Chapter 4, I avoid fitting model 

results to observations. It has been established by others that this is possible for 

jökulhlaup hydrographs using various forms of Nye’s equations (e.g. Björnsson, 1992; 

Clarke, 2003; Fowler, 2009; Ng et al., 2007).   

The thesis is organised as follows. In Chapter 2 I outline the models (conceptual and 

mathematical) of water flow beneath ice masses that underpin my investigations in the 

following four chapters, where I examine specific aspects of subglacial drainage of lakes. 

In another chapter I apply similar concepts to surface drainage. At the start of each of 

these five chapters I introduce each aspect of ice-dammed lake drainage in more detail 

than I have above. 

In Chapter 3 I investigate what physically controls the size and timing of floods. The size 

of modelled jökulhlaups turns out to be closely linked to flood initiation and varies in 

unexpectedly complex ways depending on the rate at which meltwater is input to the 

system, where meltwater is input and how this input varies with time.  

Continuing my investigation of jökulhlaup timing, in Chapter 4 I use insight gained during 

Chapter 3’s physical modelling to see how well I can predict the timing of floods from 

Merzbacher Lake, Kyrgyzstan. Meteorological and hydrological data pertaining to 

jökulhlaups from this lake are available and I optimise a suite of ‘flood-date prediction 

models’ – of lower order than the lake-drainage models that I employ in other chapters 

– against this data to maximise their ability to predict floods. In doing so, I take the first 

steps towards operational flood forecasting and uncover aspects of jökulhlaup physics.  



Modelling Ice-dammed Lake Drainage 

Chapter 1: Introduction 

 

 
 12 

Returning to fully thermo-mechanical jökulhlaup modelling in Chapter 5, I extend 

Chapter 3’s model to include a second drainage system and glacier sliding. I solve the 

model numerically to investigate in more detail than in Chapter 3 how meltwater input 

affects floods and the coupling between floods and glacier motion. My results introduce 

the intriguing possibility that subglacial floods can, under some circumstances, cause a 

glacier to speed up and slow down to equal extents.  

A frequent issue that arises during Chapters 3 and 5 is the fact that current jökulhlaup 

models cannot describe the physics of subglacial water flowing as an open stream. 

Hence, they cannot simulate full flood cycles from the majority of jökulhlaup lakes 

because they empty completely during floods. In Chapter 6 I address this shortcoming by 

developing a model of open-channel flow after jökulhlaups. I use the model to analyse 

how open-channel flow begins and how long it lasts. Numerical simulations show how 

periods of open-channel flow allow one flood to affect the next; a ‘memory-effect’ that 

could explain previously unexplained aspects of the reconstructed Merzbacher Lake 

depth time series (Fig. 1.3b). 

Chapter 7 stands alone in this thesis, in that it is concerned with the surface drainage of 

supraglacial lakes. This work has its place in this thesis because in essence surface 

drainage is similar to subglacial jökulhlaups; both phenomena involve a positive 

feedback between melt enlargement and discharge. I show theoretically what controls 

whether a lake will drain over the surface catastrophically or steadily. This is important 

because surface drainage moves water from high to low elevations on ice sheets, 

affecting where lakes are available to drain to the bed and influence ice dynamics. 

Finally, in Chapter 8, I summarise my findings and highlight some key areas where future 

work is worthwhile. 
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Chapter 2 Mathematical background 

2.1 Introduction 

In this thesis I build on existing models of subglacial-hydrological processes to better 

understand the subglacial drainage of ice-dammed lakes. The purpose of this chapter is 

to describe these models and the methods I use to solve them numerically.  

The material is divided into two parts, the first much weightier than the second. The first 

part, section 2.2, covers models of water flow through ice-walled subglacial channels, 

the jökulhlaup model I use in later chapters and the methods I use to solve this model. In 

the second part I summarise models of basal sliding and drainage through ‘linked-cavity’ 

systems that underlie my study of the coupling between lake drainage and ice motion, 

presented in Chapter 5.  

 

 

 

 

 

 

 

 

 

2.2 Channels 

Röthlisberger (1972) developed one of the first theories of water flow through ice-

walled channels. In Röthlisberger’s theory, energy dissipated by water flowing 

turbulently through an ice-walled channel (Fig. 2.1a) is used to melt the channel walls 

and this enlargement is balanced by inward viscous deformation of the surrounding ice, 

which acts to close the channel. Restricting his analysis to the steady-state case, where 

melt enlargement balances creep closure, Röthlisberger (1972) showed that channels 

tend to coalesce to form upglacier-branching drainage networks. Nye (1976) extended 

the theory to allow melt and viscous deformation to be out of balance and used his 

time-dependent model to explain the time evolution of jökulhlaups from Grimsvötn 

subglacial lake, Iceland.  

Fig. 2.1. Subglacial drainage through (a) a channel and (b) a system of linked-
cavities. 
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I outline these studies in sections 2.2.1 and 2.2.2. I then describe Fowler’s (1999) 

modification of Nye’s model in section 2.2.3. Fowler’s model is slightly modified and 

non-dimensionalised in section 2.2.4 so as to apply it to an alpine marginal lake system. 

In section 2.2.5 I describe three numerical methods I use to solve the new model that I 

refer to as the Nye-Fowler jökulhlaup model. 

2.2.1 Steady-state drainage through an ice-walled channel 

Röthlisberger (1972) envisaged a water discharge, Q, flowing through an ice-walled 

circular channel. Distance along the channel is denoted by s and time is denoted by t. 

Fig. 2.2 shows a short section of the channel of length ds with arrows indicating the 

direction of water flow (blue), the inward creep closure of the ice (red) and the water 

pressure exerted at the section’s ends (green). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In every unit time a volume of water Q moves from the left-hand end of the channel 

section in Fig. 2.2 (where the water pressure is pw + dpw) to the right-hand end (where 

the water pressure is pw). The water gains some energy as it moves because it moves 

through a potential gradient. The water is assumed to be at the melting temperature at 

all times and this temperature changes with pressure, so some of the energy the water 

Fig. 2.2. A short section of a horizontal subglacail channel. Reproduced from 
Röthlisberger (1972). The spatial coordinate s increases from left to right. This is 
also the assumed direction of the flow of the water in the channel and of the 
glacier.  
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gains in moving from left to right in Fig. 2.2 is used in changing the water’s temperature 

to match the new pressure-dependent melting-point. The leftover energy, 0.684Qdpw, is 

used in melting the following volume of ice per unit time in the channel element:  

           

   
  

2-1 

where L is the latent heat of fusion of water and ρi is the density of ice (≈900 kg m3). 

Based on measurements of the closure rate of boreholes in ice made by Nye (1953), 

Röthlisberger (1972) uses the following phenomenological expression for the rate of 

inward viscous deformation of the ice, expressed as a volume per unit time in the 

channel element:  

                  

2-2 

In this expression, r is the cross-sectional radius of the channel (Fig. 2.1), pi is the 

overburden pressure of the ice and n and K0 are ice flow parameters (these are related 

to A, the flow parameter used in Röthlisberger’s original paper by K0 = 2/(nA)n). 

Assuming that the evolution of the channel is in a steady state, Röthlisberger (1972) 

equated eqns. 2-1 and 2-2 and rearranged for the spatial pressure gradient, dpw/ds, to 

yield 

    

  
 

     

           

 

 
            

2-3 

The balance of momentum between the flowing water and the channel’s walls can be 

described by Manning’s equation (e.g. Chow, 1959; Henderson, 1966; Yen, 2002). This 

phenomenological equation describes the mean flow velocity v of water moving through 

a total potential gradient, G, along a channel with a hydraulic roughness parameterised 

by the Manning roughness coefficient, n’, as follows: 

  
  

 
 

  
 

 

   
  

 
 
  

2-4 
where g is the acceleration due to gravity (≈10 m s-2), ρw is the density of water (≈1000 

kg m3). RH is the channel’s hydraulic radius defined by 
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2-5 

where S and Pw are the channel’s cross-sectional area and wetted perimeter 

respectively. In a full-flowing circular channel S = πr2 and Pw = 2πr, so RH = r/2. The total 

hydraulic potential gradient G is the sum of two terms, one associated with the slope of 

the channel ϕ and the other is the negative of the spatial gradient of water pressure: 

          
    

  
 

2-6 
(e.g. Cuffey and Paterson, 2010). With the sign convention I have chosen, water flows in 

the direction of increasing s when G is positive. In the special case of a horizontal 

channel, which Röthlisberger considered first, ϕ = 0, so G = -dpw/ds. Using this 

expression for G and the fact that the discharge Q through a full-flowing circular channel 

is related to the channel’s cross-sectional radius r and the mean flow velocity v by 

v = Q/πr2, Manning’s equation can be rearranged for r2 to give 

    
 

 
    

  
 

 
 

  
 
  

 
   

    

  
 

 
 
 
  

2-7 
Eliminating r between this expression and eqn. 2-3, and rearranging for -dpw/ds yields an 

expression for the water pressure gradient in a horizontal steady-state channel: 

 
    

  
  

 
 
  

 
    

           
 

 
  

     
 
     

 
     

 
           

  
    

2-8 
Assuming the roughness and flow properties of the ice are constant,  

 
    

  
   

 
           

  
    

2-9 
Hence, Röthlisberger’s (1972) theory shows that, in a steady-state channel, the 

magnitude of the water pressure gradient decreases with increasing water flux Q. This 

has consequences for the large-scale behaviour of channelised drainage systems. If two 

subglacial channels join at some point beneath the glacier, integrating eqn. 2-9 from the 

point they join, in an upglacier direction (i.e. in the direction of decreasing s) along each 

of the channels, shows that the channel with the higher discharge will be at a lower 

pressure. Hence, if water can be exchanged between them, through a permeable 

substrate or along the ice-rock interface, this channel will capture water from the other. 

In steady state, smaller channels will tend to shrink at the expense of larger ones and 
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channelised drainage systems will tend to consist of one or several large 

upglacier-branching channels.  

2.2.2 Time-dependent drainage through an ice-walled channel: Nye’s 
model  

Nye (1976) built on Röthlisberger’s (1972) model, removing his steady-state assumption, 

to explain the time evolution of jökulhlaups from Grimsvötn, Iceland. Nye’s model 

consists of four coupled differential equations describing the evolution of an ice-walled 

channel at the glacier bed that is pressure-coupled to a lake, and the conservation of 

mass, momentum and energy in the water that flows along the channel. The situation is 

illustrated in Fig. 2.3. These four equations, along with an algebraic fifth equation that 

describes the transfer of heat from the water to the ice, relate five variables: channel 

cross-sectional area, water discharge, water pressure, channel wall melt rate and water 

temperature. I describe each of the five equations in turn. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Channel geometry evolution  

Just as Röthlisberger (1972) did, Nye (1976) supposed that ice-walled channels enlarge 

by melting and close due to inward creep flow of the ice. Unlike Röthlisberger, Nye 

allowed the rates at which these processes alter channel size to be out of balance. He 

described the rate of change of channel cross-sectional area, S, with time, t, as the sum 

of two terms: 

Fig. 2.3. Channelised subglacial drainage of a marginal lake 
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2-10 
where pi and pw are still the water and ice pressures respectively and K0 and n are the 

same ice flow parameters as above. The first term on the right represents channel 

enlargement through melting due to the dissipation of heat in the turbulently flowing 

water. The melt rate m is expressed as a mass per unit length of the channel per unit 

time. The second term represents channel closure due to the viscous flow of the ice 

(only valid when pw ≤ pi).  

Mass conservation  

The spatial gradient in the discharge, Q, is equal to the water produced by melting at the 

channel walls minus the local rate of change of S: 

  

  
 

 

   
 

  

  
  

2-11 
where s is the distance along the glacier, which increases downglacier (Fig. 2.3).  

Momentum balance 

Like Röthlisberger (1972), Nye (1976) used Manning’s equation to relate the channel 

cross-sectional area, the water’s flow velocity, v, and the potential gradient driving this 

flow. Using the definition of G (eqn. 2-6) with Manning’s equation (eqns. 2-4) eqn. 2-5, 

and v = Q/S yields    

           
   

  
  

  

 
 
 

  

2-12 
where   is a function of hydraulic roughness n’ and the channel’s shape: 

   
 

  
  

 
 

         

2-13 
Note that the channel slope ϕ in eqn. 2-4 has been replaced by the slope of the glacier 

bed ϕb because I assume the channel is located at the bed. Nye assumed that channel 

shape does not change, so   is constant. Using eqn. 2-5, S/RH
2 = 2(2+π)2/π ≈ 16.8 for a 

semi-circular channel and S/RH
2 = 4π ≈ 12.6 for a circular channel. Nye (1976) assumed 

the latter. 

Energy balance 

Nye then applied the 1st law of thermodynamics to a cylindrical volume whose ends 

move with the flowing water and whose longitudinal axis runs along that of the channel . 
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This volume also includes ice that is about to be melted from the channel walls. This is 

the result:  

           
   

  
                   

   

  
  

2-14 
In this expression θw and θi are the water and ice temperatures and σ is the specific heat 

capacity of water. It describes a balance between the energy gained as a volume Q of 

water moves through the potential G = ρwgsinϕb - ∂pw/∂s every unit time (the left-hand 

side), and the change in the internal energy of the water and ice in the cylindrical 

volume (the right-hand side). This change in internal energy is apportioned between 

melting a mass m of ice per unit time per unit length (the first term on the right), 

bringing this newly produced water to the bulk temperature of the water (second term) 

and changing the bulk water temperature of the water (third term). This assumes that 

the ice surrounding the channel is at the pressure melting point and that the energy 

used in accelerating the newly produced water to the velocity of the bulk water is 

negligible. It also assumes, because the water is flowing turbulently, the flow is well 

mixed and the bulk temperature is uniform except for a boundary layer at the channel 

walls where the water temperature adjusts to the ice temperature. 

Heat transfer 

Equation 2-14 defines the overall energy balance but does not determine how energy 

gained by the water as it moves through the potential gradient is apportioned between 

the three internal energy terms on the expression’s right-hand side. To complete the 

model Nye (1976) uses the empirical Dittus-Boelter equation (McAdams, 1953) to 

construct an expression that relates the Reynolds number (a function of discharge and 

channel size), the temperature excess (θw – θi) and the heat used in melting the walls of 

the channel (the sum of the first two terms on the right of eqn. 2-14; this includes the 

heat used in bringing newly produced meltwater to the bulk water’s temperature 

because this temperature change occurs in the boundary layer). This leads to the 

following algebraic expression relating Q, S, (θw – θi) and m: 

      
    

 
 
  

 
   

 

   

                          

2-15 
where ηw and κw are the viscosity and thermal conductivity of water.  

Equations 2-10 to 2-15 complete Nye’s model of time-dependent channelised drainage. 

He used it to explain the shape of jökulhlaup hydrographs during their rising stages 
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when discharge is increasing with time (see Fig. 1.2). He suggested that, during this stage 

of flood development, the viscous creep and temperature excess terms in eqns. 2-10, 

2-14 and 2-15 and the contribution to the discharge from the melting of the channel 

walls can be neglected. He also supposed that the potential gradient can be represented 

by its spatially-averaged value. Neglecting the temperature excess is equivalent to 

assuming that the water temperature is always very close to the ice temperature and 

that all the heat generated in the flow is used instantaneously and locally in melting the 

walls of the channel. Hence, the second and third terms on the right of eqn. 2-14 are 

neglected and eliminating Q between eqns. 2-12 and 2-14 and assuming a constant 

potential gradient (left hand side of eqn. 2-12) yields the following expression for the 

melt rate m in terms of the channel cross-sectional area S and the total potential 

gradient, G: 

  
 

 
  

 
 

 
 
  

  

2-16 

Combining eqn. 2-16 with eqn. 2-10 (with the viscous creep term neglected) yields  

  

  
 

 
 
 

   
 
  

 
 
    

2-17 

which describes the time evolution of the channel cross-sectional area. Nye (1976) then 

differentiated both sides of eqn. 2-12 with respect to t and eliminated ∂S/∂t and S from 

the resulting expression using eqns. 2-17 and 2-12 respectively to arrive at the following 

expression for the rate of change of discharge during the rising stage of a flood: 

  

  
 

  
  
 

    
 
  

 
 
   

2-18 

Integrating this expression shows that discharge increases as Q =  (-1/t)4, where t = 0 is 

the time at which the discharge theoretically goes to infinity. Physically, Nye’s theory 

suggests that discharge through a channel, that is pressure-coupled to a lake, grows 

through a positive feedback between melt enlargement of the channel, channel size and 

water discharge. Melt increases the channel size (described by the channel evolution 

equation; eqn. 2-10), a larger channel can convey a larger discharge (via the momentum 

balance equation; eqn. 2-12), and this leads to a higher rate of melting (through the 

energy balance equation; eqn. 2-14).  
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Nye showed that his model’s prediction of the time evolution of discharge during 

jökulhlaups closely agreed with reality by fitting eqn. 2-18 to the rising stage of an 

observed hydrograph recorded during a flood from Grimsvötn in March 1972. This 

success was used as a justification for assumptions made during the model’s 

development: that floods occur through channels, that viscous creep is negligible during 

the rising stages of floods, that the along-channel hydraulic potential gradient can be 

approximated by its spatially-averaged value and that heat dissipated by water flow is 

used instantaneously in melting the channel walls. 

Nye (1976) also considered the termination of floods. As the lake empties, the potential 

gradient driving water flow decreases and the difference between the ice and water 

pressures at the lake increases. This leads to the closure term in the channel geometry 

equation exceeding the melt-opening term and the channel closes.  

Nye (1976) had demonstrated that the main features of jökulhlaups from Lake 

Grimsvötn were due to water flowing through a subglacial channel whose geometry 

evolves in time as a result of the two opposing processes of melt enlargement and 

viscous ice creep closure. This was an important step in the development of theoretical 

subglacial hydrology and Nye’s (1976) model has been the basis for all subsequent 

theoretical investigations of jökulhlaups and most theoretical work on ‘everyday’ 

subglacial drainage. 

2.2.3 Fowler’s modification of Nye’s model 

Fowler (1999) modified Nye’s (1976) model with the aim of explaining how jökulhlaups 

from Grimsvötn initiate and repeat. This was the first model to simulate stably repeating 

flood cycles and to explain how the rapid lake input the preceded the large 1996 

Grimsvötn flood caused the lake to fill to the flotation level when floods usually start 

when the lake level is 60-70 m lower than this. The significance of this is discussed 

further in the introduction of Chapter 3. Here I describe Fowler’s (1999) model. 

A concept borrowed from studies of basal sliding and friction between glaciers and their 

bed is the basal effective pressure. Effective pressure is the difference between the ice 

overburden pressure, pi, and the basal water pressure, pw, in this case, in a channel: 

         

2-19 

Fowler (1999) recast Nye’s (1976) equations in terms of N. Differentiating the above 

expression with respect to distance along the channel, s, and eliminating ∂pw/∂s 

between the result and eqn. 2-6 yields 
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2-20 
This expresses the total potential G in terms of glacier geometry (first two terms on the 

right) and the gradient of the effective pressure (the last term). Fowler (1999) defined 

the basic hydraulic gradient, ψ, as the sum of the two glacier-geometry-related terms:   

           
    

  
  

2-21 

Total potential gradient could then be expressed in terms of ψ and N, 

    
   

  
  

2-22 

Substituting this expression and the definition of hydraulic radius (eqn. 2-5) into 

Manning’s equation (eqn. 2-4) yields Fowler’s momentum balance equation: 

  
  

  
     

  

 
 
 

  

2-23 
The friction factor f is related to Nye’s (1976) parameter   and the Manning roughness 

coefficient by 

  
 

   
  

 

  
  

 
 

     

2-24 
For a semi-circular channel, f = (2(π+2)2/π)2/3n’2 ≈ 6.6n’2. In a significant departure from 

Nye’s model, Fowler (1999) modified his momentum balance equation to deal 

realistically with a total potential gradient (the left-hand side of eqn. 2-23) that is 

negative. A negative total potential gradient, which can be due to glacier geometry or an 

adverse water pressure gradient, drives water flow upglacier towards the lake. Upglacier 

water flow corresponds to a negative discharge, so to deal with this mathematically 

Fowler (1999) added a modulus sign to eqn. 2-23, yielding 

  
  

  
     

    

 
 
 

  

2-25 
Hence, as S is always positive, when total potential gradient is negative, Q is also 

negative as required. Nye’s (1976) channel closure equation was also expressed in terms 

of the effective pressure:  
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2-26 
Fowler (1999) adopted Nye’s water mass conservation equation but added a supply 

term M. This term represents water entering the channel along its length and has units 

of mass per unit distance-along-the-channel per unit time. It can be a function of time 

and space. Mass continuity is thus given by  

  

  
 

  

  
 

 

  
    

2-27 
After assuming the temperature of the water in the lake and the channel is always equal 

to the melting point, energy conservation leads to a balance between the channel-wall 

melt-rate and the rate of energy dissipated in the water as a volume Q moves through 

the potential G per unit time: 

       
  

  
   

2-28 
In summary, the equations Fowler used to describe channel evolution and the 

conservation of mass, momentum and energy in the channel are respectively: 

  

  
 

 

  
        

2-29 

  

  
 

  

  
 

 

  
    

2-30 

  
  

  
     

    

 
 
 

  

2-31 

       
  

  
   

2-32 
Fowler (1999) coupled his channel to a lake in terms of both effective pressure and 

water discharge. According to this coupling the effective pressure at the lake changes 

due to an environmental meltwater input to the lake and discharge into, or out of, the 

channel at the lake outlet (Fig. 2.3) and the effective pressure at the lake dictates the 

effective pressure in the channel at the lake outlet (Fig. 2.3).    
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2.2.4 The Nye-Fowler jökulhlaup model 

In this section I present the model I use in Chapter 3 to simulate jökulhlaups and develop 

further in Chapters 5 and 6. It consists of Fowler’s (1999) channel equations coupled to a 

marginal lake and scaled according to the typical size of marginal lakes and their floods. 

For the rest of the thesis, I refer to this model as the Nye-Fowler jökulhlaup model. 

Coupling the channel to a lake 

The depth of a marginal lake, hL, and the effective pressure in a subglacial channel 

immediately adjacent to the lake (labelled the outlet in Fig. 2.3), NL are related linearly 

by 

 

                       

2-33 
where HD is the height of the ice dam. The volume of the lake, VL, changes with time due 

to water input from its surroundings, Qin, and water exchange with the channel. The 

latter is equal to the discharge through the channel at the outlet, Q(0,t). So the rate of 

change of lake volume is given by 

   

  
                

2-34 
How lake depth and lake volume are related depends on lake hypsometry. I follow 

previous work (e.g. Clarke, 1982; Ng and Björnsson, 2003; Walder and Costa, 1996) to 

parameterise hypsometry using the following expression: 

 
  

   
 

  

 
 

   
  

2-35 
where hLi is the reference lake depth, VLi is the reference lake volume and pL is a 

dimensionless parameter that can be derived from hypsometry data. Using the chain 

rule with eqn. 2-35 yields the relationship between dVL/dt and dhL/dt: 

  

  
 

  

   

   

  
 

     

   
  

  
       

  
  

2-36 
Combining this with eqn. 2-34 yields the dimensional lake-depth evolution equation, 

   

  
 

   
  

       
    

                 

2-37 
Equations 2-29–2-33 and 2-37 complete the dimensional form of the model that I refer 

to hereafter as the Nye-Fowler model.  
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Non-dimensionalisation 

To non-dimensionalise the Nye-Fowler model, I define scales for the variables S, N, Q, M, 

ψ, t, m, hL and Qin as follows: 

     
       

       
        

       
  

     
       

           
              

   

2-38 

where the asterisks denote dimensionless variables. The scales for s and Q are defined 

as s0 = 10 km and Q0 = 1500 m3 s-1 respectively. These are reasonable values for channel 

length and the peak discharge for floods from marginal lakes. Replacing dimensional 

variables in eqn. 2-29 with the corresponding products of scales and dimensionless 

variables from eqn. 2-38 gives 

  

  

   

   
 

   
 

  
       

        

2-39 

Equating the coefficients of the three terms in the above expression gives, 

  

  
 

  

  
       

   

2-40 

which defines the scales for the effective pressure and time:  

         
 

 
   

2-41 

   
    

  
  

2-42 

 This leaves the non-dimensional channel geometry equation: 

   

   
           

2-43 

Next, replacing the dimensional variables in eqn. 2-30 with eqn. 2-38 yields 

  

  

   

   
 

  

  

   

   
 

  

  
         

2-44 

where r = ρi/ρw. Substituting eqn. 2-42 into this expression and defining  

   
    

    
    

  

  
  

2-45 

yields the non-dimensional mass conservation equation  
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2-46 

Replacing variables in eqn. 2-31 and equating the coefficients from the right-hand terms 

with the coefficient of the first term on the left yields  

       
  

 

  

 
 

  

2-47 

This leaves the non-dimensional momentum conservation equation: 

    
   

   
 

      

  
 
 

   

2-48 

where 

  
  

    
   

2-49 

Finally for the channel equations, replacing dimensional variables in eqn. 2-32 gives 

   
     

  
  

  

   

   
     

     

2-50 

Equating the right-hand coefficients with the coefficient of the first term on the left 

yields 

   
    

 
  

2-51 

and the non-dimensional energy balance equation: 

       
   

   
      

2-52 

Moving onto the lake-depth evolution equation, the lake-depth scale, hL0, is chosen as 

the flotation depth: 

    
  

  
    

2-53 
Eliminating HD between this and eqn. 2-33, then replacing the dimensional lake depth 

and the dimensional effective pressure at the outlet in the resulting expression with the 

corresponding scales and dimensionless variables from eqn. 2-38, yields 

    
             

    

2-54 
Defining  
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2-55 
leaves the non-dimensionalised equation relating the effective pressure at the outlet to 

lake depth: 

  
         

    

2-56 
Finally, substituting 2-38 into 2-37 yields the non-dimensional lake depth evolution 

equation: 

   
 

   
 

  

  
         

            

2-57 
where  

   
     

    

        
  

  

2-58 

Boundary conditions 

A pair of boundary conditions is required to solve the channel equations. As already 

described, at the lake, the effective pressure boundary condition is given by the lake 

depth and eqn. 2-56. At the glacier terminus (s = s0) a second boundary condition is 

needed. I use a constant dimensionless effective pressure at the terminus, NT*. Two 

reasonable choices for NT* are NT* = 0 (Ng, 1998), corresponding to the ice thickness 

and the water pressure going to zero at the terminus, and NT* = Na/N0 = ρigH(s = s0)/N0, 

corresponding to zero water pressure and an ice thickness of H at the terminus. Initially I 

use the former (NT* = 0). 
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Summary 

Box 2-1 contains the non-dimensional Nye-Fowler model. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Box 2-1. The Nye-Fowler Model (asterisks dropped).  

  

  
 

    

 
 
 

     

  

  
        

    

 
 
 

         

  

  
 

 

 
 
    

 
 
 

    

                    

   

  
 

  

  
    

             

              

   
    

    
   

  

  
   

  

    
 

    
      

  
    

     
    

        
  

  

    
      

 

  
 

 
 

     
       

    
 

 
 
 
       

    

 
  

   
     

    
    

  

  
     

  

  
    

The channel  

Channel evolution 

2-59 
Mass continuity  

2-60 
Conservation of momentum 

2-61 
Boundary conditions and the lake 

Channel effective pressure at the lake  

2-62 
Lake depth evolution 
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Scales 
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2.2.5 Numerical methods 

Here I describe the numerical methods used to solve the Nye-Fowler model. The spatial 

and temporal domains are discretised into n space grid points and m time steps. The 

space grid points are referred to by the index j = 1 to n and separated by grid spacing Δs. 

Time steps are referred to by the index i = 1 to m and separated by time steps of size Δt. 

At time step i the Euler method is used with eqn. 2-63 to evolve the lake level forward in 

time: 

  
      

    
  

  
         

    
    

2-67 

The same method is used with eqn. 2-59 to evolve the channel cross-sectional area, S, 

forward in time at all grid points 

  
      

     
   

  
 

  
 
 
 

   
   

  

              

2-68 

The forward evolution of these variables depends on the discharge and the effective 

pressure at time step i, Qj
i and Nj

i. These can be found by simultaneously solving the 

mass and momentum conservation equations (eqns. 2-60 and 2-61) using a numerical 

method I call the relaxation method. This is described first below. However, the 

relaxation method is computationally demanding, so simplifying the model allows two 

more efficient methods to be used: Newton’s method, described by Ng (1994), and what 

I refer to as the boundary layer method, used by Fowler (1999), Evatt (2006) and Evatt et 

al. (2006).  I also describe these two alternative methods below. 

Relaxation method 

My aim is to find the set of values for Ni and Qi that obey: (i) the mass and momentum 

conservation equations (eqns. 2-60 and 2-61):  

   

  
        

    
 

  
 
 

             

2-69 

   

  
 

 

 
 
      

  
 
 

     

2-70 

(ii) the boundary condition at the lake, 
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2-71 

and (iii) the boundary condition at the glacier terminus,  

  
     

2-72 

The channel’s area Sj
i and lake’s depth hi are known from the previous timestep, the 

basic hydraulic gradient ψ is constant and only a function of space, and the meltwater 

input to the channel along its length M can be a function of space, time or other model 

variables. 

The relaxation method operates at two levels. An inner loop is supplied with a guess at 

the lake discharge Q1
i that will yield Qi and Ni profiles that obey the model equations and 

both boundary conditions. The inner loop uses this guess to produce Qi and Ni profiles 

that match the lake discharge supplied to it and obey eqn. 2-69, eqn. 2-70 and the 

boundary condition at the terminus (eqn. 2-72), but not the effective pressure boundary 

condition at the lake (eqn. 2-71). An outer loop then tunes Q1
i until the Qi and Ni profiles 

produced by the inner loop also match the effective pressure required by the boundary 

condition at the lake (eqn. 2-71). 

The inner loop works by iteratively relaxing towards a solution which obeys the desired 

equations. The following description of the inner loop is summarised in Fig. 2.4. 

A derivative of Q with respect to a new independent variable ζ is added to the left-hand-

side of the mass conservation equation to give 

   

  
 

   

  
        

    
 

  
 
 

             

2-73 

The added term has no physical meaning, but by treating the new variable ζ in the same 

way as one treats time in a physical model, eqn. 2-73 can be seen as a wave equation 

which describes waves travelling in the positive s direction as ‘time’ ζ passes. Using this 

wave-equation analogy, eqn. 2-73 and eqn. 2-70 can be simultaneously evolved forward 

using a Forward Time Upwind Difference scheme to simulate waves moving downglacier 

as ‘time’ passes. Crucially, in most cases, the waves tend to die out as ‘time’ passes and 

the system approaches a ‘steady state’. Reaching such a steady state is equivalent to my 

unphysical addition – the ζ-derivative – disappearing. The result is a pair of Qi and Ni 

profiles that obey the eqns. 2-69 and 2-70 as required (note that eqn. 2-73 with ∂Qj
i/∂ζ = 

0 is identical to eqn. 2-69).  
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I have also found that introducing a damping term to the equation which is proportional 

to the product of Si and the ζ-derivative of Ni, greatly decreases the time it takes the 

system to reach a steady state. With this addition eqn. 2-73 has the following form:  

   

  
 

   

  
        

    
 

  
 
 

             
   

  
    

2-74 

where μ is a numerical constant ~0.01–0.5. The physical interpretation of the damping 

term is that it makes the water slightly compressible, thereby damping the propagation 

of waves. When ∂Ni/∂ζ < 0 the water pressure is increasing, the water is compressed 

and takes up less volume, hence the damping term is proportional to ∂Ni/∂ζ. The effect 

is larger where the channel is larger because the same fractional change in the 

compression of the water has a larger effect on the volume, hence the damping term is 

proportional to Si. A similar approach was taken by Clarke (2003) in decreasing the 

numerical stiffness of Spring and Hutter’s (1981) model equations. My approach has one 

advantage over his. My unphysical damping term, (μ ∂Ni/∂ζ Si) is guaranteed to 

disappear, because I seek a solution that is steady in the ζ-dimension, ∂Ni/∂ζ = ∂Qi/∂ζ = 0 

(in fact the damping term’s disappearance is used as the criterion by which the steady 

state is detected numerically). In general, Clarke’s (2003) unphysical damping term does 

not disappear, because it contains a derivative of the water’s pressure in terms of real 

time t.  

Fig. 2.4. The inner loop of the relaxation method. The algorithm that operates in 
the inner loop of the relaxation method is summarised in the flow diagram on the 
left. The three panels on the right, (a), (b) and (c), illustrate three stages of the 
algorithm labelled in the flow diagram accordingly. 
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Applying the Forward Time Upwind Difference scheme to eqn. 2-74 gives 

  
       

      
  

       
  

  
        

   
   

 

  
 
 
 

     
   

   
   

    
  

     
    

  
  

    

2-75 

The k superscripts that appear to the left of the terms Qj
i
, Nj

i
 and Mj

i
 in the above 

expression refer to the grid points along the ζ dimension. Note that Sj
i
 is not a function 

of ζ and so does not require a k-superscript and, because M can be a function of Q, N or 

S, it can change with space, real time and ζ, so it does need a k superscript. 

Given a guess at the discharge at the lake, Q1 initial, the inner loop constructs an initial Q-

profile for all j, 1Qi (uniform 1Qi is used for simplicity). This profile and eqn. 2-70 are used 

to find the corresponding 1Ni by starting at j=n, where eqn. 2-72 defines Nn, and 

integrating back to the lake using quadrature. 1Qi and 1Ni are then used in eqn. 2-75 to 

find 2Qi for j=2 to n. This process iterates until the rate of change of kNi with ζ is small, 

This is detected numerically when the following criteria is met: 

     
  

     
    

  
          

2-76 

where the max function returns the largest value its argument has over the range j=1 to 

n and     is a tolerance which is set to a small value (~10-7). The results of this process 

are Qi and Ni profiles that (i) match the initial guess at the lake discharge  supplied to the 

inner loop’s algorithm, Q1 initial, (ii) obey the mass and momentum conservation 

equations and (iii) obey the boundary condition at j=n. The calculated profiles do not 

however match the boundary condition on the effective pressure at the lake (eqn. 2-71). 

The initial guess, Q1 initial, is tuned until the effective pressure at j=1 matches the 

boundary condition dictated by the lake. This is done in the outer loop using the 

Newton-Raphson root-finding algorithm (not to be confused with Newton’s method 

described next). 

Newton’s method 

In some cases Q is everywhere positive. The modulus signs in eqns. 2-60 and 2-61 can be 

removed, leaving 
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2-77 

   

  
 

 

 
 
   

  
 
 

     

2-78 

These equations can be solved using an implicit numerical method called Newton’s 

method (Ng, 1994), so-called because it is analogous to the Newton-Raphson root-

finding algorithm. It operates as follows. Initial guesses are made at discharge and 

pressure profiles that obey eqns. 2-77 and 2-78 and the imposed boundary conditions. A 

series of small corrections are made to these guesses with the aim of bringing them 

closer to the true solutions. At each iteration the next set of these corrections is 

calculated using the current iteration’s guesses at the discharge and pressure profiles.  

The previous time step’s discharge profile is used as the initial guess at the discharge 

profile: 

  
     

              

2-79 

Now the superscript to the left of the term Qj
i
 refers to the current iteration within 

Newton’s method. The i superscript still refers to the time step and the j subscript still 

refers to the spatial grid point. The initial guess at the N profile is arranged so that it 

obeys the boundary conditions at the lake, N(0,t)i = NL
i, and the terminus, N(s=s0,t) = NT, 

using the following function: 

  
                       

                  

2-80 

At the kth iteration of Newton’s method the aim is to use the current guesses at the 

correct discharge and effective pressure profiles, kQi and kNi, to find new guesses that 

better approximate the solutions to eqns. 2-77 and 2-78, k+1Qi and k+1Ni. The equations 

are applied at the next iteration,  

 

  
               

      

  
 
 

           
     

2-81 

 
 

  
         

      

  
 
 

     

2-82 

and spatial derivatives are approximated using central difference,  
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2-83 

(note that I am also assuming that the supply term M is constant and uniform, Newton’s 

method can still be used if this assumption is not made, I make it for simplicity). The next 

iteration’s guesses, k+1Qi and k+1Ni, are found by replacing these terms by the sum of the 

previous iteration’s guesses and two sets of spatially-dependent correction terms, kdQi 

and kdNi, defined as follows: 

                

                

2-84 

Substituting eqn. 2-84 into eqn. 2-83 gives 

    
        

       
        

  

   

        
   

      
   

 

  
 
 
 

     
    

      
   

 
   

   

 
    

        
       

        
  

   
 

   
      

   
 

  
 
 
 

     

2-85 

Next, expanding the brackets, neglecting terms containing higher orders of dQi k and dNi 
k, and dropping the i and k indexes for clarity, leaves 

                     

   

        
  

     
    

 
 

 
 

        
     

          

2-86 

 
                     

   
 

  
        

 
 

 
 

     

2-87 

Equations 2-86 and 2-87 represent a set of 2n linear simultaneous equations where the 

only unknowns are the two sets of n correction terms dN and dQ. They can be solved as 
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a matrix equation. The coefficients of the correction terms are gathered on the left-hand 

side: 

  
 

   
  

          
 

 
 

 
 

        
 

 

   
  

 
 
 
 
 
 
 
     

     

   

   

     

      
 
 
 
 
 
 

     
         

 

 
 

 
 

       
   

         

      

2-88 

   
 

   
 

   
 

 
 

 
 

  
   

    

 
 
 
 
 
 
 
     

     

   

   

     

      
 
 
 
 
 
 

  

  
 

 
 

 
 

      
         

      

2-89 

Combining these two expressions forms a block matrix equation of the form  .x = ν: 

 
 
 
 
 
 
        
         
         
      
               

         
 
 
 
 
 

 
 
 
 
 
 

  

  

  

 
    

   
 
 
 
 
 

 

 
 
 
 
 
 

  

  

  

 
    

   
 
 
 
 
 

  

2-90 

where 
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2-91 

At the boundaries, the coefficients a, b, c and ν must be altered to obey the boundary 

conditions on the effective pressure N (eqns. 2-62 and 2-64). The initial guess at the N 

distribution was chosen to obey the boundary conditions (using eqn. 2-80) and the 
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effective pressure correction terms at j=1 and j=n are fixed at zero so the effective 

pressure at the boundaries never gets updated, i.e. at the boundaries eqn. 2-89 is 

replaced by dN1 = 0 and dNn = 0. The equivalent replacement for eqn. 2-88 is found by 

applying eqn. 2-86 at the top (j=1) and bottom (j=n) of the domain, which yields, 

respectively 

             

  
        

  
     

    

  

 
 

        
     

         

2-92 
                 

  
        

  
     

    

  

 
 

        
     

          

2-93 

This is rearranged and combined with dN1 = 0 and dNn = 0 into matrix equations as 

before: 

  
 

  
           

   

 
 
         

 
 

  
 

    

  

   

   

   

   

 

              
   

 
 
        

   
     

  
 

  

2-94 
and 

  
 

  
 

 

  
           

   

 
 
         

 

    

  

     

     

   

   

 

              
   

 
 
        

   
       

  
 

   

2-95 

These two expressions define the values of the coefficients of the matrix   at the top 

and bottom of the domain, b1, c1, an, bn, ν1 and ν n: 
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2-96 

Equation 2-90, with terms defined by eqns. 2-91, 2-93 and 2-96, defines a linear tri-

diagonal block matrix equation of the form  .x = ν. This block matrix equation can be 

solved for the block vector x, which contains the correction terms dQ and dN (see eqn. 

2-91), using a modified version of the Thomas Algorithm.  

First the Thomas Algorithm modifies the coefficients (eqns. 2-93 and 2-96) in a ‘forward 

sweep’ from j=1 to n: 

     
                  

                            

 

           

         

                 

                                

2-97 
Then the algorithm calculates the solution by back substitution from j=n to 1: 

                            

                                                

2-98 
Discharge and effective pressure profiles at the k+1th iteration, k+1Qi and k+1Ni, are then 

calculated by adding the correction terms to kQi and kNi (eqn. 2-84). The whole process 

iterates until kQi and kNi converge on a solution. This is detected numerically when no 

correction term exceeds a small tolerance     =10-9: 

                    

2-99 

The result is discharge and effective pressure profiles that obey the mass and 

momentum conservation equations (eqns. 2-77 and 2-78) and the effective pressure 

boundary conditions (eqns. 2-62 and 2-64). 

Boundary layer method 

By making further simplifications, model equations can be solved using the 

computationally efficient boundary layer method (Evatt, 2006; Fowler, 1999, 2009). 

Assuming the source term M is uniform in space and that the parameter  R is small 



Modelling Ice-dammed Lake Drainage 

Chapter 2: Mathematical background 

 

 
 38 

enough that terms containing it in the mass conservation equation (eqn. 2-60) are 

negligible compared to M simplifies this equation to 

       

  
       

2-100 

I will show in Chapter 3 that this is appropriate for reasonable values of model scales 

and parameters. Also, by replacing the effective pressure boundary condition at the 

terminus (eqn. 2-64) with a Neumann boundary condition, 

       

  
    

2-101 

the complications of solving the full boundary value problem with either of the two 

methods I have described above can be avoided. By using this boundary condition I 

assume the primary mechanisms that control flood dynamics operate beneath the ice 

dam. The details of the channel hydraulics further down the channel are assumed to 

play only a secondary role.  

Substituting eqn. 2-101 into eqn. 2-61 and rearranging yields an expression for the 

discharge at the terminus, Q(1,t), in terms of the channel area, S, and the hydraulic 

gradient, ψ, at the terminus: 

              
 
         

2-102 

Integration of eqn. 2-100 from some position along the channel s to the terminus, s = 1, 

yields 

           
 

 

      

      

  

                         

2-103 

Combining eqns. 2-102 and 2-103 results in an expression for Q(s,t) in terms of S(1,t), 

ψ(1), s and M(t): 

              
 
                  

2-104 

At each grid point I calculate this discharge profile using the following expression:  
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2-105 

Finally, starting from the known lake effective pressure NL, I calculate the effective 

pressure profile by numerically integrating eqn. 2-61 by iterating the following 

expression from j = 1 to n: 

    
    

  
  

 
 

  
    

  

  
 
 
 

      

2-106 

Summary  

The numerical methods described above and their key characteristics are summarised in 

Table 2-1. 

Table 2-1. Summary of my numerical methods. 
Method Relative 

computation 

efficiency 

Equations 

solved by this 

method 

Can 

∂Q/∂s = 

f(N,S,Q)? 

Can Q be 

negative? 

Boundary condition at 

terminus 

Euler  - Channel 

evolution 

- Y - 

Relaxation  Low Mass and 

momentum 

conservation 

Y Y                

Newton’s  Moderate Mass and 

momentum 

conservation  

Y N                

Boundary 

Layer 

High Mass and 

momentum 

conservation 

N Y        

  
         

 

The relaxation method is the only one of the three methods used to solve the mass and 

momentum conservation equations that can solve them in full as they appear in Box 2-1. 

However, it is the most computationally demanding and so in situations where the 

channel discharge remains positive everywhere the more efficient Newton’s method can 

be used. Furthermore, when the focus of a numerical investigation is on a boundary 

layer near the lake and ∂Q/∂s is assumed to be uniform, the boundary layer method 

provides an even more computationally efficient alternative. 
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2.3 Cavities 

Theory suggests that subglacial channels are spatially-localised features (section 2.2.1; 

Röthlisberger, 1972). But observations and theory suggest that water can also flow at 

the ice-bed interface through spatially-distributed hydrological systems (e.g. Kamb, 

1987; Fountain and Walder, 1998; Lliboutry, 1958; Walder, 1986; Walder and Hallet, 

1979). Hypothesised distributed drainage systems include: thin water films between ice 

and bedrock or between ice and till (e.g. Walder, 1982), water flow through porous till 

(Flowers and Clarke, 2002a), subglacial ground-water flow (Boulton et al, 2007a,b), 

systems of anastomosing canals incised in till (Walder and Fowler, 1994), macro-porous 

water sheets supported by clasts (Creyts and Schoof, 2009) and linked systems of 

cavities (e.g. Kamb, 1987; Walder, 1986; Fountain and Walder, 1998). The last of these – 

the linked-cavity system – is the distributed system I consider here. It is the most widely 

studied, both observationally and theoretically, and because cavities are maintained by 

ice flow they provide a useful link between basal hydrology and ice dynamics. This link 

also means that this section’s summary of the theories of subglacial cavitation and 

linked-cavity drainage that underlie Chapter 5’s modelling must be preceded by an 

introduction to basal sliding. I start with Weertman’s (1957) work that introduced two 

mechanisms: enhanced creep and regelation. 

2.3.1 Enhanced creep and regelation  

In Weertman’s theory of basal sliding the ice is always in contact with a rough bedrock 

surface and a basal shear stress τb drives sliding with a velocity ub. The roughness of this 

bedrock surface is characterised by the ratio between the typical height and typical 

spacing of bedrock bumps, Ra. Sliding occurs through two mechanisms: enhanced creep 

and regelation.  

Both mechanisms are due to the comparatively high normal stress at the ice-rock 

interface on the upglacier side of the bedrock bumps. This provides the upglacier force 

which resists glacier flow and causes enhanced creep flow of ice around the bumps. The 

other mechanism – regelation – is due to the pressure-dependence of the melting 

temperature of ice. The higher the pressure the lower the melting temperature. The ice 

is assumed to be at the pressure-melting point everywhere. So on the upglacier side of 

each bump – where the pressure is higher – the ice temperature is lower than on a 

bump’s downglacier side – where the pressure is lower. Hence, there is an along-glacier 

temperature gradient. This induces heat flow through the bedrock bump and the 

surrounding ice in an upglacier direction. Water formed from melting of ice at the 

upglacier side of the bump flows in a thin film between the ice and the bed to the 

downglacier side of the bump where it refreezes due to the higher melting point there. 
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Kamb and LaChapelle (1964) found observational evidence for these two processes at 

Blue Glacier, Washington, USA. 

Theoretically, regelation operates effectively for small bumps and enhanced creep is 

most effective for large bumps, suggesting that bumps of intermediate size will control 

basal motion. Using this argument Weertman (1957) derived the following expression 

relating ub to τb and Ra: 
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where cw is a constant and n is an ice rheology constant (≈3; Glen, 1955).  

2.3.2 Sliding with cavitation 

Many revisions to Weertman’s (1957) theory were made (e.g. Lliboutry, 1958; Lliboutry, 

1964; Lliboutry 1968; Weertman, 1962; Weertman, 1967). These include Lliboutry's 

(1958) suggestion of subglacial cavitation. The idea is, as the ice flows over an uneven 

bedrock surface, the normal pressure of the ice acting on the lee-side of bedrock bumps 

is reduced. If this is sufficiently low the ice separates from the rock and cavities form. 

Cavity formation reduces basal friction and speeds-up sliding. Crucially, because cavities 

are likely to be water-filled and hydraulically connected to one another, changes in the 

pressure of this water pw may change the size of cavities and the speed at which the ice 

slides over the bedrock surface.  

For ice sliding over a glacier bed that undulates sinusoidally with a wavelength λ and an 

amplitude ab, a balance of the forces acting at the bed shows that cavities form if the 

basal effective pressure, NC (= pi - pw, where pi is the ice overburden pressure and pw is 

the water pressure), is less than a critical value called the separation effective pressure, 

NSep: 
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where the ratio Ra from the previous section is more precisely defined as Ra = ab/λ (e.g. 

Bindschadler, 1983; Cuffey and Paterson, 2010). Cavities influence ub by reducing the 

ice-rock contact area. Bindschadler (1983) used the theory behind eqn. 2-108 to 

introduce the bed separation index, Ib = τb/NC, as a measure of the “relative amount of 

bed separation occurring” across the glacier bed. Larger Ib is associated with higher τb 
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and/or lower NC and faster sliding. Bindschadler (1983) multiplied eqn. 2-107 sliding law 

by the bed separation index to include this effect in Weertman’s (1957) theory: 
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where pb and q are positive and the constant cs is inversely related to Ra. With pb = 2.95, 

cs = 84 m yr-1 bar1-pb and q = 1, Bindschadler (1983) found that this sliding law matched 

observations from Variegated Glacier, Alaska, more closely than Weertman’s original 

theory eqn. 2-107. Budd et al. (1979) tested a sliding law of this form against the results 

from an experiment which involved dragging ice over surfaces of different roughnesses. 

They found, for a wide range of sliding velocities, q = 1 and 1 ≤ pb  ≤ 3 provided the best 

match between eqn. 2-109 and their observations.  

Iken and Truffer (1997) and Anderson et al. (2004) built on the separation effective 

pressure concept and the latter authors suggested the following sliding law: 
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Iken (1981) applied a force balance argument to an idealised, ‘tilted-staircase’ bed to 

suggest a second critical effective pressure, Nu: 
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When NC ≤ Nu, ice moves up the upglacier sides of bedrock bumps, basal friction ceases 

to increase with ub, and sliding becomes unstable. Truffer and Iken (1998) found a 

similar result for a sinusoidally undulating bed and Schoof (2005), building on these 

ideas and other theoretical work (Fowler, 1986; Fowler, 1987a), solved a linear ice 

rheology model analytically with a generalised bed topography and proposed a 

generalised coulomb-friction sliding law. Finite-element modelling using non-linear ice 

rheology by Gagliardini et al. (2007) showed that Schoof’s (2005) sliding law can be 

generalised to include more realistic ice rheology. 

From the theories discussed here, one is left with the following picture of basal sliding 

over rough bedrock: (i) when effective pressure is high, no cavities form and sliding 

occurs through Weertman’s (1957) mechanisms of regelation and enhanced creep (eqn. 

2-107); (ii) as effective pressure is reduced below a critical value called the separation 

effective pressure, cavities form, increasing the velocity of basal sliding (eqn. 2-109 or 
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eqn. 2-110); and (iii) as effective pressure is reduced further, below a second critical 

value, ice begins to move up the upglacier sides of bedrock bumps and sliding becomes 

unstable as friction does not increase with sliding velocity.  

2.3.3 Linked-cavity drainage 

In addition to influencing glacier sliding, cavities are thought to form part of the 

hydrological system (Kamb, 1987; Walder, 1986). Theory suggests these linked-cavity 

drainage systems behave fundamentally differently to channelised drainage systems. 

Röthlisberger (1972) found that, in a steady-state channel, water pressure gradient, 

∂pw/∂s, and discharge, Q, are negatively related (section 2.2.1). Walder (1984) 

developed a model of steady state cavity drainage that suggests in linked-cavity systems 

these quantities are positively related.  

Walder (1986) balanced cavity enlargement and closure to derive the following 

expression for the steady-state cross-sectional area of a cavity, SC:  
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The cavities close due to the inward creep of ice, represented by the left-hand side of 

eqn. 2-112. They open due to basal sliding over bedrock bumps of typical height R and 

melting of ice caused by heat dissipated in water that flows through the system. These 

processes are represented by the first and second term on the right of eqn. 2-112. In this 

expression QC is the water discharge, NC is the effective pressure in the cavities, G is the 

total hydraulic potential and γ and k are constants. Walder (1986), following Nye (1976), 

used Manning’s equation (eqn. 2-4) to relate SC to QC: 
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Eliminating SC between these two equations and solving for QC yields 
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Walder (1986) showed that the term representing melt in eqn. 2-114 (second term in 

the denominator) is negligible. On neglecting the melt term in eqn. 2-114, the 

relationship between QC, ub, G and NC has the form  



Modelling Ice-dammed Lake Drainage 

Chapter 2: Mathematical background 

 

 
 44 

   
   

 
 

  
   

2-115 

As G is a positive function of the water pressure gradient ∂pw/∂s, this equation implies 

that the cavity discharge increases with ∂pw/∂s. This is in contrast to the equivalent 

relationship in channels, where discharge decreases with ∂pw/∂s.  

This disparity between channels and cavity systems is due to the different mechanisms 

that maintain water flowpaths in each case. Channels are maintained by melting due to 

heat dissipated in the turbulent water flow. An increase in discharge leads to increased 

melt and a decrease in the magnitude of ∂pw/∂s (see section 2.2.1; eqns. 2-3 and 2-9). In 

contrast, cavities are predominantly maintained by ice flow over bedrock bumps – 

assumed to be independent of water flow. Consequently, higher water pressure 

gradient drives a higher discharge.  

This theoretical result suggests that when two cavities drain to a common location at a 

glacier bed, the one with the lower discharge will have a lower pressure and will tend to 

capture water from the other, equalising the discharges and the pressures. Unlike a 

channel that is larger than its neighbouring channels, a large cavity does not have a 

tendency to capture water from its smaller neighbours. Hence, this theory suggests that 

a distributed system of hydraulically-linked cavities can be a stable configuration for a 

subglacial drainage system. (e.g. Fountain and Walder, 1998; Cuffey and Paterson, 2010; 

Benn and Evans, 2008).  

In a more complete analysis, Kamb (1987) found a similar result while modelling sliding 

velocity using eqn. 2-109. Furthermore, invoking concepts of unstable sliding when 

effective pressure is low, discussed in the previous section, he suggested the transition 

from a low-pressure channel system to a high-pressure cavity system as an explanation 

for the onset of glacier surges, an idea that has been extended by many studies (e.g. 

Björnsson, 1998; Eisen et al., 2005; Fowler, 1987b; Fowler and Schiavi, 1998; Mayer et 

al., 2011).  

2.4 Summary and outlook 

I have presented the theories of subglacial drainage through channels and linked cavities 

that underlie my modelling during the next four chapters. I have described how 

Röthlisberger’s (1972) steady-state channel model was developed into a time-

dependent model by Nye (1976) to explain the shape of jökulhlaup hydrographs. I have 

also covered Fowler’s (1999) modification to this model and in the next chapter I will 

demonstrate how these modifications impact on the behaviour of the model. To do this I 
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will be solving model equations numerically and I have described three alternative 

methods that I use to achieve this. Finally, I introduced the concepts of basal sliding and 

subglacial cavitation that underlie my investigation of the coupling between jökulhlaups 

and glacier motion in Chapter 5. With the mathematical background covered, I am ready 

to proceed with these investigations.  
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Chapter 3 Environmental controls on flood cycles  

3.1 Introduction 

Observations show that the size and timing of jökulhlaups vary, both between systems 

and between repeat floods from the same system (see the time series of lake depth in 

Fig. 1.3).  A proper understanding of the controls on such variability is lacking and could 

help to mitigate jökulhlaup hazards, inform the design and operation of hydroelectric 

power plants and predict future change in jökulhlaup systems.  

Previous authors have identified various environmental controls on the size and timing 

of jökulhlaups. These include glacier shape, which affects jökulhlaups through its effect 

on the basic hydraulic potential of the glacier (see eqn. 2-21; Fowler, 1999), and air 

temperature, which affects jökulhlaups through its control on the rate of water input to 

the lake (Ng et al., 2007; Ng and Liu, 2009). In this chapter I use the Nye-Fowler model to 

further investigate these two environmental controls. I also consider a third: the rate of 

water input to the channel along its length.  

My approach throughout this chapter is to use the Nye-Fowler model to numerically 

simulate periodic cycles of lake filling and drainage and investigate how changing 

environmental controls between simulations affects the size of these flood cycles and 

the timing of floods. Hence, the first part of the investigation is concerned with assessing 

under what conditions the Nye-Fowler model can simulate repeating flood cycles.  

Ng (1998) was first to show that the size of floods simulated using Nye’s jökulhlaup 

model (see section 2.2.2), formulated with only time dependence (and no spatial 

dependence), increase indefinitely with time (see also Ng and Björnsson, 2003). Tackling 

this problem, Fowler (1999) showed that retaining a spatial dimension in Nye’s (1976) 

model, introducing a region of negative hydraulic gradient just downglacier of the lake 

and supplying the channel with water along its length (see section 2.2.3) allows a water 

divide to form near the lake between floods. Upglacier (lake-ward) of the divide, water 

supplied to the channel flows into the lake and downglacier of the divide water flows to 

the glacier’s terminus. As the lake fills between floods, this divide, or ‘seal’, migrates 

towards the lake in response to increasing lake water pressure. When it reaches the 

lake, the channel grows through a feedback between frictional melting of the channel 

walls and water discharge, and a flood initiates (Nye, 1976). Divide formation in Fowler’s 

(1999) model stabilises the unstable growth of flood cycles found by Ng (1998). This is 

significant because, as discussed in Chapter 1, unstable growth of flood cycles is not 

observed in reality. Hence it is desirable to have a model, like Fowler’s (1999), which can 
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simulate stably repeating cycles. Here, I further explore what controls the stability of the 

size of flood cycles using the spatially-dependent Nye-Fowler model. Specifically, I 

investigate whether a region of negative basic hydraulic gradient near the lake and an 

input of water to the channel along its length are necessary conditions for divide 

formation and whether divide formation is necessary to stabilise the growth of flood 

cycles. 

In addition to proposing divide formation as a stabilising mechanism, Fowler (1999) 

showed that, in his model, when the prescribed lake water input is increased 

dramatically lake level can reach the ‘flotation level’ – the level at which the ice-dam 

becomes afloat on the lake water. This finding is consistent with observations of Lake 

Grimsvötn, Iceland made in 1996 (see Fig. 1.3). Usually this lake begins to drain when its 

level is ~60 m below the flotation level. But in November 1996, rapid lake water input 

caused by a subglacial volcanic eruption caused the lake level to reach the flotation level 

(e.g. Björnsson, 2002). The ensuing flood reached its peak discharge of ~4 × 104 m3 s-1 in 

around 16 hours, more rapidly than any other observed flood from Grimsvötn. Such 

rapid flood development cannot be explained by Nye’s discharge-melt feedback (e.g. 

Björnsson, 2002; Jóhannesson, 2002). However, building on the Nye equations, Fowler 

(1999) explained how a lake can reach the flotation level when the rate of lake water 

input is sufficiently high. In his model, as the lake fills, the subglacial divide in the 

channel migrates towards the lake due to the increasing lake water pressure, but it lags 

behind this forcing. This lag increases with the rate of lake-level change. Hence, when 

the lake fills rapidly the lake level can reach the flotation level before the divide arrives 

at the lake.  

My hypothesis here is that these ideas about the lag time of the divide’s migration can 

be extended from Fowler’s (1999) investigation of the 1996 Grimsvötn flood to explain 

variability in ‘typical’ jökulhlaups, that is, jökulhlaups that initiate before the lake level 

reaches the flotation level. Hence, I extend Fowler’s (1999) work to investigate the 

physics of divide migration in detail. In particular I show that these physics can explain 

how environmental factors, like the shape of the glacier near the lake, the rate of water 

input to the lake and the rate of water input to the channel along its length, may control 

the size of flood cycles and play a crucial role in jökulhlaup variability.  

Ng and Liu (2009) used a simple model based on flood-initiation thresholds (see Chapter 

4) with a periodic temperature forcing to show how aspects of the temporal dynamics of 

jökulhlaups can be explained by considering the interaction between temporal 

variations in one environmental factor – the melt water input to the lake – and the flood 

initiation threshold. I extend this work by investigating the behaviour of the Nye-Fowler 

model when it is forced with a seasonally-varying melt water input to the lake. I show 
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that interactions between the timing of floods and the seasons lead to several kinds of 

complex behaviour in the model: mode-locking, where the repeat time of floods is 

locked to integer numbers of years; resonance, where small changes in the amplitude of 

the temporally-varying lake water input cause large changes in the peak discharge of 

floods; and chaos, where flood cycles never settle into a steadily-repeating pattern and 

are sensitive to initial conditions. My analysis of this model behaviour is guided by 

studies of dynamical systems. 

This chapter is organised as follows. In section 3.2 I investigate the ability of the Nye-

Fowler model to simulated stable flood cycles. In section 3.3 the dependences of the size 

of flood cycles and flood repeat time on three environmental factors – the meltwater 

input to the lake, the meltwater input to the channel, and the glacier’s shape near the 

lake – are investigated and explained in terms of the physics of divide migration. In 

section 3.4 results of model runs with seasonally-varying meltwater inputs are 

presented and results are discussed in section 3.5. 

3.2 Flood cycles 

3.2.1 Model setup 

Fig. 3.1 shows the model jökulhlaup system used throughout this chapter. A marginal 

lake, with hypsometry defined by VLi = 5 × 108 m3, hLi = 100 m and pL = 1, drains through 

a 10 km long, semi-circular channel with hydraulic roughness n’ = 0.1 m-1/3 s (from eqn. 

2-24 this corresponds to f ≈ 0.07 m-2/3 s2). The glacier’s thickness H is constant and 

uniform (=100 m). These values pertain to Merzbacher Lake and South Inylchek Glacier, 

Kyrgyzstan (Ng and Liu, 2009). The channel’s evolution and the flow of water through 

the channel are described by eqns. 2-59–2-61: 
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The lake’s evolution is described by eqn. 2-63: 
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3-4 
and the lake level hL defines the boundary condition on the channel’s effective pressure 

at the lake outlet via eqn. 2-61: 

                     

3-5 
Initially, the hydraulic gradient, ψ, is kept constant, uniform and positive (=1), however 

later it will be parameterised by an exponential function (eqn. 3-9) that allows it to be 

negative near the lake. The surface slope, ϕs = 0.01, supplies the basic hydraulic gradient 

scale, ψ0 = ρwgϕs ≈ 100 Pa m-1, and the discharge scale is chosen as a typical peak 

discharge, Q0 = 1500 m3 s-1. These scales are used with eqns. 2-65 and 2-66 and the 

following physical constants, 
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to calculate the remaining scales, 

         ,             ,             

                                                 

Fig. 3.1. My model jökulhlaup system. 
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3-7 

and dimensionless parameters, 

                     

                 

3-8 

In agreement with previous work (Evatt et al., 2006; Fowler, 1999; 2009; Ng, 1998; Ng 

and Björnsson, 2003),  R is small. This shows that the contribution to channel water 

balance from melting of the channel walls and creep closure of the channel is small 

compared to Q. 

For the effective pressure boundary condition at the terminus, I use N(s = s0, t) = 0. An 

alternative boundary condition is N(s = s0, t) = Na = ρigH, but the choice does not 

qualitatively affect my results. Initially I retain terms containing  R, in anticipation that 

they may be significant between floods. The relaxation method is used to solve the mass 

and momentum conservation equations, while Forward Euler time-stepping is used to 

evolve the lake level and the channel area in time (section 2.2.5). I use time steps of 

0.01, a grid spacing of 0.01, an initial lake depth of 1/3 and an initial discharge at the 

lake of 5×10-4 (all non-dimensional). 

3.2.2 Control simulation: unstable growth in flood-cycle size 

Fig. 3.2 displays the results of a control model simulation during which the lake is filled 

with a constant water input Qin = 10 m3 s-1 and drains through a channel that receives no 

water input along its length, M = 0 m2 s-1, beneath a uniform slab glacier, ψ(s) = ψ0. The 

plot displays simulated time series of lake depth (Fig. 3.2a), discharge at the lake outlet 

(Fig. 3.2b) and the cross-sectional area of the channel at the lake outlet (Fig. 3.2c). 

Oscillatory filling and drainage of the lake is evident in all three time series. For the 

purposes of explaining the physical origin of the cycles, key points in the second cycle 

displayed in Figs. 3.2a–3.2c have been labelled A, B, C and D. The line labelled A marks 

the lowest lake depth reached after the first simulated flood, this depth is called the 

flood’s lowstand. Following this lowstand the lake fills (between A and B) which causes 

the effective pressure at the lake outlet to decrease (according to eqn. 3-5). This 

decrease in effective pressure has two effects: one, it decreases the rate at which the 

channel closes through creep flow of the ice (according to eqn. 3-1) and two, it increases 

the total potential gradient (δ∂N/∂s + ψ) by reducing the magnitude of ∂N/∂s which is 

negative at this stage of the flood cycle. During this lake-filling period, initially discharge 

decreases as the channel shrinks following the previous flood (between 1 and 1.5 years), 

but at ~1.5 years the increasing total potential gradient and the decreasing creep closure 



Modelling Ice-dammed Lake Drainage 

Chapter 3: Environmental controls on flood cycles 

 

 
 52 

of the channel (associated with increasing lake level) result in the discharge beginning to 

increase.  

A higher discharge increases the rate at which the channel is enlarged by melt and the 

channel’s cross-sectional area begins to increase ~1 day after the discharge begins to 

increase (Fig. 3.2c). A larger channel allows a higher discharge, which further increases 

the rate of channel enlargement by melting. This positive feedback between discharge 

and channel cross-sectional area is the mechanism introduced by Nye (1976) to explain 

the shape of jökulhlaup hydrographs. The feedback continues and at point B the 

discharge out of the lake equals the water input to the lake (Q(0,t) = Qin); the lake 

reaches its highest depth – its highstand – and begins to drain. As the lake drains, the 

discharge continues to increase via Nye’s feedback. However, as the lake depth 

decreases, the channel closure rate increases through eqns. 3-1 and 3-5. This acts to 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.2. Flood cycles simulated using the Nye-Fowler model. The lake is filled with 
input Qin = 10 m3 s-1, and drains through a channel that receives no input of water 
along its length, M = 0 m2 s-1, beneath a uniform, slab glacier with a = 0. Time 
series of (a) lake depth, hL(t), (b) discharge in the channel at the lake outlet, Q(s = 
0,t), and (c) the area of the channel at the lake outlet, S(s = 0,t); and orbits in the 
(d) Q(s = 0,t)–hL(t), (e) S(s = 0,t)–hL(t), and (f) S(s = 0,t)–Q(s = 0,t) phase spaces. 
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suppress Nye’s feedback and, at point C, the flood reaches its peak and discharge begins 

to decrease. Between point C and point D the discharge decreases until at D the input to 

the lake exceeds the outflow through the channel and the lake begins to fill. This marks 

the start of the next flood cycle. These cycles are also evident in the solution’s oscillatory 

orbits in Q–hL, S–hL and S–Q phase-spaces, plotted in Fig. 3.2d, 3.2e and 3.2f 

respectively.  

The highstand and peak discharge increase, and the lowstand decreases, from each 

flood cycle to the next until, during the third flood, the lake empties (at t ≈ 4 years). Here 

the simulation terminates because the open-channel flow that would occur in reality 

after the lake empties cannot be simulated by the Nye model (this problem is tackled in 

Chapter 6). This growth in the size of flood cycles is reminiscent of that demonstrated by 

Ng (1998) using a reduced model formulated with time dependence only. The reason for 

the similarity between the full model and Ng’s reduced model is the nearly spatial 

uniform discharge in my simulations due to M = 0 m2 s-1,  R ≪ 1 and ψ = ψ0.  

3.2.3 Stable flood cycles 

I now demonstrate how two environmental parameters in the Nye-Fowler model can be 

changed to suppress the unstable growth in the size of flood cycles. The first is the basic 

hydraulic potential gradient ψ. The second is the supply of water to the channel along its 

length M. 

Negative basic hydraulic gradient near the lake suppresses flood cycle growth 

Following Fowler (1999), I parameterise the basic hydraulic gradient, ψ, with  

              
 

  
    

3-9 

The parameter b is kept constant at 20, and I vary how much ψ is decreased relative to 

ψ0 near the lake by increasing a from zero. When a > 1, ψ is negative at the lake. 

Negative ψ acts to drive water upglacier towards the lake, possibly discouraging the lake 

from draining. Hence, I refer to such a negative ψ near the lake as a topographic seal. A 

lake-ward dipping glacier surface could cause this and is observed in real systems (e.g. 

Lake Grimsvötn; Fowler, 1999). 

Fig. 3.3 displays time series of lake depth, discharge at the lake outlet and the cross-

sectional area of the channel at the lake outlet from a simulation that used a = 3. All 

other parameters are unchanged from the control simulation (previous section). The 

growth in the size of the flood cycles is suppressed by the negative basic hydraulic 

gradient near the lake. This prevents the lake emptying and the system approaches limit 
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cycles in the phase-spaces in Figs. 3.3d–3.3f. In this simulation, lake level often exceeds 

the flotation depth (90 m). In reality this would lead to a flood being immediately 

initiated as the ice dam is lifted, but this process is not modelled here. Instead, negative 

effective pressure causes unrealistic channel enlargement through ice creep. 

Increasing a, corresponding to an increasingly negative ψ near the lake, reduces the 

highstand and peak discharge of floods, and, crucially for preventing the lake emptying 

during simulations, increases the lowstand of floods. These trends can be seen in Fig. 

3.4, which plots the long-time solution orbits in Q(0,t)–hL(0,t) phase space of seven 

simulations. Each simulation used a different value for a.  

The discharge at the lake outlet is positive throughout all seven simulations, so Fowler’s 

(1999) divide formation and migration mechanisms are not operating here. By 

definition, for a divide to form, the discharge needs to change spatially. In these 

simulations the channel is not supplied with water along its length (M = 0) and the 

parameter  R is small, so discharge is almost spatially uniform. Hence, a divide cannot 

form. 

 

Fig. 3.3. Stable flood cycles simulated using the Nye-Fowler model. Negative basic 
hydraulic gradient near the lake, a = 3. Channel receives no input of water along 
its length, M = 0 m2 s-1. pL = 1 and Qin = 10 m3 s-1. Layout is identical to Fig. 3.2. 
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Physically, one expects an increase in a to decrease the water discharge through the 

channel because the total potential gradient (δ∂N/∂s + ψ) near the lake approximately 

decreases with a. This expectation is fulfilled when the lake is draining, i.e. when Q(s = 

0,t) > Qin. In each simulated flood cycle, after the lake reaches its highstand, larger 

values of a result in a lower peak discharge and induce the discharge to peak when the 

lake has a higher depth. These two effects cause the lowstand to increase with a. 

Fig. 3.4. The long-time orbits in Q(0,t)–hL(0,t) phase space of the Nye-Fowler 
model with basic hydraulic gradient parameter a = {3, 4, 5, 6, 7, 8, 9}, Qin = 10 m3 
s-1 and M = 0 m2 s-1. The plots show one complete limit cycle in each case and 
have linear hL(0,t) axes and (a) linear and (b) logarithmic Q(0,t) axes. 
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Contrary to the expectation of a decrease in discharge with increasing a is the fact that 

discharge through the channel during lake-filling periods (when Q(s = 0,t) < Qin) increases 

with a. An examination of the numerical results, in more detail than can be shown 

graphically here, reveals why this occurs. It occurs because the size of the channel at the 

lake outlet, at the moment the lake reaches its lowstand, increases with a. This 

numerical observation can be approximately explained by examining the momentum 

balance (eqn. 3-3) in the lake outlet at the moment the lake reaches its lowstand. From 

eqn. 3-3 this balance is 

       
   

 

      
 
 

   

3-10 
where S(s = 0) is the channel cross-sectional area at the lake outlet and G(s = 0) is the 

total hydraulic potential gradient at the lake outlet, 

         
  

  
 
   

         

3-11 
All other things remaining equal, G(s=0) decreases with a (because ψ*(s=0) = 1 – a). 

Hence, from eqn. 3-10, S(s = 0) increases with a. Physically this means that, because Qin 

is constant across all the simulations, the simulations with a lower basic hydraulic 

gradient to help drive downglacier water flow, need a larger channel to maintain the 

same discharge Qin. After lowstand the lake-filling period begins. Hence simulations with 

a larger channel at the start of this period (i.e. those with higher a) have a higher 

discharge throughout this period. 

Supplying the channel with water along its length suppresses flood cycle growth 

Flood cycle growth can also be suppressed in simulations by supplying the channel with 

water along its length. I assume that this meltwater input comes from an adjacent 

distributed drainage system with a higher water pressure than the channel and that this 

input is constant and uniform. The possibility that it can vary in space and time as the 

two drainage systems coevolve is considered in Chapter 5. In the present chapter this 

input is represented by the term, M, in the mass conservation equation (eqn. 3-2). Fig. 

3.5 displays results from a simulation with a = 0 and M = 2.5 × 10-4 m2 s-1. The lake 

level never exceeds the flotation depth or empties and the system approaches limit 

cycles. The same hydrographic sequence as I described with reference to Fig. 3.2 

operates during this simulation with one difference beging that, in this simulation, 

discharge at the lake outlet becomes negative between floods – a divide forms.   
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Fig. 3.6 shows long-time solution orbits in Q(0,t)–hL(0,t) phase space of seven 

simulations. Each simulation used a different value for the supply of water to the 

channel along its length M. The results show that, between floods, water flows out 

of the channel into the lake, Q(0,t) < 0. As the channel is supplied with water along 

its length and  R is small, discharge in the channel increases with distance down 

glacier. This, coupled with the fact that Ms0 ≈ 5 m3 s-1 is larger than the magnitude 

of the negative discharge at the lake outlet between floods (< 0.5 m 3 s-1; Fig. 3.6b), 

indicates that when Q(0,t) < 0 there must exist a position in the channel with zero 

discharge. This is Fowler’s (1999) water divide. If water enters the channel 

upglacier of the divide’s position, it flows towards the lake, if water enters the 

channel downglacier of the divide’s position, it flows towards the glacier’s 

terminus. With a = 0, the basic hydraulic gradient is positive everywhere, so divide 

formation is caused only by low water pressure at the lake outlet. 

During lake filling periods, the divide migrates in response to changing lake water 

pressure and the time evolution of the channel’s cross-sectional area. I will explain 

how this migration is visible in the phase-plane plot in Fig. 3.6b. As  R is small,   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.5. Repeating flood cycles caused by non-zero meltwater input to the 
channel, M = 2.5 × 10-4 m2 s-1, beneath a uniform glacier, a = 0. Qin = 10 m3 s-1 and 
pL = 1. The layout is identical to Figs. 3.2 and 3.3.  
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∂Q/∂s ≈ M, so when Q is negative its magnitude is approximately proportional to 

the distance between the lake and the divide. With this in mind,  the divide’s 

migration is visible in the phase-plane plot in Fig. 3.6b as the changing magnitude of 

Q(0,t) (the vertical axis) while it is negative. Immediately after the divide forms (i.e. 

after Q(0,t) becomes negative) it migrates downglacier into s > 0, then it turns and 

migrates slowly towards the lake. These migrations are labelled in Fig. 3.6b. When 

the divide reaches the lake, the channel can grow through Nye’s melt–discharge 

feedback and a flood starts.  

Increasing M from zero allows the water divide to form and divide formation 

suppresses growth in the size of flood cycles by increasing the size of the channel during 

lake-filling periods (Fig. 3.6b), expediting flood development and decreasing 

highstand. Increasing M further decreases the size of floods further (Fig. 3.6). This is 

Fig. 3.6. The orbits in Q(0,t)–hL(0,t) phase-space of limit cycles with background 
water supply to the channel, M = {2.5, 3.1, 4.0, 5.0, 6.3, 7.9, 10} × 10 -4 m2 s-1. Qin 
= 10 m3 s-1 and a = 0. (b) shows the same results as (a) but focuses on the details 
of the lake filling period, note the two different vertical axes.  
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due to the dynamics of the divide’s migration. I defer a full physical explanation of 

these dynamics to the next section.  

Summary 

In the simulations discussed in this section (whose results are displayed in Figs.  

3.3–3.6), increasing either of two environmental parameters, a and M, produced 

superficially similar results: a decrease in the highstand and the peak discharge of 

floods, and an increase in the lowstand of floods. Consequently, increasing either 

parameter stabilises flood cycles and promotes the simulation of periodic floods. 

The Nye-Fowler model does not need both a topographic seal (a > 1) and the 

channel to be supplied with water along its length (M > 0) in order to simulate 

periodic stable flood cycles.  

Although increasing a and increasing M have similar effects on flood cycles, in each 

case the physical explanation of these effects is entirely different. When no water 

is supplied to the channel (M = 0), no water divide forms and increasing a changes 

the size of simulated flood cycles through its effect on the total hydraulic potential 

gradient in the channel. In contrast, when water is supplied to the channel along its 

length (M > 0), a water divide does form and it is the dynamics of the divide’s 

movement that explain the dependence of the size of flood cycle on the parameter 

M. These dynamics are discussed in detail in the next section. 

3.3 Controls on the characteristics of flood cycles 

Stable recurring flood cycles provide a basis for investigating physically why the 

characteristics of flood cycles depend on environmental factors – like the meltwater 

input to the lake Qin, the meltwater input to the channel along its length M and the basic 

hydraulic gradient parameter a – without the obstacles associated with arbitrarily 

chosen initial conditions.  

I restrict this section’s investigation to cases where M > 0 and a subglacial water divide 

forms between floods. Of the two sets of simulations examined in the previous section, 

the second set, which used M > 0 and a = 0, yielded the more realistic flood cycles (with 

a highstand lower than the flotation depth). Also, in reality, channels are unlikely to be 

hydraulically isolated from their subglacial surroundings. 

In section 3.3.1 I explore the dependence of the size of flood cycles on the 

environmental parameters Qin, M, and a by conducting a sensitivity analysis of the 

model. I explain this dependence physically in section 3.3.2 by analysing the spatial 
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distribution of model variables along the channel during a lake-filling period when a 

subglacial water divide is migrating towards the lake. 

3.3.1 Sensitivity analysis of the reduced Nye-Fowler Model 

First, I follow Fowler (1999) in neglecting terms in the Nye-Fowler model that contain  R 

and using ∂N/∂s = 0 as the terminus boundary condition. The resulting reduced version 

of the Nye-Fowler model is: 

  

  
 

    

 
 
 

      

3-12 
  

  
    

3-13 

  

  
 

 

 
 
    

 
 
 

     

3-14 
The evolution of the lake level hL is still described by eqn. 3-4 and the effective-pressure 

boundary conditions on the channel are given by 

                 

3-15 
and  

   

  
 
      

    

3-16 
The computationally efficient boundary layer method (section 2.2.5) can be used to 

solve the reduced model, making an exploration of Qin–M–a parameter space feasible. 

My preliminary numerical explorations, unreported here, show that these choices of 

boundary conditions at the terminus and the numerical method used do not affect the 

qualitative features of divide physics. These choices do however affect my results 

quantitatively. Hence, the results displayed in Figs. 3.3–3.6 in the previous section are 

not directly comparable to the results of the sensitivity analysis presented below. 

Using the same time step, grid spacing, initial lake depth, initial discharge and system 

geometry as I used in the previous section, eqns. 3-4 and 3-12–3-16 are integrated 

forward in time until (i) the lake empties, (ii) the channel closes anywhere along its 

length, S(s,t) = 0, or (iii) limit cycles are reached. Limit cycles are detected and recorded 

when the lowstand, highstand and peak discharge of a cycle are all within 0.05 % of their 

respective quantities recorded during the previous two cycles. Between multiple  
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simulations, I vary the environmental parameters Qin, M and a and at the end of each 

simulation that resulted in the system reaching limit cycles, the following characteristics 

pertaining to the size and timing of the limit cycles are recorded: their highstand, their 

lowstand, their peak discharge and the time interval between their peak discharges 

(hereafter, their repeat time). 

Fig. 3.7 displays these characteristics recorded from a set of simulations during which 

the hydraulic gradient parameter a and the channel meltwater input M were varied over 

plausible ranges, 2 ≤ a ≤ 9 and 10-5 ≤ M ≤ 10-3 m2 s-1 respectively. The results are 

displayed as contour maps that show how the peak discharge, Qp, the highstand, hmax, 

the lowstand, hmin, and the repeat time, Fp, of limit cycles varies with a and M. The rate 

of water input to the lake is kept constant in all simulations, Qin = 5 m3 s-1. As indicated 

by Fig. 3.7d, limit cycles are reached during the majority of model runs and higher 

channel inputs and hydraulic gradient parameters favour this. In the minority of model 

runs the lake emptied, ending the simulation. The serration of the line separating the 

Fig. 3.7. The control of the environmental parmeters a and M on flood-cycle 
characteristics. Results of a sensitivty analysis of the reduced Nye-Fowler model 
presented as filled contour maps showing (a) the peak discharge, (b) the 
highstand, (c) the lowstand and (e) repeat time, of  long-time flood cycles vary 
with the hydraulic gradient parameter  a and the channel’s meltwater input M. 
(d) indicates whether each pair of parameters lead to the lake emptying or to 
limit cycles. In all simulation lake input,  Qin = 5 m3 s-1.  
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two regions in parameter space in Fig. 3.7d is an artefact of the resolution of the 

parameter sweep.  

Fig. 3.7a shows that, as expected from the results in section 3.2, peak discharge 

decreases with the supply of water to the channel M and the hydraulic gradient 

parameter a (although the dependence on the latter is weak for this choice of lake input 

and boundary condition). From Fig. 3.7c, the lowstand increases with M and a, as seen in 

the results of earlier simulations (Figs. 3.4 and 3.6). From Fig. 3.7b, the highstand 

decreases with M, but, unlike during earlier simulations which used M = 0 m2 s-1 (Fig. 

3.4), highstand increases with a. This is because in the earlier simulations, whose results 

are shown in Fig. 3.4 (section 3.2.3), M = 0 m2 s-1 and no divide formed between floods. 

Now, with M ≠ 0 m2 s-1, a divide does form and its dynamics dominate the mechanisms 

discussed in section 3.2.3 which caused the highstand to decrease with a when no divide 

formed. The time between floods is almost independent of a and decreases with M (Fig. 

3.7e). 

Fig. 3.8 plots the same limit-cycle characteristics as Fig. 3.7 but shows how they vary 

over the lake-input–channel-input (Qin–M) parameter space. The hydraulic gradient is 

kept constant in all simulations (a = 5). Lower lake input and higher channel supply 

favour the establishment of limit cycles (Fig. 3.8d). The green regions in Fig. 3.8d indicate 

the simulations during which the channel closed completely. This occurs at the divide 

when it moves slowly compared to the rate at which the channel closes through ice 

creep. By definition the discharge in the channel is zero at the divide, so the channel is 

always closing here. However, because the closure rate in the model is proportional to 

the channel’s cross-sectional area (S; eqn. 3-1), the channel should theoretically never 

close completely. The closure detected in these numerical solutions is an artefact of the 

discretisation of the time domain during the numerical solution of the model. 

As before (see the discussion of the results presented in Fig. 3.7), the size of flood cycles 

decreases with the rate of water input to the channel M.  The strength of this effect 

decreases as the rate of water input to lake Qin increases (c.f. the slope of contours in 

lower-right and upper-right of Figs. 3.8a, 3.8b and 3.8c). Peak discharge and highstand 

increase, and lowstand decreases with Qin. The repeat time of flood cycles decreases 

with both Qin and M.  

In summary, increasing the rate of water input to the lake increases the size of flood 

cycles and causes them to repeat more often. Increasing the rate of water input to the 

channel also causes flood cycles to repeat more often, but decreases their size. 
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3.3.2 Physics of the divide’s migration 

The way in which flood cycles change with the hydraulic gradient and the two types of 

meltwater inputs is due to the dynamics of the subglacial water divide that formed 

between floods during all the simulations analysed in section 3.3.1. I examine these 

dynamics next.  

Fig. 3.9 shows the spatial variation in channel area (green), discharge (blue) and effective 

pressure (red) near the lake, extracted from one of the simulations discussed above, 

during a lake-filling period. The simulation used a = 5 so, from eqn. 3-9 with a = 5 and b = 

20, the basic hydraulic potential gradient is negative in a region that extends from the 

lake to a point where ψ = 0 at 805 m from the lake. This point is indicated in Fig. 3.9a by 

the dashed black line. The divide is downglacier of this point and moving upglacier (as 

indicated by the blue arrows) in response to decreasing effective pressure at the lake 

(red arrow). 

Fig. 3.9b shows a close-up of the divide’s position. Three moving points, labelled A, B 

and C in Fig. 3.9, are important for divide migration: (A) the position the divide is 

Fig. 3.8. Controls on flood cycles of lake input Qin and the input to he channel M 
(with a = 5). The variation of (a) peak discharge, (b) highstand, (c) lowstand and 
(e) flood period, over Qin–M  parameter space, displayed as filled contour maps. 
(d) indicates whether each pair of parameters lead to the lake emptying, the 
channel closing or limit cycles. 
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migrating towards due to the lake pressure forcing, this moves upglacier as the lake fills 

(the black arrow); (B) the divide’s current position, which moves upglacier towards point 

A; and (C) a constriction in the channel, where the channel area is at its minimum value, 

created by formerly low Q at this location. All three points are migrating upglacier, with 

B lagging behind A and C lagging behind B. If the lake were to stop filling at this moment, 

points B and C would relax towards point A, which would stop moving upglacier at the 

instant the lake filling stopped.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Under steady-state conditions, the constriction point would coincide with the divide, 

however, when conditions are not steady, the divide is migrating towards point A and 

the channel takes time to evolve in response to this migration. Hence, a steady state is 

never reached. Instead the constriction point C lags behind the divide position B. Divide 

migration is impeded by the relatively slow evolution of the channel because, as the 

divide moves away from the constriction point, the discharge through the constriction 

increases. Because it is difficult to force water through such a constriction (see the 

momentum balance equation; eqn. 3-3), the divide can only move so far away from the 

constriction point before the water pressure in the constriction is increased (i.e. the 

effective pressure in the constriction is decreased) sufficiently to stop any further 

Fig. 3.9. The mechanics of divide migration. The spatial variation of  the  effective 
pressure (red), the discharge (blue) and the channel area (green) profiles during a 
lake-filling period, extracted from a simulation that used a = 5. ψ > 0 at the 
divide. Both panels show the same moment in the filling period. Note the 
different horizontal scales. 
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movement of the divide relative to the constriction. Hence, the divide’s continued 

lake-ward migration relies on the relatively slow evolution of the channel – the point B 

in Fig. 3.9b lags behind point A. Due to these mechanisms the divide’s arrival at the lake 

is delayed with respect to the lake pressure forcing and the highstand is larger than it 

would be if these mechanisms did not operate.  

These delaying mechanisms can explain the increase in highstand with the hydraulic 

gradient parameter a and the lake input Qin, and the decrease in highstand with the 

water input to the channel M, observed in the results displayed in Figs. 3.7 & 3.8. If all 

other variables remained equal, a uniform decrease in the basic hydraulic gradient (ψ) 

reduces the total hydraulic gradient (δ∂N/∂s + ψ) and the discharge uniformly (see the 

momentum balance equation; eqn. 3-3). From the blue curve in Figs. 3.9a and 3.9b it can 

be seen that this corresponds to a downglacier shift in the divide’s position. Increasing 

the parameter a decreases ψ near the lake, hence the divide’s movement is impeded in 

its migration through this region when a > 0, and impeded more severely a is higher. 

This increases the delay in the divide’s arrival at the lake which increases the flood 

cycle’s highstand. Increasing the lake input also increases the delay and the highstand 

because point A moves upglacier more rapidly, increasing the lag between A and B.  

Finally, increasing M increases the discharge through the constriction for a given lag 

between C and B (because ∂Q/∂s = M). This increase in discharge speeds-up the 

evolution of the channel – specifically, by increasing the rate at which the constriction is 

enlarged through melt – for a given lag between C and B. This reduces the constriction’s 

inhibiting effect on divide migration and acts to decrease the delay in the divide’s arrival 

at the lake.  

3.4 Mode-locking, resonance and chaotic dynamics of the Nye-Fowler 

model 

The mechanisms discussed above provide a link between meltwater input to jökulhlaup 

systems and the size and timing of jökulhlaups. However, the discussion was based on 

results from simulations that used constant meltwater inputs to the lake and the 

subglacial channel. This is unrealistic. Real meltwater production depends on weather 

conditions or geothermal activity, both of which vary with time. Here I explore the 

behaviour of the Nye-Fowler model when the meltwater input to the lake varies 

seasonally. 
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3.4.1 Model setup: time-varying model forcings 

 

 

 

 

 

 

 

 

I use a synthetic, sinusoidal air temperature time series (Fig. 3.10a), defined by  

                       

3-17 
to simulate seasonal variability in weather conditions. In this expression the time t has 

units of years and integer t corresponds to the beginning of each calendar year. T is the 

air temperature in degrees Celsius and Tm is the maximum air temperature reaching 

during the annual cycle. The offset of 0.2877 years ensures this maximum air 

temperature occurs in midsummer. I model meltwater input to the lake Qin as directly 

proportional to T: 

                  

3-18 
where max(X1,X2) returns the larger of X1 and X2. This expression simply captures the 

ideas that the rate of meltwater production increases with the temperature of the air 

and is zero when this temperature is lower than 0 oC. For simplicity I have assumed that 

meltwater production and air temperature above 0 oC are linearly related and their 

constant of proportionality is kQ. Also for simplicity, I keep the rate of meltwater input to 

the channel constant: M = Mconst. 

Assuming the same glacier and lake geometries as in previous sections (but now with a = 

8), an initial lake depth of 0.44 (or 40 m dimensionally) and an initial discharge at the 

lake outlet of Q(0,0) = 5 × 10-4, model equations are integrated for 120 model years 

using the boundary layer method (section 2.2.4). The value chosen for kQ (= 2 m3 s-1 K-1) 

is close to the value of a similar melt model parameter derived empirically in the next 

chapter (see Table 4-2, section 4.3.3). The constant input to the channel Mconst =  

7 × 10-4 m2 s-1 was chosen through trial-and-error as a value that yields periodic flood 

Fig. 3.10. Seasonally varying forcings. (a) Synthetic sinusiodal air temperature 
time series given by eqn. 3-17. (b) Lake and channel water supply given by eqn. 
3-18. 
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cycles for a wide range of values for Tm. The approach I take in investigating the Nye-

Fowler model when it is forced with the time-varying lake water input defined by eqns. 

3-17 & 3-18 is to run multiple simulations while varying the climate between them by 

changing the environmental parameter Tm. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.4.2 Results 

The discharge time series and phase-plane orbits plotted in Fig. 3.11 provide the first 

hints that the relationship between flood cycles and lake input are more complicated 

when the input to the lake varies with time than when it is constant. The figure plots 

results from model runs with Tm = 10 0C, Tm = 12 0C and Tm = 15 0C. When Tm = 10 0C and 

15 0C, after transients the system approaches limit cycles with repeat periods of two 

years and one year respectively. Contrary to expectations based on the analysis in 

section 3.3, the warmer simulation, with the higher mean lake input, yields flood cycles 

with a lower peak discharge (c.f. Figs. 3.11a & 3.11e). Another unexpected result is seen 

in Figs. 3.11c & 3.11d; when Tm = 12 0C, flood cycles are simulated, but they neither grow 

unstably in size nor approach limit cycles. Instead the flood cycles seem random, never 

reaching a periodic orbit in Q(0,t)–hL(t) phase-space (Fig. 3.11d). 

Fig. 3.11. Results of simulations using seasonally-varying air temperature to drive 
lake input, with (a–b)  Tm = 10 oC, (c–d)  Tm = 12 oC and (e–f)  Tm = 15 oC. (a, c & e). 
Time series of discharge at the lake outlet Q(0,t) for 20 model years in the middle 
of the simulations after transients have ended and (b, d and f) solution orbit in 
Q(0,t)–hL(t) phase-space for the whole of the 120-year-long model runs. 
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To investigate these phenomena further, I conduct multiple simulations, that each use a 

different value for Tm. I record the peak discharge of each simulated flood after the first 

ten floods and the mean time between floods during the second 60 years of each 120-

year-long simulation (these choices of which floods to use in the recording of results 

were made to avoid transients dominating the plot of the results, they are arbitrary and 

do not affect my findings). Fig. 3.12 plots the results. Each point on Fig. 3.12a plots one 

flood’s peak discharge Qp (vertical axis) against the value of Tm used in the simulation  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.12. (a) Peak discharge of all flood (bar the first 10 floods) in 120-year 
simulations plotted against the value of Tm used in the simulation. The black box 
indicates the region of the plot shown in more detail in Fig. 3.15a. (b) The mean 
time between flood peaks during the second half of each model run, Fp. In both 
panels the variable increment in Tm is manifests itself as the variable horizontal 
distance between points.  
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that produced that flood (horizontal axis). The colour of each point indicates the day of 

the year on which the flood peak occurred. Lines of points that are one point in vertical 

extend (e.g.  6 ≤ Tm ≤ 11 0C and Tm > 19 0C) correspond to limit cycles, where all the 

recorded floods have the same peak discharge; slightly thicker lines of points (e.g. 14 ≤ 

Tm ≤ 17 0C) correspond to simulations during which transients lasted longer than the first 

10 floods (because I excluded the first 10 floods); and large blocks of points indicate 

chaotic, dense orbits, an example of which is shown in Figs. 3.11c & 3.11d. Fig. 3.12b 

shows the mean time between flood peaks during the second half of each simulation, FP.  

Fig. 3.12 puts into context the results displayed in Fig. 3.11. The simulations with Tm =10 
oC and Tm = 15 oC lie in two regions of Tm parameter space where peak discharge, Qp, 

increases with Tm (Fig. 3.12a) and the mean time between floods, FP, is locked to integer 

numbers of years, 2 years and 1 year respectively (Fig. 3.12b). In both regions, as Tm and 

the total annual lake input decrease, instead of floods occurring less often, the mean 

time between floods FP remains constant and floods shrink to compensate for the 

decrease in lake input. Although the colour scheme does not make it clear, in these 

regions the floods occur progressively later in the calendar year as Tm is decreased. This 

behaviour is analogous to ‘mode-locking’ of forced non-linear oscillators, where the 

frequency of an oscillator’s response is locked to that of its forcing. 

As noted above, decreasing Tm from 15 oC to 10 oC increases the peak discharge of 

floods, Qp. These two values of Tm were chosen to demonstrate this change in Qp in Fig. 

3.11, but Fig. 3.12 shows where Tm = 15 oC and Tm = 10 oC fit into rest of my results. 

Between Tm ≈ 15 oC and Tm ≈ 10 oC, the peak discharge of floods increases roughly three-

fold and there is an associated and abrupt shift in the timing of floods in the calendar 

year (see differently coloured points in Fig. 3.12).  

This counterintuitive increase in Qp as Tm and the total annual meltwater input to the 

lake decrease can by understood using another concept from studies of non-linear 

oscillators: resonance. When the total annual input to the lake is too large to allow it to 

last two years before draining (Tm > 14 0C), floods occur every year (Fp = 1yr). As Tm is 

reduced, floods get smaller because the total annual input to the lake gets smaller. 

However, when Tm is sufficiently small, the lake can last two years before draining (e.g. 

Tm = 10 oC). The total input to the lake during each flood’s filling period (which is now 

roughly twice as long as when the mean flood repeat time Fp = 1 yr) is larger than it was 

before when Tm was slightly larger (e.g. Tm = 15 oC) and the peak discharge of floods is 

correspondingly larger. This behaviour is, in some ways, analogous to the behaviour of 

forced damped oscillators that respond more strongly when they are driven at their 

resonant frequency. A lake’s “resonant climatic forcing” is any value of Tm that results in 



Modelling Ice-dammed Lake Drainage 

Chapter 3: Environmental controls on flood cycles 

 

 
 70 

the lake completely filling (that is, the lake level reaching roughly the flotation level) in 

an integer number of years. There are therefore multiple resonant values of Tm 

corresponding to the total annual input to the lake being equal to 1/n (where n = 1, 2, 

3,…) multiplied by the volume of the lake when it is completely full. This is reflected in 

Fig. 3.12a by a second resonance peak at Tm ≈ 5.5 oC and a third, hardly visible at the 

plots resolution, at Tm ≈ 2oC. 

 

 

 

 

 

 

 

 

 

 

 

 

 

These resonant Tm values can be approximated analytically by integrating eqns. 3-17 and 

3-18 over one year, to show that the total input to the lake during that time is 

3.51×108kQTm/π. I then assume the lake empties after each flood and take the reference 

lake volume, VLi, as the volume of the lake when it is ‘full’. Equating the total annual 

input to the lake to the volume VLi yields an expression for the nth resonant value of Tm: 

πVLi/(3.51× 108 n kQ) = {24.9, 12.5, 8.3, 6.2, …} oC. Comparing these values to the 

locations along the Tm axis of the resonance peaks in Fig. 3.12 shows that the second 

resonant Tm value (≈12.5 oC) matches well with the numerically simulated resonance 

peak. However, because a significant volume of water is left in the lake after floods 

simulated with Tm < 10 oC, the third and fourth analytically-derived resonant Tm values 

(at ≈8.3oC and ≈6.2 oC) do not match the simulated resonance peaks.  

Mode-locked regions are separated by densely populated regions corresponding to 

flood cycles that display characteristics of chaotic systems. The high density of the orbits 

is evident in the example plotted in Figs. 3.11d and the time series of the results suggest 

that no repeating pattern emerges over the 120-year simulations (e.g. Fig. 3.13). Like 

other chaotic systems (e.g. Drazin, 1992) the model is sensitive to initial conditions. Fig. 

3.13 plots the time series of discharge at the lake outlet Q(0,t) from two simulations that 

used Tm = 12 oC, with two slightly different initial lake depths, 40.00 m and 40.01 m. The 

Fig. 3.13. Sensitivity of the model simulations to initial conditions. Time series of 
discharge at the lake outlet during two simulations that used Tm = 12 oC and two 
slightly different initial lake depths, 40.00 m and 40.01 m. 
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solutions track each other for around 10 years but after this they begin to diverge. After 

20 model years the solutions no longer resemble one another. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Topological mixing of phase space is another characteristic of chaotic systems evident in 

the results. When topologically mixed, any region of phase space will eventually overlap 

with every other region. To demonstrate this, in Fig. 3.14 I have re-plotted the results of 

the simulation that used Tm = 12 oC (previously plotted in Fig. 3.11d) in a slightly 

different way. Fig. 3.14a displays the simulation’s orbit in Q-hL-t phase space using a 

cylindrical coordinate system. The blue curve’s distance from the vertical axis denotes 

the lake’s depth, its position along the vertical axis denotes the discharge at the lake 

outlet and its rotation around the vertical axis (its azimuthal coordinate) denotes 

progression through the annual cycle of lake filling. In addition, Fig. 3.14b displays nine 

2-dimensional Poincaré sections taken along Q-hL planes, perpendicular to the time-

dimension, at nine points in the annual cycle denoted by the day of the year d. Time t 

Fig. 3.14. Topological mixing of Q-hL phase space. (a) Solution orbit in Q-hL-t space 
of simulation with Tm = 12 oC and hL(t=0) = 40 m, plotted in cylindirical 
coordinates. The curve’s distance from the vertical axis denotes the lake’s depth, 
its position along the vertical axis denotes the discharge at the lake outlet and its 
rotation around the vertical axis denotes progression through the annual cycle of 
lake filling. (b) Poincaré sections taken through this space, perpendicular to the t-
dimension, at nine different stages of the year. Each section’s location in Q-hL-t 
phase space is indicated by the red boxes in (a) and denoted by the day of the 
year, d.  
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has units of years, so d is the fractional part of t multiplied by 365. The blue points in 

each plot in Fig. 3.14b locate the intersection of the blue curve from Fig. 3.14a with each 

Poincaré section. Plotting the results in this way shows how the shape of the 

simulation’s orbit, that initally appears random, posseses structure; together the points 

form a shape. This ‘Nye-Fowler attractor’ rotates, bifurcates and folds over on itself as 

the plots progress through the annual cycle. This is topological mixing. The pattern is 

reminiscent of similar plots from studies of non-linear oscillators (e.g. the Duffing 

oscillator; Novak and Frehlich,  1982).  

The transition from limit cycles to chaotic cycles as Tm decreases from 14 oC to 13 oC 

involves two types of bifurcation. Fig. 3.15a shows this region of Tm in detail. The first 

bifurcation, at Tm≈ 13.88oC, is an abrupt transition from period-1 cycles, where all floods 

have the same peak discharge, to period-2 cycles, where the system alternates between 

large and small floods. Figs. 3.15b & 3.15c display results from simulations from both  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.15. Transition from limit cycles to chaos occurs via two types of bifurcation. 
(a) close-up view of Fig. 3.12 in the region 12.6 ≤Tm≤ 14.4 0C. Orbits in Q-hL phase-
space of solutions with (b) Tm = 13.888000 oC and (c) Tm = 13.888002 oC – either 
side of the abrupt transition from period-1.5 floods to period-1 floods visible in 
(a). Dots are separated by ~4.5 model days. 
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Fig. 3.16. Time series of discharge at the lake outlet, Q(0,t) (blue curves), and 
the water input to the lake, Qin(t) (red curves) corresponding to (a) the initial 
unstable time series of two simulations, one with Tm = 13.888000 oC and 
another with Tm = 13.888002 oC;, (b) the final time series of the simulation with 
Tm = 13.888000 oC; and (c) the final time series of the simulation with Tm = 
13.888002 oC. 
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sides of this abrupt transition (with Tm = 13.888000 oC and Tm = 13.888002 oC). The 

figures show solution orbits in Q–hL phase space as a series of point representing each 

solution’s location in the phase space every ~4.5 days. The colour of the points denotes 

progression through the simulation. Corresponding time series of discharge and lake 

input are plotted in Fig. 3.16.  

Both solutions start on almost identical unstable period-2 orbits. These orbits are shown 

as blue points in Figs. 3.15b–3.15c and the corresponding time series of Qin and Q are 

shown in Fig. 3.16a (note that the four time series are identical on this scale, so they 

appear as only two curves in Fig. 3.16a). On this oribit, the timing of floods is such that 

every other flood is double-peaked. The onset of melt in Spring occurs just after the first 

peak and instigates the second (Fig. 3.16a). Larger floods occur every third winter. As 

each simulation progresses, the solution orbits leave this unstable orbit in one of two 

ways. During the warmer run (Tm = 13.888002 oC; Figs. 3.15c and 3.16c), floods occur  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.17. A cascade of period-doubling bifurcations. Long-time solution orbits in 
Q–hL phase space of four simultations that used (a) Tm = 13.701 oC, (b) Tm = 13.401 
oC, (c) Tm = 13.201 oC, (d) Tm = 13.151 oC. The panels a, b, c and d, correspond to 
the positions in Tm-parameter space indicated in Fig. 3.15a by the vertical lines A, 
B, C and  D, respectively. 
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progressively earlier each year and the double-peaked flood evolves into two floods of 

equal size. Meanwhile, the originally-larger flood shrinks. The long-term result is 

period-1 limit cycles with a mean flood repeat time of FP = 1 year. These cycles are 

shown as red points in Fig. 3.15c and their corresponding discharge time series are 

shown in Fig. 3.16c. 

In contrast, during the cooler run (Tm = 13.888000 oC; Figs. Fig. 3.15b and Fig. 3.16b) 

floods occur progressively later until the first peak of the double-peaked flood shrinks 

and disappears. The long-term result is period-2 limit cycles with a mean flood repeat 

time of FP = 1.5 years. These cycles are shown as red points in Fig. 3.15b and their 

corresponding discharge time series are shown in Fig. 3.16b. 

Further decrease in Tm leads to a cascade of bifurcations of the second type. Fig. 3.17 

plots four solution orbits in Q–hL phase space that use Tm values that bracket several of 

these period-doubling bifurcations. As Tm is decreased past each bifurcation point (see 

biurcations in Fig. 3.15, for example between the vertical lines labelled A and B), the 

orbits split into two branches and solutions that formerly repeated themselves, for 

example, every two floods now repeat every four years. The result of many of these 

bifurcations is the densely populated, chaotic region on the left of Fig. 3.15.  

Both types of bifurcation demonstrated in the these results have been observed before 

in studies of other systems of equations. In particular, cascades of period-doubling 

bifurcations are common (e.g. May, 1976; Parlitz and Lauterborn, 1987) This supports 

the idea that the Nye-Fowler model can produce truly chaotic dynamics when driven by 

a time-varying forcing. 

3.5 Discussion  

Before embarking on an investigation of the environmental controls on flood cycles, in 

section 3.2 I focused on determining the conditions under which the Nye-Fowler model 

can simulate a subglacial water divide between floods and stable periodic flood cycles. 

The results of numerical simulations suggest a divide will not form when the channel is 

not supplied with water along its length (when M = 0 m2 s-1). A small contribution to the 

spatial gradient in the discharge in the channel from the evolving channel cross-sectional 

area and the water melted from the channel’s walls ( R ≠ 0) is insufficient to allow divide 

formation. Conversely, when the channel is supplied with water along its length, a divide 

can form. This can occur even when the surface of the glacier has a uniform slope – i.e. 

when no topographic seal exists. In this case when the depth of a marginal lake is low, 

water can flow uphill (and ‘up–basic-hydraulic-gradient’) into the lake. One implication 

of these findings is that assuming water always flows down basic hydraulic gradients, as 
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is often done (e.g. Carter and Fricker, 2012; Flowers, 2003), may not always be 

appropriate. Indeed, in some systems, such as jökulhlaup systems, ‘up–basic-hydraulic-

gradient’ water flow may be crucial to their behaviour. 

Divide formation is important for jökulhlaup dynamics because it suppresses unstable 

growth in the size of flood cycles and allows Nye’s (1976) equations to simulate periodic 

floods (Fowler, 1999). Investigating further, I have found that divide formation is not in 

fact a necessary condition for the simulation of periodic floods. When the channel is not 

supplied with water along its length, using a non-zero  R and a topographic seal 

suppresses flood cycle growth without a divide forming. In reality, the channel is unlikely 

to be hydraulically isolated from the rest of the bed and may be supplied with water by 

an adjacent distributed drainage system along its length.  

Next, I addressed the main goal of this chapter: to investigate how environmental 

factors control the size and timing of floods. Simulations showed that when a divide 

forms, the meltwater input to a jökulhlaup system controls flood size through the 

dynamics of subglacial water-divide migration. In the model, meltwater can be input to 

the system in two ways: into the lake from its subaerial surroundings or into the channel 

along its length from the adjacent subglacial environment. An increase in meltwater 

production in a jökulhlaup system could be due to warm weather or increased 

geothermal activity, and, depending on the system, could result in an increase in the 

input to the lake, an increase in the input to the channel, or both. It turns out that, in the 

model, exactly how meltwater is apportioned between the lake and the channel, 

determines how warm weather or increased geothermal activity affects the size of flood 

cycles. Increasing the input to the lake increases flood size (increasing highstand and 

peak discharge, and decreasing lowstand) and increasing the input to the channel 

decreases flood size (decreasing highstand and peak discharge, and increasing 

lowstand).  

These findings may have consequences for real jökulhlaup systems. Before the unusually 

large flood that emanated from Lake Grimsvötn in 1996, a subglacial volcanic eruption 

dramatically increased meltwater production. Observations show that this caused the 

lake input to increase and the lake to reach the flotation level (Gudmundsson et al., 

1997; Björnsson, 2002). Fowler’s (1999) modification of Nye’s equations was motivated 

by these observations, however, they are only reproducible in simulations using the 

Nye-Fowler model if the increase in the lake input is not accompanied by a significant 

increase in the background supply of water to the channel along its length (M). 

Physically, in the model, increased input to the channel counteracts the increase in flood 

size associated with increased input to the lake, because the divide can migrate more 

easily when the channel input is larger. These considerations suggest that, at Grimsvötn 
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in November 1996, any increase in the input to the channel associated with increased 

subglacial geothermal heating during the eruption was small compared to the observed 

increase in lake input.  

Similar considerations apply to glaciers where meltwater production is linked to air 

temperature (not geothermal heating). Warm weather could lead to an increase in lake 

input and flood size. Alternatively, flood size could decrease during warmer weather if 

the local meteorology and topography means these conditions cause a larger increase in 

meltwater reaching the glacier’s bed than in meltwater reaching the lake.  

Because the topography and the spatial and temporal distribution of weather and 

geothermal heating in jökulhlaups systems is highly variable, my modelling results 

suggest that the way in which changes in the weather and geothermal activity affect the 

size and timing of floods will also be variable and system-specific. 

The relationship between meltwater input to the lake and flood size is more complex 

when this input varies seasonally. Interactions between the timing of lake drainage and 

the seasonal cycle of lake filling results in several interesting behaviours: mode locking, 

where the mean time between floods is locked to an integer number of years; 

resonance, where larger floods occur when the total annual input of meltwater to the 

lake is an integer fraction of the lake’s volume when full; and chaos, where flood cycles 

are highly sensitive to initial conditions and never repeat.  

All three of these model behaviours can be understood by considering the model 

jökulhlaup system as a periodically-forced nonlinear oscillator. In many situations the 

response of an oscillator to a periodic driving force can have the same frequency as that 

of the driving force. This mode locking occurs between many coupled oscillatory 

systems, such as between the moon’s rotation on its axis and its orbit round the Earth. 

Also, when an oscillator is driven by a forcing with a particular frequency, the timing of 

the driving force and the oscillations can coincide in such a way as to produce a large 

response in the oscillator (e.g. Young and Freedman, 2006). This is termed resonance 

and I have used the same term to describe similar behaviour exhibited by the Nye-

Fowler model. Simulated floods are larger when the model is driven by a forcing with a 

particular amplitude. My analysis showed that the peaks in the size of floods are 

associated with climatic regimes (parameterised in the model by Tm) that allow the lake 

to fill to a depth approaching the flotation depth in an integer number of years. Chaotic 

dynamics such as those demonstrated here have been observed in studies of oscillators 

with nonlinear damping, for example the Van der Pol oscillator, or a nonlinear restoring 

force, for example the Duffing oscillator (Drazin, 1992, Kanamaru, 2007; Novak and 

Frehlich, 1982).  
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The way the Nye-Fowler jökulhlaup model behaves when it is forced with a time-varying 

meltwater input to the lake may have consequences for future changes in real 

jökulhlaup systems. Sustained changes in environmental factors (such as the meltwater 

input to an ice-dammed lake) can be expected to change the size and timing in the 

calendar year of floods. But while a jökulhlaup system remains mode-locked these 

changes may occur in a gradual and predictable manner. Gradual changes in timing have 

been observed at Merzbacher Lake, Kyrgyzstan (Ng and Liu, 2009) and Gornersee, 

Switzerland (Huss et al., 2007). At these systems, floods that occur on average once a 

year have been occurring progressively earlier each year. According to my model results 

this shift in flood timing is consistent with long-term warming; in regions of Tm 

parameter space corresponding to mode-locked flood cycles, increasing Tm shifts the 

dates of flood peaks to earlier in the calendar year (see page 69). If changes like those 

observed in these real systems continue, my results suggest that jökulhlaup systems are 

also capable of undergoing more abrupt changes in both the timing and peak discharge 

of floods. 

Related to this is the question of jökulhlaup predictability. My findings suggest that the 

timing and magnitude of jökulhlaups may be unpredictable in the long term. In the 

model, even when the only time-varying forcing is the smoothly-varying lake input, the 

long-term evolution of the system can be sensitively dependent on initial conditions: 

initial conditions that someone wanting to predict floods cannot know. In reality, the 

fact that the weather fluctuates chaotically makes long-term prediction even harder. 

However, a sensitive dependence on initial conditions only manifests in some regions of 

parameter space. In other regions, the system reaches limit cycles independent of initial 

conditions, and floods remain regular despite large changes in climate forcing. Hence, 

predicting the timing of an imminent flood may sometimes be possible. This is pursued 

in the next chapter using a suite of lower-order ‘threshold’ models.  

Several extensions to my investigation of the Nye-Fowler model forced with time-

varying inputs are worthwhile. Firstly, the stability of the chaotic dynamics 

demonstrated here could be investigated – both in terms of initial conditions and the 

model’s structure. Quantitatively, the bifurcations described in section 3.4.2 are 

certainly dependent on initial conditions and structure. An investigation of the system’s 

stability would aim to confirm my suspicion that the qualitative features of the 

bifurcation diagram (Fig. 3.12) and the existence of the ‘Nye-Fowler attractor’ do not 

depend on model structure and initial conditions. Varying the model’s structure could 

entail changing or removing terms, or changing the model’s forcings. One such change, 

that has already been investigated, is the substitution of the constant channel input 

used here, with a temperature-dependent channel input. This emulates an annual shut-
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down of the drainage system during the winter. The results of a parameter search show 

that the chaotic dynamics seen at the transition between one-year-long flood cycles and 

two-year-long flood cycles (11.5 <Tm< 13.8 oC; Fig. 3.12) are replaced by a single 

period-doubling bifurcation. This change is associated with the winter drainage system 

shutdown. The chaotic dynamics that separate other mode-locked regions (e.g. two-

year-long cycles and three-year-long cycles) remain. Further work could investigate how 

other changes, such as removing the exponents of some nonlinear terms affect the 

model’s chaotic dynamics.  

Secondly, further work could extend my parameter search. The highest midsummer air 

temperature, Tm, I reached in my parameter search, yielded one flood per year. I did not 

extend the search to higher Tm, where more than one flood may occur per year. This was 

because, during simulations with Tm > 26 oC, floods are large enough for the lake to 

empty completely. The Nye equations cannot describe the different hydrological regime 

that occurs when a lake completely empties, but I tackle this problem in Chapter 6. 

Further work could extend my parameter search into Tm > 26 oC by including the 

additional physics discussed in that chapter.  

Thirdly, meltwater input is not the only parameter that may change with climate. Other 

important climate-dependent parameters include the ice-dam height and the lake’s 

area. Because both these parameters affect the lake’s volume when full, changing them 

will affect the lake’s resonant meltwater inputs. Further work could systematically vary 

these two parameters to investigate future changes to jökulhlaup systems in a warming 

climate more realistically. 

Finally, another extension of this work could aim to investigate if resonance and the 

other complex behaviours exhibited by the model could operate in other 

glacio-hydrological situations, for example, in moulins. Moulins are roughly vertical 

conduits that can carry water from a glacier’s surface to its bed. They may behave like 

jökulhlaup systems, filling and draining in response to meltwater input and discharge 

through a subglacial drainage system. Future work could investigate if resonance and 

chaotic dynamics could occur in these systems from some combination of moulin area, 

glacier height and surface meltwater input. 

3.6 Conclusions 

The findings I have presented in this chapter go beyond Fowler’s (1999) to show that the 

Nye equations, with Fowler’s modifications, can simulate stable periodic flood cycles, 

even when either the channel is not supplied with water along its length or no 

topographic seal exists. A water divide can form in the channel between floods whose 
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dynamics provide a mechanistic link between meltwater production and flood size. This 

link is system-specific because it depends on how meltwater is apportioned between the 

channel and the lake. When the model is forced with time-varying meltwater inputs, it 

can exhibit a number of complex behaviours that can be analysed using concepts 

borrowed from studies of forced non-linear oscillators. 

 

 



Modelling Ice-dammed Lake Drainage 

Chapter 4: Quantifying the predictability of the timing of jökulhlaups from Merzbacher Lake, Kyrgyzstan  

 

 
 81 

Chapter 4 Quantifying the predictability of the timing of 
jökulhlaups from Merzbacher Lake, Kyrgyzstan   

This chapter is based on a manuscript of the same title published in the Journal of 

Glaciology Volumes 59, Issue 217. 

4.1 Introduction 

Jökulhlaups pose significant hazards to downstream settlements and environments, a 

threat likely exacerbated by population growth and climatic warming (e.g. Barnett and 

others, 2005; Björnsson, 2004; Ng and others, 2007). While an ability to predict the 

timing and magnitude of these floods can enable mitigation of their consequences, this 

problem has remained largely untackled. Ng and Liu (2009) put forward a mathematical 

theory for understanding the long-term timing pattern of jökulhlaups. Their theory 

exposes key mechanisms behind irregular jökulhlaup timing and reproduces temporal 

structures in a sequence of floods recorded from Merzbacher Lake, a jökulhlaup system 

in Kyrgyzstan. If certain aspects of the timing of jökulhlaups can be explained, it may be 

possible to predict individual flood dates. I explore this in this chapter and take a first 

step towards the development of operational flood forecasting. Like Ng and Liu (2009), I 

focus on the timing of floods (which could inform predictions of flood size) and use the 

Merzbacher Lake system as an example (Fig. 4.1a). My aim is to establish how well 

simple models can predict the Merzbacher flood dates and develop measures of 

predictability that can be applied to other jökulhlaup lakes. The results can serve as a 

benchmark for future forecasting efforts. 

Theory and observations have shown that the lake depth at which jökulhlaups initiate – 

the outburst threshold – varies from flood to flood (e.g. Chapter 3 of this thesis; 

Björnsson, 2003; Clague and Mathews, 1973; Ng and Liu, 2009; Walder and Costa, 1996). 

Because successful prediction requires accounting for such variability, I examine a 

hierarchy of assumptions for the outburst threshold, motivated by different hypotheses 

of how it depends on environmental factors. These ‘threshold assumptions’ range from 

the predominantly empirical to ones based more strongly on physical grounds, and are 

presented and studied in order of increasing complexity. Because of uncertainty in the 

geometry of the glacier that dams Merzbacher Lake attempts to predict floods using the 

full Nye-Fowler model (see Chapters 2 and 3) are not pursued here. This will have to 

await geophysical investigations of this glacier.  

This chapter is organised as follows. In section 4.2, Ng and Liu’s (2009) model of lake 

filling and draining is described and I explain how I use it to predict flood dates. Section 
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4.3 introduces Merzbacher Lake, its record of jökulhlaup dates, and a melt equation 

needed in the Ng-Liu model for estimating this lake’s water supply. The flood dates are 

used with the melt equation to reconstruct flood volumes, whose distribution provides a 

probabilistic handle on the size and timing of future floods. In sections 4.4 and 4.5, I use 

the Ng-Liu model with different threshold assumptions to evaluate how well this model 

predicts the Merzbacher flood dates. After considering how to quantify mismatch 

between predicted and observed flood dates, I optimise each version of the model for 

prediction success. In this exercise, the choices of threshold behaviour, weather-data 

source, and assumptions of future weather lead to multiple prediction results, whose 

performances will be discussed.  

4.2 Flood-date prediction with the threshold model 

In Ng and Liu’s (2009) model, the jökulhlaup lake, which has volume V and water depth 

h, fills in response to melt-water input at a rate Qin, and it drains suddenly and 

completely in a flood when a threshold water depth, hc, is reached (Figs. 1b & 1c). With t 

denoting time, their model equations are 
 

  

  
                          

4-1a 
                        

4-1b 
where the function h(V) represents lake geometry. These equations generate sawtooth-

shaped filling and draining cycles in the lake level that are irregular when Qin depends on 

weather and hc varies between floods. By assuming a constant hc and estimating Qin 

from daily air temperature with the sub-model described later (section 3.3), Ng and Liu 

(2009) simulated eqn. 4-1 for Merzbacher Lake through 1956 to 2005 to obtain model 

flood dates, which they compared with the observed flood dates in this period (listed in 

Table 4-1). Motivated by concepts from nonlinear dynamics, they analysed the 

simulated and observed date sequences with time-delay maps. They also integrated 

eqn. 4-1a for each period between successive floods to reconstruct the flood volumes 

and the long-term lake level history.  
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Table 4-1. Flood record of Merzbacher Lake for the period 1956 to 2008, showing 
the dates of peak discharge of 54 floods and the measured volumes of 19 floods. 
Of these 19 flood volumes, the 13 shown in bold are considered more reliable. 
Entries 1 to 51 come from Ng and Liu (2009), and entries 52 to 54 from S. Liu 
(personal communication). The reconstructed flood volumes are calculated from 
the two temperature forcings TNCEP and TERA using the method described in 
section 4.3.4. 
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Volume 
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8
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3
]  

Reconstructed 
Flood Volume 

TNCEP 
 [10

8
 m

3
] 

Reconstructed 
Flood Volume 

TERA 
 [10

8
 m

3
] 

1 02/07/1956  -  28 21/08/1982 1.74 ± 0.14 1.95 ± 0.07 1.89 ± 0.08 

2 03/09/1956  0.98 ± 0.14  29 22/08/1983  1.48 ± 0.06 1.35 ± 0.09 

3 07/09/1957  1.75 ± 0.07  30 26/08/1984  1.71 ± 0.07 1.69 ± 0.07 

4 24/11/1958 1.71 ± 0.09 2.07 ± 0.10 1.96 ± 0.08 31 15/08/1985  1.45 ± 0.06 1.44 ± 0.07 

5 19/09/1959 1.44 ± 0.19 1.64 ± 0.06 1.59 ± 0.07 32 01/08/1986  1.36 ± 0.06 1.34 ± 0.07 

6 16/07/1961  2.80 ± 0.12 2.94 ± 0.11 33 19/08/1987  1.77 ± 0.07 1.67 ± 0.08 

7 06/06/1963 2.99 ± 0.17 3.01 ± 0.12 3.10 ± 0.10 34 12/12/1988 2.10 ± 0.14 2.03 ± 0.08 2.01 ± 0.08 

8 18/09/1963 0.95 ± 0.09 1.14 ± 0.07 1.13 ± 0.06 35 31/08/1989 1.28 ± 0.15 1.20 ± 0.05 1.20 ± 0.06 

9 28/09/1964 1.40 ± 0.19 1.71 ± 0.09 1.49 ± 0.09 36 10/08/1990  1.39 ± 0.06 1.39 ± 0.06 

10 01/09/1965 1.42 ± 0.13 1.69 ± 0.06 1.70 ± 0.08 37 24/07/1991  1.31 ± 0.06 1.39 ± 0.07 

11 03/08/1966  1.48 ± 0.06 1.44 ± 0.06 38 04/08/1992  1.65 ± 0.07 1.75 ± 0.07 

12 13/12/1966  0.74 ± 0.04 0.66 ± 0.04 39 22/08/1993  1.53 ± 0.08 1.66 ± 0.08 

13 13/09/1967 1.82 ± 0.06 1.54 ± 0.07 1.40 ± 0.06 40 24/07/1994  1.19 ± 0.05 1.48 ± 0.06 

14 21/08/1968 1.64 ± 0.22 1.51 ± 0.06 1.34 ± 0.06 41 18/07/1995  1.42 ± 0.06 1.56 ± 0.07 

15 20/08/1969  1.59 ± 0.07 1.49 ± 0.07 42 05/12/1996 2.84 ± 0.09 2.29 ± 0.09 2.33 ± 0.09 

16 31/07/1970 0.86 ± 0.20 1.45 ± 0.07 1.25 ± 0.07 43 31/07/1997  1.26 ± 0.07 1.19 ± 0.06 

17 17/08/1971 1.33 ± 0.19 1.64 ± 0.09 1.90 ± 0.07 44 27/07/1998  1.74 ± 0.07 1.77 ± 0.07 

18 04/10/1972 1.61 ± 0.10 1.70 ± 0.11 1.93 ± 0.09 45 19/07/1999  1.72 ± 0.07 1.53 ± 0.07 

19 02/09/1973  1.30 ± 0.06 1.45 ± 0.06 46 27/07/2000  2.04 ± 0.08 1.85 ± 0.07 

20 08/08/1974  1.25 ± 0.06 1.37 ± 0.07 47 31/07/2001  1.88 ± 0.07 1.73 ± 0.07 

21 12/09/1975  1.72 ± 0.07 1.80 ± 0.08 48 06/08/2002  1.83 ± 0.07 1.60 ± 0.07 

22 24/08/1976 1.31 ± 0.27 1.25 ± 0.07 1.33 ± 0.07 49 26/07/2003  1.54 ± 0.07  

23 24/05/1978 2.51 ± 0.35 2.31 ± 0.15 2.38 ± 0.10 50 09/08/2004  1.95 ± 0.07  

24 09/08/1978  0.79 ± 0.05 0.91 ± 0.07 51 15/07/2005  1.52 ± 0.07  

25 27/05/1980 2.36 ± 0.18 2.33 ± 0.12 2.38 ± 0.12 52 30/07/2006  2.10 ± 0.08  

26 12/09/1980 1.51 ± 0.06 1.28 ± 0.10 1.17 ± 0.07 53 11/07/2007  1.89 ± 0.07  

27 15/07/1981  0.91 ± 0.09 1.01 ± 0.08 54 15/07/2008  2.07 ± 0.09  
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In this chapter, I use this model for the purpose of predicting the next flood date from 

the date of the last (known) flood, and specifically for hindcasting the observed 

Merzbacher flood dates in Table 4-1. My study period spans the first and the last flood 

dates and has 19006 days on which one could ask when the next flood will be. I explore 

the effect of a variable outburst threshold on prediction success and seek the best 

assumption for hc. Most of the simulations use eqn. 4-1, but one set of simulations use a 

modified model with a threshold different from hc that mimics the moving subglacial 

water divide simulated in the previous chapter using the Nye-Fowler model. A detailed 

explanation of this threshold is given in section 4.3. 

Fig. 4.1. The Merzbacher jökulhlaup system. (a) Map of Merzbacher Lake and 
North and South Inylchek Glaciers; inset shows the system’s location in the Tien 
Shan. (b & c) Schematic lake and glacier cross-sections along a possible subglacial 
flood path (b) while the lake is filling and (c) after lake water depth h has reached 
the threshold hc and a flood has started.  
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Fig. 4.2. (a) Real Scheme and (b) Simple Scheme of application of weather forcing 
in flood prediction models. In both (a) and (b), upper and lower plots show, 
respectively, the history of the temperature forcing used to calculate the lake 
water supply Qin and the corresponding history of the simulated lake depth h. (a) 
The Real scheme calculates Qin using archived daily temperature data on all days 
before the day on which the prediction is made, D, and using forecasted 
temperature on all days after D. (b) The Simple scheme calculates Qin using 
archived daily temperature data throughout the prediction run. In both schemes, 
a flood is predicted when h reaches the outburst threshold hc and E denotes the 
prediction error. 
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During prediction runs, for each day in the study period, D (Fig. 4.2), and starting with an 

empty lake on the day after the previous known flood (e.g. one of the floods in Table 

4-1), eqn. 4-1a is integrated forward on a daily time step to fill the lake, until h, found 

from the lake volume via h(V), reaches hc. Thus the next flood date is predicted, and its 

mismatch in timing from the actual (observed) next flood forms a prediction error, E 

(Fig. 4.2). As D marches forward in time past a known flood date, the start date of the 

integration is renewed. In each set of prediction runs assuming specific threshold 

behaviour and specific temperature data source, this procedure is applied on every day 

in the study period to obtain the same number of predictions (and hence the same 

number of errors) as the length of the period. I summarise the errors into an overall 

measure of mismatch. Two measures considered later are the root-mean-square error 

and the fraction of predictions that are accurate to a fixed number of days. 

4.2.1 ‘Real’ and ‘Simple’ Schemes of weather forcing  

When this exercise is performed for Lake Merzbacher to quantify its floods’ 

predictability, past weather forcing – used for deriving Qin in eqn. 4-1 – is known from 

archived daily temperature data. (These data will be outlined in section 4.3.3.) However, 

I put myself in the position of a forecaster in the past and assume that, on any day D on 

which a prediction is made, he or she knew the past weather but not the future 

weather, which must be estimated. I simulate this scenario by the procedure shown in 

Fig. 4.2a. For all days up to and including D, archived daily temperature data is used to 

find Qin. But for all days after D (until the model lake reaches its outburst threshold), Qin 

is found from a temperature forecast, taken to be the multi-year mean of the archived 

daily temperature on that calendar date (Fig. 4.2a). Although such a forecast could be 

made using sophisticated methods (e.g. regional climate models), this procedure is the 

easiest that incorporates weather uncertainty into flood predictions – it is called the 

‘Real’ weather-forcing scheme. As D approaches the next flood, more of the lake-filling 

period is simulated with known weather forcing, so the predicted flood date or ‘flood-

date hindcast’ varies with D. In section 4.5.3, this approach allows investigation of 

whether predictions improve as a forecaster approaches the next flood. 

Later, in section 4.5.2, I consider a second scheme of weather forcing – called the 

‘Simple’ scheme – to assess the impact of weather uncertainty on flood predictability. 

The previous procedure is followed, but it is assumed that the forecaster knew the 

future as well as the past weather; thus, archived daily temperature data are used to 

derive Qin throughout each lake-filling period (Fig. 4.2b). In this case, flood-date 

hindcasts calculated on different days D that are bracketed by the same pair of observed 

floods are identical.  
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4.3 Study site and data sources 

4.3.1 The Inylchek Glaciers and Merzbacher Lake 

South Inylchek Glacier and North Inylchek Glacier together form the largest glacier 

system in the Tien Shan (Fig. 4.1a). The former glacier stretches for a distance of 50 km 

from its accumulation area by the ≈7000 m high peaks of Khan Tengri and Podeba to its 

debris-covered terminus at ≈2900 m a. s. l.. Although located in Kyrgyzstan, its runoff 

flows into China to feed this country’s fifth largest river, the Tarim, which provides a vital 

water supply to oases around the Taklamakan Desert. Glacial meltwater contributes at 

least 35% of the Tarim’s total runoff (Aizen and Aizen, 1998), and this figure is predicted 

to rise over the next few decades (Aizen and others, 2007).  

Merzbacher Lake forms behind the ice dam made by South Inylchek Glacier across the 

valley occupied by North Inylchek Glacier (Fig. 4.1a). The lake fills typically to a depth of 

around 80 to 100 m before draining subglacially, producing jökulhlaups with a duration 

of about a week and peak discharges of up to 1500 m3 s-1 (Liu, 1992; Mavlyudov, 1997; 

Ng and Liu, 2009). Besides being a hazard, these floods represent a waste of valuable 

water resources (Shen and others, 2007). The Inylchek River is also a candidate for 

hydroelectric projects (Ng and others, 2007; Mamatkanov and Mingtszyan 2011). These 

reasons necessitate reliable forecasting of the floods. 

4.3.2 Flood-date record 

Merzbacher Lake is chosen for study because of its long and comprehensive jökulhlaup 

record and because its outbursts recur on a roughly regular basis (once every year on 

average, doubling or missing in some years; Ng and Liu, 2009), so that attempts to 

hindcast their dates may have some chance of success. Table 4-1 lists its 54 flood dates 

from 1956 to 2008. All but the last three dates are taken from Ng and Liu (2009), who 

compiled them from hydrological measurements at Xiehela gauging station near Aksu, 

China (Fig. 4.1a) and earlier publications. These authors also derived the volumes for 19 

floods by subtracting an estimated baseflow component from the area of flood 

hydrographs (Ng and Liu, 2009; Ng and others, 2007). 13 of these flood volumes (in bold 

in Table 4-1) are considered more reliable than the remaining 6 (Ng and Liu, 2009) and 

are used to calibrate a melt sub-model described below. The last three dates in Table 

4-1 come from Liu Shiyin (personal communication).  

4.3.3 Lake water supply sub-model and temperature data 

Following Ng and Liu (2009), I calculate the rate of meltwater input to the lake, Qin, in 

eqn. 4-1a by using the temperature-index parameterisation  
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4-2 
 

where T [oC] is air temperature near the lake, k [m3 day-1 oC-1] quantifies the melt 

sensitivity to temperature, T0 [oC] is the temperature threshold above which melting 

occurs, and c [m3 day-1] denotes effective water input to the lake due to calving from the 

ice dam. k, T0 and c are assumed constant. The subscript 0+ means that T − T0 is set to 

zero whenever this difference is negative. 

Ng and Liu (2009) prescribed data for T from the daily surface temperature provided by 

the US National Centers for Environmental Prediction (NCEP)/US National Center for 

Atmospheric Research (NCAR) Reanalysis Project (Kalnay and others, 1996; Kistler and 

others, 2001). Here, I also use the reanalysed daily surface temperature provided by the 

European Centre for Medium-Range Weather Forecasts, called ERA-40 (Uppala and 

others, 2005), in order to study the impact of different weather forcings on our 

predictions. These sources are called ‘NCEP’ and ‘ERA’ and TNCEP and TERA are used to 

denote the respective temperature data after these have been interpolated to the 

coordinates of Merzbacher Lake. Both projects assimilate weather data from multiple 

sources (e.g. satellites, radiosondes, aircraft, ships, ocean buoys) into a global climate 

model to reconstruct the state of the atmosphere, but they have different temporal 

ranges. TNCEP began before 1956 and continues to today and covers my entire study 

period. TERA is available from 01/09/1957 to 31/08/2002 so it can be used in the 

prediction of Floods 3 to 48 only. Like Ng and Liu (2009), I do not use the temperature 

data from Tien Shan Weather Station (41.92°N, 78.23°E) in Kyrgyzstan because gaps in 

this dataset make its application difficult. 

Ng and Liu (2009) reported values of c estimated by other authors. They derived the 

other two sub-model parameters, k and T0, by a nonlinear regression that fits eqn. 4-2 to 

the 13 reliable flood volumes in Table 4-1. The idea is that the daily melt volume 

predicted by eqn. 4-2, when summed over the known filling period in the run-up to each 

of these 13 jökulhlaups, should match each observed flood volume, because Merzbacher 

Lake is seen to drain completely during floods. The same method is used here to find k 

and T0, assuming Ng and Liu’s ‘typical’ value of c, 0.33 (± 0.06) × 105 m3 s-1. Table 4-2 lists 

the parameter values corresponding to the TNCEP and TERA temperature forcings. 
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Table 4-2. Values of the parameters k and T0 of the lake water supply sub-model, 
derived using a nonlinear multivariate regression that fits eqn. 4-2 to 13 
measured lake volumes (Table 4-1). Parameters are derived separately for the 
two temperature forcings, TNCEP and TERA. 
 

 

 

4.3.4 Probability distributions of flood volume and timing 

Armed with eqns. 4-1a and 4-2, the flood dates in Table 4-1 can be used to derive an 

empirical probability distribution of historical flood volumes, which in turn helps gauge  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Temperature 
Forcing 

k  
[105 m3 day-1 oC-1] 

T0  
[K] 

r2  

TNCEP 1.05  2.65  0.877 
TERA 1.13  5.65  0.830 

Fig. 4.3. Comparison of 19 measured flood 
volumes with flood volumes reconstructed 
by integrating the lake water supply sub-
model forced by (a) TNCEP and (b) TERA 
reanalysis temperature data. (c) 
Comparison between the flood volumes 
reconstructed using these temperature 
forcings. In (a) and (b), crosses display 
these comparisons for the 13 flood 
volumes used in deriving this sub-model’s 
parameters (Table 4-2) and ellipses display 
these comparisons for 6 additional flood 
volumes (see section 4.3.2). The vertical 
and horizontal size of crosses and ellipses 
indicate the error in the reconstructed and 
measured flood volumes. 
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the size and timing of future floods. Here this is done in three steps. First the volumes of 

the floods in Table 4-1 are reconstructed by integrating eqn. 4-1a over the period 

between each pair of successive flood dates, filling the lake from empty. Two separate 

reconstructions are made with TNCEP and TERA as forcings, with eqn. 4-2 taking the 

corresponding parameters in Table 4-2. With the NCEP and ERA forcings, this procedure 

reconstructs 53 and 45 flood volumes, respectively (Table 4-1). Fig. 4.3 compares these 

two sets of results with the 19 observed volumes in Table 4-1 and with each other. The 

uncertainties in the reconstructed flood volumes, quoted in Table 4-1 and denoted in 

Fig. 4.3 by the size of the error bars and the ‘error ellipses’, are estimated by conducting 

the reconstruction many times, each time introducing artificial errors to the 

reconstruction’s inputs. The size of each uncertainty is the standard deviation of the 

distribution of volumes obtained for the corresponding flood. The good agreements 

shown by these plots support the use of both temperature data sources for flood-date 

prediction. 

Next I form a cumulative probability distribution to represent the likelihood that a flood 

does not exceed a certain size, a volume VF. This is done by putting the reconstructed 

flood volumes in Table 4-1 in ascending order, counting the number of floods with 

volumes ≤ VF, and turning the number into a fraction of the total, to represent 

probability. Fig. 4.4a plots the resulting probability distribution against VF. It shows that 

historically, the mean and the median flood volumes have been similar, ≈ 1.64 × 108 m3. 

No floods had VF exceeding 3.2 × 108 m3, and 83% of them had 1.1 × 108 m3 < VF < 2.2 × 

108 m3 (the interval between guides A and C in Fig. 4.4a). This volumetric range, where 

the cumulative probability rises steeply, highlights the size of most floods.  

Finally, I use the distribution in Fig. 4.4a to characterise flood timing. I assume that the 

probability of a flood having volume ≤ VF is also the probability that the lake filled to this 

volume should have already outburst. Hence, by calculating how long the lake takes to 

fill to this volume (from empty), one can determine the probability of a flood having 

occurred by this time after the date of the last flood. By varying VF in this calculation, I 

can also determine how this probability changes with time. Fig. 4.4b shows such an 

outburst probability curve calculated with Flood 3 (t = 1957.7 year) as the starting time 

reference. At any point on the curve with probability P, the time value has been found 

by integrating eqns. 4-1a from t = 1957.7 years until the lake reaches a volume that 

equals the VF-value corresponding to the same probability P in Fig. 4.4a.  
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Fig. 4.4 Probability distributions of flood volumes and timing. (a) Percentage of 
jökulhlaups from Merzbacher Lake whose reconstructed volumes are less than VF. 
(b) Probability of a flood having occurred before time t, given the modelled lake 
water supply between floods 3 and 4. The results derive from modelling where 
TNCEP temperature data has been used to calculate the lake water supply. Dotted 
lines indicate upper and lower bounds on the volumes and probabil ities based on 
the uncertainties in Fig. 4.3. The dates of Floods 3 and 4 (7th Sep 1957 and 24th 
Nov 1958) are marked by the vertical dashed lines. A, A’, B, B’, C and C’ label the 
vertical guides described in Section 4.3.4. 
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Since the outburst probability curve combines information from the flood-volume 

distribution, the last flood date, and weather-dependent lake supply Qin (which is 

seasonal, with peaks in summer and troughs in winter), probability curves constructed 

for other times using other floods in Table 4-1 (or future floods) as the starting reference 

will be different. However, Fig. 4.4b illustrates key features of such curves. Its shape 

derives from the curve in Fig. 4.4a, with the steep rise in outburst probability between A’ 

and B’ corresponding to the rise in cumulative probability between A and B in Fig. 4.4a. 

This rise occurs in 80 days (between 1958.53 and 1958.75 years). This is a manifestation 

of the ‘focusing effect’ discussed by Ng and Liu (2009; p.611 and Fig. 11), who showed 

that abundant meltwater supply during summer fills Merzbacher Lake rapidly and 

concentrates most of its outbursts in this period. In contrast, low supply towards the end 

of the melt season and through winter causes a slow increase in outburst probability 

with time. Fig. 4.4b shows that the interval B’ to C’ (corresponding to the interval B to C 

in Fig. 4.4a) is 200 days long but experiences only a 10% increase in outburst probability. 

While useful, these results offer predictions whose validity relies wholly on past 

empirical data and that are probabilistic, unable to tell us each flood’s size and timing. 

For instance, although Fig. 4.4b indicates a high probability of Flood 4 occurring by late 

August (t ≈ 1958.65, P = 50%) and a very high probability of this before early November 

(guide B’, P = 81%), the actual flood came later, on 24th November. Next I turn to the 

prediction of specific flood-dates. 

4.4 Flood-date prediction models: threshold assumptions 

This section details the four threshold assumptions to be used with eqns. 4-1 and 4-2 to 

hindcast the Merzbacher flood dates. Three of them concern the lake depth threshold 

hc; the fourth invokes a mobile subglacial water divide. Each threshold assumption is 

labelled with an abbreviation (Table 4-3). 

4.4.1 Constant Date (CD) model, and measures of prediction error  

First I consider a naïve prediction model, called the Constant Date (CD) model, that does 

not implement an outburst threshold nor simulate filling of the lake, unlike the Ng-Liu 

model. The CD model postulates that the flood occurs on the same date each year, the 

motivation being that most Merzbacher flood dates cluster in the months of July to 

September (see histogram in Fig. 2 of Ng and Liu, 2009). Although this model neglects 

environmental influence on the system, it sets a benchmark for assessing other 

prediction models: those failing to match its performance are practically useless. In 

introducing it here, I also consider how to quantify prediction success. 
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 Table 4-3. Summary of the five flood-date prediction models 

The CD model assumes a fixed calendar date Δ (expressed in day of year) for all floods, 

where Δ is chosen by the forecaster to optimise prediction success. Using two trial 

values, Δ = 268 (25th September in non-leap years) and Δ = 216 (4th August in non-leap 

years), this model has been used to hindcast the next flood date on every day of the 

study period. Hence, each of these two sets of runs yields 19006 hindcasts (the total 

number of days in the study period: 3/07/1956 to 15/07/08). Fig. 4.5a shows their 

prediction errors, E, found by differencing each hindcast and the known date of the next 

flood (E is defined to be positive if the hindcast is early). Although the errors span a large 

range, most of them cluster within 100 days. The outlier errors are associated with 

floods that occurred after unusually long or short lake-filling periods. 

A straightforward quantifier of the errors in Fig. 4.5a is their root-mean-square (RMS), 

and one can find the Δ that minimises the RMS error. But the RMS is not the only 

measure of prediction performance, nor necessarily the best measure, as it emphasises 

outliers. Other measures may be more desirable from a forecaster’s viewpoint. For 

example, a good forecasting model may not be one with the lowest errors overall but 

one that gives the greatest number of ‘successful’ forecasts, i.e. forecasts near the 

actual flood dates. The histograms in Fig. 4.5b show the percentage frequency of the 

errors in the two trial runs. Their central bars, each 40 days wide, show that if one 

defines successful hindcasts as those having errors within ±20 days (│E│≤ 20), then the 

run assuming Δ = 216 yields five times more successful hindcasts (54.3%) than the run  

 

No. Model Name Label Equation Tunable 
parameters 
[units] 
 

Parameter Meaning  

1 Constant Date CD  Δ [day] Calendar date on which flood 
occurs 

2 Constant 
Threshold 
 

CT hc = constant hc [m] Constant  threshold depth  

3 Variable  
Threshold 
(lake rise rate) 

VTh         
  

  
  h0β [m] Threshold depth if dh/dt = 0  

β [day
–1

] Sensitivity of threshold on the 
rate of lake-level rise 
  

4 Variable  
Threshold 
(temperature) 

VTT                   h0λ [m] 
 

Threshold depth if T = T0  

λ [m °C
–1

] Sensitivity of threshold on 
temperature 
 

5 Divide Model DM   

  
       

     

  
    

 
 

hcα [m] Threshold depth of the lake if 
there is no delay in the 
divide’s arrival at the lake 
 

α [day
-1

] 
 

Rate constant of divide 
migration 
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assuming Δ = 268 (11.2%). This percentage offers a measure of prediction success, and I 

call it ‘P20’ (the subscript indicates the tolerance). In contrast to the RMS, P20 emphasises 

hindcasts that are relatively accurate over those that are out by a long way. It is a useful 

measure for the CD hindcasts because they miss some floods by over a year.  

The CD model is optimised by making prediction runs with different Δ values and 

calculating the corresponding RMS and P20. The results, in Fig. 4.6, show that the RMS is 

minimised at 121.9 days when Δ = 268 (then P20 = 11.2%), whereas P20 is maximised at 

54.3% when Δ = 216 (then RMS = 133 days). These Δ choices are each optimal in their 

own right; each choice optimises one measure at the expense of the other, since RMS 

and P20 quantify different kinds of prediction success. In section 4.5, these measures and 

the approach described here are used to optimise all of the prediction models before 

their performance is evaluated. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The tolerance of 20 days in the P20 measure is acceptable because jökulhlaup forecasts 

with such accuracy could be useful, but the tolerance choice depends on what one 

perceives as accurate. A general measure Pn considers a tolerance of ±n days, and this 

motivates another way of quantifying prediction errors. Fig. 4.5c plots the percentage 

Fig. 4.6. Dependence of two measures of prediction success, P20 and RMS, on the 
parameter Δ in the Constant Date model. P20 is maximised with Δ = 216 and RMS 
minimised with Δ = 268. (The results in Fig. 4.5 are based on these parameter 
values.) 
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frequency of successful hindcasts for different tolerances; their window of admittance 

widens as n increases. The two curves relate the errors from the trial runs of Fig. 4.5a 

and rise monotonically. The perfect result would be zero errors for all hindcasts, plotting 

at 100% across the graph; in reality, one seeks a curve lying as close to the top-left 

corner of the graph as possible. Fig. 4.5c shows that the run that optimises P20 (Δ = 216; 

black curve) excels over the run that optimises RMS (Δ = 268; grey curve) for tolerances 

of tens of day. For n > 72 days, the latter run performs better on two occasions, but such 

tolerance is too large to be useful. 

Other measures of prediction performance could be used. For instance, in order to 

facilitate flood mitigation and emergency evacuation, one might favour forecasts that 

are early as opposed to late and employ a one-sided definition of Pn based on 0 ≤ E ≤ n. 

Generally, a suite of measures offer more complete characterisation of the prediction 

errors. The forecaster must decide which measures are more important in a given 

scenario and weigh their outcomes accordingly for decision making. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.7.  Example of a Constant Threshold model prediction run made with the 
weather-forcing scheme. On day D (2nd July 1957), the forecaster attempts to 
predict the date of Flood 3 (7th Sep 1957) by simulating histories of (a) lakewater 
supply rate and (b) lake depth. The lake water supply model is forced with TNCEP 
daily temperature data on those days preceding D, and forced with the multi-year 
mean value of TNCEP afterwards. With the outburst threshold hc = 86 m, the flood-
date hindcast is found to be 19th Aug 1957, and the corresponding prediction 
error is E = +19 days. 
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4.4.2 Depth-threshold assumptions 

In a real system, weather influences how fast the lake fills, and glaciohydrological factors 

govern the outburst condition of a flood, so prediction schemes incorporating 

environmental factors should excel over the Constant Date model. The Ng-Liu model is 

the simplest of such schemes: eqns. 4-1 has an adjustable outburst threshold hc, and 

eqn. 4-2 captures the climatic dependence of lake filling. In the following I posit three 

alternative assumptions for the behaviour of hc. 

Constant Threshold (CT) 

The simplest assumption, called Constant Threshold (CT), is that hc is constant. Fig. 4.7 

shows an example where it is used with the Ng-Liu model to hindcast Flood 3 in the Real 

Scheme (section 4.2). In this run, which assumes hc = 86 m and that the forecaster made 

the prediction on 2 July 1957 (302 days after Flood 2), the flood hindcast is 19th August 

1957, 19 days before the actual Flood 3. Many sets of prediction runs like this are made 

to hindcast the Merzbacher flood dates, while adopting different thresholds in the range 

70 < hc < 100 m and TNCEP or TERA as weather forcing. Each set of runs uses a fixed 

combination of these inputs to produce next-flood hindcasts on every day of the study 

period and the prediction errors are compiled into the RMS and P20 as described in 

section 4.4.1. Fig. 4.8 shows how these error measures vary with hc. For all values of hc in 

the imposed range, prediction runs using the NCEP forcing yield lower RMS than runs 

using the ERA forcing, but the optimal values of hc are similar: 87 m with NCEP and 86.5 

m with ERA (Fig. 4.8a). P20 is maximised when hc = 86.5 m with the NCEP forcing and  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.8. Dependence of the prediction success of the Constant Threshold (CT) 
model, as quantified by (a) RMS error and (b) P20, on the threshold value hc. Solid 
and dashed lines correspond to results obtained using the TNCEP and TERA weather-
forcings respectively. 
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when hc = 85.5 m with the ERA forcing (Fig. 4.8b). The value of hc that optimises 

prediction performance thus falls within a narrow range (85.5 to 87 m). However, with 

the Constant Threshold assumption, the lowest achievable RMS is 129.1 days and the 

highest achievable P20 is 54.1%. This performance is worse than that of the Constant 

Date model (121.9 days, 54.3%). Thus, while using a threshold allows changing weather 

to be accounted by the model, a fixed threshold does not improve the flood-date 

predictions in the Real Scheme. 

Variable Thresholds (VTh and VTT) 

The modelling explorations in the previous chapter and historical variability in hc at 

Merzbacher Lake shown empirically in this chapter (see differences between the 

reconstructed flood volumes in section 4.3.4), suggest that one might improve the 

forecasts by using a threshold that responds to environmental conditions. This idea 

originates from Ng and Liu (2009), who reconstructed the lake-level history at 

Merzbacher Lake to extract hc of each flood and the rate of lake-level rise (dh/dt) before 

it initiated. They found negative correlation between these two quantities (see their Fig. 

15b) and interpreted it as being a result of pressure coupling between the lake and the 

subglacial hydraulics beneath the ice dam. 

Motivated by this empirical finding, I explore two formulations of a variable threshold. 

The first formulation, labelled ‘VTh’, is the linear model proposed by Ng and Liu (2009): 

  

        
  

  
 

4-3 
 

where h0β and β are constants. When using this with eqn. 4-1 to predict flood dates, hc is 

calculated using the exponential moving average of dh/dt (with smoothing constant, S = 

0.25; Brown, 1963). Ng and Liu (2009) determined h0β = 102 m and β = –58 day-1 for 

Merzbacher Lake from their correlation. 

The second variable-threshold formulation, labelled ‘VTT’, assumes control on hc by 

surface temperature rather than the lake-level rise rate. The idea is that meltwater 

produced at the surface and penetrating to the glacier bed influences the subglacial 

outburst hydraulics. Hence, I suppose 

 

                  

4-4 
 

where h0λ and λ are constants. hc is calculated using the exponential moving average of 

(T - T0)+0 (again with S = 0.25) and the same temperature data, weather-forcing scheme, 

and parameters as used in the lake water supply model in eqn. 4-2. Since dh/dt depends 
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on T via melt generation and lake filling, eqn. 4-4 is a more general threshold description 

than eqn. 4-3 in the sense that it encapsulates meltwater control on hc via both the lake 

pressure and supraglacial water injection to the glacier bed. 

When each formulation described here (VTh or VTT) is used with eqns. 4-1a and 4-2 to 

predict flood dates, I optimise the model in the same way as before, by minimising RMS 

and maximising P20, but do so by searching over the corresponding two-parameter space 

(of h0β and β, or h0λ and λ). 

4.4.3 Threshold based on subglacial water-divide migration (DM) 

The final threshold assumption treats flood-initiation physics in more detail than any of 

the previous assumptions. It attempts to reproduce the dynamics of the subglacial water 

divide investigated in the last chapter that provided a mechanistic link between 

environmental conditions and flood size (see section 3-8). The full Nye-Fowler model is 

not used here because the basal topography of South Inylchek Glacier and the attendant 

hydraulic potential gradients are poorly known. Instead I attempt to capture key aspects 

of the full model’s behaviour using the following expression for the time evolution of the 

divide’s position; 

  

  
       

     

  
    

 4-5 
In this ‘Divide Migration’ (DM) model, h is the lake depth as before, Y measures the 

dimensionless distance of the divide from the lake, h0 is the ice-dam flotation depth 

(estimated at 108 m by Ng and others (2007)), and hcα and α are constants. The outburst 

condition h = hc in the Ng-Liu model is replaced by Y = 0, and eqn. 4-1 is modified to 

  

  
                  

4-6a 
                     

4-6b 
During filling, this model describes the coupled evolution of lake volume and water 

divide position, with the divide migrating towards the target position (hcα – h)/h0, which 

itself moves. The constant α controls the migration rate, and hcα is the theoretical 

outburst depth of the lake if there were no delay in the divide’s arrival at the lake. The 

water supply Qin is calculated by eqn. 4-2 as before. 

Equations 4-5 and 4-6a reproduce some aspects of the behaviour of the Nye-Fowler 

model. They can be solved analytically with constant and sinusoidally varying lake inputs 

to reveal how the divide’s movement lags behind the forcing of the increasing lake 
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pressure during lake-filling. However, for use in the flood prediction model runs, with 

irregular weather forcing, the equations are integrated numerically using finite-

difference, starting with V = Y = 0 on the day after the last flood. Low lake level initially 

locates the target downglacier from the lake, so the divide migrates into Y > 0. But filling 

of the lake relocates the target upglacier from the dam eventually (when (hcα – h)/h0 < 0) 

attracting the divide back towards the lake after some delay. As with the models in 

section 4.4.2, the Divide Model is optimised by tuning α and hcα over their parameter 

space.  

4.5 Flood-date prediction experiments: results and discussion 

Table 4-3 summarises my five prediction models. (For convenience the word ‘model’ is 

used to refer to the three versions of the Ng-Liu model with different thresholds, as well 

as to the Constant Date and Divide Migration models.) In this section I analyse their 

performance in prediction runs made to hindcast the Merzbacher flood dates. 18 sets of 

runs were made. The first 9 sets use the Real Scheme for weather forcing and consist of 

one set of runs for the CD model and two sets of runs each for the CT, VTh, VTT and DM 

models (one set with NCEP forcing, the other with ERA forcing). In each set of runs, 

model parameters were tuned to optimise prediction success separately in terms of 

RMS and P20. Table 4-4 shows the results, listing in its columns the optimal model 

parameters and the RMS and P20 achieved when each of these is optimised. The other 9 

sets of runs are structured identically but use the Simple Scheme for weather forcing. 

Table 4-5 shows the corresponding results. 

Several matters guide the following analysis of these results: (1) model performance and 

the floods’ predictability, (2) influences of model complexity and weather forcing on 

prediction success, and (3) the impact of weather uncertainty on the predictions. These 

matters are covered in sections 4.5.1 and 4.5.2. Section 4.5.3 looks at how the reliability 

of predictions varies with time, and this leads to the development of an ensemble 

prediction strategy that uses multiple prediction models to derive forecasts. 

4.5.1 Prediction performance of the models 

Since RMS and P20 are fundamentally different quantifiers of the prediction errors, a 

model optimised for RMS must yield lower RMS than the same model optimised for P20, 

and a model optimised for P20 must yield higher P20 than the same model optimised for 

RMS. Table 4-4 confirms this expectation (compare the RMS’s in column 4 with those in 

column 7, and the P20’s in column 8 with those in column 5). Accordingly, further 

comparisons are now focused on columns 4 and 8. These show RMS around 120 days 

and P20 of 50–60%. The RMS values are not useful quantifiers of the models’ 
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performances as they are disappointingly large and dominated by outlier errors (section 

4.4.1). Thus, although Table 4 reports findings for both measures, forecasters of the 

Merzbacher floods might choose P20 as the main criteria for identifying the best model. 

Considering the results in both columns 4 and 8 in Table 4-4, the overall pattern is that 

the Variable Threshold models (VTh and VTT) perform best, followed by the Divide Model 

(DM), then the Constant Threshold model (CT). This pattern is robust for each 

temperature forcing. Also, the CD model performs better than the CT model (as noted 

before), implying that a fixed threshold does not enhance prediction accuracy. 

Compared with the other models, the CD model performs nearly as well as the DM 

model but consistently worse than both Variable Threshold models. The latter models 

yield P20 = 57.3–57.5%, meaning they can hindcast the floods accurately to within 20 

days about 57.4% of the time. Additional comparisons (not shown) with the generalised 

measure Pn (defined in section 4.4.1), show that the Variable Threshold models surpass 

all other models in the practical tolerance range n ≤ 20. These results support the 

empirical finding of Ng and Liu (2009) and the theoretical finding from the previous 

chapter that dh/dt plays a role in flood-initiation physics. In the VTh model used in the 

current chapter the optimal β-values are positive, not negative as found by Ng and Liu 

(2009); the threshold hc found here needs to increase with dh/dt for successful 

prediction. The sign difference arises because the correlation analysis of Ng and Liu 

(section 4.4.2) and the fitting of flood hindcasts to observed flood dates do not amount 

to the same optimisation constraint for β. 

Reassuringly, Table 4-4 shows that models incorporating environmental factors do 

better than the CD model. But does prediction success always improve with model 

complexity? A model with richer physics and more parameters ought to yield closer fit 

between hindcasts and observations, unless it is faulty. Hence model performance is 

expected to improve in the order: CD, CT, VTh/VTT, DM. The results upset this trend 

because the DM model performs worse than the VT models. The conclusion is that 

either the divide migration mechanism does not capture what happens at Merzbacher 

Lake, or it does but the DM model incorrectly mimics this mechanism.  

Table 4-4 shows that the DM model improves upon the CT model in all cases. This is 

because these models are related. The CT model is the limit of the DM model as α → ∞: 

then the seal responds infinitely fast to lake-level changes to track the target, and the 

outburst condition Y = 0 in eqn. 4-5 becomes equivalent to h = hcα (constant). Seen in 

this light, the DM model performs better because it has an extra degree of freedom over 

the CT model. 
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Table 4-4. Results from 9 sets of model runs using the Real weather-forcing 
scheme. For each of our five prediction models, listed in column 1, model 
parameters are optimised to minimise RMS and maximise P20. The CT, VTh, VTT 
and DM models are optimised separately for each temperature forcing, TNCEP and 
TERA. Displayed in columns 3 to 8 are the optimal model parameters and the RMS 
and P20 they yield. 

4.5.2 Influence of weather forcing on prediction success  

How does weather uncertainty influence the predictions? Such uncertainty features in 

the model runs implementing the Real Scheme in two ways: (i) via the difference 

between the NCEP and ERA temperature data, which themselves are estimates of a 

weather variable and (ii) via the fact that the forecaster does not know the future 

weather. The influence is assessed from both angles. 

Considering the data sources first, Table 4-4 shows that the NCEP forcing yields 

consistently lower optimal RMS values than the ERA forcing, while the optimal P20 values 

are almost independent of the choice of forcing. Thus, NCEP temperature data seem to 

be only marginally better as a forcing for predicting the Merzbacher floods. As noted 

before, the choice of temperature forcing does not change the overall ordering of model 

performance (CT, DM, VTh/VTT) in Table 4-4. 

Model Temperature 
forcing  

Optimised for RMS Optimised for P20 
Optimal 
parameters 

RMS P20 Optimal 
parameters 

RMS P20 

        
Constant Date (CD) 
 

- Δ = 268 days 121.9 11.2 Δ   = 216 days 132.4 54.3 

        
Constant Threshold 
(CT) 

TNCEP hc = 87.0 m 129.2 51.7 hc = 86.5 m 129.3 53.3 

TERA hc = 86.5 m 138.3 45.9 hc = 85.5 m 139.1 53.6 

        
Variable Threshold 
(controlled by lake 
rise rate) 
(VTh) 

TNCEP 
h0β   = 80.0 m,  
β = 90 days 

112.6 15.3 
h0β   = 77.0 m,  
β  = 30 days 

123.0 57.4 

TERA 
h0β  = 78.0 m,  
β = 90 days 

121.4 19.6 
h0β  = 75.5 m,  
β  = 34 days 

133.9 57.5 

        
Variable Threshold 
(controlled by 
temperature) 
(VTT) 

TNCEP 
h0λ = 76.0 m,  
λ  = 3.0 m 

o
C

-1
 

109.6 11.3 
h0λ  = 76.5 m,  
λ  = 0.8 m 

o
C

-1
 

123.5 57.4 

TERA h0λ = 76.0 m,  
λ  = 4.0 m 

o
C

-1
 

118.0 11.6 
h0λ  = 76.5 m,  
λ  = 0.9 m 

o
C

-1
 

133.6 57.3 

        
Divide Model  
(DM) 
 

TNCEP 
hcα = 78.0 m  
α = 0.015 day

-1
 

117.2 27.1 
hcα   = 84.5 m  
α = 0.170 day

-1
 

127.6 55.0 

TERA 
hcα = 78.0 m,  
α = 0.015 day

-1
 

127.9 22.2 
hcα = 82.5 m,  
α = 0.080 day

-1
 

136.6 54.5 
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Table 4-5. Results from 9 set of model runs using the Simple weather-forcing 
scheme, where archived weather is used throughout each prediction (see section 
4.2). The layout is identical to that of Table 4-4. 

And what of the need to forecast future weather in the Real Scheme? The impact of this 

on prediction performance is assessed by comparing Table 4 with Table 5, focusing again 

on the optimal RMS and P20 results in columns 4 and 8. The Simple scheme ought to 

perform better than the Real scheme because it uses reanalysis data rather than 

forecasts of future daily temperature to derive the lake water supply, and this eliminates 

a source of uncertainty. Tables 4-4 and 4-5 show that only the Variable Threshold 

models that use the ERA forcing fulfil this expectation. In contrast, the Variable 

Threshold models that use the NCEP forcing perform worse in the Simple scheme than in 

the Real scheme. The same is true of the CT and DM models, but the poorer 

performance of these models suggests that they are limited more by other deficiencies 

(notably in their threshold assumptions) than by weather uncertainty. However, it is less 

clear why the Variable Threshold models with NCEP forcing do not perform better in the 

Simple Scheme. A possible explanation is that short-term weather fluctuations are more 

accurately represented by TERA than by TNCEP, even though these temperature forcings 

produce similar melt-water volumes on seasonal and annual timescales (e.g. Fig. 3a) and 

Model Temperature 
forcing 

Optimised for RMS Optimised for P20 
Optimal 
parameters 

RMS P20 Optimal 
parameters 

RMS P20 

        
Constant Date (CD) 
 

- Δ = 268 days 121.9 11.2 Δ =  216 days 132.4 54.3 

        
Constant Threshold 
(CT) 

TNCEP hc = 83.0 m 129.8 43.5 hc  = 87.5 m 137.7 50.6 

TERA hc  = 84.0 m 139.4 52.6 hc  = 84.0 m 139.4 52.6 

        
Variable Threshold 
(controlled by lake 
rise rate) 
(VTh) 

TNCEP 
h0β = 76.0 m,  
β =  99 days 

108.9 21.1 
h0β = 76.5 m,  
β = 24 days 

126.1 55.6  

TERA h0β  = 78.5 m,  
β =  118 days 

120.3 11.6 
h0β  = 74.0 m,  
β =  52 days 

131.0 62.2 

        
Variable Threshold 
(controlled by 
temperature) 
(VTT) 
 

TNCEP 
h0λ  = 74.5 m,  
λ  = 3.6 m 

o
C

-1
 

108.1 12.2 
h0λ = 75.0 m,  
λ  = 1.0 m 

o
C

-1
 

123.1 56.7 

TERA 
h0λ = 70.5 m,  
λ  = 5.0 m 

o
C

-1
 

117.5 12.3 
h0λ  = 79.5 m,  
λ  = 0.8 m 

o
C

-1
 

131.8 58.4 

        
Divide Model  
(DM) 
 

TNCEP 
hcα = 79.0 m  
α = 0.02 day

-1
 

116.0 25.7 
hcα = 85.5 m  
α = 0.15 day

-1
 

127.9 51.3 

TERA 
hcα = 80.0 m,  
α = 0.02 day

-1
 

126.4 21.1 
hcα  = 79.0 m,  
α = 0.06 day

-1
 

134.5 53.5 
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have similar multi-year means so that their flood-prediction performances in the Real 

Scheme are similar (Table 4-4). 

4.5.3 The forecaster’s time frame and ensemble prediction 

Having used the statistical measure RMS and P20 to evaluate performance of the models, 

I now turn to a different aspect of the forecasting problem. As each prediction is made, 

the forecaster may wish to know whether its reliability depends on how far the next 

flood lies in the future. Given the impact of weather uncertainty examined above, a 

reasonable hypothesis is that predictions close to the flood are more successful than 

those made far in advance. This time dependence is studied using the hindcast results 

produced during optimised model runs using the two best models in Table 4-4: VTh with 

TERA temperature forcing, and VTT with TNCEP temperature forcing. 

On the day when each prediction is made, D, the forecaster cannot in fact determine the 

difference between D and the next flood because the flood has not occurred. However, 

they know the time difference between D and the predicted flood date. I denote by N 

this ‘predicted time before the next flood’. N is easily calculable for the two sets of 

hindcast results. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 4.9. The variation of prediction success (as quantified by P20) with the 
predicted time before the next flood, N, for three models: the Constant Date 
model (CD), the Variable Threshold model VTh with TERA temperature forcing, and 
the Variable Threshold model VTT with TNCEP temperature forcing.  
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Fig. 4.9 shows how the success of hindcasts (measured with P20) varies with N in the two 

Variable Threshold models, with the data for N arranged in 10-day bins to suppress 

noise on the distributions. Results of the Constant Date model are included for 

comparison. In practice, after predicting a flood date with a given model, the forecaster 

can look up the corresponding distribution on this plot to learn the probability that the 

forecast is accurate to within 20 days. Both Variable Threshold models excel over the CD 

benchmark for most of the range in N, and the VTh model with the ERA temperature 

forcing performs best overall. The distributions of both Variable Threshold models seem 

to be consistent with the hypothesised increase in prediction success as the next flood 

approaches, as they show a negative (albeit weak) trend. In the Real Scheme, prediction 

runs that forecast an imminent flood (with a small value of N) would have used more 

archived temperature data and fewer forecasts of future weather for deriving the lake-

water supply and hence be more likely to be accurate. The CD model shows no such 

trend as it does not incorporate weather forcing.  

The empirical probabilities in Fig. 4.9 motivate an ensemble prediction strategy. The 

forecaster predicts the next flood date using each of the models (VTh, VTT and CD), then 

calculates the values of N for these predictions, and reads the corresponding 

probabilities of prediction success from Fig. 4.9. In the simplest strategy, the forecast 

having the highest P20 is taken as the best guess of the flood date. Consider using this 

ensemble method on 1st Jan 1959 (this is 38 days after the date of Flood 4, 24th Nov 

1958) to forecast Flood 5 (19th Sep 1959). The CD model predicts the next flood on 4th 

Aug 1959, whereas the VTh and VTT models predict it will occur on 8th Sep 1959 and 9th 

Sep 1959, respectively. The circles in Fig. 4.9 mark the corresponding values of N (215 

days, 250 days, 251 days) and P20 (60.4 %, 64.3 %, 63.5 %). In this example, the 

forecaster learns that the best forecast is the one made by the VTh model, 8th Sep 1959. 

The P20 of this forecast (64.3 %) is much higher than the mean P20 of this model in Table 

4-4 (57.5 %). In fact, this forecast is successful (accurate to within 20 days) and has a true 

error of E = 11 days, while the true errors of the other two forecasts by the VTT and CD 

models are 10 days and 46 days, respectively. This ensemble strategy allows the 

forecaster to choose between models based on empirical experience. 

4.6 Conclusions and outlook 

Low-order models that implement an outburst threshold based on the lake-water depth 

can give useful predictions of the date of jökulhlaups from Merzbacher Lake. The best 

models studied here (VTh and VTT) assume a variable threshold depth governed by 

weather. They hindcast observed flood dates successfully to within ±20 days 57.4 % of 

the time, excelling over a benchmark model that assumes a constant flood date each 
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year. For the Merzbacher Lake – Inylchek Glacier system, these models can be readily 

incorporated into practical flood-forecasting schemes, and may aid decisions regarding 

the development of hydropower down-valley and management of the corresponding 

reservoirs (Mamatkanov and Mingtszyan, 2011). The present work complements the 

theory by Ng and Liu (2009) that addressed mechanisms underlying the long-term timing 

pattern of multiple floods. 

Although one can understand why predictions made far in advance of flood events are 

generally less reliable (sections 4.5.3), it is less clear why weather uncertainty impacts 

differently on the success of model predictions made with NCEP and ERA temperature 

forcings (section 4.5.2). A limitation of the current work is the use of these reanalysis 

data, which are themselves uncertain estimates of the past weather. By comparing them 

to meteorological measurements at the lake, future work could evaluate how severely 

such uncertainty affects jökulhlaup predictability. For example, reanalysis data may 

prove completely incapable of reproducing short-term (e.g. daily) weather variations, 

limiting the prediction ability of models that use such data. 

An ability to forecast flood dates to within ±20 days a little more than half of the time is 

not overwhelmingly successful, and reflects how, despite attempts at physical modelling 

such as that in the previous chapter, the physics of flood initiation in real systems are 

still understood only poorly. The threshold assumptions in our best models (hc = f(dh/dt) 

and hc = f(T - T0)) support an earlier inference by Ng and Liu (2009) that, at Merzbacher 

Lake, dh/dt influences the outburst threshold through the dynamics of a subglacial 

water divide. Further consideration of how this behaviour arises could illuminate the 

flood initiation process. Notably, although the Divide Migration (DM) model was 

designed to mimic the divide’s dynamics, it does not yield the most successful flood-date 

predictions. In that model a parameter that controls the divide migration rate was kept 

constant during model runs and tuned to optimise the model. The findings of the 

investigation of the Nye-Fowler model presented in the last chapter suggests that the 

migration rate may not be constant and instead may be controlled by the supply of 

water to the channel along its length beneath the ice-dam. Further work could 

incorporate this control in a modified Divide Migration model by allowed the migration 

rate constant to vary with weather conditions. Also, in future work it will be worthwhile 

applying the full Nye-Fowler model to the Merzbacher Lake system, optimising it and 

quantifying its prediction ability. Problems associated with the uncertain geometry of 

the South Inylchek Glacier could be avoided by conducting the optimisation with a 

number of plausible bed geometries. Aside from illuminating flood initiation physics, 

applying the full model to Merzbacher Lake may allow our ability to predict flood size 

and duration to be quantified.   
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Future work could explore several other extensions. First, observations show that after a 

lake empties in a jökulhlaup, water entering the lake basin may flow directly into the 

glacier dam as an open subglacial stream for some time before the lake reforms (e.g. 

Bartholomaus and others, 2011). In Chapter 6 I develop and analyse a model capable of 

simulating flood cycles that include such periods of open-channel flow. I derive an 

expression for the duration of periods of open-channel flow and show how it depends 

on ice thickness, lake input and the size of the preceding flood. This could be 

incorporated into improved prediction models in the future. Second, the rate of calving 

from the ice dam, c, which affects lake-water balance (see Eqn. 4-2), may vary in time 

and depend on factors like the lake water depth. This variability could be accounted for 

in prediction models using some form of ‘calving law’ (e.g. Benn and others, 2007). Third, 

the ensemble prediction strategy in section 4.5.3 could be developed to exploit 

weighted averages of the predictions from different models.  
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Chapter 5 The coupling of flood discharge with 
glacier flow during jökulhlaups 

This chapter is based on a manuscript entitled “Modelling the coupling of flood 

discharge with glacier flow during jökulhlaups” accepted for publication in the Annals of 

Glaciology on the 29th August 2012 and published online in December 2012. 

5.1 Introduction 

In Chapter 3 I simulated jökulhlaup cycles using the Nye-Fowler model and showed how 

their size is controlled by the time evolution of a subglacial channel. In simulations, this 

evolution depends on, among other things, the input of water to the channel along its 

length. This input was presumed to originate from an adjacent higher-pressure drainage 

system but, for simplicity, in simulations I assumed it remained uniform in time and 

constant in space. This ignores potential variations in the input due to changes in water 

pressure in the channel and in the adjacent drainage system. Such variations could affect 

jökulhlaup dynamics and the motion of the glacier. In this chapter I replace the uniform, 

constant channel water input with a temporally- and spatially-varying water transfer 

from an adjacent, distributed linked-cavity system (see section 2.3). This allows me to 

investigate how this variable input affects floods and, because cavities are maintained by 

ice flow of glacier ice over its bed, how flood discharge and glacier flow are coupled 

during jökulhlaups. 

Such coupling has been observed in alpine jökulhlaup systems as ‘ice-motion’ events, 

such as speed-up (Anderson et al., 2005; Bartholomaus et al., 2011; Mayer et al., 2008; 

Riesen et al., 2010; Sugiyama et al., 2010) and uplift (e.g. Anderson et al., 2005; 

Magnusson et al., 2011 Sugiyama et al., 2008) during flood growth followed by 

deceleration or reversal in ice flow during flood recession (Anderson et al., 2005; 

Magnusson et al., 2011; Sugiyama et al., 2008). This coupling also occurs in ice sheets. 

Studies in Greenland show that surface meltwater routed via supraglacial lakes and 

moulins to the bed can cause short-term changes in surface velocity (Das et al., 2008; 

Zwally et al., 2002) and seasonal ice speed-up (Bartholomew et al., 2011). These 

observations raise the question of whether and how much climate-warming induced 

changes will increase the long-term ice flux (e.g. Schoof, 2010; Sundal et al., 2011).  

In this chapter, studying alpine jökulhlaups only, I build on previous work and present a 

consistent model of this coupling. Recent numerical studies have highlighted the rich 

hydrological and glacier-dynamical behaviour that can arise when the Nye-Fowler 

model’s evolving channel coexists with a distributed drainage system. Flowers et al. 
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(2004) showed that lake water injected into a subglacial water sheet, that in turn feeds 

and rapidly enlarges a channel, can explain the fast-rising discharge seen at the start of 

the 1996 Grímsvötn flood hydrograph (Björnsson, 2002), not reproducible using Nye’s 

equations (Jóhannesson, 2002).  Pimentel and Flowers (2011) added other processes to 

this description – high-order glacier dynamics, basal sliding, ice hydraulic fracture and ice 

uplift – to explore several glacio-hydraulic scenarios, including the drainage of marginal 

and surface lakes. Since these studies did not focus on flood dynamics, they prescribed a 

known discharge at the top end of the drainage system and did not couple its pressure 

to the lake’s pressure. This precluded investigation of the controls on floods and the 

simulated pressure in the drainage system was generally inconsistent with the lake’s 

pressure. In the present work, using the Nye-Fowler model avoids these limitations; a 

channel is coupled to a lake both in terms of discharge and pressure.  

Hewitt and Fowler (2008), who proposed a theory to explain seasonal waves on glaciers, 

provide a model of distributed drainage and sliding. By linking channelised subglacial 

drainage to cavity drainage with sliding, they showed that periodic meltwater input to 

this system can cause oscillations in ice flow resembling observations. I adopt some of 

their equations below to describe a distributed linked-cavity system.  

This chapter is organised as follows. My model of lake drainage through a coupled 

channel-cavity system is described in section 5.2. Section 5.3 reports the results of 

numerical simulations using the same idealised lake and glacier geometries used in 

Chapter 3. I show that the coupled model can simulate repeating floods when the 

cavities transfer water to the channel at a sufficient rate and investigate the spatial and 

temporal evolution of cavity water pressure and the associated motion of the glacier. I 

also investigate how varying the background meltwater input to the cavities affects lake 

drainage and the glacier dynamics response to it. I discuss these findings alongside field 

observations from several jökulhlaup lakes in section 5.4. 

5.2 Channel-cavity drainage model 

Fig. 5.1 shows my model system. A lake feeds a subglacial channel of length s0, which 

exchanges water with a distributed system of linked cavities outside it; the cavities 

influence and are influenced by sliding. As in previous chapters, I denote distance 

downglacier from the lake by s and time by t. Here I introduce the subscripts R and C to 

label channel (‘R’ for Röthlisberger) and cavity variables, respectively. While I aim to 

couple flood and ice-flow dynamics, three specific ‘couplings’ occur in the model: 

between lake and subglacial drainage, between the channel and cavities, and between 

cavities and sliding. 
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5.2.1 Channelised drainage 

As in Chapter 3, the channel’s cross-sectional area, S*, evolves with time, t*, according 

to eqn. 2-59: 

   
 

   
 

   
   

  
 
 
 

   
   

  
 

Fig. 5.1. Cartoon of my model jökulhlaup lake that drains through a 
cavity-channel system. 
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5-1 
where Q* is the discharge, N* is the effective pressure and asterisks denote variables 

that have been nondimensionalised as described in section 2.2.4. In the channel the 

gradients in the discharge and the effective pressure are given by  

   
 

   
        

   
   

  
 
 
 

     
   

  
      

    
    

5-2 

   
 

   
 

 

 
 

  
    

  

  
 
 
 

      

5-3 
The above three equations form the channelised component of the coupled model. They 

are identical to the original Nye-Fowler model (eqns. 2-60 and 2-61) except the source 

term in the original mass conservation equation, M*, has been replaced by a transfer 

term T*. This represents the rate of water transfer into the channel from the cavities (as 

a volume flux per unit distance). Following Hewitt and Fowler (2008) I model this 

transfer of water as proportional to the pressure difference between these drainage 

components. Dimensionally this is 

              

5-4 
where NC is the cavity effective pressure and k is a connectivity constant (I use Hewitt 

and Fowler’s value, 10-9 m2 s–1 Pa–1). Rκ is a dimensionless factor used in experiments 

(section 5.3) for varying the transfer rate Rκk that saves me from writing out its units 

each time. In non-dimensional form, the channel water continuity equation is therefore 

   
 

   
        

   
   

  
 
 
 

     
   

  
        

    
    

5-5 
where   

   
     

   
   

5-6 
As in previous chapters, the lake depth hL (Fig. 5.1) evolves with water input, Qin, and 

outflow, QR at the lake outlet, following the lake continuity equation, 
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5-7 
The lake’s depth defines the effective pressure in the channel at the lake outlet (Fig. 5.1) 

to be   

                
   

5-8 
at all times, and this provides a boundary condition for NR in eqn. 5-3. The 

nondimensional parameters δ,  R, r, λL and βL, and the scales of the channel variables 

were defined in Chapter 2, and summarised in Box 2-1. 

5.2.2 Linked-cavity drainage and basal sliding 

I follow Hewitt and Fowler (2008) in using a pseudo-steady description for the geometry 

of the cavities, with a conservation equation for the water flux through them and a 

sliding law. For sliding at velocity ub over bed obstacles of height R, Walder (1986) 

showed that the typical cavity cross-sectional area is given by eqn. 2-112, 

   
 

 
           

  

     
   

 

  
 

 

  
 

 

  

5-9 
where γ ≈ 0.32  and k1 ≈ 1.1 are constants, L is water’s latent heat of fusion, ρi is the 

density of ice, K0 is an ice flow parameter (= 10-24 Pa-3 s–1), QC is the water discharge 

through the cavity system and G is the total hydraulic potential gradient. In the above 

expression the first term in the square brackets represents enlargement of the cavities 

due to the sliding of ice past bed obstacles and the second term represents enlargement 

through melt due to heat dissipation in water as it flows through the potential gradient 

G. In the channelised model, G is given by eqn. 2-22; substituting this into the expression 

yields the cavity-geometry equation, 

   
 

 
          

  

     
 
   

  
    

 

  
 
 

  
 
 

  

5-10 

Walder (1986) related the cavity cross-sectional area to the discharge and the total 

along-glacier hydraulic gradient using Manning’s equation (eqn. 2-4), 

  

  
 

  

 
 

  
 

 

   
 
   

  
    

 
 
  

5-11 

and assumed the cavity roof is elliptical in cross-section 
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5-12 

Substituting eqn. 5-12 into eqn. 5-11, and the result into eqn. 5-10, yields the following 

relationship between SC and QC: 

    
  

   
 

 
 
 
     

 
      

   

  
   

 
 
 
  

5-13 
I adopt a power law, discussed in section 2.3.2, to describe sliding, 

     

  
  

  
  

5-14 
(e.g. Bindschadler, 1983), where pb = 4, q = 1, cs is a constant dependent on bed 

roughness (≈2×10-20 m s-1 Pa-3; Hewitt and Fowler, 2008), τb  is the basal shear stress 

assumed to balance local driving stress ρigHsinϕs where ϕs is glacier surface slope 

(Cuffey and Paterson, 2010). Out of several theories discussed in section 2.3.2 I  use this 

power law because it is the simplest that includes the effect of water pressure on sliding 

(Hewitt and Fowler, 2008) and has been verified experimentally (Budd et al., 1979). 

Substituting this sliding law into the cavity geometry equation (eqn. 5-10) yields 

   
 

 
  

    
  

  
       

  

     
 
   

  
    

 

  
 
 

  
 
 

  

5-15 
A final equation describes water conservation in the cavities:  

 

   

  
    

   

  
      

5-16 
where MC is the background water supply to the cavities from basal- and surface-derived 

melt. I assume that the channel receives meltwater only via the cavities (through T) and 

none directly via moulins or other englacial routes. 

5.2.3 Nondimensionalisation  

Scales for s, t and ψ are the same as those used in the Nye-Fowler model (see Box 2-1). 

Similarly, the scale for the channel effective pressure defines the cavity effective 

pressure scale. Scales for the other cavity variables are defined as follows: 
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5-17 

 

Substituting the appropriate scales into eqn. 5-13 and equating terms defines SC0 with 

respect to QC0 and ψ0: 

    
   

    

 
 

   

5-18 

where  

    
  

   
 

 
 
      

 
 

 

  
   

5-19 

This leaves  

  
    

   
   

 

   
    

 
 
 

  

5-20 

where δ is the same as in the channelised model, 

  
  

    
   

5-21 

Substituting scales into the cavity water continuity equation (eqn. 5-16) and using the 

definitions of T and SC0 (eqns. 5-4 and 5-18) yields 

   

    

 
   

   
 

   
 

   

  

   
 

   
   

             
    

    

5-22 

Rearranging this, defining  

    
   

  
    

5-23 
and dropping the asterisks gives 

  

   

  
 

   

  
                 

5-24 

where αC and κC are defined by  
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5-25 

Finally, substituting scales into eqn. 5-15  yields the scaled model equation for the cavity 

geometry 

  
    

  
   

  
       

  
 

  
    

   
 

   
      

5-26 

where  

   
 

 

      
    

        
    

5-27 

and 

   
 

 
     

     

          
 

 

   
 
 

  

5-28 

Equations 5-1, 5-3, 5-5, 5-7, 5-8, 5-20, 5-24 and 5-26 complete the model. In essence it 

describes the coupled evolution of channel size, cavity size, and lake level. SR, QR, NR, SC, 

QC, NC, ub are functions of t and s, while hL is a function of t only. This model differs from 

Hewitt and Fowler’s not just in its inclusion of the lake and a channel that evolves at a 

rate dictated by melt and ice creep, but also in using the total hydraulic gradients ψ + 

∂NR/∂s and ψ + ∂NC/∂s to drive channel and cavity flow (rather than ψ alone).  

Four boundary conditions are needed in eqns. 5-3, 5-20 and 5-24 for determining the 

discharge and pressure in both drainage systems. As in previous chapters, for the 

channel I impose the condition in eqn. 5-8 and NR = 0 at the terminus (s = s0). For the 

cavities, an equation like eqn. 5-8 could be used to couple the cavities and the lake 

hydraulically. Preliminary investigations indicate interesting dynamics result from this 

coupling, but a full exploration of its consequences is beyond the scope of this chapter. 

Instead, for simplicity I isolate the cavities from the lake, by assuming that NC* at the 

lake (s = 0) and at the terminus (s = s0) are both constant, =0.1. Although this value may 

seem arbitrary, the qualitative features of the results reported below are not sensitive to 

its size. 

The assumption of pseudo-steady cavity geometry is motivated by the supposition that, 

unlike in channels, the cavity system’s effective pressure-discharge relationship will be 

negative whether the system is steady or not, and motivated by the lack of unsteady 

cavity drainage models that are strongly verified by subglacial observations. However, 
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the potential limitations of the model need to be recognised. Since, in reality, cavity size 

will not react instantaneously to pressure changes, the model overestimates the role of 

water storage in cavities when water transfer changes rapidly and neglects the lag of 

peak cavity size behind peak cavity water pressure. In such situations, the model will 

underestimate actual NC and ub variations. Also, the model precludes investigation of a 

possible negative feedback between cavity size and pressure suggested by Bartholomaus 

and others (2011). In a recent theory, Hewitt and others (2012) have tried to overcome 

these limitations by modelling the cavity system dynamically as a sheet with a cavity 

evolution equation analogous to eqn. 5-1. 

5.2.4 The size of parameters and scales 

I use the same glacier and lake geometry as I used in Chapter 3. This is illustrated in Fig. 

3.1. The glacier is described by s0 = 10 km, H = 100 m and sinϕs = sinϕb = 0.01, and slides 

over bedrock obstacles R = 0.1 m in height. These parameters lead to ψ ≈ 100 Pa m–1 and 

τb ≈ 9 kPa. The lake has hypsometry defined by VLi = 0.5 km3, hLi = 100 m and pL = 1. A 

typical peak flood discharge defines the channel discharge scale, QR0 = 1500 m3s-1, and a 

typical terminus cavity discharge defines the cavity discharge scale, QC0 = 1 m3 s-1. 

Equations 6-63, 5-18 and 5-23 are used to calculate the following scales: 

          ,                ,             

         ,                                . 

5-29 
And eqns. 2-65, 5-25, 5-27 and 5-28 are used to calculate the following model 

parameters: 

                                             ,  

                         ,           

5-30 
Interestingly,  s and  m are roughly equal. This suggests that the contributions to cavity 

enlargement from frictional heating from the flowing water (the first term on the right 

of eqn. 5-26) and from basal sliding (the second term) are roughly equal. This is contrary 

to previous work (Walder, 1986; Kamb, 1987) that has concluded that the sliding control 

on cavity size dominates frictional heating. This is discussed later, but for now, in the 

interest of simplifying the numerical solution of the model in the next section, the 

frictional heating term is neglected, allowing eqn. 5-26 to be rearranged to give NC in 

terms of SC: 
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5-31 

5.2.5 Numerics 

Space and time domains are discretised as described in section 2.2.5 with non-

dimensional time steps of 0.005 and a grid spacing of 0.01. At each time step, using the 

forward Euler method, I integrate eqns. 5-1, 5-7 and 5-24 to find the next time-step’s  SR, 

hL and SC. From the latter, the cavity discharge QC and pressure NC can be calculated 

from eqns. 5-20 and 5-31 respectively. The dimensional sliding velocity ub can be 

calculated from eqn. 5-14. I use the relaxation method, described in 2.2.5, to solve the 

channel mass and momentum conservation equations, eqns. 5-3 and 5-5. The only 

modification is the addition of the transfer term RkκR(NR - NC) to the right-hand-side of 

eqn. 2-74.  

5.3 Results of numerical simulations 

Here I report the results of numerical experiments made with the model to study (i) the 

model’s ability to simulate repeating flood cycles, (ii) variations in ice flow during each 

jökulhlaup cycle, and (iii) sensitivity of these variations to the cavity meltwater input, 

MC. 

5.3.1 Flood cycles  

As discussed in Chapter 3, the size of floods simulated using Nye’s jökulhlaup model 

formulated with only time dependence, increases unstably. In that chapter I showed 

that the spatially-dependent Nye-Fowler model exhibited similar behaviour when no 

‘topographic seal’ existed and the channel was hydraulically isolated from its 

surroundings. Only when either the basic hydraulic gradient (ψ) was negative near the 

lake (a topographic seal exists) or the channel was supplied with an input of water along 

its length, could the model simulate floods that remained bounded in size. As the 

coupled model developed in the current chapter treats how the channel captures 

subglacial water in more detail than the Nye-Fowler model, I begin by asking whether 

the new model can simulate stable flood cycles. 

Fig. 5.2 shows the simulated timeseries from a set of model runs, each spanning 15 

model years and conducted with an initial lake depth of 30 m (hL at t = 0), a constant 

lake-water input Qin = 10 m3 s–1, a constant background water supply to cavities  

MC = 1 × 10–3 m2 s–1, and several values of the parameter Rκ between 0 and 1. Rκ = 0 and 

Rκ = 1 refer to total hydraulic isolation and the hydraulic coupling used by Hewitt and 
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Fowler (2008), respectively. The coupled lake–channel–cavity system oscillates in time, 

yielding asymmetric filling and draining cycles of lake depth (Figs. 5.2a, 5.2c, 5.2e & 5.2g) 

and corresponding floods in the channel discharge depth (Figs. 5.2b, 5.2d, 5.2f & 5.2h). 

In all runs, initially, the peak discharge and volume of successive floods increase with 

time in a transient response to initial conditions. When Rκ ≤ 0.3, the lake’s post-flood 

lowstand level decreases until the lake empties completely, interrupting the simulation 

(Figs. 5.2a–5.2d). In contrast, when Rκ ≥ 0.6, the cycles become periodic and stable 

without emptying the lake (Figs. 5.2e–5.2h). Runs using 0.3 < Rκ < 0.6 (not shown) show 

increasing Rκ delays the emptying of the lake as peak discharge is suppressed by 

increased cavity-to-channel water transfer.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

These results go beyond those presented in Chapter 3 (section 3.2) to show that stable 

limit cycles occur when high T values allow the channel to capture water efficiently from 

the cavities and a water divide (or seal) to form between floods. The stabilising effect of 

this transfer is evidenced also by the impact of Rκ on the cycles: the higher is Rκ, the 

shorter is their period and the smaller the flood volumes. Also, as was shown first in 

Fig. 5.2. Time series of modeled lake level, hL(t), (left) and channel discharge at 
the lake, QR(0,t), (right) for Rκ = 0, 0.3, 0.6 and 1. Cavity water supply, MC = 10-3 
m2 s-1. 
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Chapter 3, a divide forms even when the basic hydraulic gradient is positive everywhere 

– a topographic seal is not a necessary condition for water divide formation. 

5.3.2 Spatial-temporal evolution of sliding and drainage 

Here, I analyse the spatio-temporal behaviour of subglacial drainage and ice flow in the 

(≈1.5-year long) flood cycle highlighted by the boxes in Figs. 5.2g & 5.2h. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.3 shows time series of the simulated lake depth hL(t) and lake outflow QR(s=0,t) 

(Fig. 5.3a) and basal sliding velocity, ub(s,t), at four locations along the glacier, s = {2, 4, 6, 

8} km (Fig. 5.3b) during the cycle. Fig. 5.4 shows filled contour maps of the basal sliding 

velocity ub(s,t) (Fig. 5.4a) and the rate of cavity-to-channel water transfer T(s,t) (Fig. 3c). 

Figs. 5.4a & 5.4b are maps over time and distance. The hydrographic sequence here was 

discussed in Chapter 3. In Fig. 5.3b, the time before point A (and after point E of the last 

cycle) is the lake-refilling phase between successive floods. At point A, high lake level 

moves the subglacial water divide back to the lake, initiating the flood and allowing 

Nye’s positive feedback to enlarge the channel. B marks the time of the lake-level 

highstand when the flood’s growing discharge instantaneously matches the lake-water 

input. C and D mark the flood peak and the post-flood lake lowstand, respectively.  

 

 

 

Fig. 5.3. Time series of (a) lake level, hL(t), and channel discharge at  
the lake and (b) sliding velocity at four locations along the glacier,  
ub(s = {2, 4, 6, 8} km, t), in the limit cycle indicated by the boxes in Fig. 5.2g & 
5.2h. MC = 10-3 m2 s-1, Rκ =1. 
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Regarding ice motion, Fig. 5.3b and Fig. 5.4a show similar responses in ub at different 

positions on the glacier. ub rises gradually as the lake fills, but accelerates rapidly after 

flood initiation (A) to peak soon after the time of the lake highstand (B). ub drops during 

the main flood (B to D) to a much lower velocity than during lake refilling, then increases 

again after flood termination (D to E). The durations of elevated and depressed ub are 

comparable. Spatially, ub rises monotonically with distance down-glacier, but its time-

variations at different positions are not precisely synchronous. Fig. 5.3b shows that the 

peak and minimum in ub propagate down-glacier at ≈250 m d–1 and ≈450 m d–1, 

respectively (see the dashed lines in Fig. 5.4a). 

This sliding response can be explained by considering the model’s physics and is the 

direct result of the pressure-coupling between the lake and the drainage system. Eqn. 

5-31 shows that cavity effective pressure Nc decreases with cavity size, SC. Hence, 

because ub decreases with NC (eqn. 5-14), ub varies directly with cavity size, SC. In turn, SC 

depends on how much water the cavities gain from the background meltwater input MC 

and lose to the channel via water transfer, whose rate T increases with channel effective 

Fig. 5.4. Spatio-temporal evolution during the limit cycle indicated by the boxes in 
Fig. 5.2g and 5.2h. (a) Sliding velocity ub(s,t) (filled contour map and left-hand 
vertical axis) and discharge at the lake, QR(s,t), (white line and right-hand vertical 
axis) and (b) cavity-channel transfer rate, T(s,t), (filled contour map and left-hand 
vertical axis) and lake depth, hL(t), (white line and right-hand vertical axis. MC = 
10-3 m2 s-1, Rκ =1.  
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pressure, NR, via T = RκκC(NC* - NR*). The sliding response thus stems ultimately from 

changes in lake level, which – through its effect on the channel pressure – governs how 

fast the channel draws water from the cavities. The timing associations in Fig. 5.4 

between hL, T and ub confirm this explanation. When the lake fills between floods (E to 

A), reducing NR at the channel inlet, its hydrostatic pressure is not transmitted past the 

divide (located in Fig. 5.4b by the black line) to modulate T and ub directly far down-

glacier (further simulations show that this effect would be diminished if the cavities and 

lake were coupled hydraulically); there is a slight increase in ub only because the lake 

level weakly affects the distributions of NR and T in the channel through its control on 

the migrating divide position. However, after the flood starts at t ≈ 11.4 yr, the divide’s 

absence means that the pressure transmission is unimpeded and able to reduce NR and 

T markedly down most of the channel (Fig. 5.4); this causes the cavities to expand and 

sliding to accelerate (A to B; 11.4 < t < 11.7 yr). Later, as flood discharge grows, peaks, 

and recedes under Nye’s mechanisms (B to D, 11.7 < t < 12 yr), the lake level drops 

rapidly, raising NR along the channel so that enhanced water transfer out of the cavities 

shrinks their size and decelerates sliding. After the divide reforms at flood termination 

(E, t ≈ 12.2 yr) the system enters a new cycle. During the flood when the lake strongly 

modulates the cavity-to-channel water transfer, the nonlinear wave properties of eqns. 

5-1, 5-3 and 5-5 determine the propagation of changes in T and ub down the channel. 

5.3.3 Sensitivity to the cavity background supply, MC 

Finally, I study how the ice-flow and flood evolution depends on the meltwater input MC, 

which is the other control on cavity drainage beside T. For temperate glaciers, MC likely 

encompasses water reaching the bed from the surface, so it can be viewed as a proxy for 

weather conditions.  

Figs. 5.5a–5.5d plot the maps of ub(s,t) and timeseries of lake outflow from four model 

runs that assumed different values of MC between 2 × 10–4  and 2 × 10–3 m2 s–1. Each 

plot’s duration is one flood cycle. The third panel (Fig. 5.5c), identical to Fig. 5.4a, serves 

as the control. An enduring pattern in these runs is that the ice flow speeds up after 

flood initiation and begins to decelerate before the flood peaks. In the run with the 

lowest MC (Fig. 5.5a), the speed-up is very sudden and a strong compression wave 

(∂ub/∂s < 0) propagates down-glacier some 70 days prior to the flood peak (around 12.5 

< t < 12.7 yr).  

Physically, decreasing MC is expected to reduce cavity size and discharge via mass 

conservation (eqn. 5-21) and hence reduce the sliding velocity ub. This trend is seen in 

Figs. 5.5a–5.5d (note their different scales); however, the percentage variation in ub in 
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the cycles increases. Fig. 5.6 quantifies both trends by plotting the mean,  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Fig. 5.5. Sliding velocity, ub(s,t), (filled contour maps) and channel discharge at 
the lake QR(0,t) (white dashed lines and right-hand vertical axis) in one limit 
cycle for (a) MC = 2 × 10-4 m2 s-1, (b) MC = 4 × 10-4 m2 s-1, (c) MC = 1 × 10-3 m2 s-1 
and (d) MC = 2 × 10-3 m2 s-1. 
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maximum and minimum values of ub at 4 km from the lake in each cycle, including 

results from extra runs where MC is varied within the same range. As MC is raised, the 

mean value of ub increases but its maximum-to-mean ratio decreases. 

Two outcomes of decreased MC are expected on cavity-channel interaction. One is 

increased dominance of the transfer term in the cavity mass conservation equation 

(eqn. 5-21). This explains the variable maximum-to-mean ub ratio; when MC is large, the 

remaining, time-varying terms in eqn. 5-21, ∂QC/∂s and T, are comparatively small and 

SC and ub vary less than when MC is small; then, SC and ub are modulated strongly 

because T dominates the mass balance. In addition, when MC ≤ 4 × 10-4 m2 s-1, the 

cavities collapse after the lake reaches its highstand due to high effective pressure in the 

channel, preventing significant reduction of ub below its mean value (Fig. 5.6); then, 

most of the background water supply to the cavities reaches the channel,  

and the cavity area is controlled by MC = k(NR - NC) and eqn. 5-31. In the case where  

MC = 2 × 10-4 m2 s-1, the cavity system does not recover until after the divide reaches the 

lake (Fig. 5.5a, t ≈ 12.3 yr). These model results imply that under cold weather conditions 

when subglacial water is less abundant, glacier flow velocities would be lower during 

quiescence but respond more strongly in absolute and relative magnitudes to subglacial 

floods.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.6. Mean sliding velocity at 4 km from the lake, ub (red circles and left-hand 
axis) and peak lake discharge, QP (green crosses and right-hand axis) for MC = 2 × 
10-4 m2 s-1  2 × 10-3 m2 s-1.  The top and bottom ends of the vertical lines indicate 
the maximum and minimum ub at 4 km from the lake reached during each limit 
cycle. 
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The other expected outcome of decreasing MC is that the cavity effective pressure NC 

increases (eqn. 5-31) reducing water transfer T to the channel (eqns. 5-2 & 5-4). The 

analysis of the channel-only model in Chapter 3 showed that, when the channel receives 

less water, the divide migrates more slowly towards the lake as it refills; this delays flood 

initiation, so the lake reaches a higher highstand to cause a higher flood peak discharge, 

QP. The same mechanism is operating here; reducing the water transfer to the channel 

impedes divide migration and increases highstand and QP. Figs. 5.5 and 5.6 show that 

the negative dependence of QP on MC is nonlinear and becomes significant only for MC < 

6 × 10–4 m2 s–1. 

5.4 Discussion and conclusions 

I have presented the first fully coupled and consistent jökulhlaup model capable of 

explaining the broad pattern of observed sliding velocity changes during jökulhlaups. At 

Gornergletscher, Switzerland, and the Grimsvötn and Skaftá subglacial cauldrons, 

Iceland, sliding velocity increases during flood growth and, at Gornerglestcher and 

Skaftá, it decreases during flood recession (Sugiyama et al., 2010; Magnússon et al., 

2007). At Gornergletscher, ice surface motion has been observed to reverse following 

the slow-down (Sugiyama and others, 2007), with maximum sliding velocity occurring 

before peak flood discharge. My model reproduces this timing and the marked post-

flood sliding deceleration (e.g. in Figs. 5.3a–5.3b). In contrast, at Hidden Creek Lake, 

Alaska, maximum sliding velocity peak occurs after peak discharge (Anderson et al., 

2005; Bartholomaus et al., 2011).  

These observations reveal variability in the hydro-dynamic behaviour of jökulhlaup 

systems that stems from their glaciological and environmental factors – factors which 

may be difficult to constrain with field data. However, future work can use my model to 

investigate if differences in drainage system connectivity, lake and glacier geometry, 

background cavity water input, lake input, sliding parameterisation or a combination of 

these can account for observed variability. For example, my assumed basal shear stress, 

τb, is relatively low (τb ≈ 9 kPa; based on the thin ice dam at Merzbacher Lake). 

Preliminary study shows that increasing τb results in a monotonic increase in ub and 

decrease in maximum-to-mean ub ratio. Also, the duration of my simulated floods are 

unrealistically large, lasting months rather than weeks. This is due to the assumed model 

parameters; model runs using lake and glacier geometries, and lake and cavity water 

supplies, derived from observations at Gornergletscher (Sugiyama and others, 2010) and 

Hidden Creek Lake (Bartholomaus and others, 2011), simulate more realistic, shorter 

duration floods. These modelling explorations will be reported elsewhere. 
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Like previous work (e.g. Hewitt and Fowler, 2008; Hewitt et al., 2012; Pimentel and 

Flowers, 2011), I have modelled drainage one-dimensionally. This ignores lateral 

propagation of variations in NC within the cavity system, the velocity of which may be 

comparable to their downglacier propagation velocities. Including lateral variation in Nc 

would be vital in a study of the lateral extent of the dynamic response of glaciers to 

jökulhlaups. Hewitt (2011) recently used a two-dimensional channel-distributed system 

model to investigate the steady-state spacing of channels beneath ice sheets. It may 

possible to extend my present model with his formulation to study lateral processes in 

distributed drainage during subglacial floods. 

Unlike previous work (e.g. Walder, 1986; Kamb, 1987), my scaling analysis of the cavity 

steady-state geometry equation (eqn. 5-15) suggested that the contribution to cavity 

enlargement from sliding and frictional melting are roughly equal. This is due to the 

large values I used for the scales of the cavity discharge (QC0 = 1 m3 s-1) and the basic 

hydraulic gradient that drives cavity water flow (ψ0 = 100 Pa m-1). Both values are at the 

largest extremes of those considered in Walder’s (1986) analysis of the relative 

contributions of sliding and frictional melt to cavity enlargement (see his Table 1). I 

followed Hewitt and Fowler (2008) in assuming that the basic hydraulic gradient that 

drives cavity flow is the same as that which drives channel water flow – i.e. that which is 

due to the glacier’s longitudinal surface and bed slopes. Walder (1986) points out that, 

because cavity flow is tortuous, the basic hydraulic gradient ‘seen’ by the cavities may 

be only a small fraction of the longitudinal hydraulic gradient. This is the cause of my 

finding that melting plays a significant role in cavity enlargement and suggests that I was 

right to ignore the melting term despite this finding and that further exploration of the 

model should look at modifying the longitudinal hydraulic gradient when it is used to 

drive water flow in cavities. 

What are the implications of this model for the coupling between subglacial drainage 

and ice motion in an ice sheet setting? The results introduce the possibility that 

supraglacial lake drainage in Greenland could, depending on basal conditions, cause 

both ice speed-up and slow-down. This awaits further exploration, using parameters 

associated with the thicker ice, reduced basic hydraulic gradients, and lower basal shear 

stress typical of ice sheets whilst treating Greenland supraglacial lake and moulin 

drainage as analogues of alpine jökulhlaup systems. 
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Chapter 6 Subglacial open-channel flow after 

jökulhlaups 

6.1 Introduction 

In previous chapters I have assumed that subglacial drainage occurs exclusively through 

channels and cavities that are completely full and pressurised. I have ignored the fact 

that these drainage pathways can sometimes be only partially-filled, with a head-space 

of air above the flowing water. Such open-channel flow occurs when a drainage system’s 

capacity exceeds the input it receives. This can happen beneath glaciers late in the melt 

season when a drainage system, enlarged by months of melt, receives low surface melt 

input (e.g. Fountain, 1993; Hooke, 1984; Sharp, 2005; Smart, 1986), year-round near the 

terminus where thin ice prevents channel closure through creep (Evatt, 2006), or after 

jökulhlaups, when drainage leads to the lake’s surface dropping below the height of the 

channel’s roof (e.g. Aitkenhead, 1960; Bartholomaus et al., 2011, Collins and Clarke, 

1977; Glen, 1953).  

Post-jökulhlaup open-channel drainage was not considered in the reconstruction of 

flood volumes from Merzbacher Lake, Kyrgyzstan in Chapter 4. Following floods, the 

delay in the onset of lake re-filling associated with a period of open-channel flow will 

vary between events and between systems. Including this process in flood volume 

reconstructions could improve their reliability.  

In addition, the hydraulics of open-flow cannot be described by the Nye-Fowler model, 

used in Chapters 3 and 5 to investigate jökulhlaup physics. In those chapters, jökulhlaup 

simulation had to be terminated if the lake depth reached zero. Hence, as it stands, 

attempts to realistically simulate repeating flood cycles from real systems are restricted 

to the minority of cases where lake lowstand is higher than the roof of the drainage 

channel and full-pipe, pressurised flow continues uninterrupted after floods (e.g. 

Grimsvötn and lakes beneath Antarctica).  

To address these issues, the aims of this chapter are: (i) to develop a physical model of 

this phenomenon, (ii) to analyse the model to understand what controls whether open-

channel flow occurs and how long it lasts when it does, (iii) to simulate complete flood 

cycles allowing the lake to reach the height of the roof of the channel, inducing open-

channel flow, and (iv) to investigate the effect this has on jökulhlaup characteristics.  

When modelling full pipe flow the challenge is to determine the discharge and the water 

pressure. In open-channel flow, unlike in full-pipe flow, water pressure is atmospheric, 

the aim for a modeller is to determine the flow depth. Subglacially, during and 
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immediately following jökulhlaups, water flow is through an enclosed pipe (one that is 

enclosed by a ‘roof’ not open like a subaerial stream). Because flow depth almost always 

increases with discharge, open-channel flow is associated with periods of low discharge 

and fluctuations in meltwater flux can produce spatial and temporal transitions between 

open and full flow conditions (Schuler et al. 2004; Kohler, 1995).  

Few modelling studies have tackled open-channel subglacial drainage. Two that have are 

Hewitt et al. (2012) and Schuler and Fischer (2009). Hewitt et al. (2012) modelled open-

channel flow by constraining the total hydraulic potential (the spatial derivative of which 

is equal to the total hydraulic potential gradient used in previous chapters; (∂N/∂s + ψ)) 

to remain above a minimum value corresponding to open-channel flow. In areas of the 

glacier bed where the total hydraulic potential reaches this value, channels and a macro-

porous sheet that emulates a linked-cavity system become partially-filled. They ignore 

differences in the physics of frictional flow resistance and heat dissipation between  

full- and open-flow regimes. Numerical solution of their model suggests that open-

channel flow is more common when discharge is low and where ice is steep and thin. 

Schuler and Fischer (2009) supposed that open-channel flow occurs when the discharge 

through a subglacial channel goes below the maximum discharge the channel could 

transfer without filling. They vary the heat dissipation in the flow in proportion to the 

fraction of the channel’s perimeter that is wetted and ignore the fact that in an enclosed 

channel of uniform roughness the maximum discharge does not occur when the flow 

depth is equal to the channel height (Chow, 1959).   

In this chapter I model the open-channel flow that occurs immediately following 

jökulhlaups by assuming it begins at the moment the height of the roof of the channel at 

the lake exceeds the lake’s depth. The depth of flow in a semi-circular rock-floored and 

ice-walled channel during the subsequent period of open-channel flow is modelled using 

Manning’s equation while taking into account the effect on the momentum balance of 

differing hydraulic roughnesses between the channel’s rock floor and ice walls. I ignore 

melt enlargement of the channel during periods of open-channel flow. 

This chapter is arranged as follows. In section 6.2 I describe the complete 

glaciohydrological cycle I assume begins when the lake empties, the equations I use to 

describe each stage of this cycle and a scaling analysis of these equations. In sections 6.3 

and 6.4 I simplify the model to investigate how open-channel flow begins and ends, and 

how long it lasts. In section 6.5 results of numerical simulations of the model are shown 

to agree closely with the analytical results of the preceding two sections. Findings are 

discussed in section 6.6. 
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6.2 Model formulation  

6.2.1 The glacio-hydrological cycle 

Fig. 6.1 illustrates four stages of the glacio-hydrological cycle assumed by the model to 

occur when lake depth reaches the elevation of the roof of the semi-circular channel at 

the base of the ice dam (Fig. 6.1a). At this moment air enters the channel and 

open-channel flow begins at the lake (labelled the lake outlet in Fig. 6.1a). Progressively 

more of the channel becomes open as the upper limit of full-pipe flow moves down 

glacier (Fig. 6.1b). This limit, or transition between open and full flow, moves down 

glacier, reaching the terminus. Flow is now completely open (Fig. 6.1c). This persists until 

the channel closes through creep sufficiently that it can no longer transfer the discharge 

required of it (the sum of the lake input and all the water supplied to the channel along 

its length). At this moment the transition migrates back up glacier (Fig. 6.1d). When the 

transition reaches the lake the channel is entirely full and the lake’s depth is equal to the 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6.1. The glacio-hydrological cycle assumed in the model. Flow is initially (a) 
entirely full pipe, then (b) partially full pipe and partially open channel while the 
transition travels down glacier, then (c) entirely open channel until the channel 
closes sufficiently that (d) the transition reforms and travels upglacier.  
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height of the channel roof. The lake level now rises or falls, depending on the rate at 

which the newly-established full pipe-flow removes water from the lake. If the lake level 

rises (or drops slower than the channel roof lowers through creep closure) full-pipe flow 

continues and the next flood cycle begins. I now describe the equations I use to describe 

these mechanisms in the model. 

6.2.2 Equations 

Full-pipe flow 

As in earlier chapters (see Box 2-1), evolution of the channel’s (dimensionless) cross-

sectional area, S*, with (dimensionless) time, t*, is described by  

   

   
 

     

  
 
 

        

6-1 
where Q* is the dimensionless discharge and N* is the dimensionless effective pressure. 

The R-subscripts from the previous chapter have been dropped as all variables refer to a 

channel. Down glacier of the transition (Fig. 6.1b) and along the entire channel during 

periods when no open-channel flow occurs, full-pipe flow is described by the 

dimensionless mass and momentum equations from earlier chapters: 

   

   
        

     

  
 
 

               

6-2 

   

   
 

 

 
 
      

  
 
 

       

6-3 
As before, s* denotes distance along the channel, ψ* is the basic hydraulic gradient and 

M* is the supply of water to the channel along its length (all dimensionless). The 

dimensionless parameters  R, r and δ were derived in the scaling analysis in section 

2.2.4. The dimensionless lake depth, hL*, evolves due to discharge into or out of the 

channel, Q*(0,t), and lake input, Qin*. The rate of change of lake level is therefore given 

by 

   
 

   
 

  

  
     

    
            

6-4 
Because I am interested in processes that happen when lake level is low, I modify the 

equation I previously used to convert lake level to channel effective pressure at the lake 

(eqn. 6-59) to take account of the time-varying channel height, hr*, in this conversion 
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(see Fig. 6.2a): 

                   
      

     

6-5 
where β is a dimensionless parameter derived in section 2.2.4 and  h is given by 

   
 

  

   

   
   

6-6 
In this expression hL0 is the lake depth scale and hr0 is the channel height scale (see 

section 2.2.4 and eqn. 2-24). The mean height of the channel mouth above the lake bed 

is 4/(3π)hrhr0, so I am assuming that the lake water pressure head in the channel at the 

lake outlet is the difference between this mean channel height and the lake level hL (Fig. 

6.1a). This small correction only becomes important when the lake’s depth approaches 

the height of the roof of the channel mouth hr*(0,t), for example, immediately before 

and after periods of open-channel flow. 

Equation 6-5 provides one boundary condition on the effective pressure in the channel. 

As before, at the terminus I assume a constant effective pressure, NT, during full-pipe 

flow. Here I use the value corresponding to zero water pressure and a finite ice-

overburden pressure due to an ice thickness at the terminus of H: 

            

6-7 
 

 

 

 

 

 

 

 

 

 

Open-channel flow 

Upglacier of the transition (Fig. 6.1b) and along the entire length of the channel when no 

full-pipe flow occurs (Fig. 6.1c), flow is open-channel. Fig. 6.2b shows the lake outlet 

(labelled the lake outlet in Fig. 6.1). Momentum balance between this flowing water and 

Fig. 6.2. The lake outlet mouth during (a) full-pipe flow and (b) open-channel 
flow. 
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the channel is modelled using Manning’s equation, introduced in section 2.2.1. 

Substituting eqns. 2-6 and 2-5 into eqn. 2-4 yields 

  
  

 
 

  

 
   

 

        
 

   

    

  
  

 
 
  

6-8 

where v is the flow velocity, Sw is the cross-sectional area of the flow (which, during 

open-channel flow, is less than the channel’s cross-sectional area S), Pw is the wetted 

perimeter, na’ is perimeter-averaged Manning’s roughness coefficient, ϕb is the bed 

slope, ρw is the density of water, g is acceleration due to gravity and pw is water 

pressure. Using Q = vSw, taking the pressure pw along the water’s surface, so ∂pw/∂s = 0, 

and taking sin(ϕb) ≈ ϕb yields 

  
  

 
     

  

 
   

 

  

6-9 
The cross-sectional area of the flow Sw and the wetted perimeter Pw are functions of the 

depth of flow, hw, and the height of the channel, hr, (Fig. 6.2b): 

     
  

 

 
      

  

  

       
    

    

6-10 

       
 

 
      

  

  

     

6-11 
The wetted perimeter of the channel is partially ice and partially bedrock (Fig. 6.2b). If 

the roughnesses of bedrock nb’ and ice ni’ are different, the perimeter-averaged 

Manning’s roughness na’ is a function of flow depth: 

  
      

          
    

6-12 
where βi  is the fraction of the wetted perimeter that consists of the ice:  

   
 
 
 

        

  
 

 
 
 

        

  
   

   

6-13 
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Fig. 6.3 plots the variation of discharge Q with normalised flow depth hw/hr, defined by 

eqns. 6-9–6-13, for three pairs of values for the Manning’s roughness parameters of the 

bed and the ice. Each pair corresponds to na’ = 0.1 when the channel is full – the value 

used in simulations presented in earlier chapters. It can be shown analytically that 

according to Manning’s equation, in a semi-circular channel with nb’/ni’ < (π + 3), 

maximum discharge Qmax, occurs when the channel is not full. Examples where this is the 

case are given by the red and blue curves in Fig. 6.3. As the ratio nb’/ni’ increases the 

depth corresponding to maximum discharge, labelled in the plots, also increases 

(compare the blue and red curves in Fig. 6.3). The black curve in Fig. 6.3 corresponds to a 

channel with nb’/ni’ > (π + 3) in which maximum discharge occurs when the channel flow 

is full, hw/hr = 1. 

For simplicity, during open-channel flow I assume discharge into the channel from the 

lake equals the lake input, Qin, so the lake level equals the depth of flow in the channel 

mouth. Also I assume the discharge gradient is given by 

  

  
    

6-14 
This assumes pseudo-steady flow; Q and Sw respond instantaneously to change in 

discharge into the channel from the lake. Rapidly time-varying lake input and channel 

cross-sectional area could invalidate this assumption, but I assume that channel area 

changes relatively slowly compared to the velocity at which water flows through the 

channel and restrict application of the model to situations when lake input is constant.  

Fig. 6.3. Discharge as a function of flow depth in a 10 m high semi-circular channel 
with an along-glacier slope of 0.01. 
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During open-channel flow I ignore melt enlargement of the channel, assuming that the 

channel only closes through creep: 

  

  
       

    

6-15 
where K0 is an ice rheology constant (= 10-24 Pa-3 s–1) and Na is the effective pressure 

when the water pressure is zero (Na = ρigH). In reality, preferential melting at the ice-

water interface would change the channel’s shape which would affect closure rates 

(Hooke 1990; Ng, 1998), but I ignore this effect here.  

The transition 

Immediately following the moment the lake level reaches the height of the channel, hL(t) 

= hr(s=0,t), a transition between open flow and full-pipe flow moves down glacier 

towards the terminus. Similarly, after discharge exceeds the maximum discharge the 

channel can transfer through open-channel flow at some point along it, the transition 

moves upglacier from this point towards the lake. I assume this occurs at the terminus 

because discharge increases downglacier (eqn. 6-14). The depth of flow corresponding 

to maximum discharge, hw m, can be found by solving 

  
 

 

        

   
 
       

       
 

 
   

     

       
 

6-16 
for θm and using  

                

6-17 
This depth of flow can then be used in Manning’s equation (eqns. 6-9 through 6-13) with 

the channel cross-sectional area at the terminus, to find the maximum discharge the 

channel can transfer there, Qm (s = s0).  

I use the continuity of mass at the transition to calculate how the transition moves. In 

the spatial reference frame of the glacier the transition moves at a rate of     (in my 

coordinate system     > 0 means downglacier movement of the transition). Still in the 

glacier’s reference frame, water flows into the transition at a velocity of v1 from its 

upglacier side and out of the transition at a velocity of v2 on its downglacier side (Fig. 

6.4a). Ignoring the details of the flow near the transition, I assume that, for the purposes 

of water continuity, I can approximate the cross-sectional area of the flowing water on 

the upglacier side of the transition by inverting Manning’s equation, Sw(s = sT). On the 

downglacier side of the transition flow the cross-sectional area of the flow is equal to 

the channel’s area S(s = sT).  
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Relative to the reference frame that moves with the transition (see Fig. 6.4b) water 

flows into the transition from upglacier at a velocity of v1 -     and out of it at a velocity 

of v2 -    . Mass conservation in the transition’s reference frame leads to  

                                     

6-18 
I define Qoc = v1Sw and QF = v2S, as the discharge into the transition from its upglacier 

side and the discharge moving out of the transition in a downglacier direction. QF and 

Qoc are relative to the glacier reference frame. I rearrange eqn. 6-18 to give     in terms 

of QF, Qoc, S and Sw: 

    
      

    
   

6-19 
The four quantities on the right of this expression are known from elsewhere in the 

model so eqn. 6-19 allows me to calculate the velocity of the transition’s movement. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6.4. The movement of the transition. (a) In the glacier reference frame, the 
transition moves downglacier at velocity     , (b) in the transition reference frame 
the channel moves upglacier at velocity    . 
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6.2.3 Non-dimensionalisation 

Equations 6-9 to 6-17, and 6-19 define the (dimensional) open-channel component of 

the model. Non-dimensionalisation of these equations starts by defining the same scales 

for, S, N, Q, M, ψ, t and s as were derived in the scaling analysis of the full-pipe 

equations in section 2.2.4: 

     
       

       
   

     
       

       
   

6-20 
I define scales and non-dimensional variables corresponding to the new variables 

introduced in the previous section: 

        
          

          
          

          
  

        
    

     
   

  
   

6-21 
The non-dimensional equations for the discharge gradient and channel creep closure 

during open-channel flow, eqns. 6-14 and 6-15, are simply 

   

   
               

   

   
         

6-22 
It is logical to define  

                

6-23 
and, as S = πhr

2/2,  

         
   

 
 

 
 
  

6-24 
Substituting this into eqn. 6-10 yields 

  
    

     
 

 
     

  
 

  
   

 

 
  

    
     

     

6-25 
Defining 

             

6-26 
ensures Pw* = Sw* = 1 when hr* = hw* = 1, and substituting this into eqn. 6-11 yields 
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6-27 
The perimeter-averaged Manning’s roughness equation is 

  
  

      
                     

 
 
 

        
 

  
  

 
 
 

        
 

  
    

  

6-28 
where    

        
   Substituting appropriate scales into eqns. 6-9 yields the non-

dimensional Manning’s equation,  

    
  

 
 
 

  
 
 
    

   

6-29 
where  

  
   

 
    

   

 
      

 

   

6-30 
Substituting scales into eqn. 6-19 yields the non-dimensional transition migration 

equation: 

     
  

     
 

     
 

  

6-31 
where   

  
    

    
  

6-32 
Some model scales and parameters are the same as those used in previous chapters 

(e.g. section 3.2): 

                                           ,  

                                         , 

                     

                 

6-33 
Eqns. 6-23, 6-24 and 6-26 are used to calculate the scales of new variables introduced 

here: 
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6-34 
Eqns. 6-6, 6-30 and 6-32 are used to calculate new parameters, 

                      

6-35 
The value of    

  does not depend on the other scales and does not affect my analysis. It 

is chosen arbitrarily. 

6.2.4 Summary  

Box 6-1. The full-pipe and open-channel model equations and boundary 
conditions.  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Box 6-1 summarises the full-pipe and open-channel model equations. When flow is 

entirely full-pipe, eqns. 6-36 to 6-40 describe the evolution of the channel and lake’s 

  

   

   
 

     

  
 
 

       

   

   
        

     

  
 
 

            

   

   
 

 

 
 
      

  
 
 

     

              
      

      
    

   
 

   
 

  

  
     

    
           

Full-pipe  

Model equations  

6-36 

6-37 

6-38 
Boundary condition at the lake 

6-39 
Lake level evolution 

6-40 

 

   

   
      

  
 

   

   
    

    
  

 
 
 

  
 
 
   

 
 

           
  

  
    

 
   

   
 

Open-channel 

Model equations  

6-41 

6-42 

6-43 
Boundary condition at the lake 

6-44 
Lake level evolution 

6-45 

 

     
  

     
 

     
 

 

Movement of the transition 

6-46 
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depth. If lake level drops below the height of the channel roof at the lake, a transition 

between open and full-pipe flow forms.  

Above the transition, channel closure is described by eqn. 6-41 and integration of eqn. 

6-42 from the lake, where the discharge is given by eqn. 6-44, to the upglacier side of 

the transition provides the discharge here, Qoc. The area of flow, Sw(s=sT) is found by 

inverting Manning’s equation (eqn. 6-43 with area of flow, wetted-perimeter and 

perimeter-averaged Manning’s roughness coefficient given by eqns. 6-25, 6-27 and 6-28, 

respectively).  

Below the transition, eqns. 6-36 to 6-38 model full-pipe flow and channel evolution with 

effective pressure boundary conditions of N(s,t) = Na = ρigH at the transition, s = sT, and 

the terminus, s = s0. This provides the discharge on the downglacier side of the 

transition, QF. The transition moves according to eqn. 6-46 and if it reaches the terminus 

flow remains completely open until discharge at the terminus exceeds the maximum 

discharge the channel can transfer via open-channel flow, Qm. This maximum discharge 

is found by inverting eqn. 6-16 for θm, using eqn. 6-17 to find hw and substituting this 

into Manning’s equation. 

6.3 The beginning and end of open-channel flow 

Before studying periods of open-channel flow in detail (in section 6.4) and solving the 

full model numerically (in section 6.5) it is worth considering how the system moves into 

and out of periods of open-channel flow 

Open-channel flow starts when the lake depth, hL, falls below the height of the channel’s 

roof at the lake, hr(s = 0); for simplicity, in this analysis I refer to the latter as hr. Fig. 6.4 

shows the channel mouth when lake depth and channel height are momentarily equal 

(see Fig. 6.1a for a side view of the system at this stage of the flood cycle). At this 

moment, a period of open-channel flow will begin if the lake depth decreases faster 

than the channel roof drops due to creep closure of the channel. Conversely, if the 

channel closes faster than the lake depth decreases, full-pipe flow will continue 

uninterrupted.  

In the following I consider the competition between the rate at which the lake depth 

changes and the rate at which the channel roof drops to show that there exists a critical 

value for the channel height at this stage of the flood cycle. While the channel height is 

lower than this critical height, a period of open-channel flow cannot begin because the 

lake level cannot fall sufficiently to reach the channel roof and start open-channel flow. 

Open-channel flow can only begin when the channel is larger than the critical height and 

the lake level falls to the height of the channel. 
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The same critical channel height also determines the system’s evolution immediately 

after the transition has reached the lake following a period of completely open-channel 

flow. At this stage in the flood cycle full-pipe can only persist if the channel has shrunk to 

a size corresponding to a height less than the critical channel height. 

Here I consider in detail the special case of a vertically-walled lake (pL = 1) and only 

mention briefly the effect that a lake area that increases with lake depth (pL > 1) has on 

the critical channel height. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

I aim to compare how the lake level and the height of the channel roof evolve with time 

when lake depth is low compared to the height of the ice dam. I start by examining 

channel evolution. 

Ignoring channel enlargement through frictional melt, a positive (non-dimensional) 

effective pressure in the channel adjacent to the lake, NL*, causes the channel to close 

through ice creep. The non-dimensional rate of change of channel height    
 
is given by: 

   
 

  
  

  

 
  

   

6-47 
where the dot above the hr* denotes a time derivative. Defining  

Fig. 6.5. Conditions at the lake outlet at two critical stages of the flood cycle: the 
moment the lake depth reaches the channel height immediately after a flood, and 
the moment the transition arrives at the lake after a period of open-channel flow. 
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6-48 
and substituting this and eqn. 6-5 into eqn. 6-47 yields 

   
 

  
        

   

 
  

       

6-49 
where  

               

6-50 
Multiplying out the expression in the square brackets in eqn. 6-49 gives  

   
 

  
     

       
        

       
   

 
   

6-51 
At both stages of the flood cycle I am considering here hr* ≤ 1. Hence, the first term in 

the square brackets above is at least a factor of 1/(3ς2) ≈ 27 larger than the second. The 

third and fourth terms are smaller still. Neglecting the small terms, which is equivalent 

to neglecting the pressure of the water in the channel mouth acting to impede channel 

creep closure, leaves the following expression for the rate of change of channel height 

when the lake level is low: 

   
 

  
    

 

 
   

6-52 

The rate of change of lake level,    
 
  is given by eqn. 6-4 with pL = 1: 

   
 

       
        

6-53 
To determine the discharge Q* I assume the along-channel gradient in the effective 

pressure, ∂N*/∂s*, is small compared to the basic potential gradient, ψ*. Hence, Q* is 

given by eqn. 6-3 with ∂N*/∂s* = 0: 

   
      

  
 
 

   

6-54 
Eliminating Q* between this expression and eqn. 6-53 gives: 
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6-55 
The cross-sectional area S* is related to channel height by eqn. 6-24, so 

   
 

       
       

 
 
     

6-56 
Equations 6-52 and 6-56 form a pair of ordinary differential equations for hr and hL. Fig. 

6.6 plots the system’s trajectories on the hr-hL phase-plane in the region where hL ≥ hr 

and the channel flow is full. I determined the trajectories by noting that neither 

variable’s rate of change depends on hL and then by determining their incline on three 

lines of constant hr. Firstly, when hr = 0;    
 
= 0 and    

 
> 0. So, trajectories are orientated 

along the hL-axis in the direction of increasing hL. Secondly, when hr* < Qin*3/8ψ*-3/16; 

   
 
= 0. Trajectories cross this line parallel to the hr*-axis. Thirdly, equating eqns. 6-52 

and 6-56 yields an expression for the channel height that results in the lake level and 

channel height changing at the same rate,   
  

 

 
  

 
  
  

        
       

  
 
      

6-57 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6.6. The trajectories of the model consisting of differential equations for 
channel height, hr, and lake level, hL, (eqns. 6-52 and 6-56) in hr-hL phase-phase, 
in the region hL ≥ hr. 
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Trajectories pass through hr =   
  

, with an incline of 45o. Between these three lines the 

inclines of the trajectories vary smoothly and non-linearly. 

Indicated in Fig. 6.6 is the line hr* = hL*. When the system crosses this line from the 

lower-right half of the plot into the upper-left half, open-channel flow begins. The 

trajectories in Fig. 6.6 show this is only possible when hr* >   
  

. If this is not the case the 

system will not reach hr* = hL* and full-pipe flow will continue uninterrupted. A channel 

height larger than the critical value is a necessary but not sufficient requirement for 

open-channel flow. The trajectory also needs to meet the hr* = hL* line. Where a 

trajectory enters this region of phase space determines whether it does so and this is 

determined by the history of the flood’s development. 

When the system crosses the line hr* = hL* from the upper-left to the lower-right of the 

plot, open-channel flow ends. This occurs after the spatial transition between open- 

channel and full-pipe flow has travelled upglacier to the lake. The trajectories in Fig. 6.6 

show that full-pipe flow can only continue if the system emerges from the 

 upper-left part of the plot in the region where hr*<   
  

. If the system emerges where  

hr < Qin*3/8ψ*-3/16, the lake level increases, in the region Qin*3/8ψ*-3/16 ≤ hr ≤   
  

 the lake 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6.7. (a) The rate of change of lake level,     (black curves) and channel roof 

height,     (red curve) as a function of the channel roof height. The dashed and 

solid black lines show     when lake input Qin = 0 m3 s-1 and Qin = 10 m3 s-1 
respectively. The position along the horizontal hr-axis of the intercept between 
the black and red lines corresponds to the critical channel height discussed in the 
text. The critical height depends on the lake input and (b) plots this non-linear 
dependence. All calculations consider a vertically-walled lake (pL = 1). 
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level drops more slowly than the channel roof, and in the region hr* >   
  

, lake level falls 

faster than the channel roof drops and open-channel flow would immediately be re-

established.  

Equation 6-57 can be used to calculate the critical channel height. In the special case 

when Qin* = 0,  

  
  

  
  

       
 

 
 

  

6-58 

With β = 0.9, λL ≈ 3.2, ξ ≈ 0.2 and ψ* = 1, this gives   
  

 ≈ 0.102 or, dimensionally, ≈ 1.8 m.  

Fig. 6.7a shows the solution of eqn. 6-57 graphically (and dimensionally). The black 

dashed curve is the dimensional rate of change of lake depth,    , as a function of the 

channel roof height, hr, given by eqn. 6-56 with Qin = 0 m3 s-1. It is negative for all hr, 

because the lake is not being filled, and its magnitude increases nonlinearly with the 

channel roof height, because the lake drains faster through a larger channel according to 

the (nonlinear) Manning’s equation. A second curve, in red, shows the rate of change of 

channel height,    , as a linear function of hr as given by eqn. 6-52. The two lines intersect 

at the point predicted by eqn. 6-58, (   ≈ 1.8 m,    ≈ -0.24 cm hour-1). The solid black 

curve in Fig. 6.7a shows the same as the dashed black curve, but is calculated 

numerically from eqn. 6-57 with Qin = 10 m3 s-1. The lake input increases the rate of 

change of lake level and when hr < hr0Qin*3/8ψ*-3/16 ≈ 2.7 m this rate is positive. This 

increases the critical channel height to 3.2 m. The nonlinear relationship between lake 

input and the critical channel height is shown in Fig. 6.7b where the critical channel 

height is plotted as a function of the lake input by repeatedly solving eqn. 6-57 

numerical for   
  using Newton-Raphson while varying hr. 

The critical channel height also depends on other glacio-hydraulic parameters. 

Substituting expressions for β, ξ, hL0, hr0 and S0 into eqn. 6-58 from eqns. 2-55, 6-48, 

2-53, 6-24 and 2-47 respectively, shows how   
  

 is related to the ice-flow constant, K0, 

the ice-dam height, HD, the area of the lake, ALi, and the basic hydraulic gradient scale, 

ψ0: 

  
  

  
    

    

  

 
  

 

 
 

   

6-59 
Higher HD and K0 correspond to a thicker, more deformable ice-dam which speeds-up 

channel closure, hence   
  

 increases with both parameters. The surface of a lake with a 
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larger surface area is drawn down more slowly than that of a smaller lake, hence the 

increase in   
  

 with ALi. Finally, the larger the basic hydraulic gradient, ψ0, the larger the 

discharge through a channel of a particular size. Hence, increasing ψ0 decreases   
  

. The 

strongest control on   
  

is the ice-dam thickness.  

I have assumed a lake with vertical walls (pL = 1) whereas in reality when lake level is low the 

area is likely to be smaller than at other times (due to a non-uniform lake bed or icebergs 

deposited on the bed during the flood). In the model this can be represented using pL > 1. 

The decreased area increases the rate at which the lake level changes (see eqn. 6-4 with 

pL > 1 and hL* ≪ 1), which will increase the critical channel roof height   
  

. 

6.4 The duration of open-channel flow  

One result of the scaling analysis in section 6.2.3 motivates the derivation of a simple 

expression for the duration of periods of open-channel flow. This expression could be 

used in future extensions to the flood prediction work presented in Chapter 4 to include 

post-flood open-channel flow in reconstructions of past flood volumes (see Fig. 1.3b and 

section 4.3.4). 

In the non-dimensional transition equation (eqn. 6-46), the parameter η is the ratio of 

two timescales: the flood evolution time scale, t0, and the time it takes a channel of 

typical peak total volume s0S0 to empty of water if the discharge out of it is a typical 

peak discharge Q0. Because η ≫ 1, if the lake depth goes below the channel height while 

discharge at the lake outlet is much higher than the input to the lake, as in previous 

numerical simulations (e.g. Fig. 3.2b), the transition’s downglacier movement will be 

rapid. Supposing that its upglacier movement after the end of the period of completely 

open flow is also rapid, which is favoured by a small total air-filled headspace in the 

channel, the duration of open flow is largely controlled by the time the channel takes to 

close. In what follows I make the assumption that the transition’s migration from the 

lake to the terminus and its later migration back to the lake happen instantaneously. 

Hence, I derive an analytical expression for the duration of open-channel flow in terms 

of the ice thickness at the terminus and the ratio between the discharge at the lake 

outlet when open-channel flow starts and the discharge at the terminus.  

Reverting temporarily to dimensional equations; using hw = hrsin(θw), Manning’s 

equation in a semi-circular channel is written as 

     

 
  

6-60 
where 
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6-61 

The maximum discharge the channel can transfer via open-channel flow, Qm, is given by  

            

 
      

 
   

6-62 
where the depth-angle corresponding to maximum discharge, θm, can be found by 

solving 6-16. Using eqn. 6-41, S = (πhr
2)/2 and the chain rule, channel closure can be 

expresses in terms of hr: 

   

  
  

    
 

 
     

6-63 
Using eqn. 6-60, eqn. 6-63 and the chain rule, solving the resulting Qmax time-evolution 

equation shows that Qm decays exponentially with time as the channel closes according 

to the following expression: 

       
 

 
      

6-64 
where τ0 is the time constant of the decay  

   
 

          
    

6-65 
The decay is quicker beneath thicker and more deformable ice (larger H and K0). Qm0 is 

the maximum discharge at the moment the flow becomes completely open and the 

transition forms. I ignore the time the transition takes to travel from the lake to the 

terminus and assume Qm0 corresponds to the moment the lake level reaches the 

channel height at the lake. I also assume the effective-pressure gradient in the channel is 

small and the channel’s cross-sectional area is given by eqn. 2-31 (the dimensional form 

of eqn. 6-3) with ∂N/∂s = 0: 

      
 
  

         
 

 
 

 
 

  

6-66 
where QF0 is the channel discharge at the lake at the moment the transition forms and ρi 

is the density of ice. Substituting S = (πhr
2)/2 into eqn. 6-66 and eliminating hr between 

the resulting expression and eqn. 6-62 yields an expression for Qm0 in terms of QF0: 
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6-67 
 

 

 

 

 

 

 

 

 

 

 

 

Assuming open-channel flow continues until the discharge at the terminus, QT, exceeds 

Qm, substituting eqns. 6-65 and 6-67 into  eqn. 6-64 and rearranging approximates the 

duration of open-channel flow, Toc: 

    
 

           
      

 

 
 

 
 
 

           

 

   

  
    

6-68 
or  

       
         

   

  
  

6-69 
where C1 and C2 are constants (C1 ≈ 1012 s m3 and C2 ≈ 1, when γ ≈ 0.72 m1/3 s-1, ni’ = 0.06 

m-1/3 s, nb’ = 0.17 m-1/3 s and ψ = 100 Pa m-1). The duration of open flow, TOC, is more 

strongly dependent on ice thickness than on the discharge at the lake when open flow 

begins, QF0, and the discharge at the terminus during open-flow, QT. Fig. 6.3 shows this 

graphically. The dependence of TOC on the ratio QF0/QT predicted by 6-69 is plotted for 

several different ice thicknesses, H = {75, 100, 200, 300} m. In section 6.5.4  the 

Fig. 6.8. The dependence of the duration of open flow on the ratio between the 
discharge when open-flow started to the discharge at the terminus, QF0/QT, 
predicted by eqn. 6-69 using four different ice thicknesses.  
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predictions of this expression are shown to agree closely with results from numerical 

simulations of the full open-channel flow model.  

6.5 Numerical simulations 

Here I present results from numerical model simulations of full flood cycles including 

periods of open-channel flow. I use the same model geometry as I did in previous 

chapters: a rectangular lake drains beneath a uniform slab glacier, pL = 1, VLi = 5 × 108 

m3, hLi = 100 m, a = 0, ψ0 = 100 Pa m-1, s0 = 10 km, H = 100 m (see Fig. 3.1). The discharge 

scale is chosen as Q0 = 1500 m3 s-1. The results of the model simulations are used to 

validate assumptions made during the analyses above and shown to be consistent with 

the findings of those analyses. Multiple simulations are conducted to investigate the 

controls on the size of flood cycles that include periods of open-channel flow. 

6.5.1 Numerics 

Time and space domains are discretised in the manner described in section 2.2.5 using 

non-dimensional time steps of 0.02 and a grid spacing of 0.01. When flow is entirely full-

pipe eqns. 6-36 to 6-40 are solved by stepping lake level and channel area forward in 

time using the Euler method and the previous time-step’s discharge and effective 

pressure profiles computed with the relaxation method (2.2.5).  

When flow is partially open (Fig. 6.1b), the transition’s movement is simulated by eqn. 

6-46. As indicated by the scaling analysis above, this is found to be very rapid. Hence, 

this part of the simulation must be implemented in an inner loop that effectively 

reduces the time step by a factor of 10 during periods of partially-open flow. During 

each iteration of the inner loop, five steps are taken: (i) eqn. 6-42 is numerically 

integrated from the lake to the transition with a discharge boundary condition at the 

lake given by the lake input (eqn. 6-44); (ii) at each grid-point between the lake and the 

transition and at the transition (which can be between grid-points), Manning’s equation 

(eqn. 6-43, with eqns. 6-25, 6-27 and 6-28) is inverted for flow depth using the 

Newton-Raphson method; (iii) discharge and effective pressure profiles are computed 

from eqns. 6-37 and 6-38 using Newton’s method (see section 2.2.5); (iv) the channel 

area is evolved forward in time with eqn. 6-41 above the transition and eqn. 6-36 below, 

using Forward-Euler time-stepping; and (v) the transition’s movement is simulated using 

Forward-Euler time-stepping with eqn. 6-46.  

When flow is entirely open, discharge, channel closure and flow depth are calculated as 

described above for the above-transition region. At the terminus the maximum 

discharge is calculated from Manning’s equation using the channel height here and the 

depth-angle corresponding to maximum discharge for the channel. The latter is 
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pre-calculated from eqn. 6-16 using Newton-Raphson. The initial lake level is 30 m and 

the uniform initial channel cross-sectional area is 0.01S0 ≈ 5 m2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6.5.2 Flood cycles 

Fig. 6.9 shows results from a model run with lake input Qin = 10 m3 s-1 and channel water 

supply M ≈ 0.0002 m2 s-1. This model run acts as a control. The time series of the lake 

level, the discharge at the lake outlet and the channel cross-sectional area at the lake 

show how the model simulates periods of lake filling followed by floods with peak 

discharges of 50-200 m3 s-1. During each flood the lake level drops below the height of 

the channel at the lake, which results in periods of open-channel flow (indicated by the 

shaded time-periods in Fig. 6.9). The system reaches a limit cycle after several floods.  

Fig. 6.10 shows the last flood cycle displayed in Fig. 6.9 in more temporal detail with the 

addition of the channel-height time series. The flood’s early stages are similar to those 

of floods simulated in Chapters 3; discharge and channel size increase (Fig. 6.10a & b) 

through Nye’s (1976) melt-discharge feedback and the lake level begins to drop when 

discharge exceeds lake input (Fig. 6.10a). In this simulation, the lake level reaches the 

Fig. 6.9. Simulated flood cycles including open-channel flow. Timeseries of (a) 
lake level, hL(t), (b) discharge at the lake, Q(0,t), and (c) channel area at the lake, 
S(0,t). Shading indicates periods of open-channel flow. Lake input, Qin = 10 m3 s-1, 
channel water supply, M ≈ 0.0002 m2 s-1 and basic hydraulic gradient parameter, 
a = 0 (see eqn. 3-9). 
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height of the channel roof at the lake when it is 8.6 m (labelled A in Fig. 6.10a & b). This 

is larger than the critical channel height of 3.2 m and after the lake level falls below the 

channel roof height a transition between open-channel and full-pipe flow forms and 

rapidly travels downglacier to the terminus. This is the beginning of the period of 

completely open flow (see Fig. 6.1c). During this period (between B and C, Fig. 6.10c & d) 

the lake depth equals the depth of flow in the channel at the lake, which slowly 

increases as the channel closes through creep, and the discharge at the lake equals the 

lake input. After ~30 days the channel has closed sufficiently that the discharge at the 

terminus exceeds the channel’s maximum open-channel capacity and the transition 

re-forms and rapidly travels upglacier to the lake (C, Fig. 6.10c & d). At this stage the 

channel height at the lake is 3.0 m. This value is below the critical channel height of 3.2 

m calculated in section 6.3, and, as predicted during that analysis, initially the discharge 

at the lake is larger than the lake input (D, Fig. 6.10d) and lake level drops (D, Fig. 6.10c). 

Fig. 6.10. A simulated flood that resulted in a period of open-channel flow. (a and 
b) show the entire flood and (c and d) show the period of open-channel flow in 
more detail, their vertical and horizontal extents are indicated in (a) and (b) by 
black boxes. In both cases, the left plots show timeseries of lake depth (blue) and 
channel roof height (green) and the right plots show timeseries of discharge 
through the channel at the lake.  
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However, the channel height drops more quickly than the lake level drops and full-pipe 

flow persists.  

Before and after periods of completely open-channel flow (between A and B, and 

between C and D, in Fig. 6.10, respectively) the transition’s movement is very rapid. In 

both cases it completes the journey between the lake and the terminus in less than one 

time step (< 5.4 hours). This suggests that it was appropriate to ignore the transition’s 

journey time in comparison to the total duration of open-channel flow. To help explain 

the transition’s rapid movement, Fig. 6.11a plots along-glacier profiles of the channel 

height from stages in the flood cycle corresponding to A and B in Fig. 6.10. The solid 

green line is the channel height profile at stage A, when the transition first forms at the 

lake. The channel is large, with a mean height of 8.6 m. Downglacier of the transition it 

can transfer a much larger water discharge, QF, than reaches the transition from its 

upglacier side – the lake input plus a contribution from the channel water supply M. A 

first order estimate of QF is given by eqn. 6-3 with ∂N*/∂s* = 0: QF ≈ 200 m3 s-1. Lake 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

input is only 10 m3 s-1, hence the transition moves downglacier rapidly. After the 

subsequent period of open-channel flow, the transition moves upglacier similarly rapidly 

to the lake. The dashed green line in Fig. 6.11a shows the channel height profile at stage 

C of the flood cycle and the solid blue line is the corresponding profile of the water’s 

depth of flow. The air-filled head-space between the water’s surface and the channel 

roof is small; the total air-filled volume in the channel is only ~18000 m3. In this case it is 

this small head-space that causes the transitions rapid movement.   

Fig. 6.11. Along-glacier profiles of (a) channel height (green) and depth of water 
flow (blue) and (b) effective-pressure gradient. Each profile is labelled A, C or D, 
indicating the stage in the flood cycle shown in Fig. 6.10 it corresponds to.  
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In sections 6.3 and 6.4 I assumed the effective pressure gradient was small compared to 

the basic hydraulic gradient at the beginning and end of periods of open-channel 

drainage. Profiles of effective-pressure gradient, corresponding to stages A and D of the 

flood cycle (see Fig. 6.10) and plotted in Fig. 6.11c suggest that this was appropriate.  

6.5.3 Controls on flood size 

Fig. 6.12 plots results extracted from 19 nine-year-long model simulations, with different 

channel water supplies (Fig. 6.12a) and lake meltwater inputs (Fig. 6.12b). Each pair of 

points (one green, one blue) corresponds to one simulation. The results corresponding 

to the simulation described in detail above are labelled in the figure. During most 

simulations the system approaches limit cycles. Three exceptions, indicated in the figure, 

are simulations during which the lake filled too slowly to flood more than a few times. 

The highest level the lake reached – the highstand – and the peak discharge during the 

final flood cycle in each simulation are plotted.  

Fig. 6.12a shows that highstand and peak discharge decrease with the channel water 

supply. In Chapter 3 and Chapter 5 a similar result, found while simulating flood cycles 

with no periods of open-channel flow, was explained by considering the dynamics of a 

subglacial water divide that forms between floods. Further analysis of the results of 

these new simulations reveals that a divide forms between each simulated flood. I 

conclude that, like in situations when no open-channel flow occurs, the dynamics of a 

subglacial water divide cause the channel supply’s control on highstand and peak 

discharge.  

Fig. 6.12b shows how peak discharge and highstand varied between different 

simulations using different lake meltwater inputs, Qin. The relationship is not monotonic. 

When Qin < 12 m3 s-1, peak discharge and highstand increase with Qin and when Qin > 12 

m3 s-1 they decrease with Qin. In Chapter 3 these measures of flood size were found to 

increase with Qin. As with their relationship to channel water supply, this relationship 

was explained by considering the dynamics of a subglacial water divide.  

Of the 11 simulations that produced the results shown in Fig. 6.12b, no divide formed 

between floods during the four that used the highest Qin (= 14, 16, 18, 20 m3 s-1). Despite 

this, all four reached limit cycles. Note that these are the same model runs that display 

the negative relationship between lake input and flood size. In Chapter 3 I found that 

simulations could only reach limit cycles if a divide formed between floods or there was 

a topographic divide, i.e. the basic hydraulic gradient near the lake was negative. Neither 

is the case for these four simulations.  

The contrast between the previous chapter’s results and those presented here points to   
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Fig. 6.12. Peak discharge and highstand as a function of (a) M, with Qin = 10 m3 s-

1, and (b) Qin, with M ≈ 0.0002 m2 s-1. During all simulations, except were 
indicated, a water divide forms between floods  
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a new mechanism linking lake input and flood size that is exclusive to cycles that include 

periods of open channel flow. Such periods end when the discharge at the terminus, 

consisting of the lake input, Qin, plus the total water supply to the channel along its 

length, Ms0, exceeds the maximum discharge the channel can transfer, Qm. The latter is 

related to the channel’s height, hr, by eqn. 6-62, 

       

 
    

  6-70 
where γm is a constant. Therefore, assuming the channel remains spatially uniform (see 

Fig. 6.11a) and ignoring the transition’s journey time between the terminus and the lake 

(see discussion in section 6.5.2), the size of the channel after a period of open-channel 

flow increases with the lake input and the channel water supply: 

    
       

  
 

 
 
  

6-71 
The conditions after a period of open-channel flow act as the next flood’s initial 

conditions. For a given initial lake height (hL ~ 0 m), a larger initial channel size will tend 

to expedite flood development and decrease the size of the next flood. But, during most 

simulations the formation of a water divide and a long period of low discharge between 

floods shrinks the channel significantly and prevents this ‘memory effect’. However, 

during the four simulations that used the highest lake input, the initial channel was 

larger enough to prevent a divide forming. With no divide formation, the mechanisms 

described in Chapter 3 that link lake input and flood size based on divide dynamics do 

not operate and the channel’s initial conditions can affect flood development. Hence, 

flood size decreases with lake input for these four simulations.  

6.5.4 Numerically simulated duration of open-channel flow 

I now compare the predictions of the analytical model of the duration of periods of 

open-channel flow with the results of the numerical simulations that produced the 

results discussed in the section above. Between them, the 19 model simulations 

produced 112 complete flood cycles. Every cycle included a period of open-channel flow 

whose duration, Toc, has been extract from the results. Fig. 6.13 plots, as blue crosses, 

each period’s duration against the ratio of the discharge just before open-channel flow 

began, QF0, to the discharge at the terminus during open-channel flow, QT. The green 

line plots Toc as predicted by eqn. 6-69 with H = 100 m. The numerically-derived results 
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lie close to the analytically-derived line with small discrepancies due to the assumptions 

of spatially uniform effective-pressure and channel height before and after periods of 

open-channel flow. This finding increases confidence in the assumptions that underlie 

the simplified analytical model. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6.6 Discussion and conclusions 

The simplified model of full-pipe flow at low lake levels analysed in section 6.3 shows 

that model behaviour when the system switches between open and full-pipe conditions 

depends on the channel’s height relative to a critical channel height. This critical height 

increases with the lake meltwater input, the ice-dam thickness, the deformability of the 

ice and the area of the lake. It decreases with the magnitude of the basic hydraulic 

gradient driving water flow away from the lake. The system cannot switch to open-

channel conditions without the channel reaching this critical height. Conversely, the 

system cannot switch back to full-pipe flow unless the channel shrinks to below this 

critical height during a period of open-channel flow. The simplified model highlights one 

set of controls on whether a flood results in open-channel flow – the glacio-hydraulic 

controls on critical channel height – but it does not address whether the lake level will 

reach this critical height. Asking whether it does or not amounts to asking what 

trajectory in the phase space depicted in Fig. 6.6 the system is on as it enters this region 

Fig. 6.13. Comparison of the duration of open channel flow extracted from many 
numerical model simulations to the predictions of eqn. 6-68. 
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of phase space (the region of low lake level). As shown in Chapter 3 such trajectories 

depend on environmental factors, for example, lowstand decreases with lake input and 

increases with channel water supply. I stop short of a combined analysis of the controls 

on flood size and the critical channel height, as the aim of this chapter is to present the 

first attempt at modelling open-channel flow after jökulhlaups. Future work could take 

on such a combined analysis. 

In section 6.4, motivated by its potential future use in improved reconstruction of 

jökulhlaup lake level, I derived an expression for the duration of periods of open-channel 

flow. The analysis showed that their duration is more sensitive to ice thickness than the 

hydrological conditions before or during open-channel flow. It is sensitive to ice 

thickness because this controls the ice overburden pressure and hence the rate of 

channel closure. Hence, open-flow duration may vary more between systems than 

between floods from the same system. For simplicity I have assumed that ice thickness is 

uniform and the first position at which the channel closes sufficiently to end open-

channel flow locally is the terminus. In a real, non-uniform glacier, thicker areas will 

close most rapidly and, when applying the model to such a glacier, it may be appropriate 

to replace the ice thickness H in eqn. 6-68 with the glacier’s maximum thickness along its 

centre line.  

For the purpose of reconstructing past flood volumes one wants to know the length of 

the delay between a flood terminating and the lake resuming the impoundment of 

meltwater. This delay may be longer than the duration of open-channel flow predicted 

by the simple model. Numerical solution of the full model shows that when full-pipe 

flow resumes, discharge remains positive for tens of days after open-channel flow 

ceases. This slow recession is controlled by the closure of the channel at the lake and it 

will be possible in future work to derive an expression, equivalent to eqn. 6-68, that 

approximates its duration. 

Numerical solution of model equations can simulate the full glacio-hydraulic cycle 

introduced in section 6.2.1. Detailed analysis of the hydrological state of the system at 

key points in this cycle suggest assumptions regarding the spatial uniformity of the 

effective pressure and channel size, made during earlier analyses were appropriate. 

Comparing the results of multiple model simulations has shown that, in some parts of 

parameter space, the dynamics of a water divide dominate the relationship between 

environmental parameters and flood size – this was also seen in Chapter 3. However, 

when lake input is high, a divide does not form and instead the size of the channel after 

one flood significantly affects the next. This results in the size of floods decreasing with 

lake input – the opposite relationship to that found in earlier chapters when cycles with 

no open-channel flow were investigated. Crucially, this new mechanism allows the 
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environmental conditions immediately following a flood to affect the size of the next 

flood. This memory effect only occurs when meltwater input to the lake is large enough. 

It has implications for real jökulhlaup systems where floods habitually result in 

open-channel flow and lake input varies inter-annually. In these systems, an isolated 

warm year would result in a large flood, because the previous flood, having occurred in a 

year of ‘average weather’, was not abnormally large, so the memory effect does not 

operate. Because the weather is warm when this large flood ends, the channel at the 

end of the period of open-channel flow is large. Hence, the next flood cycle starts with a 

large initial channel size. This prevents a divide forming and the next flood will 

consequently be small. Such a pattern is in fact observed in the reconstructed lake level 

history from Merzbacher Lake; several anomalously large floods are followed by short 

filling periods and small floods (see Fig. 1.3a). Future work will investigate this idea 

further. 
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Chapter 7 Supraglacial lake drainage  

7.1 Introduction  

In previous chapters I have focused on subglacial processes. Here I turn my attention to 

the surface analogue of subglacial jökulhlaups: surface drainage of supraglacial lakes 

through melt enlargement of a surface channel. Water from rain or melt can flow over 

ice surfaces and collect in topographic depressions to form lakes (e.g. Echelmeyer et al., 

1991; Lüthje et al., 2006; Sundal et al., 2009; Selmes et al., 2011; Reynolds, 1981). Lakes 

are important because they lower the glacier’s surface albedo, thereby increasing the 

absorption of incoming radiation (Lüthje et al., 2006; Tedesco et al., 2012); they can 

rapidly drain to the bed of an ice sheet, affecting ice dynamics (e.g. Das et al., 2008); and 

they are thought to play a role in ice-shelf disintegration (e.g. Scambos et al., 2009). 

Surface drainage of lakes relocates water down glacier, affecting where these processes 

operate. In the following I consider examples of such water relocation from the  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7.1. Supraglacial lake drainage in Greenland. (a) and (b) two LANDSAT 7 
images acquired 7 days apart on 30th June 2001 and 7th July 2001. Inset in (a) 
shows the location this part of the ice sheet in Greenland. Boxes in (a) and (b) 
indicate the region shown in more detail in (c) and (d), where the supraglacial 
drainage of one lake (A) to another (B) and the rapid drainage of a third lake (C) 
are visible. 
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Greenland and East Antarctic Ice Sheets to motivate this chapter’s modelling 

investigation of supraglacial lake drainage. 

Fig. 7.1 displays two LANDSAT 7 satellite images acquired on 30th June 2001 and 7th July 

2001 of a land-terminating section of the Greenland Ice Sheet south of Jakobshaven 

Isbræ.  Figs. 7.1c & 7.1d are enlarged images of the area outlined by the boxes in Figs. 

7.1a & 7.1b. Several blue supraglacial lakes can be seen clearly against the white ice 

sheet surface. During the 7 days that separate the images, the upglacier limit of the 

region of the ice sheet populated by lakes moved upglacier and individual lakes shrunk, 

grew and drained completely (examples are labelled in Fig. 7.1 as A, B and C 

respectively). Water from a lake that drains completely can reach the bed (e.g. Das et al., 

2008). Because such lake-to-bed drainage can affect ice dynamics through the subglacial 

coupling considered in Chapter 5 and through its effect on seasonal subglacial drainage-

system evolution (Bartholomew et al., 2011b; Das et al., 2008), the location and 

evolution of supraglacial lakes has implications for the future dynamic response of the 

ice sheet to atmospheric warming. However, water from a supraglacial lake can also 

breach surface topographic divides to flow supraglacially into another lake, thus 

redistributing potential points of basal melt water injection. An example of such 

supraglacial drainage is visible in Fig. 7.1 between lakes A and B. Modelling and 

understanding such drainage is the focus of this chapter.  

The present study is also motivated by new observations of surface drainage in 

Antarctica, where surface melt and lake formation have been implicated as the cause of 

ice-shelf collapse in the warmest parts of Antarctica (the Antarctic Peninsula) (e.g. 

Fahnestock and Abdalati, 2002; Scambos et al., 2000; Scambos et al., 2003; Scambos et 

al., 2009; Sergienko and Macayeal, 2005; van den Broeke, 2005). As Fig. 7.2 shows, 

surface melt and lake formation also occur in East Antarctica along with large-scale 

relocation of water from the ice sheet flank to an adjacent ice shelf.  

The MODIS and LANDSAT satellite imagery show multiple images of Nivlisen Ice Shelf, 

Dronning Maud Land (70°68'S, 12°09'E) and were acquired at different stages of one 

melt season. Lakes form on the ice-sheet’s flank (source lakes, Fig. 7.2a) before rapidly 

draining, spreading meltwater across the ice shelf. Fig. 7.2a was acquired on 5th Jan 2008 

after several weeks of melt and drainage. The temporal evolution of this drainage is 

shown in detail in Figs. 7.2b–7.2g. The meltwater wave front (red arrows) propagates 

across the shelf, at average velocities of 1.7-6.8 m min-1, along paths created by the 

previous year’s refrozen flood water, travelling up to 70 km and flooding an area of ~260 

km2 (~3.3% of the ice-shelf’s area). More images (acquired between 2002 and 2009; not 

shown) show that this previously unreported phenomenon occurs nearly every year. The  
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Fig. 7.2. Surface Drainage in East Antarctica. (a) MODIS optical satellite image 
acquired on 5th Jan 2008, showing: Nivlisen Ice shelf inundated with melt water, 
source lakes, 100 m surface contours (in white) and the grounding line (in grey). 
(b) Six MODIS and LANDSAT images showing the time evolution of the 2007-08 
flood. Red arrows indicate the flood wave front and the time separating image 
acquisition is shown beneath the black arrows. In (f) flood water completely 
covers the previous year’s refrozen flood path. See Scambos et al. (1996) for 
more details on how the images are acquired. 
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images also reveal large inter-annual variability in drainage. This, coupled with an 

analysis of weather station data from a nearby Russian research station 

Novolazarevskaya (Fig. 7.2a), suggests that the extent of lake formation and drainage is 

highly sensitive to air temperature. The effect of melt water on ice shelf stability has 

been demonstrated by disintegration events in the Antarctic Peninsula and these new 

observations from East Antarctica further motivate my efforts to understand surface 

drainage of supraglacial lakes. 

In this chapter I develop a model of lake drainage through an ice-walled surface channel, 

incised in ice by melting caused by the turbulent dissipation of heat in the flowing water. 

Previous work has taken a similar approach (Walder and Costa, 1996; Raymond and 

Nolan, 2000, Vincent et al., 2010; Mayer and Schuler, 2005). The novelty here is the 

more generally applicable model of hydrology in the channel and my application of the 

model to supraglacial lakes in ice sheets. 

Raymond and Nolan (2000) adapted Walder and Costa’s (1996) model of lake drainage 

through an ice-rock breach to describe surface lake drainage in the alpine, debris-

covered glacier setting. They introduced a criterion for unstable drainage: initial channel 

incision rate exceeding the initial rate of lake surface lowering. Using this, they showed 

that a critical lake area exists above which drainage, initiated by the lake overtopping its 

bank, is unstable. Using the same criterion Mayer and Schuler (2005) found a critical lake 

temperature above which lake drainage is unstable. 

Both studies assumed a constant channel width much larger than the water’s depth of 

flow in the channel, whereas Vincent et al. (2010) followed Walder and Costa (1996) and 

assumed critical flow to simplify the determination of the channel water depth. 

In my model water depth is instead determined by Bernoulli’s equation and momentum 

conservation in the lake and the lake outlet. This enables wider application of the model, 

to scenarios where simplifications made by previous authors are not valid. I follow 

Raymond and Nolan (2000) in considering the stability of drainage but take my analysis 

further to explain physically how and why some parameters affect stability and others 

do not.  

The model consists of equations describing the time evolution of the height of a 

supraglacial lake’s surface and the bottom surface of a rectangular channel, and further 

equations describing the hydraulics of water flow through the channel. It is developed in 

section 7.2. In section 7.3 I investigate the controls on drainage stability by examining 

my model equations analytically. In section 7.4 I corroborate findings of this analytical 

investigation by running numerical simulations of drainage using the model. In section 

7.5, I discuss my findings in relation to future melt-extent change in Greenland and my 

new observations in East Antarctica. 
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7.2 Model formulation 

The model geometry is shown in Fig. 7.3. A supraglacial lake drains through a channel 

incised into the ice. The model ignores the along-channel spatial dimension, assuming 

that the drainage of lake water is controlled by a single, stationary point in the channel 

near the lake, labelled as the lake outlet in Fig. 7.3.  

7.2.1  Lake evolution 

The lake has a volume VL, a surface area AL, and a depth hL, related by the hypsometry 

parameterisation introduced in eqn. 2-35,  

 
  

   
 

  

 
  

   
  

7-1 

Lake depth evolves with time, t, due to melt water input from its surroundings, Qin, and 

outflow, Q, though a channel according to 

   

  
 

 

   
 
   

  
 

    

         

7-2 

where ALi, VLi and hLi are the lake’s reference area, volume and depth respectively, and 

are related by ALi = pL VLi/hLi. pL is a lake shape parameter, pL = 1 corresponds to a 

vertically-walled lake and increasing pL corresponds to increasingly ‘horn-shaped’ lakes 

(Clarke, 1982). The meltwater input to the lake is assumed to originate from an area 

upglacier of the lake and I ignore melting of the lake bed, assuming a constant lake 

shape.  

 

 

 

 

 

 

 

 

 

 Fig. 7.3. Schematic of the surface lake drainage model geometry (a) before 
drainage (initial conditions) and (b) during drainage. 
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7.2.2 Bernouli’s equation in the channel mouth 

I consider the flow out of the lake into the channel mouth to be a potential flow to 

which Bernoulli’s equation is applicable: 

  
  

  
           

7-3 

where u is the surface velocity of the flow and z is the height of the water above an 

arbitrary datum (e.g. Henderson, 1966). I use the height of the lake’s bed for this datum 

and I denote the surface velocity of the water in the channel by v and the height of the 

channel bottom above the lake bed by hC. Applying eqn. 7-3 to the surface of the water 

in the lake, where u = 0, and to the surface of the water flowing in the channel, where  

u = v, yields 

          
  

  
  

7-4 
Next, I assume that the velocity of the water flowing in the channel is uniform and equal 

to the surface velocity v and that the channel has a rectangular cross-section with a 

constant width w. The discharge through the channel Q is therefore given by 

          

7-5 
 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 7.4. Depth of flow, D, as a function of discharge, Q, from Bernoulli’s equation 
(blue line) and Manning’s equation (red dashed and dotted lines).  
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Hence, eqn. 7-4 can be written as 

          
  

      
   

7-6 

The blue curve in Fig. 7.4 plots D vs. Q as defined by eqn. 7-6. The two branches of the 

curve with dD/dQ < 0 and dD/dQ > 0 correspond to subcritical and supercritical flow 

respectively (corresponding to FR < 1 and FR > 1, where the Froude number FR is given by  

FR = v(gD)-0.5) and meet at a critical point (C) where D = DC and discharge is at a 

maximum, QC. Maximising Q with respect to D by differentiating eqn. 7-6 reveals how DC 

is related to the lake height hL, the height of the channel bottom hC and QC 

   
 

 
                                

   

7-7 

7.2.3 Force balance in the channel 

To complete the model’s description of water flow through the channel I balance the 

shear stress exerted by the moving water on the ice with the gravitational driving stress. 

I parameterise the shear stress with the Darcy-Weisbach equation, 

  
 

 
        

7-8 
where fR is a friction constant and ρw is the density of water. In previous chapters I used 

Manning’s equation to parameterise the balance of momentum in flowing water.  My 

choice here of the Darcy-Weisbach equation simplifies the analysis of the model and 

does not qualitatively affect the model’s behaviour. The gravitational driving stress, τd, 

depends on the along-channel slope ϕb and the depth of flow D: 

           

7-9 
I assume the channel slope remains constant and uniform. Equating τ and τd, 

substituting in Q = vwD and rearranging for Q yields an expression for the discharge in 

terms of the channel slope, the channel width, the depth of flow and the roughness of 

the channel: 

   
   

 

   
  

 
     

7-10 

The red dashed curve in Fig. 7.4 plots this discharge–flow-depth relationship. This curve 

intercepts the blue curve derived from Bernoulli’s equation (eqn. 7-6) at point A. This 
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point corresponds to the discharge Q and depth of flow D which simultaneously obeys 

both Bernoulli’s equation and the force balance represented by eqn. 7-10.  

7.2.4 Critical flow 

Point A is on the subcritical branch of the Bernoulli curve (in blue), but, depending on 

model parameters, the intercept between the Bernoulli and force-balance curves can lie 

on the supercritical branch. The red dotted line in Fig. 7.4 plots the discharge–flow-

depth relationship for a channel with a larger slope and a smaller roughness parameter 

than were used to plot the dashed line. It intercepts the Bernoulli curve at point B.  

This leads to a slight complication in the model. When flow is supercritical at some 

position along a flowpath, hydrologists usually assume that discharge is controlled by a 

transition from sub- to super-critical flow somewhere upstream. At such a transition 

flow is critical, with discharge and flow depth given by maximising discharge with 

respect to flow depth (as I did to derive eqn. 7-7 for the special case of a rectangular 

channel). Indeed, artificial weirs are designed so that water flow over them is critical and 

the discharge can be easily calculated using the observed water depth upstream of the 

weir and eqn. 7-7. I adopt a similar approach here and assume that, when the solution 

to the Bernoulli and force balance equations indicate supercritical conditions, discharge 

is in fact provided by eqn. 7-7. Because the model has no along-channel spatial 

dimension, I am also assuming that the transition through critical flow occurs at the lake 

outlet (Fig. 7.3). 

On which branch of the Bernoulli curve the solution lies, can be conveniently 

determined by evaluating where the force balance curve (red curves in Fig. 7.4) 

intercepts the line in D = DC (the horizontal dashed line Fig. 7.4 that passes through C1, C 

and C3). If this intercept occurs to the right of point C (e.g. at C2) the flow is supercritical 

and the discharge at the lake outlet is the critical discharge QC, given by eqn. 7-7. 

Conversely, if the intercept is to the left of C (e.g. at C1), flow is subcritical and the 

intercept between the force-balance and Bernoulli curves (e.g. A) provides the discharge 

at the lake outlet. 

7.2.5 Channel incision 

Heat transferred from the flowing water to the ice melts and enlarges the channel. I 

assume the lake temperature is 0oC, so that the only source of heat is frictional 

dissipation in the flowing water. Hence the mass of ice melted per unit length of the 

channel per unit time, m, is 

  
   

 
 



Modelling Ice-dammed Lake Drainage 

Chapter 7: Supraglacial lake drainage 

 

 
 167 

7-11 

(Walder and Costa, 1996). For simplicity I assume melt occurs in the channel bottom but 

not at the sides. This is motivated by other studies that make the same simplification 

(e.g. Mayer and Schuler, 2005; Vincent et al., 2010) and the fact that at present it is 

unclear how best to apportion melt between the channel bed and its side. Accordingly, 

the rate of change of the height of the channel bottom above the lake bed, hc, is given 

by  

   

  
  

    

    
     

7-12 

Equations 7-2, 7-5, 7-6, 7-7, 7-10 and 7-12 complete the model: 
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7-19 
These describe respectively the time evolution of lake level, Bernoulli’s equation in the 

water flowing from the lake into the channel, the characteristics of critical flow, the 

balance of frictional and driving forces in the flowing water and the downward incision 

of the channel into the glacier surface. 
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7.3 Drainage stability 

Before embarking on a numerical sensitivity analysis in the next section, I investigate 

model behaviour analytically. I will show that the surface drainage simulated by the 

model can be stable or unstable. Stable drainage remains bounded and often stops 

altogether before the lake has been emptied completely, while unstable drainage grows 

unboundedly with time, leading to complete emptying of the lake. In what follows I 

discuss the origin of these two styles of drainage, mathematically and physically. I go on 

to show how and why some model parameters affect drainage stability while other do 

not. 

For this analysis I ignore the complication of a transition through critical flow controlling 

discharge in some cases (see previous section). This does not affect the findings of the 

present section qualitatively and comparison between these findings and the results of 

numerical simulations using the full model in the next section will highlight the role that 

critical flow plays in drainage. 

I define z as the height difference between the lake’s surface and the bottom of the 

channel (hL - hC) (see Fig. 7.3). Recasting eqns. 7-15 and 7-18 in terms of the flow velocity 

v (using eqn. 7-14) and rearranging both for the flow depth in the channel D results in 
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7-21 
Eliminating D between the two equations above and rearranging yields the following 

expression relating the flow velocity to the difference z: 

    
  

  
  

   

  

7-22 
Eliminating v between this and eqn. 7-19 yields 
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7-23 
where the dot above the hC denotes a time derivative and  
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7-24 
Eliminating D between eqn. 7-14 and eqn. 7-21 yields 

  
     

    
  

7-25 
and eliminating v between this expression and eqn. 7-22 shows how discharge Q 

depends on z: 

    
 
   

7-26 
where  

   
  

  
  

   

 

 
    

    
  

7-27 
Substituting this into eqn. 7-13 yields 

  
  

 

   
 
   

  
 

    

       
 
    

7-28 
The model has been reduced to a pair of ordinary differential equations (eqn. 7-23 and 

7-28). The time evolution of z is found by differencing   
  and   

 : 

   
 

   
 
   

  
 

    

       
 
     

 
   

7-29 
This expression incorporates the two competing processes that control lake drainage in 

the model: lake-surface drawdown due to discharge through the channel, and 

downward incision of the channel into the glacier’s surface due to the dissipation of heat 

in the flowing water. Armed with the two expressions above, the equation for the time 

evolution of hC,  

  
   α 

 
   

7-30 
and the definitions of α and β, 
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7-31 
I continue the analysis by considering three simplified drainage scenarios. 

7.3.1 Cylindrical lakes with no input  

First I consider the drainage of a cylindrical lake (pL = 1) which receives no input of water 

(Qin = 0). Under these conditions eqn. 7-29 reduces to 

    
 
    

 

   
   

7-32 
Consider the situation shown in Fig. 7.3. A snow dam in the channel fails when the lake 

is a height ztrig above the bottom of the channel (z = ztrig) and lake drainage begins. This 

drainage initiation mechanism is supported by field observations of drainage in 

Greenland (I. Willis, personal communication).   

Subsequent to this initiation eqn. 7-32 determines how z changes with time as the 

drainage progresses. In particular, it is the sign of the quantity in brackets in eqn. 7-32 

that controls whether z increases or decreases with time. I define this quantity as  

       
 

   
   

7-33 
If Λ is positive,    is also positive and z increases unstably with time. Physically, the 

channel is incised into the ice faster than the lake’s surface is drawn down by the flood. 

A positive feedback is set up between z and   , because discharge increases with z (eqn. 

7-26). In this case discharge grows unboundedly with time, so I call this style of drainage 

unstable. Cylindrical lakes that drain unstably will always empty completely. In contrast, 

if Λ < 0, z and discharge always decreases with time. The physical explanation of this is 

that the lake surface is drawn down faster than the channel is incised downwards. 

Drainage that does not grow unboundedly with time I call stable. If Λ is sufficiently small, 

drainage will halt while there is still water in the lake. 

The importance of the parameter Λ can been seen by integrating eqn. 7-32 to give the 

height difference z as a function of time:  
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7-34 
From eqn. 7-26, the discharge Q is therefore given by 

    
 

      

  
 

 
 

  

 

7-35 
When Λ > 0 the terms in brackets in both eqn. 7-34 and eqn. 7-35 decrease with time, 

hence z and Q increase with time. Conversely, when Λ < 0, z and Q decrease with time. 

Fig. 7.5 demonstrates this graphically. The figure shows the time evolution of discharge 

as defined by eqn. 7-35 for different values of the stability parameter Λ. Because Λ 

depends on the lake surface area, ALi I have used this to vary Λ in Fig. 7.5. The larger the 

lake area the more unstable a lake is. The physical reason for this can be revealed by 

retracing how ALi arrived in the definition of the stability parameter. In eqn. 7-13 it is in 

the denominator because the larger a lake’s area, the slower its level changes due to a 

given discharge into the channel. Hence, for a given discharge (and associated channel-

incision rate), the lake’s surface drops more slowly if its area is large than if it is small.  

The threshold between stability and instability (Λ = 0) corresponds to  

  
 

   
  

7-36 
or, after substituting in the definitions of α and β from eqn. 7-31, 

     

 
 

   

   
  

7-37 
The quantities on the right of this expression are constants, so every lake has a critical 

surface area that is proportional to the channel’s width and inversely proportional to its 

slope, ϕb, and independent of the hydraulic roughness of the ice. Or, to put it another 

way, drainage instability increases with lake area and channel slope, and decreases with 

channel width but does not depend on ice roughness.  

Physically, increasing the channel slope ϕb has several effects, the net effect of which is 

more unstable drainage. Noting that the definitions of α and β (eqn. 7-31) show how 

varying model parameters affects the rate of channel incision and lake-surface 

drawdown respectively, one can retrace how ϕb arrived in the stability criterion. This 

exercise reveals that increasing ϕb, increases the water flow velocity, which increases 

the rates of channel incision and the rate of lake drawdown. However, in the case of the 

rate of lake drawdown this is slightly compensated for by a decrease in the depth of flow 

associated with the increase in slope and the hydraulics of open-channel flow as 
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described by the Darcy-Wiesbach equation. Hence, as channel slope increases, the 

incision rate increases more rapidly with increasing ϕb than does the rate of lake 

drawdown. Hence, the decrease in drainage stability with the channel slope.  

A similar analysis explains the increase in drainage stability with the channel width w. 

Increasing this parameter does not affect the channel-incision rate, hence w does not 

appear in α. In contrast, it increases the rate of lake-surface drawdown by increasing the 

discharge through the channel for a given flow velocity (eqn. 7-14). Hence the increase 

in drainage stability with channel width. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Perhaps surprisingly, the hydraulic roughness does not affect drainage stability. 

Decreasing the roughness increases the flow velocity, which affects both the channel 

incision rate and the rate of lake surface drawdown. As with increasing the channel 

slope, decreasing channel roughness decreases the depth of the flow in the channel, 

partially compensating for the increase in discharge from the faster-flowing water. 

However, the increased lake surface drawdown associated with this is exactly balanced 

by a decrease in channel incision rate due to a decrease in the shear stress applied by 

Fig. 7.5. Time evolution of discharge in the channel for six values of the stability 
parameter Λ, calculated using eqn. 7-35. The six stability parameters have been 
calculated using the initial lake areas, ALi, shown and the following typical values 
for other parameters: fR = 0.25, wC = 2m ϕb = 0.01 and pL = 1.     
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the water on the channel and hence the transfer of heat from the water to the ice 

needed to incise the channel.  

During stable drainage (when Λ < 0) the discharge asymptotically approaches zero as 

time passes. However, this does not always prevent the lake emptying completely. In 

some cases a lake can drain stably but still completely drain. To understand the 

conditions under which such stable but complete drainage can occur, I use the eqns. 

7-30 and 7-32 to investigate how model solutions move through hC – z phase space.  

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

Fig. 7.6 plots several possible trajectories in hC – z phase space for different values of  

Λ > 0. The gradient of the trajectories are found by dividing eqns. 7-30 by 7-32 to give 

   

  
 

   

  

  

  
  

α

 
  

7-38 
Again the significance of the stability parameter can be seen from the equation for the 

gradient and Fig. 7.6. When Λ > 0 trajectories have a negative gradient and, because hC 

is always decreasing with time, the figure shows graphically that z always increases with 

time. When Λ = 0 the gradient is infinite; z does not change and the corresponding 

discharge time series is shown by the horizontal blue line in Fig. 7.5. When Λ < 0 the 

Fig. 7.6. Cartoon of trajectories in hC – z phase space corresponding to five 

different magnitudes for the stability parameter Λ relative to zero and to a 

critical magnitude ΛC. The lake is cylindrical (pL = 1). 
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gradient is positive and z decreases with time. The trajectory can intercept the vertical 

(hC) axis, corresponding to drainage halting while there is still water in the lake, or 

intercept with the horizontal (z) axis, corresponding to stable but complete drainage.  

The constant gradient of the trajectories and the initial position in hC – z phase space are 

both known (from Fig. 7.3 the initial height of the channel bottom is hLi - ztrig) so I can 

calculate the final channel-bottom height hfinal : 

                        

α

 
  

7-39 
The value of Λ that is just sufficient to empty the lake before discharge and z approach 

zero, ΛC, is given by the above expression with hfinal = 0: 

    
α

 
   

     
   

  

7-40 
In summary, this analysis has shown that for a cylindrical lake with no water input (pL = 1 

and QIn = 0) model drainage can evolve in one of three ways depending on the stability 

parameter Λ. When Λ < -α/(hLi /ztrig – 1), lake drainage is stable and halts when there is 

still water in the lake. When -α/(hLi /ztrig – 1) ≤ Λ ≤ 0, drainage is still stable but results in 

complete drainage of the lake. And when Λ > 0, drainage is unstable with discharge and 

the height difference between the lake’s surface and the channel bottom increasing 

unstably with time. The stability parameter Λ increases with the lake area and the 

channel slope, and decreases with channel width. It is independent of the hydraulic 

roughness of the channel.  

7.3.2 Bowl-shaped or horn-shaped lakes with no water input  

In general the surface areas of lakes surface area are not uniform. It often increases with 

depth. This is the scenario I now consider. It is manifested in the model by the lake 

shape parameter pL having a value larger than 1. I still assume no input to the lake (Qin = 

0), so with pL > 1 eqn. 7-29 becomes  

    
 
    

 

   
 
   

  
 

    

   

7-41 
I define a modified stability parameter based on this equation: 
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7-42 
This modified parameter is similar to Λ, but with the addition of the multiplicative term 

consisting of the ratio of the reference lake depth, hLi and variable lake depth hL, raised 

to the power of (pL – 1).  

How does this new addition affect lake stability? Initially the lake depth is equal to its 

reference value hLi, so the new stability parameter is identical to Λ; whether a lake is 

initially stable or unstable does not depend on its shape. However, as the lake drains, hL 

decreases and the fraction in the brackets (hLi/hL) increases. Because pL - 1 > 0, this 

causes the second term on the right of eqn. 7-42 (the term corresponding to the rate of 

lake drawdown) to increase and    to decrease. Inevitably, at some moment before the 

lake empties (hL = 0),    will drop below zero and drainage will be stabilised. This is 

inevitable because as hL approaches zero,          
     approaches infinity. This 

stabilisation can halt drainage altogether or, if it occurs after the channel has already 

been incised to the height of the lake bed (hC ≤ 0), merely slow the final stages of 

drainage. These two possibilities are illustrated in Fig. 7.7, which sketches how the 

model’s trajectories in channel-bottom-height–lake-channel-height-difference (hC – z) 

phase space change with the lake shape parameter pL. Trajectories are evaluated by 

forward Euler time stepping of eqns. 7-30 and 7-41. Progressively lighter-blue coloured 

curves correspond to progressively larger values of pL. When pL > 1 trajectories are 

deflected from the straight trajectory corresponding to pL = 1. This deflection increases 

as the lake depth decreases and does so earlier when pL is higher. If pL is sufficiently 

high, drainage is halted before the channel bottom is incised to the height of the lake 

bed (hC = 0). 

The physical interpretation of this is, as the lake depth decreases, the lake basin at the 

level of the lake’s water surface narrows. Consequently, the rate of lake surface 

drawdown for a given discharge is increased without any corresponding change in the 

rate of channel incision. This acts to stabilise drainage by allowing the lake level to 

‘catch-up’ with the bottom of the channel. The effect is more pronounced and the 

channel is caught-up with by lake level earlier, in drainage from more ‘horn-shaped’ 

lakes with higher pL-values, as such lakes narrow more rapidly with depth. 
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7.3.3 Cylindrical lakes with a water input 

I now return to cylindrical lakes (pL = 1) and consider the effect of supplying the lake with 

water from its surroundings (Qin > 0). In this scenario eqn. 7-29 becomes 

   
   

   
  

 
    

7-43 
This equation indicates that, contrary to when there is no input to the lake, drainage 

cannot be halted before the lake empties. If Λ > 0, drainage is unstable and discharge 

increases unboundedly with time. If Λ < 0, eqn. 7-43 dictates that z will relax towards a 

positive value: (-Qin/ALiΛ)2/3. From eqn. 7-30 a positive z corresponds to a negative   
 , 

hence the channel continues to be incised downwards and the lake drains. This drainage 

remains stable, because Λ < 0, but results in the complete emptying of the lake. 

I gain more insight into how the lake drains by comparing the discharge corresponding 

to a depth of flow z = (-Qin/ALiΛ)2/3, with the input to the lake Qin. From eqn. 7-26 

    
 
   

Fig. 7.7. Cartoon of trajectories in hC – z phase space corresponding to different 

lake-shape parameters pL. In all cases the lake stability parameter     is initially 
large than 1. The black curve corresponds to pL = 1 and curves coloured 
progressively lighter blue correspond to progressively higher values of pL 
(intervals between pL-values are all equal). In all cases when pL > 1, drainage is 
slowed relative to the cylindrical lake (pL=1). The curves corresponding to the 
four highest pL-values intercept the hc axis before hC reaches zero i.e. drainage is 
halted before the lake empties. 



Modelling Ice-dammed Lake Drainage 

Chapter 7: Supraglacial lake drainage 

 

 
 177 

7-44 
so the discharge after z has reached (-Qin/ALiΛ)2/3 is 

    
   

    
  

7-45 
From the definition of Λ (eqn. 7-33), this becomes 

  
   

  
    

 

  

7-46 
From Λ < 0, it follows that αALi/β  < 1, and hence  0 < (1 - αALi/β)  < 1. Therefore, from 

eqn. 7-46, the discharge through the channel Q is larger than the input Qin and the lake 

drains as expected. Furthermore, the rate of lake surface drawdown,   
 , equals  

(Qin – Q)/ALi, or, using eqn. 7-46,  

  
  

   

   
   

 

  
    

 
   

7-47 
The higher the input to the lake, the faster it drains. Physically this is because a higher 

input is capable of maintaining a higher depth of flow in the channel and this incises the 

channel more rapidly. This finding only holds for the case when Λ < 0 and the discharge 

is close to having relaxed to ((-Qin/ALiΛ)2/3). Later (in section 7.4.2) I will present results 

from numerical simulations that suggest the same mechanism operates more generally.  

As Λ approaches zero, (-Qin/ALiΛ)2/3 approaches infinity. Equation 7-43 still dictates that z 

relaxes towards (-Qin/ALiΛ)2/3, so drainage becomes unstable when Λ reaches 0.  

7.3.4 Summary 

Lakes that do not receive a water input can drain stably or unstably. When stable, 

discharge decreases over time, as the lake level drops faster than the channel is incised, 

and can (but does not always) halt entirely before the lake is empty. When unstable, 

drainage grows unstably with time through a feedback between discharge and channel 

incision. Whether drainage is stable or unstable is determined by whether the ‘stability 

parameter’ is above or below zero. This parameter is a function of lake area, channel 

width and channel slope, but not the hydraulic roughness of the channel. For bowl- or 

horn-shaped lakes the stability parameter decreases as drainage progresses. This has the 

potential to halt initially unstable drainage before the lake empties. The situation is 

similar when the lake is supplied with an input of water from its surroundings except 
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that, even if drainage is stable, the lake will always drain completely. This is because the 

input maintains the height of the lake’s surface above that of the bottom of the channel, 

so the channel continues to be incised downwards until the lake is empty. 

7.4 Numerical simulations  

To quantitatively demonstrate some of the mechanisms revealed by last section’s 

analysis, here I present the results of numerical simulations of lake drainage using the 

full model, which takes account of whether flow is sub- or supercritical. In section 7.4.1 I 

present results from four simulations. Two of these simulate drainage from a cylindrical 

lake with no input and demonstrate the stable and unstable drainage anticipated by the 

analysis in section 7.3.1. The results of the remaining two simulations show how initially 

unstable drainage can be halted before the lake empties when the lake is not cylindrical 

and how a lake empties despite drainage being stable when it is supplied with an input 

of water.  

In section 7.4.2 I present the results of a numerical sensitivity analysis. I investigate the 

sensitivity of simulated drainage to initial lake area, channel width, channel slope, the 

size of the snow dam when it fails and initiates drainage, lake shape, and lake input. I 

show that these results agree with the analytical results from the previous section. 

At each time step the lake depth hL and the height of the bottom of the channel hC are 

evolved forward in time using the Forward Euler method with eqns. 7-13 and 7-19. 

Whether the flow is subcritical or controlled by a transition to supercritical flow, a 

property I hereafter refer to as the flow’s criticality, is determined using the method 

described in section 7.2 and the depth of flow D and the discharge are determined using 

the appropriate method: eqn. 7-17 for critical flow and simultaneous solution of the 

Bernoulli and force-balance equations (eqns. 7-15 and 7-19) using Newton-Raphson for 

subcritical flow. 

Simulations start with a full lake (hL = hLi) at t = 0 and terminate after either 1 model year 

has elapsed, the lake has emptied, hL ≤ 0 or discharge has become very low,  

Q ≤ Qmin = 2 × 10-3 m3 s-1. Drainage is initiated by the mechanical failure of a dam of 

water-saturated snow in the channel. This is simulated by starting the simulation with 

the level of the bottom the channel a distance ztrig below the level of the lake’s surface. 

Fig. 7.3a illustrates these initial conditions.  

I consider a typical system and estimate the reference lake depth, hLi, and the 

Darcy-Weisbach roughness coefficient, fR, from published data. As shown in Fig. 7.8, 

fitting of eqn. 7-1 to hypsometry data from a lake in Greenland (Georgiou et al., 2009) 

yields hLi ≈ 10 m and pL ≈ 1.5. I use this value of hLi throughout. Mernild et al. (2006) 

calculated Manning roughness coefficients, n’, between 0.036 and 0.058 m-1/3
 s in 
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supraglacial streams. Their average value was n’ = 0.050 m-1/3
 s. A Darcy-Weisbach 

roughness coefficient, fR can be calculated from this using fR = 8gn’2/RH
1/3 (see Clarke, 

2003; his equation 24), where RH is the hydraulic radius defined by eqn. 2-5. Given the 

range of Mernild et al.’s (2006) values for n’, I choose fR = 0.25 for my simulations.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

7.4.1 Simulating stable and unstable drainage 

Here I present results from four model simulations of lake drainage. Each demonstrates 

one of the ways in which lakes can drain, investigated in section 7.3. 

Fig. 7.9 shows lake-level and channel-height time series and discharge hydrographs from 

two simulations. Both simulate a cylindrical lakes (pL = 1) that receives no water input 

(Qin = 0) and drains through 2-meter wide channels (wC = 2). Drainage starts due to the 

failure of a 1 m high snow dam (ztrig = 1 m). The left-hand panels (Figs. 7.9a & 7.9c) 

display results from a simulation that used an initial lake area of 3 km2 and a channel 

slope of 0.01, and the right-hand panels (Figs. 7.9b & 7.9d) plots results from a 

simulation that used a larger initial lake area of 6 km2 and a steeper channel slope of 

0.02. 

Fig. 7.8. Lake shape parameterisation. Crosses plot lake volume-depth data from 
Georgiou et al. (2009) with cross dimensions representing  uncertainty (their 
table 2), and red line is the least-squares fit between eqn. 7-1 and this data. 



Modelling Ice-dammed Lake Drainage 

Chapter 7: Supraglacial lake drainage 

 

 
 180 

Simulated drainage from the two lakes is markedly different. Drainage from the smaller 

lake with the less steep channel is initially 2.8 m3 s-1 and decreases with time throughout 

the simulation (Fig. 7.9a). The lake level drops faster than the channel is incised (Fig. 

7.9c) and after 200 days the simulation stops because the discharge goes below  

2 × 10-3 m3 s-1. The lake level was reduced by less than a meter during drainage. In 

contrast, drainage from the larger of the two lakes with a steeper channel, is initially 3.3 

m3 s-1 and increases throughout the simulation (Fig. 7.9b) because the channel is incised 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Fig. 7.9. Numerical model simulations demonstrating stable and unstable 
drainage. Top panels plot modelled hydrographs and bottom panels plot 
modelled lake level and channel height time series. From two lakes with different 
initial areas and channel slopes. The left-hand plots show results for a relatively 
small lake (ALi = 3 km) with a relatively gently sloping channel (ϕb = 0.01). The 
right-hand plots show results for a larger lake (ALi = 6 km) with a steeper channel 
(ϕb = 0.02). The small lake drains stably and the large lake drains unstably. In 
both cases lake input, Qin = 0 m3 s-1, channel width, wC = 2 m, initial height of the 
lake above the channel bottom, ztrig = 1 m and the hydraulic roughness coefficient 
used is fR = 0.25. 
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faster than the lake level drops (Fig. 7.9d). After 25 days the channel bottom has  

reached the level of the lake bed and the complete emptying of the lake is inevitable. In 

the terminology introduced in the previous section, the smaller lake drains stably and 

the larger lake drains unstably. 

This is consistent with my earlier analysis of stability. With an area of 3 km2, a channel 

slope of 0.01 and a channel width of 2 m, the smaller lake has a stability parameter of Λ 

= -4.8 × 10-7 m-1/2 s-1 (calculated from eqn. 7-33). The larger lake has Λ =  

5.2 × 10-7 m-1/2 s-1. The criterion for stability is Λ < 0. Hence the smaller lake drains stably 

while the larger lake drains unstably. The criterion for incomplete drainage is Λ < ΛC,  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7.10. Numerical model simualtions showing the effect of water input to the 
lake (Qin>0) and a lake whose surface area decreses with depth (pL>1), has on 
drainage. Layout is identical to Fig. 7.9. The left-hand plots show results for a 
small lake (ALi = 3 km) with a gently sloping channel (ϕb = 0.01) that receives a 
water input of 5 m3 s-1 from its surroundings. The right-hand plots show results 
for a larger lake (ALi = 6 km) with a steeper channel (ϕb= 0.02) whose surface 
area decreases with depth, pL = 3. In both cases channel width wC = 2 m, initial 
height of the lake above the channel bottom ztrig = 1 m and the hydraulic 
roughness coefficient in the channel is fR = 0.25. 
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where ΛC (as calculated by eqn. 7-40) is -5.1 × 10-8 m-1/2 s-1 for the smaller lake. This is 

indeed larger than Λ, hence the incomplete drainage of the smaller lake seen in Figs. 

7.9a &  7.9c. 

Fig. 7.10 shows lake-level and channel-height time series and discharge hydrographs 

from two more simulations using nearly the same parameters as the simulations 

discussed above. They use the same two lakes of contrasting sizes and with contrasting 

channel slopes. In the simulation of the smaller of the two lakes, the water input to the 

lake is increased to 5 m3 s-1 (previously it was 0 m3 s-1). Figs. 7.10a & 7.10c plot the 

results. The plots show that the water input results in the discharge in the channel Q 

approaching a finite value – so drainage is stable – that is higher than the 5 m3 s-1. As a 

result the lake stably drains completely. This behaviour was predicted by the analysis in 

7.3.3. From eqn. 7-45 Q should approach 9.7 m3 s-1. This agrees with the numerical 

results in Fig. 7.10a. 

Results from a simulation using the larger of the two lakes are shown in Figs. 7.10b & 

7.10d. In this simulation, by using a lake shape parameter of pL= 3, the lake has been 

modified so that its surface area narrows as it drains. Discharge is initially  

3.3 m3 s-1 – the same as when pL = 1 in the previous simulation using a lake of the same 

initial surface area. Initially discharge increases. However, after 20 days, discharge peaks 

and begins to fall. This drainage stabilisation occurs at the moment the modified stability 

parameter,   , drops below zero (see eqn. 7-42). As described above, the physical 

explanation for the stabilisation is that the decreasing surface area of the lake increases 

the rate at which the lake’s surface is drawn down, allowing the lake to catch up with 

the downward incision of the channel. In this simulation, this occurs at ~40 days. 

7.4.2 Numerical sensitivity analysis 

To complete the numerical investigation of the model, I now present the results of a 

numerical sensitivity analysis. The analysis is in three sections. In each I conduct multiple 

1-year-long model simulations while varying model parameters systematically between 

simulations. After each simulation I record the final depth of the lake and the time taken 

to reach that depth. 

In the first section, initial lake area, the channel slope and the height at which the snow 

dam fails are varied systematically while keeping other parameters constant. In the 

second, the same exercise is conducted with the initial lake area, the channel width and 

the lake shape parameter. In the third section, the initial lake area and the input to the 

lake are varied.  

I present the results as filled contour maps representing the various ‘parameter-spaces’ 

that I explore. Each discrete point in a map corresponds to a simulation conducted using 
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a unique set of parameters. Each point is assigned a numerical value that derives from 

the results of its corresponding simulation. Filled contours are created using these grids 

of numbers using the ‘contourf’ command in the software package MATLAB. 

Initial lake area, channel slope and dam failure height 

Between 2005 and 2009, Selmes et al. (2011) observed maximum and mean Greenland 

lake areas of 17 and 0.8 km2, so in simulations I vary the initial lake area ALi between 

0.05 and 30 km2. Similarly, the channel slope ϕb is varied between 0.005 and 0.1 and the 

dam failure height ztrig between 0.1 and 3 m to bracket realistic ranges of these 

parameters. As before, the input to the lake is zero (Qin = 0 m3 s-1) and the width of the 

channel is 2 m (wC = 2 m).  

Figs. 7.11a & 7.11b display the results from exploration of lake-area–channel-slope (ALi–

ϕb) parameter space. Filled contour maps display how the final lake height hfinal and the 

time taken to reach this height T0 vary with lake area ALi and channel slope ϕb. In both 

plots, two regions are evident: one where hfinal > 0 m and T0 is not defined, 

corresponding to incomplete drainage and another where hfinal = 0 m and 13 ≤ T0 ≤ 365 

days, corresponding to complete drainage.   

Also plotted in Figs. 7.11a & 7.11b is the critical channel slope required for drainage to 

be unstable as a function of lake area (the solid green curve), evaluated using eqn. 7-37. 

Below this critical slope curve, drainage is stable and above it drainage is unstable. This 

curve and the boundary between incomplete and complete drainage (visible as the 

boundary of where T0 is defined in Fig. 7.11) are nearly aligned – unstable drainage often 

leads to complete emptying of the lake and vice versa. However, they do not align 

exactly. This is shown more clearly in Fig. 7.12. In one region of parameter space, 

adjacent to the critical-slope curve and coloured red in Fig. 7.12, drainage is stable but 

results in the complete emptying of the lake. This drainage possibility was discussed in 

section 7.3.1. It occurs when the stability parameter Λ is negative but close to zero 

(more precisely when –α/(hLi /ztrig – 1) ≤ Λ ≤ 0). Because drainage is stable, discharge 

decreases with time, but it does so too slowly to halt drainage before the lake empties. 

In another region of parameter space, coloured yellow in Fig. 7.12, drainage is unstable 

but does not result in the emptying of the lake. This is an artefact of the finite length of 

simulations (1 year). In these simulations discharge from the lake is increasing with time 

because Λ > 0, but only very slowly because Λ is small. Hence, after one model year, 

water still remains in the lake.  

In Fig. 7.11a and Fig. 7.12 the boundary of the region in parameter space corresponding 

to simulations that involve critical flow is visible in Fig. 7.11a as a kink in the otherwise  



Modelling Ice-dammed Lake Drainage 

Chapter 7: Supraglacial lake drainage 

 

 
 184 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7.11. Exploration of three 2-parameter spaces: (a & b) channel-slope – lake-
area, ϕb–ALi, space, (c & d) snow-dam-failure-height–lake-area, ztrig–ALi , space 
and (e & f) snow-dam-failure-height–channel-slope, ztrig–ϕb, space. Filled contour 
maps show how final lake depth (left column), the time taken to empty the lake 
(right column) vary with these parameters. In all simulatiosn Qin = 0 m3 s-1, wC = 2 
m and pL = 1. Solid green lines separate regions corresponding to stable and 
unstable drainage (plotted using eqn. 7-36). Green dotted and dashed lines in (a–
d) indicate the mean and maximum areas of lakes in Greenland between 2005 
and 2009 reported by Selmes et al. (2011). Crosses indicate locations in each 
parameter space of simulations whose time series are shown in Fig. 7.9. 
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smooth contours at ϕb ≈ 0.032. Above this value, where flow is critical, drainage is not a 

function of the channel slope ϕb. This is expected from the model equations, neither 

eqn. 7-17 nor eqn. 7-18, which describe the hydrology in the channel when the flow is 

critical, involve ϕb. 

The second and third rows of maps in Fig. 7.11 display results from explorations of 

snow-dam-failure-height–lake-area (ztrig–ALi) parameter space and snow-dam-failure-

height–channel-slope (ztrig–ϕb) parameter space. In these sets of simulations I used a 

channel slope of ϕb = 0.01 and initial lake areas of ALi = 10 km2 respectively. From the 

analytical investigation of the model I expect drainage stability to be unaffected by 

snow-dam height, ztrig, in a cylindrical lake. However, from Fig. 7.6 and eqn. 7-39, I 

would expect ztrig to affect the depth the lake reaches before drainage stops during 

stable drainage and how long it takes unstable drainage to empty the lake. In other 

words, I expect ztrig to affect the size of the red and yellow regions in Fig. 7.12. Figs. 

7.11c and 7.11e show this. The green solid curve separates parameter values that result 

in stable drainage (to the left of the curve) from those that lead to unstable drainage (to 

the right of the curve). Increasing ztrig, increases the range of lake areas (Fig. 7.11c) and 

channel slopes (Fig. 7.11c) that result in stable and complete drainage. Similarly, when 

ztrig is small (<0.6 m) decreasing it further increases the range of lake areas and channel 

slopes that result in unstable drainage that does not have sufficient time to empty the 

lake before the end of the 1-year-long simulation.  

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 7.12. Schematic of the results displayed in Fig. 7.11 showing four possible 
ways in which a lake can drain: (i) stably, leaving water in the lake (in white); (ii) 
stably, but emptying the lake completely (in red); (iii) unstably, but leaving water 
in the lake (in yellow); and (iv) unstably, emptying the lake completely. The black 
curve separates stable and unstable drianage (eqn. 7-36). 
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Fig. 7.13. Exploration of three 2-parameter spaces: (a & b) lake-shape-parameter–
lake-area, pL–ALi, space, (c & d) channel-width–lake-area, wC–ALi, space and (e & f) 
channel-width–lake-shape-parameter, wC–pL, space. Layout is identical to Fig. 
7.11. In all simulations ϕb = 0.05 and Qin = 0 m3 s-1 and ztrig = 1 m. Yellow crosses 
indicate the location in the corresponding parameter space of the simulation 
whose results are displayed in Figs. 7.10b and 7.10d. 
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Channel width and lake shape 

The layout of Fig. 7.13 is identical to Fig. 7.11, but the three 2-parameter spaces 

explored are: (i) lake-shape-parameter–initial-lake-area (pL–ALi); (ii) channel-width–

initial-lake area (wC–ALi); and channel-width–lake-shape-parameter (wC–pL). During all 

simulations, the channel slope ϕb is 0.01 and the lake receives no input (Qin = 0 m3 s-1). 

The chosen ranges of the channel width wC and the lake shape parameter pL (0.1 ≤ w ≤ 

10 m; 1 ≤ pL ≤ 6) bracket the poorly constrained distributions of real wC and pL values.  

Considering the top two maps in Fig. 7.13 first; the results show that high values of the 

lake shape parameter pL, corresponding to narrow ‘horn-shaped’ lakes, result in a higher 

final lake depth. This is due to the mechanisms first discussed in section 7.3.2, depicted 

in Fig. 7.7, and simulated in section 7.4.1. When pL > 1 the area of the lake-water’s 

surface decreases as drainage progresses. This stabilises drainage by increasing the rate 

at which the lake level drops and can halt drainage by allowing the lake’s surface to 

catch-up with the channel as it is incised downwards through the ice.  

Similarly, the two plots on the middle row in Fig. 7.13, that display the channel-width–

initial-lake-area (wC–ALi) parameter space, show how the final lake depth (when 

drainage is incomplete) and the time taken to empty the lake (when drainage is 

complete) both increase with the channel width wC. This is a manifestation of the 

stabilising effect of increasing wC discussed in section 7.3.2. The wider the channel the 

higher the discharge through the channel for a given flow velocity. As the rate at which 

the lake level decreases depends on the discharge, while the channel-incision rate 

depends on the flow velocity, increasing wC increases drainage stability. To confirm this 

association between these numerical results and the findings of section 7.3.2, the 

analytically-derived critical channel-width needed for stable drainage is plotted as a 

function of lake area as the solid green curve in Figs. 7.13a & 7.13d (this was calculated 

using eqn. 7-36). The curve is closely aligned with the boundary in the numerical results 

between incomplete and complete drainage. This is most clearly seen in Fig. 7.13d. 

The lower two plots in Fig. 7.13 display the channel-width–lake-shape-parameter (wC–

pL) parameter space. For the chosen ranges of the model parameters the channel width 

has a stronger effect on drainage than the lake shape. Fig. 7.13e shows the stabilising 

effect of increasing the channel width. The stabilising effect of increasing pL is also just 

discernible but is more clearly shown in Fig. 7.13a. 
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Lake input 

Finally, simulations are conducted to explore the lake-input–lake-area (Qin–ALi) 

parameter space and the lake-input–channel-slope (Qin–ϕb) parameter space. As 

discussed in section 7.3.2, when Qin > 0 m3 s-1, discharge can never go to zero because 

the input maintains the lake level above the height of the channel. All drainage will 

result in the emptying of the lake, no matter how stable it is (i.e. how small the stability 

parameter is). Consequently, the details of the Qin–ALi and Qin–ϕ parameter-space 

contour maps in Fig. 7.14 depend on the length of simulations; a non-zero final lake 

height reflects how far drainage has progressed during the 1-year-long simulation, 

rather than the lake level reached before discharge has gone to zero. Nonetheless, Fig. 

7.14 corroborates my earlier finding (see section 7.3.3) that increasing the input to the 

lake speeds up drainage, decreasing the final lake height (Figs. 7.14a and 7.14c) and, 

 

 
Fig. 7.14. Exploration of Qin–ALi and Qin–ϕb parameter spaces. Layout is identical 
to Fig. 7.11. In all simulations pL = 1, wC = 2 m and ztrig = 1 m.  
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when drainage is complete, the time it takes the lake to empty. For the case when the 

stability parameter Λ < 0, I proved analytically that increasing Qin speeds-up drainage by 

maintaining a higher depth of flow in the channel. This causes the channel to be incised 

more rapidly and the lake to empty more quickly. These numerical results suggest the 

same mechanism operates when Λ > 0. 

7.5 Discussion  

I have developed a model of surface drainage of supraglacial lakes and considered the 

case where drainage starts when a snow dam in a pre-existing channel fails when the 

lake’s surface is some height above the bottom of the channel. In the model, how 

drainage develops over time depends on a competition between the drawdown of the 

lake’s surface and the downward incision of the bottom of the channel into the ice. 

Because these two processes depend on various model parameters, drainage can 

develop stably or unstably. During stable drainage, discharge remains bounded and 

during unstable drainage, discharge increases unboundedly with time. These two styles 

of drainage often (but not always) correspond respectively to complete and incomplete 

emptying of a lake.  

When a lake receives no input of water from its surroundings – a situation that is 

arguably unlikely in reality – stable drainage can lead to the discharge out of the lake 

going to zero and drainage stopping before the lake has emptied. I have called this 

stable, incomplete drainage. Alternatively, stable drainage can empty the lake 

completely if the discharge does not decrease with time sufficiently rapidly after it is 

initiated by snow-dam failure. This I call stable, complete drainage. Mathematically, 

unstable drainage will always result in the complete emptying of a lake as discharge 

increases unboundedly with time. However, numerical simulations have shown that, in 

some cases, unstable drainage increases very slowly and after a one-year-long 

simulation model lakes still have not emptied completely. As this drainage time is much 

longer than a single melt season, in reality, drainage from such lakes would be stable for 

all practical purposes. 

The stability, or otherwise, of drainage depends on some model parameters and not 

others. Instability increases with the lake area and the channel slope, and decreases 

with the channel width. Lake hypsometry also affects drainage stability, with lakes that 

get narrower with depth promoting stability. Neither the hydraulic roughness of the 

channel, the height of snow-dam in the channel nor the initial depth of the lake affects 

drainage stability. 
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Drainage of a lake that does receive an input of water from its surroundings can also be 

characterised as stable or unstable, but regardless of stability, drainage will always 

empty it completely. When draining stably discharge from a lake increases as the rate of 

water supply to the lake is increased.  

One aspect of drainage that I have only touched upon is what controls how long it takes 

for a lake to drain. The analysis suggests that the higher the input the faster a lake drains 

and it also revealed a physical explanation for this (which strictly only applies when 

drainage is stable). Furthermore, numerical simulations in section 7.4.2 suggest that 

lakes with larger initial lake areas drain faster. Although it is clear from the analysis in 

section 7.3.1 that increasing a lake’s area increases the rate of change of discharge out 

of the lake, I have not been able to show analytically under what circumstances this 

increase can overcome the increase in total lake volume associated with an increase in 

lake area. A fuller physical understanding of the dependence of the time required to 

empty a lake on its initial area may come from further analysis of the model (possibly by 

integrating eqn. 7-35 over time). This will be pursued elsewhere.  

This investigation has revealed some potentially important mechanisms that may control 

the movement of water across the surface of glaciers and ice sheets. However, some 

limitations of the model prevent the quantitative application of my findings to real 

systems.  

For example, the model ignores lake sensible heat, solar radiation and along-channel 

spatial variation. Lake sensible heat and solar radiation may affect channel incision by 

warming of the flowing water significantly above 0 oC and developing the model to 

include along-channel spatial variation may reveal dynamics associated with a melt–

slope–discharge feedback. If the model is to gain any predictive power, its mechanisms 

and unconstrained physical parameters must be validated against data from in situ 

hydrological measurements of surface drainage. In particular, the thermal and hydraulic 

roughness coefficient fR needs to be calibrated and the model’s sensitivity to this 

parameter quantified.  

I have assumed a constant channel width. Although previous work has justified this with 

observations of deep, vertical-walled supraglacial channels (e.g. Vincent et al., 2010; 

Mayer and Schuler, 2005), this assumption is probably invalid when channel width is less 

than the flow depth and a physical explanation for these observations is presently 

lacking. Related to this is an alternative drainage initiation mechanism to snow-dam 

failure: a slow lake-bank over-topping. After initial sheet flow, a channel would form 

through a feedback between melt and flow-depth. Two-dimensional modelling of the 

channel formation process is possible and may illuminate the controls on channel width. 
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Despite limitations, some qualitative features of model behaviour may be realistic. 

Moreover, as mean and maximum lake areas observed by Selmes et al. (2011) bracket 

the transition between stability and instability in model parameter-space, these results 

may have implications in the Greenland Ice Sheet.  

A concern among glaciologists is that atmospheric warming could increase the area of 

the ice sheet populated by supraglacial lakes, resulting in a corresponding increase in 

the area of the bed that receives injections of melt water from the surface. This in turn 

could affect ice dynamics (e.g. Lüthje et al., 2006).  

Lüthje et al. (2006) suggest that, as lakes populate a larger area of the ice sheet, they will 

form at higher altitudes where they will tend to be larger because of the lower mean ice 

surface slopes at higher elevations. In terms of the supraglacial drainage simulated by 

my model, such a shift in elevation corresponds to movement through the model’s 

parameter space, the details of which remain to be determined. For example, an 

increase in mean lake area may increase the propensity of lakes to drain unstably, 

increasing the relocation of surface water to lower elevations and partially mitigating 

the effect of atmospheric warming on basal meltwater injection from the surface. 

However, decreasing average surface slopes will tend to have the opposite effect. 

Alternatively, lake area and channel slope may be entirely controlled by large-scale 

surface roughness, itself controlled by local surface processes and ice dynamics. How 

other model parameters (e.g. lake shape, channel width and lake input) may change is 

similarly unclear.  

Quantitative assessment of the impact of change in Greenland on surface drainage will 

require model development, to avoid some model limitations, and calibration, by 

applying it to present-day Greenland and comparing its predictions to observed lake 

stability. Observations could involve a remote sensing survey of surface-draining lakes 

similar to recent studies by Selmes et al.’s (2011) and Johansson et al.’s (2012) that have 

focused on the drainage of lakes through the ice sheet to its bed.   

In East Antarctica, new observations of extensive surface drainage (Fig. 7.2) allow 

speculation on mechanisms affecting drainage stability. The most rapid drainage 

appears to originate from several of the largest lakes positioned just above the 

grounding line on the ice sheet flank where ice surface slope is steepest. This is 

consistent with the results of the model.  

It is unclear whether lakes are advected with ice flow or if they form in topographic 

depressions whose locations are dictated by ice dynamics and remain geographically 

stationary. Lake advection may be favoured by intense solar radiation, as lake position 



Modelling Ice-dammed Lake Drainage 

Chapter 7: Supraglacial lake drainage 

 

 
 192 

relative to the ice is reinforced by differential ablation between the low albedo lake and 

the surrounding ice.  

If lake-bed ablation decreases with water depth, lake walls would steepen as shallower 

areas preferentially ablate, corresponding to a decrease in the lake parameter pL and 

drainage stability. Furthermore, if lakes do advect with ice flow, the ice surface will 

steepen and (possibly) its catchment area will increase over time, as it approaches the 

grounding line. This would also decrease the stability of drainage. Lakes may be formed 

in the blue-ice area (to the lower right of Fig. 7.2a) and advected towards the grounding 

line over many years, becoming increasingly unstable until input is sufficient to cause 

the rapid drainage observed in Fig. 7.2b.  

Whether lakes are advected or not, variation in lake input will affect the timing and rate 

of lake drainage. Such mechanisms may help explain the large inter-annual variability 

seen in drainage extent and will be investigated further elsewhere using the model 

developed in this chapter.  

7.6 Conclusions 

This work is the first attempt to model the surface drainage of supraglacial lakes on ice 

sheets. Despite simplifying assumptions made during its derivation, the model yields 

qualitative results that highlight and physically explain potentially important controls on 

drainage. Lakes are more prone to drain unstably, which often results in their complete 

emptying, when initial lake area, lake input and channel slope are larger. These findings 

could have implications for predictions of the response of ice sheets to atmospheric 

warming and for our understanding of previously unobserved hydrological systems in 

East Antarctica. Further work will aim to quantitatively assess these implications through 

model development and calibration.  
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Chapter 8 Conclusions 

In this thesis I have investigated theoretically several aspects of ice-dammed lake 

drainage. A persistent theme of the work has been an attempt to unravel the links 

between environmental parameters and the magnitude and timing of lake drainage. This 

theme has led me to extend Fowler’s (1999) theoretical investigation of subglacial 

jökulhlaups and to apply similar physics to an analogous lake drainage phenomenon: the 

surface drainage of supraglacial lakes.  

Chapter 2 introduced the mathematics that underlies the rest the thesis. Particularly 

important to introduce was Fowler’s modifications to Nye’s (1976) classic jökulhlaup 

theory. Throughout the rest of the thesis I referred to the model that resulted from 

these modifications as the Nye-Fowler model.  

In Chapter 3, my first extension of Fowler’s work used the Nye-Fowler model to 

investigate the environmental controls on the size and timing of cycles of subglacial 

floods. This involved pinning down, more thoroughly than Fowler (1999) did, under what 

conditions his model simulates periodic, stable flood cycles.  

Next I examined how the size of simulated jökulhlaups changes with the rate of 

meltwater input to the model. The results of my simulations suggest that this depends 

on how this meltwater is distributed around the system. If climatic warming leads to an 

increase in the rate of meltwater input to an ice-dammed lake, results suggest that 

floods may occur more frequently or increase in magnitude or both. Results also suggest 

that, if the same climatic warming also leads to an increase in the meltwater input to the 

bed of the glacier that dams the lake, floods may still occur more frequently but 

decrease in magnitude. Any predictions of change in jökulhlaup systems associated with 

climatic warming in mountainous regions should consider these findings, as well as 

changes in the geometry of glaciers, that I have not investigated.  

The mechanistic link between jökulhlaups and environmental parameters that I 

examined in Chapter 3 is based around Fowler’s (1999) idea of a moving subglacial water 

divide that exists between floods. In particular, the moving divide links the rate of 

meltwater input to the system to the depth at which an ice-dammed lake begins to drain 

– I have called the latter the flood-initiation threshold. This link was exploited in Chapter 

4 to establish how well simple models can predict the date of an upcoming jökulhlaup. I 

used hydrological and meteorological data from Merzbacher Lake, Kyrgyzstan to 

optimise several flood-date-prediction models of varying complexity and found that 

including weather in the determination of the flood-initiation threshold significantly 
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improved the reliability of flood-date predictions. This empirically reinforces the 

assertion made by previous authors (e.g. Ng et al., 2007; Ng and Liu, 2009) and 

examined theoretically in Chapter 3, that variability in the timing and size of jökulhlaups 

can be, at least partially, attributed to climatic variability.  

In Chapter 5 I extended the Nye-Fowler model by coupling it to models of a distributed 

linked-cavity subglacial drainage system and glacier sliding. The cavities could exchange 

water with the channel along its length and the glacier’s sliding velocity was a function 

of the water pressure in the cavities. Simulating flood cycles with the model allowed me 

to investigate how the drainage of a marginal lake affects the hydraulics of the 

distributed cavity system and the rate at which the glacier slides, and how the cavities 

affects lake drainage. The results showed that temporal changes in the glacier’s sliding 

velocity during simulated flood cycles are due to temporal changes in the depth of the 

marginal lake. Continuing the theme of environmental controls on jökulhlaup systems, I 

showed that decreasing the background meltwater input to the cavity system increases 

the magnitude of these temporal changes in sliding velocity and the size of floods.  

While conducting the simulations of flood cycles presented in Chapter 3 and Chapter 5, I 

had to be careful not to allow my model lake to empty because the Nye-Fowler model 

cannot simulate the open-channel flow which results when this happens in real systems. 

To address this shortcoming, in Chapter 6 I added to the model a description of 

open-channel flow. Hence I was able to simulate flood cycles that involve periods of 

open-channel flow. This is valuable because the majority of observed jökulhlaups end 

with a period of open-channel flow. Considering the effect of open-channel flow on the 

water-balance of jökulhlaup lakes could improve reconstructions of lake depth and some 

details of an existing reconstruction of Merzbacher Lake’s depth could be explained by 

invoking mechanisms revealed by solving the model numerically.  

In Chapter 7 I turned my attention to the drainage of supraglacial lakes across the 

surface of glaciers and ice sheets. Much of the same physics that apply to subglacial 

jökulhlaups can be applied to surface drainage. Both types of drainage involve the 

enlargement of drainage pathways through the melting of ice caused by frictional 

dissipation of heat in flowing water. Hence, the positive feedback between discharge 

and channel enlargement revealed first by Nye’s (1976) analysis of subglacial 

jökulhlaups, potentially also applies to the surface drainage of supraglacial lakes.  

The model I developed in Chapter 7 demonstrates that when a supraglacial lake drains 

through a channel that is incised through an ice-sheet’s surface a competition between 

the drawdown of the surface of the lake and the incision of the channel determines if a 

lake drains stably or unstably – that is, if discharge from a lake always increases with 
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time or always decreases with time. Analysis of the model shows how various 

environmental factors control drainage stability. Unstable lakes tend to empty more 

quickly and more completely, so the model’s predictions of the controls on drainage 

stability may have implications in real systems. Systematic changes in lake characteristics 

caused by environmental changes may affect their propensity to drain and relocate 

water across the surface of ice sheets. 

The work presented in this thesis has increased our understanding of several aspects of 

ice-dammed lake drainage, but it has also highlighted many areas in which further work 

is needed. I have outlined some of these during Chapters 3 to 7. However, I want to end 

this thesis by suggesting two further areas of theoretical work based on the Nye-Fowler 

model that are worthwhile and by arguing that the time has come for an attempt to 

verify this model’s behaviour against field observations.  

Firstly, future theoretical work could apply the Nye-Fowler model to the drainage of 

subglacial floods beneath ice sheets. Evatt et al.’s (2006) work has already shown that 

the model can be used to simulate this, despite the complication of coupling between 

drainage and the dynamics of the overlying ice. Their work also suggests that drainage 

from subglacial lakes is inherently unstable and jökulhlaup-like in nature.  

Since Evatt et al.’s (2006) model-based study, observational surveys of Antarctic 

subglacial lake drainage have collected a large amount of data pertaining to the timing, 

magnitude and spatially-complex nature of drainage events (e.g. Smith et al., 2009). One 

thing these observations reveal is that lakes are hydraulically connected to one another. 

It appears that lakes connect together to form extensive multi-lake drainage systems. 

Some questions worth asking are: How are the dynamics of such a multi-lake system 

different from those of a single-lake system focussed on by Evatt et al. (2006)? Can the 

drainage of a downstream lake induce the drainage of an upstream lake? And, under the 

right conditions, can water from a downstream lake drain to an upstream lake? The last 

question is particularly interesting because people tasked with interpreting observations 

of contemporaneous, but spatially separated, temporal changes in Antarctica’s surface 

elevation frequently assume that lake drainage always occurs in a downstream 

direction.  

Modelling could address these questions. An attempt to do this was made Peters et al. 

(2009) using a version of the Nye equations, but their simulations could not capture, 

even qualitatively, observed features of sub-ice-sheet lake drainage involving more than 

two lakes. In this thesis I have developed a numerical method that can solve the mass 

and momentum balance equations of the full Nye-Fowler model as a boundary value 

problem (the relaxation method; section 2.2.5). So, using the Nye-Fowler model, two 
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lakes could be coupled together, with the upper and lower pressure boundary 

conditions on a subglacial channel defined by the pressure of an upstream lake and a 

downstream lake respectively. Water exchange between the channel and both lakes 

would change with time and determine the drainage or otherwise of the lakes. Using the 

model to simulate the coevolution of a channel and more than one lake, one could 

attempt to reproduce observations of multi-lake drainage and determine under what 

conditions lakes could drain in an upstream direction.  

The second way in which modelling using the Nye-Fowler model could be advanced 

would aim to address an assumption that underlies many aspects of the model’s 

behaviour that this thesis and previous work have uncovered. The model assumes that a 

channel always exists beneath an ice dam, even when water discharge is low between 

floods. There are at least two approaches one could take in removing this potentially 

unrealistic assumption.  

In Chapter 5 I allowed water to flow through two drainage systems simultaneously, but I 

assumed that both systems existed throughout simulated flood cycles. Future modelling 

could allow one system to dominate when the hydrological conditions dictate this, for 

example when discharge is low the channel could collapse leaving only a drainage 

system that is favoured in low discharge condition. One issue is the question of how to 

allow the channel to reform when hydrological conditions change, for example in 

response to a lake filling. 

An alternative approach is to model multiple drainage systems using one continuous 

physical description of drainage. Schoof (2010), Hewitt et al. (2012) and Schoof et al. 

(2012) have pursued this. Combining my investigation of jökulhlaups with their work 

could allow a channel to evolve from a low discharge system during the early stages of 

lake drainage. It would be interesting to see if the dynamics of divide migration, which 

were revealed by my analysis in Chapter 3 and have proved so important for linking 

environmental factors and jökulhlaup characteristics, manifest in any way in such a 

model. 

Given how much we now know about how the theoretical Nye-Fowler model behaves, it 

is time for an attempt to verify this behaviour against observations.  

This thesis contributes to several other studies that have used versions of Fowler’s 

(1999) model (very similar to my “Nye-Fowler model”) to investigate jökulhlaup-related 

phenomenon. Evatt (2006) demonstrated that assuming the water in a subglacial 

channel is always at the pressure-melting point is often appropriate. Evatt and Fowler 

(2006) have shown that the model can be usefully applied to the drainage of subglacial 

lakes beneath ice sheets and above I have suggested ways in which this can be extended 
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in future work. And Fowler (2009) has shown that model simulations can produced 

realistic hydrographs.  

We understand the model reasonably well and are poised to apply it to other 

glacial-hydrological systems, but key aspects of its behaviour remain unverified 

observationally. In particular, divide formation and migration, which underlie many of 

my findings in this thesis, have not been observed in the field. By injecting dye into, and 

measuring the water pressure at the bottom of bore-holes drilled to the base of an ice 

dam in a marginal-lake jökulhlaup system, one may be able to verify that water can flow 

upstream towards a marginal lake between floods, demonstrating divide formation. 

Repeat measurements may even reveal temporal changes in drainage associated with 

changes in lake depth, hinting at divide migration. 

Successful verification of the behaviour of the Nye-Fowler model against observations of 

a real jökulhlaup system would bolster efforts to apply the model to other 

glacio-hydraulic systems and increase the applicability of my theoretical findings to the 

study of real ice-dammed lake drainage. 
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