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Abstract

In this thesis an investigation of the fluid mechanics of the
Aaberg exhaust hood is presented. The Aaberg exhaust hood is unique
in its design as the speed of the air flow towards the exhaust inlet
is enhanced by the entrainment of fluld into the hood’s jet flow. The
complex air flow pattern of the hood is governed by the Navier-Stokes
equations. However, in this thesis modelling techniques have been
developed in order to reduce the complexity of determining the
fundamental air flow pattern. The modelling procedure adopted
considers the hood's overall air flow to be composed of three
component flows, namely, (1) the flow in the Jjet region, (ii) the
Jet-induced flow and (iii) the suction flow. In practice the fluid
flow pattern generated by the hood is such that the Reynolds number
is very large, and hence the suction and Jet-induced flows are
modelled as potential flows with the boundary conditions governing
the Jet-induced flow coming from the solution of the shear-layer
equations. This solution procedure enables the parameters which
govern the hood’s air flow to be identified and their effect on the
flow produced by the hood may then be determined. Both
two-dimensional and three-dimensional axisymmetric exhaust designs
have been examined and for the latter case a new numerical model for
the axisymmetric radial flow of a fluid from the space between two
identical concentric discs, for laminar and turbulent flows, has been
developed. Agreement between the turbulent radial jet model developed
and the results of numerous other established theoretical and
experimental investigations is very good. The inviscid models for the

overall air flow have been developed in terms of the stream function



— ji —

and, except for in the simplest case considered where an analytical
solution is possible, the equations of motion which govern the fluid
flow in the region of interest have been solved numerically using
finite-difference techniques. The models developed illustrate all of
the flow phenomena observed experimentally and comparisons made
between the predictions of both the two-dimensional and
three-dimensional axisymmetric mathematical models and (i) the
avalilable experimental data aﬁd (i1) the commercially available CFD
code FLUENT, which solves the full turbulent Navier-Stokes equations,
show good agreement, thereby confirming the credibility of the

cost-effective modelling approach adopted in this thesis.



— 1ii —

Acknowledgements

I am truly grateful to Professor D. B. Ingham for allowing me the
opportunity to study at the University of Leeds and for his
enthusiastic supervision and encouragement throughout the course of my
studies for a Ph.D. Furthermore, I would like to thank Dr.X.Wen for all
his assistance during my studies and Dr.B.Fletcher and Dr.L.G.Pedersen
for providing the experimental data used in this thesis. I would also
like to thank Dr.S.J.Dunnett for the interest she has shown in this
project and Miss.S.Lawton for proof-reading the thesis. Finally, I
gratefully acknowledge the Scientific and Engineering Research Council
and the Health and Safety Executive for their financial support of this
research project.

At the time of submission much of the work contained in this
thesis has been published. The analytical model for the fluid mechanics
of the Aaberg exhaust hood developed in chapter 3 of this thesis has
been published in the Annals of Occupational Hygiene (Hunt and Ingham
(1992)). The first section of chapter 4 has been presented at the 1992
European Aerosol Conference, 6-11 September, Oxford, U.K., and the 1993
IChemE Research Event, 2-4 January, Birmingham University, U.K., whilst
the second section was presented at ROOMVENT’92, the 3rd International
Conference on Air Distribution 1in Rooms, 2-4 September, Aalborg,
Denmark. The contents of chapter 6 have been presented at the 1993
European Aerosol Conference, 4-8 October, Dulsburg, Germany. The model
of the Aaberg slot exhaust developed in chapter 7 has been published in
the Joufnal of Mathematical Engineering in Industry (Hunt and Ingham
(1993)) and has been presented at the 7th Annual Conference of the

Aerosol Society, 29-30 June 1993, Bristol, U.KX..



— v —

Contents

Page

Abstract i
Acknowledgements iii
Contents iv
Nomenclature ix
List of Figures xv
List of Tables xx

CHAPTER ONE General Introduction and Literature Review — 1

1.1 INTRODUCTION 2

1.1.1 Traditional Exhaust Hoods 3

1.1.2 The Aaberg Principle : 5

1.2 A REVIEW OF THE EXISTING LITERATURE 9
1.3 CONCLUSIONS 26

CHAPTER TWO  Mathematical Modelling: Tools, Techniques and

Terminology 28
2.1 INTRODUCTION 29
2.2 FORMULATION 30
2.2.1 The Flow in the Jet 31
2.2.2 The Jet-induced Flow 43
2.2.3 The Exhaust Flow a7
2.3 METHODS OF SOLUTION 48
2.4 TERMINOLOGY 49
2;4.1 The Capture Speed S0
2.4.2 The Effective Capture Region 51

2.4.3 The Effective Working Range X s1



2.5 CONCLUSIONS 52

CHAPTER THREE A Simple Two-dimensional Analytical Model for

the Fluid Mechanics of the Aaberg Exhaust Hood S3

3.1 INTRODUCTION 54
3.2 THE MATHEMATICAL MODEL 55
3.2.1 The Stream Functlion due to the Sink 56
3.2.2 The Two-dimensional Laminar Plane Jet 57
3.2.3 The Two-dimensional Turbulent Plane Jet ——— —— 60
3.2.4 The Flow Induced by a Two-dimensional Jet —— 62

3.3 A TWO-DIMENSIONAL MODEL OF THE AABERG EXHAUST HOOD’S

FLUID FLOW 63
3.4 BESULTS AND DISCUSSION 66
3.4.1 The Laminar Model 68
3.4.2 The Turbulent Model 74
3.5 THE REYNOLDS NUMBER OF THE JET 78
3.6 CONCLUSIONS 80

CHAPTER FOUR The Effect of the Exhaust Inlet Size on the Effective
Capture Area of an Aaberg Exhaust Hood and the

Deflection of the Air Flow into the Hood which is

caused by the Floor of the Workplace ———— 81
4.1 INTRODUCTION 82
4.2 FORMULATION 83
4.3 THE EFFECT OF THE EXHAUST INLET SIZE 84

4.3.1 The Equations of Motion and the Boundary Conditions 84

4.3.2 The Finite-difference Scheme 87

4.3.3 Results and Discussion 89




—vi —
4.4 CONCLUSIONS OF THE EFFECTS OF THE EXHAUST INLET SIZE — 93
4.5 THE EFFECT OF THE FLOOR ON THE AIR FLOW INTO AN AABERG

EXHAUST HOOD 94

4.5.1 The Equations of Motion and the Boundary Conditions 95

4.5.2 The Finite-difference Scheme 98

4.5.3 Results and Discussion 100

4.5.3.1 Alr Speeds along the Floor Surface of

the Workplace 104

4.5.3.2 Alr Speeds along the Centre-line of the

Ventilator 106

4.5.3.3 The Effective Capture Area 108

4.6 CONCLUSIONS OF THE EFFECT OF THE FLOOR ON THE AIR FLOW

INTO AN AABERG EXHAUST HOOD - 109

CHAPTER FIVE A Three-dimensional Axisymmetric Model for the Radial

Jet Issuing from the Aaberg Exhaust Hood 112

5.1 INTRODUCTION 113

5.2 FORMULATION 113
5.3 THE GOVERNING EQUATIONS OF MOTION AND THE BOUNDARY

CONDITIONS 115

5.4 THE INITIAL BEHAVIOUR OF THE RADIAL FREE JET —————— 117

S5.4.1 The Laminar Radial Jet 118

S.4.2 The Turbulent Radial Jet 119

5.5 THE ASYMPTOTIC BEHAVIOUR OF THE RADIAL FREE JET — 122

5.5.1 The Laminar Radial Jet 123

5.5.2 The Turbulent Radial Jet 124

5.6 SOLUTION OF THE EQUATIONS OF MOTION GOVERNING THE FLOW

IN A RADIAL FREE JET FOR O < x* < » 127




— vii —

S5.6.1 The Laminar Radial Jet 128

5.6.2 The Turbulent Radial Jet 129

5.7 NUMERICAL SOLUTION OF THE NON-LINEAR PARABOLIC PARTIAL

DIFFERENTIAL EQUATION 133
5.8 RESULTS AND DISCUSSION 139
5.8.1 The Laminar Radial Jet 141
5.8.2 The Turbulent Radial Jet 142
5.9 CONCLUSIONS 146

CHAPTER SIX A Three-dimensional Axisymmetric Model of the Fluid

Flow Pattern Created by an Aaberg Exhaust Hood 147

6.1 INTRODUCTION 148
6.2 THE MATHEMATICAL MODEL 149
6.2.1 The Axisymmetric Radial Jet Flow 150
6.2.2 The Jet-induced Flow 150
6.2.3 The Exhaust Flow 151
6.2.4 The Upstream Boundary Condition 152
6.3 THE FINITE-DIFFERENCE SCHEME 155
6.4 THE OPERATING PARAMETERS 156
6.5 RESULTS AND DISCUSSION 158
6.6 CONCLUSIONS 166

CHAPTER SEVEN Application of the Aaberg Principle to the Slot

Exhaust Hood 167

7.1 INTRODUCTION 168
7.2 THE MATHEMATICAL MODEL 169
7.2.1 The Two-dimensional Turbulent Wall Jet —————— 170

7.2.2 The Two-dimensional Turbulent Free Jet ——— 173



— viii —

7.3 THE OPERATING PARAMETERS . 175
7.4 RESULTS AND DISCUSSION - 177
7.4.1 The HI-Experiments 177
7.4.2 The HHY-Experiments 188
7.5 CONCLUSIONS 188
CHAPTER EIGHT The Use of FLUENT - A Full Turbulence Model — 191
8.1 INTRODUCTION 192
8.2 THE FULL TURBULENCE MODEL 193
8.2.1 The k-e& Model 193
8.2.2 The Boundary Conditions 194
8.3 THE NUMERICAL METHOD 197
8.3.1 An Outline of the SIMPLEC Algorithm 201

8.3.2 Solution of the Algebralc Equations and Convergence

Criterion 201

8.3.3 The Computational Grid 203

8.4 RESULTS AND DISCUSSION 204
8.4.1 The Axisymmetric Aaberg Exhaust Hood 204
8.4.2 The Aaberg Slot Exhaust Hood 211

8.5 CONCLUSIONS 219
CHAPTER NINE General Conclusions 221

REFERENCES 227




172
b(0)

— ix —

Nomenclature

width/radius of the exhaust flange in
two-dimensional/axisymmetric cases, respectively

width of the jet, as a function of x*

width of the jet at a characteristic distance s from the
Jet orifice

width of the shear-layer when u = G/Z; b1/2 = 0.881 b

width of the Jet nozzle

concentration of tracer gas in the exhaust

background concentration of tracer gas

reference concentration of tracer gas

constraint ratio, = 2a/b(0)

non-dimensional parameters: C = 0.0144 K'’?, C = 0.0260 K'/*
empirical constants: C1 = 1.44, C2 = 1.92, CM = 0.09
diameter of the exhaust inlet, d = 2s

wal}l roughness parameter, = 9.8

non-dimensional stream functions

(9kv/2)1/3 for laminar flow

(3k/o°)1/2/2 for turbulent flow

parameter, = {
non-dimensional operating parameters for two-dimensional
turbulent free Jet and wall jet flows, respectively
non-dimensional operating parameters for two-dimensional
laminar and turbulent free jet flows, respectively
non~dimensional parameter for turbulent axisymmetric
radial jet flow

step length in the lateral direction across the

radial jet shear-layer: 3 = jh



—_—x —
height of the ventilator unit above the floor
non-dimensional height of the ventilator unit above the
floor, = h/a

distance between the bench surface and the centre of the
exhaust inlet

non-dimensional distance between the bench surface and
the centre of the exhaust inlet, = h‘/p

ratio of the momentum flux of the Jet flow to the momentum
flux of the exhaust flow, = mju(o)/m u,
upstream turbulent Intensity

momentum flux of the free jet

kinematic momentum flux of the free jet, = j/p; in chapter
8, k is used to denote the turbulent kinetic energy
non-dimensional kinematlic momentum flux of the free jet
volumetric flow rate of the exhaust

volumetric flow rate of the jet

number of iterations

height of the Jet nozzle above the bench surface, = a + hs
ratio of pressure to density, = p/p

fluid pressure

pressure correction

guessed pressure

resultant alr speed

non-dimensional resultant air speed

resultant bifurcation speed

non-dimensional resultant bifurcation speed

resultant capture speed

non-dimensional resultant capture speed



—_—xi —

q,.4, dependent variables: q = q(X*,Y), q, = q(X*+3X*,Y)
(ra,a) dimensional coordinate system

(Ra,a) non-dimensional coordinate systenm, Ra = ra/a
(rw,w) dimensional coordinate system

(R7.7) non-dimensional coordinate system, R7 = rw/a

(r,0) dimensional coordinate system

(R, 0) non-dimensional coordinate system, R = r/a

(r,e,¢) dimensional spherical polar coordinate system

Re Reynoldé number of the Jjet, = u(0)b(0)/v
Rh hydraulic radius
R Reynolds number of the exhaust flow, = u, a/B
in in o
Rj(x*) Reynolds number of the jet as a function of x*, = u x*/v

mass residual

R radial position of outer artificial boundary

s width/radius of the exhaust inlet for
two-dimensional/axisymmetric cases, respectively

S non-dimensional width/radius of the exhaust 1inlet for

two-dimensional/axisymmetric cases, respectively

S¢ source term

u velocity vector, = ul + vj + wk

u(0) Jet exit speed

Uin fluid speed at the face of the exhaust inlet

u maximum fluid speed in the jet

Gs centre-line velocity of the jet at a characteristic
distance s from the jJet orifice

u  shear speed, = T"/p

U°° speed upstream of the exhaust hood

u,v

velocity components in the x and y directions, respectlively



u,v
ul’vl
u*, v*
ur’ u9
Ur’ UO
u, u¢
Ur, U¢
x*

X

[e o]
(x,y)
(X,Y)
(x,0,y)
y

+

y
Greek
o

o

cap

B

B

[+

Y

[

r

3R

— x1i —
non-dimensional velocity components in the x and vy
directions, respectively
velocity corrections
velocity based on the guessed pressure p*
radial and tangential velocity components, respectively
non-dimensional radial and tangential velocity components,
respectively
radial and tangential velocity components, respectively
non-dimensional radial and tangential velocity components,
respectively
distance along the jet axis measured from the jet orifice
position of outer artificial boundary
dimensional cartesian coordinate system
non-dimensional cartesian coordinate system
dimensional cylindrical polar coordinate system
lateral distance measured perpendicular to the Jet axis

dimensionless friction length, = yu‘/v

constant of integration

capture efficiency

v for laminar flow
kinematic viscosity,

€ for turbulent flow

v for laminar flow
scaling factor for B,

€ for turbulent flow
empirical constant
general diffusion coefficient

radial step length: R = i3R



ox
SX*
30
8§
3¢
Ax, Ay

Ay

— xiii —
step length in the X direction: X = iéx
step length in the Crank-Nicolson scheme

step length in the tangential direction: 6

136

step length, = 1ln(1+3R)

step length in the tangential direction: ¢ = 15¢

x and y direction widths of the control volume

the volume flux of fluid between adjacent streamlines
apparent kinematic viscosity; in chapter 8, € is used to
denote turbulent energy dissipation and the apparent
kinematic viscosity is then denoted v,

apparent kinematic viscosity at a characteristic distance
s from the Jet orifice
‘initial’ apparent kinematic viscosity, = u(0)b(0)
tolerance in the Newton iteration procedure
tolerance between.successive solutions in radial direction
shear-layer variables which measure the distance normal to
the centre-line of the jet
the von Karman constant, = 0.42

{ 1/3 for the laminar plane jet
parameter, =

1/2 for the turbulent plane jet

dimensionless function of X*, i = 1,2,3,4
viscosity of the fluid
kinematic viscosity of the fluid
effective kinematic viscosity of the fluid, = v + ¢
radial coordinate, = ln(R)

density of the fluid

empirical constants: ok =10, ¢ =1.3



— xiv —

c,c constants which characterize the spreading rate of the

turbulent Jet. For the plane Jjet b = ¢;

axisymmetric radial Jet: b = { °

1x*, for the

~1
c x* at x* =0

1
o xX* as x* — o

T shear stress, = p duw/dy

T shear stress on the wall

T
1)

truncation error

o production of turbulent kinetic energy

X empirical constant

1/ stream function

¥ dimensionless stream function

Wm stream function value at the edge of the shear-layer

w relaxation parameter

Subscripts

e,n,s,w control volume faces (Fig.8.1)

E,N,P,S, W grid points

nb neighbouring grid point

Abbreviations

ASE Aaberg slot exhaust

CFD Computational fluid dynamics

CLV Centre-line velocity

CPU Central processing unit

LEV Local exhaust ventilation

LVA Low velocity flow analyser

REEXS Reinforced exhaust system

SIMPLEC‘ Semi-Implicit Method for Pressure Linked Equations
(Consistent)

S.0.R.

Successive over relaxation



—_ XV —

List of Figures

Page

Fig.1.1(a) The non-directional flow of a traditional LEV
hood

Fig.1.1(b) Air speed profiles of a traditional flanged
LEV hood, Greenough (1988)
Fig.1.2 A schematic representation of the Aaberg principle —

Fig.1.3 Capture of tracer gas released at 5d from an exhaust
hood of dimensions: a = 0.15m, s = 0.037m, b(0) = 8.0Omm;
courtesy of the Health and Safety Executive, Research
Division, Sheffleld, England. (a) Suction alone,

u, = 12.7ms™, 1 =0.0. (b) Combined suction and

injection, u = 12.7ms”! and u(0) = 7.71ms™?, I = 0.65 —

i
Fig.1.4 An Aaberg exhaust hood with a back wall

Fig.1.5 The Aaberg ventilator unit suspended 3.5d above the
floor. Smoke 1is released on the floor beneath the
ventilator

Fig.1.6 Contours of constant air speed for an Aaberg exhaust
hood as obtained by Hegsted (1987)
Fig.1.7 The efficient and recycled flow regions of an Aaberg

exhaust hood proposed by Hegsted (1987). The shading
i1llustrates the efficient flow region

Fig.1.8 The deflection of the Aaberg flow pattern. The
shading illustrates the efficient flow region

Fig.1.9. (a) Contours of constant air speed and (b) contours of
constant capture efficlency, as obtained by Fletcher and
Saunders (1991), for an exhaust hood of dimensions:
a >0.15m, s = 0.037m, b(0) = 7.5mm and operating with
u, = 15.5ms™! and u(0) = 7.7ms™’

Fig.1.10 Cross-section through the Aaberg slot exhaust hood -

Fig.2.1 The three flow regions of the model, (i) the Jet
flow regions, (ii) the Jet-induced flow regions and (iii)
the exhaust flow region

Fig.2.2 Schematic diagram of the Jet 1llustrating the

coordinate system and notation

o))

13

14

16

16

21

24

31

34



—_—xvi —
Fig.2.3(a) The flow induced by a two-dimensional plane jet
which discharges perpendicular to a straight wall as
observed by Lippisch (1958)

Fig.2.3(b) The flow induced by a two-dimensional turbulent
wall jet 1ssuing parallel to a straight wall as observed
by Sigalla (1958a). The arrow indicates the position of
the orifice of the Jet

Fig.3.1 The geometry and coordinate system used for the sink
flow

Fig.3.2 The geometry and coordinate systems used for the
induced flow

Fig.3.3 Streamlines modelling the Aaberg flow for a laminar
injection of fluid, A = 1/3, (a) GL= 0.05, (b) GL= 0.5
and (c) GL= 5

Fig.3.4 Lines of constant speed in front of the hood for a
laminar 1injection of fluid, A = 1/3, (a) GL= 0. 05,
(b) G = 0.5 and (c) G = 5
Fig.3.5 Variation in the centre-line velocity with distance
from the inlet for laminar injections of fluid, GL= 0.05,
0.5 and 5§

Fig.3.6 Streamlines modelling the Aaberg flow for a
turbulent 1injection of fluid, A = 1/2, (a) G&= 0.2,
(b) G.=2 and (c) G= 20
Fig.3.7 Lines of constant speed in front of the hood for a
turbulent 1injection of fluid, A = 1/2, (a) G&= 0.2,
(b) GT= 2 and (c) GT= 20
Fig.3.8 Variation in the centre-line velocity with distance
from the 1inlet for turbulent injections of fluid,

GT= 0.2, 2 and 20
Fig.4.1 The geometry and coordinate system used to model the

effect of the exhaust inlet size

Fig.4.2 Lines of constant speed modelling the air flow
created by an Aaberg exhaust hood operating with GT = 2,
(a) S =1/8, (b) S =1/4 and (c) S = 1/2

Fig.4.3 Streamlines modelling the air flow created by an
Aaberg exhaust hood operating with G =2, (a) S = 1/8,
(b) S =1/4 and (c) S = 1/2

45

45

57

64

71

72

74

76

77

78

85

91

91



— xvii —

Fig.4.4 Variation in the resultant air speed along

the

centre-line of the Aaberg exhaust hood as a function of

the distance, Y, from the inlet

Fig.4.5 The geometry and coordinate system used for the

ventilator unit

Fig.4.6 Streamlines modelling the flow of the ventilator

unit, H=8, for (a) G=0, (b) G =2 and (e) G=4

Fig.4.7 Lines of constant speed in the workplace induced by

a ventilator unit, H=8, for (a) G=0, (b) G=2 and

(c)G=4

Fig.4.8 Variation in the resultant air speed along the floor

surface as a function of the ventilator height, H,

for

(a) G=0, (b) G=2and (c) G =4
Fig.4.9 Variation in the resultant air speed along
centre-line of the ventilator as a function of
ventilator height, H, for (a) G =0, (b) G =2
(c) G=4

the
the

and

Fig.5.1 The geometry and coordinate system used for

the

radial free Jet

Fig.5.2 The stream function at the edge of the laminar

radial jet as a function of X* for K = 10®

Fig.5.3 The stream function at the edge of the turbulent

radial jet as a function of X* for K = 10, (1) e/e° as
given by equation (5.6.22a), (1i) e/eo as given by
equation (5.6.22b), (iii) Tuve (1953), (iv) Squire (1955)
and Heskestad (1966), (v) Patel (1979), (vi) Poreh and

Cermak (1959) and Witze and Dwyer (1976)

Fig.6.1 The geometry and coordinate system for
axisymmetric Aaberg exhaust hood

the

Fig.6.2 The solution domain and the boundary conditlons used

to model the axisymmetric Aaberg exhaust hood

Fig.6.3(a) Lines of constant air speed 1In front of an

axisymmetric flanged exhaust hood operating under suction

1

alone, a = 0.1515m, s = 0.037m, u, = 15.5ms”~, Fletcher

and Saunders (1993)

93
96

102

103

105

107

115

141

144
149

154

159



Fig.

Fig.

Fig.

Fig.

Fig

Fig.
Fig.

Fig.

Fig

Fig.

Fig.
Fig.

— xviii —

6.3(b) Lines of constant air speed deduced from the model
for an axisymmetric flanged exhaust hood operating under

suction alone, K =0, S = 0.244, Rin = 138132

6.4(a) Lines of constant air speed In front of an
axisymmetric flanged exhaust hood reinforced by a radial
jet flow, a =0.1515m, s =0.037m, u, = 15.5ms™ ",
b(0) = 0.0075m, u(0) = 7.7ms” ', Fletcher and Saunders
(1993)

6.4(b) Lines of constant air speed deduced from the model
for an axisymmetric flanged exhaust hood reinforced by a
turbulent radial jet, K = 10.1, S = 0.244, Rin = 40.7

6.5 Variation in the centre-line air speed, u/uin, as a
function of the distance, y/a, along the hood’s
centre-line for (a) I = 0.0, (b) I = 0.5, (¢) I = 0.9 and
(d) I = 1.95. ® pPedersen (1993}, Model

.7.1 A schematic diagram of the Aaberg slot exhaust hood -

7.2 The geometry and coordinate system of the ASE model -

7.3 The variation in the dimensionless resultant air
speed, Q, as a function of Y along X = 0.174,
(a) 1=0.0, (b)) I =0.5 (c) I =0.9and (d) I =2.5

7.4 The variation in the dimensionless resultant air
speed, Q, as a function of X from Y = 5.22, (a) I =0.9
and (b) I = 1.5

.7.5 Sets of streamlines modelling the ASE flow pattern

predicted by the wall Jet model, (a) Gw = 0.00,
(b) Gw = 14.9, (c) GH = 20.0 and (d) G" = 33.4. The
shaded area represents the predicted effective capture

region

7.6 Cross-section through the Aaberg slot exhaust -
illustrating the back wall design modification

8.1 A two-dimensional rectangular control volume

8.2 The streamlines for the flow around an axisymmetric
Aaberg exhaust hood, the volume flux of air between
adjacent streamlines 1s denoted by Ay, (a) I =0.0,
Ay ~ 2.5x10 %n%s™Y, () I = 0.5, Ap = 1x10 °m°s”,
(¢) I =0.9, Ay = 1x10%m°s™ and (d) I =1.95,

Ap = 1x10"*m°s™!

159

162

162

le4
171
171

179

183

185

189
199

206



— xix —
Fig.8.3 The variation in the resultant air speed, U/uin’
along the centre-line of the axisymmetric exhaust hood,

)
and the experimental results of Pedersen (1993) ( B ),
for (a) I = 0.0, (b) I =0.5, (¢) I =0.9 and
(d) I =1.95

showing the present CFD results (- — -), the model (

Fig.8.4 Streamlines for the flow around the ASE unit
operating at I = 0.0, (a) the CFD model, the volume flux
of alr between adjacent streamlines Ay = 8.75)(10-3m3s-1

per metre length of the slot, (b) the simple mathematical
ASE model, see chapter 7

Fig.8.5 Streamlines for the flow around the ASE unit
operating at I = 0.5, (a) the CFD model, the volume flux
of alr between adjacent streamlines Ay « 3.5x10'2m35-1

per metre length of the slot, (b) the simple mathematical

ASE model, see chapter 7
Fig.8.6 Streamlines for the flow around the ASE unit
operating at I = 0.9, (a) the CFD model, the volume flux
of ailr between adjacent streamlines Ay «~ 3.5x10 2n3s™?

per metre length of the slot, (b) the simple mathematical

ASE model, see chapter 7
Fig.8.7 Streamlines for the flow around the ASE unit
operating at I = 2.5, (a) the CFD model, the volume flux
of air between adjacent streamlines Ay ~ 3.5x10 °m°s '

per metre length of the slot, (b) the simple mathematical

ASE model, see chapter 7
Fig.8.8 The variation in the resultant air speed, q/(m/p),
at a height of x/a = 0.174 above the bench surface,
showing the present CFD results (- — -), the ASE model
(——) and the experimental results of Pedersen (1993)
(W), for (a) 1 =0.0, (b) I =0.5 (c) I=0.9 and
(d) I = 2.5

208

212

213

214

215

217



List of Tables

Table 5.1 Experimentally determined values of the spreading
constant, L for the turbulent radial free jet —m7m™M—— 127

Table 5.2 The coefficients, (o of equation (5.8.6) ————— 143

Table 6.1 The characteristic dimensions of the axisymmetric
Aaberg exhaust hoods of Fletcher and Saunders (1993) and
Pedersen and Nielsen (1991) and the resulting model

operating parameter values 158



CHAPTER ONE

GENERAL INTRODUCTION AND LITERATURE REVIEW



1.1 INTRODUCTION

Production processes may be accompanied by the emission of
noxious gases, vapours, dust or heat, which affect the composition
and state of the air, and may harm the health and well-being of the
workpeople, create distressing working conditions and reduce
productivity. To combat these problems and to maintain a prescribed
condition and cleanliness of the air which meets the requirements of
hygiene some form of ventilation system is needed in the workplace.
This ventilation process removes the contaminated air from the
building (extract ventilation) and replaces it with clean air
(inflow ventilation). Ventilation methods can be classed as local or
general. Local extract ventilation is intended for removing polluted
air at source to prevent the dispersal of impurities throughout the
building. The incoming air replaces the air removed by the local
exhaust. General ventilation is required whenever it is impossible
or 1mpfactica1 to use local exhaust hoods, for example where the
exhaust hood might severely hinder the technological process. Here
the role of the incoming air is to dilute the impurity at least to
the maximum allowable concentration.

Local exhaust ventilation (LEV) systems are used in many
industries for the removal of all types of Iimpurity, both
particulate and gaseous or vapour. These impurities are caught at
source and so prevented from contaminating the general atmosphere in
the workplace and as a consequence the necessary air change is kept
to a miﬁimum. Impurities may be removed by being blown towards the
outlets by suitably arranged air currents; they may be removed

directly by exhaustion or by a combination of air currents and



exhaustion.

A local exhaust ventilation system consists of a collection
hood for the capture of the contaminated air and an exhaust duct
system along which the contaminated air 1is transported and
discharged into the atmosphere, elther directly or through cleaning
equipment. The main requirement of the collection hood is that it
should capture the maximum amount of impurity with the minimum
amount of air consumed and without \interfering with the
technological process. A well-functioning 1local exhaust hood is
therefore characterized by a high concentration of pollutant in the
exhaust air, by a low volume of ventilation air, and by a low
consumption of energy. The factors under the control of the designer
in meeting these requirements are the geometry 6f the hood, its
location with respect to the source and the exhaust volumetric flow
rate. The geometry of the hood is chosen to sult the particular
application, with the hood as close to the source of the contaminant
as possible without hindering the technological process. The
volumetric flow rates for each hood are determined by the designer
and are based on the nature of the process to be controlled and the
type of hood selected. The volumetric flow rates must also be
capable of overcoming crosscurrents and other background air
disturbances which could deflect the stream of impurity from the

hood and hence a range of volumetric flow rates are usually

recommended for each hood.

1.1.1 Traditional Exhaust Hoods

Although having many inherent weaknesses, the local exhaust

ventilation systems used in many of today’s industries remain
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virtually unchanged in their methods of operation when compared with
those introduced in the 1930’s. The weaknesses of these LEV systems
are as a result of the air flow pattern which characterizes the
traditional hood. The traditional hood’s air flow pattern is
non-directional, as air is exhausted from all directions, and this
results in the second characteristic and weakness, namely that the
air speed developed in front of the hood decreases almost inversely
with the square of the distance from the hood. The -capture
efficiency of the traditional hood is therefore highly dependent on
and influenced by the level of background air disturbances. The
variation of the air speed with distance from the hood is of prime
importance in the design of a LEV system and a number of empirical
formulae for the variation of the centre-line air speed of unflanged
hoods have been proposed, see Fletcher (1977). The
non-directionality of the air flow péttern further adds to the
hood’s inefficiency as quantities qf clean air, which 1in many
circumstances may have been drawn from behind the hood, are
continually being exhausted. A typical air flow pattern developed by
the traditional exhaust hood is shown schematically in Fig.1.1(a).
Minor improvements have been made by introducing a flange to the
exhaust which limits the directions from which the exhaust can draw
air, see for example Fletcher (1978). However, the high rate of
decrease of the air velocity in front of the hood remains. Typical
profiles of constant alr speed and streamlines for a traditional
flanged hood with a circular exhaust opening, of diameter d, are
shown in‘Fig.l.l(b), where the speed of each profiie is labelled as
a percentage of the air speed at the face of the exhaust opening. As

a result of these drawbacks traditional suction devices, for example




-5 -

hoses, are often very difficult to fit into working conditions as
they have to be installed close to the technological processes and

often interfere with the work or are pushed aside by the workers.
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Fig.1.1(a) The non-directional Fig.1.1(b) Air speed profiles of

flow of a traditional LEV hood. a traditional flanged LEV hood,

Greenough (1988).

1.1.2 The Aaberg Principle

In 1965 a new reinforced-exhaust system (REEXS) was introduced
by the Danish manufacturer C.P. Aaberg. By combining two well-known
flows wused 1in wventilation technology, namely injection and
exhaustion, Aaberg demonstrated that it is possible to enhance the
alr speeds generated by traditional hoods as well as achieve a
airectional air flow pattern. Through a balanced combination of the
injection and exhaustion flows, known as the Aaberg principle in LEV
technology, a movement of air which consists of two well-defined

regions can be created towards the exhaust. Air moving in the first
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region is drawn directly towards the exhaust inlet whilst air in the
second region is led away from the exhaust inlet by the injection
flow. In its design the Aaberg exhaust hood is very simllar to a
traditional flanged hood. However, it is fitted with a flange
through which air can be ejected radially from a narrow slot. A
cross-section through the Aaberg exhaust hood, 1illustrating the

Aaberg principle, 1s shown schematlcally in Fig.1.2.
Jet
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Fig.1.2 A schematic representation of the Aaberg principle.

The dramatic effect which is caused by the blowing Jjet on the
hood’s overall air flow can be explalned as follows: due to the
friction developed at the radial jet/air interface an entrainment
flow develops which, under the correct conditions, has the property
of removing the clean air from in front of the hood (the recycled
flow) as well as enhancing and concentrating the exhaust’s suction

in a zone along the hood’s longitudinal axis (the efficient flow).
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This results in quite new profiles of constant air speed in front of
the exhaust opening and a directional exhaust capable of creating a
flow towards the opening at distances of up to 10 times the exhaust
diameter, see Hogsted (1987). Although replacement air should still
be supplied the Aaberg exhaust works with significantly smaller
quantities of alir than traditional exhausts. This, together with a
higher concentration of pollutant in the exhaust air, makes the
Aaberg process for limiting pollutant emission less expensive and
more effective than traditional methods. The performance differences
between a conventional LEV system and the Aaberg system are further
highlighted in Fig.1.3. Figure 1.3(a) depicts a traditional flanged
exhaust hood of 1inlet radius s = 0.037 m and face velocity of
u, = 12.7 ms'i, and clearly shows that operatiﬁg under suction
alone the vast majority of the pollutant enters the environment and
that only a few wisps of the contaminantvare successfully exhausted.
The contaminant is mpdelled as a continuous release of smoke from a
burning pellet located along the hood’'s longitudinal axis at five
inlet diameters from the face of the inlet. In contrast, Fig.1.3(b)
depicts a hood operatipg under the same inlet conditions but which
is now reinforced by a radial jet of air. The exhaust flange has a
radius of a = 0.15 m and the jet 1ssues through a nozzle of width
b(0) = 8.0 mm with an average speed of u(0) = 7.71 ms”'. The volume
flux of fluid exhausted is approximately 90% of that injected. The
striking effect achieved by the combination of the exhaustion and
injection air flows is very clear as now the vast majority of the

contaminant 1is contained In a narrow zone along the hood’s

longitudinal axis and is drawn directly towards the exhaust inlet.



Fig.1.3 Capture of tracer gas released at 5d from an exhaust hood of

dimensions: a ~ 0.15 m, s = 0.037 m, b(0) = 8.0 mm; courtesy of the

Health and Safety Executive, Research Division, Sheffield, England.

(a) Suction alone, M e 4207 ms™', I =o0.0.

(b) Combined suction

and injection, Wyl 12.7 ms™! and u(0) = 7.71 ms™ >, I = 0.65.
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The numerous benefits, both to the environment and to the
personal health of the workpeople, which could be achieved through a
reduction in the amount of contaminant released into the workplace
as a direct result of the correct introduction of the Aaberg exhaust

system are obvious.

1.2 A REVIEW OF THE EXISTING LITERATURE

A chronological review of the avallable literature concerning
both the experimental and theoretical aspects of the Aaberg
principle applied to 1local exhaust ventilation systems 1is now
presented.

The Aaberg reinforced exhaust system was first studied in 1965
but it was not until the mid 1980’é when researchers at the
University of Aalborg, Denmark, tried to combine the injection and
exhaustion principle. From his experimental investigations Hyldgard
(1987) concluded that a proper balance between injection and
exhaustion is necessary to establish aerodynamic control and he
discovered that for a given hood geometry and injection slot width
b(0), i.e. the width of the slot through which the jet issues, a
critical injection velocity must be exceeded to realize the desired
alr flow pattern. Hyldgard (1987) defined the critical injection
velocity as the minimum initial velocity of the jet needed to
prevent the jet of air being captured by the exhaust opening. Below
the critical velocity the hood will be 1less effective than a
conventional hood as the flow will ‘short-circuit’ as the suction

captures the radial Jjet. His results showed that increasing the
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injection velocity above the critical value further increased the
air speed in the efficient flow region but reduced its width as the
injection entrained more air. Aiming for greater energy efficiency
and quieter operation Hyldgdrd developed and tested a new hood and
through a series of experiments sought to reduce the 1injection
velocity to a minimum without destroying the desired effect. He
found that the critical injection velocity is dependent upon the
direction of the injection flow and demonstrated that the critical
injection velocity can be 1lowered 1if the exhaust flange 1is
orientated at 105" to the axis of symmetry of the hood. Other
experiments conducted by Hyldgidrd (1987) investigated the effects of
the 1injection slot width on the critical injection velocity.
Previously, very small injection slot widths, e.g. b(0) = 0.15 mm,
had been used with very high 1injection velocities, e.g.
u(0) = 30 - 50 ms'l, which required high injection pressures and
generated high leve;s of noise. Hyldgdrd found that the critical
injection velocity is directly proportional to the exhaust flow rate
and that for a given exhaust flow rate the critical injection
velocity can be reduced by increasing the injection slotv width. This
is because the structure of the flow in the radial jet depends upon
its momentum flux and not the initial speed of the air jet. Hyldgard
then conducted experiments on the Aaberg exhaust hood for various
ratios of the momentum flow in the exhaust to the injection where
the momentum ratio, I, is defined as

m u(0)
J

I = —M— (1.2-1)
mu,
in

where mj is the volume flux of fluid injected with initial speed

u(0) and m is the volume flux of fluid exhausted with face speed
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u, - With an Aaberg exhaust hood operating at the critical injection
velocity Hyldgadrd (1987) showed that if the width of the injection
slot was chosen between b(0) =2 mm and b(0) = 2.5 mm then the
ratio, I, could be minimized, the minimal value being between
I =0.4 and I = 0.5. Taking into account the energy consumption of
the injection fan and the generation of noise an injection slot
width of b(0) é 2.5 mm was chosen by Hyldgird as the optimum size.
Comparisons made by Hyldgadrd (1987) between the air speeds
created by an Aaberg exhaust hood and those of a conventional
exhaust highlighted the superiority of the former in design and
function. Hyldgdrd introduced the notion of a clutch Velocity,
defining it as thé velocity of the air in front of the hood caused
by the hood, and operating two Aaberg exhaust hodds, one standard

and one with a back wall, see Fig.1.4, he made measurements of it.

M.

A MM

Fig.1.4 An Aaberg exhaust hood with a back wall.
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The ratio between the clutch velocity and the velocity of the
pollutant is a decisive factor in determining whether or not the
exhaust will collect the pollutant. The results he obtained
demonstrated the effectiveness of the injection which significantly
enhanced the clutch velocitles as well as the range over which
contaminant capture occurs. Simply by increasing the injection
velocity Hyldgard noticed that the clutch velocity along the
centre-line increased dramatically and that this effect, together
with a narrowing of the efficlent flow reglion, resulted in a more
concentrated exhaust over larger distances. Hyldgdrd also found that
incorporating a back wall, although reducing the differences between
the clutch velocity 1ﬁ situations with and without injection, as the
wall acts as a flange, had the advantage of alloﬁing the critical
injection velocity to be significantly reduced. Thus, with a back
wall the Aaberg hood can induce a specified clutch velocity,
required for the capture of a particular pollutant, at noise and

energy levels lower than possible with a standard hood.

Experiments were also performed on the Aaberg principle by
Hogsted (1987), who had access to Aaberg exhaust hoods in the form
of both a local ventilation system and a ventilator unit, see
Fig.1.5. Hegsted gives a detalled description of some experimental
work on the aerodynamic control of an Aaberg exhaust hood. Using a
ratio of injected to exhausted air quantities which is typically
1:10 he achieved aerodynamic control and described the injection
effect as.creating a selective hood with no air drawn from behind
the hood as in flanged and unflanged traditional hoods. In a

comparison with those of traditional hoods, see Fig.1.1(b), Hegsted
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Fig.1.5 The Aaberg ventilator unit suspended 3.5d above the floor.

Smoke is released on the floor beneath the ventilator.

describes the resulting flow as having quite different air speed
profiles in relation to the exhaust opening with the individual
contours of constant speed regarded as three-dimensional spherical
surfaces with centres at -2d, see Fig.1.6. In Fig.1.6 the speed
contours for 0.30 ms_1 and 0.40 ms™' are only drawn in the central
area as measurements did not cover the shaded area.

In Hegsted (1987), results of laboratory tests performed on a
freely suspended Aaberg exhaust hood whose longitudinal axis pointed
vertically downwards, as in Fig.l1.5, are presented. Measurements

were taken using a non-directionally sensitive low velocity flow
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Fig.1.6 Contours of constant air speed for an Aaberg exhaust hood as

obtained by Hegsted (1987).

analyser (LVA) and the objective of the investigations were to
determine contours of constant Speed,lstreamlines and ultimately the
efficient flow region. Experiments to examine the efficient flow
region of the suspended Aaberg exhaust hood revealed that not all of
the air moving towards the hood 1s captured by the exhaust inlet but
some ls drawn away from the inlet in the injection flow. During
smoke experiments Hegsted discovered that smoke released close to
the hood’s centre-line was totally evacuated via the exhaust opening
but if released some distance from the centre-line was captured in
the injection flow and blown back into the room. This led Hegsted to
propose that the region in front of the hood could be theoretically
divided into two distinct regions, namely an efficient region and an

inefficient (or recycled) region. Capture efficiencies are assumed
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to be 100% and 0% in the efficient and recycled regions,
respectively, with the two regions being separated by a so-called
A-surface, see Fig.1.7. The capture efficiency, acap, of the exhaust

system is measured using tracer gas techniques and is defined as

o = —— (1-2.2)

where Ce is the concentration of tracer gas in the exhaust, Cbc is
the mean background concentration and C. 1s the reference
concentration which 1s determined by capturing 100% of the tracer
gas.

To further investigate the behaviour of the Aaberg flow
pattern, obstacles were Iintroduced and the deflection of the flow
pattern monitored. Results of these investigations show that the
Aaberg REEXS exhibits some quite exceptional and extremely
interesting qualities. Experiments by Hegsted (1987) show that smoke
burnt from behind a vertical plate élaced in front of a local Aaberg
REEXS can be exhausted even though tﬁe combustion creates a strong
thermal influence. Experiments carried out by Hegsted on an Aaberg
ventilator unit suspended above the floor surface of the workplace
show that smoke released at floor 1level far from the hood’'s
centre-line is captured. The floor, thought of as the obstacle in
the experiment, deflects the flow pattern and the efficient flow
region of the hood radially outwards over the floor surface and
thereby creates a suction effect over a considerable surface area,
see Fig.1.8. In fact, Hegsted reports that the efficient region of a
ventilator unit suspended 3.5d above the floor is deflected over the
floor surface to a radial distance from the centre-line of up to 5

or 6d.
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Fig.1.7 The efficient and recycled flow regions of an Aaberg exhaust
hood proposed by Hegsted (1987). The shading illustrates the

efficient flow region.

a) Undeflected flow. b) Deflected flow.

Fig.1.8 The deflection of the Aaberg flow pattern. The shading

illustrates the efficient flow region.
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Hegsted is cautious when suggesting possible applications of
the Aaberg principle and explains that although a trial of the
system exists in practice it is not yet applicable to industry as it
requires careful adjustment to each operating situation and that far
from all the flow influencing parameters have been determined. In
order to avoid incorrect application and consequently disappointing
results Hogsted (1987) underlines the necessity to understand how
the system works and lists some basic rules to follow regarding the
application of an Aaberg REEXS. These include recommendations for
the correct installation of the hood and particularly for the
freedom of the injection flow to spread unhindered thereby avoiding

undesirable flow patterns.

More recently, Pedersen and Nielsen (1991) have described how
the capture efficlency is determined by the ratio of momentum flows
in the exhaust and injection, I, see équation (1.2.1). They also
discovered that the exhaust velocity, c.f. Hyldgird’s (1987) clutch
velocity, depénds on the momentum ratio, I, and found that the
lowest possible ratio to avoid a ‘short-circuit’ is I = 0.1. In a
comparison made between the Aaberg REEXS and traditlional exhaust
systems Pedersen and Nielsen (1991) comment on the superiority of
the Aaberg REEXS and state that In order to induce air speeds at 6d
from the exhaust inlet which are comparable with a hood operating at
I = 0.1 the volume flow rate of the suction of a traditional hood
(I = 0.0) would have to be increased by a factor of between 4 and
11. In other experiments Pedersen and Nielsen measure the
centre-line velocity of three types of Aaberg flow, namely,

axisymmetric, three-dimensional and three-dimensional wall Jet flow
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for various values of the momentum‘ratio, I. By attaching an exhaust
hood to the edge of a bench with its centre-line parallel to the
bench surface Pedersen and Nielsen (1991) were able to change the
flow from an axisymmetric flow to a three-dimensional flow. A
three-dimensional wall Jet flow was achieved by supplying the
injection air along a plane surface.

The results obtained by Pedersen and Nielsen (1991) do not
agree exactly with the theoretical capture regions proposed by
Hogsted (1987). Indeed, contrary to the postulated 100% capture
efficiency inside the A-surface, see Hogsted (1987), Pedersen and
Nielsen (1991) found that the capture efficiency decreased with
increasing distance from the centre-line and a 100%4 to 0%
discontinuity in the efficlency at the A-surface Qas not observed.
Pedersen and Nielsen (1991) argue that due to the fluid flow
circling around the longitudinal axis té the exhaust opening and to
the turbulence of the flow, the capture efficiency close to the
A-surface is reduced. The rotation of the flow towards the exhaust
inlet observea by Pedersen and Nielsen (1991) is induced by a
swirling radial jet. Pedersen ahd Nielsen state that due’to the high
exhaust velocity induced, the Aaberg REEXS is able to maintain a
high capture efficiency in disturbed surroundings where the capture
efficiency of a traditional hood would be approximately zero. They
advise that a low value of the ratio I should be chosen for maximum
capture efficiency (as the efficient flow region 1is then broad)
whilst making sure that the exhaust velocity necessary to capture
the particular contaminant is sufficient. They cénclude that the
momentum ratio determines the induced velocity and the region of

high capture efficiency. Pedersen and Nielsen’s capture efficlency
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results represent the maximum theoretical capture efficiency for the
given pollutant source. In practice, background disturbances, e.g.
cross draughts, temperature gradients, etc., would have to be taken

into consideration when calculating the capture efficiency.

Experimental research into the Aaberg principle has also been
undertaken by Fletcher and Saunders (1991,1993) and they have
explored two main factors involved in the hood’s operation, namely
induced velocities and capture efficlencies. Velocity measurements
taken wusing a DANTEC 1low velocity flow analyser with an
omni-directional probe were used to produce contours of equal air
speed. Fletcher and Saunders (1991) regarded air speeds above
0.25 ms~! to be those induced by the hood and those below 0.25 ms™
to be due to background air disturbances. With an Aaberg exhaust
hood operating under combined suctionvand injection Fletcher and
Saunders (1991) noticed that at the gdge of the exhaust flange air
was elther drawn into the exhaust inlet or caught in the injection
flow, i.e. a dividing surface between the two flows exists. They
found that by operating an Aaberg exhaust hood of dimensions:
ax0.15m, s = 0.037 m and b(0) = 7.5 mm at the ratio of I = 0.4,
l.e. with u, = 15.5 ms”' and u(0) = 7.7 ms—i, it was possible to
achieve controlled air movements towards the hood of over 0.25 ms'l.
and hence overcome the level of background air disturbances, at
distances of up to 94 away from the hood along the centre-line, see
Fig.1.9(a). This result compares favourably with the length of the
controlled air flow pattern, of 10d, obtained by Hegsted (1987).

Capture efficiencies of an Aaberg exhaust hood were measured by

Fletcher and Saunders (1991) using a tracer gas technique. The
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tracer gas used was a neutrally-buoyant mixture of 15% sulphur
hexafluoride with helium and a MIRAN 1A-CVF infra-red gas analyser
was used to measure tracer gas concentrations. To obtain better
estimates of the capture efficiency, allowances were made for the
amounts of tracer gas re-entering the atmosphere via the injection
flow and creating a different background concentration at each
measurement point. The experimental results obtained by Fletcher and
Saunders (1991) suggest that contaminants located outside the
capture region normally associated with a conventional hood will be
carried towards the Aaberg exhaust hood mainly by the jet-induced
flow. Once inside this capture region the contaminant will be drawn
into the exhaust inlet by the suction. Profiles of capture
efficiencies were found to be similar to the contours of equal air
speed but the boundarles were in terms of percentage captures as
opposed to air speeds, see Fig.1.9(b). Fletcher and Saunders (1991)
showed that in areas where the induced air speeds are comparable to
the level of background air movements low captures are obtained.
Background disturbances in the laboratory gave the low capture
envelopes, below 50%, ill-defined boundaries so only those above 50%
vwere plotted. The main result they obtained was that inside the
A-surface the capture efficlency is not constant but decreases with
increasing distance along the centre-line from the exhaust 1inlet.
This result is in agreement with the observations of Pedersen and
Nielsen (1991). Fletcher and Saunders (1991) found that the size of
the capture region created by a controlled Aaberg hood, operating at
I ~ 0.4, was very encouraging. The 100% capture boundary enclosed a
significant area and intersected the centre-line at a distance of

approximately 4d from the exhaust inlet, although the width of the
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Fig.1.9 (a) Contours of constant air speed and (b) contours of

constant capture efficiency, as obtained by Fletcher and Saunders

(1991), for an exhaust hood of dimensions: a = 0.15 m, s = 0.037 m,

7.7 ms .

[}

b(0) = 7.5 mm and operating with u = 15.5 ms”™! and u(0)
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boundary appeared to be limited to the diameter of the flange, see
Fig.1.9(b). The 50% capture line, see Fig.1.9(b), was found to cut
the centre-line at approximately 9d from the face of the exhaust
inlet and compared well with the 0.25 ms~} air speed boundary. The
significance of this result is that even though the hood induces
adequate clutch velocities to overcome the background air
disturbances, the capture of contaminant from this range is not
complete due to the diffusion of the contaminant into the
surrounding air. By reducing the volume flow of the suction, to
I ~ 0.6, capture envelopes intersecting the centre-line at similar
distances were produced. However, the width of the capture envelopes
close to the hood face appeared to be narrower. In accordance with
the results of Pedersen and Nielsen (1991), Fletcher and Saunders
(1991) found that the momentum ratio of the injection to exhaustion
flows affects the size and profile of the capture region. By
reducing the injection velocity, and hence I, they found it was
possible to augment the overall size of the capture region. However,
a large propoftion of the capture region was then in regions of low
air speed and therefore in an industrial environment, as opposed to
under laboratory conditions, capture from this region would be
highly dependent on the level of background air disturbances. Thus,
the true capture region would be much smaller than the apparent
capture region observed experimentally. In practical situations,
decreasing the injection will therefore not necessarily increase the
hood’s capture range as the results of Fletcher and Saunders (1991)
might imply.

Fletcher and Saunders (1991) also observed that the largest

capture region was produced by a hood operating under suction alone,
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contradicting the findings deduced from the air speed contours.
However, the contours of equal air speed obtained by Fletcher and
Saunders (1991) show that when operating under suction alone the
majority of the capture region has been induced from regions where
the air speeds are at a background 1level. This result may be
explained as follows: under laboratory conditions a hood operating
under suction alone does not create any ‘negative’ disturbances in
the room and air is drawn slowly towards the exhaust and hence
capture occurs at large distances. However, when the radial Jjet is
employed, disturbances in the ambient air are produced and the
tracer gas, modelling the contaminant, is more easily dispersed.
Large capture velocitles are then required to overcome the
increasing level of air disturbance, thus reducing (narrowing) the
overall capture region.

In conclusion, Fletcher and Saunders (1991) emphasize the need
for experiments to be carried out in conditions more representative
of normal working environments so that more realistic performance
differences between conventional local exhaust systems and the
Aaberg system can be established. They suggest that experiments
should be conducted under laboratory conditions where controlled
levels of background air movements for suction and injection can be

maintained.

Originally inducing a three-dimensional axisymmetric flow the
Aaberg principle has been implemented in a bench hood design with a
slot exhaust, rather than a circular exhaust, to produce an
approximately two-dimensional flow, see Fig.1.10. The flow pattern

created by the hood design, termed a bench exhaust hood or an Aaberg
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slot exhaust (ASE) hood, has been studied by Pedersen (1991a).
Pedersen (1991a) conducted various experiments on the ASE, operating
both as a conventional exhaust and as a REEXS, under different
simulated external influences which in practice affect the capture
efficiency of an exhaust system. With a slot exhaust In a cross flow
of between 0.0 ms™! and 0.6 ms™' Pedersen (1991a) has demonstrated
that the average capture efficilency can be 1increased almost
three-fold, from 27% to 71%, owing to the application of the REEXS
principle. Two-dimensional slot exhausts are commonly used as
welding exhausts and in connection with the welding process the
location of an Aaberg slot exhaust compared with the orientation of
the contaminants has been optimized by Pedersen (1991a). He found
that a vertical distance between the exhaust slot’ahd the surface of
the bench of hs= 0.4 m, see Fig.1.10, and a momentum ratio of
approximately I = 0.6, provided the most efficient solution in
disturbed surroundings. Pedersen (1991a) also gives general

guidelines for the use of the ASE system in other applicatlions.
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Fig.1.10 Cross-section through the Aaberg slot exhaust hood.
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The most recent publication which examines the Aaberg principle
is that of Fletcher and Saunders (1993) who describe the results of
experiments examining the effliclency of axisymmetric hoods of two
different sizes. Fletcher and Saunders (1993) examine the percentage
capture of contaminant on the hood’s centre-line for different
volume flow rates of air ejected for a fixed quantity of inlet air
exhausted. They demonstrate that when operating with suction alone
the capture efficiency drops off rapldly for distances greater than
two inlet diameters from the hood; whilst the capture distance
rapidly increases to a maximum, achieved when I « 0.6, and then
slowly falls as the volume of the ejected air is further increased,
j.e. for I > 0.6. By examining the distance along the centre-line to
the position of 90% capture efficlency as a functioh of the momentum
ratio, I, with the injection slot width, b(0), used as the parameter
in the experiment, Fletcher and Saundere (1993) also show that the
flow is independent of the injection slot width, thus contradicting
the findings of Hyldgird (1987). The range of injection slot widths
examined in the @experiments was ©between b(0) =1 mm and
b(0) = 7.5 mm. The two hoods studied, although of slightly different
design, were found to perform very similarly and only very small
differences in the distance to 90% capture were observed. Fletcher
and Saunders {1993) attribute the fall in the distance to 90%
capture, observed for I > 0.6, to the amount of contaminated air
being drawn towards the inlet, by the jet-induced flow, exceeding
the amount of air being exhausted by the suction opening and thus

‘causing a  ‘build up’ of contaminant. In conclusion Fletcher and
Saunders (1993) state that capture can be effected at much larger

distances by a LEV hood with a blowing jet than by an unassisted
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hood and that a value of I = 0.6 gives a large capture distance
whilst being clear of the range of values of I where rapid changes

in the distance to 90% capture occur.

1.3 CONCLUSIONS

Experimental studies have explored two main factors involved in
the hood’s operation, namely induced velocities and capture
efficiencies and as a result of these studies the Aaberg exhaust
hood has been described as providing the only effective means of
removing airborne contaminants from the breathing zone of an
operator, as being far superior to conventiohal suction and
involving lower Iinvestment and operating costs. However, although
trials of the Aaberg REEXS have been carried out in practice it is
not yet applicable to industry as it requires careful adjustment to
each operating situation. The most important conclusion drawn from
these experimental results is that the flow of the Aaberg exhaust
hood is characterized by the ratio of the momentum fiows in the
exhaust to the injection and that the 1iInduced flow travelling
towards the exhaust hood is divided into two well-defined reglions in
which the capture efficiencies are close to 100%4 and 0%,
respectively. The desired air flow pattern has been achieved over a
wide range of momentum ratios from I = 0.1 to I = 2.5,

Although the advantages of the Aaberg REEXS over traditional
exhaust systems have been demonstrated experimentally, its design
and operating conditions have been developed purely on an ad-hoc

basis. The cost of laboratory research and equipment involved in the
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experimental attempts to maximize the efficiency of an Aaberg
exhaust hood is considerable. These costs may be further increased
by experimentalists conducting trials in parameter ranges and on
hood designs which are unlikely to optimize the flow pattern. A full
understanding of the flow characteristics of the REEXS can best be
achieved by solving the mathematical equations which describe the
underlying fluid mechanics under realistic flow conditions. The ainm
of the relatiyely inexpensive fluid dynamics modelling to be
presented in the following chapters is to help avoid unnecessary
expenditure by accurately modelling the operating conditions and to
use the resulting model to make confident predictions as to the
typical parameter ranges and design modifications likely to prove
beneficial in the hood’s operation. In this way the fluid dynamics
modelling conducted interactively with experimental research
promises to provide a most effective means of developing a full
understanding of the Aaberg flow pattern and of how it may be
optimized to suit individual operating situations; a necessary step
to be taken before the Aaberg exhaust hood can be correctly
introduced to industrial applications. It 1is extremely important to
design the REEXS so that the exhaust removes the maximum amount of
contaminant, in concentrated form, from the breathing zone of the
worker. It may be thought that simply increasing the suction and
blowing velocities will reduce the level of contaminant in the room.
However, the ratio of these two fluid flows must be carefully
adjusted and will depend on both the location and nature of the
contaminant. Ideally one would wish to design a hood which collects

all of the contaminant with the use of a minimal amount of energy.



CHAPTER TWO

MATHEMATICAL MODELLING : TOOLS, TECHNIQUES AND TERMINOLOGY
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2.1 INTRODUCTION

The experimental studies undertaken by Hyldgard (1987),
Hegsted (1987), Pedersen and Nielsen (1991) and Fletcher and
Saunders (1991,1993) have all concluded that under correctly chosen
operating conditions an Aaberg exhaust hood is far superior in its
ability to capture airborne contaminants than traditiona] unassisted
exhaust designs. To optimize the efficiency of the Aaberg exhaust
hood by experimentation alone is time-consuming and complicated as

the operation of the hood depends upon a number of geometric and
flow parameters. In the following chapters two-dimensional and
three-dimensional axisymmetric models of the Aaberg exhaust hood’ s
air flow pattern will be developed in order to prédict what effect
different parameters have on the air flow. The aim of this chapter
Is to assemble the mathematical tools and techniques which will
allow us to simplify the problem of modelling the relatively complex
air flow pattern induced by the Aaberg exhaust hood and thus assess
the effects of the various parameters that control the air flow. In
order to obtain a simple mathematical model for the air flow,
numerous simplifying assumptions therefore have to be made and the
reasons for making them are now described. Also introduced in this

chapter are the terms; ‘capture speed’, ‘effective capture region’

and ‘effective working range’. These terms will allow us to use the

models to predict the regions of the air flow from which we expect a

high capture efficiency.
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2.2 FORMULATION

In this thesis we are primarily interested in determining the
fundamental air flow pattern generated by the Aaberg exhaust hood
and therefore only the fully developed, steady air flow pattern
induced by the hood will be Iinvestigated. For the purpose of
determining the efficlent and recycled flow regions, the contaminant
will be assumed to be neutrally-buoyant and spread throughout the
entire fluid flow domain and the effects of diffusion will be
neglected. Thus the contaminant modelled will follow the streamlines
of the air flow. In practice, the fluld flow pattern generated by
the Aaberg exhaust hood is such that the Reynolds number 1is very
large and hence an inviscid model 1is developed for the fluid flow in
the region of interest but with the boundary conditions coming from
shear-layer solutions. The fluid modelled 1is air at room
temperature, l.e. at about 20°C, and it is assumed to be of constant
density, i.e. an incompressible fluid. The equations of motion
governing the flow of an incompressible, viscous fluid are then the
Navier-Stokes equations, namely the continuity equation and the
momentum equation, i.e.

V.u=0 (2.2.1a)

(0.9)u = - VP + V(v u) . (2.2.1b)
where u, p, P = p/p and v are the velocity, pressure and the
effective kinematic viscosity of the fluid, respectively. The
effective kinematic viscosity, ve, consists of the sum of the
physical Viscosity, v, and the turbulent viscosity, e, 1i.e.
v =v + €. The turbulent viscosity, in contrast to the physical

e

viscosity, 1is not a property of the fluid but depends strongly on
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the state of turbulence and may vary significantly from one point in
the flow to another and also from flow to flow. The overall air flow
pattern induced by the Aaberg exhaust hood may be considered to be
composed of three distinct regions, namely (i) the flow in the jet,
(11) the jet-induced flow and (iii) the exhaust flow, see Fig.2.1.
The fluid behaviour in each of the three flow regions 1is now
discussed and the mathematical tools and techniques required to

model each flow are presented.

Fig.2.1 The three flow regions of the model, (i) the jet flow
regions, (ii) the Jjet-induced flow regions and (iii) the exhaust

flow region.

2.2.1 The Flow in the Jet

Accurately modelling the flow in the jet is very important as
the flow conditions at the edge of the jet shear-layer govern the
induced inviscid fluid flow which occurs in the majority of the
region of interest. In the following chapters two-dimensional and
three-dimensional axisymmetric models of the air flow pattern

created by the Aaberg exhaust hood will be developed and hence




- 32 -

two-dimensional plane jets and three-dimensional axisymmetric radial
Jets, for both laminar and turbulent flows, will be investigated.
Furthermore, the two-dimensional turbulent wall Jjet flow which
occurs in the Aaberg slot exhaust, see Pedersen (1991a), will also
be investigated later.

The two-dimensional plane Jjet has received a great deal of
attention in the literature and there exists numerous theoretical
and experimental publications on the subject. A review of the
literature concerning the two-dimensional plane jet is given by
Schneider (1983), who examines both laminar and turbulent jets and
their induced flows. In this study the plane jet solutions used are
analogous to the Gdértler (1942) solution, where for the turbulent
Jet the Prandtl constant momentum transfer expression for the eddy
viscosity has been adopted, see Schlichting (1968). Comparisons,
illustrated in Schlichting (1968), made between the theoretical
Gortler (1942) plane jet solution and the results of experiments
carried out by Reichardt, see Schlichting (1968), on a
two-dimensional plane Jjet show excellent agreement and for this
reason more complicated turbulence models, for example the k-e
turbulence model, requiring a more sophisticated numerical treatment
have not been adopted in the present work. A full numerical
treatment of the plane turbulent jet is described by Bergstrom
(1992).

In contrast, the radial free jet appears to have received very
little attention in the literature and a short review of some of the
available radial jet literature 1s now presented. Witze and Dwyer
(1976) presented a concise review of the literature concerning the

radial Jjet. They state that the earliest theoretical treatment of
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the radial jet was given by Rumer (1949), who performed a mixing
length analysis analogous to the Tollmein (1926) plane jet solution.
Taliyev (1954) and Abramovich (1963) presented integral solutions of
the boundary-layer equations derived from assumed velocity profiles.
The publication of Squire (1955) is wunusual as he solved the
complete Navier-Stokes equations, 1n spherical polar coordinates,
rather than the usual boundary-layer equations. Poreh and Cermak
(1959) used a simple eddy viscosity model and derived a solution
similar to the Go&rtler (1942) plane jet results. Rodi (1972)
presented results of a numerical technique that used a turbulent
kinematic energy/shear stress model. The turbulent radial jet has
also been studied by Wood and Chen (1985) who described results of a
numerical investigation in which comparisons were made between three
different turbulence models and the experimental results of
Heskestad (1966). More recently, Rubel (1985) and Malin (1988) have
examined the applicability of various k-& turbulence models to the
radial jet by comparing the spreading rate of the jet predicted by
the models with those determined from experiment.

In addition to the theoretical investigations just described,
the flow of a radial jet stream has also been studied experimentally
and a brief description of these studies is now given. The earliest
experimental investigation on the radial jet was performed by Tuve
{1953) who measured the jet’s centre-line velocity, G, and velocity
profiles for two different designs of nozzles which produce radial
Jjets. Two of the most important findings made by Tuve (1953) were
that-(i) the velocity distribution in the jet can be well-described

by the law
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2 u
(—y] = 3.3 ln[ = ] (2.2.2a)
b u
172
where b1/2 is the value of y where u = 5/2, i.e. a measure of the
typical shear-layer thickness, and that (ii) the profiles of
lateral, or cross jet, velocity at varlous distances from the jet

nozzle are similar. Figure 2.2 schematically 1illustrates the

notation and coordinate system of the jet.

Fig.2.2 Schematic diagram of the jet illustrating the coordinate

system and notation.

Heskestad (1966) presented a detailed experimental study of the
turbulent radial Jét and described hot-wire anemometry measurements
of some of the turbulence quantities in the jet, e.g. the lateral

distributions of the normal and Reynolds stresses and the
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intermittency factor. The experimental results of Heskestad (1966)
indicate that the lateral velocity distribution may be
well-described by the semi-empirical formula of Squire (1955),

namely

cler

= sech®(7.867) n = y/x (2.2.2b)

where x is the radial distance along the centre-line of the jet
measured from the perimeter of the jet nozzle. Experimental
investigations have also been reported by Tanaka and Tanaka (1976)
who measured the fluctuations 1in the streamwise velocity and
obtained experimental results which are comparable to Heskestad
(1966). The most recent extensive experimental study is given by
Witze and Dwyer (1976) who distinguished between two classes of
radial jets, namely ‘constrained’ radial jets or ‘impinged’ radial
jets depending upon the ratio between the width of the nozzle
through which the jet issues and the radius of the jet flange. Witze
and Dwyer (1976) measured lateral velocity distributions,
centre-line velocities and turbulence intensities and their results
illustrate the similarity behaviour of the lateral velocity profiles
which compare favourably with the velocity profile reported by Poreh

and Cermak (1959), namely

6%67 - sechz( - for y/b. < 1. (2.2.2¢)

The empirical formula (2.2.2a) of Tuve (1953) shows a good agreement
with his own experimental results for y/bU2 s 2, i1.e. it provides
better agreement close to the edge of the jet shear-layer than the
expression (2.2.2c) of Poreh and Cermak. Patel (1979) extended the
results of Witze and Dwyer (1976) by measuring the growth and the

centre-line velocities of the radial jet up to a value of
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x/b(0) = 72. His results suggested that for radial free jets having
small separation distances, b(0), the rate of growth is 0.115, i.e.

b o= 0.115 x, and he found that the mathematical function

1/
2
2067 = P {—0.693[ — ] } (2.2.2d)

172

<

fitted his results very well.

A mathematical description of the fluid flow in a Jjet is now
given and the equations of motion and boundary conditions which
govern the flow in the shear-layers of both the two-dimensional
plane and the three-dimensional axisymmetric radial jet are
presented.

Fluid of low viscosity is discharged from the narrow nozzle,
width b(0), of the Aaberg exhaust hood at a relatiQely high initial
speed, u(0), into an initially stagnant surrounding fluid of the
same density and viscosity. Due to the friction developed at its
boundary, the emerg;ng Jet of fluid carries with it some of the
surrounding fluid which was originally at rest so that the mass flow
in the jet increases along its length. As a consequence the jet
spreads out and its centre-line velocity, i.e. the velocity along
y = 0, decreases as the distance x along the jet lncreases. However,
the total momentum of the jet remains constant. The streamwise
component of the velocity in the jet, u, 1is a maximum along the
jet’s centre-line and decreases to zero at the edge of the
shear-layer, whilst the y direction component of the velocity, v, is
zero along the centre-line. These physical flow characteristics of
the jet lead to the following boundary conditions:

g; =0, v=0 on y=0 D<x <o (2.2.3a,b)

u—0 as y — o 0<x<ow. (2.2.3c)
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For large values of the Reynolds number, Re’ where

R = ul0)b(0) (2.2.4)
e 1 4

the thickness of the Jet is very small. Inside this very thin
shear~layer the velocity gradient normal to the direction of flow,
i.e. 3u/8y, is very large as the u component of the velocity in the
Jet decreases from a maximum value of u along the centre-line of the
jet to zero at the edge of the shear-layer. Therefore, even with a
very small viscosity, m, the frictional shearing stress, 1i.e.
T = i 8wdy, in the shear-layer is considerable because of the large
velocity gradient across the flow. In the remaining fluid flow
regions such large velocity gradients do not occur and the effect of
viscosity in these regions may be neglected.

Shear-layers may be laminar or turbulent, depending on the
distance from the orifice, the fluid viscosity and velocity, i.e.
the Reynolds number of the Jjet. While the flow in the jet 1is
laminar, the thickness of the Jjet decreases as the Reynolds number
increases. However, as the Reynolds number tends to infinity, and
the jet becomes turbulent, the thickness of the jet does not vanish
but is approximately independent of the jet Reynolds number. Andrade
(1939) states that a two-dimensional plane jet remains laminar for
Re less than approximately 30. However, an estimate of the
equivalent critical Reynolds number for an axisymmetric radial jJet
has not been found in the literature. The equations of motion
governing the flow in both laminar and turbulent shear-layers are

now examined.

LEEDS UNIVERSITY LIBRARY
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(a) Laminar shear-layers

The Navier-Stokes equations (2.2.1) are difficult to solve
because of the non-linearity which is introduced by the presence of
the convection term and no general analytical methods for their
integration are available. However, the physical characteristics of
the shear-layer at large Reynolds numbers allow us to reduce the
Navier-Stokes equations to a simpler fornm, although the
non-linearity 1s still present.

By assuming that the shear-layer thickness, b, is very small
compared with a typical distance along the Jjet, 1, and that the
variation of the u component of the velocity across the shear-layer
is of the same order of magnitude as the centre-line velocity, G,
then the order of magnitude of each term in the governing equations
can be estimated. The desired simplification can then be achieved by
neglecting lower-—order terms. Following this approach it can be
demonstrated that the pressure in the direction normal to the
shear-layer 1is approximately constant, i.e. 48P/8y ~ 0(b ). The
pressure gradient in the x direction, 1.e. the term dP/dx, has been
set ldentically zero in the equations of motion becausé to a first
approximation the fluid 1ls statlionary outside the shear-layer and
hence the pressure is constant everywhere in the Jjet. As a
consequence, the momentum flux, J, of the jet 1is constant and
independent of the distance, x, along the jet. The Navier-Stokes
equations then reduce to the Prandtl boundary-layer equations, which
for incompressible laminar flow in (i) a two-dimensional plane jet
and (ii) an axisymmetric radial jet are given by:

(i) for the two-dimensional laminar plane jet, in cartesian

coordinate form, we have



u"’_“»fv@:va——‘z1 (2.2.5a)
ax ay ay
g—;‘-+g—;’,=o (2.2.5b)
where
"
j=2p f u? dy (2.2.6)
0

and (ii) for the axisymmetric laminar radial jet, in cylindrical

polar coordinate form, we have

du du d"u

—+v—=v — (2.2.7a)
ax ay ay
gi(xu) + g;(xv) =0 (2.2.7p)
where
©
J = anp J xu® dy . (2.2.8)
0

(b) Turbulent shear-layers

At sufficiently‘high values of the Reynolds number it is found
that after a very short distance from the point ofvdischarge of the
Jjet the flow becomes turbulent. It is well-known that the components
of the mean velocity of turbulent flows satisfy the same equations
as those satisfied by the laminar flows, except that the laminar
stresses must be increased by additional stresses known as the
apparent or virtual stresses of the turbulent flow. In free
turbulent flows, such as in turbulent plane and radial jet flows,
the components of viscous, or normal, stresses are negligible in
comparison with the apparent stresses and consequently it is
reasonable to neglect the viscous components. Thus, the
time-averaged equations of motion on the boundary-layer

approximation for incompressible, turbulent flow in (i) a
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two-dimensional plane jet and (ii) an axisymmetric radial jet are
the Prandt]l boundary-layer equations, namely:
(i) for the two-dimensional turbulent plane jet, in cartesian

coordinate form, we have

du 8u _ 8 du
u a—x + v 5—; = é—i[e ay] (2.2.93)
8u ,  dv _
3% + 3y - 0 (2.2.9p)

and (ii) for the axisymmetric turbulent radial jet, in cylindrical

polar coordinate form, we have

du éu _d du
u 5-)-(' + v a—y = W[e ay] (2.2.103.)
a d =
a—x(xu) + ‘a—y'(XV) =0 (2.2.10b)

where & 1s the apparent or eddy viscosity. When dealing with
problems of turbulent jets it 1s usually assumed that the mixing
length, 1i.e. the distance a fluid element is carried in the
transverse direction, is proportional to the width of the jet, b,
because in this way we are led to useful results. Prandtl’s constant
momentum transfer model for the eddy viscosity uses this assumption
and by assuming that the fluid particles momentum is conserved in
the transverse direction expresses € in the form
e=xbu (2.2.11)

where x is a dimensionless empirical constant. In this way the

apparent kinematic viscosity remains constant over the whole width

of every cross-section of the jet, i.e. independent of y.

Solutions of the shear-layer equations

The solution of the shear-layer equations, subject to the

boundary conditions (2.2.3) and to the conservation of momentum,
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will give us a complete description of the flow in the jet.
Numerical = solutions of the shear-layer equations are not
straightforward because of the non-linearity in the equations.
However, the nature of the flow observed in the shear-layer, 1i.e.
the similarity of the lateral velocity profiles along the developing
Jjet, indicates the form that their solution should take.

Early experimental observations, e.g. Forthmann (1936),
demonstrated that the lateral distributions of the mean velocity in
the x direction of the plane turbulent free jet, i.e. the variation
of u with y at different x locations, all have the same geometrical
shape. At every x location, u decreases from a maximum value of u on
the axis of the Jet to zero at some distance from the axis. By
scaling the velocity u and the y coordinate with respect to u and
b , respectively, at that x location, Fdrthmann plotted wu as a

172

function of y/bi/ and found that the velocity distributions at

2
different x locations fall on a universal curve. Foérthmann, and
other experimentalists, have shown that a very large number of flows
in the field of fluid Jjets, including the radial jet, see Tuve
(1953), exhibit this property of similarity. Similar solutions are
defined as those for which the component u of the velocity has the
property that two velocity profiles u(x,y) located at different

coordinates x differ by only a scale factor in u and y, i.e. where

u( xl,y/b(xl) ) u( xz,y/b(xz) )

= . (2.2.12)
U(x1) u(xz)

Hence we may assume that the velocity u is a function of y/b and
that b ~ x3. Accordingly, we may write the stream function in the
form

v=Ax" f(m) , =0 = y/BY (2.2.13)
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where the constants A and B and the exponents p and q can be
determined from the shear-layer assumptions, namely that (a) the
inertial and viscous terms are of the same order of magnitude in the
jet and (b) the total flux of momentum at any location x is constant
and independent of x.

In cases where similar solutions exist it is possible, as we
shall see in more detail later, to reduce the systems of partial
differential equations to ones 1involving ordinary differential
equations which constitutes a considerable mathematical
simplification of the problem. Analytical similarity solutions of
the shear-layer equations are possible for both - laminar and
turbulent two-dimensional plane and three-dimensional axisymmetric
radial Jet flows. However, the similarity solutions of the
shear-layer equations may be regarded only as asymptotic solutions
for two reasons, namely, (i) the jet is assumed to emerge from a
singular point and (ii) the shear-layer equations are only valid for
very large values of the Reynolds number.

The asymptotic solution of the two-dimensional plane Jjet
equations of motion provides us with an adequate representation of
the flow in a plane jet, though the model is really an ideal flow
due to the fact that the fluld 1issues from an orifice of
infinitesimal width with an infinite initial velocity. However, the
solution of the equations of motion governing the flow in an
axisymmetric radial jet provides only the behaviour of the radial
Jjet flow as x —» w, as the radial jet is then modelled as though it
issues radially from a point source. In practice, the radial Jjet of
the Aaberg exhaust hood issues from the perimeter of the exhaust

flange, l.e. from a circular disc of a finite radius, and therefore
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the development of the Aaberg’s radial jet flow from its initial to
its asymptotic behaviour must be modelled. A solution of the
governing shear-layer equations of motion, i.e. equations (2.2.7)
and (2.2.10), must therefore be sought in the general form
v ~ g(x) f(n*,x) (2.2.14)

where the function g(x) and the variable 7* must be chosen so as to
exhibit the correct initial behaviour of the radial jet for small x
and its asymptotic behaviour as x —> w. A detailed analysis of the
equations governing the flow in the radial jet will be presented in
chapter 5.

Once the solution of the shear-layer equations has been
determined then the stream function at the edge of the jet, given by
the value of Yy in the limit as y —> o, can be deduced. The value of
the stream function at the edge of the Jet shear-layer represents
the volume flux of fluid drawn into the developing Jjet. For a
powerful injection of fluid the jet will be very thin and may be
conslidered to be confined to the x axis, i.e. assumed to be of zero
thickness. Thus the value of the stream function at the outer edge
of the shear-layer may be regarded as the value of the stream
function at y = 0. Therefore, in two dimensions, with respect to the
induced flow the jet acts as a line sink whose local strength is

given the rate of change of the mass flux in the jet.

2.2.2 The Jet-induced Flow

Entrainment into a jet gives rise to a flow of the ambient
fluid- known as the jet-induced flow and it is this flow that
distinguishes the flow of the Aaberg exhaust hood from the flows

generated by traditional designs. The jet-induced flow is free from
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any large changes in the velocity gradient and hence for large
Reynolds numbers the effects of viscous forces are negligible
compared with the inertial forces, l.e. the fluid may be assumed to
be inviscid in this region of the flow. Although such a fluid cannot
exist in nature, under certaln conditions it may give valuable
information about how a real viscous fluid behaves.

It is a common assumptlon that the flow which is induced by a
thin, i.e. high Reynolds number, jet is an inviscid potential flow,
i.e. it satisfies the conditions of incompressibility and
irrotationality, see for example Schneider (1981,1983). The
influence of a jet on a flow field has been investigated by a number
of experimentalists using flow visualization techniques! The flow
induced by a two-dimensional plane jet of fluid which discharges
perpendicular to a straight wall was observed by Lippisch (1958) and
is illustrated in Fig.2.3(a). The flow induced by a two-dimensional
turbulent wall jet of fluid was Iinvestigated by Sigalla (1958a) and
is illustrated in Fig.2.3(b). The smoke filaments released into the
flows clearly illustrate their laminar nature.

One limitation of the poteﬁtial flow model for the jet-induced
flow is that a slip condition exists between the fluid and the
flange of the exhaust. The flow induced by the Jjet will produce a
boundary-layer flow along the exhaust flange but this is of a
lower-order than the jet-induced flow and therefore has been
neglected In this work as it only plays a passive role. The
equations of motion governing the inviscid potential flow in both
two-dimensional polar coordinate and three-dimensional axisymmetric

spherical polar coordinate form are now presented.



Fig.2.3(a) The flow induced by a two-dimensional plane jet which

discharges perpendicular to a straight wall as observed by Lippisch

(1958).

Fig.2.3(b) The flow induced by a two-dimensional turbulent wall jet
issuing parallel to a straight wall as observed by Sigalla (1958a).

The arrow indicates the position of the orifice of the jet.
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(a) The potential flow equations for the two-dimensional model

In two-dimensional polar coordinate (r,8) form, the continuity
equation may be written

] a =
EF(rur) + 5§(ue) 0 (2.2.15)

where ur and ue denote the components of the velocity in the radial
and tangential directions respectively. We now introduce the stream
function y(r,0) in order to satisfy the equation (2.2.15), i.e.

,ug = -2

ay oy
2] (2] ar

(2.2.16a,b)

I R

u =
r

For irrotationality we insist that V x u = 0 which implies that

a a =
E(rue) - a——e(ur) =0 . (2.2.17)

On substitution of equations (2.2.16) into equation (2.2.17) we
obtain the equation of motion which governs the potential flow,
namely the Laplace equation:

2 2
3y , 18y 1 8y _, (2.2.18)

ar2 rar r° a6’

A3

(b) The potential flow equations for the three-dimensional

axisymmetric model

In spherical polar coordinates (r,8,¢) the continuity equation

may be written

18 (:20 )+

r° ar r rsin(¢) 86

~ 1 8wy e —1 3 (ysing)) =0 (2.2.19)

6 rsin(¢) 8¢ ¢

where u = (ur, Uy, U ). If we assume axial symmetry so that

¢

u=(u, 0, u,), where u and u
r X r

¢ ¢
the radial and tangential directions, respectively, then the

denote the velocity components in

continuity equation (2.2.19) reduces to

15 % (+t?u) + —1 8 (usin(g)) =0 (2.2.20)

r ar r rsin(¢) 8¢ ¢
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which may be satisfied by introducing the Stokes stream function

y(r,¢) such that

u = ""2—1—"'6! ’ u¢=_'1—'a—¢ . (2.2.213,b)
r r°sin(¢) 8¢ rsin(¢) a8r

For irrotationality we require that
a i} -
a—r(ru¢) g'a(ur) =0 (2.2.22)

and on substituting equation (2.2.21) into the above equation we
obtain the equation of motion governing the inviscid potential flow
of the Aaberg exhaust hood, namely
Qf% ~teW, 29V, (2.2.23)
ar r a¢ r 8¢
2.2.3 The Exhaust Flow
In practice, experimentalists have observed that when operating
under suction alone the fluid flow induced by the exhaust is laminar
and hence, as for the jet-induced flow, since the Reynolds number is
large, the effects of viscosity in the exhaust flow may be
neglected. In two dimensions, a very simple representation of the
flow into an exhaust inlet can be obtained by modelling the exhaust
as a line sink of fluid. Although providing a good overall model of
the flow field induced by an exhaust, very near to the exhaust inlet
the line sink model of the exhaust flow is unrepresentative of the
actual flow which is observed in practice. This is due to the
infinitesimal width of the sink’s inlet which results in an infinite
fluid velocity into the sink. A far more realistic representation of
an exhaust flow is achieved by modelling the exhaust inlet as a slot

of a finite width in two dimensions and as a circular orifice in

three dimensions and by assuming that the velocity distribution
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across the face of the inlet is constant. In practice the velocity
distribution is observed to be constant at only a very short
distance down the inlet but for simplicity, in the mathematical
models presented in this thesls, it 1is reasonable to enforce the

condition of a constant velocity across the face of the inlet.

2.3 METHODS OF SOLUTION

Under the simplifying assumptions made, and for the reasons
given in the preceding sections, the overall air flow pattern
developed by the Aaberg exhaust hood, that is the combination of the
jet~induced and the exhaust flows, may be considered to be an
inviscid potential flow. We shall see in the following chapters tﬁat
apart from in the simplest cases an analytical solution of the
governing inviscid potential flow equations is not possible. In the
more realistic models of the air flow pattern then, numerical
techniques provide the only way of determining the air flow pattern.

Before the solution of the governing elliptic equation of
motion can be determined using numerical methods a boundary
condition which models the flow field as r — o 1s required. In the
numerical models to be presented in the following chapters this
upstream boundary condition has been taken to be the superposition
of the upstream component of the overall flow produced by (1) the
suction, which as r — o is a purely radial flow, and (ii) the
injection, which as r — o 1is determined from the asymptotic
solution of the governing potential equation.

Finite-difference techniques were considered to be the most
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convenient means of solving the equations of motion due to the fact
that the solution domain is free from any curved geometry and other
methods, for example the finite element method and the boundary
element method, were not considered to have any advantages over the
finite-difference method. The finite-difference method consists of
placing a mesh over the entire solution domain and replacing all
derivatives of the governing equation of motion by their
central-difference approximations. The resulting finite-difference
equations are then written in their classical five point form at
each mesh point and the resulting system of linear, algebraic
equations solved using matrix methods. The Gauss-Seidel iterative
procedure was chosen to solve the system of equations and the
successive over-relaxation (S.0.R.) method was used in order to
accelerate the rate of convergence.

As the flow fleld generated by an Aaberg exhaust hood 1is
symmetrical about the hood’s centre-line then the computational
domain can be halved in size. All the results presented in this
thesis are such that they are independent of the mesh size and the
position of the upstream boundary condition. Sets of streamlines and
lines of constant speed deduced from the model can then be used to
examine the hood’s air flow pattern and to lllustrate the effect of

the governing parameters on the air flow.

2.4 TERMINOLOGY

In chapter 1 the notion of a clutch velocity, i.e. the air

velocity in front of the hood caused by the hood, was introduced and
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Hyldgird (1987) stated that the ratio between the clutch velocity
and the .velocity of the pollutant 1is a decisive factor in
determining whether or not the exhaust will collect the pollutant.
However, the ratio described 1s not a sufficient condition for
contaminant capture to take place, indeed, for the typical air flow
pattern induced by the Aaberg exhaust hood, contaminated air may be
drawn initially towards the hood but then led away from the exhaust
inlet as it moves in the jet-induced flow,

At this stage it is convenient to introduce further terminology
that will allow us to theoretically describe the region in front of
an exhaust hood from which we expect the air flow to be drawn
successfully into the exhaust inlet and hence the region from which
capture of contaminant is assumed to occur. The terms ‘capture
speed’, ‘effective capture region’ and ‘effective working range’
which will be referred to frequently in the following chapters are

now defined.

2.4.1 The Capture Speed

Due to the nature of the contaminant and to the background air
movements, in an industrial environment successful contaminant
capture will only occur from a region of the workplace where the air
speed in the efficient flow, i.e. the flow which leads directly
towards the exhaust inlet, exceeds a minimum speed, known as the
capture speed, q- Under normal practical conditions, and for a
neutrally-buoyant contaminant, ' the capture speed is typically of the
order- of 0.25 ms_l, see Hogsted (1987) and Fletcher and Saunders

(1991,1993).
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2.4.2 The Effective Capture Region

The region of the efficient flow where the air speed induced by
the hood exceeds the capture speed is hereafter referred to as the
effective capture region. The effectlve capture region therefore
describes the region of the workplace where contaminant capture is
assumed to be successful. In the models to be presented in the
following chapters the effective capture region predicted represents
the maximum theoretical size of the region from which sampling can
be expected to occur in an Industrial environment. This is due to
the fact that the most simple model for a contaminant is assumed and
buoyancy and diffusion effects are neglected. In two dimensions the
effective capture region is referred to as the effective capture

area.

2.4.3 The Effective Working Range

The effective working range of the hood refers to the distance
upstream from the hood to the region in the flow where the air speed
is equal to the capture speed, 1l.e. it 1s the length which the
effective capture region extends upstream. In the case of the
ventilator unit, see Fig.1.5, the effective working range is taken
to be the distance which the effective capture region extends
upstream along the floor surface from the centre-line of the unit.
It is very important to consider the effective working range of an
Aaberg exhaust hood as it has been demonstrated that the very small
effective working range of the traditional exhaust hood results in

serious problems relating to its installation.
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2.5 CONCLUSIONS

Mathematical techniques have been used to reduce the complexity
of modelling the Aaberg exhaust hood’s air flow pattern. The
simplifying assumptions have allowed the Navier-Stokes equations to
be reduced to more tractable forms, namely, to the shear-layer
equations in the jet flow region, where the effects of viscosity are
important, and to the potentlial flow equations in the remaining flow
region where the effects of viscosity are negligible and inertia
dominates.

Now that the background and framework of the mathematical model
have been developed and the governing equations of motion set up we
proceed to examine in detall the boundary conditions for both the
two-dimensional and three-dimensional axisymmetric models of the
Aaberg exhaust hood’'s air flow pattern. In this way we will
establish the governing operating parameters and their effect on the

air flow.



CHAPTER THREE
A SIMPLE TWO-DIMENSIONAL ANALYTICAL MODEL FOR THE FLUID MECHANICS OF

THE AABERG EXHAUST HOOD
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3.1 INTRODUCTION

Originally the Aaberg exhaust hood was three-dimensional
axisymmetric in design, see Hogsted (1987), but a two-dimensional
version was studied by Pedersen (1991a). The principles of operation
for the two- and three-dimensional hoods are the same and hence, for
simplicity we begin by examining a two-dimensional hood. The aim of
this chapter 1s to dbtain an analytical solution for a simple
mathematical model of the hood’s air flow pattern for both laminar
and turbulent injections of fluid, using the mathematical modelling
approach described in chapter 2. A description of the fluid flow in
each region is given together with the equations of motion and
boundary conditions. The shear-layer equations which govern the flow
of the two-dimensional plane Jet, for both laminar and turbulent
flows, are solved analytically for the stream function following the
method given by Schlichting (1968). In turbulent flow the Prandtl
constant momentuﬁ transfer model for the eddy viscosity has been
adopted. The two-dimensional jet-induced flow is then determined by
solving the governing potential equation, subject to the appropriate
boundary conditions, by the method of separation of variables. By
modelling the exhaust flow as a line sink of fluid then, the stream
functions for the jet-induced flow and the exhaust flow are combined
to give a simple model of the Aaberg exhaust hood’s air flow. A full

description of this simple two-dimensional model is now presented.
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3.2 THE MATHEMATICAL MODEL

We have seen in chapter 2 that in order to model the fluid flow
which is generated by the Aaberg exhaust hood it is necessary to
make a number of simplifying assumptions. For clarity these
assumptions will be reiterated during the development of the
two-dimensional model. The fluld is assumed to be incompressible and
the flow to be steady. The solution techhique is divided into three
parts:

(1) To model the exhaust flow.

The exhaust flow is modelled as a line sink of fluid at the
centre of a plane, the plane representing the flange of the exhaust.
(ii) To model the injection flow.

The injection flow is modelled as a two-dimensional plane jet
which issues from the ends of the exhaust flange. Both laminar and
turbulent plane jets are examined and the solution in the form of a
stream function has been determined from boundary-layer theory, see
Schlichting (1968). From the stream function the boundary condition
at the edge of the jet shear-layer is derived.

(iii) To model the fluid flow induced by the injection.

Due to the friction which is developed at its boundary the
emerging jet carries with it some of the surrounding fluid, which
was originally at rest. The stream function for the jet-induced flow
is found by assuming that the flow induced by the slender, i.e. high
Reynolds number, jet is an inviscid potential flow. Hence, the
stream function for this flow must satisfy the Laplace equation with
the value of the stream function, as found in (ii), as one of the

boundary conditions. The stream function for the jet-induced flow is
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determined analytically by solving the Laplace equation (2.2.18)
using the method of separation of variables.

Stream functions for the sink and the induced flow are then
combined to give a stream function for the total flow created by the

two-dimensional Aaberg exhaust hood.

3.2.1 The Stream Function due to the Sink

To calculate the stream function for a sink of strength m at
the centre of a vertical flange we use the polar coordinates (r,0)
and the velocity components in the radial and tangential directions

are denoted by u and u respectively. The flux of fluid drawn

e ’
into the sink is given by:

mru =m (3.2.1)

and hence

m
u = — —

. - (3.2.2)

The line perpendicular to the exhaust flange, passing through the
sink, about which the problem is symmefric, hereafter referred to as
the centre-lihe, represents a streamline of the flow and we take
Yy = 0 along this 1line. Hence, from the radial and tangential
components of velocity, given by expressions (2.2.16), we obtain
y=-209 (3.2.3)

4

which in terms of the angle ¥, see Fig.3.1, may be written

v=-2 [7-'2—'] : (3.2.4)
The boundary conditions satisfied by the sink flow along the hood’s
centre-line and the exhaust flange are therefore

v=0 on 7y =mu/2 (3.2.5a)
and ¢y =m2 on y=0, (3.2.5b)

respectively.
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Xa

_ Jet—
T Exhaust Flange—
a
l— Line Sink—

Fig.3.1 The geometry and coordinate system used for the sink flow.

3.2.2 The Two-dimensional Laminar Plane Jet

The equations of motion of a two-dimensional incompressible,
laminar and steady flow In the plane jet are the shear-layer
equations (2.2.5). In this chapter, for convenience, the cartesian
coordinate system (x,y) is adopted with its origin at the centre of
the exhaust flange, so that the y axis is along the centre-line of
the hood and the x axlis perpendicular to the centre-line, see
Fig.3.1. A new coordinate system (x*,y), whose origin is located at
the orifice of the jet with the x* axis along the axis of the jet,
is now introduced such that

X* =x-a (3.2.6)

where the quantity, a, denotes the width of the exhaust flange.

Equations (2.2.5) now become

u gu v ou v Q—g (3.2.73a)
ax* ay ay

du , & .o (3.2.7b)

ax* Jdy

and have to be solved subject to the boundary conditions (2.2.3) and

to conservation of momentum which is given by expression (2.2.6).
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The continuity equation (3.2.7b) implies the existence of a stream

function §¥ where:

u = oy and v = - oy . (3.2.8a,b)

3y ax*

In order to determine the form of the stream function in the jet we
shall assume that the lateral velocity profiles in the jet are
similar and hence we seek a solution of equations (3.2.7) of the
form given by expression (2.2.13), i.e.

¥ = A*)® fn) , 7= yBx*. (3.2.9)
Using the shear-layer assumptions, namely that (a) the inertial and
viscous terms are of the same order of magnitude in the jet and (b)

the total flux of momentum at any position x* is constant, results

in
_1 _2

P=3 and q =3 . (3.2.10)
Using condition (a) we can choose, for convenience,

A=v"? | B=3? (3.2.11)
and hence

v=v"2 " rm ; n= = L (3.2.12)
3 v o (x*)

where f(n) satisfies the ordinary differential equation

£ +ff +(£)%=0. (3.2.13)

The prime denotes differentiation with respect to 7. This equation

has to be solved subject to the boundary conditions

s

f =0, f=0 on =0 (3.2.14a,b)

’

and f—>0 as 7 — o . (3.2.14c)

Integrating equatibn (3.2.13) once gives

’ 7 ’

f + ff = constant . (3.2.15)

To satisfy the boundary conditions (3.2.14a,b) the constant must be
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set to zero and therefore

77 4

f + ff =0. (3.2.16)
This second-order differential equation could be integrated directly
if the second term contained a factor of two, therefore we make the

following transformation:
£€=1 ’ f =2F() . (3.2.17)

Hence equation (3.2.16) becomes

7 4

F +2FF =0 where F = gg (3.2.18)
and the boundary conditions (3.2.14b,c) reduce to

F=0,€&=0 (3.2.19a)

’

and F—50 as € > o . (3.2.19b)

Integrating equation (3.2.18) gives

’

F +F=ad°

(3.2.20)

where az is an unknown constant. Rearranging equation (3.2.20) gives
dF _ 2 2

aE = a - F (3.2.21)
and integrating we have
1 -1 F
§ = ; tanh [&'] (3.2.22)
hence
F = a tanh(€a) . (3.2.23)

Condition (b) gives us an expression for the momentum flux, J,

namely

j = l-g p o v’ (3.2.24)

and hence if we assume that the flux of momentum, j, for the jJet is

a known quantity, then the constant a is given by

_ 1/3
« = [—95—] (3.2.25)
172

16 v

where k = j/p is the kinematic momentum flux. The stream function

for the two-dimensional laminar Jjet issuing from the coordinate
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origin is then given by:

172 («*)¥3 tanh(na) . (3.2.26)

y=2av
If we let y — o in the above expression then the stream function is
given by

172 (y#)173 x* > 0 (3.2.27)

vy —o>2av
and this is the boundary condition at the edge of the shear-layer
that we have imposed when solving for the flow induced by a

two-dimensional plane laminar jet.

3.2.3 The Two-dimensional Turbulent Plane Jet

In reality the emerging jet, originally a laminar flow, passes
through a transitional chaotic stage and soon becomes fully
turbulent. Following Schlichting (1968) we shall assume that the
width of the Jjet, b, 1is proportional to x*, i.e. b ~ x*. The
relationship between the centre-line velocity, G, and x* can then be
obtained from the momentum conservation equation (2.2.6), from which
we obtain

constant u° b (3.2.28)

[
[l

and hence

constant (x*) /2312 | (3.2.29)

u
Thus the rate of decrease in the centre-line velocity 3~ (x*)7V2,
Prandtl’'s expression (2.2.11) for € simplifies the differential
equation (2.2.9a) and thus the equations of motion governing the

flow in a two-dimensional plane turbulent jet, i.e. equations

(2.2.9), then reduce to:



u 3 +va—‘—‘=e"’—‘; (3.2.30a)
ax* 8y 8y

fu L8V _y (3.2.30b)

ax* d8y

and the boundary conditions are given by equations (2.2.3). Equation
(3.2.30a) is formally identical with that for the laminar jet case
except the kinematic viscosity, v, of the laminar flow has been
replaced by the apparent kinematic viscosity, e, of the turbulent
flow. Denoting the centre-line velocity and the width of the jet at
a fixed characteristic distance, s, from the orifice by Gs and bs,

respectively, we may write

o ( x* -1/2 o
u=u [ = ] ; b=b { = ] (3.2.31a)
s\ S s{ S
and hence
x 1172 N
€ = cs[ S ] ;e =X bs u - (3.2.31b)

The stream function is again introduced and assumed to take the form

g = ot 5831’2 x")%Fm) , 7= o y/x* (3.2.32)

o
where the function o, denotes a free constant. Substituting
expression (3.2.32) into Prandtl’s shear-layer equation (3.2.30a) we

obtain the following differential equation for F(n):

L

1 117 2 ~ '
F F+ (esoo/ uss) F =0 (3.2.33)

TE¥ ]
where the prime now denotes differentiation with respect to 7, where
n= 0°y/x*. The boundary conditions (2.2.3) now become

F=0, F'= 1 on =0 ' (3.2.34a,b)

and F—>0 as 7 > o . (3.2.34c)

Since-es contains the free constant y, we write

1 GS 172
c =5 s i (3.2.35)

o €
-]
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This substitution simplifies the preceding differential equation
which can now be integrated twice to give
F +F2=1. (3.2.36)
This is similar to the equation for the two-dimensional plane
laminar jet and the solution is given by

F = tanh o . (3.2.37)
The characteristic velocity, G', can now be expressed in terms of

the constant momentum flux per unit length, using the momentum

equation we have

4 ~2 8
J=3pu v (3.2.38a)
hence
Ps=3ko (3.2.38b)
s 4 o

where k = j/p. The final form of the stream function for the

two-dimensional turbulent jet is therefore given by:

1/2
v = % { 2_“ (x*)*2 tanh 7 . (3.2.39)
[+ ]

The constant o, was determined experimentally by H. Reichardt, see
Schlichting (1968), and found to be o = 7.67. If we let y > w in

the above then the stream function is given by

1/2

v —a-é- [ %‘5 ] (x*)'? x* > 0 (3.2.40)
[+

and this is the boundary condition at the edge of the shear-layer

that we have imposed when solving Laplace’s equation for the flow

induced by a two-dimensional plane turbulent jet.

3.2.4 The Flow Induced by a Two-dimensional Jet
The effect which the two-dimensional jets of fluid have on the
entrainment of the surrounding fluid is now investigated under the

assumption that an inviscid potential flow is induced. If we let
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y — o in equations (3.2.26) and (3.2.39), then the condition for y

at the edge of the shear-layer is of the form

bix*@) = £ (x*)? x* > 0 (3.2.41a)
where

9kp 1/3
f = ( —_— ] , A=1/3 (3.2.41b)
) 2

for the laminar jet and

1/2
3k ] L A=1/2 (3.2.41¢)

1
£ = 21

[«]

for the turbulent jet. For simpliclity the slender jet is assumed to
have zero thickness so that the boundary condition is enforced along
the x axis. The solution of the Laplace equation (2.2.18) subject to

the following boundary conditions

¥ =1 (x')A on 8 =0 (3.2.42a)
=0 on 6=nm (3.2.42b)
V=0 , r= r, on 8=m-a«a (3.2.42c)

will give a complete description of the flow induced by the jet. The
geometry and coordinate systems used for the induced flow are
illustrated in Fig.3.2. Using the method of separation of variables

we find the solution in the form:

b=t (sin(An))"[ r*sin[ A(e-6) ] - r) sin(ra) ] . (3.2.43)

3.3 A TWO-DIMENSIONAL MODEL OF THE AABERG EXHAUST HOOD’S FLUID FLOW

In this study we are interested in determining the fundamental
air flow pattern created by the Aaberg exhaust hood and we therefore

assume that the contaminant is spread throughout the fluid and is



- 64 -

neutrally-buoyant, i.e. has the same density as air, and diffusion
effects ‘have been ignored. The stream function for the
two-dimensional flow pattern which models that created by the Aaberg

exhaust hood can then be written in the form

Y= — % (v - ;) + fm(sin(hn))-I[ rksin[ A(n-6) ] - rz sinia ]

(3.3.1)
x*
a
| Line
= Sink Y
a

Fig.3.2 The geometry and coordinate systems used for the induced

flow.

Although we have made these assumptions it is easy to adapt the
model to include the effects of having a neutrally-buoyant emission
of contaminant, modelling it as a line source of fluid which can be
placed anywhere in space in front of the hood. Also, solid
partiéles, representing contaminants can be easily introduced into

the flow at various positions and their individual particle paths
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calculated for different hood operating conditions. However,
modelling the effects of a continuously emitted,
non-neutrally-buoyant contaminant is more complicated and leads to a
two-phase problem.

The above expression for the stream function is now expressed
in dimensionless form by referring all lengths to the width of the
exhaust flange, a, and the stream function with respect to the
volume flux, m, into the exhaust 1inlet. Thus introducing the
dimensionless quantities

R =r/a , Ra = ra/a , R7 = rv/a , ¥ = Y/m (3.3.2)

expression (3.3.1) becomes
_ 1 n A _ _ pA
¥ = - [; (-3 -6 [Rsin[ A(n-6) ] - R, sin)wc]] (3.3.3)

where G = akf°° /msin(An) is an 1important dimensionless quantity,
referred to hereafter as the operating parameter. The operating
parameter, G, will be denoted by GL when the flow in the jet is
laminar and GT when the flow in the jet 1is turbulent. The

dimensionless resultant speed, Q, of the flow is given by

o=V P+ V? (3.3.4)

where U and V are the dimensionless cartesian components of velocity
in the X =x/a and Y = y/a directlions, respectively, such that

U =w(ma) and V = v/(m/a). Hence

Uus=- [ cosy AG[RA-lcosA + RA'lcosB] ] (3.3.5a)
n R o
T
and
V= - f‘tig’ + AG[RA'lsinA . Rz—lsinB] (3.3.5b)



where
A =2 + 6(1-1) , B = al(l1-2) . (3.3.6a,b)

From a knowledge of these components the velocity directly in front
of the exhaust hood along its centre-line can be determined. Along

the centre-line

U=0,7=%,R7=Y,a+6=n,R=Ra (3.3.7)

and hence the dimensionless centre-line velocity (CLV), is given by

CLV = - [ n_l?' + AGR""[sinA + sinB]] (3.3.8)
where
o = 12[ + tan"[%] , w=tan Y, RP=1+ Y2 (3.3.9)

3.4 RESULTS AND DISCUSSION

The mathematical model presented in this chapter represents a
very simple analytical model for the air flow pattern which is
created by a two-dimensional exhaust hood assisted by a jet flow
following the principles of operation suggested by Aaberg. However,
an exhaust hood of the same design as that modelled does not exist
in practice and therefore there are no appropriate operating
conditions and experimental data on which to base the validity of
the model. However, for the purposes of illustrating the qualitative
behaviour of the two-dimensional air flow pattern predicted by the
model we obtain appropriate values of the dimensionless operating
parameter G from the operating conditions of a three-dimensional

Aaberg exhaust hood as supplied by Fletcher and Saunders (1991) of
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the Health and Safety Executive, Sheffield, England. These
conditions lead to the following approximate values of the physical
quantities:
me0.05ms ', k«0.5n's? a«0.15m  (3.4.1)

The fluid used was air at about 20°C, and therefore the kinematic
viscosity, v, 1s approximately equal to 1.7 x 10-5 Pa s. These
parameters result in a value of GLm 0.5 for the laminar jet and
GTm 2.0 for the turbulent jet. The value of the operating parameter
G may be varied and its effect on the flow pattern examined.

Increasing the value of the parameter G by a factor F may be

regarded as equivalent to one of the following:

Laminar Jet Case (A = 1/3)

1 [ 9akv ]1/3

G =

n (3.4.2)

2
(a) Increasing k by a factor of F
(b) Decreasing m by a factor of F
(c) Increasing a by a factor of F,
i.e. decreasing the sink strength by a factor of F is equivalent to

increasing the kinematic momentum flux by a factor of F?

Turbulent Jet Case (A = 1/2)

1 [ a ]1/2
T 2m o
[+]

G (3.4.3)

(a) Increasing k by a factor of F2

(b) Decreasing m by a factor of F

(c) Increasing a by a factor of F°

From equations (3.4.2) and (3.4.3) the following relationship
between the laminar and turbulent operating parameters, GL and GT,

can be derived:
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ak 1/6
GT= GL ( >3 ] . (3.4.4)

12v o,
On substitution of the physical quantities given in expressions
(3.4.1), equation (3.4.4) simplifies to the approximate relationship
GT x 4 GL . (3.4.5)

Once the laminar operating parameters are known then their
equivalent turbulent parameters can be calculated from equation
(3.4.5). In this chapter the flow patterns corresponding to the
laminar operating conditions GL= 0.05, 0.5 and 5 and their turbulent
equivalents GT= 0.2, 2 and 20 are investigated. The conditions
GL= 0.05 and GL= 5 represent one tenth and ten times the value of
the laminar operating condition deduced from the Health and Safety
Executive data, respectively.

It should be noted that the operating condition G =0 |is

equivalent to one of a traditional flanged hood, i.e. it models a

hood operating under suction alone.

3.4.1 The Laminar Model

The sets of streamlines describing the flow created by the

Aaberg exhaust hood deduced from expression (3.3.3) with A = 1/3 are
shown in Figs.3.3(a)-(c) when the flow in the jet is assumed to be
laminar for the parameters GL= 0.05, 0.5 and 5, respectively. It can
clearly be seen that increasing the value of the dimensionless
operating parameter GL forces the dividing streamline, y = 1/2,
which divides the flow travelling towards the inlet from that
travelling towards the ejector flow, towards the centre-line of the
hood, resulting in the streamlines becoming more compact in the

region in front of the inlet. The width of the efficient flow region
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decreases, implying an increased fluid velocity towards the inlet.

With GL= 0.05 the sink dominates the flow and fluid is drawn
into the inlet from all directions in front of the hood. The
injection effect is very small and the width of the efficient flow
region is reduced only very slightly over the case when G = 0. The
fluid velocities towards the inlet are only slightly enhanced, and
under these conditions the Aaberg exhaust hood would perform in much
the same way as a traditional exhaust hood. For GL= 5 we reach the
other extreme, the injection totally dominates the flow and the jet
entrains large amounts of fluid. Velocities towards the inlet are
substantially increased, although the penalty is an efficient flow
region so narrow that the exhaust would be rendered almost useless
for the capture of contaminants. Under the operating condition
GL= 0.5 there is a good balance between the suction and the
injection. In this case the velocity towards the inlet is
substantially increased over the case when G = 0 while the efficient
flow region remains broad for the effective capture of contaminants.

These three values of the operating parameter GL illustrate the
necessity to obtain a good balance between injection and exhaustion
in order to achieve near optimum contaminant control from the Aaberg
exhaust hood.

From expression (3.4.2) we can deduce that a hood operating
with parameter GL= 0.05 and a laminar injection of fluid can be
modified into one operating more effectively by either:

(a) increasing k by a factor of 1000
or ) (b) decreasing m by a factor of 10
or (c) increasing a by a factor of 1000.

The modification (a) would require a very high supply pressure for
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the injection, create much noise and require a large increase in
energy, and (c) would almost certainly prove impractical, so that it
would seem most reasonable to choose modification (b). However, care
must be taken as decreasing m by a factor of 10 will decrease the
air speeds in the efficient flow, which for the exhaust to operate
effectively must at least exceed the capture speed.

The effect of GL on the flow 1s again 1illustrated 1in
Figs.3.4(a)-(c); these show lines of constant speed in front of the
hood, deduced from expressions (3.3.5), with a laminar injection of
fluid for GL= 0.05, 0.5 and 5, respectively. As GL increases the
fluid velocity in front of the inlet, in both the efficient and the
recycled flow regions, increases. Under normal praptical conditions
the capture speed is typically of the order of 0.25 ms_l. see
Hogsted (1987) and Fletcher and Saunders (1991,1993). A capture
speed of 0.25 ms'1 corresponds to a non-dimensional speed of
Qc= 0.75 for the operating conditions given in expressions (3.4.1).
Thus, in this model, we can define the effective capture area, from
which the air will be drawn into the exhaust inlet and successfully
removed from the workplace, as the area bounded by the line of
constant speed Qc= 0.75 and the dividing streamline y = 1/2.

We can see from Figs.3.3 and 3.4 how the shape of this area
changes as GL changes. On increasing the value of GL from GL= 0.5 to
GL= 5 we see that the width of the effective capture area decreases
but its length increases. Thus increasing the value of GL also
increases the effective working range of the hood which can then be
placed at greater distances from the source of the contaminant

whilst still achieving the same results.



(a)

(b)

(c)

Fig.3.3 Streamlines modelling the Aaberg flow for a laminar

injection of fluid, A = 1/3. (a) GL= 0.05, (b) GL= 0.5, (¢) GL= 5.
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Fig.3.4 Lines of constant speed in front of the hood for a laminar

injection of fluid, A = 1/3. (a) GL= 0.05, (b) GL= 0.5, (c) GL= 5.
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Further examination of Fig.3.4(b), which shows the lines of
constant speed in front of a hood operating with GL= 0.5, suggests
that a line of constant speed Qb, between the lines Q = 0.4 and
Q = 0.45, bifurcates, the fluid here being either captured by the
suction or caught in the Iinjection flow. This phenomena was also
observed experimentally by Fletcher and Saunders (1991,1993). The
form of the lines of constant speed is in qualitative agreement with
the three-dimensional experimental results obtained by Hegsted
(1987) and Fletcher and Saunders (1991,1993). The reason why the
agreement between the model and the experimental results is only
qualitative is because the flow in the theory is two-dimensional
whereas the experiments were carried out on a three-dimensional
hood.

An idea of the pressure distribution developed by the Aaberg
exhaust hood can be gained from Fig.3.4 which shows lines of
constant speed in front of the hood. As a result of the Bernoulli
equation for steady flow, i.e.

P + % q2 = constant, (3.4.6)
the lines of constant speed are also representative of the lines of
constant pressure, with the areas of high fluid speed corresponding
to areas of low fluid pressure.

Figure 3.5, which is derived from expression (3.3.8), shows the
dramatic variation in the CLV as a function of the distance, Y, from
the inlet of the exhaust hood when the flow in the jet is assumed to
be laminar and for'GL= 0.05, 0.5 and 5. With GL= 0.05 and GL= 0.5
the injection effect is minimal and the CLV falls sharply as we move

away from the inlet. As GL is increased to 5 the CLV again falls

until, at a distance of the order of 0.5a from the inlet, the effect
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of the injection of the fluid begins to influence the flow, raising
the fluid velocity until a local maximum is reached at a distance of
the order of 1a from the inlet. Moving further away from the inlet
the fluid velocity decreases, although it remains considerably
higher than was predicted for GL= 0.05 and GL= 0.5. Quantitatively,
the theory predicts that a hood operating with GL= S has an
effective working range of over 5a compared with one of less than

0.5a for one operating with GL= 0.05.
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Fig.3.5 Variation in the centre-line velocity with distance from the

inlet for laminar injections of fluid, GL= 0.0S, 0.5 and S.

3.4.2 The Turbulent Model

The sets of streamlines, obtalned from expression (3.3.3) with
A = 1/2, describing the flow created by the Aaberg exhaust hood with
a turbulent injection of fluid are shown in Figs.3.6(a)-(c) for the

parameters GT= 0.2, 2 and 20, respectively. The effect of increasing
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the value of GT is the same as that observed for the laminar case
and again results in increased velocities in the efficient flow
region of the hood.

Figures 3.7(a)-(c) show the lines of constant speed in front of
the Aaberg hood with a turbulent injection of fluid, derived from
expressions (3.3.5) for GT= 0.2, 2 and 20, respectively. Once more
it can clearly be seen that as Gr Increases the fluid velocity in
front of the inlet increases. Figures 3.6 and 3.7 also illustrate
that, as in the laminar model, the shape of the effective capture
area changes with GT, becoming narrower and longer as the value of
the operating parameter increases. With a turbulent injection of
fluid, the effective working range of the hood 1s_greater than for
the corresponding laminar case as the turbulent jets entrain more
fluld for an equivalent value of the operating parameter (see also
Fig.3.3(b) and 3.6(b)). Again, as a direct result of the Bernoulli
equation (3.4.6) the lines of constant speed in front of the hood
indicate the form of the lines of constant pressure.

Figure 3.8 illustrates how the CLV varies as a function of the
distance Y from the inlet with a turbulent injection of fluid for
~he parameters GT= 0.2, 2 and 20. With GT= 0.2 and Gr= 2 the effect
due to the injection is minimal with the CLV falling very sharply
before levelling off, but increasing GT by a further factor of 10 to
GT= 20 has a marked effect on the CLV. With GT= 20 the CLV again
falls sharply as we move away from the inlet until a local minimum
velocity is reached at a distance of the order of a/4 from the
inlet. At this distance from the inlet the Aaberg injection is then
able to fully influence the flow, raising its velocity until a local

maximum is reached at a distance of the order of 3a/2 from the



(a)

(b)

(c)

Fig.3.6 Streamlines modelling the Aaberg flow for a turbulent

injection of fluid, A = 1/2. (a) GT= 0.2, (b) Gr= 2, (c) GT= 20.
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Fig.3.7 Lines of constant speed in front of the hood for a turbulent

injection of fluid, A = 1/2. (a) GT= 0.2, (b) GT= 2, (c) GT= 20.
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inlet. On moving further away from the inlet the CLV steadily
decreases although it remains much higher than that predicted for
the other values of GT which were lnvestigated. Quantitatively,
Fig.3.8 shows that increasing the magnitude of the parameter GT from
GT= 0.2 to GT= 2 increases the effectlive working range of the hood

by approximately a factor of 7. A further Increase to GT= 20

substantially increases this range.
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Fig.3.8 Variation in the centre-line velocity with distance from the

inlet for turbulent injections of fluid, G = 0.2, 2 and 20.

3.5 THE REYNOLDS NUMBER OF THE JET

In the two-dimensional mathematical model of the Jjet, the
orifice is infinitesimally small and therefore the Reynolds number

of the jet cannot be defined in terms of the velocity at the face of
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the orifice and the orifice width. Hence, we define the Reynolds

number in the jet as

» =_G_x..
RJ(X ) > - (3.5.1)

The velocity, G, along the centre-line of the jet is given by

-1/3

a(x*) = % o® (x*) (3.5.2)

and we therefore obtain the following expression for the jet

Reynolds number
2/3

»
o - 3 (22 )
] 16v

3 (3.5.3)
where X* = x*/a is the dimensionless distance along the jet axis. On

substituting the values of the quantities k and a into the above
expression we find that, for air at 20°C,

R, (X*) = 0.185 x 10° (x*)*°. (3.5.4)
It is important to indicate which of the two models, namely the
laminar or the turbulent jet, most appropriately models the flow
created by the two-dimensional Aaberg exhaust hood. Arriving at a
definite critical vaiue of the Reynolds number at which the laminar
flow in the Jet breaks down to give turbulence 1is not easy.
According to measurements by Andrade (1939) the two-dimensional jet
remains laminar up to a critical Reynolds number of approximately
Re = 30, where the Reynolds number, Re, given by equation (2.2.4),
relates to the efflux velocity, u(0), and to the width of the slit,
b(0), through which the fluid 1lssues. Denoting the flux of fluid
issuing from the jet orifice as mJ we have, in two dimensions

Re = mj/v (3.5.5)
and the critical Reynolds number of 30 leads to a critical flux, in

air, of 5 cm’s™ ). Therefore according to Andrade’s observations we

would expect the flow in the jet to become turbulent for
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m > 5 cm®s”!. This leads us to conclude that the flow in the jet of

the two-dimensional Aaberg hood is almost certainly turbulent.

3.6 CONCLUSIONS

A simple, analytical mathematical model for the fluid mechanics
of the two-dimensional Aaberg exhaust hood has been developed and
the parameter, G, which characterizes this flow has been identified.
The parameter G is similar to the experimentalists momentum ratio,
I, and models a ratio of the volume flow in the jet to that in the
inlet. The analysis presented shows how G is related to the other
flow parameters included in the model, 1i.e. GL= GL(a,k,v,m) and
GT= Gr(a,k,m). Thus, once the effect which G has on the air flow
pattern has been determined then the effect of the individual
parameters can also be deduced. This simple model allows us to
predict the area of the workplace from which contaminated air can be
removed as a function of the parameter G. Although two-dimensional
Aaberg hoods exist in practice, see Pedersen (1991a), no
experimental data is available for the hood modelled in this chapter
and therefore the results obtained in this chapter have been
compared with the available three-dimensional axisymmetric hood
data. It is found that the lines of constant speed, the shape of the
effective capture area and the streamlines are in good qualitative
agreement with the 1limited available data, see Hegsted (1987),
Hyldgird (1987), Pedersen and Nielsen (1991) and Fletcher and

Saunders (1991, 1993).



CHAPTER FOUR
THE EFFECT OF THE EXHAUST INLET SIZE ON THE EFFECTIVE CAPTURE AREA
OF AN AABERG EXHAUST HOOD
AND
THE DEFLECTION OF THE AIR FLOW INTO THE HOOD WHICH IS CAUSED BY THE

FLOOR OF THE WORKPLACE
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4.1 INTRODUCTION

The simple analytical model for the air flow pattern created by
a two-dimensional Aaberg exhaust hood which has been presented in
chapter 3 predicts that the inviscid fluid flow generated by the
hood is governed by the operating parameters GL and GT’ for laminar
and turbulent injections of fluld, respectively. The effect which
the parameters GL and GT have on the air flow into the hood has now
been determined and consequently the effects of the numerous
geometrical and flow parameters which arise in the model, e.g. a, k
and m, are also known. We now wish to extend the model presented in
chapter 3 in order to conslider the effect of another geometrical
parameter, namely S = s/a, where s Is the width of the exhaust inlet
and a is the width of the exhaust flange. By examining the size and
p;ofile of the hood’s effective capture area as a function of the
inlet size the effect of the parameter S can be established. The
model presented in éhapter 3 clearly illustrates the advantages of
the Aaberg principle over the traditional mode of operation when the
air flow induced by the exhaust hood is allowed to develop and
spread unhindered. However, does the Aaberg system retain its
advantages over traditional systems when the air flow into the hood
is obstructed? Also presented in this chapter is an examination of
the effect of the floor surface of the workplace on the air flow
pattern into an Aaberg exhaust hood when the hood is suspended
vertically above apd facing the floor. In the field of ventilation
enginegring an exhaust hood orientated in this manner, see for
example Fig.1.5, 1is wusually referred to as a ventilator or

ventilator wunit. Mathematical modelling techniques are wused to
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predict the air flow pattern induced by both a traditional
ventilator and a ventilator which employs the Aaberg mode of
operation. The resulting air flows can then be used to compare the
effectiveness of the two different modes of operation. The effect
which a variation in the height of the ventilator above the floor
surface has on the air flow into the hood is also examined. This
effect is predicted by modelling the variation in the air speed
induced along the floor surface and centre-line of the ventilator as

a function of the height, h, at which it is suspended.

4.2 FORMULATION

When considering the influence of the exhaust inlet size and
the presence of the floor on the hood’s air flow pattern the only
modifications which have to be made to the model which was developed
in chapter 3 are to replace the line sink of fluid, which models the
exhaust inlet, with an opening of finite width and to introduce an
exterior boundary. The introduction of a finite-sized opening means
that it is no longer possible to obtain an analytical solution of
the equations of motion, and the governing equations have to be
solved using numerical techniques for which the finite-difference
method has been employed.

The solution procedure 1is as follows: 1initially the jJet
solution is determined and the condition for y at the outer edge of
the jgt shear-layer, which governs the jet-induced flow, deduced.
When examining the effects of both the exhaust inlet size and the

presence of a floor, the injection flow of the hood is modelled as a
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plane turbulent jet of fluid. The upstream boundary condition and
the boundary condition across the exhaust inlet are then determined;
the remaining boundary conditions, including the modified jet
boundary condition, can then be deduced.

For convenience all lengths in the model are
non-dimensionalised with respect to the width, a, of the exhaust
flange and the stream function with respect to the volume flux, m,
into the exhaust inlet. We therefore ;ntroduce the dimensionless

quantities :

_r =X y=Y g.¥
’ R—;» X a' Y ap ‘I’—m . (4.2.1)

4.3 THE EFFECT OF THE EXHAUST INLET SIZE

In order to model the effect of the exhaust inlet size on the
air flow pattern into the hood it is most convenient to use the
polar coordinate syétem (r,0). The geometry and coordinate system
used to model the two-dimensional Aaberg exhaust hood with a
finite-sized exhaust inlet are shown in Fig.4.1. Using the symmetry
of the problem, the equations of fluid motion have only to be solved

in the region for which 0 = 8 s n/2 and r = 0.

4.3.1 The Equations of Motion and the Boundary Conditions
In terms of the dimensionless quantities (4.2.1) the boundary
condition at the edge of the turbulent free jet, i.e. equation
(3.2.40), may be written
v - 6_(R-1)'"? R > 1 (4.3.1)

where the operating parameter GT is defined in equation (3.4.3). For



_85._
simplicity the slender jet is assumed to have zero thickness so that

the boundary condition (4.3.1) is imposed along 6 = 0 for R > 1.

X

—— r
SI
W. - y

A 4

Fig.4.1 The geometry and coordinate system used to model the effect

of the exhaust inlet size.

In order to determine numerically the solution of the governing
elliptic partial differential equation, i.e. the dimensionless form

of equation (2.2.18), namely

_+-_+12-—=o, (4.3.2)

one further boundary condition is required. In this model the
boundary condition at large distances upstream from the Aaberg
exhaust hood is enforced on R = R°° for 0 = 8 = /2 where Rco » 1.
This boundary condition is taken to be the asymptotic solution of
equation (4.3.2) subject to the boundary condition for the
Jet-induced flow on 8 = 0, i.e equation (4.3.1), and subject to
¥(R,n/2) =0 (4.3.3)
plus the upstream radial flow contribution which results from the

flow into the exhaust inlet. To a first-order approximation



¥=G_ R on =0 (4.3.4)
where A = 1/2 and following the method of separation of variables we
therefore seek a solution of equation (4.3.2) in the form
¥ = RA 81(9), where 61 is a function of 6 only. The resulting
first-order solution, satisfying boundary conditions (4.3.3) and

(4.3.4), is then found to take the form

n
v=G_ — sin[A(; - 0)] . (4.3.5)
sina—
2 B
A A-1
To a second-order approximation ¥ = GT R - GT AR on 8 = 0 and

hence we seek a solution of equation (4.3.2) in the form

1

sinA(E - 8)] + RY
n 2
sin?\;

e
|

=G

. 82(9) (4.3.6)

where 82 is a function of 6 only, to give the second-order solution

A-1
= sin[l(g - 9)] - G, AR -
sinAE sin(l-l)g

sin[A-1) (S - @] .

(4.3.7)
Following this process, higher-order approximations to the solution
are readily determined. Hence, with the contribution from the

exhaust flow we obtain

n ] ARA-I n
¥(R,8) = G sin{A(= - 8)] - sin](A-1)(= - 0)] +
T | sinaA® [ 2 sin(a-1)Z [ 2 ]
2 2
A-2
AR a2 E -] - . - [ L ] (4.3.8)
2!sin(h—2)§

on 0 =0 =n/2, R= R°° » 1.

The exhaust inlet of the hood is modelled as a rectangular slot
of width s into which a flux of fluid, m, is exhausted per unit
time. Across the face of the exhaust inlet the fluid velocity is

assumed to be constant and hence we obtain the following boundary



condition
y(r,0) = 35 O0sr=s. (4.3.9)
Non-dimensionalising equation (4.3.9) we obtain the boundary

condition across the face of the exhaust inlet, namely
R

¥(R,0) = 25 0O0=Rs=S§S (4.3.10)
and thus the exhaust flange 1s modelled by the boundary condition
¥(R,0) = 5 S<Rs1. (4.3.11)

The effect of the exhaust’s suction Ais to modify the boundary
condition at the edge of the turbulent jet shear-layer, 1i.e.
equation (4.3.1), which now becomes

172 R> 1. (4.3.12)

¥(R,0) —> 1/2 + GT(R-l)
4.3.2 The Finite-difference Scheme
A mesh was placed over the entire solution domain and all
derivatives approximated by their usual central-difference
approximations. The mesh chosen concentrated the grid points in the
area where rapid changes in the solutlion were expected and was made
sufficiently fine so as to ensure the results were mesh independent.
A fine mesh was adopted for 0 s R s 1 and for R > 1 the step length
in the radial direction was increased exponentially thus allowing
the boundary condition along R = Rm for 0 = 0 s /2, i.e. equation
(4.3.8), to be enforced without demanding excessive computational
storage and run times. A detailed description of the
finite-difference approximations to the governing equation of fluid
motion is now given.
Qefining the mesh points in the (R,8) plane by the points of
intersection of the circles R = idR (i =1, 2, ..n) and the straight

lines 6 =36 (j=1, 2, ..m) we may approximate the Laplace
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equation (4.3.2) at the point (i,J) using central-difference
approximations to all the derivatives, by the finite-difference

formula

+ C2 V¥ + C4 V¥ =0
i+ i

Cl v + C4 V¥ -C3V¥
1,3 »J-1

i-1,) i, j+1 ’ 1,

(4.3.13)
where the coefficients C1, C2, C3 and C4 are given by

I | = 1
Cl =1 R C2 =1+ 51 (4.3.14a,b)
1 1
C3 =2 [1 + 2] c4 = > - (4.3.14c¢c,d)
(ise8) (is0)

The finite-difference equation (4.3.13) has a truncation error

tlj = O(SRZ,BGZ) and using S.0.R. we obtain

(n+1) (n) w (n+1) (n)
= —_ +
\I’l,J q’i,j * C3 (Cl \I,i-l,j ‘ c2 \I’Hi,j

+cav™? scavw
i, -1

(n) (n)
1, §+1 C3 \I’i,j ] (4.3.15)

where w is the relaxation parameter and n denotes the number of
iterations. The boundary condition for ¥ along the outer curved
boundary at R = Roo must be imposed where it is realistically met,
i.e. for sufficiently large values of Rm, to ensure that it does not
incorrectly influence the flow and so that only a few terms of the
series in expression (4.3.8) are needed to approximate the boundary
condition to the required accuracy. For this reason an improved mesh
is needed and to this end the transformation
€ =1nR (4.3.16)

is chosen for R > 1. The transformation (4.3.16) increases the mesh
size in the radial direction exponentially and this enables the
condition for ¥ to be imposed for large R whilst demanding less

computer storage than with the standard constant mesh. Transforming
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the Laplace equation (4.3.2) we obtain

8Yv ., 3% _y (4.3.17)

for R > 1. Using central-difference approximations for the
derivatives, equation (4.3.17) may be approximated at the point

(i,J) by the finite-difference formula

f1 ¥ + f3 Wi

-f2 v + f1 ¥ + f3 V¥ =0
i-1,) 1,9} i+

j+1 1,3 i,3-1
(4.3.18)

where the coefficients f1, f2 and f3 are defined to be

£1 = 1 ., f2= 2[ 1 -+ 1 2] . £3= 1 ~ . (4.3.19a,b,c)
(8¢) (8€) (80) (s6)
The finite-difference equation (4.3.18) has a truncation error

T, = 0(5¢%) + 0(56%) and in S.O.R. form may be written as

(n+1) (n) W (n+1) (n)
= —_— +
WI,J Wi,j * f2 [fl W1-1,j + f1 W1+1,3
(n+1) (n) (n)
f3 '~I1l’j_1 + f3 Wi,jﬂ f2 \I'i’J ] . (4.3.20)

The step length 8§ is chosen such that

8¢ = 1n(1 + SR) (4.3.21)
in order to ensure that the meshes match at R = 1. Once the
approximations to ¥ at the grid points of the mesh have been
determined, subject to the appropriate boundary conditions, the
dimensionless components of the velocity can be approximated and
from them the dimensionless resultant air speed created by the

Aaberg exhaust hood, Q, where Q = q/(m/a), may be predicted.

4.3.3 Results and Discussion

The geometry of the Aaberg exhaust hood investigated by

Fletcher and Saunders (1991,1993) has an inlet size of s = 0.037 m
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and this results in a dimensionless inlet size of approximately
S = 1/4‘for a hood of radius a = 0.15 m. For the purposes of this
study the ratio between the momentum flow of the exhaust and that of
the 1injection 1is kept constant. The momentum ratio chosen
corresponds to GT ~ 2.0 and represents the operating conditions at
which Fletcher and Saunders (1991) obtained aerodynamic control of
their Aaberg exhaust hood. In order to predict what effect varying
the inlet size has on the air flow into the hood three different
sizes of inlet are considered, namely S = 1/8, 1/4 and 1/2. For each
inlet size, streamlines and lines of constant air speed (and hence
the effective capture area) deduced from the model are examined for
the inlet condition which has a constant volume flux into the inlet.

Lines of constant speed modelling the air flow pattern created
by an Aaberg exhaust hood are shown in Figs.4.2(a)-(c) for the inlet
sizes of S =1/8, 1/4 and 1/2, respectively. For the operating
conditions given by Fletcher and Saunders (1991),.see expressions
(3.4.1), the dimensionless Tresultant capture speed, which
corresponds to the level of background air disturbance, is given by
Qc = 0.75. From the results shown in Fig.4.2 it is clear that the
line of constant speed Qc = 0.75 1is not significantly affected by
the size of the inlet and iIn all three cases intersects the
centre-line at a distance of approximately 3a from the inlet. Sets
of streamlines describing the air flow for the inlet slizes of
S = 1/8, 1/4 and 1/2 are shown in Figs.4.3(a)-(c), respectively, and
the shaded region ‘illustrates the predicted effective capture area.
By comparing Figs.4.3(a)-(c) it is evident that, except very close
to the hood, varying the size of the exhaust inlet results in no

visible change in the form of the streamlines and hence the
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Fig.4.2 Lines of constant speed. Fig.4.3 Streamlines.
Figs.4.2 and 4.3 The flow pattern created by an Aaberg exhaust hood

operating with a constant inlet flux, G = 2, (a) s =18,

(b) S =1/4 and (c) S = 1/2.
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effective capture area may be considered to be virtually independent
of S for the inlet sizes conslidered. Very close to the hood the
effective capture area is broadest for the largest inlet size
considered and this is most clearly illustrated by comparing
Figs.4.3(a) and 4.3(c). The width of the effective capture area
predicted by the model for GT = 2 agrees well with the width of the
region of 100% capture efficiency observed by Fletcher and Saunders
(1991) for the same conditions of exhaustion and injection, - see
Fig.1.9(b). In both cases the width described is limited to the
width of the exhaust flange.

To further investigate the effects of the exhaust inlet size on
the induced air flow the air speed along the hood’s centre-line
deduced from.the model was examined for the inlet sizes of S = 1/8,
1/4 and 1/2. Figure 4.4 1illustrates the variation 1in the
dimensionless resultant centre-line air speed as a function of the
distance, Y = y/a, from the inlet and indicates that although, for
small values of Y, the air speed developed by the smaller of the
inlet sizes is the greater, the centre-line air speed for each inlet
size considered rapidly approaches a common value as Y increases.
The common centre-line air speed which is reached after only a very
short distance from the inlet, i.e. of the order of 1.5a, confirms
that the exhaust’s suction has a very limited effect on the movement
of air in the workplace. From Fig.4.4 we can also conclude that for
Y > 1.5 the fluid flow created by the Aaberg exhaust hood is almost
totally dominated.by the flow induced by the turbulent jet. This
result is 1in agreement with the experimental observations of
Fletcher and Saunders (1991,1993) and verifies the conclusions of

the plots of the streamlines and air speeds.
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Fig.4.4 Variation in the resultant air speed along the centre-line
of the Aaberg exhaust hood as a function of the distance, Y, from

the inlet.

4.4 CONCLUSIONS OF THE EFFECTS OF THE EXHAUST INLET SIZE

In this simple mathematical model the fundamental air flow
pattern modelling that created by an Aaberg exhaust hood for the
case of a neutrally-buoyant contaminant, neglecting the effects of
diffusion, has been considered. Under these assumptions the model
predicts that varying the size of the exhaust inlet, whilst keeping
the exhaust flow rate constant, has no significant effect on the air
flow }nto the hood except in a region very near to the exhaust
inlet. In the immediate neighbourhood of the exhaust inlet the model

predicts that the width of the effective capture area increases as
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the inlet size increases. However, an industrial application of the
Aaberg exhaust hood will require the induced air flow to contain and
exhaust contaminant which 1s released in front of and at some
distance from the hood. Consequently, the slight increase in the
width of the effective capture area at the face of the exhaust which
is predicted for an increase in the inlet size will not effect the
hood’s ability to capture contaminant. The effective capture area of
the two-dimensional hood may therefore be regarded as being
virtually independent of the exhaust inlet size. In practice, due to
the random movement of the contaminant at the edge of the effective
capture area, where the air speed is close to the capture speed, we
expect the effects of diffusion to dominate the fluid motion. The
effective capture area outlined above models that which would be
obtained 1in 1ideal <conditions, il.e. of a neutrally-buoyant
contaminant, without the effects of diffusion and where background

alr disturbances are small.

4.5 THE EFFECT OF THE FLOOR ON THE AIR FLOW INTO AN AABERG EXHAUST

HOOD

We now wish to investigate what effect the floor has on the air
flow into an Aaberg exhaust hood, see for example Fig.1.5 which
depicts a ventilator unit which is placed at a vertical distance of
approximately h = 8a above the floor of the workplace. To date,
Hogsted (1987) remains the only author to have addressed this
problem. Through various experiments Hegsted (1987) observed that,

under the correct operating conditions, the presence of the floor
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causes the original efficient flow region of the hood, shown
schematically in Fig.1.8(a), to be deflected over a wide area of the
floor, as 1illustrated in Fig.1.8(b). The result is an air flow
pattern capable of successfully exhausting contaminant which is
released far from the centre-line of the hood. Many industrial
processes are exothermic and produce buoyant plumes. Such processes,
for example reheat furnaces, can be equipped with a ventilator that
functions as a hood to receivé the hot plume of contaminant. In
these, and other processes where it may be beneficlial to draw the
contaminant vertically upwards, it has been demonstrated
experimentally by Hegsted (1987) that a jet-reinforced exhaust
system, such as one employing the Aaberg principle, may, under the
correct operating conditions prove advantageous over traditional
hoods in drawing the contaminant more effectively into the exhaust
opening. In the following sectlion a computational mathematical model
of the air flow pattern created by a two-dimensional ventilator unit
reinforced by a turﬁulent Jet flow, as described by Hegsted (1987),

is presented in order to predict the effect of the floor on the

hood’s effective capture area.

4.5.1 The Equations of Motion and the Boundary Conditions

The ventilator unit is modelled as a two-dimensional flanged
opening suspended at a height h above the floor of the workplace.
The cartesian coordinate system (x,y) adopted is with the origin at
the face of the exhaust inlet, the x axis along the flange of the
ventilator and the y axis along its centre-line, see Fig.4.5. The
fluid velocities in the x and y directions are denoted by u and v,

respectively. The centre-line of the ventilator and the solid floor
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surface of the workplace are streamlines of the flow through which
the fluid may not cross and along these lines we may take the stream
function ¢ = 0. Owing to the symmetry of the problem about the
centre-line the flow need only be determined in the region given by

x20, 0sy=h,

'S
[+
v

_]

3 floor surface

7/
Z

Fig.4.5 The geometry and coordinate system used for the ventilator

unit.

The continuity equation, namely

du , 8v _
5% 3y - 0 (4.5.1)
may be satisfied by introducing the stream function ¥ such that
_ 9y =%
u = 3y and v 3% (4.5.2a,b)

and as the exhaust flow is assumed to be inviscid and irrotational
then the equation governing the fluid motion 1is the Laplace
equation, which when expressed in terms of the non-dimensional

quantities (4.2.1) becomes
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8¥,8 %9, (4.5.3)

In relation to the dimensionless cartesian coordinate system (X,Y)

the boundary condition (3.2.40), which models the amount of fluid

drawn into the developing turbulent jet, may be written

172 X> 1. (4.5.4)

¥(X,0) = GT(X—l)
‘Operating under injection alone the plane of the exhaust inlet, the
exhaust flange, the centre-line of the hood and the floor all form
flow boundaries on which we take ¥ = 0. The boundary condition
modelling the flow far upstream, i.e. for X » 1 and 0 s Y = H, which
is created by the Jjet-induced flow is given by the asymptotic
solution of equation (4.5.3), subject to the boundary condition
(4.5.4) and to ¥ = 0 along the floor. The boundary condition which
represents the effect of the suction flow far upstream is determined
by assuming that the asymptotic flow is purely horizontal with a
constant velocity across the depth, H = h/a, of the workplace. The
constant velocity condition represents only the first-order
approximation to the upstream flow which is created by the suction.
However, higher-order approximations decay exponentially rather than
algebraically, as for the Jjet flow, and are therefore neglected.

Under these assumptions the following upstream boundary condition in

the stream function can be derived:

3
¥(X,Y) = GT(x-1)"2[ 1 -1 ] -L g (x-1)'3’2[2HY G % ] -

H 24 1

1 =772 3 3 4 Y5 1 Y
357 G, (X-1) [8H.Y - 20HY" + 15Y° - 3 ] ot s [ 1 -5 ]
for X» 1, 0 =Y = H. (4.5.5)

The boundary condition which models the flow at the face of the

exhaust inlet has already been determined, see section 4.3.1, and
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hence

X
2S
The effect of the exhaust’'s suction is to modify the boundary

¥(X,0) = 0=Xs=sS. (4.5.6)

condition at the edge of the jet shear-layer, i.e. equation (4.5.4),

which now becomes

172 X > 1. (4.5.7)

¥(X,0) > 1/2 + GT(X—I)
The centre-line of the ventllator, the floor surface, and the

exhaust flange all form flow boundaries and along these we have

¥(0,Y) =0 0=sYsH, (4.5.8)
¥(X,H) =0 X>0 (4.5.9)
and ¥(X,0) = 1/2 S<Xs1i, (4.5.10)

respectively. The flow of the jet-reinforced ventilator unit is thén
given by the solution of equation (4.5.3), subject to the boundary
conditions (4.5.5)-(4.5.10).

Due to the complexity of the problem an analytical solution is
not possible and hence a finite-difference technique has to be used
to solve the probleh numerically. Although the mathematical model
developed above is based on a number of simplifying assumptions some
of these may be relaxed in order to examine other aspects of the
flow. For instance the model may be adapted to include the effects
of different room geometries or hood positions, e.g. a sloping floor
surface could be introduced and its effect on the flow pattern

investigated.

4.5.2 The Finite-difference Scheme
Finite-difference techniques were chosen to solve the problem
with a rectangular mesh in the (X,Y) plane whose grid points are

defined by the points of intersection of the perpendicular lines
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X=1i8x (i=0,1, ...n) and Y = jéx (J =0, 1, ...m). By replacing
all derivatives by their central-difference approximations the
Laplace equation (4.5.3) may be approximated at the point (i&x, jéx)

by the usual five-point formula, namely

e,y ", 00 T P Yy Yy B0 (4.5.11)

which in S.0.R. form may be written as

(n+1) _(n) w (n+1) (n+1) (n) (n) (n)
= - + + ¥ + -
1,) \I’l:j * 4 [ ‘I’i’lyj i,J-1 ifivj i,3+1 \I’l,j ]
(4.5.12)

The upstream boundary condition across the depth of the room, given
by equation (4.5.5), must be imposed at a sufficiently large value
of X, say for X = Xm, so as to ensure that it does not incorrectly
influence the flow and so that only a few terms of the series
approximation in equation (4.5.5) are necessary to give the boundary
condition to the level of accuracy of the finite-difference scheme.
For this reason the standard rectangular mesh is not suitable and an
improved mesh is needed. To this end the transformation € = ln X is
chosen for X > 1. The mesh length in the Y direction 1is kept
constant, although for large values of H a similar transformation to
that used in the X direction could be employed. Using the

transformation € = ln X the following finite-difference equations

for X > 1 may be obtained

- + + =
f1 ‘pi—l,j + f2 Wi,ju f3 \Ili,j fa \PHI’ f2 \111’1_1 0
(4.5.13)
and iterating, we obtain
(n+1) _(n) W (n+1) (n+1) (n)
Whj -.WLJ * 3 [fl wl-i,j v f2 Wi,j—l v f4 W1+1,j

+ 29" gz g™ ] (4.5.14)
1,541 1)
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where the coefficients f1, f2, f3 and f4 are now given by

f1 =281, 1 f2 = —1 _ (4.5.15a,b)
(8€)%  2s8¢ (8x)
_zg
f3 =2/ 4 _1 f4 = 28 --1-—2 . (4.5.15¢,d)
(56)%  (8x)? (58)®  28¢

To ensure the meshes match at X =1 we again must insist that

‘65 = In(1 + &x).

4.5.3 Results and Discussion

The operating conditions that Hegsted (1987) employed to run
his ventilator unit were not given and so the operating conditions
at which Fletcher and Saunders (1991) ran their local Aaberg exhaust
hood are used. These operating conditions, see expressions (3.4.1),
result in the operating condition which has GTN 2. It should be
noted that the operating condition GT= 0 is equivalent to a
traditional ventilator, i.e. it models a ventilator operating under
suction alone.

Streamlines and lines of constant speed deduced from the model
are now used to examine the effect of the turbulent injection of
fluid on the air speed induced by a ventilator. Sets of streamlines
which describe the air flow pattern created by a ventilator
suspended at the height of H = 8 are shown in Figs.4.6(a)-(c) for
GT= 0, 2 and 4, respectively. The dimensionless height of H =8
corresponds approximately to the height at which Hegsted (1987)
suspended a ventilator unit when conducting his flow visualization
experiments.

From the results shown in Fig.4.6 it is clear that the effect

of the injection of fluid on the air flow is to displace the
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dividing streamline, ¥ = 1/2, towards the floor surface and thereby
concentrate the suction in a narrow zone along the floor area of the
workplace. The dividing streamline separates the flow travelling
towards the inlet from that travelling towards the ejector flow and
it is assumed that any contaminant located in the region above the
dividing streamline is blown back into the workplace via the jet
flow. Figure 4.6(a), which shows sets of streamlines modelling the
flow created by a ventilator operating under suction alone,
illustrates that wunder these conditions the ventilator |is
non-selective, drawing air from all directions towards the exhaust
inlet. In Figs.4.6(b) and 4.6(c), which depict sets of streamlines
modelling the flow created by a ventilator operating under combined
exhaustion and injection, it can be seen that the contaminated air
is now selected from an area immediately above the floor surface and
drawn towards the inlet. The effect of further increasing the
injection, modelled by increasing GT from Gr= 2 to GT= 4, results in
the selection of flﬁid from a very narrowWw layer immediately above
the floor surface. As the injection is further increased the height
of the efficient flow region decreases, implying an increased fluid
velocity along the floor surface towards the centre-line of the
ventilator.

Figures 4.7(a)-(c) show lines of constant air speed in the
workplace for a ventilator suspended at the height of H = 8 above
the floor surface, operating with zero injection (Gr= 0) and with
combined injection and exhaustion for the parameters GT= 2 and
GT= 4, respectively. The effect of the injection of fiuid on the

lines of constant speed appears quite complicated. However, it can

be seen in Fig.4.7 that for the whole area of the workplace the air
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Fig.4.6 Streamlines modelling the flow of the ventilator unit,

H=28, for (a) G=0, (b) G=2 and (c) G = 4.
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Fig.4.7 Lines of constant speed in the workplace induced by a

ventilator unit, H =8, for (a) G =0, (b) G =2 and (c) G = 4.
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speeds which are achieved when combining injection and exhaustion
are significantly increased over those developed under exhaustion
alone (GT= 0), and increasing the parameter Gr further increases the
alr speeds. The regions where the induced alr speeds are most
significant for the effective control of the contaminant are along
the floor surface and the ventilator’s centre-line. The air speeds
in these regions are now Iinvestigated for a ventilator operating

under exhaustion alone and under combined injection and exhaustion.

4.5.3.1 Air Speeds along the Floor Surface of the Workplace

The air speeds along the floor surface of the workplace are of
particular interest since once they are known the effective working
range of the hood at floor level, for neutrally-buoyant
contaminants, may be predicted for various heights of the ventilator
above the floor.

Figure 4.8(a) illustrates the variation in the resultant air
speed as a function of the distance, X, along the floor surface of
the workplace produced by a ventilator operating under exhaustion
alone for H=1, 2, 4 and 8. The figure clearly illustrates how the
air speed along the floor surface, created by the exhaustion, falls
dramatically as the height of the ventilator above the floor surface
is increased.

Figures 4.8(b) and 4.8(c) illustrate how the resultant air
speed along the floor surface varies, as a function of X, for a
ventilator suspended at heights of H =1, 2, 4 and 8 when operating
with combined exhaustion and injection for the parameters Gr= 2 and
G_= 4, respectively. By comparing Fig.4.8(a) with Figs.4.8(b) and

T
4.8(c) the striking effect of the injection of fluid on the air
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Fig.4.8 Variation in the resultant air speed along the floor surface
as a function of the ventilator height, H, for (a) G =0, (b) G =2
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speed along the floor surface is clearly visible. The injection
significantly enhances the air speed induced along the floor surface
for each height, H, considered. Thus, contaminated air from either
side of the ventilator’s centre-line can be drawn, from a region
immediately above the floor surface, towards the centre-line at an
increased speed with combined injection and exhaustion than can be
achieved with exhaustion alone. The increased alr speeds developed
when operating at GT= 2 and GT= 4 (over those obtained when Gr= 0)
also serve to increase the lateral effective working range of the
ventilator, allowing contaminated air to be sampled from greater
distances either side of the ventilator’s centre-line. To summarize,
the effect of increasing GT is to increase the air speed induced
along the floor surface towards the centre-line and hence the

lateral effective working range of the ventilator.

4.5.3.2 Air Speeds along the Centre-line of the Ventilator

To examine how the turbulent injection of fluid affects the air
speed along the ventilator’s centre-line, air speeds were calculated
for a ventilator operating at GT= o, GT= 2 and GT= 4 and the results
obtained from the three operating situations compared.

The variation in the centre-line air speed, as a function of Y,
for a ventilator suspended at the heights of H =1, 2, 4 and 8 above
the floor and operating under exhaustion alone 1is shown 1in
Fig.4.9(a). This figure illustrates that for each height considered,
the air speed along the ventilator’s centre-line decays very rapidly
with increasing distance from the inlet; from a speed of Q = 2 at
the face of the inlet to Q = 0 at the floor surface. Figures 4.9(b)

and 4.9(c) depict the variation in the centre-line air speed, as a
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function of Y, for a ventilator suspended at the. heights of
H=1, 2, 4 and 8 for GT= 2 and GT= 4, respectively, and show that
initially, as for a ventilator operating under exhaustion alone, the
air speeds fall very sharply as one moves away from the hood along
its centre-line. However, at only a very small distance from the
inlet (of the order of 0.25a) the injection of fluid begins to
influence the flow, reducing the sharpness iIn the decay of the
centre-line air speed. This phenomena is observed for each height
considered with the only exception being when H = 1.

From Fig.4.9 it can clearly be seen that for a ventilator
suspended at the height of H =1 above the floor surface the
injection effect only slightly enhances the centre-line air speed;
at this height the suction effect dominates the flow. However, as
the ventilator is raised further above the floor surface the effect
of the injection of fluid is to significantly enhance the flow into
the exhaust opening, with increased air speeds along the centre-line
predicted for each height increase considered.

Thus, the model predicts that the effect of the injection on
the air flow along the centre-line is only °‘felt’ after some minimum
distance from the 1inlet has been exceede@ and then the injection
effect considerably increases the air speeds along the centre-line.
The role of the suction is only to draw the contaminated air that
distance along the centre-line, towards the inlet, over which the

injection of fluid has little effect.

4.5.3.3 The Effective Capture Area
The effective capture area is defined to be the area from which

the neutrally-buoyant contaminated air will be drawn into the inlet
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and successfully removed from the workplace, see section 2.4.2. In
this model the effective capture area is therefore given by the
region bounded by the line of constant speed Qc= 0.75 and the
dividing streamline ¥ = 1/2. From Figs.4.6 and 4.7 we can predict
how the shape of this area changes as a function of GT. On
increasing the value of G_r from GT= 2 to GT= 4 we see that the
height of the effective capture area above the floor surface
decreases and its length increases. Hence increasing the value of G_r
implies that the lateral range of the ventilator across the floor
area of the workplace increases. Detailed examination of Fig.4.6(c)
and 4.7(c) show that for X > 4 the contaminant is drawn towards the
ventilator’s centre-line in a fluid layer immediately above the
floor surface and then enters a region where the air speed developed
by the hood is less than the capture speed. In this region the
contaminated air is free to randomly wander and here diffusion
effects will dominate the fluid motion. Contaminated air drawn
upwards towards the inlet and which has been successfully contained
in the efficlient flow region then enters a zone where the air speed

is greater than the capture speed and may then be sampled.

4.6 CONCLUSIONS OF THE EFFECT OF THE FLOOR ON THE AIR FLOW INTO AN

AABERG EXHAUST HOOD

A simple mathematical model for the fluid mechanics of a
two-@imensional ventilator unit reinforced by a turbulent jet of
fluid has been developed. This simple model allows us to predict

from what area of the floor surface of the workplace the
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neutrally-buoyant contaminated air can be successfully removed as a
function of the height, H, of the ventilator unit above the floor
and the operating parameter GT. The model predicts, in accordance
with the observations of Hegsted (1987), that for a ventilator
employing the Aaberg principle the presence of the floor surface
results in a lateral deflection of the efficient flow region which
may then occupy a substantial region of the floor surface. As a
consequence contaminant capture 1s possible from a significant
distance either side of the ventlilator’s centre-line. Under a
correctly balanced ratio of injection and exhaustion the hood will
draw contaminated air from a region immediately above the floor
surface towards the centre-line and then upwards into the exhaust
inlet at greatly enhanced speeds compared to those of a conventional
ventilator operating under suction alone.

The other main conclusion which may be drawn from the model
highlights the importance which must be placed on the correct
installation of the hood. The model predicts that a critical
distance between the ventilator and the floor surface exists below
which the suction will be the dominant flow. Therefore, in order to
obtain the maximum benefit from the addition of the jet of air, the
ventilator must be installed above this critical height. In this
study the critical height for a two-dimensional ventilator has not
been determined although the results obtained in this chapter
indicate that, for the chosen operating conditions, the minimum
distance of the ventilator from the floor surface should exceed the
width of the exhaust flange, a.

The qualitative agreement between the mathematical model for

the fluid mechanics of the two-dimensional Aaberg exhaust hood and
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the three-dimensional results is encouraging. Hence in the next

chapter an axisymmetric, three-dimensional mathematical model will

be investigated in order to obtain more quantitative agreement with

the experimental data.



CHAPTER FIVE
A THREE-DIMENSIONAL AXISYMMETRIC MODEL FOR THE RADIAL JET ISSUING

FROM THE AABERG EXHAUST HOOD



- 113 -

5.1 INTRODUCTION

The simple mathematical models presented in chapters 3 and 4
have given us an understanding of the driving mechanism and
operating parameters which govern the fluid flow generated by an
Aaberg exhaust hood. The contours of constant speed and the
streamlines predicted by the two-dimensional models show good
qualitative agreement with the three-dimensional experimental data
and flow patterns described by the experimentalists. However, to
obtain more detailed information about the air flow pattern
generated by the original Aaberg exhaust hood it 1s necessary to
consider the axisymmetric radial free jet flow which is produced by
the hood and its effect on the surrounding fluid. In order to
determine the flow induced by the axisymmetric radial free'jet then
the form of the jet must first be determined. The purpose of this
chapter is to present a new approach to mathematically model the

flow issuing from an axisymmetric radial free jet for both laminar

and turbulent flows.

5.2 FORMULATION

The radial free jet produced by the Aaberg exhaust hood may be
defined as the axisymmetric flow resulting from a continuous
discharge of fluid from the space between two identical, parallel,
circular, concentric discs into an infinite region of stagnant fluid
of the same density and viscosity. The flow of the radial free jJet

is one of considerable interest as it occurs in many practical
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engineering applications, e.g. in internal combustion engine valves
and also in ventilation systems where it is commonly used to provide
a ventilating jet. The analogous wall jet flows are encountered in
the fields of ailr cushioning and in vertical take-off and landing
(VTOL) aircraft. Although having numerous applications the radial
free jet has received little attention in the literature.

By definition, the flow of the radial free jet is axisymmetric
and hence, in the cylindrical polar:coordinate system (x,0,y), is
independent of the angular coordinate @, see Fig.5.1. A discussion
of the solution procedure to be presented in the following sections
is now given.

In the immediate vicinity of the exhaust flange the radial jet
of fluid issuing from the annular jet nozzle does not recognize the
curvature of the exhaust flange and in this region the flow of fluid
from the nozzle is governed by the two-dimensional plane free jet
equations. However, at large distances from the exhaust flange the
fluid jet appears to issue from a point source and in this region
the flow may be modelled as a radlal free Jet issuing from a point
source. The solution of the Prandtl shear-layer equations which
govern the fluid motion in both the two-dimensional plane jet and
point source radial free jet regions is then determined'analytically
and expressed in its similarity solution form. In both cases the
method followed is analogous to that described by Schlichting (1968)
for the two-dimensional plane Jet. The two similarity regimes are
then combined in.a single global regime which exhibits both the
properties of the two-dimensional plane jet for x* « 1 and of the
point source radial free jet for x* » 1, where x* is the distance

along the jet axis measured from the jet orifice. Substitution of
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the global regime into the governing equation of fluid motion yields
a non-linear parabolic partial differential equation whose solution,
at each station x*, 1s determined by marching in the radial
direction, away from the initial two-dimensional plane jet solution.

The method follows that described by Merkin (1976).

P 4

RN

b (0)

Fig.5.1 The geometry and coordinate system used for the radial free

Jet.

5.3 THE GOVERNING EQUATIONS OF MOTION AND THE BOUNDARY CONDITIONS

The equations of motion governing the flow of the axisymmetric
radial free jet for both laminar and turbulent flows, i.e. equations

(2.2.7) and (2.2.10), respectively, may be written in the combined

form
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du du 82u
u v =g — (5.3.1a)
dx ay dy
3 a =
5§(xu) + 5§(XV) 0 (5.3.1b)

where the kinematic viscosity, B, is given by

v for laminar flow,

€ for turbulent flow.
The solution of the differential equations (5.3.1) subject to the
boundary conditions (2.2.3) and to the momentum flux condition
(2.2.8) will give us a complete description of the flow in a radial
free jet which issues radially from a point source. However, in
order to model the flow which results from the uniform discharge of
fluid from the perimeter of the Aaberg’s circular exhaust flange,
which has a finite radius, a, it is necessary to define a new
coordinate system (x*,y) whose origin is located at the periphery of
the flange, see Fig.5.1. This is achieved by a translation of the
radial coordinate x:

x*=x -a. (5.3.2)

Equations (5.3.1) then reduce to the following system of equations:

2
8
u u + v ou _ B ——; (5.3.3a)
ax* ay ay
d 8 » =
—[(a+x*)u] + —[(a+x*)v] =0 (5.3.3b)
ax* ay

and expression (2.2.8) for the kinematic momentum flux of the radial

free jet in the mainstream direction is now given by
[+.4]
k = 4n J (a+x*)u2 dy = constant. (5.3.4)

(o

In order to satisfy the continuity equation (5.3.3b) we introduce

the Stokes stream function, ¢, such that
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1 % and v = - 1 _ %

a+x* 3y a+x* gx*

(5.3.5a,b)

A similarity solution of the equations of motion which govern
the flow of the radial free jet produced by the Aaberg exhaust hood,
namely a solution of equations (5.3.3), is not possible for
0 < x* < w and their solution must be sought in the form of equation
(2.2.14). However, before such a solution is sought we must first
examine the initial and asymptotic behaviour of the radial free jet
for both laminar and turbulent flows. We now investigate the form of
the governing equations of fluild motion in these two limiting cases,
namely (i) at x* =0 and (ii) as x®* — ®. The solution of the
resulting equations at x* = 0 will give us a complete description of
the initial fluid behaviour as it emerges from the narrow space
between the exhaust flanges and the solution of the governing
equations as x* — w will describe the ‘final’ or asymptotic

behaviour of the radial free jet.

5.4 THE INITIAL BEHAVIOUR OF THE RADIAL FREE JET

In the limit as x* — O the governing system of equations
(5.3.3) reduce to those for the incompressible flow in a

two-dimensional plane jet, namely

. 2
u du + v du _ B Q—g (5.4.1a)
ax* ay 8y

du , v _ (5.4.1b)
ax* ay

and have to be solved subject to the boundary conditions (2.2.3) and

to the momentum conservation equation (5.3.4), which at x* =0
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reduces to

[ ]
k = 4na I w’ dy = constant. (5.4.2)
o

A similarity solution of the equations of motion (5.4.1) which
govern the initial development of the radial free jet is now sought

for both laminar and turbulent flows.

5.4.1 The Laminar Radial Jet
Following Schlichting (1968) we seek a similarity solution of
equations (5.4.1), where B = v, of the form

y
B(x*)?

where the constants A and B, and the exponents p and q are to be

v = A £ , = (5.4.3)

determined. At x* = 0 the components of velocity (5.3.5) reduce to

- 138y =-198y
u=2ay and Vv 2 x* (5.4.4a,b)
and hence we have
_ A %P9 F
u=—= (x*) f (5.4.5a)
A, 41 [ 7 ==’
and v=- - (x*) ( fp - gqnf ) (5.4.5b)

where the prime represents differentiation with respect to n. If we
assume that the inertial and viscous terms are of the same order of
magnitude in the Jjet and that the kinematic momentum flux is
constant and independent of x*, then substitution of expressions
(5.4.5) for the velocity components into equation (5.4.1a), results
in

p=% , q=§ (5.4.6)

and
AB = va . (5.4.7)

For convenience, we may choose



= a (5.4.8)

and hence

Y = va® 3 (x*)!3 fn) , n-= ﬁy_zz (5.4.9)
a’ T(x*)

where f(73) satisfies the third-order ordinary differential equation

_rrz X}

- - -
+ % FE o+ % (F)2=o0 (5.4.10)

which must be solved subject to the boundary conditions

117 -

f =0, £f=0 on 7=0 (5.4.11a,b)
50 as - w. (5.4.11c)
Equation (5.4.10) may be integrated three times to give

f = 6« tanh(an) (5.4.12)

where a is the constant of integration to be determined. From

equation (5.4.2) we obtain the required expression for «, namely

K 1/3
a = [ 5 ] . (5.4.13)
96nv

From equations (5.4.5a) and (5.4.9) the initial streamwise component

of the velocity and stream function of the laminar radial free jJet

are then

u=6avax)" sech’(un) (5.4.14)
and y=6av a?3(x")13 tanh(an) , (5.4.15)
respectively.

5.4.2 The Turbulent Radial Jet
Following Schlichting (1968) we assume that initially the width
of the turbulent radial free jet, b, is proportional to x*, i.e.
b ~ x*. (5.4.16)
The relationship between the centre-line velocity, G, in the jet and
x* can then be determined from the momentum conservation equation

(5.4.2), from which we obtain
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constant 32 b (5.4.17)

~
]

and hence

w172 172

u = constant x k (5.4.18)

From the Prandtl expression (2.2.11) for the apparent kinematic
viscosity, and in view of equations (5.4.16) and (5.4.18), we have

»172 Denoting values of the parameters of the flow at a fixed

€ ~ X
characteristic distance, s, from the jet orifice by the subscript s

we may write

N () V2 x;
u = us[g ] , b= bs[§ ] (5.4.19a,b)
and denoting € =X bsﬁs we obtain
<+ 12
€ =¢ [— ] . (5.4.19c)
s |S

In order to satisfy the equation of continuity (5.4.1b) we now

introduce the Stokes stream function, ¢, of the form

AP i@, m=o L, (5.4.20)

o 8 o
where the constant o, denotes the initial spreading rate of the

turbulent jet, namely b = vgtx*. From equations (5.4.4) the velocity

components in the radial free jet are then given by

1

u = 1532 s 1725 (5.4.21)
a s
and vl 322 5F-1F) (5.4.22)
a o s 2

where the prime represents differentiation with respect to n, where

N =0 y/x*. On substitution of the velocity components into equation
[+]

(5.4.1a), where B = €, we obtain the following differential equation

for f(n):
1 24 1 ff +(ectasus’d)f =0 (5.4.23)
2 2 8 O 8

and the boundary conditions (2.2.3) become

f =0, £f=0 on =7=0 (5.4.24a,b)
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7

f —50 as 7 —>o. (5.4.24c¢)

7117

The quantity multiplying f in equation (5.4.23) is dimensionless
and as e contains the free constant y we may choose
(e o2a / Us®) = % . (5.4.25)
s O 8
This substitution simplifies the preceding differential equation

which may now be integrated twice to give
F o+ F2 = % (5.4.26)

and whose solution is given by
_ _ 1/2
f = a tanh(an) , where a = [—] . (5.4.27)

Without loss of generality, the characteristic distance, s, is taken
to be the 'length scale, a, and hence we can express the
characteristic velocity, ﬁs, in terms of the kinematic momentum
flux, k, which is a known quantity. Thus, from equation (5.4.2), we

obtain

1/2
~ 3s/2 _ [ 3ka
us = [ % %, ] . (5.4.28)

Using equations (5.4.27) and (5.4.28), the streamwise velocity
component (5.4.21) and the stream function (5.4.20) of the turbulent

radial free jet, at x* = 0, may then be written as

3k 172 1/2 2
= o —— .- 1
u [ gma o ] X sech®(n) (5.4.29)
1/2
and v = [g% ] x*'? tanh(n) , (5.4.30)
[+

respectively.

The apparent kinematic viscosity as x* — 0

It 1is appropriate at this stage to examine what form the
apparent kinematic viscosity, €, of the turbulent radial free jet

assumes as x* — 0, and from equations (5.4.19c), (5.4.25) and
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(5.4.28) we obtain

1/2
e =1 [ 3k - } x*1/2 (5.4.31)
4 8uao°

Based on the preceding analysis it seems reasonable to assume
that the initial spreading rate of the turbulent radial free jet is
identical to that of the two-dimensional turbulent plane jet. The
spreading constant, 00, has been determined experimentally by

Reichardt to be o = 7.67 for the two-dimensional turbulent plane

Jjet, see Schlichting (1968).

5.5 THE ASYMPTOTIC BEHAVIOUR OF THE RADIAL FREE JET

As x* —> o equations (5.3.3) which govern the flow of the

radial free jet reduce to

2
u u +v bu _ B Q_g (5.5.1a)
ox* ay dy
8 _(x*u) + Li(x*v) = 0 (5.5.1b)
3% 3y -

and these equations have to be solved subject to the boundary
conditions (2.2.3) and to the momentum conservation equation

(5.3.4), which as x* — o becomes
[+
k = 4n I u’x* dy = constant. (5.5.2)
0

The new system of equations (5.5.1) is identical to the system of
equations (5.3.1), i.e. at large distances from the flange of the
exhaust the fluid behaviour in the radial free jet is identical to

the flow which results from the uniform radial discharge of fluild
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from a point source. A similarity solution of the equations of
motion which govern the asymptotic behaviour of the radial jet is

now sought for both laminar and turbulent flows.

5.5.1 The Laminar Radial Jet
Following Schlichting (1968) we seek a similarity solution of

equations (5.5.1), where B = v, of the form

=AM Em ., =L . (5.5.3)
B(x*)?

As x* —> « the components of velocity (5.3.5) reduce to

1 ay =-1 98y
= % 3y and v = - -, =, (5.5.4a,b)
and hence
u = % (x*)P 9! ¢ (5.5.5a)
and v=-A X2 ( fp - qni ) (5.5.5b)

where the prime now signifies differentiation with respect to ﬁ. The
usual boundary-layer assumptions result in

p=1 , gq=1 (5.5.6)
and
AB =v . (5.5.7)

For convenience, we may choose

A=v . B=1 (5.5.8)
and hence

v=vx*f@ , 2= %; (5.5.9)

where f(ﬁ) satisfies the third-order ordinary differential equation

L L
N

PO+ FF O+ (E =0 (5.5.10)

and which must be solved subject to the boundary conditions

s

f =0, f=0 on n=0 (5.5.11a,b)

’

(5.5.11c)

>
o
»
0
3
8
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Equation (5.5.10) may be integrated three times to give
f = 2a tanh(an) (5.5.12)
where « is the constant of 1integration to be determined. From

equation (5.5.2) we obtain the required expression for «, namely

1/3
o= [ 3k 5 ] . (5.5.13)
32nv

Using equations (5.5.5a) and (5.5.9), the streamwise component of

the velocity and stream function in the laminar radial free jet, as

X* — ®, are then

u=2a®v (x¥)" sech®(an) (5.5.14)

and Y =2 a v x* tanh(an) , (5.5.15)

respectively.

5.5.2 The Turbulent Radial Jet

A solution of the equations of motion (5.5.1), where B = g,
which govern the flow of the turbulent radial jet in the 1limit as
x* — © is now sought. The method adopted is analogous to that
described by Schlichting (1968) for the two-dimensional plane Jet
and given by Tanaka and Tanaka (1976). Following Schlichting (1968)
we shall assume that as x* — o the width of the jet, b, 1is
proportional to x*, i.e. b ~ x*. The relationship between the
centre-line velocity, G, of the turbulent radial free jet and x* can
then be determined from the momentum conservation equation (5.5.2)

from which we obtain

]

k = constant a0 x* b (5.5.16)

and hence

constant x* ! k2. (5.5.17)

u
From the Prandtl constant momentum transfer model for the apparent

kinematic viscosity we have
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e=2xb u ~ x*° = constant (5.5.18)
which implies that the apparent kinematic viscosity remains constant
over the entire jet for sufficiently large values of x*. Identifying
values of the flow parameters G. b and £ at a fixed characteristic
distance, s, from the Jjet orifice by the subscript s we may now

write

~ o~ (x*\! x*
u = us{— ] , b= bg[— ] {(5.5.19a,b)

and hence
€= . (5.5.19¢)

The continuity equation (5.5.1b) is now satisfied by introducing the
Stokes stream function, ¢, in the form
__1~ .AA A= X
=0 usx fa) , m=o, X* (5.5.20)
where o is an empirical constant which characterizes the asymptotic
spreading rate of the Jjet such that b = o;lx' as x* — w. The

velocity components of the turbulent radial free Jet, given by

equations (5.5.4), are then

,

u_s (x*)"' § (5.5.21)

c
[t}

and v 0;1 Gss (x*)" ¢ o -F) . (5.5.22)

Substitution of the velocity components (5.5.21) and (5.5.22) into
equation (5.5.1a), where B = ¢, leads to a third-order ordinary

differential equation for f(7n), namely

’ L

2 +(eci/us)f =o0 (5.5.23)
8 ™ s

~ AI\’
f + ff

and the boundary conditions (2.2.3) become

77

f =0, £f=0 on 7n=0 (5.5.24a,b)
f —>0 as 7 —>o. (5.5.24c)
As e contains the free constant y we may simplify equation (5.5.23)

by choosing



- 126 -

(e o2 / us) = % : (5.5.25)
After this simplification, equation (5.5.23) may now be integrated
twice to give

f +f°=1 (5.5.26)
and whose solution is given by

f = tanh(n) ., (5.5.27)
and so the streamwise component of the velocity becomes
u = Gs (x*/sfdsechz(ﬁ). The characteristic velocity Gs can now be

expressed in terms of the kinematic momentum flux, k, a known

quantity. Thus from equation (5.5.2) we obtain

172
~ 3k
us = [ & O ] (5.5.28)

and hence the streamwise velocity component and the stream function

of the turbulent radial free jet, as x* — o, may be written as

3k 12 - 2
= . o
u = [§; om] X sech™(n) (5.5.29)
a2 )
and Y = [§EE ] x* tanh(n) , (5.5.30)
00

respectively.

The apparent kinematic viscosity as x* — «

From equations (5.5.19c), (5.5.25) and (5.5.28) the form of ¢

as x* — o is given by

2 8n03
[«

172
e = L [ 3k ] = constant. (5.5.31)
We now require a physically realistic value of the constant c, which
governs the asymptotic spreading rate of the turbulent radial free
Jet. 'Although there have been very few published experimental

studies on the turbulent radial free jet a survey of the available

literature, see Table 5.1, shows that o, = 8.21 is an average of the
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values determined by experiment.

Author Value of om
Heskestad (1966) 7.86
Tanaka and Tanaka (1976) 8.99
Witze and Dwyer (1976) 8.31
Patel (1979) 7.66
Average o, = 8.21

Table 5.1. Experimentally determined values of the spreading

constant, o for the turbulent radial free jet.

5.6 SOLUTION OF THE EQUATIONS OF MOTION GOVERNING THE FLOW IN A

RADIAL FREE JET FOR 0 < x#* < o

Solutions of the equations of motion (5.3.3), which govern the
radial free Jet flow of an Aaberg exhaust hood have now been
determined for both laminar and turbulent flows in the two limiting
cases, namely, at x* = 0 and as x* — o, and hence the initial and
asymptotic behaviour of the radial free jet has been established. We

now proceed to investigate the intermediate behaviour of the radial

free jet, i.e. its behaviour for 0 < x* < w.

Non-dimensionalisation

At this stage it is convenient to rewrite the equations of
motion (5.3.3) in their dimensionless form. All lengths in the model

are referred to the radius of the exhaust flange:

X* =x*/a , Y =y/a (5.6.1)



- 128 -

and the components of the velocity, the stream function and the

kinematic momentum flux of the jet are non-dimensionalised such that

_ u _ Vv =V .
U=g7a: YV ga’ YTBa’ _4an (5.6.2)

where the scaling factor Bo is given by

B =

[+]

{ v for laminar flow,

eo for turbulent flow

and where € = b(0) u(0) 1is the ‘initial’ apparent kinematic
viscosity.
Expressed in terms of the non-dimensional quantities (5.6.1)

and (5.6.2) the governing equations of motion (5.3.3) become:

2
au au a"u
U—+V —= E;J - (5.6.3a)
ax* ay ay
a a »
— [(1+x*)U] + — [(14X*)V] =0 (5.6.3b)
ax* ay
and the boundary conditions (2.2.3) are
g% =0 , V=0 on Y=0 . (5.6.4a,b)
U—0 as Y —>Do. (5.6.4c¢)

The continuity equation (5.6.3b) implies the existence of a

dimensionless Stokes stream function, ¥, where

_ 1 3¢ __ 1 oav
V=mxray ™ V77T axr (5.6.5a,b)

The method of solution of the equations (5.6.3) subject to boundary

conditions (5.6.4) is now addressed.

5.6.1 The Laminar Radial Jet

" The similarity solutions of the laminar radial free jet
equations, i.e. equations (5.6.3) with B/Bo = 1, in the two limiting

cases, illustrate that for X* « 1 the behaviour of the Stokes stream
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function is such that

¥ ~ x*173 F[ :>3 ] (5.6.6)
X*

whilst for X* » 1

¥ ~ X* f[ ;; ] . (5.6.7)

Combining the similarity regimes (5.6.6) and (5.6.7) we will look
for a single solution of equations (5.6.3), when B/Bo =1, of the

form

Y
v=x*1"20 + x*H rx*m) , m= 3 — (5.6.8)
x*23(1 + %)

for 0 < X* < w. The single expression (5.6.8) exhibits both the
properties of the two-dimensional laminar plane Jjet solution
(5.4.15) for X* ¢« 1 and those of the asymptotic laminar radial free
jet solution (5.5.15) for X* » 1. From equations (5.6.5) and (5.6.8)
the dimensionless components of velocity of the laminar flow may be

expressed as

(1+x*$)'?  af

U= (1+X*)4/3 i/ 3 (5.6.9a)
and
2
__ 1 (1+3X*") «173 «2,173 (8f 8f an
V= (1+X%) ax*2/ 3 (14x#2) %3 £+ X200 ax* * Fn ax*
(5.6.9b)

5.6.2 The Turbulent Radial Jet

The similarity solutions of the turbulent radial free jet
equations, 1i.e. .equations (5.6.3) with B/B° = e/eo, in the two
11m1£ing cases, 1illustrate that for X* « 1 the behaviour of the

Stokes stream function is such that



~ 172 fle X
¥~ X f[a‘o X,] (5.6.10)
whilst for X* » 1
¥ ~ X* E c Y (5.6.11)
o X*| ° M

Combining the similarity regimes (5.6.10) and (5.6.11) we will look
for a single solution of equations (5.6.3), when B/Bo = e/eo, of the

form

Y

2
VErnm) L n=gm (5.6.12)

¥ = X*2(143*)
for 0 < X* < o. Although not unique, the single expression (5.6.12)
exhibits both the properties of the similarity solution (5.4.30) for
X* « 1 and of the asymptotic similarity solution (5.5.30) for

X* » 1. From equations (5.6.5) and (5.6.12) the velocity components

may be expressed as

U= x* 12 14xn) "2 g% (5.6.13a)
and
1 (1+2X*) 172 172 {af af an
= - f+x. 1+X* — ot ——
v (1+X%) 2172 (14xe )12 ¢ ) 3x* n 3X*
(5.6.13b)

When substituted into equation (5.6.3a) the velocity components

(5.6.9) and (5.6.13) for the laminar and turbulent flows,
respectively, yield a third-order, non-linear parabolic partial

differential equation in f; namely

3 2 2 2 2
af 2
a—§+c(x~)f<"_f+cz(x*)[?i] =c(x*)[‘£af - g]
an ! an° an an 9X*an  8X* an

(5.6.14)

whose coefficients cl(X'), cz(X*) and ca(X') are given by:
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(i) for the laminar radial jet

(1+3x*2)

(5.6.15a)
3(1+X*) 273 (1+x%%)

*) =
cl(X ) >3
3x*3 - x*? 4 5x* 4+ 1

(5.6.15b)
3(1+X*)% 3 (14x#2)273

cz(X') =

x*(1+x*2)13

(1+X*)

Cs(X*) = 273 (5.6.15¢)

and (ii) for the turbulent radial jet

1/2 -1
142X*)X*
(——)——[e ] (5.6.16a)

c (X*) = —_
1 2 (14%%)372

€
o

e yal/2 .y -1
c,(X*) = 51:3§—l§75—-E§J (5.6.16b)
2(14X*)

o

c3(X*)

x#372 [e

-1
= . (5.6.16c)
(1+X* )1/2 eo]

Equation (5.6.14) has to be solved subject to the following boundary

conditions:

and subject to

Q_g =0 , £=0 on n=0 (5.6.17a,b)
an

af

— —50 as 7N —D (5.6.17c)
an

the initial condition which has

f=f on X*=0. (5.6.17d)

The apparent kinematic viscosity for 0 < X* < o

Before we can proceed to solve equation (5.6.14) 1in the

turbulent case

we must first postulate the behaviour of the apparent

kinematic viscosity, €, as the radial free jet develops in terms of

the parameters

in the flow.
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Equation (5.4.31) which expresses the initial form of the

apparent kinematic viscosity may be written

z_ =c x*1/2 for X* « 1 (5.6.18)
[+
where
1/2
1 (3K
[+]
20;

and on substitution of the Reichardt, see Schlichting (1968), value
for the initial spreading constant, namely o = 7.67, we obtain
C_=0.0144 K2, The non-dimensional form of equation (5.5.31),

which expresses the nature of the apparent kinematic viscosity for

X* » 1, is given by

e _ »
== o for X* » 1 (5.6.20)
[+]
where
172

1 3K
C = 5 [ = ] . (5.6.21)

-] 3

Zom

If we adopt the average experimental value of o, = 8.21, see Table
5.1, for the asymptotic spreading constant then we have
C_ = 0.0260 K.

Thus for X* « 1 the apparent kinematic viscosity, e/eo, is
proportional to the square root of the distance from the orifice,
whilst for X* » 1 the value of e/e° remains constant over the whole
Jet and is independent of X*. We now propose that the transition of
the apparent kinematic viscosity from its initial to its asymptotic

tendencies occurs smoothly as the jet develops, accordingly we shall

write

1/2
C X*
= ° (5.6.22a)

2 172
Ik
C

o«

(’)l(’)

for 0 < X* < . Expression (5.6.22a) does not uniquely describe the
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transition of the apparent kinematic viscosity from initial to

asymptotic behaviour and other expressions, for example

c x»/2
= 2 (5.6.22b)

4 174
o [1+[C_0]X'2]
Cc
0

could equally have been chosen. The differences in the final

~ lﬂ

solution which result from the different choices for the expression

of e/e° will be examined in section 5.8.

5.7 NUMERICAL SOLUTION OF THE NON-LINEAR PARABOLIC PARTIAL

DIFFERENTIAL EQUATION

In order to determine the function f and hence the form of the
radial free Jjet a modified Crank-Nicolson, finite-difference
technique as described by Merkin (1976) 1is employed to solve

equation (5.6.14) subject to conditions (5.6.17). Following Merkin

(1976) the new dependent variable q given by

_af
Q=35 (5.7.1)

is introduced and then equation (5.6.14) becomes

n
2
Q_ﬂ + QS [C (Xi)q + Ca(xi)gg_ dn + cz(xﬁ) qz - C3(Xl) q QS_ = Q.
an®  am ! ax* ax*
(o]
(5.7.2)

Equation (5.7.2) is then written in finite-difference form using
v=gq +q, as a new dependent variable where q = q(X*,Y),
q, = -q(X*+8X*,Y) and 8X* is the step length in the X* direction. The

X* derivatives are replaced by differences giving
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v - 29
8 . 1+ 0(aX*) (5.7.3)
ax* 3X*

and all other terms are averaged over the step from X* to X*+8X*.

For example, the second derivative with respect to 7 is given by

8%q _1 941" 2q13+ 9 51 . Qoyer” 2q21+ 9251
— =3 5 > (5.7.4a)
an h h

- L v, v, v ) (5.7.4b)

where h is the step length in the n direction. The finite-difference

equation at » = jh is then

2
v =2V +v + %(v

- +
Je1 ] J-1 vj_i)(hlvJ AZDJ)

j+1
2 2 2
h -2 + A h =

+ Aavj (vJ qu) . vJ 0 (5.7.5)

for j = 0(1)N, where

vj = SV tV + Vj_l"' 3V, (5.7.6a)
p = 1 q _ +q .t ... +q + 1 q (5.7.6b)
3 2 10 11 13-1 2 71y T
1 * *i5X* 1 * *
Ai =5 (c1(x ) + ci(X +3X*)) + 3%F (03(X ) + c3(X +3X*))
(5.7.6c)
- - 2 » » »
Az = - 5% (cs(x ) o+ c3(X +3X*)) (5.7.6d)
= - _1___ » » *
A3 = - sax¥ (c3(X ) + ca(X +3X*)) (5.7.6e)
_ 1 » » *
A4 =1 (cz(X ) + cZ(X +8X*)) . (5.7.6f)
Boundary conditions (5.6.17a,c) are satisfied by taking
v =V and v =0 N (5-7.7a,b)

1 -1 N+1

respéctively. The value of (N+1)Ah is chosen to be sufficiently large
so that condition (5.7.7b) is applied at a point at the outer edge

of the shear-layer. The boundary condition (5.6.17b) is
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automatically satisfied from choosing q1o = 0. Before equation

(5.7.5) can be used to determine the form of the radial free jet an

initial profile for q is required.

(1) Initial profile for the laminar radial jet

On substitution of 8f/8nm, from equation (5.7.1), into equation

(5.6.9a) we can obtain the relationship

1/3 4/3
X* 1+X*
q-= v ( ) . (5.7.8)

(1+x#%)173

The streamwise component of the velocity, U, in the laminar radial

free Jjet at X* =0, 1i.e. the dimensionless form of equation

(5.4.14), may be written

U=6ax*? sechz[an(1+x*)"3] (5.7.9a)
1/3
K _ Y
where o= [ 57 ] , M X‘2/3(1+X*)1/3 (5.7.9b)

and hence substitution of equation (5.7.9a) into equation (5.7.8)

yields the initial profile for the laminar radial jet, namely

q=6 o? sechz(an) at X* =0 . (5.7.10)

(1i) Initial profile for the turbulent radial Jet

On substitution of 8f/8n, from equation (5.7.1), into equation
(S5.6.13a) we can obtain the relationship
q = U x*2(14x%)'% . (5.7.11)
The streamwise component of the velocity, U, in the turbulent radial
free jet at X* =0, 1i.e. the dimensionless form of equation

(5.4.29), may be written

1/2
U = [9_‘5 - ] x* 2sech®(c 1) ., 7= L (5.7.12)
2 o o X

and substitution of equation (5.7.12) into equation (5.7.11) yilelds
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the initial profile for the turbulent radial jet, namely

kK V2 2
= [—5 oo] sech (0°n) at X* =0 . (5.7.13)

The system of non-linear algebraic equations (5.7.5) is of the form
Fj(v A AT v") =0 J = 0(1)N (5.7.14)
and is solved iteratively using Newton's method, see Smith (1985).

If we assume that VIO) for 1 = 0(1)N, is a known approximation to

the exact solution vl then by the Taylor serles expansion

8

_ (0) RN K -
FJ(vi) = Fj(vi ) + (vl v, )[avipj]o + ... 0 (5.7.15)

and hence to a first-order approximation

(v, - "1(0))[27 Fj] = - FJ(V:O)) : (5.7.16)
i 0

Equation (5.7.16) represents (N+1) linear equations for the (N+1)

unknowns (vl - v:°)) and may be written in the matrix form

Al=c (5.7.17)
(0) (0)
where lJ = vJ - vJ , cJ =-F (v1 ) and A is a matrix of the form
{
AAO 14D 0 0
1+A /2-D AA 1+D
’ 1 1 1
- +
A2/2 1+A2 D2 AA2 1 D2
A3/2 A3 1+A3-D3 AA3
A4/2 A4 A4 1+A4-D4 AA4. . ‘0
1+D
{ AN/z AN . e e e e e e e e e .AN 1+AN—D" AA"

(5.7.18)

N-1
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where
Mm =2 _F J = 0(1)N (5.7
J-— aT j = . 193.)
3 0
— a - -
A = [‘,_j_v1 FJ]O 1= 1(1)3-1 (5.7.19b)
- - =
and DJ = 3 (FJ) 1 J O(1)N. (5.7.19¢)

j*1
From the finite-difference equation (5.7.5) we obtain the following

expressions for the matrix elements

, .
- h =
AJ = Al Z (vj+1 vj_l) J = l(l)N (5.7.203)
- _ 1 2 _ 2 =
AAJ = -2 + EAJ + 2A3h (vj qij) + 2A4h vj J=101)N (5.7.20b)
h® '
DJ = Z.(;\lvj + AZDJ) J = 1(1)N. (5.7.20c¢)

Using the boundary condition (5.7.7a), the finite-difference

equation at j = 0 reduces to

2 2. 2_
Fo = 2(vl— vo) + Aavoh (vo- 2q1°) + A4h Vo = 0 (5.7.21)
and hence
2 2
AA0= -2 + 2A3h (vo— q1o) + 2A4h A (5.7.22a)
D° =1, (5.7.22b)

The linear system of equations A 1l = ¢ are solved using the LU
decomposition method proposed by Doolittle, see Burden and Faires

(1989). This involves writing A = L U, where L is a lower triangular

matrix whose diagonal elements are unity, i.e. Lli =1, and U is an
upper triangular matrix. We first solve the equations L w =c for w
= w for 1

by forward substitution and then solve the equations U 1

(0)

by backward substitution. The quantity 1J + vj Is then used as the

next guess and the procedure repeated until (vl - VIO)) is less than

the specified tolerance, € -
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The initial solution at X* = 0 was used to calculate the
solution of equation (5.7.5) subject to the boundary conditions
(5.7.7) at X* = 8X*, untll convergence to within the tolerance €
had been achieved. The Newton procedure was repeated, solving
equation (5.7.5) subject to conditions (5.7.7) at X* = 8X*/2 using
the results obtained at X* = 0 and then using the results obtained
at X* = 8X*/2, equation (5.7.5) was then solved for each Vi
J = 0(1)N, at X* = 8X*. Providing that the results obtained at
X* = 8X* using the one step of length 8X* and the two steps of 8X*/2
differ by less than the tolerance 82 then the technique proceeds in
the same manner to calculate vy J = 0(1)N, at X* = 28X*. Once the
v 's have been determined in this manner the new qj's are determined
from qJ =v - qJ. The marching procedure was continued until the

J
profile obtained approached the asymptotic similarity solution, i.e.

until f — f.

The initial profiles for q, 1i.e. equations (5.7.10) and
(5.7.13), could have been determined numerically following the same
method. However, in this case the first column of the matrix A will
be slightly different due to the fact that the derivative boundary
condition (5.7.7a) is no longer enforced and an analytic expression
for q at 7 = 0 is enforced instead. This has to be done in order to
avoid obtaining the trivial solution. Although an analytic
expression for q is still required at X* = 0, » = 0, calculating the

initial profile in this manner does provide a useful means of

checking the numerical procedure.
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5.8 RESULTS AND DISCUSSION

Errors arising from the mesh size in the X* direction were kept
small by covering the step from X* to X*+8X* in first one and then
two steps and insisting that the difference between the solutions,
€_, be less than 5 x 10", In the first few steps the solution was
found to change very rapidly and it was necessary to take &X* = 10’
for the first ten steps, then 8X* = 10™® for a further ten steps,
etc.. Once the solution in the initial region of rapid changes had
been determined the specified tolerance, 82’ between the two
solutions could be achieved with d&X* = 0.05. The value of the
tolerance, € in the Newton procedure, was taken to be 10°6. This
value of the tolerance was found to provide sufficient accuracy as
choosing a smaller value for €, had no significant effect on the
solution obtained and results were graphically indistinguishable.

At each location X* of the marching, after convergence had been
achieved, the kinematic momentum flux, K, and the stream function,

Wm, at the edge of the shear-layer were calculated from the

expressions:

(1) for laminar flow

(N+1) A

K = iliﬁiilff J q° dn (5.8.1)
(1+ex*)*° |
0
(N+1) R

vo=x s xH)? J q, dn (5.8.2)

(o]

(ii). for turbulent flow
(N+) A

K = Jq? dn (5.8.3)

o
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(N+D A
v = x*2(1 + x%)? J q, dn (5.8.4)
0

where the integration was performed numerically. The kinematic
momentum flux, K, of the radial jet was evaluated at each location
X* to ensure that it was conserved as the jet developed; and hence

provided a useful check of the accuracy of the numerical procedure.

From the injection operating conditions at which Fetcher and
Saunders (1991,1993) ran an Aaberg exhaust hood we obtain the
following approximate values of the physical quantities:
u(0) = 7.7 ms™', b(0) = 7.5 x 102 m and a ~ 0.15 m. These operating
conditions result in a Reynolds number, Re, of approximately 3397
which implies that the flow in the radial freé Jet 1is almost
certainly turbulent. The kinematic momentum flux, k, of the radial
Jet is given by

k = 2n a b(0) u(0)? (5.8.5)
and hence from Fletcher and Saunders (1991,1993) we obtain the
approximate value of k = 0.419 m‘s_z. Non-dimensionalising we obtain
K to be 0(10°) for the laminar radial jet and K = 0(10) for the
turbulent radial jet.

As discussed in chapter 2, the flow induced by a radial jet is
governed by the form of the stream function, Ww, at the edge of the
shear-layer. Therefore it is reasonable to choose Ww as the quantity
from which comparisons can be made between the solutions deduced
from the current mathematical model and the available experimental
and theoretical results of other authors. Comparisons are now made
between Wm deduced from the model presented in this chapter with

those deduced from the available empirical and semi-empirical
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formulae.

5.8.1 The Laminar Radial Jet

Due to the very large magnitude of the dimensionless kinematic
momentum flux of the laminar radial jet, 1.e. K is 0(10%), it was
necessary to choose h = 0.00390625 and N = 300, i.e. Nh = 1,171875,
in order for the value of K to be conserved to within 1% of its
initial value. Increasing the position where the outer, infinity
boundary was applied to Nh = 2.34375 had no significant effect on
the overall solution obtained. The stream function, Wm, solution

deduced from the laminar radial jet model is shown in Fig.5.2 as a

function of X* for K = 10°.

8000

6000 —

4000

Stream function

2000

X*

Fig.5.2 The stream function at the edge of the laminar radial jet as

8
a function of X* for K = 10 .
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It has been observed that for a two-dimensional plane and a
circular jet the transition to turbulence occurs at relatively low
values of the Reynolds number, Re’ and there are no reasons to
suggest why this should not also apply to a radial jet flow.
Information regarding an experimental study of the laminar radial
Jet has not been found in the literature, this may be due to the
fact that in most practical applications in which the radial jet is

employed the value of the Reynolds number is relatively large and

the flow is turbulent.

5.8.2 The Turbulent Radial Jet

With A = 0.00625 and N = 160, i.e. Nh = 1, the value of K was
found to be conserved to within 1% of its initial value. Increasing
the position where the outer, infinity boundary was applied to
Nh = 2 had no significant effect on the overall solution obtained.

From equations (2.2.2), which describe the velocity
distribution in a turbulent radial jet as derived by Tuve (1953),
Squire (1955) and Heskestad (1966), Poreh and Cermak (1959) and
Witze and Dwyer (1976), and Patel (1979), we can derive a general
expression for the stream function at the edge of the turbulent
radial jet. The general expression is arrived at after initlally
determining the centre-line velocity, G, from the momentum
conservation equation (5.3.4), and then by integrating the resulting
streamwise component of the velocity across the shear-layer.

Non-dimensionalising we obtain the general expression for Ww, namely

¥ o=y K2 X131+ x)17? (5.8.6)

[+ ] (]

where the values of the constant ¥, are given in Table 5.2.
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Author Value of 7e
Tuve (1953) 0.494
Heskestad (1966) 0.437
Witze and Dwyer (1976) 0.425
Patel (1979) 0.416

Table 5.2 The coefficients, 7, of equation (5.8.6).

The Tuve (1953) and Patel (1979) expressions for the u
component of the velocity in a turbulent radial jet, i.e. equations
(2.2.2a) and (2.2.2d), are empirical formulae while the remaining
expressions of Squire (1955) and Poreh and Cermak (1959), 1i.e.
equations (2.2.2b) and (2.2.2c), are semi-empirical formulae. The
expression (2.2.2b) was determined theoretically by Squire (1955)
and the spreading rate of 7.86 was determined experimentally by
Heskestad (1966). Similarly, expression (2.2.2c) was determined
theoretically by Poreh and Cermak (1959) and the Witze and Dwyer
(1976) experimentally determined expression for b1/2’ namely
b1/2= 0.106 x*, was used in order to derive expression (5.8.6). Tuve
(1953) does not provide any information regarding the half width,
b, of the jet and hence in order to determine the expression

1/2
(5.8.6) for Tuve the half width was assumed to take the form

1/
average of the experimentally determined values, see Table 5.1,

b = 0.107 x*. The value of the constant chosen, i.e. 0.107, is an

where b1/2 has been determined from the relat ionship:

b = 0.881 b.
172

The value of the stream function at the edge of the turbulent

radial jet, as determined from the theory presented in this chapter,
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is now illustrated in Fig.5.3 as a function of X* for each of the
two expressions (5.6.22) which describe e/eo. Also 1illustrated in

Fig.5.3 are the expressions (5.8.6) for each of the authors given in

Table 5.2.
20—
(ii,iv)

- 15
2 (i)
(®)
-
- ]
E 10
© (i,v,vi)
o
R

0 I | l | —

0 2 4 6 8 10

X*
Fig.5.3 The stream function at the edge of the turbulent radial jet
as a function of X* for K = 10, (1) e/eo as given by equation
(5.6.22a), (ii) e/eo as given by equation (5.6.22b), (1ii) Tuve
(1953), (iv) Squire (1955) and Heskestad (1966), (v) Patel (1979),

(vi) Poreh and Cermak (1959) and Witze and Dwyer (1976).

Curves (vi), (v) and (i) of Fig.5.3 illustrate that the stream
functions at the edge of the turbulent radial jet as determined from
Poreh and Cermak (1959), Patel (1979) and the current model, with

€/e as given by equation (5.6.22a), compare extremely well and are
]
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graphically indistinguishable. Similarly, curves (ii) and (iv) which
represent the current model, with e/e° as glven by equation
(5.6.22b), and the results of Squire (1955), respectively, are in
very good agreement and the differences between the two solutions
cannot be distinguished graphically. It should be noted that the
Tuve expression for Ww, which is shown as curve (iii) of Fig.5.3,
significantly overestimates the results obtained from the current
model as well as those deduced from the velocity distribution of the
authors considered. Tuve (1953) 1is believed to be one of the
earliest documented pieces of experimental research on the turbulent
radial jet and thus the observed differences between the measurement
of Tuve and those of more recent experimentalists, e.g. Patel
(1979), may be attributed to the development of more accurate flow
analysing equipment.

Solutions arising when alternative expressions for the combined
similarity regime (5.6.12), e.g. those arising when equation
(5.6.12) is of the form ¥ = X‘bq(l + x*“)“?“f(x*,n), n =2, 3 and
4, were found to be virtually graphically indistinguishable.
However, curves (i) and (ii) of Fig.5.3 illustrate that the choice
of the expression for e/c° has a more significant effect on the
overall solution obtained. Equation (5.6.22a) is the most natural
choice, based on Taylor serles expansions, for the expression which
models the transition of e/¢_ as a function of X*, and the resulting
solution for Ww, shown as curve (ii) of Fig.5.3, is in very close
agreement with the theoretical results of Poreh and Cermak (1959) as

well as the empirical results of Patel (1979). It is this expression

that we shall adopt when modelling the radial jet produced by the

Aaberg exhaust hood.
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5.9 CONCLUSIONS

A numerical model for the fluild flow in a radial free jet has
been developed for both laminar and turbulent flows. The model gives
us a first approximation of the flow in a radial free jet and allows
us to predict velocity profiles and stream function. The stream
function, Wm, at the edge of the shear-layer provides us with a
first-order estimate of the amount of fluld drawn into the radial
free jet and thus the boundary condition for the outer, inviscid,
Jet-induced flow, which will be discussed in more detail later. The
value of the stream function, Wm, at the edge of the shear-layer
determined from the current turbulent model is in very close
agreement with both available theoretical and experimental results.
The full air flow pattern created by the three-dimensional

axisymmetric Aaberg exhaust hood will now be presented in chapter 6.



CHAPTER SIX
A THREE-DIMENSIONAL AXISYMMETRIC MODEL OF THE FLUID FLOW PATTERN

CREATED BY AN AABERG EXHAUST HOOD
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6.1 INTRODUCTION

Now that the fluid flow behaviour in the radial free jet has
been examined we proceed to consider the full air flow pattern
generated by the three-dimensional axisymmetric Aaberg exhaust hood.
The purpose of this chapter 1s to develop a mathematical model of
the air flow pattern induced by such an exhaust hood, to ldentify
the parameters which govern this flow and to predict how the air
flow pattern and hence how the hood’s performance is influenced by
the governing parameters. The mathematical model is formulated in
terms of the Stokes stream function, ¥, and the governing equations
of fluid motion are solved using finite-difference techniques. The
injection flow of the exhaust hood is modelled as a turbulent radial
Jet and the entrained flow is assumed to be an inviscid potential
flow. Sections through surfaces of constant ailr speed deduced from
the model are used to examine what effect the turbulent radial Jet
flow has on the size and shape of the region in front of the hood
from which we expect a neutrally-buoyant contaminant to be captured.
Comparisons made between contours of constant air speed and
centre-line air speeds deduced from the model and the available
experimental data of Fletcher and Saunders (1993) and Pedersen and
Nielsen (1991) show good quantitative agreement over a wide range of
momentum ratios.

A three-dimensional axisymmetric investigation, analogous in

its formulation to the two-dimensional model of Hunt and Ingham

(1992), see chapter 3, is now presented.



- 149 -

6.2 THE MATHEMATICAL MODEL

Under ideal conditions, i.e without the effects of cross-flows
or temperature gradients etc., the air flow pattern generated by the
combination of the suction and injection flows of the original
Aaberg exhaust hood is a three-dimensional axisymmetric flow. Hence,
adopting the spherical polar coordinate system (r,0,¢) we can assume
that the solution is independent of the angular coordinate 6, see
Fig.6.1. Using the symmetry of the flow the governing equations of
fluid motion have only to be solved in the (r,¢) plane for 6 = o,
rz=0 and 0 = ¢ s /2. The equations of motion and the boundary

conditions used to model the axisymmetric flow of an Aaberg exhaust

hood are now presented.

b(0)

Fig.6.1 The geometry and coordinate system for the axisymmetric

Aaberg exhaust hood.
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6.2.1 The Axisymmetric Radial Jet Flow

A detailed analysis of the radial free jet, for both laminar
and turbulent flows, has been presented in chapter 5. In chapter 5
it was established that the flow in a radial free jet is governed by
its kinematic momentum flux, K, which may be thought of as a measure
of the strength of the radial jet. The model of the turbulent radial
Jet developed in chapter S, for which e/eo is given by equation
(5.6.22a), 1is in very close agreement with both the experimental
results of Patel (1979) and the theoretical results of Poreh and
Cermak (1959). In practice the radial jet flow of the Aaberg hood is
almost certainly turbulent and therefore it is this solution that we

shall use in this chapter to model the injection flow of the

axisymmetric Aaberg exhaust hood.

6.2.2 The Jet-induced Flow

The jet-induced flow is modelled by assuming that the flow
induced by a slender, i.e. high Reynolds number, axisymmetric radial
Jet is an inviscid potential flow, l.e. it satisfies the conditions
of incompressibility and irrotationality. Under these assumptions
the fluid motion is governed by equation (2.2.23). Introducing the
non-dimensional quantities as in expressions (5.6.2) the

dimensionless form of the equation of motion (2.2.23) becomes

2 2
8"V _cot(p) ¥ 1 3% _ (6.2.1)

8R? R? 8¢ RZ a8¢°

where R = r/a. The value of the stream function at the edge of the
Jet shear-layer has been numerically determined at each location X,

for X > 1, from equation (5.8.4). We are assuming that the jet is
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slender and hence we shall enforce these values of the stream
function along the X axis for X > 1, i.e.

¥(R,n/2) = Wm R>1. (6.2.2)
Thus, the boundary condition (6.2.2) governs the amount of fluid

drawn into the turbulent radial jet and hence the jet-induced flow.

6.2.3 The Exhaust Flow

Modelling the suction inlet of the exhaust hood as a
finite-sized circular opening of radius, s, into which a volume
flux, m, of fluid per unit time passes and assuming that the fluid

velocity across the face of the inlet is uniformly distributed we
obtain the boundary condition

2
v(r,m2) = —— 0Osrss. (6.2.3)
2ns

Non-dimensionalising, see expressions (5.6.1) and (5.6.2), we obtain
the inlet boundary condition

_1 2
¥(R,n2) = 5 Rip R 0sRsS (6.2.4)

where S = s/a is the dimensionless radius of the exhaust inlet and
the Reynolds number, Rin’ of the exhaust flow is defined to be

u, a
Rln = 3 (6.2.5)

o

and where uin is the fluid speed at the face of the exhaust inlet.

Along the flange of the exhaust we therefore have the boundary
condition

¥(R,m/2) = 5 R, s? S<Rs1. (6.2.6)

n

Nl =

The axis of symmetry of the hood, i.e. the axis along which ¢ = 0,

represents a streamline of the flow and hence for convenience, when
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determining boundary condition (6.2.4), we have chosen

¥(R,0) = 0 O0sR= Rm. (6.2.7)

6.2.4 The Upstream Boundary Condition

The boundary condition modelling the fluid flow at large
distances from the Aaberg exhaust hood is enforced on R = Qm for
0 = ¢ = n/2, where R°° » 1. This upstream boundary condition is taken
to be the asymptotic solution of equation (6.2.1) subject to the
appropriate boundary conditions which result from the shear-layer
solutions on ¢ = n/2 and to boundary condition (6.2.7) on ¢ = 0,
plus the radial flow contribution which results from the exhaust
flow.

Initially, consider the component of the upstreanm boundary
condition which results from the radial free jet flow. From equation
(5.5.30), we have

¥(R,n/2) = GAxl(R—l) for R» 1 (6.2.8)
where the dimensionless parameter GAxl is defined to be
G, = (320 )% (6.2.9)

Axi

Thus, to a first-order approximation we have

¥=G R (6.2.10)
Axi

for R» 1 on ¢ = n/2 and following the method of separation of

variables we therefore seek a solution of equation (6.2.1) in the

form
¥ =R @1(¢) (6.2.11)
where ¢I(¢) is 'a function of ¢ only. Substitution of expression

(6.2.11) into equation (6.2.1) leads to the second-order ordinary

differential equation

77

¢1 - cot(¢)¢; =0 (6.2.12)
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and the first-order solution, satisfying boundary conditions

(6.2.10) and (6.2.7), is then
v = GAxiR(l - cos(¢)) . (6.2.13)

To a second-order approximation

¥ = GAxiﬁ - GAxi (6.2.14)

for R» 1 on ¢ = n/2, and hence we now seek a solution of equation

(6.2.1) in the form
¥ =G _R(1 - cos(¢)) + &_(¢) (6.2.15)
Axi 2
where ¢2(¢) is a function of ¢ only. Substitution of expression
(6.2.15) into equation (6.2.1) then leads to the component of the
upstream boundary condition which may be attributed to the influence
of the radial jet flow, namely
¥v=G (1 -cos(¢))(R~-1) . (6.2.16)
Ax1
For sufficiently large distances upstream of the Aaberg exhaust hood
the flow which results from the flux, m, of fluid into the suction

opening may be modelled as a purely radial flow, and hence, for

r » 1, the radial component of the velocity assumes the form

— . (6.2.17)
2nr
Using equation (2.2.21a), which relates the radial component of the

r

velocity to the stream function, and insisting that y = 0 on ¢ = 0,
gives
= _M -

¥ = o (1 cos(¢)) (6.2.18)
and non-dimensionalising equation (6.2.18) we obtain the condition
which models the upstream influence of the exhaust flow, namely

v=1R %1 - cos(e)) . (6.2.19)
2 in
The boundary condition to be enforced on R = Rm, for 0 s ¢ <= n/2,

which models the upstream flow generated by the axisymmetric Aaberg
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exhaust hood then takes the form
1 2
¥(R,¢) = GAxl(l - cos(¢))(R - 1) + 5 R, S (1 - cos(¢)) . (6.2.20)

The effect of the exhaust’s suction is to modify boundary condition

(6.2.2) which now becomes

A 1 2
¥Y(R,n/2) = Ww + 3 RinS R>1. (6.2.21)

For clarity the geometry of the solution domain and the position of
the boundary conditions used to model the axisymmetric flow of the

Aaberg exhaust hood are shown schematically in Fig.6.2.

X P— —
(¢=n/2) ™~ - Equation (6.2.20)
~
~N
N
AN
\
\
\
¥-v +3R, S \
© 2 in
\
- \
1 2 \
¥ = =R,
2 in 2 2 \
1 ?_E-°°t(¢)§2+1_3_=0\
R R® 8¢ R® a¢® \
1 2
S| ¥ =R, R |
oWV L e e e e — — v :9________1___“_)
0 Y (¢=0)

Fig.6.2 The solution domain and the boundary conditions used to

model the axisymmetric Aaberg exhaust hood.
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6.3 THE FINITE-DIFFERENCE SCHEME

A mesh was placed over the entire solution domain and all
derivatives of the governing equations of fluid motion approximated
by their usual central-difference approximations. The mesh generated
was identical to the one described in chapter 4 and consisted of a
fine mesh of constant step length for 0O s R=<1 and a mesh of
expanding step 1length for R > 1; this was achieved by a
transformation of the radial coordinate such that £ = ln R. The
governing equation of fluid motion for 0 s R s 1, i.e. equation

(6.2.1), was then approximated at the point (i,j) by the

finite-difference equation

1
v = ﬁ[c:a W, * ¥, ) rCLY o C2 wi’m] (6.3.1)

where the coefficients C1, C2, C3 and C4 are given by

c1 = [ 21 4 °°:(¢) ] c2 = [ 21 - °°:(¢) ] (6.3.2a,b)
R8¢ 2R“8¢ R8¢ 2R"8¢
c;;:i2 c4=2[-1—2+ 21 2] . (6.3.2¢,d)
SR oR R 6¢

For R > 1 equation (6.2.1) reduces to the equation

2 2
av
%_3;1’_ COt(¢) Q_q_l+._2_=0 (6.3.3)
aE € a¢ 8¢
which was approximated at the point (i,J) by the finite-difference
equation
1
v - g[f1 R R A TR AN < “’1,;+1] (6.3.4)
where
f1=(_15+_1_] f2=[L2-L] (6.3.5a,b)
SE°  23€ 8§ 288



2

£3 = [ L cot (¢) ] £4 = [_1_ + Cot(9) ] (6.3.5¢,d)
862 234

f5 (6.3.5e)

n
\V]
p—
=
[\M)
+
|-
[\M)
[ —

In order to ensure that the meshes match at R = 1 the step length .13

was chosen such that &£ = 1n(1+3R). The centre~line velocity 1is

given by

_ limit (_ 1 a_"’]:-Lﬂ (6.3.6)
rTe o0 U B o) 12 ag? -

on ¢ = 0.

6.4 THE OPERATING PARAMETERS

The mathematical model developed predicts that the air flow
induced by the axisymmetric Aaberg exhaust hood 1s governed by three
dimensionless parameters, namely S, K and Rin' It is interesting to
note that these three parameters are encompassed in the single
parameter considered by the experimentalists, namely, the ratio of

the momentum flows, I, which may be expressed as

4 K
I = > 2 . (6.4.1)
SR
in

The three operating parameters S, K and Rln are now examined.
Using equation (5.8.5), the non-dimensional expression for K,

see equation (5.6.2), reduces to

a

K.— TY()) (6.4.2)
and hence the turbulent radial jet flow of the Aaberg exhaust hood
is governed by the ratio of the radius of the exhaust flange to the

Jet nozzle width. The parameter K is thus a geometric ratio and is
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directly proportional to the constraint ratio, Cn’ defined by Witze

and Dwyer (1976), namely,
K=3C, . (6.4.3)

Witze and Dwyer (1976) characterize the general structure and
behaviour of a wide range of radial jets according to the ratio CR.
Through their experiments they concluded that for constraint ratios
greater than approximately 40 the nozzle walls constrain the flow
leaving the jet orifice to be parallel, the spreading rate is
approximately constant, and they classify the resulting flow as a
constrained radial jet. A small constraint ratio is representative
of two opposing free axisymmetric Jets, the collision of which
produces an impinged radial Jet for which the spreading rate is
almost three times that of the constrained Jjet. The findings of

Witze and Dwyer would therefore imply that the present model is

valid only for geometries in which K 1s greater than approximately

10.

The second parameter, S, is the ratio of the radius of the
exhaust inlet to the radius of the exhaust flange and hence the
geometry of the particular hood under consideration is characterized

by the parameters K and S.

The third parameter Rin is a Reynolds number which reduces to

u
in
R1n=2K [m] (6.4.4)

when the flow in the radial jet is turbulent. For a hood of fixed
dimensions the parameter Rin is therefore directly proportional to
the ratio between the exhaust inlet speed and the jet exit speed and

inversely proportional to the square root of the momentum ratio I.



- 158 -

6.5 RESULTS AND DISCUSSION

In this section comparisons are made between the air flow
patterns predicted by the present model and the independent
experimental observations of Fletcher and Saunders (1993) and
Pedersen and Nielsen (1991). The characteristic dimensions é, b(0)
and s of the Aaberg exhaust hoods used in these studies are shown in

Table 6.1 together with the corresponding approximate model

parameter values.

Fletcher and Pedersen and
Saunders (1993) Nielsen (1991)

a 0.1515 m 0.1115 m

b(0) 0.0075 m 0.0025 m

s 0.0370 m 0.0515 m

K 10.1 22.3

) 0.244 0.445

Rp 20.2(u1n/u(0)) 44.6(u1n/u(0))

Table 6.1 The characteristic dimensions of the axisymmetric Aaberg

exhaust hoods of Fletcher and Saunders (1993) and Pedersen and

Nielsen (1991) and the resulting model operating parameter values.

Figure 6.3(a) illustrates lines of constant air speed, in
metres per second, in front of the exhaust hood as obtained by
Fletcher and Saunders (1993) for a hood operating under suction
alone and u, = 15.5 ms'I. The air flow pattern deduced from the
model for the corresponding operating conditions, namely K = 0,

S = 0.244 and Rin = 138132, is shown in Fig.6.3(b). From the results

shown in Fig.6.3 it is clear that the predictions of the model are
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Fig.6.3(a) Lines of constant air speed in front of an axisymmetric

flanged exhaust hood operating under suction alohe; a =0.1515 m,

s = 0.037 m, u
in

= 15.5 ms_ ', Fletcher and Saunders (1993).
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Fig.6.3(b) Lines of constant air speed deduced from the model for an

axisymmetric flanged exhaust hood operating under suction alone,

K =0, S =0.244, Rin = 138132.
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in very close agreement with the experimental results of Fletcher
and ‘Saunders (1993) and illustrate that for a hood operating under
suction alone the air speed in front of the exhaust inlet decays
inversely proportional to the square of the distance from the inlet.
In the typical working environments in which LEV systems are
commonly used the level of background air disturbance, due for
example to temperature gradients or the small movement of the
occupants, etc., may be regarded as being of the order of 0.25 ms™ ',
Thus, operating under suction alone and for the given inlet
conditions, the effective capture region of the hood occupies a
relatively small hemispherical region which has a radius of
approximately 5s.

We now proceed to examine what effect the addition of a
turbulent radial jet of fluid has on the air flow pattern created by
the hood whilst maintaining the original conditions of exhaustion.
Figure 6.4(a) 1llustrates lines of constant speed, determined
experimentally by Fletcher and Saunders (1993), in front of a hood
operating at a momentum ratio of I 0.4 and with uin = 15.5 ms-1
and u(0) = 7.7 ms-l. Lines of constant speed deduced from the model
for the corresponding operating conditions, i.e. K = 10.1, S = 0.244
and Rin = 40.7 are shown in Fig.6.4(b). On comparing Fig.6.3 with
Fig.6.4 the dramatic effect on the air speeds developed in front of
the hood which is achieved by the combination of suction and
injection is immediately apparent. As a result of the entrainment of
air into the radial jet the air speed predicted in front of the hood
has increased significantly and the line of constant speed which
corresponds to the level of background air disturbance, 1i.e.

q=20.25 ms'l, now intersects the longitudinal axis of the hood at a
[+
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distance of the order of 10s from the face of the exhaust inlet.
Thus for the given conditions of exhaustion and injection the model
predicts that the effective working range of the hood can be
approximately doubled by increasing the momentum ratio from I = 0 to
I = 0.4. From Fig.6.4 it is evident that the air speeds predicted by
the model underestimate those observed by Fletcher and Saunders
(1993) who predict that the line of constant speed q. = 0.25 ms™!
intersects the longitudinal axis of the hood at a distance of the
order of 18s from the inlet. However, for air speeds of greater than
0.4 ms™ the lines of constant speed predicted by the model are in
favourable agreement with those observed by Fletcher and Saunders
(1993). Furthermore, Fletcher and Saunders (1993) observed that,
under the given operating conditions, the line of éonstant speed for
which q « 0.5 ms~! bifurcates in a region where the flow divides
with one part drawn towards the exhaust inlet and the other towards
the blowing jet. The air speed at which the experimentally observed
bifurcation occurs is in very close agreement with that predicted by
the theory. Figure 6.4(a) shows that the lines of constant air speed
observed by Fletcher and Saunders are not symmetricél about the
centre-line of the hood which suggests that their measurements may
have been subject to background air disturbances. The discrepancy
between the experimental and theoretical results may also be
attributed to the ratlo between the flange radius and jet nozzle
width which, for the hood considered by Fletcher and Saunders, is
approximately 10. This suggests that the radial jet produced by the

hood may not be constrained and not accurately modelled by the

present theory.
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Fig.6.4(a) Lines of constant air speed in front of an axisymmetric

flanged exhaust hood reinforced by a radial jet flow; a 0.1515 m,

7.7 ms”?,

s=0.037m u =155 ms™', b(0) = 0.0075 m, u(0)

Fletcher and Saunders (1993).
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Fig:6.4(b) Lines of constant air speed deduced from the model for an

axisymmetric flanged exhaust hood reinforced by a turbulent radial

Jet; K = 10.1, S = 0.244, Rin = 40.7.
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Further comparisons between the model and the avallable
experimental data are illustrated in Fig.6.5 which depicts the

variation in the resultant air speed, uw/u along the centre-line

in’
of the hood as a function of the distance, y/a, along the
centre-line. The experimental results shown are those recorded by
Pedersen and Nielsen (1991) and made available by Pedersen (1993),
for the hood described in the second column of Table 6.1 and
operating with constant conditions of exhaustion given by
u, =20 ms"'. Four values of the momentum ratio are conslidered,

in
namely I =0.0, 0.5, 0.9 and 1.95, which were achieved during

1 30.8 ms ',

experiment with jet nozzle veloclities of u(0) = 0.0 mg”
41.4 ms~! and 60.9 ms™!, respectively. These operating conditlons
result in Rjn = 131176, 29.0, 21.6 and 14.7, respectively. Flgure
6.5 shows that agreement between the air speeds predicted by the
model and those observed experimentally by Pedersen and Nielsen
(1991) are good for each momentum ratio considered.

The air speeds observed by Pedersen and Nielsen (1991) were
more accurately reproduced by the model than were those observed by
Fletcher and Saunders (1993). The constraint ratio for the Pedersen
and Nielsen hood is approximately 90 and for their chosen operating
conditions the Reynolds number of the jet, Re’ is greater than that
based on Fletcher and Saunders experiments. Consequently, of the two
experimental studies we would expect the agreement between the
theory and the results of Pedersen and Nielsen to be the closer.

Fletcher and Saunders (1991,1993) and Pedersen and Nielsen
(1991) do not provide any information regarding the streamlines of

the axisymmetric flow and for this reason streamline comparisons

between the results of experiment and the model cannot be made.
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However, the results of the present axisymmetric model are in
qualitative agreement with the two-dimensional models presented in
chapters 3 and 4 and predict that the width of the efficient flow
reglon decreases and the air speeds in this region increase as the

momentum ratio I is increased.

6.6 CONCLUSIONS

A three-dimensional axisymmetric mathematical model for the
fluid mechanics of an Aaberg exhaust hood has been developed and the
three parameters which characterize the flow, namely K, S and Rin’
have been identified. The model developed shows good agreement, both
quantitatively and qualitatively, with the recent experimental
observations of both Fletcher and Saunders (1993) and Pedersen and
Nielsen (1991). The model developed is very versatile and can be
easily adapted to consider a varlety of other exhaust geometries or
operating situations, e.g. the region of the workplace from which we
expect air to be drawn into the exhaust inlet and successfully

sampled may be determined as a function of the momentum ratio I or

the parameter S.



CHAPTER SEVEN

APPLICATION OF THE AABERG PRINCIPLE TO THE SLOT EXHAUST HOOD
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7.1 INTRODUCTION

Originally the Aaberg exhaust hood was three-dimensional and
axisymmetric in design (circular exhaust opening) but a
two-dimensional bench version with a slot exhaust opening, termed
the Aaberg slot exhaust (ASE), has been experimentally studied by
Pedersen (1991a). The principles of operation for the two- and
three-dimensional Aaberg exhaust hoods are the same. The ASE studied
by Pedersen (1991a), which is illustrated schematically in Fig.7.1,
consists of a horizontal bench to which a vertical flange is
attached. The flange houses a rectangular exhaust slot and jet
nozzle. The distance between the bench surface and the centre of the
exhaust slot, hs, may be varied as may the width of the slot, 2s.
The width of the Jjet nozzle, b(0), through which the jet of air
issues vertically upwards along the exhaust flange may be varied,
although the distance from the Jjet nozzle to the centre of the
exhaust inlet, a, remains fixed. At the present time the ASE hood is
still in an experimental form but the results of some preliminary
tests carried out on the hood by Pedersen have been extremely
encouraging.

The aim of this chapter is to develop a mathematical model of
the air flow pattern created by a slot exhaust hood reinforced by a
two-dimensional jet flow. In this chapter the two-dimensional jet
flow of the ASE is modelled as (i) a turbulent wall jet and (ii) a
turbulent free jet of fluid and the two parameters which
characterize the subsequent induced potential flow are identified.
Streamlines and lines of constant speed are deduced from the model

and predictions are given for the area in front of the slot exhaust
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hood from which a neutrally-buoyant contaminant can be successfully
exhausted. Comparisons made between the available experimental data
and the turbulent wall jet model show excellent quantitative
agreement. The chapter concludes by suggesting a simple modification
to the hood’s design, deduced from the theory, which will enhance

its effectiveness in the control of airborne contaminants.

7.2 THE MATHEMATICAL MODEL

During his experimental studies, Pedersen (1991a) observed that
the flow field generated by the ASE was approximately
two-dimensional except at the extremities of the bench where the
flow was fully three-dimensional. Therefore, provided the bench is
sufficiently wide, the flow pattern generated by the ASE may be
assumed to be two-dimensional and hence we can assume that the
solution is independent of z. The geometry and coordinate system of
the two-dimensional mathematical model are shown in Fig.7.2, where
for convenience polar coordinates (r,6) have been adopted. The
solution procedure for determining the air flow pattern follows that
presented in section 4.2 of chapter 4. The equations of motion and
boundary conditions are now examined.

For convenience all lengths in the model are
non-dimensionalised with respect to p, where p =a + hs, and the
stream function'with respect to the volume flux exhausted per unit

length of the slot, m. We therefore introduce the dimensionless

quantities:



(m/p) . (7.2.1)
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Initially, as the fluld leaves the rectangular jet nozzle the

Jet flow of the ASE 1is most appropriately modelled as a
two-dimensional turbulent wall jet. However, as the fluid reaches
the end of the exhaust flange the wall Jet undergoes a transitional
stage and develops into a two-dimensional turbulent free jet. By
modelling the injection flow both as a two-dimensional turbulent
wall and a free jJet which issue from the end of the exhaust flange,
i.e. from X = 1, then comparisons of the resulting induced flows can
be made and the robustness of the model examined. The solutions for

the two types of jet are now outlined.

7.2.1 Th; Two-dimensional Turbulent Wall Jet

The turbulent wall Jet is a flow commonly encountered in
engineering where it has been applied to many practical problenms,
e.g. those of heating, cooling and ventilation. There have been a
number of experimental studies on the plane turbulent wall jet, the
majority of which were undertaken during the 1960’s using hot-wire
anemometry and have been critically reviewed by Launder and Rodi
(1981). One of the most recent publications is Wygnanski et al.
(1992), in which the applicability of scaling laws to the turbulent
wall jet is examined.

The two-dimensional turbulent wall jet is assumed to issue from
a narrow rectangular nozzle of width b(0) with an initial speed
equal to u(0) and the maximum fluid speed at any station x* is

denoted u ; the notation and coordinate system for the wall jet is
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Fig.7.2 The geometry and coordinate system of the ASE model.
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shown in Fig.7.2. The velocity distribution of the entire wall jet
has been found to be similar for values of x* greater than about
20 b(0) by a number of experimentalists, including Sigalla (1958b),
Schwarz and Cosart (1961) and Myers et al. (1963) and in this
chapter Verhoff’s (1963) empirical equation describing the

similarity solution, namely

= 1.48 nln erfc(0.68n) ; =n = Y (7.2.2)

0.068X*

crie

where X* = x*/p, is used to model the two-dimensional wall Jet flow.
Verhoff’s equation shows excellent agreement with the experimental
observations of Myers over the range of values of x*/b(0) between 24
and 180. Other empirical expressions for the velocity profile have
been considered, see Schwarz and Cosart (1961); however, these
distributions do not compare as favourably with the experimental
data as the Verhoff (1963) distribution. From an average of the
available observations of the velocity decay in a two-dimensional
turbulent wall jet for 1.9 x 104 s Re s 3.7 x 104, Rajaratnam (1976)

describes the velocity decay as being well-represented by

~

u __ 35 (7.2.3)

u(0) v x*/b(0)

for x*/b(0) at least up to 100. From equations (7.2.2) and (7.2.3)

we obtain

U (x-1)"YM vV erge| 10X (7.2.4)
mn/p W X-1

where the dimensionless parameter Gw’ referred to hereafter as the

wall jet operating parameter, is defined to be
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1/72
G, = 7.61 “;0) [p b(O)] i (7.2.5)

The stream function for the turbulent wall jet may be deduced from
equation (7.2.4) and hence by taking the 1limit as Y — « the
boundary condition for ¥ at the edge of the turbulent wall jet
determined. The required boundary condition which will govern the
flow induced by the turbulent wall jet is given by

¥ — GH(X-l)_w“ J Ymerfc[ 10 Y] ay X>1. (7.2.6)
X-1

0

7.2.2 The Two-dimensional Turbulent Free Jet

The equations of motion modelling the steady, incompressible
and turbulent flow in a two-dimenslonal free jet are the Prandtl
shear-layer equations (3.2.30). Following Schlichting (1968) we find

2 and the stream function, y, of the

that b ~ x*, &~ (x*)7
two-dimensional turbulent free jet is given by equation (3.2.39). In
relation to the coordinate system (X,Y) the non-dimensional form of
equation (3.2.39) may be written

¥ = G_(x-1)""% tanh(n) X > 1 (7.2.7)

where 1 = o Y/(X-1) and the dimenslionless parameter GF, referred to
[+

hereafter as the free jet operating parameter, is defined to be

F 2m | ©
(]

172
G =3 [3kp] (7.2.8)
where k = b(0) u(0)%. If we let Y > » in equation (7.2.7) then we
obtain the condition for ¥ at the edge of the free jet shear-layer,
i.e.

¥ — GF(X—I)UZ. (7.2.9)
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The flow induced by the two-dimensional jet is governed by the
potential equation (4.3.2) and in this model the boundary condition
at large distances from the ASE 1s enforced on R = Rm, where R°° » 1,
for 0 s 0 s n/2. This boundary condition 1is taken to be the
asymptotic solution of the Laplace equation (4.3.2) subject to the
appropriate boundary condition for the Jjet-induced flow on 6 = 0,
i.e. equation (7.2.6) or (7.2.9), and subject to ¥ =0 on 6 = n/2
plus the radial flow contribution resulting from the exhaust flow.
The surface of the bench represents a streamline of the flow and
hence, for convenience, we have chosen

¥(R,n/2) =0 OsRs Roo . (7.2.10)
To obtain an analytical asymptotic solution of the Laplace equation
it is necessary to approximate equation (7.2.6) in the form

¥ A (x-1)2 (7.2.11)
where the parameter A and the exponent A depend upon the wall jet
operating parameter Gw' Note that equation (7.2.9) is already in
this form with A = GF and A = 1/2. Following the method outlined in

section 4.3.1 of chapter 4 the following upstream boundary condition

is readily obtained

" B - 0] - 2 onfoen @
¥(R,0) = A sin[A(= - 8)] - ——————sin[(A-1)(= - 0)
sinAX 2 sin(a-1)X 2 ]
2 2
A(A-1)R2 T > 6
+ _—_—1[_ Sin[(A‘Z)('z' - 9)] T e + [ 1 - —1-[— ] (7-2.12)
2!sin(A-2)-2-

on0s98 s n2, R= Rw.
The remaining boundary conditions are found by assuming that

across the exhaust inlet the fluid velocity 1is uniformly
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distributed. Modelling the suction inlet as a finite-sized slot of

width 2S and positioned at a helight H. above the bench surface we

obtain
1 -
¥(X,0) = 55 [X Hs + S] Hs SsX= Hs+ S (7.2.13)
and hence
¥(X,0) =1 Hs+ S<Xs=s1 (7.2.14)
¥(X,0) =0 0 s X« Hs- S. (7.2.15)

The effect of the exhaust’s suction is to modify the boundary

condition at the edge of the jet shear-layer which now becomes

[« ]
¥(X,0) — 1 + Gw(X—l)-g/M J v erfe]| 19Y | gy X > 1
X-1

0

(7.2.16a)
and
172

¥(X,0) > 1 + G_(X-1) X>1 (7.2.16b)

for the wall and free jet cases, respectively. Due to the complexity
of the problem an analytical solution 1is not possible and

finite-difference techniques are employed to solve the problem

numerically.

7.3 THE OPERATING PARAMETERS

From a knowledge of the physical quantities u(0), b(0), p and m
obtained from the operating conditions at which Pedersen (1991a) ran
an ASE, the operating parameters Gw and GF which correspond to these
conditions can be evaluated. Although the mathematical model

developed may be used to examine many different aspects of the air



- 176 -

flow pattern induced by the ASE, in this study two main modes of ASE
operation are considered.

The first mode of operation we consider, referred to as the
HI-experiment by Pedersen, 1s one in which the suction inlet, of
width 2s = 30 x 10 °m, is flush with the bench surface and the ratio
of the momentum flows, I, 1s varied. It should be noted that the
hood’s suction inlet is not always flush with the bench surface and
in other experiments it may be raised above this datum level. The
values of the physical quantities used by Pedersen in the
HI-experiment were b(0) =2 x 10™m, p=0.23m and m = 0,111 m’s™!
(i.e. per metre length of the slot) and these lead to the following
approximate relationships:

G" « 1,47 u(0) and Gr « 0.0604 u(0) . (7.3.1)

The second mode of operation we consider, referred to as the
HHY-experiment by Pedersen, 1s one in which the momentum ratio is
fixed at I = 0.7 and the height of the suction inlet, Hs, above the
bench surface is allowed to vary. The exhaust inlet size is again
2s = 30 x 10 °m. The values of the physical quantities used by

1

Pedersen in the HHY-experiment were u(0) = 12 ms™", b(0) = 2 x 10”3y

3

and m = 0.111 ms '

(i.e. per metre length of the slot). These

quantities lead to the following approximate relationships:

2 172

G, =~ 3.8 p'’?  and G~ 1.51 p (7.3.2)
The values of Hs which we shall consider in the model are
Hs = 0.349, 0.500 and 0.594; these values correspond to the values

of hs considered by Pedersen, namely hs =0.115m, 0.215 m and

0.315 m, respectively.
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7.4 RESULTS AND DISCUSSION

The parameter A and the exponent A, defined in equation
(7.2.11), may now be determined as functions of G, and the boundary
condition along R = R deduced for the wall jet case. Approximating
equation (7.2.6), as in the form of equation (7.2.11), we obtain the

following approximate relationship
¥ = 0.0342 G (x-1)5%, (7.4.1)

The exponent A was found to be independent of the operating
parameter Gw for 0 = G" s 33.4, where the upper limit of Gw = 33.4
is the largest value of G" arising from the experimental operating
conditions considered by Pedersen. Comparisons are now made between
Pedersen’s experimental data and the results obtained from the
theory in order to assess the ability of the mathematical model to

predict the actual operating conditions of the ASE.

7.4.1 The HI-Experiments

In the HI-experiments Pedersen examines what effect the
injection of fluid has on the air flow pattern by measuring the air
speed induced by an ASE operating at different momentum ratios. The
changes in the momentum ratios were achleved by Pedersen by varying
the jet nozzle speed, u(0), whilst keeping all other quantities
constant. Pedersen’s air speed measurements were recorded along the
length of the bench from y =0m to y =1.2m and at a vertical
digtance of 0.04 m above its surface, a vertical distance which
corresponds to 0.174 dimensionless units. Pedersen (1991b) stated

that these measurements of air speed were taken outside the
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boundary-layer which forms along the bench surface and the
boundary-layer observed by Pedersen during smoke experiments
attained a maximum thickness of approximately 5 x 10"3n. In the
region where Pedersen’s air speed measurements were recorded we
expect the induced flow to be dominated by the flow into a wall Jet
and hence we expect the wall jet model to most accurately predict
the true operating conditions of the ASE.

Figures 7.3(a)-(d) 1illustrate the variation of the
dimensionless resultant air speed, Q, as a function of Y along
X = 0.174 for the momentum ratios of 1 =0.0, 0.5, 0.9 and 2.5,
respectively. Each figure shows the air speeds predicted by the free
and wall jet models together with Pedersen’s experimental data. On
comparing the graphs it is clear that increasing the momentum ratio,
I, results in increasing the resultant air speeds along the line
considered and this 1is most clearly 1llustrated by comparing
Fig.7.3(a) with Fig.7.3(d). Figure 7.3 shows that the qualitative
agreement between the predictions of the wall and free jet models
and the experimental data is good. Quantitatively the agreement
between the predictions of the wall jet model and the experimental
data is very good for each momentum ratio, I, over the entire range
of Y considered. However, the resultant air speeds along X = 0.174
predicted by the free jet model continually overestimate those
observed experimentally. The significant quantitative differences
between the wall jet and the free Jet solutions can be explained in
terms of the momentum fluxes of the two different jets. The momentum
flux of the wall jet is not conserved but decreases with increasing
distance from the Jjet orifice as the jet loses energy due to the

contact with the wall. The presence of the wall is very significant
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and for a rough wall the momentum flux of the jet may decrease by
50% in a longitudinal distance of 60b(0) from the jet orifice, see
Rajaratnam (1965). However, as an assumption of the boundary-layer
theory the momentum flux of the free jet is assumed to be constant
and independent of X. Therefore, for a given momentum flux the free
Jet will entrain more fluid than the wall jet and expand more
rapidly. In fact, from the Verhoff velocity distribution (7.2.2) the
width of the wall jet is given by b = (14.7)-1x*, whereas the width
of the two-dimensional free Jet, as determined by Reichardt, is
b = (7.67) 'x*. This implies that the free jet expands almost twice
as rapidly as the wall Jjet. The greater flux of entrained fluid
realized by the free Jet, as compared with the wall jet, further
concentrates the suction of the ASE and thus the resultant air
speeds predicted by the free jet model are greater than those
predicted by the wall jet model.

For values of the operating parameter GF larger than those
considered in this chapter the profiles of resultant air speed
predicted by the model exhibit local minima and maxima air speeds.
The presence of these turning points may be explained by considering
how the air in front of the exhaust inlet is influenced by the
effects of the exhaustion and injection. For large values of GF the
free jet solution predicts that for Y < p/2 the movement of air in
front of the inlet is dominated by the exhaustion as the air speed
falls rapidly with increasing distance from the inlet. At a distance
of the order of p/2 from the inlet the free jet's entrainment of air
influences the flow, raising its resultant speed until a maximum
speed is reached at a distance of the order of 3p/2 from the exhaust

inlet. Thus, for the free Jet the influence of the entrained air
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flow is abruptly ‘felt’ after some minimum distance from the inlet
is exceeded. Hence, the model predicts that when a hood employs the
Aaberg principle the suction plays only a very small role in the
movement of air in the workplace, as compared to the injection, and
it is only needed to draw the contaminated air that final distance
into the exhaust inlet over which the injection flow has no
influence. Turning points are also present in the wall jet solutions
for large values of Gw' However, the energy loss of the jet due to
its contact with the exhaust flange results in the wall jet-induced
flow more gradually affecting the overall air flow and the
magnitudes of the alr speed gradients are less than those predicted
by the corresponding free jJet solutions. The energy loss of the wall
Jet also accounts for the decreasing quantitative agreement between
the free and wall jet solutlions as the ratio of the momentum flows,
I, increases.

The variation in the dimensionless resultant air speed,
Q = q/(m/p), as a function of X predicted by the wall and free jet
models is shown in Fig.7.4 together with Pedersen’s experimentally
observed air speeds for an ASE operating at I = 0.9 and I = 1.5. The
profiles of resultant air speed shown in Fig.7.4 are those predicted
and observed vertically from Y = 5.22, the dimensionless distance
corresponding to y = 1.2 m. Figure 7.4 shows that good agreement is
achieved between the predictions of the wall jet model and the air
speeds observed experimentélly. Again it can be seen that the free
jet solution overestimates the observed values and the wall Jet
solution. One notable feature of the ASE air flow which is both
predicted by the wall jet model and which is observed experimentally

is that the resultant air speed measured vertically from Y = 5.22 ig
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Fig.7.4 The variation in the dimensionless resultant air speed, Q,

as a function of X from Y =5.22, (a) I = 0.9 and (b) I = 1.5.
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approximately constant and of the order of Q = 0.3 and Q = 0.35 for
a hood operating at I = 0.9 and I = 1.5, respectively.

The slight deviation of the experimental observations of
resultant air speed from the predictions of the wall jet model, most
evident in Fig.7.3(d), may be as a result of inaccuracies
encountered during Pedersen’s experimental measurements. Pedersen’s
air speed measurements were recorded under laboratory conditions
using a multi-channel DANTEC 1low velocity flow analyser and
integrated over 300 s and background air disturbances were
reportedly of the order of 0.02 ms-l. However, the physical presence
of the flow measuring apparatus would be enough to deflect the
hood’s air flow pattern and could alone account for the
discrepancies. Furthermore, the ASE flow field may have been
affected by other external influences during the experiments, e.g.
temperature gradients.

We have seen from Figs.7.3 and 7.4 that the air flow predicted
by the wall jet model gives a good representation of the observed
flow in the regions considered. In order to examine further the
effect of the injection on the overall air flow pattern created by
the ASE we now examine streamlines deduced from the wall jet model.
Sets of streamlines modelling the air flow pattern created by an ASE
reinforced by a two-dimensional wall Jet flow are shown in
Figs.7.5(a)-(d) for the operating parameters GH = 0.0, 14.9, 20.0
and 33.4, respectively. The four values of G“ considered correspond
to I =0.0, 0.5 0.9 and 2.5, respectively. From the streamline
plots the dramatic effect on the overall air flow pattern achieved
by the introduction of the wall Jet is clear. Figure 7.5 shows that

as the value of the dimensionless operating parameter Gw is



- 185 -

(a) 3
2_..
@ AN
>< - . Q)
1 3
.1//
0 . , . : ,
0 1 2 3 4
Y
(b) 3

2—/.

™
N
=< S
©
2

7

N = Saaaii

Fig.7.5 Sets of streamlines modelling the ASE flow pattern predicted
by the wall jet model, (a) Gu = 0.0 and (b) Gw = 14.9. The shaded

area represents the predicted effective capture region.
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{c)

(d)

Fig.7.5 Sets of streamlines modelling the ASE flow pattern predicted
by the wall jet model, (c) Gw = 20.0 and (d) Gw = 33.4. The shaded

area represents the predicted effective capture region.
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increased, the dividing streamline, ¥ = 1, which divides the flow
travelling towards the exhaust inlet from that travelling towards
the injection flow, 1s forced towards the bench surface. The
displacement of the dividing streamline resulting from the
introduction of the wall Jet flow thus implies enhanced air speeds
towards the inlet over the zero injection case. The selective nature
of the reinforced exhaust, observed experimentally by Pedersen
(1991a), 1is also 1llustrated in Fig.7.5. With Gw = 0.0, see
Fig.7.5(a), air 1is drawn towards the inlet from all directions and
under these conditions the ASE is non-selective and performs in the
same way as a traditional flanged slot exhaust. However, as the
value of G  1s increased, see Figs.7.5(b)-(d), air is now selected
from a narrower and more well-defined region of the workplace. A
capture speed of 0.25 ms corresponds to a non-dimensional speed of
Qc = 0.518 for the operating conditions used by Pedersen (1991a) in
his HI-experiments. Thus, we can define the effective capture
region, 1.e. the region from which the contaminated air will be
drawn into the exhaust -inlet and successfully removed from the
workplace, to be the area bounded by the line of constant speed,
Q = 0.518, and the dividing streamline ¥ = 1. The effective capture
region is highlighted in Fig.7.5 by the use of shading and we can
see how the shape of this region changes as the parameter Gw
increases. On increasing the value of Gw we see that the maximum
width of the effective capture region decreases as its length
increases. Thus, increasing the value of G", and hence the momentum
ratio, implies that the ASE can create controlled air movements over
greater distances than possible when using traditional methods or in

other words the injectlon <creates 1long range exhaustion.
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Pedersen (1991b) stated that the 1level of background air
disturbances in the laboratory was of the order of 0.02 ms~'. This
would, however, lead to effective capture regions much larger than
those predicted by the wall Jet model and larger than one could

possibly expect to achieve under practical circumstances.

7.4.2 The HHY-Experiments

Comparisons have also been made between Pedersen’s observations
taken during the HHY-experiments and the predictions of the
mathematical model. Although these comparisons are not illustrated
in this chapter the conclusions drawn from them are the same as
those for the HI-experiments and again very good agreement is
obtained between the predictions of the wall jet model and all the

experimental observatlons.

7.5 CONCLUSIONS

A simple mathematical model for the fluid mechanics of an
Aaberg slot exhaust hood has been developed and the parameters G
F
and Gw’ which characterize the subsequent free and wall jet-induced
flows, identified. The wall Jjet model developed in this chapter
shows good agreement, both quantitatively and qualitatively, with
the experimental observations of Pedersen (1991a). The agreement
gives us confidence in the theory and illustrates the mathematical
‘modelling as a cost-effective means of confidently predicting the
air flow field of the ASE. The simple mathematical model allows

predictions to be made as to from what region of the workplace a
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neutrally-buoyant contaminant can be successfully removed as a
function 6f the governing parameters. The model also illustrates the
directional flow pattern achieved when a traditional slot exhaust is
.reinforced by a jet flow and predicts that in all aspects a much
improved air flow pattern is developed when using the Aaberg REEXS.
The resultant air speeds predicted by the free jet model imply
that the air flow pattern of the ASE could be significantly enhanced
through a simple modification to the hood’s design. Namely, if the
part of the exhaust flange along which the wall jet of the original
ASE develops were moved °‘backwards’ then the emerging jet will issue
as a free Jet, see Fig.7.6. In this way the fluid entraining
properties of the free Jet can be utilized whilst still keeping the

back wall to contain the technological process.

w
—_— ] T

inlet

bench

R

Z

Fig.7.6 Cross-section through the Aaberg slot exhaust - illustrating

the back wall design modification.

The implementation of the suggested design modification is only
suitable when the ratio of the momentum flows is sufficiently large

so that the jet is near vertical and relatively unaffected by the
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exhaust flow. However, if the hood is to operate as a REEXS at low
values of the momentum ratio then the back wall should be
maintained. Pedersen and others have observed that the system is
then able to operate as a REEXS for values of I lower than the
corresponding free jet case due to the entrainment of fluid into the
wall jet from the wall-side of the jet. This flow assists the jet to

remain attached to the wall.



CHAPTER EIGHT
THE USE OF FLUENT

- A FULL TURBULENCE MODEL -
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8.1 INTRODUCTION

The mathematical models presented in the previous chapters have
been developed under the assumption that the flow induced by an
Aaberg exhaust hood is inviscid and potential and that turbulent
effects have been limited to the flow in the jet. As mentioned in
earlier chapters, the typical experimental operating conditions of
an Aaberg exhaust hood lead to Réynolds numbers which, based on the
jet nozzle width, b(0), and initial jet velocity, u(0), imply that
the fluid flow in the Jjet is turbulent. Similarly, the Reynolds
numbers associated with the fluid flow into the exhaust inlet, for
both (i) the axisymmetric Aaberg exhaust hood and (ii) the Aaberg
slot exhaust hood, based on the radius or slot width, s , of the

exhaust inlet and the face velocity, u under typical operating

in’
conditions, are (1) 0(10°%) and (i1) 0(104). Thus, both the flow in
the jet and in the region surrounding the exhaust inlet are very
likely to be turbulent. However, in the region of practical
interest, i.e. the region of the flow which leads into the exhaust
inlet, the air flow created by the Aaberg exhaust hood is a
convergent flow and therefore in this region we expect there to be a
very low level of turbulence.

In this chapter the full, turbulent Navier-Stokes equations are
solved using the control volume method and the k-& model as
developed by Launder and Spalding (1972) is employed in order to
model the turbulent properties of the fluid flow. The quantities k
and € denote the turbulent kinetic energy and the turbulent energy

dissipation of the turbulent motion, respectively. The widely used

and commercially available CFD package FLUENT, which solves the full



- 193 -

turbulent equations wusing the aforementioned control volume
technique, has been used to generate the results which are presented
in this chapter. The air flows predicted by the full turbulent model
for both the axisymmetric Aaberg exhaust hood and the
two-dimensional Aaberg slot exhaust (ASE) are then compared with the
air flows predicted by the inviscid flow models developed in
chapters 6 and 7, respectively. The relative merits of the two
different techniques for detefmining the flow fleld are also
discussed.

The standard, full - turbulent equations of motion are now
introduced and a description of the control volume technique and the

solution procedure SIMPLEC are given.

8.2 THE FULL TURBULENCE MODEL

The equations of motion which govern the flow of a steady,
incompressible, turbulent viscous fluid are the time-averaged
Navier-Stokes equations, namely the continuity equation (2.2.1a) and

the momentum equation (2.2.1b).

8.2.1 The k-¢ Model

In order to overcome the limitations of the Prandtl mixing
length hypothesis, more sophisticated turbulence models, see for
example Launder and Spalding (1972,1974), were developed which
account for the transport of turbulent quantities by solving
differential transport equations. The k-e model is known as a two

equation model, having transport equations for the kinetic energy,



- 194 -

k, and the dissipation rate, €. A standard k-¢ model, as developed
by Launder and Spalding (1974), 1s now employed and the governing
equations are as follows:

the turbulent kinetic energy equation

1 %4
(u.V)k = v.(aﬁ Vk) + & - ¢ (8.2.1a)
k

and the turbulent energy dissipation equation

v 2
_ e € €
(U.V)S = V. (o'_—e VC) + Cl E d - Cz E . (8.2.1b)

The k-¢ model uses equations (8.2.1) to calculate the distributions
of k and £, and the turbulent viscosity may be determined from the
Prandt1-Kolmogorov formula:
K2
c "

v =C
t u

(8.2.2)
In expressions (8.2.1) the quantity ¢ is the generation of turbulent
energy which is caused by turbulent stresses and the values of the

coefficients Cl, c_, C“, o and e appearing in equations (8.2.1)

2 k

and (8.2.2) are based on an extensive examination of free flows, see
for example Launder and Spalding (1974), and in this thesis are
taken to be C1= 1.44, C2= 1.92, CM= 0.09, o= 1.0 and o = 1.3. It is
generally accepted that these values are applicable to any system in
which the exponents of k and € in equation (8.2.2) are 2 and 1,

respectively.

8.2.2 The Boundary Conditions

All of the governing equations, namely equations (2.2.1) and
(8.2.1), are elliptic in nature and therefore, in addition to the
upstream boundary conditions, we must specify boundary conditions on

the surface of the Aaberg exhaust hood and on the axis of symmetry.
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The no-slip conditions of u =v =0 are applied at boundaries
representing stationary solid walls. Ideally the turbulent kinetic
energy, k, 1is set to 2zero on the wall whilst the rate of
dissipation, €, is finite. However, there are two main difficulties
encountered when 1lmposing these boundary conditions, namely, (i) a
fine grid is required in order to resolve the steep gradients that
occur in the region close to the wall and this results in a very
expensive computation, and (11) the constants appearing in the k-¢
equations are not applicable in the wall region.

The ‘wall function’ approach 1is often employed to overcome
these difficulties and involves placing the first grid point P at a
distance y from the wall. The ‘boundary condition’ for € is then
specified at the first grid point away from the boundary, thus
avoiding the need to resolve the steep gradients across the
boundary-layer. In the region of the turbulent flow where the fluid

velocity is assumed to be governed by the wall function, namely

IC-‘

= % 1n(Ey*) 35 < y* <350, (8.2.3)

+

- e

see White (1991), it is convenient to assume that the generation, &

and dissipation, €, of turbulent energy are in equilibrium. Hence
equation (8.2.1a), which governs the variation of k, has a constant

solution and therefore the boundary condition

oK _
3 -0 (8.2.4)

should be enforced at the surface of the body. In equation (8.2.3),
the von Karman constant k = 0.42 for a smooth wall, the roughness
barameter E = 9.8, y+ = yu*/v is the dimensionless friction length,
where y is the distance from the wall, and the shear velocity u' is

172

defined as u' = (t"/p) in which T, is the shear stress on the
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wall. The boundary condition for the dissipation rate at the point P

is calculated from the following expression

C“3/4k3/2
£ = [T)P . (8.2.5)

On any boundary where the fluid leaves the system, and on the
axis of symmetry, the condition of a zero normal gradient, 1i.e.
8/8n = 0, for all the dependent variables 1is specified. Also
enforced on the axis of symmetry is the condition of a zero normal
component of the velocity, i.e. v = 0. For the flow upstream of the
Aaberg exhaust hood, the values of k and € are not experimentally
known although they may be predicted from the formula used for
internal flows, i.e. k = (ImUm)z and € = 0.09 kLs/(O.3Rh) where Im
and Um are the turbulent intensity and the air speed upstream of the
exhaust hood, respectively, and Rh is the hydraulic radius, see
Nallasamy (1987).

In order to model the Jet flow of the Aaberg exhaust hood,
constant velocity and turbulence Intensity values have been
specified at the opening of the Jjet, from which boundary conditions
on k and € may be determined. The turbulence intensity of a
constrained radial jet has been investigated by Witze and Dwyer
(1976) who found that the level of the turbulence varies
considerably across the width of the jet, from approximately 30%
along the Jjet centre-line to a maximum of approximately 60% when
y/b“2 « 1.5. For wall jet flows, the turbulence intensity has been
taken to be 20%, a value which represents an average of the maximum
turbulence intensity recorded experimentally in the turbulent wall
jet, see Launder and Rodi (1981). The respective turbulence

intensities of 60% and 20% for the radial and the wall jet flows may
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be considered as reasonable approximations for the present geometry
and operating conditlons.

Operating under suction alone the flow patterns generated by
both the two-dimensional slot exhaust and the three-dimensional
axisymmetric exhaust converge radially towards the exhaust inlet.
Consequently, specifying the normal derivative of the velocity to be
zero across the upstream rectangular boundary is not a reasonable
representation of the fluld motion in this region. Therefore, for
I = 0 the boundary conditions upstream were specified in terms of
the pressure which was deduced from the Bernoulli equation under the

assumption that the suction acts as a simple sink.

8.3 THE NUMERICAL METHOD

A brief summary of the methods used to solve the full k-&
equations, namely the control volume method and the Semi-Implicit
Method for Pressure Linked Equations Consistent (SIMPLEC) are now
given. SIMPLEC is not a control volume scheme in its own right but
rather an improvement made, by Van Doormaal and Raithby (1984), to
the existing SIMPLE scheme which was developed by Patankar and
Spalding (1972) and which has been extensively discussed by Patankar
(1980). All the results presented are of a two-dimensional or
axisymmetric nature and consequently the numerical method is
described in terms of only two dimensions.

For steady flow the equatlons of conservation of mass,
momentum, and transport of k and € can all be written in the general

form
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V.(pup) = V.(IF V¢) + S (8.3.1)

¢
where ¢ now represents the general variable under consideration, I
is the transport coefficient and S¢ is the source term for any
transport effects not included in the transport coefficient. For a

two-dimensional flow, equation (8.3.1) may be written in cartesian

form as

puU g% ML g% = gi r gg ] * g;[ r %% + S, . (8.3.2)

The basic idea of the control volume method is to divide the
solution domain into a number of discrete, non-overlapping control
volumes such that there is one control volume surrounding each grid
point. The simplest two-dimensional control volume is rectangular
and is shown schematically in Fig.8.1, where the grid points
labelled N, S, E and W represent the grid locations to the north,
south, east and west, respectively, of the grid point P under
consideration. The differential equations are then integrated over
each control volume and by expressing the variation of ¢ between the
grid points as plecewise linear profilés the required integrals may
be evaluated. The discretization of the domain and the dependent
variables therefore makes 1t possible to replace the governing
differential equations (8.3.2) by a system of algebraic equations of
the form

aP¢P = aE¢E + aw¢w + as¢s + aN¢N + S (8.3.3)

¢
where a, t =P E, W, N and s, represents the coefficient of ¢ at
the grid point 1. Equation (8.3.3) represents the relationship
between the value of the variable ¢ at the node P to the values at

the neighbouring nodes. In this section we shall concentrate our

attention on the treatment of the momentum equation and consequently
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it is convenient to consider equation (8.3.3) as having the form

ap¢p= z anb¢nb +b (8.3.4)

where the subscript nb denotes a neighbour and the summation is
taken over all neighbours and b is the source term of the momentum
equation, i.e. it is the discretized form of the pressure gradient

term.
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Fig.8.1 A two-dimensional rectangular control volume.

The variables k, € and the pressure are calculated at the main
grid points P, N, S, E and W, while the velocity components are
calculated for the points which lie on the faces of the cell
boundaries, see Fig.8.1, i.e. the staggered grid system has been
employed. Using the main grid nodes such a discretization leads to a
momentum equation which contains the pressure differences between
two alternate grid points rather than between two adjacent ones. Not
only does this affect the accuracy of the solution but it also

results in a numerical method which would allow wunrealistic
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solutions, for example a zig-zag pressure field. Similar problems
also arise in the treatment of the continuity equation when a
staggered grid 1is not employed. Using a staggered grid the
discretized x component of the momentum equation can be written as

au =Za u + (p,-pIA (8.3.5a)
where the pressure gradient dP/dx gives rise to the last term of
equation (8.3.5a) and is the pressure acting on the u control
volume, and Ae ( = Ay in two dimensions) denotes the area on which
the pressure difference acts. Similarly, for the y component of the
momentum equation we obtain

av = pX a v, o+ (p.-p )An . (8.3.5b)
In most circumstances it is not possible to specify the correct
pressure field and the velocity must be determined based on a
guessed pressure field p*. The resulting velocity field, denoted by
(u*, v*), will then not in general satisfy the continuity equation.
The guessed pressure p* 1s improved by introducing a pressure
correction term, p’, such that

p=p*+p (8.3.6)

with the intention that the resulting approximate velocity
components u* and v* become closer to satisfying the continuity
equation. The velocity components will respond to this change in
pressure and consequently the velocity corrections u’ and v’ are
introduced such that u=u* +u’ and v =v* + v/, The velocity
components u* and v* are then to be corrected in response to the

pressure corrections via the velocity correction equations:

u =u*t+d (pp-p) v =vi+d(p-pl) . (8.3.7)

e

The only difference between the methods SIMPLE and SIMPLEC is in the

choice of the coefficients d_ and dn in equation (8.3.7) and in
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SIMPLEC d_ = Ae/(ae -z anb) and d = An/(an -5 anb)_ on
substituting expressions (8.3.7) for the velocity corrections into
the continuity equation we obtain the pressure correction, p’, from
- 4 ,
ap, = a_Pg + a_p, + asp; + aup; +b (8.3.8)
where the term b and the coefficients a, a,, a,, a and a, are now
particular to the pressure correction equation (8.3.8). When solving

the pressure correction equation (8.3.8), the condition of a zero

normal gradient for the pressure correctlon is specified at all flow

boundaries.

8.3.1 An Outline of the SIMPLEC Algorithm
The Semi-Implicit Method for Pressure Linked Equations is a
sequential, rather than simultaneous, procedure for calculating the
flow field and consists of the following steps:
(1) Guess the pressure field p*.
(11) Solve the momentum equations (8.3.5) for u* and v*.
(111) Solve the p’ equation (8.3.8) and update the pressure.
(iv) Update the velocity components u and v by using the velocity
correction formulae (8.3.7).
(v) Solve the discretized form of equations (8.2.1) for k and .

(vi) Repeat steps (ii)-(v) until a converged solution has been

obtained.

8.3.2 Solution of the Algebraic Equations and Convergence Criterion

The systém of algebraic equations which results from the
discretization of the governing -equations 1is solved for one
dependent variable at a time wusing the Iiterative 1line-by-line

method, see Patankar (1980). With the line-by-line method a
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relaxation factor, w, is often employed and equation (8.3.4) may be

written in the form

a a
2 ¢ =Za 4 +b+(1- w)E ¢ (8.3.9)

where ¢; denotes the value taken by ¢p at the previous iteration. In
the treatment of the non-linear momentum equation under-relaxation
is necessary in order to avoid divergence of the iterative solution,
whilst in contrast the pressure correction equation is linear,
taking the form of a discretized Poisson equation, and
over-relaxation may be used to speed up the convergence.

The convergence criterion used is usually referred to as the
mass residual and is based on the reduction of the pressure
correction term, p’, to some small value. The mass residual of every
control Qolume for the continuity equation is the constant term b in
equation (8.3.8) and this may be written in the form

|R

| =¢, -C,+C -C, (8.3.10)
where ce, c", Cn and C’ represent the mass flux through each face of
the control volume surrounding the point P. The mass residual,
Rhass’ for the convergence criterion is the sum of the mass
residuals over all the control volumes and is often normalized with
respect to its value taken at the previous iteration. The mass
residual serves as a useful indication of the rate of convergence of
the iterative process as the continuity equation is exactly
satisfied when R = 0. This cannot of course be achieved using

the numerical technique and convergence is taken to be when the mass

-3 -
residual is typically 0(107) or 0(107%).
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8.3.3 The Computational Grid

In order to produce solutions which are grid independent,
solutions were obtained for increasingly fine grids and the results
compared graphically. Grid independent solutions were taken to be
those having no observable changes in the flow pattern on 1ncreasihg
the number of grid nodes. In addition to the grid independence test,
the domain was doubled in size until graphically indistinguishable
solutions were observed as for grid independent solutions.

In order to resolve the flow in the Jjets of the two exhaust
hoods considered, a fine grid was necessary in these regions. The
grid chosen in the direction parallel to the direction of the
emerging Jet was finest near the axis of the jet and expanded
symmetrically outwards on either side of the jet. The grid chosen in
the direction perpendicular to the direction of the emerging jet
concentrated the grid cells in reglons where rapid changes were
expected, i.e. around the exhaust inlet and jet orifice.

Some difficulty was encountered in obtaining a smoothly varying
flow in the Jjet but this was overcome by mesh refinement in the
initial development region of the jet and a convergent solution was
achieved when the mass residual was 0(107%), Decreasing the mass
residual to 0(10”%) resulted in no significant change to the
solution obtained in all the cases considered in this thesls. With
the standard meshing technique there is some uncertainty regarding
adequate flow resolution in the Jet and an alternative meshing
technique which ‘tracks’ the progress of the Jet, such as an

adaptive meshing technique, would perhaps be more appropriate for

this problen.
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8.4 RESULTS AND DISCUSSION

The modelling techniques which have just been described are now
applied to the problem of determining the air flow induced by the
axisymmetric Aaberg exhaust hood and the Aaberg slot exhaust. Both
cases have been studied in order to make comparisons between the
simple mathematical models, developed in chapters 6 and 7, and the
more sophisticated k-¢ turbulence model as discussed in this

chapter. Comparisons will also be made with the experimental results

of Pedersen (1991a,1993) and Pedersen and Nielsen (1991).

8.4.1 The Axisymmetric Aaberg Exhaust Hood

The flow of the axisymmetric REEXS 1is assumed to be
axisymmetrical, and the full Navier-Stokes equations are given in,
for example, Anderson et al. (1988). All the numerical results
presented in this chapter for the axisymmetric exhaust are based on
the dimensions and inlet conditions given by Pedersen and Nielsen
(1991), see Table 6.1, and in this study the effect of varying the
momentum flux of the radial jet has been examined whilst all other
parameters remain constant. The operating conditions now considered
are I = 0.0, 0.5, 0.9 and 1.95, which correspond to jet exit speeds
of u(0) = 0.0 ms™*, 30.8 ms™’, 41.4 ms”' and 60.9 ms™’, respectively.

The air flow pattern for the axisymmetric hood described is
shown in Figs.8.2(a)-(d) for the momentum ratios I = 0.0, 0.5, 0.9
and 1.95, reépectively. The varlation in the resultant air speed,
ﬁ/uin, as a function of the distance, y/a, along the centre-line of
the exhaust hood predicted by the CFD model 1is shown in

Figs.8.3(a)-(d) for I =0.0, 0.5, 0.9 and 1.95, respectively. Also
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shown in Fig.8.3 are (i) the centre-line air speed predicted by the
simple mathematical model presented in chapter 6 and (ii) the air
speeds observed experimentally by Pedersen and Nielsen (1991).

Considering first the case I = 0.0, Fig.8.2(a) indicates that
air is drawn into the exhaust inlet from all directions with a
significant amount of fluld being sampled from behind the hood. The
exhaust flow 1is 1nefficlent and non-directional, as observed by
Pedersen and Nielsen (1991), and the rapid decay in the centre-line
air speed, which results in a limited range of contaminant capture,
can be seen in Fig.8.3(a).

From the results shown in Fig.8.2 the effect of the turbulent
radial jet on the hood’s induced air flow, as a function of the
momentum flux of the jet, 1s immediately apparent. For the largest
momentum ratio considered, namely I = 1.95, the axis of the
developing jet is almost perpendicular to the axis of symmetry of
the hood and the Jet-induced flow exhibits a degree of symmetry
about the axis of the Jet. However, as the ratio of the momentum
flows, I, decreases, the axis of the jet deviates from the near
vertical position and the curvature and thickness of the Jet
increases. As expected, the width of the efficient flow decreases
and the air speed in the efficient flow increases as I increases.
The dramatic changes in the spacing of adjacent streamlines shown in
Fig.8.2 indicates that the air speeds increase significantly
throughout the workplace as the momentum ratio increases.

A comparison of the results presented in Fig.8.3 shows that
fhere is close agreement between the resultant centre-line air speed
predicted by the CFD model and the simple mathematical model; both

models accurately reproduce the air speeds observed experimentally
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(a)

(b)

Fig.8.2 The streamlines for the flow around an axlisymmetric Aaberg

e#haust hood, the volume flux of air between adjacent streamlines is

denoted by 8y, (a) 1=0.0, My =2.5x107'm’s™", and (b) I =0.5,

- -1
Ay ~ 1x107°m>s” .



I

2 The streamlines for the flow around an axisymmetric Aaberg

Fig.8.

exhaust hood, the volume flux of air between adjacent streamlines

ap = 1x10 2ms™!, (¢) 1= 0.9 and (d) I = 1.95.
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Fig.8.3 The variation in the resultant air speed, wu

in’ along the
. tre-line of the axisymmetric exhaust hood, showing the present
centre-

CFD results (- — -), the model (

) and the experimental results

of Pedersen (1993) ( ® ), for (a) I = 0.0 and (b) I = 0.5,
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Fig.8.3 The variation in the resultant air speed, u/ujn, along the

céntre—line of the axisymmetric exhaust hood showing the present CFD

results (- — -),

the model (

) and the experimental results of

Pedersen (1993) ( ™ ), for (c) I = 0.9 and (d) I = 1.95.
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by Pedersen and Nielsen (1991). The close agreement, which 1is
achieved over a wide range of momentum ratios, indicates that the
simple  mathematical model does provide an accurate means of
predicting the centre-line air speed of the hood, even when the
ratio of the momentum flows is small and the axis of the radial Jet
deviates significantly from the vertical. The good agreement may be
due to the fact that the profile of the efficient flow region, and
hence the air speeds in this region, is predominantly determined by
the flow entrained into the initial development region of the radial
Jet, i.e. the region where the air speeds in the Jet are still
comparable with the jet exit speed. Further away from the Jet
orifice, where the air speed in the jet is relatively small compared
with the Jet exit speed, entralnment into the jet is expected to
have no significant effect on the efficient flow region. In the
initial development region of the jet, a slender jet with a vertical
axis provides a good approximation to the flow predicted by the CFD
model, see Fig.8.2. However, as the ratio I is further decreased,
from I = 0.5, the jet 1s increasingly influenced by the exhaust flow
and the simple mathematical model 1is expected to completely break
down.

The CFD model has also been used to examine what effect the
turbulence intensity in the radial jet has on the overall air flow
produced by the exhaust hood. Three different values of turbulence
intensity were considered, namely 40%, 60% and 80%, and the air
flows produced by the hood operating at I = 1.95 were compared. The

air speeds developed along the centre-line of the hood were found to

be graphically indistinguishable, as were the streamlines in the

entire flow region.
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8.4.2 The Aaberg Slot Exhaust Hood

A series of investigations into the operation of an Aaberg slot
exhaust have been performed by Pedersen (1991a). The present study
assumes two-dimensional flow and concentrates on the flow behaviour
with respect to changes in the momentum ratio, I, and consequently
refers to Pedersen’s HI-experiment, see chapter 7, in which all the
operating parameters are kept constant, except for the Jet exit
speed and hence the momentum ratio. A broad range of momentum ratios
have been investigated, namely I = 0.0, 0.5, 0.9 and 2.5, and
comparisons made between the air flow predicted by the CFD model,
the ASE model developed in chapter 7, see Hunt and Ingham (1993) and
the experimental work of Pedersen.

Figures 8.4(a)-8.7(a) show the streamline patterns determineq

from the CFD model for a proportion of the domain close to the ASE
for the operating conditions I =0.0, 0.5, 0.9 and 2.5,
respectively. The rectangular outline depicted in Figs.8.4(a)-8.7(a)
represents the body of the exhaust system, which has a width of
0.2 m, a height of 0.4 m and an inlet width of 0.03 m. The small
extrusion on the right hand slde of the exhaust indicates the
position of the Jet nozzle, which has a width of 2 x 10" %n. The
corresponding non-dimensiopal streamline patterns predicted by the

simple mathematical model for the ASE flow are shown in
Figs.8.4(b)-8.7(b), where only the air flow in front of the exhaust
is illustrated. By examining the profiles of the efficient filow
region it is clear that the agreement between the CFD model and the

simple mathematical ASE model 1is good over the range of momentum

ratios considered. The streamlines illustrated in Figs.8.4(a)-8.7(a)

show that the two-dimensional jet flow of the ASE is relatively
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(a)
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Fig.8.4 Streamlines for the flow around the ASE unit operating at

f = 0.0, (a) the CFD model, the volume flux of air between adjacent
streamlines Ay 8,75x10—3m3s-1 per metre length of the slot, (b)

the simple mathematical ASE model, see chapter 7.
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(a)

(b)

Fig.8.5 Streamlines for the flow around the ASE unit operating at
"I = 0.5, (a) the CFD model, the volume flux of air between ad jacent
streamlines 8y = 3.5x10 °m°s ' per metre length of the slot, (b) the

simple mathematical ASE model, see chapter 7.
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(a)

(b)

Fig.8.6 Streamlines for the flow around the ASE unit operating at
I = 0.9, (a) the CFD model, the volume flux of air between adjacent
streamlines Ay = 3.5x10—2m3s'1 per metre length of the slot, (b) the

simple mathematical ASE model, see chapter 7.
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(a)

(b)

Fig.8.7 Streamlines for the flow around the ASE unit operating at
I = 2.5, (a) the CFD model, the volume flux of air between adjacent
streamlines Ay = 3.5x10 °m’s”’ per metre length of the slot, (b) the

simple mathematical ASE model, see chapter 7.
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unaffected by the suction flow as the axis of the jet remains
approximately perpendicular to the bench surface for all the values
of 1 considered. This result is in sharp contrast to the behaviour
of the axisymmetric radlal Jet described in section 8.4.1 and
indicates that the wall has a significant effect on the evolution of
the two-dimensional jet flow for the ASE. This phenomena was also
noted by Hyldgdrd (1987), who reported that the critical injection
velocity for an axisymmetric'hood with a back wall was lower than
that for the standard hood.

The variation in the resultant air speed, q/(m/p), at a height
of x/a = 0.174 above the surface of the bench, as a function of the
distance, y/p, along the bench predicted by the CFD model 1s shown
in Figs.8.8(a)-(d) for I = 0.0, 0.5, 0.9 and 2.5, respectively. Also
shown are the air speeds predicted by the turbulent wall jet model
of the ASE and those observed experimentally by Pedersen (1991a). In
general the agreement between the CFD model and the simple
mathematical ASE model 1s very good for each momentum ratio
considered, although 1t 1is not clear which of the numerical
techniques most accurately reproduces the experimental data. As
expected, in both the CFD and simple mathematical model cases, a
continuous decrease in the alr speed is observed with increasing
distance from the exhaust face, whereas Pedersen’s observations
exhibit some fluctuations in the air speed and this is most apparent
when I = 2.5. As mentioned in chapter 7, the slight discrepancy
between the experimental and numerical results could be explained in
terms of background air movements in the experimental laboratory or
by the presence of flow measuring equipment which could also disturb

the flow.
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Fig.8.8 The varliation in the resultant air speed, q/(m/p), at a
height of x/a = 0.174 above the bench surface, showing the present
CFD results (- — =), the ASE model (——) and the experimental

results of Pedersen (1993) ( ™ ), for (a) I = 0.0 and (b) I = 0.5,
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Fig.8.8 The variation in the resultant air speed, q/(m/p), at a
height of x/a = 0.174 above the bench surface, showing the present

CFD results (- — =), the ASE model (——) and the experimental

results of Pedersen (1993) ( ® ), for (c) I = 0.9 and (d) I = 2.5,
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Figure 8.8(a) illustrates that for values of y/p greater than
approximately 1.5, the CFD model underestimates the air speeds
predicted by the simple mathematical model. This result was expected
as the simple mathematical model assumes the exhaust flange has an
infinite width and thus does not account for fluid being drawn from
behind the exhaust system. From Figs.8.8(b)-(d) it is also evident
that the air speeds predicted by the CFD model along x/a = 0.174 for
I =0.5 0.9 and 2.5 slightly overestimate those predicted by the
simple mathematical model. The differences between the two solutions
are probably due to the different types of jet flow modelled. The
simple mathematical model assumes a turbulent wall jet flowing along
a flange of infinite length, whereas the jet flow modelled by the
CFD model undergoes a transitlon from an initial turbulent wall jet
phase to a turbulent free jet flow, where its momentum flux is then
conserved. Consequently, we expect the latter of the two Jets
described to entrain more fluld and thus enhance the air speeds in
the region of interest when compared with the infinite flange wall

Jet model.

8.5 CONCLUSIONS

In this chapter the axisymmetric REEXS and the two-dimensional
ASE models presented in chapters 6 and 7, respectively, have been
further vélidated by comparison with the results obtained from
solving the full, turbulent Navier-Stokes equations using the CFD
code FLUENT. In both the two-dimensional and three-dimensional

axisymmetric cases the air speeds and flow fields predicted by the
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CFD model and the simple mathematical models developed in this
thesis are in good agreement. This gives us full confidence in the
simple modelling techniques adopted.

The CFD package FLUENT was found to provide a convenient means
of validating the models which have been developed earlier in this
thesis and the determination of the full flow field using the CFD
provides useful information regarding the interaction between the
Jet flow and exhaust flow regions. However, in comparison with the
simple mathematical models, the parameters which govern the fluid
flow of the Aaberg exhaust hood are less easily identifiable when
using the CFD package as are the relationships between these
parameters. Solving the full Navier-Stokes equations is
computationally expensive in comparison with the modelling code;
convergent results for the latter were achleved in a fraction of the
computational time required by FLUENT. Clearly, both methods of

determining the fluid flow have their advantages and disadvantages.



CHAPTER NINE

GENERAL CONCLUSIONS
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The design of traditional exhaust hoods to give optimal flow
and predictability of capture efficlencies under specific conditions
of usage is a topic that has recelved a substantial amount of
interest. However, until the start of the present work the many
parameters which govern the fundamental fluld flow which is induced
by jet-reinforced exhaust hoods, such as those employing the Aaberg
principle, had not been identified and consequently the fluid flow
produced by this type of hobd was far from being well-understood.
Experimental work has been performed with combined injection and
exhaustion, mainly at the University of Aalborg, Denmark, and at the
Health and Safety Executive, Sheffield, in order to obtain an
improvement in the collection efficiency of the exhaust. However, as
reported by Hyldgard (1987), and others, this has been "so far
without success".

In the design, or in the selectioq of exhaust hoods for a
particular application, the velocity profile in front of the exhaust
hood determines 1its capture efflcliency and, therefore, it 1is of
prime importance. In some papers published in the early 1960’s a
simple linear approach to calculating the centre-line velocity was
used in order to determine the exhaust hood design. Clearly this is
not satisfactory and one of the main aims of this thesis was to
develop simple fluid dynamics models of the Aaberg exhaust hood in
order to predict the fluld velocity everywhere but in particular in
front of ‘the hood. This work has been very successful with both
two-dimensional and three-dimensional axisymmetric models of the
fluid flow induced by a Jet-reinforced exhaust hood having been

developed.
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This thesis begins by considering the fluid flow which is
induced by two-dimensional, jet-reinforced exhaust hoods which are
of a simplistic design, see chapters 3 and 4. In chapter 3 the
exhaust flow is ldealized, and modelled as a line sink of fluid, in
order to obtain analytical expressions for the components of the
fluid velocity in front of the hood. In the following chapter this
simple two-dimensional model was extended and the shape and size of
the region of high capture efficiency was determined for a wide
range of exhaust inlet sizes and for an exhaust hood which is
suspended vertically above and facing the floor of the workplace.
Although hoods of the simplistic nature modelled in chapters 3 and 4
of this thesis have not been studied experimentally, the simple
models clearly identify the parameters which govern the flow induced
by such exhaust hoods and give good qualitative agreement with all
the available experimental data.

The remainder of this thesis has been devoted to the
development and validation of mathematical models for the purposes
of predicting the fluid flow produced by Aaberg exhaust hoods which
exist in prototype form and whose fluid flows have been studied
experimentally. Two types of hood have been investigated, namely the
axisymmetrical reinforced exhaust system (REEXS) and the Aaberg slot
exhaust (ASE). In the latter case the exhaust opening is in the form
of a slot and is positioned above and perpendicular to a surface or
‘bench’, whereas in the former case the exhaust extends into a room
and has an axisymmetrical geometry. Some of the parameters that have
been varied in these two applications of the Aaberg principle are:
(a) The volumes of air injected and withdrawn.

(b) The shape of the exhaust hood.
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(c) The size of the inlets and outlets.

(d) The orientation and fosition of the exhaust hoods.

A full description of the results obtailned in each of the above
investigations is given at the end of each appropriate chapter in
the thesis and is therefore not repeated here. These models have now
been fully developed and are very robust in their operations.

The formulation of the axisymmetric model for the REEXS
involved a new approach to mbdelling the turbulent radial flow of a
viscous fluid from a narrow annular orifice. The turbulent radial
jet flow developed in chapter 5 of this thesis adopts the Prandtl
constant momentum transfer model for the eddy viscosity and the
resulting parabolic equations are solved numerically. These results
are in very close agreement with both the empirical and theoretical
results of numerous other authors who have investigated turbulent
radial jet flows.

The mathematical models developed in this thesis for the
axisymmetrical REEXS and the ASE systems have been extensively
validated by comparing the numerically predicted results with the
experimental data of Hyldgadrd (1987), Hegsted (1987), Pedersen and
Nielsen (1991), Pedersen (1991a,1993) and Fletcher and Saunders
(1991,1993). It 1is concluded that the results of the simple
mathematical models give excellent agreement with all the available
experimental data. Once a new design or operating procedure has been
postulated by using the simple mathematical models then a more
sophisticated model, i.e. a full computational fluid dynamics model,
which is more expensive in both real time and CPU time, can be used
to fine tune the design. Having done this then more experimental

work can be performed in order to further optimize all the governing
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parameters so that the efficiency of the Aaberg exhaust hood can be
maximized.

There are many operating and geometrical design parameters
which may be varied and in order to perform all the experiments
needed to cover all parameter space it 1s both very costly and
time-consuming. However, now that the basic fluid mechanics models
have been developed they are very easy and cheap to use in order to
test any suggested changeé in the operating and/or geometric
parameters for both the REEXS and the ASE systems. This approach
therefore provides a cost-effective way of reducing the total number
of experiments which have to be performed. It must, however, be
stressed that both the simple mathematical models and the CFD models
can be no substitute for performing experimental work 1in the
industrial environment.

There 1is much scope for future investigation into both the
design and the operating conditions of the Aaberg exhaust hood which
will lead to an optimization of its fluid flow with respect to the
energy consumption and capture | efficiency. Preliminary
1nvestigationsvof possible hood design modifications performed by
the author have Iindicated that the fluid speed induced by a
two-dimensional Aaberg exhaust hood is significantly influenced by
changes in the direction of the jet flow. The Jjet flow of the
original design issues perpendicularly to the centre-line of the
hood (¢ = 90°). However, these investigations predict that the
induced fluid speed in the region of interest can be significantly
enhanced by orientating the jet flow such that ¢ < 90°. It is
important that these design modifications, and others, should be

addressed.
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Finally, the work done in this thesis has focused on the
fundamental fluid flow pattern induced by the Aaberg exhaust hood
and for this reason the contaminant modelled has been assumed to be
neutrally-buoyant and the effects of diffusion have been ignored.
The models developed allow one to make confident predictions as to
the fluid speeds 1induced by a hood of a specific geometry and
operating under given conditions. However, the actual operating
conditions of the exhaust must be tailored to fit the particular
industrial application and they will depend upon the nature and
location of the contaminant to be exhausted. The introduction into
the fluid flow of a source of non-neutrally-buoyant contaminant is
therefore the next logical progression in the mathematical and

numerical study of the Aaberg exhaust hood.
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