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The development of internal structure of a slurry pipeline can 

accurately represent modern Western Societies. The reduction 

of transport velocity, gives rise to three layers within the 

pipeline, while unpredictable instabilities within the society 

creates a pronounced social stratification, which are classified 

as upper class, middle class and lower class...the less difference 

is between the velocities of each layer in the pipeline, the safer 

and more economical transport is achieved... 

 

 

 

 

 

The concept of slurry transport has been employed long time 

ago...it is undoubtedly considered as a dirty and murky 

mixture... No matter how murky it can be, it is always seen as 

a clear water in the eyes of the ERT, through which the 

systematic movement of each particle can be visualised. 
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Abstract 

Slurry transport has been a progressive technology for transporting a huge 

amount of solid materials across the world in both, long distance and short 

commodity pipelines. The occurrence of separation and slippage of the 

constituent phases within the pipeline make these flows unpredictable and 

time dependent. Therefore, it is paramount for the operator of slurry 

pipelines to monitor and measure the flow continuously, particularly from the 

local point of view. Undoubtedly, the measurement of local parameters 

governing the flow, requires an instrument that provides high temporal 

resolution. Besides, since each phase has different behaviour and flow 

characteristics within the pipe, it is enormously difficult to measure the flow 

parameters of each phase using only one conventional flow meter. Thus, a 

second auxiliary sensor is required to develop a compact and multiphase 

flow meter.   

This project proposes a new automated online slurry measurement, 

visualisation and characterization technique, in which a high performance 

dual-plane Electrical Resistance Tomography (ERT) system is employed 

with a capability of acquiring data at a rate of 1000 dual-frames per second. 

It also proposes an ERT based technique, which combines the ERT and an 

Electromagnetic Flow meter (EMF), to measure volumetric flow rate of each 

phase, and thus the total slurry volumetric flow rate. The ERT is further 

combined with the cross-correlation technique to estimate and image the 

axial solid’s velocity distribution, through which the transient phenomena of 

horizontal flow regimes can be visualised. The ERT is used for estimation of 

several parameters of stratified flow. The development of a novel automated 

technique for recognition of horizontal slurry flow regimes is also described. 

A series of experiments were carried out on horizontal and upward vertical 

sand-water flow through a pilot scale flow system with 50 mm ID pipeline. 

Two sands, medium and coarse, were employed in two throughput 

concentrations (2% and 10%) within the range of transport velocities 1.2-5.0 

m/s. The solids volumetric concentration and velocity, along with slurry 

volumetric flow rate are compared with the corresponding results obtained 

from a sampling vessel.  
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Definitions of slurry flow characteristics 

The basic characteristics of slurry flow in pipelines used throughout the 

thesis are defined in the following list. 

Flow 

characteristic 
Definition 

Transport velocity 

Slurry velocity 

EMF velocity 

 

 

 

ERT velocity 

 

 

Slip velocity 

 

Discharge velocity 

 

 

 
Solids velocity 

 

Local solids velocity 

 

 

 

In-situ velocity 

 

Predicted velocity 

 

The bulk (or mean) slurry velocity. 

The bulk (or mean) slurry velocity. 

Carrier liquid (or conducting phase) velocity. This 

velocity is used to represent the mean slurry 

velocity, where both phases move in a similar 

velocity or with negligible slip between the two 

phases, especially in vertical slurry flow. 

The axial velocity of solid particles within the 

pipeline, which is measured by the ERT in 

conjunction with Cross-Correlation method. 

The difference between the velocities of the two 

flowing phases caused by gravitational effects. 

The bulk (or mean) slurry velocity at the slurry 

discharge point into the mixing tank (the other end 

of the flow loop). It is measured using the flow 

diversion technique into the measuring tank 

The velocity of solid particles (sand) in the carrier 

liquid flowing through the pipeline. 

The axial velocity of solid particles measured at a 

particular location within the pipe cross-section, 

measured by the ERT in conjunction with Cross-

Correlation method 

The average local axial solids velocity within the 

pipe cross-section measured by the ERT in 

conjunction with Cross-Correlation method. 

The actual phase velocity within the pipeline. 
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Local concentration 

 

 

Insitu concentration 

 

 

(Throughput 

concentration) 

(Delivered 

concentration) 

(Discharge 

concentration) 

Grannular bed 

 

Moving bed 

 

Stationary bed 

 

 

Loss poured bed 

 

The solid volume fraction within the mixture 

measured at a particular location within the pipe 

cross-section, measured by the ERT.  

The average local solids volume fraction within the 

pipe cross-section measured by the ERT. It is also 

called spatial concentration.  

The pre-known solids volume fraction within the 

mixing tank, which is introduced to the flow loop. 

The solids volume fraction in the slurry at the other 

end of the pipeline (discharge point).  

Similar to delivered solids concentration. 

 

The settled solid particles at the bottom of the pipe, 

either moving or stationary, or both. 

The settled moving deposit (or solid particles) 

moving along the bottom of the pipe. 

A non-moving deposit (or solid particles), which are 

in permanent contact with each other and the pipe 

wall.  

 The deposit at the bottom of the pipe. The solid 

particles within this type of bed are not well packed 

(i.e. void exists within the bed).  
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Chapter 1 

Introduction 

1.1 Hydraulic transport of solids in pipes 

The presence of solid particles in a carrier liquid form a mixture, which is 

referred to as slurry. Slurry flows cover a wide spectrum of applications and 

are the focus of considerable interest in engineering research. The concept 

of slurry transport has been employed long time ago and it is widely utilised 

in many industries such as minerals, chemical, coal, pharmaceutical, water, 

dredging and other industries. It is worth mentioning that in some specific 

applications, such as dredging, hydraulic transport is the only means of 

transportation of solids through pipelines. In mid-nineteenth century slurry 

transport was first used by mining industry, an example of which is the 

transport of slurry used to reclaim gold from placers in California (Abulnaga, 

2002). Pneumatic conveying is also another means of transporting solid 

particles, in which gas (commonly air) is used instead of liquid. However, as 

it is associated with some disadvantages such as high specific power 

consumption, potential for particle breakage and degradation, high wear rate 

on components and used for relatively short distance, some drawbacks are 

seen to this technology (Dhodapkar et al., 2006). On the other hand, a great 

interest and attention has been given to hydraulic transport due to its 

advantages namely environmentally friendly, low operation and maintenance 

costs, relative simplicity in its infrastructure etc. It has been a progressive 

technology for transporting a vast amount of different solid materials through 

various sizes of pipelines with different orientations, such as sands, iron 

concentrates, copper concentrates, phosphate matrix, tailings, limestone 

and sewage, in different densities, shapes, sizes up to 150 mm (6"), such as 

those pumped from fields of phosphate matrix (Abulnaga, 2002). These are 

the examples of long distance commodity pipelines. However, it has also 

been transported through short in plant pipelines, such as that of nuclear, 

chemical, pharmaceutical and food industry. The most commonly used 

carrier fluid is water, which is referred to as “hydraulic transportation”.  

Since these mixtures are encountered in a wide range of industries, their 

classification is very important for describing their physical appearance and 

flow behaviour. There are two broad classifications for hydraulic 

transportation, which are referred to as settling (or heterogeneous) and non-
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settling (or homogeneous) slurries. These classifications based on two 

considerations, physical properties and flow behaviour (or rheological 

behaviour). In other words, whether the solid particles in the slurry can settle 

under the influence of gravity or are suspended within the carrier fluid. In 

settling slurries the solid particles tend to separate from the carrier liquid and 

segregate at the bottom of the pipe, either horizontal or inclined, under the 

influence of gravity. This suggests that the settling slurries can be stratified 

either fully or partially (Matousek, 2005). In contrast, non-settling or 

homogeneous slurries composed of particles of colloidal dimensions, which 

are characterised by primary particle diameters of typically less than 2 μm. 

They are also highly concentrated and maintained in suspension by 

molecular movement within the liquid, which is referred to as Brownian 

motion (Peker et al., 2008). Their non-settling behaviour is probably due to 

hindering settling, as do occur in most paints and emulsions (Brown and 

Heywood, 1991). It is worth mentioning that non-settling slurries are beyond 

the scope of this thesis, therefore, no further reference will be made to non-

settling slurries.  

The behaviour of slurry flow through pipelines has been systematically 

investigated since 1950s (Matousek, 1996). The focus was mainly based on 

experimental investigations dealing with prediction of pressure drops and 

demarcation of flow regimes with different velocities, using various particles 

and pipe sizes, and then using the collected data to construct empirical 

models. Then 1970s and 1980s marked the emergence of another 

approach, by which the researchers were more focusing on the fundamental 

principles or the rheological based continuum approach. This approach was 

strictly applied to ultra fine non-colloidal particle slurries, such as the basics 

of the macroscopic two-layer model by Wilson (1970) and microscopic slurry 

flow by Shook and Roco (1991). Whereas the contemporary approach entail 

the rapid development of measuring techniques and substantial 

computational effort, which is still available approach to describe the 

complex behaviour and nature of settling slurry flow through pipelines 

(Matousek, 2005; Lahiri, 2009). Despite the excellent research work and 

progress in the field our understanding of the fundamental and complex 

nature of settling slurry flow is still not enough to satisfy the engineering 

requirements. Since the slurry engineer requires a viable and reliable 

methodology that suits all the conditions met in industry. Therefore, the 

investigation of all the relevant variables is crucial. 
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A wide range of experimental results have been reported in the literature 

including different operating conditions, material type and shape and 

different flow orientations. In horizontal and inclined flow as the gravity acts 

at right angle to the flow, the separation of phases occurs and gives rise to 

several flow regimes, pseudo-homogeneous, heterogeneous, moving bed 

and stationary bed. Whereas in vertical flow, especially upward flow, the 

gravity acts counter to the dynamic forces, as a result the slippage of the 

phases occurs (Parvareh et al., 2010). The occurrence of separation and 

slippage of the constituent phases in settling solid-liquid flow in pipelines 

makes the flow unpredictable and time dependent. Therefore it is paramount 

for the operator of these pipelines to monitor and measure the flow 

continuously, particularly from the local point of view (i.e. the knowledge of 

internal structure of flow is necessary) so as to ensure safe transport and 

maintaining acceptable control limits. In order to understand the internal 

structure of such flows, solids volume fraction distribution and solids velocity 

distribution are of great importance. Therefore, this study focuses mainly on 

qualitative and quantitative measurement of these two parameters. 

As noticed in the literature, there are many challenges that have to be 

highlighted to boost our knowledge and tackle the limitations in 

understanding and measuring settling slurry flows. In the past, several 

intrusive methods, such as traditional probes, have been used to measure 

solids volumetric concentration and velocity. The disadvantages of using 

these probes have been reported, particularly for solid-liquid flow, Brown and 

Heywood (1991). It is highly unlikely that these devices can survive the 

harsh condition inside the pipelines due to abrasive nature of slurry. In many 

cases solids may accumulate around them and cause pipe blockage. Also it 

is well known that intrusive devices introduce an undesirable physical 

disturbance and alter the internal structure of the flow (Heindel et al., 2008). 

In order to overcome this limitation, researchers across the world developed 

a variety of non-intrusive measurement techniques to highlight the internal 

characteristics of two or multiphase flows, such as optical, ultrasound, 

nuclear, conductance and electrostatic transducers. Nonetheless, each of 

the above techniques suffers from serious limitations, especially for the 

complex solid-liquid flows. For example, since slurries are opaque and flow 

through opaque enclosures, then using optical techniques can be quite 

difficult if not impossible. Although nuclear techniques provide an accurate 

measurement, they are very expensive and suffer from low temporal 

resolution and environmental issues (Thorn et al., 1997). Amongst all of the 

above techniques Electrical Resistance Tomography (ERT), as one of the 
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family of non-intrusive sensors, has attracted the interest of many 

researchers. This is due to the fact that the ERT offers many advantages, 

such as non-intrusive, relatively low cost, no environmental restrictions, 

providing quantitative and qualitative on-line measurement, fast etc. Within 

the last two decades the ERT has seen a significant development and has 

been applied to many industrial process involving two/multiphase systems. 

Particularly the application of the ERT to solid-liquid flow has been reported 

by many investigators (Razzak et al., 2009; Giguère et al., 2008; Lucas et 

al., 1999; Wood and Jones, 2003; Wang et al., 2003; Pachowko et al., 

2004). All of the above studies have been carried out on vertical and/or 

horizontal flows used the conventional ERT system, which acquires up to 

200 images per second (Dyakowski et al., 2000). To the authors’ knowledge 

no attempt has been made to measure solids volume fraction and solids 

axial velocity using the combination of high performance ERT system in 

conjunction with cross-correlation technique. It is evident that measurement 

of the two parameters, especially velocity, in fast evolving processes 

requires high frame rates (fast) of milliseconds. Therefore, this study uses a 

high performance dual-plane electrical resistance tomography system, which 

is called Fast Impedance Camera System (FICA) and is capable of acquiring 

data at a rate of 1000 dual-frames per second (dfps). As horizontal and 

vertical sections jointly make most of the pipelines, it is important to study 

both orientations simultaneously with similar conditions, so as to reveal the 

effect of one on another. However, at higher velocities (pseudo-

homogeneous) there may be higher degree of similarities in the internal 

structure of the flow in the two orientations, but the differences could well be 

noticed for the transport velocities below the deposition velocity, where the 

homogeneity of vertical flow is still preserved, whereas a strata is formed in 

the horizontal pipe invert.  

Although it can be argued that most of pipelines in industry are horizontal 

and vertical, inclined settling slurry flows are still play an important role, 

despite that they have not been the subject of extensive studies. Unlike 

horizontal and vertical flows, very limited work has been conducted in this 

flow orientation. In fact since 1950s a very limited number of published body 

work covers the characterisation and measurement of solid liquid flows in 

inclined pipelines. Therefore, this project attempts to design and build a pilot 

scale slurry flow loop, in the aim that it can be used as a tool for further 

understanding and characterisation of inclined slurry flow and identifying flow 

effects on its measurement scheme. The whole design strategies and 

methodologies are described in Chapter 6, where the reader will be taken 
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through the whole journey from the preliminary design to the erection stage 

and testing. However, no experimental work on inclined flow will be 

mentioned throughout the present work. The reader is referred to several 

previous works conducted on inclined pipeline: Worster and Denny (1955), 

Brook (1962), Kao and Hwang (1979), Wilson et al. (1992), Shook et al. 

(1974), Wilson and Tse (1984), Matousek (1997), Doron and Barnea (1997), 

Lucas et al. (1999).   

1.2 Motivation of present work 

1. In order to understand the complex nature of slurry flow and optimising 

the slurry flow systems a reliable method (or technique) is required to 

continuously monitor and capture the internal images of the pipeline 

through localised flow measurement, so that a safe transport is ensured 

and acceptable control limits are maintained. It is quite apparent that an 

automated and on-line internal measurement of pipe flow offers great 

advantages, such as providing fast on-line measurements, reducing 

labour resources and the requirement for additional sampling equipment. 

However, the selection of which technique to use is strongly dependent 

on several important issues, such as cost, simplicity in design, safety, 

reliability, robustness, speed and non-intrusive. Due to the fact that the 

ERT offers all the above advantages, then it is proposed to be the meter 

of choice. Although the some previous works have made use of the ERT, 

all of them used the conventional ERT system, which acquires 200 

images per second (Dyakowski et al., 2000). Therefore, this thesis 

employs a high performance Electrical Resistance Tomography system 

(ERT) to explore its capability in localised measurements and 

visualisation of horizontal and vertical slurry flow (i.e. solids concentration 

distribution and solids axial velocity distribution within the carrier fluid), 

with capability of acquiring data at a rate of 1000 dual frames per second. 

2. In terms of industrial application the volumetric flow rate of the phases in 

two/multiphase flows is very important flow parameter to the pipeline 

operator. However, due to the complexity of multiphase/two phase flow, 

particularly solid-liquid flow, it is enormously difficult to accurately 

measure the flow parameters of each phase individually using only one 

conventional flow meter. Thus, a secondary sensor is required to 

determine the volumetric flow rate of each phase and so the total mixture 

volumetric flow rate. A survey of the literature and commercially available 

flow meters raised the alarm that currently there is almost no 
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multiphase/two phase flow meter practically available to majority of 

industrial applications for measurement of volumetric flow rate of 

constituent phases and total mixture (Li et al., 2005; Thorn et al., 1997). 

Therefore, this research proposes an ERT based technique, which 

combines the Electrical Resistance Tomography (ERT) and the 

Electromagnetic Flow meter (EMF), to measure the volumetric flow rate of 

each phase (continuous and dispersed) and producing the total slurry 

volumetric flow rate.   

3. Since settling slurries contain much coarser particles (up to few 

millimetres), such as sand, coal-water, gravel, then these particles tend to 

accumulate at the bottom of the pipe and produce several flow regimes. 

As highlighted in the literature, these flow regimes affect one of the most 

important parameter in settling slurry flow, which is pressure drop, 

particularly in stratified flow. This may in itself cause partially or fully pipe 

blockage, which reduces the efficiency. They also influence pipe erosion 

and some other performance characteristics (Doron and Barnea, 1995). 

Thus, the recognition of these flow regimes is very important. 

Furthermore, the identification and evaluation of the information regarding 

these flow regimes are usually performed by visual inspection through 

graphic illustration, which sometimes difficult to interpret or identify, either 

due to the system being opaque or with high velocity. Therefore, this work 

explores the validity and applicability of the ERT as an automated online 

flow regime recognition technique through statistical analysis of its signal. 

4. Although it can be argued that in most of plants handling slurry flow, the 

pipelines are either horizontal or vertical, inclined flows is still encountered 

and essential in dredging ladder, pump-box feed systems and many long 

overland pipelines, which have to go through dunes and hills. A survey 

through the literature concluded that there is a lack of information 

regarding the behaviour of inclined slurry flow, as very limited work has 

been carried out in this type of pipeline orientation. It was also found that 

to avoid the blockage of the line once the flow is shut down, a commonly 

used design restriction of 10-16% (5.7°-9°) is often considered due to lack 

of knowledge of the critical slope of the inclined pipe. As Kao and Hwang 

(1979) criticised using the rule of thumb for the design of critical slope. 

Their criticism was based on the fact that lack of properly designed critical 

slope in an inclined pipe adds to construction costs and capital expenses. 

Moreover, our present knowledge of the fundamentals, behaviour of 

inclined slurry flow and the flow effects on its measurement is still in its 

stage of infancy. This implies that almost no correlation has been 
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developed for inclined flow. Due to this reason, most of the designers do 

not take the pipe inclination into account, but rather the whole transport 

line as horizontal. Therefore, This work has attempted to design and build 

a pilot scale inclinable multiphase flow loop, meeting all the design 

requirements for slurry flow, so as to be used to gain insight of complex 

inclined slurry flow and the potential effects on flow measurements. 

However, This study attempts only the design and installation of the entire 

flow loop and associated instrumentations and equipments, while 

conducting experiments and performing measurements on inclined slurry 

flow is beyond the scope of this research, due to the limited timeline of 

this study. In other words, this thesis is limited to the measurement and 

visualisation of horizontal and counter-gravity slurry flow.  

5. A review in literature reveals that little work has been carried out within 

the boundary of stationary bed flow regime in horizontal flows, this is 

undoubtedly due to the fact that the risk of blockage is dominant in this 

region. As a result of this, an investigation into the boundary of stationary 

bed and pipeline blockage is conducted. Firstly, to gain further knowledge 

regarding the minimum velocity within the frame of this flow regime, 

secondly, to explore the functionality of the dual-plane ERT sensor 

electrodes, while they are covered by a settled thick granular bed at the 

bottom of the pipe. 

6. Narrow Particle Size Distribution (PSD) has been used in most of the 

investigations carried out in slurry flow, while the Particle Size Distribution 

in industry is very broad. Therefore, this research deals with flow 

characterisation and measurement of two broadly graded sands, medium 

sand (d15 = 170 µm, d50 = 242 µm, d85 = 430 µm) and coarse sand (d15 

= 270 µm, d50 = 480 µm, d85 = 2240 µm).    

1.3 Scope of present work 

The present work makes an extensive use of the Electrical Resistance 

Tomography system and supporting instrumentation (EMF) for measurement 

and characterisation of horizontal and vertical settling slurry flow. The local 

flow characteristics of the above two flow orientations is determined. Non-

uniform shape and size and used as solid particles and tap water as a 

carrier liquid. Only two sands are attempted, medium and coarse with PSD 

(d15 = 170 µm, d50 = 242 µm, d85 = 430 µm) and (d15 = 270 µm, d50 = 

480 µm, d85 = 2240 µm) respectively. The validation of each parameter, 

obtained from the ERT and the EMF or the combination of both, is carried 
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out using a flow diversion technique, the results of which is presented within 

the body of this thesis. Visualisation and recognition of each flow regime 

encountered in settling slurry flow is attempted based on ERT localised 

measurements. No work will be carried out on inclined flow, except the 

design, erection and testing of an inclinable slurry flow loop.   

1.4 Research objectives 

The overall objective of this project is to explore the validity and applicability 

of a new settling slurry flow measurement and visualisation technique, in 

which the Electrical Resistance Tomography used as the main flow meter 

and the EMF as a supporting auxiliary sensor. The ERT flow visualisation 

scheme is also planned to characterise and reveal the mechanisms 

occurring in horizontal and vertical solid-liquid flow. In order to achieve the 

main aim of this study, the following specific objectives have to be fulfilled: 

1. Localised measurement and visualisation of horizontal slurry flow. 

2. Characterisation of stratified slurry flow, including the blockage 

phenomena. 

3. Localised measurement and visualisation of vertical slurry flow. 

4. Characterisation of counter-gravity solid-liquid flow. 

5. Slurry flow regime visualisation and characterisation in horizontal 

slurry flow. 

6. Estimation of phase volumetric flow rate through combination of the 

ERT and the EMF. 

7. Explore the validity of the results obtained from the measurement 

scheme. 

8. Develop an automated (on-line) horizontal flow regime recognition 

technique. 

9. Evaluation of the proposed measurement and recognition technique. 

10. Design and erection of an inclinable settling slurry flow system. 

1.5 Thesis layout 

Chapter 2 presents the literature concerning the settling slurry flow in 

various flow orientations, horizontal, vertical and inclined. This chapter 

describes some of the previous work carried out on each orientation, 

particularly in horizontal flow, with mentioning the common flow regimes and 

governing physical mechanisms.  
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Chapter 3 critically reviews the current commercially available techniques 

for measurement and visualisation of slurry flow and highlights the limitations 

associated with each mentioned technique. The current status of the 

Electrical Resistance Tomography is also discussed along with its 

applications in various engineering field. 

Chapter 4 describes the experimental methodology and the strategy used to 

carry out each experiment. The test facility and the equipments used are 

also highlighted in this chapter along with the instrumentations used for 

measurement of the desired parameters. The calibration procedure of the 

instrumentations are detailed and the results are illustrated quantitatively. 

Chapter 5 contains a bulk of experimental findings and observations 

concerning the measurement of horizontal and upward vertical slurry flow. 

The measurement results cover various integral flow characteristics (slurry 

velocity, pressure, special concentration, solids axial velocity, delivered 

solids concentration and slurry volumetric flow rate) and local flow 

characteristics (local solids concentration, solids concentration profile, mean 

solids axial velocity, solids axial velocity distribution, liquid volumetric flow 

rate, and solids volumetric flow rate). An analysis of horizontal stratified flow 

is also reported in this chapter. An evaluation of each estimated parameter is 

summarised. 

Chapter 6 discusses the design and erection of a multiphase inclinable flow 

system with focusing on main design requirement for settling slurry flow. 

Various design procedures are described and the selection criteria for the 

associated instrumentations are enclosed. The design of the inclinable table 

and the most suitable lifting method is also detailed in this chapter.  

Chapter 7 Develops a novel technique for recognition of common flow 

regimes encountered in horizontal flow using statistical analysis of the ERT 

signal. The evaluation of the proposed recognition scheme is presented with 

summarising the overall success rate in recognising each flow regime.  

Chapter 8 Draws the conclusions of each finding and observation with a 

summary of the contribution from the present work. This chapter ends with 

highlighting the future directions and recommendation for further studies in 

slurry measurement, visualisation and characterisation.        
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Chapter 2 

Hydraulic transport of solid particles in pipeline 

In this chapter the literature and previous work on slurry flow is critically 

reviewed, with considering different pipe configuration, horizontal, vertical 

and inclined. The common four flow regimes are described, along with the 

techniques used to recognise these regimes, by the previous investigators. 

The boundary between the flow regimes are also detailed with the physical 

mechanisms governing settling slurry flow. 

2.1 Introduction 

Settling slurry flow in pipeline is encountered in many industries such as 

energy, chemical, pharmaceutical, petroleum, wastewater processing and 

mining industry. It is worth mentioning that in some specific applications, 

such as dredging, hydraulic transport is the only mean of transportation of 

solids through pipelines. These mixtures are transported through different 

pipeline orientations, mainly horizontal and vertical. Settling slurry flow is a 

very complex and has attracted considerable attention of many investigators 

across the world. A wide range of experimental results have been reported 

in literature including different operating conditions, material type, shape and 

different flow orientations (Newitt et al., 1955; Newitt et al., 1961; Wasp et 

al., 1970; Roco and Shook, 1984; Bartosik, 1996; Gillies and Shook, 2000; 

Hong et al., 2002; Barigoua et al., 2003; Pachowko et al., 2004; Pohlman et 

al., 2006; Divoux and Geminard, 2007; Pougatch and Sacudean, 2008; 

Matousek, 2009; Munir, 2011). 

In horizontal flow as the gravity acts at right angle to the flow, the separation 

of phases occurs and gives rise to several flow regimes, pseudo-

homogeneous, heterogeneous, moving bed and stationary bed. Similar flow 

regimes are encountered in inclined flow with occurrence of backflow (Doron 

et al., 1997; Matousek, 2002; Yamaguchi et al., 2011).  Each flow regime is 

described in the following sections and has been the subject of many studies 

in literature such as (Wilson and Pugh, 1988; Gillies et al., 1991; Doron and 

Barnea, 1993; Brown, 1991). Whereas in vertical flow, especially upward 

flow, the gravity acts counter to the dynamic forces, as a result the slippage 

of the phases occurs (Shook and Bartosik,1994; Parvareh et al., 2010). The 

occurrence of separation and slippage of the constituent phases in settling 
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solid-liquid flow in pipeline configuration makes the flow unpredictable and 

time dependent. Therefore it is paramount for the operator of these pipelines 

to monitor and measure the flow continuously, particularly from the local 

point of view, i.e. the knowledge of internal structure of flow is necessary, so 

as to ensure safe transport and maintaining acceptable control limits. 

This chapter highlights the previous work of others carried out within the past 

years and critically review the knowledge gained from them. The 

phenomenon of slurry flow in different pipe configurations (horizontal, 

vertical and inclined) will be described, with particular attention to horizontal 

and vertical flow. Since the distinction of flow regimes is very important for 

flow measurement, design, maintaining control limits and economical 

transport, then it will be covered along with transitional velocities. Also, in 

order to understand the behaviour of settling slurry flow and evaluate the 

accuracy and reliability of an instrument, especially those are used for 

measurement of local flow parameters, this chapter covers the stratification 

phenomenon, particle deposition velocity, pressure drop and physical 

mechanisms governing settling slurry flow. One of the most important 

parameters of slurry flow is the recognition of flow regimes, especially for the 

purpose of metering (i.e. for flow regime dependent flow meters), therefore, 

the last sections highlight the importance of flow regime recognition in 

general and critically review the techniques proposed by previous 

researchers in the field. 

2.2 Slurry flow in pipelines 

Slurry is a mixture of solid particles in a carrier liquid. The carrier liquid may 

be water, Newtonian or non-Newtonian liquid. However, the carrier liquid 

used in the vast majority of slurry flows is water. The hydraulic transport of 

solid particles in pipes is widely used in many industrial applications, such as 

chemical and mining industry. The aim of transporting these solids is either 

for transporting of bulk solids or physical/chemical processes between the 

carrier liquid and solids (Xia et al., 2004; Wilson et al., 2006). As previously 

mentioned, slurries are classified into two categories, settling and non-

settling, however, this research deals only with settling slurries and no 

reference will be made to non-settling slurries.  

The large number and range of variables in slurry flow in pipelines influences 

the behaviour of slurry flow and makes it very complex. These variables are 

pipeline configuration (horizontal, vertical and inclined), solid particle size, 

solids shape, solids density, liquids density, liquids viscosity, mean slurry 
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velocity, pipe diameter and flow direction (ascending or descending flow). It 

is worth mentioning that the occurrence of such a large number of variables 

can affect slurry metering and optimisation of slurry flow meters become 

very difficult and variable dependent. For example, as the ERT is flow 

regime dependent (Pachowko, 2004), then occurrence of these flow regimes 

in horizontal slurry flow creates a challenge in measurement of dispersed 

flow. 

It is apparent that most of industrial applications employ horizontal pipe 

configuration for transportation of solid materials. However, vertical pipe 

configuration is also paramount for many industries such as mining, (Munir, 

2011). Although it can be argued that most of pipe configurations are 

horizontal and vertical, which are connected through elbows and fittings, 

inclined flow can also play an important role for certain long distance 

overland pipeline, thickener feed systems, pump box feed systems etc. 

(Abulnaga, 2002). Therefore, this chapter gives a description over the 

behaviour of slurry flow in each pie configuration. In horizontal and inclined 

pipes, gravity tends to stratify the mixture and split it into two distinct layers, 

the solid particles at the bottom of the pipe and the carrier liquid at the top. 

On the other hand, in vertical pipes, the flow conditions are straight forward, 

without deposition of solid particles on the pipe invert. Since horizontal flow 

makes the majority of the pipelines  and the gravity in this flow orientation 

plays an important role for creation of several flow regimes, therefore, a 

large portion of the chapter is devoted to horizontal flow rather than the other 

two flow orientations.  

2.3 Horizontal flow 

Flow of settling slurry in horizontal pipeline is complex and has been the 

subject of a vast number of studies from the early work of Blatch (1906), 

Howard (1939), Durand (1952), Durand and Condolios (1953), Newitt et al. 

(1955) and many others. The vast majority of literature devoted to pressure 

drop, mixture velocity and critical velocity, friction characteristics, 

visualisation and behaviour of solid particles within the carrier liquid, 

determination of the internal structure of slurry flow via solids concentration 

and solids velocity. The complexity of this type of flow is due to the influence 

of gravity, which gives rise to different flow regimes from pseudo-

homogenous at high velocity to stationary bed and blockage at low slurry 

velocity. The emergence of these flow regimes, which are sometimes called 

flow patterns in literature, affects the pressure drop and influences pipe wear 
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and other performance characteristics. This suggests that settling slurry flow 

suffers from flow discontinuity, due to the occurrence of these flow regimes, 

thus affects the flow meters, which are flow regimes dependent. Therefore, a 

description of each individual flow regime is presented in the following 

sections, along with the effects of each flow regime on each flow parameter.  

2.3.1 Slurry flow regimes 

Flow regimes are normally described in terms of the distribution of solids 

within the cross-section of the pipeline. In other words, they can be used to 

describe the motion of the particles in horizontal or near horizontal slurry 

flow, often based on visual observation and have been the subject of 

numerous experimental studies, (Durand and Condolios, 1952; Matousek, 

2009; Doron et al., 1997; Matousek, 2002; Parvareh et al., 2010; Brown, 

1991; Giguère et al., 2008). 

Since the settling slurry flow is very complex and the determination of a 

certain flow regime relies mostly on visual inspection, the literature has 

shown different names and definitions to certain regime. Durand (1952) 

conducted the initial study on horizontal slurry flow regimes, in which he 

classified the slurry flow in horizontal pipes into “non-deposit flow regime” 

and a “regime with deposits” based on the specific gravity of the particles 

used in the investigation. In (1963) the same classification was used by 

Condolios and Chapus. However, this classification was refined, based on 

the relationship between the particle size, concentration and deposition 

velocity, by Newitt et al. (1955), Ellis and Round (1963), Thomas (1964), 

Shen et al. (1970) and Wicks (1971). It is important to note that the term 

“saltation”, referred to as a “moving bed”, was incorporated into the 

classifications of flow regimes by Bain and Bonnington (1970). One of the 

most common classification was done by Vocaldo and Charles (1972) and 

Parzonka et al. (1981), who classified the slurry flow regimes into four main 

categories, “homogeneous flow”, “heterogeneous flow”, heterogeneous and 

sliding bed flow” and “ saltation and stationary bed flow” (Doron and Barnea, 

1996). While some investigators have refined the classification into further 

categories, such as Lazarus and Neilson (1978), who classified slurry flow 

patterns into “homogeneous flow”, “pseudo-homogeneous flow”, 

“heterogeneous flow”, “fully moving bed” and “stationary bed”. Then Ercolani 

et al. (1979) attempted to show the form and outline of “pseudo-

homogeneous flow”, “heterogeneous flow”, “limit deposit condition”, “moving-

stationary bed”, “moving dunes” and “stationary bed”. Some other works 

have been reported in the literature regarding slurry flow regimes in 
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horizontal pipe, such as Govier and Aziz (1972), who categorised slurry flow 

regimes based on the particle size, as shown in Table 2.1.  

Table 2.1 Flow regime classification by Govier and Aziz based on particle 
size. 

Particle name Particle size Predicted flow pattern 

Ultra fine dp<10μm 
Fully suspended, (gravitational 

force negligible). 

Fine 10μm <dp<100μm 

Usually fully suspended, (subject 

to concentration and gravitational 

force). 

 

Medium size 

 

100μm <dp<1000μm 

Move with a deposit at the bottom 

with a concentration gradient. 

 

Coarse 

 

1000μm <dp<10000μm 

Rarely fully suspended and a 

deposit is formed at the bottom of 

the pipe. 

 

Ultra coarse  

 

dp>10mm 

Particles transported as a moving 

bed at the bottom of the pipe. 

 

However, based on the refined classification of settling slurry flow regimes, 

there are four main flow regimes in a slurry flow through a horizontal and 

inclined pipe, based on solids volume fraction and particle size, as shown in 

Figures 2.1 and 2.2 respectively: 

1. Pseudo-homogeneous or homogeneous with all solids in suspension. 

2. Heterogeneous with all solids in suspension. 

3. Moving bed and saltation (with or without suspension). 

4. Stationary bed. 

 

Figure 2.1 Flow regimes in a horizontal pipe in terms of velocity versus 
concentration (Newitt et al., 1955) 
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Figure 2.2: Flow regimes in a horizontal pipe in terms of particle size versus 
mean velocity (Shen et al., 1970) 

 

The characterisation of the above four main flow regimes is crucial for 

design, optimisation and the control of processes involving slurry flow. 

Therefore, each regime will be explained individually in this chapter. Every 

flow regime is summarised by a schematic diagram of particle distribution 

within the vertical plane of the horizontal pipe, typical solids concentration 

profile and typical solids axial velocity profile. The author has summarised 

each flow regime, based on existing literature, as a schematic representation 

of solids flow within the pipeline. 

2.3.1.1 Homogeneous flow regime 

This type of flow is considered as fully suspended flow regime, usually at 

high velocities well above that used commercially for such slurry (say 3.5 

m/s or above) (Brown and Heywood, 1991; Pashowko, 2004). The 

investigators, such as Thomas (1964), Doron and Barnea (1993), Govier 

and Aziz (1972), have used different terms for this type of flow pattern, 

Pseudo-homogeneous, homogeneous or symmetric flow regime. However, 

there is a slight difference between homogeneous and pseudo-

homogeneous flow regime. When the solid particles are distributed evenly 

across the pipe cross section, the flow is homogeneous. Whereas when the 

solid particles approach even distribution, the flow is referred to as pseudo-

homogeneous or quasi-homogeneous. It is important to note that the true 

homogeneous flow rarely occur in settling slurries. However, the true 

homogeneous flow can easily occur in non-settling slurries, where the solid 
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particles are equally distributed between the top and the bottom half of the 

pipe. Ideally, in homogeneous (or pseudo-homogeneous) flow regime, solids 

concentration gradient and solids velocity gradient across the pipe cross-

section is absent. As the flow is single phased and generally observed as a 

vertical line. Therefore, Newitt et al. (1955) used the equivalent fluid model 

for this type of flow. The schematic presentation of this type of flow regime, 

along with typical solids volumetric concentration profile and solids axial 

velocity profile is summarised as shown in Figure 2.3. This type of flow is 

typical of the fine particles, which are all suspended in the carrier fluid and 

the slurry property approaches that of a single fluid.  

 

y
/D

y
/D

Solids 

Concentration

Solids 

Velocity

Flow Direction

 

Figure 2.3 Schematic presentation of fully suspended flow regime and solids 
concentration and velocity profile 

2.3.1.2 Heterogeneous flow regime 

This regime is the most complex flow regime, as the solid particles are not 

evenly mixed in the horizontal plane and a gradient of solid concentration 

and solids axial velocity exists in the vertical plane, as summarised in Figure 

2.4. Some particles are suspended and supported by fluid turbulence at the 

top half of the pipe, particularly the finer ones, and the coarser once either 

suspended at the bottom half of the pipe, which is referred to as intermediate 

flow regimes, or may be present in the form of a bed. This phenomenon is 

due to occurrence of minimum hydraulic gradient, as the superficial velocity 

of the settling velocity is reduced (Brown and Heywood, 1991). Wasp et al. 

(1977) found through experiments that in heterogeneous flow the solids 

have lower concentration and larger particle size compared to homogeneous 

flow. Also, Shook and Roco (1991) noted in heterogeneous flow that the 

deposition velocity depends on the particle size, particle density, solids 

concentration and the pipe diameter. Heterogeneous flows require a 

minimum carrier velocity, which casually referred to as the critical velocity. 

Heterogeneous flows are encountered in many industries such as mining 

and dredging applications (Wilson et al., 2006). 
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Figure 2.4 Schematic presentation of heterogeneous flow regime and solids 
concentration and velocity profile  

2.3.1.3 Moving bed flow regime 

In this type of flow regime, when the flow rate is low and a large number of 

coarse particles exist, the larger particles tend to accumulate at the bottom 

of the pipe and form a packed layer, which is referred to as bed. The bed 

moves along the bottom of the pipe like desert sand dunes, which is 

described by Sinclair (1962) as motion of the bed. The accumulated packed 

layer also called longitudinal waves by Thomas (1964). Many terms and 

definitions for this type of flow regime have been seen in literature, e.g. 

saltation flow (i.e. the fluid above the bed tends to move the finer solid 

particles by entrainment) by Turian and Yuan (1977) and two layer 

flow/moving bed by Lazarus and Nilson (1978). According to Ercolani et al. 

(1979) the upper layers of the bed move faster than the lower layers in a 

horizontal pipe. This is due to the difference in sizes and settling velocities of 

the solid particles forming the bed. The concentration of this layer 

corresponds to maximum, while the upper part of the pipe still contains a 

heterogeneous mixture, as summarised in Figure 2.5.  
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Figure 2.5 Schematic presentation of moving bed flow regime and solids 
concentration and velocity profile  
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2.3.1.4 Stationary bed flow regime 

As the mean slurry velocity is decreased, which unable to move all 

immersed particles, particularly the coarser ones, which have highest 

settling velocity, settle and build up the bed, whilst the lowest settling velocity 

particles are suspended asymmetrically. As the mean velocity drops even 

further, the required suspension force reduces and the bed thickens, as a 

result the lower layer of particles that is in contact with the pipe becomes 

stationary, as summarised in Figure 2.6. However, the fluid above the bed 

tends to move the finer solid particles by entrainment. This phenomenon is 

known as saltation, where dune-like forms on the upper part of the bed could 

be observed. In other words, the finer solid particles occupying the upper 

part of the bed tend to roll and tumble. Flow with saltation and asymmetric 

suspension occur just above the speed of blockage. Therefore, further 

reduction in the flow rate, increases the pressure drop quite high that is 

impossible to maintain the flow and as a consequence the pipe blocks up 

(Wilson et al., 2006, Matousek, 2005). According to Cartens (1969) and 

Govier and Aziz (1972) an asymmetric suspension above the bed could be 

maintained by decreasing the pipe diameter, which increases the mean 

velocity of the slurry.  
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Figure 2.6 Schematic presentation of stationary bed flow regime and solids 
concentration and velocity profile  

2.3.2 Transition velocities  

The transition velocities are the boundaries that split the four distinctive flow 

regimes described above. This is based on photographic evidences 

observed in the literature, at any solid’s concentration and mixture velocity 

(Abulnaga, 2002; Pachowko, 2004). The transition and boundaries between 

horizontal (or inclined) flow regimes are generally presented via a plot of the 

pressure gradient versus mean velocity of the slurry.  Figure 2.7 showing the 

typical plot of the pressure gradient versus mean mixture velocity, where the 
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main four flow regimes can be presented. Normally, the definition of 

transition velocities depends on the definition of the flow regime. Therefore, 

the terminology for the transition velocities is quite confusing. According to 

Abulnaga (2002) and Pachowko (2004) the transition velocities can be 

defined as explained below: 

1. V1: The velocity at or above which the bed at the lower half of the pipe is 

stationary. However, at the upper half of the pipe, some solid particles 

may move either by saltation or suspension. It is important to mention that 

little work has been carried out within the boundary of this flow regime, 

and that is due to the fact that the risk of blockage is dominant in this 

region. 

2. V2: The velocity at or above which the solid particles are transported by 

suspension at the upper half of the pipe and the coarser particles forming 

a moving bed. 

3. V3: The velocity at or above which all solid particles are transported in 

asymmetric suspended form. 

4. V4: The velocity at or above which all solid particles are fully suspended 

and transported as a symmetric suspension. 

 

 

Figure 2.7 Showing transitional velocities on a typical plot of the pressure 
gradient versus mean mixture velocity (Abulnaga, 2002) 
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It is important to note that there are many and different definitions in the 

literature for V3, as a result this creates a great confusion. Zandi and 

Govatos (1967); Vocadlo and Charles (1972); Ercolani et al.(1979); Oroskar 

and Turian (1980); Davies (1987) and Turian et al. (1987) used the term 

“Critical Velocity”, which was defined by them as the velocity below which 

deposited particles exist. Whilst Bain and Bonnington (1970); Stevens and 

Charles (1972); Kazanskij (1979), Graf et al. (1970), Doron and Barnea 

(1996) used this transition velocity as “Critical Deposit Velocity”,  which was 

defined as the transition velocity between deposit and non-deposit flow 

regime. “Deposition Velocity” was used by Shook and Roco (1991) and they 

defined it as the limit velocity at which the stationary bed is formed. In 

addition, “Deposit Velocity” was used by Parzonka et al. (1981) and Wood 

(1979), who used the same definition as that of Shook and Roco (1991). In 

some other cases the term “Limit Deposit Velocity” was employed by Wilson 

et al. (1972). 

However, despite the fact that different terminologies used for this transition 

velocity, the prevention of this minimum velocity is necessary to avoid partial 

pipe blockage, which affects the efficiency of pipeline operation and 

enhances pipe wear. 

2.3.3 Available models to determine transition velocities  

The transitional velocities could be calculated via the correlations found in 

the literature Govier and Aziz (1972); Shook and Roco (1991); Abulnaga 

(2002) and Wilson et al. (2006). It was also found that the limit deposit 

velocity has been the most investigated, as it plays an important role in the 

design of slurry pipeline. 

The transitional velocity V1 is mostly interesting in research and it is 

obviously not used in the operation of slurry line, as it is associated with pipe 

blockage. 

While the transitional velocity V2 can be used to determine the height of the 

bed and derivation of the stratification ratio. Normally, pressure 

measurements of the pressure gradient are used to determine the transition 

velocity V2 calculated from the pressure measurements of the pressure 

gradient. Wilson (1970) developed a model for the early motion of solid 

particles at the velocity V2. He assumed that a hydrostatic pressure is 

influenced by the solid particles on the pipe wall, and then he proposed the 

following equation:  
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(2.1) 

 

The transitional velocity V3, or sometimes called deposition velocity (VD) or 

critical velocity (Vc), is extremely important, as the pressure gradient is at the 

minimum. In other words, it is the minimum slurry velocity that is required to 

prevent the formation of the bed on the pipe invert and pipe blockage. The 

knowledge and study of this transitional velocity is very important for the 

design and operation of the slurry pipeline. Therefore, a detailed review of 

the literature regarding the works has been conducted on this transitional 

velocity will be carried out.  

According to Vocaldo and Charles (1972) the operating velocity in settling 

slurry transport in horizontal pipes should be 1.3 times greater than the 

critical velocity. Wilson (1942) claims that this transitional or critical velocity 

occurs at minimum pressure gradient, as shown in equation 2.2, which is the 

first equation of critical velocity and gathers some important parameters of 

the system, such as pipe diameter, solids concentration and particle density. 

Then Wilson (1945) brought another idea that the critical velocity occurs just 

before the pipe blocks, which is not necessarily true. 

 

 

   
           

   

         
 

 

(2.2) 

Durand (1952) and Durand and Condolios (1953) conducted a massive 

investigation on the critical velocity and derived a correlation for uniformly 

sized sand and gravel, which is shown in equation 2.3.  

 

 

              
       

  
  

   

 

 

(2.3) 

However, there is a limitation to Durand’s correlation, and that is due to 

Durand’s velocity factor FL, which can be determined by a graph, Durand’s 

velocity factor versus particle size, for single or narrow graded particles. 

Since most slurry contain a mixture of different size particles, Durand’s 

velocity factor has been refined and modified by a number of authors, such 
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as Wasp et al. (1977), who represented the critical velocity in terms of 

modified factor F'L including a ratio between the particle diameter and the 

pipeline diameter , as shown in equation 2.4. 

 

 

        
      

     
  

 
   

 
  

  
 

   

 

 

(2.4) 

Moreover, Spells (1955) conducted a study, where he used fine particulate 

slurry in horizontal pipe and developed a correlation to determine the critical 

velocity, which he called minimum velocity, in terms of particle size, solid 

and liquid density, slurry density and pipe diameter, as shown in equation 

2.5. He also defined the critical velocity as the minimum velocity required to 

prevent the deposition of the particles at the bottom of the pipe. 

 

 

  
                 

   
  

 
     

      

 

(2.5) 

Spells equation 2.5 created a great confusion regarding the particle size, 

which was presented as d85, as a result it was believed that the correlation 

is only applicable to a narrow range of slurry Reynolds number, but d85 

could represent colloidal range or coarse particles. Despite the fact that 

Smith (1955) recommended that in pressure and critical velocity correlations 

the particle size should be represented by weighted mean diameter.   

Newitt et al. (1955) developed a correlation for the transitional velocity V3 

between heterogeneous flow regime and moving bed (saltation), or critical 

velocity, in terms of terminal velocity of particles, as shown in equation 2.6. 

 

 

        

 

(2.6) 

It can be noticed that Newitt’s equation is very simple, although it was used 

as the basis for developing many models, such as that of Cairns et al. 

(1960), as shown in equation 2.7, which is applicable to particle size 

between 242 μm and 380 μm at low solids concentration, specific gravity up 

to 2.6 and pipe diameter not more than 50 mm. 
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(2.7) 

The transition velocity V4, which demarcates the boundary between the two 

flow regimes Heterogeneous (asymmetric) and pseudo-homogeneous 

(symmetric), has also been investigated by some investigators, such as 

Newitt et al. (1955), Spells (1955), Govier and Aziz (1972). Newitt et al. 

(1955) developed a correlation, in which the transitional velocity V4 is 

determined in terms of terminal velocity, as shown in equation 2.8. 

 

 

             
    

 

(2.8) 

Whilst Govier and Aziz (1972) improved Newitt’s correlation by applying 

Newton’s law and rewrote the equation in terms of drag coefficient (CD), 

which is 0.44 according to Newton’s law, as shown in equation 2.9.  

 

 

        
 

 
 
    

   
     

 
  

 

(2.9) 

Goniewr and Aziz (1972) also derived equation 2.10 by analysing the work 

of Spells (1955), which was done on solid particles with a diameter between 

80 μm and 800 μm (mesh 180<dp<20). 

 

 

        
       

       
     

 

(2.10) 

It is important to take the notice that the above correlations for the 

transitional velocities, between heterogeneous and pseudo-homogenous 

flow patterns, ignore the influence of solid’s concentration, but rather provide 

order of magnitude of V4. 

The transitional velocities have not only been investigated in a horizontal 

pipes, but also in pipe bends, such as the one of Giguère et al. (2009), who 

studied the influence of pipe bend between the downward and horizontal 

flows on the transitional velocities between slurry flow regimes and 

introduced fantastic results. Their measurements indicated that flow is 

homogeneous directly after the bend outlet and that the transition velocities 



- 24 - 

  

decreased after the bend outlet. This indicates that the slurry velocity 

decreases after the bend, which in itself decreases the transition velocity 

and the distance where these transition occur. They also concluded that the 

solid’s concentration can influence these transitions, whilst there is little 

effect of high concentration on the transitions on downward bend. 

2.3.4 Pressure drop in slurry pipeline 

Pressure drop, or sometimes known as pressure gradient or hydraulic 

gradient, is the most important parameter for slurry transport in mineral and 

many industries handling solid-liquid flows. Since the pressure drop 

influences the power consumption and the whole economics of the slurry 

transport, therefore the slurry pipeline design is based on optimisation of 

pressure drop (Lahiri, 2009). 

The first real equation, for calculating the pressure drop was first generated 

by Howard (1939), who used his data in combination with that of Blatch 

(1906) and Hazen and Hardy (1906). Equation 2.11 shows Howard’s 

equation, which he used for calculating the head loss: 

 

 

       

 

(2.11) 

However, his equation was not taken as a universal equation that could 

apply to other systems. Wilson (1942) came and divided the pressure drop 

into two components, pressure drop due to fluid along and pressure drop 

due existence of the solid particles.  

In addition, numerous investigators, such as Wilson (1942); Durand and 

Condolios (1952); Shook and Daniel (1969); Turian and Yuan (1977); Wasp 

et al. (1977); Gillies et al. (1999); Kaushal and Tomita (2002) and Lahiri 

(2009), have attempted and proposed many empirical, semi-theoretical and 

theoretical correlations related to the pressure drop along with some other 

flow parameters, such as solid’s density, liquid’s density, particle size, solid’s 

concentration, solid’s velocity, pipe diameter and slurry viscosity. However, 

these correlations are associated with some rate of error, as shown in Table 

2.2 in terms of Average Absolute Relative Error (AARE). Nevertheless, a 

considerable reduction in the prediction error can be noticed. 
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Table 2.2 Performance of difference correlations for pressure drop (Lahiri, 
2009) 

Authors AARE (%) 

Wilson (1942) 49.51 

Durand and Condolios (1953) 36.53 

Newitt et al. (1955) 93.43 

Zandi and Govatos (1967) 50.02 

Shook and Daniel (1969) 34.50 

Turian and Yuan (1977) 39.97 

Wasp et al. (1977) 26.68 

Gillies et al. (1999) 22.31 

Kaushal et al. (2002) 22.01 

Lahiri (2009) 12.70 

 

Pressure drop is different from one orientation to another, for example 

pressure drop in horizontal flow is slightly different to that in vertical flow or 

inclined flow. In horizontal flow the total pressure drop is composed mainly of 

frictional energy dissipation, whereas in vertical flow is due to static head 

contribution. In a straight horizontal pipeline, without any pipe fittings or 

joints, which is the source of energy dissipation, the pressure drop along the 

tested pipeline length is equal to the pressure drop due to friction. In other 

words, the total pressure drop in the mixture flow is due to both frictional 

head losses, carrying liquid and presence of solid particles (Matousek, 

2002). It is worth to mention that the presence of solid particles, especially 

the coarser ones with greater density, increases the overall pressure drop. 

On the other hand, if the same horizontal pipe section is inclined, the total 

pressure drop changes significantly. The change in the total pressure 

reflects considerably in both inclined flow directions, ascending and 

descending. Relative to horizontal flow in the same section, the total 

pressure drop increases in the ascending flow and decreases in the 

descending flow. This change in the total pressure is due to hydrostatic 

pressure drop as a result of a change of a geodetic position of one end of 

the pipe section relative to the other end, Matousek (2002).   
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2.3.5 Physical mechanisms governing settling slurry flow 

When solid particles in a carrier liquid is transported within a pipe, they are 

acted upon by several forces, which are resulted from particle-particle 

interaction, particle-liquid interaction and particle-pipe wall interaction. The 

forces, which are resulted from particle-particle interaction, are transmitted 

as an inter-particle stress. However, when a granular bed is formed (i.e. the 

particles are in continuous contact), the Coulombic stress is created on the 

particles, while Bagnold stress is created on the surface of the granular bed 

as a result of sheared granular bed and the particles move in a sporadic 

fashion. On the other hand, the forces, which are resulted from particle-liquid 

interaction are buoyancy force, drag force and lift force, and if the carrier 

liquid is turbulent, then the turbulent diffusive force is generated (Bagnold, 

1954; Wilson, 2006).  

A settling slurry flow, in a horizontal or inclined pipe, normally tends to 

stratify. In other words, at the velocity used during the practical operations, 

the particle distribution across a pipe cross section is non-uniform. Under 

these circumstances the flow can be fully or partially stratified. If all solid 

particles form the granular bed (stationary or sliding), then the flow is fully 

stratified, and if a portion of the solid particles form the granular bed (where 

particles are virtually in permanent contact with each other) and the 

remaining particles are suspended within carrier fluid, then the flow is 

partially stratified. 

The previous description of particle motion was explained by Bagnold 

(1956), who developed a concept that the solid particles are supported by 

two major physical mechanisms: fluid suspension and inter-granular contact. 

For the first mechanism, Wilson et al. (2002) observed that the particles are 

suspended in the carrier fluid is due to turbulent diffusion. 

Obviously, settling slurries composed of fine and coarse particles. The 

friction behaviour of suspended coarse particles differs from that of fine 

particles. The suspended coarse particles interact with each other and the 

pipe wall. It is important to mention that the contact is not permanent, but 

rather sporadic, which is due to turbulent dispersive action and collision 

dispersive action. In other words, the solid particles are dispersed to all 

directions by turbulent eddies and also the particles are collided with the 

other particles of different velocities and impelled in the direction of the wall 

(Matousek, 2005; Wilson, 2006). According to Brown and Heywood (1991) 

the fluid suspension mechanism can come to play, when the velocity of 
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turbulent eddies is greater than the settling velocity and by further increasing 

the mean velocity the more solid particles is suspended by the fluid force. 

In the case of fully stratified flow, it can be noted that the settling velocity of 

the solid particles is greater than the velocity of the turbulent eddies, 

therefore the particles fall and are supported by granular contact rather than 

fluid suspension. These particles are designated as contact load, in either 

cases stationary or moving bed (Wilson, 2006). The motion of the particles 

within the contact load can be analysed by applying the force balance, which 

was first used by Wilson (1970) and Wilson et al. (1972), then it was latter 

used to determine the limit deposition velocity for fully stratified flow.   

2.3.6 Flow regime recognition 

Since the settling slurry flow is a very complex flow and the coarser solid 

particles tend to settle and form a bed at the pipe invert, various flow 

regimes (or patterns) may occur, which depends on several parameters, 

such as solid’s concentration, particle size, particle and liquid density, 

mixture velocity and pipe diameter. It is worth pointing out that the common 

four flow regimes, described in the previous sections, are mainly dependent 

on mean slurry velocity. Therefore, the recognition of these flow regimes, 

which would exist in the pipe, for any given set of operational condition, is 

very important for design and operation of pipeline conveying settling 

slurries. Also, since there are different pressure drop correlations for 

different flow regimes, it is significantly important to apply an appropriate 

pressure drop correlation for the given flow regime (Lahiri, 2009). Moreover, 

the recognition of these flow regimes is similarly essential for optimisation 

and correction of flow meters, which are flow regime dependent (such as 

ERT). 

Over the years, since 1953, researchers have attempted to establish various 

methods to characterise and recognise the flow regimes encountered in the 

pipeline. Pressure drop measurement has been one of the most common 

methods that have been adopted to recognise flow regimes. Some of these 

researchers are Newitt et al. (1955), Doron and Barnea (1993, 1996), Doron 

et al. (1997), Gillies et al. (1999), Kaushal and Tomita (2002), Matousek 

(2002), Kaushal et al. (2005). 

Another method has been used by some researchers, based on signal 

analysis, such as Albino et al. (2007). They have depended on different 

output signals, such as passive acoustic signals, to identify the occurring 

flow regimes. 
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A glance of the literature reveals that several correlations or techniques have 

been reported regarding the recognition of settling slurry flow regimes. 

However, it can be noticed that each of them more or less associated with 

some degree of limitations and cannot predict the prevailing flow regime 

over a wide of range of conditions, such as solids concentration, particle 

size, slurry velocity, pipe diameter and configuration etc. Therefore a novel 

technique is proposed in this study (Chapter 7), through which the prevailing 

flow regime is identified regardless the condition, in which the flow operates, 

such as physical properties, pipe diameter etc.  

Usually the flow regimes are recognised by either subjective operator 

judgements, which is done by visual inspections, although in some cases an 

analysis of the spectral content is performed, where the desired information 

cannot be extracted visually (Abulnaga, 2002), or by objective indication by 

representing the boundaries between the flow regimes via flow regime 

maps. Early investigators, such as Newitt et al. (1955) and Durand and 

Condolios (1953) have carried out extensive studies to investigate the 

detailed features of the flow. Their results are often displayed in the form of 

flow regime maps. These flow regime maps represent the boundaries 

between various flow regimes under different conditions, though these 

boundaries are not distinctive lines, but rather poorly defined transition 

zones. The transition from one flow regime normally occurs, as the flow 

regime becomes unstable and causes transition (Brown and Heywood, 

1991). However, there are limitations and problems with these flow regime 

maps that they are often dimensional and cannot be applied on a different 

operational condition. Despite the fact that some investigators have tried to 

generalise these flow regime maps, so they can be applied to different fluids 

and pipes of different sizes, but they could not achieve total generalisation, 

as most flow regime maps represent several transitions.    

Turian and Yuan (1977) also have represented some flow regime maps in 

terms of mixture velocity and delivered concentration. Doron and Barnea 

(1993, 1995 and 1996) carried out an analysis as an extension of Doron et 

al. (1987) for the two layer model, where they employed three layer model 

(stationary bed, moving bed and heterogeneous mixture) for the drawing of 

flow regime maps, which is in term of slurry velocity versus solids velocity, 

as shown in Figure 2.8. It can be seen on the map that the two regimes, 

heterogeneous and pseudo-homogeneous, have not been distinguished, but 

rather explained only in one term “Fully suspension”. Their flow regime maps 
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used to represent the flow patterns and the effect of the operational 

variables on the transitional lines.  

 

 

 

 

 

 

Figure 2.8 Superficial velocities flow pattern map (Taken from Doron and 
Barnea, 1996) 

 

Albino et al. (2007) used an acoustic probe to determine the flow regimes in 

horizontal pneumatic transport of fine powders. The method was based on 

extracting the information, regarding the flow behaviour, by identification of 

specific frequencies. In other words, the strategy was based on determining 

the flow regimes using acoustic signals.  

More recently, Giguère et al. (2008a) adopted a strategy to analyse slurry 

flow of regimes in pipes. The strategy is the direct interpretation of ERT 

measurement to identify homogeneous and heterogeneous flow without 

using image reconstruction. They used ERT to visualise slurry flows in 

horizontal and vertical pipe (up to 20% v/v and velocities up to 2.2 m/s). The 

solid concentration was estimated using direct resistance measurement. The 

slurry (mixture) used in the experiment consisted of tap water and non-

conductive glass beads (of 100 μm in diameter and density of 2500 Kg/m3). 

Further experiments were carried out by Giguère et al. (2009), who used 

ERT and investigated the effect of pipe bend on the transitional velocities.    

Three layer model = —-— 

Turian et al., (1987) = - - - - 

Experimental data (Doron & Barnea, 1995) = ◦◦◦◦ 

[ ρs=1240 Kg/m3, D=50 mm, dp=3 mm] 
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Besides, Lahiri (2009) has successfully applied Artificial neural Network 

(ANN), using Support Vector Machine (SVM) modelling to identify different 

flow regimes in a horizontal pipe, based on a data bank of 800 

measurements in the literature. Lahiri’s method has shown a great success 

and advantages, as there is no need to calculate some parameters, such as 

the drag co-efficient (CD) and some empirical co-efficient, settling velocity 

and Froud number. The method is based on evaluating the flow regime 

using some basic flow data, such as pipe diameter, solid’s concentration and 

fluid velocity. Then after evaluation the correct flow regime, an appropriate 

correlation can be used to determine the pressure drop. His method can 

deliver only 1.5% error, unlike Turian and Yuan (1977) correlation, where the 

delivered accuracy is 25% error.  

2.4 Vertical slurry flow 

As previously mentioned, in vertical slurry flow, no granular bed is formed 

and no dunes can be observed and it is rather straight forward flow. The 

solid particles are fully suspended  with no component of the submerged 

particle acting on the pipe wall and tend to have a symmetrical distribution 

across the pipe cross-section, (Matousek, 2001; Clift & Clift, 1981, Munir, 

2011, Wilson et at., 1979, Wilson, 2004). The force of the submerged 

particle is acting downward and resists the flow of particles. As a result the 

slip velocity occur between the solid particles and the carrier liquid. 

Normally, the difference between the mixture velocity and the velocity of the 

solid particles is smaller than hindered settling velocity of the solid particles. 

If the particles are less than 150 µm, then the whole mixture behaves as a 

liquid and The Equivalent Liquid Model can used for friction loss analysis 

(i.e. the flow can be considered as pseudo-homogeneous). However, if the 

particles are between (200 µm-2 mm), then these particles cannot directly 

exhibit the liquid like friction, as the particles are large enough and cannot be 

trapped within the laminar sub-layer. As a result, the particles migrate away 

from the pipe wall towards the centre of the pipe (Barigoua, 2003; Wilson, 

2006). 

Shook and Bartosik (1994) carried out an investigation on vertical slurry flow 

and claimed that the behaviour of solid particles to be due to Bagnold 

dispersive stress, which acts against the pipe wall. In the meantime, they 

concluded that, in vertical upward flow, the solids effect due to Bagnold 

stress for flowing medium sand can be negligible. On the other hand, for 

flowing coarse particle sand, the Bagnold stress on the pipe wall can be 
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generated as a result of mutual collision between the particles and the pipe 

wall, where the carrier liquid acts on the particles and repels them from the 

pipe wall due to liquid lift force. Also, Worster and Denny (1955) has 

investigated the aspect of pressure loss in vertical slurry flow and concluded 

that the solid particles does not affect the pressure loss due to hydraulic 

friction. 

An earlier analysis of vertical slurry flow was carried out by Hagler (1956), 

who proposed a device (U-tube), which has been studied by several 

researchers such as Brook (1962), Clift and Clift (1981). The schematic 

drawing of the device is shown in Figure 2.9. It is worth mentioning that the 

analysis carried out by Clift and Clift assumed to be more complete than the 

others. The device is very simple and used for slurry flow rate measurement. 

It consists of two vertical tubes, ascending and a descending, with four 

elbows and a pair of pressure taps on each vertical line. The mean slurry 

velocities of both branches (upward and downward) are equal, thus the wall 

shear stress are also the same. Based on the analysis carried out by Clift 

and Clift (1981), the In-situ solids concentration is approaching the delivered 

solids concentration (i.e. their values are close, but not identical). However, 

they concluded that as the difference between both values is subtle and can 

be considered as negligible. Therefore, the delivered solids volume 

concentration can represent the in-situ solids volume concentration within a 

vertical pipe. 
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Figure 2.9 Inverted U-tube device for slurry flow rate measurement 
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2.5 Inclined slurry flow 

The prediction of the flow characteristics is practically important in inclined 

pipes. Sometimes pipe inclination is unavoidable, especially for a long 

distance overland pipeline, due to naturally occurrence of dunes and hills. 

However, for any inclined pipeline design, the restriction in the inclination 

angle should be followed, which is minimisation of the inclination angle, 

particularly in inclined upward flow. This is due to the fact that both, pressure 

drop and deposition velocity are significantly affected by the angle of 

inclination (Doron and Barnea, 1997). As Wilson et al. (2006) indicate that, 

compared to horizontal flow, upward inclined flow tends to require higher 

velocities so as to avoid deposition velocities. In coarse particle flows this 

phenomena appears to be of greatest significant. 

Despite the importance of inclined flow in pipelines, it can be noticed from 

literature that very little analysis have been attempted. One of the reasons is 

due to difficulty in building experimental facilities, since in a flow loop, where 

an inclined section is included, long pipes are required to investigate the fully 

developed flow (Doron and Barnea, 1997). Lucas et al., (1999), investigated 

the flow of plastic bead particles in an inclinable flow loop with 2.5 m test 

section. Although they achieved a good estimation of solids volume fraction 

and solids axial velocity, the scale of their facility could not represent an 

industrial scenario. Since an inclined pipeline section in industry consists of 

a large and long section, through which a murky slurry with particles of 

different sizes and shapes are flowing.    

An experimental work was conducted by Matousek (1996), who showed a 

strong influence of pipe inclination on slurry flow stratification. He used a 150 

mm diameter pipe with an inclination between -35° and +35° and four 

slurries, a medium sand, two coarse sands and a fine gravel. He employed a 

collimated beam of γ-rays to measure concentration profiles. He observed 

that the concentration profiles were blunter (less stratified) for rising 

inclinations and more stratified for descending inclinations, as shown in 

Figure 2.10. Through this, Matousek (1996) developed a two layer model for 

inclined pipes. The concept of two layer bipolar flow is depicted in Figure 

2.11, and for further detailed analysis the reader is directed to (Matousek, 

1996). 

The fundamental equations for the two layers by Matousek are: 

For the upper layer: 
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(2.12) 

For the lower layer: 

 

 

         

  
 

                            

  
 

 

(2.13) 

Fw is the submerged weight of the sediments in the lower layer. 

The force balance for the whole pipe is then: 

 

 

         

  
 

                            

 
 

 

(2.14) 

Matousek indicated that his approach was different to that of Shook and 

Roco (1991), who did not include the pipe axis component of the submerged 

weight (due to buoyancy)       . He also claimed that at pipe inclinations 

close to the angle of internal friction of the transport solids, the behaviour of 

solid particles was different for upward and downward inclination, where the 

solids have the same concentration and velocity. It was noted that the 

difference was significant with coarser particles than the finer ones and the 

deformation of the lower layer was due to the submerged weight of the 

solids at the bottom of the pipe.  

Although the two layer model is very simple and can be applied to any set of 

operational conditions and its results are quite satisfactory, it is associated 

with some limitations, which lacks the ability to predict accurately the 

existence of stationary bed at low flow velocities.  

In this case applying two-layer model for pressure drop can lead to 

unsatisfactory prediction due to reduced reliability of the model. As a result, 

Doron and Barnea (1993) in an attempt to solve this problem, introduced 

three-layer model, the concept of which is illustrated in Figure 2.12. 
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Figure 2.10 Concentration profile of ascending and descending inclined sand 
water flow at 3.5 m/s, (Matousek, 1996) 

 

 

Figure 2.11 Concept of the two layer bipolar flow of slurry at an angle of 
inclination, (Abulnaga, 2002) 

 

There are three flow regions in three-layer flow: a heterogeneous mixture at 

the top of moving bed, a moving bed above a stationary bed and a stationary 

bed over the pipe wall. However, as this thesis will not detail whole analysis 



- 35 - 

  

of three-layer model, therefore, for further detail of the model, the reader is 

referred to Doron and Barnea (1993).   

Solids Bed

Dispersed Layer

Suspended Layer

y
/D

Solids Concentration
 

Figure 2.12 Assumed concentration profile in three layer model 

 

Since both models assumes no slip velocity, , the author believes that both 

models are associated with serious limitations. As the solid particles tend to 

deposit at the bottom of the pipe and form a strata, then this suggests the 

existence of slip velocity between the two phases. 

2.6 Deposition velocity in horizontal and inclined flow 

As previously mentioned, the critical transition velocity (V3) (or deposition 

velocity) in either horizontal or inclined flow defines the lowered of the range 

of desirable operating velocities. The great significance of coarse-particle 

flow in upward inclined pipeline is that, compared to horizontal configuration, 

it requires higher throughput velocities, so as to avoid deposition (Wilson, 

2006). 

Through an extensive literature survey, it was found that the approach of 

Wilson and Tse (1984) is a useful tool to estimate the deposition velocity in 

an inclined pipe. The concept of this method is based on estimating the 

deposition velocity for horizontal flow first, then extending the analysis to 

inclined pipes, based on the difference in Durand factor between the two 

configurations (horizontal and inclined). The deposition velocity for horizontal 

flow can be estimated from equation 2.4. Then if the analysis is extended for 

inclined flow, it is appropriate to present the deposition velocity or Durand 

factor FL (or ΔD) and neglecting the ratio between the particle diameter and 

the pipeline diameter, as it is a very small value: 
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(2.15) 

From the above equation, it can be noticed that the Durand factor is 

proportionally related to the deposition velocity. In other words, The Durand 

factor increases with increase of deposition velocity. Comparing to horizontal 

flow, every increase in inclination angle would produce an increase in 

deposition velocity as well as Durand factor. Wilson & Tse (1984) establish a 

method to give adequate prediction of the change of deposition velocity for 

different angles of inclination. Figure 2.13 can be used for estimation of the 

difference in Durand factor (which is  D on the graph), plotted against the 

angle of inclination θ. 

 

 

Figure 2.13 Effect of inclination angle on Durand deposition parameter, after 
Wilson & Tse (1984) 

 

The deposition velocity is first estimated for horizontal flow, and then the 

difference in Durand factor  D can be obtained for the required angle θ. The 

difference in deposition velocity between the two configurations can be 

calculated using the following equation: 

 

               

     
  

 
   

 

 

(2.16) 
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By adding the above quantity to the value found for the horizontal case, the 

deposition velocity for the inclined case can be determined. 

2.7 Conclusions 

This chapter critically reviewed the literature concerning the settling slurry 

flow in different flow orientations, horizontal, vertical and inclined. The 

previous work regarding the flow regimes that occur as a result of particle 

settling tendency and the recognition of each of them, pressure drop in slurry 

pipelines, the physical mechanisms governing the flow and deposition 

velocity have been extensively reviewed. It is concluded that, despite a 

significant technical progress in the field, our knowledge concerning the 

behaviour of solids and liquids is still limited. It is also concluded that all the 

models and techniques that have been reported in the literature have their 

own limitations, due to complexity and poor understanding of solid-liquid 

flow. This clearly a major effect on the aspect of slurry flow metering. 

Therefore, a good understanding of the underlying phenomena is crucial for 

development and optimisation of slurry flow meters, which play an important 

role in controlling the whole flow system. 
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Chapter 3 

Review of slurry flow measurement and visualisation 

techniques 

This chapter presents a review of flow measurement and visualisation 

techniques widely employed for  slurry applications. It will broadly highlight 

the techniques that are commercially available, while the main emphasis is 

placed upon the Electrical Resistance Tomography technique. 

3.1 Introduction 

The measurement and visualisation of slurry flow in pipeline is a challenging 

task due to complex nature of the flow, abrasive and viscous nature of the 

material. There are some experimental techniques that have been 

developed for measuring slurry flow, some of which are commercially 

available and the others still at the stage of development and purely used for 

research in laboratory tests (Brown and Heywood, 1991; Pachowko, 2004; 

Mohinder and Nayyar, 2000). However, this work presents only the solutions 

that are commercially available for measurement of slurry flow.  

The choice of a correct instrument or method depends on a number of 

factors, such as properties of the solid particles (size, shape and 

abrasiveness), typical fluid characteristics (pressure, temperature, density, 

viscosity and conductivity. Also depending on the application, in which the 

metering is performed, further parameters have to be considered, such as 

accuracy, repeatability, calibration, pipe geometry, ease of maintenance and 

the effect of up and down stream pipeline on the meter.  

This chapter is split into three main sections. Since phase volume fraction 

and phase velocity inform about the internal structure of the flow, therefore, 

the first section is devoted to a review of available techniques used for 

measurement of phase fraction and phase velocity. Also the detailed 

discussion will be confined to only the meters that are used in this study, 

such as Electromagnetic Flow meter (EMF), Coriolis mass flow meter and 

Ultrasonic Doppler Velocity Profiler (UDVP).  It is important to note that no 

reference regarding Coriolis is given in this chapter. A discussion over 

Coriolis mass flow meter can be found in Chapter 6. The second section 

highlights the widely used techniques for visualisation and imaging of flow. 

The last major section covers the Electrical Resistance Tomography system 
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from working principle and sensing strategy to the limitations, along with 

previous work carried out by the others.   

3.2 A review of phase fraction and phase velocity 

measurement 

The mechanism of solid liquid transport in slurry pipelines is dependent on 

several flow parameters, of which the most important are phase fraction and 

phase velocity. These two parameters also determine the prevailing flow 

regime within the pipeline. Therefore, it is vital that the operator continuously 

monitor these two parameters, so as to prevent a potential line blockage at 

an earlier stage. In other words, these two parameters are the governing 

parameters, which can determine the internal structure of flow, and if the 

internal structure of the flow is known to the operator, then control limits can 

easily be maintained.  

A number of commercially available techniques for measurement of these 

two parameters are employed and mounted on slurry pipelines of many 

industries such as chemical, food, mining, dredging etc. This section reviews 

seven measurement techniques, which are commonly used for solid-liquid 

flow. Besides, they are used in single and multiphase flow measurements.  

3.2.1 Differential pressure technique 

Calculation of fluid flow rate, based on pressure loss across a pipe 

restriction, may be the most common flow measurement technique in 

industrial applications. The pressure drop across a section can be generated 

by a wide variety of geometrical restrictions, which have been characterised 

over the years.  

The theory of differential pressure devices is based on Bernoulli relationship. 

Restrictions in cross sections increase in fluid acceleration, and the energy 

of this acceleration is obtained from the fluid’s static pressure. As a result the 

pressure drop occurs in the section. Once the pressure differential, created 

by the device, is known, then the velocity of the flow can be obtained by the 

following equation:  

    
 

  
 
   

 (3.1) 

It is worth pointing out that only two types of pressure differential devices 

can be applied for slurry flow, which are venturi, flow tube and segmental 

wedge. Nevertheless, the most commonly used for slurry tend to be venturi, 



- 40 - 

  

due to the fact that most of pressure drop can be recovered in venturi flow 

meters. As venturi is the most common pressure differential device for slurry 

measurement, then no further detail will be given to the other types of 

differential pressure elements. 

The venturi meter consists of an approach section, which has the same 

internal diameter as the system pipeline, and a conical nozzle section 

followed by a short parallel throat and a conical diverging section, which 

rejoin the venturi system to the system pipeline. The rejoin will be gradually 

by returning the internal diameter up to that of the line system, as shown in 

Figure 3.1. 

 

 

Figure 3.1 Showing components of a short-form of a venturi tube (taken from 
www.omega.co.uk) 

Although the initial cost of venturi meters are high, the total cost of 

ownership can still be satisfactory, due to savings in installation, operating 

and maintenance costs. Venturi has been used 100 years ago, and it design 

and improvement still continues. There are many companies out there 

producing a high accuracy venturi for a variety of applications, including 

slurry, such as WYATT ENGINEERING (wyattflow.com), who produces 

venturi tubes with accuracy flow measurement of ±0.50 for standard meters 

(without calibration).  

Experimental and theoretical studies have been carried out by many 

researchers to assess the ability of venturi meter on various flow 

measurements. For example, Shook and Masliyah (1974) and Shook (1982) 

carried out experiments on stratified slurry flow using venturi meters. They 

concluded that venturi meters can be reliably used, without any calibration 

for measurement of non-stratified coarse particle slurry flows. They also 

concluded that for the other flow regimes, the effect of pipeline conditions 

must be well investigated. However, using venturi for stratified or partially 

stratified slurry flow could be a potential for pipeline blockage.  

http://www.omega.co.uk/
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3.2.2 Probes 

Probe techniques are methods of making local measurements such as 

phase volume fraction and phase velocity. Since the local concentration of 

particles is reflected by the local resistively of the slurry, then conductivity 

probes can be used to measure the local concentration and solids axial 

velocity in slurries, as in the case of Nasr-El-Din et al. (1987), who used a 

four-ring conductivity probe. Usually the resistively of the fluid is measured 

by two pairs of electrodes contained along the body of the probe. 

This technique has been used on a wide range of slurries and shown a 

potentially useful tool to measure volume fraction and velocity (MacTaggart 

et al.1993; Lucas et al., 1999 and Liu et al. 2007). However, the local 

conductivity probes are considered as an intrusive and invasive technique, 

therefore, it is not really favoured by many researchers.  

3.2.3 Electromagnetic Flow Meter (EMF) 

Electromagnetic flow meters have been used for several decades and based 

on the principle of Faraday’s conduction (Wang et al., 2007). The industrial 

interest in this type of flow meter grew in the 1950s, (Baker, 2000). 

Nowadays, it is exclusively applied in industry to a variety of flows, 

particularly multiphase flow, in which there is a high contrast between the 

conductivity of the two phases (continuous and dispersed). The continuous 

phase is often the high conducting material, such as water, whereas the 

dispersed phase is often the low conducting material, or may even be totally 

insulators, such as sand in slurry flow, oil, gas etc. (Brown and Heywood, 

1991 and Baker, 2000). Electromagnetic flow meter is the most widely used 

meter for slurry measurement, due to the advantage that it offers, which is 

explained in the next sections. 

Figure 3.2 showing the arrangement of an electromagnetic flow meter. The 

electromagnets, two electrodes and electronic circuitry are mounted on a 

flow tube. The electromagnets are positioned on the outside of the flow 

element. However, the two electrodes are mounted opposite each other in 

the wall of the flow tube and are in direct with the fluid. The fluid flows into 

the circular cross-sectional and a uniform magnetic field is generated across 

the pipe by the pair of electromagnetic. A voltage is induced into the fluid in 

a direction at right angles to the magnetic field. The voltage signal picked-up 

by the two electrodes, is conditioned and converted to a flow rate (or 

velocity) (Baker, 2000 and Brown and Heywood, 1991).  
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Figure 3.2 Showing the arrangement of the electromagnets and pick-up 
electrodes (Modified from Baker, 2000) 

It is clear that the tube must be made from a non-magnetic material, so that 

the magnetic field can penetrate the tube. Electromagnetic flow meters could 

also be applied to a media with low conductivity. This can be done by using 

in direct capacitive coupling to extend the operating range of EMF. 

The theory of Electromagnetic flow meter belongs to the subject of Magneto-

hydrodynamics, which is the combination of the classical disciplines of fluid 

dynamics and electromagnetism (Wang et al. 2007). 

As the fluid flowing through the tube, mentioned in Figure 3.2, perpendicular 

to the magnetic field, with a velocity V, then a voltage is generated between 

its ends with a value of BlV. Where B is the magnetic flux density and l is its 

length. The voltage distribution inside the pipe can be given by a Poisson 

type equation, of the following form, which is given by Shercliff (1962) and 

Bevir (1970): 

 

             

 

(3.2) 

However, Shercliff (1962) derived another equation, based on the above 

equation, for determining the voltage between the two electrodes, as shown 

below: 
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(3.3) 

Where, B is the magnetic flux density (in tesla), D is the diameter of the tube 

inside the EMF (in m) and Vm The fluid mean velocity in the tube (in m/s). 

Shercliff’s equation is the basic equation for electromagnetic flow meter and 

its validity is based on the two assumptions, the magnetic field is uniform 

and the velocity profile is asymmetric. These two criteria will certainly impose 

limitations in the theory. Shercliff (1962) then suggested a mean of 

predicting the effected distorted profiles by using, as he called, a weight 

function.  

A weight function describes the combination of the velocity, in different parts 

of the flow meter cross-section, to the total output signal (voltage). This 

weight function shows that the flow near the electrodes have more influence 

on the signal than at any point with increasing distance from the electrodes.  

Furthermore, Bevir (1970) extended the weight function concept to three-

dimensional (or weight vector), as shown by the following equation: 

 

         

 

(3.4) 

Where, V is velocity at every point, τ is the flow meter volume, and the 

integral is taken over τ, W is weight vector and can be given by: 

     (3.5) 

Where, j is hypothetical current velocity, which is known as the virtual 

current. In order to improve the theoretical performance, another approach 

has been used, in which large electrodes are used to have an integral effect 

on the signal (Baker, 2000). 

According to some manufacturers the preferred installation of 

electromagnetic flow meter is in vertical upward flow. Matousek (2005) also 

claims that electromagnetic flow meters should be installed in the vertical 

line of a slurry system. This is to ensure that the entrained air bubbles are 

carried up with flow and solid particles are not settled on the electrodes. 

Also, a vertical line, which is a common installation position in slurry flow 
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systems, it will be necessary to allow for any slip that may occur between the 

carrier liquid and solid particles. 

According to manufacturers valves should not be installed close upstream of 

EMF, even if fully open, (www.icenta.co.uk and www.abb.co.uk ). They are 

likely to have an effect of ±0.5% even if the distance is 15D upstream, (i.e. 

the distance equivalent to 15 times the internal pipe diameter). However, 

due to design differences between electromagnetic flow meters, it is not 

possible to follow absolute guidelines that would be equally valid for all 

designs. 

Also, non-uniformity in conductivity in the flow meter can cause changes in 

the EMF signal, due to the changes in the size of the shorting currents. For 

certain conditions of turbulent flow, field shape and conductivity profile a 

signal change of 3% may be expected. However, as Baker (2000) claims, 

the value of uncertainty in the EMF reading may be given as a percentage or 

a velocity. Manufacturers give uncertainty between ±0.3% -±1.5% rate for 

flow range 2%-2.5% and 100%-50% respectively. 

Application of EMF, for multiphase flows, where a marked difference in 

velocity of the dispersed and continuous phase occur (such as slurry), has 

been the centre of the debate as to what velocity is really measured. Despite 

that, it is generally accepted that, for example in slurry flow, the EMF 

measures the velocity of the mixture rather than that of the carrier liquid. 

 Cha et al. (2002) stated that “The electromagnetic flow meter has been 

used successfully and accurately to measure the mean liquid velocity in 

various industries...”. Also, it is obvious that electromagnetic flow meter 

detects the potential difference, through the pair of electrodes, when a 

conducting liquid is passing through the magnetic field. Therefore, this fact 

can be used in favour of the argument that EMF measures the velocity of 

conducting continuous phase rather than the dispersed phase or the 

mixture, such as water in slurry flow.  

Bernier and Brennen (1983) carried out an investigation regarding the use of 

electromagnetic flow meter in measuring a multiphase flow. They concluded 

that the EMF could well be used to measure the velocity of a multiphase 

flow, in a condition that the continuous phase has a minimum conductivity. 

However, Wyatt (1986) investigated the conclusion of Bernier and Brennen 

(1983) and argued that this is only the case when the dispersed phase 

consists of uniformly and randomly distributed particles.  

http://www.icenta.co.uk/
http://www.abb.co.uk/
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Furthermore, Wang et al. (2007) investigated the relationship between the 

induced voltage and the velocity distribution profile of the continuous phase, 

in a two-phase flow to which electromagnetic field was applied. In their study 

they modelled an AC current electromagnetic flow meter to investigate the 

characteristics of an EMF in multiphase flow. They achieved the most 

important findings that induced potential differences measured using an 

array of boundary electrodes, could conceivably be used to infer the axial 

velocity distribution of the flow.  

Despite development and widely use of EMF on flow, like all flow meters, it 

has advantages and limitations, which are shown in Table 3.1. 

Table 3.1 Advantages and limitations of EMF 

Advantages Limitations 

 Widely used. 

 The flow measurement is 

independent of fluid rheology, 

density, temperature and 

pressure. 

 Compact design (no moving 

parts). 

 Its flow tubes available in 

standard inner diameter from 

3-3000 mm. 

 Accuracy is much better that 

1% of the range of the 

instruments for flow rates in 

excess of 10% of the range. 

 

 

 

 Restriction to conducting liquids. 

 The preferred vertical orientation may not 

always be ideal, as even in clear fluids, 

swirling flows experienced downstream 

from bends are responsible for 

systematic error. 

 The conducting fluid must have a 

minimum conductivity of 2 µS/mm. 

However special EMF with capacitive 

signal pick-up are available that can be 

used with conductivities as low as 0.005 

µS/mm. 

 For application on settling slurries, such 

as sand, the insulating deposits tend to 

coat the exposed electrodes. 

 Entrained air bubbles adversely influence 

measurements, if the flow tube is 

installed horizontally, and such that the 

electrodes are positioned at the top and 

the bottom of the tube. 
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3.2.4 Cross-Correlation 

Since 1960s the theory of cross correlation has been applied to measure the 

physical parameters of a system, especially velocity. Some investigators 

used the technique in the field of flow measurement, such as Dyakowiski 

and Williams (1996); Lucas et al. (1999); Wu et al. (2005). 

For calculation of axial velocities, using the method of cross-correlation, the 

sensors must be fitted with dual electrode plane sensors. The general 

concept of cross correlation is measuring the time between to signals 

generated by turbulence of the fluid or suspended particles flowing along the 

pipe through two sensors. In other words, if a fluid flows through two sensors 

with a distance L between them and the downstream sensor detects the 

signal after a certain period τ at the downstream sensor. An example of dual 

plane ERT sensor is shown in Figure 3.3. Then the velocity V can be 

calculated from the following equation (Deng et al., 2001): 

 

   
 

τ
 (3.6) 

 

Based on using dual-plane ERT sensor, according to Lucas et al. (1999), for 

a 50 mm distance between the two plane electrodes and minimum velocity 

of 4.5 m/s, a sampling rate of 450 frame/s is required from each plane.  
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Figure 3.3 The principle of velocity measurement by cross correlation of ERT 
signals  

It must be mentioned that the distance between the dual planes (sensors) 

must be suitably selected so as to realise the cross correlation. In order to 

select the distance between the two planes two important factors must be 

considered simultaneously; the dynamic behaviour of the system (mixture 
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velocity) and the resolution of measurement of the transit time. In other 

words, the smaller the distance the better similarity of the signals can be 

obtained. However, the relatively slow speed of data acquisition and image 

reconstruction requires longer distance. According to Deng et al. (2001) the 

distance between the two planes could be 50, 75, 85 or 100mm. However, 

they recommend that having L (the distance) adjustable, so as to coordinate 

it with different cases and various flow velocities. 

The signals can be correlated in different methods; point to point correlation 

and best correlation pixels. Point to point correlation has been reviewed by 

Dai et al. (2004), who suggests that the cross correlation measurement is 

based on measuring the data obtained from two planes placed axially along 

the flow stream. The basic concept of this method is to find similarities 

between the two signals measured at each plane, as shown in Figure 3.4, in 

which X denotes plane 1 and Y denotes plane 2. 

 

 

Figure 3.4 Principle of point-by-point cross correlation method (Dai et al., 
2004) 

 

The basic function in which the time delay is calculated in terms of error 

function (Rminimum), gives the time delay as: 

 

              
   

               
 

 

 (3.7) 

While the point to point correlation is based on the assumption that the flow 

trajectories are parallel to each other and perpendicular to the two planes. 

As the nature of the flow is quite complex, then the basic of the assumption 

can be a limitation in itself. 
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Figure 3.5 The cross correlation between X(n,m) and the vicinity of pixel 
Y(n,m), (Dai et al., 2004) 

While in best correlation pixels method the direction of the flow is no longer 

assumed, instead it states that the signal from one pixel on plane 1 could be 

better correlated with one of the signal at the vicinity of the axially 

corresponding pixel, as shown in Figure 3.5. 

Dai et al., (2004) successfully used this method for calculating axial, angular 

and radial velocity profile in air-water swirling flow. He also proposed the 

following correlation for best correlation method: 

 

 

                                                    

   

   

 

 

(3.8) 

 

3.3 Flow visualisation and imaging techniques 

In order to better understand the hydrodynamic characteristics of slurry flow 

and  for the pipeline operator to control the processes handling solid-liquid 

flow, visualisation and quantitative information regarding the flow is 

extremely important. Many visualisation and imaging techniques have been 

reported throughout the literature, such as optical methods, ultrasonic 

methods, Magnetic Resonance Imaging (MRI), tomography techniques etc., 

(Li, 2007). Each of these techniques has its own advantages and limitations. 

The choice of a particular technique is usually restricted by many factors 

such as physical properties of each phase, continuous and dispersed, the 

required spatial and temporal resolution, total and ownership cost, physical 

dimension and weight, robustness and flexibility of operation and potential 
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hazards to the personnel (Gamma-ray is an example of potential health 

hazard), (Munir, 2011). 

This section reviews the widely used and commercially available techniques 

for measurement and visualisation of constituent phases within two-phase 

flow, particularly slurry flow. Since slurries are opaque and contained in 

opaque enclosures , then optical visualisation of the flow is quite difficult, ( 

Heindel, 2008). Thus, optical techniques. such as laser Doppler Velocimetry 

(LDV), Laser Doppler Anemometry (LDA) and Particle Image Velocimetry 

(PIV) (Van Dinther et al., 2012), is excluded in this work. In the meantime, it 

must be noted that the above three optical methods offer a great benefit for 

measurement of micro-channels, non-slurry and diluted slurry applications. 

However, their major drawback in settling slurry applications is that they are 

less sensitive when coarse particles are used, besides their measurements 

are affected by wall effects, (Van Dinther et al., 2012). The section will 

mainly split into two categorised techniques, tomography techniques and 

others. The tomography techniques will cover Electrical Resistance 

Tomography (ERT), Electrical Capacitance Tomography (ECT), 

Electromagnetic Tomography (EMT), Ultrasound Tomography and 

Nucleonic Tomography techniques. Whereas, other techniques will be 

confined only to Magnetic resonance Imaging and Ultrasonic techniques.  

3.3.1 Ultrasonic technique 

Application of ultrasonic flow meters has become really attractive in the past 

50 years or so, after a significant development in the piezoelectric 

transducers (Baker, 2000). This is due to the fact that ultrasonic techniques 

can be used for fast and on-line characterisation of particularly dense and 

opaque slurries and suspensions. Ultrasonic techniques offer potential of 

measurement of changes in acoustic velocity, attenuation and frequency of 

the propagating waves. 

Through a journey into the literature, it was found that most of studies have 

used attenuation methods. Nevertheless, studies of the variations in acoustic 

velocity is also common, such as that of Shukla and Prakash (2006), who 

used variations in acoustic velocity to determine changes in particle size and 

concentration in two- and three-phase slurry and gas-liquid-solid 

respectively. 

One of the advantages of ultrasonic techniques is that it can offer a non-

intrusive measurement of the flow. Therefore, it has been attracted to many 
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researchers and industries such as food, oil and many others handling slurry 

flows. 

The main concept of ultrasonic flow meter is based on the fact that they use 

acoustic energy (or acoustic waves) at frequencies above the limits of 

human ability. These waves travel, in form of sound, with the speed of sound 

relative to the medium and consist of pressure perturbation in gases and 

liquids. However, in solid particles, the connecting wave can also move as a 

shear, that is due to the elasticity of the solid shear. 

There are three types of ultrasonic flow meters, which are listed below 

(Brown and Heywood, 1991; Baker, 2000). 

 Transit Time (or time of flight). 

 Doppler. 

 Cross-correlation. 

However, most of units that are available commercially based on one of two 

principles, either frequency shift (Doppler) or time of flight (transit time). 

The transit time flow meter is the most accurate type of acoustic flow meter 

family, which is from a fraction of a percent to about 5% uncertainty. This 

type of flow meter utilises the difference in transit time in an upstream and 

downstream direction. In other words, the acoustic signal increased when 

the direction of propagation is in the direction of flow, and decrease if it is in 

the opposite direction. The difference between the two signals can be used 

to calculate the velocity of the flow. 

The Doppler flow meter is very different device. It requires particles in the 

flow to reflect back the acoustic signal as shown in Figure 3.6, unlike transit 

time, which transmits signal through the flow. The Doppler is widely used 

and its measurement uncertainty is unlikely to be better than about ±2%. On 

the other hand, installation affects significantly its performance. 

The cross-correlation flow meter requires a distributed liquid or a multiphase 

flow to operate properly. It is more expensive than the other two types of 

ultrasonic flow meters. 

Since this study uses the Ultrasound Velocity Profiler (UDVP) type, then the 

focus will only be on Doppler, and the discussion in the following sections 

will be confined to the Doppler technique. 
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Figure 3.6 Showing working principle of UDVP 

 

The Ultrasound Doppler Velocity Profiler uses a single transducer to transmit 

and another to receive the reflected signal. An ultrasonic wave is emitted 

into the flow media at a set frequency. As the pulse approach and hit the 

particle present in the flowing fluid, it reflected back towards the receiving 

transducer. Then the time delay and frequency shift received by the 

transducer can be used to calculate the local velocity of the particle (or in-

situ particle velocity). 

According to Met-Flow (Met-Flow.com), who designed various models of 

transducers with emitting frequencies 0.5-1-2-4-8 MHz, lower frequencies 

allow for longer distance range and higher velocity measurement, due to 

their propagation ability. However, transducers with higher frequencies are 

used for low velocity measurement (or small flow dimensions), where high 

special resolution is required, due to the feature of short wave length. 

Clearly, if a stationary object reflects the outgoing signal, then there will not 

be any difference in frequency between the outgoing and the reflected 

signals. Thus the two signals retain their wave length and frequency. 

The frequency used by manufacturers varies greatly and is commonly within 

the range of 16KHz-10MHz. Besides, the transducers are manufactured in 

different sizes and emitting frequencies, so that each transducer suits an 

intended application. For example, Signal-Processing (signal-

processing.com) manufactures transducers with different frequency, 

diameter, case dimensions and temperature range, as illustrated in Figure 

3.7.   
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 P= Maximum pressure (bar), dv= Half diverging angle (degree) 

Figure 3.7 Standard transducers supplied by Signal-Processing and case 
dimensions 

 

The Doppler theory is illustrates in Figure 3.8. The transducer A transmits 

acoustic signal into the flow, where a moving particle present with a velocity 

v. The acoustic signal approaches the particle with a velocity c, then 

reflected and picked-up by the transducer B. However, the sound speed still 

remains c after reflection, as the sound speed is not affected by frequency, 

but the period between two reflected waves is not λ   . Instead it will be 

λ    -v) seconds for each peak, as the wave hits the particle at a velocity (c-

v). Successive peaks will make contact with particle at different particle 

position; therefore, for the peaks to reach the starting point of the first peak, 

they will need to travel λ      -v). Thus the period required for this 

additional travel is λ       -v) seconds. If the time between peaks is τ, then 

the value of τ is given by the following equation: 

 

  
  
 

     

     
 (3.9) 

Using the binomial theorem to expand the above equation, the frequency of 

reflected waves can be determined by the following equation, providing v2/c2 

is ignored: 

   
 

  
   

  

 
  (3.10) 

Also the frequency shift can be given as: 

         (3.11) 

Then, 
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 (3.12) 

 

 

Figure 3.8 Showing the Doppler Effect (Modified from Baker, 2000) 

 

The main application of acoustic Doppler velocity estimation is in biomedical 

and oceanographic measurements. However, the application of acoustic 

Doppler was found to suit abroad range of flows, particularly slurry and 

suspension flow. According to Baker (2000) the Doppler flow meters are 

oversold as an all purpose flow meter. According to manufacturers of 

Doppler flow meter, the device can be used for measuring flows of mining 

slurries, coal slurries, sewage, sludge, raw water, sea water, pulp, acids, 

cement slurry, emulsion paint, fruit juice and contaminated oil, (Met-Flow, 

Signal processing). 

Jaafar et al., (2009) used Ultrasound Pulse Doppler Velocimetry to 

investigate the velocity in turbulent pipe flow. Their measurements 

successfully demonstrated the ability of the instrument to measure unsteady 

turbulent velocities and to investigate experimentally the statistical properties 

of homogeneous and isotropic turbulence. They claim that the UDVP does 

not require any calibration; hence it is a potentially useful tool for measuring 

velocities in laboratory experiments or industry. Wang et al. (2004) carried 

out an investigation on the effect of temperature gradient on the velocity 

profile measured by UDVP. They concluded that non-isothermal conditions 

have two important consequences; first it changes the flow behaviour, 

second it increases the UDVP measurement error. Then it can be concluded 

that this phenomenon is due to the fact that the speed of sound is 

independent on temperature.  
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Some other researchers have used UDVP, not only in slurry transport, but 

also in slurry mixing, such as Syrajänen et al. (2009), who used UDVP to 

measure three-dimensional velocity profile in a sand-water stirred tank. The 

conclusion of their investigation showed that the measurement of particle 

velocities was in a good agreement with the predicted values. However, they 

observed deviation of the results near the tank wall, with increasing solids 

concentration. Moreover, Vuarnoz et al., (2002) have also used UDVP for 

characterisation of ice-slurry flow and concluded that the UDVP can be used 

as a potential tool to characterise the slurry flow.    

Manufacturers suggest that installation should allow 6D upstream and 4D 

downstream. Also, according to Baker (2000), the emitting and receiving 

transducers should be next to each other for large pipes, whereas on 

opposite sides for small pipes. The transducers can be used with a wide 

variety of pipe materials, such as carbon steel, stainless steel, PVC and 

copper. However, some pipe materials may not allow the signal to pass 

through, such as concrete, fibre glass, iron and plastic pipes with liners 

(www.coleparmer.co.uk). The transducers can be permanently bonded to 

the pipe using epoxy adhesive. However, this may not suit laboratory 

studies; therefore, temporary acoustic coupling can be applied using grease 

or water based gel. Brown and Heywood (1991) recommend strongly 

securing the transducers with straps. 

As any other flow meter, the UDVP has also its own advantages and 

disadvantages, which are highlighted in Table 3.2. 

Table 3.2 Advantages and limitations of ultrasound Doppler 

Advantages Limitations 

 Non-intrusive. 

 Portable and useful for 

troubleshooting. 

 No calibration 

required. 

 

 

 

 Less effective for clean fluids, such as that of power 

stations. 

 The speed of sound dependent on temperature. 

 Sometimes the transducer giving wrong readings, 

due to the presence of air bubbles at the top of the 

pipe. 

 The depth of penetration of the signal dependent 

on the pipe materials, the coupling medium and the 

nature of the slurry. 

   

http://www.coleparmer.co.uk/
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3.3.2 Magnetic Resonance Imaging 

Magnetic Resonance Imaging (MRI) is the most advanced and sophisticated 

tool that generate almost real-time 3-D images of the material under 

investigation. It allows the determination of phase volume fraction, physical 

behaviour and properties, which are related to the state of the physical 

system, (Van Dinther et al., 2012). The concept of MRI is that the object 

subjected to a strong magnetic field and its hydrogen nuclei (or single 

proton), which is spinning randomly is lined up in the direction of the 

magnetic field. They are then hit by a burst of a Radio Frequency (RF) and 

they flip round. Once they return to their original orientation they emit the 

radio signal in the form of echo (Windt, 2007). This phenomenon is known 

as Nuclear Magnetic Resonance (NMR). The Electron Magnetic Resonance 

(EMR) is closely related to (NMR) and sense the free or unpaired electrons, 

(Raguin et al., 2007). The spatial resolution of an MRI image can be 400 µm 

and a temporal resolution of 1 m/s (Muller et al., 2008 and Kalaga et al., 

2009). 

Despite the developments in the field, the MRI limitations have not been 

overcome yet. Since MRI technique has limitations in maximum size of the 

object, say in centimetres, as the object should be smaller than the magnetic 

field. Also MRI cannot be applied for objects with any material, as the object 

should contain either hydrogen or carbon atom. Therefore, this implies that 

MRI is a relatively specialised technique and cannot be used for today’s 

industry (Fukushima, 1999; Hoult et al., 1986). 

3.3.3 Tomography techniques 

The basic idea of tomography is to install a number of sensors at the 

periphery of the pipe or vessel to be imaged. Then these images reveal 

valuable information regarding the nature and distribution of the components 

within the flow. 

According to Williams and Beck (1995) there are many types of tomography 

sensors such as ERT, ECT, PET, ultrasound tomography, nuclear etc. Each 

of them has its own advantages and disadvantages. The choice is based on 

the material under investigation, however some other considerations must 

be made to safety issues, expenses and simplicity and applicability before 

choosing the suitable type. For example, electrical tomography techniques 

have been rated as the most attractive techniques, due to its safety issues, 

unlike Gamma-ray and their moderate spatial resolution of the produced 

image, unlike X-ray, electric field cannot be confined to a receiver. 
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Therefore, this study employs Electrical Tomography (ET) to visualise and 

measure the parameters of slurry flow and the special attention will be paid 

to electrical topography, particularly ERT. In the meantime some general 

facts over the other types of electrical tomography (ECT, EIT, and EMT) will 

be addressed briefly. 

3.3.3.1 Electrical Resistance Tomography (ERT) 

Electrical Resistance Tomography (ERT) has attracted a great interest from 

researchers and engineers due to its safe application, relatively low price 

(Windth, 2007; Cheney et al., 1999), design simplicity, despite that the 

continuous phase must be conductive. Its application increases 

progressively, not only in industrial processes but also in environmental 

areas, such as monitoring of the hydraulic response of the rock mass in 

Yucca Mountain, where thermo-mechanical and thermo-hydrological of this 

horizon was studied (Deng et al., 2001). 

The working principle of ERT system is to image mixtures, in pipes or 

vessels, where the continuous phase is conductive and the dispersed phase 

is insulating or less conductive, such as water and sand, as it is used in this 

study. 

Normally the ERT sensors composed of 16 equally spaced electrodes at the 

periphery of the pipe or the vessel (mounted flush with inside surface of the 

pipe), in a way that can be in direct contact with the fluid. The operating 

principle is based on applying an alternating current and measuring the 

potential differences across the cross section of the pipe or the vessel. 

There are different strategies of measuring the voltage differences, as 

discussed previously, however, the current study employs the adjacent 

electrode strategy, which is injection of an electric current through a pair of 

electrodes and measuring the voltage difference between the remaining of 

electrode pairs and the procedure continues until the full rotation is 

complete. The standard measurement protocol for measuring the 

conductivity if N(N-3)/2 measurements, which is 104 measurements for 16 

electrodes, as shown in Figure 3.9, (Williams and Beck, 1995; Wang et al., 

2002; Pashowko, 2004; Giguère et al., 2008b, 2009; Reinecke et al., 1998).  
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(a)     (b) 

Figure 3.9 Showing (a) The ERT sensor ring (b) The normal adjacent 
strategy (Taken from the ITS, 2005) 

3.3.3.2 Electrical Capacitance Tomography 

Electrical Capacitance Tomography (ECT) is used for imaging processes 

containing dielectric materials. The principle is to measure the changes in 

capacitance, which is caused by the change in dielectric material 

distribution. The main aim of ECT is to image permittivity distributions in very 

low or ideally non conducting materials (Marashdeh et al., 2008). The 

capacitance is measured via a series or electrode sensors (typically 8 or 12), 

which are placed on the periphery of the pipe or the vessel, as shown in 

Figure 3.10. The electrodes are mounted to insulating pipe and an outer 

earthed conducting shield (Yang, 2010). The standard measurement 

protocol for measuring the capacitance between all combinations of single 

source and detector gives N (N-1)/2 measurements (Plaskowski et al., 

1996). ECT dual plane sensors also have been constructed and the images 

are analysed by comparison in order to infer dynamic information. The 

permittivity distribution is taken from the cross sectional image, which is 

reconstructed from the capacitance measurement mathematically using a 

type of algorithm.  

ECT is considered as a soft-field technique, due to non-linear relationship 

between the measurements and the permittivity distribution, therefore, the 

reconstruction of images is complicated and difficult. However, ECT can 

offer some advantages, such as non-intrusive, fast, lack of radiation, 

relatively low cost, withstanding high temperature and pressure (Ismail et al., 

2005). 
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Figure 3.10 Showing 8-electrode ECT sensor, (www.ect-instruments.com) 

 

3.3.3.3 Electromagnetic Tomography (EMT) 

An EMT sensor comprises of a set of excitation coils, which creates a 

magnetic field within a cross section of a pipe or a vessel, and then the set 

of detection coil measure the changes in permeability and conductivity of the 

interest field, as shown in Figure 3.11. According to (Ismail et al., 2005) the 

higher the excitation frequency is produced the higher the sensitivity can be 

obtained. The EMT sensors have a number of advantages, such as no 

contact required with the sensing field or material and flexibility in design. 

 

 

Figure 3.11  Showing EMT sensor, (Ismail et al., 2005) 

 

3.3.3.4 Ultrasound Tomography 

Ultrasonic sensors are widely used in medical imaging and have 

successfully been applied in flow measurement. The sensors are made of 

transmitting and receiving sensors. They are non-intrusive and axially 

spaced along the flow stream (Abdul Rahim et al., 2006). This type of 

sensors can be used for particle velocity measurements. The principle of 

ultrasound tomography is that the ultrasonic beam is scattered and the 

signal is interacted with the object in the flow, then the reflected signal is 

picked-up by the receiving sensor.  

http://www.ect-instruments.com/
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Fazalul Rahiman et al. (2008) designed and modelled ultrasonic tomography 

for a mixture of two component high acoustic impedance. The information 

they obtained in their study could be used for further development of the 

image reconstruction of ultrasound tomography. (Abdul Rahim et al., 2007) 

carried out another investigation, where they used ultrasound tomography 

for imaging liquid and gas flow. They concluded that the ultrasound system 

could be used for flow pattern identification and measurement of the cross-

sectional void fraction. They also revealed that low operating transducers is 

sufficient to do the measurement, as long as the acoustic energy is passed 

through the vessel. 

3.3.3.5 Nucleonic Tomography 

Nucleonic tomography techniques use both, X-ray and Gamma-ray, which 

have very short wavelength, thus, they penetrate into an object without any 

attenuation. This character, obviously makes them a potential hazard in 

using them for flow measurement, (Munir, 2011). These techniques are 

described below. 

3.3.3.5.1 X-ray and Gamma-ray Tomography  

These techniques appears to be the oldest technique for imaging. The 

principle of X-ray is similar to that of Gamma-ray. However, there is only one 

difference between them, which is the source of radiation. When X-ray or 

gamma-ray passes through a medium, most of the radiation is absorbed by 

the media and the rest is attenuated, which is received at the other end 

(Kalaga et al., 2009). This technique is usually used for steady state images 

of the object. The density of the medium and the distance between the 

source and the detector has a direct effect on the attenuated radiation. 

Boden et al. (2008) used X-ray tomography to obtain a 3-D gas hold up 

distribution in stirred tank with high accuracy. They concluded that the high 

accuracy in time-average phase fraction distribution is achieved by proper 

and practical corrections measures for the problem of beam hardening and 

radiation scattering. Schmit et al. (2004) applied X-ray tomography on a 

packed column to measure the flow distribution. They observed the ring like 

artefacts in the images, which indicate that the method is well suited to 

monitor the flow.   

Schubert et al. (2008) investigated a high resolution Gamma-ray for trickle 

bed reactor using glass beads and porous catalyst beads. They successfully 

concluded that Gamma-ray could be used for study of hydrodynamics of this 

nature. Many others have used Gamma-ray in view of applicability of the 
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technique for industry, such as Wang and Yin (2001), Yin et al. (2002), Roy 

et al. (2005), and Jin et al. (2005). Most interestingly Tortora et al. (2008) 

used a multimodality tomography method, where they used Electrical 

Impedance Tomography (EIT) in conjunction with Gamma-ray for circulating 

fluidised bed, and they confirmed a good accuracy of using the two 

technique.  

3.3.3.5.2 Positron Emission Tomography (PET) 

PET is a radioactive tracer that enables visualisation of real processes 

taking place within the opaque boundaries. The principle of PET is based on 

detecting the pairs of back-to-back gamma-rays produced when a positron 

annihilates (or emitted in radioactive decay) with an electron. It is widely 

used in medicine, however, in chemical engineering applications a extensive 

use has been made of the alternative technique of Positron Emission 

Particle Tracking (PEPT). In PEPT a single tracer particle is radioactively 

labelled and can be accurately tracked at high speed (Seville et al., 2009). 

PEPT has the capability of tracking tracer particles down to approximately 

60 µm is size. 

PEPT has successfully been used for monitoring and measuring particle 

velocities in gas fluidised beds, mixers and other chemical applications 

(Stein et al., 1997). Portillo et al. (2010) examined the movement of particles 

within a continuous powder mixer, in which PEPT was employed. They 

claimed that the particles along the vessel could be measured non-invasively 

and the measurements were promising.   

3.4 Electrical Resistance Tomography system detail 

3.4.1 Introduction 

Tomography is an imaging technique that is used to visualise the contents of 

a closed system or body, such as a pipe or a vessel without physically 

looking inside. Tomography originally is a Greek word, which is composed of 

two words, “tomos” meaning “to slice” and “graph” meaning “image” 

(Williams and Beck, 1995). In the late 1970s the technique was very popular 

in medical fields, where tomography resistivity measurement was used by 

biomedical engineers and considered as an alternative to the successful X-

ray scanner, due to its low cost and portability. 

Since late 1980s tomography techniques have gone through a major 

development and are used to provide a novel means of non-intrusively 



- 61 - 

  

visualising the internal behaviour of industrial processes, such as gas-liquid, 

gas-oil-water in oil pipelines, gas-solid flows in pneumatic conveyers, solid-

liquid in slurry transfer system and mixing or separation processes in 

vessels. Thus it is often called “industrial processes Tomography” or 

“Process Tomography” (Williams and Beck, 1995). In process tomography 

the signals are sent across the system through the electrodes that are 

placed at the periphery of the pipe or the vessel, then depending on the 

signals received, images of the cross sectional plane are constructed. Thus 

the use of tomography can provide an image of the whole flow and can be 

considered as a new type of multiphase flow meter. It is important to mention 

that the current multiphase flow meters are non-linear, which are caused by 

their flow regime dependency, while tomography can compensate their non-

linearity, therefore it is also a viable tool that can be used to determine the 

flow regime (Ismail et al., 2005). 

Many types of tomography systems can be found in the literature, such as 

Electrical, ultrasonic or acoustic, radiation, Nuclear Magnetic Resonance 

(NMR), microwave and optical, which are mainly based on different sensing 

methods. However, this project employs Electrical Tomography (ET) due to 

its advantages over the other tomography techniques for being cheap lack of 

radiation and fast response. Based on the principle of electrical sensitivity, 

electrical tomography is further classified into Electrical Impedance 

Tomography (EIT), Electrical Capacitance Tomography (ECT), Electrical 

Resistance Tomography and Electromagnetic Tomography (EMT) (Williams 

and Beck, 1995). Amongst all the above electrical tomography forms, ERT 

has been found to be the most attractive method, which is used in this 

project to visualise the mechanisms of slurry flow systems and measure its 

parameters. This attractiveness has come from its advantages, such as 

simplicity, high speed capability and sufficiently robust to cope with the most 

industrial environment, safe and cheap in comparison to nuclear techniques, 

which makes them suitable for research as well as industry. It is therefore 

widely used in different chemical engineering processes, such mixing 

process (Wang and Yin, 2001); cyclonic separation (Williams et al., 1999) 

and the mixing processes (Holden et al., 1999). However, the drawback of 

ERT lays in its low spatial resolution, which has been reported to be 

between 5 and 10% pipe diameter (Dyakowski et al., 2000). 

Since ERT is still within development period, there are some challenges, 

which need to be reported. 
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 Increase of sensor spatial resolution. 

 Development of more accurate image reconstruction, as inaccurate 

image will interpret inaccurate flow parameters, such as volume flow 

rate. 

 Increase the efficiency of data processing. 

 Improve the design of the sensors mechanically and the electronic 

hardware in order to increase the safety and reliability either in the 

laboratory as well as the industry. 

The structure of a typical ERT system composed of a hardware part, which 

includes the sensor with electrode rings, the data acquisition system and the 

image reconstruction system, which is the host computer, from which the 

image are generated (Parvareh et al., 2010). Figure 3.12 showing the 

components of a tomography system. 

 

 

Figure 3.12 Showing the components of the ERT system 

 

3.4.2 Concept and working principle 

ERT can be used as a non-intrusive technique to measure and visualise a 

multiphase flow, in which the continuous phase is an electrically conductive 

fluid. The technique generates a 2D or 3D image (tomogram), by using 

electrical resistance measurements and image reconstruction. A tomogram 

shows the distribution of the conductivity within the flow system, and this is 

determined by several colours. The basic idea of these colours is to interpret 

the conductivity within the flow or a mixing system. In tomograms, usually, 
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the blue colours show the non-conductive component in a particular region 

of the pipe or the vessel. In this study the liquid phase is tap water, which is 

conductive and the solid phase is sand, which is non conductive. Hence the 

blue colours determine the distribution of the less or non conductive phase 

(sand) and the red colours determine the distribution of the phase with 

higher conductivity (tap water). The value of the in-situ phase fraction at a 

given location in the pipe or the vessel corresponds to the local mixture 

conductivity by using the relationship derived by Maxwell, (Maxwell, 1881). 

However, it is important to address that the ERT lacks the ability to measure 

the flow rate of the continuous phase (Water), which causes a difficulty of 

obtaining an absolute value. Therefore, this study proposes a new in-situ 

measurement method, in which the Electrical Resistance Tomography (ERT) 

is combined with the Electromagnetic Flow Meter (EMF) to measure the flow 

rates of individual phases (Water and sand), described in Chapter 5.   

The ERT sensors use one or more planes (electrode rings), which is 

positioned at the periphery of a vessel, tank or a pipe. ERT employs a 

sensing technique, which has an excellent time resolution due to fast 

electrical measurements (Giguère et al., 2008b) 

The working principle of ERT consists of injecting a low electrical current, 

typical 15 mA, between adjacent pairs of neighbouring boundary of 

electrodes and measuring the potential difference between the remaining 

electrodes. This procedure is repeated for the other electrode pairs until the 

full rotation of the electrical field is completed, which form a set of 

measurements. Then each data sheet generated, will be interpreted by an 

image reconstruction algorithm in order to compute the cross sectional 

image corresponding the electrical conductivity field within the pipe or the 

vessel, in other words corresponding to the pipe or vessel cross sectional 

area, which is called the concentration tomogram. This cross sectional 

image provides valuable information on the process, which later can be used 

for visualisation, monitoring, intelligent control or mathematical model 

verification (Ismail et al., 2005). 

3.4.3 Voltage measurement strategy 

Namely there are four strategies, which can be assigned to the Data 

Acquisition System (DAS), whereby the voltage is measured, (Mann and 

Wang, 1997; Hosseini et al., 2010):  

 Adjacent strategy. 

 Opposite strategy. 
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 Diagonal or cross strategy.  

 Conducting boundary strategy  

This study will employs adjacent strategy, as it requires less hardware and 

presents fast image reconstruction. Therefore, it will be the only strategy that 

is discussed in detail here, and for the rest of strategies the reader will be 

referred to the references given above. 

In the adjacent strategy, an electrical current is applied through two adjacent 

electrodes and the potential different is measured for the remaining adjacent 

pairs of electrodes, then the injection and measurement procedure is 

continued until the full independent combination is completed, as shown in 

Figure 3.13. The standard measurement protocol for adjacent strategy gives 

N(N-3)/2 measurements, where N is the number of electrodes. For example, 

for a plane with 16 electrodes provides 104 individual voltage measurements 

(Tapp et al., 2003). These measurements are communicated to the image 

reconstruction computer by the Data Acquisition System (DAS), and then the 

data are processed via a suitable image reconstruction algorithm. 

 

 

Figure 3.13  Adjacent electrode pair strategy for 16 electrode ERT sensor 

 

3.4.4 Fast Impedance Camera system (FICA) 

The high performance ERT system (or a high performance electrical 

impedance tomography system), is in house built (Online Instrumentation 

Laboratory/University of Leeds/UK). With regard to the main ERT system 

(Data Acquisition Hardware), the software and hardware of which have been 

enhanced and consolidated by OLIL group (Online Instrumentation 
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Laboratory/University of Leeds). Figure 3.14 showing the actual photograph 

of FICA system. It is worth pointing out that one of the advantages of this 

system is the efficiency of the hardware and simplicity of the operation of the 

control software. The principle of the hardware operating system and the 

operation of the control software is described in detail in Schlagerg et al. 

(2008).This development of the conventional EIT system could be 

considered as a response to the requirement of many industrial processes 

such as two/multiphase flow, where a higher (faster) frame rates is required 

to measure and monitor the flow behavior. The Data Acquisition System 

(DAS) is based on the phase sensitive demodulation and both the amplitude 

and the phase of the measurement can be obtained. Once the system is 

connected it allows the Data Acquisition System to operate in two modes, 

continuous (on-line) and block mode. 

  

 

Figure 3.14 Actual photograph of FICA system 

In continuous mode, a single frame of data for one or two planes is acquired, 

captured, transferred and displayed in the selected format. This mode can 

capture data at a frame rate up to 50 dual-frames per second (dfps), which is 

equivalent to 20 ms; whereas block mode can capture data up to 8000 

frames at a rate up to 1000 dfps. At the end of acquisition of each data 

block, it is then transferred and read by the PC, where it is processed and 

can be visualised or saved on an external hard drive for later analysis. The 

image reconstruction system can produce images for both amplitude and 

phase of the domain, by using one of the versions of Linear Back Projection 

(LBP) algorithm, which is called Sensitivity Back Projection (SBP) algorithm. 

The reconstruction algorithm (SBP) can provide further option of displaying 

images for real and imaginary part. 

3.4.5 ERT Sensor design 

The aim of ERT is to acquire the conductivity distribution in the domain of 

concern. This is done by, as previously mentioned, injecting an electrical 
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current and measuring the voltage difference through the electrodes placed 

on the boundary of the area of concern. Amongst the three components of 

ERT system, the design of sensor (electrodes) is the most important part, 

since the better design of electrodes the more efficient they can be to sense 

the conductivity of the area of interest (Seagar et al., 1987). The electrode 

material is normally fabricated from platinum, gold, silver, brass, stainless 

steel or alloys, such as silver platinum. However, there are several factors 

that can be considered prior to design the electrodes, such as the position of 

the electrodes, the size of the electrodes and number of the electrodes 

(Mann and Wang, 1997). As these factors are important for reconstruction 

algorithm, measuring the conductivity field distribution, collecting the data 

and reconstructing the image. Usually the electrodes are placed around the 

boundary of the pipe or the vessel in order to make electrical contact with 

the content of the pipe or vessel in a non-intrusive fashion or slightly 

intrusive, as they are introduced to the field of interest through the wall of the 

pipe or the vessel, which makes them invasive. The other ends of the 

electrodes are connected to the Data Acquisition System (DAS) through co-

axial cables so as to avoid or reduce the electromagnetic noise or 

interference (Williams and Beck, 1995). A dual plane ERT sensor was 

designed to be used in this study, a geometry and dimensions of which is 

shown in Chapter 6. 

3.4.6 Image reconstruction analysis 

The aim of image reconstruction in Electrical tomography is to compute a 

tomogram, which is representing the electrical conductivity of the material 

flowing through the pipe or the vessel (Giguère et al., 2008b). 

Generally there are two types of algorithms that are used to process the data 

for image reconstruction; non iterative algorithm as Linear Back Projection 

(LBP) and iterative algorithm as Sensitivity Conjugate Gradient (SCG) 

(Wang, 2002). The selection of the most suitable depends on accuracy, 

speed and expense. Over the years many image reconstructions have been 

proposed for electrical tomography, however, the most widely used 

algorithm is still Linear Back Projection that is due to its advantages over the 

iterative algorithms, which is computationally more time consuming and too 

slow for real-time image reconstruction. Therefore, this study employs the 

non-iterative algorithm (LBP). This algorithm is simple and fast, but it offers 

qualitative images only. If the image needs to be enhanced, an iterative 

image reconstruction algorithm can be employed (Ismail et al., 2005) 
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In order to obtain the conductivity distribution a grid of small equal squares is 

applied on the area of interest. Each individual tomogram consists of a 

20x20 pixel array, which gives 400 spatial elements. The circular image is 

constructed using 316 pixels from 400 pixels squares grid. Some of these 

pixels lay outside the pipe or the vessel circumference, but the image is 

constructed from the pixels inside of the pipe or the vessel, as the sensors 

are placed on the boundary of the body (Hosseini et al., 2010). 

Electrical Tomography is considered as a soft-field technique, since the 

image is based on measurements at the boundary of the sensor. The 

sensitivity changes across the sensing zone and also the sensitivity of a 

particular position within that zone depends on the spatial variation of the 

physical parameter been imaged within the whole sensing zone. Therefore, 

due to this linear behaviour the reconstructing of the image can be difficult. 

Despite some development in image reconstruction, some concerns have 

been raised, particularly ERT, regarding the performance, validation and 

limitations of quantitative image reconstruction technique. Most of the efforts 

made to improve the image reconstruction algorithm were made in Electrical 

Capacitance Tomography (ECT). However, the image reconstruction 

techniques used for ECT can be transposed to ERT, as there is a simple 

mathematical analogy between them (Giguère et al., 2008b). 

Most image analysis is based on the images produced by Linear Back 

Projection (LBP). There are a number of approaches to analyse the images, 

one of which is the generation of summary statistics (mean, maximum etc.), 

which is the simplest. Statistics can be calculated either for the whole image 

or for the smaller regions, such as concentric zones or course square tiles, 

and this is done by dividing the image into zones. This method can be used 

to define the heterogeneity parameters, as studied have been conducted on 

flow regimes in bubble columns. Some other approaches are based on 

comparison, such as comparing successive images (frames), multiple 

planes. Cross correlation analysis can be used to obtain information on 

particle velocities, mixing and diffusion. Here pixel correlations are computed 

within frames, between successive frames or planes (Tapp et al., 2003) 

3.4.7 Application of the ERT 

The Electrical Resistance Tomography not only offers the opportunity to 

visualise the two or multiphase flows, but also capable of measuring some 

flow parameters, such as solid’s concentration and velocity (Parvareh et al., 

2010). In other words, the ERT can be sued to obtain qualitative and 

quantitative data, representing the real life of what is really occurring inside 
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the process under investigation, and that is with the aid of one frame or 

tomogram generated via image reconstruction system. 

As solid and liquid used in this study, then the right choice must be made as 

to which technique has to be used to visualise and measure the process. 

The preferred method in the field of slurry transport is ERT, as it is safe 

robust and more suitable to interpret the whole process fast and 

continuously unlike Gamma-ray densitometry, which is only capable to 

measure the local density value in one chord (vertical y-axis) in one plane 

and not giving the full understanding of settling behaviour in slurry pipelines 

(Brown and Heywood, 1991; Pugh, 1995; Matousek, 1997).  

From a review of the literature in the last fifteen-twenty years, despite 

appearing some new applications, it was found that the large scale 

application has been in mixing process, particularly solid-liquid applications, 

and two/multiphase flow. Tomography was used by McKee et al. (1995), 

who studied the optimal agitation speed and its influence on the 

concentration profile. It was also used by Williams (1995) for measuring a 

mixing index. One year later Williams et al. (1996) used tomography again to 

study the effect of impeller size, impeller type and particle distribution on the 

mixing index. Wang et al. (1999) used ERT as a suitable technique for 

identifying non-uniform density regions within foam, which suggests that 

ERT can well be a viable method for process control in a foaming system. 

Wang et al. (2000) studied gas liquid in a stirred vessel, where they used 

ERT to investigate the effect liquid viscosity on the mixing behaviour. Kim et 

al. (2006) investigated the mixing process and dispersion velocity of two 

miscible liquids in a vessel with a rotating agitator. They used four-plane 

ERT to calculate the mixing time from the temporal trend of cross sectional 

conductivity distribution and concluded that data analysis method with ERT 

to measure and analyse the mixing. In another study by Cho et al. (1999) 

EIT used to visualise the bubble distribution in two phase flow, where they 

decreased the image reconstruction time using an adaptive mesh grouping 

method. Kim et al. (2001) designed an EIT system and employed to 

visualise two phase flow system. When they obtained the image from the 

image reconstruction, they found that the image quality was not very good. 

However, they suggested that EIT could be used to visualise two phase flow 

system. Giguère et al. (2008b) used ERT to visualise slurry flows in 

horizontal and vertical pipe. They analysed slurry flow regimes using a 

strategy based on the direct interpretation of ERT measurements. 
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Although ERT technique is a promising technique to visualise slurry flow, 

there are limitations in terms of  quantitative ERT images, which makes them 

difficult to exploit the quantitative images, furthermore the validation of these 

quantitative images are necessary. Giguère et al. (2008a) has described the 

development of quantitative ERT image reconstruction software, in which the 

validation of the results for the case of static solid particle bed, at the bottom 

of the pipe sensor, has been carried out. He has also successfully shown 

good agreement between a calibration curves, using ERT relating the size of 

particle bed with experimental values using LBP. 

3.4.8 Conductivity conversion to solids concentration 

When the ERT is used to measure a mixture, for example slurry, it obviously 

measures the conductivity distribution, or map the conductivity of phases, 

and if the concentration of the dispersed  phase (such as solid) is required, 

then there must be a method or correlation to convert the measured 

conductivity distribution to concentration of the dispersed phase or particles. 

Within the last three centuries a number of correlations have been proposed 

for conversion of conductivity to concentration of the non-conductive 

dispersed phase. The most important of all are those of Maxwell (1881); 

Brggeman (1935); Mridith and Tobias (1962); Prager (1963) and Weissberg 

(1963). 

Maxwell (1881) derived an equation for diluted mixture, as shown in 

equation 3.13, in which relates conductivity distribution and particle 

concentration distribution, which is expressed in terms of solids (or 

dispersed phase) volume fraction,   , (Maxwell, 1881; Lucas et al., 1999; 

Pashowko, 2004). 

 

 

   
            

    
  

 

    
  
  
            

 

 

(3.13) 

 

If it is assumed that the dispersed particles are non-conductive, as sand is 

used in this study, then the conductivity of sand is considered to be zero and 

the above equation can be simplified to: 
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The above equation can well be used to calculate the particle volume 

fraction, but only in case of isothermal condition, where the temperature of 

the mixture remain constant or inevitably with slight change. Since any 

change in temperature can affect its conductivity values. 

Maxwell believed that his equation can only apply on diluted mixtures. 

However, Turner (1976) confirmed that Maxwell’s equation can also be used 

for high solids concentration, even with maximum packing concentration of 

the slurry.  

Bruggeman (1935) studied a mixture of non-conducting spherical particles in 

a conducting media, and generated the following equation: 

 

 

           
    

 

(3.15) 

Meredith and Tobias (1962) also generated an equation relating the 

conductivity and local solid’s concentration: 

 

 

      
             

            
  

 

(3.16) 

Another correlation proposed by Prager (1963), who derived a generalised 

diffusion model for the suspension of irregular shaped particles, based on 

random geometry: 

 

 

      
            

 
  

 

(3.17) 

Weissberg (1963) carried out further work and proposed another correlation, 

in which he considered that the spherical particles were randomly distributed 

in an idealised bed: 

 

 

      
       

          
  

 

(3.18) 
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Now, as there are five correlations, by which the concentration of the 

dispersed phase could be determined, then a question may raise here as to 

which of the above correlations perform better. The answer could be given 

by Holdich and Sinclair (1992), who found that the prediction of the 

conductivity in all the above five correlations is similar, only if the solid or the 

dispersed particles volume fraction is less that 30% (Pachowko, 2004). 

Therefore this suggests that the prediction of all the above correlations differ 

only when the solid bed is formed, since the solid bed is formed when the 

solid’s volume fraction is more than 40%. Despite that, this study is still 

employs Maxwell’s correlation, as it is well preferred by many researchers 

and used in ERT system to convert the conductivity distribution to solid’s 

concentration. 

3.4.9 Limitation of the ERT 

The previous sections have clearly highlighted the advantages of ERT over 

the other measurement techniques. However, there is still scope for 

improving some aspects of ERT, such as spatial resolution, conductivity 

resolution and ability of distinguishing single particles. These limitations are 

discussed below. 

3.4.9.1 Spatial resolution 

According to Seagar et al. (1987) this helps in identifying a minimum particle 

size. Wang et al. (1999) found out that by varying the particle to vessel or 

pipe diameter ratio and keeping the mixture conductivity constant and 

measurement error less than 1%, a typical spatial resolution of 5% pipe 

diameter can be achieved. As previously discussed, this study uses 50 mm 

pipe diameter, and according to Wang et al. (1999) the ERT sensor can 

identify sand particle size of 2.5 mm or greater.  

3.4.9.2 Conductivity resolution 

This parameter determines the minimum conductivity deviation in individual 

pixels, which enable the image reconstruction algorithm to pick up the 

change and demonstrate it in the images. Wang et al. (1999) carried out an 

investigation regarding this aspect and found out that at least a deviation of 

10% of conductivity is required for the object to be imaged, for fixed particle 

to vessel diameter ratio and measurement error is less than 1%. This study 

uses water and sand as the components of the slurry. The typical 

conductivity of tap water is between 0.3 and 0.45 mS/cm, and the 

conductivity of sand far less than this value, which makes more than 10%. 
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Therefore, the ERT could easily pick up the sand particles in the produced 

images.  

3.4.9.3 Ability of distinguishing single particle 

This parameter determines the minimum distance between each single 

particle so that the ERT would be able to distinguish each of them. Through 

an investigation by Wang et al. (1999), the minimum value for this parameter 

was found to be 20% of the vessel or pipe diameter, if the measurement 

error is less than 1%. Since this study uses a 50 mm pipe diameter, then a 

minimum distance of 10 mm is required between each sand particle, so that 

they can clearly be seen in the tomograms, otherwise they will be seen as a 

single particle. This suggests the impossibility of ERT to distinguish every 

single particle in the slurry flow used in this study, unless a very low 

concentration and very coarse sand are used in homogeneous flow regime. 

However, this may not have an importance when the contact load of bed is 

formed. 

3.5 Conclusions 

This chapter has reviewed the current techniques available for measurement 

of solid-liquid flow. It was found that the abrasiveness, opacity and complex 

nature of solid-liquid flow are considerable challenges to its measurement. It 

was also concluded that amongst all commercially available techniques, 

whether conventional or novel sensors, no technique measures face fraction 

and face velocity without limitations. Functionality and applicability of current 

flow meters over a wide range of conditions still remain unsolved. The 

settling tendency of solid particles, which results in arising several flow 

regimes within the pipelines, is still considered as a remarkable challenge to 

slurry flow measurement. Particularly for measurement of stratified flow, as 

the strata creates a coat over the sensors and affecting their functionality. A 

light was also shed on the current status of electrical resistance tomography 

technique, and it was gathered that the ERT, compared to the rest of novel 

sensors, has a remarkable package of advantages, namely relatively low-

cost,  having high temporal resolution, non-intrusive, providing qualitative 

data as well as visual information about the flow, safe, robust and reliable. 

However, despite a progressive work, it still suffers from low spatial 

resolution, which requires to be overcome.  
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Chapter 4 

Horizontal and vertical flow experimental set up and 

calibration procedure 

This chapter describes the laboratory experiments and the operating 

procedure conducted on 50 mm horizontal and vertical pipeline. The 

calibration procedure carried out on various instrumentations is also 

presented along with the results of each calibration.  

4.1 Introduction 

In order to fulfil the objectives mentioned in Chapter 1, it is essential to 

establish an effective and comprehensive methodology along with a flow 

loop system that allows an easy measurement, visualisation and validation 

of slurry flow parameters. The most important parameters that this study is 

concerned are slurry velocity, solids velocity and its profile, in-situ and 

delivered solids concentration. The flow loop used in the experiments and its 

associated instrumentation are also discussed in the following sections.  

The experiments were focused on the observations of both, the integral flow 

characteristics and the local flow characteristics of settling slurry pipeline. 

Since the measurement of the local flow characteristics is crucial for the 

identification of the mechanisms governing the process of slurry flow, then 

the ERT technique was employed to interrogate the internal structure of 

slurry flow in the pipeline under various slurry flow conditions. Besides, the 

ERT system was used to generate some of the integral flow characteristics, 

such as mean solids concentration and mean solids velocity across 

horizontal and vertical test section of the pipeline. Due to the dynamic and 

rapid change of the internal structure of slurry flow, it was believed that a fast 

measuring technique is required to provide continuous information about the 

development of slurry flow inside pipelines. Therefore, the Fast Impedance 

Camera system was used in these experiments with capability of acquiring 

1000 dual frames per second. 

The first approach is experimental measurement and visualisation of 

horizontal and vertical flow. The experimental measurement and 

visualisation involve intense utilisation of the ERT and the Electromagnetic 

Flow meter (EMF). The ERT is used to determine solids concentration and 
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solids velocity distribution across the pipe cross section. EMF will be used to 

measure mean slurry velocity. As settling slurry flow suffers from flow 

discontinuity (or phase change), which adversely affects the measurement 

scheme due to occurrence of various flow regimes in horizontal flow. 

Therefore, a technique is proposed for recognition of the prevailing flow 

regime, which is discussed in Chapter 7.  

The following sections present the installation and measuring technique 

together with the measured data for characteristics of the dispersed phase 

(sand). The experimental data for slurry flow through the two orientations are 

presented and discussed with an analysis of the measurement results in 

Chapter 5. 

4.2 Aims of the experimental work 

The main aim of the experimental work was to evaluate the suitability and 

applicability of the ERT (Fast Impedance Camera System-FICA) for 

visualisation and measurement of settling slurry flow. This evaluation was 

carried out by observing the behaviour of slurry flow in horizontal and vertical 

pipeline and measuring the flow characteristics appropriate to the detection 

and analysis of mechanisms governing the process of slurry flow 

measurement. The measured characteristics had to be appropriate for the 

verification of the components measured via the ERT system. In order to 

achieve this, two types of flow parameters were measured: 

a. The integral flow characteristics, which refers to the mean values of a 

quantity in a pipeline cross-section (i.e. slurry velocity, pressure, 

spatial solids concentration, solids axial velocity and delivered solids 

concentration). 

b. The local flow characteristics in horizontal and vertical pipeline, which 

refers to the In-situ flow parameters (i.e. local concentration at 

different positions in the vertical plane of the pipe cross-section and 

local solids axial velocity at different positions in the vertical plane of 

the pipe cross-section). 

The fulfilment of the main objective required the execution of several specific 

tasks, which are listed below: 

1. Validation of slurry flow rate via flow diversion technique using 

measuring tank. 

2. Online visualisation of slurry flow through image reconstruction of 

pipe cross-section. 
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3. Verification of 3-D solids velocity profile across the pipe cross-section 

in horizontal flow. 

4. Validation of solids volumetric distribution against the real flow 

photographs captured at the very same flow conditions of the ERT 

measurement. 

5. Investigation of the effect of particle size on the measured 

concentration and solids velocity profile using the FICA system and 

identifying the reasons for the possible effects. 

6. Exploring the effect of concentration on the measured concentration 

and solids velocity profile using the FICA system. Also, identifying the 

reasons for the possible effects. 

7. Highlighting the effect of transport velocity on the measured 

concentration and solids velocity profile using the FICA system and 

mentioning the reasons for the possible effects. 

8. Estimation of the parameters that define stratified settling slurry flow, 

such as height of moving bed, height of stationary bed, height of 

shear layer, height of turbulent zone at the upper part of the pipe, 

identification of moving and stationary bed. 

9. Comparison of In-situ and delivered solids concentration and 

establishing the relationship between the two parameters. 

10. Identification of blockage (total stationary) in horizontal pipeline and 

estimation of mean solids concentration and mean solids velocity in 

the blocked pipe section. 

11. Visualisation of four main flow regimes in horizontal flow through 

combination of concentration and solids velocity profile. 

12. Automatic recognition of main flow regimes in horizontal flow through 

combination of concentration and solids velocity profile. 

13. Error analysis of mean concentration and mean solids velocity 

obtained from the ERT system. 

14. Investigation of the effect of Wave Velocity and any possible effect on 

the mean solids velocity in stratified flow. 

15. Highlighting the rate of deviation of the ERT measured concentration 

at transport velocities up to 5 m/s. 

4.3 Horizontal and vertical slurry flow loop layout 

The experiments were carried out using a pilot scale re-circulating open flow 

loop, the schematic layout of which is presented in Figure 4.2. The major 

components are a mixing tank, slurry pump, horizontal and vertical pipeline 
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test sections, a switch or flow diversion system with a measuring tank 

(sampling tank), dual-plane Electrical Resistance Tomography sensors 

(ERT), an Electromagnetic Flow meter (EMF), pressure transducers and a 

thermocouple. The flow loop is laid on two floors in G.56, Houldsworth 

Building in the Institute of Particle Science and Engineering/ School of 

Process, Environment and Materials Engineering in the University of Leeds. 

The entire length of the loop is 22 m and has an internal diameter of 50 mm. 

The connecting pipes (DN 50) are from uPVC material (class E 15 bar BS 

EN1452) from Pipestock. The mixing tank has a capacity of 500 liter and is 

coupled with a three-blade mixer so as to obtain a homogeneous mixture 

before introducing it to the flow loop. Therefore, the main function of the 

mixing tank is to mix and hold the returning slurry from the flow loop before 

pumping it back to the flow loop. A bypass or a flush line is also connected 

to the mixing tank for initial lubrication of the pipeline before introducing the 

slurry of coarse particles, and also for draining purposes.  

The loop is served by a 15 KW centrifugal pump (2/1/2 AH WARMAN 

PUMP), which is connected to a Digi-drive Frequency Converter (LEROY 

SOMER -15Kw) to control the mean slurry velocity. The two test sections of 

the loop, horizontal and vertical test sections, are placed in the straight lines 

so that the affect of bend and flow disturbances are avoided (Matousek, 

1997). The length of both horizontal and vertical test sections is 2.40 m and 

2.25 m respectively. The horizontal test section is equipped with two 

pressure sensors and a dual plane ERT sensor. According to Gillies (1991) 

and Pachowko (2004), the approach length must not be less than 50 pipe 

diameter. Therefore, the dual plane ERT sensor is placed directly 3.40 m 

away from the bend. Whereas the vertical test section is equipped with two 

pressure sensors, an Electromagnetic Flow Meter, a thermocouple and a 

dual plane ERT sensor. The dual plane ERT sensor, in the vertical section, 

was placed 2.5 m away from the bend. The returning limb connected to the 

top of the vertical section is 2.75 m and returns the slurry back into the 

mixing tank or the measuring tank if the flow is diverted. A flow switch 

mechanism is used for the flow diversion process. The measuring tank, 

which has a capacity of 90.5 liter is placed on a set of three load cells for 

measurement of weight and the level of diverted slurry into the measuring 

tank. The level of each diverted amount of slurry is determined through a 

graded glass tube, which is mounted on the measuring tank. A transparent 

pipe section of 1 m long is included into the horizontal section directly after 

the ERT sensor, which would enable visual observation of the flow and 

capturing photographic images for visual observations and validation 
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purposes. As slurry is opaque and murky, it was very difficult to capture the 

photographs of the flowing solid within the carrier liquid. Therefore, the 

observation section was coupled with a light box, which would enable to 

produce a clearer picture of flowing solid particles within the pipe section. 

Another transparent pipe section of 45 cm long is also included into the 

vertical section for the same purposes. Figures 4.1 and 4.2 showing the 

schematic diagram of the loop and some components of the flow system. 

 

     (a)        (b)     (c) 

     (d)       (e)  

Figure 4.1 Photographs of the flow loop with its associated instrumentations, 
showing (a) mixing tank with the flush line, (b) vertical test section, (c) 
horizontal test section, (d) centrifugal pump, (d) digi-drive frequency 

converter
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Figure 4.2 The schematic diagram of horizontal and vertical flow loop

2
13

4

9
Mezzanine

11

10

5

4 

6

3

7

8

1

1- Mixing tank

2- Centrifugal pump

3- Pressure sensor

4- Dual-plane ERT sensor

5- Elctromagnetic flow meter (EMF)

6- Thermocouple

7- Flow diversion system

8- Measuring tank

9- Load cells

10- water meter

11- Water supply line

12- flush line

13- Drainage line

14- Flush line (bypass)

15- Graded glass tube

16- Photo-Chamber (Light box)

Horizontal Test Section

V
e

rt
ic

a
l 
T

e
s

t 
S

e
c

ti
o

n

14

15

16



- 79 - 
 

  

4.3.1 Flow diversion technique 

It is worth pointing out that the flow diversion system is one of the most 

important parts of the flow loop. This is due to the advantage of the system 

for measurement of several important flow parameters and verification of the 

data obtained from the ERT: 

1. To establish delivered solids concentration. 

2. To validate the mean slurry velocity measured by the EMF. 

3. To validate local solids volumetric concentration obtained from the 

ERT. 

4. To validate local solids axial velocity obtained from the ERT. 

The flow diversion system consists of a switch system (or flow diversion 

system) and a sampling vessel (measuring tank), which is mounted on a set 

of three calibrated load cells, the actual photograph of the whole system is 

shown in Figure 4.3.  

 

 

 

 

 

 

 

 

 

 

 

 

 

   (a)     (b) 

Figure 4.3 Photographs of the flow diversion system, (a) measuring tank with 
the switch system, (b) graded glass tube mounted on the measuring 

tank 
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The flow switch system is coupled to the sampling vessel at the exit of the 

flow loop, through which the slurry would return to the mixing tank in a 

routine fashion. The bottom of the vessel has a conical shape, so as to 

facilitate the sliding of the solid particles at the bottom once the discharge 

valve is opened for the slurry to be placed back into the mixing tank. The 

flow diversion system was connected to the mixing tank through 100 mm 

uPVC pipe. In order to measure mean slurry velocity or delivered solids 

concentration, the flow is diverted to the sampling vessel for any given 

length of time. Obviously, during the diversion process, the valve at the 

outlet of the vessel has to be closed. A level graded glass tube was also 

mounted on the measuring vessel, through which the diverted slurry level 

could be monitored and measured. An electronic stop watch is used to 

measure the duration for which the flow is diverted. However, a great effort 

should be made to carry out the diversion process within a possible shortest 

time. This is due to two reasons, firstly so as to avoid settling solid particles 

at the bottom of the vessel, which could be a potential risk for blockage at 

the discharge point of the sampling vessel. Secondly, removing a given 

amount of slurry from the system would result in decreasing the suction 

head of the pump, which precipitate the instability of the flow. The procedure 

is to divert the slurry and allow a sufficient time for the slurry to reach a 

certain level, somewhere 50% of the measuring tank. Then switch the flow 

back to the mixing tank and record the slurry level and the duration of the 

diversion. As the cross-section area of the measuring tank was known, then 

the volume of the diverted slurry could be determined as well as the flow 

rate. After several seconds of diverting the flow to the measuring tank, it was 

noticed that the velocity shown on the Electromagnetic Flow meter (EMF) 

was gradually dropping. Therefore, the reading of the Electromagnetic Flow 

meter was recorded just before the slurry diversion. Although it was noticed 

that the EMF readings were slightly fluctuating, the velocity shown of the 

EMF just before the diversion was considered for the comparison process. 

As slurry flow is quite complex by nature, then this fluctuation is well 

expected.  Both mean volumetric concentration and mean solids velocity 

from the ERT and the flow diversion technique was then collected for the 

comparison, as shown in the calibration section 4.5. It is worth mentioning 

that the validation of the local concentration using this technique could not 

be applied for all transport velocities, particularly low velocities, in horizontal 

flow, due to phenomenon of particle deposition at lower velocities. As at 

higher transport velocities the local concentration at any section of the flow 

loop is more or less the same. Therefore, the local concentration in 
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horizontal flow was validated only for flow of high transport velocities (4 m/s 

and above). On the other hand, as the slip velocity can totally be ignored for 

the slurry flowing through the vertical test section, the validation of in-situ 

solids volumetric concentration in the vertical line can be carried out using 

flow diversion technique. 

4.3.2 High performance ERT system 

The full ERT system was in house built (Online Instrumentation 

Laboratory/University of Leeds/UK). The main ERT system (Data Acquisition 

Hardware), this study employs a Fast Impedance Camera system (FICA) (or 

a high performance dual-plane electrical impedance tomography system), 

the software and hardware of which have been enhanced and consolidated 

by OLIL group (Online Instrumentation Laboratory/University of Leeds). It is 

worth pointing out that one of the advantages of this system is the efficiency 

of the hardware and simplicity of the operation of the control software. The 

principle of the hardware operating system and the operation of the control 

software is described in detail in Schlaberg et al. (2008).This development of 

the conventional EIT system could be considered as a response to the 

requirement of many industrial processes such as two/multiphase flow, 

where a higher (faster) frame rates is required to measure and monitor the 

flow behaviour. The Data Acquisition System (DAS) is based on the phase 

sensitive demodulation and both the amplitude and the phase of the 

measurement can be obtained. Once the system is connected it allows the 

Data Acquisition System to operate in two modes, continuous (on-line) and 

block mode.  

In continuous mode, a single frame of data for one or two planes is acquired, 

captured, transferred and displayed in the selected format. This mode can 

capture data at a frame rate up to 50 dual-frames per second (dfps), which is 

equivalent to 20 ms; whereas block mode can capture data up to 8000 

frames at a rate up to 1000 dfps. At the end of acquisition of each data 

block, it is then transferred and read by the PC, where it is processed and 

can be visualised or saved on an external hard drive for later analysis. 

4.3.3 Visualisation and image reconstruction scheme 

The ERT technique can also provide a visual result from the tomograms 

produced by the system. Each tomogram contains important information on 

the cross sectional distribution of constituent phases. For example, the 

conductivity of the domain or concentration of each phase (solid or liquid) 

can easily be determined on the tomograms. The time taken to construct an 
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image (tomogram) and its resolution, depend primarily on the type of 

algorithm used. The image reconstruction system can produce images for 

both amplitude and phase of the domain, by using one of the versions of 

Linear Back Projection (LBP) algorithm, which is called Sensitivity Back 

Projection (SBP) algorithm. The reconstruction algorithm (SBP) can provide 

further option of displaying images for real and imaginary part. In this study 

an alternating current of 15 mA with a frequency of 9600 Hz was injected. 

After mapping the conductivity of the media through each plane, the 

conductivity data was converted into the local concentration distribution 

using Maxwell relationship. Then the signals of the two planes were cross-

correlated, using pixel-to-pixel correlation, to estimate the solids axial 

velocity profile.  The principle of cross-correlation is described in section 

3.2.4. The cross-correlation method, pixel-to-pixel, have been used in a 

number of previous studies such as Etuke and Bonnecaze (1998), Lucas et 

al. (1999), Mosorov et al. (2002), Wang et al. (2003), Henningsson et al. 

(2006). Furthermore, clear PVC sections are included into both test sections, 

in order to allow for visual observation of the flow, along with capturing 

photographs via a digital camera. 

4.3.3.1 Maxwell relationship and solids concentration 

The averaged concentration profile can be used to determine the distribution 

of the solid particles across the pipe cross section. The averaged 

concentration profile is obtained via measuring the voltage at the sensor 

location to determine the conductivity of the media. The conductivity is then 

converted to concentration based on Maxwell relationship (1881). The local 

conductivity value of each pixel can be converted to a solids concentration. 

Conductivity conversion to solids concentration is described in section 3.4.8. 

4.3.4 The dual-plane ERT sensor 

The dual-plane ERT sensor was in house built (Online Instrumentation 

Laboratory/University of Leeds/UK). The actual photograph of the dual plane 

ERT sensor is illustrated in Figure 4.4. 

The ERT sensor was conFigured as a dual plane sensor in order to apply 

cross-correlation and measure the local axial velocity of the dispersed 

phase.  The distance between the electrodes of one plane to the other plane 

was 70 mm. 16 stainless steel electrodes were mounted on the periphery of 

each plane at equal interval, flush with the inner surface of the pipe, where 

non-intrusively in contact with the media. The configuration of the electrodes 
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was based on the adjacent protocol, which produces N(N-3)/2 

measurements (N denotes the number of electrodes).  

 

 

 

Figure 4.4 The actual photograph of the dual-plane ERT sensor within 
horizontal test section 

 

4.3.5 Design of the photo-chamber (Light box) 

A light box used to capture the photographs of the flow, the actual 

photograph of which is shown in Figure 4.5.The photo chamber has a 

rectangular shape with dimensions (1 m length, 0.3 m depth, 0.3 m width). 

All the sides are sealed with thin plywood, except the front side, which is 

covered with a matte black PVC coated cloth sheet. Two circular openings, 

which have similar diameter as that of outer diameter of the pipe section (63 

mm), are on either side of the chamber. The cloth sheet can flexibly cover 

the front side of the chamber and has a lens sized hole in the middle, in front 

of which the camera is adjusted on a tripod. The top and the bottom of the 

pipe section inside the chamber were sealed with wooden panels covered to 

separate the lighting zone. The interior of the box is painted in matte black 

colour, as light and glossy paint can reflect the flash light and cause glare. 

The lighting system is attached firmly behind the pipe section and a hole is 

drilled to the side of the box for the wire to exit the box. In order to avoid the 

heat of the bulb, it is very important to keep the lighting source some 

reasonable distance away from the pipe. The distance between the light bulb 

and the pipeline is 150 mm in light box used in this study. However, this 

distance depends on the lighting supply. If low-heat LED source is used, 

then there is a little more leeway, but the lighting effect may not be sufficient 

for murky and opaque slurry. After testing several lighting sources, it was 

found that Halogen Work Light (500 Watt) with heavy duty wire guard is the 

most suitable for this project. It is worth pointing out that this type of light 
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source produces enormous amount of heat, which adversely affects some 

characteristics of slurry, such as conductivity of the mixture and as a 

consequence the ERT measurements. Therefore, in order to avoid 

overheating and possibility of burning, the light should be switched on only 

during the time when the photograph is taken. It was noticed that the 

maximum duration for capturing photographs of each condition was 5 

seconds, which is not a long period to raise the temperature of the slurry 

flowing through the pipe section.   

In order to better illustrate the track of solid particles, the photographs of 

each prevailing flow regime, which were captured by the digital camera, 

were inserted into the plot area of the measured profiles, the concentration 

and axial velocity. Despite using the light box, at certain conditions such as 

at high slurry velocity, some difficulties were encountered in distinguishing 

the solid particles in the murky carrier liquid. Therefore, the photographs 

were sent to the Microsoft Office Picture Manager and colour enhancement 

was applied. The reason for doing so was to avoid any light reflection and 

enhance the quality of the captured photographs. As it is apparent in the 

inserted pictures, some photographs required a specific colour so that the 

solid particles are well shown.  

For the sake of clarity and validation, the photographs of flowing solids 

through the pipeline were captured using a digital camera. Due to opaque 

nature of slurry, naked eye observation is almost impossible. Therefore, the 

photographs were taken through 1 m transparent pipe section, which was 

confined in a photo-chamber (or light box) with a lighting source.  

 

 

 

Figure 4.5 The actual photograph of the light box with the transparent pipe 
section 
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4.4 Experimental procedure and operating conditions 

In order to fulfil the objectives of this study, it is paramount to establish an 

effective, comprehensive and flexible strategy for each measurement test 

carried out on slurry flow. Since the aim is to investigate the applicability of 

the ERT on slurry flow and the effects on measurement scheme, the effect 

of different variables on slurry characteristics, thus the choice of slurry 

components and the techniques used to measure each parameter 

accurately merit special considerations.  

4.4.1 Slurry component selection and characterisation 

Prior to the selection of the components of the slurry that is be under 

investigation, several characteristics of the solid particles have to be 

considered. Also, a careful decision has to be made to satisfy the objectives 

of this research. These could include particle density, particle size and 

shape, solubility, electrical properties, cost, safety and availability. 

Since settling slurries exist, in nature and industry, in different sizes and 

shapes, therefore a uniform sized and shaped particle will be avoided in this 

study. It was decided to select particles that approach the real industrial 

scenario. Thoughts have been given to the mineral compounds, as they are 

widely encountered in nature and industry. Based on the above 

considerations, Glass sand (SiO2) was found to be the most suitable solid 

component of the slurry in this study. This is due to the advantages listed 

below: 

1. Available in various sizes and shapes. 

2. Cheap, (£60)/ton. 

3. Non-harmful in case of exposure. Except the dust, for which the 

protectors will be used, such as goggles and mask. 

4. Insoluble in water. 

5. Non-conductive that makes it suitable for the ERT measurements. 

6. Suitable density (2650 kg/m3). 

Since this study uses a system that handles a large amount of slurry, tap 

water was decided to be used as carrier liquid. Besides some other 

advantages, which are listed below, makes water the most suitable carrier 

liquid. 

1. Water is a safe compound. 

2. Availability. 

3. It can easily be drained without breaching any governmental policy. 
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4. Good conductivity that makes it a suitable carrier liquid for the ERT 

measurements.  

5. Suitable density and viscosity.  

Thus the slurry used in this study consists of a mixture of water and a non-

uniform shape and size sand with density of 2650 kg/m³. However, based on 

the objectives and the applicability of the methods used in this study, also in 

order to determine the influence of particle size and solids concentration on 

the measurement scheme, two sands were proposed, medium and coarse 

sand.  Furthermore, the settling characteristics are the most important 

aspect of this study, which can easily be achieved with medium and coarse 

sand. On the other hand, two throughput concentrations, 2% (v/v) and 10% 

(v/v), were proposed for each of the sands to be used in the experiments. 

4.4.1.1 Sand particle size analysis 

The particle size distribution (PSD) for the two sands was obtained, by 

taking the sample and oven-dried to achieve each 500 g of dried sand. 

Sieving method was used, they were then sieved, using a laboratory test 

sieve, through a series of sieves of standard mesh size (2360, 1180, 600, 

300, 150 and 75 µm). The sample fraction obtained in each sieve was 

weighted on a (Fisher brand, Model PF-6001) balance, ensuring that the 

final mass measured for each sieve is within 100% of the total solids put 

through. The fraction by mass was then recalculated to obtain a percentage 

of oversized particles that cumulated in each sieve. The results of these 

calculations are shown in Tables 1.1 and 1.2 for the both sands. The result 

was then plotted against the sieve mesh size to generate a particle size 

distribution curve, as shown in Figure 4.6.  

Using the particle size distribution curve, various important statistics were 

found. It was concluded that sand 1 has a particle size range with d85 = 430 

µm, median particle size (d50) of 242 µm and d15 = 170 µm. Based on the 

above analysis, sand 1 can be classified as medium quite broadly graded 

sand. With regard to sand 2, it was found that d85 of which is 2240 µm, d50 is 

480 µm and d15 is 270 µm. Therefore, sand 2 can be classified as coarse 

broadly graded sand.   
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Table 4.1 Showing sieve analysis for coarse sand based on 500 g 

Nominal Aperture 

Size (μm) 

Mass 

Retained (g) 

Mass 

Retained (%) 

Cumulative 

Undersize (%) 

2360 71.2 14.24 85.76 

1180 46.7 9.34 76.42 

600 115.8 23.16 53.26 

300 184.3 36.86 16.4 

150 75.1 15.02 1.38 

75 4.2 0.84 0.54 

Pan 2.7 0.54 -1.11022E-15 

Total 500 100  

 

Table 4.2 Showing sieve analysis for medium sand based on 500 g 

Nominal Aperture 

Size (μm) 

Mass 

Retained (g) 

Mass 

Retained (%) 

Cumulative 

Undersize (%) 

2360 13.1 2.62 97.38 

1180 0.7 0.14 97.24 

600 7.1 1.42 95.82 

300 166.5 33.3 62.52 

150 290.2 58.04 4.48 

75 20.8 4.16 0.32 

Pan 1.6 0.32 -1.7486E-14 

Total 500 100  
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Figure 4.6 Showing the particle size distribution curve for the two sands 

 

4.4.1.2 Density estimation of sand particles 

Since the density of solid particles flowing through a pipeline affects solids 

settling characteristics and the pressure drop, therefore, the measurement of 

particle density is very important. 

A pycnometric method was employed to determine the density of each of the 

sand used in the experiments. A pycnometer is a pre-calibrated glass bottle, 

which is used to determine a volume of dry solid particles of known weight. 

Initially the weight of empty and dry pycnometer was determined. The 

pycnometer was then filled (by 1/3 volume) with the desired sand particles 

and the total weight (Pycnometer and sand particles) was estimated. While 

the pycnometer contained sand particles, it was filled with distilled water. 

After completely emptying the pycnometer, it was then filled with only 

distilled water and the weight was determined. As the total volume of the 

pycnometer is known, then the volume of added water and full water in the 

pycnometer can easily be calculated. The volume of added water can be 

calculated theoretically (ratio of weight of added water and its known 

density). On the other hand, the volume of sand particles is the difference 

between the volume of water in the pycnometer, while containing sand 

particles, and the volume of only water in the pycnometer. Finally, the 

density of solid particles can be estimated through its known weight and 

calculated volume. The density of sand 1 and sand 2 was found to be 2650 

kg/m3.     
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4.4.2 Measured parameters and the measuring technique 

A set of experiment was carried out at various flow conditions, in which 

different particle sand size and different concentrations were used. The flow 

was controlled by altering the mean slurry velocity and the measurements 

were carried out for each selected condition.  The main focus was placed on 

the measurements of different slurry parameters such as pressure, 

temperature, flow rate (mean slurry velocity), in-situ and delivered solids 

concentration, solid’s velocity and concentration profile. Since each 

parameter plays an important role in the evaluation procedure and analysis, 

therefore, it is very important to ensure that the instrumentations used to 

measure these parameters are reliable and accurate. This can be fulfilled by 

testing and calibrating each instrument prior to any experiment. The 

calibration procedure of the instrumentations is highlighted in the next 

sections. 

4.4.2.1 Mean slurry velocity measurement 

The mean slurry velocity was determined using an Electromagnetic Flow 

Meter (EMF) (Krohne-Aquaflux), which was mounted on the vertical test 

section. The photograph of the EMF is illustrated in Figure 4.7. Matousek 

(1997) reported that a reliable measurement can be obtained if the 

electromagnetic Flow Meter is installed on the vertical section of the flow 

loop. This is based on the experiment evidence that the slip velocity is 

negligible between the two phases, the dispersed phase and the continuous 

phase, within the vertical section.  As a result the potential false readings are 

avoided.  

 

Figure 4.7 Electromagnetic Flow meter within vertical test section 

 

4.4.2.2 Solids volumetric concentration measurement 

The measurement of two types of solids volumetric concentration were 

carried out for each test, in-situ solids volumetric concentration and delivered 
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solids volumetric concentration. The measurement strategy to determine 

each concentration is described below: 

4.4.2.2.1 In-situ solids volumetric concentration measurement 

In order to monitor the internal structure of the flow two-dimensional 

concentration profile of the local concentration were calculated across the 

pipe cross-section. Obviously the local chord concentration can represent a 

clearer picture of the distribution of solid particles and their movement in the 

vertical axis of the pipe cross-section. The Fast Impedance Camera System 

(FICA) was used to measure and collect a set of block data of 8000 frames 

for each mixture velocity. The measured conductivity data was then entered 

into the P2000 software to produce the conductivity map of the pipe cross-

section. The conductivity map then imported into the software package 

called AIMFLOW, which stands for Advanced Imaging and Measurement for 

Flow, Multiphase Flow and Complex Flow in the Industrial Plant. The mean 

local concentration was produced by averaging a block of frames from the 

concentration map, and the solids concentration profile was extracted along 

the vertical centreline of the tomograms generated, which composed of 20 

pixels. The size of each pixel was calculated as 2.5 by 2.5 mm for 50 mm 

diameter pipe. The tomograms reconstructed for each test were collected 

and analysed to determine the mean solids concentration and solids 

concentration profile across the vertical plane of each tomogram. 

4.4.2.2.2 Delivered solids volumetric concentration measurement 

Delivered solids volumetric concentration is a very important parameter, as it 

determines the capacity of a pipeline system (Brown and Heywood, 1991). 

Therefore this type of solids concentration was measured using a flow 

diversion technique, in which the slurry flow is diverted for a very short 

period of time into a measuring tank with a capacity of 250 litre. The 

delivered solids concentration was found to be an important parameter for 

validation of the in-situ solids concentration obtained from the Electrical 

Resistance Tomography system (ERT) and mean slurry velocity measured 

via the Electromagnetic Flow meter (EMF). 

4.4.2.3 Local solids axial velocity measurement 

To obtain the solids axial velocity distribution, FICA system was used in 

conjunction with the cross-correlation method. The data was acquired at a 

rate of 1000 frames per second for each plane. The measurements were 

taken and a set of block of 8000 dual images were reconstructed for each 

flow condition. Each dual image represents the conductivity distribution at 
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the upstream and downstream planes at a particular time. Then the relation 

between the two signals from the two planes was established using pixel-to-

pixel correlation method, which has been developed into a software package 

(AIMFLOW) at the University of Leeds and Chinese Academy of Science. By 

importing the conductivity map, produced from the ITSP2000 software, into 

the AIMFLOW, the axial solids velocity, concentration and solids volumetric 

flow rate can be computed.  

4.4.2.4 Temperature measurement 

The measurement and monitoring slurry temperature is a crucial part of the 

experiments, as any change in the slurry temperature would affect the slurry 

behaviour, background conductivity of the slurry and as a consequence a 

dramatic effect on the results obtained from the tomography measurements. 

The temperature changes in the slurry were monitored via a K-type 

thermocouple (from Cole-Parmer) with a sensitivity 41µV/°C. Figure 4.8 

showing the thermocouple mounted on the vertical test section. It was 

connected to the Data Acquisition System (DAS), where the slurry 

temperature is recorded every 5 seconds. The calibration procedure of the 

thermocouple is presented in section 4.5. 

 

 

 

Figure 4.8 The thermocouple within vertical test section 

 

4.4.2.5 Pressure measurement 

The measurement of pressure differential between two points of a section of 

a straight pipe is one of the most important measurements for pipeline 

frictional head loss determination. Monitoring pressure changes over straight 

pipelines can provide valuable information regarding the condition of slurry 

flow. Therefore, pipeline pressure drops were measured over straight 

horizontal and straight vertical test sections.  Four pre-calibrated pressure 

sensors (Danfoss flush diaphragm-model MBS 4010) were mounted on the 
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flow loop, two on the horizontal test section and the other two on the vertical 

test section. According to the manufacturer these pressure sensors are most 

suitable in connection with aggressive and non-uniform media with a 

measurement error of ±0.3%. The actual photograph of the pressure 

transducer mounted on the horizontal test section is shown in Figure 4.9.   

Each pressure sensor was connected to the Data Acquisition System (DAS), 

where the data is generated in the form of current output, then this is 

converted to pressure data, knowing that the relationship between the 

current output and the pressure is linear. The calibration of these pressure 

sensors is described in section along with the qualitative calibration results. 

 

 

 

Figure 4.9 The Pressure transducer within horizontal test section 

 

4.4.3 Operating procedure 

Slurry transport is a complex operation that can easily divert from the steady 

state condition, which has a negative impact on the measurement scheme 

and the experimental data. Therefore, in order to make sure that a good 

quality of experimental data is obtained, a careful and effective experimental 

procedure has to be designed. Besides, the accuracy and reliability of the 

instrumentations used to measure the relevant parameters in each 

experiment are also paramount. The calibration procedure and the results of 

each calibration is described in section 4.5.  

A series of experiments were carried out on each of the sands with different 

solids concentration, 2% (v/v) and 10% (v/v). At the start of each experiment 

the mixing tank is filled with tap water and the pump is continuously 

introducing water into the flow loop, knowing that the flow velocity is adjusted 

to a high velocity prior to adding the required sand. Then the conductivity of 
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water and its temperature is recorded, this will then be required for the ERT 

reference measurement. The pre-weighed desired sand is added into the 

mixing tank after switching on the mixer and adjusting the desired rotational 

speed. It is worth mentioning that while the sand is added into the mixing 

tank, the valve at the discharge point of the mixing tank is closed and the 

valve on the flush line is opened. This procedure would ensure continuous 

flow into the loop through the flush line. After adding the sand to the water, 

the slurry was initially well agitated in the holding tank so as to achieve a 

homogeneous mixture. The slurry was then introduced to the flow loop via 

the centrifugal pump from the mixing tank. The average superficial velocities 

were in the range of 1.5-5- m/s. The slurry flow was first established at the 

highest velocity of the pump, which was controlled via the digi-drive 

frequency converter, then reduced gradually from 5 m/s to 1.5 m/s. The 

reason for that was to cover all the flow regimes. However, this aim could 

not be attained for pseudo-homogeneous flow regime, particularly 10% (v/v) 

coarse sand, due to the limitations imposed by the pump capacity. Particular 

attention was paid to carry out every test at the steady state condition, 

through observing the fluctuation of pressure data via pressure graphs on 

the LabVIEW panel. For each condition and different sand with different 

concentration the ERT measurements were carried out using the Fast 

Impedance Camera System (FICA) by mapping the conductivity of the 

media under investigation. A digital camera was used to capture the 

photographs of the flow through the transparent pipe section confined in the 

light box. Since the photographic images of the flow are used to validate the 

flow regime visualisation, then it is very important to capture the photographs 

at the same time of the ERT measurement. After each ERT measurement 

and capturing photographs, the discharge measurements or flow diversion 

technique was performed, by diverting the flow to the measuring tank for a 

very short period of time, and then the level of the contents through the glass 

tube and its weight using the load cells were recorded. As previously 

mentioned, the diversion technique is a potential cause for flow instability, 

therefore, after diverting the slurry and returning it into the flow loop, a short 

period of time is required to ensure the steady state flow condition. 

Thereafter the next measurement test can be carried out as per previous 

procedure. Each test carried out for the horizontal flow was followed by the 

vertical flow measurement. All the measured data then collected via the 

LabVIEW and processed for future analysis. 
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4.5 Calibration procedure 

In order to obtain reliable and accurate results, the calibration of the 

measuring instrumentations was carried out. These instruments include the 

conductivity meter, thermocouple, load cells, ERT testing, pressure 

transmitters, EMF. The calibration procedure of each instrument mentioned 

above is explained in the following sections. 

4.5.1 Calibration of the thermocouple 

The calibration of the thermocouple was carried out within a range of 

temperature from freezing temperature to boiling temperature. A glass 

mercury thermometer was also placed in the water alongside the 

thermocouple. They were initially placed in freezing water then the 

temperature was altered by adding boiling water to complete the range and 

reach the other extreme. The temperature indicated by the two devices was 

continuously recorded each time the boiling water was added. The 

qualitative data obtained from the calibration process is shown in Figure 

4.10, while the quantitative data can be found in Appendix B.  

By observing the data shown in Figure 4.10, it can be seen that the 

temperature values recorded by the thermocouple showing a linear 

relationship and is quite close to the predicted values. It is quite evident that 

some overestimation can be noticed and the operating error was established 

to be 2.5%, which is quite acceptable and no further action was required. 

 

 

Figure 4.10 Measured temperature for the thermocouple and the 
thermometer 
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4.5.2 Calibration of pressure transducers 

The calibration of the two pressure transducers mounted on the horizontal 

line, H1 and H2, and the two pressure transducers mounted on the vertical 

line, V1 and V2, were carried by recording static pressure against actual 

values. A long vertical pipe (5 m) was used, on which each pressure 

transducer could easily be mounted at the lower part of the pipe. The actual 

pressure (ρgh)  was calculated at different level of water in the pipe. For 

each level the pressure was also recorded by the pressure transducers via 

LabVIEW software. The calculated actual pressure and the response of 

each pressure transducer, which was recorded via LabVIEW, are shown in 

Figure 4.11. A linear relationship can be noticed for each sensor, which 

confirms the functionality of the each pressure transducer. However, some 

deviations from the line fit can be seen for each transducer. The amount by 

which each transducer deviates was calculated and added to the reading of 

each transducer in the LabVIEW software. After correcting each pressure 

transducer, another calibration was then performed, the results of which is 

shown in Figure 4.12. The corrected and uncorrected data obtained from the 

calibration processes can be found in Appendix B. The observation of the 

corrected data can reveal a good line fit between all pressure transducers 

and actual values. 

 

 

Figure 4.11 The transducers pressure readings against actual values before 
correction 
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Figure 4.12 The transducers pressure readings against actual values after 
correction 

4.5.3 Calibration of the conductivity meter 

A handheld conductivity meter (Jenway 470) has been used for conductivity 

measurement of the slurry used in the experiments. In order to ensure the 

reliability of this device a calibration procedure against a pre-calibrated 

desktop conductivity meter (Cyberscan-PC6500 Desktop conductivity meter) 

from EUTECH Instruments was performed. The calibration process carried 

out by placing the probes of both devices into a brine solution (sand and 

water) at various temperature readings while the concentration kept 

constant. After analyzing the conductivity values of both conductivity meters, 

a linear relationship was observed and an average error of 0.45% was 

determined in the handheld conductivity meter. The comparison results of 

both conductivity meters is shown in Figure 4.13, while the quantitative 

measured data can be seen in Appendix B. Based on the value of the 

established error, the conductivity values obtained for the handheld 

conductivity meter was considered to be within the accuracy range and no 

further calibration was followed. 

 

0 

5 

10 

15 

20 

25 

30 

35 

40 

45 

0 20 40 60 

T
ra

n
s
d

u
c

e
r 

R
e

a
d

in
g

 (
k

P
a

) 

Actual value (kPa) 

After correction 

45° line fit 

H1 

H2 

V1 

V2 



- 97 - 
 

  

 

Figure 4.13 Comparison results of handheld and desktop conductivity meter 

 

4.5.4 Calibration of the measuring tank 

The measuring (sampling) tank, which is used to determine various 

important parameters in this study, was calibrated by gradually adding pre-

weighed water and comparing the measured weight to the weight calculated 

based on density. Pre-weighed water, which was measured by a pre-

calibrated scale, was added to the measuring tank and the level of water 

was recorded for each added amount of water. The volume of the contents 

of the conical section was determined, which is constant, and then the 

volume of the contents of the cylindrical section was calculated each time 

the water is added. Then the total volume of the tank content, contents of 

conical section and cylindrical section, was calculated as the water is 

gradually added. This way the measured weight of tank contents can be 

calculated based on known density and calculated volume of water in the 

tank. This measured weight was then compared to the readings of the pre-

calibrated scale and a linear relationship was obtained, as illustrated in 

Figure 4.14. A good line fit was observed with establishing an average error 

of 0.65%, which is within tolerance level for the experimental measurement.  
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Figure 4.14 Showing the comparison between the weight of added water 
measured by the pre-calibrated scale and level based measured weight 

 

4.5.5 Calibration of the load cells 

The load cells play an important part in the experiments carried out in this 

study, as these transducers are used for load readings of the contents of the 

measuring tank. Therefore, a proper calibration is required to ensure their 

accuracy in recording the weights applied on them. 

The full calibration of the load cells is carried out via two stage process 

calibration. The first stage involves loading the measuring tank with a pre-

weighed object and adjusting the reading of the load cells based on the 

weight of the applied load. This stage can be done using the front panel of 

the software (Proview) used to conFigure and acquire the data read by the 

transducers. The second stage involves gradual adding of pre-weighed 

water to the measuring tank and simultaneous recording the response of the 

load cells. The calibration process of the load cells is similar to that of the 

measuring tank. Pre-weighed water is added to the measuring tank and the 

recorded weight via the load cells is compared to the total weight of added 

water in the tank. The result of comparison is depicted in Figure 4.15, in 

which an average error of 0.35% was established in the data recorded by 

the load cells. The recorded data is also shown quantitatively in Appendix B. 

By observing the data, shown in Appendix B, it can be seen that the 

response of the load cells to each amount of water added to the tank 

corresponds to the actual weight of added water within the range of 15 kg-60 

kg. However, some overestimation in the readings of the load cells can be 

noticed. Since the amount of error is within an acceptable range in the 
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experiments carried out in this study and the weight of diverted slurry is no 

more than 60 kg in the measuring tank, therefore, no further calibration was 

performed. 

 

 

Figure 4.15 Showing the comparison between the weight of added water 
measured by the pre-calibrated scale and load cells readings 

 

4.5.6 Testing and calibration of the ERT sensor 

The calibration and testing of the ERT is very important to ensure the 

accuracy of the measurement and the reliability of the dual-plan ERT sensor. 

Therefore, the calibration of the ERT was performed in two-stage procedure. 

The first stage was to check the functionality of the electrodes mounted on 

each plane (1 & 2). The electrodes mounted were tested by moving a 

stimulus (plastic ball), approximately 25 mm diameter, within the sensing 

region in the water filled pipe. The concept of this test method was to check 

how much the sensors would record the change in conductivity (or 

resistivity) of the media and visualizing the result on the tomograms 

produced by each plane when a stimulus is applied. The result of the test is 

shown in Figure 4.16 for plane 1 and plane 2. It can be seen that the 

reaction of the two planes against the resistivity changes are similar in the 

presence of the stimulus. Figure 4.17 showing the reconstructed image 

(tomogram) obtained prior to placing the stimulus and during placing the 

stimulus. The plastic ball is demonstrated by blue colour, which occupies 

approximately 40-50% of the pipe cross section. Knowing that the pipe 

diameter is 50 mm and the plastic ball diameter is 25 mm, then a good 
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agreement can be concluded between the actual size of the ball and its size 

on the reconstructed image.  

 

 

Figure 4.16 Changes in resistivity measured during the course of sensor 
testing 

 

 

   (a)     (b)  

Figure 4.17 Tomograms showing conductivity of the media: (a) prior to 
placing the stimulus (b) during placing the stimulus 

 

On the other hand the second stage involved measuring the conductivity of 

brine solution (coarse sand and water) at different temperature while the 

concentration kept constant. Several measurement tests were carried out 

using a pre-calibrated conductivity meter (probe) and the ERT. The 

conductivity of the brine measured by both devices were recorded and 

compared. The comparison result is shown in Figure 4.18, in which an 
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however, can be considered as an acceptable rate, which is well tolerated in 

the experiments. Therefore, no further correction was performed. 

 

 

Figure 4.18 Comparison results of brine conductivity measured by the probe 
and the ERT 

4.6 Conclusions 

In this chapter, the horizontal and vertical flow loop layout is described, 

along with the associated instrumentations and techniques used to measure 

the relevant parameters in this study. The type and reasons for selecting the 

slurry components and the characterization of the solid particles are 

mentioned. The operating procedure and the calibration method for the main 

instruments are highlighted. Based on the calibration results, it was 

concluded that the thermocouple, the ERT, the conductivity meter, the 

measuring tank and the three load cells perform accurately within the 

experimental range. Therefore, based on the initial results of the calibration 

process, it was decided that the values measured by these instruments can 

directly be used for future analysis. However, it was revealed that pressure 

transducers require some corrections, so that the pressure values obtained 

by them can fall within the tolerance range.  
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Chapter 5 

Horizontal and vertical flow results, discussions and 

important findings 

This chapter presents the experimental results obtained from both test 

sections, horizontal and vertical, within the 50 NB flow loop. The 

experimental tests focus on the flow phenomenon of sand particles and its 

effect on the ERT measurement scheme. A detailed evaluation of the ERT is 

also presented through validation of the measured parameters obtained from 

the ERT. 

5.1 Introduction 

The results of laboratory experiments carried out on a 50 mm pipeline, with a 

horizontal and a vertical section are presented in this chapter. 

The experiments were focused on the observations of both, the integral flow 

characteristics and the local flow characteristics of settling slurry pipeline. 

Since the measurement of the local flow characteristics is crucial for the 

identification of the mechanisms governing the process of slurry flow, then 

the ERT technique was employed to interrogate the internal structure of 

slurry flow in the pipeline under various slurry flow conditions. Besides, the 

ERT system was used to generate some of the integral flow characteristics, 

such as mean solids concentration and mean solids velocity across 

horizontal and vertical test section of the flow loop. Due to the dynamic and 

rapid change of the internal structure of slurry flow, it was believed that a fast 

measuring technique is required to provide continuous information about the 

development of slurry flow inside pipelines. Therefore, the Fast Impedance 

system was used in these experiments with capability of acquiring 1000 dual 

frames per second. 

The following sections present the measurement technique used in the 

experiments together with the flow characteristics of the dispersed phase 

(sand) and continuous phase (water). The experimental data obtained from 

the ERT will be quantitatively and qualitatively analysed with highlighting the 

rate and potential cause of the occurring error in the measurement for both 

orientations. The visualisation of typical slurry flow regimes via both profiles, 

solids volume fraction distribution and solids axial velocity distribution, will be 

discussed and validated qualitatively. An analysis of stratified flow within 
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horizontal test section will be covered in this chapter, along with a 

presentation of a technique, by which the parameters relating to stratified 

flow can be estimated.  

5.2 Experimental strategy 

In order to achieve the objectives of this project, the adopted methodology 

consists of a three-fold strategy, which is outlined in Figure 5.1. This strategy 

is based on the achievement of the final target, which is evaluation of the 

measurement, visualisation and flow regime recognition scheme of settling 

slurry flow. The first approach is experimental measurement and 

visualisation, which is followed by a flow feature extraction through signal 

analysis of the ERT data for the purpose of automated flow regime 

recognition. The experimental measurement and visualisation involve 

intense utilisation of the ERT and the Electromagnetic Flow meter (EMF). 

The ERT is used to determine solids axial velocity and solids concentration 

along with the tomograms of the pipe cross-section for solids flow 

visualisation. On the other hand the EMF is used to measure the transport 

velocity (or superficial velocity). The measurement results are then used to 

characterise the flow of solid-liquid flow within the pipeline via generating the 

profiles, concentration and solids axial velocity. Also, in order to characterise 

slurry flow, a flow visualisation scheme has to be proposed.  

Clearly each flow regime demonstrates distinct features, such as 

conductivity distribution, which is directly linked to the distribution of the solid 

particles across the pipe cross-section. Therefore, it is quite plausible to 

adopt a recognition scheme based on the specific flow features of each flow 

regime. 

The final approach involves the validation of all the results obtained from the 

experimental measurement. This includes a comparison of the qualitative 

results against the obtained results from the flow diversion technique, which 

employs a bulk flow measurement vessel. Whereas the qualitative results 

obtained from the ERT is validated against the actual photograph of the flow, 

which synchronously captured with the ERT measurements. 
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Figure 5.1 Schematic briefing of the methodology used in this study
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5.3 Material and test conditions 

Slurry flow through horizontal and vertical test sections of the flow loop 

shown in Figure 4.2 (Chapter 4) was studied. The loop consists of 50 mm 

diameter uPVC pipeline, the details of which can be found in Chapter 4. The 

material and test conditions are summarised in Table 5.1 shown below. 

Table 5.1 A summary of material and test conditions used in the experiments 

Slurry 

Sand and tap water 

ρwater= 998.2 kg/m3 

ρsand= 2650 kg/m3 

Particle size 
Medium sand (75-900 µm) 

Coarse sand (150-2200 µm) 

Throughput concentration 2%-10% (v/v) 

Transport velocity 1.2-5.0 m/s 

Pressure range 0.41-1.2 bar 

Temperature range 20-28 °C 

Pipeline uPVC, Class E 15 bar (50 mm ID) 

 

The slurry consisted of a mixture of tap water and a non-uniform shape and 

size sand with density of 2650 kg/m3. Two types of sand were used, medium 

and coarse, with throughput concentration range 2%-10% (v/v) for each 

type. The average superficial velocities were in the range of 1.2-5.0 m/s. 

Transparent pipe sections were included into both, horizontal and vertical 

test sections, as observation chambers, which would enable visual 

observation of the motion of the solid particles within the pipeline and 

capturing photographs. The slurry was first established at the highest 

velocity, which was controlled via the Digi-drive frequency converter, then 

reduced gradually from 5 m/s to 1.2 m/s, at which the pipeline blockage 

occurred. The ERT measurements were carried out for each condition within 

a temperature range of 20-28 °C. Each horizontal flow measurement 
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followed by a vertical flow measurement and flow diversion measurement. 

Then the next measurement was carried out after allowing a sufficient time 

for the flow to stabilise. Attempts were made to capture the photographs of 

the flow at the same time of each ERT measurement. In order to reduce the 

rate of error in the flow diversion measurement, three level measurements 

were carried out, the average of which was then calculated against each 

corresponding ERT measurement. 

5.4 Horizontal flow measurement and visualisation 

In order to visualise the internal structure of the flow, concentration profile of 

the local concentration was calculated across the pipe cross section. 

Obviously the local chord concentration can represent a clearer picture of 

the distribution of solid particles and their movement in the vertical axis of 

the pipe cross section. The Fast Impedance Camera System (FICA) was 

used to measure and collect a set of block data of 8000 frames for each 

mixture velocity. It was noticed that the FICA system can offer an excellent 

speed in measuring the conductivity of the media and collecting the data. 

The FICA system was developed by OLIL group at the University of Leeds 

and is capable of measuring approximately 1000 dual frames per second, 

which makes it one of the very fast instruments amongst others. This can be 

considered as one of the primary advantage of the FICA system for 

visualisation and measurement of slurry flow, due to dynamic and instability 

of slurry flow over time. The measured conductivity data was then entered 

into the P2000 software to produce the conductivity map of the pipe cross 

section. The conductivity map then imported into the software package 

called AIMFLOW, which stands for Advanced Imaging and Measurement for 

Flow, Multiphase Flow and Complex Flow in the Industrial Plant. The mean 

local concentration was produced by averaging a block of frames from the 

concentration map, and the solids concentration profile was extracted along 

the vertical centreline of the tomograms generated, which composed of 20 

pixels. The size of each pixel was calculated as 2.5 by 2.5 mm for 50 mm 

diameter pipe. The tomograms reconstructed for each test were collected 

and analysed to determine the mean solids concentration and solids 

concentration profile along with the mean solids axial velocity and solids 

axial velocity distribution across the vertical plane of each tomogram.  
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5.4.1 Solid flow visualisation 

Since the ERT provides an image reconstruction scheme, then it can be 

used to monitor and visualise the internal structure of a pipe or a process. 

The aim of the image reconstruction scheme is to compute a tomogram, 

which is representing the electrical conductivity of the material flowing 

through the pipe. In the case of slurry flow, in which the solid phase is 

considered as dispersed phase, the value of in-situ solids volume fraction at 

a given location in the pipe corresponds to the local mixture conductivity 

using Maxwell relationship. It is worth mentioning that each measurement 

data generated is interpreted by an image reconstruction algorithm, in order 

to compute the cross-sectional image (tomogram) corresponding to the 

electrical conductivity field within the pipe. The image reconstruction scheme 

and the use of an appropriate algorithm are described in section 3.4.6. The 

cross-sectional image or the tomogram provides valuable information, which 

can readily be used for the purpose of visualisation. Flow visualisation using 

tomograms may be beneficial to the operator in industry if certain flow 

features are sought, such as bubbles, plug flow and formation of strata in 

horizontal flow. However, for detailed qualitative evaluation, both profiles, 

solids volumetric concentration and solids axial velocity, presented in the 

following sections, may be the best tool. The tomograms reconstructed in 

this study are used to monitor the distribution of sand particles across the 

pipe cross-section, which is described in the following section. These 

tomograms were generated using a non-iterative algorithm, Linear Back 

Projection (LBP), which was found to be suitable for the purpose of this 

study. The selection of this algorithm is based on its advantages, which are 

simple and fast which make it most suitable for on-line monitoring of solids 

flow within the pipeline.    

5.4.1.1 ERT tomograms 

Figures 5.2, 5.3 and 5.4 present the concentration tomogram obtained for 

flowing of medium and coarse sand particles with 2% and 10% throughput 

concentration at various transport velocities. The in-situ concentration 

measured by the ERT is also mentioned for both sands at various flow 

conditions. The cross-sectional area of the blocked horizontal pipeline is also 

illustrated along with solids in-situ concentration and the height of the 

stagnant bed. The in-situ concentration scale across the vertical line of the 

pipe cross-section is also indicated by a vertical gradient coloured bar below 

the tomograms for each sand and throughput concentration group. The 

actual corresponding photographic evidence of the flow, which is used to 
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validate the ERT tomograms, is also presented for each condition. Due to 

the vast amount of data the concentration tomograms shown here are only 

confined to several test conditions. 

The tomograms represent the distribution of each phase within the pipe 

cross-section, and this is depicted by a colour gradient. The basic idea of 

each coulor code is to interpret the conductivity or the concentration 

distribution within the flow system. The tomograms illustrated here are based 

on the concentration distribution. The yellow colour shows the lower 

concentration of the dispersed phase (sand particles), while the blue colour 

represents its higher concentration within the carrier liquid. 

From the tomograms shown in the aforementioned figures, it can be seen 

that the distribution of solid particles varies, for both sands, depending on 

the velocity throughput (i.e. the in-situ concentration increases with decrease 

of velocity). However, this is not the case for velocities above 4 m/s for both 

sands and both concentrations. This could probably be due to the entrained 

bubbles in the mixing tank at higher velocities, at which the returning slurry 

falls down into the mixing tank and produces bubbles. 

At higher velocities the particles occupy not only the bottom half of the pipe, 

but also the upper half of the pipe and they are in suspension, while in lower 

velocities, especially at 1.5 m/s, the bed is formed and the particles clearly 

move either in the form of moving bed or contained in a stationary bed, 

some of which move in saltation (roll and tumble over the bed) or in a 

sporadic movement over the stationary bed. This phenomenon can clearly 

be seen in the corresponding actual photograph of the flow. 
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Figure 5.2 Concentration tomograms from the ERT (AIMFLOW) for medium 
and coarse sand at the shown transport velocity and mean local solids 

concentration across the pipe cross-section, along with the real 
photographs of the flow within the pipeline 
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Figure 5.3 Concentration tomograms from the ERT (AIMFLOW) for medium 
and coarse sand at the shown transport velocity and mean solids 
concentration along with the real photographs the flow within the 

pipeline 
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Figure 5.4 Concentration tomograms from the ERT (AIMFLOW) for medium 
and coarse sand at the shown transport velocity and mean solids 

concentration along with the real photographs of the flow within the 
pipeline 

 

5.4.2 ERT solids volume fraction distribution 

Figures 5.5, 5.6, 5.7 and 5.8 showing the profile of solids concentration as a 

function of transport velocity along the vertical axis of the 50 NB pipe cross-

section. In order to determine the effect of concentration along with the 

particle size, two different sands, medium and coarse, were used at two 

different throughput concentrations, 2% and 10%.  The y-axis represents the 

dimensionless vertical position (y/D) inside the pipe, while the x-axis 

represents the local volumetric solids concentration. 

The generated concentration profiles represent the typical concentration 

profile of settling slurry flow. It can be noticed that, at velocities below 3.4 

m/s, for the two sands the profiles composed of a concave (left-hand bend) 

curve in the upper part of the pipe and convex (right-hand side) curve in the 

lower part of the pipe. This behaviour can easily be noticed for all velocities 

used in the experiment, except for 2% medium sand at transport velocity 5 

m/s, for which the distribution of sand particles is rather quasi-homogeneous 

with asymmetric distribution across the pipe cross-section. 

The results for flowing medium sand with 2% throughput concentration, 

which is shown in Figure 5.5, illustrates a gradual distortion in the profile and 

changing its pattern from pseudo-homogeneous flow pattern to stratified flow 

with decreasing the transport velocity. 
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Figure 5.5 Concentration profile for flowing medium sand at 2% throughput 
concentration in the horizontal 50 NB pipe as a function of the transport 

velocity 

 

 

Figure 5.6 Concentration profile for flowing medium sand at 10% throughput 
concentration in the horizontal 50 NB pipe as a function of the transport 

velocity 
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Figure 5.7 Concentration profile for flowing coarse sand at 2% throughput 
concentration in the horizontal 50 NB pipe as a function of the transport 

velocity 

 

 

Figure 5.8 Concentration profile for flowing coarse sand at 10% throughput 
concentration in the horizontal 50 NB pipe as a function of the transport 

velocity. The red dashed arrow indicates the height of the bed at the 
bottom of the pipe 
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well above the deposition velocity, is totally absent for all concentrations and 

particle sizes used in this investigation. This feature can clearly be seen in 

Gillies and Shook (1994), who observed the solids concentration profile near 

the bottom of the pipe, and found that the profile reaches the maximum 

concentration then it bends backward. It is worth mentioning that they 

noticed this phenomenon at 36% solids delivered concentration (Cv=0.36). 

Similar feature was observed by Matousek (1997) and Pachowko (2004), 

who also used more than 10% throughput solids concentration. Since this 

study uses a throughput concentration of up to 10%, which is less than that 

used by the above researchers, then this may be one of the attribution as to 

why the particle lift force is not seen in the above concentration profiles. The 

effect of concentration could be one of reasons. As with decrease of solids 

concentration, the particle-particle interaction and collisions become less 

effective. This results in less momentum transfer and the particles move in 

the form of loose-poured bed rather than highly concentrated bed. This 

observation is more consistent with wider particle spacing at low 

concentration, in which the turbulent is more effective. Another possibility for 

the absence of particle lift force, may also be due to generation of artificial 

errors by Linear Back Projection algorithm. However, the reason behind the 

absence of this phenomenon in this study merits a thorough investigation.   

In the case of coarse sand with 2% throughput concentration, shown in 

Figure 5.7, similar trend was observed as described for medium sand with 

the same throughput concentration, but with higher degree of distortion, 

which was picked up by the ERT. This phenomenon indicating that the 

coarser particles cannot be suspended by the turbulent eddies in the 

suspending liquid in the upper region of the pipe at the highest velocity used 

in this study. As a consequence the coarse and heavy sand particles occupy 

the lower regions of the pipe, which result in producing a large shear stress 

at the upper surface of the contact bed by the pressure gradient acting on 

the pipeline. Therefore the flow at certain transport velocities tends to be 

more stratified for transport of coarser particles. The effect of solids 

throughput concentration has also been detected by the ERT. It can be seen 

that the profiles of both sands at 10% throughput concentration have higher 

degree of distortion than those of 2% throughput concentration at the given 

transport velocity. This can be attributed to the particle-particle interaction, 

the effect of which increases with increase of particle concentration. 
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5.4.3 ERT solids axial velocity distribution 

To obtain the solids axial velocity distribution, FICA system was used in 

conjunction with cross-correlation method. The data was acquired at a rate 

of 1000 frames per second for each plane. The measurements were taken 

and a set of block of 8000 dual images were reconstructed for each flow 

condition. Each dual image is representing the conductivity distribution at the 

upstream and downstream planes at a particular time. Then a relation 

between the two signals from the two planes were established, using pixel to 

pixel correlation method, which has been developed into a software package 

(AIMFLOW) at the University of Leeds and the Chinese Academy of 

Science. By importing the conductivity map into the AIMFLOW, the axial 

solids velocity, concentration and solids volumetric flow rate can be 

computed. 

The in-situ solids velocity in the slurry pipeline has been measured for 

various combinations of transport velocities, which was determined by the 

Electromagnetic Flow meter (EMF), and throughput concentration for 2% 

and 10% medium and coarse sand. The selection of slurry transport 

velocities was based on covering the predicted four flow regimes occurring 

in the horizontal slurry pipeline. The highest transport velocity was 5 m/s, 

which was enough to maintain all solid particles in suspension for both 

sands. The lowest transport velocity was 1.5 m/s, in which the effect of 

particle lift force approached zero and as a result the solid particles settled at 

the bottom of the pipe, where moving bed and/or stationary bed could 

prevail.  

For each transport velocity, throughput concentration and sand type, velocity 

profile was measured along the vertical diametrical plane of the pipe cross-

section. Along this plane the local solids velocity was measured at 20 

locations. It is to be noted that once the mixture conductivity was measured 

by P2000 software, 20 x 20 grids were selected, and the grid locations falling 

outside the pipe cross-section were blanked out. Therefore, the number of 

remaining pixels within the pipe cross-section is 316. The mean solids local 

velocity was also determined by averaging the magnitude of solids velocity 

across 316 pixels. 

For the sake of simplicity, the results of the velocity measurement presented 

here are limited and confined only to randomly selected sands and some 

operating conditions. Figures 5.9, 5.10 and 5.11 showing the solids velocity 

profiles along the vertical plane at a range of 1.5-5 m/s mean slurry velocity 

for coarse and medium sand at two throughput concentration 2% and 10%.  
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In the profiles shown below, for both sands and the two throughput 

concentrations, it can be seen that the shape of profile goes through 

continuous distortion as the mean flow velocity is further decreased. This is 

due to the fact that at low velocities the turbulent dispersing force decreases 

and the carrier liquid is no longer able to maintain the coarser particles, as a 

result the coarser particles migrate to the lower part of the pipe. This 

phenomenon causes an increase of solids particle concentration at the lower 

part of the pipe. In the case of medium sand at 10% throughput 

concentration, the velocity profile of which is illustrated in Figure 5.9, it can 

be noticed that with decrease in mean flow velocity the location of peak 

solids velocity shifts towards the upper part of the pipe. Simultaneously, the 

solid particles at the bottom of the pipe start to slow down. This slurry 

feature, which is clearly highlighted by the ERT, has been the subject of 

many previous studies (Kaushal et al., 2002; Matousek, 2002). As the 

transport velocity decreases, the gravity force plays its role, in return the 

solids concentration increases at the bottom of the pipe. This increase in 

solids concentration causes a strong particle-particle interaction, which 

diminishes the momentum of the flowing solids, as a result the particles at 

the bottom of the pipe travel slower than those moving at the top of the pipe. 

The same trend was observed for coarse sand, at both throughput 

concentrations. However, an increase in the degree of asymmetry in the 

solids velocity profile was noticed to be higher than that of medium sand at 

the same throughput concentration and transport velocity. This behaviour 

could well be attributed to the particle size effect. As the particle size 

increases, the gravity effect dominate the turbulent eddies responsible for 

suspending solid particles in the carrier liquid, as a result the coarser 

particles are displaced to the bottom of the pipe. This effect enhances an 

increase in the solids concentration at the bottom of the pipe, where the 

particles face a strong interference between each other that cause them to 

slow down. At a given throughput concentration and transport velocity the 

degree of solids segregation at the bottom of the pipe is higher in coarse 

sand rather than medium sand; hence the velocity profile for coarse sand 

manifests a higher degree of asymmetry. Therefore, one can conclude that 

the degree of asymmetry in solids velocity profile dependent on the particle 

size.  
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Figure 5.9 Solids axial velocity profile for flowing medium sand at 10% 
throughput concentration in the horizontal 50 NB pipe as a function of 

the transport velocity 

 

 

Figure 5.10 Solids axial velocity profile for flowing coarse sand at 2% 
throughput concentration in the horizontal 50 NB pipe as a function of 

the transport velocity 
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Figure 5.11 Solids axial velocity profile for flowing coarse sand at 10% 
throughput concentration in the horizontal 50 NB pipe as a function of 

the transport velocity 

 

The observation of all solids velocity profiles measured by the FICA system 

can also clearly reveal that for the same particle size and transport velocity, 

the degree of asymmetry increases with increase of through put solids 

concentration. Again, the prime responsible is the particle-particle 

interaction, which widens the difference in the average solids velocity at the 

top and the bottom of the pipe. Therefore, the effect of solids concentration 

throughput can also be demonstrated by the ERT. 

5.4.4 Methods of solid flow velocity visualisation 

Apart from solids velocity profile, for which the data for 20 locations was 

taken and plotted against the 20 corresponding vertical location, the 

distribution of solids velocity across the pipe cross-section were also 

generated automatically by the AIMEFLOW software. After importing the 

conductivity data acquired by the FICA system and inputting several flow 

parameters for calculation of solids velocity, the reconstructed cross-

sectionalsolids velocity profile can be visualised on the monitor. Some these 

cross-sectional solids velocity profiles are shown below. However, it was 

noticed that these profiles do not voluntarily provide sufficient information 

regarding the flow apart from mere monitoring of particles motion within the 

pipe. In addition, for certain flow conditions, the generated profiles 

associated with some noises, which would distort the profile and provide 

misleading information regarding the location, which is affected by the noise. 

0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1 

0 1 2 3 4 5 6 

V
e
rt

ic
a
l 

P
o

s
it

io
n

 y
/D

 (
-)

 

Solids Axial Velocity (m/s) 

4.5 m/s 

3.5 m/s 

2.5 m/s 

1.5 m/s 

Top of pipe 

Bottom of pipe 



- 119 - 
 

  

The reasons for this may well be attributed to the buried hardware noises. 

However, this issue has to be the subject of future investigation. 

If we look at the profiles shown in Figures 5.12, 5.13, 5.14, 5.15, 5.16, 5.17, 

5.18 and 5.19, a gradient of colours could be remarked. Each shade of 

colour represents the velocity level of the flowing solid particles. The yellow 

colour represents the highest velocity at the top of the pipe, whilst the blue 

colour refers to the lowest solids velocity at the bottom of the pipe. The 

velocity scale is also indicated by a vertical gradient coloured bar on the right 

hand-side of the profile. The right-hand side of each profile represents the 

bottom of the pipe, where the lowest solids velocity can be found.   

 

 

 

 

Figure 5.12 Solids velocity profile across the pipe cross-section for medium 
sand at 10% throughput concentration and 2 m/s transport velocity 

 

 

 

 

Figure 5.13 Solids velocity profile across the pipe cross-section for medium 
sand at 10% throughput concentration and 1.5 m/s transport velocity 
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Figure 5.14 Solids velocity profile across the pipe cross-section for coarse 
sand at 2% throughput concentration and 4 m/s transport velocity 

 

 

 

 

Figure 5.15 Solids velocity profile across the pipe cross-section for coarse 
sand at 2% throughput concentration and 3 m/s transport velocity 

 

 

 

 

Figure 5.16 Solids velocity profile across the pipe cross-section for coarse 
sand at 10% throughput concentration and 3.5 m/s transport velocity 
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Figure 5.17 Solids velocity profile across the pipe cross-section for coarse 
sand at 10% throughput concentration and 2.5 m/s transport velocity 

 

 

 

Figure 5.18 Solids velocity profile across the pipe cross-section for coarse 
sand at 10% throughput concentration and 1.5 m/s transport velocity 

 

 

 

 

 

 

 

 

Figure 5.19 Solids velocity profile across the pipe cross-section for coarse 
sand pipe blockage at 10% throughput concentration  
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5.4.5 Slurry flow regime visualisation and characterization 

Slurry flow regimes encountered in horizontal pipeline influence some 

parameters of system such as pressure drop, system instability, pipe erosion 

and some other performance characteristics. Therefore, monitoring 

characterisation and of these flow regimes are important tools for design and 

operation of pipelines conveying settling slurries.  

This section presents a technique, by which the flow regimes in horizontal 

pipeline can be visualised and characterised. The technique is based on the 

analysis of solids concentration profile and axial velocity profile obtained 

from a dual plane Electrical Resistance Tomography (ERT) sensor, which 

was mounted in the middle of the horizontal test section of 50 NB flow loop. 

Careful selection of the transport velocity range (1.2-5 m/s) allowed the 

coverage of four main flow regimes along with pipe blockage. The flow 

regimes predicted via ERT compared to the photographic images of actual 

flow within the test section. An analysis of stratified slurry flow is also 

discussed and it is proposed that the tomography technique can be used for 

estimation of several parameters of stratified flow such as mean granular 

bed concentration and velocity, height of bed etc. The estimation of these 

parameters is based on the analysis of the grid of tomogram reconstructed 

with Sensitivity Back Projection (SBP) algorithm. 

For the sake of simplicity the flow regimes illustrated here are only for coarse 

sand at 10% throughput concentration. However, due to the limitation in the 

pump capacity, the homogeneous flow regime for flowing 10% coarse sand 

could not be achieved; therefore, the pseudo-homogeneous regime of 

flowing coarse sand at 10% concentration throughput was selected. The flow 

regimes of flowing 10 % coarse sand shown here are pseudo-

homogeneous, heterogeneous flow regime, moving bed and stationary bed. 

In addition, the concentration and velocity profile of the blocked horizontal 

pipeline is also highlighted. In order to cover all flow regimes, for each sand 

at a given throughput concentration, the transport velocity was decreased, 

starting from 5 m/s and ending at 1.2 m/s, where the continuous formation of 

stationary bed leads to pipeline blockage. For the sake of clarity and support 

for both concentration and velocity profiles, the photographs of each 

prevailing flow regime were captured by a digital camera and inserted into 

the plot area of the measured profile. Due to the murky nature of slurry, it 

was not easy to distinguish the solid particles in the murky carrier liquid. 

Therefore, the photographs were sent to the Microsoft Office Picture 

Manager, where colour enhancement was applied. As it is apparent in the 
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inserted pictures, some photographs required a specific colour for the solid 

particles to be shown. The photographs were taken through 1 m transparent 

pipe section, which was confined by a photo chamber details of which can 

be found in Chapter 4.  

5.4.5.1 Pseudo-homogeneous flow regime 

Figure 5.20, showing a pseudo-homogeneous flow regime, in terms of 

concentration and axial solids velocity profile, for 10% coarse sand at 4.5 

m/s. On both profiles it can be seen that the particles occupying the pipe 

cross-section are more or less distributed symmetrically. However, the 

profile is slightly skewed at the centre of the pipe and changes its trajectory 

indicating the presence of finer particles with lower concentration and higher 

velocity. This distortion in profiles has been detected by tomography and it is 

apparent from the background inserted photograph, where the entire 

particles are suspended in the carrier liquid. Nevertheless, there is a 

possibility of presence of some gravels (5 mm diameter), which cannot be 

lifted, as gravitational attraction exceeds the fluid turbulence. These gravels 

were detected within the coarse sand, which initially added to the mixing 

tank.   

 

 

Figure 5.20 Pseudo-homogeneous flow regime for 10% throughput 
concentration of coarse sand at 4.5 m/s transport velocity shown on 

concentration profile (left) and solids velocity profile (right) 

 

This is clearly seen in the velocity profile at the very bottom of the pipe, 

despite its disappearance in the concentration profile. The existence of such 

particles was very clear and could distinguishably felt during the experiment 

while travelling through bends and elbows of the flow loop. The reason for 

the distortion of both profiles could be attributed to the particle size and 
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shape. As totally even particle distribution can be applied only to materials 

with a rounded shape, which falls into a narrow size distribution. Therefore, 

this feature of uniformly distributed particles cannot be observed in our 

experiment at such transport velocity used and the coarse sand used here 

includes both fine and coarse particles.  

5.4.5.2 Heterogeneous flow regime 

Figure 5.21, illustrating the concentration profile (left hand-side) and the axial 

coarse solids velocity profile (right hand-side) at 10% throughput 

concentration and 4 m/s transport velocity. Both profiles showing the 

heterogeneous flow regime, which is by far the most complex as the 

characteristics of the extreme flow regime are embodied in the flow. It can 

be noticed that the finer particles occupy the upper part of the pipe, while the 

coarser particles only travelling at the lower part of the pipe. Nevertheless, 

some particles may be present in the form of a very thin bed or sliding 

deposit. It is quite noticeable that the two profiles agree with the real flow of 

solid particles in the photograph inserted in the plot area. 

 

 

Figure 5.21 Heterogeneous flow regime for 10% throughput concentration of 
coarse sand at 4 m/s transport velocity shown on concentration profile 

(left) and solids velocity profile (right) 

 

5.4.5.3 Moving bed 

Once the transport velocity further decreased from 4 m/s, the solid particles 

then follows a smooth downward trajectory to form a moving bed, as it is 

highlighted by both concentration and velocity profile in Figure 5.22. The 

inserted real flow photograph into the plot area, at the very same velocity, 

supports this argument and agrees with the measured profiles by the ERT 
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that there is a granular bed. However, despite confirming the existence of 

moving bed by visual observations through a transparent pipe section, there 

is no sign that the granular bed is either moving en-bloc sliding bed or sliding 

layers. The velocity gradient along the vertical position of the bed shows no 

difference with the concentration or solids velocity profile measured at 1.5 

m/s (Figure 5.23), where a stationary bed was formed. However, as per real 

time visual observation and the actual photograph of the flow, which shows a 

cloudy packed particle, the granular bed was moving along the bottom of the 

pipe.  

By further observing the profiles it can be seen that the shear layer is further 

developed, which is associated with the variation of shear stress at the 

boundary where the shear layer is linked to the uniformly distributed granular 

moving bed. A wide variation in the velocity gradient can be observed within 

the shear layer, which is due to the difference in the local bed velocity and 

the mean slurry velocity. The high velocity gradient within the lower part of 

the shear layer causes a chaotic region over the bed, where the particles are 

lifted from the surface of the bed and supported again by the upward 

impulses of the turbulent eddies. They can also redeposit on the bed in the 

absence of fluid turbulence. This phenomenon of sporadic movement of 

particles continuously occur at the interface between the en bloc sliding bed 

and the upper turbulent region unless the variation in the transport velocity 

occurs, which has a direct effect on the lifting force. In fact this feature could 

well be attributed to an increase of the shear stress at the bottom of the 

shear layer, by the moving fluid stream in a momentary impulse fashion. The 

momentary jumping of the bed grains into the turbulent stream above the 

bed could contribute into the magnitude of the mean solids velocity, which in 

return cause an over estimation of the solids mean axial velocities, 

particularly those below the deposition velocity (i.e. with the velocity range, 

in which the bed is present).  Another interesting feature could also be 

observed on the velocity profile, where the profile goes through a 

deformation through its course at the very top of the pipe (at y/D=0.85). The 

profile unfolds another region with higher velocity, comparable to the lower 

layers, and confined by another turbulent particle-rich layer and the pipe 

wall. The mean velocity of the particles moving within this layer is 

considerably higher than the rest of layers flowing below. This could be due 

to limited particle-particle interaction at the very top of the pipe. The 

background photograph of the real flow at the time of measurement clearly 

shows a particle-lean layer next to the upper wall. Since the effect of 

concentration has a direct link to the particle-particle interaction and the 
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motion of solid particles within the carrier liquid, then it is remarkable that 

this feature is absent in the solids concentration profile. However, this 

discrepancy merits a future investigation.  

 

 

Figure 5.22 Moving bed flow regime for 10% throughput concentration of 
coarse sand at 2.5 m/s transport velocity shown on concentration 

profile (left) and solids velocity profile (right) 

 

5.4.5.4 Stationary bed 

During the experiment the flow was observed through the transparent pipe 

section and found that a stationary granular packed bed had been formed, 

on the surface of which a sliding thin layer was moving at the bottom of the 

pipe. The thickness of this stationary layer within the bed was measured 

using a ruler, and recorded as 7-8 mm from the bottom of the pipe. As the 

flow was extremely murky and the surface of the bed was in an unsteady-

state condition, more precision could not be achieved in measuring the 

thickness of the formed stationary layer. By observing the both profiles, 

especially velocity profile, it is apparent that, for 10% throughput 

concentration of coarse sand at 1.5 m/s, the height of inter-granular contact 

bed is at y/D=2 at the vertical plane of pipe cross section, which makes 10 

mm thickness and demarcated by a blue arrow, shown in Figure 5.23. Also, 

by further observing the velocity profile, no variation or gradient can be seen 

in the profile curve, where the minimum solids velocity occur. This 

phenomenon is an indication that each pixel lies within the bed region, is 

well saturated with solid particles and there is a mutual permanent contact 

between them, in return a stationary bed is formed. On the concentration 

profile it can be seen that within the bed height on the profile, the 

concentration gradient is hardly noticeable; hence, this suggests that the 
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particles are well segregated and fully packed within the bed. Similarly, the 

height of stationary bed can be indentified from the two profiles, particularly 

the velocity profile, which is measured to be y/D=0.15 (y=7.5 mm) from the 

bottom of the pipe and demarcated by a red line.  

 

 

Figure 5.23 Stationary bed flow regime for 10% throughput concentration of 
coarse sand at 1.5 m/s transport velocity shown on concentration 

profile (left) and solids velocity profile (right). The height of granular bed 
is indicated by a blue arrow and the boundary of the stationary bed is 

indicated by a red arrow 

 

If the height of the granular bed is 10 mm, and 7.5 mm out of which makes 

the stationary bed, then the rest (2.5 mm) makes the saltating carpet or 

rugged layer on the surface of the stationary bed. In other words, the 

thickness of the sliding bed on the surface of the stationary bed is 2.5 mm. 

However, as previously mentioned this moving layer on the surface of 

stationary layer is not well pronounced on either concentration or the velocity 

profile. Also, no or very little feature is provided by the profiles to indicate 

whether the bed within 10 mm from the bottom of the pipe is moving or 

stationary. As by observing the profiles in Figures 5.6 and 5.7, it is apparent 

that the profiles show no difference within the granular bed, whilst visual 

observation of flow through the transparent pipe section indicated a moving 

bed with 7 mm thickness at 2.5 m/s mean slurry velocity and a stationary 

bed with 10 mm thickness at 1.5 m/s. Therefore, it is still quite difficult to 

identify the state of granular bed, whether it is moving or stationary.  

However, the sporadic movement of particles above the granular bed may 

be identifiable on the two profiles, concentration and solids axial velocity, but 
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it is more pronounced on the velocity profile rather than concentration profile. 

An observation of the velocity profile can reveal that the velocity of the 

moving particles at the bottom of the shear layer goes through a narrow 

distribution. This is an indication of moving particles by saltation. Similarly, 

the real background photograph shows an agreement with that of suggested 

by the profile, and it is obvious that the shear stress at the surface of the bed 

produces elongated dune or ripples. It can also be noticed that the 

downstream face of these dunes have a greater slope than the face 

opposing the flow. These dunes have been created as a result of saltation 

and particle re-deposition on the bed. The effect of particles forming these 

ripples or dunes tempts the bottom pipe wall to overcome the driving force 

and the bed starts to gradually decelerate and comes to a momentary halt. 

The lift force in this condition is very sensitive to any decrease in the 

transport velocity. Any further decrease in the transport velocity would 

undoubtedly result in an increase of the formed dunes and solids hold-up in 

the pipe, which eventually restrict the water way above the stationary layer 

and pave the way for an imminent blockage. 

5.4.5.5 Pipe blockage 

The transport velocity was decreased by reducing the pump frequency 

through the Digi-drive. However, to reach the desired mean flow velocity and 

steady state it was rather difficult, as the velocity was constantly fluctuating. 

During the experiment, as the pump frequency was reduced to reach the 

desired flow velocity (1.5 m/s) for flowing 10% throughput concentration of 

coarse sand, the mean flow velocity unexpectedly reached the blockage 

zone (1.1-1.2 m/s), due to velocity fluctuation. As a result the flow of solid 

particles and the carrier liquid came to rest and the pipe was permanently 

blocked. This incident was then considered to be an opportunity, in which 

the ERT could be used for blockage observation. The main aim of this 

investigation was to evaluate the performance of the ERT while a thick 

coating of granular bed (up to 80% of the inner pipe diameter) exists on the 

electrodes of the dual-plane ERT sensor.   

While the pipe was blocked, the conductivity of the domain was measured 

for calculation of concentration and velocity. After an investigation, it was 

found that the blockage occurred at the pump suction (pump inlet), and the 

pump was full of solid sand. However, by observing through the transparent 

pipe, which was mounted 6 m distance from the pump outlet, a block of solid 

bed at the bottom of the pipe and stationary water at the top could be seen. 

The thickness of the solid bed was measured by a ruler and found to be 75-
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80% of the inner pipe diameter from the bottom of the pipe. The exact 

estimation could not be achieved, as the surface of the granular stationary 

bed was not totally flat, instead consisted of dunes and ripples, which had 

been formed as a result of waves created by the upstream liquid. Once the 

blockage occurred, there was no force to lift the slurry to the top of the 

vertical line; as a result it falls down again to the bend, where it is connected 

to the horizontal line. The coarser particles are expected to fall first, due to 

the gravity effect. This phenomenon was captured by a digital camera, 

through the transparent pipe section mounted at the bottom of the vertical 

line, as shown in Figure 5.24 for both test sections, horizontal and vertical.  

 

   

    (a)     (b) 

Figure 5.24 Showing the blockage of the pipeline, (a) blocked horizontal 
section (b) coarser solid particles in the blocked transparent pipe 

section mounted at the bottom of the vertical pipeline 

 

Then the carrier liquid escapes through the gaps, formed between the 

coarser particles, into the horizontal line, where pushes the existing water at 

the top of the horizontal pipeline, until it reaches the other dead-end. Then it 

reverses back and agitates the existing stationary bed, where some of 

coarser particles are lifted and distributed into the surface of the downstream 

stationary bed.   

Another photograph of a blocked transparent section of the ERT sensor was 

taken, so as to qualitatively compare to the profiles obtained by the ERT 

measurement. Figure 5.25 showing the concentration and particle velocity 

profile with a real photograph of the blocked pipe section inserted into the 

plot area. It is apparent that the highest concentration can be seen within the 

area occupied by well packed and granular stagnant bed particles, which is 

0.62% at y/D=0.35 (y=17.5 from the bottom of the pipe). Consequently, the 
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velocity profile is indicated by a vertical line, where no velocity gradient could 

be seen, is indicating a total stationary flow. In this condition one would 

expect to have zero velocity along the vertical plane of the pipe cross-

section, suggesting that the granular bed and the particle-free layer above it 

is in total stationary condition. However, this is not the case in the current 

velocity measurement; instead 0.2 m/s mean velocity was observed. This 

overestimation in the mean velocity could be explained by the movement of 

the carrier liquid, as mentioned above, and some particles on top of the bed 

in a sporadic fashion between the two planes of the ERT sensor. 

Nevertheless, there is no indication of the local velocity gradient along the 

vertical plane, this could be due to noise within the system hardware or even 

may have to do with ERT spatial resolution issue. Despite this slight 

discrepancy, the velocity estimation is still within the reasonable range.   

By observing the concentration profile shown in Figure 5.25, a particle-free 

layer could be seen at the very top of the pipe, which occupies 20-25% of 

the pipe cross-section. This result totally agrees with the measurement of 

the thickness of the stagnant granular bed, which was measured during the 

experiment using a ruler, and found out to be 75-80% of the pipe cross-

section. However, by further observing the concentration profile within the 

vertical line along the granular packed bed, a concentration gradient could 

be noticed at the top half of the bed. This phenomenon is probably attributed 

to the void and gaps between the non-uniform shape particles, in which the 

carrier liquid is accumulated. The coarser particles are the wider gap is 

created and the more carrier liquid is trapped. From the actual photograph 

inserted into the plot area, it is highly remarkable that the coarser particles 

are laying within the range of concentration gradient in the profile. The 

coarser particles are normally deposited at the very bottom of the pipe; 

however, these are due to the reverse flow of the carrier liquid as previously 

mentioned or descending the coarser particles of the vertical line at the time 

of blockage, when there was no force to lift them through the vertical 

pipeline. Another possibility of the occurrence of the concentration gradient 

across the height of the bed is due to difference in the density of the existing 

particles within the bed, alternatively they may be porous particles. This 

possibility is well based on the fact that the sand used in the experiment is a 

mixture of non-uniform shape and size, and could also well be in non-

uniform density.  

Another feature can be observed on the concentration profile, where the 

profile bends back at the very bottom of the pipe and indicates a decrease in 
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the local concentration. As the coarse sand used, containing some bigger 

size particles ( gravels up to 5 mm diameter), which are the first to reach the 

bottom of the pipe once the turbulent eddies has no effect on them, then 

gaps could be formed, where the carrier liquid accumulates. By looking at 

the actual photograph of the blocked line, it is apparent that the coarser 

particles at the bottom of the pipe are completely covered by finer particles. 

From the above observations a conclusion can be drawn from the 

measurement of concentration and velocity profiles, that the ERT can 

undoubtedly detect the pipeline blockage and measure the mean solids 

concentration, solids axial velocity, and the thickness of the permanent 

granular bed in the blocked line, despite the coverage of the electrodes by a 

very thick granular bed.  

 

 

Figure 5.25 Pipe blockage for 10% coarse sand occurred at approximately 
1.2 m/s shown on concentration profile (left) and solids velocity profile 

(right) 

 

5.4.6 Formation of stratified flow  

Once the transport velocity decreased, below the deposit velocity, the three 

zones, which were assumed by Wilson and Pugh (1988), were picked up by 

the ERT system. These are namely, a turbulent zone in the upper region of 

the pipe, a shear layer above the bed and the sliding bed in the bottom 

region of the pipe. Figure 5.26 highlights these three zones of the stratified 

flow through the distorted concentration and solids axial velocity profiles at 

1.5 m/s transportation velocity.  

The particles in the top layer are supported entirely by turbulence effect. In 

the shear layer there is a sharp gradient in both, the solids concentration and 

velocity profiles, in which all solids are fully suspended and supported by 
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turbulence and contact load effects. While in the bed there is no shear and 

solid concentration is that of a porous packed bed. 

 

 

Figure 5.26 Showing the three zones of the distorted profiles, concentration 
profile (left) and solids axial velocity profile (right), in stratified flow at 

1.5 m/s transportation velocity 

 

Another phenomenon could also be observed for the two sands with the 

same condition, which is development of bed. The uniformly distributed bed 

can only be seen in the case of coarse sand with 10% throughput 

concentration, highlighted in Figure 5.26. This could be interpreted by the 

fact that in medium sand (2% and 10% throughput concentration), shown in 

Figure 5.27 and coarse sand (2% throughput concentration), shown in 

Figure 5.28, the distribution of the particles in the bed approach a limiting 

value in concentration (i.e. the concentration of the loose-poured bed has 

not reached the maximum concentration of the occupying pixel at the bottom 

of the pipe). Despite that, while observing the flow through the transparent 

pipe section for medium sand (2% and 10% throughput concentration) and 

coarse sand (2% throughput concentration) at low transport velocity (1.5 

m/s), it was found that the loose-poured bed was moving in the form of en-

bloc sliding (in mass).  
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Figure 5.27 Showing sporadic movement of medium sand particles over the 
bed at 1.5 m/s transportation velocity and throughput concentration 2% 

(left) and 10% (right) 

 

 

Figure 5.28 Showing sporadic movement of coarse sand particles over the 
bed at 1.5 m/s transportation velocity and 2% throughput concentration  

 

It is worth pointing out that the profiles, generated by the ERT, correspond to 

the actual slurry flow illustrated in the background picture inserted into the 

plot area. This feature was also successfully picked up by the ERT system. 

This agreement between the profiles generated via the ERT and the actual 

photograph of the flow suggests the concentration distribution or solids axial 

velocity distribution, across the vertical plane of the pipe cross-section, could 
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be used for estimation of several parameters of stratified flow, which is 

discussed in the following section. 

5.4.6.1 Estimation of parameters relating to stratified flow 

The estimation of parameters relating to stratified slurry flow is paramount 

for slurry flow pipeline design and optimization. Therefore, based on the 

above findings the ERT can be utilised for estimation of such parameters 

through combination of solids concentration distribution and solids axial 

velocity distribution. The observation of both profiles and calculation of pixel 

height within the tomograms, the following parameters can be estimated: 

1. Mean granular bed concentration. 

2. Mean granular bed velocity. 

3. The height of granular bed. 

4. The height of shear layer. 

5. The height of turbulent zone at the upper part of the pipe. 

The height of granular bed can be demarcated at the point where the 

concave curve at the bottom of the pipe marks a sharp gradient in solids 

concentration or solids axial velocity distribution.  This technique can be 

used to measure the height of granular bed only if the height of bed is 

greater than 2.5 mm in 50 mm inner diameter pipe, which is used in this 

study. In other words, this technique can only be used if the height of 

granular bed is greater than the ratio of pipe diameter to the number of 

pixels in the vertical plane of the tomogram. This can be expressed 

mathematically as: 

 

                            
                  

                                  
 

(5.1) 

 

However, the right hand-side of the above equation equals to the height of 

each pixel in the tomogram, then: 

 

                                     

 
                  

                                 
 

(5.2) 

 

The boundary of granular bed can be demarcated at the point where the 

profile changes its trajectory within the concave (left-hand side) curve in the 
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lower part of the pipe. As reported in literature (Dorn and Barnea, 1993; 

Matousek, 2002) the granular bed may be moving or stationary, or in some 

cases, as in three-layer, both moving and stationary layer may exist at the 

same time, where a moving layer is sliding over the surface of the stationary 

layer. Ideally, one would think that the height of stationary bed could be 

measured from the point where no further change is noticed in the solids 

concentration or solids velocity distribution within the granular bed. This is an 

indication that each pixel, from the concentration tomogram, is saturated 

with solid particles, although this is dependent on the shape of particles 

within the granular bed. Also in terms of solids velocity (as described in the 

following sections) within the granular bed, no gradient of solids velocity 

would be expected throughout the stationary layer, but a vertical line within 

the granular bed. However, none of the profiles (i.e. concentration and solids 

velocity profile) obtained from the ERT indicates moving or stationary bed at 

low velocities, but rather a packed granular bed. The reason for not being 

able to identify the two layers may be due to poor spatial resolution of the 

ERT or particle distinguish-ability problems associated with the ERT. 

The observation of the profiles for 10% throughput concentration of coarse 

sand at 1.5 m/s slurry flow rate, as shown in Figure 5.26, reveals that it is 

apparent that the height of granular bed can be estimated as 10 mm from 

the bottom of the pipe (where y/D=0.2, y is the distance from the pipe bottom 

and d is the pipe diameter), as indicated by a red arrow.  

Ideally, if the particle velocities found to be uniformly distributed within the 

bed height, then the bed is moving in the form of en-bloc fashion. However, 

this is only the case if no layer of the bed has zero velocity; otherwise the 

stationary layer has already formed within the bed layers. If the bed exhibits 

a velocity gradient along its height, then the bed is said to be moving in 

stream layers with different velocities, while the layer, which is in direct 

contact with the bottom pipe wall, could either be moving or stationary. 

These features regarding moving bed in the form of en-bloc fashion or 

sliding layers were not observed on the profiles obtained from the ERT. 

However, in the case of coarse sand the bed was observed at the time of the 

experiment that it was moving in the form of start-stop fashion at transport 

velocity just above 1.5 m/s, which is an indication of development of 

stationary bed, and sporadic movement of finer particles over the bed, as 

shown in Figure 5.26.  
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5.4.7 Reducing entrained bubbles 

In order to reduce the amount of bubbles in the flow loop two measures were 

taken. The first was to reduce the acceleration of falling slurry at the 

discharge point, by placing several semicircle trays (plates) into the pipe wall 

of the vertical discharge pipe, in a way to occupy half of the pipe cross-

section. Figure 5.29 showing the vertical discharge pipe with inserted plates. 

Since the flow does not cover the full bore of 100 mm discharge pipe, then 

reducing the pipe bore does not add up into the flow pressure. The plate 

spacing was arbitrary selected as 200 mm along the pipe section. The plates 

were placed in the pipe in an opposite sequencing fashion to ensure that the 

slurry flows down over the plates rather than through the passages 

(openings). In this manner, the pressure of down-coming slurry is reduced. 

In other words, the plates restrict the flow by approximately half and 

eventually reduce the gravitational force and flow pressure into the mixing 

tank.  

 

            

    (a)    (b) 

Figure 5.29 The vertical slurry discharge pipe into the mixing tank; (a) the 
Sanitary Tee connected to the outlet of the pipe; (b) the semicircle 

plates inserted into the pipe wall 

 

The second measure was to separate the mixing region within the tank from 

the discharge zone, where the slurry returns to the mixing tank. The 

discharge zone made up approximately 20% of the tank and separated by 

welding a stainless-steel baffle to the tank wall. Figure 5.30 showing the 

baffle in the mixing tank.  
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It is very important to keep some distance of 300-350 mm between the baffle 

and the dead end of the mixing tank to allow the slurry to be transferred by 

the mixing effect from the discharge zone and reintroduced to the flow loop. 

In addition, a Sanitary Tee (100 mm ID) was connected to the end of the 

vertical discharge pipe to ensure that the slurry is smoothly returning into the 

discharge zone and retaining unavoidable bubbles deep towards the bottom 

of the mixing tank. 

 

 

    (a)     (b) 

Figure 5.30 The baffle in the mixing tank; (a) the discharge zone with the 
Sanitary Tee, (b) the mixing zone 

 

After taking the above measures it was found that the amount of bubbles 

entering into the flow loop had significantly been decreased. Despite the 

above attempts, it was observed that unavoidable small bubbles were still 

present at high velocities, at which they are dispersed and homogeneously 

distributed across the pipe cross section. These unavoidable bubbles could 

clearly be seen at lower velocities, at which they flow at the upper part of the 

pipe. It is obvious that at higher velocities the rate of bubbles created are 

higher than that at lower velocities. This is due to the high momentum rate of 

returning slurry into the mixing tank and creation of vortices. The presence of 

small bubbles in the flow loop has been the cause for measurement errors in 

previous studies, and it is claimed that their reduction may be possible but 

their presence is unavoidable (Gillies, 1993; Matousek, 2005). Therefore, no 

further action was carried out. 
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5.4.8 Estimation of delivered solids volume fraction  

The delivered solids volume concentration (Cv) calculated using the 

measuring tank, which is mounted on a set of three load cells, and the 

diverter system described in Chapter 4. The diverter system (switch system) 

was used to divert the slurry flowing out of the pipeline into the measuring 

tank for a given length of time. This period of time was recorded by an 

electronic stop watch. The volume of collected slurry in the measuring tank 

was determined using the level of the slurry in the tank and calculating the 

cross-sectional area of the measuring tank. Using the volume (v) and the 

total weight of collected slurry (wt), which was recorded via the load cells, 

the mixture density (ρm) can be determined, as shown in equation 5.4. 

Finally, knowing the solids density (ρs) and the carrier liquid density (ρl), the 

delivered solids concentration can be determined using equation 5.3.  

 

   
          

       
 (5.3) 

 

   
  

 
 (5.4) 

 

5.4.9 Validation of the EMF velocity  

The Electromagnetic Flow meter was installed in the vertical test section for 

regularly monitoring and recording the transport slurry velocity. The method 

used to validate the EMF consisted of using a switch system (or diverting 

system) and a measuring tank, which was mounted on a set of three 

calibrated load cells, the details of which is found in Chapter 4. After several 

seconds of diverting the flow to the measuring tank, it was noticed that the 

velocity on the Electromagnetic Flow meter was gradually dropping. 

Therefore, in order to avoid any false reading, the Electromagnetic Flow 

meter was recorded just before diversion of slurry. Both velocities from, the 

Electromagnetic Flow meter and the discharge level was then collected for 

the comparison, as shown in Table 5.2.  The results of error analysis are 

illustrated quantitatively and qualitatively. Table 5.2 illustrating the 

comparison of velocity values obtained from the ERT and the discharge 

measurement for flowing medium and coarse sand with two different 

throughput concentrations (2% and 10%).   
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By observing the two data sets, it is apparent that the results, obtained within 

the range of velocities considered in the experiments, are in total agreement 

with each other. This conclusion was drawn from the results of error analysis 

carried out on the two velocities, EMF and discharge, for each sand at 2% 

and 10% throughput concentration and velocity range 1.5-5 m/s. The 

absolute error was calculated as the difference between the magnitude of 

the discharge velocity value and the observed EMF velocity value. However, 

in order to compare how incorrect the EMF is from the discharge values 

considered to be true, relative error was calculated between the discharge 

and the EMF, which is shown in percentage relative error (%). This 

calculation is shown in Equation 5.5, which is the product of absolute error, 

divided by the discharge value. As it is often expressed in percentage, then it 

is multiplied by 100: 

 

                 
      

 
     (5.5) 

 

Where: 

V = Discharge Velocity (actual) (m/s) 

Vo = Observed (EMF) Velocity (Measured)  (m/s) 

V-Vo = Absolute Error (m/s) 

The results are summarised and illustrated in the following table in terms of 

minimum deviation, maximum deviation and the average error within the 

range of velocities mentioned above.   

For further investigation of relationships between the EMF readings and the 

calculated discharge, Regression Analysis was used as a statistical tool, for 

which a linear relationship was assumed between the two set of values. The 

results of this analysis are illustrated quantitatively in Figure 5.31, which in 

the meantime assesses the statistical significance of the estimated 

relationship between the two folds of data. The output results of the 

regression provide a range of important statistical information, which can be 

used for assessment of the relationship between the two variables, some of 

which are listed under the regression statistics heading, as shown in Table 

5.3. The most important value here is the value of R square, which 

measures the degree of linear relationship between the velocity values 

measured by the EMF and those calculated by the flow diversion technique. 
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By observing the R square values in Table 5.3 for all conditions used, it is 

apparent that its values are not less than 0.99, which determines a well fit or 

a very good degree of linear relationship between the two measured and 

predicted velocity values. Nevertheless, the standard error shown in the 

aforementioned table can also indicate a good fit between the two data. 

 

Table 5.2 The data obtained from the EMF reading and discharge 
calculation along with the rate of deviation at each given velocity. 

EMF    

(m/s) 

Discharge 
Velocity 

(m/s) 

Absolute 
Error  
(m/s) 

Relative 
Error   
(%) 

Remarks 

Medium Sand 2% 

4.97 4.97 0.00 0.01     

4.53 4.49 0.04 -0.86    

4.02 4.08 0.06 1.46 Min. Deviation = 0.01%     

3.49 3.49 0.00 0.10 Max. Deviation = 3.13% 

3.05 3.05 0.00 0.12 Average Error = 1.19% 

2.52 2.55 0.02 0.97    

2.06 2.12 0.06 2.84    

1.49 1.54 0.05 3.13     

Medium Sand 10% 

4.96 5.59 0.63 11.27     

4.59 4.47 0.12 -2.79    

4.06 4.00 0.07 -1.69 Min. Deviation = 0.52% 

3.49 3.47 0.02 -0.65 Max. Deviation = 11.27% 

3.04 3.19 0.15 4.73 Average Error = 3.23% 

2.52 2.54 0.02 0.67    

2.01 2.02 0.01 0.52    

1.52 1.58 0.05 3.49     

Coarse Sand 2% 

4.93 4.82 0.11 -2.29     

4.36 4.53 0.17 3.79    

4.11 4.29 0.18 4.14 Min. Deviation = 1.37% 

3.52 3.66 0.14 3.90 Max. Deviation = 4.14% 

3.11 3.18 0.08 2.48 Average Error = 2.81% 

2.52 2.45 0.07 -3.00    

2.00 2.03 0.03 1.50    

1.52 1.50 0.02 -1.37     

Coarse Sand 10% 

4.76 5.24 0.48 9.18     

4.14 4.61 0.48 10.30 Min. Deviation = 3.38% 

3.40 3.62 0.22 6.11 Max. Deviation = 12.7% 

2.94 3.36 0.43 12.75 Average Error = 17.17% 

2.49 2.58 0.09 3.44    

2.20 2.09 0.11 -5.05    

1.45 1.40 0.05 -3.38     
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Table 5.3 The summary output of the statistical analysis of the two sands at 
2% and 10% throughput concentration and 1.5-5 m/s velocity range 

2% Medium Sand 10% Medium Sand 

Regression Statistics Regression Statistics 

Multiple R 0.99993 Multiple R 0.99968 

R Square 0.99986 R Square 0.99936 

Adjusted R Square 0.83319 Adjusted R Square 0.8327 

Standard Error 0.04048 Standard Error 0.08731 

Observations 7 Observations 7 

2% Coarse Sand 10% Coarse Sand 

Regression Statistics Regression Statistics 

Multiple R 0.99978 Multiple R 0.99848 

R Square 0.99955 R Square 0.99696 

Adjusted R Square 0.83288 Adjusted R Square 0.79696 

Standard Error 0.07274 Standard Error 0.17528 

Observations 7 Observations 6 

 

Qualitative results were also generated from the regression analysis, which 

show the deviations clearly for any given velocity. For the sake of clarity two 

relevant plots were generated for each flow condition, as shown in Figure 

5.32. The line fit plot, which is shown on the left-hand side and the plot of 

residuals against the predicted velocity values measured by the EMF on the 

right-hand side. Each plot, especially the plot of residuals against the 

predicted values, can be used as a powerful diagnostic tool to identify the 

level of deviation and reveal valuable information throughout the range of 

velocities used. The deviations could also be seen on the line fit plot; 

however, these deviations are clearly highlighted and distinguished in the 

plot of residuals. In other words, it acts as an amplifier, which enlarges the 

level of deviation about the predicted (or estimated) velocity. For example in 

Figure 5.32, it is highly remarkable that the distribution of errors are random 

across the given velocity range and the EMF slightly overestimates the 

transport velocity, whereas for any velocity above 3.5 m/s there is an 

underestimation in the velocity values. However, these may not be 

manifested clearly. Despite a subtle difference between the residuals and 

the relative error, which is related to the reference data, they are not 

distinguished in this study. Therefore, the above equation for the calculation 

of the relative error could be employed to calculate the residuals.  
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Figure 5.32 The EMF velocity line fit (left) and the residuals about the 
predicted velocities (right) for (a) medium sand at 2% throughput 

concentration; (b) medium sand at 10% throughput concentration; (c) 
coarse sand at 2% throughput concentration; (d) coarse sand at 10% 

throughput concentration 

 

On the residuals plot, the abscissa (the distance cut off from the X-axis by a 

line drawn through it and parallel to the Y-axis) of any data point represents 

the magnitude of relative error. In this case, if the residual is a positive value, 

then the EMF measured velocity value is underestimated. Similarly, if the 

residual is a negative value, then the measured velocity value is 
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overestimated. In other words, any data point lies over the X-axis, in Figure 

5.32 (right-hand side), represents the magnitude by what the velocity 

underestimated, and any data point under the X-axis represents the 

magnitude by what the velocity overestimated. 

From the qualitative and quantitative results of the regression analysis, it can 

be concluded that the errors are random and the deviations are subtle. This 

implies that the errors are within the reasonable range. These errors may 

well be attributed to the degree of uncertainty of EMF or experiment. The 

experiment uncertainty could be related to the discharge measurement.  

To further clarify this, while diverting the flow to/from the measuring tank, 

some of the diverted slurry splashed out of the switch system, especially at 

high velocities (3.5 m/s and above). As a result the level of slurry in the 

measuring tank would not correspond exactly to the duration of the 

diversion. Similarly, the duration of the diversion may have been 

overestimated, which caused by the lack of synchronisation between the 

diversion and the stopwatch. Therefore, it can be concluded that the two 

sets of velocity data are well fit and have a good agreement within the range 

of velocity used.        

5.4.10 Validation of the ERT results 

The estimated mean solids concentration and mean solids axial velocity 

values obtained from the ERT were compared to the corresponding values 

measured using the flow diversion technique. In the case of concentration 

validation, the ERT results were compared to the discharge concentration, 

obtained from the flow diversion technique, at different throughput slurry 

velocity. Since at velocities below the deposition velocity, the in-situ 

concentration values differ from the delivered concentration values due lack 

of turbulent eddies, which result in the deposition of solid particles and solids 

hold up in the horizontal pipeline. Therefore, the comparison is valid only at 

higher transport velocities above the deposition velocity. On the other hand 

the validation of solids axial velocity obtained from the ERT was carried out 

by assessing the linear relationship between the results of the ERT and that 

of flow diversion technique through output results of regression analysis 

(line-fit). The line-fit plot showing the relationship between the ERT 

measured values and the predicted values. The predicted values represent 

the values obtained from the flow diversion technique and are considered as 

a reference line for the ERT error analysis. Error analysis of the ERT results 

have been carried out for various flow conditions, flow orientation, particle 

size, solids loading concentration and transport velocity.  
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5.4.10.1 Validation of mean solids volume fraction 

Tables 5.4 and 5.5 showing the comparison of in-situ concentration 

measured by the ERT and delivered concentration measured via the flow 

diversion technique, at different transport velocities. The comparison has 

been carried out only for concentrations within the range of higher transport 

velocities (3-5 m/s), shown within the shaded area within both tables. An 

analysis of the error is also presented along with an estimation of average 

error for each sand and throughput concentration. The average error was 

determined only for the range of concentrations falling into the shaded area 

in the either tables.  

Through an observation of qualitative and quantitative results, it can be 

revealed that the occurring errors are random and the values differ from one 

condition to another. In other words, the rate of error is different from one 

transport velocity to another as well as particles size and throughput 

concentration. 

 

Table 5.4 The comparison of solids concentration values for medium and 
coarse sand at 2% throughput concentration in the horizontal test 
section. The shaded area represents the values, only for which the 
comparison and error analysis have been carried out 

 

Medium Sand, 2% 

Throughput Concentration 

Coarse Sand, 2% 

Throughput Concentration 

Velocity 
(m/s) 

In-situ 
Conc. 
%(v/v) 

Delivered 
Conc. 
%(v/v) 

Relative 
Error 
 (%) 

In-situ 
Conc. 
%(v/v) 

Delivered 
Conc.  
% (v/v) 

Relative 
Error  

% 

5 2.9 2.4 20.8 3.9  3   30 

4 3.2 2.4 33 2.7 2.9 6.9 

3.5 2.9 2.7 7 3.1 3.2 3 

3 2.4 2.5 4 3.4 3.2 6 

2.5 3.4  2.5 - 3.7 3.4 - 

2 3.7 2.5 - 3.8 3 - 

1.5 3.7 2.4 - 6.5 2.8 - 

 Average Error=16.4% Average Error=12% 
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Table 5.5 The comparison of solids concentration values for medium and 
coarse sand at 10% throughput concentration in the horizontal test 
section. The shaded area represents the values, only for which the 
comparison and error analysis have been carried out 

 

Medium Sand, 10% 

Throughput Concentration 

Coarse Sand, 10% 

Throughput Concentration 

Velocity 
(m/s) 

In-situ 
Conc. 
%(v/v) 

Delivered 
Conc. 
%(v/v) 

Relative 
Error 
 (%) 

In-situ 
Conc. 
%(v/v) 

Delivered 
Conc.  
% (v/v) 

Relative 
Error  

% 

5 11.6 8.4 38.37    - -  

4.5 10.2 9.3 10.11 16.5 11.4 44.58 

4 9.7 9.1 6.21 13.9 12.1 14.98 

3.5 9.7 9.6 0.88 12.8 12.8 0.07 

3 9.8 9.3 5.77 13.8 12.4 11.71 

2.5 10.5 9.5 - 13.3 12.7 - 

2 11.0 9.7 - 16.2 13.4 - 

1.5 12.0 9.6 - 21.0 12.8 - 

 Average Error=12.3% Average Error=18% 

 

Since the flow regimes dependent on these three parameters, then the 

distribution pattern of errors implies that the ERT measurement scheme is 

dependent on the flow regime present in the pipe. Therefore, an automated 

flow regime recognition technique is required so as to determine the 

prevailing flow regime, based on which the ERT measurements are 

corrected accordingly. However, it was observed that the ERT 

measurements give rather a reasonable estimation of the overall in-situ 

solids concentration, as shown quantitatively and qualitatively.  

Nevertheless, some over estimation, relative to the delivered concentration, 

can be noticed for both sands at higher velocities (4 m/s and over), as 

shown in Figure 5.33 for different sands in different concentration. This is not 

a phenomenon that is predicted in slurry flow at higher velocities. 

As at higher velocities the driving force can overcome the resisting force and 

there is no effect of slip velocity between the liquid phase and the solid 

phase (i.e. the velocity of the solid phase is equal to the velocity of the 

carrier liquid). This implies that there is no solids holdup in the pipeline, in 

other words the in-situ solids concentration is equal to the delivered solids 

concentration (Ci=Cv). However, the reason for this over estimation in the 

measured values of the in-situ concentration could well be due to the large 

amount of bubbles entering into the flow loop via the mixing tank and adding 

up more into the concentration of the dispersed phase (non-conducting 
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phase). These small bubbles have been created by dropping the returning 

slurry into the mixing tank at a considerable force through a 4ʺ vertical pipe, 

which connects the discharge point to the mixing tank. 

 

 

   (a)      (b) 

 

   (c)      (d) 

Figure 5.33 Showing the comparison between the in-situ solids 
concentration obtained from the ERT and delivered solids 

concentration obtained from the flow diversion technique in horizontal 
flow for (a) medium sand at 2% throughput concentration, (b) medium 

sand at 10% throughput concentration; (c) coarse sand at 2% 
throughput concentration and (d) coarse sand at 10% throughput 

concentration 

 

Once the slurry falls at the discharge point into the mixing tank, it creates a 

chaotic condition, as a result small bubbles are trapped in the mixing effect 

and introduced into the flow loop. Attempts were made to reduce the amount 

of bubbles introduced into the flow loop, by placing several semi-circle trays 

along the vertical discharge section to reduce the momentum of the falling 
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slurry or reducing the vortex formed in the vertical pipe. In addition, a baffle 

was placed in the mixing tank to separate the mixing zone from the region of 

returning slurry. The methods used to reduce bubbles in the flow loop are 

discussed in section 5.4.7. This possibility is based on the fact that at higher 

velocities the slurry returning to the mixing tank through approximately 2 m 

length uPVC vertical pipeline (100 mm ID), at the end of which the slurry 

falling into the tank and creating a chaotic zone within the tank. As a result 

bubbles are entrained into the tank, whereby they are trapped by the mixing 

effect and introduced to the pipeline.  

On the other hand, an increase in the In-situ concentration can be noticed at 

lower velocities (3 m/s and below), this is totally predicted for slurry flow as 

indicating the hold up of solids, which contribute into an increase in the local 

concentration and as a result the delivered concentration is decreased. 

5.4.10.2 Validation of mean solids axial velocity 

The technique used to validate the solids velocity results of the ERT is 

similar to that of the EMF, which is using the measuring tank and calculation 

of the discharge velocity. Since at the discharge point, there is no slip 

velocity, therefore, the solids velocity can be determined by the ratio of the 

discharge slurry volume flow rate to the discharge pipe cross-sectional area. 

Thereafter, comparing the two mean slurry velocity values (the discharge 

with that of measured by the ERT). The procedure was to measure the 

solids velocity by the ERT, then calculate the mean velocity across the 

horizontal pipe cross-section. Consequently, measuring the discharge 

velocity, considering all the implications that are associated with the slurry 

diversion, which is the driving force for flow instability. This procedure was 

repeated for both sands, each at 2% and 10% throughput concentration, 

including the blockage of coarse sand at 10% throughput concentration. The 

pre-calibrated EMF was used to monitor the mean slurry velocity within the 

range of 1.2-5 m/s. The two data velocities, the ERT and the discharge, 

were collected and compared against each other, as shown in Table 5.6.  

Error analysis was carried out for each condition and the results are 

highlighted quantitatively and qualitatively. 
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Table 5.6 The data obtained from the ERT measurement and flow diversion 
technique (discharge velocity) along with the rate of deviation at each 
flow condition for horizontal flow 

EMF 
Velocity 

(m/s) 

ERT Solids 
Velocity 

(m/s) 

Discharge 
Velocity      

(m/s) 

Absolute  
Error 
(m/s) 

Relative  
Error  
(%) 

Remarks 

Medium Sand 2% 

4.53 4.80 4.49 0.31 -6.97   

4.02 3.94 4.08 0.14 3.45 Min. Deviation = 3.44% 

3.49 3.80 3.49 0.31 -8.87 Max. Deviation = 25.82% 

3.05 2.70 3.05 0.35 11.40 Average Error = 12.69% 

2.52 2.06 2.55 0.48 18.91   

2.06 1.83 2.12 0.28 13.45   

1.49 1.14 1.54 0.40 25.82   

Medium Sand 10% 

4.96 4.79 5.59 0.80 14.37   

4.59 4.99 4.47 0.52 -11.59   

4.06 3.80 4.00 0.20 4.90 Min. Deviation = 0.33% 

3.49 3.51 3.47 0.04 -1.25 Max. Deviation =14.37% 

3.04 3.17 3.19 0.02 0.57 Average Error = 4.36% 

2.52 2.56 2.54 0.02 -0.96   

2.01 2.03 2.02 0.01 -0.33   

1.52 1.59 1.58 0.01 -0.95   

Coarse Sand 2% 

4.93 4.50 4.82 0.32 6.64   

4.36 4.41 4.53 0.12 2.75   

4.11 4.35 4.29 0.07 -1.52 Min. Deviation = 1.52% 

3.52 3.05 3.66 0.61 16.78 Max. Deviation = 35.97% 

3.11 2.79 3.18 0.39 12.27 Average Error = 12.81% 

2.52 2.32 2.45 0.13 5.40   

2.00 1.60 2.03 0.43 21.15   

1.52 0.96 1.50 0.54 35.97   

 Coarse Sand 10% 

4.76 5.50 5.24 0.25 -4.86   

4.14 4.41 4.61 0.20 4.31 Min. Deviation = 3.25% 

3.40 3.51 3.62 0.12 3.25 Max. Deviation = 21.31% 

2.94 2.65 3.36 0.72 21.31 Average Error = 9.37% 

2.49 2.31 2.58 0.27 10.32   

2.20 1.74 2.09 0.35 16.75   

1.45 1.47 1.40 0.07 -4.80   

Blockage of Coarse Sand at 10% Throughput Concentration 

0 0 0.22 0.22 - 
Absolute Deviation = 0.22 
Relative Error = -0.22 
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The maximum, minimum and the average deviation are also highlighted for 

both, coarse and medium sand, at different throughput concentrations and 

velocity range mentioned above. Similarly, the error analysis was also 

carried out for blockage of horizontal pipeline, which is also highlighted in the 

aforementioned table.  

The minimum deviation of (0.33%) between the discharge and the ERT 

velocities was observed at (10%) medium sand throughput concentration, 

whereas the maximum deviation of (35%) was noticed at (2%) coarse sand 

throughput concentration and 1.5 m/s transport velocity. While the horizontal 

pipeline was blocked, a transport velocity of 0 m/s was shown on the EMF. 

In addition, there was 0 m/s flow at the discharge. However, the mean slurry 

velocity measured by the ERT indicates 0.22 m/s, which makes -0.22 m/s 

error relative to the true value indicated by the discharge. Since the 

magnitude of the error is a negative value, then it is apparent that, based on 

the equation for the relative error, the ERT overestimates the mean velocity 

by 0.22 m/s.  

However, if we look at the measured velocities it can be seen that the ERT 

measured values of solids velocity are reasonably close to the values of 

solids velocity measured by the measuring tank over the entire range of 

throughput concentration and transport velocities. The linear relationship 

between the ERT and the discharge velocities was also assessed through 

quantitative and qualitative output results of regression analysis. The 

quantitative results are shown in Table 5.7, in which it is apparent that the 

degree of linear relationship between both measured and predicted ERT 

velocity values are represented by R square. It is observed that the value of 

R square in all conditions employed in the experiment is around 99%. This 

value determines the suitability of using the predicted values of ERT to 

highlight the deviations for each velocity data point.  
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Table 5.7 Showing the summary output of the statistical analysis of the two 
sands at 2% and 10% throughput concentration and 1.5-5 m/s velocity 
range 

2% Medium Sand 10% Medium Sand 

Regression Statistics Regression Statistics 

Multiple R 0.994 Multiple R 0.998 

R Square 0.988 R Square 0.996 

Adjusted R Square 0.788 Adjusted R Square 0.830 

Standard Error 0.327 Standard Error 0.211 

 Observations 6 Observations 7 

2% Coarse Sand 10% Coarse Sand 

Regression Statistics Regression Statistics 

Multiple R 0.995 Multiple R 0.997 

R Square 0.991 R Square 0.993 

Adjusted R Square 0.824 Adjusted R Square 0.793 

Standard Error 0.315 Standard Error 0.255 

Observations 7 Observations 6 

 

In order to highlight the deviations of each data point clearly, four sets of 

plots were generated from the regression analysis, which are presented in 

Figure 5.34. Each set showing a line fit and a residual plot, indicating the 

deviation of the ERT data from the predicated values at each flow condition. 

The residual plots illustrate the rate of error in terms of magnitude, by which 

the solids velocity deviates. It is worth pointing out that there is a subtle 

difference between the relative error and the residuals. The relative error of 

a sample presents the deviation of a sample (the ERT velocities) from the 

true function value (discharge velocities); while the residual of a sample 

indicates the difference between the sample (the ERT velocities) and the 

estimated function value (estimated ERT velocities) based on the discharge 

velocity values. The estimation (or prediction) is well based on velocity data, 

the discharge and the ERT. Therefore, the predicted values are considered 

as the reference line and the basis of the ERT error analysis. The ERT line 

fit plot showing the relationship between the ERT measured velocities and 

the predicted velocity values. In this case the difference between the two 

values is the residual, which is highlighted by the plot of the predicted values 

against the residuals. In order to make an overall assessment of the ERT 

measured velocities, the residual plot is used as a diagnostic tool and 

analysis of each measured velocity. As previously mentioned the level of 

error may not be clearly shown on the line fit plot, therefore, the residual plot 
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is used, which clearly shows the deviation of each velocity data point about 

the predicted values.  

An overall observation of the line fit plot in Figure 5.34, suggests a rather 

reasonable estimation of the ERT mean solids velocity values in all 

conditions. However, from both, the line fit and the residual plots, three 

observations can be remarked. Firstly, it is clear that the errors are quite 

random throughout the velocity range used in the experiments. This 

statement is valid for all conditions. Secondly, based on the discharge solids 

velocity values, it is obvious that the ERT velocities are mostly 

underestimated at low velocities (3 m/s and below), which is considered as 

stratified velocity region, where the bed exists (either moving or stationary) 

and the particles over it move in a sporadic fashion. Thirdly, an 

overestimation of the ERT solids axial velocities is well pronounced at high 

transport velocities (above 3 m/s). The occurrence of random errors can be 

attributed to the complexity of solid flow within the carrier liquid and the 

discontinuity of flow, whereby different flow regimes are manifested. Since 

the flow regimes are dependent on particle size and solids concentration, 

then the transitional velocities between flow regimes can differ for each 

concentration and particle size used in this investigation. Therefore, it is 

totally plausible for the errors to occur at different rate for each sand and 

concentration at a given transport velocity. From this a conclusion can be 

drawn that the ERT solids velocity measurement is dependent on the 

prevailing flow regime within the pipe. Therefore, in order to make a rather 

accurate ERT solids velocity measurement, automated flow regime 

recognition has to be developed to identify the prevailing flow regime, after 

which the ERT measurement correction will be applied based on the present 

flow regime within the pipe. This can be confirmed by the general distribution 

pattern of the errors on the line plots shown in Figure 5.34. At high velocities, 

where the particles are suspended in the carrier liquid, the solids velocities 

are overestimated by the ERT; whereas, at low velocities, within the range of 

which fully or partially stratification occurs, the solids velocities are 

underestimated. The change in the trajectory of the errors on the line fit is 

highly likely to be due to the phenomenon of particle wave speed. This is 

well related to the configuration of the dual plane ERT sensor (distance 

between the sensor planes). The optimum distance between the two planes 

is based on the transport velocities used in the pipeline. At low transport 

velocities the interval distance between the two planes requires to be shorter 

than that used for high velocities.   
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Figure 5.34 Showing the ERT velocity line fit (left) and the residuals about 
the predicted velocities (right) for (a) medium sand at 2% throughput 
concentration, (b) medium sand at 10% throughput concentration, (c) 
coarse sand at 2% throughput concentration, (d) coarse sand at 10% 

throughput concentration 

 

The phenomenon of particle wave speed was also observed by Zafar et al. 

(2009), who conducted experiments on sand water flow and concluded that 

the phenomenon of particle wave speed can occur if the deviation is higher 

in heterogeneous flow regime as compared to stratified flow regime. The 

dual plane distance used in this study is 70 mm, which may be rather 
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suitable for high slurry velocity, but certainly not for lower velocities, where 

partially of fully stratification is present. In other words, the sporadic 

movement of the particles above the bed, as they are lifted from the top of 

the bed by the wave velocity of the carrier liquid, can be detected by one 

plane, however, due to long distance between the two planes, the second 

plane is unable to detect, as a result the cross-correlation fails. In some 

other cases, since the ERT suffers from particle distinguishability issues, the 

particles move above the bed may not be well close to each other for the 

ERT to detect them. Therefore, in this case the moving particle is not taken 

into account, as a result an underestimation of solids velocity occurs.    

It is accepted in literature (Gillies, 1993; Matousek, 2005), that the prevailing 

mechanism of particle support, even within a short axial distance in the 

horizontal pipeline, is due to the interaction with turbulent eddies of the 

flowing stream. The same mechanism is applied for partially or fully stratified 

flow, where a portion of particles are lifted again from the surface of the bed 

by a lump of liquid and mixed with the stream flowing over the bed in a new 

location. The transfer of momentum and mass occur within the mixing 

length, the distance over which the lump of liquid transports its momentum 

and the particles caught in this length are migrated into the stream layers 

over the bed, (Perry et al.,1997). Once the particles are suspended in the 

carrier liquid, due to turbulent wave (or sporadic movement), they transfer 

their submerged weight to the carrier liquid above the bed. As a result a high 

shear-stress occurs above the bed, which slightly accelerates the rate of 

saltation (accelerates the rolling of particles over each other at the surface of 

the bed). This phenomenon creates a conflict between the driving force (the 

flowing stream) and the resisting force (the non-hydraulically smooth surface 

of the bed). In reality the condition over the bed is highly unstable, which 

imply that the conflict between the two forces, driving and resisting, is always 

present, unless the transport velocity is varied to a level, in which the pulse 

of liquid decrease or increase above the bed. In other words, while the 

particles move in continuous sporadic motion, an increase of the transport 

velocity would result in the increase of the turbulent eddies over the bed and 

cause the top granular layers of the bed to suspend in the carrier liquid. In 

this case the higher concentration of particles at the bottom of the shear 

layer causes particle-particle interaction and fluid-particle interaction, which 

both contribute into the mean solids axial velocity. Therefore, a conclusion 

can be drawn that the unsteady-state condition over the bed, which causes 

sporadic movement of a portion of particles at the surface of the bed, has 

effect on the magnitude of the mean axial solids velocity. In addition, the 
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ERT underestimation in stratified flow may have to do with low spatial 

resolution, due to which the moving particles at the surface of the bed 

cannot be detected, as shown in the velocity profiles for coarse and medium 

sand. In reality the particles of moving layer at the top of the bed roll over 

each other along the surface of the bed and picked up by the turbulent 

carrier liquid once they reach the bend, where they are taken upward 

through the vertical pipeline to the discharge point. As the ERT also suffers 

from particle distinguishability problem, then the particles moving within this 

region may not be detected. As a result the mean solids velocity is 

underestimated at stratified velocities. 

It was observed that at high velocities (3.5-5 m/s) the ERT mostly 

overestimate the mean dispersed velocity by as maximum as 11.59% at 

4.50 m/s transport velocity for 10% medium sand throughput concentration. 

Another reason for this overestimation could well be due to the presence of 

bubbles in the flow loop. These small bubbles have been created by 

dropping the returning slurry into the mixing tank at a considerable force 

through a 4ʺ vertical pipe, which connects the discharge point to the mixing 

tank, as previously discussed.  

5.5 Vertical upward flow measurement and visualisation 

The same flow loop used for horizontal was also used for vertical upward 

flow measurement. The vertical test section was located directly after the 

horizontal section and connected to each other via a 90° short radius bend. 

The total length of the vertical section is approximately 4 m from the lower 

bend. The dual plane ERT sensor was mounted on the vertical section at 

approximately 3 m from the lower bend to ensure that the flow is fully 

developed at the ERT dual-plane sensor location. The Electromagnetic Flow 

meter (EMF) was mounted on the vertical line, 1 m above the ERT sensor, 

to monitor the slurry flow rate through the vertical pipe line. Two pressure 

sensors were also mounted on the same line, within the developed flow 

region at 2.5 m interval, for pressure measurement and calculation of the 

pressure difference across the test section. 

The experiment procedure, for vertical flow measurement, was carried out 

the same as that of horizontal flow measurement and in a consequent 

fashion. In other words, after each horizontal measurement, consequently a 

vertical measurement was conducted at the same flow condition. The aim of 

carrying out the horizontal and vertical measurements approximately at the 
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time and the same flow conditions was to compare the results obtained for 

both orientations.  

5.5.1 ERT solids volume fraction and solids axial velocity 

measurement 

The data obtained for each test was recorded and collected for estimation of 

solids volume fraction and solids axial velocity. The qualitative results are 

shown in Figure 5.35, in terms of volumetric concentration profile (left-hand 

side) and solids velocity profile (right-hand side) across the vertical plane of 

the vertical pipe cross-section.  

By observing the concentration profiles for flowing coarse sand, it can be 

seen that for higher sand concentration (10%) the bell-shape (or core peak) 

profile can clearly be manifested in the pipe. This phenomenon has been 

observed by early researchers such as Newitt et al. (1955). Hence in flowing 

coarse sand slurry through vertical counter-gravity radial particle migration 

occurs. The effect of radial particle migration is to move particles into the 

faster moving streams of the flow. However, the concentration profiles for 

medium sand suggest a totally different shape in contrast to the 

concentration profiles for coarse sand. In the case of coarse sand it can be 

seen that there is a particle-rich core at the centre of the pipe and a particle-

lean annulus close to the pipe wall, whereas the phenomenon is vice versa 

for the flowing medium sand. Based on the ERT results, it can be concluded 

that the coarse particles move upward the vertical pipe in a core peak flow 

pattern, while the medium particles move in wall peak flow pattern. This 

means that in the case of medium sand the radial particle migration is 

towards the pipe wall. The phenomenon of wall peak flow has been 

observed by Karnis et al. (1966), who observed that for a more viscous 

carrier liquid the particles move close to the pipe wall. Therefore, it is highly 

plausible that the very fine particles in the medium sand are accountable for 

increasing the viscosity of the carrier liquid (water) used in this study. 
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Figure 5.35 Concentration profile (left hand-side) and solids velocity profile 
(right hand-side) as a function of transport velocity in upward vertical 

flow for (a) medium sand at 2% throughput concentration, (b) medium 
sand at 10% throughput concentration, (c) coarse sand at 2% 
throughput concentration, (a) coarse sand at 10% throughput 

concentration  
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It is also apparent that the phenomenon of radial particle migration for 

coarse sand is not quite reflected in the solids velocity profile for all 

conditions, instead showing a blunted shape rather than an inverse bell-

shape (or parabolic). The velocity of particles exhibits a uniform distribution 

throughout the centre region of the pipe cross-section. It is quite expected 

that the particles within the particle-rich core, for flowing coarse sand, move 

slower relative to the surrounding layer due to gravity effect (density 

difference) and particle-particle interaction. The flattened shape of velocity 

profile has been observed by some researchers, for example Koh et al. 

(1994), similar to the one obtained in this study using the ERT. They also 

noticed that with increasing delivered solids concentration, the velocity 

profile becomes increasingly blunted. This implies that at higher transport 

velocities, the shape of solids velocity profile becomes further flattened, as it 

can be observed in the solids velocity profiles shown in Figure 5.35. The 

results of Koh et al. (1994) also revealed another phenomenon, which is with 

increases in particle size the velocity profile become increasingly flattened. 

This phenomenon was also picked up by the ERT used in this study. 

It is also apparent that by increasing the concentration and particle size, the 

particles move further towards the centre line region of the flow and the pick 

takes more towards the centre of the pipe cross-section. It was found that 

the results are in good agreement with those found by Lucas et al. (1999), 

using an electrical probe. Also, similar results were found by Koh et al. 

(1994), who measured the particle concentration and velocity profiles of 

particle size 1-5 mm in a Newtonian fluid through a vertical rectangular 

channel. Their results showed a non-uniform, bell-shaped concentration 

profile, with a maximum particle concentration at the centre line and a 

minimum particle concentration near the wall. Therefore, it can be concluded 

that the local solids concentration profile and the solids velocity distribution 

calculated using the ERT are a reasonably accurate representation of the 

true flow profile for flowing slurry through a vertical counter-gravity pipe at 

the particular conditions used in this investigation. However, there is only a 

significant feature, which is overestimation of velocities at the centre of the 

pipe, and this could well be attributed to the spatial resolution of the ERT 

and sensitivity gradient across the pipe cross-section. 

5.5.2 ERT based slurry flow rate measurement 

Due to the complexity of multiphase/two phase flow, particularly solid-liquid 

flow, it is enormously difficult to accurately measure the flow parameters of 

each phase individually using only one conventional flow meter. Currently 
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there is almost no multiphase/two phase flow meter practically available to 

majority of industrial applications (Munir, 2011; Li et al., 2005; Thorn et al., 

1997). The most important parameters that characterise the flow of each 

constituent phase are, phase volume fraction, phase axial velocity and 

phase volumetric flow rate. In terms of industrial application the volumetric 

flow rate of the phases is very important flow parameter to the pipeline 

operator. The ERT can only provide the measurement relating to the 

dispersed phase and is unable to measure the continuous phase. Thus, a 

secondary sensor is required, along with the ERT technique, to determine 

the flow rate of the continuous phase. This research proposes an ERT 

based technique, which combines the Electrical Resistance Tomography 

(ERT) and the Electromagnetic Flow meter (EMF), to measure the 

volumetric flow rate of each phase and producing the total slurry volumetric 

flow rate. The schematic briefing of the technique is shown through three 

fold strategy in Figure 5.36. 

Based on the constituent phases used in this study, solid and liquid, the ERT 

can successfully be used for the measurement of mean solids volume 

fraction (αs) and mean solids axial velocity (Vs), as previously discussed. 

The combination of these two parameters yields mean solids volumetric flow 

rate (Qs) across the pipe cross-sectional area (A), as shown Equation 5.6.. 

 

         

 
(5.6) 

The accurate performance of Electromagnetic Flow meter for measuring two 

phase flow is highlighted in literature by numerous investigators, such as 

Wyatt (1986), who argues that the EMF can be used to measure 

multiphase/two phase flow only if the dispersed phase consists of uniformly 

distributed small particles, which create a macroscopically uniform isotropic 

suspension. This implies that the EMF can only be used to measure high 

transport velocities of the mixture, at which homogeneous flow regime 

prevails. However, the transport conditions used in this investigation can be 

seen as the scenario for many industrial applications.  
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Figure 5.36 Schematic briefing of the methodology used in volumetric flow rate estimation
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Currently, it is mostly assumed that the EMF measures the mixture velocity 

(superficial velocity), without taking the solids void fraction (sand) into 

consideration. Based on this assumption, the mixture volumetric flow rate is 

the same as that of the carrier liquid alone, as shown by equation 5.7. 

           

 
(5.7) 

However, it is apparent that the slip velocity, between the two phases is 

unavoidable, especially at low transport velocities, due to the density 

difference between the two phases. This suggests that the mixture flow rate 

cannot have the same value as that of the liquid. Therefore, the total slurry 

flow rate should be determined through the combination of both flow rates of 

the existing phases. In other words, for calculation of mixture volumetric flow 

rate, the solids void fraction within the mixture has to be taken into account. 

Based on this correction, the mean carrier liquid flow rate (Ql) across the 

pipe cross-sectional area (A) can be determined through combination of the 

EMF velocity (Vl) and the volume fraction of the carrier liquid, obtained from 

the result of the ERT measurement, as shown in Equation 5.8.  

 

             

 
(5.8) 

Now, the summation of both volumetric flow rates, the dispersed and 

continuous phase flow rates, can yield total mixture volumetric flow rate 

(Qm), as shown in Equation 5.9. Since the consideration of the EMF 

measured velocity for the mixture velocity is always argued by many 

researchers, then the comparison between the mixture velocity taken as a 

direct EMF measurement with that determined via the combination of the 

ERT and the EMF, is also discussed. 

 

         

 
(5.9) 

The solids volume fraction and solids axial velocity obtained from the ERT 

was combined to estimate the solids volumetric flow rate across the vertical 

pipe cross-sectional area. While the EMF readings were considered for 

calculation of the liquid volumetric flow rate. The results were then collected 

as shown in Table 5.8. 
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Table 5.8 Solid and liquid volumetric flow rate obtained through combination 
of the ERT and EMF, along with the mixture velocity and flow rate in 
vertical flow 

Sand 
& 

conc. 

EMF 
velocity 

m/s 

ERT 
mean 
solids 

volume 
fraction 

v/v 

ERT 
mean 
solids 
axial 

velocity 

m/s 

ERT 
solids 

volume 
flow 
rate 

m3/s 

EMF 
liquid 

volume 
flow 
rate 

m3/s 

Total 
slurry 

volume 
flow 
rate 

m3/s 

Slurry 
velocity 

m/s 

2
%

 

m
e
d

iu
m

 

s
a
n
d

 

4.53 0.0310 4.73 0.00028 0.0086 0.0089 4.5316 

3.49 0.0285 3.09 0.00018 0.0067 0.0068 3.4828 

2.52 0.0285 2.76 0.00015 0.0048 0.0050 2.5285 

1.49 0.0282 1.36 0.00007 0.0028 0.0029 1.4882 

1
0
%

 

m
e
d

iu
m

 

s
a
n
d

 

4.59 0.1200 5.02 0.00118 0.0079 0.0091 4.6448 

3.49 0.1193 3.57 0.00083 0.0060 0.0069 3.4996 

2.52 0.1191 2.69 0.00062 0.0044 0.0050 2.5392 

1.52 0.1254 1.59 0.00039 0.0026 0.0030 1.5308 

2
%

 

c
o
a
rs

e
 

s
a
n
d

 

4.36 0.0304 5.05 0.00030 0.0083 0.0086 4.3800 

3.52 0.0324 3.64 0.00023 0.0067 0.0069 3.5245 

2.52 0.0368 2.51 0.00018 0.0048 0.0050 2.5217 

1.52 0.0333 1.49 0.00009 0.0029 0.0030 1.5154 

1
0
%

 

c
o
a
rs

e
 

s
a
n
d

 4.76 0.1133 5.54 0.00123 0.0083 0.0095 4.8496 

2.49 0.1260 2.81 0.00069 0.0043 0.0050 2.5312 

 

The qualitative results are also illustrated in Figures 5.37 and 5.38. These 

figures showing the track of solids volumetric flow rate against the carrier 

liquid volumetric flow rate for the two sands at 2% and 10% throughput 

concentration. 

By observing the variation of solids volumetric flow rate in Figures, 5.37 and 

5.38, it can be seen that each graph consists of a rather concave curve at 

the top and a convex curve at the bottom. It is apparent that these two 

curves are more pronounced at lower solids throughput concentration (2%) 

rather than higher solids throughput concentration (10%). The distorted 

shape of each line track can be attributed to the change in the transport 

velocity, which directly affects the solids volume fraction and the solids axial 

velocity within the pipeline. By looking at the line plot in Figure 5.37, for 

medium and coarse sand at 2% throughput concentration, it can be seen 

that solids volumetric flow rate manifests a linear relationship within the 

higher  transport velocities (3.5 m/s and above), which are considered as 

non-stratified flow velocity range. This linear relationship between the solids 

flow rate and liquid flow rate is an indication of non-slip velocity between the 

two phases.  
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Figure 5.37 The variation of solids volumetric flow rate against the carrier 
liquid volumetric flow rate for flowing medium and coarse sand at 2% 
throughput concentration in upward vertical flow. Each volumetric flow 
rate data point is labelled with the corresponding mean solids volume 

fraction and mean solids axial velocity 

 

 

Figure 5.38 The variation of solids volumetric flow rate against the carrier 
liquid volumetric flow rate for flowing medium sand at 10% throughput 
concentration in upward vertical flow. Each volumetric flow rate data 
point is labelled with the corresponding mean solids volume fraction 

and mean solids axial velocity 
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In other words, within the range of velocities, at which all the solid particles 

are suspended in the carrier liquid and they move more or less at the same 

velocity as that of the carrier liquid, the track of solids volumetric flow rate 

continuous on a straight line. However, by decreasing the transport velocity 

the line changes its trajectory to produce a concave curve, then it bends 

down to form a convex curve. This is due to the density difference between 

the two phases. As the transport velocity decreases the solid particles slow 

down, which leads to the reduction of their flow rate. After the convex curve, 

further reduction of transport velocity leads to further reduction of solids axial 

velocity and deposition of solid particles within the horizontal pipeline. As a 

result the solids volumetric flow rate decreases in the vertical pipeline, which 

is clearly highlighted in Figures 5.37 and 5.38. Continuous reduction of 

transport velocity, towards pipe blockage condition, results in zero solids 

flow rate and obviously the carrier liquid flow rate too, as the flow of each 

phase comes to halt within the pipelines. 

Another phenomenon can be noticed on each flow rate plot, on which the 

track changes rather sharply its trajectory to form the concave curve and the 

convex curve. The region between these two curves can be considered as a 

transitional region between the stratified flow and non-stratified flow. This 

argument is well based on the results of flow regime characterisation 

discussed previously in this chapter. Based on visual observation and 

photographic evidence, it was found that the stratified flow starts at around 

3.5 m/s transport velocity. This region can be remarked between the two 

points, starting at the first point where the track goes through a rather sharp 

change to form the concave curve, and the second point where the curve 

goes through another change in its trajectory to form the convex curve. As 

previously mentioned this region is less pronounced for the flowing of sand 

at 10% throughput concentration. Despite that the diversion point from the 

linear track can be noticed. 

Based on the above results and observations, it is apparent that the ERT 

can detect the variations of solids volumetric flow rate within the range of 

conditions used in this investigation. Also, based on the results obtained 

from the combination of the ERT and the EMF, to measure the solids flow 

rate and liquid flow rate respectively, the slip velocity between the two 

phases, can successfully be estimated. The evaluation of the technique, 

through highlighting the rate of associated error in each condition used in 

this study, is also discussed later in this section. 
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5.5.3 Validation of the vertical flow ERT results   

The in-situ concentration, obtained from the ERT for vertical upward flow, 

was compared to that of flow diversion technique (discharge) similar to the 

comparison procedure described in horizontal flow measurement. With 

regard to the solids velocity, the quantitative (mean solids velocity) and 

qualitative (solids axial velocity profile) results were obtained from the 

AIMFLOW (statistical software package), as described in the previous 

section. The pre-calibrated EMF was used to monitor the mean slurry 

velocity within the range of 1.5-4.5 m/s. The solids axial velocity (in-situ) and 

solids volumetric flow rate were also validated against the discharge 

velocities calculated using the flow diversion technique. The validation of the 

ERT volumetric flow rate includes validation of total mixture volumetric flow 

rate, obtained from the combination of the ERT and EMF measurements of 

the carrier liquid and the dispersed phase volumetric flow rate. Since the 

vertical test section is followed by a short horizontal line, through which the 

slurry is returning into the mixing tank (or diverted to the measuring tank), 

and no solids hold up is occurred after the vertical test section, therefore it is 

predicted that the solids concentration in the vertical test section have similar 

value as that of discharge value. The solids axial velocity is also predicted to 

approach that of discharge, despite the existence of some resisting force 

(bends, pipe wall friction etc.). However, since the slurry is passing through 

only one 90° long radius bend and a rather short returning horizontal line, 

then these resisting forces on the slurry are neglected. The data obtained for 

each test was recorded and collected. These data then processed and 

compared against each other, as shown in Tables 5.9, 5.10 and 5.11. The 

error analysis is also described in the following section along with 

highlighting the rate and the potential reason for the occurrence of the error 

in each condition. 

5.5.3.1 Validation of mean solids volume fraction 

Tables 5.9 and 5.10 highlight the comparison results of both solids 

volumetric concentrations; the ERT and the discharge. Error analysis of 

solids volumetric concentration was carried out for each condition and the 

results are highlighted quantitatively, in the aforementioned tables, in terms 

of maximum, minimum and the average deviation. The comparison results 

are also illustrated qualitatively in Figure 5.39 in terms of line fit plots and 

residual plots. 

It is apparent from the qualitative data and quantitative error analysis that the 

ERT provides reasonable estimates of solids volumetric concentration in 
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vertical counter-gravity slurry flow. However, the results of error analysis of 

the ERT concentration revealed that, for these particular conditions, the 

minimum deviation of 0.61% between the discharge and the ERT 

concentration was observed at 10% coarse sand throughput concentration, 

whereas the maximum deviation of 40.91% was noticed at 2% medium sand 

throughput concentration and at a transport velocity of 4.5 m/s. In addition, 

the average error, for all considered conditions, was found to be within 26%. 

From the qualitative results of error analysis it was remarked that, overall, 

the ERT tends to overestimate the local volumetric solids concentration, as 

shown in Figure 5.39 

Table 5.9 Comparison of concentrations and occurring relative error for 
medium and coarse sand at 2% throughput concentration in vertical 
flow 

 
Medium Sand Coarse Sand 

Velocity 
(m/s) 

ERT    
Conc. 
%(v/v) 

Discharge 
Conc. 
%(v/v) 

Relative 
Error  
 (%) 

ERT   
Conc. 
%(v/v) 

Discharge 
Conc.  
%(v/v) 

Relative 
Error   
(%) 

4.5 3.1 2.20 -40.91 3.04 3.2 5.00 

3.5 2.85 2.70 -5.56 3.24 3.1 -4.52 

2.5 2.85 2.50 -14.00 3.68 3.4 -8.24 

1.5 2.82 2.40 -17.50 3.33 2.8 -18.93 

 
Maximum Error  = -40.91% 
Minimum Error = -5.56% 
Average Error  = -19.49% 

 

Maximum Error = -18.93% 
Minimum Error = -4.52% 
Average Error = -9.17% 

 

Table 5.10 Showing the comparison of concentrations and occurring relative 
error for medium and coarse sand at 10% throughput concentration in 
vertical flow 

 
Medium Sand Coarse Sand 

Velocity 
(m/s) 

ERT    
Conc. 
%(v/v) 

Discharge 
Conc. 
%(v/v) 

Relative 
Error  
(%) 

ERT    
Conc. 
%(v/v) 

Discharge 
Conc.  
%(v/v) 

Relative 
Error  
(%) 

4.5 12 9.26 -29.59 11.33 11.4 0.61 

3.5 11.93 9.62 -24.01  - 12.7 -  

2.5 11.91 9.55 -24.71 12.6 12.7 0.79 

1.5 12.54 9.68 -29.55  - 12.8 -  

 
Maximum Error = -29.59% 
Minimum Error = -24.01% 
Average Error = -26.96% 

 

Maximum Error = -0.79% 
Minimum Error = -0.61% 
Average Error = -0.7% 
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This overestimation can clearly be seen on the line fit plot of the ERT 

concentration vs. discharge concentration. The deviation of each data point 

is more clearly highlighted for each transport velocity in the plot of ERT 

deviation magnitude vs. discharge concentration. The reason for this 

overestimation may have to do with mechanical installation of 32 electrodes 

on the two electrode rings. In other words, one or more electrodes may not 

have been well tightened and as a result the electrical connection is 

affected, which affects the conductivity of the domain under investigation. 

However, a future investigation is paramount to unveil the exact reason 

behind this overestimation. Nevertheless, it can be seen that for the flowing 

coarse sand, especially for 10% throughput concentration, an 

underestimation can be observed. The cause could be due to the gradient in 

sensitivity distribution across the radial plane on the sensitivity map (pipe 

cross-section), as the higher sensitivity can be found near the pipe wall 

rather than the centre of the pipe. This argument could well be supported by 

the shape of concentration profile, where a particle-rich core of solids can 

clearly be observed at the axis of the pipe surrounded by a particle-lean 

annulus. In other words, non-uniform concentration profile, which exhibits a 

maximum solids concentration at the centre line of the pipe, and minimum 

solids concentration near the pipe-wall, can be noticed, as shown in Figure 

5.35.  

As the concentration increases the bell-shape (or or core flow) profile can 

clearly be manifested in the centre of the pipe. Hence, in flowing coarse 

sand slurry through vertical counter-gravity radial particle migration occurs. 

Since most of the particles are segregated at the centre of the pipe, and the 

centre of the pipe presents the lowest sensitivity relative to the regions near 

the pipe wall, then it is reasonable to expect an underestimation of solids 

concentration profile at the centre of the pipe, which in return gives an 

overall underestimation of mean solids concentration across the pipe cross-

section.   
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Figure 5.39 Comparison between in-situ (ERT) concentration and delivered 
solids concentration, through the line fit plot (left-hand side) and the 
residual plot (right-hand side), in vertical upward flow for (a) medium 

sand at 2% throughput concentration, (b) medium sand at 10% 
throughput concentration, (c) coarse sand at 2% throughput 

concentration, (d) coarse sand at 10% throughput concentration  
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5.5.3.2 Validation of mean solids axial velocity 

The measured values of solids axial velocities using both techniques, the 

ERT and the discharge, are tabulated in Table 5.11. Error analysis was 

carried out for each condition and the results are highlighted quantitatively in 

terms of maximum, minimum and the average deviation for both, coarse and 

medium sand, at different throughput concentration and velocity range 1.5-

4.5 m/s. The minimum deviation of 0.39% between the discharge and the 

ERT velocities was observed at 2% coarse sand throughput concentration, 

whereas the maximum deviation of 12.30% was noticed at 10% medium 

sand throughput concentration and at a transport velocity of 4.5 m/s. 

Table 5.11 Showing the data obtained from the ERT measurement and 
discharge calculation along with the rate of deviation at each given 
velocity for vertical flow 

Transport 
Velocity 

(m/s) 

ERT 
Velocity    

(m/s) 

Discharge 
Velocity 

(m/s) 

Absolute  
Error 
(%)  

Relative  
Error  
(%) 

Remarks 

Medium Sand 2% 

4.5 4.73 4.51 0.22 -4.80 
Min. Deviation% = 4.80 
Max. Deviation% = 12.01 
Average Error% = 9.25 

3.5 3.09 3.49 0.41 11.65 

2.5 2.76 2.55 0.22 -8.54 

1.5 1.36 1.54 0.19 12.01 

Medium Sand 10% 

4.5 5.02 4.47 0.55 -12.30 
Min. Deviation% = 3.11 
Max. Deviation% = 12.30 
Average Error% = 5.66 

3.5 3.57 3.47 0.11 -3.11 

2.5 2.69 2.54 0.15 -6.09 

1.5 1.59 1.58 0.02 -1.15 

Coarse Sand 2% 

4.5 5.05 4.53 0.52 -11.55 
Min. Deviation% = 0.39 
Max. Deviation% = 11.55 
Average Error% = 3.72 

3.5 3.64 3.66 0.02 0.62 

2.5 2.51 2.45 0.06 -2.32 

1.5 1.49 1.50 0.01 0.39 

Coarse Sand 10% 

4.5 5.24 5.24 0.30 -5.69 Min. Deviation% = 5.69 
Max. Deviation% = 8.82 
Average Error% = 7.26 2.5 2.58 2.58 0.23 -8.82 

 

By comparing the two velocity values, mean solids velocity obtained from the 

ERT and discharge velocity obtained from the measuring tank, it can be 

concluded that, for the particular flow conditions used in this study, the ERT 

provides a reasonable estimation of the solids axial velocity in vertical 

counter-gravity flow, despite some acceptable deviation from the EMF and 
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discharge velocity values. These deviations are due to similar reasons 

described in evaluation of solids concentration in previous section. 

5.5.3.3 Validation of mean solids flow rate 

Table 5.12 showing the volumetric flow rate of dispersed phase (sand) and 

continuous phase (water) measured using two techniques, the ERT based 

technique (in conjunction with the EMF) and the flow diversion technique (or 

discharge). The slurry velocity (superficial velocity) and total slurry flow rate 

were also determined via each of the above techniques. The error analysis 

was carried out and highlighted in terms of relative and average error for 

each condition used in the experiments. 

The calculation of error analysis revealed that the ERT estimation of solids 

volumetric flow rate is associated with a maximum error of 34.19%, which 

occurred for flowing medium sand at 2% through put concentration. On the 

other hand a minimum error of 6.33% was estimated for flowing coarse sand 

at 10% throughput concentration. 

The results of error analysis, in the prediction of solids volumetric flow rate, 

measured by both techniques, are also illustrated qualitatively through line fit 

plots, shown in Figures 5.40 and 5.41. By observing the line fit plots shown 

in the aforementioned Figures, it is apparent that, based on the discharge 

measurement, the ERT overestimates the solids volumetric flow rate in all 

conditions used in this study. It can also be noticed that the rate of 

overestimation increases with increase of transport velocity. Since the solids 

volumetric flow rate is determined as a product of mean solids volume 

fraction and mean solids axial velocity, which are both predicted by the ERT, 

then the occurred error could well be attributed to one of them. In other 

words, the overestimation of the solids volumetric flow rate is due to 

occurring some error either in the estimation of the solids volume fraction or 

solids axial velocity. However, the error analysis of solids volume fraction 

and solids axial velocity, in the previous sections, revealed that the ERT in 

general tends to overestimates these two parameters. The reasons for this 

overestimation is associated to the gradient in sensitivity distribution across 

the radial plane on the sensitivity map (pipe cross-section) or could possibly 

be due to mechanical configuration of the electrodes on the dual plane 

sensor. The higher overestimation of both parameters, solids volume fraction 

and solids axial velocity, was also found within the range of higher transport 

velocities (3.5 m/s and above), which is also reflected in the prediction of 

solids volumetric flow rate.  
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Table 5.12 Comparison of the volume flow rates obtained from the ERT and EMF with discharge corresponding values along with the 
rate of deviation at each condition in vertical flow 

 ERT & EMF values Discharge values Error Analysis 

 

Solids 
volume 

flow rate 
(m3/s) 

Liquid 
volume 

flow rate 
(m3/s) 

Slurry 
volume 

flow rate 
(m3/s) 

Slurry 
velocity 
(m/s) 

Solids 
volume 

flow rate 
(m3/s) 

Liquid 
volume 

flow rate 
(m3/s) 

Slurry 
volume 

flow rate 
(m3/s) 

Slurry 
velocity 
(m/s) 

Relative 
Error 
(%) 

Average 
Error 
(%) 

2% 
medium 

sand 

0.00028 0.0086 0.0089 4.53 0.00019 0.0086 0.0088 4.48 45.51 

20.35 
0.00018 0.0067 0.0068 3.48 0.00017 0.0067 0.0068 3.48 6.43 

0.00015 0.0048 0.0050 2.52 0.00012 0.0049 0.0050 2.54 23.01 

0.00007 0.0028 0.0029 1.48 0.00007 0.0029 0.0030 1.53 6.48 

10% 
medium 

sand 

0.00118 0.0079 0.0091 4.64 0.00081 0.0080 0.0087 4.46 45.46 

34.19 
0.00083 0.0060 0.0069 3.49 0.00065 0.0062 0.0068 3.46 27.93 

0.00062 0.0044 0.0050 2.53 0.00047 0.0045 0.0049 2.53 32.32 

0.00039 0.0026 0.0030 1.53 0.00030 0.0028 0.0030 1.57 31.04 

2% 
coarse 
sand 

0.00030 0.0083 0.0086 4.38 0.00028 0.0086 0.0088 4.53 4.37 

8.22 
0.00023 0.0067 0.0069 3.52 0.00022 0.0070 0.0071 3.66 2.09 

0.00018 0.0048 0.0050 2.52 0.00016 0.0046 0.0048 2.44 9.37 

0.00009 0.0029 0.0030 1.51 0.00008 0.0029 0.0029 1.49 17.04 

10% 
coarse 
sand 

0.00123 0.0083 0.0095 4.84 0.00117 0.0091 0.0102 5.24 4.90 
6.33 

0.00069 0.0043 0.0050 2.53 0.00064 0.0044 0.0050 2.57 7.76 
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Despite this overestimation, the quantitative and qualitative results of solids 

volumetric flow rate measurement suggest that the ERT overall can predict a 

reasonably accurate solids volumetric flow rate in vertical counter-gravity 

slurry flow for the conditions used in this investigation. 

 

 

Figure 5.40 Comparison of solids volumetric flow rate predicted by the ERT 
in vertical pipeline with that of flow diversion for medium and coarse 

sand at 2% throughput concentration 

 

 

Figure 5.41 Comparison of solids volumetric flow rate predicted by the ERT 
in vertical pipeline with that of flow diversion for medium and coarse 

sand at 10% throughput concentration 

 

0.00000 

0.00010 

0.00020 

0.00030 

0.00000 0.00010 0.00020 0.00030 

E
R

T
 b

a
s
e
d

 s
o

li
d

s
 f

lo
w

 r
a
te

 (
m

³/
s
) 

Discharge solids flow rate (m³/s) 

2% medium sand 2% coarse sand 45° line fit 

0.0000 

0.0002 

0.0004 

0.0006 

0.0008 

0.0010 

0.0012 

0.0014 

0.0000 0.0003 0.0006 0.0009 0.0012 

E
R

T
 b

a
s
e
d

 s
o

li
d

s
 f

lo
w

 r
a
te

 (
m

³/
s
) 

Discharge solids flow rate (m³/s) 

10% medium sand 10% coarse sand 45° line fit 



- 172 - 
 

  

The mixture flow rate was also determined, based on the flow rates of both 

phases predicted by the ERT in conjunction with the EMF, in which the 

solids void fraction was taken into account. The measured mixture flow rate 

then compared to that of discharge, as shown in Figure 5.42. It can be seen 

that error is quite random for the given conditions. However, a reasonable 

agreement can be noticed between the slurry flow rate measured by the 

ERT in conjunction with the EMF and the discharge.  

 

 

Figure 5.42 Comparison of slurry flow rate measured by the combination of 
the ERT and EMF in vertical pipeline with that of flow diversion 

 

In order to further evaluate the ERT based volumetric flow rate 

measurement technique, in which the ERT is used in conjunction with the 

EMF, further comparisons were carried out, as shown in Figures 5.43, 5.44, 

5.45 and 5.56. In these comparisons, the solid and liquid volumetric flow rate 

obtained from the ERT and EMF were compared to that measured by flow 

diversion technique. It is quite apparent that, in the aforementioned figures, 

the ERT can generate a reasonable qualitative track representation of solids 

volume flow rate for the range of the transport velocities used in this 

research. However, the overestimation again is quite pronounced for both 

sands and all conditions, especially at higher velocities above stratified 

velocity range ( 3.5 m/s). 
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Figure 5.43 Comparison of the ERT solids flow rate in vertical pipeline with 
that of flow diversion for medium sand at 2% throughput concentration 

 

 

Figure 5.44 Showing the comparison of the ERT solids flow rate in vertical 
pipeline with that of flow diversion for medium sand at 10% throughput 

concentration 
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Figure 5.45 Showing the comparison of the ERT solids flow rate in vertical 
pipeline with that of flow diversion for coarse sand at 2% throughput 

concentration 

 

 

Figure 5.46 Showing the comparison of the ERT solids flow rate in vertical 
pipeline with that of flow diversion for coarse sand at 10% throughput 

concentration 
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5.6 Conclusions 

A high performance dual-plane Electrical Resistance Tomography system 

(ERT) has been employed to interrogate the internal structure of horizontal 

and vertical counter-gravity slurry flow. The exceptional capability of this 

system enabled acquiring high frame rates (1000 dfps) in a non-intrusive 

fashion. The tomograms reconstructed for each test were collected and 

analysed to determine the mean local solids concentration and solids 

volumetric concentration profile across the vertical plane of the pipe cross-

section. While the dual-plane ERT system was combined with the cross-

correlation technique to obtain mean local solids axial velocity and solids 

axial velocity profile. The profiles, solids concentration and solids axial 

velocity, obtained from the ERT, was compared qualitatively with the actual 

photographs of the flow, which were captured during the ERT 

measurements. It was found that there is a good agreement between the 

two methods. Therefore, it can be concluded that the dual-plane ERT 

system could well be used for on-line monitoring slurry flow through 

pipelines. The estimated mean local solids volumetric concentration and 

mean solids axial velocity values measured by the ERT were also compared 

to the corresponding values measured using the diversion flow technique. 

Some deviations were noticed in the mean local concentration obtained from 

the ERT and have found to be quite random. However, the error analysis of 

the ERT results demonstrated that, overall, the ERT tends to overestimate 

the local volumetric solids concentration. The reason for this error was 

associated to the presence of bubbles in the pipeline. In vertical upward 

flow, the effect of radial particle migration has been picked up by the ERT 

system. Based on the solids volumetric concentration distribution across the 

vertical plane of the vertical pipe cross-section, it was found that the coarse 

sand flows in core peak flow, whereas the flow of medium sand 

demonstrated wall peak flow. On the other hand, it was found that the 

combination of the ERT and cross-correlation provides a reasonable 

estimation of mean solids axial velocity in both flow orientations. However, 

the velocities measured in horizontal flow were found to be underestimated 

by the ERT at low transport velocities (below 3 m/s). Therefore, a future 

investigation is required to unfold the reasons behind this error. Moreover, a 

novel ERT based technique has been proposed for measurement of total 

slurry volumetric flow rate in vertical upward flow. This technique combines 

the high performance ERT and the EMF to measure the volumetric flow rate 

of each phase individually, dispersed and continuous respectively, and 
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producing the total volumetric slurry flow rate. Based on the results obtained 

using this technique the slip velocity between the two phases can also be 

successfully determined. The evaluation of the proposed technique for 

volumetric flow rate measurement, through highlighting the rate of 

associated error in each condition used in this study, suggests that a 

reasonable qualitative track representation of volumetric flow rate of each 

phase, along with the total slurry volume flow rate, can be generated.  

Finally, this study revealed that the high performance dual-plane ERT 

system can be used for monitoring slurry flow and estimation of volumetric 

solids concentration and solids axial velocity in horizontal and volumetric 

flow rate in vertical counter-gravity flow. However, particular attention should 

be paid to quantitative results obtained at high transport velocities.  
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Chapter 6 

Design and construction of inclinable multiphase flow loop 

This chapter describes the design of an inclinable multiphase flow loop with 

specific emphasis  on slurry flow system. It attempts to provide a detailed 

coverage of the design analysis and acceptance criteria for every 

component of the system. The materials, fabrication, assembly, erection and 

testing are also described. 

6.1 Introduction 

In order to investigate the effect of different variables on multiphase flow 

characteristics and measurement scheme, a versatile, durable and accurate 

pilot scale flow loop is required. Therefore, it was decided to design and 

construct a pilot scale multiphase flow loop in the Engineering Building/G.56 

in the university of Leeds. The aim was to build a durable and reliable flow 

loop, which would include all orientations, horizontal, vertical and inclined. It 

was also required to design the flow loop in such a way that could be used 

not only for slurry flow, but also for multiphase flow, which includes 

solid/liquid, gas/liquid, solid/gas/liquid, oil/liquid, oil/gas/liquid and 

oil/solid/gas/liquid. It is worth mentioning that due to space limitations and 

health and safety, the oil flow facility, such as storage vessel etc., has not 

been included into the design. However, it is proposed that an oil simulant, 

such as plastic beads with uniform shape and the same density of oil, could 

be used. It is also important to mention that as the loop will mainly be used 

for slurry flow and this type of flow is the most complex amongst the others, 

then most of design considerations and attention have been given to slurry 

flow rather than others. 

The management of the design and construction, such as time and cost, 

was also considered to be one of the most important aspect of the project. A 

thorough examination was carried out for the selection and design of each 

piece of equipment, based on cost, objectives of the research and flexibility, 

along with producing a detailed working plan from conceptual design to the 

construction and testing. The working plan was developed in such a way in 

order for each task to be carried out efficiently and effectively. 

This chapter details the methodology adopted to design and construct the 

multiphase flow loop, along with the equipment and instrumentations used to 
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achieve the design requirements. The final design of the constructed flow 

loop and each equipment is highlighted through schematic drawings and real 

photographs. A detailed operating procedure, start up and shut down, of the 

loop is also included in this chapter. The results of mechanical and 

hydrodynamic testing are also described.  

6.2 Design requirements 

In order to investigate the effect of different flow parameters on multiphase 

flow characteristics and flow measurement scheme, the flow loop must meet 

the following requirements: 

1. The flow loop must be usable within the range of inclination angles 0° to 

90° from horizontal. 

2. A safe and remotely controllable lifting method must be used. 

3. The instrumentation and working area must be well and carefully 

specified. 

4. The piping material must be selected to suit the flow of solid particles and 

abrasives. 

5. It must accommodate up to 40% by weight of the dispersed phase. 

6. Must allow the mean flow velocity up to 5.5 m/s. 

7. It must include the upward and downward flow. 

8. The test sections must be within the developed flow region. 

9. It must be functional for stratified and non-stratified flow. 

10. Must meet health and safety requirements. 

11. Must be robust, accurate and durable. 

12. Flexibility in removing and mounting any instrumentation or section. 

13. Must allow for visual observation of flow within the pipeline. 

14. Can easily be operated by one operator. 

15. Cost must be well balanced against accuracy, durability and robustness. 

16. Include a bulk flow measurement and validation system. 

17. Space and access (work area, walk way storage area, maintenance of 

equipment etc.) must be carefully considered. 

18. Initial and later testing costs must be kept as low as possible, of course 

after achieving a well balance between cost and quality. 

6.3 Design and construction project management 

In order to achieve the final goal efficiently and effectively, a very well 

management of the entire project is paramount. Undoubtedly, a detailed 
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work plan is necessary to provide a framework for planning and controlling 

the project. Also the large number of tasks, which had to be carried out by 

different individuals and parties over a short period of time to reach the final 

stage, was the driving force for the outputs to be achieved. Therefore, a 

detailed work plan was introduced, amongst which the budget and schedule 

of work were clearly outlined.  

In order to have a clear knowledge of the total cost of the flow loop, the list of 

material that had to be ordered was prepared, as shown in Table 6.1. Since 

the cost was the driving force, then a comparison of price and quality of each 

item, mentioned in the aforementioned table, was carried out between three 

suppliers. After achieving a good balance between the price and quality, the 

suitable supplier was chosen. Then of course every item had to be justified, 

therefore, a meeting had to be arranged with the budget holder to produce 

the documentations and justify the release of funds. 

On the other hand, the schedule of the work plan, which was the most 

important element of standard management tool, was found to be rather 

more complicated. As previously mentioned, the number of tasks in the To 

Do list and the involvement of different individuals made it rather difficult to 

produce a rigid schedule of work. Therefore, the schedule produced for the 

completion of the flow loop had to be updated from time to time, a version of 

which is illustrated in Table 6.2. The scheduling strategy used for the 

completion of the loop, was that the entire work was split into goals, each of 

which had objectives for the goal to be achieved. It is apparent that the 

completion of all the target goals would mean the completion of the loop. In 

other words, a goal can never be achieved without achieving all the related 

specific objectives. The scheduling was designed in such a way that for each 

of stated objectives the completion date was listed in order with allotment of 

a reasonable length of time, while some tasks were in progress in a parallel 

fashion. 
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Table 6.1 List of items ordered for the flow loop 

 

 

Item Image
mm/each of 

Item

Net unit cost 

£

Net item 

total £
Supplier

Product 

no./Code
Product name Comments

2" Clear Upvc Pipe 

(Transparent)
5 m 103.70/5m 103.7 http://www.pipestock.com/clear-pvcu-pipe/ PVCU.CLR5.0630

PVCu Clear Pipe 16 BAR 5m 

Length 63mm

This is metric it can go with metric 

fittings, but not with imperial 

fittings (eg, 2" flange)

2" Upvc Pipe (Opaque/black) 12 m 23.33/6m 46.66 http://www.pipestock.com/pvcu/pipe/class-e-inch/ PVCU.CLE.0630 PVCu Pipe Class E 15 Bar 6m 2"

4" Upvc Pipe 6 m 80.48/6m 80.48 http://www.pipestock.com/pvcu/pipe/class-e-inch/ PVCU.CLE.1100 PVCu Pipe Class E 15 Bar 6m 4"

Flexible Pipe 10 m 23.95/m¹ 287.4
Whitehouse Flexible Tubing Ltd. (quote will be 

attached)
See the quote

10 Mtrs X 63MM DIA, 

ARMOURVIN TYPE FLEXIBLE 

TUBING

Flexible Pipe Clamps (Heavy 

Duty)
8 piece 2.53/piece¹ 50.528

Whitehouse Flexible Tubing Ltd. (quote will be 

attached)
See the quote 8 X SUPER HEAVY DUTY CLAMPS

Flanges 30 piece 6.68/piece 200.4
http://www.pipestock.com/pvcu/flanges-flange-

sets/flanges/full-face-pn1016-inch/
PVCU.FNA.0630

PVCu Full Face Flange Drilled 

BS EN1029-1 PN16 Plain 2"

EPDM Flat Gasket 15 piece 5.81 87.15
http://www.pipestock.com/pvcu/flanges-flange-

sets/epdm-gaskets/full-face-bs-en1029-1/
GFI.0630

EPDM Gasket For Full Face 

Flange BS4504 NP10/16 2" 

63mm

Nuts & bolts  (M16 x 80)² 30 set 3.03/set 90.9
http://www.pipestock.com/pvcu/flanges-flange-

sets/nuts-bolts/
BBZP.M16.0750

Bolt Set BZP 4 Pack M16 X 

75mm

Sockets (Plain) 6 1.73/piece 10.38
http://www.pipestock.com/pvcu/pipe-fittings/plain-

inch/socket/
PVCU.MAA.0630 PVCu Socket Plain 2"

Reducing Bushes (Plain: 

OD63X32ID mm)
2 1.21/ piece 2.42

http://www.pipestock.com/pvcu/pipe-fittings/plain-

inch/reducing-bush/
PVCU.RCA.063D

PVCu Reducing Bush Plain 2" x 

1"

Reducing Bushes (Plain: 

OD32X25ID mm)
2 0.58/ piece 1.16

http://www.pipestock.com/pvcu/pipe-fittings/plain-

inch/reducing-bush/
PVCU.RCA.032C

PVCu Reducing Bush Plain 1" x 

3/4"

Reducing Bushes (Threaded: 

OD25X20ID mm)
2 0.47/ piece 0.94

http://www.pipestock.com/pvcu/pipe-fittings/plain-

inch/reducing-bush/
PVCU.RCA.025B

PVCu Reducing Bush Plain 3/4" 

x 1/2"

Union 1 7.94/ piece 7.94
http://www.pipestock.com/pvcu/pipe-fittings/plain-

inch/union/
PVCU.BOA.0630 PVCu Union Plain 2"

Tee 90° 13 4.25/ piece 55.25
http://www.pipestock.com/pvcu/pipe-fittings/plain-

inch/tee-90/
PVCU.TIA.0630 PVCu Tee 90 Plain 2"

Tee 45° 2 10.65/ piece 21.3
http://www.pipestock.com/pvcu/pipe-fittings/plain-

inch/tee-45/
PVCU.TYA.0636 PVCu Tee 45 Plain 2" 

Elbow 45° 1 3.73/ piece 3.73
http://www.pipestock.com/pvcu/pipe-fittings/plain-

inch/elbow-45/
PVCU.GYA.0630 PVCu Elbow 45 Plain 2"

Elbow 90° 1 3.32/ piece 3.32
http://www.pipestock.com/pvcu/pipe-fittings/plain-

inch/elbow-90/
PVCU.GOA.0630 PVCu Elbow 90 Plain 2"

Short Radius Bend 90° 8 9.53/ piece 76.24
http://www.pipestock.com/pvcu/pipe-fittings/plain-

inch/short-radius-bend-90/
PVCU.CUA.0630 PVCu Bend 90 Plain 2"

Solvent Cement³ 2 14.12/ tin 28.24
http://www.pipestock.com/pvcu/accessories/pvcu-

solvent-cement/
PVCU.RCO

Solvent Cement for PVC 500ml 

Tin

Brushes 2 3.18/ piece 6.36
http://www.pipestock.com/pvcu/accessories/pvcu-

solvent-cement/
FAIPBSY34 Brush 3/4"

TFPE Tape 2 5.43/ pack 10.86
http://www.pipestock.com/pvcu/accessories/ptfe-

tape/
PTFE.B PTFE Tape 12m Roll Pack of 10

Latex Gloves (L) 1 (pack of 100) 13.48/ pack 13.48
http://www.pipestock.com/pvcu/accessories/latex-

gloves/
SCAGLOLATEXL

Latex Gloves Ambidextrous 

100PK

Digital Caliper 1 11.98 (inc VAT) 11.98
http://www.toolbox.co.uk/silverline-380244-digital-

16488-85361
TBSL2911

Silverline 380244 Digital 

Vernier Professional Caliper

Pipe Clamps⁴ 30 1.75/ pack 52.5
http://www.thesitebox.com/britclips-girder-clips/pipe-

clamps/sound-insulated-standard-r-pipe-clips.aspx
P/N: 1257060 

59 - 62mm Sound Insulated 

Standard Pipe Clip M8 & M10 (1 

item per pack)

This can be adapted to M8 and 

M10 threaded rod bar.

Threaded rod for pipe clamp  

(M8 x 100 mm)
10 2.25/ pack⁵ 22.5

http://www.thesitebox.com/nuts-and-bolts/metric-

studding/metric-high-tensile-steel-studding.aspx
P/N: STHTM81SC

Metric High Tensile Steel 

Studding 8mm x 1m (1 item per 

pack)

U-Bolt clamp⁶ 1 17.10/ pack⁷ 17.1
http://www.thesitebox.com/nuts-and-bolts/u-

bolts.aspx
P/N: UB75M12

Standard 'U' Bolt with nuts. 

75mm nominal bore. M12 

thread....

Ratchet Strap (w:50mm, 

L:4m, Load: 4000KG)⁹
8 5.26/ piece 42.08

http://www.theratchetshop.com/ratchet-straps-lifting-

systems-ratchets-c-26_28.html
LS02-04 (50mm) Ratchet Strap-Blue

Supply and Fit Tilted Table 

and frame supports
1 4500 4500 OG Fabrication

Supply and fit the table and 

frame

Ultrasound Velocity Profiler 

(UDVP)
1 8500 8500

http://www.theratchetshop.com/ratchet-straps-lifting-

systems-ratchets-c-26_28.html

UDVP-DUO 

(GAH100)
UDVP-DUO

two standard transducers (TX line 

model)  with emitting frequencies 

2 MHz and 4 MHz must be 

Coriolis Mass Flow Meter 1 7432.79 7432.79
http://www.theratchetshop.com/ratchet-straps-lifting-

systems-ratchets-c-26_28.html
OPTIMASS 7300

 Mass flow sensor OPTIMASS 

7000-T 50 straight single tube 

system (Titanium-Grade 9)

Wall mounting converter must be 

ordered, along with transitional 

pieces for leading edge protection 

Coarse Sand ( Sand 1) 20 bags 1.81/bag⁹ 36.2
http://www.theratchetshop.com/ratchet-straps-lifting-

systems-ratchets-c-26_28.html
SMBQSHS40

B&Q Sharp Sand Natural Large 

Bag

Medium Sand ( Sand 2) 20 bags 4.28/bag 85.6
http://www.theratchetshop.com/ratchet-straps-lifting-

systems-ratchets-c-26_28.html
SMBQKDS40 B&Q Kiln Dried Sand Natural

Total 21889.588
¹VAT 20% + Carriage are included into the total price 

²Each set consists of  a threeaded bolt+2 washers+single nut.

⁸Break/load: 4000Kg, Colour: Blue, Width: 50mm, length: 4m

⁹If more than 10 bags ordered, the price comes to £1.18 per bag

All the above prices are of 9th February 2012

³Each tin contains 500 ml (500 ml can cover 60 joints of 2 inch pipeline)

⁴Rubber lined pipe clamp with one fixing M7 x 100mm or M8 x 100mm.

⁵Price per pack ex VAT ( Pack Size: 1x1m). This may not require ordering, checks have to ber made if there is any leftovers from the other 

⁶Steel U-Bolt clamp for the flange to prevent the u-shape section from slipping down while the table is raised, especially at 90 degree.

⁷Price per pack ex VAT ( Pack Size: 10)
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Table 6.2 Schedule of work on the inclinable flow loop 

 

 

16 17 18 19 20 23 24 25 26 27 30 31 1 2 3 6 7 8 9 10 13 14 15 16 17 20 21 22 23 24 27 28 29

Task Description                            RP Completed by
Duration 

(Day)
M T W T F M T W T F M T W T F M T W T F M T W T F M T W T F M T W

1 Project Management 33

1.1 Budget (cost) MW MW + YF 33

1.2 Time & scope MW MW + YF 33

2 Preinstallation 7

2.1 Removing radiator PD Es 1

2.2 Alteration to lighting PD Es 1

2.3 Repositioning control (switch) panel PD Es 1

2.4 Installation of control panel box (with door) PD T + YF 1

3 Inclinable Table and Frame Installation 19

3.1 Installation and manufacturing of inclinable table PD OG + YF 19

4 Pump Installation 2

4.1 Positioning, drilling and installation of the pump YF YF + T 1

4.2 Connecting 3 phase power supply & control system YF YF + E 1

5 Pipeline Installation 29

5.1 Finalising pipeline design YF YF 5

5.2 Ordering flow loop parts YF YF 6

5.3 Construction of pump suction & discharge section ( + instrumentations) YF YF + T 1

5.4 Construction of U-shape line ( + instrumentations) YF YF + T 2

5.5 Construction of vertical line & returning line ( + instrumentations) YF YF + T 2

5.6 Support brackets to pipeline YF YF + T 0.5

5.7 Fitting 6 pressure sensors & 1 thermocouple YF YF + T 0.5

5.8 UDVP mounting position indication ( vertical & inclined) & installation YF YF + T 1

6 Mixing Tank, Measurement Tank & Flow Switch 10

6.1 Repositioning & fixing mixing tank YF YF + BM +T 1

6.2 Cutting mezzanine section floor for flow and measurement tank discharge YF YF + BM +T 0.5

6.3 Drilling and alignment of girders to floor and load cell assembly positioning YF YF + BM +T 0.5

6.4 Repositioning & fixing measurement tank YF YF + BM +T 1

6.5 Improve the design of  switching system YF YF + BM +T 1

6.6 Installation of flow switch diversion box YF YF + BM +T 0.5

6.7 Replace the flexible pipe from the switch system to a straight solid pipe YF YF + BM +T 0.5

6.8 Mounting a ruler onto measuring tank for level measurement YF YF + BM +T 0.5

6.9 Alteration of sight glass (measuring Tank) to a bigger one to avoid blockage YF YF + BM +T 0.5

6.10 Extension of drainage line YF YF + BM +T 1

7 Gas/Water/Solid (Additional System) 28

7.1 Design of Air/Water mixing nozzel¹ and pipe section BM BM + JZ 10

7.2 Fabrication of the nozzle & pipe section + ordering the cloth BM JZ + T 11

7.3 Ordering a gas mass flow meter² BM BM 10

7.4 Design of the oil simulant/water/gas mixing & flushing system³ BM BM 13

7.5 Light solid/water/gas mixing system⁴ BM BM 5

7.6 Search available particles⁵ BM BM 3

8 Process Sensors & Wiring 23

8.1 2 ERT sensor assembly design ( or modifying the existing sensors) YF YF 1

8.2 Reconstruct assembly of 2 ERT sensor (incline/vertical) & wiring YF YF 1

8.3 Testing ERT sensor connections YF YF 0.5

8.4 Updating LabVIEW programme YF YF 4

8.5 Connection of 6 pressure sensors, thermocouple & EMF to Field Point YF YF +E 2

8.6 Finalising wiring (cabling) design (main power & weak signal) JJ JJ + YF 1

8.7 Installation of 4 main power sockets and cable covering system YF YF + E 1

8.8 Arranging weak signal cables along the table using cable clicks YF YF + JJ 0.5

9 Miscellaneous 33

9.1 Making blank replacement section: ERT(1), EMF(2), PIV(2), Coriolis(2) YF YF 2

9.2 Pressure sensor & thermocouple base design and fabrication YF YF + T 1

9.3 Installation of bigger waterline (or adding another line) YF YF + T 1

9.4 Construction of slots on deck for fixing ERT & UDVP hardware using brackets YF YF 1

9.5 Providing support structure for the inclinable table YF YF + T 1

9.6 Design and installation of angle indicator (or slot) YF YF 1

9.7 Installation of a cone shape pipe to shoot sand from the mezzanine YF YF + T 1

9.8 Diffuser  design & installation in the mixing tank (+ baffles) YF YF + T 1

9.9 Design & installation of a guarding system around the table YF YF + T 1

9.10 Design and fabrication of UDVP probe adjuster YF YF + T 10

9.11 Cleaning of G.56 YF YF 1

10 System calibration 3

10.1 6 pressure sensor calibration YF YF 1

10.2 Thermocouple calibration YF YF 0.5

10.3 Measuring tank calibration YF YF 0.5

10.4 Load cells calibration YF YF 1

10.5 Gas/water/solid instrumentation calibration BM BM 0.5

10.6 UDVP calibration YF YF 0.5

10.7 ERT calibration YF YF 0.5

10.8 DP & temperature YF YF 0.5

11 Final Process Testing 3

11.1 Water flush the pipeline YF YF 0.25

11.2 Water leak test YF YF 0.25

11.3 Water mixing test YF YF 0.25

11.4 Min. & max. frequency water pump YF YF 0.25

11.5 Water switching system check YF YF 0.25

11.6 Table inclination test YF YF 0.25

11.7 Water pressure, temperature and flow rate check YF YF 0.25

11.8 Load cells switches check and sensor verification YF YF 0.25

11.9 Drainage system check YF YF 0.25

11.10 Check LabVIEW program YF YF 0.25

11.11 Gas/Water test BM BM 0.25

12 Milestones and Deliverables 29

12.1 Weekly progress report to MW YF 7

13 Final Completion Report 1

13.1
Final completion report (including system & parts specification/ drawing/ 

recommendation etc.) by ALL RP by end of 29 Feb 2012
YF 1

RP : Responsible Player JJ: Jiabin Jia

¹ A top-fitted chamber with filtering cloth. MW : Mi Wang E  : Electrician

² The same type as that in G.21. YF : Yousef Faraj JZ : Jun Zhang

³ It may still use the current flush pipe and the bottom drain pipe. However, the operation may be opposite to heavy solid/water. PD : Peter Dawson BM : Basit Munir

⁴ The structure of current mixing tank, baffle/separator should be reviewed. Es : Estates OG: O.G. Fabrication (Geoff)

⁵ With density 0.9-0.96 and size range four size from 1, 2, 3, 4 mm. T  : Technician (Robert Harris or John Cran)                       

January February
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6.4 Types of slurry flow loop 

As slurry flow is a complex two phase flow, a properly designed flow loop 

system is necessary, so that it offers a greater flexibility and capability of 

generating data for wider range of conditions. Unfortunately, this wider range 

of conditions is required; if a good understanding of slurry flow and the effect 

of its behaviour is sought, especially in the case of flow measurement and 

visualisation. 

According to Brown and Heywood (1991), flow loops are commonly used to 

determine and study and measure variety of slurry variables and their 

influence on the flow. Some of which are listed below: 

 To determine the frictional pressure gradient for the flowing slurry. 

 To determine the higher concentration limit for practical handling of 

slurry. 

 To determine the slurries deposition velocity, at which the solid 

particles start to settle at the pipe invert. 

 To determine velocity and concentration profile of the solid particles 

(radial and axial). 

 To test and calibrate the flow meters and concentration devices. 

 To assess pump characteristics and performance. 

 To determine particle degradation. 

 To determine the rate of pump and pipe erosion/corrosion of the 

system. 

 To assess pipeline start/shutdown of a system, as in the case of 

inclined flow. 

Normally, there are two types of flow loop that can be used to obtain the 

required data. These are the once-through and re-circulating flow loop. In 

the once-through flow loop the slurry (solid and the carrier liquid) is 

continuously fed to the flow loop during the course of the experiment. This 

implies that a lot of slurry is required if a meaningful data is desired. 

Therefore, this type of flow loop is ignored in this study and the other type 

(re-circulating flow loop) is considered. In the re-circulating flow loop the 

slurry is continuously returned to the pump, either directly or indirectly. In the 

direct method, the slurry is returned directly through the pipeline to the pump 

inlet, which forms a totally close flow loop. Whereas, in the indirect method 

the contents of the pipeline flows into a mixing tank (or holding tank) and 

continuously feeding the pump. Thus, the latter type can be considered as 

an open flow loop. Since the open loop contributes into the increase in the 
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suction head, therefore, it was decided that the open loop will be used in this 

study. In other words, the suction head increases with increase of slurry 

level in the holding tank. Therefore, the holding tank must always be 

monitored that the slurry level is sufficient, particularly when the flow is 

diverted into the measuring tank.  Also, the slurry level must be high enough 

to avoid air entrainment in the mixture, which could enter into the pump and 

result in damaging the pump. Another reason of choosing an open loop is 

that samples can easily be collected, by diverting the flow via a switching 

system into the measurement tank.  

6.5 Overall structural design 

A long table with a steel frame were designed and build, on which the 

pipeline is laid. The table consists of two sections, the rigid section and the 

inclinable section, which are coupled using a pivot point. The inclinable table 

holding a U-shape pipeline, which consists of outgoing and returning limbs.  

Since one of the flow loop design requirements is to provide the flexibility of 

choosing any inclination angle between 0° to 90° from horizontal, then a 

lifting method is required. An electric winch is used to lift the inclinable table 

to a desired angle. The length of the U-shape pipeline (outgoing and 

returning) is 4 m long, which is enough to include all the required 

instrumentations within the developed flow region. Figures 6.5, 6.6 and 6.7 

showing the schematic drawings of the inclinable flow loop system, which 

was built in the Engineering Building. 

6.6 Flow loop design and component selection 

In an open flow loop the slurry is discharged from the pipeline into a conical 

holding tank, which continuously feeding the pump through a connection at 

the bottom of the holding tank. However, to achieve a versatile flow loop, 

there are critical elements that must be carefully considered and selected. 

These elements can include piping length, test section length, and slurry 

instruments for measuring slurry parameters, such as velocity, concentration 

etc. These components will be discussed in the following sections, including 

the reasons behind the selection of each of them. 

6.6.1 Structural design of the pipe-rack 

A structural steel pipe rack is designed to support the pipeline, power cables, 

some of instrumentation and instrument cables on ground floor in the 

Engineering building/G.56. One of the design requirements is to include a 
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pivoted inclinable section within the structural steel framework, on which the 

U-shape inclinable pipeline is laid.  

In designing the structural steelwork, the main emphasis was placed upon 

the stability, economics and practical aspects of the whole structure. The 

pipe rack (or pipe support) work consists of 3-stage process: design, 

fabrication and erection. The main considerations for the design aspect of 

the pipeline support are given to strength and stability, static and dynamic 

loads (pipeline, pipe costs and instrumentations) the intended function of the 

steel frame structure, cost and maintenance. The fabrication process 

involves cutting and preparation of each member to length, while the 

erection process includes rigging of all prepared members to their intended 

places in the pipeline support structure and making connections between all 

structural members.   

At the earlier stage of the design, steel pipe rack (approximately 7000 mm 

long) was proposed to support the stationary horizontal lines and the 

inclinable U-shape section. It was decided that the rigid pipe rack section to 

be of a similar construction to the tilting section. Both sections are connected 

through a pivoted pin, which allows the U-shape pipeline support to be tilted, 

as shown in Figure 6.1. However, in order to complete the detailed design of 

both sections of the pipe rack, several documentations and information have 

to be reviewed and corrected. The following information is paramount for 

development of the design and constructing an economical and successful 

pipe rack.  

1. Footprint plan and the pipeline layout (including the location of each 

equipment). 

2. Access and maintenance requirement for each part of the flow line. 

3. Drawing of the electrical cabling, showing the routing and location of 

electrical and instrumentation cables and/or support.  

4. Information related to the concrete structure and foundations in the 

area of the piping table. 

5. The lifting method used to lift the inclinable table. 

6. Intention of any future provisions for piping system or related loading. 

Once the above preliminary information is obtained, it is well documented for 

the next steps of the design. After collecting the required data for the 

development of the design, the following stages are conducted in 

chronological order: 
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1. Design load consideration.  

2. Allowable deflection of the table. 

3. Final framing of the pipe rack. 

Normally, for pipe rack design, the loads considered are piping  gravity load, 

electrical conduits and cables, self weight of the pipe-rack, live load, snow 

load, wind load, earthquake load, friction load (El-Reedy, 2011). Since the 

multiphase flow loop is built indoor, then this fact automatically eliminates 

snow load and wind load.  Also, as the friction forces generated by hotlines 

sliding across the pipe support, thus the friction loading is considered to be 

negligible. The only loads that have to be considered are: piping gravity load, 

with its contents, electrical conduits and instrumentations on the deck and 

self weigh of the pipe rack.  

The weight of all structural loads (except the support legging, on which the 

tables stand on) was calculated. However, since the loading on the tilting 

table is the most important  to determine the capacity of winch used to lift it, 

the loading calculation was performed only for this part. The weight of all 

structural members of the tilting table was determined as approximately 200 

kg. On the other hand, the piping gravity loads were determine by calculating 

the weight of empty pipeline with equipment and instruments, along with the 

weight of  pipeline contents, for which slurry was considered. The weight of 

empty pipeline (the U-shape section) was determined by considering every 

individual component of the line, as shown in Table 6.3. 

The result of weight calculation of inclinable table section with full pipeline is 

summarised as follows: 

 Weight of the pipeline and instrumentation = 214 kg (based on 8.5 m 

length). 

 Weight of slurry flowing through the inclinable section = 25 kg (this is 

based on 0.017 m3 slurry flowing  through 50 mm ID, 1350 kg/m3 slurry 

density, 2650 kg/m3  sand density, 1000 kg/m3  water density and 40% 

concentration by weight). 

 The total weight of inclinable U-shape pipeline with its contents = 214 

+25 = 239 kg.  

 By considering 25% safety margin (59.75) for future provisional addition 

to the pipeline, pipeline blockage etc,  the total weight of the full U-shape 

section = 298.75 kg.  
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 Weight of all structural members of the tilting table = 200 kg (including 

bolts, nuts and washers). 

 The total weight of the inclinable table with the pipeline and its contents = 

498.75 kg.  

Table 6.3 The weight of the U-shape pipeline on the inclinable table 

Component 
Weight 

(kg/each 
or kg/m) 

No./m length 
available on 

the inclinable 
section 

Total weight 
of each 

component 
(kg) 

Flange 0.39 30 11.7 

Straight Socket (Plane) 0.14 2 0.28 

Pipe 1.045 7.5 7.8375 

Flexible Pipe 0.6 3 1.8 

Long rad. Bend 0.54 2 1.08 

Pressure Sensor 0.23 4 0.92 

Pipe Clamp (with threaded rod) 0.13 15 1.95 

Bolt+Nut+2(washer) 0.16 64 10.24 

EPDM Flat Gasket 0.07 16 1.12 

Tee 90° 0.31 4 1.24 

ERT Sensor 3 1 3 

Coriolis Flow Meter 150 1 150 

UDVP system  13 1 13 

ERT system (P2000 or z8000) 10 1 10 

Total weight of fitted pipeline (Inclinable Section) 214.1675 

 

From the above load design calculation the lifting capacity of the winch can 

be determined. This implies that a winch with 500 kg lifting capacity can 

safely be selected for the intended application, even with some future 

addition to the pipeline (up to 25% of the actual weight of the whole 

inclinable section).   

The maximum allowable deflection of the inclinable table also had to be 

determined. In terms of maximum allowable deflection, the focus  was 

placed upon the inclinable section rather than the rigid section, due to load 

concentration on this section and longer span. The determination of 

maximum allowable frame deflection is important to avoid the occurrence of 

problems with the frame and the attached pipeline. These problems could be 

one or more of the following:  

1. Inadequate drainage of the pipeline.  

2. Flow disturbance and generating wrong measurement data.  

3. Increase the rate of wear in pipes and fittings.  
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4. Broken seals at the joint locations. 

5. Strain on the pipeline or fixings. 

6. Damage or excessive strain at the connection points. 

7. Surface distortion of the table. 

Normally, for most buildings and structures various guidelines have been 

introduced based on the intended application to determine the maximum 

allowable deflection values of a structural member. Therefore, in order to 

find out the maximum allowable deflection value for the inclinable table, the 

recommended allowable deflection limit for beams is considered, which is 

L/360 of the span (El-Reedy, 2011). This means that based on the length of 

the longitudinal beam member of the table, the beam’s maximum allowable 

deflection for the inclinable table can be determined using the following 

formulae. 

 

   
 

   
 (6.1) 

 

da= Maximum allowable deflection. 

L= The length of the span in mm. 

360= Constant.  

 

Thus, based on the above guideline a span of 4000 mm, which is the beam 

length of the table, has a maximum allowable deflection of 11,11 mm. In 

other words, the table beam subjected to the aforementioned load, bends 

from its original horizontal position by 11.11 mm. However, since the two 

beams are used and are connected by 5 transverse parallel flange channels, 

then the deflection value for the whole table is expected to be far less than 

11.11 mm. Therefore, this deflection value can be accepted. 

The framing of the pipe rack decks (inclinable and rigid) based on the 

pipeline layout, required safety and stability calculation and the intended 

application of each deck, was one of the most important aspect of the flow 

loop design and construction. As many factors had to be taken into account, 

most of these factors were case and project specific and are listed below: 

 Some items had to be removed within the working area of the flow 

loop, such as the radiator at ceiling level. 

 The heating pipeline running close to the ceiling had to be considered.  
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 The design and construction of the table could not be separated from 

the mezzanine, thus it was incorporated into the mezzanine redesign, 

which would result in the omission of some structural member of the 

mezzanine (column). Also at mezzanine level, there was a potential 

problem with regard to the fact that a support beam fouls the line of 

the inclinable table at 90%.  

  A buffer stop or pushback had to be included to ensure the 90° angle 

is maintained and the table is lowered through some considerable 

force. 

 The existing door at the end of the working area had to be kept 

accessible, and this obviously would affect the dimensions and 

installation of the table.  

 Consideration had to be given to the flexibility of the pipeline at the 

pivot point. 

 The mezzanine floor construction had to be amended, so as to allow 

the table to be raised to 90°. 

 Some steel work had to be carried out for adjustment of the winch 

system, based on the level of the table at 90°. 

 Locating the lifting point on the tilting table using a steel wire. 

 Finalising the lifting method used to tilt the table and the associated 

work to adjust the lifting system. For example, based on using a winch 

system, some steel work had to be carried out to adjust it based on the 

level of the table.  

After careful considerations and detailed design of the frame system, the 

following work had to be carried out to achieve an inclinable pipe rack, which 

can be tilted from 0° to 90°: 

1. Manufacture and installation of L-shape support legs. 

2. Manufacture and installation of a Universal Beam (152 x 89 x 16 mm) 

to support the mezzanine (2800 mm long). 

3. Manufacture and installation of a tilting table (4000 mm long and 650 

mm wide).  

4. Manufacture and installation of a fixed table (3000 mm long and 650 

mm wide). 

5. Fixing 20 mm plywood to top surface of both tables.  

6. Manufacture and installation of Universal Column (152 x 152 x 23 mm) 

(6000 mm high) bolted to floor and restrained to wall with another 

Universal Column (152 x 152 x 23 mm) (800 mm long). 

7. Modification to the existing mezzanine to suit. 
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8. Installation of 0.5 ton remotely controlled electrical winch. 

All the steelwork are painted red oxide primer and each structural member 

had been manufactured and prepared before full connections and 

installations on site. Based on the objectives and the final construction of the 

inclinable pipe rack system, the following plans had to be carried out:  

1. Slab level plan.  

2. Steel frame and deck level plan. 

3. Plywood deck plan. 

4. Mezzanine level plan. 

5. Top level plan. 

In the slab level plan, 3 L-shape support legs were fabricated and installed, 

two of which used to support the rigid table and the 3rd one to support the 

anchored end of the inclinable table. They were all designed in a way to 

raise the surface of each table by 1 m high from floor level. They are parallel 

flange channels (150 x 75 x 18 mm PFC), each end of which connected to a 

base plate (200 x 100 X 10 mm). One end is adjusted to the concrete floor 

using two M16 resin anchors, and the other end base plate to the wall using 

two similar anchors. 

The 2800 mm long Universal Beam is used to support and increase the 

stability of the mezzanine after modification, and also to reduce the vibration 

during the experiment, as vibration affects the measurement carried out 

using the measuring tank. The bottom end of the Universal Beam is 

connected to a base plate and anchored to the concrete floor using two M16 

resin anchors, while the other end is connected to the mezzanine. The 6000 

mm Universal Column (152 x 152 x 23 mm UC) is also connected to a base 

plate (350 x 200 x 12 mm) and anchored to the concrete floor through four 

M16 resin anchors. The reason for installing this universal column is to fix 

one end of the horizontal UBC, which is restrained to wall to facilitate the 

winch installation.  

The plan of steel frame at deck level comprises of 4000 mm long tilting table 

and 3000 mm long rigid table. Both tables fabricated from (150 x 75 mm) 

PFC and are connected through a pivot point. All members have steel-to-

steel connections with M20 bolts and 6 mm fillet weld all round. The tilting 

table frame has two longitudinal beam (150 x 75 mm PFC) and three 

transverse beams (150 x 75 mm PFC) with 1000 mm spacing between 

them. Each cross members connected to 10 mm stiffener plate (6 mm) at 

either end and the plates are drilled to take bolts. In order to increase the 
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stability and strength of the frame, in addition to the bolts, each cross 

members (PFCs) are welded to the longitudinal beams. Similar connection 

method and structure is employed for the rigid table. The U-shape pipeline 

was designed in a way to have 400 mm spacing between both limbs. Based 

on this the width of the table has to have a width, onto which the pipeline 

could be laid without any pipeline extending out of the table sides. Despite 

the difficulties imposed by lack of spacing, the table was designed to have 

650 mm width, which allows 11 mm leeway on either side of the flanges. In 

addition, the maximum spacing between the tilting table and the adjacent 

brick wall that could be left is 25 mm. Although, the concerns were raised as 

to whether the table would catch the adjacent brick wall during elevation by 

swaying side to side, 100% stability of the table was confirmed during 

mechanical testing. The rigid table is fixed at one end and connected to the 

tilting table on the other end through a pivot system. On the other hand, the 

tilting table pivoted at one end and anchored at the other, so the winch wire 

rope is connected through a D-shackle, which is shown in Figure 6.1. As 

previously mentioned, one support frame is fixed to the wall and floor to 

support the anchored end of the tilting table in horizontal position. In order to 

connect both tables via 20 mm diameter bright steel pin, 10 mm plates with 6 

mm fillet welding are connected to the end of each table, as can be seen in 

Figure 6.1.  

 

 

 

Figure 6.1 Actual photo of both ends of the inclinable table, pivoted end (left) 
and D-shackle at anchored point (right) 

The plan of plywood deck, is to fix a flat surface on which the pipeline and 

required instrumentations could be laid. 20 mm marine plywood surface is 

fixed to the steel frame using screws at a maximum of 500 mm interval. The 

steel rubber lined clamps are mounted on the plywood through M10 

threaded rod bars. Hole matrices are drilled between both limbs of the U-

shape pipeline, so as to fix the instrumentation to the plywood on the deck 

using brackets and threaded rod bars, for which M10 nuts and washers are 
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used on either side (top & bottom) of the deck (plywood). Figure 6.2 

illustrating the actual photo of the instrumentation fixture through hole 

matrices.  

The mezzanine level plan involved some modifications to the existing 

mezzanine and using good propping method using 2800 mm Universal 

Beam, as previously discussed. Since the pivot point of the pipe rack is 

below the mezzanine level,   in order to allow the tilting table to be raised to 

90°, the mezzanine floor above the pivot point had to be cut by 1835 x 880 

mm and removed. 

 

 

Figure 6.2 Actual photo of the instrumentation fixture and hole matrices on 
the inclinable table 

Handrails are installed all round the cutting edges to provide a safe working 

area. Figures 6.3, 6.4, 6.5, 6.6 and 6.7 showing the inclinable pipe rack and 

pipeline at different level plan.  

The top level plan was the last finishing touch to the inclinable pipe rack 

system. This plan involved the connection of 6000 mm Universal Column to 

the 800 mm Universal Column, on which the winch is mounted. In order to 

allow the table to be raised to exactly 90°, it is very important not to fix the 

winch exactly above it, but rather some offset to allow the table to be pulled 

diagonally, but not vertically. Also, some clearance of 500 mm is paramount 

between the winch and the raised table. Lifting shackles are installed on the 

winch side and one end of the tilting table to adjust the 6 mm bright steel 

wire rope. As there is a doorway at the end of the tilting table, it is very 

important that the access to this door is kept clear. Therefore, the lifting eye, 

which was initially mounted outward of the tilting table, had to be fixed 

inward to reduce the risk of injury to personnel.  
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Figure 6.3 Schematic diagram of inclinable pipe rack (Top View-Ground Floor) 
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Figure 6.4 Schematic diagram of inclinable table at horizontal and vertical level (East View) 
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Figure 6.5 Schematic diagram of inclinable section and rigid section (Top View-Ground Floor)   



- 195 - 
 

  

Centrifugal 

Pump

Mixing Tank

PP

P

            

z8000

        

UDVP

P

Wall

Y. Faraj

Inclinable Flow Loop-Mezzanine Floor (Top-

view)

DRAWN 

BY:
Y. Faraj

DATE:

Company TIME IN REQUEST: APPROVED BY: Prof. M. Wang DWG NO.

University 

of Leeds/

OLIL

15
th
 March 2012 SIGNATURE OF RT: 17

11
th
 March 2012 SCALE 1:20 Material: PVCu SHEET 3 of 3

       Copyright

This drawing and the copyright, design rights and all other intellectual 

property rights in it belong to the University of Leeds/OLIL group. No 

licence or assignment of any such rights is granted hereunder. This 

drawing is not to be copied or divulged to a third party without written 

permission. 

©

3
-5

 m
m

Walk way-Ground floor

Safety Barrier

Mezzanine

Window Window Window
Door

 

Figure 6.6 Schematic diagram of inclinable flow loop (Top View-Mezzanine Level) 
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Figure 6.7 Schematic diagram of inclinable flow loop (East View) 
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6.6.2 Selection of lifting method 

The selection of the lifting method to raise and to lower the inclinable table is 

one of the most important part of the design process. The selection process 

was based on four criteria: safety, efficiency, flexibility and economy. A 

journey through lifting equipment suppliers revealed that there is wide range 

of lifting equipments and methods available for almost any application, such 

as (www.electricwinchshop.co.uk). The lifting methods that could be 

considered in the selection process are hydraulic ram, hoists and winches. 

Each of these methods has to be carefully assessed against the criteria 

mentioned above.  

The option of using hydraulic ram is totally eliminated in the selection list due 

to the following implications: 

1. The ram position have to be designed carefully, as any position may 

not be mechanically acceptable due to space limitations. 

2. Hydraulic ram housing was suggested, so that the ram direction would 

be more towards vertical rather than horizontal. The method of 

housing hydraulic ram was found to be an attractive one, as it would 

not interfere with the pipeline on the deck. However, the housing 

requires more steel work which increase the total cost and the total 

load on the deck.  

3. Since one of the design requirements is to raise the table up to 90°, 

this suggests the requirement of a longer hydraulic ram, which 

complicates positioning of the ram. In addition, using telescopic 

cylinder can be another option, however, this type of cylinders are 

found to be very expensive. The required telescopic cylinder that suits 

the application in this project is very costly. 

4. Since using hydraulic ram involves utilisation of 50 litre steel reservoir 

filled with oil, further problems are to be faced with positioning of the 

oil tank indoors due to lack of space in G.56-Engineering Building in 

the University of Leeds. Also having oil around, would certainly 

increase hazard in the working area and surrounding walkways 

through spillage or fire hazard. Although, attempts were made to place 

the oil tank outdoor, clearly this would increase the costs by adding 

flexible pipes and to protect the whole facility against extreme weather 

conditions.  

Due to above implications using hydraulic ram as a lifting method was 

completely removed from the selection list.  



- 198 - 
 

  

The possibility of using a crane-type hoist system was also considered. After 

careful examination regarding the preliminary design of the hoist system, it 

was proposed that a crane-type hoist can be used in lifting beam as part of 

the whole system. This lifting beam is used as a mono-rail system along with 

the inclination angle (0° to 90°) along which the hoist would roll. This system 

would include a beam and a lifting block clamps over and it could move 

forward and backward using wheels. This, however, would overcomplicate 

the whole pipeline system by adding further steel work overhead. Also, 

fabrication and installation of the steel would increase the total cost. 

Therefore, this method was concluded as a costly and overcomplicated 

method, which was also eliminated from the selection list.  

The last considered lifting method was a winch system, which can come in  

wide variety of styles and can be supplied from a choice of industrial and 

commercial suppliers. A budget choices also can be found within the 

supplied range that can deliver the job effectively.  

As there are many different choices it can be very confusing to choose the 

specific type, which makes a good balance between the costs and 

effectiveness of the winch for the intended application. Therefore, the 

assistance has to be sought from professionals to make the right choice.  

In order to make the right choice a few important considerations have to be  

taken into account, such as power and tension capabilities, size, reliability 

and costs.  After balancing all of these factors it was finally decided to select 

an electrical wire steel rope winch (electric winch, BETA II, type Compact 1-

BGV D8). Based on the total weight of the inclinable section (pipeline with 

contents and the steel frame) a 500 kg capacity was selected. In comparison 

to hydraulic ram and crane type hoists system, a winch system can offer 

several advantages: such as lower cost (unit and installation), simplicity of 

installation, it also uses no fluid.  
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6.6.2.1 The winch system  

The winch system used to lift the inclinable table  is an electric wire rope 

winch BETA II ( type compact1-BGV D8), which is manufactured by PFAFF-

Silberblau in Germany and supplied by Yorkshire Lifting Tackle Ltd, Figure 

6.8 showing the actual photo of the electrical winch fixed overhead to the 

steel.  

The BETA II-C1-BGV D8 is a compact winch that offers a good size, which 

is considered as an advantage due to lack of space in G.56 laboratory. The 

dimensions and specific technical data of the winch is shown in Figure 6.9 

and Table 6.4 respectively. 

 

 

Figure 6.8 Actual photo of the electric wire rope winch 

 

The BETA II winch is a drum winch with spur gear (size 1.5), which holds the 

weight of the table in every position by an electromagnetic brake. The 

system is provide with a switch or braking limit, based on the desired lifting 

or lowering position. This function is clearly one of the design requirements 

of the whole inclinable flow loop system that allows the table to be tilted only 

within the range of inclination angle required in this study, which is between 

0° and 90° inclination angle. Therefore, the braking system is adjusted at two 

levels, 0° inclination angle from horizontal and 90° inclination angle from 

horizontal. In other words, once the table is raised, it stops automatically at 

90° and does not go beyond of that position. Similarly, while lowering the 

table in stops at 0° from horizontal.   
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Size A (mm) B (mm) ØC (mm) D (mm) E (mm) G (mm) 

1.5 215 300 13.5 6 325 340 

Figure 6.9 Showing the electric wire rope winch main dimensions 

 

Table 6.4 Technical winch BETA II specification 

Drive group (DIN 15020)  1(Am) 

Rope capacity (m) 8.4 

Lifting capacity (kg) 500 

Rope diameter (mm) 6 

Minimum breaking force 

(kN) 

23.14 

Rope speed (m/min) 3.7 

Load protection Brake motor 

Drive Three-phase motor with built-on brake 

Duty cycle (%) 53-40 

Circuits/hour 120 

Weight (without rope) 63 

Operation temperature -20 to 40 °C 

 

The winch can be controlled by handheld remote control, which allows the 

operator to lift or lower the table via push buttons, along with the emergency 
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stop button in case of emergency. The schematic diagram of the handheld 

remote control is illustrated in Figure 6.10.  

 

 

Figure 6.10 Winch remote control 

In addition a main switch with external operating elements are also located 

at the mezzanine level, where they can quickly and easily be accessed. It is 

apparent that the remote control can provide more flexibility, and can be 

used at the ground floor level as well as mezzanine level. Nevertheless, it is 

recommended that while raising or lowering the table it is should be used in 

a location where the entire inclinable table and surroundings are overlooked 

from the operators position.  

The winch is mounted on a steel structure (universal column-UC), and the 

whole structure is designed considering the sustainability of maximum force 

imposed by the winch, including consideration to the impact forces. In order 

to carry a safe mounting of the winch system, a proper mechanical fixing to 

be followed. After making sure that the mounting surface was flat, the winch 

was positioned against overhead steel structure and fixed with four M12 

bolts (8.8 material grade). The galvanised steel wire rope (6mm diameter)  is 

fixed to the left drum flange,  within which the rope attachment is effectuated  

with two screws. The other end of the rope is connected to the lifting eye of 

the inclinable table via a D-shackle, which is pinned (threaded) so as to 

allow easy removal.  

6.6.2.2 The telescopic table push-back system 

Once the table is raised to a vertical position (90°), it is at the equilibrium 

position, based on Newton’s First Law (Fowles and Cassiday, 1999). The 

only forces acting on the table are gravity force due to the load of the table 

acting on the pivot system and  the pivot system exerts an upward force on 
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the table. Based on Newton’s First Law the table’s motion does not change 

unless a tangent or a horizontal force is exerted on the table. This implies 

that unless a force is exerted on the table, the table remains at rest even if 

the winch remote control lowering button is pressed.  

Therefore, a telescopic push-back system was designed to create a 

horizontal force on the table, so as to push the table. The system comprises 

of a 300 mm long Square Hollow Section (SHS),  280 mm long Circular 

Hollow Section (CHS), 200 mm long carbon steel compression spring ( 60 

mm diameter), 25 mm thick rubber pad (60 mm diameter) and an M10 hex-

bolt. The actual photo of the push-back system is shown in Figure 6.11. 

The circular hollow section is fitted into the square hollow section. A slot is 

made in the SHS by cutting a section (100 mm x 50 mm) on the top side 

along which the M10 bolt is travelling during compression and extension of 

the spring. The CHS is held in place (within the SHS) via an M10 bolt, which 

is tightened to the CHS through the slot. The compression spring is inserted 

into the SHS in such a way to push the CHS and SHS apart. In order to keep 

the elasticity of the spring,  it is kept at its  equilibrium position, unless it is 

compressed by the table (i.e.  no force  acting on the spring). The rubber 

pad is fitted to the outer end of the CHS, in order to prevent the table surface 

from scratch and damage. The whole system is secured by welding it to 

another steel SHS, which is bolted to the mezzanine structure.  

 

 

Figure 6.11 Actual photo of the push-back system 

The working principle of the system is that when the table is raised up to 90°, 

it starts to push CHS at some near vertical inclination angle (around 87°), 

while the spring is continuously compressed until the table remains at rest 

(90°). On the other hand, according to Hooke’s Law, once the table is 
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lowered, by lowering the winch rope, the restoring force acts to restore the 

spring to its equilibrium state and the table is pushed back until one of the 

force components is created (Blake, 1985). Once the gravity force 

component (downward) is created, the table does not require the spring 

expansion force to push it back.  

6.6.3 Piping design 

Piping consists of pipe, flanges, fittings, bolting, gaskets, valves and other 

piping components, which are included into the pipeline for a specific 

requirement. Moreover, it also includes pipe support and other necessary 

elements to provide a safe, secure and effective pipeline. Therefore, piping 

refers to the line, where pipe sections are joined with fittings, valves and 

other items or mechanical equipment and are supported by supports. 

 In order to determine the most economical pipeline that responds to all the 

design requirements of the multiphase flow loop, it is paramount to consider 

several parameters of the pipeline, such as piping construction material, 

sizing, jointing method, pipeline layout, length and others. It is apparent that 

the economic viability of the pipeline can be defined through careful design 

or selection of the above parameters. Therefore, so as to understand the 

impact of each parameter and achieve a safe and economic pipeline design, 

this section discusses the design and selection of each parameter along with 

driving force for selecting some individual components or techniques used in 

the design of the flow loop.  

 Since ignoring any parameters mentioned above can have an adverse 

effect of the final design of the system, then careful selection and timely 

preparation is crucial for achieving an economical and successful design and 

installation of the flow loop piping. It is worth mentioning that throughout the 

whole design and installation process it is necessary to make careful and 

realistic compromises between the design features and costs, without 

ignoring minimum safety standards.  

6.6.3.1 Piping construction material and diameter section 

The selection of materials of construction for multiphase piping system is 

very important in designing a multiphase flow system. Since it is considered 

as an optimisation process, then the material selected must be chosen for 

the  sum of its properties such as  strength, ductile, corrosion resistance etc. 

The selection of piping material is carried out in two stage process, in the 

first stage consideration should only be given to those piping materials that: 
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 Are allowed by code or standards. 

 Are mechanically compatible with the fluid. 

 Have rated pressure and temperature that meet the entire range of 

flow operating conditions; and 

 Are compatible with environmental conditions such as external 

corrosion, ultraviolet degradation etc. 

The second stage is the evaluation of considered materials for advantages 

and disadvantages such as cost, ease of fabrication and installation, support 

system complexity etc. 

The piping material for the multiphase flow, including slurry, can either be 

metallic or thermoplastic piping system. The metallic piping that are 

commonly used for multiphase flow systems can stainless steel, carbon 

steel, ductile iron, alloys with iron, nickel, aluminium, copper, lead etc. On 

the other hand, thermoplastic piping systems, which are often referred to as 

plastic piping systems can be one of those shown in Table 6.5. 

 

Table 6.5 Thermoplastic materials for piping system (US Army Corps 
Engineers) 

Chemical Name Abbreviation 

Acrylonitrile-Butadien-Styrene ABS 

Chlorinated Poly(Vinyle Chloride) CPVC 

Ethylene-Chlorotrifluoroethylene ECTFE  

Ethylene-Tetrafluoroethylene ETFE 

Perfluoro(Ethylene-Proplylene) Copolymer TEP 

Polyethylene PE 

Perfluoro(Alkoxyalkane) Copolymer PFA 

Polypropylene PP 

Polytetrafluoroethylene PTFE 

Poly(Vinyl Chloride) PVC 

Poly(Vinylidene Chlride) PVDC 

Poly(Vinylidene Fluoride) PVDF 
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Unlike metallic piping, plastic piping materials do not display corrosion rates 

and are cheaper, easier for fabrication and installation. Since the cost is the 

driving force  and the technical criteria can easily be met with plastic piping 

systems, therefore it was decided that thermoplastic material would be used. 

Unplasticised Poly Vinyl (uPVC) Chloride was found to be the most attractive 

piping material amongst all the others. The selection of uPVC was 

influenced by its advantages and the required chemical criteria that is met 

for the project. The most common advantages of uPVC are: 

 Environmentally sound. 

 Providing strength and durability, which ensure long service life. 

 Corrosion resistant. 

 Easy for fabrication and installation. 

 Light weight. 

 Cost effective. 

 Always recommended by manufacturers and widely accepted by 

codes. 

 Available in different sizes. 

According to manufacturers and contractors, the uPVC is a joy to work with 

and it is used in may piping system processes, such as sewers, water 

eservice line, Drain-Waste-Vent (DWV), irrigation, conduit and various 

industrial installation. Therefore, the uPVC pipeline was found to be the most 

suitable pipe for the multiphase flow loop. 

6.6.3.2 Pipe sizing 

The design criteria for sizing the uPVC piping system was to select the 

minimum acceptable diameter of the piping necessary to transport the 

mixture efficiently and the minimum pipe wall thickness to safely handle the 

internal and external exerted pressure. In order to determine the minimum 

acceptable diameter, the fluid flow design has to be carried out. The fluid 

flow design is carried out by determining the flow rate and pressure drops. 

However it is worth mentioning that before the determination of minimum 

internal pipe diameter, a review of flow conditions must be made to 

determine the operational conditions, such as transport velocity, or mean 

velocity, viscosity, temperature, solids throughput concentration, solids 

density and particle size analysis of the dispersed phase. Based on the 

above information related to the above parameters, the minimum inside pipe 

diameter can be determined. Due to tight cost controls, strict quality 

standards and working space limitations 50 mm (2ʺ) pipe diameter was 

selected. 



- 206 - 
 

  

On the other hand, the minimum wall thickness was determined depending 

on the pressure integrity requirements. The pressure integrity can be 

determined from calculation of the allowable stress and the commercial wall 

thickness tolerance for the selected pipe diameter (50 mm) pipe from 

Pipestock.com. After calculating the minimum wall thickness based on 

pressure integrity and referring to commercially available 50 mm uPVC pipe, 

a uPVC pipe with a nominal wall thickness of 4.2 mm was selected. 

Therefore, the sizing of the piping was determined and uPVC pipe (Class E 

15 bar BS EN 1452) was decided to be used from pipestock.com with the 

following dimensions: 

 

Nominal size (inch) 2 inch 

Average outside diameter 60.3 mm 

Average bore inside diameter 51.9 mm 

Average wall thickness 4.2 mm 

 

6.6.3.3 Section mechanical joints  

Since a flexible and a versatile flow loop is required, then a special attention 

must be paid to the selection of mechanical joints of the piping system 

sections. Also, as the disassembly for maintenance will undoubtedly be 

required, for example in the case of blockage or replacing a pipeline section 

by another section within the flow loop, then flanged joints can make the 

right choice and the most suitable for fulfilment of the objectives. The flanges 

were supplied by Pipestock.com and its material of construction is the same 

as that of piping (i.e. uPVC material). They are uPVC full face flanges, drilled 

BS EN1029-1 PN16 2ʺ. The threaded flanges were not selected, as they 

were found to be not suitable for slurry application, due to accumulation of 

solid particles between the threads that make the connection and 

disconnection difficult. Therefore, plane flanges were selected, for which 

solvent cement was used as a jointing method. It was also paramount to 

select the appropriate gasket and bolting type to suit the application of the 

loop. EPDM gaskets (BS 4505 NP10/16 2ʺ) for full face flange were 

selected. While for bolting the flanges, Bright Zinc Plated (BZP) bolts (M16 x 

75 mm), nuts and washers were used. The bolts are of Hexagon head part 

threaded bolt to DIN931 and are grade 8.8 high tensile steel. 
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6.6.3.4 Piping supports 

Piping supports are normally used to support the weight of the pipe, 

equipments and the material flowing through the pipeline. The overall design 

and selection of pipe support is dependent on the loading and operating 

conditions. Since the multiphase flow loop uses plastic pipes, then the 

spacing of support is very crucial. This is because, unlike metallic pipes, 

thermoplastic (uPVC) pipes tend to deflect more under load. Based on this 

fact, the spacing support has to be closer than for metallic pipe. Also, the 

nature of uPVC pipes is that they can be repeatedly softened by increasing 

temperature and hardened by decreasing temperature, i.e. they can be more 

deflected if they are close to any source of heat. Therefore, special care 

must be taken to avoid laying the pipeline close to any source of heat, or 

reducing the support span if this is unavoidable. As in this study, in which the 

returning limb in the mezzanine had to be located close to the radiator, 

obviously the line is exposed to a higher temperature rather than the design 

value. Therefore an extra support was employed. As the multiphase flow 

loop, especially the U-shape inclinable pipeline, consists of a cluster of 

fittings and concentrated loads of instrumentations, an adequate piping 

support had to be used. Another requirement for the design of piping support 

had to be considered, especially for the inclinable pipeline, which was used 

not only for supporting the load, but also to anchor the whole pipeline and 

preventing it from slipping down while the table is raised. On the other hand, 

some heavy instrumentation mounted on the line, such as Coriolis mass flow 

meter, which weigh 150 kg, were supported exclusive of pipe sections. 

After considering all the design requirement and specific consideration for 

the multiphase flow loop, steel (zinc plated) rubber lined pipe clamps were 

selected for suspension and support of the pipeline and associated 

equipments. 51 mm bore size sound insulated standard pipe clamps were 

selected, which could be coupled with either M8 or M10 threaded rod bar for 

suspending the pipeline above the surface of the table. Figure 6.12 showing 

the rubber lined pipe clamp used to support the pipeline. The advantage of 

the rubber line, or rubber gasket, is to prevent pipe rattling and vibration, as 

well as tight grabbing the inclinable U-shape section. The selected clamps 

are also easy to install and adjust to the desired height of the line. 
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Figure 6.12 Rubber-lined pipe clamp 

 

6.6.3.5 Pipe jointing method 

The method used to join the piping system components determine the 

integral part of the piping system. Therefore, as part of proper engineering 

design of a piping system, the type and effectiveness of the jointing method 

and the durability of the resulting joints have to be taken into account. There 

are many jointing techniques that can be used for jointing uPVC such as 

solvent cementing, threading, mechanical compression, grooved joints, 

flanged connectors and elastomeric seal. Each of the above techniques 

have advantages and limitations. Amongst all, the cementing method was 

found to be the most attractive and was employed for jointing the piping 

system. As this method is specially used for wet applications and can offer 

fast and effective jointing result. It is very important to carry out the 

cementing procedure in a well ventilated, free of naked flames and dry area, 

as the cement and cleaner produce harmful vapours. The jointing procedure 

is outlined below: 

1. Each pipe section was cut square to the required length using special 

cutting machine. 

2. The burrs at the cut end of the pipe were removed and 3-4 mm of the 

leading edge was chamfered to an angle of approximately 30°-40°. An 

electrical Dremel (model 225) was used for chamfering the end cut, as 

shown in Figure 6.13c. There were two reasons for chamfering the 

leading edge of the pipe, firstly for preventing the solvent cement 

being wiped from both components, fittings and pipe, when pushed 

together, secondly to eliminate any gap between the pipes of two 

consecutive flanged sections. Once the flanges are connected, a gap 

is left between the pipe ends of each section, as the pipe is stopped by 

the pipe stopper at the end of each flange socket. Obviously, this gap 

at each flange connections disturbs the flow and contributes into an 

increase in pressure drop and accumulation of solid particles. 

Therefore, chamfering the leading edge of the pipe allows the pipe to 



- 209 - 
 

  

go further through the flange socket until the end, Figure 6.13a and 

6.13b showing the coupling of a pipe section with the flange, before 

and after chamfering. 

 

 

  

   (a)     (b)    

  

(c) 

Figure 6.13 Chamfering the pipe end cut, (a) before chamfering; (b) after 
chamfering; (c) chamfering the leading edge using Dremel 

 

3. The depth of the pipe fitting socket was measured by dry-fitting the 

pipe into the pipe fitting socket and drawing a line around the pipe at 

the edge of the socket. 

4. The shiny surface of the pipe, up to the indicator mark, must be taken 

off using a file or sandpaper. However, the roughing process of both 

surfaces must not be to the extent that would result in increasing the 

clearance between them. 

5. MEK Cleaner (from pipestock.com) was used for fully cleaning both 

jointing surfaces with a lint free cloth. It is very important to allow the 

cleaner to evaporate before applying the solvent cement. 
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6. An appropriate sized brush (1ʺ flat brush for 50 mm nominal pipe bore 

size) was used to apply the uPVC solvent cement directly from the tin. 

First to the fitting socket and then to the pipe using longitudinal 

strokes, then both, the pipe and fitting, must be pushed together while 

the cement is wet, ensuring that the roughed area is completely 

covered with an even layers of cement. It is very important to carry out 

this step neatly and quickly, as the cement dries up very quickly.  

7. After pushing the fitting and pipe together, both pieces must be held 

for approximately 30-40 seconds (longer time for pipes larger than 2ʺ 

bore size). It is crucial to wipe the bead and excess cement from the 

outer join of the pipe, as this can weaken the wall. It is important not to 

disturb the joint for 10-15 minutes. The cement within the join is dried 

after 8 hours under normal conditions (temperatures above 10 °C). 

However, the manufacturers recommendation is to leave the join for 

the full period of 24 hours, after which the pipe system can be fully 

pressure tested.   

 

6.6.3.6 Piping layout 

Since piping is a major expenditure and important in the design and 

construction of flow loops, especially when one considers material costs, 

fabrication and field costs. Therefore, proper planning and execution of the 

design and routing of the pipeline have a major impact on controlling the 

total cost. Piping design and its associated equipment arrangement are 

interrelated and must both be taken into account in the pipeline design. Of 

course both of them depend on a sound mechanical engineering as well as 

chemical engineering background. The pipeline designer must well 

understand the pipeline layout, equipment and instrumentation arrangement 

and the functionality of the system. Moreover, the designer requires a good 

knowledge and understanding of each element within the pipeline, such as 

piping materials, valves, pumps, tanks, mixers and other equipments that 

are included into the design. 

In this project, proper planning was an important activity performed in the 

early stages of the design. The whole system was evaluated in the 

preliminary stages of the design, so as to achieve space conservation and a 

symmetric piping arrangement. Piping layout was carried by designing 

dimensioned routings from one point to another point, as shown in Figures 

6.14 and 6.15. One of the most important considerations in the piping layout 

process is to consider the cost of piping material, by keeping the lines as 



- 211 - 
 

  

short as possible, as well as maintaining proper piping flexibility and 

engineering standards. In addition, some other factors have to be 

considered in the process of piping layout, such as interference piping 

flexibility, cost of material, pipe supports, operation, maintenance and safety 

and construction requirements. One of the most challenging aspects of 

piping layout was the avoidance of interferences with other facilities within 

the working area in G.56 Engineering building, such as structural steel and 

concrete (wall), heating systems (radiator) etc. This is obviously due to 

space limitation in G.56 laboratory. The voidance of interferences was 

tedious and time consuming. At the early stages of the design it was 

necessary to search mentally and visually for interferences and find an 

appropriate interference-free-rout. 

Despite the avoidance of using too many valves in the pipeline, particular 

attention was given to the placement of valves in the piping system. As 

improper application and location valves can be detrimental to the flow loop 

function. It was made sure that the valves are not installed upside down. As 

a general guide a minimum of 100 mm clearance for all valve hand-wheels 

and possible removal of the valve. 

The routing of piping  at the centrifugal pump was also carefully planned, 

since the pipeline of the pump, particularly the suction section, can adversely 

affect the operation and life expectancy of the pump. Poorly designed 

suction line can cause cavitation, as a result of entrainment of air into the 

pump. The cavitation obviously displaces liquid from within the pump casing, 

which causes vibrations and the pump out-of-balance. The out-of-balance of 

the pump causes a slight eccentric shaft rotation, which at the end wears out 

the bearings and seals. It is worth mentioning that the cavitation results in 

severe erosion of the impeller. On the other hand, the discharge line was 

also carefully routed, depending on the efficiency of the pump and system 

functionality. 

The discharge point was designed in such a way so L-shape (or elbows) 

would be avoided, which contributes an increase into the pressure drop. 

Instead a heavy duty flexible pipe was connected to the discharge point, so 

as to achieve a smoothly curved line to follow the rest of pipeline on the 

table, as shown in Figure 6.16. 

In addition, when the pipeline at the pump was designed, several 

engineering rules, which are mostly recommended by the manufacturers, 

had to be followed such as: 
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 The suction and discharge sections were supported independently of 

the pump, so as to decrease the amount of load transmitted to the 

pump casing. 

 Since the suction section is in horizontal plane, then a minimum of 3-4 

pipe diameter is provided between the pump suction point and the 

bend below the mixing tank. 

 In order to avoid any loop or L-shape in the suction line a heavy duty 

flexible pipe is connected to the discharge point of the mixing tank and 

pump suction point. 

The engineering of pipe supports was carefully considered in the piping 

layout process. The pipelines are supported and located in close proximity of 

the tables, the inclinable and rigid table. However, the pipeline was raised by 

approximately 80 mm, which would allow the space of 31 mm between the 

bottom of the flanges in the horizontal line and the table. Considering the 

allowance of an adequate space between the pipeline and the table in the 

design process was very crucial for installing and dismantling the flanged 

sections, as well as facilitating the installation of equipments and 

instrumentations, especially those that have bigger outer diameter than the 

pipe diameter. In order to achieve this, the supports used are connected to 

threaded steel rod with allowing an additional length to allow raising and 

lowering the pipeline. 
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Figure 6.14 Horizontal and inclinable U-shape piping layout, including suction and discharge sections 
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Figure 6.15 Vertical piping layout including returning limb 
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Figure 6.16 The suction and smoothly curved discharge section 

 

Special attention was also given to the aspect of operability, maintenance, 

accessibility and safety. The operability here refers to the ability of the 

operator to operate the loop in a an efficient manner within the working area. 

This design requirement was achieved with consideration for the frequency 

of operation and the degree of operator’s physical effort needed to perform 

operation. Clearly, due to space limitation, it was not possible to make every 

section and points of flow loop accessible, but the main focus was upon the 

parts, which require frequent operation. The ease of maintenance and 

accessibility of the equipment had to be well considered at the earlier stages 

of the design. For example, the pump had to be placed under the rigid table 

close to the wall, but it was necessary to allow sufficient space 

(approximately 500 mm) away from the wall for maintenance and potential 

repair. These space locations included removal and installation spaces of 

the pipeline and its associated instrumentations. In terms of safety in the 

design and piping layout, special attention should be give from the stand 

point of the operator. For instance, the equipment or any element of the flow 

loop that require frequent operation should not be located in such level that 

the operator would need to  stand on a ladder or a platform to reach it. There 

is a number of codes and standards relating to health and safety had to be 

followed. 

6.6.3.7 Flexible pipe 

In order to connect the pipeline on the rigid table to the U-shape pipeline on 

the inclinable table, two flexible pipe sections are required, so as to keep the 

flexibility of the line during raising and lowering the inclinable table. Clearly, 
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these two sections of the pipeline are very important parts of the whole 

pipeline, as connecting the inclinable U-shape section to the rest of flow loop 

sections and the flexibility is required for handling the required situation, i.e. 

some careful consideration in regards to the flexibility and motion expected 

of the sections. Therefore, in order to select the most suitable type of flexible 

pipe several important factors has to be considered, which are listed below: 

 Sizing. 

 Flow temperature and pressure. 

 Media. 

 Motion type and the amount of motion (bending radius). 

 Internal structure. 

 Length of the flexible pipe. 

 Connection. 

The size of the flexible pipe was determined based on the existing piping on 

either tables. Since the size of existing uPVC is 50 mm, then the size of 

flexible pipe should fit the aforementioned pipe size. Therefore, the inside 

diameter of the flexible pipe was selected as 63 mm.  

The pressure rating for each type of flexible pipe depends on flow conditions 

used. As rule of thumb, the maximum operating pressure should be 25% of 

the nominal burst pressure. The nominal pressure here is referred to as the 

pressure at which the pipe can be expected to burst. Based on the flow loop 

specification, the design pressure that corresponds to the maximum pump 

frequency is 2 bar. Accordingly, it was decided that the flexible pipe should 

have a working pressure more than the flow loop design pressure, and 

clearly the nominal pressure is quite above the working pressure. The 

decision was made that a flexible pipe would be chosen with 4 bar working 

pressure and not less than 10 bar nominal pressure. On the other hand, as 

the slurry temperature is expected to correspond to ambient temperature, 

considering cold weather in winter and hot in summer, and also elevation of 

temperature as a result of heat generation from the pump. Since the flow 

loop is build indoor, thus the slurry temperature range is expected to be 1°C 

in cold weather and 30°C in hot weather. However, with some design 

tolerance, it was decided to choose a flexible pipe with temperature range -

5-50°C. 

In  terms of the media, or material, since slurry is considered, then it is 

associated with corrosion and abrasiveness. Therefore, the main 

consideration in specifying a flexible pipe to select a material, which has a 

high resistance to the media transported through the pipe. Based on the 
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nature of aqueous slurry, it was decided to select a flexible pipe with a 

material that has a high corrosion resistance and abrasion resistance. 

Normally, flexible pipes are used depending on the specified application and 

requirements, such as to avoid excessive vibration, pipe alignment, flexibility 

of motion and handling the situation etc. The selection of the proper pipe 

requires careful consideration based on the intended application. In this 

project, the main reason for using flexible pipe is flexibility of the pipeline 

during raising or lowering the inclinable U-shape section. The most important 

factor that determines high degree of pipe flexibility without affecting the 

process or damaging the flexible pipe (kinking) is the minimum bending 

radius. Minimum bending radius is the radius, which is measured to the 

inside of curvature when bending the pipe without damaging or kinking the 

pipe, as shown in Figure 6.17. Clearly, the minimum bending radius ensures 

more flexibility of the flexible pipe. Since the range of flow loop inclination 

angle between the inclinable section and the rigid section is designed to be 

between 0°-90° from horizontal, then the selected flexible pipe must have a 

minimum bending radius that allows the flexible pipe to connect the 

inclinable section, while it is raised to 90° from horizontal to the rigid pipeline 

section without kinking or damage to the flexible pipe or the connected rigid 

pipeline. However, it is important not to choose such length that would 

create a short radius bend, as previously mentioned, using or creating a 

short radius bend can increase the rate of pipe wear and restrict the flow. 

Thus it can be concluded that the flexibility factor and the pipe length are 

interrelated. In order to select the optimum bending radius of the flexible pipe 

for easy bending without damage and without putting any strain on the  

connected rigid pipes, an optimum length must be designed. Therefore, a 

journey through manufacturer’s websites revealed that the selected flexible 

pipe must have a minimum radius between 140-145 mm, and the optimum 

length was designed as between 1700-1800 mm, while the pipeline is in 

horizontal orientation. Also, in order to avoid kinking, it was decided to select 

a reinforced flexible pipe. However, once the table is raised the flexible pipe 

is not bent to a straight angle, instead it is bent as a curve, which connects 

the two pipeline sections. The further the table is raised the shorter the 

distance along the curved pipe trajectory is required. This means that the 

original connection point is extended by some length, which was found to be 

20%-25% of the pipe length. Since both connection ends are not movable, 

then the extra length must shape another bend to a specific direction. 

Clearly, this extra bend is not desired and may put one of the connection 

ends at enormous amount of strain. Therefore, in order to merge the 
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resulted bend due to extra length with the original bend due to inclination, 1 

m section of the fixed plywood on the rigid table is cut, as can be seen in 

Figure 6.18, so that once the table is raised the flexible pipe bends 

downwards between the two frame beams.   

 

Bending Radius

Flexible 

Pipe

 

Figure 6.17 Minimum bending radius of a flexible pipe 

 

  

Figure 6.18 Actual photo of the opening section on the rigid table 

Another factor that has to be considered is the internal structure of the 

flexible pipe. Since any disturbance within the pipe affects the flow and 

contributes into further pressure drop, especially for slurry flow, then a non-

intrusive smooth bore flexible pipe has to be selected. 

Based on the factors considered for selection of the most suitable flexible 

pipe, it was decided to select Armorvin flexible pipe, which is shown in 

Figure 6.19, to connect the inclinable U-shape pipe section to the rigid 

pipeline sections of the flow loop. Armorving flexible pipe is supplied by 

Whitehouse flexible tubing Ltd. (flexible-tubing.com) in standard length of 20 
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m. It is manufactured from thick flexible PVC and reinforced with a high 

tensile steel spring.  

 

Figure 6.19 Armorvin flexible pipe (Whitehouse flexible tubing) 

 

The selection of Armorvin was influenced by the following technical 

specifications and advantages, which fulfil all the design requirements for the 

intended application: 

 60 mm internal diameter. 

 6 mm wall thickness. 

 140 mm inside bend radius. 

 1.8 kg/m weight. 

 -10 to 65 °C operating temperature range. 

 Reinforced with centrally positioned high tensile steel spring helix, 

which offers an excellent vacuum throughout and prevent the pipe 

from being kinked. 

 Suitable for dry and wet applications. 

 Non-toxic. 

 Good abrasion resistance. 

 Smooth internal and external bore, which make the flow non-intrusive. 

 High impact resistance. 

 Good chemical resistance. 

 Excellent transparency, which facilitates visualisation of flow. 

With regard to connection method, clamps are selected to connect the 

flexible pipe to the rigid pipe. In order to prevent leaking and a full circle grip 

of the flexible pipe to the uPVC rigid pipe, super heavy duty clamps were 

chosen, which are supplied by Whitehouse flexible tubing Ltd. These clamps 

are manufactured from stainless steel strip and have bevelled edges. 

The installation of Armorvin flexible pipe was carried out by cutting the pipe 

to the desired length using a hacksaw in water. Once the hacksaw reached 
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the steel spiral wire, the wire bent out and cut with a bolt clipper. However, 

as the wire protrudes after cutting, as a matter of safety and prevent injury, a 

pair of pliers was used to bend the wire into the rubber.   

6.6.3.8 Pipeline length and test section length 

Selecting the piping length is an important aspect of the flow loop design. 

Since too long flow loop will result in large sample requirement and costly 

experiment, whereas too short flow loop will not be able to generate an 

accurate data as a result of non-developed flow. Therefore, a careful 

consideration has been given to the approach and the test section length. 

According to Gillies (1991) and Pachowko (2004), the approach length must 

not be less than 50 pipe diameter, and the test section can be any length 

between 60-100 pipe diameter. Following the above recommendations, for 

our 50 mm (2") pipe diameter, the flow loop used in this research must have 

an approach length not less than 2.5 m and a test section between 3-5 m. 

Therefore, outgoing limb of the inclinable U-shape section has an approach 

length of approximately 2 m, while the table is raised and 3 m, while the 

table is at rest horizontally, and the test section is approximately 3 m.  

It is worth mentioning that the above recommendation is only applied to 

horizontal and near-horizontal sections. For instance, the vertical section 

does not necessarily have to have an approach length of 50 pipe diameter. 

This is clearly due to the existing simpler flow patterns in vertical flow. The 

approach length in the vertical section was chosen to be 20-25 pipe 

diameter.  

The length of the outgoing and returning limbs was designed to be 16 m in 

total and vertical height of 5 m from the floor and 4 m from the top of the 

table, which giving a total pipe length of approximately 21 m. 

6.6.4 Pump selection 

Slurry pump can be considered as the  heart of any slurry transport system, 

as an industry pumps main duty is to introduce to downstream pipeline and 

unit operations. Also, in flow loop studies, such as the one used in this study,  

the pump is the main element of the whole pipeline, to which the slurry is 

pumped and introduced to the rest of pipe sections and equipments.  

Slurry pumps are used to transport mixtures of solids and liquids in many 

industries with the wide range of applications, such as dredging, mine 

drainage, drilling mud etc. Slurry pumps are normally used for the purpose of 

pumping a medium with abrasive particles, hydraulically transporting solids 

or pumping the final product of a process.  
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There is a large number of pump types available for pumping slurries. All of 

these types fall into the scope of two main categories, centrifugal pump and 

positive displacement. However, by far the common type of slurry pumps 

used are centrifugal pumps. The centrifugal pumps use the centrifugal force, 

which is generated by the pump impeller to impart energy to the slurry being 

transported.  

In order to size a centrifugal slurry pump a number of factors have to be 

taken in to account. In the mean time, it is very important to avoid an  

overestimation of the system resistance (Warman Slurry Pumping 

handbook), otherwise it will lead to the following consequences: 

1. The pump provides a larger flow than it is required. 

2. More power consumption.  

3. Overloading the motor and causing damage. 

4. Creating of cavitation due to poor suction conditions. 

5. Increase of wear rate.  

Therefore, for sizing the centrifugal pump in this study attempts were made 

to make the best estimate of system head and the final required pump power 

was calculated with an addition of safety margins. It was then decided that 

for the multiphase flow loop, which is mainly used for slurry, a centrifugal 

slurry pump to be used. The decision of using the centrifugal slurry pump 

was based on the abilities of centrifugal pumps that are listed below: 

1. The ability to handle larger flow rates. 

2. The ability to handle larger solid particle size.  

3. The ability to withstand high discharge pressure. 

4. Smoother pressure characteristics. 

5. Longer wear life. 

6. Relatively lower cost than for positive displacement pumps.  

7. Having heavy duty pump bearings.  

On the other hand, one of the disadvantages of centrifugal slurry pumps is 

the operation of the pump at a constant flow rate, i.e. it is very difficult to 

alter the discharge flow rate of a centrifugal pump. Despite that, this 

limitation can be overcome by either throttling the pump to the desired flow 

rate or using variable speed drive, which allows variable speed output. In the 

flow loop used in this study, the centrifugal pump is fitted with a variable 

speed drive, which allows the total discharge pressure, and thus the flow 

rate to be controlled and adjusted. The variable speed drive can also provide 

the ability to maintain particular output to compensate of pump and pipeline 
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wear. The results of  calculations for sizing the pump are highlighted in the 

following subsections. 

6.6.4.1 Pump performance 

Assuming that the flow loop is a fixed control volume, on which a shaft work 

is produced by the pump in a steady state condition. Mass of slurry flowing 

at a certain rate through a single planer entrance (the surface of the tank) 

and a single planar exit (at the point the slurry is discharged into the holding 

tank, as shown in Figure 6.20. 

2

Single Planar Exit

Single Planar Entrance

1

Control Volume

2

Out

1

In

 

Figure 6.20 The flow loop as a fixed control volume 

 

A balance equation for the sum of kinetic and potential energy on the control 

volume can yield Mechanical Energy Balance (or Bernoulli Equation). The 

Bernoulli equation, or sometimes called Engineering Bernoulli Equation, for 

incompressible flow can be written as (Perry, 1997): 
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(6.2) 

Rewriting the equation in a customary form, as shown in Equation 6.3. 

 

  
  

   

  
 

  
     

  

 
 

  
  

   

  
 

  
    

  
 

 

 

(6.3) 

Where, P1, V1, Z1 denote the pressure, slurry velocity at inlet and the 

elevation of inlet level respectively. Similarly, P2, V2, Z2 are related to the exit 

planar. g is the gravitational acceleration (9.806 m2/s), ρ is the density of the 

mixture. The factor α is the ratio of the cross-sectional area to the cube of 

the average velocity. In turbulent flow α is usually equal unity and for a 

circular pipe flow it is typically about (1.07).   s is the summation of the 

work done by moving solid boundaries. Here, in this project, the work is 

done by the pump impellers and it is called shaft work. The last term,   , is 

the rate of viscous energy dissipation. In other words, the viscous or 

frictional loss term that accounts for the pipeline and its associated fittings, 

such as elbows and valves. 

The slurry density (ρ ) can be calculated using the following equation from 

Abulnaga (2002):  

 

   
   

  
  

 
        

  

 (6.4) 

 

Where, Cw is the slurry concentration by weight that has already been 

assumed as 40%. This amount has been assumed on the basis that the flow 

loop may also be used for a high slurry concentration. ρm is the slurry 

density, ρl is the liquid density, which is water, and equals to (1000 kg/m3). ρs 

is the density of the solid phase (sand) and it was found to be (2650 

kg/m3)(or the specific gravity of 2.65). Using the above data the slurry 

density was calculated as 1331 kg/m3.  
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Since the volumetric flow rate Q is the product of average velocity and the 

cross sectional area, then the slurry velocities, V1 and V2, at the entrance 

and the exit of the system can be calculated using Equation 6.5: 

 

  
 

 
 

 

(6.5) 

For a flow rate of 35.28 m3/hr (0.0098 m3/s) through the tank cross-sectional 

area (0.63 m2), the velocity V1 was calculated to be 0.015 m/s. As the same 

amount discharging from the system through a pipe cross-sectional area of 

0.00196 m2, then the velocity V2  was calculated to be 5 m/s. 

Since the atmospheric pressure of inlet and discharge point (P1 and P2) of 

the flow system are similar, then they will be eliminated at either sided of the 

Engineering Bernoulli Equation. 

Z1 and Z2 found to be 2.70 and 2.80 respectively. 

The frictional loss term is the product of the summation of the total head loss 

due to friction in pipes and the total head loss due to fittings. Therefore, it 

can be written as Equation 6.6: 

 

  
 
 

   
 

 
   

 
 

 

(6.6) 

The total head loss due to friction for incompressible flow in sections of 

straight pipe of constant diameter, using fanning friction factor, can be 

determined by the Equation 6.7 (from Perry,1997): 

 

    
     

  
 

 

 

(6.7) 

Where, L is the length of the pipe, D is the pipe diameter, f is the fanning 

friction factor, which can determined from the friction factor as a function of 

pipe surface roughness and Reynolds Number (     (Perry, 1997). 

However, in turbulent flow, the friction factor for rough pipe follows the 



- 225 - 
 

  

smooth tube curve for the range of Reynolds Number, as shown on the 

friction factor graph (or Moody Diagram) in Appendix C. The mixture 

Reynolds number can be determined using the following equation: 

 

    
    

  
 

 

(6.8) 

Where,    is the mixture density,   is the mixture velocity through the pipe 

diameter   with a viscosity of    .The mixture viscosity can be determined 

using Thomas equation (1965)  (from Abulnaga, 2002): 

 

  
  

            
         

 

(6.9) 

Where,    is the absolute (or dynamic) viscosity of the slurry,    is the 

absolute viscosity of the carrier liquid,    is the Einstein Constant (2.5) and 

   has been found to be in the range of 10.05-14.1 (from Abulnaga, 2002), 

   is the solids concentration by volume,       are constants and they have 

values of 0.00273 and 16.6 respectively. 

However, the value of  
  

  
 can be determined from the graph shown in Figure 

6.21, in accordance with the Thomas equation (1965). This graph is widely 

accepted in the industry for heterogeneous mixture of a Newtonian 

Rheology. 

The solids concentration by volume,   , can be calculated using Equation 

6.10 (from Abulnaga, 2002): 

 

   
    
  

 

 

(6.10) 

Cv was calculated to be 20% by volume. Then based on solids concentration 

be volume (20% v/v) the ratio of mixture viscosity versus viscosity of carrier 

liquid ( 
  

  
) was determined, from the graph shown in Figure 6.21, as 1.978. 

If the viscosity of carrier liquid (water) is 1.002 x 10-3 pa.s (at 20°) then the 

mixture viscosity would yield 1.974 x 10-3 pa.s.  
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Figure 6.21 Ratio of viscosity of mixture versus viscosity of the carrier liquid 
in accordance with Thomas equation for settling slurries (Abulnaga, 

2002) 

 

In order to take into account any design errors or uncertainties, then a high 

viscosity value is to be chosen by an extra of 30%, which would make it 

0.0025 pa.s. Therefore the mixture Reynolds Number would be 

approximately 133100.  

The surface roughness for uPVC pipe (category E class, Plastic and 

Perspex) was found to be 0.0025 mm, then the relative roughness ( 
 

 
 ) was 

calculated to be 0.05. Then, the friction factor was found, on the Moody 

Diagram, as 0.001.  

The total head loss due to friction in pipes for 20 m pipe length yields 1.4 m. 

Similarly, the head loss due to fittings can be calculated using Equation 6.11 

(from Perry, 1997). 

 

    
    

  
 

 

(6.11) 

Where,   is the additional frictional loss (which is equivalent number of 

velocity heads). There is one diaphragm valve and six 90° elbows (long 
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radius) in the flow system. The   value was found from Perry (1997) for 

diaphragm valves (assuming fully open) as 0.44. Also the   value for the 

elbows mentioned earlier was found to be 0.45. By adding up all   values 

and calculating the above equation, the total head loss due to fittings was 

determined as 0.6 m. 

Calculation of Equation 6.2 yields the shaft work per unit of mass (    
  

  
) flowing the flow system, which was calculated to be 33 kw/unit mass. 

Multiplying this value by the slurry mass flow rate would produce the power 

required by the pump, which would be (13.2 kw). However, it is very 

important to take any design uncertainties into account. Therefore, 10% was 

added to the actual value and yielded the power requirement approximately 

(15 kw). 

6.6.4.2 Suction limitations 

Every pump requires a minimum suction head to operate properly. This is 

called the Required Net Positive Suction Head (NPSH)R, (Perry, 1997; Brown 

and Heywood, 1991; Pachowko, 2004). This parameter is usually published 

by the manufacturers and it should be equal or less than the Net Positive 

Suction Head Available (NPSH)A, so that the cavitations are avoided. 

Cavitations occur, when the absolute pressure of the pump is below the 

vapour pressure of the liquid in the slurry at the operating temperature. As a 

result the vapour bubbles appear and release the energy, which cause 

damages to the pump components, such as keys, loosing of rotor and shaft 

breakage. 

Therefore, the (NPSH)A must be calculated at the design stage and has to be 

equal or greater than (NPSH)R for the desired capacity. The (NPSH)A can be 

calculated as:  

 

                        

 

(6.12) 

Where ha is the atmospheric head and is equal to 10.34 m, as the holding 

tank is vented to atmosphere. hs is the static head in (m), which was found to 

be 2.35 m. hvp is the vapour pressure head of water at 20 °C and is 0.19 m. 

hf is the frictional losses and was calculated from Darcy’s formula with the 

help of equivalent length table for fittings and valves. hf  was calculated to be 

1.08 m. hi denotes the safety factor of 0.7 m as a compensation to the losses 
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after the fluid entering the pump. Finally, (NPSH)A was estimated as 10 m 

with considering any design uncertainties. 

According to Pachowko (2004) in order to avoid cavitation phenomenon, the 

(NPSH)A is usually taken to be 0.5-1 m less than (NPSH)R. 

The total dynamic head was also calculated using the following equation 

from Perry (1997): 

               

 

(6.13) 

 

Where (hd)t  is the total discharge head and is calculated from: 

 

                 
 

 

(6.14) 

 

Where (hs)d  is the discharge static head and (hf)d  is the head loss in piping 

and fittings, which was calculated from the Darcy’s Equation and estimated 

as 12.6 m. The total discharge head was calculated as 30 m. Similarly, the 

total suction head was estimated to be 9 m. By combining these two values 

the total dynamic head was calculated as 21 m. 

From the above calculations, it was concluded that a 15 kw pump would be 

satisfactory to overcome the total head difference. As the cost is the main 

point of consideration, therefore, it was decided to use the existing pump, 

which is in G.56 laboratory/Engineering Building and used by the previous 

researcher and meets the requirements. This decision was made based on 

the fact that this pump meets the required pump capacity of our design and it 

has been designed for heavy duty slurry pumping. It was also decide to use 

the same (15 kw) Digi-drive frequency converter, in order to control slurry 

flow rate. 

6.6.5 Equipment design  

A properly designed and arranged equipments of any pilot plant flow loop 

will undoubtedly provide an excellent flexibility and capability of the loop to 

generate a promising data over a wide range of conditions. Some of these 

equipments may be used for different purposes, such as the measuring tank 

and the flow diversion system, which are used for calibration purposes and 

producing one of the important parameters delivered solids concentration. 

Therefore, it is crucial to design a proper tank to fulfil the objectives and 

cover the whole range of intended conditions. Another important piece of 
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equipment within the flow system is the holding or mixing tank, which can 

have an adverse effect on the loop operation and the data generated from 

the loop, if it is not carefully designed or located within the whole system. For 

example, when designing the mixing tank it is very important to consider the 

level of slurry within the tank. If the level of slurry in the mixing tank is not 

kept high enough, it results in air entrainment in the mixture and introduced 

to the pump. Also low slurry level within the tank have a negative impact on 

the suction head. Therefore, the design functionality and layout of the main 

equipments used within the multiphase flow system are described below. 

These equipments are mixing tank, measuring tank, flow diversion system, 

drainage system, slurry valves and the ultrasound probe holder.  

6.6.5.1 Mixing tank 

The holding tank has to be designed with a conical section rather than a flat 

base. As this will prevent the accumulation of solid particles at the dead 

ends of the tank and facilitate the drainage system at the end of each 

experiment. To ensure that enough suction head is provided to the pump, 

the volume and level of the slurry in the holding tank are very important to be 

carefully designed. Pachowko (2004) successfully designed a holding tank 

with a capacity 10 times the volume of the pipe work of his flow loop (24 m). 

By following Pachowko’s design procedure we should have a holding tank 

with a volume 10 times the volume of the 21 m pipeline length. If the volume 

of 21 m pipeline length with 50 mm diameter is 0.04123 m3 (41.23 litre), then 

10 times of the above value would make the volume of the holding tank, 

which is 410.23 litres. 

When the flow is diverted into the measurement tank, the slurry level would 

decrease by the amount added to the measurement tank. This would have a 

negative impact on the suction head. The holding tank volume has to be 

designed with adding some extra volume to compensate the amount of 

slurry added to the measuring tank. Therefore, the holding tank volume was 

designed to be 500 litres, some of which replace the amount of slurry 

diverted to the measuring tank. 

The total height of the holding tank can be calculated, if assumed that the 

diameter of the cylindrical part is the same as its diameter. Also, assuming a 

slope of 20% (11°) at the base of the conical part, which can provide an easy 

surface for the solid particles to slip down the tank, makes the height of the 

conical part 0.1 of tank diameter. Figure 6.22 showing the schematic 

drawing of the holding tank. The height of the tank can be determined using 
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the following equation, in which the first and second term on the right hand 

side refers to the cylindrical and conical part respectively.  

 

  
      

 
 
      

  
 

 

(6.15) 

Where V  is the volume of the mixing tank, D is the tank’s diameter; H1 and 

H2 are the height of the cylindrical and conical part respectively. 

Using the above equation, the diameter and the height of the cylindrical part 

was found to be 900 mm and the height of the conical part is 100 mm. 

However, if the height of the cylindrical part was increased to 1 m, to avoid 

splashing, then the total height of the tank would be 1100 mm. 

The result of holding tank design shows that the dimensions are almost 

similar to that of the existing holding tank in Engineering building, which has 

been used by the previous researcher. Therefore, in order to reduce the cost 

of the project, it was decided to use the existing tank along with its three 

blade impeller. The mixer is known to be the best mixer with lowest power 

consumption and is totally suitable for slurry mixing. The tank is also fitted 

with four equi-spaced baffles, which are useful for avoiding the formation of 

vortices in the tank during the experiment. 
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Figure 6.22 The schematic drawing of the holding tank 

 

6.6.5.2 Measuring tank  

The measuring tank, which is  an important element of the flow loop, is 

mounted on three load cells and used to measure several parameters of 

bulk slurry flow. The most important parameters that are measured using 

this tank are highlighted bellow: 

 Slurry density  

 Delivered  solids concentration  

 Slurry velocity at the discharge point  

 In-situ solids concentration at high transport velocity  

 Slurry flow rate  
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The principle of using the measuring tank is to collect the diverted slurry and 

determine the relevant flow parameters. Clearly a diversion system is 

required to direct the slurry into the tank. The design and functionality of the 

diversion (or flow switch system) is described separately in the following 

subsection. The schematic drawing of the tank along with the flow diversion 

system is shown in Figure 6.23. 

 

 

Figure 6.23 Schematic drawing of the measuring tank 

 

The measuring tank is constructed from steel and has a cylindrical section, 

which is 850 mm high and has 35.5 mm internal diameter, and the conical 

section which is 200 mm high. The conical section is conned by 45° to 

prevent the accumulation of solid particles at the bottom of the tank and 

allows them to be easily drained at the end of diversion process. The total 

capacity of the tank is 90 litre. The total height and capacity of the tank is 
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very important to be taken into account in the design process. Therefore, 

some leeway was aloud for the tank to avoid splashing and overflow while 

diverting the slurry. In order to determine the slurry level within the tank a 

graded glass tube is mounted at the half point of the cylindrical section. A 

diaphragm valve is also installed at the bottom of the tank ( at the discharge 

point of the tank) for easy collection of diverted slurry during the diversion 

process and drainage at the end. The measuring tank is located above the 

mixing tank to avoid any extra bend in the pipeline and allow the slurry to be 

drained through a straight part section into the mixing tank.  

6.6.5.3 Flow diversion system 

In order to facilitate the flow diversion process and obtain more accurate 

data, a flow diversion system was designed, the geometry and dimension of 

which is shown in Figure 6.24.  

The main part of the system is a steel container which is split in to two port 

circular sections with 99 mm outer diameter, each of which fits into 100 mm 

(4 inch) PVC pipe. One of the sections directs the flow into the mixing tank 

and the other one into the measuring tank. On either side of the steel 

container two tracts are fixed, through which a 50 mm thick Perspex sheet 

slides.  Both tracks are extended  on either side of the steel container by 160 

mm, which accounts for the distance between the centre lines of the two 

sections. In order to avoid accumulation of the solid particles and splashing,  

the bottom of the steel container at the outlet of each section was designed 

as a curved shape, on which the solid particles roll down. In other words, 

any flat dead end within each section is avoided. 600 mm long flexible pipe 

is used to connect the main pipeline to a pipeline fitting section, which is 

going through the sliding Perspex sheet. A union system is used to fix the 

line at the Perspex sheet point. The length of the Perspex sheet has 

carefully been designed, so as to allow a flexible and easy switching of the 

flow between the two sections. The length of the pipe section, which is 

connected to the bottom of the sheet and through which the flow is 

discharged into each section, must be long enough to avoid splashing. 

However, some distance (0.15 mm) must be kept between the discharged 

pipe section and the split plate inside the steel container, so that the pipe 

does not catch the plate while sliding the Perspex sheet.  

It is also very important to use some type of stoppers at the end of the two 

tracks, to keep the Perspex sheet in place within the track. Therefore, 

welded hinges (two wings and welded bush) are used in the switch system 

in this study. The bush is welded to an L-shape metal bar (8 mm diameter), 
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which pivots 360° and it is used to stop the Perspex sheets to slide out of the 

track under the influence of flow pressure, while the flow is discharged into 

the mixing tank. The whole system is designed in such a way that the 

centreline of the discharge pipe section is aligned to the centreline within the 

pipe section, by sliding the Perspex sheet all the way through to the end. A 

drawer handle is fixed to one end of the Perspex sheet which enables the 

operator to easily switch the flow by  pulling  and pushing  the Perspex sheet 

through the track.  

 

 

Figure 6.24 Schematic drawing of the flow diversion system 

 

In order to avoid splashing and spillage two door brush seal sections were 

fitted to the steel container perpendicular to the sliding direction and they are 

in total contact with the Perspex sheet. The whole system is supported by a 

unistrut support frame structure, in a way that has no contact with the 

measuring tank. As any contact with the measuring tank will result in 

incorrect readings of the load cells.  
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The testing of the system concluded that diversion of the flow through sliding 

of the Perspex sheet provides a convenient means of controlling the flow, 

thus obtaining a good quality measuring data.  

6.6.5.4 Drainage system 

A drain-line is a necessary feature of the open loop. The drainage system 

can be used for removing the slurry directly from the bottom of the holding 

tank, at the end of each experiment. 

The drainage system used, as a important element of the whole flow system, 

consists of three tanks (large, medium and small), the actual photograph of 

which is shown in Figure 6.25. The three tanks are connected to each other 

via extended pipelines at the top and bottom level. The top connections are 

permanently open, while the bottom connection lines can be controlled via 

three diaphragm valves. This technique is based on settling characterisation 

of solid particles. As the drainage line goes through the three tanks, the solid 

particles settle at the bottom of the tanks successively, while the carrier 

liquid (water) flows into the next tank and finally to the drain. During each 

draining procedure, while the mixing tank is drained, all of the valves are 

closed, so that the solid particles are trapped within the tank. This way, once 

the slurry enters into the first tank, the solid particles settle at the bottom of 

the tank due to gravity and the carrier liquid flows into the next tank and so 

on. Based on previous experience, after each drainage procedure, a very 

few coarse solid particle within (very fine particles in water) were noticed in 

the third tank. This clearly confirms the efficiency of the system. The settled 

solid particles then can easily be collected from the three tanks and 

disposed off in accordance with health, safety and environmental standards. 

 

 

Figure 6.25 Actual photograph of the drainage system 
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6.6.5.5 Slurry valves 

According to Brown and Heywood (1991) the first rule on application of 

valves in slurry systems is to avoid using them, if possible. This is due to 

potential leakage and blockage. 

The common valves used in slurry systems, based on the type of slurry, are 

knife gate, diaphragm, pinch, plug, ball and butterfly valves. However, based 

on the economical aspect and suitability, the diaphragm (straight through 

type) is used throughout the flow loop in this research. Relative low cost and 

ease of maintenance make the diaphragm an excellent choice in this project. 

6.6.5.6 Ultrasound probe holder 

The ultrasound transducers used in the multiphase flow loop are non-wetted 

transducers, i.e. they are not in direct contact with the flowing slurry. This is 

obviously due to abrasiveness of slurry and avoidance of the transducers to 

be subjected to wear. Therefore they are used as clamp-on transducers. 

This implies that they are clamped on to the pipe and send their ultrasonic 

pulses through the PVC pipe wall. In order to avoid vibration of the 

transducer and determine a good fixture on the pipe wall, along with 

obtaining a good quality of data a robust and flexible clamp-on probe holder 

has to be designed. This would also ensure an easy installation of the 

transducer on any section of the flow loop.  

The clamping transducer fixture consists of a solid PVC bar section (250 mm 

x 55 mm x 15 mm), and the two pipe clamps are fixed on either end of the 

PVC bar to suit 50 mm pipe, as shown in Figure 6.26. 

In order to ensure a good coupling, robustness and versatility of the system, 

it is split into two sections. One of the sections (variable angle region) is 

used to fix the transducer non-intrusively, with a rotating variable angle  

section. The transducer can be adjusted along the spoolpiece section, by 

sliding another PVC bar (93 mm x 30 mm x 10 mm) variable angle section 

(125 mm long). The sliding PVC bar can easily be tightened or loosened with 

a BZP wing nut, which enables the operator to adjust it without using tools.  

On the other hand, a solid circular PVC section (50 mm long and 20 mm 

OD) is attached to the sliding PVC bar to slide along the variable angle 

section. A hole is drilled across the circular PVC bar, so the transducer can 

go through and reach the pipe wall, along with another hole perpendicular to 

the transducer hole for a screw pin to tight fix the transducer. Since accurate 

determination for the Doppler angle is a key issue for many UDVP 

application (Geisler, 2001).  Therefore a protractor is also fixed across the 
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circular PVC section in such a way when the circular PVC section is rotated,  

so the protractor too to  determine the Doppler angle. In order to provide a 

more robust system which would facilitate the use of transducers with 

different diameter, several circular PVC sections were fabricated and could 

easily be replaced via the BZP wing nuts. On the other hand all the elements 

of the second section (90° angle section) has similar structure as that of 

variable angle section, except that the transducer, which is fixed on this 

section can only provide 90° Doppler angle. It is believed that this section 

can be used if an investigation  regarding the solid bed in stationary and 

sliding bed flow is sought. However, it will not render any sign of axial 

velocity, as the axial velocity component is zero. In addition,  two bubble 

levels (spirit level or bulls eye level) are attached to the clamp-on fixture 

system to determine whether the pipe surface test section is horizontally 

levelled or not. Since the ultrasound measurements are intended to be 

carried out  non-intrusively on the multiphase flow loop, then the transducer 

should be mounted on the pipe surface. However, it is very important that 

the face of the transducer is totally in contact with the flat surface of the pipe 

wall. Otherwise the sound signals are attenuated or side scattered due to 

interaction of air and emitted ultrasonic waves, thus affecting the measuring 

solids velocity (Wang et al., 2003). 
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Figure 6.26 Showing the UDVP probe fixture and 50 mm ID flanged spoolpiece 
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Based on this phenomenon, it was decided to drill two holes into the pipe 

wall, where the transducers are placed. However, the Doppler angle (the 

Doppler angle is the one over which the probe is tilting) plays a very 

important role in the measurement of solids velocity, as it provides the 

component of true solids flow velocity vector. Also, depending on the 

application, an accurate determination of this angle is always a problem for 

the ultrasound application. For example, the lower the angle is the higher 

resolution can be achieved. However, with lower Doppler angle a very long 

penetration is required until the best sound reaches the outer end of the pipe 

wall. With higher solids concentration the sound burst may not reach the 

other end (pipe wall) due to half way echoing, thus, a higher angle must be 

used. Normally, a good quality of data can be obtained with the Doppler 

angle between 45° and 60°. The selection of Doppler angle depend on 

ultrasonic application (Camarasa et al., 1999).  

Considering the facts shown above it was decided to drill the pipe wall test 

section, to achieve  four slots with Doppler angles 45°, 50°, 55° and 60° for 

the transducer fixed on the variable angle section and a 90° hole for the 

transducer fixed on the 90° angle section. However, due to thickness 

limitation (4 mm) of the PVC pipe, the difficulty was recognised to drill holes 

with the dead end of each of them 100% flat and enough deep for the 

transducer to fit, especially for slots with lower angles such as 45°. 

Therefore, it was decided to design and fabricate a flanged spoolpiece, 

which is a hollow pipe made from a solid PVC bar with a larger outer 

diameter than the rest of PVC pipeline in the flow loop. In order to adapt the 

fabricated hollow pipe section of the spoolpiece,  the outer wall was reduced 

on either sides to suit the standard flanges used on the flow loop. The 

flanged spoolpiece is shown in Figure 6.26. The length of the spoolpiece 

(flange to flange) is 340 mm, on which the clamping transducer fixture can 

easily be mounted. After making the hollow pipe section from the circular 

solid PVC,  the spoolpiece wall was found to be 20 mm, which was drilled to 

obtain six slots with different Doppler angles. For example, one of the  

transducers (4 MHz) has an outside diameter of 8 mm, and in order to 

achieve the best fit, it was decided to make each slot with 8.1 mm diameter. 

Also, after drilling each slot it was found that the thickness of the spool-pipe 

wall, between the transducer face and the pipe contents, to be 2 mm, the 

limit of which is shown by a red line in Figure 6.26. Since the spoolpiece is 

flanged, thus it makes the whole system robust and versatile. In other words 

the system can be mounted on any section within the flow loop via its 

flanges. Nevertheless, an accurate ultrasonic velocity measurement and 
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performance depends on the location and alignment of the transducer. 

Based on the engineering rules, the chosen location for the installation must 

be at least 10 pipe diameter of straight line, undisturbed flow upstream and 5 

pipe diameter of straight, undisturbed flow downstream from the 

measurement point (GE sensing, 2007). 

In general, non-wet transducers operate with coupling gel  between the  

transducer face and the pipe wall. This is to insure an acoustically 

conductive path between the transducer face and the pipe wall surface. This 

means that any air interface between the transducer face and the pipe wall 

reflects all the ultrasonic energy, because air or gas has a very low acoustic 

impedance. Therefore, the use of coupling gel is paramount.     

6.6.6 Instrumentations used to measure the relevant parameters 

The final selection of each instrumentation used to measure the relevant and 

important parameters of flow within the multiphase flow loop was made after 

a thorough examination and consideration of several factors such as 

flexibility, cost, application and functionality. The following subsections detail 

the selection and driving force for using each specific instrument mounted on 

the flow loop.  

6.6.6.1 Mean velocity measuring device 

For determining slurry flow rate, several commercial instrumentations were 

considered, kinetic energy meters (venturi meters, flow nozzles and wedge 

meters), electromagnetic flow meters and acoustic velocimeters. Finally it 

was decided to use an Electromagnetic Flow Meter (EMF Krohne Aqua-flux) 

to measure the flow rate. This decision was influenced by the advantages 

that the EMF can offer over the other flow meters. It is considered as a 

reliable and relatively cheap flow meter. According to Brown and Heywood 

(1991), Matousek (1997) and Pachowko (2004) the reliability of EMF is 

without any doubt. However, Matousek (1997) has reported that to achieve a 

reliable measurement, the EMF must be installed on the vertical section. 

This is due to slip velocity between solid particles and the carrier liquid. 

6.6.6.2 Solids concentration and axial velocity measuring device 

There are two types of solids concentration, in-situ and delivered solids 

concentration. In a definitive slurry flow loop, in order to extract productive 

features, both in-situ and delivered solids concentration have to be 

determined. In-situ solids concentration demonstrates the local conditions of 

solid particles within the pipeline. This type of concentration is determined by 

the dual-plane ERT sensor, which measures the conductivity of the pipe 
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contents, and the conductivity data is then converted to solids volume 

fraction using Maxwell relationship. The dual-plane ERT sensor in 

conjunction with cross-correlation method is also used to determine the 

solids velocity profile in the carrier fluid. Two dual plane ERT sensors were 

designed, the geometry and dimensions of which is shown in Figure 6.27. 

They both are housed in the U-shape and vertical sections of the flow loop.  

In-situ solid’s concentration can also be determined by sampling of slurry at 

the discharge point, if no solids hold up occur in the pipeline. To ensure that 

there is no hold up, the sampling must be carried out in very high velocity. 

This high velocity is required to overcome the frictional loss, as a result the 

whole slurry behaves as a single liquid. 

Delivered solids concentration is a very important parameter, as it 

determines the capacity of a pipeline system (Brown and Heywood, 1991). 

This type of solids concentration is determined from the multiphase flow loop 

using a pre-calibrated measuring tank, which is mounted on calibrated three 

load cells that determine the weight of the slurry in the tank. In order to 

perform this, the full pipe flow is diverted temporarily into the measuring tank 

via a flow diversion system.  

6.6.6.2.1 Design of 360 mm dual-plane ERT sensor 

The dual plane ERT sensor, shown in Figure 6.27 consists of two 16-

electrodes planes, which are connected to three Perspex pipe sections (50 

mm ID) in such a way to obtain a smooth internal section at the connection 

points, to avoid any disturbance to the flow. The Perspex section A (140 mm 

long) is connected to the left of plane 1 (P1), whereas the Perspex section C 

(140 mm long) is connected to the right side of plane 2 (P2), while both  

planes are separated by the third Perspex pipe section B (30 mm long). As 

the length of each plane is 40 mm, then this gives the distance between the 

centres of each electrode plane 50 mm. Considering the slot depth at the 

end of each plane, in which the Perspex pipe section B placed, the apparent 

separating the two electrode planes is 10 mm. In order to achieve a secure 

section and good coupling, two Perspex flat flanges (D & E) are mounted at 

the centre of both Perspex pipe sections (A & C) using PVC solvent cement.  

The two flat flanges used as clamping fixtures via four M8 threaded rod bars, 

which are going though the four pre-drilled  holes in the flanges and pulling 

the whole section together by tightening four M8 nuts at the end of  each rod 

bar. It is apparent that over-tightening the nuts can pull both flat flanges 

together and separate them from the Perspex flat sections at the joint point. 
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Each end of the whole section is flanged, using the standard flanges used in 

the loop (uPVC full face flange drilled Bs 16/10 PN plain 2 inch). Connecting 

all the sections together gives a total length of the dual plane sensor 360 

mm (flange to flange). This clearly makes the dual plane ERT censor a very 

compacted and robust equipment, which can be coupled with  any flanged 

section within the flow loop.  

The design of 16 electrodes at the periphery of each plane is one of the 

most important aspect of the whole sensor design. The design of electrodes 

followed the most common type of geometry and layout, in which the 

equisized electrodes are arranged around the pipe’s inside diameter in an 

equispaced fashion. In order to avoid impedance problems, the electrodes 

have to be more conductive than the flowing fluid within the pipe. Since the 

main carrier liquid used within the flow loop is mainly water and conductivity 

difference between stainless steel and water is very high (GE Sencing 2007; 

kayelaby.npl.co.uk, hypertextbook.com), therefore, stainless steel was 

chosen as material of construction for the electrodes. In addition, some other 

factors such as good  ability to resist chemical attack, cost, protection 

against fouling of the electrodes by solid particles make stainless steel the 

prime material of construction amongst all.  

Based on typical values of the number of nodes per electrodes (Nd), the 

number of boundary nodes (NB), the number of electrodes in each plane (16 

electrodes in this study), and the electrode angle 13.8°, the width of each 

electrode was determined as 6 mm for 50 mm pipe diameter. On the other 

hand the length of each electrode sized as 20 mm.  This would make the 

final electrode size mounted on each plane 20 mm x 6 mm. Each electrode 

has been manufactured from M6 stainless steel rods, by cutting them in half 

to give semi-cylindrical shape. 16 electrodes are mounted on a predrilled 

circular PVC plane, in such a way to give an angle of 22.5° between centre 

of an electrode to the centre of the next one.  

Each electrode welded to 24 mm long stainless steel rod (M4), which is 

inserted into the hole at the circumference of the uPVC plane. Each 

electrode is placed in a slot within the PVC plane, which enables the 

electrodes to be flush mounted in the interior without any disturbance to the 

flow.
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Figure 6.27 Schematic drawing of the dual-plane ERT sensor 
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The welded M4 rods extend out of the plane by 11.5 mm to allow the 

connection of cables using solder tags. The cables are connected to the 

electrodes using solder tags and fixed each of them with M4 nuts and 

washers. Co-axial cables are used to connect the electrodes to the data 

acquisition system (DAS) and are sheathed so as to reduce the 

electromagnetic interference. The geometry and dimensions of the 16-

electrode plane is shown in Figure 6.28. In order to prevent leakage at the 

coupling point of each plane with the Perspex pipe sections, slots of 3 mm 

wide have been made on each plane, into which 2.63 mm (3/32 inch) O-ring 

can be placed.  
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Figure 6.28 Schematic drawing of the 16-electrode ERT plane sensor 
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6.6.6.3 Mass flow rate measuring device 

Although measuring volumetric flow is sufficient, mass flow rate  

measurement is often required by many industries such as Chemical 

industry, pharmaceutical industry etc. (Yoder, 2008). Measuring mass flow is 

one of the most important feature of Coriolis meter. Therefore, Coriolis mass 

flow meter was chosen for mass flow measurement in the flow loop. The 

choice of Coriolis was based on total cost, accuracy, maintenance and 

versatility. By comparing Coriolis mass flow meter to some other flow 

meters, such as turbine flow meter and differential pressure flow meter, it 

can be noticed that amongst all, Coriolis has a relatively high purchased 

price (approximately £8000) and low total cost of ownership. This is clearly 

due to the fact that Coriolis mass flow meter does not require periodic 

maintenance. This is due to not having moving parts except vibrating tubes, 

which means they are more reliable and require minimum maintenance. By 

contrast, turbine flow meters and DP have moving parts and subject to wear, 

which results in high cost of ownership. Moreover, Coriolis flow meters are 

the most accurate type of mass flow meters, with ±0.1% range 

(www.endress.com).  

Based on the above advantages offered by Coriolis  mass flow meter, it was 

decided to select Coriolis mass flow meter, which provides the measurement 

of mass flow rate density and temperature directly. On the other hand, it 

enables the measurement of total of mass and volume flow. In addition, to its 

high accuracy, it can be used for data validation of other instrumentations 

used to measure the same parameters such as validation of solids volume 

fraction measure by the ERT.  

After consulting several supplier’s websites, such as Endress + Houser 

(www.endress.com), KROHNE (www.krohne.com), it was found that each of 

them has a special style of Coriolis tube. Some of them supply single-bent 

tubes, some dual-bent tubes and some others such as KROHNE, who 

became the first company to supply straight tube Coriolis mass flow meter.  

It was decided to select OPTIMASS 7000 series straight-tube Coriolis mass 

flow meter from KROHNE. The factors that influenced the selection of the 

aforementioned type of the flow meter are highlighted bellow: 

 Unlike bent-tube meters, straight-tube Coriolis flow meters cause less 

pressure drop. 

 Easier to clean and to be drained. 

http://www.endress.com/
http://www.krohne.com/
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 Can offer four tube materials of construction (Titanium, Stainless 

Steel, Hastelloy or Tantalum). 

 Excellent zero stability.  

 Fast signal processing, even with changes in concentration or 

temperature. 

  Can be used in many applications, such as non-homogeneous 

mixtures, slurries, product with entrained solids or gas, products 

requiring low flow velocities etc. 

KROHNE OPTIMASS 7300F (field housing for wall mounting) is installed on 

the U-shape outgoing pipe section just before the dual-plane ERT sensor. 

The straight signal tube system made of Titanium (Grade 9) with mounting 

length 1101 mm. The flow meter converter type is MFC300F (field housing 

for wall mounting). It has an accuracy of ±0.15 of MV and uses  PACTWARE 

operating software. When installing the meter it was paramount to make 

sure that the pipe work is supported behind the flanges, so as to avoid 

placing any stress to the meter flanges. Also, as part of manufacturers 

recommendations for slurry applications, transition pieces were used on the 

inlet port  and the outlet of the tube for leading edge protection. 

It is worth pointing out that the heavy weight of the meter (approximately 150 

kg) on the inclinable steel structure raised the concern that the whole 

pipeline may slide down the table, while the table is raised, especially at 

90°.It was essential to insure rigid and stable connection to the mounting 

steel structure. Therefore, Split Plummer Blocks were designed and 

fabricated for firm fixture of the heavy meter to the inclinable deck. Each 

Plummer Block consists of two aluminium plates (12 mm thick), which are 

welded to form an L-shape to support and clamp either flange parts of the 

meter, as shown in Figure 6.29. Four M10 bolts were used to firmly fix the 

meter to the steel beam and four M8 bolts were used to clamp and anchor 

the meter.  
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Figure 6.29 Schematic drawing of the Split Plummer Block
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6.6.6.4 Additional local velocity measuring device 

The decision was made that another local velocity measuring device would 

be used and mounted on the U-shape inclinable flow loop. The remarkable 

advantage and driving force for the decision was to use this device for 

measuring solids local velocity, mean solids velocity and solids velocity 

profile, and thus validating solids local velocity obtained from the 

combination of the ERT and cross-correlation. After a thorough research for 

finding an instrument for Ultrasonic Doppler Velocity Profile measurement, 

two versions were considered. The first instrument was  the UDVP-DUO 

(GAH100),  which is manufactured by Met-Flow and supplied by Dantec 

(www.dantec.com), while the other one was DOP velocimeter, which is 

supplied by Signal-Processing (www.signal-processing.com). From an 

objective prospective and measurement point of view, UDVP and DOP, offer 

more or less the same functionality. However, the cost was the driving for 

selecting UDVP-DUO from Met-Flow. Figure 6.30 showing the UDVP, which 

is currently used in OLIL laboratories in the University of Leeds. The whole 

system consists of three main parts:  

1. Measuring unit, which performs signal processing and digitalisation.  

2. Transducers,  which transform electrical signals in ultrasonic acoustic 

signals. 

3. User interface, which provides data analysis and storage. 

It is worth mentioning that all configurations are set via user interface, but 

not from the main measuring unit. The main unit has a reasonable 

dimensions (340x130x400 mm), which can be adjusted on the inclinable 

table between the two limbs of the U-shape pipeline, and can easily be 

handled due to its reasonable weight (9.3 kg). The main unit operates with a 

set of TX-line transducers, each with five emitting frequencies (0.5, 1, 2, 4 

and 8 MHz), which are connected to the main unit via an integrated 

multiplexer. As recommended by the manufacturer (Met-Flow), 4 m long 

cables are used for the transducers, so as to achieve reliable operation. In 

other words, providing the best compromise between the installation of the 

probe and attenuation of the signal.  

For the detail description and technical specifications, relating  to any part of 

UDVP-DUO system, the author recommends a journey through 

manufacturer’s website (www.met-flow.com).  
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Figure 6.30 Showing the UDVP-DUO system from Met-Flow 

6.6.6.5 Pressure measuring instrumentation 

The measurement of pressure differential between two points of a section of 

a straight pipe is one of the most important measurements for pipeline 

frictional head loss determination. 

Monitoring the pressure changes over straight pipelines can provide 

valuable information regarding the condition of flow. Therefore, it was 

decided to mount six pre-calibrated pressure sensors on three sections of 

the flow loop (vertical and ascending inclined section and descending 

inclined section) at 2 m intervals between the two pressure sensors mounted 

on each section. In order to avoid solid particles and entrained air entering 

the sensors, six Danfoss flush diaphragm pressure transmitters ( type MBS 

4010) were selected, which could measure the pressure within the range of 

0-10 bar. These transmitters can perform an accurate measurement for all 

conditions of testing and it is designed for use even under harsh 

environmental conditions. Also according to the manufacturer (CSE 

Industrial Electrical Distributers) the measurement error is ±0.3% and has an 

excellent vibration stability and robust construction. 

In order to make a robust pressure transmitter system, which can easily be 

mounted in any section within the flow lop, a flanged lining sleeve was 

designed an fabricated, as shown in Figure 6.31. The whole system consists 

of a 50 mm ID pipe section, which is pressed into a 90° Tee to provide a 

smooth internal surface and flanged at either ends using solvent PVC 

cement. The Tee is machine treated for easy insertion of the pipe section. A 

tapped cylindrical solid PVC bar is pressed into the vertical opening of the 

Tee and sealed with PVC solvent cement to prevent leakage. The 

remarkable advantages of this lining sleeve is that it allows easy connection 
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and disconnection of pressure transmitter by fitting it into the tapped solid 

PVC bar and can be joined to any desired section within the flow loop via the 

flanges. Similar lining sleeve is used for the connection of temperature 

transmitter in the vertical test section.  

Each pressure transmitter is connected to the Data Acquisition System 

(DAS), which sense the deflection of each transmitter by the flowing slurry 

and the data is generated in the form of current output. The data then can be 

converted to pressure data due to linear relationship between the current 

output and the pressure. 

6.6.6.6 Temperature measuring device 

Monitoring the operating temperature is an important task of any slurry flow. 

As any change in slurry temperature can affect the slurry viscosity and as a 

result this may have a dramatic effect on the slurry flow behaviour. 

In this study, a K-type thermocouple is used and mounted on the vertical 

section. It is also connected to the DAS, where the slurry temperature data is 

recorded. The working principle of this type of thermocouple is based on 

generating voltage, which is a function of temperature. The K-type 

thermocouple is very common and widely used. They are cheap and can be 

used to monitor the temperature range 0-100 °C (Pachowko, 2004). 

However, controlling the temperature was found to be costly and needles, as 

the time taking for each experiment was found to be rather short. Also the 

heat, which is produced by the dissipation energy input to the pump, was 

found to be very little and could not have a dramatic effect on the slurry’s 

viscosity. Moreover, pumping a chilled heat transfer fluid through the 

annulus of a double pipe heat exchanger can increase the cost of each 

experiment and occupy a significant area. Therefore, based on the above 

reasons, it was decided not use any heat exchanger in this study. However, 

as a safety precaution, the slurry temperature will still be monitored via the 

thermocouple. 
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Figure 6.31 Pressure and temperature transmitter spoolpiece 
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6.6.6.7 Data Acquisition System (DAS) 

A Data Acquisition System is used to acquire the real time measurement of 

the relevant parameters and quantities and presenting them on a personal 

computer.  

A National Instrument Field-Point (FP @ 129_11_241_2\FP-AI-111, 40-20 

mA) is used, which is connected to the Electromagnetic Flow meter (EMF), 

OPTIMASS Mass Coriolis Flow meter, six pressure transmitters and the 

thermocouple. The current output is powered by the Field-Point (FP-1600), 

10.100MPs Ethernet network interface  power point, which collects the data 

and present it in a Front Panel, a screen shot of the front panel is shown in 

Figure 6.32.  

 

 

Figure 6.32 Showing the LabVIEW front panel 

In order to receive the current input from the above instrumentations and 

convert to the desired measured parameters using scaling factor, a 

LabVIEW programme was written, as shown in Figure 6.33. It is worth 

mentioning that, for the conversion of the current input to the desired 

variables, it is assumed that all the instrumentations have a linear response. 

The current input of the EMF converted to slurry velocity (m/s), the current 

input of mass flow meter to slurry mass flow rate (kg/min), pressure sensor 

current input to slurry pressure (kPa) and the thermocouple current input to 

slurry temperature (°C). In each experiment the data is collected every 5 

seconds, they are then averaged at the end of each experiment. All the data 

is recorded in a data file that can be reviewed later and used for the 

analysis.
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Figure 6.33 Showing the LabVIEW programme
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6.6.7 Flow loop operation procedure 

Slurry transport is a complex operation that can easily divert from the steady 

state condition, which has a direct influence on the experimental data. In 

order to make sure that a good quality of experimental data is obtained, a 

careful operating procedure (or experimental method) has to be designed. 

According to Sundqvist (1996), slurry parameter measurements have to be 

carried out when the flow system has reached a steady state condition. In 

addition, as the flow loop is inclinable, the likelihood of arising problems is 

higher than when only a rigid horizontal or vertical line is used. Especially 

during shut down procedure, when the risk of blockage is higher, due to 

accumulation of solid particles at the pivot point. As previously mentioned, 

the main focus will be on the measurements of different slurry parameters 

such as pressure, temperature, flow rate (mean slurry velocity), in-situ and 

delivered solids concentration, solids velocity and slurry mass flow rate. 

Therefore, it is very important to ensure that the instrumentations used to 

measure these parameters are reliable and accurate. This can be fulfilled by 

testing and calibrating each instrument prior to any experiment. The general 

operating procedure (start up and shut down including draining procedure) is 

described below, the location of each controlling valve within the flow loop is 

highlighted in Figure 6.34 

To Drain

Mezzanine
Water 

supply line

7 m

Flush 

Line

Inclinable Section

Ground Floor

V1

V2

V3

V4

V5

Mixing 

Tank

Measuring 

Tank

Rigid Section

Centrifugal 

Pump

 

Figure 6.34 Schematic diagram of the inclinable loop piping 
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1. The inclinable section is set at 0° inclination angle from the horizontal. 

2. Assure that both valves V3 and V4 are closed. 

3. Open the gate valve V1 and fill the 500 litre mixing tank  with 100 litre 

of water, via the water flow meter 

4. Once the loop lines are open then it is possible to release valve V3 

5. Once valve V3 has been opened, start the centrifugal pump at a low 

flow rate via the Digi-drive frequency converter to allow the pump to 

reach its optimal conditions. 

6. Shut off valve V3 and then after a few seconds shut off the pump 

7. Open valves V3 and V4 and drain the contents of the tank 

8. Close valve V3 and V4 and refill the mixing tank with water, by 

opening valve V1 and record how much water has been added to the 

tank. Once the desired volume has been reached, close valve V1 and 

allow the level of the water to stabilise. 

9. The conductivity measurement of water, in the mixing tank, will be 

carried out, as this will be required for ERT reference measurement. 

10. Weigh about 25 kg of solid in a bucket. 

11. The stirrer is started at a low speed via the Digi-drive frequency 

converter  (around 80-100 rpm) and Pre-weighed sand is added to the 

mixing tank, in a controllable fashion, to achieve the desired 

concentration. 

12. The solids have to be added in 25 kg increments, ensuring that a 

uniform solid concentration is generated 

13. The stirrer speed is increased (up to a maximum of 400-450 rpm) until 

the particles are suspended homogeneously, and at the same time the 

solids are continuously added until the desired solid concentration is 

reached. 

14. Once the desired solid concentration is reached, valve V3 can be 

opened, and then the pump is switched on. The slurry is introduced to 

the flow loop and return to the mixing tank or measuring tank. 

However, a different procedure will be applied for each sand particle 

size, if sand used as solid particles, depending on the particle size 

distribution: 

 For medium sand: The exit valve to the mixing tank V3 is opened 

and the centrifugal pump is started via the Digi-drive frequency 

converter.    

 For coarse sand: The flush line will be opened (V2) first and the 

centrifugal pump is started via the Digi-drive frequency converter. 

Then after a few seconds the exit valve to the mixing tank (V3) will 
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be opened and the flush line valve (V2) will be closed. Carrying out 

this procedure, for coarse sand, ensures that the blockage in the 

suction line is avoided. As the finer particles flow through the flush 

line and lubricate the line beforehand, then the coarser particles will 

be following. In either case, when the centrifugal pump is started, 

the electrical power supply to the pump must be adjusted to the 

highest velocity mentioned in this study, so that a homogeneous 

flow in the flow loop is achieved.  

15. While the flow is circulating through the flow loop, the desired 

inclination angle is set via the winch remote control. 

16. Once the slurry reached the other end of the flow loop, it can either be 

returned to the mixing tank or diverted to the measuring tank. 

However, the flow must not be diverted to the measuring tank until the 

steady state flow is reached, as the accuracy of the data, particularly 

the delivered solids concentration and the flow rate may be in doubt. 

17. For the purpose of calibrating the flow meter and determining solid 

concentration, the measuring tank will be used; meaning the slurry is 

diverted to the measuring tank at the discharge point using the flow 

diversion system. Once the diversion process has finished and the 

level measurement is complete the contents are allowed to flow into 

the mixing tank via valve V5. 

18. Slurry flow rate (mean velocity), Pressure, temperature, slurry mass 

flow rate are recorded via the LabVIEW and the ERT measurements 

are carried out. 

19. It is important that initial tests are carried out at higher transport 

velocities, then gradually reduced to the lowest. The procedure of 

decreasing the mean slurry velocity is continued until the stationary 

bed is totally formed. However, the last measurement must be carried 

out as quickly as possible to avoid the blockage. Also, for each 

measurement taken, the slurry flow must be visually inspected through 

a transparent pipe section along with taking photographs if it is 

desired. However, it is expected that visual inspection will be almost 

impossible, as the media is totally murky.  

20. If another solids concentration is due to be considered in the test 

matrix, then more sand is added into the mixing tank, and the above 

procedure is repeated. However, each set of measurements must be 

carried out at different velocities, concentration and inclination angle, 

so that the influence of each parameter is determined. 
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21. Once all the tests have been carried out, the inclinable table is lowered 

back to 0° (horizontal) and the shut down procedure starts. 

 

The shut down and draining procedure is as important as start up procedure, 

it may even be more sensitive, due to clogging at the inlet of the inclinable 

U-shape section. The shut down and draining procedure is described below 

in a chronological order: 

 

1. At the end of all the tests, the inclinable table must be lowered to the 

horizontal position. 

2. Open V2 and V5, while the remaining valves (V2, V3 and V4) are 

closed. 

3. The flow velocity is adjusted to 2.5-3.0 m/s and the mixer is switched 

off, in order for the solid particles to settle at the bottom of the mixing 

tank. This way only the brine is flowing through the flow loop via V5 

and the solid particles are flushed from the loop into the mixing tank. 

4. Once the level of the mixing tank contents about to reach the flush-line 

inlet, V2 is fully opened to fill up the tank again with fresh water. 

5. The same flushing procedure is continued (2-3 times) until a clear flow 

is seen through the transparent pipe section of the flow loop. 

6. The pump is switched off, V1 is opened, V2 is closed and the mixer is 

switched on to achieve a reasonable homogeneous mixture in the 

mixing tank. The mixing process may take 2-3 minutes. 

7. V3, V4 and V1 are opened, while the mixing continues. At this step the 

first draining is carried out. 

8. Once the contents level reaches 2/3 of the tank height both valves, V3 

and V4, are closed, so the tank is filled up again with water to obtain a 

diluted mixture. 

9. Step 7 is repeated for the second draining process. The number of 

draining process depends on the solids throughput concentration. 

Based on previous experience, it was found that 2 times draining 

would be sufficient for 10% throughput concentration. 

10. At the last draining process, the tank must be well washed from the 

settled fine particles at the dead end of the mixing tank using the water 

supply hose. However, at this step the mixer has to be switched off. 

11. This step may not be necessary, however, it is preferable to fill up half 

of the tank with fresh water, while all valves are closed, except V1. 

Then the pump is switched on, V3 is opened for final flushing process, 
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including the measuring tank by diverting the flow for a couple of 

seconds. 

12.   The pump is switched off, V1 is closed, V3 and V4 are opened to 

empty the mixing tank and washing it. 

13. All the electrical instrumentations and equipments are switched off and 

secured. 

14. The deposited sand within the drainage system must be disposed off 

considering health and safety and environmental codes.  

6.6.8 Hydraulic and mechanical testing 

Before full operation of the whole flow loop, it is important to ensure that the 

system is functional in accordance with the design requirement, and also 

safe enough in accordance with the health and safety codes. Therefore, the 

hydraulic and mechanical testing of the flow loop, particularly the mechanical 

structure of the inclinable table and the flow through it, was performed. The 

structural testing was carried out by raising and lowering the inclinable table 

several times, considering the two extremes 0°, when the table is at 

horizontal position and 90°, when the table is at vertical position. In addition, 

several randomly chosen angles, within the aforementioned range, were 

also included into the test.  

However, it was very important to adhere to health and safety of everyone 

working or walking in the vicinity of the working are. Therefore, 48 hours 

before testing the whole system, the faculty staff and students were notified. 

Moreover, guards and warning signs were used during the test process. 

Each test involved the following checks and observations: 

 Visually checking the whole inclinable table, for swaying, deflection, 

strain at the pivot point, the connection point of the wire rope and 

general checking regarding the stability of the table in a raise and stop 

and lower and stop fashion. 

 The winch position and controlling the lifting and lowering process had 

to be well checked. 

 Examining the hooks for deformation and cracks. 

 Checking the telescopic push/stop system. 

 Visual inspection of the running rope.  

 The cables running along the table. 

 The flexible pipe and strain on the rigid pipes connected to it. 

 The bend in the flexible pipe and look for potential kinks throughout 

the designed inclination angle range. 
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 The stability of the pipeline on the table, especially at higher inclination 

angles 45°-90°. 

The hydraulic tests were initially carried out focusing mainly on leak test 

throughout, while the table was in horizontal position. Then the hydraulic 

testing was carried out at various inclination angles and various flow 

velocities, including the highest velocity, at which the highest pump 

frequency could be reached. All instrumentations, pressure transducers, 

thermocouple, Electromagnetic Flow meter, Coriolis mass flow meter, 

measuring tank and flow diversion system and the UDVP, were tested and 

the randomly measured data was recorded. The flow measurement test 

included the inspection and operation of the data acquisition system.  

The whole results of the testing procedure was found to be promising and it 

was finally concluded that the whole flow loop, including instrumentations 

and equipments, is perfectly safe and functioning with meeting all the design 

requirements and objectives for the intended application.  

6.7 Conclusions 

This chapter has highlighted the procedure and strategies used in the design 

and construction of inclinable multiphase flow system, including the detailed 

design of various equipments and instrumentations used to measure the 

desired parameters of flow. The selection of each instrumentations and their 

location within the flow loop have been based on slurry flow. The design and 

layout of the whole piping system have been described with consideration to 

the project design requirements and engineering rules. The structural 

design, fabrication and erection of tables, rigid and inclinable, have been 

presented in detail to generate a design procedure, along with associated 

work to facilitate the process of inclination up to 90° (vertical). The design 

and fabrication of pressure and temperature transmitter lining sleeve have 

been detailed, along with the design and fabrication of the UDVP spoolpiece 

to suit any potential future application. A general start up, shut down and 

draining procedure, based on slurry flow, has also been discussed. Finally, 

the mechanical and hydraulic testing of the whole system concluded that all 

the design requirements for the intended application have been met 

providing total functionality and safety for the future applications.  
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Chapter 7 

Automated horizontal flow regime recognition using 

statistical signal analysis of the ERT data 

This chapter presents a new method of flow regime recognition based on 

statistical signal analysis of the ERT data, along with writing a script using 

MATLAB so as to facilitate an automated recognition. An evaluation of the 

recognition scheme is also described with highlighting the success rate 

based on different sands and different flow conditions. 

7.1 Introduction  

Flow regime recognition is not only useful for characterization of the flow, but 

also for the purpose of modelling and for flow meters, as most of flow 

meters, especially the ERT as discussed previously in Chapter 5, are flow 

regime dependent. In order to develop a flow meter, it is paramount to 

determine the flow regime present in the pipeline, which enables accurate 

measurement and selection of the optimal method for flow measurement.   

This investigation aimed at developing a method for recognition of slurry 

(sand/water) flow regimes occurring in the pipeline and coding a program 

based on the proposed method. Nevertheless, the modelling aspect to 

correct the ERT measurement is not dealt with in this study.  

Usually the flow regimes are recognised and distinguished using either direct 

or indirect recognition method. The direct methods involve a visual 

observation of the flow  through a transparent pipe section and/or the 

reconstructed images or real photographs of the flow within horizontal 

pipeline. It is quite clear that as slurries are usually opaque and contained in 

opaque enclosures, thus, the direct methods are very difficult if not 

impossible. Also, even if the pipeline operator is able to visualise the flow 

within the pipeline, the distinction between the flow regimes is dependent on 

the operator bias. Therefore, the recognition of the prevailing flow regime 

requires an indirect method, which moves away from the operator bias and 

based upon a measurement scheme and flow feature extraction, which 

related to the distribution of solid particles across the pipe cross-section 

whether the pipe wall is transparent or opaque.  

A new indirect method for recognition of the active flow regime using 

statistical signal analysis of the ERT data (conductivity) has been proposed. 
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The zoned average conductivity of five zones, along the vertical centreline of 

the tomogram is considered. Mesh (21 cells) of the regionisation scheme, 

which is embedded in the p2000 software, described in Chapter 3, is 

selected. The ERT data can undoubtedly reveal key flow features, which 

would enable the recognition of the prevailing flow regime. The main 

features are extracted from both, time domain signal and frequency domain 

of the signal. Statistical spectrum analysis of the signal, such as Power 

Spectral Density (PSD) of the signal, is rendering significant flow features. 

Besides, a direct recognition method was attempt. The direct method 

involved the observation of flow through a transparent pipe section, mounted 

in the horizontal pipeline, along with the real photographs of flow captured 

using a digital camera. It is worth mentioning that the direct method is used 

as a mean of comparison for the proposed indirect method. 

MATLAB has been used for coding the program to facilitate automatic 

recognition of the active flow regime. The method has been evaluated and 

the recognition rate has been determined at 90.32%. An automated 

visualisation of the solids volumetric concentration has been included into 

the main program, through which the local solids distribution can be 

visualised and mean solids concentration is automatically calculated and 

displayed. 

7.2 Test strategy 

A set of experiments were carried out using a pilot-scale slurry flow loop 

shown in Chapter 4. The horizontal line of the flow loop made the test 

section of the experiments, in which different flow regimes were generated 

by altering the slurry velocity. In order to cover most of typical slurry flow 

regimes, a relatively wide range of superficial velocity were selected to pump 

two sands, medium and coarse, each with different throughput volumetric 

concentration, 2% and 10%. At the beginning of each test the transport 

velocity (mean slurry velocity) was nominally set to 5 m/s, then it was 

incrementally decreased until the transport velocity reached 1.5 m/s. After a 

steady state pressure gradient was observed on the LabVIEW front panel 

the use of Fast Impedance Camera System (FICA) is attempted to measure 

a cross-sectional pipe tomogram by collecting blocks of 8000 frames for 

each flow condition. Since the data collection speed for FICA system is 

around 1.15 ms/frame, then 9.2 seconds are required for collection of 8000 

frames in real time. A 1.2 m transparent pipe section were included into the 

test section, so as to visually inspect the active flow regime and note all the 
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phenomenon occurring in real time, such as type of flow regime seen, 

measuring the height of the bed etc. Also for each measurement test 

photographic images of the flow were captured for later comparison and 

evaluation of the proposed method. 

7.3 Automated flow regime recognition 

In order to achieve automatic recognition of the prevailing flow regime in 

horizontal slurry flow, two key stages had to be taken. First is developing a 

recognition method, for which statistical signal analysis of the ERT data has 

been proposed, second is coding a program; which would facilitate 

automatic recognition of the prevailing flow regime. 

The following typical slurry flow regimes were considered into the recognition 

scheme: 

1. Homogeneous. 

2. Pseudo-homogeneous. 

3. Heterogeneous. 

4. Moving bed. 

5. Stationary bed. 

Statistical analysis of the conductivity data within each zone were carried out 

to provide a quantitative comparison of the flow regimes, thus reducing the 

subjectivity associated with recognising each flow regime. In order to 

achieve this objective the following stages were adopted: 

1. Experimental ERT measurement and generating 21 cell zoned 

average scheme. 

2. Statistical signal analysis and flow feature extraction. 

3. Threshold indication for each flow regime. 

4. Decision making. 

5. Program coding. 

6. Running and testing the new technique, and also determining the 

recognition rate (error analysis). 

 

7.3.1 Experimental ERT measurement 

The ERT measurements were taken for each of the sand used in the 

experiments at two different throughput concentration, 2% and 10%, and at 

different slurry velocity so as to generate a range of flow regimes considered 

in the investigation. Since each measurement block yields a huge amount of 
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data (i.e. 8000 frames each frame at 316 data pixel), then it was decided to 

use mesh/21 cell zone scheme, as shown in Figure 7.1, which made the 

basis for the statistical analysis of the conductivity data. The 21 cell 

averaged conductivity tomogram were exported using P2000 software. 

Since the flow regimes in horizontal settling slurry flow are influenced by 

gravity then it was decided to consider only the vertical 5 cells on the central 

axis of the tomogram. The analysis of only these 5 zones will obviously 

produce all of the characteristics relevant to the active flow regime. Upon the 

ERT measurements, two files were exported (zave.csv & conc.csv), which 

would later be used for automated flow regime recognition and visualisation 

and measuring mean local solids concentration respectively. 

 

 

Figure 7.1 Mesh/21 cell zone scheme 

 

7.3.2 Statistical signal analysis and flow feature extraction 

7.3.2.1 Signal analysis in the time domain  

The analysis of the data for each cell mentioned above was carried out by 

considering the change in conductivity relative to the reference. The signal, 

which is buried in a noisy time domain were plotted for each condition, an 

example of which is shown in Figure 7.2. 

From the relative conductivity data within each zone at different slurry 

velocity shown above it is somehow difficult to extract any specific feature 

that would facilitate the recognition of the prevailing flow regime. 

Nonetheless, it can be seen that by reducing the slurry velocity the 

difference or gap between the conductivity of slurry at the top of the pipe and 

the conductivity at the bottom half of the pipe increases. 

 

 

Z1 

Z2 

Z3 

Z4 

Z5 



- 265 - 
 

  

 

 

0 

0.2 

0.4 

0.6 

0.8 

1 

0 2000 4000 6000 8000 

R
e
la

ti
v

e
 C

o
n

d
u

c
ti

v
it

y
 

Frame Number 

a 

Zone 1 

Zone 2 

Zone 3 

Zone 4 

Zone 5 

0 

0.2 

0.4 

0.6 

0.8 

1 

0 2000 4000 6000 8000 

R
e
la

ti
v

e
 C

o
n

d
u

c
ti

v
it

y
 

Frame Number 

b 

Zone 1 

Zone 2 

Zone 3 

Zone 4 

Zone 5 

0 

0.1 

0.2 

0.3 

0.4 

0.5 

0 2000 4000 6000 8000 

R
e
la

ti
v

e
 C

o
n

d
u

c
ti

v
it

y
 

Frame Number 

c 

Zone 1 

Zone 2 

Zone 3 

Zone 4 

Zone 5 

0 

0.1 

0.2 

0.3 

0.4 

0.5 

0 2000 4000 6000 8000 

R
e
la

ti
v

e
 C

o
n

d
u

c
ti

v
it

y
 

Frame Number 

d 

Zone 1 

Zone 2 

Zone 3 

Zone 4 

Zone 5 



- 266 - 
 

  

 

Figure 7.2 Showing the time domain signal of the ERT measurement for 
coarse sand at 10% throughput concentration: (a) 4.5 m/s, (b) 4.0 m/s, 

(c) 3.5 m/s, (d) 3.0 m/s, (e) 2.5 m/s, (f) 2.0 m/s, (g) 1.5 m/s 

In other words, by altering the transport velocity the mean conductivity goes 

through changes in each zone. It is apparent that the mean conductivity of 

each zone is related to the solids volume fraction. This is due to the fact that 

by reducing the velocity the solid particles migrate towards the bottom of the 

pipe, which results in higher conductivity at the top half of the pipe and lower 

at the bottom half. Based on this phenomenon, this feature could be 

considered as an element in the recognition scheme. Moreover, it is quite 
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evident that at 1.5 m/s slurry velocity; the signal of zone 5 decreases its 

fluctuation significantly. It can be seen almost as a straight line. It is worth 

pointing out that the visual observation of the flow during the experiment 

revealed that there was a packed stationary bed at the bottom of the pipe, 

the thickness of which was measured to be 7.5 mm. It can then be 

concluded that, based on the form of the signal in zone 5 at 1.5 m/s, the flow 

regime is stationary bed. By further analysis of the signal of zone 5 it was 

found that the standard deviation decreases with decrease of velocity. This 

is an indication of reduction of turbulent fluctuation in the conductivity. For 

example, for the velocity range 1.5-4.5 m/s the standard deviation range was 

found to be within 0.0019-0.2. Therefore, a threshold can be assigned for 

stationary bed, based on the standard deviation of zone 5. Also, the relative 

difference between the slurry conductivity at the top half of the pipe and the 

bottom half of the pipe could be used as a threshold for every flow regime, 

as shown below: 

 

  
       

  
  

 
 

 

(7.1) 

 

 

  
 
  
        

 
 

 

(7.2) 

 

  
 

     
 

 

(7.3) 

 

 Where: 

A= Average slurry conductivity at the top half of the pipe. 

B= Average slurry conductivity at the bottom half of the pipe. 

C= Ratio of average conductivity of the top half of the pipe to the average 

conductivity across the pipe cross-section. 

Z1= Average conductivity in zone 1. 
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Z2= Average conductivity in zone 2. 

Z3= Average conductivity in zone 3. 

Z4= Average conductivity in zone 4. 

Z5= Average conductivity in zone 5. 

As the significant feature and relevant information regarding every flow 

regime is also contained in zone 3, therefore, this zone,  which splits the 

pipe cross-section in the middle, has also been taken into account in the 

analysis. One half of zone 3 is included into the top half of the pipe, whereas 

the other half is incorporated into the mean conductivity of the bottom half of 

the pipe. Therefore, based on the value of C, a threshold can be assigned 

for the flow regimes under consideration. However, in order to assign the 

value of C to every flow regime some initial information regarding the 

boundaries between the investigated flow regimes is required. In order to 

define these boundaries it is paramount to know the transitional velocities for 

the condition used in this investigation.  Therefore, this information regarding 

the boundaries of flow regimes was experimentally obtained, through  visual 

observation of slurry flow and photographic evidence of the active flow 

regime for each condition. It is worth mentioning that the identification of 

these boundaries, at which one flow regime changes to another, can be 

quite difficult by conventional visual observation of flow through a 

transparent pipe section. This is obviously due to the opacity of slurry and 

complex nature of slurry flow.  Therefore, the transitional regime boundaries 

were arbitrary widened (±0.3 m/s) to include the velocity at which one flow 

regime changes to another.    

7.3.2.2 Signal analysis in the frequency domain 

In order to remove or at least reduce the subjectivity in recognizing the 

active flow regime, it was decided to extract further features of the signals, 

which would make another condition in decision making within the flow 

recognition scheme. It is evident that the signal in the time domain does not 

reveal enough information regarding the frequency component or 

characteristics of the signal. Therefore, Fast Fourier Transform (FFT) of the 

noisy original signal was taken to display the signal in frequency domain. 

MATLAB was used for the FFT analysis of the signal and the code is shown 

below: 

 

 



- 269 - 
 

  

T = 0.0015; % Sample Time 
Fs = 1/T; % Sampling Frequency 
L = 8000; % Length of Signal 
% Sum of a 50 Hz sinusoid and a 120 Hz sinusoid 

  
NFFT = 2^nextpow2(L); % Next power of 2 from length of y 

  
V = fft (Z1,NFFT)/L; % Zone 1 
W = fft (Z2,NFFT)/L; % Zone 2 
X = fft (Z3,NFFT)/L; % Zone 3 
Y = fft (Z4,NFFT)/L; % Zone 4 
Z = fft (Z5,NFFT)/L; % Zone 5 

  
f = Fs/2*linspace(0,1,NFFT/2+1); 

  
% Plot single sided amplitude spectrum 
plot(f,2*abs(V(1:NFFT/2+1)),f,2*abs(W(1:NFFT/2+1)),f,2*abs(X(1:NFFT/

2+1)),f,2*abs(Y(1:NFFT/2+1)),f,2*abs(Z(1:NFFT/2+1))) 

  
plot(f,2*abs(V(1:NFFT/2+1))) 
plot(f,2*abs(W(1:NFFT/2+1))) 
plot(f,2*abs(X(1:NFFT/2+1))) 
plot(f,2*abs(Y(1:NFFT/2+1))) 
plot(f,2*abs(Z(1:NFFT/2+1))) 
title('Single-sided amplitude spectrum of noisy ERT signals-2.0 

m/s') 
xlabel('Frequency (Hz)') 
ylabel('Amplitude') 
ylabel('|Y(f)|') 
axis([0 50 0 0.06]) 

  
legend('Zone 1','Zone 2','Zone 3','Zone 4','Zone 5'); 

  
legend('Zone 1') 
legend('Zone 2') 
legend('Zone 3') 
legend('Zone 4') 
legend('Zone 5') 
fprintf('%8.3f, %8.3f\n',f, 2*abs(V(1:NFFT/2+1))); 

 

The frequency components of each zone for each condition were 

determined, and an example of coarse sand at 10% throughput 

concentration and 4.0 m/s is shown in Figure 7.3. 
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Figure 7.3 Showing the frequency component of the signal in each zone for 
flowing coarse sand at 4 m/s. (a) Zone 1, (b) Zone 2, (c) Zone 3, (d) 

Zone 4 and (e) Zone 5 

By observing the signal in the frequency domain the main frequency 

components can well be identified along with amplitude of the signal. A 

zoomed plot example of the FFT is shown in Figure 7.4, which reveals the 

signature of flow in each zone. 

 In order to make the basis of the recognition scheme, distinctive features 

are required to be identified. A journey through literature revealed that there 

is a number of methods available for extracting flow features from flow 

process measurements, such as Signal-to-Noise ratio (SNR), Power 

Spectral Density Functions (PSDF), Probability Density Functions (PDF), 

Auto Correlation Functions (ACF) etc. (Lowe and Rezkallah,1999). 
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Figure 7.4 Showing a zoomed frequency components of zones 1, 2 and 4 
wave form, obtained from FFT, for flowing coarse sand at 4.0 m/s 

 

However, in this study the statistical analysis and power spectral analysis 

are employed to extract the flow information from the time series and 

frequency domain respectively. Therefore, it was decided to carry out a 

spectrum analysis of the signal, in which an attempt is made to measure the 

signal power. The spectrum of a signal shows how much power is contained 

in each of its components or frequency (Stoica and Moses, 2005). In order to 

estimate the power of any component of a signal a plot is required, in which 

the x-axis is the frequency components and on y-axis presents the power 

spectrum of the signal. Some of the most important methods of the spectrum 

objects are Power Spectral Density (PSD), Mean Square Spectrum (MSS) 

and Pseudo-spectrum. The power spectrum is also referred to as the Power 

Spectral Density (PSD). PSD is one of the most important method of 

spectrum analysis, as it highlights the strong and weak variations (energy) of 

a signal and also can be used for oscillatory and non-oscillatory signals in 

the time series data (Chatfield, 1989). 

In statistical signal processing, the power spectrum of a signal is estimated 

from a sequence of time samples of the signal. In other words, the frequency 

content of the signal is characterised through spectral density. Generally the 

techniques to estimate the spectrum of a signal can fall into the scopes of 

two class methods, parametric and non-parametric methods. The theory and 

mathematical definition of these techniques are avoided in this study, 

however, the detailed description and theory of each technique can be found 
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in Stoica and Moses (2005). Spectral Analysis and Time Series. Academic 

Press). The spectrum of a signal is defined by the plot, in which the 

magnitude and phases of different frequency components are clearly 

indicated. In order to find spectrums of a signal the FFT has to be employed 

(Cerna and Harvey, 2000). In the analysis used in this study, the periodgram 

technique is adopted, which is considered as a non-parametric method and 

a common spectral estimator. The selection of periodogram is based on the 

fact that it is robust, simple, it can provide reasonably high resolution for a 

very long data length and computationally cheap for estimating the power 

spectrum of a signal. It is worth pointing out that the power spectrum does 

not readily determine the average power of the signal, but only power of a 

frequency component. Therefore, the area under the curve of PSD of a 

signal has to be integrated to obtain the average power of the signal under 

analysis. In other words, the area under the PSD curve renders the average 

power of the signal. The PSD of the signal is estimated by the periodogram, 

which uses directly sampled FFT. The PSD is a measure of power per unit 

of frequency, hence it has units of power/frequency. The MSS, on the other 

hand, is a measure of power at a specific frequency and has units of power. 

As previously mentioned the spectrum view is clearly have more information 

than the time domain. In order to determine the statistics of each signal in 

each zone, the plot of MSS were produced so as to estimate the relationship 

of the signal power and transport velocity at a specific frequency, as shown 

in Figures 7.5 and 7.6. Due to the vast amount of plots the analysis of only 

two conditions (1.5 m/s & 2.0 m/s) are shown here. 

By observing the MSS plots, we can see that there is a relation between the 

velocity and the power of the signal. The power of the signal increases with 

increase of velocity. Since any reduction in slurry velocity can influence the 

amplitude, and the difference can be clearly seen from one zone to another 

or one flow condition to another, thus a distinctive feature can be extracted 

to make the basis of the recognition scheme. 
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Figure 7.5 Showing the periodogram Mean-Square Spectrum for each zone 
at 1.5 m/s 
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Figure 7.6 Showing the periodogram Mean-Square Spectrum for each zone 
at 2 m/s 

This feature can be used to relate the signal power at the top half of the pipe 

to the signal power at the bottom half of the pipe. In other words, The 

average signal power decreases with increase of solid particles in each 

zone. Therefore, a threshold can be assigned, based on the relative 

difference between the signal power at the top half of the pipe and the 

bottom half of the pipe for each flow regime. 
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However, in order to determine the threshold for each signal, the average 

power of each signal is required. Since the methods of the PSD include a 

plot and average power. Then the PSD is considered to return the average 

power of each signal. The average power method uses a rectangle 

approximation to the integral to calculate the signal’s average power using 

the PSD data. Therefore, the following steps were followed to calculate the 

average power of each signal: 

1. Creating a periodogram spectrum with a Hamming window. 

2. Create a power spectral density object. 

3. Set the options for the periodogram. 

4. Calculate the PSD. 

5. Calculate the average power. 

Once the average power of each zone is calculated, then the comparison is 

made between the signal power at the top half of the pipe and the power at 

the bottom half of the pipe. This can be done by calculating the ratio of the 

average power at the top of the pipe (P1, P2 & P3/2) to the average power 

across the five zones (or pipe cross-section); as shown below: 

 

  
       

  
 
 

 
 

 

(7.4) 

 

  
 
  
        

 
 

 

(7.5) 

 

  
 

     
 

 

(7.6) 

 

Where: 

E= Average signal power at the top half of the pipe. 

F= Average signal power at the bottom half of the pipe. 

D= Ratio of average signal power of the top half of the pipe to the average 

signal power across the pipe cross-section. 

P1= Average signal power in zone 1. 

P2= Average signal power in zone 2. 
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P4= Average signal power in zone 4. 

P5= Average signal power in zone 5. 

Again as the significant feature and relevant information regarding every flow 

regime is also contained in zone 3. Therefore, this zone,  which splits the 

pipe cross-section in the middle, has also been taken into account in the 

signal analysis. One half of zone 3 is included into the top half of the pipe, as 

previously mentioned in the time domain signal analysis, whereas the other 

half is incorporate into the bottom half of the pipe. Therefore, based on the 

value of D, a threshold can be assigned for the flow regimes considered in 

this investigation. However, in order to assign the value of D to every flow 

regime some initial information regarding the boundaries between the 

investigated flow regimes is required. In order to define these boundaries it 

is paramount to know the transitional velocities for the condition used in this 

investigation.  Therefore, the same information used in the analysis of the 

signal in the time domain, is also considered here to assign the boundaries 

between the flow regimes. Obviously this information has been obtained 

through visual observation of slurry flow and photographic evidence of the 

active flow regime for each condition. It is worth mentioning that the 

identification of these boundaries, at which one flow regime changes to 

another, can be extremely difficult by conventional visual observation of flow 

through a transparent pipe section. This is obviously due to the opacity of 

slurry and complex nature of slurry flow. Therefore, the transitional regime 

boundaries were arbitrary widened (±0.3 m/s) to include the velocity at which 

one flow regime changes to another.    

The significant feature and relevant information regarding every flow regime 

can clearly be extracted by comparing the top half with the bottom half of the 

pipe. This can clearly be seen in the plot of power against the 5 zones, as 

shown in Figure 7.7. 

Figure 7.7 showing the average signal power, for 10% coarse sand, against 

each zone as a function of velocity. It is evident that the velocity influences 

the signal power. By observing the plot, it can be seen that at the bottom of 

the pipe the average power of the signal decreases with decrease of 

velocity. At the top of the pipe, on the other hand, the average power of the 

signal increases with increase of velocity. This is clearly due to the 

difference in solids concentration between the top and bottom of the pipe. 
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Figure 7.7 The average signal power against the 5 zones as a function of 
transport velocity 

 

7.3.3 Threshold indication of the signal 

7.3.3.1 Threshold indication of the signal (Relative Conductivity) 

The information obtained from visual observation of flow regarding the 

transitional velocities has been used to determine the boundaries between 

flow regimes and the range of C for each flow regime. The threshold of C 

was determined by plotting the transport velocity against the relative 

difference between the top and the bottom of the pipe (C) for every condition 

as shown in Figure 7.8 

Figure 7.8 is showing the value of C in each flow regime and every 

condition. The shaded areas represent the transitional regime boundary, 

which are also taken into account in the recognition scheme. Therefore, the 

threshold can be assigned for each flow regime/transitional region, as shown 

in Table 7.2. 
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Figure 7.8 Showing the threshold of the signal based on the relative 
difference in the conductivity of the top and bottom of the pip. (P) 

Pseudo-homogeneous, (HET) Heterogeneous, (MB) Moving Bed, (SB) 
Stationary Bed 

 

Table 7.2 Showing the range of C value for every flow regime or transitional 
region 

Flow Regime C range value 

Homogeneous 0.499≤C<0.501 

Pseudo-homogeneous 0.501≤C<0.505 

Transitional Boundary  
(Pseudo-homogeneous Heterogeneous) 

0.505≤C<0.510 

Heterogeneous 0.510≤C<0.532 

Transitional Region  
(Heterogeneous-Moving Bed) 

0.532≤C<0.540 

Moving Bed 0.540≤C<0.652 

Transitional Region  
(Moving Bed-Stationary Bed) 

0.652≤C<0.657 

Stationary Bed 0.657≤C 
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7.3.3.2 Threshold indication of the signal (Average Power) 

The information obtained from visual observation along with the photographs 

of the flow in terms of the transitional velocities has been used to determine 

the boundaries between the flow regimes and specify the range of D values 

for each flow regime. The threshold of D value was determined by plotting 

the transport velocity against the ratio of average power at the top of the 

pipe to the average power at the bottom of the pipe for every condition, as 

shown in Figure 7.9. 

Figure 7.9 is showing the value of D within each flow regime and every 

condition. The shaded areas represent the transitional regime boundary, 

which are also included into the recognition scheme. Therefore, the 

threshold can be assigned for each flow regime/transitional region, as shown 

in Table 7.3. 

 

 

Figure 7.9  Showing the threshold of the signal based on the difference in 
the average power of the signal at the top and bottom of the pipe. (P) 

Pseudo-homogeneous, (HET) Heterogeneous, (MB) Moving Bed, (SB) 
Stationary Bed 
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Table 7.3 Showing the range of D value for every flow regime or transitional 
region 

Flow Regime D range value 

Homogeneous 0.496≤D<0.504 

Pseudo-homogeneous 0.504≤D<0.510 

Transitional Boundary  
(Pseudo-homogeneous Heterogeneous) 

0.510≤D<0.520 

Heterogeneous 0.520≤D<0.555 

Transitional Region  
(Heterogeneous-Moving Bed) 

0.555≤D<0.570 

Moving Bed 0.570≤D<0.770 

Transitional Region  
(Moving Bed-Stationary Bed) 

0.770≤D<0.780 

Stationary Bed 0.780≤D 

 

7.3.4 Decision making 

The decision on the type of the active flow regime, including transitional 

regions, will be based on the assigned threshold values of C and D, as 

demonstrated by the flow chart shown in Figure 7.10. The flow chart 

representing the automated flow regime recognition process along with the 

visualisation of solids volume fraction across the pipe cross-section via 2D 

and 3D plots.  In order to remove or reduce the subjectivity in recognizing 

the prevailing flow regime, or to make the best decision, the two threshold 

values were considered together at the same time, i.e. based on the 

assigned  threshold values for each flow regime, the value of C AND D must 

apply to the output recognized flow regime. This implies that if one of the 

values is incorrect then it will not return any result, instead the returning 

message would be “Could not determine the flow regime”. 

Also, since A is the product of the ratio of the mean conductivity of the top 

half of the pipe to the mean conductivity of the pipe cross section (A+B), 

ideally one would think that at homogeneous flow regime, A should be equal 

to 0.5. However, as this is highly unlikely to happen in real world, therefore, 

a range of threshold values of C and D has been assigned,  within which 

homogeneous flow regime would be returned. The threshold values of C has 

been extended by ±0.001 and D by 0.004. Thus, in order for the recognition 

scheme to return homogeneous flow regime, the value of C has to be 
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between 0.499 and 0.501 and the value of D has to be between 0.496 and 

0.504. 

START

Input ERT 

Data 

(zave.csv)

T=0.0015

Fs=1/T

L=8000

Zi = Average(Zf)

i = 1, 2, 3, 4, 5.

f = 1, 2, ....,7999

Spectral Analysis

Pi=avgpower(hpsdi)

i = 1, 2, 3, 4, 5.

E = P1+P2+(P3/2)

F = (P3/2)+P4+P5

D = E/(E+F)

0.499 ≤ C < 0.501

&

0.496 ≤ D < 0.504

A = Z1+Z2+(Z3/2)

B = (Z3/2)+Z4+Z5

C = A/(A+B)
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&

0.504 ≤ D < 0.510

Pseudohomogeneous

Homogeneous
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&
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Transitional Regime Boundary
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G = std (Z5)

Yes

No

Yes

No

Yes

No

A

 



- 283 - 
 

  

0.540 ≤ C < 0.652

&

0.570 ≤ D < 0.770

Moving Bed

 0.657 ≤ C

&

 0.780 ≤ D

&

G < 0.003  

END
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(Play Warning Sound)
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Figure 7.10 Sequential flow chart of the recognition process 
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As the transitional flow regime boundaries are very difficult to define, 

therefore, the transitional velocity, at which one flow regime changes to the 

next, has been corrected by ±0.3 m/s.   

Since the stationary bed is the most sensitive flow regime and undesirable 

by many industries, then another condition has been assigned along with 

both conditions (C & D). The third condition is the standard deviation 

(STDEV) of the signal. As previously discussed, once a packed stationary 

bed is formed at the bottom of the pipe (zone5), then the signal in zone 5, 

unlike any other zones or conditions, does not show a turbulent fluctuation. 

Therefore, in order to determine that the flow regime is stationary bed, three 

conditions have to be met (C, D and G). G returns the standard deviation of 

the signal in zone5. Based on the experimental data and visual observation, 

the threshold for the standard deviation of the signal in zone 5 has been 

assigned as an arbitrary value (G<0.003), which determines stationary flow 

regime. Due to the sensitivity of this type of flow regime a warning sound 

(alarm) is included so as to warn the operator.  

7.3.5 Program coding 

MATLAB was used to code the program for automated flow regime 

recognition. The script of which is shown in Appendix D.  

In order to determine the active flow regime, all that is required is to import 

the ERT measurement data (conductivity) in the form of  zave. csv file, which 

is exported from the P2000 . It has been noted that, once the program is run, 

the elapsed time for determining the active flow regime is 30-35 s. This is 

due to the large amount of conductivity data in the zave file for 8000 frames. 

However, if on-line recognition of the flow regime is adopted, then it may not 

be necessary to input such a large data. The author believes that in order to 

continuously determine the flow regime, every 1000 frames would be 

sufficient. Since FICA system measures 8000 frames per second, then 1000 

frames can be acquired in 0.125 s. 

The code has been developed in such a way not only render the recognition 

of the active flow regime, but also to visualise the distribution of the solid 

particles across the pipe cross-section and measure the mean 

concentration. Therefore, along with the conductivity data (zave.csv), the 

concentration data (conc.csv) has also to be imported. In other words, by 

importing the conductivity data in the form of zave.csv file and concentration 

data in the form of conc.csv file, active flow regime is determined, 2D and 3D 

concentration profile is generated automatically, mean solids local 
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concentration is automatically calculated and displayed on the screen along 

with many other data statistics such as minimum solids local concentration, 

maximum solids concentration etc.  

It is worth mentioning that the script, mentioned in Appendix D, is applicable 

for an electrode configuration, where the electrode number 1 positioned on 

the top of the pipe and the numbering continues clockwise viewing the 

direction of flow, as shown in Figure 7.11.  
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Figure 7.11 Electrode configuration for flow regime recognition  

 

This configuration would obviously facilitate the importing concentration and 

conductivity data. In other words, this type of electrode configuration 

facilitate reading a range of consecutive columns in the conc.csv file rather 

than taking random columns, which is highly likely to increase the elapsed 

time of the computing. Since only the vertical centreline of the tomogram is 

considered for the purpose of flow regime recognition and plotting and 

measuring concentration, then it is not necessary to acquire all the data. 
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7.3.6 Running the program 

Once the two files (zave.csv & conc.csv) are imported, the program can be 

run, immediately after which a wait-bar pops up delivering the message 

“Please wait...computation in progress”, as shown in Figure 7.12. First 

computation for flow regime recognition is carried out  and the message is 

displayed within a massage box, then the computation continues to display 

solids volumetric distribution in the form of graph. 

 

 

Figure 7.12 Initial running the program 

 

After 30-35 seconds elapsed a message box pops up mentioning the type of 

prevailing flow regime, as shown in Figure 7.13.  Each time the flow regime 

is determined a beep sounds, except for stationary bed flow regime, for 

which a warning sign and a suitable warning alarm sounds for 5 seconds to 

warn and draw the attention of the slurry line operator. 

Immediately after displaying the active flow regime, another wait bar is 

displayed carrying the message “Please wait...Solids concentration 

distribution is displayed shortly”. Then two interactive graphs are displayed 

(2D and 3D), which represent the distribution of the volumetric solid fraction. 

This can be seen in Figures 7.14 & 7.15. 
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Figure 7.13 Message box conveying the result of flow recognition 
computation 

 

 

 

 

Figure 7.14 Wait-bar showing computation in progress 
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Figure 7.15 2D & 3D display of solids volumetric concentration distribution 
plot 

 

The local solids concentration is automatically calculated and displayed on 

the graph. Also by going to Tools >Data statistics a table box is opened, 

which displays all the statistics regarding the concentration data (x-axis), 

such as minimum concentration, maximum concentration, mean solids local 

concentration etc. Each of statistical data regarding local solids 

concentration can be displayed on the graph by ticking the box against the 

required statistics. These are shown in Figures 7.16.  

 

 

Figure 7.16 Display of solids local volume fraction distribution and data 
statistics 
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7.4 Evaluation of the method 

In order to evaluate the recognition method, 31 test conditions were carried 

out within the range of velocity 1.5-5 m/s, which would undoubtedly cover all 

flow regimes considered in this recognition scheme. Different solid particle 

size (coarse & medium) at two different throughput concentrations (2% & 

10%) were also used to evaluate the effect of particle size and solids 

concentration upon the recognition scheme. A summary of the evaluation 

results is demonstrated in Table 7.4, while the recognition results for 

different conditions are highlighted in Table 7.5.  

Since the recognition decision is based on the analysis of the zones across 

the vertical centreline of the pipe cross-section, therefore it is believed that it 

can be applied on any pipe size conveying slurry. The results of the 

recognition method have been compared to the photographs of the flow and 

visual observation.  

By observing the results in Table 7.5, it can be seen that out of 31 tests, the 

flow regime could not be determined or correctly determined only for three 

conditions. This error could be due to some systematic error in the original 

conductivity data input to the test or the result of visual observation may 

have been wrongly determined. The latter reason is more plausible due to 

opaque and murky nature of slurry, especially sand/water flow.  However, a 

future investigation is recommended to determine the source of this error. 

 

Table 7.4 Summary of recognition results 

Total number of tests 31 

Correct 28 

Incorrect or unrecognised 3 

Success rate 90.32% 

Rate of error 9.68% 
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Table 7.5 Recognition results for different flow conditions 

Sand 
Test 
No. 

Transport 
Velocity 

(m/s) 

Actual Flow 
Regime 

C D 
Recognised Flow 

Regime 
2
%

 M
e

d
iu

m
 S

a
n

d
 

1 4.97 Transit.(P-HET) 0.503 0.506 P 

2 4.53 Transit.(P-HET) 0.504 0.508 P 

3 4.02 Transit.(P-HET) 0.505 0.511 Transit.(P-HET) 

4 3.49 Transit.(P-HET) 0.508 0.514 Trans.(P-HET) 

5 3.05 HET 0.510 0.522 HET 

6 2.52 HET 0.518 0.536 HET 

7 2.06 Transit.(HET-MB) 0.526 0.553 HET 

8 1.49 MB 0.529 0.555 Undetermined 

1
0
%

 M
e
d

iu
m

 S
a

n
d

 

9 4.96 Trans.(P-HET) 0.516 0.532 HET 

10 4.59 HET 0.522 0.546 HET 

11 4.06 HET 0.533 0.564 Transit.(HET-MB) 

12 3.49 Transit.(HET-MB) 0.545 0.588 MB 

13 3.04 Transit.(HET-MB) 0.558 0.612 MB 

14 2.52 MB 0.577 0.647 MB 

15 2.01 MB 0.585 0.6604 MB 

16 1.52 MB 0.593 0.672 MB 

2
%

 C
o
a
rs

e
 S

a
n
d

 

17 4.93 HET 0.519 0.538 HET 

18 4.36 HET 0.524 0.549 HET 

19 4.11 HET 0.527 0.5546 HET 

20 3.52 Transit.(HET-MB) 0.533 0.572 Undetermined 

21 3.11 MB 0.540 0.581 MB 

22 2.52 MB 0.552 0.603 MB 

23 2.00 MB 0.553 0.597 MB 

24 1.52 MB 0.581 0.655 MB 

1
0
%

 C
o

a
rs

e
 S

a
n
d

 25 4.76 HET 0.563 0.624 MB 

26 4.14 Transit.(HET-MB) 0.587 0.664 MB 

27 3.40 MB 0.620 0.722 MB 

28 2.94 MB 0.630 0.731 MB 

29 2.49 MB 0.626 0.727 MB 

30 2.20 MB 0.647 0.760 MB 

31 1.45 SB 0.673 0.798 SB 

P: Pseudo-homogeneous  MB: Moving Bed   HET: Heterogeneous 

SB: Stationary Bed   Trans: Transitional Regime Boundary 
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7.5 Conclusions 

A flow recognition method has been developed, which is based on the 

statistical signal analysis of the ERT data in both time and frequency 

domain. All common slurry flow regimes have been considered in the 

recognition scheme, including the transitional regime boundaries. The 

results of the evaluation suggest that the method is applicable to any particle 

size, solids concentration. It is also believed that the pipe size should not 

have any effect on the recognition scheme. However, application of the 

recognition method is paramount on different pipe sizes. The rate of 

recognition was determined to be 90.32% based on a sufficient number of 

tests carried out on different particle size and different concentration. Since 

the recognition decisions are based on the statistical ERT signal analysis, it 

is believed that it removes the subjectivity associated with recognition of the 

prevailing flow regime. This recognition method can be applied on any two 

phase solid/liquid flow, as long as one of the phases is non- or less 

conductive than the other one. It is believed that it can be useful for flow 

metering, especially for flow regime dependent flow meters. It can also be 

used in a non-invasive and on-line fashion for distinguishing the boundaries 

between different typical settling slurry flow regimes so as to enable the 

operator to take an appropriate control actions for other downstream 

operations such as separation, mixing etc. In addition, the recognition code 

has been developed in a way not only for recognition of the active flow 

regime, but also to visualise the distribution of the solid particles across the 

pipe cross-section and measure the mean concentration. 
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Chapter 8 

Contributions, conclusions and future work 

recommendations 

This final chapter highlights the contribution of present work, which includes 

the proposed ERT based measurement, flow visualisation and flow regime 

recognition technique along with the design of a multiphase flow system. A 

summary of the most important findings is presented. It also recommends 

the future scope in different areas of slurry flow in pipelines and exploration 

of further capabilities of the ERT system. 

8.1 Author’s contributions to slurry flow measurement, 

visualisation and the design of particulate flow system 

Slurry transport has been a progressive technology for transporting a huge 

amount of solid materials across the world in both long distance pipelines 

and short commodity pipelines. Many slurry pipelines already exist and there 

will be more to build including all pipeline orientations. In order to ensure 

safe transport, optimised operation and reduction of financial costs by 

avoiding blockage, the operational engineer requires a reliable technique 

that suits all the conditions in industry. Clearly the complex nature of settling 

slurry flow forces the operator to continuously measure the local parameters 

governing the flow (solids concentration and solids velocity) and visualise 

the internal structure of the flow within the pipeline. Undoubtedly the 

measurement of these parameters and monitoring the flow within the pipe, in 

fast evolving processes requires a fast responding instrument (i.e. high 

frame rates of milliseconds). This study was performed in order to develop a 

new automated online measurement technique, which is based on the 

combination of a high performance ERT as the main sensor and the EMF as 

an auxiliary sensor. This will prove advantageous, as it will allow the 

operator to perform the measurement of each phase and to be able to see 

the changes in solids concentration and solids movement within the pipe. 

This work has also developed a new facility, which will act as a spring-board 

for better understanding of slurry flow behaviour and the interaction of solid-

liquid inside pipeline, particularly inclined flow, which is complex and a very 

limited information has been reported about it. This thesis can be considered 

as a direct response to today’s slurry engineering requirements and a step 
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forward for better controlling the processes and reducing unnecessary 

financial costs. The author’s findings and observations provide a novel 

insight over the mechanisms of solid-liquid flow, along with a new ERT 

based technique for local flow measurement, flow visualisation and 

automated flow regime recognition. The results reveal the capabilities of the 

ERT and pave the way to a reliable and robust technique, which helps to 

further optimise the operation of settling slurry pipelines in industry. The 

main contribution is described as below: 

8.1.1 Slurry flow measurement (Chapter 5) 

8.1.1.1 Local solids volume fraction  

A high performance dual-plane Electrical Resistance Tomography system 

has been employed to interrogate the internal structure of  horizontal and 

vertical counter-gravity slurry flow. The exceptional capability of this system 

enabled acquiring high frame rates (1000 dfps) in a non-intrusive fashion. 

The reconstructed tomograms obtained from the ERT were collected and 

analysed to determine the in-situ solids concentration and solids 

concentration profile across the vertical plane of the pipe cross-section. The 

comparison of the results with that of flow diversion technique revealed that 

the ERT measurements give a reasonable estimation of the in-situ solids 

concentration in both orientations, horizontal and vertical. The description of 

these results can be found in sections 5.4.10.1 for horizontal flow and 

5.5.3.1 for vertical flow. The tracking of solids concentration changes as a 

function of transport velocity was also generated, each of which represents 

the typical concentration profile of settling slurry flow. For further detail 

regarding the measured solids volumetric distribution, the reader is referred 

to sections 5.4.2 for horizontal flow and 5.5.1 for vertical counter-gravity flow.  

It seems that using a high performance ERT system for measurement of in-

situ solids concentration is completely novel. 

8.1.1.2 Local solids axial velocity 

The high performance ERT system in conjunction with the cross-correlation 

technique can be used for local axial solids velocity and solids velocity 

distribution across the vertical plane of the pipe cross-section. The detailed 

description of solids velocity measurements can be found in sections 5.4.3 

for horizontal flow and 5.5.1. To the author’s knowledge the measurement of 

in-situ solids velocity and solids axial velocity distribution is rather novel for 

the flow conditions used in this study. 
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8.1.1.3 Slurry volumetric flow rate 

The present work proposes a novel ERT based technique, which combines 

the Electrical Resistance Tomography and the Electromagnetic Flow Meter 

for performance of volumetric flow rate measurement of each constituent 

phase individually and measurement of mixture volumetric flow rate in 

vertical pipeline. Sections 5.5.2 and 5.5.3.3 highlights the detailed 

description of the measurement technique and final evaluation respectively. 

8.1.1.4 Phase slip velocity 

This project presents a new method of slip velocity estimation in vertical flow 

using the combination of the ERT and the EMF. The slip velocity can be 

determined through the track of volumetric flow rate of both phases (solid 

and liquid). The reader is directed to section 5.5.2 for detailed explanation.  

8.1.1.5 Parameters relevant to stratified flow 

This present research reports a new method for estimation of several 

parameters of stratified flow through an analysis of both profiles, solids 

concentration and solids axial velocity. These parameters are mean granular 

bed concentration, mean granular bed velocity, the height of granular bed, 

the height of shear layer and the height of turbulent zone at the upper part of 

horizontal pipeline. This technique can be used to measure the height of 

granular bed only if the height of bed is greater than 2.5 mm in 50 mm inner 

diameter pipe. In other words, this technique can only be used if the height 

of granular bed is greater than the ratio of pipe diameter to the number of 

pixels in the vertical plane of the tomogram. It is worth pointing out that the 

estimation of these parameters is paramount for the design of slurry pipeline 

and optimisation. The detailed discussion of this method is covered in 

sections 5.4.6 and 5.4.6.1.   

8.1.1.6 Measurement of blocked horizontal line  

In some highly concentrated-solids transport systems the solid particles 

travelling in horizontal flow in the form of contact load with transmitting the 

submerged weight to the internal pipe surface, such as that of Alberta oil-

sand deposits (Schaan et al., 2007).  This implies that the solids are 

transported in sliding mass or sliding thick granular bed. This thick layer of 

sliding granular bed may generate a potential error in slurry measurement. 

This study reports an evaluation regarding the performance of the ERT while 

a thick coating of granular bed (up to 80% of the inner pipe diameter) covers 

the electrodes on the dual-plane ERT sensor. In other words, the ERT was 

successfully performed for measurement of a horizontal pipeline. To the 
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author’s knowledge, the use of ERT for measurement of such high 

concentrated slurry has never been reported in the literature. Therefore, this 

can be considered as a novelty within the body of this thesis. The discussion 

of this finding is presented in section 5.4.5.5. The observation of the results 

revealed that the ERT can undoubtedly detect the pipeline blockage and 

measure the mean solids concentration and thickness of the stagnant 

granular bed. This finding can be useful for detection of blocked lines and for 

measurement of highly concentrated slurries.  

8.1.2 Slurry flow visualisation (Chapter 5) 

8.1.2.1 Slurry flow regime visualisation and characterisation using ERT 

Usually the common flow regimes in horizontal slurry flow is visualised 

through solids concentration distribution across the vertical plane of the pipe 

cross-section. This thesis presents a novel method, by which several flow 

regimes, encountered in horizontal flow, can be visualised and characterised 

using solids axial velocity distribution. It appears that the method of flow 

regime visualisation via solids velocity distribution using the ERT technique 

is completely new. The flow regimes that can be visualised using this 

method are pseudo-homogeneous flow regime, heterogeneous flow regime, 

granular bed flow regime and pipe blockage. The visualisation results were 

compared qualitatively against the actual photograph of the flow and a good 

agreement was noticed. The only limitation of this method is that, in stratified 

flow, indicates only a packed granular bed. It is rather difficult to distinguish 

between moving bed and stationary bed based on the velocity profile. 

Besides, no feature can be observed to identify whether the bed is moving in 

the form of en-bloc sliding (mass) or stream layers. Therefore, the term 

“granular bed flow regime” is used for both flow regimes, moving bed and 

stationary bed. The discussion and evaluation of this visualisation method 

and characterisation is detailed in sections 5.4.5.1, 5.4.5.2, 5.4.5.3, 5.4.5.4 

and 5.4.5.5. 

8.1.3 Design of slurry system (Chapter 6) 

8.1.3.1 Design and construction of pilot scale inclinable slurry flow 

A review of the literature reveals that the behaviour of slurry flow has been 

systematically investigated since 1950s, while the focus has mainly been 

based on experimental investigations dealing with horizontal and vertical 

flow. Very limited work on inclined flow can be noticed. As a response to this 

issue, this study reports a novel design of a robust, versatile, durable and 

functional inclinable flow loop, which paves the way to further understanding 
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the behaviour of solid-liquid particles within an inclined pipe. The flow 

system can be used not only for two-phase flow such as slurry, but also for a 

multiphase flow such as gas-water-solid flow. The flow system includes 

various important and carefully selected instrumentations, which can be 

used as tools for further understanding and characterisation of slurry flow 

and identifying the potential effects on flow measurement scheme. The 

versatility of the system allows investigations on any desired pipe 

orientations (horizontal, vertical and inclined). The mechanical and hydraulic 

testing of the flow loop confirmed total functionality and safety of the system. 

The whole design and erection strategies are described in Chapter 6, where 

the reader is taken through the whole journey from project management to 

the final stage of testing. 

8.1.4 Slurry flow regime recognition (Chapter 7) 

8.1.4.1 Automated on-line flow regime recognition 

This project has developed a novel automated technique for recognition of 

horizontal slurry flow regimes based on the statistical analysis of the high 

performance ERT signal in both, time and frequency domain. All common 

slurry flow regimes are considered including the transitional regime 

boundaries. The flow regimes that are recognised using this technique are: 

Homogeneous, pseudo-homogeneous, heterogeneous, moving bed and 

stationary bed. Since the stationary bed is the most undesirable flow regime, 

as the risk of pipe blockage is dominant, a warning sound (alarm) is included 

into the code, so as to warn the operator. The method has been evaluated 

and a recognition success rate is confirmed as 90.32%. The recognition 

decision is made based on the distribution of solid particles across five 

zones along the vertical plane of the pipe cross-section. This implies that the 

present technique is applicable to any settling slurry as long as one of the 

phases is non- or less conductive than the other. Besides, it removes the 

subjectivity associated with the recognition of the prevailing flow regime.  

One of the main aim in developing of this method is that it can be used for 

flow metering, especially for correction of flow regime dependent flow 

meters, such as ERT. It can also be used to distinguish the boundaries 

between common settling slurry flow regimes so as to enable the operator to 

take appropriate control actions for other downstream operations, such as 

separation, mixing etc. It also provides a visual distribution of the solid 

particles across the pipe cross-section with displaying the average solids 

volume fraction in the pipeline. Chapter 7 describes the whole technique.    
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8.2 General conclusions 

1. A high performance dual-plane ERT system was used to interrogate the 

internal structure of horizontal and vertical upward slurry flows. It was 

found that the high temporal resolution of this system enabled a fast 

measurement and online monitoring of slurry flow in both orientations. 

2. The local solids volumetric concentration and solids volumetric distribution 

across the pipe cross-section were determined for both flow orientations. 

While the dual-plane ERT system was combined with the cross-

correlation technique and successfully measured the local solids axial 

velocity and solids velocity distribution across the pipe cross-section. The 

comparison of solids volumetric distribution and the solids velocity 

distribution, with the actual photographs of the flow, revealed that there is 

a good agreement between both methods. 

3. The estimated local solids concentration was compared to that obtained 

from flow diversion technique. The error analysis of the ERT local solids 

concentration in horizontal flow, revealed that the error is random and a 

maximum of 19% was observed throughout the conditions used in this 

study. It was remarked that the ERT tends to overestimate the local solids 

concentration. This overestimation was noticed for both sands, medium 

and coarse. 

4. The comparison of local solids axial velocity obtained from the ERT with 

that of flow diversion technique revealed that a randomly distributed error 

has been noticed with a maximum of 3.23% through horizontal test 

section, whereas a maximum error of 9.25% was remarked through 

vertical flow. It was also concluded that the ERT velocities are mostly 

underestimated at low velocities (3 m/s and below), which is considered 

as stratified velocity region. The reasons for this underestimation was 

associated to the instability of the conditions over the formed granular 

bed.  

5. The observation of solids concentration profiles of both sands in vertical 

counter-gravity flow concluded that the coarse sand particles move in 

core peak flow pattern, while medium sand particles move in wall peak 

flow pattern. This is clearly due to the phenomenon of radial particle 

migration.  

6. The solids velocity profiles obtained in vertical upward flow exhibits a 

uniform distribution throughout the centre region of the pipe cross-section. 

The flattened shape of velocity profiles were noticed for all conditions 

used in this study.  
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7. The evaluation of the proposed technique for measurement of slurry 

volumetric flow rate suggests a reasonably accurate estimation of the 

volumetric flow rate obtained from the ERT and the EMF. 

8. Despite occurrence of some deviations in solids concentration and solids 

axial velocity and slurry volumetric flow rate, it can be concluded that for 

the range of conditions used in this study, overall, the high performance 

ERT system provides a reasonably accurate estimation of all parameters 

measured in both flow orientations and enables visualisation of solids and 

their motion within the pipelines.  

8.3 Future scope 

1. This research study has made contributions into the area of 

two/multiphase flow measurement, visualisation and characterisation, 

specifically slurry flows, which are clearly highlighted in Chapter 8 

(Section 8.1) and can be found within the body of this thesis. Some of 

them have already been exposed to a form of peer review and can now 

be found in the public domain as published materials. Some others are 

contained in the framework of this thesis and have a great potential for 

future publications. The following papers are due to be published in the 

nearest future: 

 

i. An analysis of slurry flow within and around the boundary of 

stationary bed and blockage in horizontal pipeline, the details of 

which can be tracked in Chapter 5 (Sections 5.4.5.4 & 5.4.5.5). The 

contribution is planned to be published under the title 

“Measurement and characterisation of solid-liquid flow within 

the boundary of stationary bed and blockage” in Chemical 

Engineering Journal (Impact Factor = 3.461). 

ii. Measurement, visualisation and characterisation of stratified slurry 

flow in horizontal pipeline, which is detailed in Chapter 5 (Sections 

5.4.6 & 4.5.6.1). The expected paper will be published under the 

title “Measurement and analysis of stratified slurry flow in 

pipeline using high performance Electrical Resistance 

Tomography system” in Sensors and actuators B-Chemical 

Journal (Impact Factor = 3.898). 

iii. A novel automated recognition technique for common slurry flow 

regimes in horizontal pipeline, which is described in Chapter 7. The 

paper containing the proposed technique will be published under 
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the title “Flow regime recognition of horizontal slurry flow 

using statistical analysis of the ERT signal” in Sensors and 

actuators B-Chemical Journal (Impact Factor = 3.898). 

iv. A proposed inclinable flow rig, which is discussed in detail in 

Chapter 6. The paper will be published under the title “Design and 

construction of a pilot scale inclinable particulate flow 

system” in The International Journal of Multiphase Flow (Impact 

Factor = 2.230).  

v. Measurement of the two phases in two phase flows, which is 

covered in Chapter 5 (Sections 5.5.2 & 5.5.3.3). The novel 

technique will be reported in a paper with the title “A new 

generation of dual-phase measurement and visualisation 

system” in Sensors and actuators B-Chemical Journal (Impact 

Factor= 3.898). 

2. Further tests are required to investigate the overestimation of solids 

concentration and solids axial velocity at higher velocities (above 3 m/s). 

3. Development of a better reconstruction algorithm is paramount, so as to 

take the ERT technique a couple of steps forward. 

4. Since the ERT technique suffers from the effect of temperature and recipe  

change, then its combination with a cheap secondary sensor, such as 

differential pressure flow meter, can overcome this limitation. The role of 

the secondary sensor is to compensate the temperature change and to be 

used as a correction tool. This, undoubtedly, improvement will make the 

ERT technique far more attractive in the view point of industry.    

5. Further tests are required for investigation of off-wall particle lift 

phenomenon. The use of additional technology for generating solids 

concentration profile may be important for the purpose of comparison. 

6. It is recommended that the proposed flow regime recognition technique to 

be used on inclined flow. However, the threshold of the data may be 

subject to a minor alteration. 

7. A graphical user-friendly interface is recommended for automatic flow 

regime recognition and reading the ERT data in a direct method. 

8. In order to boost our knowledge and gain insight of complex inclined 

slurry flow intense experiments are required, mainly over critical slope, 

solids concentration, solids axial velocity, deposition velocity, flow 

regimes, pressure drop etc. 

THE END 
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Appendix A 

Publications during the course of this study 
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Appendix B 

Calibration Results 

The quantitative data obtained from the calibration process for the 

thermocouple, conductivity meter, pressure transducers, measuring tank, 

load cells and the ERT are shown below. 

Table B.1 Thermocouple calibration results.  

 

Thermocouple 
(°C)  

Thermometer 
(°C)  

 15.6 15.2 

 17 16.4 

 17.9 17.1 

 18.8 18.6 

 20.3 19.5 

 21.1 20.7 

 22.1 21.5 

 23.3 22.8 

 24 23.5 

 25.2 24.6 

 26 25.4 

 27.5 26.8 

 28.4 27.6 

 29 28 

 29.9 29.4 

 30.8 30.6 

Average 23.55625 22.98125 

Percent Error 2.50% 

Table B.2 Conductivity meter calibration results.  

 

Desktop 
(mS/cm) 

Handheld 
(mS/cm) 

 0.27 0.27 

 1.2 1.26 

 1.6 1.65 

 2.3 2.12 

 2.55 2.72 

 3.09 3.27 

 3.7 3.62 

 3.5 3.45 

 3.95 3.90 

Average 2.462 2.473 

Percent Error 0.45% 
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Table B.3 Calibration results of two pressure transducers on horizontal line 
and two pressure transducers on vertical line against actual values. 

Pressure 
Sensor  

Height-h  
(m) 

Actual       
P=998.2xgxh 

(kPa)  

Current 
(mA) 

Sensor reading 
before correction   

(kPa) 

Sensor reading 
after correction 

(kPa) 
P

1
-H

o
rz

o
n

ta
l l

in
e 0 0.000 4.053 3.341 0.971 

0.84 8.226 4.179 11.183 8.813 

1.6 15.668 4.292 18.279 15.909 

2.58 25.264 4.441 27.549 25.179 

3.45 33.784 4.582 36.349 33.979 

P
2

-H
o

rz
o

n
ta

l l
in

e 

0 0.000 4.030 1.905 0.305 

0.5 4.896 4.106 6.606 5.006 

1 9.792 4.191 11.936 10.336 

1.52 14.884 4.267 16.698 15.098 

2 19.585 4.344 21.481 19.881 

2.5 24.481 4.422 26.345 24.745 

3 29.377 4.499 31.208 29.608 

P
1

-V
er

ti
ca

l l
in

e 

0 0.000 4.119 7.433 0.793 

0.64 6.267 4.204 12.757 6.117 

0.74 7.246 4.220 13.780 7.140 

1 9.792 4.266 16.617 9.977 

1.52 14.884 4.348 21.744 15.104 

2 19.585 4.423 26.456 19.816 

2.56 25.068 4.514 32.120 25.480 

3.07 30.062 4.594 37.125 30.485 

P
2

-V
er

ti
ca

l l
in

e 

0 0.000 4.135 8.415 0.515 

0.5 4.896 4.215 13.426 5.526 

0.75 7.344 4.253 15.817 7.917 

1 9.792 4.293 18.320 10.420 

1.6 15.668 4.385 24.075 16.175 

1.98 19.389 4.443 27.712 19.812 

2.52 24.677 4.535 33.437 25.537 

3 29.377 4.606 37.865 29.965 
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Table B.4 Measuring tank & load cells calibration results. 

 

Weight 
added 

(kg) 

Level 
(m) 

Volume 
of conical 
contents 

(m³) 

Volume of 
cylindrical 
contents  

(m³) 

Total 
volume 

(m³) 

Actual 
weight 
W=ρv 
(kg) 

Load 
cells 

reading 
(kg) 

 15.0 0.10 0.007 0.009 0.016 15.96 15.00 

 25.0 0.20 0.007 0.019 0.026 25.84 25.00 

 35.0 0.30 0.007 0.029 0.036 35.72 35.00 

 45.0 0.40 0.007 0.039 0.046 45.59 45.00 

 55.0 0.50 0.007 0.049 0.056 55.47 55.00 

 60.0 0.55 0.007 0.054 0.061 60.40 60.00 

 65.0 0.60 0.007 0.059 0.065 65.34 65.00 

 70.0 0.65 0.007 0.064 0.070 70.28 70.30 

 75.0 0.70 0.007 0.069 0.075 75.22 75.30 

 80.0 0.75 0.007 0.074 0.080 80.15 80.30 

 85.0 0.80 0.007 0.079 0.085 85.09 85.40 

 87.5 0.82 0.007 0.081 0.088 87.56 87.90 

 90.0 0.85 0.007 0.084 0.090 90.03 90.90 

Average 60.58      60.97 60.78 
Percent 

Error 
0.45% 

 

Table B.5 ERT calibration results. 

 
Probe 

conductivity 
(µS/cm) 

ERT 
conductivity           

(µS/cm) 

 279 278 

 282 281 

 282 281 

 284 284 

 299 299 

 325 324.5 

 352 351 

 372 371 

 402 401 

Average 319.7 318.9 

Percent Error 0.20% 
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Appendix C 

Piping related charts 

 

Figure C.1 Moody diagram (from www.territorioscuola.com) 

 

 

Figure C.2 Minor loss coefficients for pipe fittings(www.hydromatic.com & 
Warman Centrifugal Slurry Pumps).  

 

 

http://www.territorioscuola.com/
http://www.hydromatic.com/
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Appendix D 

MATLAB script for automated flow regime recognition 

The full MATLAB script, which has been developed for automated flow 

regime recognition, measurement of solids volume fraction and visualisation 

of solids volumetric distribution across the horizontal pipe cross-section is 

shown below: 

 

clc 

  
h = waitbar(1,{'Please wait...';'computation in progress'}); 
steps = 1; 
for step = 1:steps 

     
%tic 

  
%Read the columns in zave file (it takes 40 seconds to read all the 
%following data from zave.csv file). 
%Each column reresent a zone in the vertical line of the pipe cross-

section.   
Z1 = xlsread('zave.csv', 1, 'D3:D8002'); 
Z2 = xlsread('zave.csv', 1, 'H3:H8002'); 
Z3 = xlsread('zave.csv', 1, 'M3:M8002'); 
Z4 = xlsread('zave.csv', 1, 'R3:R8002'); 
Z5 = xlsread('zave.csv', 1, 'V3:V8002'); 

  
%toc 

  
importfile('Warning.mat'); 
T = 0.0015; % Sample Time 
Fs = 1/T; % Sampling Frequency 
L = 8000; % Length of Signal 
% Sum of a 50 Hz sinusoid and a 120 Hz sinusoid 

  
NFFT = 2^nextpow2(L); % Next power of 2 from length of y 

  
V = fft (Z1,NFFT)/L; % Zone 1 
W = fft (Z2,NFFT)/L; % Zone 2 
X = fft (Z3,NFFT)/L; % Zone 3 
Y = fft (Z4,NFFT)/L; % Zone 4 
Z = fft (Z5,NFFT)/L; % Zone 5 

  
f = Fs/2*linspace(0,1,NFFT/2+1); 

  
Plot single sided amplitude spectrum 
plot(f,2*abs(V(1:NFFT/2+1)),f,2*abs(W(1:NFFT/2+1)),f,2*abs(X(1:NFFT/

2+1)),f,2*abs(Y(1:NFFT/2+1)),f,2*abs(Z(1:NFFT/2+1))) 

  
plot(f,2*abs(V(1:NFFT/2+1))) 
plot(f,2*abs(W(1:NFFT/2+1))) 
plot(f,2*abs(X(1:NFFT/2+1))) 
plot(f,2*abs(Y(1:NFFT/2+1))) 
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plot(f,2*abs(Z(1:NFFT/2+1))) 
title('Single-sided amplitude spectrum of noisy ERT signals-2.0 

m/s') 
xlabel('Frequency (Hz)') 
ylabel('Amplitude') 
ylabel('|Y(f)|') 
axis([0 50 0 0.06]) 

  
legend('Zone 1','Zone 2','Zone 3','Zone 4','Zone 5'); 

  
legend('Zone 1') 
legend('Zone 2') 
legend('Zone 3') 
legend('Zone 4') 
legend('Zone 5') 
fprintf('%8.3f, %8.3f\n',f, 2*abs(V(1:NFFT/2+1))); 

  
%Create periodogram 
h1 = spectrum.periodogram('hamming');  

  
% Create options object and set properties 
hopts1 = psdopts(h1,Z1);   
set(hopts1,'Fs',Fs,'SpectrumType','onesided','centerdc',true); 
%msspectrum(h1,v,hopts1); 

  
h2 = spectrum.periodogram('hamming'); 
hopts2 = psdopts(h2,Z2);  % Default options 
set(hopts2,'Fs',Fs,'SpectrumType','onesided','centerdc',true); 
%msspectrum(h2,w,hopts2); 

  
h3 = spectrum.periodogram('hamming'); 
hopts3 = psdopts(h3,Z3);  % Default options 
set(hopts3,'Fs',Fs,'SpectrumType','onesided','centerdc',true); 
%msspectrum(h3,x,hopts3); 

  
h4 = spectrum.periodogram('hamming'); 
hopts4 = psdopts(h4,Z4);  % Default options 
set(hopts4,'Fs',Fs,'SpectrumType','onesided','centerdc',true); 
%msspectrum(h4,y,hopts4); 

  
h5 = spectrum.periodogram('hamming'); 
hopts5 = psdopts(h5,Z5);  % Default options 
set(hopts5,'Fs',Fs,'SpectrumType','onesided','centerdc',true); 
%msspectrum(h5,z,hopts5); 

  
b = axis; axis([b(1) b(2) -120 20]); % Zoom in X. 
set(gca,'XLim',[-10 30],'YLim',[-90 0]) 
set(gcf,'Color',[1 1 1]) 

  
% The average power is calculated by integrating under the power 

spectral 
% density (PSD), then, the PSD method is used on the spectrum object 

(h), 
% and then the power average method is used. The area under PSD 

curve is 
% the measure of average power 
hpsd1 = psd(h1,Z1,hopts1); 
       P1= avgpower(hpsd1); 
hpsd2 = psd(h2,Z2,hopts2); 
       P2= avgpower(hpsd2); 
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hpsd3 = psd(h3,Z3,hopts3); 
       P3= avgpower(hpsd3); 
hpsd4 = psd(h4,Z4,hopts4); 
       P4= avgpower(hpsd4); 
hpsd5 = psd(h5,Z5,hopts5); 
       P5= avgpower(hpsd5); 

              
meanZ1=mean(Z1); 
meanZ2=mean(Z2); 
meanZ3=mean(Z3); 
meanZ4=mean(Z4); 
meanZ5=mean(Z5); 

  
 E=P1+P2+(P3/2); 
 F=(P3/2)+P4+P5; 

  
 D = E/(E+F); 

  
 A=meanZ1+meanZ2+(meanZ3/2); 
 B=(meanZ3/2)+meanZ4+meanZ5; 
 C=A/(A+B); 

  
 G=std(Z5); 

  
 if(C>=0.499 && C<0.501 && D>=0.496 && D<504) 
 fprintf('HOMOGENEOUS FLOW REGIME\n'); 
 msgbox('HOMOGENEOUS FLOW REGIME...','FLOW REGIME', 'replace') 
 beep 

  
 elseif  (C>=0.501 && C<0.505 && D>=0.504 && D<0.510) 

      
 fprintf('PSEUDO-HOMOGENEOUS FLOW REGIME\n');  
 msgbox('PSEUDO-HOMOGENEOUS FLOW REGIME...','FLOW REGIME', 

'replace') 
 beep 

  
 elseif  (C>=0.505 && C<0.510 && D>=0.510 && D<0.520) 

      
 fprintf('TRANSITIONAL REGIME BOUNDARY(PSUDOHOMOGENEOUS-

HETEROGENEOUS)\n'); 
 msgbox({'TRANSITIONAL REGIME BOUNDARY';'(PSUDOHOMOGENEOUS-

HETEROGENEOUS)...'},'FLOW REGIME', 'replace') 
 beep 

  
 elseif  (C>=0.510 && C<0.532 && D>=0.520 && D<0.555) 

      
 fprintf('HETEROGENEOUS FLOW REGIME\n'); 
 msgbox('HETEROGENEOUS FLOW REGIME...','FLOW REGIME', 'replace') 
 beep 

  
 elseif  (C>=0.532 && C<0.540 && D>=0.555 && D<0.570) 

      
 fprintf('TRANSITIONAL REGIME BOUNDARY(HETEROGENEOUS-MOVING 

BED)\n'); 
 msgbox({'TRANSITIONAL REGIME BOUNDARY';'(HETEROGENEOUS-MOVING 

BED)...'},'FLOW REGIME', 'replace') 
 beep 

  
 elseif  (C>=0.540 && C<0.652 && D>=0.570 && D<0.770) 
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 fprintf('MOVING BED FLOW REGIME\n');  
 msgbox('MOVING BED FLOW REGIME...','FLOW REGIME', 'replace') 
 beep 

  
 elseif  (C>=0.652 && C<0.657 && D>=0.770 && D<0.780) 

      
 fprintf('TRANSITIONAL REGIME BOUNDARY(MOVING BED-STATIONARY 

BED)\n'); 
 msgbox({'TRANSITIONAL REGIME BOUNDARY';'(MOVING BED-STATIONARY 

BED...)'},'FLOW REGIME', 'replace') 

  
 % Play warning sound (Alarm). 
play(WARNING); 
disp('WARNING!'); 

  
 elseif(C>=0.657 && D>=0.780 && G<0.003) 

      
 fprintf('STATIONARY BED FLOW REGIME\n\a');  
 msgbox({'WARNING!';'STATIONARY BED FLOW 

REGIME...'},'!!WARNING!!','warn', 'replace') 

  
% Play warning sound (Alarm). 
play(WARNING); 
disp('WARNING!'); 

  
 else 

  
 fprintf('COULD NOT DETERMINE FLOW REGIME\n');  
 msgbox({'SORRY...';' COULD NOT DETERMINE FLOW 

REGIME...!'},'HELP','error', 'replace') 

   
 end    

  
waitbar(step / steps) 
 close(h) 
end 

  
%The following is to display 2D & 3D plot of solids volumetric 

distribution 
%and through which the mean concentration can be determined (Data 

Analysis 
%Tool) 

  
h = waitbar(1,{'Please wait...';' Solids concentration distribution 

is displayed shortly'}); 
steps = 1; 
for step = 1:steps 
    %tic 

  
%It takes approximately 112 seconds for reading and calculation of 

the following concentrations 

  
Conc1 = xlsread('conc.csv',1, 'EK3:FD8000'); 
Conc2 = xlsread('conc.csv',1, 'FE3:FX8000'); 
CCL1 = mean (Conc1); 
CCL2= mean (Conc2); 
CCL3 = [CCL1;CCL2]; % Concentration matrix (two column vector), used 

in 3D plot. 
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CCL4 = mean(CCL3); % Mean concentration of the dual centreline, Used 

for the x-axis of the 2D Plot. 

  
%toc 

  
VP1 = (1:-0.05:0.05); 
VP2 = (1:-0.05:0.05); 
VP = [VP1;VP2]; % Vertical Position of the pipe cross-section, used 

in 2D &3D plot. 

  
HP1(1:20)=0.5; 
HP2(1:20)=0.55; 
HP = [HP1;HP2]; % It is an array of 2 raws, indicating the 

horizontal position of the pipe cross-section and used in 3D plot. 

  
%Creating surface (3D)plot of the vertical dual centerline of the 

concentration tomogram. 
 Surface_Solids_Volumetric_Distribution(HP, CCL3, VP) 

  
 %Creating (2D)plot of the vertical centerline of the concentration 

tomogram. 
 Two_Dimenssional_Concentration_Distribution_Plot(CCL4, VP1) 

  
    waitbar(step / steps) 
end 
close(h)  

 

 



- 328 - 
 

  

Appendix E 

Horizontal & vertical flow loop sensor data 

The following tables showing the flow loop sensor data obtained from the EMF, the pressure transducers, the thermocouple and the 

measuring tank (flow diversion technique), for each sand and different transport velocities.  

 

Table E.1 Flow loop sensor data for flowing medium sand at 2% throughput concentration.  

Solid 
Particle 

EMF 
(m/s) 

T    
(°C)  

P1 
Horizontal 

(kPa) 

P2 
Horizontal 

(kPa) 

P1 
Vertical 

(kPa) 

P2 
Vertical 

(kPa) 

dp 
Horizontal 

(kPa) 

Discharge 
Velocity 

(m/s) 

Delivered 
Conc.   
(v/v) 

μm/μl   
Slurry 

Viscosity 
(pa.s) 

Slurry 
Reynolds 
Number 

(Rem) 

2
%

 M
ed

iu
m

 S
an

d
 

4.97 16.61 98.40 87.00 64.40 25.12 11.40 4.97 0.0242 1.06 0.00106 233595 

4.53 18.48 86.17 76.91 57.32 20.48 9.27 4.49 0.0224 1.06 0.00106 211908 

4.02 19.87 76.13 69.22 51.30 16.94 6.91 4.08 0.0243 1.06 0.00106 191872 

3.49 20.91 66.30 60.93 45.10 13.06 5.38 3.49 0.0268 1.06 0.00106 164167 

3.05 21.65 59.31 55.05 40.89 10.40 4.27 3.05 0.0245 1.06 0.00106 143458 

2.52 22.25 51.90 48.97 36.90 7.60 2.93 2.55 0.0251 1.06 0.00106 119708 

2.06 22.25 46.82 44.79 33.95 5.66 2.03 2.12 0.025 1.06 0.00106 99490 

1.49 22.25 41.51 40.52 30.86 3.69 0.98 1.54 0.0239 1.05 0.00105 73096 
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Table E.2 Flow loop sensor data for flowing medium sand at 10% throughput concentration.  

Solid 
Particle 

EMF 
(m/s) 

T    
(°C)  

P1 
Horizontal 

(kPa) 

P2 
Horizontal 

(kPa) 

P1 
Vertical 

(kPa) 

P2 
Vertical 

(kPa) 

dp 
Horizontal 

(kPa) 

Discharge 
Velocity 

(m/s) 

Delivered 
Conc. 
(v/v) 

μm/μl   
Slurry 

Viscosity 
(pa.s) 

Slurry 
Reynolds 
Number 

(Rem) 

1
0

%
 M

ed
iu

m
 S

an
d

 4.96 26.00 106.9 95.43 70.32 29.18 11.42 5.59 0.0838 1.37 0.00137 204271 

4.59 27.25 93.30 84.39 62.25 23.82 8.91 4.47 0.0926 1.37 0.00137 163334 

4.06 27.84 83.47 76.20 56.68 19.51 7.26 4.00 0.0913 1.37 0.00137 146078 

3.49 28.15 73.09 67.68 50.22 15.38 5.41 3.47 0.0962 1.37 0.00137 126714 

3.04 28.36 65.79 61.42 45.74 12.30 4.37 3.19 0.0927 1.37 0.00137 116452 

2.52 28.46 57.75 54.87 40.72 8.87 2.87 2.54 0.0955 1.37 0.00137 92683 

2.01 28.48 52.29 50.18 37.35 6.63 2.10 2.02 0.0979 1.37 0.00137 73928 

1.52 28.42 48.77 46.81 35.12 5.21 1.96 1.58 0.0968 1.37 0.00137 57626 

Table E.3 Flow loop sensor data for flowing coarse sand at 2% throughput concentration.  

Solid 
Particle 

EMF 
(m/s) 

T      
(°C)  

P1 
Horizontal 

(kPa) 

P2 
Horizontal 

(kPa) 

P1 
Vertical 

(kPa) 

P2 
Vertical 

(kPa) 

dp 
Horizontal 

(kPa) 

Discharge 
Velocity 

(m/s) 

Delivered 
Conc. 
(v/v) 

μm/μl   
Slurry 

Viscosity 
(pa.s) 

Slurry 
Reynolds 
Number 

(Rem) 

2
%

 C
o

ar
se

 S
an

d
 

4.93 17.17 105.6 94.37 68.49 29.45 11.27 4.82 0.0302 1.09 0.00109 220517 

4.36 18.76 90.13 82.55 59.16 23.55 7.58 4.53 0.0325 1.09 0.00109 207337 

4.11 19.67 79.39 73.40 52.29 19.50 6.00 4.29 0.0295 1.09 0.00109 196205 

3.52 20.32 69.17 65.00 46.22 15.34 4.17 3.66 0.0315 1.09 0.00109 167651 

3.11 20.73 61.45 58.52 41.98 12.27 2.93 3.18 0.032 1.09 0.00109 145717 

2.52 21.02 53.17 51.60 37.09 8.81 1.57 2.45 0.0344 1.09 0.00109 112076 

2.00 21.27 47.79 47.25 33.38 6.56 0.54 2.03 0.0302 1.09 0.00109 93116 

1.52 21.47 43.97 43.88 31.10 5.17 0.10 1.50 0.0283 1.09 0.00109 68446 
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Table E.4 Flow loop sensor data for flowing coarse sand at 10% throughput concentration.  

Solid 
Particle 

EMF 
(m/s) 

T   
(°C)  

P1 
Horizontal 

(kPa) 

P2 
Horizontal 

(kPa) 

P1 
Vertical 

(kPa) 

P2 
Vertical 

(kPa) 

dp 
Horizontal 

(kPa) 

Discharge 
Velocity 

(m/s) 

Delivered 
Conc.      
(v/v) 

μm/μl   
Slurry 

Viscosity 
(pa.s) 

Slurry 
Reynolds 
Number 

(Rem) 

1
0

%
 C

o
ar

se
 S

an
d

 4.76 16.87 117.9 106.5 76.10 34.01 11.38 5.24 0.1141 1.46 0.00146 179204 

4.14 18.77 99.74 91.45 64.71 27.38 8.29 4.61 0.1209 1.50 0.00150 153441 

3.40 20.15 80.59 75.61 52.64 18.77 4.98 3.62 0.1279 1.50 0.00150 120614 

2.94 20.64 71.86 67.79 46.47 14.55 4.07 3.36 0.1235 1.50 0.00150 111956 

2.49 21.19 66.07 63.20 43.05 12.08 2.88 2.58 0.1274 1.50 0.00150 85844 

2.20 21.68 60.99 58.70 39.66 9.87 2.29 2.09 0.1349 1.60 0.00160 65281 

1.45 22.10 58.04 55.32 37.12 8.74 2.72 1.40 0.1283 1.50 0.00150 46678 
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Appendix F 

Local solids volumetric concentration data 

The following tables showing the solids volumetric concentration for medium and coarse sand in both, horizontal flow and vertical 

upward flow, obtained from the ERT at twenty locations across the vertical plane of the pipe cross-section at different transport 

velocities. The quantitative results of blocked line is also presented. 

F.1  Local solids volumetric concentration in horizontal flow 

Table F.1.1 Local solids volumetric concentration for horizontal flow of medium sand at 2% throughput concentration.  

 

 

y (mm) 50 47.5 45 42.5 40 37.5 35 32.5 30 27.5 25 22.5 20 17.5 15 12.5 10 7.5 5 2.5

y/D 1 0.95 0.9 0.85 0.8 0.75 0.7 0.65 0.6 0.55 0.5 0.45 0.4 0.35 0.3 0.25 0.2 0.15 0.1 0.05

5 0.033 0.033 0.034 0.034 0.035 0.037 0.038 0.039 0.040 0.040 0.041 0.041 0.042 0.042 0.043 0.044 0.046 0.047 0.048 0.049

4.5 0.028 0.028 0.028 0.029 0.031 0.033 0.035 0.037 0.038 0.040 0.041 0.042 0.042 0.043 0.044 0.044 0.045 0.047 0.048 0.049

4 0.022 0.023 0.024 0.025 0.027 0.029 0.032 0.034 0.036 0.038 0.040 0.041 0.042 0.042 0.043 0.044 0.045 0.046 0.048 0.049

3.5 0.020 0.020 0.021 0.022 0.024 0.027 0.030 0.033 0.037 0.040 0.043 0.045 0.046 0.047 0.049 0.050 0.052 0.054 0.055 0.057

3 0.015 0.014 0.015 0.016 0.017 0.020 0.023 0.026 0.030 0.034 0.037 0.040 0.042 0.045 0.048 0.051 0.055 0.059 0.062 0.065

2.5 0.017 0.017 0.017 0.018 0.020 0.022 0.025 0.028 0.032 0.036 0.040 0.045 0.051 0.058 0.066 0.076 0.086 0.096 0.105 0.111

2 0.016 0.016 0.016 0.016 0.017 0.018 0.019 0.021 0.023 0.026 0.030 0.037 0.046 0.059 0.075 0.094 0.114 0.134 0.151 0.165

1.5 0.017 0.016 0.016 0.015 0.015 0.014 0.013 0.011 0.010 0.009 0.010 0.015 0.025 0.042 0.065 0.094 0.125 0.155 0.181 0.202

Mixture 

Velocity 

m/s

so
li

d
s 

vo
lu

m
e

tr
ic

 

co
n

ce
n

tr
at

io
n

 (
v/

v)

Top of Pipe Bottom of Pipe



- 332 - 
 

  

Table F.1.2 Local solids volumetric concentration for horizontal flow of medium sand at 10% throughput concentration. 

 

Table F.1.3 Local solids volumetric concentration for horizontal flow of coarse sand at 2% throughput concentration.  

 

y (mm) 50 47.5 45 42.5 40 37.5 35 32.5 30 27.5 25 22.5 20 17.5 15 12.5 10 7.5 5 2.5

y/D 1 0.95 0.9 0.85 0.8 0.75 0.7 0.65 0.6 0.55 0.5 0.45 0.4 0.35 0.3 0.25 0.2 0.15 0.1 0.05

5 0.094 0.094 0.096 0.098 0.102 0.106 0.111 0.116 0.122 0.127 0.132 0.137 0.141 0.144 0.148 0.151 0.154 0.156 0.159 0.161

4.5 0.070 0.071 0.073 0.076 0.080 0.085 0.092 0.099 0.106 0.113 0.121 0.127 0.134 0.140 0.145 0.151 0.156 0.160 0.164 0.167

4 0.052 0.053 0.055 0.058 0.063 0.069 0.076 0.085 0.094 0.105 0.115 0.126 0.136 0.146 0.156 0.166 0.175 0.183 0.189 0.194

3.5 0.038 0.038 0.039 0.042 0.047 0.053 0.061 0.071 0.083 0.097 0.111 0.126 0.142 0.157 0.173 0.188 0.201 0.213 0.222 0.229

3 0.025 0.025 0.025 0.027 0.030 0.035 0.042 0.053 0.066 0.082 0.100 0.121 0.144 0.168 0.192 0.214 0.235 0.252 0.266 0.276

2.5 0.013 0.012 0.010 0.010 0.010 0.012 0.017 0.027 0.042 0.062 0.089 0.119 0.154 0.189 0.224 0.256 0.285 0.308 0.325 0.337

2 0.007 0.005 0.002 0.001 0.001 0.001 0.004 0.012 0.028 0.051 0.081 0.117 0.156 0.197 0.236 0.273 0.304 0.330 0.349 0.362

1.5 0.005 0.002 0.000 0.000 0.000 0.000 0.002 0.009 0.028 0.056 0.090 0.129 0.170 0.212 0.252 0.290 0.322 0.350 0.371 0.386

Mixture 

Velocity 

m/s
so

li
d

s 
vo

lu
m

e
tr

ic
 

co
n

ce
n

tr
at

io
n

 (
v/

v)

Top of Pipe Bottom of Pipe

y (mm) 50 47.5 45 42.5 40 37.5 35 32.5 30 27.5 25 22.5 20 17.5 15 12.5 10 7.5 5 2.5

y/D 1 0.95 0.9 0.85 0.8 0.75 0.7 0.65 0.6 0.55 0.5 0.45 0.4 0.35 0.3 0.25 0.2 0.15 0.1 0.05

5 0.005 0.001 0.000 0.003 0.013 0.027 0.042 0.055 0.067 0.076 0.082 0.085 0.086 0.086 0.084 0.082 0.080 0.077 0.076 0.075

4.5 0.000 0.000 0.000 0.000 0.003 0.016 0.030 0.045 0.057 0.067 0.074 0.080 0.083 0.086 0.087 0.087 0.087 0.086 0.085 0.085

4 0.000 0.000 0.000 0.000 0.001 0.011 0.026 0.040 0.052 0.063 0.071 0.078 0.083 0.087 0.091 0.094 0.096 0.097 0.098 0.099

3.5 0.000 0.000 0.000 0.000 0.001 0.011 0.025 0.038 0.050 0.061 0.070 0.079 0.087 0.095 0.103 0.110 0.117 0.122 0.126 0.130

3 0.000 0.000 0.000 0.000 0.000 0.008 0.021 0.033 0.045 0.056 0.066 0.077 0.090 0.103 0.117 0.132 0.145 0.156 0.166 0.173

2.5 0.000 0.000 0.000 0.000 0.000 0.001 0.009 0.020 0.030 0.041 0.053 0.067 0.085 0.107 0.132 0.157 0.182 0.203 0.221 0.234

2 0.000 0.000 0.000 0.000 0.000 0.001 0.009 0.018 0.027 0.036 0.047 0.061 0.080 0.103 0.130 0.160 0.189 0.215 0.236 0.252

1.5 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.003 0.011 0.029 0.058 0.096 0.142 0.191 0.240 0.284 0.322 0.351 0.371

Mixture 

Velocity 

m/s
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Table F.1.4 Local solids volumetric concentration for horizontal flow of coarse sand at 10% throughput concentration.  

 

 

Table F.1.5 Local solids volumetric concentration for blocked horizontal line with coarse sand at 10% throughput concentration.  

 

y (mm) 50 47.5 45 42.5 40 37.5 35 32.5 30 27.5 25 22.5 20 17.5 15 12.5 10 7.5 5 2.5

y/D 1 0.95 0.9 0.85 0.8 0.75 0.7 0.65 0.6 0.55 0.5 0.45 0.4 0.35 0.3 0.25 0.2 0.15 0.1 0.05

4.5 0.088 0.087 0.087 0.088 0.09 0.095 0.104 0.1181 0.1383 0.1632 0.191 0.2191 0.2451 0.2669 0.284 0.295 0.301 0.302 0.301 0.3

4 0.036 0.034 0.032 0.03 0.03 0.034 0.044 0.0631 0.0912 0.127 0.1671 0.2075 0.2447 0.2761 0.3 0.317 0.327 0.332 0.333 0.332

3.5 0.002 4E-04 1E-05 2E-08 0 0 5E-05 0.0046 0.0342 0.082 0.1399 0.2012 0.2596 0.3103 0.351 0.381 0.401 0.413 0.419 0.421

3 4E-07 0 0 0 0 0 3E-06 0.0005 0.015 0.065 0.1288 0.1965 0.2608 0.3167 0.362 0.396 0.419 0.433 0.441 0.444

2.5 0 0 0 0 0 0 0 6E-05 0.0035 0.0382 0.0993 0.1667 0.2326 0.2913 0.34 0.377 0.403 0.421 0.431 0.436

2 0 0 0 0 0 6E-06 2E-04 0.0021 0.0122 0.0568 0.1305 0.2079 0.28 0.3415 0.39 0.427 0.452 0.468 0.477 0.481

1.5 0 0 0 0 0 0 1E-04 0.0044 0.044 0.1194 0.2004 0.2774 0.3453 0.4017 0.447 0.481 0.507 0.524 0.535 0.541

Mixture 

Velocity 

m/s
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y (mm) 50 47.5 45 42.5 40 37.5 35 32.5 30 27.5 25 22.5 20 17.5 15 12.5 10 7.5 5 2.5

y/D 1 0.95 0.9 0.85 0.8 0.75 0.7 0.65 0.6 0.55 0.5 0.45 0.4 0.35 0.3 0.25 0.2 0.15 0.1 0.05

0.0

 s
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0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.3 0.5 0.5 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6

Mixture 

Velocity 

m/s

Bottom of PipeTop of Pipe
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F.2  Local solids volumetric concentration in vertical flow 

Table F.2.1 Local solids volumetric concentration for vertical flow of medium sand at 2% throughput concentration.  

 

Table F.2.2 Local solids volumetric concentration for vertical flow of medium sand at 10% throughput concentration.  

 

 

r (mm) 25 22.5 20 17.5 15 12.5 10 7.5 5 2.5 0 -2.5 -5 -7.5 -10 -12.5 -15 -17.5 -20 -22.5

r/D 0.5 0.45 0.4 0.35 0.3 0.25 0.2 0.15 0.1 0.05 0 -0.05 -0.1 -0.15 -0.2 -0.25 -0.3 -0.35 -0.4 -0.45

4.5 0.051 0.043 0.033 0.023 0.015 0.009 0.007 0.008 0.011 0.014 0.018 0.023 0.027 0.031 0.035 0.038 0.041 0.044 0.044 0.045

3.5 0.047 0.039 0.029 0.019 0.011 0.006 0.004 0.005 0.008 0.012 0.016 0.021 0.025 0.029 0.033 0.036 0.039 0.041 0.041 0.044

2.5 0.047 0.039 0.029 0.019 0.011 0.007 0.005 0.006 0.009 0.013 0.017 0.021 0.025 0.029 0.032 0.035 0.038 0.040 0.039 0.043

1.5 0.045 0.038 0.028 0.018 0.011 0.006 0.005 0.007 0.010 0.014 0.018 0.022 0.025 0.029 0.032 0.035 0.037 0.038 0.038 0.043

Mixture 

Velocity 

m/s
so
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v)

Bottom of PipeTop of Pipe

r (mm) 25 22.5 20 17.5 15 12.5 10 7.5 5 2.5 0 -2.5 -5 -7.5 -10 -12.5 -15 -17.5 -20 -22.5

r/D 0.5 0.45 0.4 0.35 0.3 0.25 0.2 0.15 0.1 0.05 0 -0.05 -0.1 -0.15 -0.2 -0.25 -0.3 -0.35 -0.4 -0.45

4.5 0.155 0.147 0.136 0.124 0.114 0.105 0.098 0.095 0.093 0.094 0.097 0.102 0.108 0.114 0.121 0.126 0.131 0.134 0.134 0.128

3.5 0.156 0.148 0.137 0.125 0.115 0.106 0.100 0.096 0.094 0.095 0.097 0.102 0.107 0.113 0.119 0.124 0.129 0.131 0.131 0.126

2.5 0.154 0.146 0.136 0.125 0.115 0.106 0.100 0.097 0.096 0.096 0.099 0.103 0.108 0.113 0.119 0.124 0.127 0.130 0.130 0.123

1.5 0.154 0.146 0.136 0.126 0.116 0.109 0.104 0.101 0.101 0.103 0.106 0.111 0.116 0.122 0.128 0.133 0.137 0.139 0.139 0.133
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Table F.2.3 Local solids volumetric concentration for vertical flow of coarse sand at 2% throughput concentration.  

 

Table F.2.4 Local solids volumetric concentration for vertical flow of coarse sand at 10% throughput concentration.  

 

r (mm) 25 22.5 20 17.5 15 12.5 10 7.5 5 2.5 0 -2.5 -5 -7.5 -10 -12.5 -15 -17.5 -20 -22.5

r/D 0.5 0.45 0.4 0.35 0.3 0.25 0.2 0.15 0.1 0.05 0 -0.05 -0.1 -0.15 -0.2 -0.25 -0.3 -0.35 -0.4 -0.45

4.5 0.034 0.027 0.019 0.012 0.010 0.011 0.016 0.023 0.031 0.037 0.041 0.042 0.041 0.038 0.035 0.031 0.029 0.027 0.026 0.032

3.5 0.036 0.029 0.021 0.015 0.012 0.013 0.018 0.025 0.033 0.039 0.043 0.044 0.043 0.040 0.037 0.034 0.032 0.030 0.028 0.034

2.5 0.041 0.034 0.026 0.020 0.017 0.019 0.024 0.031 0.038 0.044 0.048 0.049 0.048 0.045 0.042 0.039 0.036 0.034 0.032 0.036

1.5 0.044 0.037 0.028 0.021 0.017 0.018 0.021 0.027 0.033 0.038 0.041 0.042 0.040 0.037 0.035 0.032 0.031 0.030 0.030 0.036
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Velocity 
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Top of Pipe Bottom of Pipe

r (mm) 25 22.5 20 17.5 15 12.5 10 7.5 5 2.5 0 -2.5 -5 -7.5 -10 -12.5 -15 -17.5 -20 -22.5

r/D 0.5 0.45 0.4 0.35 0.3 0.25 0.2 0.15 0.1 0.05 0 -0.05 -0.1 -0.15 -0.2 -0.25 -0.3 -0.35 -0.4 -0.45

4.5 0.112 0.108 0.103 0.102 0.105 0.112 0.123 0.136 0.148 0.157 0.163 0.164 0.160 0.153 0.144 0.134 0.124 0.116 0.108 0.097

2.5 0.116 0.114 0.111 0.113 0.118 0.128 0.142 0.156 0.170 0.180 0.186 0.186 0.182 0.174 0.163 0.151 0.139 0.127 0.116 0.104

so
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Appendix G 

Local solids axial velocity data 

The following tables showing the solids axial velocity for medium and coarse sand in both, horizontal flow and vertical upward flow, 

obtained from the ERT at twenty locations across the vertical plane of the pipe cross-section at different transport velocities. The 

quantitative results of blocked line is also presented. 

G.1  Local solids axial velocity in horizontal flow 

Table G.1.1 Local solids axial velocity for horizontal flow of medium sand at 2% throughput concentration.  

 

 

y (mm) 50 47.5 45 42.5 40 37.5 35 32.5 30 27.5 25 22.5 20 17.5 15 12.5 10 7.5 5 2.5

y/D 1 0.95 0.9 0.85 0.8 0.75 0.7 0.65 0.6 0.55 0.5 0.45 0.4 0.35 0.3 0.25 0.2 0.15 0.1 0.05

5 7.779 7.779 7.779 7.779 7.779 7.779 7.779 7.779 7.779 7.779 7.779 7.779 7.779 7.779 7.779 7.779 3.889 3.889 3.889 3.889

4.5 3.889 3.889 3.889 3.889 3.889 3.889 3.889 3.889 3.889 3.889 3.889 3.889 3.889 3.889 3.889 3.889 3.889 3.889 3.889 3.889

4 3.889 3.889 4.019 4.105 4.105 3.749 3.889 3.889 3.889 3.889 3.889 3.889 3.889 3.889 3.889 3.889 3.889 3.889 3.889 3.889

3.5 4.149 4.149 4.149 4.149 4.149 4.149 4.149 4.149 4.149 4.149 4.149 4.149 4.149 4.149 4.149 4.149 2.829 2.829 2.829 2.829

3 2.146 1.695 2.146 2.146 2.146 2.146 4.445 3.637 2.829 2.829 2.829 2.829 2.963 2.963 2.963 2.963 2.963 2.963 2.963 2.963

2.5 1.830 1.830 1.830 1.830 1.830 1.830 2.068 2.305 2.305 2.305 2.305 2.305 2.305 2.305 2.305 2.305 2.305 2.305 2.264 2.264

2 1.830 1.830 1.830 1.830 1.830 1.830 1.830 1.830 1.830 1.830 1.830 1.988 1.988 1.830 1.830 1.830 1.830 1.830 1.785 1.687

1.5 1.027 1.027 0.965 0.912 0.912 0.940 0.851 0.877 0.964 1.224 1.305 1.482 1.482 1.451 1.358 1.292 1.237 1.201 1.158 1.129

Mixture 

Velocity 

m/s
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e
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Table G.1.2 Local solids axial velocity for horizontal flow of medium sand at 10% throughput concentration. 

 

Table G.1.3 Local solids axial velocity for horizontal flow of coarse sand at 2% throughput concentration.  

 

y (mm) 50 47.5 45 42.5 40 37.5 35 32.5 30 27.5 25 22.5 20 17.5 15 12.5 10 7.5 5 2.5

y/D 1 0.95 0.9 0.85 0.8 0.75 0.7 0.65 0.6 0.55 0.5 0.45 0.4 0.35 0.3 0.25 0.2 0.15 0.1 0.05

4.5 4.733 5.186 5.186 5.186 5.186 5.186 5.186 5.186 5.186 5.186 5.186 5.186 5.186 5.186 5.186 4.787 4.787 4.787 4.559 4.075

3.5 3.661 3.661 3.661 3.661 3.661 3.661 3.661 3.661 3.661 3.661 3.661 3.661 3.661 3.627 3.457 3.457 3.457 3.457 3.397 3.232

3 3.457 3.457 3.457 3.457 3.457 3.457 3.457 3.457 3.457 3.457 3.457 3.457 3.457 3.427 3.231 2.829 2.808 2.767 2.706 2.706

2.5 2.706 2.706 2.706 2.706 2.706 2.706 2.706 2.706 2.706 2.706 2.706 2.706 2.593 2.593 2.489 2.349 2.264 2.210 2.197 2.148

2 2.146 2.146 2.146 2.146 2.146 2.146 2.146 2.146 2.146 2.146 2.146 2.146 2.134 2.032 1.926 1.858 1.813 1.747 1.670 1.611

1.5 1.322 1.627 1.830 1.830 1.830 1.830 1.830 1.830 1.830 1.822 1.696 1.589 1.556 1.543 1.478 1.378 1.317 1.281 1.224 1.287

So
li

d
s 
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ia

l 

V
e

lo
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ty
 (

m
/s

)

Mixture 

Velocity 

m/s

Top of Pipe Bottom of Pipe

y (mm) 50 47.5 45 42.5 40 37.5 35 32.5 30 27.5 25 22.5 20 17.5 15 12.5 10 7.5 5 2.5

y/D 1 0.95 0.9 0.85 0.8 0.75 0.7 0.65 0.6 0.55 0.5 0.45 0.4 0.35 0.3 0.25 0.2 0.15 0.1 0.05

5 5.119 5.119 5.186 5.186 5.186 5.186 5.119 4.616 4.445 4.396 4.149 4.149 4.149 4.149 4.149 4.149 4.149 4.149 4.149 3.976

4.5 4.149 4.149 4.346 4.445 4.445 4.445 4.445 4.445 4.445 4.445 4.445 4.445 4.445 4.445 4.445 4.445 4.445 4.445 4.297 4.149

4 4.198 4.346 4.445 4.445 4.445 4.445 4.445 4.445 4.445 4.445 4.445 4.445 4.445 4.445 4.346 4.149 4.149 4.019 3.889 3.699

3.5 3.423 3.423 3.423 3.423 3.423 3.423 3.423 3.423 3.423 3.423 3.423 3.423 3.423 3.423 3.260 3.260 3.260 3.112 2.976 2.976

3 3.112 3.112 3.112 3.112 3.112 3.112 3.112 3.112 3.112 3.112 3.112 3.112 3.112 3.062 3.013 2.941 2.817 2.740 2.678 2.624

2.5 2.393 2.393 2.393 2.393 2.393 2.393 2.334 2.320 2.305 2.320 2.334 2.393 2.379 2.320 2.305 2.065 2.001 1.977 1.977 1.977

2 1.596 1.596 1.596 1.596 1.596 1.596 1.596 1.596 1.596 1.596 1.596 1.596 1.596 1.596 1.596 1.596 1.383 1.383 1.383 1.383

1.5 1.489 1.383 1.383 1.383 1.383 1.489 1.489 1.596 1.596 1.638 1.638 1.638 1.638 1.383 1.066 1.194 0.750 0.750 0.750 0.750

So
li

d
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ia
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e
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ty
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Top of Pipe

Mixture 

Velocity 
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Table G.1.4 Local solids axial velocity for horizontal flow of coarse sand at 10% throughput concentration.  

 

Table G.1.5 Local solids axial velocity for blocked horizontal line with coarse sand at 10% throughput concentration.  

 

 

y (mm) 50 47.5 45 42.5 40 37.5 35 32.5 30 27.5 25 22.5 20 17.5 15 12.5 10 7.5 5 2.5

y/D 1 0.95 0.9 0.85 0.8 0.75 0.7 0.65 0.6 0.55 0.5 0.45 0.4 0.35 0.3 0.25 0.2 0.15 0.1 0.05

4.5 5.657 5.657 5.657 5.657 5.657 5.657 5.657 5.657 5.657 5.657 5.657 5.657 5.657 5.657 5.657 5.186 5.186 5.186 5.186 4.787

4 5.189 5.189 5.189 5.189 5.186 5.186 5.186 5.186 5.186 4.986 4.787 4.787 4.787 4.787 4.445 4.445 4.297 4.149 4.149 4.019

3.5 3.889 3.661 3.661 3.661 3.661 3.661 3.661 3.661 3.661 3.661 3.661 3.457 3.457 3.275 3.275 3.112 3.112 2.963 2.829 2.706

3 2.489 2.489 2.489 2.489 2.489 2.489 2.593 2.706 2.829 2.829 2.706 2.706 2.593 2.593 2.489 2.489 2.393 2.393 2.393 2.305

2.5 2.489 2.489 2.441 2.393 2.393 2.393 2.393 2.393 2.393 2.393 2.393 2.305 2.305 2.223 2.184 2.146 2.074 2.007 2.007 2.007

2 1.830 1.830 1.830 1.830 1.830 1.830 1.830 1.830 1.830 1.830 1.804 1.729 1.682 1.638 1.638 1.596 1.556 1.556 1.537 1.537

1.5 1.945 1.945 1.886 1.915 1.915 1.915 1.886 1.886 1.779 1.556 1.482 1.296 1.245 1.092 0.950 0.892 0.841 0.770 0.776 0.776

Top of Pipe
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Velocity 
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Bottom of Pipe

y (mm) 50 47.5 45 42.5 40 37.5 35 32.5 30 27.5 25 22.5 20 17.5 15 12.5 10 7.5 5 2.5

y/D 1 0.95 0.9 0.85 0.8 0.75 0.7 0.65 0.6 0.55 0.5 0.45 0.4 0.35 0.3 0.25 0.2 0.15 0.1 0.05

0.0
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e
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(m
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)

0.221 0.221 0.222 0.222 0.222 0.222 0.222 0.222 0.222 0.222 0.222 0.222 0.222 0.222 0.222 0.222 0.222 0.222 0.221 0.221

Mixture 

Velocity 

m/s

Bottom of PipeTop of Pipe
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G.2  Local solids axial velocity in vertical flow 

Table G.2.1 Local solids axial velocity for vertical flow of medium sand at 2% throughput concentration.  

 

Table G.2.2 Local solids axial velocity for vertical flow of medium sand at 10% throughput concentration.  

 

r (mm) 25 22.5 20 17.5 15 12.5 10 7.5 5 2.5 0 -2.5 -5 -7.5 -10 -12.5 -15 -17.5 -20 -22.5

r/D 0.5 0.45 0.4 0.35 0.3 0.25 0.2 0.15 0.1 0.05 0 -0.05 -0.1 -0.15 -0.2 -0.25 -0.3 -0.35 -0.4 -0.45

4.5 3.457 3.457 3.457 5.186 5.186 5.186 5.186 5.186 5.186 5.186 5.186 5.186 5.186 5.186 5.186 5.186 5.186 4.787 4.787 2.007

3.5 2.007 3.275 3.275 3.275 3.275 3.275 3.275 3.275 3.275 3.275 3.275 3.275 3.275 3.275 3.275 3.275 3.275 3.275 2.007 2.007

2.5 2.747 3.043 2.909 2.750 2.782 2.778 2.766 2.679 2.593 2.593 2.593 2.593 2.679 2.766 2.778 2.782 2.750 2.909 3.043 2.747

1.5 1.350 1.316 1.326 1.394 1.395 1.336 1.316 1.258 1.343 1.518 1.518 1.343 1.258 1.316 1.336 1.395 1.394 1.326 1.316 1.350

Mixture 

Velocity 

m/s

Top of Pipe
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d
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e
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ty
 

(m
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)

Bottom of Pipe

r (mm) 25 22.5 20 17.5 15 12.5 10 7.5 5 2.5 0 -2.5 -5 -7.5 -10 -12.5 -15 -17.5 -20 -22.5

r/D 0.5 0.45 0.4 0.35 0.3 0.25 0.2 0.15 0.1 0.05 0 -0.05 -0.1 -0.15 -0.2 -0.25 -0.3 -0.35 -0.4 -0.45

4.5 4.324 4.542 5.020 5.186 5.186 5.186 5.186 5.186 5.186 5.186 5.186 5.186 5.186 5.186 5.186 5.186 5.186 5.020 4.542 4.324

3.5 3.335 3.463 3.504 3.568 3.591 3.646 3.661 3.661 3.661 3.661 3.661 3.661 3.661 3.661 3.646 3.591 3.568 3.504 3.463 3.335

2.5 2.663 2.616 2.684 2.706 2.706 2.706 2.706 2.706 2.706 2.706 2.706 2.706 2.706 2.706 2.706 2.706 2.706 2.684 2.616 2.663

1.5 1.416 1.484 1.517 1.556 1.563 1.595 1.634 1.656 1.750 1.778 1.778 1.750 1.656 1.634 1.595 1.563 1.556 1.517 1.484 1.416

Mixture 

Velocity 

m/s

Top of Pipe
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Table G.2.3 Local solids axial velocity for vertical flow of coarse sand at 2% throughput concentration.  

 

 

Table G.2.4 Local solids axial velocity for vertical flow of coarse sand at 10% throughput concentration.  

 

r (mm) 25 22.5 20 17.5 15 12.5 10 7.5 5 2.5 0 -2.5 -5 -7.5 -10 -12.5 -15 -17.5 -20 -22.5

r/D 0.5 0.45 0.4 0.35 0.3 0.25 0.2 0.15 0.1 0.05 0 -0.05 -0.1 -0.15 -0.2 -0.25 -0.3 -0.35 -0.4 -0.45

4.5 4.546 4.783 4.963 5.131 5.186 5.186 5.186 5.186 5.186 5.186 5.186 5.186 5.186 5.186 5.186 5.186 5.131 4.963 4.783 4.546

3.5 3.540 3.589 3.653 3.661 3.661 3.661 3.661 3.661 3.661 3.661 3.661 3.661 3.661 3.661 3.661 3.661 3.661 3.653 3.589 3.540

2.5 2.420 2.451 2.478 2.489 2.514 2.630 2.607 2.489 2.489 2.489 2.489 2.489 2.489 2.607 2.630 2.514 2.489 2.478 2.451 2.420

1.5 1.391 1.413 1.431 1.450 1.476 1.514 1.556 1.556 1.556 1.556 1.556 1.556 1.556 1.556 1.514 1.476 1.450 1.431 1.413 1.391

Top of Pipe
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)

Mixture 

Velocity 
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Bottom of Pipe

r (mm) 25 22.5 20 17.5 15 12.5 10 7.5 5 2.5 0 -2.5 -5 -7.5 -10 -12.5 -15 -17.5 -20 -22.5

r/D 0.5 0.45 0.4 0.35 0.3 0.25 0.2 0.15 0.1 0.05 0 -0.05 -0.1 -0.15 -0.2 -0.25 -0.3 -0.35 -0.4 -0.45

4.5 5.249 5.304 5.403 5.539 5.628 5.657 5.657 5.657 5.657 5.657 5.657 5.657 5.657 5.657 5.657 5.628 5.539 5.403 5.304 5.249

2.5 2.815 2.780 2.781 2.781 2.790 2.811 2.829 2.829 2.829 2.829 2.829 2.829 2.829 2.829 2.811 2.790 2.781 2.781 2.780 2.815

So
li

d
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l V
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Velocity 
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