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Abstract 

External space is mapped by a widespread brain circuit located in interconnected sub regions of 

the hippocampal-parahippocampal cortices. To date there have been 4 functionally specialised 

cell types identified providing information about location (place cells), heading direction (head 

direction cells), self-motion (grid cells) and boundaries (boundary vector cells and border cells).  

In the present thesis I present novel research identifying and characterising spatial cells located 

in the subiculum, an under explored region within the hippocampal formation. The subiculum is 

a key output structure from CA1 but also provides strong projections to the entorhinal cortex 

and pre- and parasubiculum, placing it ideally within the brain circuitry to contribute to the 

representations of external space. This thesis presents evidence for a variety of functionally and 

morphologically diverse spatial cells located in the subiculum.  

Critically I present the first ever report of subicular grid cells. These were recorded alongside 

boundary-responsive cells and head direction cells. The thesis characterises the basic properties 

of subicular grid cells, as tested in a variety of environmental manipulations. This thesis explores 

grid cell relationships to the environment and in particular to boundary manipulations.  

Among the key results in this thesis is the discovery that grid scale increases along the anterior-

posterior axis of the subiculum, similar to MEC grid scale. This thesis also shows that subicular 

grid cell patterns can be disrupted with environmental manipulation. Wall removal caused grid 

patterns to shift orientation and increase grid scale. The grid scale expansion was related to 

novelty, which supports previous findings from MEC grid cells (Barry et al., 2007; 2012). This 

thesis also shows that grid patterns were disrupted by barrier insertion e.g. causing an inhibition 

to grid fields. When recorded in total darkness the grid cell patterns remained stable, suggesting 

that vision is not required for maintenance of the grid pattern structure. Taken together these 

findings provide evidence that grid cell firing patterns are at least  partially determined by 

environmental boundaries.  

In addition this thesis extended upon the work of Lever et al., (2009), by presenting a detailed 

investigation and characterisation of subicular boundary vector cells (BVCs). I developed an 

empirical classification criterion, and utilised numerous manipulations to address the issue of 

what a BVC treats as a boundary. I also identified a new type of boundary related cell: the 

boundary-off cell. These cells have firing patterns which can be considered very similar to the 
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inverse of the BVC. The inhibitory response of boundaries on these cells may provide a 

mechanism to explain the field inhibition seen in grid cells with barrier insertion.  

The data in this thesis presents novel research identifying and characterising spatial cells located 

in the subiculum. Of particular importance, is the discovery of grid cells in this structure that are 

intermingled with HD and boundary-responsive cells.  The thesis focuses on characterising and 

investigating the importance of environment boundaries to subicular cell firing patterns. The 

results are discussed in relation to what is known about spatial representation in the 

hippocampal and parahippocampal regions, and the neural circuitry which comprises this 

representation.   
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LED  Light Emitting Diode 

LH  Left hemisphere 

LWC Large walled circle  

LWS Large walled square 
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Chapter 1 Introduction part 1: Anatomy of the hippocampal 

formation 

The view that the hippocampal formation is important for memory began with the observations of brain 

damaged patients by William Scoville and Brenda Milner in 1957. The most famous of their patients was HM 

who following surgery to help manage his severe epilepsy had a large part of the hippocampal formation 

(and some of the surrounding cortical regions removed). HM developed profound global amnesia and could 

not remember any episode post-surgery or anything directly before surgery. HM’s amnesia spurred efforts 

to find an animal model of amnesia. Early studies looking at primates (Orbach et al, 1960; Correll and 

Scoville, 1967) and rats (Morris, 1982) failed to find a convincing memory deficit following hippocampal 

damage. Alternatively a variety of other deficits emerged including changes to exploration and habituation 

to novelty, increased hyperactivity, and impaired spontaneous alternation (Kaada et al 1961; Kimble 1963; 

Isaacson and Kimble, 1972; Anderson et al, 2007).  In the 1970’s as it was realised that there was more than 

one type of memory, the view of the hippocampus and its role in memory changed and developed. It was 

decided that the previous methods used to test hippocampal functioning (in animals) was not optimal. This 

led to the design of the behavioural tasks used to this day, and the development of the method of single cell 

recording. It is now generally considered that the hippocampus (and the hippocampal formation) plays 

crucial roles in general learning and memory, and more specifically for spatial memory (Anderson et al., 

2007).   

1.1 Nomenclature 

There is some debate regarding the definition of the hippocampus proper and the hippocampal formation 

(Amaral & Lavenex, 2007). This thesis adopts the nomenclature whereby the hippocampus includes the 

cornu ammonis (CA) fields (CA1, CA2 & CA3) and the dentate gyrus (DG). The hippocampal formation 

includes the hippocampus and the subiculum, which is also (having only three layers like the DG and CA 

fields). The parahippocampal region (para = alongside/near) includes the entorhinal cortex and the pre- and 

parasubiculum (Scharfman et al., 2000).  

The above definitions are based on connectivity and laminar organisation. The hippocampal formation is 

distinctive in having a trilaminar (three-layered) allocortical organisation. Whilst the entorhinal cortex and 
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the pre- and parasubiculum have a multilaminate organisation similar to neocortical structures. The 

parahippocampal region can be viewed as the transition from allocortex to neocortex (Amaral and Lavenex. 

2007). An additional difference between the parahippocampal region and the hippocampal formation is the 

distinctive nature of hippocampal connectivity, which is largely unidirectional. The parahippocampal region 

on the other hand is much more neocortical in terms of connectivity, with at least two sets of reciprocal 

connections. One between peri- and postrhinal cortices and the entorhinal cortex, and the other between 

the pre- and parasubiculum and entorhinal cortex. 

1.2 Gross morphology 

In rodents the hippocampal formation comprises a large proportion of the brain and the hippocampus 

proper is almost half the brains cortical volume. In humans the more developed cerebral cortex has caused 

the human hippocampus to be located more ventral in the medial temporal lobe (Amaral and Lavenex, 

2007).  The dorsal hippocampus in the rat brain, is equivalent to the posterior hippocampus in primates. 

 

Figure 1.2.1 illustrates the positioning of the hippocampal formation within the rat brain. The occipital and 

temporal neocortex has been removed to provide a view to the allocortex.  The hippocampal formation is 

 

Figure 1.2.1. Three-dimensional drawing illustrating the position of the hippocampal formation in the 
rodent brain from a lateral point of view.  

The septo-temporal axis (blue arrows) runs between the septal and temporal poles (labelled). The 
transverse axis (red arrows) runs from medial to lateral. Drawing adapted from Amaral and Witter 
(1995). 

 



Introduction part 1: Anatomy of the hippocampal formation       3 
 

   

 

the curving ‘C’ shaped structure. Its long axis the septo-temporal axis (more often referred to as the dorso-

ventral axis) extends from close to the midline (near the septal nuclei) over and behind the thalamus to the 

temporal lobe. Orthogonal to this is the transverse axis which runs medial to lateral. These axes are 

important landmarks to the structural connectivity of the hippocampal formation which is arbitrarily split 

into 3 portions, dorsal, (located behind the septum), posterior (located at the ventrolateral curve) and 

ventral (located in the temporal portion).   

The Fimbra-fornix is the pathway connecting the hippocampal formation with the basal forebrain, 

hypothalamic and brain stem regions (Amaral and Lavenex 2007). The ventral (septal) portion of the 

hippocampus is covered by the alveus a thin sheet of afferent and efferent fibres. These fibres collect at the 

ventral (temporal) hippocampal formation and become thicker through to the dorsal hippocampus. They 

become the fornix as they leave the hippocampus to descend into the forebrain. The fornix fibres are also a 

source of input to the hippocampus. These inputs include the afferent projections from the septum and 

raphe nuclei. 

1.3 Organization of the hippocampal formation and parahippocampal 
region 
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Figure 1.3.1 shows a horizontal section of the hippocampal formation and parahippocampal region. This 

illustrates the trilaminar organization of the hippocampal formation as well as clear borders between areas.  

The darkly stained interlocking C structures represent the pyramidal layers of the hippocampus proper and 

the granule layer of dentate gyrus (DG).  Below this is the relatively cell free layer called the stratum oriens. 

The widening of the tail of the CA1 field becomes the subiculum. To the right of the subiculum is the pre- 

and parasubiculum. The parahippocampal region is signaled by a sudden increase in layers. The subicular 

pre-parasubicular border is characterized by the emergence of a cortical sheet, consisting of the pre- and 

parasubiculum superficial layers. The deep layers are separated from the superficial layers by a cell-free 

zone (the lamina dessicans) which should be layer IV. At the border between the entorhinal and perirhinal 

or postrirhinal/parahippocampal cortex the laminar dissecans disappears giving way to a more neocortical-

like structure with 6 layers. The exception to this within the parahippocampal region is the peri and 

postrirhinal cortices which only have 5 layers, lacking the granule cell layer IV. 

 

Figure 1.3.1. Horizontal section through the hipppocampal formation and parahippocampal region of the 
rodent brain.  

The trilaminar (three layered) structures that comprise the hippocampal formation are CA1, CA2, CA3, DG 
and subiculum. The layers can differentiated by their staining; the darker the staining the more densely 
packed the cell layers. The parahippocampal region is composed of the presubiculum (PrS), 
parasubiculum (PaS), entorhinal cortex (EC) and perirhinal cortex (Per). The parahippocampal region 
begins where there is an abrupt increase in the number of layers. Layers II and III form the superficial 
parts of these structures while the deep layers (V-VI) are a continuation of the subiculum. Adapted from 
Witter et al., (2000). 

 

Granule layer  

Pyramidal layer 

Stratum oriens 

Increase in layers  

Widening of the CA1 pyramidal 

cell layer into the subiculum 

(pyramidale layer) 
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1.4 Cytoarchitectonic organisation  

1.4.1 Laminar organisation of the CA fields  

The principal cellular layer of the CA fields is the pyramidal cell layer, which is densely packed in CA1 but less 

so in CA2 and CA3. Beneath this there is a narrow relatively cell-free layer called the stratum oriens. This 

contains the basal dendrites of the pyramidal cells and also some interneurons. It is also the region where 

some of the CA3 autoassociational connections and CA3 to CA1 Schaffer collateral connections are located. 

The extra layer In the CA3 field is the stratum lucidum, which is a narrow acellular zone situated just above 

the pyramidal layer. This is where mossy fibres originating from DG terminate. The stratum radiatum is 

located above the stratum lucidum in CA3 and immediately above the pyramidal cell layer in CA1 and CA2. 

This layer contains some interneurons and is where again some of the CA3 autoassociational connections 

and CA1 to CA3 Schaffer collateral connections are situated. The last layer is the superficial layer the 

stratum lacunosum-moleculare which is located deep to the stratum radiatum. This layer also contains 

interneurons and is where the perforant pathway fibres from neurons of the superficial layers of the 

entorhinal cortex terminate. These terminate on the distal apical dendrites of CA1 pyramidal cells (the distal 

dendrites project into the stratum lacunosum-moleculare). Afferent projections from other regions 

including thalamic regions such as the reuniens nucleus also terminate in the stratum lacunosum-

moleculare (Amaral & Lavenex, 2007).  

1.4.2  Laminar organisation of the dentate gyrus (DG) 

The dentate gyrus (DG) comprises three layers. The principal cellular layer is the stratum granulosum. This 

layer contains granule cells and is densely-packed, similar to the CA principal cellular layers. These are the 

principal type of dentate cells and are the only ones to project outside the DG. They synapse with the CA3 

dendrites in the stratum lucidum. Above the stratum granulosum is the superficial layer, the stratum 

moleculare which is closest to the hippocampal fissure. This is where the granule cell dendrites are located. 

Granule cells are unipolar, there are no granule cell dendrites on the other side of the granule layer. The 

dense projection to the DG from entorhinal cortex targets the granule cell dendrites in the molecular layer. 

The third layer, the hilus, (often referred to as the polymorphic cell layer of the DG) contains several types 

of neuron are situated within this layer, including the mossy cells that project back to the granule cells. 

(Amaral & Lavenex, 2007).  
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1.4.3 Laminar organisation of the subiculum 

Similar to the CA fields the subiculum has 3 distinguishable layers. The CA1/Subiculum border is identifiable 

by the widening of the pyramidal cell layer. The principle cell layer is the pyramidale, which encloses the 

pyramidal cells somas, this layer is less well packed then the CA1 pyramidal layer. These neurons extend 

their apical dentrites into the molecular layer above and some extend to reach the hippocampal fissure 

(Harris et al., 2001). This is continuous with the CA1 stratum lacunosum-moleculare and stratum radiatum 

layers. The superficial portion of the molecular layer receives entorhinal projections whilst the deep part of 

the molecular layer is innervated by the CA1.  The third layer, oriens is polymorphic and contains the basal 

dendrites (Amaral & Lavenex, 2007). 

1.4.4 Laminar organisation of the entorhinal cortex (EC) 

The EC contain six layers, which are often grouped into 2 categories the superficial (layers I-III) and deep (IV-

VI) layers. The EC superficial layers contain stellate (layer II) and pyramidal (layers II and III) cells. The 

neurons from the layer II project to the DG and CA3, and those of layer III, to CA1 and the subiculum. The 

CA1 and the subiculum project back to the EC, onto its deep layers which contain various cellular types 

(Amaral & Lavenex, 2007). 

1.4.5 Laminar organisation of the pre- and parasubiculum 

The dorsal Presubiculum has clearly distinguishable superficial and deep layers. The most superficial cells 

are densely packed (layer II), whereas the cells located deeper in the presubiculum are more loosely 

arranged (layer III). In the ventral portion however, they are not so clearly distinguishable from the deep EC 

layers or the subiculum principle layer. The parasubiculum lies adjacent to the Presubiculum. Layers II and II 

consist of densely packed large pyramidal cells which is one of the major features used to distinguish the 

pre- and parasubiculum. As with the Presubiculum the deeper layers are continuous with the EC (Amaral & 

Lavenex, 2007). 

1.5 General connectivity  

Intrahippocampal circuitry is largely unidirectional which significantly differs from that of the neocortex, 

which in contrast has strong, reciprocal innervations between the neocortical regions (Felleman and Van 

Essen, 1991). There are 3 principal synaptic connections involving the hippocampal formation. 
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The first is the connection is between layers II and III of the EC and the DG, CA3 and CA1 via the ‘perforant 

path’. It is through this path that the EC provides the major source of input to the hippocampus. These are 

not reciprocal connections; they are unidirectional from the EC to the hippocampal fields. Secondly there 

are the intrahippocampal unidirectional projections comprising of the DGs sole projection to the CA3 via 

mossy fibres and the projection from CA3 to CA1 via the Schaffer collaterals. Lastly the CA1 projects out to 

both the subiculum and the deep layers of the EC. The subiculum also projects to the EC, presubiculum and 

parasubiculum. Therefore, the hippocampal processing loop begins in the superficial layers (II & III) of the 

entorhinal cortex which projects to DG, CA3 and CA1, and ends with projections from the CA1 and 

Subiculum into the deep layers (V &VI) of the entorhinal cortex (Amaral & Lavenex, 2007).  

The following sections address (i) the intrinsic connectivity within; (ii), the major afferents (inputs) and (iii) 

the major efferent’s (outputs) of the hippocampal formation, entorhinal cortex and the subiculum. Figure 

2.3 summarises these connections. 

1.5.1 Afferents to the hippocampal formation  

The major source of neocortical input to the hippocampus is from the superficial layers II and III of the EC 

through the perforant pathway. Much of the entorhinal input originates from postrhinal and perirhinal 

cortices, but these all project to the hippocampus (Figure 1.5.1). The perforant pathway from the EC into 

the hippocampus can be subdivided into two streams, one originating from layer II and one from layer III.  

The projections originating in layer II of the EC project to DG, CA3 and CA2. The Projections to DG mainly 

terminate on granule cell dendrites, and projections to CA3 and CA2 terminate in the stratum lacunosum-

moleculare. The projections from layer III project to the CA1 and subiculum. The projections to CA1 

terminate in the stratum lacunosum-moleculare. EC input to CA1 varies depending on EC region with 

projections from lateral EC terminate in distal CA1 (close to the subiculum) and projections from medial EC 

terminate in proximal (close to CA2). Projections from EC layer III to the subiculum terminate in the 

molecular layer (Witter, 1993). 
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Figure 1.5.1. A diagram of the internal connections of the hippocampal-parahippocampal regions, 
plus cortical input and output to these regions.  

The figure shows the connections between areas, and the directions of those connections using 
arrows. The red dashed box distinguishes the Hippocampal formation (HF) and the green box 
includes the Parahippocampal network (PHN). Adapted from (Wills et al., 2005). 
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1.5.2 Intrinsic connectivity of the hippocampal formation  

There are 5 major connections within the hippocampal formation (as highlighted by the contents of the red 

dashed box in (Figure 1.5.1). The first is the DG projection to the CA3 via the mossy fibres. The fibres arise 

from the dentate granule cells and terminate just above the CA3 pyramidal layer. All DG cells project to CA3, 

and this projection stops at the border of CA3 and CA2, which is one main distinction between CA3 and CA2 

pyramidal cells. The second is the recurrent collaterals between CA2 and CA3. The third is the recurrent 

collaterals of CA3 pyramidal cells. These strong autoassociational connections mean that a large proportion 

of CA3 pyramidal cells have excitatory synaptic contact with each other. The fourth is the schaffer 

collaterals projecting from CA3 and CA2 to CA1. Last are the projections from CA1 to subiculum. The 

subiculum itself does not project directly back into the hippocampus, but rather has strong reciprocal 

connections to the EC, which receives the majority of the subiculum output (Amaral and Witter, 1995).  

1.5.3 Subcortical afferents to the hippocampal formation  

There are several major subcortical inputs to the hippocampal formation, from the medial septum, the 

supramammillary nucleus, the brain stem, the amygdala and the thalamus.  

The septum is part of the basal forebrain. The septal projection to the hippocampus originates mainly in the 

medial septal nucleus and an associated region called the nucleus of the diagonal band of Broca (Amaral & 

Lavenex, 2007). Septal fibres terminate in all areas of the hippocampal formation, but are particularly 

prominent in the DG, where cholinergic fibres from the medial septum innervate mossy cells. The medial 

septum is also a major source of subcortical input to CA3, and there is also some input to CA1 (Amaral and 

Witter, 1995). 

The supramammillary nucleus is part of the hypothalamus. It consists of a population of large cells which 

partially surround the medial mammillary nuclei of the hypothalamus (Amaral and Lavenex, 2007). The 

termination patterns of projections from the supramammillary nucleus in the hippocampus are relatively 

specific, and target the DG and CA2 in particular, only projecting weakly (if at all) to CA1 and CA3 (Amaral & 

Lavenex, 2007).  

The brain stem reticular formation consists of several structures including the rostral pontine region, 

pedunculopontine tegmental nucleus, and the raphe nuclei. The raphe nuclei are responsible for 
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serotonergic innervations of the rest of the brain, and the median raphe directly innervates GABAergic 

interneurons in the DG, CA1 and CA3 (Freund et al., 1990). Monoaminergic input from the brain stem is 

primarily restricted to noradrenergic and serotonergic input. Noradrenergic input is quite dense to all 

regions of hippocampus and subiculum, while serotonergic input is most dense to the lateral EC, DG and 

layer 1 of the pre- and parasubiculum (Amaral and Witter, 1995). 

Lastly basolateral amygdalar input to hippocampus is largely restricted to CA1 and to its temporal third in 

particular (Amaral and Witter, 1995). In addition, CA1 receives a direct and massive input from the nucleus 

reunions of the thalamus (Wouterlood et al., 1990), largely directed at the stratum lacunosum-moleculare 

and to the middle septo-temporal levels of CA1. 

1.5.4 Efferents from the hippocampal formation  

Both the CA1 and the subiculum project to the deep layers of the EC (V and VI), and also give rise to a 

number of other efferents, to both cortical and subcortical regions. The CA1 and subiculum both project to 

the medial prefrontal cortex, retrosplenial cortex and perirhinal cortex. CA1 subcortical projections include 

medial and lateral septum. Specifically the ventral CA1 projects to areas including basal amygdale, olfactory 

bulb, anterior and dorsomedial hypothalamus. The subiculum is a major output region of the hippocampal 

formation, particularly to subcortical efferents including lateral septum, nucleus accumbens, medial 

mammillary nuclei and medial thalamic nuclei (Amaral and Lavenex 2007).  

In summary, information enters the hippocampus via the superficial layers of the EC, is processed within the 

hippocampal formation and is then relayed via CA1 and the subiculum to the deep layers of the EC. From 

there it can be fed back into the hippocampus through associational connections between the deep and 

superficial EC layers, or be relayed to the cortical mantle, either directly (from a very specific region of EC) 

or indirectly through peri- and postrhinal cortices (Amaral and Witter, 1995).  

1.6 The entorhinal cortex  

The EC is the gateway for the main cortical inputs to the hippocampal formation, and is also the main region 

for relaying processed information back to the neocortex. The EC is therefore crucial to the functioning of 

the hippocampal formation. The EC can be subdivided into lateral (LEC) and medial (MEC) portions, which 

are cytoarchitectonically and functionally distinct. The lateral area layer II is more distinct than the medial 
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layer II, with lateral layer II cells being smaller, more densely packed and clustered into islands (Amaral and 

Witter, 1995). The MEC contains a high proportion of spatial cells, whereas the LEC does not (Amaral and 

Witter, 1995; Witter and Moser 2006). 

1.6.1 Entorhinal afferents  

As mentioned previously the EC provides the majority of the cortical input to the hippocampal formation via 

the perforant pathway. The peri- and postrhinal cortices provide the majority of input to EC, which is mostly 

received from inputs by unimodal and polymodal neocortical association areas, suggesting that the 

hippocampal formation receives highly-processed information from neocortex. Each cortical area has some 

associated specialisation of inputs. For example prominent unimodal afferents are olfactory and visual. The 

perirhinal cortex receives stronger olfactory inputs and the postrhinal cortex receives stronger visual and 

visuo-spatial inputs. However, it is the polymodal associational cortices which provide the majority of 

cortical input to the rhinal cortices, in particular the ventral temporal areas. The peri- and postrhinal 

cortices project differently to the EC, with the postrhinal cortex projecting preferentially to the MEC, and 

the perirhinal cortex projecting more to the LEC which is elucidated through a disassociation of functions 

between these 2 portions of the EC (Burwell and Amaral, 1998a). Visuo-spatial input, which originates in the 

retrosplenial, cingulate and posterior parietal cortices, also forms a robust projection directly to the EC 

(Burwell and Amaral, 1998b). 

The pre- and parasubiculum also project to the EC and receives strong projections from visuo-spatial 

neocortical areas. They receive similar cortical inputs and, in addition, both receive input from the 

subiculum. The fact that they receive strong input from the subiculum, which is the major output area of the 

CA1 and also project heavily to the EC, suggests that pre- and parasubiculum lie at the crossroad between 

output and input. It is thought that this functional loop may be important in re-directing hippocampally-

processed information back into the hippocampus (Amaral & Lavenex, 2007).  

1.6.2  Entorhinal efferents  

The projections into deep EC layers from CA1 and subiculum indicate that the deep layers are crucial in 

relaying hippocampal information to cortical regions. EC subcortical efferents overlap with those from 

subiculum and CA1, projecting to the septum (especially the lateral septum). EC also projects to the 

amygdala, and in particular the basal nucleus. Other important efferents include the nucleus accumbens 
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and olfactory tubercle. Evidence suggests that there is a restricted portion of layer V neurons in LEC which 

also project to lateral frontal (motor), parietal (somatosensory), temporal (auditory), occipital (visual), 

anterior insular and cingulate cortices (Insausti et al., 1997). The EC does not appear to project to the 

thalamus or brain stem (Amaral and Witter, 1995). 

1.7 Parasubicular and presubicular afferents and efferents  

Neither the parasubiculum nor the presubiculum appears to be an important output region. However, both 

have subicular afferents (these are discussed in the next section). The parasubiculum projects to the 

hippocampal formation, and its efferents to the thalamus project back to the hippocampal formation. The 

presubiculum has efferent projections to the hippocampal formation, and provides some projections to the 

retrosplenial and perirhinal cortices.  

1.8 Subiculum 

1.8.1 Intrinsic subicular connections  

 The subiculum gives rise to longitudinal associational projections extending from the level of the cells origin 

ventrally to much of the subiculum. Associational fibres terminate diffusely throughout the subiculum. This 

projection appears to be largely unidirectional, and it does not appear to produce or receive commissural 

connections. Pyramidal cells provide strong local input to the principal layer and to the apical dendrite 

superficial to it. The density of this connection is much higher than in the CA1. There are 2 types of principal 

cells, bursting and regular. Bursting cells have a columner organisation whereby their axonal distribution 

remains in the region and is confined by their apical dendrites. Whereas the regular spiking cells generally 

have a more disseminated distribution along the traverse axis (Amaral 2005).  

1.8.2 Extrinsic subicular projections 

1.8.2.1 Subicular afferents 

The subiculum is considered the major output area of the hippocampus (Naber et al., 2000). CA1 sends its 

primary projections to the Subiculum. This projection is considered to be simply organised. All CA1 regions 
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project to and are received by all portions of the subiculum (Amaral et al., 2001; O’Mara et al., 2009). Distal 

CA1 (the portion on the subiculum border) projects to proximal subiculum (area bordering CA1), proximal 

CA1 (bordering CA3) projects to the distal subiculum (bordering presubiculum) and the mid portion of the 

CA1 projects to the mid portion of the subiculum. Fibres beginning from the proximal CA1 travel to the 

subiculum via the alveus and the deepest portion of the stratum oriens, whereas fibres originating in mid-

CA1 do not enter the alveus but project to the subiculum through the deep parts of stratum oriens. The 

axons of distal CA1 cells travel directly to subiculum from all parts of stratum oriens (Amaral et al., 2001; 

O’Mara et al., 2005; 2009). These projections are confirmed by neurophysiological depth profiles of this 

projection by stimulation of different sites by a bipolar stimulating electrode in the rat in vivo (O’Mara et al., 

2001). This projection is generally considered to be monosynaptic from the CA1 (combined morphological 

and single unit studies; Gigg et al., 2000), however there is some evidence that the subiculum returns a 

minor oligosynaptic projection to CA1 (sequence of only a few neurons; Commins et al., 2002).  

Other afferent projections include input from all areas of the anteroventral (AV) and anteromedial (AM) 

nuclei of the thalamus (see Risold et al., 1997; Canteras and Swanson, 1992; Kohler et al., 1990). Other 

projections include weak cholinergic projections from the septal nucleus and nucleus of the diagonal band. 

Also there are modulatory inputs from the brain stem, including the locus coeruleus (noradrenergic) and the 

raphle nuclei (seratonergic). Of particular not is that the subiculum receives dense mesencephalic 

dopaminergic projections from the ventral tegmental area (VTA) (Descarries et al. 1987; Gasbarri et al. 

1994) and express high levels of D1- and D2-like DA receptors (Bruinink and Bischoff 1993; Fremeau et al. 

1991).  

 The subiculum also receives input from many of the same cortical areas which project to the EC as well as 

direct input from the EC itself. Of particular note are the modest projections from the pre- and 

parasubiculum.  

There are inconsistent reports of projections from the anterior cingulate cortex to the subiculum (white et 

al 1990). The subiculum also receives projections from the amygdaloid complex. In particular the 

parivcelluar portion of the basal nucleus, posterior cortical nucleus and the amygdalaloid hippocampal area 

(Amaral and Lavenex 2007). These projections terminate at the proximal portion of the subiculum and 

innervate the molecular layer. They are reciprocated, arising from the temporal third of the subiculum to 

various areas of the amygdaloid complex.  

http://jn.physiology.org/content/84/1/112.long#ref-10
http://jn.physiology.org/content/84/1/112.long#ref-15
http://jn.physiology.org/content/84/1/112.long#ref-15
http://jn.physiology.org/content/84/1/112.long#ref-8
http://jn.physiology.org/content/84/1/112.long#ref-14
http://jn.physiology.org/content/84/1/112.long#ref-14
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The Perirhinal and postrhinal cortices also project to the subiculum (Witter and Moser, 2006). The Perirhinal 

projects to the most proximal-to-CA1 portion of the dorsal subiculum and the postrhinal projects to the 

most distal-to-CA1 portion of the dorsal subiculum (bordering the presubiculum). These projections are 

reciprocal.  

1.8.2.2 Reciprocal connection with entorhinal cortex 

Witter et al., (2006) show evidence that the subiculum receives EC projection fibres directed towards 

transverse portions of subiculum which terminate in molecular layer. Perforant path fibres traverse the 

subiculum on the way to the DG and the hippocampus. Projections originate primarily from layer III of the 

EC (and possible V), but also some may come from layer II as they traverse the subiculum to DG and CA3. 

Entorhinal fibres target dendritic spines of assumed principle neurons with asymmetrical synapses (80%) 

and the rest terminate on the dendritic shaft, probably belonging to interneurons. The symmetrical 

synapses on dendritic shafts mean that the interneurons may receive some inhibitory perforant path input 

(Amaral and Lavenex 2007).  

This projection is reciprocated from the subiculum with fibre termination throughout the deep layers of the 

EC and being particularly dense in layer V. The reciprocal projection is organised similarly to the CA1-

subiculum projection, with the proximal-to-CA1 subiculum projecting to the distal portion of the EC (LEC) 

and the distal-to-Ca1 subiculum projects to the proximal EC (MEC). Subiculum fibres generally form 

asymmetrical synapses with spines and dendrites located in the EC. However, in accordance with the 

subiculum’s excitatory influence on the EC, some of these form symmetrical synapses suggesting some 

inhibitory input from the subiculum to layer V.  There is also a notable projection extending superficially to 

the acellular lamina dissecans in EC layer III (Amaral and Lavenex 2007).   

1.8.2.3 Subicular efferent connections 

The subiculum is considered the major source of efferent projections from the hippocampal formation. The 

subiculum does not project back to the CA1, but, projecting axon collaterals target other cortical and 

subcoritcal areas including the EC and the pre- and parasubiculum.  

 Projections from the Subiculum to pre- and parasubiculum are topographically organised, with the dorsal 

subiculum projecting to the dorsal and septal portions of both (Witter, 2006). Amaral and Lavenex (2007) 
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consider that this projection is the last stage in the process passing information out of the hippocampal 

formation to cortical and subcortical areas. However, an alternative view is that this information may also 

be feeding back into the entorhinal cortex via the pre- and parasubiculum. Subicular fibres predominantly 

terminate in layer I of the presubiculum. Projections to the dorsal presubiculum terminate deeper to layer 

II. Projections to the parasubiculum mainly terminate in layer I and the superficial portion of layer II. 

There are also prominent connections to medial and ventral orbitofrontal cortices, the prelimbic and 

infralimbic cortices (Verwer et al., 1997), the retrospenial cortex (Wyss and Van Groen, 1992) and the 

perirhinal cortex. There are also less substantial projections to the anterior cingulate cortex (Witter, 2006). 

1.8.2.4 Subicular cell types 

The subicular principle cell layer contains large pyramidal neurons (similar to CA cells; Harris et al., 2001), as 

well as many smaller neurons (Amaral and Witter, 1995). Subicular pyramidal cells are considered to be 

relatively uniform compared to the more extensively researched CA1 cells. There are 2 types which differ 

regarding their firing properties and distribution within the principle cell layer; regular spiking cells located 

superfically and intrinsically bursting cells which are located deeper (Greene and Totterdell, 1997; Amaral 

and Lavenex, 2007). These cells do not differ morphologically and both project outside the subiculum. 

However, some evidence suggests that only bursting cells project to the entorhinal cortex (Amaral and 

Lavenex, 2007). Therefore they may differ regarding connectivity. Little is known regarding the smaller 

neurons beyond being considered the interneurons of the subiculum. Their similarity to CA1 interneurons 

however is relatively unknown.  

Staff et al., (2000) compared subicular and CA1 pyramidal neurons. Subicular neurons have fewer branches 

in the basal and apical dendrites trees. However, there was no difference in regular spiking and bursting 

neurons in the subiculum (Taube, 1993; Greene and Totterdell, 1997; Staff et al., 2000; Harris et al., 2001). 

Similar to CA1 cells, the subicular dendrites are studded also with spines.   

1.8.2.5 Subiculum summary  

The subiculum receives strong unidirectional input from CA1 and sends divergent output projections to 

many other parts of the brain. Subsequently the subiculum is considered the major output area of the 

hippocampus (Naber et al., 2000). Among its various cortical and subcortical output areas the subiculum 
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notably has strong reciprocal projects to the EC and strong projections to the pre- and parasubiculum. 

Whilst the projections from the CA1 are unidirectional, the subiculum could arguably feed-back information 

to the entorhinal cortex and subsequently to the hippocampus via its projections to the EC and the pre- and 

parasubiculum. 
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Chapter 2 Introduction part 2: Spatial cells 

2.1 The spatial world 

Navigation is a vital tool for survival. For example navigation allows animals to find food, mates, and avoid 

danger.  Navigation is essentially the process/ activity of accurately ascertaining one’s current location and 

route planning and following future routes. Early behavioural work by Tolman (1948) has been highly 

influential in the research field of navigation. He suggested that the ability to navigate requires specific 

cognitive processes allowing the animal to mentally represent space. He considered that “in the course of 

learning, something like a field map of the environment [is] established in the rat’s brain”. During early 

observations Tolman noted that rats would use ‘short cut’ behaviour to reach a goal location instead of 

following their trained route. He devised a task to test this behaviour. Initially he trained the rats to reach 

point B from starting point A (Figure 2.1.1). After training in an maze with only one route (Figure 2.1.1 left) 

he then put the rats in a sun-burst maze providing multiple routes to the goal location (Figure 2.1.1 right). 

Typically the rats tended to choose the shortest route (path 6), despite having no previous experience of the 

apparatus. This led him to conclude that the rats must have produced a cognitive representation of space 

through latent learning.  This sort of learning goes beyond stimulus-response as it requires the creation of a 

mental representation of the environment rather than just associative learning techniques.  He termed this 

 

Figure 2.1.1: Apparatus and procedure used to investigate the existence of a cognitive representation 
of a rats environment by Tolman (1948).  

On the left is the training apparatus, where rats were trained to run from location A to location B. On 
the right is the sun burst maze, used as the test apparatus. After training in the single route maze, 
most rats were able to accurately choose the shortcut route highlighted in red (path 6). 
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mental representation a ‘cognitive field map’. 

Behavioural evidence compatible with the use of a cognitive map came with the development of the 

popular ‘Morris water maze’ task (Morris, 1981). Inside a pool of cloudy water, rats had to locate a platform 

hidden beneath the surface. This platform was not visible and so they had to locate it without relying on any 

intramaze cues. During training they were released into the pool from the same starting location which 

arguably allowed them to use either a cognitive map or an associative-based strategy to find the platform 

(e.g. body turns, time of swimming). In the test trials post-training the rats were released from random sites 

in the pool. If the rats were relying on an associative-based strategy then they would have been unable to 

locate the platform. However, Morris (1981) found that even when released from different starting 

positions the rats could still locate the platform, supporting the idea that the rats used a representation of 

the environment (cognitive map) rather than a response strategy. 

Morris et al., (1982) later replicated this work using rats which had undergone hippocampal lesioning 

(lesions to the hippocampus, DG and the subiculum).  In comparison to control rats lesioned animals 

performed poorly when released from different start locations. Morris et al, (1990) report that the 

hippocampus and subiculum lesions caused impairment to the initial postoperative acquisition of place 

navigation but did not prevent eventual learning to similar levels of performance by the controls. The 

effects of ‘pure’ subicular lesions on spatial learning with no damage to the hippocampus, were interpreted 

as deficits in heading and bearing on a target, and a deficit in precise localization of the hidden platform 

position. 

This implies that the hippocampal formation may play a vital role in utilising a mental representation for 

navigation. Since this early work the cognitive map has been widely investigated (for a review see 

McNaughton et al., 2006).  

They also report that lesions of the subiculum alone did not lead to deficits in spatial learning in the same 

fashion as do lesions of the hippocampus proper; rather, 

The idea that the hippocampus was the substrate of a cognitive map was derived from O’Keefe’s discovery 

of place cells.  In 1971 O’Keefe and Dostrovsky recorded single cells from the hippocampus (CA1) during 

natural behaviour (grooming, walking sleeping etc) and in responses to various stimuli (e.g. odours, noises 

and light cues). Their early work identified a group of cells which exhibited spatially-related firing. These 
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cells appeared to remain silent unless the rat was walking through or was situated in a particular portion of 

the environment. It was the discovery of these location-specific cells which provided the first single-cell 

evidence supporting the idea of a kind of Tolmanian ‘cognitive field map’ representing allocentric space. 

These cells were called ‘place cells’ after their characteristic firing for a specific place within an environment 

(O’Keefe and Dostrovsky, 1971; O’Keefe, 1976; O’Keefe and Burgess, 1996). 

It was the discovery of place cells that led to the development of the cognitive map theory of hippocampal 

functioning. The theory held that the hippocampus creates an intuitive, innate and Euclidean framework of 

allocentric space with place cells at the centre, allowing spatial memories to be encoded and stored in a 

map-like way (O’Keefe, 1976). O’Keefe and Nadel (1978) adopted a Kantian stance on space, emphasising 

the apriori abstract nature of space.  

“The constituents of space are places, and thus an alternative definition of a map is the representation of a 

set of connected places which are systematically related to each other by a group of spatial transformation 

rules. … The absolute space defined by Kant exists in the absence of objects.” (O’Keefe and Nadel, 1978, 

p.78). “  

The original theory (1978) held key suppositions concerned with; representation and navigation of 

environments, encoding and storing of spatial information and the evolution of a spatial memory system  

that can be related to human memory processes (e.g. semantic and episodic). Specifically, O’Keefe and 

Nadel proposed that hippocampal pyramidal cells represented ‘place’, that directional information existed 

within the hippocampus and that somehow speed and/or distance information could be generated for the 

workings of the cognitive mapping system.  
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2.2 Spatial cells  

Since the initial proposition of the cognitive map theory, it is now clear that the hippocampal 

formation and the parahippocampal region contain at least 4 types of spatially responsive cells. The 

following section will provide a general consideration of cells with spatial signalling which have thus 

far been identified.  These spatial cells will be discussed in order of discovery.  

2.2.1 Place cells 

A place cell is a complex-spike (pyramidal) cell that fires when the rat enters a certain location 

within the environment, referred to as its place field (O'Keefe & Dostrovsky, 1971). The cell, silent 

outside of its place field, sees an increase of its firing rate as the rat enters the field, peaking at its 

centre and decreasing as the rat exits the field. Place cells are typically omnidirectional and so this 

pattern of firing can be seen from whichever directions the rat enters and exits its place field.  

2.2.1.1 Located in the hippocampal formation 

Place cells are primarily recorded in the CA1 and CA3 of the hippocampus. Thompson and Best 

(1989) tried to make an accurate estimate of the place cell population in the CA1. They identified 

complex-spiking cells under light barbiturate anaesthesia, and then tested the rats in three 

environments (Radial Arm Maze and cylindrical and rectangular environments). Over a third of the 

cells identified under anaesthesia were also recorded in at least one of the environments. Almost all 

other cells recorded had very low spontaneous rates and were classed as silent cells. Only 14% had 

fields in two or three of the environments. Many of the cells with fields in one environment were as 

silent cells in the others. 

Place cells have also been found in the subiculum and the EC, both of which are areas that are 

integral to inputting and receiving information from the CA1. In comparison to CA1 place cells 

subicular and entorhinal place cells had larger fields which were less spatially compact and were less 

sensitive to environment shape (Sharp et al., 1999; Quirk et al., 1992). Place cells located in these 

areas have not been as thoroughly characterised as hippocampal place cells. In the present thesis 

only CA1 and CA3 place cells will be referred to unless otherwise specified. 
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2.2.1.2 Field shape and size 

The size and shape of place fields typically vary with the size and shape of the environment (Leutgeb 

et al., 2005; Fenton et al., 2008; Lever et al., 2002a; O'Keefe & Burgess, 1996). Interestingly, field 

size depends on the cells recording location along the hippocampal dorsoventral axis (Jung et al., 

1994; Kjelstrup et al., 2008; Maurer et al., 2005). Whilst the ventral portion of the hippocampus is 

less well explored some ventral neurons have been reported to have place fields double the size of 

dorsal place cells (Maurer et al., 2005) or even four times those of the dorsal region (Marcelin et al., 

2012).These larger place fields could cover the entire environment and act as the spatial context. 

This is relevant for interpreting experimental results involving the hippocampus in non-spatial 

functions, like conditioning or sensory processing without apparent spatial signalling. Therefore the 

place cells with large firing fields which signal the entirety of a specific environment may provide a 

spatial context for non-spatial activity. Interestingly unlike neocortical cells hippocampal place cells 

are not topographically organized (reviewed O’Keefe et al., 1998; Ranck et al., 2001). Exceptionally 

Hampson et al., (1999) showed that place cells located topographically close together (100-300µms 

apart) showed high cross-correlations of place field firing, whereas further away (400-1000µm 

apart) showed a much reduced cross-correlation. However, this finding has not been replicated (e.g. 

Redish et al., 2001). 

There is limited evidence that place fields can be controlled by environment size. Muller and Kubie 

(1987) showed that place fields in small environments expanded when recorded in larger 

environments. This scaling was not parametric however, as the increase in field size was 

considerably less than the increase in environment area.  Fenton et al., (2008) showed similar 

results.  

2.2.1.3 Place cells receive sensory input from two systems  

Evidence suggests that place fields are controlled by a combination of exteroceptive sensory and 

interoceptive idiothetic cues (O'Keefe, 2007). Allocentric exteroceptive information comes from the 

environment (visual, olfactory and auditory) and provides highly-processed multimodal sensory 

information. It is considered that only a subset of these cues would be required to identify location 

in a familiar environment using pattern completion (Wiebe et al., 1997; Wills et al., 2005). 
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Interoceptive idiothetic cues provide egocentric information including proprioceptive, vestibular and 

motor signals as well as information necessary for a path-integration mechanism (McNaughton et al, 

2006a). 

The advantage of combining these two systems is that the animal can orient itself in the absence of 

sensory cues using idiothetic vestibular and proprioceptive information (for example, in the dark). 

Evidence suggests that reliance on interoceptive cues alone is not efficient and can only be 

successfully used for short periods because the path integration mechanism can rapidly accumulate 

errors (e.g., McNaughton et al., 1996; 2006; Burak and Fiete, 2009).  

2.2.1.4 Place field formation 

When exposed to a novel environment or a novel extension of a familiar environment, hippocampal 

place fields are usually formed rapidly. The fields stabilise quickly with some cells stabilizing within 

2-3 minutes, and the rest in around 5-6 minutes (Frank et al., 2004; O'Keefe, 2007). However, 

stability does seem to require a minimum exposure time. For example Frank et al., (2004) observed 

that if the duration of the first exposure was less than 4 minutes cells were much less stable upon 

re-exposure. The cues which determine the establishment of new place fields is still unclear (e.g. 

external or idiothetic) but evidence is clear that experience is certainly an important factor 

(McNaughton et al., 2006).  

2.2.1.5 Place cell remapping 

Once initially stabilised, place fields are very stable over time when re-exposed to a familiar 

environment (O'Keefe & Nadel, 1978; Thompson & Best, 1989; Lever et al., 2002a). However, they 

are not stable across different environments (Lever et al., 2002a). When the sensory qualities of two 

environments differ sufficiently hippocampal place cells are well known to remap (Muller and Kubie, 

1987). Remapping is a phenomena whereby the place cell firing field transforms e.g. moves, morphs 

or disappears due to environmental change. The extent of remapping depends on the amount of 

changes between the familiar and the changed environments (Anderson & Jeffery, 2003; Lee et al., 

2004; Leutgeb et al., 2005; 2007; Lever et al., 2002a).  Three types of remapping are generally 

acknowledged. Minor environment changes are thought to produce ‘partial remapping‘where the 

place field may move location (Anderson & Jeffery, 2003; Shapiro et al., 1997) or ‘rate remapping’ 
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which is a change in firing rate but not field location (Leutgeb et al., 2005). Large differences 

between environments can cause ‘global remapping’ where the place field to completely disappear 

(Colgin et al., 2008). 

Remapping is evident between geometrically altered environments but can also be produced by 

non-geometric manipulations. Other triggers include motivation (hunger, thirst; Kennedy and 

Shapiro, 2009), past emotional experience (Moita et al., 2004) and task (Markus et al., 1995). Colgin 

et al. (2008) hypothesised that responses to non-spatial changes would be reflected in the variation 

of the firing rate, and so would produce ’rate remapping’. Partial remapping, in which only some 

cells change the location of their place field, might reflect a change in some of the reference frames 

used to navigate in the same environment. In these cases some cells would be stable because they 

are fixed to unchanged distal cues, whilst other cells remap because they are fixed to proximal 

environmental cues which changed between environments (Colgin et al., 2008; Paz-Villagrán et al., 

2004). 

2.2.1.6 The influence of boundaries  

There appears to be something special about boundary cues beyond other environmental cues. For 

example place fields tend to be localised more often around the environment walls (Hetherington & 

Shapiro, 1997; Hartley et al., 2000) and the insertion of a barrier can cause the doubling of place 

fields (Muller and Kubie, 1987; Barry et al., 2006). 

Comparing recordings from the same place cells made in rectangular environments O'Keefe and 

Burgess (1996) noted that the location of peak firing typically maintained a constant position to the 

nearest walls. The rectangular environment was stretched and compressed causing several fields to 

parametrically stretch with the walls. For some place cells the changes to the environment shape 

made some place fields bimodal (separating into multiple peaks) in the larger rectangular 

environments. Similar parametric responses to geometric changes to an environment have been 

also seen across a variety of different shaped environments (Lever et al., 1999). O'Keefe and Burgess 

(1996) proposed that place cells receive inputs that are tuned to respond to the presence of a 

barrier at a given distance along a given allocentric direction. The presence of these inputs could 

explain the strong influence of environmental change upon place cell firing. It also would explain the 
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remapping, seen with environmental shape changes. The speculation of these inputs led to the 

development of the boundary vector cell (BVC) model discussed later.  

The influence of boundaries on place fields is not limited to perimeter walls, inserted barriers can 

also affect place fields. Muller and Kubie (1987) showed that bisecting a place field with a barrier 

would often cause the cell to stop firing, without affecting more distant place fields. Barry et al., 

(2006) replicated this result and also demonstrated that the addition of a barrier can promote the 

addition, deletion or duplication of place fields adjacent to the barrier. Rivard et al., (2004) also 

showed that some place cells may signal the proximity of additional free-standing barriers. For these 

place cells changes to the barrier disrupted firing. They moved and rotated with the barrier, and 

disappeared if the barrier was removed.  In contrast to the influence of extended barriers, Cressant 

et al., (1997) showed that isolated objects within the environment failed to affect place cell firing 

unless moved to the edge of the environment, (where they acted as orientation cues), or put in a 

line to form an extended barrier.  In short, it seems that impediments to movement, be they the 

walls of the environment, a free standing barrier or even a sheer drop at the edge of a platform 

(Lever et al., 2002a), play a key role in defining place cell firing. 

One interesting study indicating the importance of boundaries to firing patterns looked at place cell 

behaviour in a denuded environment. Barry et al., (2006) used their laboratory floor to place cells 

firing patterns with boundary removal (Figure 2.2.1). They covered the testing room in black drapes 

and all light but a single point near the ceiling was extinguished. During the experiment a burst of 

punishing white noise was used to prevent the rat reaching the room perimeters. The experiment 

had a number of wall removal conditions, where each wall was removed until only one of the pillars 

which connected the walls together was left as a solitary landmark.  Of the 25 place cells recorded, 

only 3 showed localised firing in the single pillar condition, and these cells followed the pillar if it 

was moved rather than remaining fixed. Over the course of the experiment, many of the place fields 

broke down. In general, it appeared that the boundary changes made place fields ‘less coherent and 

more diffuse’ see (Figure 2.2.1). Whilst this finding stands alone and requires further investigation; it 

certainly highlights the importance of boundaries in modulating place cell firing. 
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Figure 2.2.1. Effect of wall removal on place cell firing.  

Figure shows A) Effect of removing one wall on 3 place cells (i-iii). Plots show the locations at which spikes were 
fired (black squares) and the path of the rat (grey). Walls are shown as black lines. B) Shows one place cell and 
the effect of successive removal of walls on the fields. Removal of one wall produced limited change, but the 
removal of the second and third walls caused a profound break down in spatial firing. C) shows a rare place cell 
(one of two) with a coherent field in the pillar-only condition (after removal of all 4 walls). The location of the 
pillar is shown by ‘o’, a fixed point within the room is shown by ‘+ Room’. When the pillar was moved around the 
room, the place cells field shifted in concert. Figure adapted from Barry et al., (2006). 



Introduction part 2: Spatial cells       26 
 

   

 

2.2.2 Head-direction cells 

It is generally acknowledged that directional information is provided by head-direction (HD) cells. HD cells 

code for direction of heading independent of the rat’s position within the environment (Taube 1990a; 

Muller and Kubie, 1994; Burgess et al., 2005; Jeffery, 2007). HD cells fire maximally when the animal’s head 

is pointing in a given compass direction (Taube et al., 1990). The orientation does not relate to 

geomagnetism and so the camera orientation is generally used to determine ‘north’. There is no preferred 

direction in the distribution of HD cells; as a population they evenly signal the full 360° available. Similarly to 

place cells HD cells are not organised topographically; neighbouring neurons do not necessarily fire for the 

same direction (Taube et al., 1998; Taube and Muller, 1998).  

2.2.2.1 Anatomical location of Head-direction cells 

 Head-direction cells have been found in the anterior and laterodorsal thalamus, lateral mammillary bodies, 

dorsal tegmental nucleus, anterior cingulate, retrosplenial cortex, postsubiculum, presubiculum, subiculum 

and entorhinal cortex (EC; Taube et al., 1998; 2007; Sargolini et al., 2006). HD cells are densely populated in 

the dorsal presubiculum which has strong anatomical connections to the hippocampus via the EC. HD cells 

are typically not found in the hippocampus proper. However, Leutgeb et al., (2000) reports recording a few 

CA1 head-direction cells.  

2.2.2.2 Head-direction cells provide a universal directional code  

Head-direction cells provide a universal directional metric. Unlike place cells whose firing is controlled by 

environment changes, HD cells generally maintain their firing patterns across environments (Taube et al., 

1990; 1998). However, the orientation of the directional tuning can in some instances be controlled by 

geometric changes.  Golob and Taube (1997) found that changing testing enclosure shapes altered 

preferred direction for a small number of HD cells (recorded from the postsubiculum and anterior 

thalamus). 20% of HD cells changed their directional preference by >18° from cylinder to square and this 

could be increased to >36° with more radical shape changes it may be that some HD cells are more 

influenced by external cues than others. 

The direction vector of the HD cells is anchored to environment cues and the orientation of the directional 

field can be altered with cue rotation, similar to place cell firing (Muller and Kubie, 1987). Rotation of 



Introduction part 2: Spatial cells       27 
 

   

 

internal or external cue cards (on the environment wall or on the testing room walls) can cause the HD 

population to produce a consummate rotation with the cue. Cue card rotation makes obvious the obligatory 

coupling of the HD cells. Whereby, when the preferred direction rotates the angular distance between pairs 

of cells is maintained, i.e. when a cell rotates 20° for environment change both cells rotate by the same 

amount. Shifts of directional preference with cue rotation is rapid. Zugaro et al., (2003) showed that the 

reorientation of directional preference with cue card rotation (90°) can occur within 100ms of the rotated 

cue card being visually perceptible. This provides evidence for a ‘hardwired network of HD cells’ which act in 

concert. This allows the HD cell population to give an accurate and clear-cut representation of heading 

direction.   

Whilst HD cells anchor their orientation to environmental cues, not all cues have equal influence. To anchor 

firing HD cells can use both distal cues (e.g. cue cards on the lab room walls) or proximal intra-environment 

cues (e.g. object rotation). When both are available the HD system typically relies on distal cues.  In the 

absence of distal cues Zugaro et al., (2001), showed that HD cells rotated in concert with rotated proximal 

cues. However if the distal cues were available and the proximal cues were rotated the HD orientation was 

relatively unaltered, supporting the dominance of distal over proximal cues to control HD responses.  

2.2.2.3 Head-direction cells integrate external and idiothetic cues 

HD cells also receive path integrative information (vestibular and visual motion signals). If visual motion and 

landmark cues contradict each other, HD cells will often average the signals from both cues (Blair and Sharp 

1996).Clear evidence that path integration supports HD firing is suggested by the disruption produced by 

vestibular lesions which cause HD cells to lose their preferred direction (Stackman and Taube, 1997). 

Whilst the orientation of the HD field is dependent upon external cues, the activation of HD cells is not 

solely dependent on external cues. In an early study by Taube et al., (1990) cue removal caused two thirds 

of the HD cells to shift preferred orientation. However, even for those cells which shifted there was no 

change to the width of firing field or the peak firing rate. It is suggested that this may be because these 

properties are dependent on intrinsic computations of the cell and or idiothetic cues from the vestibular 

and proprioceptive systems than external environmental stimuli (O’Keefe, 2007). 

HD cells integrate information from idiothetic cues (from the vestibular and proprioceptive systems), 

however similar to place cells it is the general opinion that idiothetic information cannot maintain HD 
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activation independently. For example in darkness olfactory and idiothetic cues likely work together to 

preserve stable orientation (Save et al, 2000). Knerim et al., (1995) considers that in novel environments 

path integrative cues dominate with first exposure. With subsequent exposure environmental cues take 

over control once the environmental cues have achieved a stable relationship to the path integration 

system. Disorientating the animal and thus disrupting the vestibular and proprioceptive systems daily (for 

several weeks) before testing  can also cause the cells to be less stable and less well controlled by explicit 

visual cues (Kneirim et al.,1995). Further evidence suggests that very little exposure time is needed in a 

novel environment before the cue cards take control. Goodridge et al., (1998) showed that HD cells 

generally  became dependent on the external cue cards within 8 minutes, with some cells taking as little as 

1 minute. Also, Zugaro et al., (2000) showed that preferred direction shifted to a new stable orientation 

within 15 second of cue card rotation; supporting the short time period required for HD stabilisation.   

The path integration system is subject to cumulative errors, and fixing the HD system to environmental cues 

may provide a means of correcting these errors. The HD system could use path integration to assign stability 

and a direction to the visual cue, whilst the cue can then correct any drifts in the path integration system. 

This integration would require rapid association of cues to a stable pre-existing frame work (O’Keefe, 2007).  
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2.2.3 Grid cells  

Grids cells were first recorded in layers II & III of the medial entorhinal cortex (MEC; Fyhn et al., 2004; 

Hafting et al., 2005). They are cells with similar sharply tuned spatial firing to that of place cells but with 

multiple firing fields (often referred to as vertices or nodes) which form an equally spaced hexagonal grid 

across the environment (Figure 2.2.2). This systematic distribution makes these cells perfectly suited to 

provide self-motion information. If projected to CA1 this information could contribute to the creation of 

place cells and determine the distances and directions between the place fields. It has been observed that 

grid cells in the same part of the MEC have similar grid scales (distances between fields) and orientations 

(Hafting et al., 2005; Barry et al., 2007; Boccara et al., 2010). Orientation has in fact been shown to be 

relatively constant within recording location, and in general grids cells recorded from each rat generally 

seem to share a common orientation (Hafting et al., 2005; Barry et al., 2007; Boccara 2010). However the 

placement of the grid cells fields are not topographic (Hafting et al., 2005).  Also similar to place cells there 

is a clear linear increase in grid scale along the dorsal-ventral axis of the MEC (Fyhn et al., 2004; Hafting et 

al., 2005; Barry et al., 2007 Brun et al., 2008).  

Grid cells provide information about position, distance and direction and have therefore been presented as 

a suitable candidate for providing a metric system for navigation (Hafting et al., 2005; Moser and Moser, 

2008). The MEC is an obvious candidate for providing metric information to the hippocampus as most 

pyramidal cell in layers II and III of the EC project directly to the hippocampus (Witter and Amaral, 2004; 

Moser and Moser, 2008).  

 

Figure 2.2.2. Grid cells have multiple firing fields which tessellate the environment. 

The figure presents a grid cell from the dataset recorded for the present thesis. The cell identification 
number is given at the top. On the left is the rate map with the peak rate above it. As with all the rate 
maps shown red indicates maximum firing and dark blue indicates zero firing. Pixels not sampled by 
the rat during foraging are white. To the right is the spatial autocorrelation map. The black squares 
show the six peaks surrounding the central peak used to define gridness scores, grid scale and 
orientation. 
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2.2.3.1 Basic properties of grid cells 

Grid cells were first recorded in the dorsocaudal MEC (Fyhn et al., 2004; Hafting et al., 2005) and have since 

also been recorded in the presubiculum and parasubiculum (Boccara et al., 2010).   

Grid cells are characterized by multiple peaks of firing which tessellate the environment (Figure 2.2.2). 

These firing fields have a hexagonal arrangement. Each field can be clearly delineated from background 

firing (Hafting et al., 2005). The regularity, orientation and distance between the fields creating the grid 

pattern are calculated through spatial autocorrelation of the rate maps (Figure 2.2.2). The periodicity of the 

pattern is represented as a ‘gridness score’. This measure quantifies the extent to which the spatial 

autocorrelogram contains field peaks distributed at 60° increments around a central peak (see Figure 

2.2.3a). The gridness score is varied between -1 and +1; the higher the score the more regular the pattern 

(see methods for full details).  

Grid scale represents the separation of the peaks, and is calculated using the hexagonal pattern of the 

spatial autocorrelation maps. This is a measure of the median average distance from the central peak to the 

6 surrounding peaks (see Figure 2.2.3b). Hafting et al., 2005 found that the distances between the central 

peak and the 6 surrounding peaks was nearly constant with a small standard deviation. The orientation of 

the grid was calculated as the angle between a camera- defined reference line and a vector to the nearest 

peak of the inner hexagon (counter-clockwise direction; see Figure 2.2.3c).  

The location of the grid fields across the environment is called the grid phase, this is calculated by 

correlating field locations in pairs of rate maps. Neighbouring grid cells which may share spatial scale are 

likely to be ‘offset’ to one another (illustrated in Figure 2.2.3d). The location of the fields across the 

environment is referred to as the phase of the grid cell. The relationship between each cells field locations 

and the field locations of other cells is called the offset. The offset of individual cells to one another is not 

topographic but it is predetermined and persists with environment change (Hafting et al., 2005; Fyhn et al., 

2007). So if the phase was to be altered, then the phase would change for all the cells whilst the offset 

would remain constant. If the grids of a small number of neighbouring cells (which share grid scale) were to 

be superimposed on each other, the entire environment could be covered by a few neurons, suggesting the 

entire environment could be coded locally by only a small subset of neurons (Moser and Moser 2008). 
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Figure 2.2.3. Spatial autocorrelation is used to determine the parameters of the grid pattern. 

The figure shows an example grid cell recorded from rat 303. On the left is the rate map and with 
peak rate (Hz). To the right are the spatial autocorrelation maps, which had been adapted for 
illustrative purposes. A) Gridness score is calculated as the regularity of the grid pattern. The gridness 
measure tells us how closely the 6 peaks (black squares) round the central peak (black cross) are 
distributed at 60° increments. B) The grid scale is the spacing of the grid. This is calculated as the 
distance between any field and its 6 surrounding fields. C)  The orientation of the grid is defined by 
the lines that intersect the grid fields. Each grid has three such axes. The grid orientation is the angle 
between a horizontal reference line (dotted line) and the axis with the smallest angle relative to this 
reference line (black). D) The spatial phase is the position of the grid fields in the environment. Two 
possible phases are indicated with crosses, one set in black and one in white.  
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2.2.3.2 Spatial scale varies along the dorsal-ventral axis  

Grid scale increases along the dorsal-ventral axis in the rat MEC (Hafting et al., 2005; Brun et al., 2008; 

Stensola et al., 2012). As mentioned above the distance between fields (grid scale) within individual cells 

was near constant.  Neighbouring neurons in the MEC also share similar grid scales, however grid scales 

from different locations across the dorsoventral axis of the MEC were strikingly different (Hafting et al., 

2005; Brun et al., 2008; Stensola et al., 2012). Hafting et al., (2005) recorded cells along the dorsoventral 

axis as they lowered the electrodes through layers I and II. The dorsal MEC was sampled first and as the 

electrodes were advanced they reached the ventral MEC. Moving just 100microns deeper showed an 

increase in spatial scale. As with place cells the field size increased along the dorsoventral axis; the more 

ventrally a cell is recorded the larger the field size and the larger the spacing between fields. In Hafting et 

al., (2005) the grid scale varied between 39-73 cm from dorsal to ventral, accompanied by a variation in 

field size between 326 and 709cm2.  In a more recent study using larger recording environments Stensola et 

al., (2012) recorded grid cells with spatial scales of up to 171cm and Brun et al., (2008) recorded grid cells 

with spatial scales of up to 3metres. Stensola et al., (2012) reported large numbers of simultaneously 

recorded grid cells and provided evidence suggesting that the grid scale increase along the dorsal-ventral 

axis appears to be in discrete steps rather than gradually.  

2.2.3.3 Directionality in grid cells 

Grid cells are considered to be largely nondirectional (Moser and Moser, 2008). However, a class of grid 

cells called conjunctive grid x direction cells have both locational and directional signalling. These have been 

identified in the middle and deep MEC layers (Sargolini et al., 2006). These layers also contain a substantial 

proportion of HD cells. The MEC receives strong projections from the dorsal presubiculum (van Haeften et 

al., 1997) which is densely populated by directionally-modulated cells. There is considerable speculation 

that the signals from the presubicular HD cells may be controlling and accounting for the directional 

modulation of the grid cells located in the middle and deeper MEC layers (Moser and Moser, 2008).  

2.2.3.4 Grid cells develop quickly in young rats 

Wills et al., (2012) report that grid cells first emerge in young rats at around 3 weeks of age. Once they 

appear the grid cells seem to develop their functional properties rapidly. This is similar to the emergence 

age and development seen in previous studies by Langston et al., (2010) and Wills et al., (2010). Both 
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studies report that as soon as grid cells were detected, they seemed to possess most of the properties that 

adult grid cells possess. The grid patterns appear to be universal, as with adult grid cells, with the grid cells 

maintaining their phase offset between cells, even when the field positions were not stable. 

Wills et al., (2012) and Langston et al., (2010) both show that in comparison to head direction and place 

cells that grids cells were the slowest to develop. These results have implications for the inputs and the 

dependence of information in the spatial representation circuit. For example it may be that grid cell 

development is dependent upon stable spatial signal originating from CA1 place cells and the head direction 

system (Burgess et al., 2007; Hasselmo et al., 2008a).  

2.2.3.4.1  The appearance of the grid pattern in novel environments  

Early work on grid cells suggested that the formation of the grid pattern does not require extensive training 

(Hafting et al, 2005). Similar to place cells, grid cells seem to require a minimum period of exposure to an 

environment before stabilization. Hafting et al., (2005) compared the field firing rates at 2 minute intervals 

(blocks) through 20 minutes of a 30 minute trial. The last 10 minutes was used to calculate the final peak 

rate for each of the fields. They found that the firing locations during the first 2 minute blocks were 

significantly correlated with firing locations at the end of the trial. The correlations were weaker for the 

earlier 2 minute blocks then the later blocks suggesting that the grid cells required a period of stabilization. 

Hafting et al., (2005) suggest this delay may reflect the time needed to set the phase and orientation of the 

grid in relation to environmental landmarks (allocentric exteroceptive cues).  In all however, the influence of 

novelty was relatively mild, and there were no obvious signs of scale change in the original Hafting et al., 

(2005) report. 

Later work has shown a larger influence of novelty. In 2007 Barry et al. investigated the grid pattern 

between familiar and novel environments. The novel environments were made such through the 

expansion/contraction of the familiar environment walls. Barry et al. found that environment manipulation 

caused a parametric expansion/ contraction the grid scale, which was related to novelty. More recently 

Barry et al., (2012) showed that non-geometric novelty also had an influential affect on grid scale. These 

studies and the influence of novelty on grid scale will be discussed in more detail in section 2.2.3.5 below.  
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2.2.3.4.2 Grid cell responses to environment manipulation 

The grid pattern persists with the removal of visual cues and is present in all environments (Hafting et al., 

2005). Early studies considered that gridness, grid scale and offset were maintained with environment 

change, and only orientation and phase were altered across environments. 

Grid cell patterns are stable across trials in the same environment. Hafting et al., (2005) argue that this 

stability suggests that environmental cues play a significant role to anchor the grid pattern. Certainly this 

can be seen in particular grid responses to environment manipulation. Cells in the same animal share a 

common orientation (Hafting et al., 2005; Barry et al., 2007; Boccara et al., 2010). If environmental changes 

induce a shift in orientation, then all grids will maintain their rigid relationship (offset relative to one 

another) and will rotate together (much like head-direction cells). This can be seen in Hafting et al. (2005) 

when all external cues were masked and an internal cue card was rotated. This is also evident across rooms, 

all the grid cells typically rotated (in concert with HD cell rotation) whilst still maintaining their relationship 

to each other (Hafting et al., 2005). Evidence suggests grid phase can also depend on environmental cues. 

Solstad et al. (2008) demonstrated a phase shift in MEC grids with wall removal in the absence of HD cell 

rotation or grid cell orientation shift. Phase can also change in conjunction with orientation shifts between 

testing rooms. It is the general consensus that phase and orientation are determined by landmarks and 

boundaries (Moser and Moser, 2008). 

How the fields of the grid are anchored to environment boundaries and landmarks of the environment is 

not known. Moser and Moser (2008) suggest that this anchoring may be due to back projections from the 

CA1 to the deep and superficial layers of the EC (Iijima et al., 1996; van Haeften et al., 1997; Kloosterman et 

al., 2000; 2003; Witter and Amaral, 2004). They consider that outputs from hippocampal place cells may 

reset the entorhinal path integrator as errors accumulate during movement. It maybe also that grid maps 

are aligned from one trial to the next through associations with landmarks. They highlight that the 

contextual specificity of the hippocampal representations, and, the enormous storage capacity of its 

intrinsic networks point to the hippocampus as a possible storage site for associations between the path 

integrator and environment features (Moser and Moser, 2008; Hafting et al., 2005; O’Keefe and Burgess, 

2005). In agreement with these suggestions, grids have been shown to destabilize after inactivation of the 

hippocampus. Evidence shows that hippocampal inactivation gradually and selectively extinguished the grid 

pattern (Bonnevie et al., 2013). The authors consider these results suggest an excitatory drive from the 
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hippocampus to the MEC, as one prerequisite for the formation and translocation of grid patterns in the 

MEC. 

2.2.3.5 Does grid scale change?  

The stability of the grid pattern across multiple trials in the same environment suggested that external cues 

exert a significant influence over the maintenance of the grid pattern. When introduced to a novel 

environment the grid pattern was evident almost immediately and was maintained across environments. 

The persistence of the grid structure is reminiscent of the coherence across environments expressed by HD 

cells (Taube, 1998; Kneirim et al., 1995). The maintenance of grid structure in the absence of visual cues and 

in novel environments suggests path integration maybe the mechanism driving the grid cells rigid spatial 

periodicity (Hafting et al., 2005).  

Hafting et al. (2005) looked at the influence of scaling the environment upon the grid structure of MEC layer 

II grid cells. They reduced a 2m diameter circular environment down to a 1m diameter circular environment. 

They found that the grid scale was unchanged, and the only obvious change was a slight increase in grid 

field size in the small circle. These results suggested that the metric of grid cells was only minimally 

influenced by the distance to the boundaries of the environment. The authors considered that this 

reinforced the view that external cues contributed little to the grid structure and that grid cell patterns are 

universal, regardless of the particular features of the external environment. However more recent evidence 

suggests plasticity of grid scale. In 2007 Fyhn et al. observed changes in MEC layer II grid cell spatial scale 

between square and circular environments. The spatial scale expanded by 4.9% when introduced to the 

circular environment from the square. This expansion was small but significant and was seen in 25% of the 

grid cells.  

In 2007 Barry et al. investigated the environmental manipulation upon MEC grid cell spatial scale with the 

expansion/contraction of walls within familiar environments. Barry et al. observed that MEC grid scale could 

be varied parametrically with changes to environment size and shape.  The paradigm involved running the 

grid cells in five 20min trials; with two baseline trials either side of two trials where one axis was changed 

(enlarged or shrunk) and one where both axis were changed (enlarged/shrunk). The grid cells rescaled 

parametrically with a 47.9% change with the enlarged/shrunken dimension and a 7.9% change in the 

unchanged dimension. As part of a study characterising border cells in the MEC Solstad et al., (2008) also 
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identified a small number of MEC grid cells which showed grid scale expansion when a square environment 

was extended in one direction to form a rectangular environment. The grid scale expanded parametrically 

along the extended dimension similar to that seen in Barry et al., (2007). 

Barry et al., (2007) shows that the grid scale expansion was not a factor of running speed, directional 

modulation or recording site. However, rescaling did correlate with environment experience. The novelty of 

the test trials correlated with the expansion/contraction of the grid scale. Further, the rescaling was 

negatively correlated in cells recorded over multiple sessions, with the scale deformation reducing with 

continued experience. This suggests that the system reverted back to an intrinsic grid scale with experience. 

The authors suggest that this rescaling seems to occur over a similar timescale as it takes place cells to settle 

in altered environments (Lever et al., 2002a). This suggests that grid cells become associated with the 

features and boundaries of the environment, therefore explaining the parametric change in grid scale when 

the shape of the environment is manipulated. 

This result has been recently replicated. In 2012 Barry et al. recorded 22 MEC grid cells from 8 animals in a 

study exploring the influence of novelty upon grid scale. They used a paradigm whereby a 1m x 1m square 

environment was run in a series of 5 trials per day for as long as one grid cell was being recorded. Three 

novel trials were run in between 2 familiar trials. There were 4 variations of the novel environment, with 

variations in colour, material, scent and lighting. The average expansion in the first ever recorded novel trial 

(trial 2, day 1) was 37.3% (13.8cm) in comparison to the familiar trials. They note that the expansion was 

similar between large and small scale grid cells, suggesting perhaps that the expansion may have been set at 

a fixed amount for all cells. However, there were not enough simultaneous recordings of small and large 

scaled grid cells to look at this further. Expansion persisted across days, but reduced in magnitude with 

experience as in Barry et al. (2007). The grid scales reverted back towards the baseline scale seen in the 

novel environment over the first 3 days of testing. By day 5, grid scales in the novel environments were no 

longer significantly different to familiar environments. 

Barry et al., (2012) also looked at other changes to grid cell parameters between familiar and novel 

environments. Orientation remained stable between familiar trials and was significantly rotated between 

familiar and novel trials. This rotation did not revert over time to the baseline orientation, and is consistent 

with evidence that orientation is environment-dependent (Hafting et al., 2005). The grid cell firing pattern 

was also less regular and the fields were less circular and more elliptical. This was reflected by the 
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significant reduction in gridness. Like grid scale the gridness scores returned to normal with increased 

familiarity over 5 days. This increase in regularity was steadier (over 5 days) than the return of spatial scale.  

Overall these results suggest that in a familiar environment grid cells become associated with 

environmental features. This association of the intrinsic grid pattern to environmental cues causes 

parametric alterations to grid scale in concert with environmental changes. This is consistent with place cell 

responses to environment change, and provides further support for the input of environmental information. 

The location of these inputs which anchor grid patterns to the environment boundaries is not yet known. 

However, there is speculation that they may arise from the associations of place and landmark from place 

cells (O’Keefe and Burgess, 2005) and/or from inputs from boundary-related cells (Solstad et al., 2008; Lever 

et al., 2009; Boccara et al., 2010). 

2.2.3.6 Development of the grid pattern requires cue integration 

The rigid periodicity of the grid pattern suggests grid cells may provide metric information to the navigation 

system and to the neural network representing space (Hafting et al., 2005; Fuhs and Touretzky 2006; 

McNaughton et al., 2006). Like place cells grid cells also require an integration of cues from different 

modalities.  Early research considered that grid cells assimilate path integrative interoceptive information to 

create and maintain the rigid grid pattern independently of landmarks and environmental cues (Hafting et 

al., 2005). However this pattern is reproducible and stable across trials, indicating an association to 

environmental information. In general the grid pattern is considered to be anchored to the environment, via 

the integration of exteroceptive cues. It has been speculated that this external sensory information could be 

mediated by feedback from place cells whose location-specific firing is reliant on environmental information 

(O’Keefe and Burgess, 2005), or from BVCs which provide boundaries specific information (Lever et al., 

2009; Moser and Moser, 2008). A more detailed discussion of grid cell responses to environmental 

manipulation is presented below. 

Evidence suggests that the grid cell structure (spacing and field size) can exist independently of allocentric 

external cues. The periodic firing pattern is maintained in spite of changes to running speed and heading 

direction, suggesting the grids rely on the integration of changes in velocity and heading over time to enable 

a constant representation of the spatial relationship between positions (Moser and Moser, 2008). Further, 

the grid pattern can be maintained even with the removal of all visual cues. Hafting et al., (2005) recorded 
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33 grid cells from 4 rats in complete darkness, all lights were extinguished 10 minutes into a 40 minute trial. 

The removal of all visual cues had no significant effect on grid scale, firing rate or spatial information 

indicating the grid structure can exist independently of allocentric information. However, there was a 

moderate decrease in the spatial correlation between the rate maps which was exhibited as a weak 

dispersal/displacement of the fields (shift in phase).  This is consistent with the theory that external cues are 

necessary for determining the phase, as they align the grid to the external reference frame (Hafting et al., 

2005).  

In a more recent study (Fhyn et al., 2007) where the rats were trained in both light and dark trials, two 

animals showed alternative responses to the removal and reintroduction of visual cues (Figure 2.2.4). In this 

study CA3 place cells and MEC grid cells were simultaneously recorded. Between light and dark trials the 

entorhinal cells were displaced (phase shift) and rotated (orientation shift), whilst the place cells showed 

global remapping (Figure 2.2.4). In one rat when the lights were turned on the hippocampal cells suddenly 

remapped to the light trial firing locations (Figure 2.2.4A). This was accompanied by equally fast realignment 

of the grid cells to the phase and orientation seen in the light trials. In a second rat the field locations for 

both the place and grid cells did not alter with the lights being turned on (figure 8B). The rat had to be 

removed from the environment and replaced one minute later for the cells to remap and realign to re-

establish the firing patterns associated with the light trials. The authors consider this response may reflect 

the continued influence of self-motion information (idiothetic cues) upon the firing patterns. The temporary 

disruption of the rats running by removing it from the environment could then interrupt the path-

integrative mechanisms, and allow the cells to reset.  

Originally it was considered that this integration of external and idiothetic cues occurred locally within the 

MEC. The direct input to the MEC of directional and visuospatial information from the presubiculum and 

postrhinal cortex (respectively), puts the MEC in a privileged position to perform these computations 

(Hafting et al., 2005). However, in recent years grid cells have since been recorded from the presubiculum, 

and parasubiculum providing possible alternative regions which may perform the integrative computations 

(Boccara et al., 2010). The continued stability of grid cells in the absence of visual cues, implies that there is 

a strong input from vestibular-kinesthetic feedback from the animals self-motion (Hafting et al., 2005). 

However, the maintenance of the grid pattern across trials, and the recent revelations that grid scale can 

expand with environment expansion and novelty, highlights the valuable input from environmental cues for 

anchoring the grid pattern, and creating a universal metric across environment.  
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Figure 2.2.4. Simultaneously recorded CA3 place cells and MEC grid cells in darkness. 

Figure shows simultaneously recorded CA3 place cells and MEC grid cells in darkness in 2 rats. Each 
row is a cell. A) In darkness the place cells locational fields disappeared or moved demonstrating 
global remapping. The simultaneously recorded grid cell firing patterns were coherent but displaced 
and rotated between the light and dark trials. B) Also shows this, but when the light was turned back 
on after the dark trial neither the CA3 place nor MEC grid representations reset back to the firing 
patterns shown in the first light trial (third column). The rat had to be removed and reintroduced 
after 1 minute to the environment to reset the representations (shown in the right hand column). 
Adapted from Fhyn et al., (2007). 

 

 

B A 
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2.2.3.7 Grid cells in different regions  

Grid cells have been recorded predominantly from the superficial layers II and III and the deeper layers; V 

and VI of the dorsocaudal MEC (Hafting et al., 2005; Fyhn et al., 2007; Solstad et al., 2008; Barry et al., 2007; 

2012).  The function of the lateral portion of the EC is unclear. There is an absence of spatial cells which is 

consistent with the lack of input from HD cells in the presubiculum (Witter and Moser, 2006). 

Grid cells have also been discovered in the pre- and parasubiculum (Boccara et al., 2010). The local 

organization of the grid cells recorded from the pre- and parasubiculum shared many features with MEC 

grid cells. Neighbouring grid cells were generally offset from each other and spacing and orientation were 

relatively constant in comparison to MEC cells. Previous studies recording form the pre- and para- 

subiculum may not have found grid cells because the testing environments were too small. Many of the grid 

cells located in these areas were highly directional and were similar to the conjunctive grid x direction cells 

recorded in the deep MEC (layers III to VI; Sargolini et al., 2006).  

There was a distinguishable difference in gridness between parahppocampal regions. Gridness was highest 

in layer II of the MEC and was reduced in the deeper layers of the MEC, and in the pre and para-subiculum. 

Gridness was lowest in the presubiculum and in layer V and VI of the MEC (Boccara et al., 2010). 

That grid cells are located in different regions raises the question of what mechanisms produce grid 

patterns. The origin and directional flow of information is not yet known. It could be argued that the 

multiplicity of spatial patterns in the pre- and parasubiculum could be inherited passively from parent cells 

in the MEC. However the projection from the MEC and these areas is relatively weak. Considering the 

strength of the projections it is more likely that the pre- and parasubiculum impose their firing patterns on 

MEC cells (Amaral and Witter, 2005).  
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2.3 Boundary-related cells and the BVC model 

The most recently discovered spatial cells are those that signal environment boundaries. Prior to 

discovery their existence was speculated to account for the input of boundary-information to place cells. 

In 1996 O’Keefe and Burgess, identified environmental features which influenced place cell firing. They 

demonstrated that stretching a familiar rectangular environment along one axis resulted in a stretching 

of place fields along the same axis (O’Keefe and Burgess, 1996). To explain this finding the existence of 

“boundary vector cells” (BVCs) was predicted. These cells would input boundary information to the 

place cells (O’Keefe and Burgess, 1996, Burgess et al., 2000; Hartley et al., 2000).  

The Boundary Vector Cell (BVC) model was outlined first in Burgess et al. (2000) and Hartley et al. 

(2000). It was considered that a BVC would fire whenever an environmental boundary intersected a 

receptive field located at a specific distance from the rat in a specific allocentric direction (Figure 

2.3.1A). The BVC firing fields peak at the boundary creating a ‘vector’ from the rat (see Figure 2.3.1a). 

The firing of a BVC depends solely on the rat’s location relative to environmental boundaries and is 

independent of the rat’s heading direction. BVCs with receptive fields peaked farther from the animal 

have broader fields than those peaked closer to it. Figure 2.3.1C shows the BVC firing field being 

generated by a specific BVC receptive field. 

Barry et al., (2006) simulated BVC activity, and developed a number of predictions that would 

 

Figure 2.3.1: A BVC responds maximally when a boundary is at a preferred distance and allocentric direction 
(irrespective of heading) from the rat.  

A) An example of a BVC receptive field tuned to respond to a barrier at a short distance east-northeast from a rat. 
B) BVCs tuned to respond to barriers farther from the animal will have broader receptive fields. C) Shows the firing 
field (shown as a rate map; top) for a BVC with a receptive field tuned to respond to a boundary at a short 
distance to the east (bottom). D) Shows the predicted firing fields in different environments for the BVC shown in 
C. Of of particular note the insertion of a barrier causes a doubling of the field (bottom right). Figures are adapted 
from Lever et al., (2009). 
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characterise BVC firing. The model aimed to explain the shifts in field size and location that occurred in 

place cell firing fields with changes to the environment and to provide a candidate to account for 

boundary inputs to place cells. 

Firstly, it is predicted that a BVCs firing field will follow the boundary (e.g. Figure 2.3.1D). For example in 

cylindrical environments the firing field will follow the boundary curve, producing a crescent shaped 

field. Secondly it is predicted is that the insertion of a barrier would produce a doubling of the BVC firing 

fields. For example, a BVC that fires maximally for an eastern boundary, will also fire along a barrier 

entered along the north-south axis (for example, see Figure 2.3.1D). The model suggests that the 

addition of a barrier provides additional loci at which short-range BVCs will fire (Lever et al., 2009). 

Barrier insertion has been shown to cause central place cell fields to vanish (Muller and Kubie, 1987), it 

may be that as an inserted barrier occludes the environment perimeter it disrupts BVC input to place 

cells. The third prediction is that when an environment is stretched, BVC fields also stretch continuing to 

fire along the entire boundary, this is similar to place cell responses to environment expansion (O’Keefe 

and Burgess, 1996). Fourthly it is predicted that BVCs would preserve their firing patterns in novel 

environments. This stability of firing across environments is predicted because BVCs provide signalling 

for any boundary which intersects the BVCs receptive field, independent of its qualities. Lastly it was 

predicted that like place cells BVCs would not be influenced by heading direction. 

2.3.1 BVCs have been recorded from the subiculum 

The discovery of subicular BVCs (Barry et al., 2006; Lever et al., 2009) is consistent with previous reports 

claiming that subicular firing is often driven by boundaries (Sharp et al., 1994; Sharp, 1997; 1999; 2006). 

Sharp (1997) recorded subicular ‘location-cells’. These cells had larger locational fields and retained 

their firing patterns compared to hippocampal place cells across differently sized environments. Many of 

these cells showed a preference for the environment edges. Sharp concluded that these characteristics 

suggested that environment boundary information must play an important role in subicular firing. 

In 2006, Barry et al. presented 10 putative subicular BVCs. These cells were recorded in only a single 

environment. Then in 2009, Lever et al. recorded a further 36 subicular BVCs. These BVCs were tested 

against the functional constraints of the BVC model.  Out of the Lever et al., (2009) BVC sample, 24 were 

recorded in environments other than the standard recording square (see figure 10 for examples). The 

BVC firing fields followed the environment boundaries and fired irrespective of heading direction as 

predicted. Four rats had CA1/subiculum double implants which allowed for simultaneous recording of 

place cells and BVCs. Whilst place cells showed strong remapping between environments a, b and c, the 
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BVCs were consistently stable over time and across environments (see Figure 2.3.2). For example cell 2a 

(second from the left) responds to the west boundary of both the square, circular and un-walled 

environments. 

As predicted the firing fields of BVCs were a function of distance and allocentric direction to the 

boundaries of the local environment. The long axes of the firing fields reflected the shape of the 

boundaries, tending to be straight in square environments and curved in circular environments (Figure 

2.3.2). BVCs with directional preferences between the perpendiculars to adjacent walls fire along both 

walls (e.g. Figure 2.3.1, cell 5c). BVCs with receptive fields peaked close to the animal and oriented 

perpendicular to the walls of the environment fired predominantly when the rat was close to the wall in 

the BVCs preferred direction (Figure 2.3.2). BVCs with receptive fields peaked farther from the animal’s 

head had firing fields that were broader but often still lay directly against a wall. Lever et al recorded 

some BVCs which had fields peaked so far from the rat, that the firing fields were offset from the wall.  

Lever et al considered that some of the larger firing fields may be from BVCs that were responding to 

distal rather than proximal walls. 

As detailed above a key constraint of the BVC model is that BVCs should not only signal for perimenter 

boundaries, but should also signal for internal boundaries. When a free-standing appropriately-oriented 

barrier was inserted into the environment the cells demonstrated a clear doubling of their fields (Figure 

2.3.3).
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Figure 2.3.2. Firing fields of 14 subicular BVCs in different environments 

Environment a, 62 x62 x 50-cm-high beige square box made of morph material; Environment b, 79-cm-diameter, circular-walled, wooden light-gray enclosure; 
Environment c, the 90-cm-diameter floor of Environments a and b; Environment d, 39x39 cm square holding platform with 5-cm-high ridges. BVC fields followed 
the shape of the boundary and showed stable distal and directional preferences across environments. Figure adapted from Lever et al., (2009). 
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Figure 2.3.3. BVC produce a second firing field for the insertion of an additional boundary.  

The figure shows 3 cells which were tested with the addition of an appropriately orientated 
barrier. For all cells this caused a doubling of the BVC firing fields. Figure adapted from Lever 
et al., (2009).  
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2.3.1.1 What is a boundary? 

Remarkably despite their perceptual differences, BVCs can treat walls and drops similarly. Lever et al., 

(2009) demonstrated that to a BVC a boundary is not limited to environment walls (continuous vertical 

surfaces), as they can also respond to wall-less environment drops.  Interestingly, wall-removal creates 

two perceivable boundaries, the wall-less platform edge and the extent over the edge that the rat can 

reach. Figure 2.3.2 shows that the BVCs seem to respond to either. For example cells 5e and 5k have 

fields that peak off from the edge of the rate map suggesting that they are responding to the 

environment edge. Cells 1a and 5a on the other hand have fields peaked along the edge of the rate map 

suggesting that they are coding for the extent of the rats explorable range (Figure 2.3.2).  

The main determinant of BVC firing is the distal and directional vector from the rat to the boundary 

regardless of the boundary qualities e.g. shape, size and colour. Lever demonstrated that most BVCs 

produced firing fields in un-walled environments that were generally consistent with those in the walled 

environments. This seems to suggest that BVCs can respond to both extended vertical surfaces and to 

drops. Lever et al recorded one cell which produced a second field for a traversable drop between two 

wall-less environments. The rat was given a rectangular open platform made of two square platforms 

pressed together followed a trial where the square platforms were pulled apart 13cm. This gap was such 

that the rat could traverse across it, or be manually carried over. A traversable gap is qualitatively 

different to a wall or a drop from an open platform. It is not necessarily an environment boundary but it 

does impose some limitations to movement.   

So, what do these results suggest constitutes a boundary? It may be that BVCs are responding to the 

visual perception of a boundary; whether it is open space or a wall. To test this Lever et al recorded 3 

BVCs in complete darkness. The removal of visual input did not prevent BVC boundary responses. BVCs 

seem to respond to qualitatively different boundaries, and this suggests visual perception of a boundary 

alone cannot account for BVC responses.  Lever et al concluded that ‘a boundary is an abstract concept 

that may reflect sensory properties of environment features such as the sight or feel of a wall or an 

extended edge, as well as impediments to movement.’ Also, as suggested by the diversity in the 

differing representations of the un-walled environment Lever et al consider that the relative importance 

of these factors may vary across the BVC population.  
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2.3.1.2 The subiculum as an output area  

One difficulty for the BVC model and the discovery of subicular BVCs is that the subiculum is generally 

considered a CA1 output area with little to no back projection (Amaral and Witter, 1995; O’Mara et al., 

2009). As an output structure the role played by the subiculum in spatial processing has always been 

considered limited. That said the subiculum is a relatively under investigated region (Witter and Amaral, 

2006). If the subiculum is regarded as solely an output area, it may be that the boundary-signals are in 

fact just shadows of hippocampal activity. However, if this were the case then surely the characteristic 

remapping seen by place cells would also be seen in subicular cells. Derdikman and Moser (2009) in 

response to Lever et al., (2009) consider it to be crucial task towards understanding the relationship of 

CA1 place cells and BVCs by recording them both in a paradigm which causes place cells to remap.  

The EC is the main input structure to the CA1 and the communication between the subiculum and the 

CA1 is generally considered to be via a strong uni-directional projection from the subiculum to the EC 

(Kloosterman et al., 2003). Subicular boundary-information could therefore reach hippocampal place 

cells via EC projections. Furthermore the appearance of boundary-related cells in the EC (outlined 

below) lends support to this route of input as BVCs could provide their inputs to CA1 via the MEC border 

cells.  

The discovery of border cells in the MEC has also led to the suggestion that subicular BVCs are 

entorhinal axons (Solstad et al., 2008). This seems unlikely though as the waveforms of subicular BVCs 

are similar to pyramidal cell waveforms.  It has also been suggested that subicular BVCs could be merely 

reflections of entorhinal border cell (Solstad et al., 2008). Lever et al. (2009) consider the anatomical 

distribution of the subicular BVCs argue against this. The MEC projects to the distal- to-CA1 part of the 

subiculum. If subicular BVC fields were actually copies of border cell firing, then the majority of BVCs 

would surely be located in this projection area. However, Lever et al. (2009) report that a high 

proportion of the BVCs are actually located in the proximal-to-CA1 portion of the subiculum. 
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2.3.2 Border cells  

Boundary-related cells have recently been recorded in the MEC and the pre- and parasubiculum (Solstad 

et al., 2008; Savelli et al., 2008; Boccara et al., 2010). As mentioned above, the MEC is a more likely 

candidate than the subiculum for housing cells which would provide boundary-information to the 

hippocampus. The MEC projects directly to the CA1, whereas subiculum does not (Witter et al., 2006). 

Cells recorded by Solstad et al. (2008), and Savelli et al. (2008) were classed as ‘border cells’ and 

‘putative boundary cells’ respectively.  Solstad et al. describe border cells as cells which had ‘firing fields 

that line up along selected geometric borders of the proximal environment, irrespective of their length 

and continuity with other borders’.  

Solstad et al. (2008) recorded border cells alongside HD and grid cells. Border cells comprised 10% of the 

spatial cells recorded throughout all layers of the MEC. Solstad et al. (2008) considered that the border 

cells may have a functional role in planning navigation trajectories and anchoring grid cells and place 

cells to a geometric reference frame. 

In an attempt to quantify the border cells the Trondheim lab (Solstad et al., Boccara et al., 2010) created 

a ‘border score’. This was calculated by:  

 

A border score was defined by comparing the mean firing distance (dm) with the maximum coverage of 

any wall by a single field (cm)..For all experiments the coverage of a given wall of by a field was estimated 

as the fraction of pixels along the wall that was occupied by the field. cm was defined as the maximum 

coverage of any single field over any of the four walls of the environment. The mean firing distance dm 

was computed by averaging the distance to the nearest wall over all pixels in the map belonging to its 

fields, weighted by the firing rate. To achieve this, the firing rate was normalized by its sum over all 

pixels belonging to its field, resembling a probability distribution. Finally, dm was normalized by half of 

the shortest side of the environment (i.e. the largest possible distance to its perimeter) so as to obtain a 

fraction between 0 and 1.  
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The border scores potentially ranged from -1 (cells with central firing fields) to +1 (cells that perfectly 

line up along an entire wall). Whilst the score takes some account of the thickness of the field it is more 

indicative of the length of the field along a wall. This measure fails (saturates) for thicker fielded border 

cells because there are too many high firing pixels located away from the nearest wall. To be classed as a 

border cell the cells had to achieve a border score of over 0.5 and be stable across trials.  

2.3.2.1 Border cell response to environment manipulation  

Solstad et al. (2008) thus far provides the only characterisation of border cell behaviour across 

environments. The following section will looks at the border cell characteristics and responses to 

environmental manipulation and consider them in relation to the characteristics of BVC cells.   

The authors report that in general border cell fields stretch parametrically with environment extension. 

They report 44 cells in this manipulation all of which had border scores of over 0.5. When a 1x1m box is 

extended in one axis to create a 1x2m box, the border cells with preference to the extended wall show 

that their fields extend with it. Solstad et al show overall that border cell boundary-tuning was 

maintained across rooms and differently shaped environments (square, 1x1m or 1.5x1.5m; circle, 1m or 

1.5m diameter). Also in a simple cue card rotation experiment where the card was rotated 90° (in 

between 2 baseline trials with no rotation) they demonstrate that border cells  rotated in concert with 

the co-recorded grid cells and HD cells. 

Like with the subicular BVCs, activity seems to be determined by the walls of the environment rather 

than by other variables. To see if border cells were primarily tuned for periphery walls or for boundaries 

more generally, the border cells were recorded with inserted free-standing barriers (Figure 2.3.4). The 

cells were given 2 trials with an inserted barrier one oriented to the field and one in the orthogonal 

orientation. Of particular note, the border cells showed varying responses to the inserted barriers. Some 

showed clear doubling of fields similar to the subicular BVCs whereas some did not (Figure 2.3.4).  

Twelve of the 22 border cells recorded in this manipulation showed a preference for a single boundary. 

Typically these border cells showed clear field doubling for the appropriately oriented barrier (Figure 

2.3.4 e.g. top row left column). Those responding to multiple walls had more diffuse fields, making the 

responses to the additional barriers unclear (Figure 2.3.4e.g. bottom row right column). For one cell the 
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height of the inserted barrier was reduced to 5cm (using a 5cm fence and 5cm table) making the barrier 

traversable. The cell’s extra field persisted even though the rat could now explore and walk over it. 

Solstad et al. (2008) also looked at border cell responses to wall removal (Figure 2.3.5). The authors note 

that in general, border fields could still be identified, and that the persistence of activity along the edges 

suggests that the border cells respond to a variety of boundaries. Certainly the border cells still show 

boundary signaling with wall removal however Figure 2.3.5 shows that the border cells typically 

remapped with wall preference shifting between the walled and un-walled environments. In contrast 

the subicular BVCs presented by Lever et al., (2009) showed stable fields with wall removal (Figure 

2.3.2).  The differences in responses between these 2 classes of boundary cells may give some clues to 

their functional differences.  

2.3.2.2 Role for boundary-cells  

Solstad et al. (2008) consider that because border cells are located throughout the MEC, the boundary 

information they provide should be available to MEC grid cells and to external target regions involved in 

path planning (Whitlock et al., 2008). The neural mechanisms for the representation of self-location in 

grid cells have yet to be ascertained. However, as discussed earlier in the introduction, general opinion 

is that the mechanisms likely involve interactions between self-motion cues and learned associations 

with the environment. Boundary-related cells could provide the geometric input to this system (Solstad 

et al. 2008; Moser and Moser, 2008; Hafting et al., 2005).  
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order cells were recorded in a wall-no wall experiment. The fraction of spikes along the wall per  

 

Figure 2.3.4: Border cells show a variety of responses to inserted barriers.  

The figure presents the entire sample of border cells recorded by Solstad et al. (2008). Each row of the 
two columns is one cell. The barrier (shown as the white lines) was inserted horizontally in one trial and 
vertically in the other. The animal numbers (5 digits), cell numbers (3 digits) and peak rates are given 
above each trial. As with all the rate maps  red indicates maximum firing and dark blue is zero firing. 
Pixels not sampled by firing are white. Border cells with fields along a single wall in the baseline trial , 
typically showed a field doubling for the appropriately orientated barrier. In cells with fields on multiple 
walls, additional fields were often unclear. Figure adapted from Solstad et al. (2008).  
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Figure 2.3.5. Border cells wall preference shifts between walled and un-walled environments. 

Figure showing the entire sample of border cells recorded before and after removal of the walls. The 
animal numbers (5 digits), cell numbers (3 digits) and peak rates are given above each trial. As with all the 
rate maps red indicates maximum firing and dark blue is zero firing. Pixels not sampled by firing are white. 
Where there is a white gap (e.g. row 1 and row 7) this means that the cell was not recorded in that trial. 
Each row is a cell. The sequence of testing is from left to right. Border fields were often but not always 
maintained after removal of the external walls. Typically the border cells maintained boundary signalling, 
but the fields moved to a different environment edge. Adapted from Solstad et al., (2008).  

 



Introduction part 2: Spatial cells        53 
 

   

 

2.4 Aims of the thesis  

The present thesis aimed to extend the work of Lever et al., (2009) to further characterise the 

electrophysiological, neuroanatomical, temporal and spatial properties of subicular spatial cells. 

Originally the focus of this PhD was to extend upon Lever et al., (2009) by just recording subicular BVCs. 

However, whilst recording I made the remarkable discovery of co-localised grid cells. This thesis 

therefore provides the first ever account of these cells recorded from the subiculum.  

The thesis has two main tasks: 

1) To present the first ever characterisation and investigation of subicular grid cell properties and 

the influence of geometric manipulation upon grid cell firing. 

and 

2)  To build upon the initial characterisation of BVCs by Lever et al., (2009), to investigate further what 

constitutes a boundary and what sensory inputs drive boundary- responsive cells. 
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Chapter 3 Methods  

This chapter describes the methods used in the experiments for this thesis. It outlines the surgical 

procedures, the testing/ recording procedures, the specifics of the environmental manipulations and the 

analysis methods.  

3.1 Ethics  

All experiments and procedures were conducted in accordance with the Animals (Scientific Procedures) 

Act 1986.  Experiments were performed under Dr Colin Lever’s Home Office project licence (PPL 

40/2935) and a personal licence held by Sarah Stewart (40/9456). 

3.2 Subjects 

All experiments used male lister-hooded rats (Charles River, Kent, UK), weighing between 300g and 420g 

at time of surgery. Subjects were maintained on a 12:12 hour light: dark cycle (lights off at 1300). Water 

was ad libitum and the subjects were food restricted to 85-90% of their free-feeding weight to 

encourage foraging during testing.  

Subjects were given at least 7days habituation to the lab and at least one week of daily handling before 

surgery.  Animals lived in their home cage groups until selected for surgery.  Cage dimensions pre-

surgery 50 x 32 x 18.5cm. Post-surgery the subjects were housed individually in cages 62 x 38 x 30 cm. 

Cage substrate was woodchip bedding and blue paper towelling for nesting. Food restriction (85-90% 

bodyweight) recommenced 1 week post-surgery. 
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3.3 Recording apparatus 

3.3.1 Recording electrodes 

Electrodes were constructed using HM-L-coated platinum iridium wire (90%/20%) (California Fine wire, 

Grover Beach, CA). The electrodes were configured into a tetrode formation, which is considered to 

improve the quality of the signal discrimination based on the spatial position of the neurons (Recce and 

O'Keefe, 1989; Harris et al., 2001).  Tetrodes were all made from 25µm wire electrodes. They were made 

by measuring out a length of wire, and creating a loop (taping the ends together), which was then 

draped over a rod.  The loop and the taped ends were then held together with a bent weighted needle, 

to create 2 loops and 4 pieces of wire. The wires were then twisted together using a magnetic spinner 

(20 times per cm of wire) and were cut to produce 4 spatially-proximal tips at one end and 4 loose ends 

which were stripped of insulation and were attached to the microdrive.  

3.3.2 Microdrives 

Four tetrodes were loaded into each moveable 16-channel microdrive. See Figure 3.3.1 for a diagram of 

a standard microdrive. Once the main body of the tetrodes were lowered into the cannula, each of the 4 

loose ends of the tetrode were connected to (twisted around) one of the 16 channels (small metallic 

posts) present on the microdrive. These were then painted with silver conductive paint and then 

protected with nail varnish. Once loaded into the drive the electrodes were super-glued together (as far 

from the tips as possible to avoid getting super glue into the brain), to ensure a close configuration 

(<500 m).  

Each rat was implanted with two drives; one per hemisphere. Once the electrodes had been lowered 

into the brain the ‘feet’ of the drive, were cemented to the screws attached to the skull. This aided the 

stability of the implants. In order to lower the tetrodes through the brain during screening and testing 

the cannula (containing the tetrodes) could be moved up or down by rotating the threaded post using 

the screw turner. One 360: anticlockwise turn would move the tetrodes bundle down by 200 m. To 

protect the cannula and tetrodes, a slightly longer sleeve was fitted over them. During surgery, this 

sleeve was pulled down and fixed to the skull with dental cement. 
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3.4 Surgery  

Under deep anesthesia rats were chronically implanted with two 16-channel microdrives, with one in 

each hemisphere. General anaesthesia was induced by a combination of oxygen (flow rate: 3 l/min) and 

isoflurane (3% of the gas volume). Once the rat was anaesthetised, the surgery site was shaved and the 

rat was fitted into the stereotaxic frame. An analgesic [buprenorphine (Vetergesic; Reckitt Beckinser, 

Hull, UK), 0.4ml-0.8ml, i.m.] and an antibiotic [enrofloxacin (Baytril; Bayer, Newbury, UK), 0.3ml, s.c.] 

were then administered. In order to assess the stability of the anaesthesia the isoflurane was reduced to 

1-2% and the rats breathing was closely monitored. Before the incision was made the rat’s eyes were 

covered with Vaseline to prevent them drying out, and the topical antiseptic Betadine (Seton Healthcare 

 

Figure 3.3.1: Illustration of a microdrive framework.  

The microdrive was fixed to the skull using dental cement. Turning the screw-turner results in 
movement of the cannula containing the tetrodes. Adapted from a diagram by John Huxter. 

 

TETRODES 

TETRODES 
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LTD, Oldham, UK) was applied to the incision site. After wiping off the Betadine with 70% methanol, the 

skin was cut and the skull exposed to give a sufficient view of both the bregma and lamda brain plate 

joins.  Between 7 and 9 screws (3-mm diameter, Precision Technology Supplies, East Grinstead, UK) 

were fitted into the skull, to assist the attachment of the microdrive and increase drive stability. Either 

one or 2 of the screws acted as the ground attachment using short pieces of pre-soldered wire. These 

were set deeper in the skull, and at the end of the surgery were soldered to the ground wire attached to 

the microdrive. 

Following this, two holes (1.5-mm diameter) were drilled using a trephine drill bit, one over each 

hemisphere. The placement of these holes was determined by the tetrode co-ordinates (co-ordinates 

for each rat were given in Table 3.4.1 ). The microdrives were positioned and attached to the skull one 

at a time using dental cement.  To protect the brain surface from both drying and dental cement the 

holes were plugged with a saline soaked sterile cotton bud. A loaded microdrive was stereotaxically 

positioned on the right hemisphere such that the tip of the tetrodes were at the target coordinates. 

After removing the cotton bud plug the tetrodes were slowly lowered into the brain (between 1.5-

2.5mm deep depending upon the co-ordinates and brain location). The protective sleeve around the 

cannula was then lowered to rest upon the surface of the brain. The sleeve-brain junction was then 

covered in sterile Vaseline. To ensure a stable implant the microdrive was affixed to the skull using 

dental cement around the sleeve, drive feet, screws and skull. Once the dental cement dried, the same 

operation was carried out for the left hemisphere. Finally, each drive ground wire was carefully soldered 

to the ipsilateral ground screw and cemented to prevent the animal detaching the ground connections. 

A plastic screw was cemented to the front of the implant to protect the forward ground wires. Similarly 

a wing screw was also attached to the back of the implant by the same means, allowing connection to 

the headstage to the implant by a crocodile clip.  
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3.5 Data recording 

3.5.1 Head position and orientation, and running speed 

The rats were attached to the recording system via the headstage. In order to track the subjects head 

position, orientation  and running speed the rat was tracked using  two groups of small, infrared light-

emitting diodes (LEDs), one brighter and more widely projecting than the other attached to the rat’s 

head (via the headstage). These LEDs were tracked using a video camera and position-detection 

hardware/software (DACQUSB, Axona, St Albans, UK). The two LED arrays were separated by ~10 cm, 

and were centred above the rat’s skull. Offline analysis defined the point equidistant to the two LEDs 

groups as the position of the rats head (TINT, Axona, St Albans, UK). The tracking of these two arrays 

was based on their differential brightness and size. Position was sampled at a 50 Hz rate. Running speed 

was calculated from this 50-Hz position tracking data, with 400 s boxcar smoothing. Speeds above 2 

m/s were discarded as being impossibly high and likely due to reflections of the LEDs or head shake. 

These values were replaced by interpolated values using adjacent points. 

Table 3.4.1: Target implant co-ordinates for all rats 

Co-ordinates for the implants were selected based upon those used previously by our lab, as well as new co-
ordinates based on Paxinos and Watson, (2005). The table gives the rat number, hemisphere; LH left and RH right, 
the target area subiculum (sub), CA1, entorhinal cortex (EC). The co-ordinates are given in mm behind bregma, 
anterior-posterior (AP) along the midline and medial-lateral (ML) from the midline. 

Rat no. 301 302 303 304 305  306 

       
Target 
Area 

LH RH LH RH LH RH LH RH LH RH  LH RH 
sub sub CA1 sub sub sub sub sub sub EC  sub EC 

             
AP 6.2 5.4 3.2 5.8 6.2 5.4 6.2 5.4 5.4 8.2 5.4 8.2 

ML 3.2 2.0 2.1 2.9 3.2 1.8 3.2 1.8 1.8 3.2 1.8 3.2 
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3.5.2 EEG and single-unit 

During recording, each subject was connected to the recording system (Axona, St Albans, UK) by a 

headstage amplifier which could be plugged into the microdrive. The headstage cables were light and 

very flexible, thereby enabling the animal to move around freely. The headstage amplifiers were unity-

gain buffers, which isolated the electrodes from the wires transmitting their signals to the recording 

system. The implanted electrodes were AC-coupled to these amplifiers.  Lightweight wires 2-3metres 

long connected the headstage to a preamplifier.  EEG signals were amplified 8-20k ,  and were filtered  

using a band pass filter which passed frequencies between 0.34-125Hz and rejected frequencies outside 

0.34-125Hz . Positions were sampled at 50Hz. Cluster cutting to isolate single units was performed 

manually using custom made software (TINT, Axona, UK). 
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3.6 Materials 

3.6.1  Laboratory layout 

During screening and testing the room was lit with a lamp to the west of the environment and small wall 

lights on the cue cards (see Figure 3.6.1). The experiment used a number of environments, with the trials 

and order of trials being dependent upon the cells being recorded (outlined below).  

For all trials bar one in the ‘context change manipulation’ the cue cards remained the same. These were 2 

large card board sheets (75cm x 125cm) with distinguishable patterns. The cue cards are located on the 

north and south walls of the testing room (see Figure 3.6.1). Details of the cue card swap for the ‘context 

change manipulation’ can be seen below.  

During screening and between trials the rats rested upon the holding platform located to the west of the 

testing environments. This was a shallow wooden platform (35cm x 35cm) containing woodchip bedding. 

The platform had ridged edges (5cm high 5cm thick) elevated 70cm from the floor. Rats were always 

passively transported by the experimenter into the test environment from west to east demonstrated by 

the pink arrow in Figure 3.6.1.  
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Figure 3.6.1.  Bird’s eye view of testing room 

 The diagram shows the large walled circle (white 50cm walls, 150cm diameter) sitting upon the 
circular open platform (black, 155cm diameter, elevated 30cm off the floor). Rats experienced all 
experimental trials in this room and were placed on the wooden holding platform during Inter-trial 
intervals and screening. Rats were always passively transported into the testing environments from 
west to east as indicated by the pink arrow. All environments were centred upon the ‘X’ marking the 
environment centre except the together apart trials (details below). Light sources are indicated as 
yellow ovals. 
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3.6.2  Test environments and materials 

In order to identify and assess spatial cells of interest, a variety of environments were used. These were 

made especially for the experiment. Figure 3.6.2 shows the 5 key environments which were utilised in 

different combinations to create the manipulations.  

For some of the manipulations objects were inserted into the environments. These include a free standing 

barrier, wine bottles as landmarks, and traversable ridges (Figure 3.6.3). 

Key testing environments  

Illustration 

 

Description 

The circular open platform (COP; 155cm diameter; elevated 30cm from the 

floor) this black and forms the base for most of the environments. 

 

 

The large walled circle (LWC; 150cm diameter, 50cm high walls), which has 

white walls, sits directly onto the base described above. 

 

 

The large walled square (LWS; 100cm x 100cm, with 50cm high walls), which 

has black walls, sits directly onto the base described above. 

 The small walled circle (77cm diameter, 50cm high walls), which has white 

walls, sits directly onto the base described above. 

 The small walled square (50cm x 50cm, 50cm high walls), which has black 

walls. This either sits on a white insert onto the base described above as a 

walled environment, or is placed on its side to make a 50cm x 50cm, open 

platform, elevated 50cm above the ground. 

Figure 3.6.2. Key testing environments 
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Inserted objects and barriers 

 

illustration Description 

 Barrier  

Black barrier (50cm long, 3cm wide and 50cm high) was typically inserted 

in an orientation parallel to the long axis of the BVC field. This was 

typically inserted into either the large walled circle or the large walled 

square environment. 

  objects  

These were an array of 5 patterned bottles (8cm diameter and 

30cm high) these were weighted with sand. These were ran as a 

linear array of 2 or more or singularly. There was also a ‘Small 

object’ this was a canonical measuring tube which was 2.5cm 

diameter and 15cm tall. Typically these were inserted into the 

large walled square environment. 

 

 

 

 

Ridges 

Two ridges were used they were inserted into the large walled square. 

1.    4.5cm high black ridge (3 blocks together 20cm long and 10cm wide)  

2.    5cm  high  unstained wooden ridge (2.5cm  wide, 50cm long)   

Figure 3.6.3. Inserted objects and barriers 
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3.7  Experimental procedure  

3.7.1 Screening and training before formal testing   

Rats were allowed one week of post-surgery recovery before screening. During screening the rat was placed 

on the holding platform and linked to the recording system by means of a light and very flexible cable 

attached to the headstage. This enabled the rat to move around freely. Over days/weeks the electrodes 

were vertically lowered towards the selected brain region. This was usually done in steps of between 100 

and 25 m. In general larger steps were used until the electrodes were in the target region, and were then 

reduced to 25 m for the rest of the screening period and during testing. This slow, progressive lowering 

ensured  better stability of the tetrodes within the surrounding tissue, allowing for the recording of the 

same cells across both multiple trials and multiple days.  

Later in the screening phase the subject became accustomed to rice-foraging whist attached to the 

headstage. Each subject were tested in a minimum of 10 trials in the small circle (77cm diameter; walls 

50cm) before the beginning of formal testing.  

3.8  General procedure  

The rat was brought into the laboratory and placed upon the holding platform, located to the west of the 

recording environments (Figure 3.6.1).  The rat was then attached to the headstage for screening. For all 

testing trials regardless of environment the rat was placed (from laboratory west to east) into the centre of 

the environment facing laboratory east. For trials where the centre of the environment was unavailable, 

due to the presence of either a barrier, object or drop the rat was place as close as possible to the centre 

but still facing east. Generally, recording began within 0-15 seconds of placing the rat in the environment, 

and ended about 5-20 seconds before the rat was taken out of the environment.  

3.8.1 Task 

For all testing I used a standard foraging task (similar to the pellet-chasing paradigm developed by Muller 

and Kubie 1987). During all trials the rats were to forage for sweetened cooked rice. The experimenter 

walked around the environment during the trials, throwing rice in. The experimenter threw in 
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approximately ½ a grain per minute. Whilst the majority of rice throwing was pseudo-randomly, if a portion 

of the environment appeared under sampled (especially near the end of a trial) the rat was encouraged to 

visit these portions by tactical rice throwing. The experimenter was able to monitor the path taken by the 

rat during the trial, through the LED tracking as captured by the recording software (DACQ USB, Axona, St 

Albans, UK). 

3.8.2 Trial length 

 Trial length was determined by the environment size in order to maximise sampling. See Table 3.8.1 for all 

trial lengths. Trial length was proportional to the environment surface areas, Typically ~7 seconds was 

allowed per cm2, with the minimum trial length being 10 minutes. These trial lengths were generous and 

were longer than have previously been used (Lever et al., 2002a, Wills et al., 2005; Jeewajee et al., 2008 

Solstad et al., 2008). The maximum trial length was 48 minutes which only applied to the darkness trial in 

the large square environment (procedure detailed below).  

The typical trial length for a barrier insertion was 24 minutes in the large walled square and 42 minutes in 

the large walled circle (Table 3.8.1). However, for the manipulations in the large walled square environment 

with the insertion of objects and ridges and for the together-apart variation trials, trial length was reduced 

from 24 minutes to 15 minutes. This allowed 4.4 seconds per cm2. This reduction was due to the volume of 

trials required to complete these trial sequences. The reduction in trial length was not at the expense of 

adequate sampling. Previous studies which tested the influence of barrier insertion on spatial cell firing used 

similar environment sizes and trial lengths to those used here. In 2009 Lever et al., used a 94 x 94cm square 

environment with a trial length of 16minutes, and Solstad et al., (2008) used a 100cm x 100cm square 

environment with a 10 minute trial.   

3.8.3 Inter trial interval (ITIs)  

ITI’s were between 10 -30 minutes. The standard ITI was 20minutes but for some trials where the trial 

length was shortened, the ITI was also reduced to 15minutes (this was based on ITI’s used in previous 

studies, Lever et al, 2009; Solstad et al., 2008). Testing days could often be very long, and so if the subject 

was tiring (lying down/sleeping until prompted during trials) during the trials the ITI was extended to allow 

for extra rest. 
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Table 3.8.1. Trial lengths for trials in each environment.  

The trial lengths were standardised for each environment. In cases where barriers were inserted the 
trial lengths remained the same for the large walled circle and large walled square. 

Environment Trial length 

Large walled circle (+ barrier) 42 minutes 

Circular open platform 42 minutes 

Large walled square (+ barrier) 24 minutes 

Small walled square 10 minutes 

Small walled circle 10 minutes 

Together-apart environments Together trial: 24 minutes 

Apart trial: 27minutes 

Large walled square variations:  

Darkness 48 minutes (24 minutes in the light and 24 

minutes in the dark) 

Inserted objects 15 minutes 
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3.9 Manipulations 

Testing consisted of a variety of 9 environmental manipulations. The sequence the manipulations were 

selected was determined by the type of cell being recorded. Desirable cells would be identified during 

screening in the first trials of the day; typically in the small circle (77cm diameter white walls, black floor). 

Once identified, different manipulations were run depending upon the cell type, until the cell had been 

tested on all the relevant manipulations or the cell moved away from the recording electrode. Optimally 

manipulations were run on as few days as possible. Unless stated the trials were always run in the order 

presented in the tables. 

3.9.1 Boundary insertion 

If potential BVCs were identified online (whilst the rat was linked to the recording system) during screening 

then the first manipulation to be run was the ‘Barrier insertion’; see Figure 3.9.1 .  This manipulation was 

used online (and offline) to identify putative BVCs. As shown by Lever et al (2009) when BVCs were 

presented with a second boundary (in their preferred orientation) their firing fields doubled (data from 3 

BVCs). This manipulation typically consisted of 3 large walled circle trials. The first and third trials acted as 

baseline trials. The second trial had a high barrier inserted so that its length intersected the BVCs preferred 

allocentric direction, therefore creating a second boundary. For some BVCs the large walled circle was 

unavailable and therefore the same was done using the large walled square. Further for some of the cells 

(particularly from early rats) didn’t have the back to baseline trial. 

    Barrier insertion manipulation  

  Large walled circle with white walls and Black floor (`50cm diameter 50cm high walls). Trial 

length: 42 minutes. 

  

  Large walled circle with with black Barrier (50cm long, 3cxm wide and 50cm high) inserted in the 

correct orientation to the BVC barrier. Trial length: 42 minutes. 

  

  

  

Back to baseline with the Large walled circle; white walls and Black floor (50cm diameter 50cm 

high walls). Trial length: 42 minutes. 

Figure 3.9.1. Barrier insertion manipulation trial series. 
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3.9.2 Wall no-wall manipulation  

Similar to BVC identification grid cells were detected during the first screening trial of the day. As a rule 

BVCs took priority, therefore BVC-specific manipulations were often run before the grid cell manipulations.  

The key manipulation for grid cells was the ‘wall-no wall’ manipulation; see Figure 3.9.2. Two large walled 

square trials were used as baseline trials. These were run either side of the circular open platform trial.  

Some cells were tested in the wall no-wall manipulation using the large walled circle instead of the square. 

For some cells there was also sometimes no return to baseline trial. 

 Wall vs. no-wall manipulation 

 
Large walled square with black walls and floor (100cm x100cm with 50cm high walls). 

Trial length: 24 minutes. 

 Circular open platform; this is black and is elevated 30cm from the ground (150cm 

diameter). Trial length: 42 minutes. 

 

 

 Large walled square with black walls and floor (100cm x100cm with 50cm high walls). 

Trial length: 24 minutes. 

 Or 

 
Large walled circle with white walls and black floor (150cm diameter with 50cm high 

walls). Trial length: 48 minutes. 

 Circular open platform; this is black and is elevated 30cm from the ground (150cm 

diameter). Trial length: 42 minutes. 

 

 

 Large walled circle with white walls and black floor (150cm diameter with 50cm high 

walls). Trial length: 48 minutes. 

 

Figure 3.9.2. Wall no-wall manipulation trial series. 

This manipulation was run with either or both the large walled circle and large walled square 
environments as baseline trials. 
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3.9.3 Barrier insertion within the wall removal manipulation 

The influence of barrier insertion upon grid cell firing was also of interest; see Figure 3.9.3.  Unless the grid 

cell was being recorded simultaneous with a putative BVC the barrier was either oriented north-south or 

east-west in the environment. 24/55 of grid cells were exposed to the ‘barrier insertion manipulation’ above 

(Figure 3.9.1) when recorded simultaneously with putative BVCs.  For those grid cells which were recorded 

without BVCs then a large square trial with barrier inserted trial was added to the wall no wall manipulation 

detailed below. 

 

 

  

 Barrier insertion within the wall removal manipulation 

 
Large square with black walls and floor (100cm x100cm with 50cm high walls). Trial 

length: 24 minutes. 

 

 

 

 

Large square with black walls and floor (100cm x100cm with 50cm high walls) with black 

barrier (50cm long, 3cm wide and 50cm high) inserted in the correct orientation of the 

BVC field. Trial length: 24 minutes. This trial is typically inserted into the ‘wall-no wall’ 

manipulation above or is run after a large square trial on a different day.  

 

Circular open platform; this is black and is elevated 30cm from the ground (150cm 

diameter). Trial length: 42 minutes 

 

 

Large square with black walls and floor (100cm x100cm with 50cm high walls). Trial 

length:24 minutes. 

 

Figure 3.9.3. Barrier insertion within the wall no-wall manipulation 
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3.9.4 Together-apart 

In order to investigate cell firing response to wall-less boundaries/ traversable boundaries the ‘together-

apart’ manipulation was run; see Figure 3.9.4. This was a 2 trial manipulation. The first trial is 3 black boxes 

on their sides sat tight together to create a rectangular open platform. For boundary-related cells the long 

axis of the three boxes was typically oriented perpendicular to the preferred-direction component of the 

boundary vector.  For the second trial the 3 boxes were moved 10cm away from each other creating two 

10cm gaps; providing 3 ‘drops in the BVCs preferred orientation. The 10cm gaps were traversable and 

therefore provide a different quality of ‘drop’. For 2 cells a tripling of firing field was used to identify cells as 

BVCs.  

 

 

 

 

 Together-Apart manipulation 

 
3 black boxes (50cmx50cmx50cm) were placed on their sides with no gaps between 

them to create a rectangular open platform (150cmx50cm). This is placed so that one of 

the 50cm edges is oriented for the BVC field. Trial length: 24minutes. 

. 

 After the ITI the 3 black boxes (50cmx50cmx50cm) were pulled apart so that there is a 

10cm gap between them. This then creates 3 50cm edges oriented to the BVC field. Trial 

length: 27 minutes. 

Figure 3.9.4. Together-Apart manipulation trial series 
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3.9.5 Context change 

In order to look at the effect of novelty upon BVC firing the ‘context change manipulation’ was run; see 

Figure 3.9.5. This involved running 2 trials of the ‘familiar’ small walled circle (white walls, black floor) 

environment, then changing the environment to a ‘novel’ environment (small square (black walls, white 

floor) with different external cue cards, then back to the ‘familiar’ small walled circle.  

  

 Context change manipulation 

 
Small walled circle (white walled; 77cm diameter) as used in baseline trials. Trial length: 

10 minutes. 

 Repeat of small walled circle (white walled; 77cm diameter) as used in baseline trials. 

Trial length: 10 minutes. 

 

 Change of environment to small black walled white floored square (50cmx50cm with 

50cm walls). Trial length: 10minutes.  Change of cue cards:   

 The north wall stripy cue card is changed to the south 

walled ‘off square’ cue card 

 

The south wall ‘off square’ cue card is changed to a new 

‘shiny triangle’ cue card 

 

 Return to small walled circle (white walled; 77cm diameter) as used in baseline trials 

Trial length: 10 minutes. 

 

Figure 3.9.5. Context change manipulation 

 



Methods        73 
 

   

 

3.9.6 Darkness 

To look at whether boundary-related cells and grid cells require ocular input the darkness manipulation was 

run; see Figure 3.9.6. This consisted of 2 trials. The first trial ran as a double length large walled square trial. 

Halfway through the trial all light was extinguished for the remainder of the trial. the two halves of the trial 

(light-dark) were analysed separately. Followed by another large walled square trial to return to baseline. 

Noise from the oscilloscope was not extinguished during this trial as the aim was not to disrupt the Head-

direction system but to purely investigate the role of visual input.     

 

 

 

 

Darkness manipulation 

 Large square with black walls floor (100cm x 100cm with 50cm high walls). Trial length: 

24 minutes. 

The trial is extended to 48minutes with all of the lights etc extinguished at 24minutes. 
Data is analysed as 2 separate trials. After the double trial the rat is removed from the 
environment for the ITI. 

 Return to a standard trial in the large square to go back to baseline. Trial length: 24 

minutes. 

Figure 3.9.6. Darkness manipulation trial series 
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3.9.7 Object insertion  

A number of BVC cells were run with extra manipulations to investigate correlates of BVC firing. The 

‘landmark vs. Barrier’ (Figure 3.9.7), ‘ridges’ (Figure 3.9.8) and ‘together-apart variation’ (Figure 3.9.9) 

manipulations were run to investigate the difference in BVC response to different sizes/qualities of barriers.  

Within this manipulation the type of barrier/ barrier qualities were altered. 

 For the ‘objects vs. Barrier’ manipulation (below; Figure 3.9.7) 5 bottles were placed together in a line, 

oriented for the BVC field to create a continuous barrier. Subsequent trials had 1 to 4 bottles in the array. If 

a doubling of the firing field was absent for 1 bottle then the next trial had 2 bottles (together to lengthen 

the boundary), and so on until firing was restored.  

                   Objects vs. Barrier manipulation 

  Start with a large square, with black walls and floor (100cm x 100cm with 50cm high 

walls). This can be used from the last trial of a different manipulation therefore it can 

be 24 minutes long. If the ridges manipulation is started independently then the trial is 

shortened to 15minutes. ITI is also shortened to 15minutes.  

  Insert the 5 wine bottles into the environment in a linear array 

(randomised order). Trial length: 15minutes. 

   Remove all the wine bottles bar the middle one. If the cell shows 

firing for the singular bottle, another trial with a thin measuring 

tube was ran. Trial length: 15minutes. 

    If the cell doesn’t show double firing then add wine bottles back 

into the array one trial at a time until double firing is restored. Trial 

length: 15minutes. 

  

  

  

Back to the baseline with an empty large square with black walls and floor (100cm x 

100cm with 50cm high walls). Trial length: 15minutes. 

Figure 3.9.7. Objects vs. barrier manipulations trial series 
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3.9.8 Ridge insertion 

The ‘ridge manipulation’ involves inserting a traversable ’barrier’; see Figure 3.9.8. Two heights of ridge 

(4.5cm and 2.5cm) were used. If the cell shows a doubling of firing field with the 4.5cm ridge then a trial was 

run with the smaller 2.5cm ridge. For some trials both ridges were inserted into the large square during the 

same trial. 

 
Ridges manipulation 

  Start with a large square, with black walls and floor (100cm x 100cm with 50cm high 

walls). This can be used from the last trial of a different paradigm therefore it can be 

1440s long. If the ridges manipulation is started independently then the trial is 

shortened to 900s. ITI is also shortened to 900s.  

  A 4.5cm high ridge (3 blocks together 20cm long and 10cm wide) is inserted into  Large 

square with black walls and floor (100cm x 100cm with 50cm high walls). The ridge is 

oriented for the BVC field. Trial length 900s.  

  

 If run in a sequence then a large square baseline trial is then run 

  

 A 2.5cm  high  (2.5cm  wide, 50cm long)  wooden ridge was inserted into the large 

walled square. The ridge is oriented for the BVC field. Trial length 900s. 

  Return to baseline with large square, with black walls and floor (100cm x 100cm with 

50cm high walls). 

Figure 3.9.8. Ridges manipulation trial series 
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3.9.9 Together-apart variation  

The last extra manipulation is the together-apart variation; see Figure 3.9.9. This involved using 2 black 

boxes on their sides to form 2 x 50cm x 50cm square open platforms. For the baseline trials these were 

pushed together to form a rectangular open platform.  One of the short edges was oriented for the BVC 

being record. Similar to the together-apart manipulation detailed above, the platforms were separated to 

produce a traversable gap oriented to the BVCs field. Throughout the manipulation the  gap was varied. 

Typically this meant running trials with gaps from 1cm up to 10cm depending upon the cells response to the 

gap sizes.  

3.9.9.1 Summary  

The above section gives the list of manipulations used to test recorded cells. BVCs were tested using all the 

manipulations above with a focus on barrier insertion, context change and the together apart 

manipulations. Grids cells on the other hand were tested primarily in the barrier insertion, wall no-wall and 

darkness manipulations. 

 
Together-apart variation manipulation 

 
2 black boxes (50cm x 50cm x50 cm) were placed on their sides with no gap between 
them to create a rectangular open platform (100cm x 50xm) This is place so that one of 
the short edges is oriented for the BVC field. Trial length 900seconds. 

 
After the ITI of 900seconds the 2 black boxes were separated so that there was a gap 
between them. This created two 50cm edges oriented to the BVC field. Trial length 
900seconds.  

In this manipulation the gaps were varied. Typically the manipulation ran: baseline-no 
gap, 1cm gap, 3cm gap, 10cm gap, and then back to baseline with no gap.  

Return to baseline with 2 black boxes together creating a rectangular open platform 
(100cm x 50xm). Trial length 900seconds. 

Figure 3.9.9. Together-apart variation manipulation trial series 
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3.10  Histology 

After completion of the experiment, each rat was killed with an overdose of sodium pentobarbital 

[(Euthalal), Merial, Harlow, UK; 1ml i.p.] and perfused transcardially with saline solution, followed by 4% 

paraformaldehyde.  Brains were extracted and sliced coronally into 40- m-thick sections, which were 

mounted and stained using cresyl violet solution to aid visualization of the tetrode tracks and tips. The 

target implant co-ordinates are given in Table 3.4.1. 

To determine tetrode location I used cresyl violet staining. This highlights histological landmarks to help 

identify recording sites. In the anterior rat brain the dorsal commissure connects the hemispheres and is a 

clear cytoarchitectonic landmark. The posterior end of the dorsal commisure was used as a reference point. 

The breaking of the doral commisure between  hemispheres corresponds to the Paxinos and Watson co-

ordinate 5.28mm behind bregma (Paxinos and Watson, 2007). The brain was cut into 40 micron slices using 

the cryostat. This allowed us to count how many slices and estimate the microns behind the cessation of the 

posterior dorsal commisure (bPC) the tetrodes were located. Using the Paxinos and Watson rat brain atlas 

as a guide I estimated a 10% shrinkage of the brain post-perfusion.  

3.11  Data processing 

3.11.1 Cluster-cutting and general cell identification 

Cluster-cutting involves isolating action potentials (spikes) with similar features from all action potentials 

recorded on a tetrode during a trial. The resulting isolated clusters with similar features were assumed to 

represent single cells. This analysis was performed manually using the custom-made software TINT (Axona, 

St Albans, UK). The software allowed for a separation of clusters by drawing around their edges directly on 

cluster plots. No automatic cluster cutting algorithms were used. 

A tetrode records 4 simultaneous action potentials from each cell (one on each electrode channel), which 

create cluster plots in TINT. These cluster plots were two-dimensional scatter plots where each spike is 

represented as a dot whose abscissa and ordinate were each the value of a spike feature on one of the 

tetrode channels. The plot axis represents the amplitude of 2 electrode channels, allowing each spike to be 

represented across 6 cluster plots comparing each of the 4 electrode channels (see Figure 3.11.1.). The 

3 
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differing peak-to-trough amplitudes (the difference between the maximum and minimum voltages of the 

action potential) of individual cells leads to each cell’s cluster to having a different profile across the plots, 

lending to discrimination between cells.  This is due to the tetrode design. Even if two neurons are spatially 

very close, their position relative to the tips of the tetrode will different, entailing slight differences in the 

recorded action potentials from each cell. The spikes from these cells will therefore occupy a different 

position on at least one of the cluster plots. 

3.11.1.1 Cluster cutting using peak-to-trough amplitude  

The basic method behind cluster-cutting requires the experimenter to draw a polygon around a cluster to 

define the cell. The main parameter for cluster cutting is the peak-to-trough amplitude using the amplitude 

plots mentioned above. The cluster shape for pyramidal cells is generally ovoid because these neurons tend 

to fire in bursts, with the spike amplitude decreasing with each subsequent action potential of the spike 

train (Ranck, 1973). However clusters for other cellular forms may not be so clearly elliptical. The benefit of 

having 6 plots comparing the 4 channels means that if a cell isn’t well isolated on one scatter plot it may be 

more isolated on another. 

3.11.1.2 Cluster cutting using peak-to-trough time interval 

 Not all cells were well isolated and easy to ‘cut’ on the basis of amplitude (A). In these cases cells can be 

identified and separated on the basis of a second parameter; waveform shape. This is the time interval (and 

slope) between the peak and trough of the waveform. In order to do this TINT can generate a graph plotting 

the voltage of spikes at a particular time point (Vt) or a combination of both Vt and A. To reduce error, 

clusters that do not appear to be well-isolated were ignored. Once all the desired spikes had been selected, 

noise and erroneous spikes which do not belong to the cell could be removed using the same methods. 
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Figure 3.11.1. Examples of cluster-cutting. 

Examples of cluster-cutting from rat 301 top (BVC; 301_170810_t4c1) and 304 bottom 
(Grid cell; 304_310311_t3c4). Each cluster (colour) is assumed to represent a different 
neuron (left). Each cluster plot illustrates the amplitude (A) of the spikes on two channels 
simultaneously; six plots are necessary to represent all the pairs of channels. The right 
windows displays for one cluster, the waveforms of all their spikes (and their average 
next to them). The tetrode shown for rat 301 top is tetrode 4 (day 170810, trial b in the 
large walled circle). The tetrode shown for rat 304 bottom is tetrode 4 (day 310311, trial 
b in the large walled circle).  
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3.11.1.3 Recording stability 

A good stability of signal was often observed across trials/ days, manifested by the clusters occupying a 

similar position on the respective cluster plots. If too much change in the global pattern of activity (i.e., 

most clusters occupied a noticeably different position in the cluster plots) was noticed between trials the 

cell was considered to have moved away from the tetrode.  

Clusters were cut based on a reference trial. This was typically a large walled circle trial, however if no large 

walled circle was run, then a trial testing the large square was used. The clusters were isolated (cut) using 

this trial, and this cut was then used as a template to cut the other recording trials. This was primarily a 

template of action for the experimenter to refer to. Often the cells were well isolated and so this was easily 

achieved by eye, but in cases where the cluster edges were less obvious, the scatter plot of the template 

trial could be super imposed over the top, to enable the experimenter to trace the cluster shapes. 

Superimposition of the current trial on top of the reference trial was done using the transparency-enabling 

software glass 2k. Any cutting on the Vt plots was mimicked across trials accordingly.  It was not permitted 

to fine-tune a trial’s template generated cluster cut, by cutting individual spikes, noise etc. If the cut seemed 

obviously misleading, it was only permitted to change the general template, and start again. 
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3.12  Data analysis 

3.12.1.1 Waveform analysis 

Waveforms were calculated for each cell. These are presented in the basic properties figures in the results 

section. Generally they waveforms were calculated using the first large walled circle or square of the day 

trials. This was the case for the BVCS, HD cells and the Boundary-off cells. For the grid cells the waveforms 

were calculated using the large walled circle or square trial with the largest gridness score. To investigate 

differences in waveform amplitude and interval; the peak-to-trough measurements were looked at (Figure 

3.12.1A).  These were taken from the negative peak to the positive peak (Figure 3.12.1B). In the basic 

properties figures in the results section the peak amplitude are given the highest positive-to-negative or 

negative-to-positive amplitude (µV). And the waveform interval was given as the negative peak-to-trough 

interval (µS). Some cells presented inverted waveforms e.g. Figure 3.12.1C. These were judged as such if the 

positive peak was greater than the negative peak. For these cells the positive-to-negative peaks were used 

to calculate waveform amplitude and duration. This happened for a total of 8 cells (4 subicular grid cells; 1 

non subicular grid cell; 2 BVCs and 1 HD).     

Figure 3.12.1. Waveform illustration 

A) Gives an illustration of the waveform graph. The X axis shows the voltage, the Y axis shows 
time. The waveform amplitude and interval statistics are given in the bottom right. Generally the 
waveform amplitude and interval are taken from the negative peak to the positive peak as shown 
in B. However, some cells (n=8) demonstrated inverted waveforms where the positive was higher 
in amplitude then the negative peak. In these cases the positive peak to negative peak was used to 
characterise the cells waveform characteristics. 
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3.12.2 Figures showing spatial firing  

This thesis shows locational firing rate maps and directional polar plots for all the cells of the following 

categories: grid cells, boundary vector cells, boundary off cells, and head direction cells. It also shows 

locational firing rate maps for non-grid periodic cells.  

All locational firing rate maps shown in the Figures of the present thesis were constructed from 3 x 3 cm 

binned data, smoothed using a 5x5 bin square around each bin (boxcar filter). For a given cell, firing rates in 

each bin were calculated by dividing the total number of spikes during occupancy of the bin by the total 

duration of occupancy (dwell time). Example rate maps for a BVC and grid cell are given in Figure 3.12.2 (A 

and B). The spike count was divided by dwell time to give the firing rate per bin. These rate maps were auto-

scaled false colour maps; each colour representing a 20%-band of peak firing rate, from dark blue (0-20%) to 

red (80-100%). Unvisited bins are shown in white. For all rate maps the peak rate (after smoothing) is shown 

top left of the map (see Figure 3.12.2A and B).  

Polar plots were also created in order to show each cell’s directional activity. Firing rate is shown for each 

directional bin of 5.6°, each bin was smoothed by the two bins around it in both directions (i.e average of 5 

bins centred on the current bin). See Figure 3.12.2C. The peak firing rate was the highest firing rate shown in 

any directional bin.  The preferred direction of a cell is the mean direction.   

. 
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Figure 3.12.2. Example locational rate maps and polar plots for spatial cells. 

Figure presents locational rate maps for a BVC (A), grid cell (B) and a polar plot for a head direction cell (C).  
Above the maps is the cell identification number which gives: rat number_testing day_tetrode (T) and cell (c) 
numbers. To the top left of the maps is the peak firing rate given in Hz. A and B) The rate maps are auto-
scaled false colour maps; with each colour representing a 20%-band of peak firing rate, from dark blue (0-
20%) to red (80-100%). Any white pixels represent unsampled areas. C) To plot directional activity the rats 
heading direction is plotted on a circular graph to create a polar plot. This plot divides the animals head 
direction into 60 bins of 6°. The peak firing rate was the firing rate in the peak bin.  
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Table 3.12.1 Table of measures used to characterise cell firing. 

The table presents the measures used to assess cell firing, the cells which these analyses apply to, the source of information from which the 
calculation is based, the methods section to consult for more information and the results section in which they are applied.  

Measure 
Applied to which 

cells 
Summary of source See methods section See results 

Waveforms  
(amplitude µV and 

interval µs) 
All cells Averaged waveform (LWC or LWS) 3.12.1.1 4.4;     4.4.3;     5.3.3 

Global mean rate All cells  3.12.2 

4.4;    5.1; 
5.1.3.1;   5.2.2 

5.3.3 
 

Theta modulation score All cells 500ms temporal autocorrelation 3.12.3.1 
4.4;      4.4.4 

5.3.3 
     

Directional information 
(comparing different cell 

types) 
 

All cells Unsmoothed polar plots (bin size 5.6°) 3.12.3.2 

4.4;     4.4.2 
5.3.3 

 

Directional information 
(wall no-wall for grids) 

Grid cells Smoothed polar plots (bin size 5.6°) 3.12.3.2 
5.1 

Directional selectivity All cells Unsmoothed polar plots (bin size 5.6°) 
3.12.3 

4.2.3;     5.3.2; 
5.3.3;     4.4.3.1 

4.4.3.2 
Location of the locational 

field peak 
 

BVC 
5x5 smoothed firing rate map 

(bin size 3cm x 3cm) 
3.14.2 5.2.5 

Locational peak rate 
(darkness manipulations 
& wall no-wall for grids) 

 

BVCs, grid cells 
5x5 smoothed rate maps 

(bin size 3cm x 3cm) 
3.12.2 

 
5.1;    5.1.3.1; 

5.2.2 
 

 
Locational selectivity 

 
 

BVCs, boundary-
off cells 

Unsmoothed firing rate map 
(bin size 3cm x 3cm) 

3.12.3.2 
 

4.2.3;       5.3.2 
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Table  3.12.1. table of measures continued 
 

  

Measure 
Applied to which 

cells 
Summary of source See methods section 

Used in analyses 

P,d locational 
information to be 

compared to directional 
information 

 

BVCs, boundary-
off cells 

Unsmoothed firing rate map (LWC; bin 
size 18.5cm x 18.5cm) 

3.12.3.2 5.3.2 

P,d directional 
information to be 

compared to locational 
information 

 

BVCs, boundary-
off cells 

Unsmoothed polar plot (bin size 6°) 3.12.3 5.3.2 

Pxd corrected locational 
information 

BVCs 
Unsmoothed firing rate map (mostly LWC, 

bin size 18.5cm x 18.5cm;  
6 = LWS, 14cm x 14cm) 

3.12.3.3 4.2.3 

Pxd corrected directional 
information 

 
BVCs Unsmoothed polar plot (bin size 6°) 3.12.3.3 4.2.3 

Gridness All cells 
Unsmoothed firing rate map (bin size 3cm 
x 3cm). Spatial autocorrelation smoothed. 

3.13.1 
3.13.2;   4.4.1;    

4.4.2 
 

Orientation Grid cells 
Unsmoothed firing rate map (bin size 3cm 
x 3cm). Spatial autocorrelation smoothed. 

3.13.1 
3.13.3.2 

4.1.1;   4.1.3;     
5.1.3 

 

Grid scale Grid cells 
Unsmoothed firing rate map (bin size 3cm 
x 3cm). Spatial autocorrelation smoothed. 

3.13.1 
3.13.3.1 

4.1.4 
5.1.1 
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3.12.3 Quantitative measures of temporal and spatial firing characteristics 

3.12.3.1 Temporal firing characteristics  

Global mean rate was the number of spikes divided by the trial length (in seconds).   

Theta modulation was calculated using the same methods as in Jeewajee et al., (2008). In brief the power 

spectrum of each cell’s spike-train autocorrelogram was used to assess the extent to which each individual 

cell’s spiking was modulated by theta. The theta-modulation score gives the ratio of average power in a 

narrow band (2 Hz) around the peak in the theta range (6-12Hz) to the total average power in the whole 

spectrum.  

3.12.3.2 Directional information  

For comparisons between cell types and between trials directional information and directional selectivity 

were calculated typically using uncorrected directional information calculations (P,D ; Skaggs et al., 1993). 

Information is measured in ‘bits’, either as ‘bits per spike’ which is the information provided every time the 

cell fires, or as ‘bits per second’ which is the information provided per second. Bits per spike is the most 

typically used measure and so was adopted here in most analyses and in the comprehensive basic 

properties figures (in the results). In some cases both measures were used. 

To compare directional information across cell types directional polar plots were created with a bin size of 

5.6°, with no smoothing. Directional information in bits per second was calculated by multiplying the 

directional information in bits per spike by the global mean rate.  Directional selectivity (Cacucci et al, 2004) 

was calculated by dividing the peak rate by the mean firing rate. The Peak firing rate was taken from the 

directional bin with the highest firing. 

Spatial information was also compared across trials. In grid cells, the directional information was compared 

in the wall-no wall manipulation and in the darkness manipulation. For these analyses directional polar plots 

were calculated using a bin size of 5.6°, each bin smoothed by the two bins around it in both directions (i.e 

average of 5 bins centred on the current bin). In BVCs directional and locational information were also 

compared in the darkness manipulation between light and dark trials. For this analysis locational 

information was calculated using 5x5 smoothed rate maps.  
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3.12.3.3 Comparing locational and directional information in boundary cells   

Using uncorrected calculations to determine spatial information can arguably produce artifactual results, 

because of inhomogeneous sampling of behavioural variables caused by the animal’s motion. For example 

inhomogeneity in the sampling of places causes head-direction cells to show apparent preferential response 

to those places sampled most frequently with the preferred head direction. This Inhomogeneity of sampling 

is unavoidable in freely moving animals, and is often seen at environment boundaries, where not all 

locations can be approached from all directions. Burgess et al., (2005) presented a method to account for 

this.  

To correct for spurious dependencies created by inhomogeneous sampling of orientation and location I 

applied a procedure described in Burgess et al., (2005), hereafter called the position times direction (pxd) 

correction. Pxd correction allows for an unbiased assessment of specifically locational vs. specifically 

directional signalling. The correction estimates the effect of one variable (e.g. location) on firing rate when 

also accounting for the effect of a second variable (e.g. heading direction).  

Since absolute information values are dependent on bin number, and smoothing, it was ensured that bin 

number and smoothing was identical where locational vs. directional signalling was assessed (specifically for 

the characterisation of BVCs). That is, no smoothing was applied, and the number of locational bins was 

matched to the number of directional bins, we have referred to this a location/direction equivalence 

binning. There were always 60 directional bins (6 degrees each) used in the directional analyses. The scaling 

factor of firing rate maps was adjusted such that the average number of locational bins was 60.3 ± 1.14 

(range of 58-62), and thus the number of directional bins and locational bins was identical. (This is of course 

lower than the number of locational bins used in other analyses in the present thesis, but this is the only 

way of ensuring an unbiased locational vs directional comparison.) 

This method of correcting for inhomogenous sampling has been used in several studies including Cacucci et 

al., (2004) where CA1 place cells and presubicular head-direction cells were compared and Lever et al., 

(2009) used this method to compare BVCs with Cacucci et al., (2004)’s place cells and head-direction cells. 

Locational and directional information was also compared for Boundary-off cells, however the Pxd 

correction could not be run for boundary off cells. This was because for too many cells, the  Pxd 

algorithm did not converge upon a solution and so they were analysed using the uncorrected measure 

(Skaggs et al., 1993). As with the BVC comparisons, the number of locational bins was matched to the 

number of directional bins (60 bins for both), and no smoothing was applied.   
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3.13         Grid cell specific analysis 

3.13.1 Spatial autocorrelogram  

Spatial autocorrelograms of rate maps were used to assess the periodicity, regularity, and orientation of all 

recorded cells and specifically those with multiple firing fields. Spatial autocorrelograms were estimated 

using unsmoothed rate maps; the autocorrelogram was then smoothed with a 2D Gaussian kernel with a 

maximal width of 10 bins and a σ set at 2.25 bins. Specifically, the spatial autocorrelogram was defined as: 

 

Where r(τx ,τy)  is the autocorrelation between bins with a spatial offset of τx and τy, λ1(x,y) and λ2(x,y) are 

equivalent for an autocorrelation and indicate the mean firing rate in bin (x,y), and n is the number of bins 

over which the estimate was made. Correlations were estimated for all values of n. The six peaks 

surrounding the central peak on the autocorrelogram were considered to be the local maxima exceeding r = 

0 closest to, but excluding, the central peak. The extent of each peak was defined as the contiguous set of 

bins around the peak with a value greater than half the value of the peak bin. 

 In particular, the spatial autocorrelograms constructed from the combined unsmoothed baseline rate maps 

were used to estimate the orientation, grid scale, and gridness of each cell (Figure 3.13.1). Orientation was 

the angle between a nominal horizontal reference line and an axis defined by the center of the spatial 

autocorrelogram and the peak closest to the reference line in a counter-clockwise direction (Figure 

3.13.1D). Grid scale was the median distance from the central peak to the six surrounding peaks (Figure 

3.13.1C. Gridness, a measure of spatial periodicity, was calculated by defining a mask of the spatial 

autocorrelation centered on but excluding the central peak bounded by a circle passing around the outside 

edge of the outermost of the six central peaks (Figure 3.13.1B). This area was rotated in 30° increments up 

to 150°, and for each rotation, the Pearson product moment correlation coefficient was calculated against 

the unrotated mask. Gridness was then expressed as the lowest correlation obtained for rotations of 60° 

and 120° minus the highest correlation obtained at rotations of 30°, 90°, or 150°.  
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3.13.2 Grid cell classification 

Grid cells were classified by gridness score as determined by the spatial autocorrelogram (Figure 3.13.1B). 

High gridness relates to high periodicity. All putative grid cells were run through the spatial autocorrelation 

analysis. For grid cell classification gridness scores were taken from the trial with the highest gridness score, 

from the large walled circle (LWC), the large walled square (LWS) or the circular open platform (COP). I 

recorded all cells except for 4 which were taken from an unpublished dataset recorded by my supervisor Dr 

Colin Lever. These were tested in a smaller walled square environment only, therefore these trials were 

used to define these cells. 

In previous studies the gridness threshold for grid cell classification was >0 (Hafting et al., 2005; Fyhn et al., 

2007; Solstad et al., 2008; Boccara et al., 2010). However, for more robust analyses of environmental 

manipulations higher thresholds of inclusion were sometimes used (e.g. ≥0.3 Solstad et al., 2008; Barry et 

al., 2007; Wills et al., 2012).  In the present study the gridness threshold was set to ≥0.25. This was 

motivated by the following consideration. Any threshold devised for grid cell classification must exclude 

cells which did not show periodic firing patterns, i.e. the two neighbouring spatial populations; the BVCs and 

HD cells. These cell types should not be included as grid cells. A rational gridness threshold would be the 

mean plus 2 standard deviations of these non-grid cell types. The average mean gridness for the BVCs and 

HD cells plus 2 standard deviations was 0.24. Accordingly for the present thesis only cells with gridness 

scores of equal to or more than 0.25 gridness were included in the grid cell sample. 

Arguably, this threshold is conservative. However being conservative is a sensible precaution and should 

ensure that the cells being characterised as subicular grid cells in the present thesis would certainly be 

classified as grid cells had they been recorded by others from another region. I include only definitive grid 

cells of equivalent or higher quality/gridness than those previously reported in the entorhinal cortex and 

presubiculum and parasubiculum. However, this thesis cannot meaningfully exhaustively compare all 

gridness measures for all given cells because other’s gridness measures do not capture the periodicity of the 

cells. Figure 3.13.2 suggests the 0.25 threshold used here may correspond to the ~0.3 gridness threshold 

used in other studies, e.g. Wills et al., (2012) and Sargolini et al., (2010), which characterised grid cells with 

smaller gridscale than in this dataset. Figure 3.13.2 also shows where alternative measures do not capture 

the cells’ periodicity perhaps because of the large grid scale seen in the subiculum grid cells recorded here 

(e.g. 60-70 cm). The spatial autocorrelation used in this thesis provided the best fit for the largest number of 

periodic cells. It is notable that many cells which show interesting periodicity show low or even negative 
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gridness values, as gridness indexes node hexagonality (see Figure 4.1.1). Arguably, the gridness measure 

fetishizes hexagonality. Cells are probably very functional for spatial representation even if the fields are 

more elliptical for instance. One approach to thresholding is to conduct a series of shuffles of the location 

and spike time data, and use a minimum value defined as 2 or 3 standard deviations above the mean 

gridness. However, this approach will depend on the cells that are being shuffled, and it will still overvalue 

hexagonality.   

 

  

 

Figure 3.13.1. Spatial autocorrelation is used to determine the parameters of the grid pattern. 

The figure shows an example grid cell recorded from rat 303. A) Presents the locational rate map and 
peak rate (Hz) and the spatial autocorrelation. B) Gridness, a measure of spatial periodicity, was 
calculated by defining a mask of the spatial autocorrelation centered on but excluding the central 
peak (marked with an x) bounded by a circle passing around the outside edge of the outermost of 
the six central peaks. C) Grid scale was calculated as the median distance from the central peak to 
the six surrounding peaks. D) Orientation was the angle between a nominal horizontal reference line 
(dotted line) and an axis defined by the center of the spatial autocorrelogram and the peak closest to 
the reference line (black line) in a counter-clockwise direction.  
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Figure 3.13.2. Gridness scores depend upon which spatial autocorrelation analysis is used. 

The figure shows 5 example grid cells which were tested using spatial autocorrelation analyses from 
key grid cell studies. The first column gives both the number of the cell specific to this figure and the 
cell identification number stating rat_day_ tetrode/cell. The second column presents the rate map, 
with the peak firing rate (Hz) in the top left corner. The following columns present the spatial 
autocorrelation maps.  

Our spatial autocorrelation analysis provided the best fit for the largest number of periodic cells. E.g. 
for cell 1 above only our spatial autocorrelation captures all the grid fields. For cells where the spatial 
autocorrelations do capture the grid fields the gridness scores are typically higher than those given 
by our spatial autocorrelation, e.g. cells 4 and 5.  
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3.13.3 Grid scale expansion 

To measure the effect of wall removal on grid cell grid scale smoothed rate maps and spatial 

autocorrelations were calculated for all cell and trials in the wall no-wall manipulation.  

The wall no-wall manipulation involved comparing baseline walled-environments with the circular open 

platform (COP). The COP was run between two trials in either the large walled circle (LWC) or the large 

walled square (LWS). Details of this manipulation can be found in Figure 3.9.2. Wall no-wall manipulation 

trial series.Figure 3.9.2. 

To be included in the analysis all trials must have been recorded on the same day. Trials that were not well 

fit by the spatial autocorrelation were excluded from the analysis. Where the un-walled trial was not fit, 

either by fault of the spatial autocorrelation or because the fields broke down, that cell was removed from 

the analysis. For trials where only one of the baseline trials was at fault, that trial was removed but the cell 

remained in the analysis.  

Between the walled and un-walled trials, grid cell properties including directional information, grid scale, 

orientation, theta modulation and gridness were compared.  

3.13.3.1 Measuring grid scale change 

To look at changes in grid scale between walled and un-walled trials the absolute and percentage change in 

grid scale was calculated. Where there were two baseline trials an average was always taken.  To calculate 

the percentage increase in grid scale, the grid scale in the walled trials (LWS or LWC) was considered to be 

100%.  Then the % change between the walled and un-walled grid scales was calculated. E.g. a grid scale of 

48.45 in the large walled square, this would be considered as 100% grid scale for that cell. In the walled trial 

if the grid scale increased to 58.50cm this would be a 10.1cm absolute increase and would represent a grid 

scale of 121.1%. Therefore between the walled and un-walled trials there was a 21.1% increase.   

3.13.3.2 Measuring shifts in orientation 

To determine whether grid orientation shifted with wall removal, the difference in orientation (in degrees) 

was determined between walled and un-walled trials. 

To briefly recap, the orientation of the grid is defined as the angle between a nominal horizontal reference 

defined by the centre of the autocorrelogram (dotted line; Figure 3.13.1D) and the peak closest to the 
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reference line in an anti-clockwise direction (black line; Figure 3.13.1D). This gives the smallest angle 

between the reference line and the closest peak. The 6 peaks surrounding the central peak are separated by 

60° increments, and so the orientation of the grid pattern relative to the horizontal reference line can only 

ever be between 0° and 60°. The difference in orientation between the baseline trials was calculated, as was 

the difference between average baseline and un-walled trial orientation. The smallest difference was always 

used. E.g. if the orientation in the first baseline trial was 10° and the orientation in the un-walled trial was 

22°, the orientation change would be 12° not 72° (as this would be more than 60°). These two differences in 

orientation were then compared to see if the orientation shift between walled and un-walled trials was 

significantly larger than the orientation shift between the walled baseline trials.  

3.13.4 Field inhibition in grid cells with barrier insertion 

To investigate the influence of barrier insertion on the grid pattern the grid cells were tested using the 

barrier insertion manipulation in the large walled circle and/or the large walled square. For details see 

Figure 3.9.1 and Figure 3.9.3. For some of the grid cells the insertion of the barrier seemed to cause field-

specific inhibition, in firing rate. This phenomenon was examined in a subset of grid cells. 

Using the cluster cutting software the fields could be individually isolated. This allowed us to see the peak 

rates and spikes for each field.  Using glass2k software, the cutting window could be made opaque so that 

the field location could be precisely traced from the first baseline trial onto the barrier and second baseline 

trial rate maps. This meant that the exact locations of specific fields could be compared between trials. The 

peak rates of the field locations were compared between baseline (average of the 2 baseline trials) and the 

barrier trial. The field locations of the ‘inhibited’ fields were compared, as were the locations of some stable 

fields. The stable fields acted as ‘reference’ fields, to see if the inhibition was due to a reduction in firing 

rate across the whole grid pattern or just for specific fields.  
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3.14          BVC specific analyses  

3.14.1 BVC classification criteria 

The BVC model predicts that when an appropriately-oriented barrier is inserted into a testing environment, 

a BVC would develop an additional locational field in response. Lever et al., (2009) and Solstad et al., (2008) 

showed this field doubling for a subset of boundary cells. Lever et al concludes that the main determinant of 

BVC firing is the vector from the rat to the boundary irrespective of the boundaries qualities. In support of 

this Lever et al. also recorded a BVC which produced a second field following the addition of extra ‘drop’ 

boundary (wall-less edges) in an open platform environment (together-apart manipulation, Figure 3.9.4). 

This general property of extra locational fields developing following the creation of additional, 

appropriately-oriented, boundaries was present in most boundary cells. In this thesis, this property was 

used as a defining feature of BVC firing. If a boundary cell did not exhibit this property it was classed as a 

‘non-BVC boundary cell.’   

Cells that showed boundary responses for the perimeter of the large walled circle and or the large walled 

square were given subsequent trials with the addition of a free-standing internal barrier (see Figure 3.9.1). 

As per the model and as seen in Lever et al., (2009) the second firing field for the inserted barrier was 

expected to follow the barrier on its predicted side. Only in cases where the barrier was oriented correctly 

to the cells preferred direction were they considered further. 

To quantify the BVC response to additional boundary a firing rate threshold was set (Figure 3.14.1). To be 

included as a BVC a second field had to be created consisting of bins ≥40% of the peak rate along ≥50% of 

the barrier. Figure 3.14.1A gives 6 examples of BVC second fields which reach this threshold and Figure 

3.14.1B shows 2 BVCs with second fields which did not reach this threshold.  

Cells that did not present double firing fields with the addition of a barrier, were tested with additional drop 

boundaries in the together apart manipulation (Figure 3.9.4). The cells were tested on a rectangular open 

platform that could be pulled apart by 10 cm to create three platforms. This provided 1 perimeter drop and 

2 traversable drops which the rat could voluntarily cross. If a BVC responded to the drops as boundaries it 

would be expected to produce 3 firing fields (one for each edge). These extra fields should be akin to the 

field doubling seen with the insertion of a barrier. As mentioned above cells that failed to show adequate 

field doubling/tripling with the addition of extra boundaries, were classed as ‘non-BVC boundary cells’.  
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Figure 3.14.1: Representative BVCs demonstrating the selection process used to classify boundary cells as BVCs. 

Figure shows 6 BVCs and 2 non-BVC boundary cells. To the left of the rate map is the percentage barrier 
coverage by the second locational field. To the right of the rate map is a close-up of the second field for each 
cell. For all putative BVCs the firing was required to be ≥ 40% peak firing rate (shown on the rate maps as green 
pixels) across at least 50% of the barrier. This was calculated as the percentage of pixels (underneath the rate 
maps is the percentage pixels along the barrier. A) Shows 6 BVCs which passed the criteria B) shows 2 cells 
which failed to show a second field along at least 50% of the barrier. 42/46 BVCs were classified using this 
criteria. 
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3.14.2 Quantifying the effect of wall removal on BVC fields 

BVCs were tested in the wall no-wall manipulation (Figure 3.9.2). To see if the peak of the BVC fields moved 

with wall-removal the distance in pixels from the peak to the centre of the environment for both the walled 

(LWC) and the un-walled (COP) trials was calculated. For this the cluster cutting software TINT was used 

(See Figure 3.14.2 for procedure). The distance of the 2 peaks were calculated using Pythagoras’ theorem 

(Figure 3.14.2C). In order to see if the peak had moved between walled and un-walled trials the distance in 

pixels between the peaks and the environment centre were compared and converted into centimetres.       

  

 

Figure 3.14.2.  Do BVC field peaks move with the boundary when the walls are removed? 

An example of how the shift in BVC field peaks was calculated.  A) presents an example cell in the walled 
and un-walled circular environments (Large wailed circle and circular open platform).The field peaks are 
marked with black crosses.  B) is an illustration of the walled circle superimposed on top of the un-walled 
circle. This shows the relation of the field peaks to each other and the centre of the environments (red 
cross). C) Shows how the distance from the centre of the environments to the peaks was calculated using 
Pythagoras’ theorem.  
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Chapter 4 Classification, basic properties and comparison of 

subicular spatial cells  

4.1 Overview of the dataset 

This thesis provides the first account of grid cells located in this area. Grid cells were often simultaneously 

recorded with Boundary Vector cells (BVCs) and head-direction (HD) cells from the subiculum, and for two 

rats (3 hemispheres) from the surrounding areas.  

The dataset analysed in this thesis comprises 210 spatial cells (table 4.1.1.) below. I recorded all cells except 

for 4 which were taken from an unpublished dataset recorded by my supervisor Dr Colin Lever. The data 

presented here was recorded from 6 rats. Data from the subiculum was recorded from 4 rats.  From 1 rat 

the tetrode recording locations were assigned as from locations around the subiculum. A small number of 

place cells were recorded from the hippocampus in one rat.   

Testing and trial series were dictated by cell type and stability. Often cells were recorded across days. The 

average number of experimental testing days (i.e. not just screening) was 25 days for each animal. The time 

spent testing each animal ranged between 2 and 4 months. The number of trials per day varied but was 

generally around 9, taking about 8 hours to run (up to a maximum of 14 hours). Trial length was dependent 

upon environment size (Table 3.8.1), with the standard trial in the baseline environment (150cm-diameter 

walled circle) being 42 minutes in duration. Recording time per unit area was longer, to my knowledge, than 

in previous studies. Trials were separated by an inter trial interval (ITI) of 20minutes. This ITI was extended 

between manipulations on long testing days to allow the rat to rest.  

Here subicular grid cells were characterised in terms of their basic properties, by using spatial 

autocorrelations and other spatial and temporal measures. The thesis also provides a comparison of grid 

cell properties with the often simultaneously recorded BVCs and HD cells.  

The grid cells were tested in several environmental manipulations, to assess grid cell behaviour with 

environment change. These manipulations specifically investigated the effect of barrier insertion, wall 

removal and darkness.  
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This thesis also aimed to provide a detailed account of subicular BVCs leading on from Lever et al., (2009). 

Similar to the grid cells in this thesis BVCs were characterised using spatial and temporal measures. They 

were also compared to other spatial cell and were testing using a variety of environmental manipulations. 

Here BVCs were tested with barriers, wall removal, darkness, context change, traversable gaps and for a 

small sample inserted objects.  

During testing a new type of boundary-specific cell was discovered, one that fires over almost the entire 

environment, but has a portion of inhibited firing near a boundary. When a barrier was inserted into the 

environment, the cells responded by producing a second inhibitory field. I have called these cell boundary-

off cells. They appear to be like an inverse of BVCs. The last section of the results will attempt to 

characterise these cells using the measures and methods previously used for the grid cells and the BVCs.    

 

Table 4.1.1. Spatial cells recorded and analysed in this thesis 

Cell type Number recorded 

  
Grid cells  51 
Non-grid periodic cells 25 
Boundary vector cells 46 
Boundary-off cells  9 
Non-BVC boundary cells 18 
Non-subicular boundary cells 8 
Head-direction cells 30 
Place cells   23 
  

Total 210 cells 
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4.1 Grid cells  

4.1.1 Grid cell classification criteria 

Gridness is a measure of the hexagonal regularity of adjacent fields. Gridness determines the spatial 

periodicity of the grid pattern and is typically used in the classification of grid cells (Hafting et al., 2005; Fhyn 

et al., 2004; Solstad et al., 2008; Wills et al., 2010; Barry et al. 2007;2012). In brief gridness was calculated 

by defining a mask of the spatial autocorrelation centred on but excluding the central peak bounded by a 

circle passing around the outside edge of the outermost of the six central peaks (see methods for more 

details). This area was rotated in 30° increments up to 150°, and for each rotation, the Pearson product 

moment correlation coefficient was calculated against the un-rotated mask. Gridness was then expressed as 

the lowest correlation obtained for rotations of 60° and 120° minus the highest correlation obtained at 

rotations of 30°, 90°, or 150°. High gridness relates to high periodicity. All putative gird cells (n=75) were run 

through the spatial autocorrelation analysis. Details about the spatial autocorrellogram can be found in the 

methods. Gridness was taken from the trial with the highest gridness score in one of four environments; the 

large walled circle (LWC), the large walled square (LWS), the circular open platform (COP) or the small 

walled square (SWS). For putative grids gridness ranged from -0.04 to 1.30 (mean 0.47 ± 0.05). In previous 

studies the gridness threshold for grid cell classification was >0 (Hafting et al., 2005; Fyhn et al., 2007; 

Solstad et al., 2008; Wills et al., 2010). However, for more robust analyses of environmental manipulations 

higher thresholds of inclusion were used (e.g. ≥0.3 Solstad et al., 2008; Barry et al., 2007; Boccara et al., 

2010). Figure 4.1.1 shows the 26 putative grid cells did not reach the gridness threshold, and were excluded 

from the sample. The 0.25 threshold used here may correspond to the 0.3 or higher gridness threshold used 

in other gridness measures. This thesis cannot meaningfully exhaustively compare all gridness measures for 

all given cells because some measures do not capture the periodicity of the cells. Figure 3.13.2 provides a 

few examples that suggest that a threshold of 0.25 in our measure likely corresponds to higher thresholds 

used by Wills et al.  (2010) and Sargolini et al.(2010). The spatial autocorrelation used in this thesis provided 

the best fit for the largest number of periodic cells. However, even using this analysis some putative grid 

cells with clear periodic firing still had to be excluded (cells 10, 11, 18 and 20, Figure 4.1.1).  

Four cells were recorded in a small-square environment only (60cm x 60cm).  These cells could potentially 

introduce bias into some of the analyses, because only grid cells showing small grid scales can be detected 

in small environments.  



Classification, basic properties and comparison of subicular spatial cells        100 
 

   

 

 

 

Figure 4.1.1. Periodic non-grid cells: putative grid cells with multiple peaks which did not reach the 0.25 
gridness score threshold. 

All putative grid cells which were identified through visual inspection were run through the spatial 
autocorrelation analysis. The 26 which did not reach the gridness threshold of 0.25 were excluded, these are 
shown here. The cells are organised by the highest gridness score (cell 1 top left) to the lowest gridness score 
(cell 25 bottom right).   
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Four cells were recorded in a small-square environment only.  The restricted size of this Four  

Figure 4.1.2. Basic characterisation of all grid cells; subiculum (page 1/7) 

Each row shows data for one grid cell. From left to right the figure presents; text column stating rat/day, 
tetrode/cell, recording location in mm posterior to dorsal commissure (if subicular) and recording 
environment; locational rate map with peak rate (Hz); spatial autocorrelation map; directional polar plot 
with peak rate (Hz); spike waveform, bottom-right text stating peak amplitude (highest positive-to-negative 
or negative-to-positive amplitude, µV) and negative peak-to-trough interval (µS); temporal autocorrelations 
(0-20ms and 0-500ms). Rightmost text column gives the gridness score (G), grid scale (WL), orientation (O), 
directional information in bits per spike (Dir; calculated from unsmoothed polar plots. bin size 5.6°) and the 
theta modulation score (TM). Pages 1-4 show the subicular grid cells and pages 5-7 show the grid cells 
recorded outside the subiculum.   
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Figure 4.1.2. Basic characterisation of all grid cells (page 2/7) 

 

 

Figure 4.1.2. Basic characterisation of all grid cells; subiculum (page 2/7) 
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Figure 4.1.2. Basic characterisation of all grid cells; subiculum  (page 3/7) 
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Figure 4.1.2. Basic characterisation of all grid cells; subiculum (page 4/7) 
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Figure 3  

 

Figure 4.1.2.. Basic characterisation of all grid cells (page 5/7) 
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Grid cells were recorded from eight animals (11 hemispheres). For seven of those animals  
 

Figure 4.1.2. Basic characterisation of all grid cells (page 6/7) 

 

 



Classification, basic properties and comparison of subicular spatial cells        107 
 

   

 

  
 

Figure 4.1.2. Basic characterisation of all grid cells (page 7/7) 
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2.2.2 Histology and tetrode localization  

Grid cells were recorded from eight animals (11 hemispheres). For 7 of those animals subicular grid cells 

were recorded from at least one hemisphere (9 hemispheres in total). Subicular grid cells were recorded 

from both hemispheres in 2 animals. Cells recorded from 2 rats were of uncertain location nearby the 

subiculum. The location of these cells may be the presubiculum, the white matter above the 

subiculum/presubiculum and the subiculum itself. Histology and movement records were inconclusive. The 

results will be described for all grid cells recorded (referred to as ALLGRIDS) and then separately for the 

subiculum-only grid cells (referred to as SUBGRIDS). To determine where along the subicular anterior-

posterior axis the cells were recorded from the distance behind the posterior end of the dorsal commisure 

(PDC) was calculated (in mm; see methods). At the PDC co-ordinate (0mm) the dorsal commisure breaks 

across the hemispheres. This corresponds to the Paxinos and Watson rat brain atlas co-ordinate -5.2mm 

behind bregma (Paxinos and Watson, 2007). Figure 4.1.3 shows the tetrode tracks and the estimated 

recording locations of the subicular grid cells. 



Classification, basic properties and comparison of subicular spatial cells        109 
 

   

 

 

 

Figure 4.1.3. Estimated recording locations of grid cells.  

The figure shows Nissl-stained coronal sections of the dorsal subiculum. Coloured circles indicate estimated locations of grid cells; arrows 
indicate tracks of recording tetrodes. Sections are arranged in anterior-posterior order (A-I), at increasing distance behind the posterior end 
of the dorsal commissure (PDC), which is ~5.2mm posterior to bregma.  SUB, Subiculum; RSP, retrosplenial cortex; DG, dentate gyrus; 
PreSUB, presubiculum. To the right of the sections is a key of which grid cells are at which estimated recording locations. These cell numbers 
correspond to those in the rate map figures. See figure 4.1.2 for rate maps and spatial autocorrelations for all grid cells. 
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4.1.2 Gridness: The spatial periodicity of the grid pattern  

Gridness measures the hexagonal regularity of the grid pattern. The threshold for inclusion as a grid cell was 

set at ≥0.25. For all recorded grid cells (ALLGRIDS; n=51) the mean gridness was 0.72 ± 0.04 and for the 

subiculum-only sample (SUBGRIDS; n=30) the mean gridness score was 0.65 ± 0.04. The average gridness 

scores of grid cells recorded from nearby locations to the subiculum was higher than for the subicular grid 

cells. This is shown when comparing the SUBGRIDS (n=30) mean gridness score 0.65 ± 0.04 to the non-

subicular grid cells (n=21) mean gridness score 0.84 ± 0.07; t49=2.392,p=0.023.   

4.1.3 Neighbouring grid cells share a common orientation 

The mean orientation of the grid cells as determined by the spatial autocorrelation (see methods for 

procedure) was fairly consistent for grid cells within rat (and region) but varied between rats (see Figure 

4.1.4 below). Subicular grid cells were recorded simultaneously from both hemispheres from two rats (rats 

301 and 304). The mean orientation of the grid cells recorded across hemispheres did not significantly 

differ. For rat 301 he mean orientation of the left hemisphere grids cells (n=4; 8.00 ± 1.35°) was not 

significantly different compared to the right hemisphere grid cells (n=4; 4.00 ± 1.47°; t3=1.43, p=0.25). 

Similarly the mean orientation in rat 304 in the left hemisphere grid cells (n=3; 39.66 ± 1.33°) was also not 

significantly different to the right hemisphere  gird cells (n=9; 39.00 ± 3.55°; n=9, t10= 0.10, p=0.92). In one 

rat 305 grid cells were recorded from the subiculum in one hemisphere (n=5) and from the subiculum and 

surrounding regions (n=5) in the other. The mean orientation of the grid cells recorded from the subiculum 

(40.32 ± 8.02°) was significantly different from the mean orientation of the grid cells recorded from and 

around the subiculum (n=5; 4.4 ± 1.75 °; t4=4.13 p= 0.015). This suggests that orientation may not be 

consistent across regions. It must be noted that these cells numbers are low and therefore this data must be 

considered as individual cases.  
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4.1.4 Grid scale varies across the grid cell sample  

Grid scale reflects the distance between the grid fields. Grid scale was measured as the median distance 

from the central peak in the spatial autocorrelogram to the six surrounding peaks (see methods for more 

details). The grid scale varied across the sample. For example looking only at the large walled circular and 

square environments (LWC and LWS) the grid scale for the SUBGRIDS, n=26 ranged from 32.70cm to 

94.40cm. See figure 4.1.2 for the grid scale for all cells in the highest-gridness trials. 

4.1.4.1 Grid scale is determined by anatomical location   

In hippocampal place cells and entorhinal grid cells, spatial scaling is linked to anatomical location along the 

long axis (Jung et al, 1994; Hafting et al., 2005) with smaller grid scales dorsally/septally, and larger grid 

scales ventrally/temporally. I examined the relationship between grid scale and anatomical location using 

distance behind the posterior end of dorsal commissure (hereafter ‘PDC’, ~5.2mm behind bregma, Paxinos 

and Watson, 2007) to define a long axis through the dorsal subiculum.  To avoid the sampling bias that only 

small-scale grids are detectable in small environments, the analysis was conducted only on cells recorded in 

 

Figure 4.1.4: Grid cell orientation is fairly constant within rat but varies between rats. 

Graph shows data from rats where ≥4 grid cells are recorded (301,303,304,305). The vertical 
dashed line separates the subicular cells on the left from the non-subicular cells on the right. The 
orientation data was taken from the highest-gridness trial (either from the large walled circular, 
large walled square or the circular open platform). 
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the large environments (LWC and LWS, n = 26 i.e. 4 cells excluded). I recorded more cells from anterior 

locations (≤ 0.3mm PDC, n = 19, mean 0.24 ± 0.03 mm PDC) than from posterior locations (≥ 0.6mm PDC, n 

= 7, mean 1.11 ± 0.21 mm PDC). As with entorhinal grids, anatomical location determined grid scale (Figure 

4.1.5). The grid scale of anteriorly-located cells (56.17 ± 4.99 cm) was 20cm shorter than for the posteriorly-

located cells (77.32 ± 6.98 cm; t24 = 2.28, p = 0.032). This was true whether I used the highest-gridness score 

trials (above), walled-environments only trials (LWC and LWS trials n=26; anterior grid scale 56.63 ± 5.2 cm; 

posterior grid scale 77.32 ± 6.98 cm; t24=2.16, p=0.041), or environmentally-identical trials (LWC trials only 

n=21; anterior grid scale 60.88 ± 6.37 cm; posterior grid scale 80.50 ± 5.29 cm; t18.29=2.37, p=0.029).  

 

Figure 4.1.5. Anatomical position along the anterior-posterior axis determines grid scale. 

 Rate maps and spatial autocorrelations for two representative anterior (cells 1 and 2) and 
posterior (cells 3 and 4) recorded grid cells.  For each location, the grid cell above (right) and 
below (left) the median are shown, the median taken from the environmentally-identical 
analysis comparing grid cells recorded in the large walled circle (14 anterior and 7 posterior). 
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4.1.5 Gridness correlates with theta modulation  

In a comparison of different cell types in the entorhinal cortex, presubiculum, and parasubiculum, Boccara 

et al., (2010) make the general observation that grid cells are more theta modulated than border and HD 

cells (Boccara et al., 2010; see also Cacucci et al., 2004).  However, no previous study has shown a direct 

positive correlation between gridness and theta modulation within a normal grid cell sample. Figure 4.1.6 

shows a strong positive linear correlation between gridness and theta modulation (ALLGRIDS). There was a 

trend in the subiculum only dataset (SUBGRIDS n=26) however, this did not reach significance (Table 4.1.1). 

The positive correlation demonstrated in the ALLGRIDS sample may provide further suggestive evidence of 

the link between theta oscillations and grid patterns of firing (Table 4.1.1, Figure 4.1.6). 

 

Figure 4.1.6. Gridness positively correlates with theta modulation. 

 There is a clear significant correlation between gridness scores and theta modulation. This data 
used the first large walled environments of the day (LWC or LWS) to control for the running order of 
the trials. Analysis includes 47/51 grid cells from the ALLGRIDS sample. 4 cells were excluded 
because they were run in the small environments only. 
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4.1.5.1  The correlation between gridness and theta modulation is not due to other 

factors 

To ensure that the gridness score theta modulation correlation was not a by-product of other factors, 

gridness was also tested against locational peak rate, total spike count, global mean rate and average 

running speed (see Table 4.1.1 below). There was no relationship between spatial periodicity (gridness) and 

rate factors for either the ALLGRIDS or SUBGRIDS samples.  

 

Table 4.1.1.  Gridness correlates with theta modulation but not other factors.  

For the ALLGRIDS sample gridness scores (mean gridness; 0.65 ± 0.04) correlate with theta modulation 
but not rate factors. There was a trend suggesting this relationship in the SUBGRIDS sample (mean 
gridness; 0.84 ± 0.07), however this did not reach significance. This analysis used the best gridness score 
trials and included only the 47 grid cells recorded in large environments.  Locational peak rate was taken 
from unsmoothed rate maps (bin size 3cm x 3cm). 

 

 
Gridness vs 

Theta 
modulation 

Locational 
Peak rate 

Total Spike 
count 

Global 
Mean rate 

Average 
running 
speed 

ALLGRIDS   (N=47)          
  Mean ± SEM 29.00 ± 3.17 9.15 ± 0.81 3821.81 ± 547.43 1.87 ± 0.29 15.29 ± 0.50 

        r value 
p value 

 
SUBGRIDS   (N=26) 

0.41 
0.005 

 

0.10 
0.49 

 

0.04 
0.81 

 

-0.02 
0.87 

 

0.14 
0.36 

 

Mean ± SEM 30.4 ± 4.52 8.12 ± 0.88 2761.92 ± 453.82 1.17 ± 0.18 14.82 ± 0.65 
      r value 

p value 
0.30 
0.14 

0.04 
0.85 

0.07 
0.71 

0.10 
0.62 

0.11 
0.59 
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4.2 Boundary Vector cells (BVCs) 

A BVC fires whenever an environmental boundary intersects a receptive field located at a specific distance 

from the rat in a specific allocentric direction. The firing of a BVC depends solely on the rat’s location 

relative to environmental boundaries and is independent of the rat’s heading direction.  

4.2.1 BVC classification criteria 

When an appropriately-oriented barrier is inserted into a testing environment, a BVC is expected to develop 

an additional Locational field in response to that additional boundary. Lever et al., (2009) and Solstad et al., 

(2008) showed this for a subset of boundary cells. I also noted that additional Locational fields in response 

to additional, appropriately-oriented boundaries could be seen following the addition of extra ‘drop’-type 

boundaries (wall-less edges). The general property of extra locational fields developing following the 

creation of additional, appropriately-oriented, boundaries was present in most boundary cells. In this thesis, 

this property was used as a defining feature of BVCs. If a boundary cell did not exhibit this property it was 

classed as a ‘non-BVC boundary cell.’  

Cells that showed boundary coding for the perimeter of the large walled circle and or the large walled 

square were given subsequent trials with the addition of a free-standing internal barrier. Only in cases 

where the barrier was oriented correctly to the cells preferred direction, were they considered further. 

Figure 4.2.4b shows 5 cells where the barrier was incorrectly oriented and the cells were classed as ‘non-

BVC boundary cells’. 57 cells showed boundary coding for the perimeter and were given a barrier in the 

correct orientation.  

As per the model and Lever et al., (2009) the second firing field for the inserted barrier was expected to 

follow the barrier on its predicted side. To quantify the BVC response a firing rate threshold was set. In 

general boundary cell firing fields were well isolated, with little back ground firing. The fields generally 

consisted of spikes with >40% peak firing rate (green pixels on the rate maps), whist background firing was 

less than 40% (dark and light blue on the rate maps). To be included as a BVC the second field had to consist 

of pixels with firing rates of over 40% along of the barrier. A threshold of coverage along the predicted side 

of the barrier was also set. This was calculated as the percentage of pixels showing ≥40% peak firing rate 
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along the barrier. The number of boundary cells which could be classified as BVCs, varied if the barrier 

coverage threshold was manipulated (Table 4.2.1). For this thesis the threshold was set to 50%. Figure 4.2.1 

shows the 42 BVCs were classified using this criterion. The coverage along the predicted side of the inserted 

barrier (at a firing rate of ≥ 40%) of these BVCs was 82.52 ± 2.41 % (see Figure 3.14.1 in methods for 

examples).  

Two cells were classified as BVCs which had long-range fields which were located off the boundary rather 

than being tightly juxtaposed (See Figure 4.2.3). As shown in Figure 4.2.3 the BVC fields double with barrier 

insertion but the second field is located away from the barrier. Lever et al., (2009) recorded a small number 

of these BVCs. However, generally short-range BVCs are more numerous then longer-ranged BVCs. 

Two further cells did not present double firing fields with the addition of a barrier, but they did respond to 

multiple boundaries in a different manipulation (Figure 4.2.2). These cells responded to boundaries created 

when three platforms were pulled apart to make 10 cm gaps between them (see methods for more details). 

This provided 2 edges which the rat could voluntarily cros s. Both BVCs treated this split platform as 

containing 3 north-west boundaries. In response they exhibited 3 firing fields akin to the field doubling seen 

with the insertion of a barrier (Figure 4.2.1).  

In summary 46 cells in total were classified as BVCs. 42 produced double fields with barrier insertion, 2 had 

fields located off the boundary and 2 signalled the boundaries in the together-apart manipulation. Cells that 

failed to show adequate field doubling/tripling with the addition of extra boundaries, were classed as ‘non-

BVC boundary cells’ (see Figure 4.2.4). 

Table 4.2.1. The number of boundary cells classified as BVCs changes if the threshold of barrier coverage 
by the second field is varied.  

To be included as a BVC a second field had to be created consisting of bins ≥40% of the peak rate along 
≥50% of the barrier. (highlighted in the table).  Initially there were 57 putative BVCs identified. By 
applying this threshold the number of included BVCs by this classification was reduced to 42.  

No. of cells 
reaching the 

coverage 
threshold  

>20% >30% >40% >50% >60% >70% 

50 47 46 42 41 36 
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Figure 4.2.1. BVCs develop extra locational fields following the insertion of an appropriately-oriented barrier.  

The production of an additional locational field with the addition of a second boundary has been used in this thesis to classify BVCs. The second field needed to 
consist of spikes with >40% peak firing rate (green pixels on the rate maps), along at least 50% of the additional barrier. Boundary cells which did not produce the 
second field were classed as non-BVC boundary cells. 42 BVCs were classified using this property. (Figure continues on the next page). 
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Figure 4.2.1. continued.  
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Figure 4.2.2. BVCs can respond to environment drops and traversable gaps as well as walls. 

Two BVCs were classified based on their firing for environment drops and traversable gaps in 
the together-apart manipulation. As the figure shows neither BVCs showed a clear additional 
locational field for the insertion of an appropriately-orientated barrier; cell 1 did not produce 
a second field and cell 2’s field was so broad that the addition of a second field was not clear. 

 However in the together-apart manipulation both cells show clear locational fields. The 
‘together’ trial is in a rectangular open platform consisting of 3 square platforms. In this 
environment both cells demonstrate a clear second field in response to the environment 
drop. When these platforms were separated by 10cm in the ‘apart’ trial two additional 
boundaries were created. In this trial both cells responded by providing two additional fields 
for these additional boundaries.  
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Figure 4.2.3. Two BVCs had long-range fields. 

Two BVC had long-range fields which were located away from the boundaries. For 
both BVCs, the locational fields were located away from the boundary when 
responding to the perimeter wall and the inserted barrier. 
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Figure 4.2.4. Non-BVC boundary cells: Boundary cells which did not show sufficient field doubling with 
boundary insertion were classed as non-BVC boundary cells. 

 Boundary cells were identified using visual inspection of rate maps. 18 boundary cells were excluded 
because they did not produce a second field with the insertion of an internal barrier. A) shows 13 boundary 
cells which failed to produce a second field at >40% peak firing rate along 50% of the barrier and B) shows 5 
cells for which the barrier was not placed in the correct orientation. These boundary cells could not be 
tested as candidate BVCs.  
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Figure 4.2.5. Basic characterisation of all BVCs (page 1/6) 

Figure legend at the end of figure. 
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Figure 4.2.5. Basic characterisation of all BVCs (page 2/6) 
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Figure 4.2.5. Basic characterisation of all BVCs (page 3/6) 
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Figure 4.2.5. Basic characterisation of all BVCs (page 4/6) 
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Figure 4.2.5. Basic characterisation of all BVCs (page 5/6) 
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Figure 4.2.5. Basic characterisation of all BVCs cells (page 6/6) 

Each row shows data for one BVC. From left to right the figure presents; text column stating rat/day, 
tetrode/cell, and the recording environment; locational rate map with peak rate (Hz); spatial 
autocorrelation map; directional polar plot with peak rate (Hz); spike waveform, bottom-right text 
stating peak amplitude (highest positive-to-negative or negative-to-positive amplitude, µV) and 
negative peak-to-trough interval (µS); temporal autocorrelations (0-20ms and 0-500ms). Rightmost 
text column gives the directional information in bits per spike (Dir; calculated from unsmoothed polar 
plots, bin size 5.6°)) and the theta modulation score (TM).  
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4.2.2 Histology and tetrode localization 

BVCs were recorded throughout the subiculum, along the subicular anterior-posterior axis at all depths. 

BVCs were recorded from 4 rats and from 6 hemispheres. Only boundary-related cells recorded from the 

subiculum were considered for analysis.  As with the grid cells above to determine where along the 

subicular anterior-posterior axis the BVCs were recorded the distance behind the posterior end of the dorsal 

commisure (PDC) was calculated (in mm; see methods). As detailed above at the PDC co-ordinate (0mm) the 

dorsal commisure breaks across the hemispheres. This corresponds to the Paxinos and Watson, (2007) co-

ordinate -5.2mm behind bregma (Paxinos and Watson, 2007). Figure 4.2.6 shows the tracks of the recording 

tetrodes and indicates the estimated recording locations for 41 of the 46 BVCs.  
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Figure 4.2.6. Estimated recording locations of BVCs.  

Nissl-stained coronal sections of the dorsal subiculum. Coloured circles indicate estimated locations of BVCs; arrows indicate tracks of recording 
tetrodes. Sections arranged in anterior-posterior order (A-I), at increasing distance behind the posterior end of the dorsal commissure (PDC), which is 
~5.2mm posterior to bregma.  SUB, Subiculum; RSP, retrosplenial cortex; DG, dentate gyrus. To the right of the sections is a key of which BVCs are at 
which estimated recording locations. These cell numbers correspond to those in the rate map figures. See Figure 4.2.5Figure 4.2.5 for rate maps and 
spatial autocorrelations for all BVCs. 
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4.2.3 BVCs carry more locational than directional information 

The firing of a BVC depends solely on the rat’s location relative to environmental boundaries and is 

considered to be entirely independent of the rat’s heading direction. Lever et al., (2009) found that BVCs 

carried more locational than directional information. To compare Locational vs directional information 

within the BVC sample the rate maps and polar plots were corrected for spurious dependencies created by 

inhomogeneous sampling of orientation and location (described in methods section 3.12.3.3; Burgess et al., 

2005;  Lever et al., 2009).  

Table 4.2.2 shows that BVCs had double the amount of locational information compared to directional 

information (in both bits per spike and bits per second). Table 4.2.2 also shows that BVCs also had three 

times more locational selectivity (max. firing rate across 60 bins divided by the mean rate) compared to 

directional selectivity. This suggests that BVCs have much stronger locational signalling then directional 

signalling. 

Table 4.2.2. BVCs carry more locational than directional information. 

 Spatial information is calculated using a corrected analysis (Burgess, 2005) to estimate the 
locational/directional mutual information in seconds. Spatial information was calculated using 
locational/directional equivalence binning (60 bins each) from unsmoothed polar plots (bin size 6°) and 
unsmoothed rate maps (bin size LWC, 18.5cm x 18.5cm; LWS 14cm x 14cm). Selectivity is calculated by 
dividing the peak firing rate across (Locational/directional) bins by the mean firing rate. Analysis was 
conducted using the full BVC sample (n=46) in the first large walled circle or large walled square of the 
day (LWC or LWS).  

  MEANS ± S.E.  

 Spatial  information 
Bits/spike 

Spatial  information 
Bits/sec 

Spatial Selectivity 

    
LOCATIONAL 0.21 ± 0.04 

 
0.40 ± 0.04 

 
5.47 ± 0.96 

DIRECTIONAL 0.12 ± 0.03 
 

0.16 ± 0.03 
 

1.76 ± 0.11 

p value P=0.012 
 

p<<0.001 
 

P<< 0.001 
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4.3 Head direction cells were sometimes recorded simultaneously with 

grid cells and BVCs  

Grid cells and BVCs in the subiculum and in nearby locations were sometimes simultaneously recorded with 

head-direction cells (HD cells). In total 30 HD cells were recorded from 5 rats. For the basic characterisation 

of the HD cells see Figure 4.3.2. All HD cells were recorded from the same hemispheres as recorded BVCs 

and grid cells. 24/30 were recorded from the same tetrodes that recorded BVCs and grid cells. 9 HD cells 

were recorded simultaneously on the same tetrode with grid cells (Figure 4.3.1A) and, 4 HD cells were 

recorded simultaneously on the same tetrode with BVCs (Figure 4.3.1B). 
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Figure 4.3.1. Head direction cells were sometime recorded simultaneously on the same tetrodes as grid cells and 
BVCs.  

The figure presents the polar plots of the HD cells and peak rate maps of the simultaneously recorded grid cells and 
BVCs. Each row shows a different recording session. A) 9 HD cells recorded simultaneously on the same tetrode as a 
grid cell. B) 4 HD cells recorded simultaneously on the same tetrode as BVCs. 
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Figure 4.3.2. Basic characterisation of all HD cells (page 1/4) 

Each row shows data for one HD cell. From left to right the figure presents; text column stating 
rat/day, tetrode/cell; locational rate map with peak rate (Hz); spatial autocorrelation map; 
directional polar plot with peak rate (Hz); spike waveform, bottom-right text stating peak amplitude 
(highest positive-to-negative or negative-to-positive amplitude, µV) and negative peak-to-trough 
interval (µS); temporal autocorrelations (0-20ms and 0-500ms). Rightmost text column gives the 
directional information in bits per spike (Dir; calculated from unsmoothed polar plots, bin size 5.6°) 
and the theta modulation score (TM).  
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Figure 4.3.2. Basic characterisation of all HD cells (page 2/4) 
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Figure 4.3.2.. Basic characterisation of all HD cells (page 3/4) 
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Figure 4.3.2. Basic characterisation of all HD cells (page 4/4) 
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4.4 Comparison between grid cells, BVCs and HD cells 

Grid cells and BVCs in the subiculum and in nearby locations were sometimes also simultaneously 

recorded with head-direction cells (HD cells). In the next section this thesis compares these three cell 

types. Table 4.4.1 presents the basic properties of the grid cells (ALLGRIDS and SUBGRIDS), the BVCs and 

the HD samples. As would be predicted the gridness scores, directional information and theta 

modulation of the different cell types differed.   

Table 4.4.1. Comparison of characteristics between grid cells, BVCs and HD cells. 

Data was taken from the first large environment trial of the day (LWC or LWS) to control for trial order and 
environment effects. Directional information was calculated from unsmoothed polar plots (bin size 5.6°). 

 MEAN ± SEM 

 Gridness 
score 

Directional 
Information 
(Bits/spike) 

Theta 
modulation 

score 

Waveform 
duration 

(interval in µs) 

Global Mean 
rate (Hz) 

      
ALLGRIDS 

N=51 
0.72 ± 0.04 0.19 ± 0.03 28.70 ± 2.85 225.95 ± 19.89 2.30 ± 0.34 

SUBGRIDS 
N=30 

0.65 ± 0.04 0.19 ± 0.04 27.54 ± 3.71 264.85 ± 28.64 2.15 ± 0.43 

BVCs 
N=46 

-0.30 ± 0.03 0.21 ± 0.04 11.96 ± 1.84 294.37 ± 24.17  3.17 ± 0.34 

HDs 
N=30 

-0.18 ± 0.05 1.16 ± 0.12 4.96 ± 1.24 223.95 ± 35.28  1.35 ± 0.21 
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4.4.1 No BVCs met the gridness threshold  

As mentioned above the mean gridness for putative grid cells (n=75) was 0.47 ± 0.05.  Once the gridness 

threshold for accepting putative cells as grid cells was set at ≥ 0.25 the mean gridness increased to 0.72 

± 0.04 for the ALLGRIDS sample and to 0.65 ± 0.04 for the SUBGRIDS sample. In contrast, out of the BVC 

sample only 2/46 BVCs had positive gridness scores with the highest gridness value being 0.10. There 

was therefore no overlap in gridness scores between the classified grid cells and BVC samples .  

To compare the gridness scores between the BVCs and the grid cells an independent t-test was run. In 

order to control for any environment differences gridness scores were compared between the first large 

walled circle (LWC), large walled square (LWS) or small walled square (SWS) trials of the recording days 

(LWS and SWS used only when there is no LWC trial). As expected grid cells had much higher gridness 

scores (ALLGRIDS; 0.72 ± 0.04; SUBGRIDS, 0.65 ± 0.04) compared to the BVC dataset (-0.30 ± 0.03; t89.38 = 

21.01, p<<0.0001; t74= 19.75, p<<0.0001 respectively).  

 

Figure 4.4.1. The BVC sample has significantly lower gridness scores then grid cells.  

This figure presents the gridness scores of all recorded grid cells (red) and BVCs (blue). In order to be 
classified as a grid cell, the cell had to achieve a gridness score of ≥0.25; threshold indicated by the dotted 
line. No BVC gridness scores reached this threshold. All BVCs except 2 had grid scores < 0.  
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4.4.2 In general HD cells also did not meet the gridness thershold   

Of the 30 head direction cells recorded 4 had gridness scores >0 and 2 of which had gridness scores 

which reached the grid cell classification threshold. As with the BVCs, the grid cells had much higher grid 

scores (ALLGRIDS; 0.72 ± 0.04; SUBGRIDS, 0.65 ± 0.04) in comparison to the HD dataset (-0.18 ± 0.05; 

t79=14.06, p<<0.001; t58=13.37, p<<0.0001 respectively).   

 

4.4.3 The spike waveforms of grid cells are shorter in duration then those 

of BVCs 

The grid cells (ALLGRIDS) had significantly shorter peak-to-trough intervals than the BVCs (t89.60=2.17, 

p=0.03). However this difference in interval length was not repeated between the subiculum-only grid 

cells and the BVCs (t74=0.78, p=0.44).  There was no difference in peak-to-trough amplitude between the 

grid cell samples and the BVCs (ALLGRIDS, t95=1.46, p=0.14; SUBGRIDS t74=0.88, p=0.93).  

The HD cells had spike waveforms with significantly lower peak-to-trough amplitudes than BVCs 

(t74=1.99, p=0.05). The means in Table 4.4.2  suggest that they may also have had shorter peak-to-trough 

intervals, however  this is likely due to low cell numbers is not statistically significant (t74=1.71, p=0.09). 

There were no significant differences between the grid cell samples and the HD cells in either peak-to-

trough amplitude (ALLGRIDS, t79=0.56, p=0.58; SUBGRIDS, t58=1.48, p=0.37) or in peak-to-trough interval 

(ALLGRIDS, t79=0.53, p=0.96; SUBGRIDS, t58=0.90, p=0.37). 



Classification, basic properties and comparison of subicular spatial cells        140 
 

   

 

 

 

 

 

 

  

Table 4.4.2. BVCs have longer waveform durations then grid cells and higher amplitudes then HD cells. 

Table presents the means ± SEM of the waveform amplitudes and durations of each cell type. 
Independent t-tests were used to compare waveform statistics. Data was taken from the first large 
environment trial of the day (LWC or LWS) to control for trial order and environment effects.  

 MEAN ± SEM 

 Waveform 
amplitude 

( µv) 

Waveform duration 
(interval in µs) 

   
ALLGRIDS 

N=51 
138.91 ± 7.79 225.95 ± 19.89* 

SUBGRIDS 
N=30 

153.41 ± 11.57 264.85 ± 28.64 

BVCs 
N=46 

154.55 ± 7.23 294.37 ± 24.17  

HDs 
N=30 

132.23 ± 8.36* 223.95 ± 35.28  

   

Significantly different compared to the BVC sample *p<0.05 
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4.4.3.1 Subicular BVCs and grid cells carry less directional information then HD cells  

The directional modulation was calculated using Skaggs directional information (see methods). This 

Information was taken ideally from the first large walled circular (LWC) environment of the day. If the 

cell was not recorded in a LWC environment then the first large walled square (LWS) or small walled 

square (SWS) environments were used (LWC, n=30; LWS, n=17; SWS, n=4). See Table 4.4.3 below for 

means and SEM.  

Directional information (in bits per second and in bits per spike) and directional selectivity were 

compared between the grid cells, BVCs and the HD cells. Both the grid cells and BVCs were much less 

directionally modulated than HD cells (Table 4.4.3). 

 

Table 4.4.3. HD cells carry more directional information than Grid cells and BVCs. 

Independent t-tests were used to compare directional information and selectivity between HD cells and 
a) ALLGRIDS, b) SUBGRIDS and c) BVCs. Directional information was calculated from unsmoothed polar 
plots (bin size 5.6°). 

                                MEAN ± SEM  

 HDs 
(N= 30) 

ALLGRIDS 
(N=51) 

SUBGRIDS 
 (N=30) 

BVCs 
(N=46) 

bits/sec 
Directional 
information  

 
0.63 ± 0.12 

 
0.34 ± 0.07*** 

 
0.21 ± 0.04** 

 
0.14 ± 0.03*** 

 
bits/spike 
Directional 
information  

 

1.15 ± 0.18 0.19 ± 0.03** 0.19 ± 0.04*** 0.21 ± 0.04*** 

Directional 
selectivity 

6.51± 0.52 2.20 ± 0.20*** 2.47 ± 0.30*** 1.88 ± 0.12*** 

Compared to HD cells    *p<0.05    ** p<0.01      ***p<0.001    ****p<0.0001 
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4.4.3.2 Grid cells do not carry more directional information and selectivity then 

BVCs 

Any difference in directional signalling between BVCs and grid cells are not striking (Table 4.4.4 below). 

Grid cells (ALLGRIDS) carry more directional information per second than BVCs (t65.99= 2.69, p=0.009). 

However this is not clearly repeated when looking directional information in bits per spike (t95= 0.40, 

p=0.69) nor when looking at the directional selectivity measure (t78.56= 1.34, p=0.18).  Looking at the 

subiculum only grid cell sample this difference in directional information is not maintained (bits/spike, 

t74= 0.39, p=0.70; bits/sec, t74= 1.53, p=0.13; selectivity, t38.04= 2.14, p=0.06).  

 

 

 

 

 

 

 

 

 

 

 

 

Table 4.4.4. Grid cells carry more directional information than BVCs. 

Independent t-tests were used to compare directional information and directional selectivity 
between BVCs and a) ALLGRIDS and b) SUBGRIDS. Directional information was calculated 
from unsmoothed polar plots (bin size 5.6°). 

                                MEAN ± SEM 

 BVCs 
(n=46) 

ALLGRIDS 
(n=51) 

SUBGRIDS 
(n=30) 

 
bits/sec 
Directional 
information 

0.14 ± 0.03 0.34 ± 0.07** 0.21 ± 0.04 

 
bits/spike 
Directional 
information 
 

0.21 ± 0.04 0.19 ± 0.03 0.19 ± 0.04 

Directional 
selectivity 1.88 ± 0.12 

 
2.2 ± 0.20 
 

2.48 ± 0.30 

Compared to BVCs        *p<0.05    ** p<0.01 
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4.4.4 Theta modulation 

As previously mentioned Boccara et al., (2010) make the general observation that grid cells are more 

theta modulated than border and head direction cells (see also Cacucci et al., 2004).  The present data 

supports this observation (Table 4.4.5). Grid cells were significantly more theta modulated than BVCs 

and HD cells. This was the case whether I looked at the ALLGRIDS (ALLGRIDS vs. BVC’s, t83.90= 4.8, 

p<0.0001; ALLGRIDS vs. HD, t66.56= 7.63, p<0.0001) or the SUBGRIDS samples (SUBGRIDS vs. BVC, t43.22= 

3.76, p=0.001; SUBGRIDS vs. HD, t35.40= 5.77, p<0.0001). 

 Also conforming to previous observations HD cells were the least theta modulated cell type (Boccara et 

al., 2010). Here it is shown that HD cells were significantly less theta modulation than the grid cells 

(above) and the BVCs (HD vs. BVC, t72.16= 3.16, p=0.002). This may provide support Boccara et al’s (2010) 

suggestion that the representation of head direction may be uncoupled from the theta rhythm.  

  

Table 4.4.5. Grid cells are significantly more theta modulated then either HD or BVC cells. 

Grid cells are significantly more theta modulated then either HD or BVC cells. This is true 
when comparing both the SUBGRIDS and the ALLGRIDS samples. The BVCs are more 
theta modulated then the HD cells. Data was taken from the first large environment trial 
of the day (LWC or LWS) to control for trial order and environment effects.  

 
 

Theta modulation 
score 

  
ALLGRIDS 

N=51 
28.70 ± 2.71 

SUBGRIDS 
N=30 

27.54 ± 3.71 

BVCs 
N=46 

11.96 ± 1.84 

HDs 
n=30 

4.96 ± 1.24 
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Chapter 5     Responses to environmental manipulations 

A number of manipulations were tested with the spatial cells to investigate the influential power of 

boundaries on firing patterns. The following section will look at grid cell responses to environment 

manipulations, followed by BVC responses to environment manipulation. 

5.1 Grid cell responses to wall removal  

To investigate whether wall removal had an influential effect on grid properties, the baseline walled-

environments were compared with the circular open platform (COP). The COP was typically run in 

between two walled baseline environments, of either the large walled circle (LWC) or the large walled 

square (LWS). There was no significant difference in directionality, gridness, theta modulation or running 

speed between the walled and un-walled environments (see Table 5.1.1).  

There were however significant increases in grid scale (Figure 5.1.1; Table 5.1.2 and Table 5.1.3) and 

significant shifts in orientation between the walled and un-walled environments (Figure 5.1.4).  These 

results will be explored in the following section. 
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Table 5.1.1. Grid cell properties in walled vs un-walled conditions. 

This table shows the means and S.E. of 5 properties of grid cells firing that do not significantly differ between walled and un-walled environments. Directional 
information is given in bits per second, but there was also no difference in bits per spike (data not shown). Directional information was calculated from 
smoothed polar plots (bin size 5.6°). Locational peak rate was calculated from smoothed rate maps (bin size 3cm x 3cm). Where possible the walled trial 
statistics are taken from an average of the two baseline trials.   Wall removal did not alter directionality, gridness, theta modulation or running speed. In the 
ALLGRIDS sample, there was a minor increase in locational peak rate, and in the SUBGRIDS sample there was a minor reduction in global mean rate (not seen in 
the ALLGRIDS sample). 

 MEAN ± SEM 

  Directional 
information 

(bits/sec) 

Gridness 
scores 

Theta 
modulation 

(Hz) 

Locational 
Peak rate 

(Hz) 

Global Mean 
rate 
(Hz) 

Running 
speed 

  
a) Large walled square (LWS)  vs Circular open platform (COP) 

 
ALLGRIDS MEAN ± SEM LWS: 0.42 ± 0.14 0.56 ±0.07 25.52 ± 3.38 10.5 ± 1.23 1.86 ± 0.35 8.36 ± 0.12 

(n=26)  COP: 0.47 ± 0.18 0.55 ±0.08 27.00 ± 4.17 12.44 ± 1.62 1.89 ± 0.40 8.34 ± 0.18 
 p value  

 
 0.41 0.01 0.38 0.03* 0.72 0.91 

SUBGRIDS  LWS: 0.27 ± 0.08 0.49 ± 0.10 21.73 ± 5.76 10.94 ± 1.57 1.86 ± 0.29 8.04 ± 0.16 
(n=11)  COP: 0.24 ± 0.09 0.25 ± 0.12 22.07 ± 5.90 12.2 ± 2.24 1.64 ± 0.28    7.77 ±0.24 

 p value  
 

 0.24 0.11 0.91 0.29 0.05* 0.14 

  
b) Large walled circle (LWC)  vs Circular open platform (COP) 

 
ALLGRIDS  LWC: 0.20 ± 0.06 0.49 ± 0.11 26.22 ± 5.69 10.03 ± 1.40 1.73 ± 0.27 8.67 ± 0.15 

(n=14)  COP: 0.27 ± 0.09 0.66 ± 0.11 28.42 ± 5.88 11.15 ± 1.76 1.78 ± 0.33 8.33 ± 0.16 
 
 

p value  
 

 0.13 0.12 0.38 0.16 0.75 0.07 

SUBGRIDS  LWC: 0.15  ± 0.05  0.35 ± 0.10 20.28 ± 6.31 10.59 ± 2.01 1.63 ± 0.32 8.75 ± 0.21 

(n=9)  COP: 0.19 ± 0.05 0.44 ± 0.11 24.43 ± 6.72 11.92 ± 2.57 1.65 ± 0.33 8.25 ± 0.24 
 p value  

 
 0.23 0.37 0.26 0.28 0.91 0.06 

Comparison between large walled environments (LWS or LWC) vs. Circular open platform * p<0.05 
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5.1.1 Grid scale expanded upon wall removal  

Barry (2007; 2012) has recently shown that environment manipulation can influence grid scale. When an 

environment is extended, the grid scale of MEC grid cells was shown to expand parametrically in the 

extended dimension.  

In the present thesis environment wall-removal seems to have an influence on grid scale. Changes to grid 

scale with wall-removal was examined using two environment comparisons:  

a) The large-walled square environment vs the circular open platform (LWS vs COP; Figure 5.1.1A)  

b) The large-walled circle environment vs the circular open platform (LWC vs COP; Figure 5.1.1B). 

Any changes to grid scale were calculated in both absolute (cm) and percentage (%) difference between the 

environments. The increase in grid scale for each cell is given underneath the rate maps in Figure 5.1.1. 

The grid cells showed a clear expansion of grid scale with wall removal in both comparisons (see Table 5.1.2 

for statistics and Figure 5.1.1 for rate maps). When the walls were removed the grid scale increased for both 

the ALLGRIDS and SUBGRIDS samples.  Further, this result was maintained when a subset of the data was 

analysed, which included only grid cells recorded in both comparisons, lending supporting this finding (see 

Table 5.1.3).   
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Table 5.1.2. Spatial scale expands when the environment walls are removed.  

Grid scale increased in cm’s and percentage between walled baseline a) LWS and b) LWC and un-walled COP 
trials. The percentage increase in grid scale was calculated considering the walled environment had 100% grid 

scale.  

MANIPULATION Envt Spatial scale SCALE INCREASE 

   MEAN ± SEM Absolute (cm) % 
 

a) Large walled square (LWS)  vs Circular open platform (COP) 
 

ALLGRIDS (n=26) LWS: 48.45± 2.92   

  COP: 58.50 ±3.81 10.1cm (p<0.0001)**** 21.1% (p<0.0001)**** 
      

SUBGRIDS (n=11) LWS: 39.94 ± 3.00   
  COP: 53.22 ± 4.26 13.3cm (p<0.0001)**** 33.2% (p<0.0001)**** 

 
 

b) Large walled circle (LWC)  vs Circular open platform (COP) 
 

ALLGRIDS (n=14) LWC: 58.08±  6.64   
  COP: 63.07 ± 6.25 5.0 cm (p=0.08) 11.5% (p= 0.007)** 
      

SUBGRIDS (n=9) LWC: 56.23± 8.54   

  COP: 64.21± 8.93 8.0cm (p= 0.003)** 
 

16.1% (p= 0.02)* 

      

Comparison between large walled environments (LWS or LWC) vs. Circular open platform *p< 0.05  ** p< 0.01 ***  

p< 0.001 **** p< 0.0001 
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Table 5.1.3. Grid cell same day subset: Spatial scale expands when the environment walls are removed.  

Subset of grid cells for which the trials in the walled vs. un-walled comparisons were recorded on the same day. 
Spatial scale is significantly increased when the environment walls are removed. Grid scale increased in cm’s 
and percentage between walled baseline a) LWS and b) LWC and un-walled COP trials. The percentage increase 
in grid scale was calculated considering the walled environment had 100% grid scale. 

MANIPULATION Envt Spatial scale   SCALE INCREASE 

   MEAN ± SEM  Absolute (cm) % 
a) Large walled circle (LWC)  vs circular open platform (COP) 

 
ALLGRIDS (n=11) LWC: 50.87± 6.25    

  COP: 56.46 ± 5.37  5.60cm (p=0.035) 13.5% (p=0.004)** 
       

SUBGRIDS (n=7) LWC: 44.89 ± 5.20    
  COP: 53.14 ± 6.30  8.26cm (p=0.003) 18.43% (p=0.001)*** 
       
b) Large walled square(LWS)  vs circular open platform (COP) 

 
ALLGRIDS (n=11) LWS: 46.10 ± 4.81    

  COP: 56.46 ± 5.37  10.37cm (p=0.002) 24.4% (p=0.001)*** 
       

SUBGRIDS (n=7) LWS: 39.39 ± 4.14    
  COP: 53.14 ± 6.30  13.80cm (p=0.002) 34.3% (p=0.001)*** 

       

Comparison between large walled environments (LWS or LWC) vs. Circular open platform *p< 0.05  ** p< 0.01 

***  p< 0.001 **** p< 0.0001 
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Figure 5.1.1. Grid scale expands with wall removal (page 1/5) 

Figure legend at the end of figure 

 

A  Large walled square vs circular open platform  
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Figure 5.1.1. Grid scale expands with wall removal (page 2/5) 

 

A  cont.  
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Figure 5.1.1. Grid scale expands with wall removal (page 3/5) 

 

 

A  cont.  
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Figure 5.1.1. Grid scale expands with wall removal (page 4/5) 

B Large walled circle vs circular open platform  
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Figure 5.1.1. Grid scale expands with wall removal (page 5/5) 

A) Comparison of grid scale between the large walled square vs circular open platform (LWS vs COP) B) 
Comparison of grid scale between Large walled circle vs circular open platform (LWC vs COP). The figure shows 
the rate maps and the autocorrelations for each cell tested using this manipulation. The cells are organised by 
Novelty comparison scores. The higher the novelty score the more novel the circular open platform was in 
comparison to the walled environment (A Large walled square; B Large walled circle. The grid scales for each cell 
in environment are given to the right of the autocorrelation maps. For each cell the average grid scale increase in 
cm and in % are given underneath each the maps.   

 

 

 

 

B  cont.  
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5.1.2 Grid scale expansion may be modulated by novelty  

Previous studies (Barry et al., 2008; 2012) suggest that grid scale expansion can be related to novelty. Upon 

first exposure to a novel environment grid scale has been shown to increase by 37.3% in MEC grid cells 

(Barry et al., 2012). With exposure the grid scale expansion reduces back towards baseline as the novel 

environment becomes more familiar. 

In the present study the un-walled circular open platform (COP) was relatively novel in comparison to the 

walled environments (LWS and LWC). The rats were tested in the large walled trials significantly more than 

in the un-walled trials (COP). The walled environments were typically used as baseline environments for 

manipulations as well as for screening. In order to index how novel the un-walled environment (COP) was in 

comparison to the generally more familiar walled environments (LWS and LWC) a novelty comparison score 

(NCS) was calculated as follows: 

  

In principle, the score can vary between -1 and +1. The score approaches +1 when the un-walled 

environment (COP) is highly novel relative to the baseline environment. Figure 5.1.1 presents each cell 

tested in this manipulation. Underneath the rate maps the increase in grid scale and the novelty comparison 

scores are given. Grid cells are organised in order of novelty comparison scores. 

Grid scale expansion was positively correlated with the novelty of the circular open platform (COP) for the 

ALLGRIDS sample in comparison to the large walled square (LWS vs COP). Figure 5.1.2 shows that the more 

novel the circular open platform (compared to the large-walled square) the larger the grid scale expansion. 

This positive relationship was evident in both absolute centimetre increase in grid scale (r = +0.40, Figure 

5.1.2A) as well as percentage increase in grid scale (r = +0.47, Figure 5.1.2B). Meaningful analysis of the 

Novelty comparison score (NCS) =  

Number of exposures to Envt X minus number of exposures to COP 

Sum of exposures to Envts X and COP 

Where X is the LWC or the LWS. 
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large walled circle vs. circular open platform comparison (LWC vs COP) was not possible because the sample 

sizes were too small. 

While there was a relationship between running speed and expansion, there was no hint of a significant 

difference in the median running speed between the walled and un-walled trials (t25=0.12, p=0.91). Partial 

correlation analysis showed that the relationship between novelty and gridscale remained when running 

speed was controlled for (%, r=0.45,p=0.02; cm, r=0.36,p=0.07).  This suggests that running speed did not 

explain the positive relationship between expansion and novelty. 

 

Table 5.1.4 There was a significant difference in the number of exposures to walled and un-walled 
environments 

  MEAN ± SEM 

  
Average number of 

Walled envt 
exposures 

Average number of 
COP 

exposures 

Average difference 
in exposures 

 
a) Large walled square (LWS)  vs Circular open platform (COP) 

 
ALLGRIDS (N=26) 20.0 ± 2.2 6.8 ± 0.5 13.0 ± 2.0**** 

SUBGRIDS (N=11) 24.3 ±  3.5 6.6 ± 0.8 17.7 ± 3.1 **** 

b) Large walled circle (LWC)  vs Circular open platform (COP) 

ALLGRIDS (N=14) 13.0 ± 2.2 5.6 ± 0.8 8.9 ± 1.9 ** 

SUBGRIDS (N=9) 17.8 ± 1.9 6.2 ± 0.9 11.6 ± 1.6 **** 

Comparison between the numbers of exposures in large walled environments (LWS or LWC) vs. 
Circular open platform *p< 0.05 ** p< 0.01 *** p< 0.001 **** p< 0.0001  

 

 



Responses to environmental manipulations        157 
 

   

 

 

 

Figure 5.1.2. There is a positive relationship between grid scale and novelty.  

Scatterplots showing for the ALLGRIDS sample the relationship between the a) absolute and b) percentage increase in grid scale with the novelty 
comparison score (NCS) between the large walled square (LWS) and the un-walled circular open platform (COP). 
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5.1.2.1 The relationship between the familiar grid scale and the magnitude of 

novelty-induced grid expansion.  

In 2012 Barry et al. noted that the relationship between grid scale in the familiar environment and the 

magnitude of novelty-induced grid expansion was unclear. Barry et al. observed that in general the 

expansion in the novel environment was not random. The smaller scale grid cells tende d to still be small, 

and in general the larger scaled grid cells expanded by a similar absolute amount to the smaller grid cells. 

Barry et al., (2012) considered that their data superficially suggested that grid cells of different scales 

tended not to expand by different amounts. Were this the case it may have provided tentative evidence for 

a fixed expansion amount. 

The present data does not support the idea of a fixed expansion amount.  Figure 5.1.3 suggests a trend 

towards a positive linear relationship between grid scale in the walled environment and the absolute (cm) 

increase in the un-walled environment (r=0.35, p=0.08). This trend implies that larger scaled grid cells 

expand by more centimetres than smaller scaled grid cells between the walled and un-walled environments.  

 

Figure 5.1.3. There is a trend towards a positive linear relationship between grid scale in the walled 
environment and the grid scale increase in the un-walled environment. 

Using the ALLGRIDS (n=26) sample the scatterplot shows the relationship between grid scale in the 
walled square environment in comparison to the absolute grid scale increase (cm) in the circular open 
platform.  
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5.1.3 Orientation of the grid pattern shifts between walled and un-walled 

environments 

Previous studies have shown environment changes can cause orientation to shift (hafting et al., 2005; Fyhn 

et al., 2007). To investigate this I tested whether wall removal had any effect upon grid orientation. Walled 

environments were used as baseline trials as compared to the un-walled environment as the test trial. As 

with the rescaling experiment above orientation shift with wall removal was examined using two 

environment comparisons:  

a) The large-walled square environment vs the circular open platform (LWS vs COP)  

b) The large-walled circle environment vs the circular open platform (LWC vs COP). 

Grid orientation was stable across trials in the same walled environment (see Figure 5.1.4 for means ± SEM). 

In the LWS vs COP comparison there was no difference in grid orientation between baseline trials in either 

the ALLGRIDS (n=22) and SUBGRIDS (n=13) samples (t21=1.17,p=0.254; t12=0.61,p=0.55 respectively). There 

was also no difference in orientation between baseline trials in the LWC vs COP comparison 

(t4=1.22,p=0.29), although only five subicular grid cells were tested in two baseline trials.  

Orientation however was not stable between the walled and un-walled environments. There was a 

significant orientation shift between walled and un-walled environments, compared to the walled 

environments (Figure 5.1.4). This orientation shift can be seen in the comparisons of the difference in the 

shift between baseline trials (average of baseline1 and baseline2) and the shift between average baseline and 

test trials. Figure 5.1.4A demonstrates the significant orientation shift between the walled environments 

and the un-walled environment in both the LWS vs COP comparison (ALLGRIDS, t21=3.57,p=0.002; 

SUBGRIDS, n=13: t12=4.33,p=0.001). and the LWC vs COP comparison (t4=4.043,p=0.016).  Across both 

environment comparisons the orientation shifted by >10° between the walled and un-walled environments 

compared to the walled environments. This suggests that the walls/boundaries of the environment can 

provide a controlling influence upon grid cell orientation.  
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Figure 5.1.4. Grid orientation significantly shifted between walled and un-walled environments. 

 The shift between baseline trials (pink fill) was significantly smaller than the shift between baseline (average 
of baseline1 and baseline2) and test trial (un-walled circular open platform; COP; red fill). Histograms show the 
difference in orientation between A) the large walled square (LWS) vs. the COP and B) the large walled circle 
(LWC) vs. the COP. B) shows the SUBGRIDS sample only as only subicular grid cells were run with two LWC 
baseline trials. ** P ≤ 0.001 
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5.1.3.1 Grid cell firing patterns are maintained in complete darkness  

Eight grid cells were recorded in complete darkness (see Figure 5.1.5 for rate maps). The rats were 

given 24 minutes in the large walled square environment as per normal protocol in the large walled 

square, then all light was extinguished for a further 24 minutes. For most cells this was followed 

after a 20 minute inter trial interval with another trial in the light condition as a return to baseline. 

Grid properties remained stable between the lit baseline trials (data not shown). 

Table 5.1.5 shows that darkness did not disrupt grid cell firing properties. There was no alteration in 

directional information (bits per spike) carried by the grid cells, nor were there any significant 

changes in gridness, grid scale, peak firing rate or global mean rate or orientation shift between the 

light and dark trials (Figure 5.1.5).  

  

 

Figure 5.1.5.Grid cell firing patterns do not change between light and dark trials. 

Figure shows the rate maps for all grid cells recorded in the dark manipulation. A) subicular grid cells B) non-
subicular grid cells.  
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Table 5.1.5. Removing visual cues did not interrupt grid cell firing properties.  

This table gives the means and S.E.M. of 6 properties of grid cell firing that do not significantly differ between 
light and dark trials. Where possible the light trial statistics are taken from an average of the two baseline trials 
(8/9 grid cells).  Directional information was calculated from unsmoothed polar plots (bin size 5.6°). The 
orientation calculation only includes the cells with 2 baseline trials (ALLGRIDS, 8/9 grid cells; SUBGRIDS 6/7 grid 
cells).  The table also presents the t-test values and p-values for comparisons of properties between light and 
dark trials.  

 

 MEAN ± SEM  

  
 
 

Directional 
Information 
(bits/spike) 

Gridness 
score 

Grid 
Scale (cm) 

Locational 
Peak rate 

(Hz) 

Global 
Mean rate  

(Hz) 

Orientation 
shift (°) 

 

a)  ALLGRIDS (n=9) 

     

Light trials 0.34 ± 0.08 0.29 ± 0.11 49.21 ± 4.96 8.72 ± 1.73 1.50 ± 0.37 7.2 ± 5.02 

Dark trials 0.34 ± 0.37 0.14 ± 0.17 51.21 ± 4.94 7.82 ± 1.93 1.38 ± 0.38 13.54 ± 5.16 

p value 0.30 0.25 0.10 0.16 0.10 0.38 

b) SUBGRIDS (n=7)      

Light trials 0.38 ± 0.09 0.33 ± 0.11 46.11 ± 4.97 9.88 ± 2.44 1.73 ± 0.51 6.00 ± 10.47 

Dark trials 0.33±0.08 0.20 ± 0.21 46.67 ± 4.41 8.72 ± 2.39 1.69 ± 0.46 7.67 ± 8.57 

p value 0.32 0.97 0.31 0.08 0.30 0.80 
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5.1.4 Barriers can cause field inhibition in grid cells. 

Similar to the BVCs the grid cells were tested with a free-standing barrier. The insertion of a barrier 

into the testing environment prompted a variety of grid cell responses. Out of the grid cell sample 

35 grid cells were tested with an inserted barrier, ~5 seemed to show no pattern disruption whist 

the rest showed a measure of disruption with barrier insertion. The most common responses to 

barrier insertion were a) a shift/deformation of the grid pattern (figure 5.1.6) and B) field inhibition 

(figure 5.1.7). 

For most grid cells the insertion of a barrier caused the cell pattern to shift/deform. Figure 5.1.6 

shows four representative cells whose grid patterns were disrupted in that the field locations have 

been displaced. For example, cell 3’s grid pattern in the barrier insertion trial is unrecognisable as 

the same pattern seen in the baseline trials. The grid fields are still clear, but they do not occupy the 

same locations in the environment as in the baseline trials. Similarly cell 1 also shows a pattern shift, 

as the grid fields no longer seem to occupy the same locations. For cell 1 barrier insertion also seems 

to have caused the fields to become more diffuse.   

The other common response to barrier insertion was the inhibition of individual grid fields. Figure 

5.1.7A shows four representative cells where the barrier insertion seemed to cause strong firing rate 

reduction in certain grid fields. This suggests that the inserted barrier has an inhibitory influence 

upon the grid pattern. Fields which are inhibited by the barrier insertion are indicated with red 

arrows. Preliminary quantification of the effect of inserting a barrier is shown in Figure 5.1.8. To 

quantify the inhibition peak rates were compared between ‘inhibited’ fields (3rd column) and 

reference fields (4th column). For both the grid cells shown in Figure 5.1.8, the peak rates in 

‘inhibited’ fields were around 20% of their average peak rate in baseline trials. In contrast, the peak 

rates in the reference fields in the barrier trials were at 98% and 90% of the values in baseline trials.  

What explains the inhibition? A trivial explanation for the inhibition could be that the barrier 

prevents movement in precisely that direction which is the preferred direction of a directional grid 

cells. Could field inhibition be the by-product of directional modulation? Does the insertion of the 

barrier prevent the rat entering the field from its preferred direction? I inspected all the cells 

exhibiting this phenomenon and saw no evidence of this. Figure 5.1.7B shows polar plots for each 
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grid cell: it can be seen that the grid cells are not directional. Therefore it is unlikely that the field 

inhibition could be attributed to this.  Figure 5.1.9 examines this issue in more detail. Rate maps are 

shown for head directions in the four cardinal directions (N, E, S, W). The cell fires broadly similarly 

in the four different directions. The inhibited region of firing in the barrier trial (east of the barrier) 

shows reduced firing relative to other nodes irrespective of whether the rat explores that space 

facing northwards, eastwards, southwards, or westwards.  

Overall our observations suggest that the insertion of a barrier causes obvious disruption to the grid 

pattern. One study which shows a disruption to grid patterns with barrier insertion is that by 

Derdikman et al., (2009). Derdikman et al., (2009) investigated what happened to grid patterns 

when an open arena was discretized by multiple barriers. However, this environment forced the rats 

to travel around the environmen using stereoptypical unidirectional behaviour through narrow 

corridors. Derdikman et al., (2009) found that by breaking the environment up into compartments 

the rats formed discrete sub maps for each compartment. Whether the changes to grid pattern 

shown here can be related to those seen in Derdikman et al., (2009), is a question for future 

investigation. The only report of grid cells recorded with the insertion of a single barrier in an open 

foraging type paradigm permitting free movement came from Solstad et al., (2009), who showed 2 

cells recorded from the same animal and reported no disruption of the grid pattern. It may be that 

responses to inserted boundaries provide a distinction between MEC and subicular grid cells.  
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Figure 5.1.6.  The insertion of the barrier causes some grid cell patterns to shift/deform 

The figure presents 4 grid cells showing a shift/displacement of the gird pattern with insertion of the 
barrier. The grid pattern remained stable between baseline trials, however with barrier insertion the grid 
pattern looks similar but none of the fields are located in the same place.  
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Figure 5.1.7. Some grid cells show field inhibition with the insertion of a free-standing barrier. 

Figure shows 4 grid cells which demonstrate field inhibition with barrier insertion. Fields which are inhibited are 
indicated with red arrows in the first baseline trial rate map. Polar plots for each cell are also given underneath 
the rate maps. These are taken from the first baseline trial of the day.   

 

    A 

Cell  

B 
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Figure 5.1.8. Quantifying field inhibition with barrier insertion.  

This figure shows 2 grid cells which demonstrate field inhibition with the barrier insertion. As per all 
rate map figures to the left is a schematic representation of the testing environment, and the peak 
rates are given top left of each map. The second column gives the rate maps. The inhibited field is 
indicated with a white circle and the reference field is indicated with a yellow circle. The isolated 
inhibited field is given in the third column and the isolated reference field is given in the forth column. 
The most right column gives the spike maps. Each coloured dot is a cell spike. The blue spikes are 
from the inhibited field and the green spikes are from the reference field. The reduction in firing rate 
with barrier insertion can be seen in the reduction of peak rate in the second column, and the 
reduction in spikes in the most right column.  

 

Cell 1 

Cell 2 



Responses to environmental manipulations        168 
 

   

 

 

  

 

Figure 5.1.9 Representative example showing grid field inhibition relative to other grid fields irrespective of the 
head direction (and likely movement direction) of the rat. 

Figure shows that the inhibited region of firing in the barrier trial (east of the barrier) shows reduced firing 
relative to other nodes irrespective of which direction the rat‘s head is facing. A) shows first baseline trial, B) 
barrier trial, and C) second baseline trial.  In each of parts A, B, C,  leftmost column depicts trial type; rate map 
to left of vertical line shows rate map for all sampled head directions; and cluster of 4 rate maps right of vertical 
line are sub-sampled to show data only when the rat faces 90 degrees either side of the cardinal direction in 
question. Northward direction is at the top, eastward to the right, southward at the bottom, and westward to 
the left. Peak firing rate is shown at the top right of each rate map.   
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5.1.5 Summary of grid cell responses to environment manipulation.  

Environmental manipulation can influence grid cell firing patterns. Of particular note is that 

environment wall removal affects both grid scale and grid orientation. This could be seen between 

both the large walled square (LWS) and the un-walled circular open platform (COP) and between 

large walled circle (LWC) and the un-walled circular open platform (COP). When the walls were 

removed the grid scale expanded. In the LWS vs COP manipulation this expansion was correlated 

with the novelty of the COP. This supports the findings of Barry 2007; 2012 which also found that 

grid scale expansion correlated with novelty. The grid orientation shifted between walled and un-

walled trials. This shift may support previous findings that grid orientation stability is linked to 

proximal environmental cues (Hafting et al., 2005). The orientation shift may be a response to wall 

removal abolishing these cues and subsequently un-anchoring the grid orientation. 

The insertion of an extra boundary into the environment also influenced grid cells patterns. For the 

majority of grid cells in the insertion of a free-standing barrier disrupted the grid pattern. The grid 

cells showed a variety of responses to barrier insertion with the most notable being field inhibition 

and a shift/deformation of the grid pattern. For many of the grid cells the insertion of a barrier 

caused field inhibition somewhere in the environment. This inhibition was not always seen for the 

fields that intersected by the barrier or those close by it. 

Overall environment manipulation disrupted the grid cell firing patterns; however the grid pattern 

remained stable in darkness.  When visual cues were removed there was no difference in gridness, 

directionality etc.  This suggests the grid pattern is not dependent upon allocentric cues, and that 

firing can at least to some extent be dependent upon idiothetic cues, supporting Hafting et al., 

(2005).  
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5.2 BVCs respond to environment boundaries 

The BVCs were similarly tested like the grid cells through multiple manipulations in order to characterise 

their responses to environmental change. The BVCs were tested with a variety of differently shaped and 

sized environments, wall-less platforms, inserted barriers, inserted objects and in complete darkness. The 

response of the BVCs to these manipulations can provide support for and new insights into the 

determinants of BVC firing outlined by the BVC model and the findings of Lever et al., (2009). 

5.2.1 BVCs respond to environment walls 

A BVC would fire whenever an environmental boundary intersected a receptive field located at a specific 

distance from the rat in a specific allocentric direction.  BVC firing fields were stable with repeated 

exposures to the same environment (see Figure 4.2.1 for examples). The BVC firing fields followed the 

environment walls with the long axis following the boundary irrespective of the environment shape. The 

fields follow the curvature of the circular environments and the straight edges in the square (Figure 5.2.1). 

For those cells which have directional preferences which intersect two walls both of these walls/ a portion 

of each are responded to e.g. cell 5 Figure 5.2.1. 

 

Figure 5.2.1. BVCs respond to perimeter walls of differently shaped environments. 

Figure shows 10 BVCs which were recorded in the large walled circle and large walled square environments. The 
field locations were stable across the differently shaped environments. The fields follow the curvature of the circular 
environments and the straight edges in the square. 
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Tuning to distance and direction varied continuously within the BVC sample, albeit with a bias toward 

shorter distances (see Figure 5.2.2 below for a subset).  Lever et al considered that BVC fields with shorter 

distances are produced when the BVCs receptive fields are peaked close to the animal and when the animal 

is close to the preferred wall (e.g. cells 1-6, Figure 5.2.2). Whereas broader BVC fields are the product of 

larger receptive fields which peak further from the rat, responding to the boundary further from the rats 

position (e.g. cells 7, 8 and 9, Figure 5.2.2).  

 

 

  

 

Figure 5.2.2. BVCs vary in distal and directional preference.  

This figure provides a subset of the BVC sample demonstrating that distal and directional preference varies. 
From left to right the BVCs are organised by field thickness. Lever et al. (2009) considers that thicker/broader 
fields are produced by receptive fields peaking further from the rat. Above the rate maps is an illustration to 
suggest each BVCs receptive field. BVCs with narrower fields would have smaller receptive fields that 
respond to the boundary only when the rat was close to it (e.g. cell 1). Whereas the thicker fielded BVCs 
would have larger receptive fields which are peaked further from the rat (e.g. cell 9).  
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5.2.1.1 BVC fields are largely insensitive to context change 

To test the stability of BVC firing fields a specific paradigm was used which prompts remapping in place 

cells, see Figure 5.2.3A. This paradigm consists of 4 trials, with familiar environment trials either side of a 

novel environment trial. Briefly after two presentations of a highly familiar circular environment the floor, 

the environment walls and the external cues were changed. This created a relatively unfamiliar square 

environment in a novel context. This trial is followed by a return to baseline in the circular environment (see 

methods for more details). This paradigm initiates remapping in place cells causing the place field to shift or 

disappear altogether in the square environment. Figure 5.2.3 shows a comparison of place cell activity and 

BVC activity in the remapping paradigm. The place cells demonstrate clear remapping (Figure 5.2.3A) whilst 

the BVCs continued to respond for the portion of the new boundary (square perimeter walls) which 

intersected the cells preferred distal and directional preferences.  From visual inspection it can be seen that 

the BVC field locations remained stable across trials in the same environment, and in the changed 

environment test trial. The stability of BVCs across these trials supports the theory that BVCs are insensitive 

to context change and produce universal responses to boundaries (Lever et al 2009; Hartley et al. 2000; 

Barry et al., 2006). 
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Figure 5.2.3:  BVCs are not sensitive to context change. 

The figure presents 3 place cells and 19 BVCs tested using the context change paradigm. The rats were run in two exposures of the familiar environment (small 
walled circle) and were then run in a novel environment whereby the walls, floor and external cue cards were changed (test trial; small walled square). After 
the test trial the BVCs were then run in another familiar environment trial as a return to baseline. A) Shows three place cells from rat 302 demonstrating clear 
global remapping B) shows 19 BVCs with relatively stable firing across the trials. 
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5.2.2 BVC fields are maintained in darkness  

In order to examine whether visual input is required for BVC boundary responses, BVCs were recorded in 

complete darkness using the same protocol as used for the grid cells (see methods).  Lever et al., (2009) 

recorded 3 BVCs in darkness, all of which continued to show BVC-like responses to the perimeter boundary. 

Lever et al., (2009) noted however that the BVC firing fields were more diffuse in darkness then in normally 

lit conditions. 

Figure 5.2.6 shows 15 BVCs tested in darkness. Between the lit baseline trials the BVC firing properties were 

stable (data not shown). This stability was also maintained during the dark trial (Table 5.2.1). Between the lit 

baseline trials and the dark trial there was no difference in locational or directional information (bits per 

second), selectivity, locational peak rate, or global mean rate. This was the case whether I looked at the first 

and second lit baseline trials vs. the dark trial (not shown), or an average of the lit baseline trials vs. the dark 

trial (Table 5.2.1). Stable BVC firing properties with the removal of visual cues supports Lever et al’s 

observation that BVC-like responses are maintained in darkness. This also suggests that BVCs do not require 

visual cues for boundary signalling.  

Table 5.2.1. Removing visual cues does not interrupt BVC firing properties.  

This table gives the means and S.E.M. of 6 properties of BVC firing that do not significantly differ between 
light and dark trials. Where possible the light trial statistics are taken from an average of the two baseline 
trials (12/15 BVCs).  Directional information was calculated from unsmoothed polar plots (bin size 5.6°).  
Locational information was calculated from unsmoothed rate maps (bin size 3cm x 3cm). The table also 
presents the p-values for comparisons of properties between light and dark trials. 

 MEAN ± SEM  

  
BVCs (n=15) 

 
Locational 

Information 
Bits/sec 

Directional 
Information 

Bits/sec 

Locational 
selectivity 

Directional  
selectivity 

Locational 
Peak rate 

(Hz) 

Global Mean 
rate (Hz) 

      

Light trials 0.47 ± 0.07 0.30 ± 0.10 4.97 ± 0.73 1.83 ± 0.14 8.14 ± 0.97 2.03 ± 0.37 

Dark trials 0.49 ± 0.12 0.29 ± 0.10 4.72 ± 0.62 1.98 ± 0.21 7.8 ± 1.01 1.98 ± 0.33 

p value 0.81 0.88 0.66 0.33 0.50 0.80 
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Figure 5.2.4: BVC firing properties are not disrupted between light and dark trials. 

The figure shows the full sample of BVCs tested in darkness (from three rats). There was no difference in 
spatial information or rates between the light and the dark trials (see Table 5.2.1 for statistics). 
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5.2.3 BVCs respond to internal barriers and objects 

The predicted doubling of the BVC firing fields in response to the insertion of an appropriately oriented 

barrier is demonstrated in Figure 4.2.1. The doubling of BVC fields following the creation of additional, 

appropriately-oriented boundaries was a key prediction of the original model. This was demonstrated with 

only 3 cells in Lever et al., (2009). As detailed earlier in this thesis, this property was used as a defining 

feature for BVCs recorded here. 

To briefly recap, a BVC was classed as such if, with the addition of an internal barrier it produced a second 

field covering for 50% at least of the predicted side of the barrier at a firing rate of ≥ 40%.  Of the 57 

putative BVCs identified by visual inspection 42 were classified using this method (Figure 4.2.1). The 

inserted barrier shared qualities with the perimeter wall. It was of equal height, and when used with the 

large walled circle and square environments it was the same colour as the floor. The barrier was also made 

of the same materials the large walled square (LWS). Could the doubling of the firing field with the insertion 

of the barrier be in response to the barrier’s shared qualities with the familiar walls? 

Three BVCs (from 2 rats) were tested with an additional boundary created using a linear array of bottles 

(see Figure 5.2.5 and methods for more details). They produced a second locational field on the expected 

side of the linear array-boundary similar to that seen with the insertion of the appropriately oriented 

barrier. If the linear array of bottles was deconstructed the second firing fields persisted for a two bottle 

array in all 3 BVCs. Two of the cells (cell 2 and cell 3) also produced a second firing field when only a single 

bottle remained in the environment. When an even smaller object (cylindrical measuring tube, Figure 

5.2.5C) was introduced, the two cells which were still being recorded, responded to it as a boundary and 

produced a second firing field (Figure 5.2.5). This suggests that the length of the inserted boundary be it a 

wall, an array of bottles, a singular bottle or a thin object may not be the determining factor controlling the 

production of a second BVC locational field.  
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Figure 5.2.5: BVCs code for objects as well as for linear boundaries.  

3 cells were recorded with linear arrays and individual objects (bottles). A) Shows two cells from rat 305. These 
were simultaneously recorded. B) Shows one cell recorded from rat 306.  C) Between baseline trials, the cells were 
recorded with individual objects and arrays of objects. Left shows example objects; they were either bottles or a 
‘thin object’ which was a measuring cylinder.  Right shows 5 bottles made into a linear array creating a boundary 
to the south-west in the large walled square environment. This was the trial set up for the 5 bottle barrier trial 
used to test cell 3 (B). All 3 cells produced a clear second field for the 5 bottle barrier, and cells 2 and 3 produced 
second fields for the 1 bottle barrier. Cells 1 and 3 also produced second fields for the thin object. See methods for 
manipulation details.  
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One cell was recorded with the standard barrier and two objects during darkness (Figure 5.2.6). The method 

was the same as used above for the grid cells and the BVCs, but with the addition of a barrier/objects. 

Figure 5.2.6A reveals that when the lights were extinguished the BVC maintained its second firing field for 

the inserted barrier. In Figure 5.2.6B both the thin object and a single bottle were inserted into the 

environment during the same trial (objects shown in Figure 5.2.5C left). In the light trials the cell produced a 

second field for the bottle, but in the dark trial the firing rate of the second field was diminished leaving 

only a small portion of field with a weakened firing rate of 20-40%. This BVC did not produce a second firing 

field for the thin object, in either the light or dark trials on this day. 

  

 

Figure 5.2.6. BVCs can produce second firing fields in darkness. 

 This figure shows 1 cell recorded from rat 305 in the darkness paradigm with inserted barriers/objects.  
A) Shows the BVCs response to the standard barrier. The BVC produced a second firing field (along at 
least 50% of the barrier at ≥40% peak firing rate) for the standard barrier in the absence of visual cues. 
B) Shows the cells response to two objects: the thin measuring cylinder (top left) and a single bottle 
(bottom right).  The BVC ceases to produce a second firing field with ≥40% firing rate for the single bottle 
object when visual cues are removed. However, a second field is evident in both the light trials. The thin 
object did not instigate the production of a second field in any of the trials. 
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5.2.3.1 BVC firing may depend upon boundary height 

BVCs were also able to produce second fields for boundaries that varied in height and width as well as 

length. Two of the BVCs received further trials with 2 short barriers which were traversable (Figure 5.2.7). 

The first traversable barrier was 4.5cm high, 10cm wide and 20cm long (Figure 5.2.7A). The second was 

2.5cm high and wide and 50cm long (Figure 5.2.7B). Both cells produced a second field for the 4.5cm high 

barrier, but not for the for the shorter 2.5cm high barrier. This may suggest that that the ‘height’ and 

‘breadth’ of a boundary may be a fixed factor in determining what a BVC treats as a boundary (for more 

details see methods). 

5.2.4 BVCs respond to objects of varying heights and widths as boundaries: 

summary 

These few cases outlined above suggest that BVC firing is not restricted to only the environment perimeter 

and that there may be a quantitative way to establish what BVCs treat as a boundary. Here the height and 

width of the boundaries was varied and saw that even for a few cases the fields doubled (Figure 5.2.5; 

Figure 5.2.7). The ability of BVCs to respond to individual objects and to traversable ridges suggests that 

boundaries may be defined by sensory cues and limitations to movement that are not restricted to walls.    
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Figure 5.2.7: The height and width of a traversable barrier determines whether it is treated as a boundary. 

 This figure shows 2 cells from 2 rats. For cell 2 the environments were rotated so that the cells preferred 
direction would not intersect two walls. Environments and rate maps are shown in running order from top to 
bottom. A) An inserted barrier 4.5cm high and 10cm wide was inserted into the environment (see illustration, 
left; and photo, right). Both cells produced a second field for the barrier. B) When a shorter and thinner barrier 
was inserted (height and width 2.5cm; see illustration, left; and photo, right) neither cell produced a second 
field. However for cell 2 a shadow of the second field remained from exposure to the 4.5cm barrier.   
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5.2.5 BVCs maintain their firing fields with wall removal  

In a walled environment the boundary is obvious, but when the walls are removed the boundary becomes 

less clear. Arguably in a wall-less environment the boundary can be either the platform drop, the extent of 

explorable space over the drop, or both. In Lever et al., (2009) for the 17 BVCs recorded in wall-less 

environments there was a mixture of responses (see Figure 2.3.2 in the introduction). Some BVCs 

demonstrated responses to the platform edge (e.g. cell 5K). Some coded for the extent of explorable space 

(e.g. cell 1a) and for some BVCs the fields disintegrated with wall removal (e.g. 5g). 

As the BVC model predicts BVCs will produce fields for any boundary in their preferred direction and 

distance, irrespective of changes to the environment. For example between circular and square 

environments a BVC will produce a field which follows the curvature of the circular wall in the large walled 

circle (LWC), and the straight edge of the straight wall in the large walled square (LWS; see Figure 5.2.1).  

This thesis shows that in grid cells the grid scale expands in a relatively novel wall-less environment when 

compared to a familiar walled environment. It has been suggested that BVCs anchor grid cells to the 

geometric boundaries of the environment (Moser and Moser, 2008). If this is the case then would the 

expansion of grid cell grid scale be accompanied by a BVC field shift with wall removal? 

Figure 5.2.8 provides a comprehensive illustration of the BVCs recorded in the walled (LWC) and un-walled 

(COP) circular environments. 16 cells were recorded in this manipulation with one cell being recorded on 

two occasions five days apart (cell 1). The peak rate pixels are indicated in the figure with an ‘x’. For two of 

the cells alternative peaks had to be created because the peaks were not located in the BVC field (see 

methods). The peaks for these trials are circled on the rate maps. Where possible when there are 2 baseline 

walled trials the average location of the peak pixels was taken (5 cells). 12 BVCs (one was run through with 

both days) with clear fields in the COP were included in the analysis; see Figure 5.2.8A. Cell 1 was tested in 

this manipulation on two days both of which were included in the analysis. 

Figure 5.2.8B shows 4 cells which were excluded from the analysis. When the walls were removed these 

cells stopped demonstrating evidence of boundary signalling. For 3 of them the field disintegrated (cells 14-

16), and for the other BVC the field moved and became more ‘place-like’ (cell 13). For this cell boundary 

signalling returned in a subsequent return to baseline walled trial.  
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To see if the peak of the BVC fields moved with wall-removal the distance in pixels from the peak to the 

centre of the environment for both the walled (LWC) and the un-walled (COP) trials was calculated.  This 

was calculated using the cluster cutting software (TINT, Axona). The distance in pixels between the peaks 

and the environment centre were compared and the pixel distance was then converted into cm’s (see 

methods for more details and diagram).  

The BVC peaks did not move significantly further away from the environment centre with wall removal (3.5 

± 1.23cm; t12=1.22, p=0.25).  If the peaks were to have shifted outward to the extent of explorable space 

then it would be expected for the BVC fields to have shifted ~10-15cm further away from the environment 

centre. 

The observed evident grid expansion between the walled and un-walled environments presented in section 

5.1.1 above was around 11.5% (higher in SUBGRIDS sample). A simple view in which grid expansion was tied 

to the extension of the perimeter by boundary cells would predict an expansion of 3.5 cm divided by 75 cm, 

i.e. around 4.6%. Thus grid expansion appears to exceed BVC field centrifugal extension. In addition to the 

fact that grid expansion is partly determined by novelty, this appears to rule out any simple hypothesis 

linking grid expansion to perimeter extension.  
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Figure 5.2.8: BVCs respond for environment drops as well as walls. 

 16 BVCs were recorded in walled (large walled circle) and un-walled (circular open platform) environments. A) 
Shows 12 BVCs which maintained stable fields in both the walled circle and the un-walled circular open platform 
(COP). B) Shows 4 BVCs which stop demonstrating boundary signalling when the environment walls are 
removed. ‘X’ indicates the location of the peak rate pixel for each trial. Cells 1 and cell 16 have two ‘X’s’ in two 
of their trials the circled ‘X’ is the peak pixel located in the BVC firing field and used for analysis.   
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5.2.6 BVCs respond to traversable gaps as boundaries 

BVCs can also respond to boundaries produced by the creation of traversable drops (Figure 5.2.9). Lever et 

al., (2009) reported a single BVC which responded to both the perimeter drop of an open platform and a 

traversable gap of 13cm created between 2 open platforms. This gap was such that the rat voluntarily 

crossed the single traversable gap 3 times but had to be carried over 5 times. 

In the present study two trials were presented with a rectangular open platform that could be pulled apart 

to create two 10cm gaps separating 3 square platforms (Figure 5.2.9). The first trial consisted of the three 

square platforms ‘together’ creating a rectangular open platform. This was oriented so that one of its short 

edges was in the BVCs preferred direction. In the second trial the three platforms were pulled ‘apart’ to 

produce two 10cm gaps. This created three drops, two of which were traversable. The gap of 10cm was 

easily crossed by the rat. 

 Figure 5.2.9A shows 9 BVCs which produced a tripling of their fields in response to both the perimeter drop 

and the traversable drops. Two cells were classified as BVCs based on their behaviour in this manipulation. 

These 2 BVCs did not produce a second field with the addition of an appropriately-oriented internal barrier, 

however they did produce a tripling of their fields in response to appropriately-oriented ‘drops’ in this 

manipulation. Both cells treated the gaps as three north-west boundaries (cells 2 and 3 Figure 5.2.9A). 

Not all BVCs shared the same response to this manipulation. Figure 5.2.9D shows 3 BVCs which did not 

respond to the perimeter or gap boundaries. Of the 19 BVCs recorded in this manipulation only those 

shown in Figure 5.2.9A and the two cells with all-boundary fields in Figure 5.2.9B responded to the 

perimeter drop in the ‘together’ trial. Three BVCs which did not produce fields responding specifically to the 

perimeter drop did however produce double fields for the traversable drops in the ‘apart’ trial (Figure 

5.2.9C).   
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Figure 5.2.9: BVCs can treat traversable drops as boundaries. 

This manipulation includes two trials, the ‘together’ trial, which is a rectangular open platform made up of 
3 square platforms, followed by the ‘apart’ trial where these platforms are separated by two 10cm gaps (E 
for photos). The environment was orientated so that one of the short edges was in the BVCs preferred 
direction. A) 9 BVCs responded to both the perimeter drop in the ‘together’ trial, and the addition of two 
new drops in the ‘apart’ trial. B) 2 BVCs demonstrated all-boundary fields for both the perimeter and 
traversable drops. C) 3 BVCs which did not show boundary signalling in the ‘together’ trial, but produced 
firing fields for the traversable drops in the ‘apart’ trial. D)3 BVCs which did not code for the perimeter or 
traversable drops. E) provides photographs of the environments; ‘together’ (top) and ‘apart’ (bottom). 
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5.2.6.1 BVCs respond to traversable gaps as small as 3cm 

For over half of the BVCs tested in the together-apart manipulation a traversable gap of 10cm was 

responded to as a boundary similar to the perimeter edge. For 3 cells from 2 rats a series of trials were run 

in an attempt to quantify what size gap was required to be signalled as a boundary (Figure 5.2.10). All three 

BVCs previously produced triple fields in the ‘together-apart’ manipulation with a gap of 10cm (cells 7, 8 

and 9 Figure 5.2.9). Two different trial series were used between rats. In cell 1 the gap was reduced over 

trials and in cell 2 and 3 it was increased. Figure 5.2.10A shows three photos of the together trial, the 1cm 

gap trial and the 3cm gap trial. Cells 2 and 3 show clear field doubling for the 10cm gap and the 5cm gap but 

weaker second fields for the three cm and 1cm gaps. For these two trials cell 3’s second field included a 

portion of 40-60% peak firing rate along the traversable drop (green on the rate map). However the 

appearance of a second field for this BVC is hard to judge because the firing fields generally became more 

diffuse through the series of trials.  

Cell 1 showed a clear second field for the 3cm gap trial, and no second field for the 1cm gap trial, suggesting 

for this cell that 3cm was treated as a boundary, whereas 1cm was not.  The strength of the second fields 

for cells 2 and 3 diminished as the gap was reduced in size. As the gaps got smaller fields responding to the 

traversable gaps were hard to dissociate from background firing as the fields became more diffuse through 

the trial series (Figure 5.2.10).  

Overall, looking at the response of these 3 BVCs, it seems that as the size of the traversable gap is reduced, 

so does the BVC response to it. As seen when the width and height of the barrier is altered, the size of 

traversable gap which constitutes a boundary may be quantifiable. 

 

 

 

 



Responses to environmental manipulations        187 
 

   

 

 

 

Figure 5.2.10. The size of the traversable drop determines whether BVCs treat it as a boundary. 

A) Shows example photo’s of the traversable gap environments. The top photo shows the ‘together’ trial 
where two square platforms create a rectangular open platform. The middle and bottom photos show two 
of the ‘apart’ trials where the square platforms are separated by a 1cm and 3cm gap respectively. B) shows 
one cell from rat 306, which treated a 3cm gap as  a boundary but not a 1cm gap. C) shows 2 cells from rat 
305. Both cells show a clear second field with 10cm and 5cm gaps, and a weak field for both the 3cm and 
1cm gaps.  
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5.2.7 Summary of BVC responses to environment manipulations 

BVCs signal boundaries that are located in their distal and directional preferences. They follow the 

environment shape, and if their preferred direction intersects two walls, the BVC will fire for a portion of 

each.  BVCs maintain their directional and distal preferences across strikingly different environments, and 

remain stable in manipulations which induce global remapping in place cells. BVC field stability is also 

maintained in darkness, with no evidence of BVC properties changing between light and dark trials. BVCs 

signal perimeter boundaries and internal boundaries. When an appropriately-oriented free-standing barrier 

is inserted into the environment a BVC will produce a second firing field on the predicted side of the barrier. 

BVCs also signal a second boundary when a linear array of bottles is inserted into the environment. 

Signalling is maintained as the bottle barrier is reduced in size, with some BVCs being able to signal a 

singular bottle, and an even smaller object as boundaries.  

The BVCs also produced fields for environment edges of open platforms (environment drops). The BVC firing 

fields in general continued to signal the environment edge and did not expand to the extent of explorable 

space. BVCs also produced boundary signalling to traversable gaps between open platforms. When three 

open platforms were pulled apart by 10cm some of the BVCs signalled these gaps similarly to the perimeter 

platform edge. Some BVCs also respond to smaller gaps between open platforms. Looking at a small sample 

of BVCs, it was evident that gaps as small as 3cm can be signalled as boundaries.  

 The variable responses of BVCs to boundary manipulations suggest that the BVC population my treat 

different boundaries differently. In 2009 Lever et al., concluded that what a BVC may consider is a boundary 

may depend on many factors. Like shown in Lever et al., (2009), the BVCs presented here show a variety of 

responses to wall removal, as well as to different walled boundaries. The BVC response may reflect sensory 

properties of environment features such as the sight or feel of a wall or an extended edge. Boundary-

signalling may also be related to restrictions to movement. Lever et al. also noted a diversity of differing 

representations of the un-walled environment boundary and considered that the properties which 

determine a boundary may vary in importance across the BVC population. Certainly our results support this 

consideration.   
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5.3 New class of boundary-correlated cell: Boundary-off cells  

Some of the subicular cells recorded during the above experiments, showed large fields covering almost the 

entire environment floor (e.g. cell 1 Figure 5.3.1). For these cells the portion of the environment without 

firing was a thin area located at the boundary edge (Figure 5.3.1 and Figure 5.3.2). Lever et al., (2009) 

considered that BVCs with large fields may be cells with more distal distance tuning (see Figure 2.3.2 in the 

introduction). However, the cells in Figure 5.3.2 are better characterized as having an ‘inhibited’ zone of 

firing like that of the region of peak firing in a BVC (cell 1 Figure 5.3.1). I have called these boundary-off cells.  

Figure 5.3.1 shows the simultaneous recording of a boundary-off cell, a BVC and a HD cell. The BVC clearly 

shows a firing field which follows the boundary, and the boundary-off cell shows a crescent of inhibition 

along the boundary. When an appropriately-oriented barrier was inserted into the environment the BVC 

characteristically produced a second firing field on the predicted side of the barrier. The boundary-off cell 

also responded to the barrier insertion with the appearance of a second inhibited field (see Figure 5.3.1 and 

Figure 5.3.2). These cells seem to show the inverse response to boundaries, that are seen in BVCs. The 

appearance of a boundary does not initiate cell firing but rather inhibits it. The cell appears to fire 

everywhere except near the boundary.  

I report 9 examples of boundary-off cells recorded from 3 rats (see figure 5.3.3 for the basic properties of 

each boundary-off cell). To be considered a boundary-off cell, cells had to show a) an inhibition of firing for 

the preferred boundary and b) a second inhibitory field with the addition of an appropriated-oriented 

barrier. Boundary-off cells were recorded from the same tetrodes as BVCs, grid cells and HD cells. On some 

occasions they were simultaneously recorded, as shown in Figure 5.3.1. All cells shown in Figure 5.3.2 

demonstrated clear inhibition for both the perimeter wall and the appropriately-oriented barrier. For 6 of 

the cells this was shown in both the large circular and square environments (Figure 5.3.2). 
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Figure 5.3.1: Boundary-off cells were sometimes simultaneously recorded with other spatial 
cells. 

The figure shows the simultaneous recording of a boundary-off cell (1), a BVC (2) and a HD 
cell (3). The firing pattern of the boundary-off cell is very similar to the inverse of the BVC.  
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Figure 5.3.2: Boundary-off cells show an inhibitory response to barrier insertion. 

The figure provides the full sample of boundary-off cells tested with barrier insertion.  A) Shows all 9 cells tested 
with a barrier inserted into the large walled circle. B) Shows 6 of the cells which were also tested with the barrier 
in the large walled square. Each boundary-off cell is given a number as in previous figures. If the cell was tested 
with the barrier in both the square and circular environments this is indicted with an ‘a’ and a ‘b’ e.g. 1a in 
section A and 1b in section B are the same cell recorded in both manipulations.  
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Figure 5.3.3. Basic characterisation of all boundary-off cells. 

Each row shows data for one boundary-off cell. From left to right the figure presents; text column 
stating rat/day, tetrode/cell; locational rate map with peak rate (Hz); spatial autocorrelation map; 
directional polar plot with peak rate (Hz); spike waveform, bottom-right text stating peak amplitude 
(highest positive-to-negative or negative-to-positive amplitude, µV) and negative peak-to-trough 
interval (µS); temporal autocorrelations (0-20ms and 0-500ms). Rightmost text column gives the 
directional information in bits per spike (Dir; directional information calculated from unsmoothed 
polar plots,bin size 5.6°) and the theta modulation score (TM). Data comes from the first large walled 
circle trial of the day.  
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5.3.1 Boundary-off cells maintain their firing fields in darkness 

The firing pattern of the boundary off cell is very similar to the inverse of the BVC. The inhibited field follows 

the boundary, in the circular and in the square environments (Figure 5.3.2). Like BVCs boundary-off 

boundary responses are not disrupted in darkness (Figure 5.3.4). Only 3 cells were recorded in the darkness 

manipulation, however in Figure 5.3.4 the rate maps do not show any evident disruption of the boundary-

off fields. The inhibitory fields continue to remain along the same portions of the perimeter walls.  

 

 

 

Figure 5.3.4: Boundary-off cells like BVCs and grid cells maintain their firing patterns in the 
absence of visual cues. 
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5.3.2 Boundary-off cells carry more locational than directional information. 

Table 5.3.1 shows that Boundary-off cells carried significantly more locational than directional information 

in both bits per spike and in bits per second. However they did not show more locational than directional 

selectivity. 

Locational and directional information was compared between boundary-off cells and BVCs (Table 5.3.2). 

There was no difference in locational or directional information over time (bits per second). However, BVCs 

carried more locational and directional information per spike and were more locationally and directionally 

selective than the boundary-off cells. Boundary-off cells had large fields covering almost the entire 

environment and a higher global mean rate than the BVCs (Table 5.3.3). Which would account for boundary 

off cells carrying less spatial information per spike and being  are less spatially selective than BVCs.  

 

Table 5.3.1. Boundary-off cells carry more locational than directional information. 

Spatial information is calculated to estimate the mutual locational/directional information in seconds. 
Selectivity is calculated by dividing the peak firing rate across bins by the mean firing rate (calculated for 
locational and directional). Spatial information was calculated using locational/directional equivalence 
binning from unsmoothed polar plots (bin size 6°) and rate maps (bin size 18.5cm x 18.5cm). Analysis 
was conducted using the full boundary-off sample (n=9) in the first large walled circle of the day (LWC). 

  MEAN ± SEM  

 Spatial  information 
Bits/sec 

Spatial  information 
Bits/spike 

Spatial Selectivity 

 
Locational 

   
0.06 ± 0.01 0.40 ± 0.10 

 
1.65 ± 0.20 

Directional 0.02 ± 0.00 0.15 ± 0.03 
 

1.35 ± 0.07 

p value 0.01 0.02 
 

0.19 
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Table 5.3.2. Boundary-off cells carry less spatial information per spike and less spatial selectivity than BVCs.  

Spatial information was calculated using locational/directional equivalence binning (60 bins each) from unsmoothed 
polar plots (bin size 6°) and unsmoothed rate maps (bin size LWC, 18.5cm x 18cm; LWS, 14cm x 14cm). 

                           MEAN ± SEM 

 Locational 
 

Directional 
 

 Locational 
information 
Bits/spike 

Locational 
information 

Bits/sec 

Locational 
Selectivity 

Directional 
 information 

Bits/spike 

Directional 
 information 

Bits/sec 

Directional 
Selectivity 

       
Boundary-off 

N=9 
 

0.06 ± 0.01 0.40 ± 0.10 
 

1.65 ± 0.20 0.02 ± 0.00 0.15 ± 0.03 
 

1.35 ± 0.07 

BVC 
N=46 

 

0.21 ± 0.04 0.43 ± 0.04 
 

5.72 ± 1.00 0.13 ± 0.03 0.20 ± 0.03 
 

1.79 ± 0.11 

p value 0.0002 0.80 0.07 0.002 0.53 0.002 
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5.3.3 Boundary-off cells have basic properties which are distinct from other 

spatially recorded cells 

Table 5.3.3 shows that like BVCs and grid cells boundary-off cells carried significantly less directional 

information than locational information. However, boundary-off cells can be distinguished from BVCs 

because per spike they are less locationally and directionally modulated and they are less spatially selective 

(Table 5.3.2 and Table 5.3.3). Due most likely to the size of the spatial fields the boundary-off cells also had 

much higher global mean rates than the other cell types (Table 5.3.3).  

Similar to BVCs and grid cells, Table 5.3.3 shows that boundary-off cells carry much less directional 

information than HD cells. The table also shows that like BVCs boundary-off cells are distinct from grid cells 

because they had much lower gridness scores and theta modulation scores than the grid cells. 

 Of the 4 types of cells recorded here boundary-off cells had the highest firing rate and higher global mean 

rate than BVCs, grid cells or HD cells (Table 5.3.3). Boundary-off cells also had larger peak-to-trough 

amplitudes then any of the other cell types (Table 5.3.3). Looking at the means in Table 5.3.3, boundary-off 

cells also have longer waveform durations then the other cell types however this is not statistically 

significant. The absence of a significant difference is likely to be due to the small sample of boundary-off 

cells. 

5.3.4   Boundary-off cell summary 

This new boundary-related cell type is located in the subiculum and can be simultaneously recorded with 

BVCs, grid cells and HD cells. Boundary-off cells have a firing pattern which is similar to the inverse of BVCs. 

They fire for the entire environment except for a portion located along a wall. Like BVCs the boundary-off 

cells respond to the insertion of an appropriately-oriented barrier, and produce a second inhibitory field 

along the barrier.  

Boundary-off cells are distinct from other spatial cells. They carry less spatial information and are less 

spatially selective than BVCs. They have very low grid scores distinguishing them from grid cells, and they 

carry much less directional information than head direction cells.
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Table 5.3.3. Boundary-off cells are distinct from other spatial cells. 

Data was taken from the first large environment trial of the day (LWC or LWS) to control for trial order and environment effects. Directional information 
was calculated from unsmoothed polar plots (bin size 5.6°). 

    MEAN ± SEM    

 
 

Gridness 
score 

Directional 
Information 
(Bits/spike) 

Directional 
Information 

(Bits/sec) 

Theta modulation 
score 

Waveform 
amplitude 

( in µv) 

Waveform 
duration 

(intervals in µs) 

Global Mean 
rate (Hz) 

        
Boundary-

off cells 
N=9 

-0.57 ± 0.04 0.02 ± 0.01 0.15 ± 0.03 6.94 ± 1.58 203.09 ± 16.11 323.55  ± 53.94 6.20 ± 0.89  

ALLGRIDS 
N=51 

0.72 ± 0.04*** 0.19 ± 0.03 0.34 ± 0.07 28.70 ± 0.04*** 138.91 ± 7.79* 225.95 ± 142.05 2.30 ± 0.34*** 

SUBGRIDS 
N=30 

0.65 ± 0.04*** 0.19 ± 0.04 0.21 ± 0.04 27.54 ± 3.71*** 153.41 ± 11.57* 264.85 ± 28.64 2.15 ± 0.43*** 

BVCs 
N=46 

-0.30 ± 0.03*** 0.21 ± 0.04* 0.14 ± 0.03 11.96 ± 1.84 154.55 ± 7.23* 294.37 ± 24.17  3.17 ± 0.34*** 

HDs 
n=30 

-0.18 ± 0.05*** 1.15 ± 0.18*** 0.63 ± 0.70** 4.96 ± 1.24 132.23 ± 8.36* 223.95 ± 35.28  1.35 ± 0.21*** 

Compared to Boundary-off cells *p< 0.05 ** p< 0.01 *** p< 0.001 **** p< 0.0001 
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Chapter 6 Discussion 

6.1 Overview of results  

This thesis presents novel research identifying and characterising spatial cells located in the subiculum. 

Of particular importance is the discovery of subicular grid cells. The thesis also extended the work of 

Lever et al., (2009), by presenting a detailed investigation and characterisation of subicular BVCs. 

Building upon this earlier work, the present thesis sets a plausible empirical classification criterion, and 

provides a further characterisation for this relatively unknown cell type.  In particular, the thesis also 

investigates the influence of environment boundaries on subicular grid cell and BVC firing.  

This thesis reports a variety of functionally and morphologically diverse spatial cells recorded from the 

subiculum. I recorded grid cells, BVCs, HD cells and a new type of boundary signalling cell the boundary-

off cell. Each of these cell types had distinct properties. Only the grid cells had gridness scores reaching 

the classification threshold. Only BVCs produced a second firing field for the insertion of an 

appropriated-oriented barrier and HD cells carried significantly more directional information than any 

other spatial cell type. 

Below is a summary of results presented in this thesis: 

1. Grid cells exist in the subiculum.  

a) The subicular grid cell sample showed periodic firing patterns with gridness scores 

comparative to grid cells recorded in the MEC and the pre- and parasubiculum.   

b) Neighbouring subicular grid cells tended to share common grid scales and orientations. As 

with MEC grid cells and CA1 place cells the spatial scale of the grid cells varied along the 

long subicular axis, with larger grid spacing in the posterior subiculum and smaller in the 

anterior subiculum.  

c) Subicular grid cells carried much less directional information than head direction cells. 

d) Grid scale and orientation were altered by wall removal. When the environment walls were 

removed the grid scale expanded. Similar to Barry et al., (2007) who found rescaling 

between different environments; I show that the increase in gird scale was also related to 

the novelty of the un-walled environment.  In addition there was also a significant shift in 
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the grid orientation between walled and un-walled environments, which was not evident 

between trials in the same walled environment. 

e) When a barrier was inserted into the environment it altered the grid cell firing. Grid cells 

showed variable responses to barrier insertion, the most notable of which were the 

inhibition of grid fields and a shift/displacement of the grid pattern.    

f) Supporting previous findings of MEC grid cells, subicular grid cell firing patterns remained 

stable in darkness.  

  

2. BVCs were often recorded simultaneously with grid cells 

a) This thesis has extended upon the work of Lever et al., (2009) and created a BVC 

classification criterion based upon the doubling of the BVC firing field with the insertion of 

an appropriately-oriented barrier. A minority of boundary-responsive cells did not show 

boundary signalling for additional barriers but rather seemed to code specifically for 

perimeter walls and were classified as non-BVC boundary cells.  

b) None of the BVCs could be classified as grid cells based on the spatial autocorrelogram, nor 

did they show any preference for directional signalling.  

c) BVCs provided significantly more locational than direction information supporting Lever et 

al., (2009) and the BVC sample carried significantly less directional information than the HD 

cells.   

d) This thesis provides corroborative evidence that BVCs signal qualitatively different 

boundaries. Using a variety of manipulations I tested what qualified as a boundary. BVCs 

responded to walls, barriers, ridges and objects arranged in a linear array and individually. 

By varying the height and width of the boundaries it may be possible to quantify what a BVC 

responds to as a boundary.  

e) Similarly the thesis provides evidence that BVCs also respond to drops and traversable gaps 

as boundaries. 

f)  Like GC firing patterns BVC boundary signalling was also not disrupted in darkness 

(supporting Lever et al., 2009).  

 

3. I recorded a new type of subicular boundary responsive cell; the boundary-off cell 

a) These cells have firing patterns which can be considered very similar to the inverse of a BVC. 

Boundary-off cells have large fields which cover the entire environment apart from an 

‘inhibited field’ which follows the boundary. When a barrier was inserted into the 
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environment, the boundary-off cells responded by creating a second inhibited field on the 

predicted side of the barrier. 

b) Like BVCs they carried significantly more locational than directional information, and were 

not disrupted in darkness. They were also distinct from grid cells and HD cells, in that they 

did not reach the gridness threshold as determined by the spatial autocorrelogram and they 

carried significantly less directional information than HD cells. 

6.2 Wealth of spatial cells in the subiculum  

The Subiculum has been a rather under-explored and a relatively unknown structure of the hippocampal 

formation. For a long time the subiculum was considered to be simply a bidirectional relay region 

interposed between the hippocampus and the temporal cortex (Witter et al., 2000; Menendez de la 

Prida et al., 2006). However in recent years a role for the subiculum in spatial mapping has emerged.  

Early recording studies showed that the subiculum encodes a universal location-specific map 

independent of the size and the shape of the environment (Sharp, 1997). Firing fields of subicular cells 

were shown to be larger and more stable across different environments than those of CA1 pyramidal 

cells. Also distinguishing subicular cells from CA1 place cells subicular cells fired throughout the testing 

environment and had multiple peaks of activity rather than just the one which is typical of CA1 cells 

(Sharp and Green, 1994).  

Our present study shows that the subiculum houses boundary-related cells, grid cells and head-direction 

cells. The multiplicity of the spatial representation reported here is similar to that seen in the MEC, the 

presubiculum and the parasubiculum (Boccara et al., 2010).  

6.2.1 The different spatial cells were functionally and morphologically 

distinct.  

This thesis investigated the basic properties of the spatial cells as well as their responses to environment 

manipulation. Through looking at the basic properties this thesis shows that the cells are functionally 

and morphologically distinct. 

Using the spatial autocorrelogram cells with periodic firing patterns could be classified as grid cells 

(gridness scores of ≥0.25).  The BVCs, HD cells and boundary-off cells were also run through the spatial 

autocorrelogram. However none of them had gridness scores which reached the inclusion threshold, 

therefore distinguishing them from the grid cells. Also distinguishing the grid cells was their high theta 
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modulation scores. The results show that grid cells had significantly higher theta modulation scores then 

all the other cell types. This supported previous observations, that MEC grid cells are high and head 

direction cells are low in theta modulation (Sargolini, et al. 2006; Boccara et al., 2010; Brandon et al., 

2011). 

Grid cells, BVCs and boundary-off cells were clearly distinct from HD cells. As in comparison they all 

carried significantly less directional information. BVCs were also easily distinguishable because they 

were the only cells to produce a second firing field for the insertion of a barrier. Neither the grid cells 

nor the HD cells showed firing patterns that indicated they were signaling boundaries. The BVCs also had 

different waveforms then the HDs and grid cells. BVCs had longer waveform durations than the grid cells 

(ALLGRIDS), and had larger peak-to-trough amplitudes then the HD cell sample.     

 BVCs were also easily distinguishable from boundary-off cells. Boundary-off cells produced a firing 

pattern which was the inverse of the BVC firing pattern. Further, boundary-off cells carried less 

locational information per spike and were less locationally selective then BVCs. Boundary-off cells were 

also dissociable from the other recorded cell types because they had larger peak-to-trough amplitudes 

and higher firing rates. Also, due most likely to the size of the spatial fields the boundary-off cells had 

much larger global mean rate than the other cell types. 

6.3 Grid cells exist in the subiculum 

This thesis provides the first report of grid cells located in the subiculum. Up until relatively recently the 

subiculum had been a comparatively unexplored structure of the hippocampal formation. Whilst cells 

with multiple peaks had been noted in early studies (Sharp and Green, 1994), this was prior to the 

discovery of grid cells in 2004 (Fyhn et al., 2004; Hafting et al., 2005). Additionally, early subicular 

studies used small environments which would have struggled to capture the multiple fields 

characteristic of grid cells. This is especially true if the electrodes were recording from the posterior 

subiculum, which as demonstrate here contains grid cells with predominantly large grid scales. In these 

cases, in small environments grid cells with large fields may have looked like place cells with large 

locational fields firing for the entire environment.   

Whilst trying to record BVCs from the subiculum, I also recorded grid cells. These subicular grid cells had 

multiple fields, with firing patterns similar to grid cells recorded from the MEC. Typically grid cell 

classification requires the use of a spatial autocorrelogram to generate a gridness score for each cell. 

This score indicates the regularity of the gridness pattern; high gridness scores indicated high 
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periodicity. In the present thesis 51 grid cells from 5 animals were classified using gridness scores. 

Histology clearly consigned 30 of the grid cells to the subiculum. The recording locations of the other 21 

were much less clear. They may have been recorded from the presubiculum, the white matter above the 

subiculum/presubiculum and/or from the subiculum itself. Throughout the results section the grid cells 

were analysed as both the full sample (ALLGRIDS) and as a subiculum only sample (SUBGRIDS).  

6.3.1 Subicular grid cells share properties with grid cells recorded from the 

parahippocampal formation. 

6.3.1.1 Subicular grid cells can be identified using gridness scores 

Grid cells were defined based on their degree of spatial periodicity (gridness) as per the methods used in 

previous grid cell studies (Hafting et al., 2005; Barry et al., 2007;2012; Wills et al., 2010; Solstad et al., 

2009; Boccara et al., 2010; Yartsev et al., 2011; Stensola et al., 2012). Gridness is determined for each 

cell by taking a circular sample of the autocorrelogram centered on the central peak (but with the 

central peak excluded), and comparing correlations across rotated versions of this sample. Between labs 

and between studies there are subtle differences in the spatial autocorrelogram used, which will be 

reviewed in more detail later in the discussion.  

The putative grid cells were ran through several spatial autocorrelograms and I found a slightly modified 

version of the one used by Barry (2007; 2012) gave the best fit the majority of periodic cells. Gridness 

inclusion thresholds vary throughout the literature, with higher thresholds being used for robust 

analyses of environmental manipulation (Solstad et al., 2008; Barry et al., 2012; Boccara et al., 2010).   

The gridness scores of the grid cells definitely consigned to the subiculum was 0.65 ± 0.04. Those 

recorded from locations inside and outside the subiculum had a mean gridness score of 0.84 ± 0.07. 

Boccara et al., (2010) compared the gridness scores of grid cells recorded across regions (and rats). The 

highest gridness scores were recorded from grid cells in the MEC with an average of 0.94 ± 0.02, 

followed by parasubiculum 0.85 ± 0.03 and the lowest in the presubiculum 0.72 ± 0.03. If the gridness 

scores of the subicular grid scores recorded here were compared with those reported by Boccara et al., 

(2010) it could be considered that gridness was lowest in the subicular grids. However, this could be 

explained by differences in gridness measures. This issue is discussed in more detail in the research 

limitations section below.  
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6.3.1.2 Neighbouring grid cells share a common orientation 

This thesis reports that neighbouring subicular grid cells shared a common orientation. This supports 

similar findings in MEC grid cells (Hafting et al., 2005; Barry et al., 2007; Boccara et al.,  2010) and pre- 

and parasubicular grid cells (Boccara et al., 2010). Like Hafting et al., (2005) this thesis showed that a 

range of orientations was represented across animals, whilst in general, within rat, locally recorded grid 

cells shared a common orientation.  

6.3.1.3 Spatial scale increases along the subicular anterior-posterior axis 

Place field size in CA1 place cells and grid scale in MEC grid cells has been shown to increase along the 

dorsal-ventral axis (Jung et al, 1994; Hafting et al, 2005; Brun et al., 2008; Barry et al., 2007; Royer et al., 

2010; Stensola et al., 2012). Here this thesis shows that grid scale in subicular grid cells also varied 

throughout the subiculum. Grid scale increased along the anterior-posterior axis of the subiculum with 

posteriorly-recorded cells having on average grid scales 20cm larger than grid cells recorded 1mm 

anterior to them. 

Recently Couey et al. (2013) reported that neighbouring MEC layer II grid cells generate firing patterns 

that exhibit similar spacing and orientation, suggesting that adjacent grid cells may influence each other 

through local microcircuits. Couey et al., (2013) conducted simultaneous whole-cell recordings in 

clusters of three or more MEC layer II neurons in rat brain slices. In total, they assessed the connectivity 

between over 600 pairs of stellate cells, which are the candidate grid cells in the MEC. The found that 

stellate cells of MEC layer II are connected by interneurons that are activated by the synchronous 

activity of the stellate cells. When 3 cells out of a cluster of 4 were stimulated there was a 64% chance of 

the unstimulated cell also producing an inhibitory responding, whereas if only 1 cell was stimulated 

there was only a 4% chance of eliciting an inhibitory response in a paired cell. On the basis of these 

findings, the authors constructed a theoretical network in which adjacent stellate cells were connected 

to each other via inhibitory connections with unstructured all-or-none connectivity. This model was able 

to generate stable grid-like firing patterns resembling the experimental data when each stellate cell also 

received a constant, uniform excitatory input. The neighbouring subicular grid cells recorded in this 

thesis also shared common spatial scales and orientations, which may suggest that grid scale and 

orientation may also be dependent upon local microcircuits in the subiculum.  
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6.3.2 Gridness correlates with theta modulation  

 The results showing a positive correlation between gridness and theta modulation might appear to lend 

some support to theories linking theta to self-motion and grid formation (Burgess et al., 2007, Burgess 

et al., 2008; McNaughton et al., 2006). In particular the oscillatory interference models of grid cell firing  

assume that theta oscillations are necessary to produce grid cell firing (Burgess et al., 2007; Burgess, 

2008; Hasselmo et al., 2008b). Consistent with this, previous studies have shown that disruption to 

septo-hippocampal theta by inactivating the medial septum strongly reduces gridness in MEC grid cells 

(Brandon et al., 2011; Koenig et al., 2011).  

However, recent evidence casts some doubt on the link between theta oscillations and grid 

mechanisms. A study looking at MEC grid cells in bats showed cells which looked like lower-quality rat 

grid cells but without theta oscillation (Yartsev et al., 2011). The existence of MEC grid cells without 

theta oscillation argues against the interpretation that continuous theta oscillation is an obligatory 

requirement for grid cell patterns (Yartsev et al., 2011). Another recent study of a large volume of rat 

grid cells shows no correlation between intrinsic theta frequency and grid scale (Stensola et al., 2012).  

Further, the medial septum inactivation studies above (Brandon et al., 2011; Koenig et al., 2011) may 

not provide solid evidence for a mechanistic link between theta and grid patterns. The key objection to 

these studies as supporting the oscillatory interference model of grid cell firing is that to disrupt septo-

hippocampal theta the whole of the medial septum was inactivated. By inactivating a whole structure, 

numerous other processes would have been disrupted beyond the theta inputs to the MEC. Thus this 

evidence alone cannot provide convincing support for oscillatory interference models of grid cell firing. 

6.3.3 Grid cells respond to environment manipulation 

It is generally agreed that place and grid cells use external environmental cues to anchor their activity to 

the real world, as evidenced by the fact that their activity appears bound to the local environmental 

walls and reacts to changes in the environment (place cells: Muller and Kubie, 1987; O’Keefe and 

Burgess, 1996; Lever et al., 2002a; grid cells: Barry et al., 2007).  

Limited evidence has until now suggested that like place cells, grid cells show some disruption to their 

firing patterns following environmental change (Hafting et al., 2005; Fyhn et al., 2007; Barry et al., 2007; 

2012). However, this disruption is distinct between the cell types as unlike place cells grid cells are active 

across environments, and do not switch fields on and off as place cells do (Muller and Kubie, 1987; 

Hayman et al., 2003; Leutgeb et al., 2005). Reports suggest that the level of grid cell change may be 
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related to the extent of environment change. Barry et al., (2007) and Solstad et al., (2008) both showed 

evidence that MEC grid scale varied parametrically with environment change. Barry et al., (2007) 

showed that the grid scale expanded parametrically along the expanded dimension, with little expansion 

in the unchanged dimension.  

The present findings support previous reports that environment manipulation can disrupt the grid 

patterns and also highlights the importance of boundaries to grid cell firing patterns. This will be 

discussed below.  

6.3.3.1 Wall removal alters grid cell firing patterns 

In the present thesis I compared firing patterns between walled and un-walled environments. The firing 

patterns were compared between the un-walled circular open platform and both the large walled circle 

and large walled square environments. The results show that the grid scale and the orientation of the 

grid pattern changed with wall removal.  Wall removal caused the grid scale to expand. Across the 

whole sample, grid scale in the un-walled circular open platform expanded by 10 cm (21%) relative to 

the large-walled square environment, and by 5 cm (11.5%) relative to the large-walled circle 

environment. This was the first time grid expansion has been formally tested following wall removal. 

The results also show that wall removal caused an appreciable shift in grid cell orientation. Between the 

walled and un-walled environments there was 10-14° more shift than between trials in the same walled 

environments. 

 This expansion and orientation shift with wall removal supports the findings of Fyhn et al., (2007) and 

Barry et al., (2007; 2012). Fyhn et al., (2007) showed that large changes to the environment could cause 

both shifts in the grid patterns, including grid scale and orientation. Whilst small changes (e.g. changing 

the enclosure but not the room) did not affect grid patterns at all. Fyhn et al., (2007) recorded grid cells 

simultaneously with place cells and found that changes in grid pattern were accompanied by place cell 

remapping.  

Fyhn et al., (2007) reported a small but significant grid scale expansion of 4.9% between differently 

shaped- walled environments in 25% of cells; in this study grid expansion wasn’t large or common. This 

result is unlike in ours, where the majority of grid cells demonstrated expansion with wall removal. 

Perhaps, the expansion seen in Fyhn et al., (2007) is smaller because their alternative environments 

were different but not novel.  
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Barry et al., (2007) and Solstad et al., (2008) also recorded MEC grid cells demonstrating expansion. Both 

studies showed that the grid scale expanded parametrically with environment expansion, however 

Solstad et al., (2008) reports only two cases. Barry et al., (2007) considered that the parametric changes 

in grid scale reflect an interaction between intrinsic, path-integrative calculation of location and learned 

associations to the external environment. In the present thesis when the environment walls were 

removed the extent of explorable space was increased, allowing the rats to reach ~10-15cm over the 

environment edge. Conceivably the grid expansion reported here could be related to this environment 

expansion.  The results show grid expansion between the walled and un-walled environments of around 

11.5%. If grid expansion was tied to the extension of the perimeter by BVCs we would predict a similar 

extension from the BVCs, however, with wall removal the BVC field peaks shifted only 4.6%. Thus grid 

expansion appears to exceed BVC field centrifugal extension. In addition to the fact that grid expansion 

is partly determined by novelty, this appears to rule out any simple hypothesis linking grid expansion to 

perimeter extension. This dissociation of response can potentially be characterised in terms of the 

response to novelty by suggesting that boundary cells are not especially sensitive to novelty (Lever et al., 

2009), whereas grid cells are (Barry et al., 2007; 2012). 

These results suggest that grid scale changes may not be signalling environmental geometric changes 

per se. Overall across studies it can be seen that scale increases can be seen between differently shaped 

walled environments (Fyhn et al., 2007), expanded walled environments (Barry et al., 2007), 

environments with non-geometric changes (Barry et al., 2012), and with wall removal (shown here in 

this thesis). One thing that these manipulations may have in common is the novelty of the changed 

environments. Like seen in Barry et al., (2007; 2012) this thesis also shows a relationship between grid 

scale expansion and novelty.  It maybe that grid expansion reflects an increase in uncertainty (Barry, 

personal communication). 

6.3.3.2 Grid rescaling is related to environment novelty  

It has been suggested that the grid pattern maybe anchored by environment boundaries, which would 

aid stability of the grid pattern (Hafting et al., 2005; Moser and Moser, 2008; Derdikman et al., 2009). 

With the co-location of grid cells and BVCs in the subiculum, it is likely that the BVCs would similarly be 

able to anchor the grid pattern to the boundaries. However, in this thesis we report that grid expansion 

was evident in excess of BVC extension.  

The relationship of grid scale expansion and the novelty of the un-walled environment shown in this 

thesis supports Barry et al., (2007; 2012), who also reported that expansion was to some extent 
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experience-dependent and correlated with novelty. Barry et al., (2007) reported that grid scale 

expansion was correlated with the novelty of the stretched environments. In a follow up study Barry et 

al., (2012) again reported grid expansion when the grid cells were recorded in novel environments 

varying in colour, material, scent and lighting. Barry et al., (2012) found that when grid cells were 

recorded between familiar and relatively novel environments grid scale, gridness and orientation 

changed. In 2012 these changes were also accompanied by place cell global remapping. 

In 2012 Barry et al. noted that the relationship between grid scale in the familiar environment and the 

magnitude of novelty-induced grid expansion was unclear. The authors observed that in general the 

expansion in the novel environment was not random. In general the larger scaled grid cells expanded by 

a similar absolute amount to the smaller scaled grid cells. Barry et al., (2012) tentatively considered that 

their data suggested that grid cells of different scales tended to expand by similar amounts. The present 

data however does not support the idea of a fixed expansion amount. Indeed, the present results imply 

that larger scaled grid cells in fact expand by more centimetres than smaller scaled grid cells.  

Barry et al., (2012) considers that rescaling has a functional role in novelty signalling which can 

contribute to place cell remapping. They demonstrate that expansion reduces with experience, and so 

rescaling could provide a temporary signalling of novelty to place cells. Novelty would be signalled by 

the temporary mismatch with other grid cells with different scale expansions and with other inputs e.g. 

boundary inputs. Barry postulates that the stability of BVC firing contributes to this novelty signalling. 

Certainly our results support this theory.  

6.3.3.3 Why rescaling had not been seen in previous studies 

If rescaling is a common property of grid cell behaviour then why was it not reported in Hafting et al., 

(2005)?  Hafting et al., (2005) did not find any parametric rescaling.  However, it has been noted that in 

the study the large and small environments were physically different boxes which were both already 

very familiar to the rats (Barry et al., 2007, personal communication with E. Moser). Thus the switch 

from one box to the other would have acted more like a change to a new environment than a 

deformation of the same environment (possibly causing grids to shift and place cells to remap rather 

than deforming). Indeed supporting this, Barry et al. (2007) provided qualitative observations suggesting 

that asymmetric grid expansion induced by deforming a familiar environment could be extinguished in a 

new environment of the deformed shape.  
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This might suggest that rescaling was due to the novelty of deformed environments, i.e. with parametric 

extension (Barry et al., 2007; Solstad et al., 2008), or with non-geometric changes (Barry et al., 2012). 

Maybe the rescaling shown in this thesis between the walled and un-walled environments is because 

the wall removal acts as a deformation of the same environment rather than as switching between 

environments. Certainly in the large walled circle compared to the circular open platform manipulation 

the only change was the wall removal which happened in the ITI with the rat removed from the 

environment. Arguably the changes between the large walled square and the circular open platform 

could have also acted like a deformation, as the floor was unwashed and remained the same between 

trials. That said the rescaling seen in Fyhn et al., (2007) was not because of environment deformation. 

The grid scale expanded between two different environments with changed walls and floors. Whether 

rescaling was due to the novelty of deformed environments in particular or with novelty more generally, 

what is clear is that some environmental manipulation can have dramatic influences in grid cell patterns.   

6.3.3.4 Addition of a barrier also disrupts grid patterns  

The insertion of an extra boundary into the environment also exerted some influence on grid cell 

patterns. The results show that the grid cell open field pattern can be changed by the barrier insertion. 

For many of the grid cells the insertion of a barrier caused field inhibition somewhere in the 

environment, and/or a shift/deformation of the gird pattern. Barriers causing a change in grid field 

structure has been already been shown by Derdikman et al. (2009). However that study involved a lot of 

barriers such that movement was only possible as largely unidirectional travel through relatively narrow 

corridors. This environment only allowed very stereotyped movement. Here I show powerful 

deformation and inhibition effects of a single barrier despite the lack of stereotyped unidirectional 

movement.    

This is not the first time inserted single barriers have had an inhibitory effect on spatial cells. Place cells 

have also been shown to respond to inserted barriers. The insertion of a barrier into a place field often 

causes an inhibition of firing (Muller and Kubie, 1987; Cressant et al., 1997; Rivard et al., 2004; Barry et 

al., 2006). Generally inserted barrier affect only those located close to it. Here the results show that 

inserted barriers can inhibit grid fields that are both intersected and located away from the barrier. 
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6.3.3.4.1 Boundary cells could explain grid field inhibition 

The disruption of the grid field with inserted barriers further highlights the influential nature of 

boundaries upon grid patterns. As mentioned above it is likely that BVCs such as those co-located in the 

subiculum provide boundary inputs to subicular grid cells (and perhaps to cells of other regions). 

Inserted barriers elicit a second field in the BVCs, as abundantly shown in this thesis. The inhibition of 

some grid cell firing fields following barrier insertion may indicate that BVCs are directly or indirectly 

inhibiting the firing the grid cells in and near the barriers. This could happen indirectly via interneurons 

which are BVC-like. Interestingly, some of the BVCs in this thesis show interneuron-like waveforms. 

Boundary-off cells could be explained as pyramidal cells firing everywhere except when inhibited by BVC 

interneurons. In summary, then, the same population of cells could be providing the barrier-elicited 

inhibition of firing to grid cells and boundary-off cells.   

6.4 Boundary responsive cells exist in the subiculum 

 The present study extended upon the work of Lever et al., (2009) by recording the largest sample of 

BVCs to date and by testing them on a variety of environmental manipulations. 46 BVCs were recorded 

from the subiculum. These cells had firing patterns which had characteristics consistent with those 

predicted by the model and reported in Lever et al., (2009).  Overall these cells had long waveform 

intervals and high peak-to-trough amplitudes consistent with BVCs being pyramidal cells. The BVCs also 

had significantly more locational than directional information supporting the findings of Lever et al., 

(2009). 

6.4.1 Development of a BVC classification criteria  

The classification of BVCs previously relied upon putative cells conforming to general characteristics set 

by the model. This consisted of showing boundary responsive firing fields for any boundary in the cells 

preferred distance and direction which were stable across environments and over time. The discovery of 

boundary responsive cells which had qualities differing from these characteristics has meant that a more 

stringent and quantifiable classification of BVCs is required. 

According to the model the defining characteristic of a BVC is that it fires whenever an environmental 

boundary intersects a receptive field located at a specific distance from the rat in a specific allocentric 
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direction. Therefore a BVC would produce firing fields for perimeter boundaries and for additional free-

standing barriers alike.  

When an appropriately-oriented barrier is inserted into a testing environment, a BVC would be expected 

to develop an additional locational field in response to that additional boundary. This response was used 

as a classification criterion. To be included as a BVC the second field had to consist of bins with firing 

rates of over 40% of peak rate along at least 50% of the barrier. Cells which showed boundary signalling 

but did not reach this threshold were classified as non-BVC boundary cells. From looking at those cells 

which did not produce second fields for the barrier, it may be that some boundary responsive cells are 

only tuned to perimeter boundaries. Certainly it seems that what a BVC/boundary cell considers is a 

boundary may not be standard across the boundary-responsive population.  The next section explores 

this issue.  

6.4.2 What is a boundary? 

To try to qualify what a BVC considers is a boundary BVCs were tested on a wide range of environmental 

manipulations. In 2009 Lever et al. showed that BVCs could respond to perimeter walls of differently 

shaped environments, wall-less edges, and for a couple of cells found that a second field was produced 

for a free-standing barrier, and a traversable drop. The aim was to extend upon these findings to 

understand better what a BVC considers to be a boundary.  

 As predicted by the model, A BVC fired whenever an environmental boundary intersected the cells 

receptive field located at a specific distance from the rat in a specific allocentric direction. Across 

differently shaped walled environments the location of fields remained stable, even in manipulations 

which are shown to induce remapping in place cells.  

BVCs responded to free-standing barriers similarly to perimeter walls. This response to the addition of 

an appropriately-oriented barrier was such a common feature that it formed the BVC classification 

criteria. I also showed for a few BVCs tested that a linear array of bottles is treated as a boundary. BVC 

boundary responses remained stable in darkness, including the appearance of a barrier-elicited second 

field for those cells tested. 

In an attempt to quantify the responses of BVC firing to boundary manipulation, the height, width and 

qualities of additional barriers were manipulated. The results showed that boundary signalling could be 

maintained when the bottle barrier is reduced in size, with some BVCs able to treat single objects (≤5cm 

wide) as boundaries. In a couple of cells there was still clear field doubling even when the height of the 
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barrier was drastically reduced. Cells continued to signal a boundary when the height of the barrier was 

4.5cm making it easily traversable. However, if this barrier height was further reduced then the 

production of a second field ceased.  Whilst these manipulations were tested with only a couple of 

BVCs, these responses to barrier height suggest that there is a minimum cue height for that cue to 

function as a boundary.  

The results also confirmed Lever et al., (2009)’s reports that BVCs responded to environment drops 

similarly to environment walls. In Lever et al., (2009), the cells seemed to be signalling either the 

environment edge or the extent of explorable space. Our results here suggested that the BVCs primarily 

responded to the material edge of the environment, because the peaks of the firing fields did not seem 

to shift outwards much between walled and un-walled trials.   

In 2009 Lever et al. reported a single BVC which responded to both the perimeter drop of an open 

platform and a traversable gap of 13 cm created between 2 open platforms. This finding was confirmed 

and extended by showing that the majority of BVCs tested in a similar manipulation also produced fields 

for traversable drops. Compared to the manipulation used by Lever et al., (2009) the number of 

platforms was increased to three and reduced the size of the gaps between them to 10 cm. The majority 

of BVCs showed signalling for the traversable gaps, however across the sample there were a variety of 

responses. Some of the cells showed no responses for any of the drops, some only signalled the drops 

not the perimeter, and, some demonstrated all-boundary fields for both the perimeter and the 

traversable drops. As with the variable barriers/objects manipulations, I also tried to quantify how large 

a traversable gap would be required to provoke BVC signalling. As with the varying height and width of 

barriers manipulations, this was only investigated with a small sample. However, the results did suggest 

that gaps as small as 3cm could be considered as boundaries. 

BVCs respond to differently shaped environments, un-walled environments, barriers and objects of 

varying heights/ widths and in complete darkness. The multiplicity of the BVC representation makes 

‘What constitutes a boundary?’ a difficult question to answer. Perhaps the best definition of a boundary 

as treated as by a BVC is that it is a significant interruption of a broadly horizontal planar surface by a 

surface broadly perpendicular to that, whether vertically upwards (as in a wall, or a sufficiently extensive 

object) or downwards (as in a drop). What is considered a boundary may vary somewhat across the BVC 

population. Overall, what is evident is that ‘boundaries’ are defined by both sensory cues and limitations 

to movement that are not restricted to walls. 
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6.4.3 BVCs vs. border cells 

For the subiculum to provide boundary inputs to CA1 the most obvious route is via the MEC, and so MEC 

border cells are well placed to pass on this information. Lever et al., (2009) suggests that border cells 

may be a subset of short-distance tuned BVCs. The more numerous short range BVCs is predicted by the 

model, so in theory if the MEC border cells are a subset of BVCs then longer range MEC BVCs should also 

exist. However the border cell criterion (≥0.5 border score) used by (Solstad et al., 2008; Boccara et al., 

2010) may have excluded longer range border cells. A couple of these cells are shown in Figure 4.2.3 but 

this thesis is focused on short range BVCs which are easier to identify and to test. 

Some of the border cells reported by Solstad et al. (2008) could not be classed as BVCs. Many of them 

fired along only a small portion of the wall. Also, The majority of cells tested in no-wall conditions 

‘remapped’ and responded to a different boundary (see Figure 2.3.5 in the introduction) and thus did 

not conform to the universal distal and directional vector that BVCs are characterized to have. 

Solstad et al., (2008) questioned if subicular BVCs reported in Barry et al., (2006) might be either 

entorhinal axons or are reflections of CA1 input from the MEC (Solstad et al., 2008; looking at the Barry 

et al., 2006 data). The BVCs reported here and those reported in Lever et al., (2009) are unlikely to be 

axons as the waveform durations of subicular BVCs are long like pyramidal cells than what would be 

expected from axons, which would have much shorter waveforms. It is also unlikely that subicular BVCS 

are merely reflections of entorhinal border cells. Lever et al., (2009) consider the anatomical distribution 

of the subicular BVCs argue against this. The MEC projects to the distal- to-CA1 part of the subiculum. 

Therefore, if it were the case that the subicular BVCs were actually copies of ‘border cell’ firing, then the 

majority of BVCs would be located in this projection area. However, as Lever et al., (2009) report and 

can be seen here in the sample in this thesis, BVCs were recorded throughout the subiculum including in 

the proximal- to- CA1 portion.  

Differing boundary responses can be seen within the subicular BVC sample recorded here. It may be that 

the boundary signaling cells in the subiculum and MEC are functionally distinct. In this thesis I record 

cells that conform to the BVC model as well as some boundary-responsive cells which did not. Some 

cells were not classified as BVCs because they did not respond to the inserted barrier. It may be that 

these cells specifically respond to perimeter boundaries or show responses like place cells of the 

hippocampus proper. In general subicular BVC fields remained stable with wall removal, whilst the 

majority of MEC border cells did not. The tendency for the MEC border cells to switch their preferred 

boundary when the walls were removed may suggest that they are more sensitive to novelty, or have 
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some sort of remapping-sensitive component (that the subicular BVCs show less of). Further 

investigation of MEC and subicular boundary cells is certainly required to establish their similarities and 

differences. 

6.4.4 New class of boundary cell: boundary-off cells  

 The firing patterns of the boundary-off cells are very similar to the inverse of the BVC. Rather than 

having a firing field which follows the environment boundaries, these cells fire over the entire 

environment and have an ‘inhibited field’ along the boundary. When a barrier was inserted into the 

environment, the boundary-off cells responded by creating an inhibited field on the predicted side of 

the barrier, demonstrating again a firing pattern similar to the inverse of the BVC. Like BVCs boundary 

off cells maintain their firing patterns in darkness, and carry more locational than directional 

information. These waveforms for these cells have long durations and high peak-to-trough amplitudes 

characteristic of principal cells. 

Without the key manipulations the boundary-off cells could be interpreted as long-range BVCs. 

However, they are distinguishable. The locational fields of the boundary-off cells almost covered the 

entire environment. The key distinguishing feature of the boundary-off cells is that they show a portion 

reduced firing following the boundary. This distinction was clearest in the circular environments, BVC 

firing fields would be crescent shaped following the boundary, whilst boundary-off cells demonstrated 

firing patterns inverse of the BVCs with a crescent of inhibition. Also distinguishing the BVCs and the 

boundary-off cells was the basic properties of the cells. The size of boundary-off fields meant that 

boundary-off cells carried less locational information per spike and were less locationally selective then 

BVCs. Also the boundary-off cells had higher firing rates likely due to the size of the boundary-off spatial 

fields.  

6.5 Research implications 

6.5.1 The importance of boundary information for spatial signalling of spatial 

cells located in the hippocampal formation.  

The representation of space demands the integration of idiothetic interoceptive cues with exteroceptive 

environment cues. The necessity of this integration can be seen in place cells (O’Keefe, 2007), head 

direction cells (Blair and Sharp, 1996) and grid cells (Hafting et al., 2005). Reliance on either method 

alone can only be successful for a short period (e.g. Burak and Fiete, 2006; McNaughton, 2006). In 
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general it is considered that the development of spatial firing patterns within a new environment may 

depend heavily upon path integrative and other idiothetic processes, but with environment experience 

allothetic exteroceptive cues take over (Knierim et al., 1995; Lever et al., 2002a; Hafting et al., (2005); 

Barry et al., 2007; 2012). 

The BVC model was created to account for the boundary inputs to place cells, and these inputs are 

suggested to define the location and size of place fields in relation to the environment boundaries (O’ 

Keefe and Burgess, 1996). Arguably, considering the subicular connections into and out of the 

hippocampal formation, BVC inputs would also be available to anchor grid cells to the environment 

boundaries (Derdikman et al., 2009).  

6.5.1.1 Boundaries and arguably BVCs control place cell fields  

Environment boundaries influence place cell firing. when the sensory qualities of two environments 

differ sufficiently hippocampal place cells are well known to remap (Muller and Kubie,1987) the greater 

the difference between environments, the greater the remapping (Muller and Kubie, 1987; Shapiro et 

al., 1997; Lever et al., 2002a; Anderson and Jeffery, 2003; Wills et al., 2005). In this thesis CA1 place cells 

show remapping between the square and circular environments. O'Keefe and Burgess (1996) suggest 

that the shape and location of place fields within an environment can be modelled as the distance of the 

rat from the environment walls. It was speculated that this boundary information would come from 

inputs tuned to the boundaries located outside of the hippocampus. The BVC model was created to 

account for these boundary inputs to CA1 place cells. 

O'Keefe and Burgess (1996) demonstrated that when a rectangular environment was stretched it caused 

some fields to parametrically stretch, and some fields to become bimodal (to have 2 or more peaks). 

Evidence from barrier insertion studies show that place cells can also become bimodal with the insertion 

of a free-standing barrier (Lever et al., 2002b; Barry et al., 2006; Fenton et al., 2008). The stretching of 

the environment walls meant that the boundary inputs signalling the environment walls were also 

stretched. The modification of these inputs would in turn affect the place fields, as the boundary 

information was shared which could result in the fields stretching and or being pulled into several fields 

(becoming bimodal with several peaks).  

This thesis shows that BVCs provide boundary information that is not restricted to perimeter walls. The 

response of BVCs to free-standing barriers and to inserted objects, may explain place cell responses to 

inserted barriers. As detailed above barrier insertion has been shown to promote and prevent place cell 
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firing. This was evident for some place fields which were both intersected by the barrier and were 

proximal to the barrier (Muller and Kubie, 1987; Rivard et al., 2003; Barry et al., 2006). Evidence also 

shows that internal objects/ barriers can anchor place cell firing. Rivard et al., (2004) showed that place 

cells can become attached to the barrier, and that rotating/removing the barrier could cause the fields 

to also rotate or disappear. Cressant et al., (1999) noted that an object could only exert an influence on 

place fields if it was either located by the environment walls or if the objects were formed into an 

extended linear array with other objects.  The subicular BVCs recorded here present very clear double 

fields responding to the perimeter and barrier boundaries. If it is considered that these cells provide the 

boundary inputs to CA1 cells, the signalling for the barrier with the second field would also be available 

to the CA1 place cells. These inputs could also supply a mechanism to explain the disruption of the place 

fields when intersected by a barrier.  

6.5.1.2 Boundaries may be important for anchoring the grid pattern to the 

environment.  

Like MEC grid cells it seems likely that the grid cell patterns shown in this thesis represent an interaction 

between sensory and path integrative cues. Hafting et al., (2005) consider that although the spatial 

structure of the grid pattern may be determined by self-motion cues, orientation and phase may be 

controlled by the specific landmarks of each environment. 

One of the key roles of for environment boundaries is in anchoring the grid pattern (Hafting et al., 2005; 

Moser and Moser, 2008). Evidence shows that orientation and phase are determined by the 

environment and can shift with environment change/rotation (Hafting et al., 2005). This thesis reports 

that wall removal and barrier insertion can alter grid cell firing patterns. In previous studies wall removal 

has been shown to induce phase rotation (Hafting et al., 2005) and here this thesis demonstrates that 

wall removal can cause grid cell scale expansion and an orientation shift. However, as is shown here and 

as is clear throughout the grid cell literature environment change does not cause a compete 

reorganisation of the grid pattern as is seen in place cells. What does seem to be clear is that the 

intrinsic grid pattern can exist independently of (though be modifiable by) external cues. This has been 

attributed to the grid pattern being dependent upon the path integration system (Hafting et al., 2005, 

Savelli et al., 2008; Solstad et al., 2008; Boccara et al., 2010). 

The dependence of the rigid structure of the grid pattern on path integration is consistent with our 

observations that the grid fields appear independently of specific landmarks and environmental 

configurations. It is also consistent with previous research showing the immediate appearance of the 
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grid pattern in new environments and the maintenance of grid patterns in darkness (Hafting et al., 

2005). The results presented here in this thesis support these findings and show that the grid pattern 

can be maintained in the absence of visual cues.  This stability in darkness can also be seen in place cells 

(Quirk et al., 1990), HD cells (Taube et al., 2003), grid cells (Hafting et al., 2005; Fyhn et al., 2007; present 

data) and BVCs (Lever et al., 2009; and present data). 

The observation of BVCs located throughout the subiculum and border cells across all layers of the MEC 

provides evidence for the existence of boundary-responsive cortical cell populations (Barry et al., 2006; 

Lever et al., 2009; Hafting et al., 2005 Solstad et al., 2008 Savelli et al.,2008 Boccara et al., 2010). By 

defining the perimeter of the environment, boundary-responsive cells may serve as reference frames for 

place cells and grid cells alike. They can serve as reference frames for place cell locational 

representations within different environments (O’Keefe and Burgess, 1996) and perhaps as a method to 

anchor the grid patterns (Hafting et al., 2005; Solstad et al., 2008; Boccara et al., 2010; Moser and 

Moser, 2008). The discovery of border cells intermingled with grid cells in the MEC led Saveilli et al., 

(2008) to consider that border cells could act to relay landmark information for correcting path 

integration calculations to correct cumulative drift error that are inevitable with using path integration 

(Hafting et al.,  2005; O’Keefe, 2007; Savelli et al.,2008). The combination of grid and BVCs in the 

subiculum, suggest that subicular BVCs could also perform this service for their neighbouring grid cells.  

Evidence of this anchoring is suggested by Savelli et al., (2008). They show that boundaries and 

subsequently boundary-responsive cells may work to align the grid cells relative to the boundaries of an 

environment. This alignment would keep the grid stable despite the potential accumulation of self-

motion errors (McNaughton et al., 1996; Touretzky and Redish, 1996; Burgess et al., 2007). Savelli et al., 

(2008) co-recorded grid cells and boundary-responsive cells from the MEC. During a trial in a small 

walled square environment, the walls were removed in the presence of the rat to reveal the boundaries 

of a larger-walled box. The authors report a powerful influence of the boundaries which was clear by the 

changes in spatial firing. The grid patterns continued ‘outwards’  in the environment, and the firing fields 

of the boundary cells extended to the new walls in the larger box. For example a cell that fired along the 

east wall in the small box fired along the east wall in the large box. Savelli et al., (2008) noted that even 

though the rats were presumably still capable of maintaining the path-integration-based coordinate 

frame of the smaller environment and were still able to perceive the unaltered global visual cues, the 

boundaries took control of the grid cell representation. This suggests that BVCs and border cells which 

signal the boundaries may bind (anchor) the grid cell firing to the environment to keep the internally 
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generated, grid cell representation calibrated to the coordinate frame of the external world (Savelli et 

al., 2008). 

The mechanisms behind the anchoring of the grid pattern to the geometric boundaries of the 

environment have not yet been identified. However, the discovery of co-located boundary-responsive 

cells and grid cells in the MEC, pre-subiculum, parasubiculum and now the subiculum, may suggest that 

this anchoring could happen locally (Solstad et al., 2008; Boccara et al., 2010). 

The hippocampus has also been highlighted as a possible storage site for associations between the path 

integrator and the specific features of the environment (Hafting et al., 2005; O’Keefe and Burgess, 

2005).  This is based on the contextual specificity of the hippocampal representations (Muller et al., 

1991; Colgin et al., 2008) and the enormous storage capacity of its intrinsic networks (Battaglia and 

Treves, 1998). It was postulated that the CA1 place cells could input to entorhinal grid cells via the 

backprojections to the deep and superficial layers of the entorhinal cortex (Iijima et al., 1996; van 

Haeften et al., 2003; Kloosterman et al., 2003; Witter and Amaral, 2004). These outputs from 

hippocampal place cells may also reset the entorhinal path integrator as errors accumulate during 

movement. In further support of this projection recent evidence from Bonnevie et al., (2013), show that 

grid cells destabilize after inactivation of the hippocampus (also see Bonnevie et al., 2006; Hafting et al., 

2008).  

The placement of the subiculum within the hippocampal circuit fits with these suggestions. The 

subiculum is generally considered a CA1 output area with little to no backprojection (Amaral and Witter, 

1995; O’Mara et al., 2009). In view of this, communication between the subiculum and the CA1 is 

generally considered to be via a strong uni-directional projection from the subiculum to the EC 

(Kloosterman et al., 2003). Subicular spatial information could therefore reach hippocampal place cells 

via EC projections. If the CA1 cells can input to the EC to reset path integrator errors, it is likely that in 

light of it being the major output structure of the CA1, it does the same to the subiculum.  

6.5.2 Implications for the spatial representation network  

Spatial navigation involves a large network of brain structures. Subicular BVCs, place cells and grid cells 

may be important as outputs to motor systems subserving spatially guided behaviours such as 

navigation. If subicular BVCs and grid cells can also act as inputs to the neural circuitry representing 

space, the classic view of the subiculum needs some supplementation. Classically the subiculum is 

considered the major output region of the CA1, and is not considered to have a direct input route back 
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into the CA1. If it’s only role is as an output region then, then it would be expected that subicular firing 

would follow the same patterns as CA1 cells. However evidence demonstrated that subicular cells could 

act independently of CA1 place cells (Lever et al., 2009). In 2009 Derdikman and Moser in response to 

Lever et al., (2009) consider a crucial task towards understanding the relationship of CA1 place cells and 

BVCs, would be to record them both in a paradigm causing place cells to remap. In this thesis BVCs and 

place cells were recorded in the same paradigm, and the results showed that the remapping across 

environments seen in CA1 place cells was not replicated by BVCs.  

The strong connections between the subiculum and the CA1 and entorhinal cortex, puts the structure in 

a privileged position to play an integral role in spatial processing.  The subiculum is actually well placed 

to present information to the CA1 via the entorhinal cortex by virtue of its position in a physiologically 

active subiculum–entorhinal– hippocampus circuit (Kloosterman et al., 2003). Also, the subiculum has 

strong projections to parasubiculum and presubiculum, which both provide massive input to 

hippocampally projecting entorhinal cells (Witter and Amaral, 2004). These connections provide another 

route for the passage of information back into the hippocampal formation. Furthermore, the 

parasubiculum’s cortical input is mainly from the subiculum, its output mainly to the entorhinal cortex 

(Witter and Amaral, 2004). All this considered it is reasonable to assume that at least some subicular 

output (re)enters the hippocampal formation. The reports of border cells in the MEC and pre- and 

parasubiculum is consistent with the BVC model, according to which the subicular BVCs provide inputs 

to place cells in the hippocampus proper via entorhinal cortex. 

The functionally diverse cell populations shared by the MEC, presubiculum and parasubiculum may 

suggest that these brain structures may also share qualities allowing them to host this variety of spatial 

cells. Boccara et al., (2010) consider the diversity of spatial representation in each of these areas may 

suggest that each region could conduct its own computations. Here it is shown that the subiculum hosts 

a diverse range of spatial cells too, and so if the parahippocampal structures compute their own 

computations then it is likely the subiculum does too.  

Boccara et al., (2010) also consider the possibility that in principle, grid, direction and border patterns in 

pre- and parasubiculum could be inherited passively from parent cells with similar properties in the MEC

(Hafting et al., 2005 Sargolini et al., 2006 Solstad et al., 2008 or, from border cells, and BVCs in the 

subiculum (Lever et al., 2009). They consider that inheritance from MEC to pre- and parasubiculum is 

unlikely due to the weak nature of the projection (Kohler, 1986; Van Groen and Wyss, 1990). Instead, 

they consider it more likely that projection cells in pre- or parasubiculum may impose firing patterns on 
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cells in MEC, because these connections are stronger (Van Groen and Wyss, 1990). The appearance of 

subicular grid cells may speak to these considerations.  The subiculum and the MEC have a strong 

reciprocal connection (as outlined in the introduction). It may be that spatial cells patterns could be 

inherited passively either way across this connection. The subiculum also projects strongly to the pre- 

and parasubiculum, possibly accounting for the abundance of spatial cells located in these areas too.  

The subiculum has strong efferent connections to the pre- and parasubiculum, whereas returned 

afferent projections from these areas are much weaker. This suggests that the direction of information 

between these areas may more likely be from the subiculum to the pre- and parasubiculum.  

6.6      Methodological issues 

6.6.1  Gridness score 

6.6.1.1 Problems with spatial autocorrelogram  

Gridness determines the spatial periodicity of the grid pattern and is typically used in the classification 

of grid cells (Hafting et al., 2005; Fyhn et al., 2004; Solstad et al., 2008; Wills et al., 2012; Barry et al. 

2007;2012). All grid cell studies use spatial autocorrelation to calculate gridness scores. However, each 

spatial autocorrelation procedure has subtle differences including when the maps are smoothed and in 

the bin sizes used. For instance, the Wills et al., (2010) procedure smoothes the firing rate map first then 

runs the spatial autocorrelation. The Barry et al., (2007) procedure runs the spatial autocorrelation on 

the unsmoothed firing rate maps, and then smoothes the autocorrelation. These dissimilarities can 

mean the difference between a cell whose periodic properties are well captured by the spatial 

autocorrelation and one whose properties are not well captured.  All the cells were run through various 

spatial autocorrelations and found that sometimes there were fairly substantial differences in the 

gridness scores.  

Our spatial autocorrelation procedure was a minor smoothing-related modification of Barry et al., 

(2007) and provided the best fit for the largest number of periodic cells. The success of the modification 

was probably related to the larger grid scale of subicular grid cells (~70cm) in this dataset then used by 

Barry et al., (2007) and Wills et al., (2012). 

6.6.1.2 Gridness thresholds 

In the present thesis, the gridness threshold was set relatively high for inclusion in the grid cell sample 

(≥0.25). In previous studies the threshold was generally only been raised similar to this for more robust 
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analyses (e.g. ≥0.3 Solstad et al., 2008; Barry et al., 2007; Boccara et al., 2010). In general the threshold 

has in the past been set to >0 (Hafting et al., 2005; Fyhn et al., 2007; Solstad et al., 2008; Wills et al., 

2010). Setting the threshold high did mean that some cells which showed periodic firing did not make it 

into the sample. However, even had the threshold been lowered to ≥0, some cells with clear periodic-

like fields would have still been excluded from the analyses.   

That said in general the threshold fit the data well. The threshold excluded some cells which certainly 

were not grid cells, and the majority of cells demonstrating periodic firing were included in the sample. 

Gridness is certainly a useful measure, however, it must be utilised with caution. With the recent 

appearance of band-like cells (Krupic et al., 2012) and grid cells with elliptical fields, it may be wise to 

use other measures in conjunction with gridness scores for the characterisation of periodicity.  

Barry et al., (2012) notes that grid patterns can deviate from being perfectly regular in a number of 

ways. For example, individual fields might be shifted relative to one another, or the entire lattice might 

be compressed or expanded along one dimension. Both of these eventualities can result in reduced 

gridness scores. These considerations led Barry et al., (2012) to perform further analyses specifically 

testing for ellipticity, and, for whether the grid pattern had been compressed/stretched along one 

dimension. It may be that in future grid cell studies extra measures would be valuable, especially since 

the influence of boundaries on grid patterns is not always parametric (Barry et al., 2007).  

6.6.2 Task design 

The work in this thesis highlights the importance of using large environments for analysis of spatial cells. 

It could reasonably be argued that grid cells have previously been recorded in the subiculum but that 

they were mistaken for place cells, because of the size of their fields and the environment areas. Grid 

cells are hard to identify in small environments. Savelli et al., (2008) could not investigate whether grid 

scale increased with expansion because there were not enough fields in the small environments.  

Critically, Sharp and Green (2004) noted that some subicular cells showed multiple peaks, however the 

implications of this discovery were missed. Similarly, this problem also occurred in MEC investigations 

(Quirk et al., 1992).  

However, there are problems caused by using large environments. The larger the environment the 

longer trial time is required, to ensure adequate sampling. Long trials and long testing days meant that 

not all cells could be tested in all manipulations. In addition, motivating the rats to explore and forage 

for rice over a 14 hour periods was a difficult task. However,  I managed to successfully counterbalance 
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this problem by using a slow careful procedure to lower the electrodes into the brain. The electrodes 

were lowered into the brain using small slow steps, which meant that cell stability across days was 

optimal.                  

6.7        Future directions 

 Research is required to test the differences and similarities of the spatial cells recorded in the different 

structures. Do they have different roles; are there any functional differences between subicular and 

MEC spatial cells? The diversity of spatial representation within structures creates more research 

questions. For example what is the computational significance of having two separate representations 

of boundaries situated along the hippocampal processing loop? Do the two representations emerge 

independently or does one drive the activity of the other? In order to address these questions future 

research needs to be conducted recording subicular and MEC cells simultaneously or at least in the 

same manipulations. For example if the same wall removal procedure was utilised would the MEC grid 

cells show the same level of grid expansion?  

Further exploration is required to identify why there is such a multiplicity of spatial representation in the 

SUB, MEC pre and parasubiculum. Boccara et al., (2010) consider that by identifying the common 

properties of these networks, it may be possible to determine the necessary conditions for a shared 

pool of spatial cells. The discovery of these conditions and shared properties, may suggest that the 

subiculum, has more in common with the regions of the parahippocampal system then the hippocampal 

formation. These are strongly connected regions, and the functional role of sharing the same spatial 

representations. Given that boundary-responsive cell, HD cells and grid cells are distributed widely in 

the circuit, this information would be accessible to the majority of grid cells also recorded throughout 

the circuit.  

In a similar vein to above it would be interesting and telling, to see at what age subicular grid cells and 

BVCs begin to appear. Currently grid cells become evident at P19 (postnatal day 19; Langston et al., 

2010; Wills et al., 2012) if subicular spatial cells appear earlier or later then MEC spatial cells this could 

provide insights into where the grid signal originates from.   

Further exploration is required into the relationship of grid scale and novelty. Do subicular grid cells 

revert to an intrinsic grid scale with experience of a novel environment like MEC grid cells? Future work 

could test subicular cells using a novelty specific paradigm, similar to Barry et al., (2012). Using a similar 
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paradigm would also give the benefit of making the results relatively comparable across the subiculum 

and the MEC. 

Further research is required to determine the nature of the relationship between grid cells and BVCs. So 

far where grid cells have been located so have boundary cells. Is it the case that subicular BVCs and MEC 

border cells provide necessary inputs to their respective local grid cells?  

Further characterisation of grid cells and BVCs in relation to differently sized objects. This thesis makes a 

good contribution to understanding more what a BVC considers a boundary, however it has also raised 

further questions. In addition, since BVCs do not treat thin/low objects as boundaries, does it follow that 

these objects would not cause grid pattern shift/deformation and inhibition in grid cells?  

Finally further research is required to translate single cell recording studies to humans. As it stands it 

remains unclear whether rodent spatial coding has a homologue in humans or whether human 

navigation is in fact driven by a different, visually based neural mechanism (Ekstrom et al., 2003). 

However, recently Doeller et al (2010) discovered grid-cell-like representations in humans visible using 

functional magnetic resonance imaging (fMRI), suggesting this research is translational. 
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