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A bstract

The problem o f  disc brake squeal has been examined by developing a finite element 

model o f  the coupled pad-disc system , conducting complex eigenvalue analysis and 

associating unstable modes with potential squeal problem areas. A key issue in this 

process is the representation o f  the contact pressure distribution at the frictional 

interface between the disc and the pad. Non-linear contact analysis using the finite 

element model o f  the pad revealed that contact is only partial at the pad-disc interface 

and that the contact pressure distribution depends on the friction coefficient, Young’s 

modulus o f  the friction material and the way the applied pressure is distributed on the 

pad backplate. A new method is proposed in which interface contact stiffness is related 

to brake line pressure using a statistical approach based on the measured surface 

properties o f  the interface. Complex eigenvalue analysis o f  the coupled pad-disc 

system has shown that unstable modes exist within different ranges o f  contact stiffness 

thereby providing an explanation o f  the effect o f  varying line pressure on squeal. The 

two most unstable modes from the analysis show good correlation with experimental 

squeal results. The coupled model is then used for parametric studies the results o f  

which indicate that high coefficient o f  friction and uniform contact pressure 

distribution increase instability whilst a trailing edge biased pressure distribution and a 

high support stiffness at the pad backplate reduce it. Limiting the disc symmetry by 

introducing equispaced slots was shown to be effective in reducing instabilities 

involving diametral modes o f  the disc with the same order o f  symmetry only Other 

modes were stabilised by increasing the rigidity o f  the pad. The overall results suggest 

that either the pad or the disc can be mainly responsible for the instability depending 

on the mode thus unifying the different approaches to disc brake squeal and enabling 

the most appropriate component to be targeted for squeal abatement purposes.
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INTRODUCTION
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1.1 Background

The problem o f  brake noise is in general related to comfort and refinement rather 

than to safety or performance. Increased refinement in other parts o f  the car such as 

suspension, passenger compartment acoustics and transmission has turned attention to 

noise emanating from the brake. Legislation relating to noise level however is limited to 

continuous noise sources and therefore does not cover the intermittent nature o f  brake 

noise. Nevertheless the ideal solution in the form o f  a silent brake would help to bring 

about a better environment and reduce noise level particularly in places where stopping 

frequently occurs - the ubiquitous noise from bus brakes for example.

The vibration problem o f  a disc brake can in general be divided into two 

categories. The first is judder which is felt rather than heard as it occurs typically at 

frequency below 100 Hz. The second is noise which occurs as a result o f  self-excited 

oscillation or dynamic instability. This second type o f  noise is generally described as
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‘squeal’ or ‘squeak’ or ‘moan’ [1], Squeal is commonly associated with noise involving 

transverse modes o f  the disc which in general exists at above 1 kHz.

In economic terms the general problem of  persistent brake noise may lead to high 

warranty costs and disc brake noise contributed to the majority o f  the brake faults in a 

recent survey [1], In another study disc brake squeal tends to occur more frequently in 

European cars [2], The most recent survey carried out by a consumer magazine ‘Which’ 

[3] where over 100 different brands o f  cars were tested indicated that squeal still exists 

as a potential fault for consumers to watch out for when buying used cars. The report 

also confirms that the major o f  brake noise problems can be found in continental cars.

As the market for mass produced cars becomes ever more competitive, profit 

margins reduce resulting in manufacturers venturing into the luxury car market in which 

the margin is higher This market requires much higher levels o f  refinement . However 

one o f  the best selling luxury cars is still facing a disc brake squeal problem even though 

research into the problem has been going on for quite sometime [4],

For the above reasons there is every impetus to reduce disc brake squeal . In 

particular research into understanding and modelling disc brake squeal may prevent 

costly post-production modifications. Mathematical modelling o f  the squeal problem has 

indeed been identified as one o f  the major means by which understanding and solution o f  

the problem could be further advanced [1], A recent article by Smales [5] recognised the 

fact that it is uneconomic in terms o f  cost and time to fix problems which occur at the 

prototype stage rather than to design ‘right first time’ . Further fixes are usually 

developed retrospectively by empirical processes which are again expensive in terms o f  

manpower and the manufacturer’s reputation. Thus Smales proposed the use o f  

predictive modelling based on the finite element method rather than the alternative 

lumped parameter approach which is difficult to apply to actual brake design since it is 

unable to model flexural effects.

The advent o f  powerful digital computers facilitates the application o f  the finite 

element method in modelling the disc brake squeal problem as exemplified by Liles [6 ] 

who employed the MSC Nastran finite element software and used the real part o f  the
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complex eigenvalues o f  a coupled pad-disc finite element model as a measure o f  squeal 

propensity. Introducing friction into a finite element model causes asymmetry o f  the 

stiffness matrix which causes problems as most proprietary finite element codes do not 

have the capability to solve eigenvalue problems which involves unsymmetric matrices. 

The friction effect itself is very complex and forms its own discipline o f  study. Modelling 

o f  friction in the finite element analysis o f  disc brake squeal is still based on the relatively 

simple Amonton’s Law as this has been proven to provide good correlation with 

experimental trends [7], Incorporating non-linear friction based on the Oden-Martin 

friction model [8] is more realistic but costly in computational terms.

1.2 Present Work

In the present work disc brake squeal propensity is evaluated by examining the 

complex eigenvalues o f  a finite element model developed for a particular pad-disc 

combination. The primary objectives o f  the research were to :

•  Develop finite element models o f  the disc and the pad which display acceptable 

correlation with the available experimental results.

•  Study the contact pressure distribution at the pad-disc interface under normal sliding 

conditions.

•  Establish a relationship between the applied pressure and the interface contact 

stiffness.

•  Determine the effect o f  applied pressure on squeal propensity based on the 

relationship thus established and the results o f  the complex eigenvalue analysis.

•  Compare the results o f  the stability analysis with experimental trends by varying 

certain parameters over a realistic range.

•  Suggest realistic and coherent strategies for eliminating squeal at the design stage 

using the results o f  the above studies.

The finite element models o f  the brake pad and disc are iteratively developed 

using the ANSYS Revision 5.0A [9] software package until the free-free modal analysis 

results compare well with experimental results published by Fieldhouse and Newcomb
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[10] The finite element model o f  the pad is then used for contact pressure analysis using 

the ABAQUS [11] package as it is more suitable for the non-linear contact analysis 

required. The resulting contact pressure distribution is next linked to the distribution o f  

interface contact stiffness using a random process approach which takes account o f  the 

material and surface roughness properties at the interface.

The disc and pad finite element models are then coupled with the contact stiffness 

distribution at the interface based on the predicted contact pressure distribution under 

steady state sliding conditions. Contacts between the pad and external bodies such as the 

piston and abutments are approximated with stiff springs. With the inclusion o f  friction at 

the sliding interface, the stiffness matrix becomes unsymmetric which results in complex 

eigenvalues, the positive real part o f  which is used as a measure o f  squeal propensity. 

Parameters relating to the brake system are varied in order to determine the overall effect 

o f  pressure on squeal propensity and also to determine methods by which the parameters 

responsible for squeal can be isolated. The trends from this parameter study are 

compared with other published work.

1.3 Thesis Organisation

This thesis is divided into eight further chapters as follows

Chapter Two comprises a literature review on the subject o f  brake noise in 

general and disc brake squeal in particular.

Chapter Three discusses the methodology o f  disc brake squeal modelling and 

provides the overall framework o f  the present analysis.

Chapter Four concentrates on the free-free modal analysis o f  the two major 

components o f  the disc brake system (the pad and the disc) with the results compared 

with reconstructed experimental holographic images from experiments.
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Chapter Five discusses analysis o f  the contact pressure distribution between the 

pad and the disc using the finite element method and the parameters affecting it.

Chapter Six covers the random process approach used to link the applied 

pressure to contact stiffness via the surface material and roughness properties.

Chapter Seven discusses the stability analysis o f  the coupled pad-disc system 

using complex eigenvalues and concentrating on the effect o f  applied pressure on squeal 

propensity.

Chapter Eight reports the parametric studies o f  the coupled pad-disc system to 

determine the extent to which each parameter investigated affects the system squeal 

propensity.

Chapter Nine summarises the results and conclusions o f  the present work. 

Recommendations for further work are also presented in this chapter.
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CHAPTER TWO

LITERATURE REVIEW

2.1 Introduction

Brake noise has been a problem since the introduction o f  friction brakes. In 

motor vehicle applications , the increase o f  passenger comfort resulting from systematic 

studies on the transmission , the handling and suspension systems and the acoustics of 

the passenger compartment has brought the brake noise problem to the fore due to the 

risks o f  increased warranty costs and reduced product marketability as discussed in 

Chapter One.

In the present c h a p te r , a series o f  studies on disc brake noise are discussed , in 

particular the understanding o f  disc brake squeal mechanisms using various mathematical 

models from relatively simple one degree-of-freedom models to multi degree-of-freedom 

models. Some o f  the work is based on the simple strut on disc apparatus in order to 

make the system more amenable to analysis and to explain the more general problem of 

friction excited vibration. Past work on the full disc brake system which provides more
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insight into realistic situations is also discussed. This in total provides an overall picture 

o f  disc brake squeal mechanisms and the underlying explanations.

2.2 Definitions

The noise emanating from a disc brake covers the whole range o f  audible 

frequency and different mechanisms and components may be responsible for each type o f  

noise. Although the present study is aimed at disc brake squeal, it is important to see 

squeal as a sub-problem o f  the wider more general brake noise problem. Therefore brief 

definitions o f  the various types o f  disc brake noise based on the work o f  Lang and 

Smales [12] are listed below

a) Judder - very low frequency non-resonant vibration caused by disc rubbing 

path non-uniformity resulting from circumferential thickness variation.

b) Groan - semi-resonant vibration with frequency typically less than 100Hz.

May involve rigid body rotational modes o f  the caliper and local suspension 

parts.

c) Hum - frequency typically in range o f  200Hz - 400Hz with rigid body motions 

as for groan.

d) Squeal - Vibration involving transverse disc modes. If the squeal mode 

frequency is lower than the first bending mode frequency o f  the pad , it is 

considered as low frequency squeal. Higher frequency modes are sometimes 

referred to as squeak.

e) Squelch - amplitude modulated version o f  squeak.

f) Wire brush - periodic and at squeak frequency but with random amplitude 

modulation.

Squeal is sometimes defined as any brake noise o f  over 1 kHz frequency. This is 

generally true as usually the transverse disc modes begin at about 1 kHz. In the present 

work squeal is considered as defined in (d).
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2.3 Squeal Models

2.3.1 Early work

The problem o f  brake squeal was studied as early as 1935 when Lamarque [13] 

collected the experience o f  manufacturers and operators on the causes and prevention of 

squeal in drum brakes. A catalogue o f  preventive methods were listed , including the 

clamping o f  steel bands lined with woven asbestos around the drum periphery 

supposedly to damp the vibration o f  the drum.

Fosberry and Holubecki [14] began a systematic attempt to understand the 

nature o f  brake squeal in 1955 and started with the idea o f  squeal as a result o f  

oscillation caused by increasing friction coefficient with decreasing speed. The 

hypothesis was tested by roughening the surface o f  a brake lining artificially treated with 

graphite and mineral oil to alter the friction-velocity characteristics. The results did not 

show any clear relationship between the friction-velocity characteristics and squeal. 

Measurements using short linings, however, showed an increase in brake torque at the 

near stop conditions for a squealing brake. Due to the unavailability at that time o f  

friction material with static friction coefficient equal to or less than the kinetic friction 

coefficient, they suggested improved damping o f  either the drum or shoes as one way to 

remedy squeal.

The suggestion above resulted in the subsequent work reported in 1957 [15] 

where friction dampers attached to the drum proved to be effective in reducing squeal on 

buses.The extension o f  this work to brake shoes followed [16] even though the friction 

damper on the shoe was found to be effective only for low frequency squeal occuring at 

less than 3 kHz. The work also began to classify general brake noise into the various 

frequency classifications o f  ju d d e r , hum ,squeal and wire brush. At this time discussion 

had already begun on the energy input into the system due to the friction-velocity 

characteristic o f  the lining. In 1961 , Fosberry and Holubecki suggested that disc brake 

squeal was also caused by either static friction that was higher than the kinetic friction or 

kinetic friction which increased with decreasing speed [17], The disc brake squeal
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frequency was found to be the same as the frequency o f  the disc in the clamped 

condition and a "fix" in the form o f  dished laminations between the pad backplate and 

the caliper piston was proposed as a means to alleviate squeal. However, there was no 

explanation as to how the fix actually worked.

2.3.2 Variable friction model

Sinclair [18] put forward a model based on his experiment in which a rigid block 

o f  mass m and applied load N is pulled along a plane using a spring o f  stiffness k with 

friction force F acting against the sliding motion (figure 2.1). The free end o f  the spring 

moves with constant velocity, V and the kinetic friction coefficient (.ik is less than the 

static friction (j.s.

N

Figure 2.1 - Sliding block on plane [ 18]

Under this condition ,stick-slip motion can occur. The equation o f  motion during slip is

mx+ kx = L(|.is -  ) + kVt (2.1)

where L = N + mg , x is the acceleration and t is time.The solution o f  equation (2.1) is

L
x = Asin(cot + 0 ) +  —(|AS - |- ik )  + Vt (2 .2 )

k

where the amplitude A is given by
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A = (^-(^is -Hk)2 + \ ) V2 ( 2 3 )
K Q)

and the natural frequency co and the phase angle O are given by

c o = J I  and ta n O  = ^ ( | i , - } i k) (2.4)
V m kV

From equation (2.3) the amplitude o f  oscillation increases with the difference between 

the static and kinetic friction , the applied velocity and the normal force. Considering the 

special case when the static and kinetic friction coefficients are equal , this would result 

in steady oscillation without sticking which in practice will disappear due to damping. 

From equation (2.4) the natural frequency o f  the system is shown not to be influenced by 

the friction coefficient, however, the associated phase angle is very much affected by the 

difference between the static and kinetic friction coefficient. The experimental 

observation showed that stick-slip motion only occurred when the applied velocity was 

reduced to a few hundredths o f  a meter per second and the response changed to uniform 

sliding as the velocity was increased. Wetting the surface resulted in a decrease o f  

kinetic friction coefficient causing the amplitude to increase as predicted by equation 

(2.3). From this model , Sinclair concluded that the tangential oscillatory motion o f  the 

brake lining was caused primarily by ns > |ik and that decrease o f  nk with speed is 

the reason for brake squeal. The model proposed, however, predicted squeal amplitude 

increasing with the rubbing speed as shown in equation (2.3), which is generally not 

true for squeal.

Measurement o f  the coefficient o f  friction and velocity characteristics o f  lining 

materials was carried out by Basford and Twiss [19], They found cyclic vibrations o f  

the apparent friction with the amplitude and frequency o f  the oscillations dependant on 

the mass and stiffness o f  the sample and mounting system. From this they suggested a 

squeal model as shown in figure 2 .2a.
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>  V

Figure 2.2a - Block on sliding plane [19]

Kinetic friction coefficient

Figure 2.2b - Kinetic friction coefficient as a linear function o f  sliding speed

Figure 2.2a shows an elastic block o f  mass m is rigidly held with load L acting 

normal to the sliding plane moving at a constant sliding speed o f  V and held against a 

moving surface with the friction force causing shear and displacing the block friction 

face by x, measured positive in the direction o f  sliding. The thickness o f  the friction 

block is given by h. In the model the kinetic friction is assumed to decrease linearly with 

the rubbing speed,

Mk = H s - a ( v - * ) (2.5)
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where a is the gradient o f  the friction-relative velocity curve as shown in figure 2 .2b.

The equation o f  motion o f  the friction surface is ;

nix -  HfcLx + G — = L(|is -  aV )..... (2-6)
h

where m=block mass per contact area

G=elastic shear modulus 

L=normal load

Equation (2.6) is derived by assuming that shear angle due to the displacement o f  the 

pad surface x can be approximated (at small angle) using the elastic shear modulus o f  the 

friction material.

The solution o f  this equation when neglecting the particular integral is

x = Aexp[(aLht / 2m)sin((4Gm / h -  a 2 L2 ) 0'5 —  + B)]
2 m

t
(2.7)

where A and B are integration constants. From equation (2.7) , squeal occurs when x 

increases with time indicating oscillations with growing amplitude. This happens when 

the exponential term is positive i.e. the coefficient a is positive. Therefore from equation 

(2.5) the kinetic friction coefficient must decrease with increasing relative velocity in 

order to produce instability.

Equation (2.7) was then used by Bassford and Twiss [19] to determine an 

expression for the probability o f  noise from a lining as below :

P =
aL ^

^ J 6XP1 2 a 2
cod - 47nn

4Gm \l/2^
- a L (2.10)

where c - constant

cod - drum natural frequency
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ct- width o f  frequency band which induces drum resonance

Experiments using four linings partially verified the above equation with the squeal 

occurrence increasing with the noise probability p and the elastic shear modulus G. The 

model developed by Basford and Twiss has a definite advantage over the Sinclair model 

because it takes into account the slope o f  the friction coefficient-velocity curve and 

therefore allows for different noise behaviour for similar values o f  static friction.

Wagenfiihrer [20] introduced a very similar model to Sinclair but which allowed 

a non-linear variation o f  the friction coefficient-velocity curve. In this model (figure 2.3) 

, a block is loaded against a sliding plane and restrained by a spring and damper.

Figure 2.3 Block on sliding plane [20]

Oscillations o f  the block were considered to be stick-slip due to m-s > M-k - The expression 

for kinetic friction was found from experiment to be :

(2.11)

where d and nh are constants for a given friction material. The equation o f  motion for 

the system is
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mx + cx + kx = ±L He “  »-lh 
l + d ( V - x ) +Mh

(2.12)

the (+) sign being for V>X and the (-) sign for V < x  . The analysis showed that 

increasing the damping stabilised the system. The condition for continuous oscillation is 

fulfilled when the total energy o f  the system increases with time (i.e. dE/dt > 0 ). This 

condition then reduces to

____Ld(n, Hh)____ (2 g) 
(l  + dV)( l  + d ( V - y ) ) _______________________________________ '

where V; is the initial velocity o f  the block. The above expression shows that large 

differences between the static and kinetic friction coefficient , large normal loads and 

low sliding speeds will all enhance squeal.

2.3.3 Sprag-slip model

Up to this point in time , all squeal models proposed were single degree o f  

freedom blocks with a common instability mechanism o f  decreasing friction coefficient 

with increasing sliding speed and with squeal favouring a large normal load.

The introduction o f  the sprag-slip model by Spurr [21] gave brake squeal an 

added instability mechanism. The model is shown in figure 2.4.
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O'

■> v

O"

Figure 2.4_- Sprag-slip model [21]

OP is a rigid strut pivoted at O and loaded at P against a sliding surface AB The friction 

force for a rigid pivot O is:

F = ^kL
(1 -  nk tanO)

(2.14)

Thus the friction force will approach infinity as cotG approaches n k . At the sprag angle 

0  = arccot(}.ijc) , further motion is impossible.

For the motion to continue , the pivot at O is elastically displaced to O' causing 

an increase o f  the angle 0 to 0'. This will cause the friction force F to fall thus 

allowing the strut to return to its initial position due to its elasticity. The motion then 

repeats itself and as long as the sliding motion is available to energised the system the 

strut OP will continue to oscillate. With this model variation o f  friction coefficient with 

sliding speed is unnecessary for instability. Various experimental evidence was used by 

Spur to support this theory ; in relation to disc brake squeal , a contact area forward o f  

the piston support (pivot) was achieved by grinding a double taper on the pad and 

squeal was achieved when the imaginary line joining the contact area and the pivot was 

at the sprag angle. The great advantage o f  Spur's model is that it is relatively easy to 

understand.
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2.3.4 Pin-on-disc models

2.3.4.1 Friction induced self-excited oscillations.

In this section the focus is on friction induced self excited vibration which has 

been mostly studied using pin-on-disc experiments. The models derived therefrom form 

much o f  the basis o f  the present understanding o f  disc brake squeal. In general friction 

induced vibrations can be divided into two major categories

a) stick-slip vibration where the displacement versus time curve is o f  a saw tooth form

b) quasi-harmonic vibration where the displacement versus time curve is o f  sinusoidal 

form.

The idea o f  friction as uniform and steady throughout any vibratory process was 

shown to be untrue by Lienkewicz [22], He demonstrated the effect o f  vibration in 

reducing the static friction coefficient and damping out stick-slip motion. Lo and 

Brockeley [23] showed the need to take into account the vibration effect during the 

measurement o f  kinetic friction coefficient since an averaging technique does not 

indicate the true friction coefficient. For the quasi-harmonic friction induced vibration , 

they used a model similar to Sinclair [18], The phase-plane analysis indicated a stable 

limit cycle and adequate damping was shown to eliminate the vibration.

A study by Aronov et. al. [24] showed both low and high frequency friction 

induced vibration depended upon the system rigidity. There is a critical normal load 

when self excited oscillations occur. A higher system rigidity would require higher 

critical normal load. The oscillation frequency also increases with the system rigidity. 

Low frequency oscillations occur only in the friction direction while high frequency 

oscillations occur due to the coupling between the frictional and normal degrees o f  

freedom.

Soom and Kim [25] proposed a very useful concept o f  variable friction 

coefficient. They began with the argument that normal vibrations could be excited either
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by external oscillatory forces or by surface roughness including waviness o f  the surface. 

They measured the frequency domain transfer function between the frictional (output) 

and normal (input) forces and found good coherence around the contact resonance. The 

instantaneous coefficient o f  friction with time could then be written as

(215>FN (t) N + fN(t)

where ]I is the average value o f  the friction coefficient and ]I(t) is the fluctuating 

component. Also jl=  (.iK where | iK is the kinetic coefficient o f  friction. The instantaneous 

oscillatory friction coefficient could then be defined as

fF (0  l-l(0
m , ) = w o = M k  + w o ^  ( 2 1 6 )

If  n(t) is proportional to and in phase with fN (t) , the dynamic coefficient o f  friction 

j.iD will be higher than the averaged kinetic coefficient o f  friction (,iK.

Continuing the same work , Soom and Kim [26] analyzed a slider model as 

shown in figure 2.5. The contact stiffness ks was calculated from Hertzian theory The 

equation o f  motion in the y-direction could be written as

my + c s ( y - y ie) + k s( y - y ic) = o (2 1 ? )

In the case o f  the weight loaded condition ,

fN (t) = - m y (2.18)
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y

Figure 2.5 - Slider model for analysis o f  dynamic coefficient o f  friction [26],

In this case the dynamic coefficient o f  friction was found to be approximately 1.4 times 

higher than the steady kinetic coefficient o f  friction and independent o f  average load 

(weight loaded only) , sliding speed and surface roughness. The normal and frictional 

forces were found to be in phase and the amplitude ratio was found to be independent o f  

frequency.

In their experimental work Dweib and D'Souza [27] found 4 distinctive regions 

o f  friction behaviour as the normal load was increased , namely :

1. Linear region - |.iK constan t, F linear with N

2. Non-linear region - F non-linear with N , tangential natural frequency 

dominant

3. Transient region - irregular and brief self-excited oscillations

4. Self-excited region - periodic self-excited vibrations , amplitudes are much 

h igher , average value o f  friction force F remains constant.
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In the self-excited region , the slider vibrates in the various directions (lateral , 

normal and rotating) at the same fundamental frequency which is close to its torsional 

natural frequency. Dweib and D'Souza estimated the contact stiffness o f  the non- 

Hertzian contact experimentally by deducting the no-contact natural frequency from the 

in-contact natural frequency , the difference between which was assumed to come from 

the added stiffness from the contact. In subsequent work [28] they analyzed the effect o f  

various parameters on the critical normal load for instability. In general , higher normal 

or torsional stiffness required higher critical normal load which indicated coupling o f  

normal and torsional modes as the cause o f  instability. Therefore separation o f  these 

modes would increase the stability o f  the system.

A series o f  studies on frictional noise was carried out by Yokoi and Nakai using 

a rod pressing on the circumferential face o f  a steel disc. In the first study [29] , the 

noise generated came from bending vibration o f  the rod only because o f  the relatively 

thick disc used. Scanning electron micrography showed that , in the case o f  ordinary 

rubbing noise , the surface o f  the rod is relatively rough and as it wears and squeal 

occurs the surface becomes smooth. Measurements o f  the friction coefficient-velocity 

curve o f  the pair showed a shallow trough and squeal noise could even be generated 

with friction coefficient increasing with velocity. This was explained using an 

instantaneous value o f  friction coefficient (.i, dependant on the relative sliding speed v r 

which in turn has a relationship o f  the form vr = v -u* , where v is the tangential speed 

o f  the disk circumferential face and u* is the instantaneous velocity o f  the rod tip. The 

instantaneous friction coefficient versus relative sliding speed curve was shown to form 

a loop the negative gradient part o f  which would cause squeal to occur.

A subsequent study [30] used a longer rod to produce higher modes o f  squeal 

noise. Higher squeal modes were shown to be generated when the real area o f  contact 

between the disk and the rod is relatively large with the axial vibration o f  the rod 

increasing with the noise and the fundamental bending mode being damped out.
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The effect o f  surface roughness was studied in a further paper [31] which 

showed that sound pressure level increased with roughness to the power o f  0.8. The 

effect o f  angle o f  inclination was studied in [32] and the frequency o f  the noise generated 

was found to increase with the angle for positive angle i.e. the rod inclined towards the 

direction o f  rotation. For negative angles , an unstable condition develops resulting in 

chatter as digging-in occurs.

Tworzydlo et al [33] analysed the friction induced dynamic instability o f  a pin- 

disc system.This included a very comprehensive study o f  dynamic friction which is 

shown to be a function o f  the properties o f  the interface and the dynamic characteristics 

o f  the system. The friction coefficient was calculated on the basis o f  the Oden-Martin 

model [8 ] which took into account the normal approach indentation (and thus the 

stiffness ) and its time derivative ( damping ) and the approaching phase o f  the normal 

motion. Obviously the approach used here is non-linear. A matter o f  interest was the 

squeal problem which was categorized under the group o f  instabilities where the 

dynamic characteristics are important. Using a model o f  the pin-disc system , the stability 

o f  the system was determined by transient analysis and by linearized equations o f  

motion reduced to the form o f  an eigenvalue problem. The eigenvalue analysis showed 

coalescence o f  rotational and translational modes o f  the pin when moving into the self

excited region and divergence into two separate modes when the system stabilizes which 

occured with increase in normal load. Higher friction coefficient would initiate instability 

at a lower normal load. There were also other unstable modes for the different 

components (pin and block) which occurred independently and at different frequencies.

The transient analysis o f  [33] showed that sufficiently large disturbances can 

cause self-excited oscillation o f  the system , which may initially be shown to be stable 

from a linearized eigenvalue analysis.The transient analysis o f  the non-linear equations o f  

motion o f  the system also indicated an apparent drop in the kinetic friction (predicted 

from the angular displacement) after the self-excited oscillations reached a certain 

amplitude. Tworzydlo et al listed two important mechanisms which limit the unstable 

growth o f  the oscillation in the self-excited zone :
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a) micro stick-slip motion o f  the pin which tends to alter the rotational frequency

o f  the slider

b) normal jump o f  the slider which tends to alter the normal frequency.

The system was also shown to be sensitive to the angle o f  inclination , instability 

favouring the digging-in position (an acute angle measured from the direction o f  sliding 

plane).

Swayze and Akay [34] studied a two degree o f  freedom pin on a slider using 

phase-plane analysis. The results showed that an increase in friction coefficient would 

move the equilibrium point further away from the origin until , at a critical value o f  

friction coefficient , the origin o f  the phase plane is no longer the equilibrium point. 

Higher torsional stiffness and damping increases the stability o f  the system. Interestingly 

the analysis demonstrated how the critical friction coefficient could be obtained from 

the moment equilibrium condition , and that it is inversely proportional to the aspect 

ratio o f  the pin.

2.3.4.2 Geometrically constrained instability

The work covered in this section evolves mainly around the use o f  pin-on-disc 

apparatus to understand the mechanism o f  disc brake squeal. It differs from the above 

section where in general the study o f  friction induced noise was the main objective. The 

relatively simple geometry o f  the pin-on-disc system makes it more amenable to analysis 

and the results obtained can be compared to the general characteristics o f  squeal.

Jarvis and Mills [35] proposed a model where flexibility o f  the rubbing 

components is taken into account. This simplified model is explained using a cantilever 

tipped with friction material loaded at various angles against the flat surface o f  a rotating 

disc. The cantilever and the disc were assumed to vibrate in one o f  their principal modes 

and with different phases in time and space for the disc modes. Expressing the 

displacement o f  the cantilever and the disc by the product o f  their normal functions and 

normal co-ordinates and frictionally coupling the two components with the geometric 

constraints ( the axial displacement o f  the disc surface is set equal to the axial
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displacement o f  the cantilever ) ,  the Langrange's equations o f  the system could then be 

derived , the solution o f  which indicated the system stability.Overall stability o f  the 

system was found to be dependant on the damping , geometric configurations (length o f  

cantilever and slope angle) and friction coefficient. The authors predicted a stability 

radius for a given configuration but the experimental agreement was poor. Later Hales 

[24] showed how the agreement could be improved by taking account o f  the radii o f  

both the cantilever tip and the area o f  contact in the analysis. The Jarvis and Mills model 

showed how instability can arise from the geometry o f  the coupling o f  the rubbing 

surfaces and showed how instability could be avoided by the use o f  favourable 

configurations.

Earles and Soar [37] began a series o f  experiments with the pin-on-disc 

apparatus. They observed during squeal that the pin support beam always oscillated in a 

torsional mode. The fundamental frequency o f  the squeal did not coincide with the 

natural frequencies o f  the components but varied with radius o f  contact and angle o f  

inclination o f  the pin. They rejected the variation o f  friction coefficient with velocity as 

the cause o f  squeal because squeal was found to be independent o f  speed. They 

therefore deduced that the kinematic-constraint instabilities were the principal cause o f  

squeal.

Further work by [38] on the same apparatus was done by limiting the analysis to 

linear equations while the system was considered to be continuous. The model predicted 

squeal frequencies for the system in good agreement with experiment. Different modes 

o f  the pin were found to excite different modes o f  the disc with the translational mode o f  

the pin exciting the second diametral mode o f  the disc and the rotational mode exciting 

the third diametral mode.

The complexity o f  the analysis increased in the subsequent work by Earles and 

Lee [39] where the degees o f  freedom o f  the model were increased to three 

(translational x and y , rotational). Deriving the equations o f  motion o f  the system 

resulted in a set o f  equations o f  the form o f  ap 2 + b(3 + d = 0 , from which instability 

could be predicted. Again the predicted region o f  instability correlated well with
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experiment , with the different shape o f  the region attributed to the higher experimental 

friction coefficient o f  0.6 compared to the coefficient o f  0.4 that was modelled. It is 

interesting to note that this work predicted a narrow range o f  preferred stiffness o f  the 

beam and disc for squeal to occur.

The work continued with the added complexity o f  a double pin and disc system

[40], Each pin had two degrees o f  freedom (translation and rotation ) with a single 

degree o f  freedom for the disc. The equations o f  motion derived were used to obtain the 

characteristic equations and the Routh-Hurwitz criterion was applied to determine the 

stable boundary. The predicted envelope agreed well with experiment. The primary 

parameters found to affect the system stability were friction coefficient, disc stiffness and 

pin support torsional stiffness. The complex relationship between the system parameters 

was cited as the reason for the fugitive nature o f  brake squeal.

The above series o f  experiments by Earles et al using the pin-on-disc system did 

not reveal any new mechanism for disc brake squeal. The approach confirmed the earlier 

work o f  Spurr [21] on the sprag-slip model and kinematically constrained instability with

the pin required to be at an angle o f  O < 0 < t a n _ l (.i to produce squeal (a necessary but 

not sufficient condition). Nevertheless the difficulties o f  translating these results to actual 

disc brake squeal remained due to the dissimilar geometry.

2.3.5 Lumped parameter models

Departing from the pin-on-disc model , North [41] produced a lumped parameter 

model which more closely resembled a disc brake assembly , in this case a single piston 

swinging caliper design. The model consisted o f  two pads clamping a disc supported by 

a caliper ( see figure 2.6 ). Each component has translational and rotational degrees o f  

freedom which are connected by springs and dampers.
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Figure 2.6 - Eight degrees o f  freedom lumped parameter model o f  a disc brake system

[41]

This approach is based on the assumption that for a pad which is relatively short 

compared with the nodal spacings o f  the diametral modes o f  the disc, the centre o f  mass 

o f  the pad is subjected to lateral movement with the disc cosine mode and rotation with 

the disc sine mode , the disc presumably having two modes o f  the same order with 

different amplitude and phase as assumed by Jarvis and Mills in their geometrically 

coupled model [35], The eight coupled equations o f  motion were then arranged in 

matrix form , the problem being essentially an eigenvalue problem , the solutions o f  

which may come in the form o f  complex conjugates , with the positive real part 

indicating system instability and the imaginary part the system frequency. The instability 

mechanism o f  this model is explained by the convergence o f  two different modes to form 

one common mode due to favourable parameters - similar to a binary flutter instability. 

The model predicted increase in squeal propensity with increasing friction coefficient. 

The pad thickness and the magnitude o f  the normal force however were found to have 

no effect on the system stability. The model was able to give good agreement with



Chapter 2 Literature Review 25

experiment because o f  the wide range o f  parameter values used , for example the pad 

stiffness was assumed to lie anywhere between zero and a maximum value. The fugitive 

nature o f  disc brake squeal was explained by the model requiring certain values o f  

stiffness and effective pad length to allow proper interaction between the lateral and 

rotational modes. This model however contradicts the observation that squeal occurs 

over a range o f  applied hydraulic pressure ( typically 40 - 60 psi) in that the model was 

insensitive to normal load.

Millner [42] used the same approach as North to produce a lumped parameter 

model o f  a fixed caliper assembly with the action o f  the two pads simplified by 

considering a single pad acting on the disc. The pad abutted rigidly against the caliper. 

The equations o f  motion o f  the assembly were then reduced to an eigenvalue problem 

and the squeal propensity o f  the system is again based on the positive real parts o f  the 

roots. The general trend from the study is the same as [41] but with the additional 

observations that squeal favours leading edge contact o f  the piston with respect to the 

pad and also that the friction material modulus could affect the system stability since the 

system becomes stable for a modulus greater than 350 MPa. The instability also occurs 

over a very narrow range o f  caliper mass and stiffness. The model is insensitive to 

normal load and backplate-caliper friction and this has been considered as unrealistic as 

the modulus o f  the friction material apparently varies with the brake actuating pressure. 

The effect o f  temperature on squeal behaviour was argued on the basis that thermal 

distortion shifted the centre o f  pressure. Compared to North's work , Millner's model 

added piston-backplate contact point as one o f  the variables.

Increases in model complexity to allow closer approximation to real disc brake 

systems led to the lumped parameter model o f  Murakami et al [7], Modeling a pin-slider 

fist type caliper and backed by extensive experimental data , they produced a lumped 

parameter model to explain the effect o f  parametric changes on squeal. Again the 

positive real parts o f  the roots o f  the eigenvalues were used as a squeal propensity 

measure. The model showed increased squeal propensity with increase in friction 

coefficient and friction-coefficient velocity gradient and that positioning o f  the piston- 

pad contact towards the leading edge o f  the pad is more amenable to squeal than trailing
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edge contact. Various other geometric parameters were studied in order to determine 

least squeal conditions and the analytical findings agreed well with experiment. This 

demonstrated the effectiveness o f  lumped parameter models in disc brake squeal 

analysis. The work also showed that squeal is more likely to happen when the natural 

frequencies o f  the components are about the same. The model explained squeal as an 

unstable condition which occurs when the friction force available to the system excites 

the component modes resulting in coupled vibrations o f  the system which under 

favourable conditions may become unstable. Therefore this interpretation comes under 

the category o f  geometrically induced instability with the friction coefficient - velocity 

negative gradient merely assisting in destabilizing the system.

Brooks et al [43] uses eigenvalue sensitivity analysis to study the effect o f  

changing various parameters on their 12 degrees o f  freedom model o f  a fixed caliper , 

four opposed piston disc brake system. The eigenvector plots o f  the analysis clearly 

illustrate how the phase angles between the translational and rotational modes o f  the disc 

and pads develop from a stable to unstable condition , i.e. changing from 0 to 90 

degrees. This highlighted the coupling o f  translational and rotational modes as the 

mechanism by which energy is fed to the system - a binary flutter mechanism. The 

authors suggested that maximum separation o f  the frequency o f  each mode (thereby 

preventing them from converging) would provide minimisation o f  squeal in a real 

system.

2.3.6 Analysis of squeal using the finite element method

With the advent o f  powerful digital computers , more complicated models can 

now be analyzed taking account o f  the flexibility o f  the components , in particular using 

the finite element method. Berndt and Schweiger [44] analysed the disc brake squeal o f  

rail vehicle installations. They used the finite element method in a substructure analysis 

o f  the components to derive the modal matrix in terms o f  generalised co-ordinates which 

were then coupled by both the normal and friction forces at the interface. The normal 

coupling forces N and the friction coupling forces F were represented as below , where 

the superscript ( 1,2 ) represents the different components and the subscripts n and t
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represent tangential and normal direction o f  motion and superscript 1 and 2 represents 

the two components:

N = c ( 'X n- 2X n) + N 0 (2.19)

F = |aNsign (V0 - 1X t + 2 X t ) (2.20)

where c is the coupling stiffness

X„ normal displacement o f  the component

Xt tangential displacement o f  the component

N 0 steady state normal force

Vo steady state sliding velocity

X t tangential velocity o f  the component

In real case where the sliding velocity VQ is high , the sign would always be positive. 

Berndt and Schweiger used a time varying friction coefficient to introduce a self

excitation mechanism into the system which could be represented as

H = P  + H(t + T) (2.21)

where T is the period.

The coupled second order equations o f  motion which included Rayleigh damping were 

then reduced to first order systems o f  the form :

y + A (t)y  = 0  (2.22)

The solution o f  which would result in complex eigenvalues in the form :

y = C ( t ) a k exp(r|k t) (2.23)
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where T]k = X k +jcok and j = V^T 

The solution could therefore be written as

y = C ( t ) a k exp(^.k t){cos(cok t) + jsin(cok t)} (2.24)

The maximum value o f  was used as a stability measure for each parameter 

investigated. The analysis showed that the system could be stabilized with 3% damping 

ratio applied to all modes whilst with selective damping ( 3% applied to the selected 

mode , 1% to all other modes) only one mode was found to be stable. The coupling 

stiffness c has very strong effect on system stability with the real part increasing with the 

stiffness. The instability also increases with increasing coefficient o f  friction , with 0.2 as 

a critical coefficient. The analysis o f  Berndt and Schweitzer was the first to include the 

flexible modes o f  the various components in disc brake squeal analysis.

Liles [6 ] showed how automotive disc brake squeal could be predicted by 

complex eigenvalue analysis with the positive real part o f  the eigenvalue used as a squeal 

propensity measure. He began by constructing a finite element model o f  each component 

and refining the models until good correlation existed with measured modal frequencies. 

A modal model was then created for each component with the interaction location 

determined through an iterative procedure until similar frequency response functions to 

experiment was achieved. Finally the frictional coupling terms were added at the pad- 

disc interface. These frictional coupling terms form part o f  the stiffness matrix which 

now has o ff diagonal terms and is no longer symmetric. Thus the necessary but not 

sufficient condition for complex eigenvalues to exist was met. For each parameter 

studied , the spread o f  eigenvalues was obtained on the s-plane in which the real part o f  

the eigenvalues is represented by the abscissa and the imaginary part represented by the 

ordinate. The standard deviation o f  the real parts from the spread was then used as a 

squeal propensity measure. Using this model , sensitivity studies were carried out for the 

disc brake system including the effect o f  coefficient o f  friction , pad geometry , caliper 

stiffness and structural damping. The results indicated an increase o f  instability with
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increasing friction coefficient and lining length and that instability could be reduced by 

improved damping.

Ghesquire [45] analyzed disc-pad systems considering the static full contact 

condition and studied the evolution o f  the disc and pad modes when contact stiffness 

changes. For low contact stiffness the system was found to be relatively stable with the 

rigid body modes o f  the pads far lower than the third diametral mode o f  the disc. When 

the translational frequency o f  the pads are in the region o f  the disc third diametral mode , 

the system is coupled and the frequency rises rapidly with the increase in contact 

stiffness until it exceeds the pad translational frequency. The system then remains stable 

until the frequency approaches the pad rotational frequency then coupling again occurs 

causing a further rapid increase in the system frequency. The effect o f  friction is to make 

possible the coupling o f  the symmetry and anti-symmetric modes. Modes in close 

proximity could be made to converge to one unstable mode with the introduction o f  

friction but this alone was shown to be insufficient to initiate instability.

In the work that followed [46] , Ghesquire examined a pad-disc system taking 

into account the static contact area and the contact between the pad and the support 

(ca l iper) boundary. By varying a param ete r , the normal contact stiffness for example , 

the evolution o f  the system modes could be tracked ; this showed convergence o f  2 

separate and initially stable modes to one unstable mode which is essentially a binary 

flutter instability. The caliper-pad contact stiffness was found to affect stability only for 

high stiffness values. The work o f  Ghesquire demonstrates the need to include all the 

modes within the frequency range o f  the instability for the analysis o f  disc brake squeal 

and that modal proximity alone is not enough to initiate squeal.

Lee [47] studied disc brake noise using component modal matrices and coupling 

them with a friction interface formulation which links a normal direction degree o f  

freedom to the corresponding lateral degree o f  freedom. He measured brake noise and 

showed that regardless o f  the noise frequency , the rising portion o f  the amplitude 

envelope could be fitted very well by an exponential curve , thus proving that a
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mathematical expression for the amplitude o f  brake squeal could be written in the form 

o f  a pair o f  exponential functions o f  complex conjugate order:

x = Ae( a ± i p ) t  (2.25)

The above equation could be the general solution o f  a set o f  undamped equations o f  

motion , [/w]{ir} + [£]{*} = 0. For example by using the Hilbert transformation a 

measurement o f  single squeal noise amplitude revealed the rising amplitude in the form 

x = A oem = 2 .3 x l0 '8e917t. The method was used to analyze moan , a low frequency disc 

brake noise using a single pin on a flexible disc to model the phenomenon ; the brake 

noise was shown to be dependant on both caliper length and friction coefficient.

Mottershead and Chan [48] analyzed the effect o f  disc symmetry on disc flutter 

instability. The analysis used finite elements o f  the disc only which deform under 

frictional follower loads acting as surface tractions which are active only in the direction 

opposing the rotation o f  the disc. The equations were arranged to form a friction matrix 

which was then added to the stiffness matrix and the ensuing eigenvalue problem solve. 

For flutter modes , the eigenvalues occur in complex conjugate pairs with the mode 

shapes o f  the real and imaginary modes differing in phase by 90 degrees , referred to as 

sine and cosine modes. These modes are capable o f  supporting flutter instability as they 

are already in a state o f  coalesce and require a small but finite load to be applied to drive 

the instability. Therefore the doublet modes are considered to be susceptible to squeal. 

The numerical results showed that singlet modes are unaffected by the brake pressure 

and show no tendency to become unstable. Thus the symmetry o f  the disc is considered 

the primary mechanism o f  flutter instability and the frictional mechanism considered as 

only secondary based on this approach.

Hulten [49] used an interface friction relationship which he termed the counter

coupled friction model where the motion in the x-direction causes changes in the normal 

force acting in the y-direction. The reverse action applies for the corresponding normal 

motion in the y-direction. The friction element formulation with this nodal relationship 

was then used to evaluate the eigenvalues for a brake shoe model and a brake pad model
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on a rigid plane. The solution indicated instability with a non-synchronous motion for the 

brake shoe and also for the brake pad. Thus Hulten concluded that the brake shoe or pad 

acted as a motor to generate squeal.

2.3.7 Other theoretical work

Nishiwaki [50] derived a generalised theory o f  brake noise to explain low 

frequency groan and also high frequency squeal problems. The kinetic and potential 

energy terms o f  each component were calculated and , using Lagrange's equation , the 

kinetic energy per cycle o f  the coupled system was determined. Increase o f  kinetic 

energy o f  the system over a cycle indicates instability. The integration o f  kinetic energy 

over the cycle excludes symmetric terms (i.e. the component stiffness and mass matrices) 

thus leaving the anti-symmetric term o f  the friction matrix. The system equations o f  

motion were also used to determine the eigenvalues the positive real parts o f  which 

indicate instability. The approach indicated that all the brake problems considered , i.e 

drum and disc brake squeal and groan , are essentially instability problems which can be 

analyzed by determining the complex eigenvalues.

2.4 Experimental Work

2.4.1 General experimental techniques

Apart from experiments carried out in conjunction with modeling work , 

experiments have also been conducted primarily in order to quantify the nature o f  squeal 

and the various operating conditions affecting it.

Bracken and Sakioka [51] proposed a list o f  methods to overcome the subjective 

nature o f  disc brake squeal evaluation. This included a period o f  bedding-in o f  the 

brake system (whereby the intially high rate o f  wear is allowed for) and the measurement 

o f  the frequency spectrum and the rotor surface temperature for discrete increments in 

brake pressure.
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Tarter [52] used the same burn-in technique as [41] and added a temperature- 

pressure matrix for the average sound pressure level as a method to determine the 

preferred temperature and pressure for squeal to occur. His experiments with the brake 

pad central area milled to reduce the pad stiffness showed a lowering o f  the squeal 

frequencies and , for different friction materials , different squeal frequencies were 

found. His work on radially slotted rotors indicated a stable condition , with no audible 

squeal detected. The test procedures were then updated to include accelerated 

conditioning o f  the brake studied [53],

2.4.2 Experiments to determine the effect of component dynamics on squeal

Lewis and Shah [54] used an experimental method to isolate the source and 

mechanism o f  disc brake squeal. Their measurements indicated the fifth diametral mode 

o f  disc vibration and the outboard pad deflected in-phase with the disc for a squeal 

frequency o f  7250 Hz. Frequency measurement o f  the disc brake system under static 

condititons showed the natural frequency o f  the assembled system to be 6500 Hz which 

is near to the squealing frequency. Removing the disc and clamping the brake assembly 

to a work table , the frequency measurement was repeated , the results o f  which showed 

that the subsystem o f  the pad and caliper alone had a resonance near the squeal 

frequency , with the system resonance at higher frequency becoming more pronounced 

with increase in line pressure. Free-free modal analysis showed the first bending mode o f  

the pad to be at 6250 Hz and the 5th diametral mode o f  the disc to be at 6500 Hz. From 

the measured dynamics o f  the system the authors deduced that , at appropriate line 

pressure , localized resonances o f  the pads coincide with the localized resonance o f  the 

disc to form the global system resonance o f  squeal. They also proved that altering the 

natural frequency o f  the pad by adding mass eliminated squeal. Added a constrained 

layer o f  damping material to the brake pad backplate in order to damp out the bending 

motion o f  the pad proved to be successful in suppressing squeal.
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Hoffman [55] reported the development o f  a new constrained layer damping 

material and laid down the requirements for the constrained layer damping to be 

effective within the operating temperature and vibration frequency range o f  a squealing 

disc brake.

2.4.3 Experiments on the effect of contact stiffness on squeal

Hany et al [56] analyzed squeal noise with the squeal generated relatively 

continuously using a glass disc apparatus which allowed direct observation o f  the whole 

assembly. They found that roughening o f  the glass disc surface is a necessary condition 

for squeal. The effect o f  normal load was found to be :

a) to increase the sound pressure level within the 30-100N range

b) to increase squeal frequency within the above range (e.g. 9024 Hz at 30N and

9216 Hz at 90N) w hils t, above this range o f  load , higher modes were excited.

High rigidity in the normal direction o f  the disc obtained by higher modulus 

friction material or increased contact radius was shown to reduce the sound pressure 

level. It was observed that during squeal the friction force increased compared to the no 

squeal condition and this was attributed to the simultaneous increase in tangential and 

normal contact stiffness.

Working on the above assumption that the increase o f  tangential and normal 

contact stiffness is the cause o f  squeal , Hany [57] used this effect to analytically design 

out longitudinal vibration that lead to squeal. The normal and tangential contact stiffness 

arising from the contact o f  asperities at the pad-disc interface were modelled as massless 

springs. The Routh-Hurwitz criterion was then used to derive the characteristic 

equations to determine the stable boundary. The numerical results indicated several 

parameters which tended to reduce squeal namely short , thick and wide pads , a more 

rigid caliper , higher Young's modulus and loss factor o f  the friction material. 

Nevertheless the longitudinal vibration predicted by the model remained dependant on 

the slope o f  the friction coefficient - velocity relationship.
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2.4.4 Experiments on the effect of separation of doublet modes

Nishiiwaki et al [58] studied the effect o f  mass added to the disc in order to 

separate the doublet modes o f  the disc. The initially stationary mode would then rotate 

thus changing the excitation area continously throughout the rotation with the effect o f  

preventing squeal. However when the effect o f  added stiffness from the pad-disc contact 

area was taken into account , high brake pressure with consequently high contact 

stiffness reduced the mode separation effect. Further mode separation (by increasing the 

added mass) was found to be an effective way o f  overcoming the added stiffness effect. 

Experimental work evidently showed the effectiveness o f  this approach in reducing the 

squeal propensity.

Lang et al [59] used doublet mode decoupling by added mass to achieve stability 

o f  a drum brake and studied the effect o f  added stiffness when a practical mass was 

added to the drum. Their study showed the cyclic decoupling effect when the mass 

rotated with the drum producing cyclic squeal. Added stiffness along the drum periphery 

was found to be effective in separating the doublet modes with the arc length having 

great influence on the separation ; a longer arc length was more effective for separation 

o f  the lower modes.

This method o f  removing the symmetry o f  the rotor and separating the doublet 

modes was used by Kim [60] in his analytical work to eliminate squeal from a S-cam 

drum brake installation. Added mass located at the drum peripheral was shown to 

enhance the decoupling effect o f  the doublet modes and concentrated added mass was 

more effective than distributed mass. The trends from his analysis matched well with 

experiment.

2.4.5 Experiments using double-pulsed laser holographic

Imaging techniques using holography allows the equal displacement line o f  the 

flexing surface o f  the vibrating body to be captured. Double pulsed laser interferometry 

allows the visualisation o f  the vibration pattern by generating onto it a system o f
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interference fringes which are loci o f  equal displacement occuring between the first and 

second pulses with the timing between the pulses controlled to match the frequency o f  

the body by sensing the maximum amplitude o f  the cycle.

Felske and Happe [61] used this technique to analyze general vibration o f  

automotive interest - the ch as is , gearbox and also disc brake squeal. The study o f  disc 

brake squeal in particular revealed the pad to be vibrating with a mode shape similar to 

the first bending free-free mode when squeal occured at 6.5 kHz with low pressure 

application. At higher pressures , the mode shape changed to the fixed-free first bending 

mode. In subsequent work Felske, Hoppe and Matthai [62] specifically studied disc 

brake squeal. The study showed that squeal ( for a different brake type ) was strongest 

at 2.5kHz , when the squealing frequency coincided with the caliper resonance 

frequency. For the short pad used in the study , this was attributed to the contact areas 

between the caliper and the nodes o f  the vibrating backplate. The mode shapes o f  the 

pad included bending and also twisting with anti-nodes at every corner o f  the pad. For 

the long brake pad studied , the anti-nodes o f  the disc reinforced the vibration with the 

displacement o f  the paws considered reactionary. Measurement o f  the sound pressure 

level emitted during squeal was compared to that o f  the disc when excited artificially. 

This showed that the higher sound pressure level came from the squealing brake system 

rather than from the artificially excited disc , indicating that the major part o f  the noise 

came from the caliper. They suggested the following remedial actions based mainly on 

reduction o f  the amplitude o f  the coupled vibrations:

a) increased damping to limit amplitude during resonance

b) increased stiffness o f  the pad

c) caliper paws to coincide with the antinodes o f  the pad

d) increased stiffness o f  the caliper

e) mismatching the natural frequencies o f  the components.

The work proceeded to analyse drum brake squeal [63] in which the squeal was 

hypothesised to be initiated at the lining interface causing a bending-twisting vibration o f  

the shoe which was transmitted to the drum and the backplate. Similar remedial actions
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as listed above were suggested , for example stiffening o f  the flange o f  the backplate to 

reduce the amplitude o f  the anti-node vibration.

Fieldhouse and Newcomb [10] used the holographic interferometry technique to 

study the effect o f  the abutment on disc brake squeal. They produced a clear 

reconstructed holographic image o f  the free-free vibration o f  the disc and the pad and 

also o f  the squealing brake assembly. For combined trailing and leading edge abutments 

the mode shape o f  the disc and the outboard pad were transformed from the sixth 

diametral and bending modes respectively at low pressure to the sixth diametral and 

twisting mode respectively at a higher pressure range , with a quiet zone inbetween the 

two pressure ranges. For a trailing edge abutment , the system was relatively quiet and 

squeal obtained only with difficulty ; and the disc mode was o f  high-order (eighth 

diametral mode) at pressures in the range o f  0.14-0.27 MPa and o f  low order mode (the 

third diametral mode) at pressures in the range o f  0.20 - 0.41 MPa. Higher pressures 

tended to quieten the system. The leading edge abutment was shown to be the most 

unstable , with a relatively wide range o f  pressure (0.14 - 0.8 MPa) and o f  temperature 

(20 - 114 degrees Celsius) for which squeal was recorded. The mode shape o f  the disc 

was o f  the fifth diametral mode with the anti-node position under the pad shifted to the 

node position at a pressure above 0.68 MPa. The overall results demonstrated the 

importance o f  the line pressure and abutment configuration in disc brake squeal.

Fieldhouse and Newcomb [64] extended their analysis to study the disc mode 

shape waveform and the effect o f  piston-pad contact position on disc brake squeal. From 

the holographic image , they discovered that the disc waveform moves not only relative 

to the disc but also relative to ground and the variation in amplitude indicated the 

possibility o f  an additional waveform o f  a similar order displaced in space and time - 

similar to a complex wave o f  real and imaginary parts. The effect o f  piston-pad contact 

position was studied by inserting a wire in various positions between the piston and pad 

with the resulting squeal favouring a leading edge position up to a certain distance 

beyond which the effective sound pressure level was reduced.
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2.5 Discussion

Progress in the understanding o f  disc brake squeal mechanisms has been assisted 

in recent years by the increased complexity o f  the experimental and computational 

techniques available.

Early work [14,15,16,17,18,19,20] suggested disc brake squeal was an instability 

problem primarily caused by the friction coefficient increasing as the sliding velocity 

decreases. The difference between each model was o f  a geometrical nature and either 

inclusion or exclusion o f  damping. Later longitudinal instability o f  a brake pad was also 

demonstrated to be caused by the same effect [57], With this understanding , remedial 

action has been centred around increasing the damping o f  components to reduce the 

resonant amplitude.

Kinematic instability [21,28,32,35,37,38,39,40] due to the geometric disposition 

o f  the rubbing component provided new insight into the squeal problem. With this 

mechanism , instability may occur with an invariant coefficient o f  friction above a critical 

value when a suitable geometry configuration is achieved. This is analytically 

demonstrated by mapping the stability boundary either using the Routh-Hurwitz 

criterion or by solving the characteristics equation and assessing the real part o f  the 

complex eigenvalues obtained. Upto this point the models considered were o f  pin -on- 

disc type only , differing only in the degrees o f  freedom considered and the complexity.

Lumped parameter modelling [10,41,42,43] has allowed closer approximation o f  

the true brake system. The friction effect has been modelled as a function o f  variable 

normal force i.e. proportional to the displacement between the pad and the disc. This 

approach however is limited to one particular frequency o f  squeal and only rigid body 

modes o f  pad translation and rotation can be considered ; this in particular is valid for 

short brake pads. However the approach is less valied for long brake pads (which is the 

trend for modern disc brake design) since flexible modes o f  the pad cannot be included 

in the model. Moreover the disc squeal modes need to be predetermined to allow 

accurate representation o f  the equivalent ground stiffness o f  the disc ; this works well for
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exisiting brake designs but remains indeterminate for new brake systems at the design 

stage.

With the finite element method [6,44,45,46,47,48,49] the flexible modes o f  the 

brake components can modelled but the complexity increases as more components and 

modes are considered. The friction effect included is still similar to that used in lumped 

parameter modelling where the friction force is a function o f  normal force which itself is 

proportional to the normal displacement between the pad and the disc. This 

representation has been successfully used in eigenvalue sensitivity analysis [46], The 

advantage o f  the finite element method lies on the fact that geometrical representation o f  

the components is not lost in the analysis.

Study o f  the disc brake components in isolation indicated two different 

mechanisms o f  disc brake squeal. Firstly study o f  the disc [58,59,60] has shown that it is 

the symmetry o f  the rotor that is responsible for squeal. A symmetric rotor produces 

doublet modes , the term used to describe two modes o f  the same order occurring at the 

same frequency but with phase difference. Doublet modes which have a phase difference 

o f  90 degrees are very susceptible to squeal. Similarly the disc doublet modes can be 

regarded as stationary [58] thus being continuously excited at the contact area. This 

approach advocates the separation o f  the doublet modes in order to achieve stability ; 

this can be achieved by adding mass but is only partially successful in overcoming the 

effect o f  increased pressure or added stiffness. Analysis o f  the pad alone [40] has shown 

that , above a critical coefficient o f  friction , the pad could be excited producing 

asynchronous motion hammering the disc to produce squeal. This approach advocates 

that a stable pad should not create squeal. Experimental evidence is available to support 

both ideas.

The representation o f  friction in the models studied can be categorized into two 

major types. The first is the relatively complex representation based on the Oden-Martin 

model [8] which accounts for the normal approach indentation (the displacement), its 

time derivative (the velocity o f  the contact) and the approach phase. This is a very 

realistic representation as shown in the two degree o f  freedom model by Tworzydlo et al
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[33], The main disadvantage o f  this approach is the high cost o f  computation which 

prohibites its use in multi degree o f  freedom models. The second approach gives a 

variable friction force proportional to the variable normal force which is represented as a 

function o f  relative displacement between the pad and the disc. This approach has been 

used in numerous models [6,41,42,43,44,45,46,47,48,49]and has proven successful in 

producing complex eigenvalues the real parts o f  which are used as an index for squeal 

propensity.

Experimental evidence using holographic interferometry [9,61,62,63,64] 

suggests that flexible modes o f  the pad are involved in squeal and that changes in 

abutment type and pressure application points do affect squeal considerably.

From the papers studied , there are various steps that can be taken to overcome 

squeal with different techniques to suit different stages o f  production. Some methods are 

very suitable at the design stage. Although no universal solution has yet been found ; 

some o f  the remedies for squeal are listed below:

1) Prevention o f  global resonance o f  the disc brake system by mismatching the

natural frequencies o f  the components.

2) Limiting the amplitude during resonance by either

a) increased damping o f  the brake components , usually the pad by 

constrained layer damping at the backplate

b) increased stiffness o f  the pad support - this can occur naturally when 

high pressure is applied to the system

c) suppressing the anti-nodes o f  the pad by appropriate location o f  the 

paw.

3) Separation o f  the doublet modes o f  the rotor by added mass or by

unsymmetric stiffness o f  the disc by means o f  slotted rotor.

4) The use o f  a shorter brake pad.

5) Reduced friction by using a friction material with low coefficient o f  friction.

There are other techniques at the post-production stage in particular where, by 

measuring component frequencies and comparing them with squeal frequencies , the
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individual components responsible for the squeal can be identified and the natural 

frequencies altered.

2.6 Conclusions

From the literature review o f  the previous experimental and theoretical work on 

disc brake squeal , the following conclusions can be drawn :

(a) Increasing friction coefficient with decreasing velocity is one o f  the 

mechanisms whereby friction energy is fed into the disc brake system causing the 

amplitude o f  the motion to increase with time when instabilities are present leading to 

squeal.

(b) Dynamic instability resulting in squeal o f  the disc brake system can arise from 

favourable dynamic and geometric conditions , even when the coefficient o f  friction does 

not vary with the sliding velocity. Thus (a) is not a necessary condition for squeal to 

occur.

(c) The friction force can be modelled as a function o f  variable normal force. The 

variable normal force is proportional to the relative displacement between the disc and 

the pad and also proportional to the contact stiffness.

(d) The real part o f  the complex eigenvalues can be used as an index for squeal 

propensity.

e) The finite element method is a very suitable technique to investigate disc brake 

squeal since multiple flexible modes o f  the contributing components can readily be 

modelled.

f) The important operating parameters o f  applied pressure or temperature have 

not yet been considered in the squeal models reviewed.
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C H A P T E R  T H R E E  

METHODOLOGY OF PRESENT STUDY

3.1 Introduction - The Need for A New Approach

Previous models o f  squeal as discussed above range from relatively simple 

lumped-parameter models to geometrically representative finite element models. Squeal 

in general does not occur throughout the full operating range o f  pressure and 

temperature but favours low pressure and low brake temperature applications. Sakioka 

and Bracken [51] identified the favoured combination o f  pressure and temperature for 

brake squeal by comparative display o f  the squeal sound pressure level over the 

pressure-temperature matrix. Experiments by Fieldhouse and Newcomb [64] also 

showed that pressure is an important factor in squeal.

None o f  the models reviewed so far have considered the effect o f  the pressure 

applied on the brake pad, squeal being represented as an instability resulting only from 

favourable dynamic parameters ( mass ,damping and stiffness ) or geometric parameters
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( point o f  force application ). The pressure distribution and contact area between the 

disc and the pad is influenced not only by the Young's modulus o f  the friction material 

and the position o f  the piston force application to the brake pad backplate but also the 

friction coefficient at the interface o f  the sliding pair as shown by Harding [65] in 

which different points o f  application o f  piston force will produce different contact 

pressure distributions. Again this will cause a shift o f  the centre o f  pressure and based 

on the sprag-slip model a favourable sprag angle may occur resulting in disc brake 

squeal. Experimental evidence by Fieldhouse & Newcomb [64] suggested that, upto a 

certain distance o f  the point o f  application o f  the pressure forward o f  the piston centre

line, the disc brake can readily be made to squeal and that stability can be achieved by 

moving the centre o f  pressure toward the rear o f  the piston centre-line.

Alteration o f  the backplate thickness will not only change the natural frequencies 

o f  the pad but also the contact pressure distribution [66]. Therefore a favourable contact 

pressure distribution can be achieved by proper matching o f  friction material modulus 

and backplate thickness. Even though Ghesquire [46] does consider the actual area o f  

contact under static pressure in his model , the measurements with ink paper were done 

without any sliding friction, thus giving a symmetric pressure distribution During 

sliding, friction has been shown to shift the centre o f  the interface contact reaction 

force toward the leading edge [67], depending on the modulus o f  the friction material 

and its coefficient o f  friction. This will influence the sprag angle and therefore the 

overall stability o f  the disc brake system Mismatching the free-free natural frequencies 

o f  the components has been suggested as a means o f  avoiding squeal [7,54] but this is 

not entirely satisfactory as the boundary conditions in the real contact situations differ 

markedly. Therefore a stability analysis which considers the pressure distribution and 

magnitude o f  the coupled system would provide a more detailed explanation o f  the 

contribution o f  each effect to squeal.

Another parameter which has not been considered in previous models is the 

surface condition o f  the friction face. Experiments by Sherif [56] showed that a glazed 

surface is a necessary condition for squeal to occur and experiments with pin-on disc 

apparatus by Yokoi & Nakai [29] showed that a worn and relatively smooth pin surface
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would m ake the system readily squeal. The surface condition therefore is another factor 

governing squeal and the continuously changing surface condition may explain the 

fugitive nature o f  squeal.

In short , by including the effect o f  interfacial pressure on disc brake squeal , a 

more sophisticated model which considers in particular the magnitude o f  pressure 

applied and contact pressure distribution and the surface properties o f  the friction 

interface could be achieved , thus bringing the representation o f  squeal nearer to the true 

physical situation. This model would hopefully provide some explanation as to  why 

squeal is pressure dependent and why it tends to occur under low actuation pressure 

situation. H ow ever any such model must be carefully validated against experiment 

before it can be used with confidence to  predict the effect o f  parameter changes.

3.2 Selection of Experimental Results for Validation

Experiments concerning the pressure effect on squeal o f  a fist-type slider caliper 

disc brake system have been carried out by Fieldhouse and Newcomb [10], The 

holographic interferometry technique was used to determine the mode shapes o f  the 

squealing disc brake system and the effect o f  varying line pressure was studied. The 

same technique was also used for free-free natural frequency analysis o f  the two most 

important components o f  the disc brake system : the pad and the disc. In the free-free 

analysis , piezo-electric crystals were mounted on the surface o f  the disc and also on the 

pad to provide the excitation forces needed for the analysis. Double-pulsed laser 

holography was used to  capture an image o f  the deformed pad or disc (the mode shape) 

presented in the form o f  a reconstructed holographic image. This in turn provided 

excellent data for the present finite element analysis , w here validation o f  the free-free 

natural frequency analysis is essential for the subsequent stability analysis to be 

successful.Therefore the published w ork o f  Fieldhouse and Newcom b [10] allows 

correlation between the experimental data and the finite element analysis in respect o f :

1) free-free modal analysis o f  the disc and the brake pad

2) stability o f  the coupled disc brake system.
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3.3 Operation of A Fist-Type Sliding Caliper

In order to  analyse the effect o f  pressure on squeal , a brake system similar 

to the one used in the experiments by Fieldhouse and Newcom b [10] was selected 

The fist-type sliding caliper system has three major components , the disc , the caliper 

assembly and tw o  pads. The caliper assembly as shown in figure 3.1 consists o f  the 

caliper carrier bracket (B) and the caliper (H) itself which houses the piston (G). The 

caliper (H) is able to slide on the tw o  guide bolts (A) o f  the fixed caliper bracket 

allowing m ovement in the wheel axis direction with respect to  the disc. There are two 

corresponding pin holes on the caliper with tw o rubber bushes , lightly oiled to allow the 

whole caliper to slide on the tw o guide bolts. The caliper carrier bracket is bolted to the 

car suspension.

The operation o f  this disc brake system begins with the driver applying pressure 

to  the brake pedal , thereby increasing the hydraulic line pressure and causing the piston 

push the inner pad against the disc. W hen the inner pad comes into contact with the disc, 

the reaction force from the disc will cause the caliper to slide along the tw o guide bolts 

in the direction B as shown in figure 3.2. The fist (or paw) will now press on the 

backplate o f  the outer pad to  move it into contact with the disc. Therefore both pads are 

now  in contact with the disc , resisting the disc rotation by the friction force generated at 

the pad-disc interfaces. The abutments at ends o f  the caliper bracket would provide the 

reaction force necessary to  prevent the pad from rotating with the disc as shown in 

figure 3.3. There is a clearance between the pad backplate and the abutment slot on the 

caliper bracket which therefore can only sustain compression forces ( as tension will 

p roduce  a no contact condition ) except when shims are used to fill in the gaps as in the 

experiments o f  Fieldhouse and Newcomb. The contact areas at each abutment area are 

shown shaded in figure 3.3.
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A Guide bolts

B Caliper carrier bracket

C Caliper retaining clip

D Disc pads

E Dust excluding seal 

F Piston seal 

G Piston 

H Caliper

Figure 3.1 Exploded view o f  the caliper assembly [68]
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Figure 3.2- Schematic diagram o f  the operation o f  the sliding caliper disc brake.
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Chapter Three - Methodology of present study_______________________________ _________________47

Figure 3.3 - The brake pad and the abutment arrangement, (dotted lines showing relative 

position o f  the piston on the pad backplate)

3.4 Pressure Representation

In previous analyses o f  disc brake squeal , the components involved are usually 

assumed to  be in full contact and the contact stiffness is represented as massless stiff 

springs. The contact would often be modelled as a single-point contact as in lumped 

param eter models [7,41,42,43] whilst in finite element models the contact is represented 

as stiff springs connecting the disc face nodes with the adjacent pad nodes with equal 

stiffness at all the connected nodes. Previous work on brake contact pressure analysis 

has shown that the contact pressure distribution at the pad-disc interface is not uniform 

with the normal pressure maximum at about the centre o f  pressure application on the 

brake pad backplate [65,66,69] and that full contact over the pad area could only be 

achieved with the most compliant friction material [66], M odern friction materials are
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often o f  the semi-metallic type with good  thermal conductivity and wear properties but 

relatively high modulus. This latter must result in only partial contact.

Therefore for more realistic modelling o f  the interface contact , two conditions 

must be established. W here there is no contact , there should be no coupling between 

the sliding faces but w here contact is established , the surfaces should be connected with 

a contact stiffness k c . M ost lumped parameter models quote  a constant figure o f  k c 

based on the compliance o f  the friction material given as below :

k e =  t/(AE ) (3.1)

where t=thickness o f  friction material 

A= contact area

E = Young's modulus o f  friction material

Alternatively , if the compliance o f  the friction material is modelled separately as 

in the finite element m ethod the contact stiffness k c could be made a measure o f  the 

coupling strength o f  the interface. Stiff joints with high values o f  k c would indicate 

strong coupling o f  the com ponents  since unit relative displacement o f  the interface node 

would generate high reaction forces. Similarly low values o f  k c would indicate weak 

coupling o f  the com ponents  as unit relative displacement would generate relatively low 

reaction forces. It is assumed at this point that contact stiffness could be made a 

function o f  the normal force applied , with the general effect o f  increase in normal force 

being to  increase the contact stiffness. The effect o f  the brake pad pressed against the 

disc could be modelled in a similar fashion to  a beam on elastic foundation with the 

contact stiffness taken as the foundation modulus. In o ther words, the contact pressure 

o f  the pad-disc interface can be represented as massless springs with the contact 

stiffness k t distributed along the interface as shown in figure 3.4.

As the reaction force at each node is different , a different contact stiffness is 

specified for each spring connecting a node pair. Thus, the contact stiffness at each node 

pair k ( is a function o f  the reaction force at that node pair F; (figure 3.4).
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Force equilibrium dictates that :

i=n

F = total force = ^ F i (3.2a

w here n is the num ber o f  nodes in contact
i  =  n

and for springs in parallel K = total contact stiffness k (3.2b

where K=f(F) and k , =  — K
F

(3.3)

Therefore the effect o f  pressure is implicit in the system equations o f  motion by means 

o f  the stiffness representation.

In order to  estimate the correct contact reaction force distribution at the pad-disc 

interface , a static contact pressure analysis is required prior to  the dynamic stability 

analysis o f  the coupled system. N ode  pairs which have zero reaction force predicted 

from the contact pressure analysis will have no contact stiffness in the stability analysis 

whilst o ther node pairs will have contact stiffness in direct proportion to the predicted 

reaction force.
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applied pressure
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Node Nos.
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1 2  3  4  5

total contact stiffness , K

slide plane o f  the disc surface

F2
F3 F4

a) Pad interface nodal reaction force (showing relative magnitude)
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/ k

k 4

/ N  k 5  

/IS
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b) Contact stiffness o f  pad-disc interface nodes ( proportional to the reaction force 

at each node)

Figure 3 .4 - Representation o f  contact pressure effect using distributed contact stiffness.

3.5 Interface Element

3.5.1 Variable friction force with variable normal force

The contact stiffness derived from the interface contact pressure analysis is to  be used in 

the friction element which defines the interaction between adjacent nodes including the 

effect o f  friction. This friction element must be able to model :

i) the steady state friction force acting at the interface o f  the components
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ii)the steady state reaction force acting in the normal direction

iii)the varying part o f  the normal force which is to  be proportional to the 

stiffness o f  the element and the relative displacement o f  the adjacent nodes

iv)the varying part o f  the friction force which is to be related to the varying 

normal force according to Amonton's law ( F=(^N).

Such an interface is represented graphically in figure 3 .5.

/  /  /  /  /

contact s tiffness , k

z
A \

■>

/  /  / /  /

Figure 3.5 - Interaction o f  tw o  masses with friction effect included

seal

hydraulic pressure

piston

pad hark platp

friction material

disc

support s tiffness , k (
A

abutment
__\

\

abutment s tiffness , k

pad

a) Schematic pad on disc system

f l ex i Die c

friction element with 
stiffness , k

isc

b) Equivalent model with interface element

Figure 3 .6- A pad model coupled to the disc face with friction elements



Chapter Three - Methodology of present study 52

From  figure 3.5 ,

The steady state normal force on mass 1 =  N ,

The steady state friction force acting on mass 1 , F, = (iN,

Variable normal force acting on mass 1 due to the relative displacement :

AN, =  k c( z2 - zi ) (3.4)

Variable friction force due to  variable normal force on mass 1 :

A N ,=  n  AN, =  |.i k c( z2 - Z] ) (3.5)

For the disc brake system studied , sliding is uni-directional and the total normal 

force is assumed constant acting normal to  the slide plane (figure 3.6). The interface 

nodes only 'see' the effect o f  the gross  friction force acting against the direction o f  

relative motion.

Assume that node 1 represents one o f  the nodes on the disc face and node 2 is 

the adjacent node on the brake pad friction face as shown in figure 3.7. W hen perturbed, 

nodes 1 and 2 move relative to each other causing a variable normal force on node 2 

which is a function o f  the relative displacement between the tw o nodes and the contact 

stiffness (i.e. d N ,  =  kc (y, - y 2) ). In the case where both nodes move further apart:

as shown in figure 3.7(ii). This would reduce the total effective normal force acting on 

node 2 (i.e. total effective normal force = steady state normal force + variable normal 

force)

A N , = kc [ ( -y ,)  - ( + y , )  ] = -ve (3.6)

N cfr2= N 2 +(- d N 2) (3.7)

This in effect superimposes the variable normal force on to the steady state normal 

force.
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%

1

i) equilibrium 

A N = 0

ii) nodes stretched 

A  N= negative

iii) nodes compressed 

A  N = positive

Figure 3 .7- The effect o f  normal displacement to the variable normal force.

W hen the nodes m ove closer together  as in figure 3.7(iii), the displacement o f  node 1 

from the equilibrium position would be y, (+ve) and node 2 would be y 2 (-ve) and 

therefore :

d N ,  =  kc[ (+ y ,)  - ( - y 2) ] -  +ve (3.8)

N eff2 =  N 2+ (+ d N 2) (3 9)

which increases the effective normal force.

The varying part o f  the friction force is related to the normal force as below

( F2 + d F ,  ) =  p( N 2 +  d N 2) (3.10)

and since F2 = p N 2

dF2 = p d N , ( 3 1 1 )

From the above equation the dynamically varying friction force dF, is proportional to 

the dynamically varying normal force d N 2. For node 1 a similar relation is obtained by
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taking into consideration the direction o f  the forces. This effect would be realised in the 

model as alternately reducing and increasing the effective normal force as the 

displacement varies harmonically about the mean value and as a consequence the 

effective friction force would also vary in a similar manner. This provides the necessary 

mechanism for energy to  be fed into the vibrating system , creating self-excited 

oscillations and making the system potentially unstable.

The equation o f  motion representing the interaction o f  nodes 1 and 2 can 

therefore be used as the basis o f  the interface element in a stability analysis. In order to 

make the friction element compatible with the finite element software used , in this case 

A N SY S Revision 5.0A [9] developed by the Swanson Analysis System Incorporation , 

the direct input method using the M A T R IX  27 element is most suitable. The M ATRIX 

27 element allows direct input in matrix form o f  the relationship between tw o nodes 

using any one o f  the node variables - d isp lacem ent, velocity or acceleration; in this case 

the displacement is chosen as the variable. From the equations o f  motion o f  the two 

nodes , the M A T R IX  27 element is written in matrix form as follows.

Referring to figure 3 .5 :

at node 1 (pad friction face) Fxl = (.i kc(y, - y 2) (3.12a)

and Fy] =  kc (y, - y , )  (3.12b)

at node 2 (disc friction face) Fx2 = - Fxl and Fy2 =  -Fy] (3.13)

Thus arranging the nodal stiffness relationship in matrix form :

~o ~ ^ k c 0 H k c x i " F * i "

0 k c 0 - k c Yi Fy!

0 ~ H k c 0 - H k c x 2 Fx2

0 - k c 0 k c . 3 2 - F y 2 _
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or [ Kf]{ii} = {F} (3.15)

w here k ;-H

- p k c 0 (ikc

k c 0 - k c

- | a k c 0 - [ x k c 

0- k c

(3.16)

In the above element interface friction matrix , only 2 degrees o f  freedom for each node 

are considered whilst in the M A TR IX 27 element all six degrees o f  freedom for each 

node must be included ( 3 translational and 3 rotational freedoms). How ever since 

friction is assumed to act in the circumferential direction only the full matrix is sparse.

In order to  apply the above approach to  the disc-pad interface, some minor 

modifications are necessary. The coupled pad-disc system can be represented as in 

figure 3.6 w here k c is the interface contact stiffness coupling the mating surfaces o f  the 

disc and the outboard  and inboard pads. The normal and friction forces arising from 

small displacement o f  the com ponents  as shown in figure 3.6 can be written as follows. 

For the d isc-outboard pad :

N orm al force on the disc, Fzl = - k c ( z 1 - z 2)

N orm al force on the outboard  pad, Fz2 = k c (z, - z , )

Friction force on the disc = Fyl= n F zl= -)_ikc ( z 2 -z, )

Friction force on the outboard pad = Fy2 = |liFz2 =  M.kc(z, - z 2)

OUTBOARD PAD

T  %

___ J ; F-
DISC d ire c t io n  o f -----

r o t a t i o n

-F v
yl*

INBOARD PAD

Figure 3.8 - Simplified model o f  the coupled pad-disc system and the forces active on 

the interface with friction.
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For the disc-inboard pad :

Norm al force on the disc, Fzl, = - k c(z, - z 3)

Norm al force on the outboard pad, Fz, =  k c (z, - z 3)

Friction force on the disc = F ,,= -|aFz]1 =  |.tkc ( z 3 - z ,)

Friction force on the outboard  pad = Fy3 = -(.t Fz3 = -jakc (z, - z 3)

In the above equations, the negative sign applied to the friction force on the disc-inboard 

pad cluster is due to the friction force Fv acting in the negative y-direction relative to

the positive normal and friction force direction as applied to the disc-outboard pad 

cluster. The above equations can be arranged in matrix form as follows.

For the outboard pad-disc cluster:

1 1
O - ^ k c 0

1—
o

1

F z l 0 - k c 0 k c Z 1

Fy2 0 M - k c 0 ~ V K y 2

f z 2 _ 0 k c 0

_ 
.!

1

z 2

= [ K f ]{u} (3.17)

For the inboard pad -disc cluster:

__
__

__
_i

1
o 0

1

1 " 
1

Fzl. 0 - K 0 k c z,.

Fy, 0 0 Hkc y 3

1 0 k c 0 Io1

_ Z 3

The above interface stiffness matrices are ready for direct input in order to couple the 

finite element model o f  the pad and disc at the interface nodes. This is explained in more 

detail in section 3.8.
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3.5.2 Follower friction force effect

Another effect o f  friction on a deformable surface is the frictional follower force model 

proposed by M ottershead and Chan [48] which can be explained as follows. Consider a 

small area dA on the contact surface as shown in figure 3.9.

£ ^ f ,  d A

undeformed 
surface 
dA - dx dy

x

Figure 3.9 - Non-conservative follower forces on deformable surface

Using a local rectangular axis system with x,y in the tangent plane and z normal outward

the general friction force could be written in vector form as :

fdA  =  ( i f  +  j f ) d A  (3.19)

Assuming that the surface is flexible in the transverse direction but stiff in the friction 

plane and that as it undergoes a small rotation

Q = i D  + j Q y (3.20)

a simultaneous displacement occurs
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(3.21)

This effect is followed by the surface tractions f , a non-conservative friction force acting 

upon the deformed surface and is given by :

w here i,j and k represent unit vectors in the x,y and z direction respectively. When 

applied to the disc and pad interface , the friction force is acting in the tangential 

direction only and the force terms acting in the radial direction is zero (fx = 0). Thus 

equation (3.22) is reduced to

Equation (3.23) indicates that there will be an increase in follower force acting on the 

surface dA as the surface transverse deformation increases. In order to allow 

equation (3.23) to be included in the program me using the ANSYS Finite Element 

software , it needs to  be reduced to  a form o f  constraint equations between the nodes. 

This is achieved by further reducing the equation (3.23) to  represent tw o  adjacent nodes 

on the surface o f  the disc or the pad at the interface. The tw o nodes on the same surface, 

(nodes 1 and 2) are separated by distance d and are acted upon by a friction force F. As 

the surface deforms one o f  the nodes will be displaced relative to the other as shown in 

figure 3 10.

( Q  x f  )dA  = ( Q xfy -  Q yfx ) kdA (3.22)

( Q x f ) d A  = Q xfykdA (3.23)
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d

Figure 3 10 Follower friction force effect as applied to tw o nodes on the same surface

Therefore the increase in the force acting in the z-direction due to the deformation o f  the 

surface between node 1 and node 2 can be approximated for small angles as

fz =  F s in Q «  F(z2 -  z l ) / d  (3.24)

where z l  and z2 are the nodal displacement in z-direction. Equation (3.24) is the 

constraint equation used to represent follower forces effect in the stability analysis. The 

m agnitude o f  the friction force F is determined from the contact pressure analysis. 

Equation (3.24) shows that the nodal follower friction force is related to the normal 

displacement o f  the node and this has been included in the variable normal force friction 

model described above. In order to use the follower friction force model for analysis o f  

disc-pad interaction, friction force o f  equal magnitude but o f  opposite direction is 

applied with the interface nodes constrained to  move together in the direction normal to 

sliding.

3.5.3 Comparison with the Hulten friction element

In the w ork  o f  Hulten [49] , the friction element for a drum brake pad was presented as 

a counter-coupled motion as shown in figure 3.11.
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Figure 3 .1 1 -  Friction counter-coupled model [49]

The equation o f  motion for this system can be written in matrix form as

[M ]{ q }  + [K ]{ q }  = {0} (3.25)

w here {q } =  •< 1= generalised displacement vector
y

[M ]
m 0 

0 m
mass matrix

[K] =
jik

=stiffness matrix

A stability analysis could be performed by solving the eigenvalue problem

d e t ( [ K ] -A .[M ] )  = 0 (3.26)

The eigenvalues , X, can be used to indicate stable or unstable solutions and , if  complex 

eigenvalues e x i s t , they must occur as conjugate pairs. For self-excited problems such as 

squeal , it is the complex eigenvalues which are o f  major interest since the positive real 

parts can be used as an index for the grow th o f  amplitude o f  the oscillations. In [49], a 

numerical example was used to dem onstrate that the above stiffness matrix could give
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rise to  instability. However, there is a basic assumption that Hulten made in which the 

friction force acting on the lower plate must act in the opposite direction to the friction 

band motion which made the stiffness matrix not representative o f  the drum brake 

system modelled. I f  on the other hand the physical similarity in the friction force 

direction is maintained (that the friction force acting on the plate must always act in the 

direction o f  motion o f  the friction band) then the friction terms ( | ik x,( jky ) will have the

same sign in the stiffness matrix which will result in a symmetric matrix and instability 

will not occur since the eigenvalues will not be complex. How ever Hulten then used his 

approach to  define the nodal relationship between a disc brake pad and an infinitely stiff 

ro to r  represented as a frictional stiffness matrix. For each node representing the 

interface , 3 degrees o f  freedom were considered , clearly illustrated in figure 3 .12.

p i v o t  p o i n t

BRAKE PAD
n e u t r a L

l i n e

(R-r)

interface-
/ / / / / / / / / / /  

< — ------------
d i s c  r o t a t i o n

Figure 3.12 - Idealised pad model used by Hulten and the associated nodal relationship 

with friction effect included.

For the one node shown , x , y and 9 are the degrees o f  freedom considered in the 

derivation o f  what Hulten termed a ' friction stiffness' matrix. Lk is the mean

surrounding length where Lk = IlL lLJ. x h e  (R-r) term is used to represent the distance

o f  the interface to  the neutral plane for bending o f  the brake pad , thus the derived 

stiffness friction matrix is as below :
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r~o01

y

I
"T

j 1

-n 0 0 X = Fx

i
i 9 1 r o
 O

 

| O 0 1 T
l

CD 1

(3.27)

w here Fy is the normal force , Fx is the friction force and F0 is the friction moment

created by the friction force multiplying the distance (R-r) and compensated by the unit 

length L 0. The resultant friction matrix is then added to the global stiffness matrix to 

form an unsymmetric global stiffness matrix. In the numerical example o f  a disc brake 

pad , 50 elements were used and the results indicated instability. The problem with this 

approach is that the distance (R-r) must be non-zero to  produce instability and that the 

degree o f  instability increases with this distance - physically it means that a thicker pad is 

m ore unstable than a thin pad which is not borne out in practice. Furthermore this led to 

the conclusion by Hulten that stability could be achieved if the distance between the 

neutral plane o f  the brake pad and the interface could be made which is unrealistic.

With the friction element proposed for the present study in section 3.5.1 above 

this problem is overcom e and the distance from the neutral plane is no longer a 

necessary param eter in the formulation o f  the interface element.

3.6 Component Interaction

It is p roposed in the present study to limit the component interaction to  only the 

pad and disc. Interaction o f  the pads with the caliper via the piston and the paw is 

considered as passive with the interface modelled using stiff springs. Previous studies 

[6,7,43] show that the  effect o f  caliper stiffness on disc brake squeal propensity is not as 

strong as the o ther parameters o f  friction coefficient , damping and pad length. 

Furtherm ore , the fist pin-slider type caliper is not a rigid assembly but several sub- 

assemblies o f  different materials ; for example the piston seal and the pin bushes are 

m ade o f  rubber thus introducing considerable flexibility to  the assembly.The assumption 

that the contribution o f  the caliper to  the system stability is small is not applicable to disc 

brake groan analysis where the noise is at a low frequency o f  less than 200 Hz and



Chapter Three - Methodology o f present study 63

involves the caliper body motion ; the caliper assembly must be included in analysis o f  

such noise. The approach where only the pads and disc are considered has been used 

successfully in squeal analysis by Ghesquire [46], Therefore the same approach is also 

adopted  in the present study

The action o f  the piston and the paw on the inner and outer pads respectively is 

represented by stiff springs. For the disc , constraints are applied to represent the top hat 

portion near to  the centre o f  the disc to  the wheel hub.

3.7 Stability Analysis

There are several m ethods which could be used for the assessment o f  the stability 

o f  the disc brake system studied , namely :

a) the Routh-Hurwitz  criterion

b) a transient solution o f  the equations o f  motion

c) by complex eigenvalues.

The w ork  o f  Kuo [70] can be used to explain the concept o f  the Routh-Hurwitz 

criterion as a m ethod for determining the right-hand or left-hand side location o f  zeros 

o f  polynomials with constant real coefficient on the s-plane without actually solving the 

equation. Consider the characteristics equations o f  a linear time-invariant system o f  the 

form

F(s) = a 0sn + a , s n_1 + a 2s"~2 + ...........+ an_,s + a n = 0 (3.28)

w here all the coefficients are real numbers. The necessary but not sufficient conditions 

for the roots  o f  this equation to have positive real parts are :

i) all o f  the coefficients o f  the polynomial have the same sign

ii) none o f  the coefficients vanishes (i.e zero).
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F or these conditions to  be met , the polynomial o f  Hurwitz's determinants must all be 

positive which can be checked using Routh tabulation The Routh-Hurwitz criterion 

indicates the absolute stability o f  the system but does not give the relative stability. The 

advantage is that it does not require the solution o f  the characteristic equation

Transient solution o f  the equations o f  motion o f  the system would indicate the 

presence o f  an initially increasing amplitude or overshoot for a stable system as well as a 

true instability but does not indicate which mode is responsible. M oreover for high 

frequency vibrations such as squeal, the analysis may proved to  be very computationally 

costly as the time steps need to be sufficiently small

For a damped system where the damping matrix is included in the equation o f  

motion o f  the system , the eigenvalue problem [8] which can be stated in the form 

below :

w here [K] , [C] and [M] are the stiffness ,damping and mass matrices correspondingly 

which may be symmetric or unsymmetric and {<!>} is the i-th eigenvector

corresponding to i-th eigenvalue X, .  Solution o f  the above equation gives the complex

eigenvalues A., in the form:

(3.29)

Xj = o , ± j ( o

where

The dynamic response o f  a particular m ode is
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, , ( C .  ±  j(0 . ) t
{ u , } = {O, }e 1 1 (3.30)

where t is time.

For i-th eigenvalue , the system is stable if  a ,  is negative and unstable if a ,  is 

positive.

Complex eigenvalue analysis can predict all the modes o f  the system with the real 

part o f  the  eigenvalue indicating the stability o f  the m ode and the imaginary part the 

frequency. This would allow correlation with experimental squeal results and the 

unstable m odes could be made the focus o f  the attempt to  eliminate squeal. In detail , 

the results when displayed on the complex plane (also known as the s-plane) clearly 

indicate the relative stability o f  m odes and the root locus diagram may be used to track 

the progressive instability o f  the m ode concerned.

Even when damping is ignored , the eigenvalue o f  a system may still be complex 

as the inclusion o f  a friction matrix causes the stiffness matrix which is comprised o f  

real terms to  be unsymmetric thus fulfilling one o f  the necessary condition for a system 

to have complex eigenvalues [71],

The advantages o f  complex eigenvalue analysis over the other methods o f  

identifying instability are obvious , with the strength lying mainly in the ability to clearly 

identify the unstable m odes responsible for squeal. Therefore the method o f  complex 

eigenvalue analysis was adopted for the present study.

3.8 Complex Eigenvalues Analysis Using The Finite Element Method

The theory o f  the finite element method in general is discussed in this section and 

in particular with respect to  eigenvalue problems based mainly on two references 

[72,73], The finite element method can be broken into several major steps :
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1) Transformation o f  the boundary value problem into a more general and simpler form 

for finite element approximation.

2) Discretization o f  the domain and functions in the weak form. This in practice entails 

the breakdow n o f  the region into a finite number o f  small elements. The coordinates o f  

each nodal point o f  the elements will define its geometry. The element connectivity o f  a 

finite element is the sequence consisting o f  its node numbers. A typical example o f  this is 

shown in figure 3 .8 .The shape functions N ( or the element characteristic matrix) also 

need to be defined.

1

rT) Element number 

n N ode number

7

Figure 3 .13 Discretization o f  the domain Q  by 3 nodes triangular elements [73]

3) Derivation o f  the stiffness and mass matrix. The stiffness matrix can be obtained by 

various approach ( Galerkin , potential energy) but as the potential energy approach is 

physically more representative it is used here.

Figure 3.14 shows a three dimensional body occupying a volume V and having a surface 

S. The points on the body is located by x,y,z coordinates. The boundary is constrained 

in some region w here displacement is specified. On some part o f  the body traction force 

T is applied. Under the force the body deforms in which the deformation o f  a point is 

given by the three com ponents  o f  its displacement :

u = [ u ,v ,w ]* (3.31)
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Figure 3 .1 4 -

The distributed force per unit volume vector f  is given by

f = [ f x , f y ,fz ] '  (3 32)

The surface traction T may be given by its component values at points on the surface

T =  [Tx,Ty ,Tz]T (3.33)

A load P acting at point i is represented by its three com ponents

P =  [Px , Py ,PZ]T (3.34)

The stresses acting on the elemental volume dV can be represented by six independant 

com ponents  as follows:

u=0

Three dimensional body [73]
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a  = | a x ,CTv ,CTz , i vz, x xz, x xv| T (3.35)

w here a x , a y , a z are normal stresses and z y/, ,1^  , t xy are shear stresses.

The strain is represented in a vector form

8=[Ex , s y , s z ,Yyz,Yxz,Yxy]1 (3.36)

The general expression for the potential energy IT o f  a continuum o f  a volume V o f  

solid material (figure 3.9) is given by

n  -  -  jCTT8dV -  j u TfdV -  J uTTdS -  X l'i‘ p. (3 37>
2 V  V  S i

where the terms are as defined above and the last term Pi represents a force acting at 

point i (in this case the point i is assumed to be a node) and u is the displacement at that 

point. For a volume in which the area is constant (dV=Adx) and after discretization the 

expression for potential energy becomes

n  =  X J a Ts A d x - Z  j u ' f A d x - X  j u ' T d x - X Q . P ,  (3.38)
e e e e e e 1

or simplified as

n  =  Z ^ e  -  l j u Tf A d x - X | u TT d x - X Q lPl (3.39)
e e e e e i

w here U e is the element strain energy given by
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Using Hooke 's  Law ct = Ee and by substituting e = Bq

a  = EBq (3.41a)

w here B = element strain displacement matrix and q = displacement vector and the 

subscript e indicates element. For one-dimensional element with linear shape function 

the matrix B is given by

B
X t -  X2 1

■[-. l] (3.41b)

Thus U c = — J"q 1 B 1 E B q  Adx (3.42)

or
1

U e = — q 1 J[B‘ E B A d x ] q (3.43)

For a one-dimensional element with linear shape function , the natural or intrinsic 

coordinate system denoted by and -1< < 1 can be used for the transformation

dx = *2 .  X' d^ or dx = dE, (3.44)

where the subscript denotes the node number and le is the element length. The element 

strain energy is now  written as

u e = i q
-1 J

(3.45)

since the B matrix is constant and E e is the Y o u n g ’s modulus o f  the element. 

Substituting B from equation (3.35a and 3.35b) and noting that J"d£, = 2 results in
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q (3.46)

which is o f  the form (3.47)

w here the element stiffness matrix ke is given by

(3.48)

The expression in equation 3 .42 gives the element stiffness matrix for a one-dimensional 

element with a linear shape function. In general the element stiffness matrix is given :

The element stiffness matrices can then be assembled to form the global stiffness matrix

and q =  [ Q 2, Q J T for element 2 where Q , is the displacement for node i) where the 

elements o f  each k L' are placed in the appropriate locations in the larger K matrix and 

the overlapping terms are then summed.

Similarly, using the individual terms in equation (3.39) , the element body force 

f e , the element traction force term T 1" and the point loads P can be evaluated. 

Therefore the potential energy can be written using matrix notation in the form

(3.49)
e

K by preserving the element connectivity ( for example q -  [ Q , ,Q : ] for element 1

n  = X  ̂  q V q - I  q 1 f e -  £  q 1T 0 -  £  P, Q (3.50)
e o e

or n  = - Q TK Q - Q TF (3.51)
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w here after assembly K  denotes and F denotes ^ ( f c + T L) + P
e e

The mass matrix can be derived from the kinetic energy term. For a solid body 

with distributed mass , the kinetic energy T is given by

T =  —| u  1 lipdV
V

(3.52)

where p is the density , u is the velocity vector at point x with components u , v and w 

as shown in figure 3.15.

z

A

Figure 3.15 Schematic diagram o f  a body with distributed showing the velocity 

com ponents  [72],

In the finite element m ethod , the displacement o f  each element is described in terms o f  

the nodal displacement q and shape function N. Therefore

u = N q (3 53)

The velocity vector is then given by u = Nq
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Substituting this into equation (3 .5 2 ) ,  the element kinetic energy is given by

Tc = q [ J *  p N TN dV]q (3.54)

or m le = [ j p N TN dV ] (3.55)

m L is also known as the element mass matrix. Summing over all elements :

T = Z T e = S T q Tm eq = - Q TM Q  (3 56)
e e

w here M  is the global mass matrix and Q  is the global displacement matrix.

4) Statement o f  the Eigenvalue Problem. After obtaining the global stiffness and mass 

matrices K  and M  respectively , the Langrangian approach can be used to determine the 

Langrangian term L :

L = T - If  (3.57)

or L =  - Q t M Q  - - Q  K Q - Q ' F  (3 58)
2

and by using Hamilton's Principle

d_
dt

d id L

o q t
^  =  0  (3.59)

Thus M Q  + K Q  = F (3.60)

For  steady-state conditions starting from equilibrium , Q  =  U sin cot 

and by rearranging equation 3.60 for F =  0 ,
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or  alternatively

K U  = © M U  

K U  = >. M U (3-61)

which is a statement o f  the generalized eigenvalue problem where X  is the eigenvalue 

and U the eigenvector. In the above approach damping was neglected. How ever the 

friction force equation as stated in equations (3.17) and (3.18) is as reproduced below 

for each interface node pair :

"o -  mk 0 mk y i fv 1

0 - k 0 k zl fzl

0 mk 0 -  mk y 2 fy2
0 k 0 - k  _ z2 _ f z 2 j

(3.17)

or k f ]{ u }  = {f} (3.18)

By summation over the elements K f = and Ff -  '

Therefore K f Q = Ff (3.62)

The eigenvalue problem can then be rewritten to include the friction force acting at the 

interface nodes by substituting for F :

M Q  + K Q  = K , Q

By bringing the right hand side to the left hand side

M Q  + ( K -  K , ) Q  = 0

(3 63)

(3.64)

The effect is to make the global stiffness matrix unsymmetric because o f  the inherently 

unsymmetric friction matrix. According to Wilkinson [71] for eigenvalues problem if A 

and B ( read K and M  ) are real symmetric matrices but neither is positive definite then
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the eigenvalues o f  AB need not be real and the same applies to the roots  o f  det(A- XB) 

=0. In the present case the mass matrix M is symmetric but the stiffness matrix 

( K - K f ) is unsymmetric. Therefore the eigenvalues may be complex.

3.9 Method of analysis

As the pressure effect is represented in the form o f  a varying contact stiffness 

distribution and the pad - caliper interaction represented by stiff springs , the proposed 

analysis o f  disc brake squeal using the finite element method can be broken down into 

the following steps :

1) Conduct free-free modal analysis o f  finite element models o f  the pad and the disc to 

determine the natural frequencies and the corresponding mode shapes and correlate 

these with the experimental results o f  Fieldhouse and New com b [10]

2) Carry out a static contact analysis using the finite element model o f  the pad as 

derived in step (1) under the applied loading from either the piston and the paw to 

estimate the contact pressure distribution for both the inboard pad (piston applied 

pressure) and outboard pad (paw applied pressure) with the effect o f  circumferential 

friction effect and abutment arrangement taken into consideration.

3) Determine the contact stiffness for each node pair at the pad-disc interface from the 

predicted reaction forces and the calculated contact stiffness- reaction force relationship

4) Carry out eigenvalue analysis o f  the coupled pad-disc system with the boundary 

conditions applied as stiff springs. As the inclusion o f  friction causes the stiffness matrix 

to  becom e unsymmetric , the analyses will predict complex eigenvalues, the positive real 

parts o f  which would indicate the squeal propensity and the imaginary parts would 

indicate the frequency. The corresponding eigenvectors indicate the mode shape o f  the 

unstable modes.

Steps 2 - 4  above are repeated for different pressure magnitudes.
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3.10 Summary

The need for a new approach to analyse the effect o f  contact pressure on disc 

brake squeal has been discussed. The novelty o f  the w ork  lies in the fact that this effect 

has never been modelled before despite the experimental and operational evidence that 

squeal generally occurs at low applied pressures only. To understand this effect a new 

modelling approach is proposed whereby the pressure distribution and also the surface 

properties o f  the interface including the effect o f  friction is included in a stability 

analysis o f  the coupled disc-pad system.

It is argued that the coupling stiffness at each node should vary with the 

m agnitude o f  the reaction force at that p a i r , providing some form o f  preloading to the 

system and that the friction effect should also be included in the node pair interaction. 

Since it is known that the reaction force distribution at the pad-disc interface is not 

uniform this approach will take this non-uniformity into account.The passive 

interaction between the pad and the caliper is modelled by the penalty formulation 

whereby approximate stiffness are used to model the boundary conditions. The effect o f  

the  interface friction on the system stiffness is derived from first principles and using the 

finite element method the resulting stiffness matrix when the interface friction element is 

included becomes unsymmetric. This when taken into the eigenvalue problem may result 

in complex eigenvalues. Stability analysis is carried out using complex eigenvalue 

analysis with the real part o f  the eigenvalue used as a measure o f  the squeal propensity 

and the imaginary part as the squeal frequency o f  the system studied A disc brake 

system has been selected which has been studied thoroughly using double pulsed laser 

holography , thus providing the necessary experimental results for comparison.



C H A P T E R  F O U R

MODAL ANALYSIS OF THE DISC AND PAD

4.1 Introduction

A major step in the proposed analysis o f  disc brake squeal using the finite element 

m ethod as discussed in C hapter Three is the development and validation o f  finite element 

m odels o f  the major components , namely the disc and the pad. The models would then be 

coupled for stability analysis with the friction effect included at the interface.

In the present chapter all the w ork  related to  modal analysis o f  the components is 

discussed. This includes the development o f  the models , the results from the eigenvalue 

analysis for the free-free condition and comparison with the experimental results o f  

Fieldhouse and Newcom b [10], The chapter also describes substructuring , a technique by 

which the number o f  degrees o f  freedom o f  a finite element model can be reduced 

significantly resulting in a reduced wavefront for the problem.
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4.2 General Method of Analysis

Finite element models o f  the disc and the pad are developed and modal analysis 

carried using the modal analysis option in the AN SY S Rev. 5.0A software [8] The natural 

frequencies and mode shapes obtained are compared with the experimental results o f  

Fieldhouse and N ew com b [10], The finite element model are then refined until acceptable 

difference levels are achieved betw een prediction and experiment. In this analysis, damping 

is neglected as in general structure analysis damping only affects the natural frequencies by 

1-2% in most cases [75],

4.2.1 Limitations in the analysis

There are several limitations in the present analysis as discussed below :

1) The usual practice in the dynamic analysis o f  a system which consists o f  several 

com ponents  is to  carry out the analysis o f  the com ponents independently and finally to 

couple them together. This m ethod implies the use o f  constraints equations to connect the 

nodes which are in contact and is adequate for passive node interactions ( no friction effect 

involved ). H ow ever , the use o f  a friction matrix to  define the nodal interactions at the pad- 

disc interface as proposed in Chapter Three does not permit the use o f  constraint equations. 

M oreover the interface nodes o f  the disc and pads must have similar radial and 

circumferential co-ordinates if possible in o rder to closely preserve the contact condition.

2) The present finite element software used (ANSYS Rev. 5.0A Educational Version) has a 

maximum wavefront o f  400, which limits the number o f  active degrees o f  freedom in the 

model and therefore also the degree o f  refinement o f  the model to get good correlation with 

the experiment. A simplified model with many o f  the degrees o f  freedom removed would 

help in reducing the wavefront and would also reduce the CPU time needed to solve the 

problem. In order to achieve this a technique known as substructuring is used and for the 

free-free natural frequency analysis the Reduced Householder [8] method is employed as it 

readily utilises the active degrees o f  freedom specified for the eigenvalue problem.
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4.2.2 General substructuring theory

Substructuring analysis uses the technique o f  matrix reduction in order to reduce the 

number o f  active degrees o f  freedom [8], The matrix reduction technique was first 

presented by Guyan [75], As the technique is widely used in the present study ,the theory 

o f  substructuring [8] will be discussed in some detail here.

In static problems where the inertia is ignored , the finite element equation is 

reduced to :

[K] {u } =  {F } (4.1)

w here [K] element stiffness matrix

{u } vector representing the total degrees o f  freedom 

{F} force vector

The problem can be reduced by selecting active degrees o f  freedom , which are also known 

as masters degrees o f  freedom  and are denoted here by subscript m, whilst the remaining 

degrees o f  freedom  are considered as slave degrees o f  freedom , denoted by subscript s. The 

stiffness matrix can be partitioned into submatrices according to master and slave degrees o f  

freedom as below :

Tf^mml I Kms I 
L IK sm] |K SS| {us } J L {Fs }

(4.2)

It is usual to arrange that {Fs }=0 i.e. external forces are applied at master degrees o f  

freedom  only.

Expanding equation (4.2) :
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[ K m m K u m} +  IK m s K u s} =  { Fm}  

[ K sm]{um } +  [K ss]{us} =  {Fs}

Solving for the slave degrees o f  freedom in equation (4.4):

{ u s} = [K ss]-1{Fss} - [ K ss]-1 [K sm]{um}

Finally substituting equation (4.5) into equation (4.3):

I ^ m s l l ^ s s l  | K sm] l ( u m } _  {Fm} I^ins 11KssJ {Fs}

or [K ]{ u }  = {F}

where [ K] = [K mm] - [ K ms][K ss] ' [ K sm]

and {u} = {um}

and {F} = [Fm] - [ K ms][K ss] - , {Fs }

The same method can be extended to  dynamic analysis :

[ M ]{u}+ [C ]{u}  + [K]{u} = {F}

or in the sub structured form :

[M ] { U } + [ C ] { a }  + [K]{u} = {F}

(4.3)

(4.4)

(4.5)

(4.6)

(4.7)

(4.8)

(4.9)

(4.10)

____ 79
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where , by using Guyan's reduction technique [75] for mass reduction :

[M ] = [M m m] - [ K m s][K ss ] - 1[M sm ] - [ M m s][K ss ] - 1[K sm ] + [K m s][K ss] - 1[M ss][K ssr 1[K sm ]

(4.11)

The same approach can be used to derive the reduced damping matrix by simply 

substituting the mass terms with the damping terms in (4.11).

The terms derived for the reduced mass , damping , stiffness and force matrices are 

also known as the superelement coefficients , since in the finite element method the 

technique o f  reducing a component matrix is akin to  forming a superelement with its own 

mass,damping and stiffness matrices. The reduced stiffness matrix is said to be complete 

since as shown in equation (4.7) all the elements o f  the original stiffness matrice contribute. 

In the case o f  the reduced mass matrix , combinations o f  stiffness and mass elements appear 

As a result the completeness in the eigenvalue-eigenvector problem is said to be closely but 

not exactly preserved [75],

4.2.3 Substructuring applied to eigenvalue problems

The eigenvalue problem in the reduced condition can be stated as follows:

( [ K ] - co2 [M ]){u} = {0} (4.12)

Thus the reduced eigenvalue problem is o f  order (p) instead o f  initial order (p+q) where p is 

the number o f  m aster degrees o f  freedom and q the num ber o f  slave degrees o f  freedom. 

The eigenvalues to2 obtained from the above equation are used to recover the global 

displacement vector or m ode shape :
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[Kmm] |Kms] 

J K sml [Kss]_

where in this case the master degrees o f  freedom vector { u m }is known from equation

It is clear from equation (4.12) that the problem size can be greatly reduced by using the 

substructuring technique.

4.2.4 Selection of master degrees of freedom

As explained in the preceding sections , the substructuring technique requires the

freedom selected are important as they define the dynamics o f  the reduced model ; this is 

usually achieved by selecting degrees o f  freedom which have a large ratio o f  mass to 

stiffness [8], In the pad-disc stability stability, the nodal degrees o f  freedom which define the 

nodal interaction at the interface need to be preserved. This entails the following 

considerations :

a) All degrees o f  freedom in the z-direction (normal to the disc rubbing surface) at 

the pad-disc interface need to be retained as they are used in the friction matrix.

b) All degrees o f  freedom defining the interaction between the pad and the external 

environment (the piston pressure face, the paw pressure face and the abutments) need to  be 

retained.

c)All degrees o f  freedom in the z-direction on the disc (normal to the disc rubbing 

surface) need to be retained in o rder to adequately capture the disc diametral modes. Any

(4.12). By solving (4.13) the slave degrees o f  freedom vector {us} is recovered and the 

global vector or mode shape is obtained as

(4.14)

selection o f  m aster degrees o f  freedom from the complete model defmation 1 he degrees o f
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asymmetry introduced in the  definition o f  the disc master degrees o f  freedom might 

introduce separation o f  the doublet modes o f  the disc ; this should be avoided at the model 

definition stage.

d)The total number o f  master degrees o f  freedom must be less than the number 

allowed within the limited 400 wavefront. This is equivalent to a limit o f  about 3 10 master 

degrees o f  freedom.

4.3 Eigenvalue Analysis O f The Disc

4.3.1 Disc model definition

The brake analysed in the present w ork  is similar to  the one used in the experiments 

reported by Fieldhouse and N ew com b [10], The disc is plain (i.e. unvented), made from 

grey cast iron and mounted to the wheel hub by four bolts on the top hat section o f  the disc. 

The disc cross section geometry and dimensions are shown in figure 4.1

Various experimental w ork  [7,10,58,60] has shown that only the diametral modes 

o f  the disc are involved in squeal. This fact allows for a simpler representation o f  the disc 

and for exclusion o f  the rigid body modes from the stability analysis. In a diametral mode it 

is the rubbing surface o f  the disc (shown dark grey in figure 4.1) which deforms at a 

particular squeal frequency ; this information has been used in the representation o f  the disc 

as a beam with tw o  simultaneous modes (translational and rotational ) as in the work o f  

N orth  [41] and others [7,42,43], In the present eigenvalue analysis o f  the free-free disc , 

only the rubbing surface and the portion connecting it to the top hat part are therefore 

considered as shown by the dark grey shade in figure 4.1.
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Figure 4.1 - The cross-section dimension o f  disc (all dimensions in mm)

The element type used in the analysis is a 4 noded three dimensional shell element , 

known as STIF63 in the A N SY S nomenclature. The advantage o f  using this element over 

an 8 noded isoparametric brick is obvious in terms o f  the relative amount o f  computational 

time involved as the 4-noded shell element has half the number o f  degrees o f  freedom. In 

order to investigate the optimum num ber o f  elements to be used in the definition o f  the disc 

model , a study w as carried out in which the number o f  elements in the radial direction on 

the disc rubbing surface was fixed at four (which gives a width/thickness aspect ratio o f  

about 1.0) and the circumferential angular definition (figure 4.2) is varied between 20 and 6 

degrees.

Q A n gu la r  
definition

Figure 4.2 - Angular definition in the modeling o f  the disc
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The reduced Householder method is used in the eigenvalue as it readily takes into 

account all the necessary master degrees o f  freedom and it is therefore suitable for the 

analysis o f  the substructured component. The master o f  degrees o f  freedom include all the 

degrees o f  freedom in z-direction on the rubbing surfaces o f  the disc. As the angular 

definition is reduced , more elements are defined and the problem size therefore increases. 

M odal analysis is then carried out for each model with the results as shown in figure 4.3.

In figure 4.3, the predicted frequencies o f  the diametral modes o f  each model are 

plotted together with the corresponding experimental results. The detail mode shape o f  the 

diametral modes is described in section 4 .3 .2 .It can be seen from figure 4.3 that for modes 

that are below the fifth diametral mode (marked 5D) the frequencies for all the models are 

less than the experimental values whilst for modes above the fifth diametral mode the 

frequencies for all model are greater than the experimental values It is also clear that as the 

angular definition is decreased (i.e. m ore elements ) the difference between the experimental 

values and finite element analysis results reduces. The least difference occurs for an angular 

definition o f  6 degrees.

As mentioned above the wavefront limit also restricts the definition o f  the model. As 

the master degrees o f  freedom selected has to include all the nodes on the disc rubbing 

surface , the number o f  master degrees o f  freedom also increases with decreasing angular 

definition. The effect o f  angular definition on the maximum wavefront o f  the eigenvalue 

problem is shown in figure 4.4. It is clear that as the model becomes more detailed the 

wavefront size increases. The model with an angular definition o f  6 degrees has a maximum 

wavefront size o f  371 which is approaching the 400 wavefront limit o f  the present software.

It was also decided to investigate whether a full three dimensional model o f  the disc 

using 8 noded isoparametric elements (i.e. 'brick elements’) would improve the correlation 

further. Based on this the previous results the angular definition o f  the full disc was set at 6 

degrees but as there are abrupt dimensional changes at the connection between the disc
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rubbing surface and the top hat extra elements have to be introduced. This resulted in the 

need for 23 elements per segment whilst the total number o f  elements for the model is 1380. 

The full model o f  the disc is shown in figure 4.5a. Modal analysis is carried out for this 

model using full subspace m ethod where all the degrees o f  freedom o f  the disc are included. 

In comparison the simplified disc model using shell elements is shown in figure 4.5b.

The results from modal analysis o f  the full and simplified models are shown in figure

4.6 together with the experimental results. It is clear from the plot that the full model is in 

better agreement with the experimental results than the simplified disc. For the full disc 

model the maximum difference occurs at the eighth diametral mode with the model 

frequency 253 H z ( 2 .38% ) higher than the experiment whilst the simplified disc model has 

a frequency o f  11225 Hz which is 585 Hz (5 .50% ) higher than the experiment.

Although the full disc model provides better correlation than the simplified disc 

model, there is a time penalty associated with using the full disc model. The details o f  the 

problem size for both the full disc and simplified disc models are listed in Table 4.1. From 

the table the number o f  elements o f  the simplified model is 300 with 1800 degrees o f  

freedom whilst the number o f  elements for the full model is 1380 with total 25920 degrees 

o f  freedom. M ore  importantly is the time needed to solve the problem. The C PU  time for 

the full model is 8124.5 seconds whilst for the simplified model it is 74.56 seconds. In real 

time the solution took 5 hours 28 minutes for the full model and 201 seconds for the 

simplified model. It is therefore obvious that while on one hand the full model gives better 

correlation it takes much longer to solve; on the o ther the simplified model is very much 

faster and has acceptable correlation. Therefore it is decided to adopt the simplified model 

for the subsequent coupled analysis as it is sufficiently accurate with very much reduced 

computational time.
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Frequency (kHz)

Mode shape

Figure 4.3 - The frequencies for the diametral m odes o f  the disc for various angular 

definition o f  the disc model and experimental results.
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2 4 6 8 10 12 14 16 18 20

A n gu la r  defin it ion (degrees)

Figure 4.4 - The effect o f  the angular definition o f  the disc model on the wavefront size

(a) (b)

Figure 4.5 - The finite element model o f  (a) full disc with 3D solid elements and (b) 

simplified disc using shell elements
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F requency  (kHz)

2D 3D 4D 5D 6D 7D 8D 

Mode s h a p e

Experiment 

Simplified FE  

Full FE

Figure 4.6 - Results for full and simplified disc model compared to experiment



Table 4.1 - Comparison between full model and simplified model o f  the disc
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Full model Simplified model

Angular definition (deg.) 6 6

Type o f  element 8 noded isoparametric brick 4 noded shell

No. o f  elements 1380 300

Total no. d.o.f. 25920 1800

M ethod used Full subspace Reduced Householder

C P U  time (s) 8124.5 74.56

Real time (s) 19690 201

PLOT NO 1 
DISPLACEMENT
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DSCA=0 010859 
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rr>odal analyse disc

Figure 4.7a - 2nd diametral disc mode shape and equal displacement plot at 1145Hz.



Figure 4.7b - 3rd diametral disc mode shape and equal displacement plot at 1961 Hz
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Figure 4 .7d - 5th diametral disc m ode shape and equal displacement plot at 4659 Hz
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Figure 4.7e - 6th diametral disc m ode shape and equal displacement plot at 6518 Hz

Figure 4 .7 f  - 7th diametral disc mode shape and equal displacement plot at 8708 Hz

Figure 4 .7g  - 8th diametral disc m ode shape and equal displacement plot at 11225 Hz
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4.3.2 Results

The eigenvalue analysis o f  the simplified model o f  the disc showed a total o f  7 

diametral modes within the frequency range studied o f  1 000 - 14 000 Hz. The mode 

shapes are presented in figures 4 .7a-4.7g in the form o f  the displaced shape o f  the disc and 

also equal displacement contours in order to  allow two important factors to  be considered :

i) The results from the eigenvalue analysis using the finite element method in the 

form o f  equal displacement contours are compared with the experimental results in the form 

o f  fringe lines (which also indicate equal displacement contour).

ii) The reconstructed holographic images [10] show only the fringe lines and this 

when associated with the equal displacement contour plot provides a method to visualise 

the m ode shape by referring to the corresponding displaced shape plot.

From  the analysis o f  the simplified disc model the first mode occurs at a frequency 

o f  1145 Hz. The equal displacement contour plot in figure 4.7a shows clearly the nodal 

lines (marked E) and the anti-node positions (contour lines marked A or I). There are four 

nodes and four anti-nodes around the circumference o f  the disc which indicate that it is the 

second diametral mode.

The second mode occurs at a frequency o f  1961 Hz and figure 4.7b shows clearly 

six nodal lines (marked E) and six anti-node positions (lines marked A and I) which confirm 

that it is the third diametral mode.

The third m ode occurs at a frequency o f  3137 Hz and from the contour plot in 

figure 4.7c there are eight node lines (lines marked E) and eight anti-node position (lines 

marked A and I) which indicate that it is the fourth diametral mode.

The fourth m ode occurs at a frequency o f  4659 Hz with the displaced shape in 

figure 4.7d showing that it is the fifth diametral mode and the contour plot from figure 4.7d
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therefore showing ten node lines (lines m arked E) and ten anti-node positions (lines marked 

A and I).

The fifth mode occurs at a frequency o f  6518 Hz and from the contour plot in 

figure 4.7e there are twelve node lines (lines marked E) and twelve anti-node position (lines 

marked A and I) which indicate that it is the sixth diametral mode

The sixth mode as shown in figure 4 .7 f  occurs at a frequency o f  8708 Hz with the 

displaced shape plot showing seven peaks and seven troughs and the contour plot showing 

fourteen node lines (lines marked E) and fourteen anti-nodes position (lines marked A and 

I) which confirm that it is the seventh diametral mode.

The seventh mode occurs at a frequency o f  11 225 Hz. As shown in figure 4.7g, the 

displaced shape o f  the disc model shows eight troughs and eight peaks whilst the contour 

plot shows a total o f  sixteen nodal lines (lines marked E) and sixteen anti-node positions 

(lines marked A and I) which confirm that is is the eighth diametral mode.

In general all the above diametral modes which occur at frequencies below 12 kHz 

have equal spacing o f  nodes and anti-nodes ; this is a distinctive characteristic o f  a diametral 

mode.
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4.4 Eigenvalue Analysis O f The Pad

4.4.1 Pad model definition

The brake pad modelled has the same dimensions as to the one used in the 

experiments by Fieldhouse and Newcom b [10], The outer periphery o f  the brake pad 

follows very closely the circumference o f  the disc and covers a sector o f  60 degrees. This 

reduces to  45 degrees at the inner periphery. The radial width o f  the pad is 40 mm at the 

backplate tapering to 36 mm at the friction face. The backplate is o f  mild steel ( E=205 GPa 

, density =  7750 kg/m 3 ) and 5 mm thickness and the friction material ( E = 8 GPa , density 

=  2250 kg/nr’ )is 12.5 mm thick. At both ends o f  the pad is a portion o f  the backplate 

known as the 'e a rs ’ where the pad is abutted to a machined groove in the caliper as shown 

in Chapter Three. A schematic diagram o f  the pad is shown in figure 4.8.

In order to  take into account the thickness o f  the backplate and also that o f  the 

friction material , 8 noded isoparametric brick elements are used in the analysis as shell 

elements are not suitable for this relatively low aspect ratio (width/thickness) geometry.The 

resulting finite element model o f  the pad is shown in figure 4 .9

The element definition o f  the pad has to follow closely that o f  the disc at the friction 

interface. This results in the pad model being defined using a cylindrical coordinate system 

with an angular definition around the circumference o f  6 degrees as for the disc. This 

constraint is confined to the friction interface only as other parts o f  the pad can be defined 

independantly without affecting the interface. M aster degrees o f  freedom are selected to 

take into account factors (a),(b) and (c) outlined in section 4.2.3.3. The reduced 

H ouseholder method is again used to determine the eigenvalues and eigenvectors o f  the 

model in the frequency range o f  1 kHz - 14 kHz.
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Figure 4.9 - Finite element model o f  the pad
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Figure 4 .10a - Pad m ode shape and equal displacement contour plot at 2608 Hz
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Figure 4 . 10b - Pad m ode shape and equal displacement contour plot at 4625 Hz
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Figure 4 .10c - Pad mode shape and equal displacement contour plot at 5813 Hz
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Figure 4. lOd - Pad mode shape and equal displacement contour plot at 7147 Hz
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Figure 4. lOe - Pad mode shape and equal displacement contour plot at 9579 Hz
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Figure 4 1 Of - Pad mode shape and equal displacement contour plot at 9992 Hz
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Figure 4 .10g  - Pad m ode shape and equal displacement contour plot at 10723 Hz

Figure 4. lOh - Pad mode shape and equal displacement contour plot at 1 169j  Hz

Figure 4. lOi - Pad m ode shape and equal displacement contour plot at 11765 Hz
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4.4.2 Results

The eigenvalue analysis o f  the above pad model predicted a total o f  9 modes within 

the frequency range 1 000 Hz - 14 000 Hz studied. From the results , the first mode 

occurring at a frequency o f  2608 Hz is o f  the first bending type as clearly shown in the 

displaced shape plot o f  figure 4.10a. The figure also shows the mode shape in the form o f  

equal displacement contours which indicate the minimum displacement occurring at the 

centre line o f  the pad i.e. this position is an anti-node. It can be seen that the contour lines 

are more closely spaced at the ends o f  the backplate indicating that the ears displace more 

relative to  o ther parts o f  the brake pad (due to  the lower stiffness in this region).This mode 

shape is hereafter termed the first bending mode designated mode ( B 1).

The second mode occurring at a frequency o f  4625 Hz is also o f  the bending type 

as clearly shown in figure 4.10b. From the equal displacement contour plot, there are 3 

nodes (shown as lines marked E with displacement contour value 0 .0 005 ) ;  one o f  the nodes 

is situated at the pad centreline and the o ther two at either end o f  the friction face o f  the 

pad (the part connecting the ears to the pad). This mode shape is termed the second bending 

mode (B2) in the following discussion.

The third m ode occurring at a frequency o f  5813 Hz is not o f  the bending type 

shown in figures 4.10a-b. The mode shape shown in figure 4.10c could be more properly 

described as a twisting mode. The equal displacement contour plot indicates two nodal line 

running diagonally across the pad from the ears and curving to the pad centre. The fringe 

lines lying diagonally on the ears are o f  different orientation from those on the ears for the 

bending modes which lie horizontally. This mode shape is termed the first twisting mode 

(T l) .

The fourth m ode occurring at a frequency o f  7147 Hz is again o f  the bending type 

as shown in the mode shape plot o f  figure 4.1 Od. The equal displacement contour plot 

shows four nodal lines on the pad , beginning with the one lying nearest to the ear (marked
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C) and and another one on the pad quarter line repeated on the other half o f  the pad. There 

is an anti-node line (marked E) at the centre o f the pad and other anti-nodes in between the 

nodes and the ends o f  the ears. This mode shape is termed the third bending mode (B3).

The fifth mode at a frequency o f 9579 Hz and shown in figure 4. IOe is o f a similar 

twisting type to the one shown in figure 4.6c but o f a different order. There are three node 

lines , one running across the central part o f the pad and one running across the lower 

quarter o f  each half o f  the pad as shown in the equal displacement contour plot. This mode 

shape is termed the second twisting mode (T2).

The sixth mode shown in figure 4.1 Of is also o f  the twisting type and perhaps o f 

similar order to the one discussed above but with the displacement o f  the lower portion o f 

the middle o f  the pad more developed compared to figure 4.6e For the purpose o f  the 

discussion this mode shape is also termed the second twisting mode (T2b).

The seventh mode occurs at 10 723 Hz and cannot be clearly described as belonging 

to the either bending or twisting type. As shown in figure 4.10g , the ears are undergoing 

twisting motion with the equal displacement contour lines lying across the ear at both ends. 

This mode shape is termed the twisting ears mode (TE) in the discussion.

The eighth mode occurs at 11 693 Hz and is o f  the bending type as shown in the 

displaced shape plot o f  figure 4.1 Oh. The equal displacement contour plot shows three node 

lines lying across the pad , one at the middle and one on either side, and there is also a node 

line at each ear making a total o f  5 node lines on the pad This mode shape is termed the 

fourth bending mode (B4) in the discussion.

The ninth mode occurs at a frequency o f  11 765 Hz and is o f the twisting type as 

can be clearly seen in both the displaced shape and the equal displacement contour plots o f 

figure 4. lOi which show similar trends to those o f  figures 4.10c and 4. lOf. This mode shape
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which is one order higher than the one shown in figure 4.1 Of is termed the third twisting 

mode (T3).

To summarise , there are in general two major types o f modes which are either o f 

the bending or twisting variety with the mode order increasing with the frequency ; there is 

also one mode which does not fit neatly into either o f  these two categories since it involves 

a major movement o f  the pad ears only.

4.5 Comparison With Experiments

The experiments on disc brake noise using holographic interferometry by Fieldhouse 

and Newcomb [10] provide ample experiment evidence for comparison with the finite 

element results. The plain disc and brake pad modelled in the analysis are very similar to 

those used in the experiments therefore allowing for direct comparison. Due to the 

importance o f understanding the reconstructed images , the basic mechanics o f  the 

holographic interferometry technique based on [61] are discussed here.

The interpretation o f  the results from the reconstructed holographic images are 

based on the fact that the minima o f the superimposed waves seen as dark fringes occur at 

points where the d isplacem ent, d , satisfies the following equation:

d = (2n + l)A ,/(2 (cosa  + cosP) (4.15)

where a  is the angle o f incident o f  the light wave from the normal plane to the object and P 

is the angle o f  reflection. If  the light source could be made as perpendicular as possible to 

the o b je c t, both angles would be sm all, thus

d = (2n + 1) A, /  4 (4.18)
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Therefore , the first minimum occurs at n=0 , d=X/4 the following minimum at n=l,d=3A74 

and so on. Thus, two neighbouring fringes have a displacement difference o f half a 

wavelength. The relative vibration velocity o f the points can be obtained by dividing the 

displacement difference by the pulse separation time At. The relative velocity is therefore 

proportional to the fringe density , the number o f  interference fringes per unit length. A high 

fringe density also indicates a node o f  the displaced shape [61], These facts are used to 

interprete and translate the reconstructed holographic images into a more meaningful mode 

shape description.

4.5.1 The experimental results for the free-free disc

The reconstructed holographic images presented in [10] for the disc mode shapes 

are reproduced here in figure 4.11. As the images are o f relatively difficult to understand the 

significance o f  the fringe lines o f  the images are discussed in here withsome detail. The 

region o f  high fringe density (nodes) and low fringe density (anti-nodes) for the diametral 

modes are distributed uniformly around the circumference o f the disc and can be identified 

quite readily. There are other modes in addition to the diametral modes , amongst which are 

the circumferential modes (with the fringe lines in concentric circles about the disc centre). 

However as only the diametral modes are the only modes o f interests in squeal problems , 

these are fully discussed here whilst other mode types are ignored.

In figure 4.11 the natural frequencies and the corresponding mode shapes o f the disc in the 

free-free condition are shown in the form o f reconstructed holographic images. The 

experimental results show that the first mode occurs at a frequency o f 1100 Hz with the 

disc undergoing deformation with one end o f the diametral up (maxima) and the opposite 

end o f the diameter down (minima).This skew mode shape is not categorized as either 

diametral or circumferential mode.
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The second mode occurs at a frequency o f  about 1400 Hz and shows part o f  the 

four nodal lines and and four anti-nodes position o f  the second diametral mode. The top hat 

portion o f  the disc does not show any fringe lines which indicates an undeformed shape.

The third mode occurs at a frequency o f  2200 Hz. The fringe lines on the disc are in 

the form o f several circular lines concentric about the disc centre. This is the first 

circumferential mode o f the disc.

Following closely on the third mode is the fourth mode at 2280 Hz with the fringe 

lines clearly showing six node lines and six anti-nodes positions around the circumference 

which indicate that this is the third diametral mode.

The fifth mode is also a diametral mode occurring at 3400 Hz. The figure shows 

eight node lines and eight anti-nodes position around the circumference which indicates the 

fourth diametral mode.

The sixth mode occurs at a frequency o f 4800 Hz. The figure showed ten node lines 

and ten anti-nodes positions around the circumference which indicates the fifth diametral 

mode.

The seventh mode occurs at a frequency o f 6400 Hz. The fringe lines in the figure 

show twelve node lines and twelve anti-nodes position along the circumference indicating 

the sixth diametral mode.

The eighth mode occurs at a frequency o f 6800 Hz and does not belong to either the 

circumferential or diametral mode groups. The ninth mode which also does not belong to 

either the diametral or circumferential mode classifications occurs at a frequency o f 7400 

Hz.
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The tenth mode occurring at a frequency o f  8400 Hz is a diametral mode. The fringe 

lines in the diagram show fourteen node lines and fourteen anti-nodes positions around the 

circumference indicating the seventh diametral mode.

The eleventh mode occurring at a frequency o f 10 600 Hz is also a diametral mode. 

The fringe lines in the diagram show sixteen node lines and sixteen anti-node positions 

along the circumference indicating the eighth diametral mode.

The ninth diametral mode occurs at a frequency o f 12 960 Hz with the fringe lines in 

the diagram clearly showing eighteen node lines and eighteen anti-node positions around the 

circumference.

Between the eighth diametral mode (10 600 Hz) and the ninth diametral mode (12 

960 Hz), there are four other modes which do not belong to either the circumferential or 

diametral mode classifications and cannot be easily described These modes occur at 

frequencies o f 12 000 Hz , 12 450 Hz , 12 500 Hz and 12 700 Hz respectively.

Except for the eighth and ninth diametral modes , the top hat portion o f the disc do 

not show any significant fringe line density relative to the friction face o f  the disc which 

indicates this is a relatively stationary part o f  the disc. This aspect o f  the experimental 

results supports the assumption that the top hat does not participate in the vibration at the 

natural frequencies o f the diametral modes and therefore can be correctly omitted from the 

analysis.

There is a total o f  16 elastic modes within the frequency range o f  0 -13 000 Hz 

studied in the experiment and eight o f  which belong to the diametral mode category and 

only one mode to the circumferential mode category with the remaining seven modes 

belonging to neither classification. As the diametral modes are the only modes which 

participate during squeal, these are the most important and their frequencies are listed in 

table 4.2.
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Table 4.2- Frequencies o f  the first eight diametral modes for the 'free-free' disc

Diametral Mode Frequency (Hz)

2nd 1400

3rd 2280

4th 3400

5th 4810

6th 6450

7th 8410

8th 10640
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FREQUENCY tkHi)

Figure 4.11 - Reconstructed holograms showing modes o f vibration o f the disc [10]
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4.5.2 The experimental results for the free-free pad

In the experiments on the pad [10] , the piezo-electric crystal exciter was mounted 

at 45 degrees to the pad longitudinal axis. This fact is important because if the exciter lies at 

the node o f any mode o f the pad , then that particular mode cannot be excited. From figure 

4.12 , the areas o f high and low fringe density can be used to deduce the positions o f  the 

nodes and antinodes present in the reconstructed images o f  the pad.

From the experimental results in [10], it is apparent that there are other modes 

present above 11 kHz but , as all the squeal modes in the experiments occured at a 

frequency below 11 kHz, these higher frequency modes are not considered. Furthermore, as 

the boundary condition for the supported condition o f the pad during squeal is stiffer than 

for the free-free condition, the natural frequencies associated with the pad during squeal 

must be higher than those occurring under free-free conditions. From inspection o f  the 

results published in [ 10], it is not easy to ascertain the position o f the nodes and antinodes 

o f  the torsion modes and the mode shapes are deduced from the experimenters' observation 

that the torsion modes produce fringe lines running horizontally to the 'ears' o f the pad 

rather than vertically as in the bending modes

The first mode occurs at a frequency o f 2692 Hz and is o f the first bending mode 

type (B l). There is a clear anti-node at the centre o f  the pad and two nodes equidistant 

from the pad centreline with the fringe lines on the pad ears showing maximum 

displacement. The fringe lines is indicate a similar trend to the finite element contour plot 

shown in figure 4.10a.

The second mode occurring at a frequency o f  4231 Hz is o f the second bending 

mode (B2) type and has a similar trend o f fringe lines to the finite element contour plot o f 

figure 4 .10b. There is a clear node position at the centreline o f  the pad and two anti-nodes 

equidistant from this position which suggests a second bending type o f  mode.
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RECONSTRUCTED HOLOGRAMS SHOWING 
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Figure 4.12 - Reconstructed holographic images for the free-free pad [10]
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The third mode occurs at 7154 Hz and has 3 anti-nodes positioned across the pad 

friction surface suggesting the third bending mode (B3). Furthermore the fringe line trend is 

similar to that shown in figure 4. lOd.

The fourth mode occurring at 7615 has a significant fringe density only at the ears o f 

the pad. This suggests an almost flat pad and therefore a mode shape where only the ears 

bend i.e. the bent ears mode (BE). The fringe lines o f  this mode closely match the contour 

plot shown in figure 4.10g.

The fifth mode occurs at 8770 Hz and the image shows clearly fringe lines lying 

across the ears (parallel to the pad horizontal axis). Although the fringe formation across 

the friction face is not easily described, it is noted that there is only one curved fringe across 

this face and two small curved fringes at either end connected to the fringe lines on the 

ears. This is similar to the second twisting mode (T2a) o f  figure 4.1 Oe.

The description is similar for the subsequent mode occurring at 10595 Hz which has 

tw o curved fringe lines across the friction face and one small curve fringe lines connected to 

the fringe lines on both ears. This mode is described as also the second twisting mode but 

labelled as mode T2b as it occur at higher frequency than the the second twisting mode 

described above and is similar to the mode T2b shown in figure 4 lOf.

It should be noted that there was no indication o f  the first torsion mode in the 

reconstructed holographic images presented in [10], The first torsion mode would have a 

node line running across the pad at approximately 45 degrees to the pad longitudinal axis. 

As such a node line may coincide with the position o f  the exciter crystals and as a mode 

cannot readily be excited at its node this particular mode was probably missed.The 

experimental results for the pad under free-free condition for frequencies less than 12 kHz 

are summarised in table 4.3.
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Table 4.3 - The experimental mode shapes and natural frequencies for the brake pad

Number o f  nodes/antinodes M ode shape description Frequency (Hz)

Node=2,Antinode=l First bending 2692

Node=3,Antinode=2 Second bending 4231

Node=4,Antinode=3 Third bending 7154

2 nodes at both ends 'Bent ears' 7615

2nd twisting 8770

2nd twisting 9667

‘Twisted ears’ 11167

Node=5,Antinode=4 Fourth bending 11583

4.6 Discussion

The results obtained from the analysis and the experiments o f [10] are compared on 

the basis o f similar mode shapes. For the disc, only the diametral modes as shown in figures 

4.7a-g are considered as it is only these which are involved in squeal. All the diametral 

mode shapes from the experiments are reproduced by the finite element model with close 

agreement. The frequencies from the simplified finite element model also generally follow 

closely those from the experiment as shown in figure 4.6. Relatively large discrepancies 

occur at both ends o f  the frequency range : at the lower end the maximum frequency 

difference between the experimental and model results for the second diametral mode 

(marked 2D) is 255 Hz (18.2 % ) whilst at the higher end for the eighth diametral mode 

(marked 8D) the difference is 585 Hz (5.5%). In relative terms the errors are always less 

than 10% except for the second and third diametral modes (18.2% and 13.9% 

respectively). The experimental results o f  Fieldhouse and Newcomb [10] indicate that the 

second diametral mode is not involved with squeal and the third diametral mode is only 

involved for a trailing edge abutment. Therefore results for the second and third diametral 

mode are less important for the present analysis o f squeal. The best correlation occurs for
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the fifth , sixth ,seventh and eighth diametral mode where the errors are less than 5%. 

Therefore results involving these diametral modes can be treated with confidence and the 

finite element model o f  the disc is acceptable for the present purpose o f squeal analysis.

In the case o f the pad , frequencies for all the mode shapes which can be directly 

compared such as the bending and twisting modes are included in the comparative plot o f 

figure 4.13. It can be seen that there is one mode from the experiment which has not been 

reproduced directly in the finite element analysis o f the pad i.e. the bent ears mode marked 

BE in figure 4.13. Results from modal analysis o f the pad model using the reduced 

Householder method is compared with the full subspace method. As discussed above the 

reduced Householder method allows reduction o f the problem size with the selection o f 

suitable masters whilst the full subspace method takes into account all degrees o f  freedom in 

the pad model.
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Figure 4.13 Com parison o f  experimental and finite element natural frequencies for the pad
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Figure 4.13 shows that overall the pad finite element model achieves good 

agreement with the experimental results especially at the lower end o f  the frequency range. 

Relatively large differences occur for the higher frequency twisting mode o f T2a for which 

the frequency o f  the reduced model is 529 Hz (5.90% ) higher than the experiment whilst the 

full model gives a frequency o f  8389 Hz which is 561 Hz (6.27%) lower than the 

experiment. All other modes gives relative differences o f  less than 5%. These differences 

can be attributed to the fact that the brake pad is a composite component made o f two 

different materials and that in particular the friction material may have anisotropic material 

properties which can only be approximated. Further refinement o f the pad model is limited 

by the finite element definition o f  the disc as the nodes on the pad friction surface need to 

have the same (r,0) coordinates as the corresponding nodes o f  the disc to allow coupling at 

the later stage o f  stability analysis. However the maximum error from the pad model is only 

6% and the model is therefore considered acceptable for the present purposes.

4.7 Summary

A finite element model o f  the simplified disc has been constructed and the results 

from free-free natural frequency analysis indicate that the predicted diametral modes o f  the 

disc compare well with the experimental results with differences in frequency o f  generally 

less than 10% (with the exception o f  the second and third diametral modes). The simplified 

shell element model o f the disc (with an angular definition o f 6 degrees) and the master 

degrees o f  freedom chosen (which are in the z-direction only) are adequate for dynamic 

analysis purposes. The pad finite element model also predicted mode shapes o f  very close 

similarity to the experimental results and the differences in frequency were less than 6% 

with master degrees o f freedom chosen in the z-direction only (except for the abutment 

nodes). This study has shown that both the disc and pad models as well as the master 

degrees o f  freedom selected are adequate for the subsequent stability analysis.
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5.1 Introduction

The disc brake assembly used in this study consists o f  three major components , 

the caliper , the disc and the pads. The caliper interacts with the inner pad via the 

piston and with the outer pad via the paw. Both pads are prevented from 

circumferential motion by the abutments which can operate either on the leading or 

trailing edge o f the pad or on both. The contact at these external connections is 

modelled as stiff springs thus avoiding the need to include a caliper model in the 

stability analysis. The most active interactions occur between the pads and the disc and 

the pad-disc interface is o f utmost importance because this is where the circumferential 

friction force excites the transverse motion o f  the disc and the pads. Therefore it is 

necessary to determine the contact area and pressure distribution between the pads and 

disc for various conditions in order to provide the information for calculation o f  the 

contact stiffness magnitude and distribution for the subsequent stability analysis.
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In this chapter , the distribution o f  reaction force at the pad-disc interface under 

the applied load from the brake line pressure is studied using the finite element method. 

The study covers the effect o f  friction coefficient , the abutment arrangement , the 

form o f loading (piston or paw) and the friction material Y oung’s modulus.

5.2 Method of analysis

The finite element model o f the pad used in this study is similar to the one 

derived for the natural frequency analysis reported in Chapter Four. However in order 

to carry out the contact analysis efficiently the specialised non-linear finite element 

package ABAQUS [10] was used for this stage o f the work. The most suitable method 

o f representing the contact effect at the interface in ABAQUS is the so-called interface 

gap element. This element models two surfaces which may maintain or lose physical 

contact and may also slide relative to one another with the option o f  specifying 

tangential stiffness for the stick condition. During application o f  the disc brake system, 

sliding is continuous and therefore no tangential stiffness was specified. The element 

has two degrees o f freedom at each node, these being the displacements in the normal 

and tangential directions. A small initial gap is usually specified arbitrarily to provide 

an initial condition when there is no contact. As the nodes move closer tow ards one 

another the gap will become smaller until the displaced nodes touch at which point the 

contact becomes effective and a reaction force occurs. The gap element and the force- 

deflection relationship in the normal direction is shown in figure 5.1.
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Figure 5 .1 -  Gap element and the normal force-deflection relationship

N otice from the force-deflection relationship that the reaction force is active only 

when the gap closure condition is met (i.e. uj-ui-d < 0) and also that no tension force 

can be generated. The gap element is therefore non-linear and an iterative solution is 

necessary. In order to activate the circumferential friction force, one o f the surfaces 

must be made to slide relative to each other; in the present work a small angle o f 

rotation is specified for the rigid (in normal direction) disc surface.

5.2.3 Finite element models

The backplate hydraulic pressure applied to the brake system is transmitted 

through the paw onto the outboard pad and through the piston onto the inboard pad 

(figure 5.2). The pressure applied to the pad backplate is idealised as equal point forces 

acting on the nodes which are in contact with the piston for the inboard pad (figure 

5.3a) and on the nodes which are in contact with the two fingers o f  the outboard pad 

(figure 5.3b). The pressure applied was varied from 0 to 10 bar (1 MPa) in I bar (0.1 

MPa) steps.The Young's modulus o f  the mild steel back plate was taken as 207 GPa 

and the modulus o f  the friction material as 8 GPa. Poisson's ratio was assumed to be 

0.25 in both materials. Constraints in the radial and circumferential directions were 

applied at both the leading and trailing abutments to prevent sliding. The disc surface 

was assumed to be rigid and flat and therefore is modelled using fully constrained
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target nodes corresponding to the pad surface nodes. The analyses were initially 

performed both for zero friction (m=0) and for a typical operating value ( = 0.4).

Figure 5.2 - Actual position o f  the paw (chain lines) and piston (dashed lines) relative 

to the pad

itpfts

m,
r-MBi

(a) Piston applied force (b) Paw applied force

Figure 5.3 - Idealised point forces acting on the pad finite element model

5.4 Results

5.4.1 Effect of circumferential friction

The important results from the present analysis are the nodal reaction forces at 

the pad friction interface which are used in the subsequent work for the determination 

o f  nodal contact stiffness. The nodal reaction force for each node is selected and 

displayed on a 3-dimensional graph showing the coordinates o f  the nodes (angle and
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radius) and the magnitude o f  the reaction force for each pad friction interface node. 

The position o f  these nodes is defined in figure 5.4. The interface nodes which have 

angular coordinates o f  less than 6 degrees are considered the leading edge nodes whilst 

the nodes which have angular coordinates o f  more than 54 degrees are considered the 

trailing edge nodes.

Figures 5 .5 and 5 .6 show the effect o f piston applied pressure and paw applied 

pressure respectively on the nodal reaction force at a line pressure o f 10 bar. The nodal 

reaction force distribution in both cases is non-uniform , and for the zero friction 

condition (Fig. 5.5a & 5.6a) , the distribution is symmetrical about the centre line ( 30 

degrees location). The effect o f  friction in both the piston and paw applied pressure 

cases is to shift the reaction force distribution tow ards the leading edge. In the case o f 

the piston applied pressure , there is an increase in the number o f  nodes in contact 

when friction is included , with all the nodes forward o f  the centreline o f  the pad 

coming into contact as well as an additional node at the 48 degrees line (inner radius). 

Therefore the effect o f  friction for the piston applied pressure case is to spread the 

contact area further tow ards the leading edge whilst at the same time reducing the 

magnitude o f  the maximum reaction force from 114.9 N to  109.5 N. For the paw 

applied pressure case , all the nodes are in contact initially except for the 3 nodes 

across the centre line at the inner radius o f the pad (due to the shape o f the paw). 

When friction is included , the number o f  nodes in contact is reduced from 50 to 38 out 

o f a total o f  53 nodes at the model interface. This loss o f  contact results in an increased 

reaction force at the leading edge , thus making the reaction force distribution 

asymmetric.

In general , these analyses show that for a relatively concentrated load (as in 

the case o f the piston applied pressure) the effect o f  friction is to increase the number 

o f  nodes in contact whilst for a more distributed load (as in the case o f  the paw applied 

pressure) the effect is to reduce the number o f  nodes in contact. In both cases, friction 

enhances the reaction force at the leading edge and reduces the reaction force at the 

trailing edge. Figure 5 .7 illustrates the displaced shape o f the pad under piston applied 

pressure and clearly show the lifting o f the trailing edge o f  the pad.
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Figure 5.4 - Position o f  the interface nodes on the pad friction surface
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Figure 5.5- Nodal reaction force at the pad interface under piston applied pressure
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Figure 5.6 - Nodal reaction force at the pad interface under paw applied pressure
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Figure 5.7 - The displacement o f  the pad under piston applied pressure and relative 

sliding.

5.4.2 Effect of magnitude of pressure

The effect o f  the magnitude o f the applied pressure was also studied in order to 

determine whether the contact area changes with the load As the results for the paw 

applied pressure and piston applied pressure show similar trends, only the results for 

the piston applied pressure is discussed here in some detail. The load due to the piston 

applied pressure on the inboard pad was therefore applied in increments beginning 

from a load equivalent to a line pressure o f  0.1 MPa (1 bar) up to a maximum o f 1.0 

M Pa (10 bar) in steps o f  0.1 MPa. The results for 3 different line pressures are shown 

in figure 5.8a for zero friction and figure 5.8b for a coefficient o f friction o f 0 4. For 

the purpose o f this comparison the contact reaction forces at the nodes on the line o f 

the outerm ost arc o f  the pad are taken. In order to allow comparison between the 

different pressure levels a continuous distribution is calculated from the discrete nodal
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reaction forces. This is done by taking into account the distances between the 

neighbouring nodes resulting in specific reaction force as defined below:

Specific reaction force = Average nodal reaction force between 2 nodes

Distance between the 2 nodes

The area under the resulting curve (as shown in figures 5.8a and 5.8b) is the total 

nodal reaction force for the the line around the outermost arc considered. For zero 

friction coefficient , the specific pressure distribution is symmetrical for all pressure 

magnitudes and the effect o f  increasing pressure is to increase the reaction force 

magnitude in a linear manner as shown in figure 5.8a. It is is also apparent that the 

number o f  nodes in contact does not change with the pressure magnitude.

Figure 5.8b shows that the corresponding pressure distribution with friction 

included is shifted tow ards the leading edge and is no longer symmetric. However the 

effect o f  the pressure magnitude on the reaction force is still linear. Again there is no 

change in the number o f  nodes in contact as the pressure magnitude increases. Thus 

the linear relationship between the nodal reaction force and the applied pressure is 

maintained even when friction is present.
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Figure 5 .8 - Specific reaction force distribution for different magnitudes o f line 

pressure (piston applied pressure)
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5.4.3 Effect of abutment constraint

The effect o f  the nature o f  the circumferential restraint o f  the pad on the 

contact reaction force distribution was also studied. Three abutment arrangements 

w ere considered

a) leading edge abutment

b) trailing edge abutment

c) combined trailing and leading edge abutments.

The abutment effect was modelled as a constraint applied to the nodes on the pad back 

plate 'ears' in both the radial and circumferential direction. The results are shown in 

figures 5.9a -c.

It can be seen from the figures that the contact force distribution patterns are 

similar in all 3 cases and the number o f  nodes in contact does not change with the 

abutment arrangement. There is however a slight difference o f the maximum nodal 

reaction force. For comparison , the standard deviation o f  the reaction force 

distribution for each abutment arrangement is also shown in Table 5.1. This parameter 

is sufficiently sensitive to detect any slight changes in the magnitude o f the nodal 

reaction forces.

From Table 5.1 , the largest differences o f  the maximum reaction force occur 

between the leading and trailing edge abutment cases but the difference is only 3.4N 

(3.1% ) whilst the respective standard deviations differ by only 1.307N (3.9%). From 

these results , it can safely be concluded that the abutment arrangement does not 

significantly alter the contact force distribution.

Table 5.1- Maximum reaction force and standard deviation for different abutment

a)Abutment type b)Maximum  

reaction force (N)

c)Standard 

deviation (N)

Trailing edge 112.7 34.646

Leading edge 109.3 33.339

Trailing & Leading 109.5 33.902
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Figure 5.9 - Nodal reaction force at the pad interface under piston applied pressure
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5.4.4 Effect of friction material modulus

The effect o f  the Young's modulus o f the friction material on the contact 

reaction force distribution was also studied. The baseline value for the study was taken 

as 8000 M Pa representing a relatively 'hard' friction m ateria l, and alternative values o f 

18.75 %, 50% and 125% o f this baseline material property were also studied. Only the 

piston applied pressure case with combined trailing and leading abutments is shown 

here as similar trends were found for the paw applied pressure case and other abutment 

arrangements. The results for the different friction material modulus values are shown 

in figures 5 .10(a) - (d).

The results shown that the general pattern o f contact force distribution does 

not change with the friction material modulus. The number o f  nodes in contact 

however does change , with increasing number o f nodes in contact for lower modulus 

values. For the softest material considered (E=1500 MPa), the number o f nodes in 

contact is 43 whilst for the hardest material (E= 10000 MPa) the number o f  nodes in 

contact is 39.The standard deviation o f the contact force distribution is again used as a 

measure o f  how the distribution pattern varies , with a lower standard deviation 

indicating a more uniform contact force distribution. The trend is shown in figure 5.11. 

It can be seen that the standard deviation o f the nodal contact forces increases with 

the friction material modulus although not in a linear manner. A softer friction material 

allows more nodes to come into contact and simultaneously reduces the magnitude o f  

the maximum reaction force. This also makes the contact force distribution more 

uniform as shown by the reducing standard deviation.
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Figure 5 .10a - Contact force distribution for friction material modulus o f  1500 MPa
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Figure 5 .10b - Contact force distribution for friction material modulus o f 4000 MPa
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Figure 5 .10c - Contact force distribution for friction material modulus o f  8000 MPa

Reaction force | N

120 

100 

80 

60 

40 

20 

0

y
/

!

■

p

71
Outer

radius

.

Inner radius
0 6 12 18 24 30 36 42 48 54 60 

a in cLeading
edge

Trailing
Node position (degrees) edge

Figure 5. lOd - Contact force distribution for friction material modulus o f 10 000 MPa
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Figure 5.11 - Standard deviation o f  the contact force distribution for different friction 

material Y oung’s modulus values.

5.5 Discussion

The contact reaction force analysis described above was carried out with the 

intention that the results could be used in the determination o f contact stiffness. Also 

the extent to which each param eter varied affected the magnitude and distribution o f 

the nodal reaction forces was determined

In the first study described in section 5.3 1 the effect o f  both piston and paw 

applied pressure load were investigated.Overall the results match well with the load 

distribution for a different pad geometry as measured by Tumbrink [69] using the ball 

pressure method Both sets o f  results reported indicate that the nodal contact force
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distribution is not uniform and that not all the interface area is in contact. Therefore, 

within the operating pressure range o f the brake this non-uniformity has to be taken 

into account when determining the nodal contact stiffness at the interface. The effect o f 

circumferential friction is to shift the reaction force distribution towards the leading 

edge in both cases. The results o f  section 5.3.1 also indicate that the nodal reaction 

force distribution is strongly affected by the method o f the applying the force (i.e. the 

piston or the paw) with the distrribution for the outboard pad (under the paw applied 

force) more uniform and with more nodes in contact than that for the inboard pad. 

Therefore , the strength o f  the nodal coupling (which is assumed at this level to be 

proportional to the reaction force ) for the inboard pad which is loaded by the piston 

has a distribution different from that for the outboard pad which is loaded by the paw 

and this effect should be included in the stability analysis to follow.

In section 5.3.2 , the effect o f the magnitude o f the pressure loading on the 

nodal contact force distribution is studied.The results highlight the fact that the nodal 

reaction forces vary linearly with the applied pressure and the number o f  nodes in 

contact is not affected by the pressure magnitude. This corresponds well with the 

findings o f  Harding [65] and Day [66], Previous work on the stability o f  a disc brake 

carried out by Liles [6] assuming that the distribution o f  stiffness is uniform because o f 

the low pressure cannot be justified according to these results.

In section 5.3.3 the effect o f  the abutment arrangement on the reaction force 

distribution was shown to be o f  little significance with the difference between the 

leading edge abutment and the trailing edge abutment cases both in terms o f  maximum 

reaction force and standard deviation o f  the contact force distribution less than 4%. 

The number o f nodes in contact and the distribution pattern remain the same for 

different abutment arrangements. With this knowledge , the stability analysis for 

different abutment arrangements could be carried out by limiting the parameter 

changes to the abutment support position , and not changing the contact stiffness 

distribution or magnitude.
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In section 5.3.4 the sensitivity o f  the nodal reaction force to the friction 

material modulus was considered. The general effect is that a softer friction material 

enables more nodes to come into contact giving a more uniform contact pressure 

distribution as indicated by the relatively low standard deviation for the nodal reaction 

force. This result correlates well with the brake pad contact analysis due to Day et al 

[66], Therefore, study o f  the effect o f  friction material modulus in the stability analysis 

should take the correct contact force distribution into account , particularly when 

extremes o f materials are to be compared ( for example friction material moduli o f 400 

M Pa and 10 000 MPa ). Small changes o f say about 20% o f the friction material 

modulus however would not merit such approach.

All the above parameters were considered in order to provide some insight into 

the scope o f  the planned stability analysis when the pressure effect is considered. The 

results have shown that some param eters do significantly affect the static contact 

pressure distribution between the pad and disc, these being primarily friction 

coefficient, pressure applicator shape and friction material modulus. The effect o f these 

parameters on the pressure distribution therefore has to be taken into account in the 

stability analysis. Other param eters such as the abutment arrangement do not 

significantly affect the contact pressure distribution and the baseline results can be used 

with confidence for other conditions in the stability analysis.
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C H A P T E R  SIX 

CONTACT STIFFNESS DETERMINATION

6.1 Introduction

One o f the most important parameters in the proposed finite element modelling 

o f  disc brake squeal is the magnitude o f  the stiffness coupling the components at the 

sliding friction interface. As discussed in Chapter Two, the contact stiffness (also 

termed the coupling stiffness in some literature) needs to be within a certain range for 

instability to occur In the present chapter methods for the determination o f  contact 

stiffness are discussed and compared The most important criterion is the ability o f  the 

method to relate the contact stiffness to the magnitude o f  the load applied to the pad 

thus establishing a link between pressure and contact stiffness.
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6.2 Methods for interface contact stiffness determination

There are several methods to determine contact stiffness including :

a) stress-strain relationship method

b) experimental method

c) random process approach

M ethod (a) has been used by Nishiiwaki [50], Method (b) has been used by D'Souza 

and Dweib [27] and Sherif et al [56], Method (c) has been used by Sherif [57], Each 

method is discussed in turn below.

6.2.1 Stress-strain relationship method

In method (a) the stress-strain relationship for the pad friction material is used to 

determine the contact stiffness. Assume the pad is pressed with force F against the disc 

which is assumed to be a rigid surface as shown in figure 6. 1 .

F

\  \  \  \  \  \  \  \  \  \  \  x v

K c coupling stiffness 
to the aisc

\  V \- V '\ \  \  \  < \  \ —S—^ 

lumped parameter of the pad

Figure 6.1 - Deformation o f  pad under normal load

The normal stress in the friction material is a  with resulting strain 8 and the nominal 

contact area is A. From the elatic stress-strain relationship, the contact stiffness is :

Kc = F / dL = ctA / eL = AE / L (6. 1 )

where dL is the change in L under load F.

In the above equation the contact stiffness is a function o f  contact area A, thickness o f 

pad friction material L and the friction material modulus E. Therefore, there is no
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effect o f pressure on the contact stiffness which is the major drawback o f  this 

approach. Furtherm ore the stiffness o f  the friction material is already accounted for in 

the finite element model o f  the brake pad and therefore in the global stiffness matrix. It 

is clear from the above that this approach is suitable only in lumped parameter models 

in which the pad is assumed to be rigid.

6.2.2 Experimental method

In various experiments on friction-excited vibration using a pin-on-disc 

apparatus [27], the contact stiffness was derived from the equations o f  motion o f  the 

system for which the mass, acceleration,velocity, displacement and force were 

measured. The basis for this method is that the contact generates stiffness and damping 

which add to the existing structural and damping forces in the system An algorithm 

based on an experimental method to determine contact stiffness is an extension to the 

one used by Raguskis and Yurkauskas [76] in the determination o f the stiffness o f  a 

radial thrust bearing assembly. The approach will be discussed here in some detail 

using a model o f  a beam mounted on ball bearings at each end which are idealised as 

springs o f unknown stiffness.

Li i l > ____ *\

m . 3

x-L]9
X+L20

/  / / /

Figure 6.2 - Schematic diagram for computing unknown support stiffness [76]

The equations o f  motion o f  the system are :

mx + (k , + k , ) x - ( x ,L ,  - k ,L , ) 0  = 0 (6.2a)
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- ( k j L j  - k 2L 2 )x +  J0 + ( k , L 12 + k 2L 22 )0 = O (6.2b)

Equations (6.2 ) are linear differential equations with constant coefficients. Therefore 

the solution can be written in the form o f :

x= A, sin (cot+f)

0 =A sin (cot+f)

(6.3a)

(6.3b)

Substitute equations (6.3) into (6.2 ) and after algebraic transformation a quadratic 

equation in terms o f co2 will be formed By solving the quadratic equation, the first and 

second natural frequencies can be found in terms o f the system parameters. At 

resonance the modes o f  vibration would be analogous to the principal modes acting at 

the natural frequencies o f the system. Therefore a search can be made for the values o f 

k, and k , to give the correct predicted natural frequencies co;. Assuming that each 

stiffness is bounded between two values, k-high and k-low, a closeness function C, 

could be used for assessment o f the search accuracy :

C = X (w , - a , ') 2 (6 4 )
i=l

where co,' is the experimental value obtained from modal analysis. For this example 

(n=2 ), the closeness function would be :

C= (co| — to |' ) “ + (co2 — co2 ' )~ (6.5)

The stiffness coefficients k, and k, are selected to minimise the closeness function.
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Figure 6.3 - Simplified model illustrating the experimental approach

In the present finite element model o f the pad-disc system , contact is idealised 

as equivalent springs distributed throughout the interface connecting the surface nodes 

on the disc with the adjacent nodes on the pad as discussed in Chapter Three. The 

above method could be used to determine the effective overall stiffness o f  the pad 

(including the stiffness o f  the piston-backplate contact) idealised as shown in figure

6.3. The response o f  the clamped pad could be determined by forced vibration 

experiments for varying piston loads and, as in equation (6.3), the closeness function 

could be made to approach zero from which the effective overall stiffness Kc could be 

determined relatively easily as a function o f  load. However a major shortcoming o f this 

approach is the need to establish a relationship between the support stiffness at the 

piston-backplate interface (Ks) and the desired contact stiffness (Kc). This requires 

predetermined values o f  the support stiffness (Ks).

6.2.3 Random process approach

The determination o f  contact stiffness by the random process approach is based 

on the culmination o f  several studies by Greenwood and Williamson [77], Greenwood 

and Tripp [78], Nayak [79] and Thomas and Sayles [80], This approach was used by 

Sherif [57] in his analysis o f  the longitudinal vibration o f a brake pad. The method 

emanated from the need to determine the joint stiffness o f machine tools, for example 

between the saddle and the bed o f  a lathe. It is based on the definition o f a band o f 

wavelengths relevant to the surface interactions (plane-plane) and using them to obtain
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working expressions for stiffness in terms o f  measured surface parameters. As the 

approach is very relevant to the problem o f  flat surface interactions such as between 

the disc and the pad, it is discussed below in some detail.

6.2.3.1 Theory of random process approach

Greenwood and Williamson [77] used the random process approach to explain 

the behaviour o f  two surfaces in contact, one o f which is rough and the other perfectly 

smooth as shown in figure 6.4. The rough surface is assumed to be covered with a 

large number o f  asperities o f  random height which at least near their summits are all 

spherical with the same radius P as shown in figure 6.5. The probability o f  a particular 

asperity having a height between z and z + dz above some reference plane will be 

<\>(z)dz where ()) is the probability density function.

smooth surface plane

Figure 6.4 - Contact between a smooth surface and a rough surface

z

Figure 6.5 - Idealised rough surface with each peak having a spherical top with radius 

(3, differing only in height.
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The standard Hertzian contact equations can be used to determine the individual 

asperity behaviour. The contact radius a,, contact area A, and load P, for each 

asperity in contact can be expressed in terms o f  the normal compression or compliance

and E ,, E, are the Y oung’s moduli o f  surfaces 1 and 2 respectively, v ,,v 2 the 

corresponding Poisson's ratios and p the asperity radius. In the case o f  very different 

material moduli such as those o f  the friction material o f the brake pad and the cast iron 

rotor, E' is simply the plane stress modulus o f  the softer material.

If  the two surfaces come together so that their reference planes are separated 

by a distance d , then there will be contact at any asperity whose height was originally 

greater than d. Therefore the probability o f  contact at any given asperity o f  height z is 

given by

w defining the amount by which the points outside the deforming zone move together 

during the deformation, thus :

(6 .6)

A] = 7lPw (6.7)

Pj = ( 4 / 3 ) E ' P ,/2w V2 (6 .8)

where
i i 2 , 2 
1 1 -  v j  1 -  V2

(6.9)++
E' E, E 2

(6.10)
d

For N  number o f  asperities, the expected number o f  contacts n will be

00

n = N  J<j)(z)dz
d

( 6 . 11 )
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Also, since for any asperity in contact w = (z - d) (see figure 6.5) and therefore 

A, -  7iP w (z - d) from equation 6.7, then the mean asperity contact area is given by

A] = d)<j>(z)dz (6 .12)
d

and the expected total area in contact is

A =  A i n -  7tnpJ(z-d)( |)(z)dz (6 .13)
d

Equally from equation (6.8) the expected total load is

P = P| n = — E 'p 1/2n J ( z - d ) 3 /2(t>(z)dz ( 6 . 14)
3 d

where P, is the mean asperity load.

Thus, from the probability o f  asperities being in contact, Greenwood and Williamson 

[77] managed to establish a relationship between the total load P and the separation o f 

the mean (or reference) planes d as shown in equation 6.14. For convenience, they 

used standardized variables and described the asperity heights in terms o f  the standard 

deviation a  o f  the height distribution and the surface density o f the asperities r] 

defined by N =r|A 0 where A, is the nominal contact area. This gives :
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where the standardized separation is given by h= —

and the function (6.18)
h

where (() (s)ds is the probability o f finding an asperity tip at a dimensionless height s 

z
(i.e. s = — ) above the mean plane o f  the rough surface, 

a

Greenwood and Williamson [77] argued that most engineering surfaces have 

height distributions which can be approximated by a Gaussian distribution. Therefore 

the height distribution is given by

The above function was tabulated for different values o f  n by Greenwood and 

Tripp[78], Equation (6.17) was simplified by Greenwood and Williamson [77] to the 

form below

2s

from which
h

(6 .20)

P = c F3/2(h) (6 .21)

(6.22)

The variation o f the ratio (P/c) with h based on equation 6.21 is shown in figure 6.6.
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log 10 (P/c)

Dimensionless mean plane separation, h

Figure 6.6 - Variation o f  dimensionless load (P/c) with dimensionless mean plane 

separation h according to equation (6.2 1 ) after [80],

h3 / ih ) / f /2 (h)

F /
Figure 6.7 - Variation o f  the ratio -----  with dimensonless mean plane separation

F3/2 (h )

after [80],
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The stiffness resulting from the interaction o f  the two planes is defined as the load P 

necessary to produce unit displacement o f  the mean plane separation and for the 

purpose o f  the present study can be taken as the contact stiffness value , Kc :

dP dP dh
K c = — = — .—  (6.23)

dd dh dd

dh 1
N ow  —  = — and by differentiating equation (6.2 1 ) with respect to h and 

dd a

rearranging to include the load P rather than the constant c :

3 H 2( h ) »
/

K c = (6.24)

Equation (6.24) provides an expression whereby the contact stiffness o f the surfaces 

can be related to the applied load by the standard deviation o f  the height distribution a  

F ( h)
and the ratio 1/2 . This ratio has been determined by Greenwood and Tripp [78] 

F3/2 ( h )

and plotted by Thomas and Sayles [80] against h as shown in figure 6.7.

Upto this point it is still not possible to apply equation (6.24) as some o f the 

terms needed to calculate F3/2(h) from equations (6.21) and (6.22) such as the asperity 

radius |3 and the surface density o f asperities r\ cannot be measured directly. Nayak 

[79] promoted a way o f  statistically relating the asperity radius and surface density 

using a random process model whereby the rough isotropic surface is characterised by 

its autocorrelation R and power spectral density (PSD). He was thus able to derive 

several important characteristics o f  a surface using the random process such as the 

surface asperity density:

n  =  — -7 = 1 — 1 (6 -2 5 )
6 tw 3  [m 2 J

where m ,=  2nd moment o f  the PSD 

m4=4th moment o f the PSD.
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Nayak [79] also proved from his analysis that the surface gradient could be expressed 

as follows :

e2=( ~ r (6.26)

and that the mean asperity radius (3 can be approximated by the following equation.

P -y /m ^ 3 yfn
1.50 (6.27)

Thomas and Sayles [80] proposed that the surface gradient could be related to the 

mean absolute profile slope, tan 9 by the following expression :

- ^ 1  ,ta n 0 )
> 3 (6.28)

where H is the hardness o f the material and E is the Y oung’s modulus. By assuming in 

general that the hardness is three times the yield strength Y, we obtain

tan 9 <
Y (6.29)

For most materials the ratio is very small. Thus to a good approximation

Equation (6.28) can be related to equation (6.26), thus

m, -
71

r y

E
(6.30)

which enables m2 to be calculated from the assumed material properties o f  the surfaces.
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Thomas and Sayles [80] proposed further that the first three even moments o f the 

PSD curve are given as follows :

m 0 = 4 a 2 tan 1 (6. 31)

m, = 4 a 2c r ( Q - t a n  1 Q) (6.32)

m 4 = 4 a 4a 2(-------Q  + t a n ' Q )  (6.33)

where a is the auto-correlation decay function o f the height distribution , D  = —-
a

and co: is the cut-off wavelength for the high pass filter (i.e. an upper frequency limit 

for the analysis).

Therefore, knowing m2 from equation (6.30), equation (6.32) can be solved for O  in 

terms o f  material properties and measured surface profiles which enables mo and m4 

to be calculated. Knowing the first three even moments o f the PSD and surface 

roughness properties a and a , all other properties such as the mean asperity radius P 

and the mean asperity density r) (from equations (6.27) and (6.25) respectively) can 

then be calculated. Thus, in order to use the random process approach, the main 

parameters required from the measurement o f  the surface profiles are the rms value o f 

the roughness a  and the auto-correlation decay function o f  the height distribution a.

The main assumptions o f  this method can be listed as below :

a) the distribution o f  surface heights is Gaussian

b) the upper frequency limit is set by the onset o f plasticity, the condition for 

which can be expressed in terms o f  the mean absolute profile slope related to 

the ratio o f hardness to the Y oung’s modulus

c) the surfaces are considered to have exponentially decaying autocorrelation 

functions

d) hardness is assumed to be three times the yield strength.
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The random process asperity approach applied to the modelling o f surface 

roughness has one major limitation [78], When the load applied is sufficiently large, the 

mean planes will tend to overlap and the mean plane separation d becomes negative. 

This may suggest that the real area o f contact becomes larger than the apparent area 

which cannot be true. Thus a limit o f positive d must be imposed.

The implementation o f the random process approach in the present work is 

discussed in in more detail in section 6.4.

6.3 Comparison of the three methods

In order to determine the most suitable method for the present purposes 

comparison has to be made between the three methods discussed above which all take 

into account the material properties and the contact area.

In the first method, the contact stiffness derived is not related to the applied 

load. The only way for the contact stiffness o f a constant modulus material to change is 

by reducing the thickness and even then only one value o f stiffness is obtained for any 

load magnitude. In a lumped parameter model the contact stiffness (or coupling 

stiffness) derived using this method is valid as the material stiffness is not represented 

directly in the model. However in the finite element method the stiffness matrix has 

already taken into account the elastic properties o f  the friction material. Therefore this 

method is not suitable for the present analysis o f  the effect o f pressure on disc brake 

squeal.

In the second method, the contact stiffness calculated does change with the 

applied applied as shown by Bracken and Sakioka [51 ] with a higher load causing the 

natural frequency o f  the system to increase. This method however includes the 

cumulative effect o f the surface roughness and the pressure at all joints. It is difficult 

therefore to establish a relationship between the support stiffness at the piston-pad 

backplate interface and the pad-disc contact stiffness as only the cumulative effect o f
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theoretical calculation o f  its stiffness). To allow for a non-uniform stiffness 

distribution, the distribution would have to be pre-determined and the closeness 

function calculated to allow for this. Further difficulties lie in introducing friction at the 

interface (in order to represent the sliding condition) as the analysis presented in 

Chapter Five shows that friction causes the contact force distribution (and hence the 

stiffness) to be biased tow ards the leading edge which may change the dynamic 

response o f  the system.

In the random process approach , the contact stiffness is a function o f the 

applied load. The relationship also includes the surface properties o f  the interface 

(experimental work by Sherif et. al. [56] showed that a glazed disc surface is a 

necessary condition for squeal to occur). With this approach the effect o f  pressure can 

be isolated from the surface properties and analysed independently. As the contact 

stiffness is related to the applied load, the contact stiffness for each node pair at the 

disc-pad interface can be directly related to the nodal contact reaction force. Thus high 

reaction force will give high contact stiffness and the distribution o f  contact stiffness 

will follow exactly that o f  contact reaction force. This is very much in accordance with 

the requirements o f  the present analysis as discussed in Chapter Three.

It should be noted however that all the approaches described above can only 

approximate the actual contact stiffness as other operating factors unaccounted for 

such as disc run-out , thermal distortion o f the pad and uneven wear o f  the mating 

surfaces can all affect the force distribution and the stiffness resulting from the contact.

From the above discussion, the random process approach has distinct 

advantages over the two other methods, namely the ability to relate contact stiffness 

to the load and the consideration o f surface roughness in the calculation.Therefore the 

random process approach is used to determine the contact stiffness in the present study 

as described in the following section
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6.4 Contact Stiffness Determination by The Random Process Approach

The steps for implementing the random process approach for contact stiffness 

determination in the present work can be summarised as below :

a) Measurement o f  the surface roughness o f both the pad and the disc surface using a 

Talysurf 5 surface profile measuring machine. As the machine does not calculate the 

autocorrelation function, the roughness heights were digitised from the printout o f the 

surface profiles for use in further computations.

b) Calculation o f  the autocorrelation function (section 6.4.2) for each surface. The 

delay length was limited to 10% o f the record length to reduce error.

c) Calculation o f  the relevant parameters o f the surfaces as discussed in section 6.3. A 

programme was written in C (see Appendix I for the programme listing)to calculate 

the stiffness for each load condition ( 0 . 1 - 1  MPa line pressure in steps o f 0.1 MPa), 

the results from which were used to produce the contact stiffness versus load curves.

d) Calculation o f the contact stiffness for different surface and material properties to 

determine the sensitivity o f  contact stiffness to various parameters.

6.4.1 Measurement of surface roughness of the disc and the pad

M easurement o f the surface roughness o f  an unworn disc and a new pad was 

carried out using a Talysurf 5 profile meter . The longest measured length from this 

profile meter is 100 mm. The measurement was carried out in a tangential straight line 

across the face o f  the disc and the pad through the pad centroid (it was not feasible 

with the available equipment to measure along a circumferential arc to more closely 

follow the circular interaction between the disc and the pad). The printed surface 

profiles were then digitised and the data used for the calculation o f  the variance and 

root mean square value o f  the roughness and the decay constant o f the autocorrelation 

function. These parameters are the necessary input for the contact stiffness 

determination.
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6.4.2 Calculation of the autocorrelation function

One o f the requirements in the implementation o f  the random process approach 

in determining contact stiffness is the calculation o f the autocorrelation function o f the 

surfaces. In this section the definition o f the autocorrelation function and its 

importance is discussed based on the work o f Hailing [81], The autocorrelation 

function for a single profile is obtained by delaying the profile relative to itself by some 

fixed interval, then multiplying the original profile by the delayed one and averaging the 

product values over a representative length o f the profile. Thus

R(/) =  E [ z(x) z(x +/)] (6 46)

where E expected (average) value

z(x) height o f the profile at a given coordinate x along the mean line 

z(x)=0

z(x + /) height at an adjacent coordinate (x + I) taken at an interval / 

from the previous one 

If  the values o f  the ordinates at discrete intervals /  are known this may be interpreted 

as

I N-/
R(/) = ^ —7  X z (x )z (x  + /) (6.47)

where N is the total number o f  ordinates in a sample length L It can be clearly seen 

that when the interval length /=0, R(/) reduces to the variance a 2 or the root mean 

square value a  o f  the profile. The autocorrelation function is therefore usually plotted 

in standardised form r(/) where

( 6 4 8 )
R(0) CT2

The general decay o f  the function indicates a decrease o f correlation as / increases and 

is an indication o f the random component o f the surface profile while the oscillatory
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component o f  the function indicates any inherent periodicity o f  the profile. Detail 

discussion and examples o f various engineering surfaces and their autocorrelation 

functions can be found in [81],

6.4.3 Results from the autocorrelation function of the disc and pad surfaces

Figures 6.9 and 6.11 show the calculated autocorrelation functions o f  the disc 

and pad surface profiles for different delay lengths upto 11 mm and 10 mm 

respectively. These functions can be approximated by an exponential function as 

shown in the logcR(/)/R(0) versus / plots o f figures 6.10 and 6.12 which indicates that

the height distribution are Gaussian. The best fit straight lines drawn through the

a /
experimental points on these plots give the decay constant in the equation R(/) = Ae’ .

An non-Gaussian surface (such as a perfectly sinusoidal topography) would have a 

non-exponential decay function for its autocorrelation function There are indeed small 

oscillations about the best fit straight line as shown in figures 6.10 and 6.12 indicating 

some small inherent periodicity in the surfaces. For Flertzian dry contact applications 

(for which the random process approach is derived), the periodic component o f the 

profile can be negelected as it is the random component (i.e the exponential decay 

term ) which is o f  primary importance. Therefore the small periodicity is ignored in the 

following calculations. The present results also fulfill two o f the criteria (section 

6 .2 .3 . 1 ) for the implementation o f the random process approach namely that the 

surface is Gaussian and its autocorrelation function decays exponentially. The 

statistical parameters o f both surfaces are shown in table 6.1

From table 6.1, the root mean square roughness from the measurement o f the 

disc surface is 11.38 pm which is five times smaller than the value for the pad which is 

51.78 pm. This is due to the better surface finish o f  the disc which is machined 

compared to the relatively rough surface o f  the pad which consists o f  embedded 

particles in a polymer matrix. Consequently the autocorrelation function decay 

constant reflects the fact that the variation o f the height distribution on the disc surface 

is less than that on the pad surface (a perfectly constant amplitude sinusoidal surface 

has a zero decay constant)
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Autocorrelation (mm2)

delay length. 1 (mm)

Figure 6 .8 - Autocorrelation function o f  the disc surface roughness profile

Log ( R (l)/R (lo))

Figure 6.9 - Decay constant o f  specific autocorrelation function o f the disc
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Figure 6. 1 0 - Autocorrelation function o f  the pad surface.

log I R (l)/R (lo ) ]

de lay  length  ,1 (m m )

Figure 6.11 - Decay constant o f specific auto correlation function o f the pad surface.
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Table 6.1 - Results from the roughness measurement o f  the disc and pad

Component Root mean square 

roughness, a  (pm)

Auto correlation function 

decay constant,a (mm ')

Disc 11.38 0.057

Pad 51.78 0.081

6.4.4 Results of the contact stiffness calculation

Using the available material data and the surface roughness properties 

measured for both the disc and the pad, the contact stiffness for the initial baseline 

system was calculated for each load condition. The data and results from the 

calculations are listed in table 6.2. The calculation o f  the effective modulus according 

to equation 6.2 gives a value which at 8.000 GPa is identical to that o f  the pad friction 

material (since this has a very much lower Y oung’s modulus than that o f the disc). In 

other words, in terms o f  this calculation the disc can be regarded as effectively rigid.

Table 6.2 - Material data and results from calculation

Disc Pad

Y oung’s modulus E (GPa) 120 8

Poisson ratio, v 0.25 0.25

Asperity radius (3 (mm) 0.4348 14.35

Asperity density (mm 2) 39.34 0.0415

The results shown in table 6.2 indicate that the asperity radius o f  the pad is 

comparatively very large and the asperity density very low. This is because equation 

6.32 used in the calculation o f  the even moments produces a very small value o f  Q  

=24.148 for the pad since both the surface roughness rms ct and the decay constant a 

are large. In comparison the low rms value and the low decay constant o f the disc 

surface roughness produce a relatively large value o f f i  = 1088.3 which results in a
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small predicted asperity radius and relatively high asperity density. Physically this result 

is believable as a relatively smooth surface with small asperity radii such as that o f the 

disc is expected to have higher asperity density than a relatively rough surface with 

large asperity radii such as the pad.

In the random process approach, the ratio o f the load P to the constant c is 

required to be less than 0.4 in order to obtain a dimensionless mean plane separation 

greater than zero. For the pad friction material surface measured in the present case the 

ratio P/c for a load o f  173N (equivalent to 1 bar line pressure) is 1 59 x 10"2. In 

contrast for the disc surface at the same load level, the ratio P/c = 2 x 10'4 which is 

tw o orders o f magnitude smaller. Selection o f  the ratio P/c (as per equation 6.21) is 

based on the fact that the results show that the pad asperity radius is thirty-three times 

larger than the disc asperity radius, indicating that it is a 'rough' disc acting on the 'flat 

and smooth' pad (in the sense that the smaller asperities on the disc are acting against 

the relatively flat and large asperities on the pad). A further consideration is that the 

approach is based on the Hertzian equations for asperity contact and it is therefore the 

smaller asperity radius which strongly influences the effective radius o f the contact. 

Therefore a surface profile with a much smaller rms and a value will much more greatly 

influence the final outcome than the surface profile with the larger rms and a value 

(i.e. the rougher surface). These factors indicate that it is ratio P/c for the disc only 

which needs to be used in the determination o f contact stiffness and reduce the 

problem to that o f  essentially normally distributed spherical asperities on a rigid disc 

acting against a flat elastic pad. Therefore for all further calculations the disc surface 

rms value alone is used in equation (6.24) even though the effective or composite 

radius is still used in equation (6.22 ).

For the measured value o f  the disc roughness and the material properties listed 

above, the contact stiffness is calculated for load steps o f  0.1 MPa (1 bar) upto 11 

MPa (11 bar) line pressure.
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Contact stiffness (MN/m)

Line pressure (bar)

Figure 6. 12-  Calculated contact stiffness for the pad-disc interface

The results shown in figure 6.12 indicate that the contact stiffness, K (. (N/m) for the 

condition described can be approximated as a linear function o f the line pressure P (in 

bar) as follows :

Kc = 4722 IP (6.49).

For comparison Sherif [57] predicted a similar linear curve from his data which for a 

load o f  1 kN gave a contact stiffness o f 38 MN/m. This is one order o f  magnitude less 

than the stiffness under a similar load ( 279.90 MN/m at 5.7 bar) in figure 6.16. The 

difference can however be attributed to the softer pad used by Sherif (E pad = 1 GPa) 

and the fact that his measurements were restricted to the pad surface only whereas in 

the present work the disc surface roughness is dominant as discussed above.
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6.4.^. 1 Effect of friction material properties on contact stiffness

The effect o f  friction material property on the contact stiffness was studied by 

varying the Young's modulus and the yield strength o f the friction material

E
simultaneously to  give a constant ratio o f  —  = 40 (recall that a yield strength o f 20

Gv

M Pa was taken as the baseline value corresponding to the 8 000 MPa modulus ).

Contact stiffness (MN/m)

—  E10000/Y25 

+  E8000/Y20

E4000/Y10

E2000/Y5

-  E1000/Y2.5

Line pressure (bar)

Figure 6 . 13-  Effect o f  friction material modulus on the contact stiffness

The results shown in figure 6.13 indicate that the contact stiffness does not vary 

greatly with changes in the friction material properties. This is due to the fact that the 

surface interactions are still between the relatively flat asperities o f  the pad and the 

small radius o f  the disc asperities. For a modulus o f  10 000 MPa, the calculated pad 

asperity radius is 14.33 mm whilst for a modulus o f 2000 MPa it is still 14.33 due to 

E
the constant ratio —  used in the calculation. The differences in the calculated values
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o f contact stiffness arise simply from the effect o f  different E values on the effective 

modulus. The general trend as expected is that a friction material with low modulus 

results in a lower contact stiffness value than for a higher modulus pad material. For a 

tenfold reduction o f  the friction material modulus from 10 000 MPa to 1 000 MPa, the 

corresponding contact stiffnesses at 10 bar line pressure differ only by 104 MN/m, a 

change o f  about 20%.

6.4.4.2 Effect of disc material on contact stiffness

To study the effect o f  disc material on the contact stiffness, different disc materials are 

modelled including aluminum alloy, aluminum metal matrix composite, mild steel, 

magnesium metal matrix composite in addition to the baseline material o f grey cast 

iron. The properties o f the materials selected are shown in table 6.3. The surface 

topography was assumed to be as measured for the cast iron disc.

Table 6.3 - Material properties for the disc

Material Modulus, E (GPa) Yield strength, 

c v(MPa)

E

a y

Cast iron 120 345 348

Aluminum alloy 76 505 150

Aluminum MMC 100 215 465

Mild steel 205 304 674

Magnesium MMC 63 220 286

The results shown in figure 6.14 indicate that the contact stiffness for the different disc

E
materials does not differ very much. In each case, material with a lower ratio o f  -

CTv

gives higher contact stiffness as expected since a yis a hardness indicator (based on the 

assumption that the hardness o f  the material is three times the yield strength). A high 

disc modulus does not significantly affect the contact stiffness calculation as it is the
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friction material modulus (which is two orders o f  magnitude smaller) which dominates 

the effective modulus in the calculation.

Contact stiffness (MN/m)
600 

500 

400 

300 

200 

100 

O'
0 1 2 3 4 5 6 7 8 9  10 11 

Line pressure (bar)

Figure 6.14 - Effect o f disc modulus on contact stiffness

6.4.4.3 Effect of disc rms roughness on contact stiffness

To study this effect three alternative roughness rms values for the disc surface o f 

15pxn, lO^m and 7.5pm are considered in addition to the baseline value (1 1.38 pm). 

The results shown in figure 6.15 indicate that contact stiffness increases significantly 

with decrease in the rms surface roughness o f  the disc. This is as expected since 

contact stiffness is inversely proportional to the disc rms surface roughness as shown 

by equation (6.24). Furthermore the calculated asperity radius increases with the rms 

surface roughness o f  the disc (which leads to a reduction in the asperity density). The 

cumulative effect is to  increase the contact stiffness as rms surface roughness 

decreases.

Cast iron 

Al-Alloy 

AI-MMC 

Mg-MMC 

Mild steel
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Figure 6 .1 5 - Effect o f  disc surface rms surface roughness on contact stiffness

6.4.4.4 Effect of brake pad surface roughness on contact stiffness

In the calculation o f the effect o f  the brake pad surface, two different cases are 

considered in addition to the baseline measured values. Firstly the rms roughness o f  the 

pad is reduced to 25|.im (which is about half o f the measured rms) with the decay 

constant unchanged at a = 0.081 mm '. The second case is where the rms roughness 

o f  the pad is unchanged at 51.74(.tm but the decay constant is reduced to 0.0415 mm '. 

The results are shown in Table 6.4. It is clear that as the rms roughness o f the pad is 

decreased the pad asperity radius P also decreases whilst the asperity density r) 

increases. This in turn reduces the effective radius o f  the asperity at the pad-disc 

interface. However, as the constant c and the area density r] used in the calculation 

(as per equation 6.22) are effectively those o f  the disc, the effect on contact stiffness is 

minimal.
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Table 6.4 - Calculated parameters for different pad surfaces rms value

Parameters rms=25 pm 

a=0.081 m m '1

52 pm (measured) 

a=0.081 mm’1

rms=52 pm 

a=0.0415 m m '1

(3 pad (mm) 3.59 14.35 7.68

(3 disc (mm) 0.4348 0.4348 0.4348

(3 effective (mm) 0.3878 0.4220 0.4115

r| pad (m m '2) 0.6614 0.415 0.1446

r| disc (mrrT2) 39.34 39.34 39.34

c pad (eqn. 6.22) 55786 10883 37423

c disc (eqn. 6.22) 1019727 1063627 1050325

Contact stiffness at 

line pressure o f  10 

bar (MN/m)

479.7 481.4 480.9

H owever as the pad becomes smoother the decay constant a cannot be expected to 

remain unchanged and as shown in the final column o f table 6.3 the effective radius is 

also reduced for smaller a. Nevertheless the pad surface needs to have even smaller 

rms and a values than those shown in table 6.4 in order to significantly reduce the 

contact stiffness. The last row o f table 6.3 shows that there is only a very small 

difference in contact stiffness for the different pad surface roughness parameters 

considered.

6.4.5 Example of nodal contact stiffness calculation.

The objective o f estimating the total interface contact stiffness is to determine a 

suitable value for the nodal contact stiffness value for use in the friction matrix in the 

stability analysis. An example is now given o f how the nodal contact stiffness is 

calculated for the pad-disc interface, assuming a friction material modulus o f  8000 

MPa, the measured roughness properties o f the pad, equal trailing and leading edge
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abutments, friction coefficient o f  0.4 and line pressure o f  10 bar.The node chosen is the 

one for which the maximum reaction force is predicted (109.5 N) which has 

coordinates o f ( R = 1 10mm, 9 = 30 degrees) on the pad model definition (see figures

5.4 and 5.5a).

Piston diameter = 46.84 mm

The total force applied to the pad = Pressure at 10 bar X piston area

= (0.1 N)x(—\46.842 ) = 1735N 
4

Total contact stiffness (from figure 6.12) = 496 MN/m 

Nodal reaction force (from figure 5 .6c) = 109.5 N

Nodal contact stiffness = (Nodal reaction force /Total force)*(Total stiffness)

= 31.3 MN/m

The calculation is repeated for all other node pairs on the pad-disc interface to 

determine the individual node contact stiffness for use in the friction matrix in the 

stability analysis.

6.5 Discussion

The random process approach to contact stiffness calculation takes account o f 

both the material and surface properties at the interface. For the baseline parameters 

studied, the calculated contact stiffness varies in direct proportion to the applied 

pressure. In section 6 4.4.1, the effect o f friction material properties on contact 

stiffness was studied. From the results, a stilfer friction material gives a higher contact 

stiffness for the same applied pressure as expected but the proportional change o f 

contact stiffness is much less than that o f the friction material modulus.

The effect o f  the disc material studied in section 6.4.4.2 showed that for the 

five different materials considered the contact stiffness does not vary very much.
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Generally harder materials as indicated by the ratio —  give higher contact stiffness as 

expected.

In section 6.4.4.3 the effect o f  the disc surface rms roughness on the contact 

stiffness was investigated. The results indicate that contact stiffness is sensitive to the 

disc surface roughness and in particular that a reduction in surface roughness increases 

the contact stiffness. Therefore the effect o f wear on brake squeal could be analysed 

indirectly by considering the effect o f rms roughness on the contact stiffness. The 

curves presented in figure 6.15 could be used to determine the operating roughness 

domain over which the contact stiffness may vary throughout the life o f  the disc, for 

example by taking the measured rms value o f  11.38 f.tm as being for a new and unworn 

disc. Then, by assuming that the surface roughness is decreased by wear, the contact 

stiffness would progressively increase even though the line pressure remains the same. 

The effect o f  disc surface roughness has been demonstrated in the experimental work 

o f  Sherif et al [57] in which the disc surface had to be glazed (i.e smooth) for squeal to 

occur - a neccessary but not sufficient condition. The results shown in section 6.4.3.3 

together with those from the stability analysis reported in Chapter Seven below may 

help explain these effects.

Section 6.4.4.4 shows that pad surface roughness has little effect on the contact 

stiffness. This is due to fact that the pad asperity is large and therefore has little 

influence on the effective radius compared to the effect o f  the much smaller disc 

asperity. However if the pad surface was sufficiently reduced in its rms roughness and 

decay constant, the effect would then be significant.

The sample calculation given in section 6.4.5 demonstrates how the nodal 

contact stiffness is derived. It gives a distribution pattern identical to that o f the nodal 

reaction force as the predetermined total force and total stiffness do not vary for a 

given pressure. Using this method force equilibrium is maintained and the sum o f the 

distributed nodal stiffness equates to the current total stiffness at the interface.
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In all, the approach used to calculate the nodal contact stiffness in this thesis 

has taken into account both the partial contact state at the pad-disc interface and the 

material and surface properties o f  the interface thereby providing the necessary link 

between applied pressure and contact stiffness.



C H A P T E R  SEVEN

STABILITY ANALYSIS OF THE COUPLED PAD-DISC SYSTEM

Page 164

7.1 Introduction

The individual finite element models o f  the pad and the disc (free-free modal 

analysis o f which has been compared with experimental results in Chapter Four) can be 

coupled for stability analysis in order to predict squeal taking into account the contact 

pressure distribution at the interface as discussed in Chapter Five. By using an 

unsymmetric eigenvalue solver, the resulting eigenvalues are complex numbers in 

which the sign and the magnitude o f  the real part indicates the relative stability and the 

imaginary part estimates the frequency o f the resulting modes.

In the present chapter , the stability o f  the coupled pad-disc system is 

discussed in terms o f  the unstable modes o f  interest and their evolution with 

param eters such as contact stiffness. The complex eigenvectors which describe the 

asynchronous motion o f the modes are studied and these modes are compared with 

experimental squeal mode shapes [10] for validation o f  the approach. Additional
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sensitivity studies are also carried out in order to investigate the effect o f certain 

parameters on the stability o f  the coupled pad-disc system

7.2 Methodology

The individual finite element models o f the disc and the pad are validated for 

dynamic analysis in Chapter Four. The reduced (substructured) models o f  the pads 

and the disc are now to be coupled using the interface matrix derived in Chapter Three. 

External connections to the pads where the inboard pad makes contact with the piston 

and the outboard pad with the paw are modelled using stiff springs connected to rigid 

points as schematically shown in figure 7.1. The finite element model o f the coupled 

pad-disc system is shown in figure 7.2. The baseline condition is taken as a combined 

trailing and leading edge abutment with the friction coefficient set at p=  0.4 and a 

support stiffness o f  24 MN/m for both the pad backplate -piston and also the 

backplate-paw external connections.

The distribution o f  the contact stiffness at the nodes on the pad-disc interface is 

determined by the magnitude o f the nodal reaction force predicted by a non-linear 

finite element contact analysis , the results o f which are presented in Chapter Five

Complex eigenvalue analysis is carried out for different values o f  contact 

stiffness in order to observe the system behaviour throughout for the range o f typical 

line pressures. The analysis is carried out in steps o f 50 MN/m upto 600 MN/m starting 

from a contact stiffness o f 50 MN/m, representing line pressure in the range 0.1 - 1.2 

MPa (1-12 bar).

In order to determine the effect o f  operating pressure two parameters in 

particular are considered:

i) interface contact stiffness , K c

ii) external support stiffness , K s
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Figure 7.1 - Active forces acting at the sliding interface and the schematic diagram of 

the coupled pad-disc model
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Figure 7.2 - The finite element model o f  the coupled pad-disc system.
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In this study the parameters are varied independently so that the effect o f each can be 

isolated A full listing o f  the input data for the stability analysis can be found in 

Appendix II.

For each complex eigenvalue problem the solution takes over 60 hours on a 

standalone Apollo Domain Series 4500 computer. Using a Sun GPSB com puter which 

is a general purpose server the solution takes about 6 - 1 2  hours depending on the 

number o f  users on the computer. It is therefore essential to reduce the problem size as 

discussed in Chapter Four.

7.2.1 Interpretation of complex eigenvalues

As the approach adopted in this chapter relies heavily on the evaluation o f  

complex eigenvalues, their meaning is explained here based on the work o f  Newland 

[82], For the i-th eigenvalue the complex eigenvalue Sj is written as

s ,= o ,+ jc o ,  (7.1)

In control literature the complex eigenvalues are plotted on the complex number plane 

(commonly known as the s-plane) as shown in figure 7.3. For an eigenvalues which is

complex , s its complex conjugate , s, = a , - j c o ,  must also exist. For these 

eigenvalues there will be a corresponding pair o f  complex conjugate eigenvectors , Uj 

and Uj*.

In stability assessment it is the real part o f the eigenvalue which is o f 

importance. Thus for complex eigenvalues all the necessary information relating to the 

stability o f  the system is adequately represented by the first and second quarters o f the 

s-plane with unstable modes lying in the first quarter and stable modes lying in the 

second quarter.

The displacement response for free vibration in any mode can be written as
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u (t)  = C je^U , + Cj*eS| U, (7.3)

where c, and Cj are arbitrary constants. By selecting c1 = c, =1 then ,

u (t)  = es'U, + e s' U, (7.4)

The displacement response for a mode with complex eigenvalues is the combination o f 

the separate responses o f  the tw o eigenvectors (the complex eigenvector and its 

conjugate). Thus for an eigenvalue o f  s = ct+ jco and its complex conjugate o f  s = c -  jco 

the displacement response can be rewritten as:

Using the Argand diagram , the contribution from each eigenvector to the 

mode shape can be represented by tw o counter-rotating vectors o f  increasing 

magnitude ( for an unstable mode as the real part a  is positive) as shown in figure 7.4. 

The sign o f  the imaginary part will determine the direction o f  rotation o f  the vector , 

positive is counter-clockwise and negative is clockwise.

The response u(t) is the addition o f these two complex quantities which rotate 

in opposite directions at angular rate co multiplied by the increasing exponential 

em.These rotating complex quantities are sometimes described as phasors and the 

addition o f the two phasors is twice the projection onto the real axis o f  either o f  them. 

Therefore the displacement response for each mode can be written as :

u(t) = e CTt(eKOtU + e_KOtU*) (7.5)

u(t) = 2eCTt|U|cos(cot + <j>) (7.6)

where the phase angle § is given by:

tan (j) = Im {U}/Re{U} (7.7)
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Figure 7.3 - Complex eigenvalue and its conjugate on the s-plane
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Figure 7.4 - Argand diagram for (a) complex-conjugate eigenvector pair (b)counter 

rotating phasors o f  unit length (c) the results o f multiplying complex quantites in (a) 

and (b) [82]
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From equations (7.6) and (7 .7 ) , it is no longer adequate to represent the mode shape 

for a complex mode with complex eigenvectors in a single mode shape diagram as for 

the free-free response in Chapter Four as the individual mode coordinates in general no 

longer moves in phase or out o f phase together.The notion o f fixed nodes and anti

nodes can no longer apply as there exists a non-zero phase relationship between the 

coordinates. The exception would be when the imaginary part o f  the eigenvector is 

very small compared to the real part thus making the phase difference calculated from 

equation 7.7 insignificant.

In order to interpret a complex mode shape , it is necessary to calculate the 

position o f each point on the model over a cycle and present the mode shape as an 

evolution in time as it repeats itself over each cycle (although for an unstable mode the 

amplitude also grows with time). These changes over a cycle are not easily presented 

for a very large degree o f  freedom model as used in the present study. Therefore only 

the real parts o f  the eigenvectors are displayed (which is equivalent to the displaced 

shape o f  the mode when cot= 2k , 471.. as per equation 7.6). However one particular 

unstable mode is selected and the evolution o f  the phase angle o f  its complex 

eigenvector between the coupled nodes o f the finite element is studied as the mode 

moves in and out o f  the unstable region.

7.3 Results

7.3.1 Effect of contact stiffness, Kc

For the baseline condition defined above , the effect o f contact stiffness is 

studied by changing the stiffness in steps o f 50 MN/m between 50 and 600 M N/m and 

determining the complex eigenvalues for each case using the unsymmetric eigenvalue 

solver in ANSYS [8], The results obtained indicate that lowest contact stiffness for 

instability is 100 MN/m. Therefore complex eigenvalues for this condition are shown 

in the s-plane plot o f figure 7.5 from which it can be seen only one unstable mode 

(7.5 + 8917j) is evident. For the purpose o f  the following discussion this mode is
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referred to as mode A. This unstable mode is paired with a stable mode o f the same 

frequency (-7.5 + 8917j) as also observed in other published results [6,43],

Imaginary (kHz)

12

10

4

Mode A

-100 -50 50 100

Real part (1/s)

Figure 7.5 - Eigenvalue plot for contact stiffness o f 100 MN/m
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Figure 7.6a - Eigenvalues for contact stiffness o f  150 MN/m
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Figure 7.6b - Eigenvalues for contact stiffness o f  200 MN/m
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Increasing the contact stiffness to 150 MN/m causes two new unstable modes 

to emerge as shown in figure 7.6a. The first o f these (termed mode B) has an 

eigenvalue o f (13 + 4799j ) and is also paired with a stable mode with eigenvalue o f 

(14 + 4765j). The other new unstable mode has an eigenvalue o f (60 + 7753j ) and is 

termed mode C. This unstable mode is also paired with a stable mode with eigenvalue 

o f  (-60 + 7753j ). The unstable mode A detected at K c =100 MN/m as shown in 

figure 7.5 has now increased its real part and frequency to (32 + 9063j).

As the contact stiffness is further increased to 200 MN/m (figure 7.6b),unstable 

mode B which was unstable at contact stiffnesses o f 100 and 150 MN/m has now 

become stable with eigenvalue o f ( 0 + 4802j ) compared with its stable pair at (0 + 

4975j). For the remaining unstable modes , mode A has decrease its real part with an 

eigenvalue o f  ( 26 + 9241 j) and mode C has increased its real part with eigenvalue o f  ( 

100 + 7954j).

The results indicate that for contact stiffnesses o f 100 MN/m and above there 

are one or more unstable modes and that as the contact stiffness is increased the modes 

may become more or less unstable. By presenting the eigenvalues on an s-plot , all the 

eigenvalues associated with a particular value o f  contact stiffness can be observed. 

However the resulting figures are cluttered and it is not an efficient way to see the 

effect o f  contact stiffness on the overall stability o f the system. What is important is to 

isolate each unstable mode and study its development with changes in the contact 

stiffness.

Therefore, in order to more efficiently track the effect o f  contact stiffness on 

instability , the evolution o f both the real part and imaginary part o f the complex 

eigenvalues for each unstable mode is studied. It is also necessary at the same time to 

consider the stable mode which occurs at the same frequency in order to study any 

specific behaviour resulting from the evolution o f the mode pair with contact stiffness. 

Therefore for each unstable mode, the frequency and real part o f  the unstable 

eigenvalue and the frequency o f  its stable pair are plot against contact stiffness on the 

same graph as shown in figure 7.7. Unstable mode B is omitted from this exercise as it
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occurs only for one contact stiffness value o f  150 MN/m and is also considered less 

important as the real part is relatively small.

The results in figure 7.7 show that throughout the contact stiffness range 

studied there are five significant unstable modes occuring at different frequencies 

(shown as solid lines) and over different ranges o f contact stiffness. These inodes are 

marked A,C,D,E and F respectively. It is important to note that in each case the real 

part (shown as dashed lines) becomes positive as tw o modes o f different frequencies 

converge ; also that the real part develops until it reaches a maximum and then 

reduces back to zero as the frequencies o f the modes again diverge. This type o f 

behaviour is typical o f  complex eigenvalue instability analysis [45],

Mode A has an unstable frequency range o f  8917 - 9236 Hz. This frequency 

range lies between the frequencies o f  the 7th diametral (8708 Hz) and 8th diametral 

(11225 Hz) modes o f the disc model under free-free conditions. Since frequency must 

increase as a result o f  contact (since the restraint stiffness increases) it is expected that 

the disc diametral mode order for mode A should be 7 This effect can be seen even at 

a low contact stiffness o f  100 MN/m where the frequency is 8.92 kHz is 209 Hz higher 

( 4.1% higher) than for the free-free condition. The displaced shape for mode A is 

shown in figure 7.10. from which the seventh diametral mode o f  the disc can indeed 

clearly be seen.

M ode C has an unstable frequency range o f 7753 - 8301 Hz which lies 

between the frequencies o f  the 6th diametral mode (6578 Hz) and 7th diametral mode 

(8708 Hz) o f  the free-free disc. However the initial o f unstable frequency o f 7753 Hz 

is 1 175 Hz higher (17.9%  higher) than the 6th diametral mode frequency under free- 

free conditions. The frequency increase is too high to suggest that the diametral mode 

order o f  the disc is six. This aspect o f  the results for mode C is discussed in more detail 

in section 7.4.1

M ode D has an unstable frequency range o f 6166 - 63 16 Hz occuring between

contact stiffnesses o f  350 - 400 MN/m. The lower end o f this unstable frequency is 412



Chapter Seven -Stability Analysis o f  the Coupled Pad-Disc System 175

Hz less (6.4%  lower) than the sixth diametral mode o f  the disc under free-free 

conditions.

M ode E has an unstable frequency range o f  6667 - 6736 Hz occuring between 

contact stiffnesses o f  450 - 550 MN/m. The lower end o f this unstable range is 89 Hz 

greater (1.4% higher) than the sixth diametral mode o f  the disc under free-free 

conditions.

M ode F becomes unstable at a contact stiffness o f 400 MN/m with the real part 

reaching its maximum at a contact stiffness o f 500 MN/m after which the mode 

becomes more stable with the real part reducing as contact stiffness is increased. The 

unstable frequency range o f mode F is between 10151 - 10394 Hz. The minimum 

unstable frequency is 1741 Hz more (20.7%  higher) than the seventh diametral mode 

under free-free conditions.

These results show that the unstable modes do not possess higher frequencies 

as contact stiffness is increased ; in other words a low contact stiffness does not 

restrict an unstable mode to be o f  low frequency (as shown by mode A) and indeed , 

even at relatively high values o f  contact stiffness , modes o f  relatively low frequency 

still exist (as shown by mode D and E).

From figure 7.7 , the contact stiffness ranges over which particular modes 

become unstable are different and in some cases overlap (for example modes C and D). 

This indicates that for a particular value o f  contact stiffness several unstable modes 

may occur. The magnitude o f  the real part as discussed in Section 7.2.1 above does not 

predict the relative amplitude (or strength) o f  each mode ; it only reveals how fast the 

mode is growing and is thus only a relative measure o f  squeal propensity in the sense 

that a mode with large real part is more likely to manifest itself as squeal. From Table

7.1 which compares the maximum real part which occurs throughout the contact 

stiffness range, mode C has the highest maximum real part followed by mode F. 

Interestingly these modes occur over different ranges o f  contact stiffness , mode C at 

the lower range and mode F at the higher end.
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Table 7.1- Contact stiffness and frequency range o f  the unstable modes (K s=24 

MN/m)

M ode Contact Stiffness 

range (MN/m)

Frequency range (Hz) Maximum real part ( 1/s)

A 100 - 250 8917 -9 2 3 6 32.1

B 150 4799 13

C 150 - 350 7753 - 8301 107

D 350 - 400 6166 - 6316 88.5

E 450 - 550 6667 - 6736 64.3

F 400 - 600 10151 - 10394 101

7.3.2 Effect of support stiffness , Ks

The contacts between the pad backplate and the piston or paw are modelled as 

stiff springs o f  total stiffness Ks connecting to ground those nodes on the pad 

backplate to which point forces are applied to model the piston or paw applied force as 

defined in Chapter Five (figures 5 .3 a-b). Results o f  the stability analysis for the 

baseline values o f  support stiffness Ks=24 MN/m are discussed in section 7.3.1 above. 

The complex eigenvalue analysis is now repeated for two alternative values o f support 

stiffness:

i) K s = 2.4 MN/m

ii) K s = 240 MN/m

The stability analysis was again carried out over a contact stiffness range o f  50 - 600 

MN/m in each case.

The results for a support stiffness o f  2.4 MN/m presented in figure 7.8 

indicate three unstable modes within the range o f  contact stiffness and frequency 

studied. The first unstable mode (labelled A) first appears at a contact stiffness o f  125 

MN/m with frequency o f  8977 Hz and dies out at a contact stiffness o f  250 MN/m 

with frequency o f  9394 Hz. The second unstable mode (labelled C) occurs at a contact
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stiffness o f  200 MN/m and frequency o f  7833 Hz and persists upto the maximum 

contact stiffness modelled. The third unstable mode (labelled F) occurs at a contact 

stiffness o f  350 MN/m with frequency o f 10053 Hz and also continues upto the end o f 

the contact stiffness range studied. The contact stiffness range for the first unstable 

mode (mode A) is quite narrow compared to the other two. Furthermore the 

appearance o f  these unstable modes level as the contact stiffness is increased is not in 

the same order as their respective frequencies. In each case (as before), the instability is 

signalled by the convergence o f  two different modes initially at different frequencies 

whereupon the real part o f one mode becomes positive whilst stability is achieved 

when the frequencies o f  the two modes diverge.

The results shown in figure 7.7 for a support stiffness o f  Ks=24 MN/m are 

revisited in order to discuss the support stiffness effect. Comparison o f figure 7.7 and 

7.8 shows that, a support stiffness is increased tenfold from initially 2.4 MN/m to 24 

MN/m , two additional unstable modes appear (modes D and E). Furthermore mode C 

which initially covered a wide range o f  contact stiffness 175 - 600 MN/m (figure 7.8) 

has now been reduced to a range o f 150 - 350 MN/m (figure 7.7). More importantly 

the critical value o f  contact stiffness at which the modes converge has been shifted to a 

lower value. M ode F which first becomes unstable at contact stiffness o f  350 MN/m in 

figure 7.8 now begins at a contact stiffness o f 400 MN/m (figure 7.7).

When the support stiffness is further increased to K s = 240 MN/m , a very 

different trend to figure 7.7 and 7.8 is seen as shown in figure 7.9. There are now only 

tw o unstable modes which occur near the extreme ends o f  the frequency range. The 

first unstable mode (mode G) occurs within a contact stiffness range o f  200 - 250 

MN/m with a frequency range o f 3500 -3600 Hz whilst the second (mode F) occurs 

within a contact stiffness range o f 400 - 600 MN/m with a frequency range o f  9262 - 

9496 Hz. Compared to the two other values o f  support stifffness , the real part in this 

case is much reduced (40.0 maximum) and the unstable modes A,B,C,D and E 

occuring for K s=:24 MN/m have now disappeared.
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Figure 7.7 - The evolution o f  the frequency and real part o f unstable modes (baseline 

condition , support stiffness Ks= 24 MN/m)



Chapter Seven -Stability Analysis o f  the Coupled Pad-Disc System 179

Frequency (kHz) Real part (1/s)

C ontact stiffness (M N/m )

Figure 7.8 - Unstable modes evolution with contact stiffness (support stiffness K s=

2.4 MN/m)
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Figure 7.9 - Evolution o f  unstable modes with contact stiffness ( support stiffness K s 

-2 4 0  MN/m)
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7.3.3 M ode shapes

The unstable modes discussed in Section 7.3.1 and 7.3.2 above were only 

labelled in alphabetical order to allow for comparison and reference purposes. In this 

section the mode shape for each unstable mode is presented in figures 7.11 - 7.15 It 

must be stressed that, although the eigenvector from the analysis is complex, only the 

real part is shown in these figures. Therefore these can be said to represent the mode 

shape when cot = 2k  , 471 , 6rc... (as per equation 7.6). For comparison the 

undisplaced shape o f  the model and the relative positions o f the components are shown 

in figure 7.2.

Mode A (figure 7.10) involves the disc undergoing displacements similar to 

those o f the 7th diametral mode. The inboard pad (operated on by the piston) is 

moving in a ‘bent ears’ mode whilst the outboard pad (pressed by the paw) is in its 

second twisting mode.

M ode B (figure 7.11) involves the disc undergoing its fifth diametral mode 

even though the displacements are not very pronouced relative to those o f  the pad. The 

inboard and outboard pads both undergo their second bending mode o f  deformation.

The mode shape o f the disc in mode C (figure 7.12) is discussed in more detail 

in section 7.4 below. The inboard pad clearly undergoes the third bending mode whilst 

the outboard pad undergoes a combination o f bending at the leading end and twisting 

at the trailing end.

M ode D (figure 7.13) involves the disc moving in the sixth diametral mode. 

The inboard pad appears undeformed with only the leading ear undergoing bending. 

The outboard pad clearly experiences the first twisting mode Mode E (figure 7.14) 

which is a progression o f  mode D as the contact stiffness increases also has the disc 

deforming in the sixth diametral mode. The inboard pad, which for mode D is relatively 

immotive, now experiences deformation o f the trailing ear. The outboard pad is no 

longer twisting but possesses an almost similar mode shape to that o f the inboard pad
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In mode F (figure 7.15) the disc undergoes the seventh diametral mode. The 

inboard pad does not experience significant deformation whilst the outboard pad is 

clearly undergoing the second twisting mode.

M ode G which occurs only for a very high value o f support stiffness (Ks= 240 

MN/m) and with a narrow range o f  contact stiffness and relatively low maximum real 

part o f  15 is not considered important and is therefore omitted from discussion.

All the unstable modes described above involve diametral deformation o f  the 

disc. In all cases it is the outboard pad which has a more pronounced displaced shape 

compared to that o f  the inboard pad. In addition the mode o f deformation o f  the 

outboard pad is different from that o f  the inboard pad except for mode B. This can be 

attributed to the way the support stiffness is distributed at the backplate and the 

resulting contact stiffness distribution at the pad-disc interface.
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Figure 7 .10 - M ode shape for unstable mode A (Kr - 150 MN/m , Ks

Figure 7. 11-  M ode shape for unstable mode B ( K(- -  150 MN/m , Ks 24 MN/m)
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Figure 7.12 - M ode shape for unstable mode C ( Kc = 150 MN/m , Ks -  24 MN/m)
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Figure 7.13 - M ode shape for unstable mode D (Kc- -  350 MN/m , Ks 24 MN/m )
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Figure 7.14 - M ode shape for unstable mode E (Kc -  500 MN/m , Ks -  24 MN/m)
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Figure 7. 15-  M ode shape for unstable mode F ( K(- -5 0 0  MN/m , Ks 24 MN/m)
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7.3.4 Variation of phase angle with contact stiffness.

It is o f  interest to investigate the evolution o f  the phase difference between the 

normal displacements at the interface between the principal components (the disc and 

the pads) as a function o f contact stiffness. Unstable mode C (for Kc= 100 - 425 MN/m 

and Ks= 24 MN/m as in figure 7.7) was selected for this study. It is not feasible to 

compare all the coupled nodes at the interface at once and therefore a representative 

node is selected for each component: one node located on the centre o f the outer 

circumference on the friction face o f  each o f the outboard (node 14480) and inboard 

pads (node 4480) as well as the adjacent node on the disc (node 21220) as shown in 

figure 7.2. These nodes are selected as they lie on the pad centreline plane and in any 

diametral mode o f  the disc it is the outermost node (i.e. at the disc circumference) 

which undergoes maximum displacement. Within the formulation o f  the interface 

element it is the interaction between the nodes on the pad and the disc represented by 

their normal (axial) displacements which generates the contact force as indicated in 

figure 7.1 Therefore the phase angle o f  the normal displacement at each node selected 

was calculated using equation 7.7 and the results together with the components o f  the 

complex eigenvectors for these displacements are listed in Table 7.2. It can be seen 

that the phase difference is effectively zero for the stable condition (i.e. K<- = 100 

MN/m and Kr  = 425 MN/m ). In all other cases the phase angles are not zero. The 

phase differences between the normal displacements o f  the pad nodes and that o f  the 

disc together with the real part o f  the unstable mode eigenvalue are plotted against 

contact stiffness in figure 7.16.

The results in figure 7.16 show that the phase difference for both the inboard 

pad-disc and outboard pad-disc normal displacements follow closely the trend o f  the 

real part o f  the eigenvalue. The maximum real part coincides with the phase difference 

value closest to 180 degrees and the real part becomes zero as the phase difference 

also tends to zero. This aspect can be explained by considering the interface element 

matrix used to couple the nodes for which maximum variation o f normal force implies 

a phase difference o f  180 degrees between the normal displacements o f the node pair. 

Thus the maximum real part o f  the unstable mode C coincides with the maximum
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phase difference between the pads and disc as the pads effectively ‘hammer’ the disc. It 

is expected that this same relationship between phase difference and positive real part 

would apply to other modes. It is also interesting to note that the inboard pad leads the 

outboard pad by 43 degrees within the unstable range o f  contact stiffness and the phase 

difference remains relatively constant at about 43 degrees (= k/4 radian) except when 

K(- = 350 MN/m where the phase difference between the outboard pad and the inboard 

pad is 33.44 degrees. This imply that the inboard pad hammers the disc first followed 

by the outboard pad thus allowing for energy transfer between the pads and the disc.

Table 7.2 - The components o f the eigenvector and phase angle o f  the selected normal 
displacements for different values o f  contact stiffness

Contact stiffness 
Kc (MN/m)

Inboard pad 
node

Disc node Outboard pad 
node

100 Eigenvector (Re) 
(Im)

Phase angle , <J)

1.6137
+ 0.3462E-4j 
0.00°

-0.5233 
- 0.9428E-4j 
0.01°

0.2008 
+ 0.6917E-4j 
0.02°

150 Eigenvector (Re) 
dm )

Phase angle , (j)

0.5597 
- 0.6530) 
310.60°

-0.0293 
+ 0.2856j 
95.87°

-0.0299 
- 0.235 1 j 
277.24°

200 Eigenvector (Re) 
(Im)

Phase an g le , (J)

-0.0494 
- 0.7270j 
224.03°

0.1583 
+ 0.2045j 
52.26°

-0.3667 
- 0.3545j 
266.11°

250 Eigenvector (Re) 
(Im)

Phase angle , 4>

0.3326 
+ 0.443 lj 
53.11°

-0.1136 
- 0.0115j 
185.79°

0.5501 
+ 0.1016j 
10.46°

300 Eigenvector (Re) 
(Im)

Phase angle , (j)

0.2668 
+ 0.295 8j 
47.95°

-0.0275 +
0.0296j
132.92°

0.5784 
+ 0.0623j 
6.14°

350 Eigenvector (Re) 
(Im)

Phase angle , (J)

0.2123 
+ 0 .1546j 
36.05°

0.0237 +
0.044()j
61.67°

0.5944 
+ 0.0273j 
2.61°

425 Eigenvector (Re) 
(Im)

Phase angle , (J)

0.3152 
- 0.2663E-4j 
0.00"

0.1429 
- 0.2868E-5j 

0.00°

0.6801 
- 0.5486E-5j
0.00°
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Real part (1/s) Phase difference (degrees)

Contact stiffness (M N /m )

Figure 7 .16-  The real part o f  the eigenvalue and the phase difference between normal

dispalcements o f  the outboard and inboard pad nodes and the disc node for mode C

(support stiffness Ks = 24 MN/m)
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7.4 Discussion

The results from the complex eigenvalue analysis suggest that for different 

values o f support stiffness there are different unstable modes. Instability occurs in each 

case as a result o f two modes initially of different frequencies coming together to form an 

unstable mode (with a corresponding stable mode with real part of equal magnitude but 

negative sign) at a certain value o f contact stiffness. This instability continues upto a higher 

value o f contact stiffness whereupon the mode frequencies diverge resulting in both modes 

becoming stable again.

Beginning from a very low value o f  backplate support stiffness o f 2.4 MN/m, 

there are initially three unstable modes which occur over a relatively wide range o f 

contact stiffness. As the support stiffness is increased to K s=24 MN/m one o f these 

unstable mode vanishes but a new unstable mode appears and the two other unstable 

modes seen at Ks = 2.4 MN/m now occur over a narrower range o f  contact stiffness. 

As the support stiffness is further increased to K s=240 MN/m, only one significant 

unstable mode from the previous condition remains but with very much reduced real 

part and lower frequency.

The effect o f applied pressure on disc brake squeal problem can now be 

explained using the results from the analysis for both varying contact stiffness Kc and 

support stiffness Ks. In the contact stiffness determination discussed in Chapter Six , the 

effect o f  increasing applied pressure is to increase the contact stiffness linearly. Based 

on this result, an assumption can be made that the same trend applies to the pad 

backplate interface i.e. the support stiffness also increases linearly with the applied 

pressure (although the exact relationship is not determined). As the pressure is 

increased on the pad backplate , the contact stiffness increases causing some modes to 

converge to form unstable modes and this instability continues upto a certain value o f 

stiffness when the modes diverge to become two separate stable modes. At the same 

time the support stiffness also increases with increasing applied pressure and this forces 

the unstable modes to occur within a narrower band o f  contact stiffness. This translates 

in practice to the range o f  applied pressure over which squeal occurs as shown by
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Fieldhouse and Newcomb [10], As the pressure increases further new unstable modes 

arise with the same convergence-divergence phenomenon However the corresponding 

increase in the support stiffness finally suppresses these modes and squeal therefore 

dies out above a certain value o f  applied pressure. The stabilising effect of increased 

support stiffness also compares well with the experimental finding by Sherif et al [56] that 

increased support stiffness (achieved by using a steel ball pressing on the pad and also by 

having a grooved backplate) reduces squeal noise. It also compares well with the analytical 

work o f Ghesquirre [46] whereby increasing the caliper normal stiffness (equivalent to the 

support stiffness of the model used in the present study) caused one of the modes to 

become stable.

For comparison with the experimental results the tw o modes with the highest 

maximum real part are selected from the analytical results for a support stiffness o f  24 

MN/m. It may be judged that these modes have the highest squeal propensity 

compared to the other modes and furtherm ore they occur over a wide range o f  contact 

stiffness and also a relatively wide range o f  support stiffness. The values o f  the contact 

stiffness used in the analysis is converted to equivalent line pressure according to the 

results o f the interface contact stiffness calculation shown in figure 6.12 o f  Chapter 

Six. The unstable frequency range from the analysis for these two modes is compared 

with the squeal frequency range o f the experiment [10] in figure 7.17
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Pressure (bar)

Frequency (kHz)

Figure 7.17 - The line pressure-frequency relationship for both experimental and 

analytical squeal modes

The results in figure 7.17 indicate that the first unstable frequency range from the 

analysis compares very well with the experiment whilst the second unstable frequency 

range from the analysis is somewhat higher. The discrepancy for the higher frequency 

range may be due to the fact that, as stated in Chapter Four, the pad finite element 

model under free-free condition compares well with experimental results only for 

frequencies below 8 kHz (figure 4.13). The discrepancy could also be reduced by 

increasing the support stiffness which would result in a lowering o f  the second unstable 

frequency range as shown by comparison o f  figure 7.9 and 7.7. Bearing in mind these 

observations, it is fair to conclude that the approach has been successful in predicting 

the correct range o f  line pressure and frequency over which squeal occurs.

In order to compare the predicted unstable mode shapes with experiment, only

the most significant unstable modes are selected which as discussed above are modes C
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and F. The unstable mode C is compared to the low pressure range from the 

experiment [10] whilst, for the high pressure range , unstable mode F is selected for 

comparison. The analytical unstable mode is displayed as an equal displacement 

contour plot which allows for direct comparison with the reconstructed holographic 

image from the experiment. It is important to note that the analysis does not directly 

model the caliper. On the other hand in the actual brake system the caliper forms an arc 

o f  93 degrees covering the disc and therefore only the fringes outside the caliper arc 

can be revealed in the reconstructed holographic image. The results from the finite 

element analysis can however reveal the equal displacement contours under the pad 

which provides a distinct advantage in the analysis o f the mode shape. In addition the 

construction o f  the actual brake system is such that the outboard pad is partially 

obscured by the caliper paw while the inboard pad is totally hidden. Therefore 

comparison o f the pad mode shapes can only be made for the outboard pad (with the 

limitation mentioned above) whilst for the inboard pad only the analytical mode shape 

is available.

7.4.1 Low pressure range squeal

In order to allow for comparison o f the mode shape from the analysis with 

experiment, the equal displacement contour plots o f the disc and the pads from the 

analysis are shown separately in figures 7.19a-c in order to allow the contour plot o f 

the disc under the pad to be displayed.

The disc mode shape from experiment (figure 7.18) is evidently diametral with 

a uniform node spacing outside the pad-disc contact area. A total o f 1 1 antinodes and 

10 nodes can be counted outside the caliper arc. Measurement between two successive 

nodes reveals an angle o f  27 degrees. Similarly the mode shape from the analysis 

(figure 7.19a) reveals 11 nodes and 10 antinodes outside the 92 degrees arc 

representing the pad and caliper shown by the two bold lines in the figure Measuring 

the angle between the nodes outside the caliper arc again reveals an angle o f  27 

degrees. Thus the nodal spacings o f the experimental and analytical modes outside the 

caliper arc are the same. I f  one assumes that the disc nodal spacing under the pad and
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caliper remains similar to that elsewhere on the disc, this condition implies a diametral 

mode order o f  6.67 (360°/(27°x 2)). In order for the disc mode shape to be purely o f 

sixth diametral mode, the nodal spacing need to be 30 degrees ( 360°/12) and 

uniformly spaced both in and out o f  the contact area (for comparison free-free sixth 

diametral mode shape can be found figure 4.6e of Chapter Four). However the equal 

displacement plot (figure 7.19a) shows that there are 4 nodes and 3 antinodes under 

the pad with the angle between the nodes no longer uniform. At the leading edge the 

angle between the nodes is 32 degrees which is 5 degrees more than that between the 

nodes outside the caliper arc. Furtherm ore by closely inspecting the displacement 

contours there are 6 maxima (lines marked I) and 7 minima (6 lines marked A and a 

single line marked C) and 13 node clusters (lines marked E) around the disc 

circumference. The diametral mode order is defined by the (even) number o f  nodes (or 

antinodes) divided by two. This shows that the mode shape occuring under the coupled 

condition is not the sixth diametral mode o f the disc and therefore cannot be detected 

in advance by natural frequency analysis o f  the free-free disc.

This conclusion provides an added explanation to the hypothesis o f Fieldhouse 

and Newcomb [10] that the source o f  excitation for low pressure squeal is the pad 

rather than the disc due to the large difference in the natural frequency o f  the disc sixth 

diametral mode (6450 Hz) and the squeal frequency (7850 Hz). As the coupled 

diametral mode o f the disc does not exist naturally, it must therefore be excited at this 

mode shape and frequency by interaction with the pad.

It is difficult to compare the predicted mode shape o f  the outboard pad with 

experiment as in the latter a large proportion o f the pad is covered by the caliper paw 

The equal displacement contour plot on the outboard pad model (fig. 7.19b) shows a 

bending deformation o f  the trailing end indicated by the curved contours whilst the 

leading end is undergoing some form o f twisting indicate by the horizontal contour 

lines. In the experiment , the pad trailing end also undergoes a relatively large bending 

deformation as shown by the closely spaced vertical (relative to the pad longest 

dimension) fringe lines whilst the leading end has two widely spaced vertical fringe 

lines indicating a relatively small bending displacement. The similarity o f  the mode
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shapes for the pad therefore is limited to the trailing end o f  the pad as the leading end 

in the finite element analysis displays a twisting mode whilst in the experiment it 

undergoes a small degree o f  bending.

For the inboard pad no comparison can be made as the inboard pad is hidden 

in the experiment by the caliper housing. However the mode shape o f the coupled 

system (figure 7.12) shows that the pad is only undergoing small displacements relative 

to the outboard pad. The finite element contour plot (figure 7.19c) indicates the 

inboard pad to have a displaced shape similar to that o f  the first bending mode.
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Figure 7.18 - Reconstructed holographic image for low pressure squeal mode [10]

Arc covered by 

by calliper and pad

32 deg.

A =-1.135
B =-0.85263
C =-0.569936
D =-0.287241
E =-0.004546
F =0.278148
G =0.560843
H =0.843538
I =1.126

Figure 7.19a - Equal displacement contours on the disc for unstable mode C (KC'-1 5 0

M N/m , Ks = 24 MN/m)
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Figure 7 .19b - Equal displacement contours on the outboard pad for unstable mode C (Kc-= 150 
M N/m , Ks =24 MN/m)
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Figure 7.19c - Equal displacement contours on the inboard pad for unstable mode C (Kc=150
MN/m , Ks = 24 MN/m)
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7.4.2 High pressure range squeal

The equal displacement contour plot from the analysis (figure 7.21a) shows 

that the disc has a total o f  12 antinodes (lines marked A and H) and 11 nodes (lines 

marked E) outside the caliper arc with an average nodal angular spacing o f  23 

degrees. Inside the caliper arc, the contour lines are very much distorted with 2 

antinodes and 3 nodes detected whilst the nodal spacing is much larger with 35 degrees 

between those under the leading edge part o f the pad and 37 degrees between those 

nodes under the trailing edge. Since there are 14 nodes and 14 antinodes around the 

disc circumference in total the mode can be defined as the seventh diametral mode. The 

reconstructed holographic image o f  the disc brake during squeal in the high pressure 

range (figure 7.20) shows that outside the caliper arc there are a total o f  11 nodes and 

12 antinodes with an angular nodal spacings o f 24 degrees. Therefore the nodal 

spacing o f  the disc from the analysis and experiment is very similar whilst the numbers 

o f  nodes and antinodes outside the caliper arc are identical.

The holographic image for the outboard pad (figure 7.20) is covered by the 

caliper and only the fringe lines on the ears can be clearly seen These reveal the pad 

ears at both leading and trailing edges to be undergoing twisting. Although the trailing 

ear has higher fringe density than the leading ear. The results from the analysis (figure 

7.20c) also reveal the trailing pad ears to have a twisting deformation indicated by the 

one horizontal (relative to the pad longest dimension) contour line. The leading edge o f 

the pad has similar horizontal contour lines but with higher density which indicates 

larger deformation as shown in the mode shape plot for mode F (figure 7.15). As both 

ends o f  the pad undergo twisting in the analysis and in the experiment in can 

confidently be stated that the outboard pad mode shape from the analysis compares 

well with experiment for the high pressure range.

The results from the analysis (figure 7.21c) show horizontal lines on the trailing 

edge o f  the inboard pad indicating a twisting motion whilst the leading edge has 

diagonal lines bending indicating with slight twisting. Again it is not possible to 

compare those predicted motions with experiments.
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Figure 7.20 - Reconstructed holographic image for the high pressure range squeal [10]

35 degrees

G j 
C D e F qH1

37 degrees

Arc covered by 
caliper and pad

LEADING EDGE
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Figure 7.21a - Equal displacement contours on the disc for unstable mode F



Chapter Seven -Stability Analysis o f the Coupled Pad-Disc System 199

STEP 1 
SUB= 1
FREQ 85.185
UZ
RSYS 0 
DMX 8.855 
SEPC 93.2 
SMN 7.651 
SMX 8 547 
A -6.751 
B=-4.951 
C=-3.151 
D -1 .3 5 2  
E=0.448023 
F=2.248 
G 4.047 
H=5.847 
I 7.647

DISC SLIDING 
DIRECTION

Figure 7.2 lb - Displacement contours on the outboard pad for unstable mode F (Kc =500  
M N/m  , Ks = 24 M N/m)
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Figure 7.21c - Displacement contours on the inboard pad for unstable mode F (Kr =500
MN/m. Ks = 24 MN/m)
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For both the low and high pressure range squeal, the disc mode shape is 

somewhat distorted compared to the free-free condition. In both cases it has been 

shown that the angular spacing o f the nodes is regular away from the caliper but very 

much changed under the pad. This suggests that modal analysis o f  disc under free-free 

conditions would not indicate the squeal mode shape or frequency. Similarly the pad 

mode shapes from the coupled analysis do not show much similarity with those under 

free-free conditions as described in Chapter Four. Therefore a coupled pad-disc 

analysis is necessary to correctly predict the mode shape and frequency o f the unstable 

modes which can be related to squeal and provide the necessary information for squeal 

abatement. It has been shown by Hoffman [54] that for damping layer on the pad 

backplate to be effective it must undergo relatively large displacements as in a bending 

mode. The results presented in figure 7.19b show the pad undergoing bending and the 

leading part o f  the outboard pad also undergoing bending which indicates the 

suitability o f the damping layer approach to moderate unstable mode C.

The diametral modes o f the disc for the unstable modes as described above no 

longer takes the form o f a pure diametral mode (i.e uniform node spacing). This 

suggests that modification to the disc would not have much effect on the stability o f 

the coupled pad-disc system as diametral mode separation would be effective only for 

diametral modes which have uniform nodal spacing. The effect o f  mode separation on 

the stability o f  the coupled pad-disc system is further considered in Chapter Eight.

The results from the analysis revealed some unstable modes which were not 

apparent in the experiment. However the unstable modes with a relatively high real part in 

their complex eigenvalue compare well with experimentally observed squeal modes. This 

indicates that the order o f magnitude of the contact stiffness derived in Chapter Six has 

produced results in terms frequency and pressure range for the major unstable modes that 

compare reasonably with the experimental results of Fieldhouse and Newcomb [10],

The good correlation between the results from the finite element analysis and 

the experiments in terms o f  instability frequency and the associated mode shapes within 

the right range o f  applied pressure have shown that squeal can be successfully
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modelled using the finite element method. This also demonstrate that the magnitude o f 

contact stiffness assumed is correct in the sense that it produces unstable modes which 

resemble experimental squeal modes. Thus the general effect o f  pressure on disc brake 

squeal has been explained taking account o f  both interface contact stiffness and 

support stiffness. The coupled finite element model and the complex eigenvalue 

solution technique can now be applied to investigate the effect o f  parametric changes 

(from the baseline values) on the propensity for disc brake squeal as explained in 

Chapter Eight below.
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CHAPTER EIGHT

PARAMETRIC STUDIES OF THE COUPLED PAD-DISC
SYSTEM

8.1 Introduction

The coupled pad-disc model used in Chapter Seven for the complex eigenvalue 

stability analysis has predicted a number o f unstable modes, several o f  which show 

good correlation with experimental squeal evidence. The conditions for which the 

results from the model compare well with experiment are selected as baseline values 

and the sensitivity o f  the results to variations in these baseline parameters is studied in 

this chapter.

There are several reasons why sensitivity studies are needed. Firstly there is a 

desire to determine parameters which lead to improved stability o f the system thus 

helping designers to eliminate squeal by changing those parameters. Secondly there is 

the need to compare variations from the present approach with other variations carried 

out experimentally and analytically, thereby further validating the present modelling



Chapter Eight - Parameric studies o f  the coupled pad-disc system 203

approach for squeal related work. The parameters studied here are open to physical 

interpretation and, as much as possible , related experimental work is used to verify the 

trend o f  the results.

8.2 Methodology

The baseline condition selected for this sensitivity analysis is o f  a combined 

trailing and leading edge abutment with a friction coefficient o f  0.4. The contact 

stiffness distributions are the same as in Section 6.3.1 i.e. leading edge biased for both 

inboard and outboard pads. The backplate connection stiffness is taken as 24 MN/m 

and the abutment stiffness is taken as 1.2 MN/m.

The parameters studied in this exercise include:

a) friction coefficient, |a

b) stiffness o f the abutment

c) contact stiffness distribution

d) Y oung’s modulus o f  the disc material

e) Y oung’s modulus o f  the pad material

f) effect o f  disc asymmetry.

8.3 Effect of Friction Coefficient

Friction coefficient which is one o f  the most important factors in any friction 

brake design is governed by controlling the composition o f  the friction material and 

also proper matching o f  the friction pair. As economic factors begin to make 

downsizing o f  components more attractive , the use o f  a higher friction coefficient to 

achieve similar braking performance for a smaller rotor diameter is encouraged. In this 

study the squeal propensity o f  the coupled pad-disc system is estimated for different 

friction coefficients in the range o f  0.1 to 0.7 in steps o f  0.1 Only one value o f contact 

stiffness o f 300 MN/m is used for the analysis as, at this value, the resulting unstable 

modes compare well with experiment as reported in Chapter Six.
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There are three unstable modes detected within the range o f friction coefficient 

studied. The first unstable mode begins at a friction coefficient o f  between 0.4 and 0.5 

(as at (1=0.5 the real part is already 30) as shown in figure 8.1. It comes about as a 

result o f tw o different modes at an initially different frequencies (5970 Hz , 6090 Hz) 

coming together at a common frequency o f  5975 Hz. After the modes converge, the 

real part grows with increasing friction coefficient whilst the frequency continues to 

fall. The real part reaches a maximum at p= 0.6 after which it reduces with increasing 

l-i

The second unstable mode first occurs at a friction coefficient o f  0.5 as shown 

in figure 8.2 as two different modes at different frequencies (6530 Hz , 6709 Hz) 

coalesce at a common frequency o f  6551 Hz. After this, the real part increases with 

increasing friction coefficient whilst the frequency remains relatively unchanged.

Figure 8.3 shows the third unstable mode first occurring at a friction coefficient 

o f  0.35 when two separate modes at different frequencies (8120 Hz , 8340 Hz) 

coalesce at a common frequency o f 8231 Hz. Again the real part increases 

monotonically with the friction coefficient whilst the frequency remains relatively 

unchanged.

To give an overall picture , the evolution o f the frequency for all three unstable 

modes is shown in figure 8.4. It can be seen that there are different critical friction 

coefficients at which the modes converge. For modes A and B, the critical friction 

coefficient is about 0.5 whereby the critical friction coefficient for mode C is 0.35. The 

lower the critical friction coefficient the easier the mode will become unstable. Also the 

real part (which indicates the instability) tends to grow with increasing friction 

coefficient (with the exception o f  mode A which reaches a maximum at |H=0.6 as 

shown in figure 8.1). In general higher friction coefficient therefore results in a less 

stable system as the system can accommodate more unstable modes. This is in 

agreement with all other published results [6,7,43,47],
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8.4 Effect of Abutment Stiffness

The pad abutments are modelled as stiff springs connecting two nodes at each 

o f  the pad ears to ground. The baseline stiffness is 2.4 MN/m at each end. Two 

additional values are used to study the sensitivity o f  the model to the abutment 

stiffness:

i) 0.0024 MN/m

ii) 2400 MN/m

The results for the abutment stiffness o f  0.0024 MN/m shown in figure 8.5 indicate 

five unstable modes within different ranges o f  contact stiffness. All the unstable modes 

occur at frequencies above 5 kHz.

Comparing the results for abutment stiffnesses o f  0.0024 MN/m (figure 8.5) 

and 2.4 MN/m (figure 7.7), the trends and the frequency range over which the modes 

are unstable remain essentially the same. There is one exception to this observation in 

that the mode with the highest frequency range (10.1 - 10.6 kHz) has increased its 

maximum real part from 71 to 102 as the abutment stiffness is increased. However, 

when the abutment stiffness is further increased to 2400 MN/m (about an order o f 

magnitude greater than the pad-disc contact stiffness), there are some major changes to 

the unstable modes indicated in figure 8.6 including:

a) a reduction o f  the contact stiffness range over which the modes are unstable

b) significant increase in the maximum real part o f  the complex eigenvalues. 

Therefore the effect o f  abutment stiffness is mode-specific in the sense that different 

modes are influenced in a different manner by the magnitude o f  the abutment stiffness. 

An increase in abutment stiffness tends to stabilise modes which are unstable over a 

relatively narrow range o f  contact stiffness by reducing further the unstable contact 

stiffness range and the magnitude o f the maximum real part. For modes which are 

unstable over a relatively wide range o f  contact stiffness, an increase in abutment 

stiffness from the baseline value increases the magnitude o f  the real part and hence 

reduces the stability. There is also a downward shift o f  the critical contact stiffness for 

the higher frequency unstable modes, in particular mode F for which the critical 

contact stiffness value is reduced from 400 MN/m to 300 MN/m.
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Figure 8.5 - Unstable modes for abutment stiffness o f  2.4 kN/m
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Figure 8.6 - Unstable modes for abutment stiffness 2 400 MN/m
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8.5 Effect of Contact Stiffness Distribution

Three different contact stiffness distributions are considered in this study

namely:

i) leading edge biased

ii) uniform

iii) trailing edge biased.

The leading edge biased distribution is the baseline condition from the contact analysis 

described in Chapter Five which showed that the distribution tends to be biased 

tow ards the leading edge for both inboard and outboard pads due to the friction effect. 

The uniform contact stiffness distribution is achieved by specifying the same contact 

stiffness for all the node pairs at the pad-disc interface. This in practice could be 

achieved (to a certain extent) by using softer friction material and spreading out the 

force applied to the backplate as demonstrated in Chapter Five for the case o f  paw 

applied pressure. The trailing edge biased contact stiffness distributions are obtained by 

mirroring all the contact values for the leading edge biased distribution about the pad 

centreline (as the pad is symmetric about this line). This again result in partial contact 

but now the nodes at the trailing edge have higher contact stiffness values than those at 

the leading edge. In practice a very similar effect can be achieved for the inboard pad 

by moving the piston tow ards the trailing edge.

All the analyses are carried out for a combined trailing and leading edge 

abutment with friction coefficient o f  0.4 and for a range o f  contact stiffnesses upto 

600 MN/m Figure 7.7 shows the mode evolution for the baseline leading edge biased 

distribution which occurs under normal sliding As discussed in detail in Chapter Seven, 

there are five major unstable modes within the range all involving the sixth and seventh 

diametral modes o f  the disc.

Figure 8.7 shows the corresponding mode evolution for a uniform pressure 

distribution over both pads. A total o f  three unstable modes is indicated with the first 

mode (mode D) occurring over a very narrow contact stiffness range. In contrast mode
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C occurs over a contact stiffness range o f  250 - 400 MN/m and mode F occurs over a 

contact stiffness range o f  300 - 450 MN/m. The maximum real part for this condition is 

175 for unstable mode C compared with 107 for the same mode with the baseline 

contact stiffness distribution (figure 7.7).

Figure 8.8 shows the mode evolution for the trailing edge biased condition 

from which a total o f  three unstable modes can again be detected. The first unstable 

mode (mode D) occurs over a contact stiffness range o f 350-450 MN/m , the second 

unstable mode (mode E) occurs over a contact stiffness range o f 500 - 600 MN/m and 

the third unstable mode (mode C) occurs over a contact stiffness range o f  550 - 600 

MN/m. The maximum real part for this condition is now 70, again for mode C.

In general these results demonstrate that interface contact stiffness distribution 

does influence the stability o f the coupled pad-disc system. M oreover a contact 

stiffness distribution biased tow ards the trailing edge results in unstable modes within 

a very narrow range o f  contact stiffness compared to the leading edge biased 

distribution. Furtherm ore the maximum real part o f the complex eigenvalues for the 

trailing edge biased condition ( 73) is very much reduced from the leading edge biased 

condition (100) and the uniform contact pressure distribution (145). In addition 

unstable mode F which appears for both leading edge biased and uniform distribution 

no longer exists in the trailing edge biased distribution. The results also indirectly 

suggest that wear resulting in a reduction o f  the thickness o f the friction material and 

(usually) a more uniform contact pressure distribution will affect the stability o f  the 

system and in particular the contact stiffness range over which modes become unstable.

Therefore two important trends can be detected from these results:

1) the leading edge biased and uniform contact stiffness distributions have 

similar unstable modes (at this level indicated by the frequency range over which they 

occur)

2) the trailing edge biased contact stiffness distribution tends to stabilise the 

system as indicated by the reduced range o f contact stiffness for the unstable modes 

and the reduction in magnitude o f  the real part.
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The above trends match well with the lumped parameter model results o f Brooks et al 

[43] which predicted that moving the centre o f pressure towards the leading edge 

creates a more unstable system and also the experimental results o f Fieldhouse and 

Newcomb [10] which showed that when the pressure application point on the pad 

backplate is shifted towards the trailing edge the squeal noise level is much reduced.
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Figure 8.7 - Unstable modes for uniform contact stiffness distribution
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Figure 8.8 - Unstable modes for trailing edge biased contact stiffness distribution



Chapter Eight - Parameric studies of the coupled pad-disc system 215

8.6 Effect of The Pad Flexibilty

The effect o f  pad flexibility is studied here by setting the Young's moduli o f  the 

pad backplate and friction material at artificially high values (205 x 109 GPa and 8 x

10 9 GPa respectively) such that there are no flexible modes within the frequency 

range studied. The contact pressure distribution however is assumed to be unaffected 

(i.e. leading edge biased) in order to isolate the effect o f pad flexibility.

The results shown in figure 8.9 indicate that there are only two unstable modes 

for a rigid pad. These occur at 4227 Hz and 6253 - 6387 Hz with maximum real parts 

o f  42 and 26 respectively. The unstable frequency o f 4227 Hz is very near to the pad 

first rigid body translation (transversely) frequency whilst the second unstable 

frequency is very near to the pad rotational frequency (about the pad longitudinal axis). 

Comparison o f  figure 8.9 with the baseline condition (figure 7.7) shows that flexibility 

o f  the pads is important in the generation o f instability. Rigid pads still produce 

instability but with much reduced real part and within a narrower range o f  contact 

stiffness (less than 50 MN/m for both modes). These results suggest that rigid pads 

would improve the stability o f the system. This aspect o f  the results compares well 

with the work o f  Liles [6] and Sherif [57] where shorter pads (i.e. less flexible) were 

found to improve stability. In practice, any change o f the friction material stiffness (and 

possibly also o f  the backplate material) may effect the contact pressure distribution. 

H owever consideration o f  this additional effect o f  pad flexibility was not possible 

within the time constraints o f  the present study.
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Figure 8.9 - Unstable modes for inflexible pads
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8.7 Effect of Different Disc Material

The material properties o f the disc are varied here to determine the effect o f  

different disc material on the system stability. Both the density and Y oung’s modulus 

are varied for each case as they are the most important from a dynamics point o f view. 

The baseline properties are for the traditional grey cast disc with assumed modulus o f 

E=120 GPa and density o f p -7250  kg/m ’. Three other material property sets are 

considered :

i) E = 120 GPa and p=2250 kg/m-’

ii) E = 8000 GPa and p=7250 kg/nr

iii) E = 120x l03 GPa and p=7250 kg/nr

The properties for material (i) are based on that o f aluminum metal matrix composite 

(Al-M MC) [83], Properties (ii) are for a hypothetical material with unrealistically high 

Y oung’s modulus such that only one diametral mode (the second diametral) occurs 

within the frequency range studied. Material (iii) is also hypothetical with a Y oung’s 

modulus which is made so high that there are no flexible modes within the frequency 

range studied in order to  see whether flexible modes o f the disc are essential for 

instability o f  the system.

For the baseline disc properties (figure 7.7), five unstable modes can be 

detected as discussed in detail in Chapter Seven. With disc material properties similar 

to those o f  Al-MMC, free-free modal analysis shows that diametral modes o f order up 

to  six exist under 12 kHz compared to eight for the baseline properties (Table 8.1). 

The stability results (figure 8.10) indicate that only one unstable mode exists at a 

contact stiffness o f  100 MN/m and higher with the unstable frequency beginning at 7 

kHz and increasing gradually with the contact stiffness. The real part also generally 

increases with the contact stiffness. These results indicate that an Al-MMC disc may 

well be less prone to squeal as there are only one unstable mode compared to five for 

the grey cast iron equivalent.
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When the Y oung’s modulus o f  the disc is increased to 8000 GPa, free-free 

modal analysis o f  the disc revealed the natural modes listed in Table 8.2. With only one 

free-free diametral mode within the frequency range studied, the number o f unstable 

modes is reduced from five to three as shown in figure 8.11, all which have frequencies 

below that o f  the second diametral mode. As the Y oung’s modulus o f the disc is 

further increased to 120x10'’ GPa , the first mode occurs at 18473 Hz as shwon in 

Table 8 .3 which is outside the frequency range o f  interests ( 1 - 1 1  kHz).

Table 8 .1 -  Free-free modes for the Al-MMC disc

Frequency (Hz) M ode description

1068 1 st circumferential

1287 Not diametral or 

circumferential

2094 2nd diametral

3585 3rd diametral

5734 4th diametral

8517 5th diametral

11917 6th diametral

Table 8.2 - Free-free modes for the disc with E=8000 GPa

Frequency (Hz) M ode description

4769 Circumferential

5748 Circumferential

9352 2nd diametral

Table 8.3 - Free-free modes for the disc with E= 120x10’ GPa

Frequency (Hz) M ode description

18 473 Circumferential
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However increasing the Y oung’s modulus further to an essentially rigid disc 

does not remove the instability. As shown in figure 8.12, there are still three unstable 

frequency bands o f  5680 -6609 Hz , 6975 - 7370 Hz and 8676 - 9419 Hz with 

maximum real parts o f  179, 145 and 245 respectively which are significantly higher 

than for the disc with E=8000 GPa. A detail study o f  the mode shape for each o f these 

unstable modes does not show any diametral modes o f the disc. The disc mode shape 

in each case shows an upward deflection for the half o f the disc in which contact 

occurs whilst the other half remains flat.

These results dem onstrate that raising the disc natural frequencies by increasing 

the Y oung’s modulus is not necessarily beneficial in reducing squeal propensity. There 

seems to  be one band o f  unstable frequency in the range 5-9 kHz which occurs for all 

the disc material properties studied. It would appear that this unstable frequency band 

has little relation with the disc dynamic characteristics suggesting the pad to be the 

principal source o f  instability in this case.
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Figure 8 10- Unstable modes for aluminum metal matrix composite disc (E=120 GPa , 

p=2250 kg/m3)
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Figure 8.11 - Unstable modes for a disc with very high Young's modulus (E -8000 

GPa)
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Figure 8.12 - Unstable modes for an inflexible disc.
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8.7 Effect of Disc Symmetry

One suggested method to stabilise a squeal mode is to separate the doublet 

modes o f  the disc. The term "doublet m ode’ is used to describe diametral modes o f the 

disc which have the same diametral mode order and same frequency but have a relative 

phase difference o f 90 degrees in the free-free condition. The basic idea that stability 

can be achieved by separating these modes is based on the fact that unstable squeal 

modes occur when tw o stable modes converge at particular values o f  certain 

param eters (friction coefficient, contact stiffness). These two modes are usually o f the 

same diametral mode order but are initially separated in frequency by the coupling 

between the pad and the disc under the applied pressure. Figures 8.1 - 8.3 show clear 

examples o f  this convergence effect.

There are several ways o f separating the diametral modes all based on 

modifying the stiffness or mass distribution around the circumference o f the rotor. 

Lang et al [59] used a technique o f adding mass along the outer circumference o f  a 

drum brake in order to separate the doublet modes. Nishiiwaki et al [58] varied the 

number o f  stiffeners on a ventilated disc to achieve the same effect. For a plain disc as 

assumed in this analysis, a practical way to achieve the separation o f the doublet modes 

is by machining slots in the disc. In the finite element m o d e l, this can be simulated by 

simply reducing the thickness o f  the disc shell elements in certain areas. The slot 

angular width in the model is limited to multiples o f 6 degrees as the constraint that the 

disc mesh must be compatible with the pad model still applies. Obviously in practice 

the width o f  slots would not be limited by this constraint. In the present analysis the 

number o f  slots modelled is 4 , 5 , 6 , 10 and 12.The depth o f the slot in each case is 

5.5mm compared with the total thickness o f the disc 10.25 mm and the slot is assumed 

to be symmetrical about the disc mid-plane. The circumferential symmetry o f  the disc 

however must also be maintained by regularly spacing the slots in order to preserve 

disc balance. The effect o f  the slots therefore is primarily to reduce the infinite 

symmetry o f the disc to an order o f  symmetry equivalent to the number o f slots.
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Table 8 >3 - Frequencies o f  the free-free diametral modes for a slotted disc

Number of 

slots

Frequency 2nd

diam.

mode

3rd

diam.

mode

4th

diam.

mode

5th

diam.

mode

6th

diam.

mode

7th

diam.

mode

8th

diam.

mode

0

(PLAIN)

f l  (Hz) 

n  (Hz)

1145

1145

1961

1961

3137

3137

4659

4659

6578

6578

8708

8708

11225

11225

4 fl (Hz) 

f2 (Hz)

1092

1171

1916

1916

3029

3037

4478

4478

6148

6345

8324

8324

10859

10908

5 fl (Hz) 

f2 (Hz)

1125 

1125

1906

1906

3008

3008

4377

4497

6181

6181

8223

8223

10560

10560

6 fl(H z)

f2(Hz)

1123

1123

1845

1937

2984

2984

4392

4392

5979

6262

8153

8153

10444

10444

10 f l  (Hz) 

f2 (Hz)

1112

1112

1847

1847

2879

2879

4107

4336

5867

5867

7791

7791

9875

9875

12 f l  (Hz) 

f2 (Hz)

1106 

1106

1827

1827

2830

2830

4120

4120

5470

6006

7647

7647

9773

9773

^  The results from free-free modal analysis o f the slotted disc are shown in Table 

8 X  in which fl indicates the frequency o f the lower diametral mode o f  the doublet 

pair and f2 the frequency o f the higher mode. It is clear that the number o f  slots does 

alter the frequency o f  the diametral modes but this effect is limited to certain modes for 

which the mode diametral order is a simple multiple o f the number o f the slots. For 

example the results for the disc with four slots show that the second , fourth and eighth 

diametral modes are all affected (the sixth diametral mode being affected the most with 

a frequency separation o f  197 Hz) whilst for five slots, it is only the fifth diametral 

m ode which shows any separation. Another important trend is that increasing the 

number o f  slots increases the frequency separation as shown in figure 8.13. For the
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present numbers o f  slots studied , the sixth diametral mode is most affected and, as the 

number o f  slots is increased from 6 to 12 , the frequency separation for this mode is 

increased from 283 Hz to 536 Hz

In order to  investigate the effect o f separated doublet modes on the system 

stability , an unstable mode is selected for which the disc mode is clearly pure diametral 

in that the nodal distance remains constant for the disc both in and out o f  the contact 

area and the coupled frequency is relatively close to that o f the free-free diametral 

mode o f  the disc. This unstable mode involves the disc sixth diametral mode as shown 

in figure 7.20. Separation o f  the sixth diametral doublet modes can be achieved with 4 , 

6 or 12 slots as indicated in figure 8.13. However, in order to reduce the problem to a 

manageable size , only a disc with six slots giving a frequency separation o f 283 Hz 

under free-free conditions is selected to study the effect o f mode separation on the 

stability o f the system. An end view o f  the finite element model o f the disc with six 

slots is shown in figure 8.14 in which the slots are shown blank and the circumferential 

angle is measured from the global x-axis. Equal displacement contour plots o f the sixth 

diametral doublet modes for the disc model with six slots are shown in figures 8.15 and

8.16 respectively

Figure 8 .15 shows the lower o f  the sixth diametral doublet modes which occurs 

at a frequency o f 5979 Hz. It is clear that the x-axis in the diagram represents one o f 

the node lines o f the disc. In figure 8 16 the contour plot o f  the other sixth diametral 

mode which occurs at a frequency o f  6263 Hz is shown and this time the x-axis 

coincides with one o f  the anti-node lines (marked E). It is therefore clear that the sixth 

diametral doublet mode pair has now been separated in frequency terms by 284 Hz 

whilst the mode shape is different only in the relative phase angle o f  90 degrees. The 

lower frequency mode occurs when the anti-node is positioned over the slots in the 

disc where the stiffness is lower due to the reduction in thickness whilst the higher 

frequency mode occurs when the node is positioned over the slots which therefore 

have a less significant effect on the frequency (the corresponding frequency for the 

unslotted disc is 6578 Hz).
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Figure 8.13 - Effect o f  number o f slots on the frequency difference o f  the disc 

diametral modes

Figure 8.14 - The finite element model o f  the slotted disc showing the slot position 

(blank)
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modal analysis o f  slo tted disc

PLOT NO. 1 
NODAL SOLUTION 
STEP=1 
SUB =9
FREQ=5979 
UZ 
TOP 
RSYS=0 
DMX =1.684 
SMN =-1.499 
SMX =1.684 
A =-1.322 
B =-0.968702 
C =-0.61495 
D =-0.261198 
E =0.092554 
F =0.446306 
G =0.800057 
H =1.154 
I =1.508

Figure 8.15 - Displacement contour plot o f  the lower sixth diametral mode for a six 

slot disc (for position o f  slot refer to figure 8.14).

PLOT NO. 1 
NODAL SOLUTION 
STEP=1 
SUB =10 
FREQ=6263 
UZ 
TOP 
RSYS=0 
DMX =1.647 
SMN =-1 647 
SMX =1.647 
A =-1.464 
B =-1098 
C =-0.731896 
D =-0.365948 
E =0.258E-09 
F =0.365948 
G =0 731896 
H =1098 
I =1464

modal analysis o f slotted disc

Figure 8 .16 -Displacement contour plot o f the upper sixth diametral mode for a six slot 

disc (for relative position o f  slots refer to figure 8.14).
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As the slotted disc rotates, the position o f  the disc asymmetry changes with 

respect to the pad. This effect was taken into account in the stability analysis by 

rotating the disc (with respect to  the pads) by successive angular interval o f 6 degrees 

and determining complex eigenvalues at each angular position for a contact stiffness 

range o f  50 - 600 MN/m. The leading edge biased contact pressure distribution is 

assumed throughout. The angle o f rotation is measured relative to the pad centreline as 

shown in figure 8.14. The results for an angular position o f zero degrees (i.e. when the 

axis o f  one o f  the slots is 30 degrees forward o f  the pad centreline) as shown in figure

8.17 indicate that there are several unstable modes within the contact stiffness range 

studied. Detail investigation o f  the mode shape plots show that these modes involve 

the sixth , seventh and eighth diametral modes o f  the disc. O f these there are two 

unstable modes both involving the sixth diametral disc mode which occur at different 

frequencies and ranges o f  contact stiffness. The low contact stiffness range mode 

(referred as mode M) is unstable for contact stiffnesses o f  250 - 350 MN/m whilst the 

high contact stiffness range mode (referred to as mode N) occurs for contact 

stiffnesses o f  375 - 450 M N/m.The range o f contact stiffness for these two modes to 

be unstable was found to vary slightly with the relative angle o f rotation. The 

remaining two unstable modes involve the seventh diametral disc mode (mode O) 

which occurs at a contact stiffness o f 200 MN/m and above and the eighth diametral 

mode (mode P) which occurs at a contact stiffness o f 500 MN/m and above. The 

contact stiffness ranges o f  these two modes however were found not to vary with the 

angle o f  rotation.

In order to study the effect o f  rotation angle on the stability o f the system, the 

maximum real part for modes M and N throughout the unstable contact stiffness range 

is plotted against the angle o f  rotation in figure 8 .18a whilst for modes O and P the 

corresponding values at a contact stiffness o f 550 MN/m are shown in figure 8 .18b. In 

both cases the range o f  angle o f rotation shown is only from 0 - 6 0  degrees as the cycle 

repeats itself every 60 degrees o f  rotation. For modes M and N (figure 8.18a) which 

involve the sixth diametral modes o f  the disc the real part varies greatly with the 

rotation angle. For mode M which involves the lower frequency sixth diametral mode 

the maximum real part peaks at relative angular positions o f  0 , 30 and 60 degrees 

whilst for mode N which involves the higher frequency sixth diametral mode the
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maximum real part peaks at angular positions o f  18 and 48 degrees. Furthermore the 

peak positions for mode M coincide with the trough positions for mode N. This 

variation in real part indicates cyclic instability for each o f these mode as the disc 

rotates.

For modes O and P the results (figure 8.18b) show little variation o f the real 

part ( ± 8) with the angle o f  rotation. Detail studies o f  the disc contour plots show 

that the nodal spacing is not uniform particularly for the disc contact area under the 

pads.

The above results show that limiting the symmetry o f  the disc is only effective 

for certain modes, in particular those modes for which the disc diametral deformation 

coincides with the symmetry o f the slotted disc (in this case the sixth diametral mode). 

For unstable modes which involve the disc seventh and eight diametral modes the 

effect is minimal. Thus it can be said that the strategy o f  separating a disc doublet 

mode o f  a certain diametral order is effective for reducing squeal propensity involving 

that same diametral mode order only. In the present case it is also interesting to note 

that the real part for the unstable mode involving the disc sixth diametral mode (mode 

M ) reduces to zero (i.e. completely stable) at certain angles o f disc rotation. However, 

for the mode in the higher contact stiffness range (mode N), the real part only reduces 

to  a minimum o f 15. This suggests further that the separation o f the doublet modes is 

more effective for low applied pressures.
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Frequency (kHz) Real part (1/s)

C ontact s tiffness (MN/m)

Figure 8.17 - Unstable modes evolution for zero angle o f  relative rotation
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Real part (1/s)

Rotation angle (degrees)

Figure 8 .18a - Variation o f maximum real part o f mode M and N with relative angle o f 

rotation.

Real part (1/s)

Rotation angle (degrees)

Figure 8 .18b - Variation o f maximum real part o f  mode O and P with relative angle o f  

rotation.
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8.9 Discussion

The parametric studies described above have shown several important trends. 

The study on the effect o f  friction coefficient (section 8.3) has shown that there is a 

critical friction coefficient to initiate instability the value o f  which is mode dependant. 

The minimum critical coefficient o f  friction for the instability with the present 

configuration is 0.35. Increasing the friction coefficient has the effect o f  increasing the 

magnitude o f  the real part which can be interpreted as an increase in squeal propensity. 

A similar effect was reported by Liles [6],

The abutment stiffness (section 8.4) does not have a great effect on the system 

stability except when the stiffness is about one order o f magnitude larger than the pad- 

disc contact stiffness in which case the tendency is to make the unstable contact 

stiffness range narrower and to cause certain modes to become unstable at a lower 

value o f contact stiffness (e.g. mode F). Another effect o f  increasing abutment stiffness 

is to increase the magnitude o f  the real part o f the unstable modes. All these effects are 

however mode specific.

The pad-disc contact stiffness distribution (section 8.5) greatly affects the 

stability o f the system by varying the contact stiffness range over which a mode 

becomes unstable and by changing the magnitude of the real part o f the complex 

eigenvalue. A uniform stiffness distribution is the most unstable whilst a trailing edge 

biased distribution is the least unstable

Making the pad inflexible within the frequency range studied (section 8.6) 

causes the magnitude o f  the real part o f  the unstable modes to be very much reduced (a 

maximum real part o f  42) and a very narrow  unstable contact stiffness range o f 100 

MN/m or less. A rigid pad therefore significantly improves the system stability.

Varying the properties o f the disc (section 8 .7) changes the natural frequencies 

o f the disc and the stability behaviour. For a disc having properties similar to Al-MMC, 

there is only one unstable mode with the real part in general increasing with the contact 

stiffness. With an artificially high Y oung’s modulus in which the flexible modes o f  the
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disc (under 11 kHz) are limited to  the second diametral mode, instability still occurs 

within frequency ranges o f 5.5 - 6.5 kHz and 8 -9 kHz. For a disc with no flexible 

modes at all (i.e. a rigid disc), the coupled system remains unstable within the same 

frequency range and the eigenvector plots show that the pads have similar displaced 

shape in both cases. This aspect o f the results supports the prediction o f  Hulten [49] 

that instability still occurs even when the pad is pressed against a rigid surface.

Reducing the symmetry o f  the disc by machining six equispaced slots and 

thereby separating the sixth diametral mode pair by 283 Hz under free-free conditions 

(section 8.8) produces cyclic instability for unstable modes in which the sixth diametral 

mode o f  the disc is involved. Other modes however are not affected. This result 

com pares well with the experimental observation o f  Lang et al [59] that modifying the 

symmetry o f  a drum brake rotor by adding mass caused cyclic squeal. M oreover 

Niishiwaki [58] showed that separating the diametral mode pair is only effective under 

low applied pressures. This is confirmed by the present analysis in which the stability o f  

the low contact stiffness unstable mode is more greatly improved with the real part 

reducing to zero during the cycle whilst the real part for the high contact stiffness 

unstable mode only reduces to a minimum o f 15.

The results from the current modelling approach show that instability o f  the 

coupled system consists o f  several unstable modes. Studies in which the disc properties 

were varied (section 8.7 and 8.8) show that the influence o f  the disc is limited to 

certain modes only which are characterised by a relatively uniform nodal spacing. 

These results confirm the hypothesis advanced in Chapter Seven that unstable modes in 

which the disc diametral mode is no longer pure (in the sense that the nodal spacing is 

no longer uniform) will not be affected by changes to the disc. This therefore excludes 

any unstable modes occurring at high contact stiffness (i.e. high pressure application) 

as such modes are greatly affected by the strong coupling between the pads and the 

disc. Indeed all the changes to the disc considered above only affect unstable modes 

which can in terms o f frequency be related to modes D , E and F (o f the baseline case) 

whilst the unstable modes with frequency range between 7-9 kHz (i.e. mode C) remain 

relatively unchanged.
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These results suggest that much o f the instability can be traced to the pad as 

also suggested by the fact that when param eters directly linked to the pad (abutment 

stiffness, support stiffness, contact pressure distribution , pad flexibility) are varied, the 

stability o f  the system is greatly affected. Therefore the present parametric studies are 

similar to the experimental results o f  Lewis and Shah [54] which showed that the 

natural frequencies o f the pad clamped under pressure to the complete disc and those 

when it is clamped to a portion o f the disc only were both close to the squeal 

frequency.This therefore largely excludes the disc from the instability process. Indeed 

the present analysis for an inflexible pad gave a much reduced magnitude for the real 

part o f  the complex eigenvalues which suggests that stability o f  the system can be 

improved by moving to  a stiffer pad.

In the results discussed above, instabilities can be linked to both the pad and 

disc depending on the unstable modes considered. This aspect o f  the results explains 

and supports both arguments as to the cause o f  the disc brake instability. On the one 

hand many researchers have argued that instability is caused by the coalescence o f disc 

diametral modes [48,58,59,60] with the resulting suggestion that stability can be 

achieved by separating these mode pairs. At the other extreme o f  opinion, it is shown 

that a model in which the disc is represented as a rigid surface can still generate 

instability [49] and therefore the proponents suggest that modifying the pad will 

improve stability. This latter hypothesis is supported by the experimental work o f  

Lewis and Shah [54] in which the stability was improved by adding mass to the pad 

Both ideas as to the origin o f  instability are therefore supported by experimental 

evidence and also now by the results from the present analysis. Some unstable modes 

are indeed caused by the diametral mode pairs o f  the disc converging and the analysis 

showed that changing the disc modulus (and thus the disc natural frequencies) can 

reduce the instability. Also separating the diametral mode pair o f  concern by 

destroying the axial symmetry produces cyclic instability. However there are other 

unstable modes which are insensitive to the disc parameters and the analysis shows 

that even with a rigid disc instabilities can still occur. Furthermore these instabilities 

w ere shown to be sensitive to modification o f  the pad only. It is therefore imperative 

that instability be explained from both points o f  view thus allowing for modification o f 

both the pad and disc in order to achieve better stability. Any generalisation that squeal
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can be eliminated or reduced by carrying out modifications exclusively to one or other 

o f  the com ponents must be treated with caution.

The results also further highlight the many parameters affecting squeal. For 

example it is likely that the effect o f  pad wear is to make the contact pressure 

distribution at the pad-disc interface more uniform such that the system becomes less 

stable and more prone to squeal. The many and various parameters affecting the 

stability o f  the system could well explain the fugitive nature o f squeal. By taking 

account o f  all these parameters, the problem o f squeal could be made more 

deterministic than at present but a limitation would be the enormous size and 

complexity o f  the required analysis.

At the present state o f  knowledge, it is suggested that an approach to reduce 

squeal propensity at the design stage using the finite element method should consist o f 

the following stages:

1) From stability analysis using complex eigenvalues, the unstable modes which occur 

over a wide range o f  interface contact stiffness and have a relatively large positive real 

part should be targeted.

2) Detailed analysis o f the disc diametral modes involved will reveal whether any 

particular unstable mode can be stabilised by carrying out changes to the disc in terms 

o f  its natural frequencies or limiting its symmetry thus separating the diametral mode 

pairs.

3) The effectiveness o f  (2) can be confirmed by varying the disc properties. Persistent 

instability with near constant unstable frequency range would indicate that the pad 

should be targeted.

4) If  the pad is indeed responsible for the instability, parameter changes to  the pad 

affecting the natural frequencies or contact pressure distribution will improve the 

stability o f  the system. A stiff pad has been shown to encourage stability in the present 

study.
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9.1 Conclusions

These can be summarised as follows:

(i) Careful consideration o f  the available literature has indicated that a complex 

eigenvalue approach together with an accurate finite element representation o f  the 

coupled pad-disc system offers a potential means o f predicting disc brake squeal taking 

full account o f  the flexibilities o f  the major components and their interaction at the 

friction interface. To yield the unsymmetric stiffness matrix necessary for complex 

eigenvalue analysis to be meaningful, the interface contact model must involve the 

effect o f circumferential friction. To account for the effect o f varying brake applied 

pressure, a relationship between applied pressure and interface contact stiffness is 

required.
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(ii) Finite element models o f  the pad and disc for a typical disc brake installation have 

been developed. Free-free modal analysis has shown that both these finite element 

models are adequate to describe the dynamic properties o f  the components with a 

maximum frequency difference from experimental results o f  10%.

(ii) A non-linear contact pressure analysis o f  the pad pressed against a rigid surface has 

shown that contact is partial but that the contact reaction force at the pad interface 

varies linearly with the applied pressure because the contact area does not change. 

Introduction o f  friction due to circumferential sliding causes the contact pressure 

distribution to become asymmetric with the distribution biased tow ards the leading 

edge for both the piston and paw applied pressure cases. This is manifested in 

increased contact reaction force at the leading edge and lifting o f the trailing edge o f  

the pad. The abutment arrangement (leading, trailing and combined) has only a small 

effect on the distribution pattern and the magnitude o f the contact reaction force at any 

position is changed by less than 4%. A softer friction material causes a larger contact 

area and a more uniform pressure distribution.

(iii) The interface contact stiffness between the pad and the disc has been calculated 

using a random process approach, the results o f  which show a linear relationship 

between contact stiffness and applied pressure. The contact stiffness calculated using 

this approach is most sensitive to the measured disc surface roughness whilst the effect 

o f  pad surface roughness is negligible. This is due to the relatively large pad mean 

asperity radius (thirty times larger than the disc mean asperity radius) calculated using 

the measured pad surface profile data. Therefore the pad surface roughness can be 

ignored in the contact stiffness calculation and the pad surface can safely be assumed 

to be flat. On the other hand , the Y oung’s modulus o f the friction material is so much 

lower than that o f  the disc that the latter can be effectively regarded as rigid in the 

calculations.

(iv) A stability analysis o f  the coupled pad-disc system using complex eigenvalues 

identifies a minimum contact stiffness for instability to occur, the value o f  which is 

mode specific. Instability occurs as the frequencies o f  two different modes converge at
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a critical contact stiffness value; one mode then becomes very stable with a large 

negative real part whilst the other is very unstable with a relatively large positive real 

part. The instability continues until a certain maximum contact stiffness at which point 

the tw o modes diverge to  be at different frequencies with the real part reducing to zero 

or less in both cases.

(v) The effect o f  increasing the external support stiffness Ks on the pad backplate is to 

stabilise the system in terms o f reducing the number o f  unstable modes and the 

magnitude o f  the positive real part.

(vi) Arising from (iv) and (v) , the effect o f brake applied pressure on squeal can be 

explained by the fact that at low pressures there is a certain range o f  contact stiffness 

(translated in practice as a range of line pressure) within which unstable modes occur. 

Increasing the contact stiffness beyond this range causes the instability o f these 

particular modes to cease with other unstable modes emerging. However a parallel 

increase in the external support stiffness as a result o f  the increasing pressure tends to 

suppress these new instabilities. This therefore explains why squeal tends to occur at 

low applied pressures.

(vii) The trends from the analysis match those from the experiment in terms o f 

frequency and mode shapes o f  unstable modes and the pressure range over which they 

occur. This correlation validates the approach used in the present work for squeal 

analysis

(viii) The magnitude o f  the real part o f  an unstable mode is directly related to the phase 

difference between the pad and the disc motions. The maximum real part occurs when 

the phase difference approaches 180° . Instability ceases when the phase difference is

zero.

(ix) Instability occurs above a critical friction coefficient, the value o f  which is mode 

specific. For the baseline conditions studied (Kc =250 MN/m and Ks =24 MN/m), the
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critical coefficient o f  friction is 0.35 . Instability increases with increasing friction 

coefficient beyond this value.

(x) A contact pressure distribution at the pad-disc interface which is uniform is most 

unstable and a distribution pattern biased towards the trailing edge o f  the pad is least 

unstable. The actual contact pressure distribution predicted by the finite element 

analysis is leading edge biased which gives intermediate instability.

(xi) Instability o f  the coupled pad-disc system is not very sensitive to the abutment 

stiffness. Only when the magnitude o f  the abutment stiffness is one order higher that 

the pad-disc contact stiffness is the stability affected , increasing the real part but 

reducing the range o f  contact stiffness over which instability occurs.

(xii) An inflexible pad reduces the system instability. This suggests that a short ,stiff 

pad would be less prone to squeal.

(xiii) Variation o f  the disc Y oung’s modulus affects the number o f unstable modes. 

However, even with an effectively rigid disc, instability still occurs. For all values o f 

disc Y oung’s modulus studied , instability occurs within the 7- 9 kHz range. This 

suggests that the pad is mostly responsible for the instability within this frequency 

range.

(xiv) Reducing the disc symmetry to lie on six diametral axes by introducing six 

equispaced slots in the disc surface only affects instability involving the sixth diametral 

mode o f  the disc. As the modified disc rotates , the real part fluctuates with the angle 

o f  rotation. This in practice can be related to cyclic squeal which has been shown to 

occur for a modified drum rotor with mass added to limit the axial symmetry.

(xv) The results suggest that instability can be explained by both the effect o f  disc 

doublet modes and pad instability depending on the mode. Unstable disc diametral 

modes with relatively uniform nodal spacing around the disc circumference can be 

stabilised by limiting the symmetry o f  the disc. This can be achieved practically by
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machining slots in a plain disc or by a systematic arrangement o f  stiffeners in a 

ventilated disc. Unstable modes involving non-uniform nodal spacing in the disc are 

not affected by limiting the disc symmetry. Modification o f  the pad is the most 

effective strategy to stabilise these modes.

(xvi) The approach outlined in this thesis therefore unifies the tw o schools o f thought 

on the origin o f  instability in a disc brake system. The results also suggest methods by 

which squeal can be systematically reduced at the design stage by targeting the most 

appropriate component as outlined in (xv) above.

9.2 Recommendations for Future Work

The following suggestions are made for future work :

(i) The present w ork does not take into account the effect o f  damping. Damping is one 

o f  the most important factors influencing stability o f any system. Future work therefore 

should take this into account.

(ii) Inclusion o f  a caliper model will make the present approach more complete and 

enabled the effect o f  support stiffness to be more accurately modelled. A coupled 

caliper-pad-disc system may further enable the instability arising at lower frequency 

such as judder to be combined with the high frequency squeal as studied in the present 

work.

(iii) The present model assumes a variable friction force in direct proportion to the 

variable normal force based on Am onton’s Law. Implementation o f the Oden-Martin 

friction model might provide a more complete and realistic representation o f friction.
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APPENDIX I

Programme Listings for the Calculation of Contact Stiffness Using The Random

Process Approach In C++

^include <stdio.h>
#include <math.h>
#include <float.h>

/* comment : declaration o f the parameters used in the calculation*/
/* comment : rms - roughness mm, a - autocorrelation decay constant ,*/
/* comment : e - modulus MPa, g - poisson ratio , r - effective radius o f  asperity mm*/ 
/* comment : y -yield strength MPa*/
/* comment : 1 - friction m ateria l, 2 - disc */

double pie,rms 1 ,rms2,a 1 ,a2,e,e 1 ,e2,g 1 ,g2,r 1 ,r2,r; 
double pI,p2,xl,y01,y2,xr,xm ,left,right,del,mid,aut[l 1]; 
double stdl,std2,sigl,sig2,sig31,sig32,cl,c2,w ,w i,sigtl,sigt2; 
double area ,d l,d2 ,t,ratf,sq ,s[l I],sig3_pl,sig3_p2;

int i,l;
double logauto; 

main()
{
pie=3 141593,
rms 1=51 78e-3;
rm s2=l 1.384e-3;
a l =0 .081;
a2=0.057;
e=0.;
el=8 .e3 ;
gl= 0.25;
e2=120e3;
g2=0.25;
y01=20.00;
y2=345.0;
P1 =0.; 
p2=0.; 
del=5.; 
d l= 0 .; 
d2=0.; 
xl=0.; 
xr=0.5; 
xm=0.;
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left=0.; 
right=0.; 
mid=0.5; 
t= 0 .9558139; 
std 1=2681.46; 
std2=l 29.60;

/* comment : to calculate effective modulus */

e= 1 /((1 -g 1 *g 1 )/e 1 + (l-g2*g2)/e2); 
printf("neff :% 5.2f',e); 
getch();

/* Calculation o f  pad friction material surfaces */
/* to calculate sigma 1 by iteration no 1 */

p l= (l/(2*pie))*(y01/(e*al *rm sl))*(y01/(e*al *rm sl));
del=5.;
xl=pl-del;
xr=pl+del;

/* while((xr-xl)>0.0001 && m id>0.000001) */ 
for(i=0; i<=100; i++)
/\
left=xl-atan(xl)-p 1; 
right=xr-atan(xr)-p 1; 
xm=(xr*left - xl*right)/(left - right); 
mid=xm - atan(xm) -p 1; 
if(left*mid < 0.) 
xr=xm;
if(left*mid > 0.) 
xl=xm;

sig 1 =xm ;
printf("\npl :% 2.8f',p l ); 
printf("\nleft :% 2.8f',left); 
printf("\nsigmal :% 2.5f',sig l);
}

sig31 =sig 1 * sig 1 * sig 1 /3 ;

sig3_pl=sig3 1 - p i;
sq= sqrt((sig31 - p i)); 
printf("\nsig3_p 1 :% 4.4f',sig3_p 1); 
printf("\nsigma3 :% 3.6f',sq); 
getch();

/* Calculation o f  asperity radius o f  the friction material surface*/
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rl= l./(3 .* a l* a l* rm sl* sq rt((s ig 3 _ p l ))); 
printf("\nrl :% 3 .4 f',rl);

/* Calculation o f  disc surface properties */
/* to calculate sigma2 by iteration no.2 */
/* sigma = asperity density */

p2=(l/(2*pie))*(y2/(e*a2*rm s2))*(y2/(e*a2*rm s2));
del=5.;
xl=p2-del;
xr=p2+del;

/* while((xr-xl)>0.0001 && mid>0.000001) */
for(i=0; i<=10; i++)
ix
left=xl-atan(xl)-p2;
right=xr-atan(xr)-p2;
xm=(xr*left - xl*right)/(left - right);
mid=xm - atan(xm) -p2;
if(left*mid < 0.)
xr=xm;
if(left*mid > 0.) 
xl=xm; 
sig2=xm ;
printf("\np2 :% 2 .8 f ',p 2 ); 
printf("\nleft :% 2.8f',left); 
printf("\nsigma :% 2.5f',sig2);
}

sig3 2=(sig2 * sig2 * sig2)/3; 
d l= ((a l*al)/(6*p ie*sqrt(3 ))) *

(sig31 - p i ) / p i  ; 
d2=((a2*a2)/(6*pie*sqrt(3))) *

(sig32 - p2) /p2 ; 
area=3212.0; 
sig3_p2=sig32 - p2; 
sq= sqrt((sig32 - p2)); 
printf("\nsig3_p2 :% 4.4f',sig3_p2); 
printf("\nsigma3 :% 3.6f',sq); 
getch();

/^Calculation o f  the asperity radius o f  the disc*/

r2= l ,/(3.*a2*a2*rms2*sqrt((sig3_p2 ))); 
printf("\nr2 :% 3.4f',r2);

/* Calculation o f  effective radius */
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r=(rl * r2 )/(rl + r2);

/* Calculation o f  the constant c */

c l= (4 ./3 .)*d l *area*e*sqrt(r)*pow(rm sl, 1.5); 
c2=(4./3.)*d2*area*e*sqrt(r)*pow(rms2,1.5);

printf("\ndl :% 2 .8 f ',d l); 
printf("\nd2 :% 4.4f',d2); 
printf("\nrl :% 3 .4 f ',rl); 
printf("\nr2 :% 3.4f',r2); 
printf("\nsigl :% 3.4f',s ig l); 
printf("\nsig32 :% 3.4f',sig32); 
printf("\nr :% 6.9f',r); 
printf("\ncl :% 6 .6 f',c l); 
printf("\nc2 :% 6.6f',c2); 
getch();

/* Beginning o f  load calculation */
/* One bar applied pressure = 173.5 N , load = w */
/* t=  dimensionless mean plane separation*/

for(i= l; i<= 11; i++)
{

w=i* 173.5; 
wi=w/c2;

if( (loglO( w i ) > (0.)) & (log l0( w i ) <= 2. 5) )  
t = ( -loglO(wi) +0.5) /(0.5)*(53./35.) - (73./35.);

if( (log l0 ( w i ) > (-0.5)) & (log l0 ( wi ) <= 0) ) 
t = ( -loglO(wi) - 0) /(0.5)*(28./35.) - (20./35.);

if( (loglO(wi) > -1) & (loglO(wi) < -0.5 )) 
t= ((-logl0(w i) - 0.5) /0.5)*(22./35.) + (8 /35 );

if(( loglO(wi) > -1.5) & (loglO(wi) < -1)) 
t= ((-logl0(w i) - 1)/0.5)*(18 /35.) + (30 /35.);

if(( loglO(wi) > -2.0) & (loglO(wi) < -1.5)) 
t=((-loglO (w i) - 1,5)/0.5)*(16.5/35.) + (48 /35 );

if( (loglO(wi) > -2.5) & (loglO(wi) < -2.0)) 
t=((-loglO(wi) - 2.0)/0.5)*(14./35.) + (64.5/35.);

if( (loglO(wi) > -3.0) & (loglO(wi) < -2.5))
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t=((-loglO(wi) - 2.5)/0.5)*( 12.5/35.) + (78.5/35.);

if(( loglO(wi) > -3.5) & (loglO(wi) < -3.0)) 
t= ((-logl0(w i) - 3.0)/0.5)*(l 1./35.) + (91 /35 );

if(( loglO(wi) > -4.0) & (loglO(wi) < -3.5)) 
t=((-loglO(wi) - 3.5)/0.5)*(9.5/35.) + (102./35.);

if( (loglO(wi) > -4.5) & (loglO(wi) < -4.0)) 
t= ((-logl0(w i) - 4.0)/0.5)*(7./35.) + (111.5/35.);

if( (loglO(wi) >= -5.0) & (loglO(wi) < -4.5)) 
t=((-loglO(wi) - 4.0)/0.5)*(5./35.) + (118.5/35.);

/* to calculate the value o f  ratio f , ra tf by interpolation

if( t>= -3.0 && t < -2.5)
ra tf = (12.5/17.8)*0.5 + ( ( t - (-3.0))/0.5)*0.5*(( 14. - 12.5)/17.8); 

if( t>= -2.5 && t < -2.0)
ra tf  = (14./17.8)*0.5 + (( t - (-2.5))/0.5)*0.5*((16.5-14.)/l 7.8); 

if( t>=  -2.0 && t < -1.5)
ra tf = (16.5/17.8)*0.5 + ( ( t - (-2.0))/0.5)*0.5*((20.5 - 16.5)/17.8); 

if( t>=  -1.5 && t < -1.0)
ra tf  = (20.5/17.8)*0.5 + (( t - (-1 5))/0.5)*0.5*((24.5 - 20.5)/l 7.8); 

if( t>=  -1.0 && t < -0.5)
ra tf = (24.5/17.8)*0.5 + (( t - (-1 ,0))/0.5)*0.5*((29 -24.5)/l 7.8); 

if( t>= -0.5 & & t < 0 . )
ra tf = (29/17.8)*0.5 + ( ( t - (-0.5))/0.5)*0.5*((34.5 - 2 9 ) /l7 8); 

if( t>= 0. && t < 0.5)
ra tf = (34.5/17.8)*0.5 + ( t /0.5)*0.5*((41.5 - 34.5)/l 7.8); 

if( t>= 0.5 & & t <  1.0)
ra tf = (41 ,5/17.8)*0.5 + (( t - (0.5))/0.5)*0.5*((48.5 - 41.5)/17.8); 

if( t>= 1.0 && t <  1.5)
ra tf = (48.5/17.8)*0.5 + (( t - (1.0))/0.5)*0.5*((57 - 48.5)/l 7.8); 

if( t>= 1.5 && t < 2.0)
ra tf = (57/17.8)*0.5 + ( ( t - (1 .5))/0.5)*0.5*((66-57)/l7.8); 

if( t>= 2.0 && t < 2.5)
ra tf = (66/17.8)*0.5 + ( ( t - (2 .0))/0.5)*0.5*((76-56)/l7.8);
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if( t>= 2.5 && t < 3.0)
ratf = (76/17.8)*0.5 + ( ( t - (2.5))/0.5)*0.5*((88-76)/17.8); 

if( t>= 3.0 && t < 3.5)
ra tf  = (88/17.8)*0.5 + ( ( t - (3 0))/0.5)*0.5*((88-76)/l 7.8);

if( t<= 0.0) 
ra tf  =0.9559787;

printf("\nload :% 6.2f',w ); 
printf("\nw/c :% 6.4f',w i); 
printf("\nlogl0w /c2 :% 2.6f',logl0(w /c2)); 
printf("\nthick :% 2.9f',t); 
printf("\nratioF :% 2.4f',ratf);

/* Calculation o f  the contact stiffness s[i] for each load condition */

s[i] = 3 * ra tf |!w/(2*rms2); 
printf("\n Stifness :% 6.6f’,s[i]);
getchO;

}
}
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APPENDIX II

Input Data For The Finite Element Analysis Using ANSYS REVISION
5.0A

/BATCH, LIST 
/FILNAM, SUBDISC 
/UNIT. S. I.
/TITLE, SUBSTRUCTURING OF THE SIMPLFIED DISC FINITE ELEMENT MODEL 

/PREP7
! define element type 
! coordinate system is cylindrical

CSYS, 1 
ET. 1,63 
ET.7,50

! material properties of grey cast iron
MP,EX,1,120E9
MP.DENS,1,7.520E3

'constants defining thickness of shell elements
R.13.8.3E-3
R. 14,10.2E-3

! definition of disc 
N,20010,68E-3„5.255E-3 
N,20012,78.5E-3„5.255E-3 
N,20014,89.5E-3„5.255E-3 
N,20016.98.5E-3,,5.255E-3 
N,20018,107.5E-3„5.255E-3 
N,20020,120E-3„5.255E-3 
NGEN.60.100,20010,20020,2„6,

MAT.l
TYPE,]
REAL. 13
NUMSTR.ELEM, 1001
E,20010,20012,20112,20110 
REAL. 14
E,20012,20014,20114,20112 
E.20014.20016,20116,20114 
E,20016,20018,20118,20116 
E,20018.20020,20120,20118 
EGEN,59,1001,1005,1 
E,25910,25912,20012,20010 
REAL, 14
E,25912,25914,20014,20012
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E.25914,25916,20016.20014 
E,25916,25918,20018,20016 
E.25918.25920,20020.20018

! constraint the inner periphery of the simplified disc\
D.20010,UZ.0.„25910.100,UX.UY
NSEL.ALL
NROTAT.ALL

FINISH

! solution phase 
/SOLU
ANTYPE.SUBSTR 
SEOPT. SUBDISC,3

! define masters 
M20012.UZ,25912,100 
M.20014.UZ.25914.100 
M .20016,UZ.25916.100 
M.20018.UZ.25918.100 
M,20020,UZ,25920,100

SOLVE
SAVE
FINISH
/EXIT.ALL

definition of the inboard pad and substructuring

/BATCH.L1ST 
/FILNAM.SUBPAD 1
/TITLE.SUBSTRUCTURING OF THE INBOARD PAD
/UNITS,S.I.
/PREP7

CSYSJ
ET.2.14
ET,3,14„3

! material properties of the mild steel baekplate of the pad
MP.EX.2.207E9
MP.DENS.2.7.725E3

! material properties of the friction material
MP,EX,3,8E9
MP.DENS.3,2.5E3

lvalue of the nodal support stiffness 
R.4,1.2E6

(definition o f  the pad finite element model
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N,1.106.5E-3.-7.33 
N,2,l 12E-3,-8.33 
N,3,121E-3,-6 
N,4,128E-3,-3.8 
N,5.129.33E-3.-0.33

N,6,104.5E-3,-6 
N,7,108.5E-3,-3.5 
N,8,l 16.5E-3.-2 
N,9,125E-3,0 
N.10.128.5E-3J

N.l 1.89.5E-3.3.5 
N.12.89.5E-3.4.5 
N.13.97.5E-3.1.5 
N,14,97.5E-3,2.5 
N,15,103.5E-3,0

N ,16.107.5E-3,3 
N. 18.116E-3.2 
N.19.119E-3.1.5

N,20.81.5E-3.6
N.22.85E-3.6
R24.89.5E-3.6
N.26.98.5E-3.6
N.28.107.5E-3.6
N.30J16.5E-3?6
N.32,118.5E-3,6

N,120,78E-3?12 
N .122.80.5E-3,12 
N,124.89.5E-3,12 
N.126.98.5E-3J2 
N,128,107.5E-3,12 
N, 130,116.5E-3J2 
N.132,118.5E-3.12

NGEN.7,100? 120,132,„6,

N,820,81.5E-3,54 
N.822.85E-3.54 
N,824,89.5E-3,54 
N,826.98.5E-3,54 
N.828,107.5E-3,54 
N.830.116.5E-3.54 
N.832.118.5E-3.54

N.834.89.5E-3.55.5
N,844,89.5E-3,56.5
N,846,97.5E-3,58.5
N.836.97.5E-3.57.5
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N,848,103.5E-3,60

N,838,107.5E-3,60 
N,840,116E-3,58 
N, 842,119E-3,57.5

N,940,104.5E-3,66 
N,942,108.5E-3,63.5 
N,944.116.5E-3,62 
N,946.125E-3.60 
N,948,128.5E-3,59

N,1040,106.5E-3,67.33 
N,1042,112.5E-3,68.33 
N,1044.121E-3,66 
N. 1046,128E-3,63.8 
N, 1048.129.33E-3,59

N, 1115,107E-3,-1.8 
N ,1116.110E-3,-l 
N, 1118.117E-3,0 
N ,1119,121E-3,1.5

N ,1138,110E-3,61 
N ,1140,117E-3,60 
N ,1142,121E-3,58.5 
N ,1148,107E-3,61.8

NGEN.2,200.1,1148, l,„4.75E-3

Imild steel backplate
TYPE.6
MAT, 2
E, 1,2,7,6,2001,2002,2007,2006 
EGEN.4,1,1

E. 1115.7.1116,1116,3115,2007,3116.3116 
E. 1116.7.8,1118.3116.2007,2008,3118 
E, 1118.8,9,1119,3118,2008.2009,3119

E.l 115,1116,16,15,3115,3116,2016,2015 
E, 1116,1118,18,16,3116,3118,2018,2016 
E.l 118,1119.19,18,3118,3119,2019.2018

E,20,l 1.12,22,2020.2011,2012.2022 
E ,11,13,14,12,2011,2013,2014,2012 
E, 13,15,16,14,2013,2015,2016,2014

E,22,12.24,24,2022,2012,2024,2024 
E, 12,14,26,24.2012,2014.2026,2024 
EGEN,3,2,15
E. 18,19,32,30,2018,2019,2032,2030
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E.20,22,122,120.2020,2022,2122,2120
EGEN,6,2.19
EGEN.8,100,19,24.1

E,822.824,834,834,2822,2824,2834.2834 
E,824,826.836.834,2824,2826,2836,2834 
EGEN.4,2,68
E.822.834.844.820.2822,2834.2844,2820 
E.834.836.846.844.2834.2836.2846.2844 
EGEN.2,2.73

E,848,838,1 138.1 148,2848,2838,3138,3148 
E,838.840,1140.1138.2838,2840.3140,3138 
E, 840,842,1142,1140,2840,2842,3142,3140

E.942,1148.1138,1138,2942,3148,3138.3138 
E,942,1138,1140,944,2942,3138,3140,2944 
E.944.1140,1142,946,2944.3140,3142.2946

E. 1040.940.942.1042,3040,2940.2942,3042 
EGEN.4,2.81

! friction material
TYPE.6
MAT,3
NGEN.2,2000,2011.2842,1,„ 12.5E-3 

NUMSTR.ELEM,101
E,2022,2012,2024,2024.4022.4012,4024,4024 
E.2012.2014.2026,2024.4012,4014.4026.4024 
EGEN.3.2,102

E,2022,2024,2124,2122,4022.4024,4124,4122 
EGEN.4,2,105

EGEN.8.100.105,108.1
E,2822.2824,2834,2834,4822.4824.4834.4834 

NUMSTR.ELEM,150
E.2824.2826,2836.2834,4824,4826,4836,4834 
EGEN.3,2,150

NUMSTR.ELEM.201
E.2018,2019.4018,4018,2030.2032,4030.4030 
E,2030,2032,4030,4030,2130,2132.4130.4130 
EGEN.8.100.202
E.2830.2832.4830.4830.2840.2842.4840,4840 

NUMSTR.ELEM,301
E.2020.2022,4022.4022,2120,2122,4122,4122 
EGEN.8,100,301
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E,2020,2022,4022,4022,2011,2012,4012,4012 
E,2011,2012,4012,4012,2013,2014,4014,4014 
E,2013,2014.4014,4014,2015,2016,4016,4016

E,2820.2822,4822.4822,2844.2834,4834,4834 
E,2844.2834,4834.4834,2846,2836,4836.4836 
E,2846,2836.4836,4836,2848,2838.4838,4838

! replacing portion of the mild steel on the backplate with friction material ('peg')

EDELE,17
EDELE,26
EDELE.56
EDELE,70

EDELE,5
EDELE.8
EDELE.75
EDELE.78

TYPE,6 
MAT.2

E, 16,18,30.28.2016,2018,2030,2028 
E, 122.124,224,222,2122,2124,2224,2222 
E,622,624.724.722,2622,2624,2724.2722 
E,828,830,840,838,2828,2830,2840,2838

Inode generation to represent ground nodes for caliper support stiffness

NGEN,2,5000,1,1148,1,,,-1.75E-3

TYPE,4 
REAL. 10
NUMSTR.ELEM.401
E.5222,222 
EGEN,4,2,401 
E.5622,622 
EGEN,4,2,405 
E,5320,320 
E,5322,322 
E,5330,330 
E,5332.332 
E,5420.420 
E.5422.422 
E,5432,432 
E,5520,520 
E.5522,522 
E,5530.530 
E,5532.532
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! constraint fully the ground nodes 
NSEL.NODE,5001,5700
D.ALL.ALL.O.
NROTAT.ALL
NSEL.ALL

FINISH

! solution phase 
/SOLU
ANTYPE,SUBSTR 
SEOPT.SUBPAD 1,3

! selecting masters 
M,1,UZ, 1148,1 
M,1,UY,10,1,UX 
M,940.UY. 1046,1 ,UX

M.4012,UZ.4018.2.UY 
M.4834.UZ.4840.2,UY 
M.4022,UZ.4840,100,UY 
M.4024,UZ.4822,100.UY 
M.4026,UZ.4826,100.UY 
M.4028.UZ.4828.1OO.UY 
M.4030.UZ.4830,100.UY

SOLVE
SAVE
FINISH
/EXIT.ALL

definition of the outboard pad and substructuring

/BATCH.LIST 
/FILNAM.SUBPAD2
/TITLE.SUBSTRUCTURING OF THE OUTBOARD PAD 
/UNITS.S.I.
/PREP7

CSYS,1
ET.2.14
ET.3,14,,3

! material properties of the mild steel backplate of the pad
MP.EX.2.207E9
MP.DENS,2,7.725E3

! material properties of the friction material 
MP.EX,3,8E9
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MP.DENS,3,2.5E3

lvalue of the nodal support stiffness 
R.4.1.2E6

! definition of the pad finite element model
!the outboard pad is position off zz above the inboard pad parallel to the z-axis 
ZZ=60E-3

N
N
N
N
N

N
N
N
N
N

N
N
N
N
N

N
N
N

10001,106.5E-3,-7.33, ZZ 
10002,112E-3,-8.33,ZZ 
10003,12 lE-3,-6.ZZ 
10004,128E-3,-3.8,ZZ 
10005,129.33E-3.-0.33,ZZ

10006,104.5E-3.-6.ZZ 
10007.108.5E-3,-3.5.ZZ 
10008,116.5E-3,-2.ZZ 
10009,125E-3,0,ZZ 
10010.128.5E-3,1.ZZ

10011.89.5E-3,3.5,ZZ 
10012,89.5E-3,4.5,ZZ 
10013,97.5E-3,1,5,ZZ 
10014,97.5E-3,2.5,ZZ 
10015,103.5E-3,0.ZZ

10016,107.5E-3,3,ZZ 
10018,116E-3,2,ZZ 
10019.119E-3.1,5,ZZ

N. 10020.81.5E-3,6,ZZ 
N. 10022,85E-3.6.ZZ 
N, 10024,89.5E-3.6.ZZ 
N, 10026,98.5E-3,6,ZZ 
N, 10028,107.5E-3,6.ZZ 
N ,10030,116.5E-3.6.ZZ 
N, 10032.118.5E-3.6.ZZ

N. 10120.78E-3,12,ZZ 
N. 10122.80.5E-3.12.ZZ 
N, 10124.89.5E-3,12,ZZ 
N,10126,98.5E-3,12,ZZ 
N, 10128.107.5E-3.12.ZZ 
N, 10130,116.5E-3.12.ZZ 
N ,10132,118.5E-3,12.ZZ

NGEN,7.100.10120,10132„.6,

N.10820.81.5E-3.54.ZZ 
N, 10822,85E-3,54,ZZ 
N, 10824.89.5E-3.54.ZZ
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N.10826.98.5E-3,54.ZZ 
N, 10828,107.5E-3,54, ZZ 
N, 10830,116.5E-3,54.ZZ 
N, 10832,118.5E-3,54, ZZ

N, 10834.89.5E-3.55.5.ZZ 
N, 10844,89.5E-3,56.5,ZZ 
N,10846.97.5E-3.58.5.ZZ 
N,10836.97.5E-3,57.5.ZZ 
N, 10848,103.5E-3,60,ZZ

N, 10838,107.5E-3,60, ZZ 
N. 10840,116E-3,58.ZZ 
N .10842,119E-3.57.5.ZZ

N. 10940.104.5E-3.66.ZZ 
N ,10942,108.5E-3,63.5,ZZ 
N. 10944.116.5E-3.62.ZZ 
N. 10946,125E-3,60,ZZ 
N, 10948.128.5E-3.59.ZZ

N, 10040.106.5E-3,67.33.ZZ 
N.10042,112.5E-3.68.33,ZZ 
N. 10044.121E-3,66,ZZ 
N.l 0046,128E-3,63.8.ZZ 
N. 10048,129.33E-3,59.ZZ

N .l 1115.107E-3.-1.8.ZZ 
N, 111 16,110E-3,-l,ZZ 
N, 11118.117E-3.0.ZZ 
N.l 1119,121 E-3.1.5 .ZZ

N ,11138,110E-3,61,ZZ 
N ,11140,117E-3,60,ZZ 
N, l l  142,121E-3,58.5, ZZ 
N, 11148.107E-3,61 8.ZZ

NGEN.2,2000.10001,11148,l„,-4.75E-3

!mild steel backplate
TYPE,6
MAT,2
NUMSTR.ELEM. 1001
E, 10001.10002,10007.10006,12001,12002.12007.12006 
EGEN.4.1.1001

E.l 1115.10007.11116.11116.13115,12007.13116.13116 
E.l 1116.10007.10008.11118.13116,12007.12008.13118 
E. 11118,10008.10009,11119.13118.12008.12009.13119

E,11115,11116,10016,10015,13115,13116,12016,12015 
E.l 1116.11118.10018.10016.13116.13118.12018.12016
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E,11118,11119,10019,10018,13118,13119,12019,12018

E, 10020,10011.10012,10022,12020,12011,12012,12022 
E.10011,10013,10014,10012,12011,12013,12014.12012 
E, 10013,10015,10016,10014,12013,12015,12016.12014

E. 10022,10012,10024,10024,12022,2012,12024.12024 
E, 10012,10014.10026,10024.12012,12014.12026,12024 
EGEN.3,2,1015
E. 10018.10019,10032,10030,12018.12019,12032.12030

E. 10020,10022,10122,10120,12020,12022,12122,12120
EGEN.6.2.1019
EGEN. 8,100,1019,1024,1

E. 10822,10824,10834,10834.12822,12824.12834.12834 
E. 10824.10826.10836,10834.12824,12826,12836.12834 
EGEN.4.2.1068
E, 10822.10834.10844,10820,12822,12834.12844.12820 
E. 10834.10836.10846,10844.12834,12836,12846.12844 
EGEN.2.2.1073

E, 10848.10838,11138,11148.12848.12838.13138.13148 
E. 10838.10840.11140.11138.12838.12840.13140,13138 
E. 10840,10842,11142,11140,12840,12842,13142.13140

E. 10942,11148.11 138.11 138.12942,13148.13138.13138 
E. 10942,11138.11140,10944,12942,1313 8.13140.12944 
E. 10944.11140.11142,10946.12944.13140.13142,12946

E.l 1040.10940.10942,11042.13040,12940,12942,13042 
EGEN.4,2,1081

! friction material
TYPE.6
MAT.3
NGEN.2 ,2000,12011,12842,112.5E-3 

NUMSTR.ELEM, 1101
E, 12022,12012,12024,12024,14022,14012,14024.14024 
E, 12012.12014,12026.12024,14012,14014.14026.14024 
EGEN.3,2.1102

E. 12022.12024.12124.12122.14022,14024.14124.14122 
EGEN.4,2,1105

EGEN,8,100,1105,1108,1
E. 12822,12824,12834.12834.14822,14824.14834.14834 

NUMSTR.ELEM. 1150
E. 12824.12826,12836,12834.14824.14826.14836.14834 
EGEN,3,2,1150
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NUMSTR.ELEM. 1201
E. 12018.12019,14018,14018,12030,12032,14030,14030 
E. 12030,12032,14030.14030,12130,12132,14130.14130 
EGEN,8.100.1202
E. 12830.12832.14830,14830.12840.12842.14840.14840 

NUMSTR.ELEM. 1301
E, 12020.12022,14022,14022,12120,12122.14122.14122 
EGEN,8,100.1301

E. 12020.12022,14022,14022,12011.12012,14012.14012 
E, 12011.12012,14012,14012,12013,12014.14014.14014 
E, 12013.12014,14014,14014,12015,12016,14016.14016

E. 12820.12822,14822,14822,12844.12834,14834.14834 
E, 12844.12834.14834,14834.12846,12836,14836.14836 
E. 12846.12836.14836.14836,12848.12838.14838.14838

1 replacing portion of the mild steel on the backplate with friction material ('peg')

EDELE,1017 
EDELE,1026 
EDELE. 1056 
EDELE, 1070

EDELE. 1005 
EDELE. 1008 
EDELE, 1075 
EDELE. 1078

TYPE,6 
MAT,2

E. 10016.10018,10030,10028.12016,12018.12030.12028 
E. 10122,10124,10224,10222,12122,12124.12224.12222 
E, 10622,10624,10724.10722,12622,12624.12724.12722 
E. 10828.10830.10840,10838.12828.12830.12840.12838

Inode generation to represent ground nodes for caliper support stiffness

NGEN,2,5000,10001,11148,1 ,„ 1.75E-3

TYPE,4 
REAL. 10
NUMSTR.ELEM, 1401 
E. 15024.10024 
EGEN.5,2.1401 
E ,15124,10124 
EGEN.5,2.1406 
E,15724.10724 
EGEN,5,2,1411
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E ,15824,10824 
EGEN.5,2,1416 
E,15228.10228 
EGEN,3,2,1421 
E ,15628.10628 
EGEN,3,2,1424 
E.15530,10530 
E,15532.10532 
E.15330,10330 
E.15332,10332

'constraint fully the ground nodes 
NSEL.NODE, 15001,15900
D.ALL,ALL,0.
NROTAT.ALL
NSEL.ALL

FINISH

! solution phase 
/SOLU
ANTYPE.SUBSTR
SEOPT.SUBPAD2,3

[selecting masters 
M,10001,UZ,11148.1 
M. 10001,UY, 10010,1.UX 
M. 10940,UY,11046,1,UX

M. 14012,UZ, 14018,2,UY 
M. 14834,UZ,14840.2,UY 
M. 14022,UZ, 14840.100.UY 
M. 14024.UZ, 14822,100, UY 
M.14026.UZ. 14826,100,UY 
M.14028.UZ. 14828.100.UY 
M.14030.UZ. 14830.100,UY

SOLVE
SAVE
FINISH
/EXIT.ALL

coupling of the disc . inboard pad and outboard pad substructures using the interface 
elements with friction included , stiffness for each interface element is determined from 
the random process approach calculation

/BATCH.LIST 
/FILNAM.STABILITY 
/UNITS,SI
/TITLE, STABILITY ANALYSIS OF THE COUPLED PAD-DISC SYSTFM
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/PREP7

CSYS.l 
ET.1,63 
ET.2,4.14„3 
ET,6.45 
ET.7,50

Icontact stiffness KC = 350 MN/m & and total force applied FTOT 1734 9 \(fo r Icontact 
pressure distribution purposes )
KC=350.0E6 
FTOT=l 734.9

Istiffness of the abutment to ground. KA=1,2MN/m 
R.3.1.2E6

! determination of individual interface element contact stiffness
Ibased on the nodal contact reaction force on the pad from contact pressure anak sis
!in Chapter Five - Figure 5.5b

*DIM.F.,800
*DIM.K,.800
*DIM.MUK.,800

! nodal reaction force for the inboard pad
F(201)=0
F(202)=l 1.96
F(203)=10.46
F(204)=3.855

F(205)=10.33
F(206)=20.01
F(207)=23.50
F(208)=17.39
F(209)=4.004

F(210)=23.62 
F(211 )=53.28 
F(212)=50.02 
F(213)=43.81 
F(214)=15.32

F(215)=29.67
F(216)=77.67
F(217)=70.81
F(218)=72.37
F(219)=28.07

F(220)=30.20 
F(221)=98.16 
F(222)=88.96 
F(223)= 100.6
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F(224)=32.23

F(225)=28.90
F(226)=103.4
F(227)=92.45
F(228)=109.5
F(229)=29.87

F(230)=27.31 
F(231)=87.63 
F(232)=77.32 
F(233)=84.78 
F(234)=22.55

F(235)=22.59
F(236)=49.82
F(237)=37.2
F(238)=30.26
F(239)=4.716

F(240)=2.433

! continue to define as F(241) - F(253) = 0

! nodal reaction for the outboard pad

F(301)=10.38
F(302)=44.88
F(303)=83.90
F(304)=32.85

F(305)=3.068
F(306)=25.85
F(307)=69.87
F(308)=123
F(309)=49.26

F(310)=0 
F(311 )=25.97 
F(312)=63.45 
F(313)=108 
F(314)=46.49

F(315)=0 
F(316)=3 863 
F(317)=36.92 
F(318)=81.33 
F(319)=36.05

F(320)=0
F(321)=0
F(322)=17.62
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F(323
F(324

F(325
F(326
F(327
F(328
F(329

F(330
F(331
F(332
F(333
F(334

F(335
F(336
F(337
F(338
F(339

F(340
F(341
F(342
F(343
F(344

F(345
F(346
F(347
F(348
F(349

F(350 
F(351 
F(352 
F(353

60.5
=28.78

=0
=0
= 11.46 
=54.89 
=30.95

=0
=0
=20.91
=70.7
=38.23

=0
=0
=36.95
=93.50
=50.55

=0
=2.21e-3 
=45.87 
= 105.6 
=58.23

=0
=0
=29.1
=85.88
=47.71

=0
=0
= 1.756 
=0.783

*DO,I,l,53
K(200+1)=KTC)T(F(200+I)/FTOT))
MUK(200+I)=MU*K(200+I)

Ifilling the matrix27 interface element (matrix 12 x 12) with individual contact stillness 
!to couple the inboard pad to the disc 

R.200+I 
RMORE
RMORE,,-MUK(200+I)
RMORE,. MUK(200+I)?„.K(200+I)
RMORE.., ,„-K(200+I)
RMORE.
RMORE,
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RMORE,
RMORE,
RMORE,
RMORE,„„-MUK(200+I)
RMORE..,K(200+I)
RMORE.
RMORE,
RMORE.
RMORE.
RMORE,,,,,.MUK(200+I)
RMORE,-K(200+I)

*ENDDO

!repeat the above command exactly but with opposite sign i.e. + becomes + for Ml K.
!for the outboard pad as the direction of the normal forccs changes relative to the 'inboard pad 
— reactionary forces

Icall the substructure files (or the superelement file , SE)
TYPE.7
SE.SUBDISC
SE.SUBPAD1
SE.SUBPAD2

Icouple all the nodes on the pad friction face to the disc . for example
!for the inboard pad
TYPE,5
REAL,201
E.20014.4012

E,21020.4840

!for the outboard pad 
REAL,301
E,20014,14012

E.21020.14840

!define ground nodes for the abutments and constraints use u \ and uy dol springS 
FINISH

(solution phase of modal analysis between 2-11 kHz 
/SOLU
ANTYPE.MODAL
MODOPT.DAMP. 100.2000,11000
SOLVE
SAVE
FINISH
/EXIT,ALL


