
AIR FLOW MANAGEMENT INSIDE DATA CENTRES 

 

Ali M A S Almoli 

 

Submitted in accordance with the requirements for the degree of 

Doctor of Philosophy 

 

The University of Leeds 

School of Mechanical Engineering 

 

February, 2013 

 

The candidate confirms that the work submitted is his own, except where work has 

formed jointly-authored publication has been included. The contribution of the 

candidate and other authors to this work has been explicitly indicated overleaf. The 

candidate confirms that appropriate  credit has been given within the thesis where 

reference has been made to the work of others. 

This copy has been supplied on the understanding that it is copyrighted material and 

that no quotation from the thesis may be published without proper 

acknowledgement. 

© 2013 The University of Leeds and Ali M A S Almoli 



- ii - 

Work Formed from Jointly Authored Publication 

 
During the PhD. study the publication has been done with help of my supervisors 

and colleague. The candidate did the CFD modelling for the publication. Also the 

analysis of the result, meshing, and results presentation have been carried out by 

candidate. 

 

The study in chapter 7, which is in section 7.3 has been published by candidate and 

others. In this study, the comparison between two types of back door coolers (active 

back door cooler and passive back door cooler) with respect to the cooling load 

inside the data centre has been done. This paper has been accepted in the Journal of 

Applied Energy in 3 February 2011 and presented online at 25 February 2011[ 

Almoli et al., 2011]. The CFD analysis and results presentation have been done by 

candidate. Whereas, the paper has been written by Dr. Jonathan Summers and Prof. 

Harvey Thompson. The experimental part has been done by Adam Thompson, and 

Dr. Nikil Kapur. The experimental part has been done at Airedal International Air 

Conditioning Ltd. Leeds, United Kingdom under supervision of George Hannah.  



- iii - 

 

Acknowledgements 

I would like to express my extreme gratefulness to my supervisors, Dr. 

Jonathan Summers, Prof. Harvey Thompson and Dr. Nikil Kapur. I cannot find any 

suitable words to express my deep respect and appreciation to you. You helped me a 

lot with my PhD, you left your doors open to me, you gave me your advice and put 

me on the right path. Most importantly, you supplied useful hints in my PhD 

research. I will always keep your advice and instructions in mind.  

I cannot deny and forget the role of my colleague, Adam Thompson, and his 

help with the experimental work involved in this research. You are easy to work 

with and I hope that you achieve your goals in the future.  

I would like to extend my great thanks and regards to Mr. George Hannah, at 

Airedale International Air Conditioning, Ltd., for his help and for letting me use the 

facilities of the company.  You helped me a lot; thank you very much indeed. 

Above all else, I thank my family, father ,mother  and my wife so much for 

their support and prayers. You gave me a lot, but most especially, you gave me the 

strength to go on. Thank you very much. 

 

 

 

 

 



- iv - 

Abstract 

 A data centre can be defined as an infrastructure facility that houses 

file servers, processors and other computer equipment, along with a standby power 

supply. These servers are kept inside cabinets and those cabinets are called racks. 

These racks are located close to each other inside a data centre to form rows. These 

rows are located front to front and back to back to form the aisles. These aisles 

could be used to supply the chilled air and also to provide room for operational 

purposes. 

Data centres are now widespread due to the high demand of infrastructure 

requirements, such as the network to operate Internet services. In this thesis, 

research is focused on the air cooling method, a popular method of cooling that is 

used to cool many data centres. The aim of this thesis is to understand the 

capabilities and limitations of Computational Fluid Dynamics (CFD) analysis of 

cooling air flow in data centres. The data centre components, which are the server 

blade and rack, have been simulated in order to study the environmental conditions 

(temperature, pressure and velocity fields) inside the data centre; as such, CFD 

analysis has been carried out at server, rack and room levels. The proposed method 

of a porous media model has been implemented to simulate servers and racks and 

has been tested and validated through corresponding experiments. It is shown from 

the results that the porous media model provides good agreement with experimental 

data of an actual case at the server  level.   The server racks have been simulated as a 

porous media with different permeability values in each direction (x ,y, z). In 

addition, a 3-dimensional CFD model has been used to explore the performance of 

three different room level cooling strategies based on the aisle containment (cold 

and hot aisle containments) and back door cooler.  It is shown that using either cold 
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or hot aisle containment within a data centre provides significant improvement 

inside the data centre with respect to temperature distribution and the avoidance of 

hot spots. 

Finally, the power input to the computer room air conditioning (CRAC) unit 

has been analysed for different cooling configurations when assuming the 

Coefficient of Performance (COP) of either direct expansion CRAC unit or a chiller 

system. Furthermore, the comparison between active and passive back door coolers 

has been done to evaluate the power consumption in the CRAC unit. It is shown that 

the supply temperature inside the data centre has a significant effect on the CRAC 

power input (compressor work) of the DX CRAC unit. With respect to comparison 

between the active and passive back door coolers, it has been found that the 

reduction of the CRAC unit load is higher when using the active back door cooler 

compared to the passive back door cooler, so the active back door cooler is better 

than passive back door cooler with respect to reduction of load on CRAC unit. 
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Nomenclature 

 

A  Area (m
2
) 

Cp  Specific heat constant at constant pressure (kJ/kg.K) 

Dh             Hydraulic diameter (m) 

H  Head losses across the rack (m) 

  Kinetic energy (m
2
/s

2
) 

P  Power (kW) 

PD  Power density (kW/m
2
) 

Pe  Peclet number 

Pr  Prandtl number 

R  Radius (m) 

Re  Reynolds number 

S  Source term for the momentum equation (kPa/m) 

T  Temperature ( C) 


U   Velocity vector  

(u,v,w)  Velocities in x, y and z directions, respectively. 

(x,y,z)  Cartesian Coordinates  

Win                 Compressor work of DX CRAC unit (kW) 
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Greek Symbols  

  Density (kg/m
3
) 

  Permeability (m
2
) 

  Kinematic viscosity (m
2
/s) 

  Dynamic viscosity (N.s/m
2
) 

  Specific weight (N/m
3
) 

t  Eddy viscosity (N.s/m
2
) 

  Velocity scale for the turbulent model (m/s) 

   Length scale for the turbulent model (m) 

  Dissipation (m
2
/s

3
) 

Superscripts 

*  Non-Dimensional quantities 

Subscripts 

Equip  Equipment 

H  Outside environment 

HI  High range 

i  Inlet 

Lo  Low temperature range 

o  Outlet 

R,Carnot Refrigeration Carnot cycle 
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Return  Return air to the cooling unit 

s  Surface 

Supply  Supply air to the data centre 

tot  Total   

(u,v,w)  The components of velocity in x, y, and z directions, respectively 

Acronyms 

ADS  Air Distribution Systems 

ADU  Air Distribution Unit 

CFD  Computational Fluid Dynamics 

CI  Cooling Index 

CLF  Cooling Load Factor 

COP  Coefficient of Performance 

CRAC  Computer Room Air Conditioning 

DCE  Data Centre Efficiency 

DCIE  Data Centre Infrastructure Efficiency 

DCP  Data Centre Productivity 

IT  Information Technology 

O-CS/CR Overhead distribution – CRAC flooded supply/CRAC flooded 

Return 

O-CS/FR Overhead distribution – CRAC flooded supply/Fully ducted Return 

O-CS/LR Overhead distribution – CRAC flooded supply/Locally ducted Return 
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O-LS/CR Overhead distribution – Locally ducted Supply/CRAC flooded 

Return 

O-LS/FR Overhead distribution – Locally ducted Supply/Fully ducted Return 

O-LS/LR Overhead distribution – Locally ducted Supply/Locally ducted 

Return 

PDUS  Power Distribution Unit Supply 

PLF  Power Load Factor 

PUE  Power Usage Effectiveness 

RCI  Rack Cooling Index 

RTI  Return Temperature Index 

SHI  Supply Heat Index 

U-FS/CR Underfloor distribution – Fully ducted supply/ CRAC flooded Return 

U-FS/FR Underfloor distribution – Fully ducted supply/ Fully ducted Return 

U-FS/LR Underfloor distribution – Fully ducted supply/ Locally ducted Return 

U-LS/CR Underfloor distribution – Locally ducted supply/ CRAC flooded 

Return 

U-LS/FR Underfloor distribution – Locally ducted supply/ Fully ducted Return 

U-LS/LR Underfloor distribution – Locally ducted supply/Locally ducted 

Return 

UPS Uninterruptible Power Supply 
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1 CHAPTER 1: INTRODUCTION 

 

1.1 General overview  

With the technological advancements in recent times and a mammoth 

leap in communication technology over the last couple of decades, our 

reliance on computing has increased sharply and will continue to do so for 

the foreseeable future. As we rely more and more on computing power for 

things as crucial as business continuity and operations, we need dedicated 

facilities to house these computer systems and associated components, such 

as telecommunication and storage systems; these dedicated facilities are 

called Data Centres [1],[2] and [3]. 

   According to a report from the ‘Renewable Energy Policy Project on 

Energy Smart Data Centres’, Data Centres are:  

“…. an essential component of the infrastructure supporting the Internet and 

the digital commerce and electronic communication sector. Continued 

growth of these sectors requires a reliable infrastructure because … 

interruptions in digital services can have significant economic 

consequences.”[4]. 

The main purpose of a data centre is running the applications that 

handle the core business and operational data of an organization. This can 

occupy one room of a building, one or more floors, or even an entire 

building.  
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A data centre may house several file servers, processors, and other 

computer equipment along with standby power supply. These servers are 

kept inside cabinets called racks. The racks are placed close to each other, 

front to front and back to back, in rows, forming corridors called aisles. 

These aisles not only provide the room for accessing the front and rear of 

each cabinet, but could be of immense use to supply the chilled air, which is 

the method currently used for cooling of the data centres. 

 Data centres are now widespread due to the high demand of 

infrastructure requirements such as networks to operate Internet services [1]. 

A wide range of telecommunication services such as web searching engines, 

bank systems and computer communications systems are operated by using 

data centres. The power used by the data centre operates the server racks that 

dissipate heat inside the data centre, as shown in Figure 1.1.  Heat dissipation 

from servers increase inside the data centre so the cooling power is expected 

to rise significantly [5], as shown in Figure 1.2.  

 The heat dissipation of a modern data centre varies between 1 kW to 

3 kW per rack and it is expected that the average heat dissipation per rack 

will increase up to 15 kW per rack  [6]. Some High-performance Computing 

(HPC) data centres now even have racks with 30 kW or more per rack [6].  

 The high demand for using the infrastructure systems increases the 

density of the data centre beyond what was expected at the design stage 

whilst building the data centre, which means that the data centre cooling 

loads increases due to increased IT heat load. For this reason, the air 

management system inside the data centre is critical in order to cool the 

racks inside it. Moreover the integration of both mechanical and computer 
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sciences with electrical engineering is also very important to maintain the 

good condition of the server racks inside the data centre.  

 Mechanical engineering science considers the thermal flow aspects, 

such as the temperature and air flow, inside the data centre. Hence, the 

mechanical engineer focuses on how to meet the cooling target of the data 

centre by optimizing the design parameters of its geometry and operating 

conditions. In most cases the cooling of a data centre is over-specified 

because the servers are running below capacity and the air conditioning is 

keeping the data centre cooler than is required [5] . The main reason for hot 

spots inside the data centre is due to the air recirculation phenomena [6],[7] 

and[8]. Recirculation happens when the exhaust hot air from the racks mixes 

with the cold air stream at the rack inlet, which leads to the accumulation of 

hot air at the cold aisle affecting the reliability of the rack servers. Therefore, 

improving the cooling system either by changing air management systems or 

by changing the design of the data centre geometry is necessary. The aim of 

air management systems is to separate the exhaust hot air from the intake 

cold air to prevent air recirculation, which means that the hot air migrates 

from the hot aisle to mix with cold air in the cold aisle; this is the focus of 

this research. Whereas, the controlling of the data centre geometry is 

implemented to meet the same aim.      

 

 

 

 

 

Figure 1.1 Schematic of the data centre energy system. 
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1.2 Thesis Plan 

In this thesis the air management inside the data centre will be discussed in detail 

with respect to the design criteria and the energy load as will be shown in the 

following chapters. The thesis sequence will be described as the following: 

1. Chapter 2 : which contain the literature review for the current work. 

2. Chapter 3: which describes the scope of the current work. 

3. Chapter 4: which describes the Computational Fluid Dynamics (CFD) 

modelling methodology for the server and its internal components. 

4. Chapter 5:  which describes the CFD modelling of the rack level. 

5. Chapter 6: which describes the different cooling configurations inside the 

data centre. 

Figure 1.2 Heat load trend in data centres [5] 
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6. Chapter 7 : which determines the energy loads calculations  for Direct 

expansion CRAC unit for different cooling configurations. 

7. Chapter 8: which shows both conclusions and future wok. 
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2 CHAPTER 2: LITERATURE REVIEW 

2.1 Introduction 

This chapter deals with literature review about the cooling of data centre. In 

this chapter several studies have been addressed to describe the data centre several 

areas such as the configuration of data centre layout, the power supplied to the data 

centre, the environmental condition inside the data centre, the cooling configuration 

that can be applied inside the data centre, and the thermal analysis inside the data 

centre. 

The IT density within data centres increases extremely rapidly with time, thus 

the efficiency of the cooling process to keep the data centre in good condition is an 

important criteria [9]. The power required to operate the data centre is 

approximately 40 times more than that required in operating a standard office 

building [10] and [11]. The rate of heat load that is produced by the data centre 

increases as the server loads increase in density. Therefore, the energy required to 

maintain the data centre at the correct temperature and humidity increases along 

with increasing the heat load inside the data centre. The power that is used to operate 

the data centre IT equipment and electronics varies; on average, it is about 30% to 

40% of the total power required to operate the data centre. The remainder of this 

power is used for the purpose of cooling [11],[12] and[13]. 

2.2 Data centre overview 

The cold-hot aisle arrangement is a popular arrangement that is used in most 

data centres to minimize the recirculation problem. The supply air and the exhaust 

air of the units are divided into zones. Figure 2.1 shows the arrangement of the rack 
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servers in the data centre. There are two aisles, which are cold aisles and hot aisles. 

The cold aisles contain the floor tiles or vents that supply the air at the front of each 

server rack. The cold aisles separate the rack rows at the front (intakes); whereas, the 

hot aisles separate the rack server rows at the back (outlet).   So the rows of racks 

are positioned so that they are facing each other at the front in the cold aisle [11] and 

[14]. 

 

 

 

  

 

 

 

In the raised floor data centre situation, the cool air is supplied by the computer 

room air conditioning (CRAC) units to the plenum, as shown in Figure 2.2. It then 

flows through the tiles that face the rack at the front, passing though the servers and 

exiting at a higher temperature through the rear of the rack. The hot air flows back to 

the CRAC units to cool them down and supply it again to the rack servers. The 

CRAC contains fans and cooling coils. The cooling process takes place in the 

cooling coil. It acts as a heat exchanger between the cooling agent in the cooling coil 

and the hot air pushed by the fans. The heated cooling agent is sent to the cooling 

tower to cool it down and then recirculated  to the cooling coil in the CRAC units. 

The CRAC supplies the air at 16-20C but it reaches the rack at 18-20C due to the 

Figure 2.1 The cold-hot aisle arrangement [11]. 
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recirculation action within the date centre and gaining heat on its way to the servers 

[14]. The air temperature exits the rear of the server racks around 27
o
C [11]. 

 

 

 

 

2.3 Data centre power system layout 

Figure 2.3 shows the main components in most data centres. The power is 

supplied from outside the data centre by transformers located in the utility 

substation. The voltage is reduced by switchgear and the power then passes the UPS 

system. A second feed is usually supplied from diesel generators to the UPS system 

to act as a back-up when power fails [14]. 

 

 

Figure 2.2 Typical raised-floor data centre configuration [15]. 
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Electrical power is provided to the system and utilized in the computer 

equipment, CRAC units, the office, the uninterruptible power supply (UPS), and 

lighting, as well as the chiller system, e.g., the compressors. The power density (PD) 

of the data centre is expressed as power supply divided by area. 

PD=
A

Ptot
                                                                                                                 (2.1) 

Total electricity supply (P tot,) and its include the power rate of the 

equipment, the office, UPS, lighting, CRAC units and electricity demand in the 

chiller system, e.g,. the compressors. Area (A) could be expressed as the area 

occupied by rack, the so-called ‘‘footprint’’, the total area of the computer room or 

the total area of the whole data centre facility [4]. 

Figure 2.3 The main components of a typical data centre [14]. 
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2.4 Environmental requirements 

  To achieve good operating conditions inside the data centre, suitable 

temperatures and humidity should be taken into account during the design stage. 

According to the ASHRAE TC 9.9 standards, the appropriate inlet temperature 

should be between 15C and 25C and the humidity should be between 40% and 

60%. Data centre design that gives poor temperature or humidity control could 

damage the equipment in the data centre [11] and [16]. The recommended zone for 

operating the data centre is specified by using a Psychrometric chart, as shown in 

Figure 2.4. The recommended envelope, as shown in Figure 2.4, demonstrate the 

recommended temperatures and the humidity limits that can be applied in a data 

centre. However, A1 envelope, A2 envelope, A3 envelope and A4 envelope are the 

allowable envelopes  for the specific range of the server blades with controlling of 

dew point temperature inside the data centre [17]. 

   

Figure 2.4 ASHRAE-recommended environmental conditions for data centres [17]. 
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2.5 Data centre efficiency 

 With regards to  the data centre efficiency, there is a term in common use 

called power usage effectiveness  (PUE), which is the amount of total power divided 

by the amount of power used to power the computer infrastructure. The best 

efficiency of the data centre can be achieved as the PUE value reduces to reach 1 

[18].   Most data centres have an operational PUE value between 1.2 and 3, where 

the PUE of 1.2 is a very efficient data centre. On the other hand, the data centre with 

3 is considered to be a very inefficient data centre [19]. The data centre efficiency 

(DCE) is defined as the inverse of the PUE value multiplied by 100, and its value 

varies between 0 to 100%.  

 The PUE and DCE were proposed by Haywood et al.[19], and Green Grid 

[12] to estimate the energy efficiency of their data centres and compare it with 

others. The PUE varies between 1 to infinity [20], but for proper design, the PUE 

value of 1.2 can be achieved [20]. The data centre productivity (DCP) is a new 

factor and has been defined by Green Grid [20]. DCP is defined as the useful work 

divided by the total facility power. The Green Grid expressed the PUE, as follows 

PUE= 1+ Cooling Load Factor (CLF) + Power Load Factor (PLF)                      (2.2) 

Where, 

1 represents the normalization of the IT load. 

 

loadIT

sAuxiliarieitsandsystemcoolingthebyConsumedPowerTotal
CLF        (2.3) 
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loadIT

unitondistributipowerandUPSgearswitchbyConsumedPowerTotal
PLF

,
     (2.4) 

 The calculation of the PUE is not straightforward because it is difficult to 

calculate the exact amount of both total power and IT equipment power. 

Furthermore, there is no exact point to measure either total power or IT power. This 

difficulty was solved by Avelar [21] by defining a standard method to calculate 

PUE. Four main reasons that make the calculation of PUE difficult are listed, as 

follows: 

a) The way to calculate the power used by devices in a data centre is not clear. 

b) Sometimes some systems used by data centres are outside the data centre. 

c) Some systems can be classified as both data centre and non data centre 

equipment. 

d) The difficulty in specifying the proper location to take the power 

measurements.  

 

A three-part methodology has been developed by Avelar [21] to overcome most 

problems that face the calculation of PUE. This method states the following; 

 The  description of the types of subsystem used in data centre: 

whether it is IT load, infrastructure or not-included load. 

 The approximate assumption can be used, either if subsystems are 

joined with other non-data centre loads or the measurement load of 

the subsystem is difficult due to technical problems. 

 The estimation of power consumed by the subsystem, such as Power 

Distribution Unit (PDU), can be done when there is a difficulty 
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performing the measurement, such as the existence of obstruction 

barriers. 

2.6 Layout and cooling 

Data centre energy efficiency can be enhanced in several ways, such as 

improving the cooling system, improving the rack layout, using the concept of a 

green data centre ( data centre in which the mechanical, lighting, electrical and 

computer systems are designed for maximum energy efficiency and minimum 

environmental impact)  and improving the data centre power system by decreasing 

the power required to cool data centre by using some cooling techniques such as air 

side economizer. 

Efficiency losses in the data centre are due to overloaded cooling system and 

its auxiliaries by using a lot of power to cool down the data centre with wrong rack 

layout, so careful design of the data centre and the best operation might help to 

improve the data centre efficiency [14]. 

 The reduction of electricity consumption of data centres is a very important 

issue because as the power goes to high demand, then the cost increases and the 

environment will be impacted [22].  Energy saving procedures were discussed by 

the CERN open lab. Electricity is used to operate both IT equipment and the cooling 

systems of data centres, and CERN found that saving energy was better than 

improving the cooling efficiency with respect to the return on investment. To focus 

on the reduction of energy consumption by changing the type of the processor of 

servers to an updated one will reduce the energy consumption and increase the 

useful life of the data centre while reducing costs. 
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 Rasmussen [23] discussed common mistakes that could occur during the 

design and operation of data centres. There are several issues that might reduce the 

cooling efficiency by 20% or more. The most important parameters that affect the 

cooling performance of data centres can be summarized, as follows: 

 Rack air flow. 

 Rack layout. 

 Layout of delivered and returned air of data centre. 

 Cooling setting  

 Distribution of load. 

 The air flow problems appear either as mixing of hot and cold air before the 

CRAC intake or if air flow is blocked by obstructions.  The blanking panel which is 

a panel that is use inside rake to fill the gaps between server blades and it could be 

used to improve the cooling performance in the rack by avoiding the mixing of hot 

and cold air streams. The cooling setting (such as changing the supply temperature 

and air flow rate) is another critical parameter that has a direct effect on the cooling 

performance of data centres. So, as the supply temperature of the CRAC unit 

increases within an acceptable range (20C-25C) as the cooling performance of the 

CRAC unit increases, and vice versa. 

2.6.1 Data centre layout 

 The servers with high demand should be distributed and deployed so as to 

eliminate recirculation and hot spot problems without adding new CRAC units or 

changing the inlet temperature. The layout of delivered and returned air is very 

important in terms of the cooling performance. The correct layout leads to 

minimised hot spots and to reduce recirculation, as well. Therefore, the cooling 

efficiency will be improved. Also the data centre layout can be improved by 



- 15 - 

changing the geometry inside the data centre, such as moving the vents closer to the 

intake of the racks in the cold aisle to provide the rack with sufficient cooling 

requirements. 

The effect of the floor plan on the number of racks, IT power densities, power 

and cooling and electricity consumption was analyzed by Rasmussen and Torell 

[24], who also introduced a method for designing the floor layout of a data centre. 

The number of racks in a data centre can be estimated by dividing the room area by 

2.6 m
2
/ rack. The basic principle layout involves many parameters that should be 

taken into account, such as controlling the air flow using hot-cold aisles, controlling 

the tiles’ location, reducing the isolated IT devices and predesigning for the 

equipment layout. Additionally, the structure layout plays a  significant role in 

power and cooling performance by locating the windows and walls in a data centre. 

Radmehr et al. [25] said that using CFD to determine the temperature and air 

flow within the data centre is the best way to optimise the cooling system. 

Optimisation of the cooling system of the data centre can be achieved by changing 

the rack layout and cooling settings.  In terms of rack layout, the cooling 

performance can be improved by using the partitions at the end of cold aisles to 

reduce the recirculation phenomena, as shown in Figure 2.5. 
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The cooling and design principles have been discussed by Intel information 

technology [26] in order to cool a high-performance data centre (HPC). The 

affecting factors on the cooling system have been tested by studying four data centre 

layouts. There are several factors that have a significant effect on the data centre, 

such as using a return ducted type, using barriers on the top and bottom of the racks, 

changing the location of the cables to under the floor in the hot aisles, and placing 

racks such that they are parallel to the air flow from the CRAC units. The results 

show that the combination of these factors leads to huge improvements in cooling 

efficiency by `raising the supply temperature to 21C instead of 15C. 

Changing the data centre layout corresponding with the capture index (CI) 

was discussed by Jensen [27]. The capture index (CI) is an index that is calculated 

via CFD analysis and it is based on the flow rate concept. CI is used to detect the air 

flow rate streams for both cold and hot aisles at each rack which is an important 

parameter to define the air flow path inside the data centre. Two CIs are extracted 

from the main capture index, which are for hot and cold aisles. If CI = 100% then 

the paths of all air flow streams for both cold and hot aisles reach the correct points 

Figure 2.5 Partitions’ location that covers the cold aisles in the data centre [25]. 
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(where all the cold air flow to the rack inlet section, and the all the exhaust hot air 

flow to the CRAC unit) and when CI= 0%, the path  of all air flow streams for both 

cold and hot aisles is not optimal. 

 The best rack layout  leads to high values of CI, which means the air  stream 

flow path is optimal to carry out the all heat dissipated from the racks. The results 

given from the real-time measurements show that a symmetrical layout of racks 

based on the best cold-hot aisles arrangement leads to the highest possible CI 

percentage (70%-90%). 

 Bhopte et al. [28] discussed the strategy to minimize the inlet air temperature 

to the rack by analysing the room layout, including the depth of plenum and the 

ceiling height. Also, optimization has been applied to obtain the best design with 

respect of the inlet air temperature of the racks. The results are as follows: 

 Large plenum depth leads to more uniform distribution of cold air. 

 Increasing ceiling height leads to an increase in the recirculation 

phenomenon, thus the inlet air temperature will be increased. 

Cold aisle containment and in-row cooling with hot aisle containment. 

The cold aisle and hot aisle containments were presented by Niemann [29]. 

These two methodologies have been applied in the data centre to manage the air 

flow inside in order to eliminate the hot/cold air mixing. Also the comparison 

between these two techniques has been discussed in this study. The concept of cold 

aisle technique is to apply the physical barriers on the cold aisle to prevent the 

mixing between the hot and cold streams, as shown in Figure 2.6.  The concept of 

using hot and cold air containments is to obtain a high degree of separation between 

the hot and the cold air streams [30].  
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Figure 2.6 The cold aisle containment technique [31]. 

Figure 2.7 In-row cooling with hot aisle containment technique [31]. 



- 19 - 

 With respect to the hot aisle containment, the hot aisle is covered with 

barriers to block the exhausted hot air and send it to the in-row cooling units. The 

cooling units then cool the air and distribute it again to the cold aisle, as shown in 

Figure 2.7. Once these techniques are applied, a lot of benefits might be captured to 

improve the power performance and cooling efficiency; for example, the 

recirculation phenomena will be dismissed and the supply temperature can be 

increased within the acceptable operation temperature range (15C-25C) because 

the supply temperature will be equal to the rack inlet temperature (i.e., there is no 

increasing of temperature due to the hot stream migration) [30]. Thus, energy will be 

saved and the cooling efficiency will be improved; also, the humidification and 

dehumidification can be reduced because the hot and cold air streams are separated.  

 However, the cold aisle containment technique has some drawbacks, such as 

all cold aisles should be covered to improve the cooling efficiency. This means if 

there are any racks missing in the row, a blank panel should be filled to connect the 

row [30]. Another issue is that the room temperature will increase due to the 

separation of the cold and hot aisles. So, these drawbacks will affect the operating 

condition but this technique is still better than the traditional one. These drawbacks 

could be overcome by using in-row cooling with hot aisle containment. 

Cabinet ducted to hot air plenum 

Chatsworth Products, Inc. [32] invented a new approach to manage the 

exhaust air flow within the cold-hot aisle data centre by taking it directly to the 

cooling source without any mixing with cold air streams. This method is called the 

ducted exhaust cabinet. The ducts are attached at the top rear of the rack cabinets to 

suck all hot air and send it through the top plenum to the cooling source (CRAC), as 

shown in Figure 2.8. 
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There are several benefits that are claimed by Chatsworth Products in using 

this technique, such as controlling the rack orientation (i.e., no need for front-to-

front and back-to-back arrangements) and also the ability to use all exposed floor as 

the supply for the cold air, which means that all servers will take enough  flow rate 

to improve their cooling efficiency. Furthermore, the supply air from the raised floor 

is not the only technique to supply the air; other supply techniques can be 

implemented  in a high density data centre. In addition, the above ducted system is 

adequate for up to 30 kW per rack. So, it offers a good solution for the high density 

data centre. Thus, this technique can be installed easily without any constraints and 

it offers a high degree of separation between cold and hot air streams. However, the 

pressure drop might  increase so that additional fan power would be required to 

overcome this pressure drop [32]. 

 

 

 

Figure 2.8 The ducted exhaust cabinet technique [32] . 
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2.6.2 Data centre cooling 

 IT load in data centre 

The power required for data centres has been increasing due to the 

introduction of high-performance computer facilities (HPC) [5]. Thus, the need to 

provide additional cooling will increase strongly. Furthermore, the traditional hot-

cold aisle configuration is not sufficient to carry away dissipated heat in a high 

density data centre due to the increase in rack exhaust temperatures [30]. So, new 

cooling approaches have been invented to assist the traditional cooling system (hot-

cold aisle cooling system).  

Recently these methods have been deployed in some data centres to cope with 

the excessive heat dissipation from the racks. In such, the power consumption trend 

is increasing. 

 

 

 

 

 

 

 

 

Figure 2.9 Breakdown for the power inside a typical data centre [33]. 
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Some HPC data centres now have racks with 30 kW or more per rack 

(University of Leeds, as an example). It is shown in Figure 2.9 that the most power 

goes to the cooling system, whereas the IT load draws 36% of the total input power 

for the data centre with an area of 465 m
2
, and with rack units of 50 kW [33]. 

Malone et al. [34] came up with a new rack design that uses blade servers in 

order to reduce the power consumption associated with groups of fans that have the 

ability to carry higher back pressure to minimize the air flow bypass (the cold air 

goes to non desired place which is server exhaust). The concept behind Malone’s 

approach is to reduce the back air flow of the servers, thus decreasing the power 

consumption of the rack fans. As a result of using blade servers, the air flow can be 

reduced by up to 25% of the air flow value of traditional 1U rack servers; also, the 

power consumption can be reduced by up to 48% when using blade servers rather 

than 1U rack servers, as shown in Figure 2.10. Also, in this analysis, the comparison 

of using blade and 1U rack servers has been discussed.  In such, the recirculation 

problem can be eliminated by implementing blade servers in cold-hot aisle data 

centres. Thus, the CRAC air flow can be reduced, leading to a saving in the energy 

requirements of the CRAC unit. Furthermore, the inlet temperature of 1U servers is 

8 K higher than the blades for the same CRAC temperature set-point, due to the 

recirculation problem.  So, as the supply air temperature from the CRAC increases, 

the coefficient of performance (COP) of the CRAC increases, indicating that the 

data centre becomes more efficient and consumes less power. As a result of back 

flow air from the servers, migration of hot air to the cold aisle has less possibility of 

occurring, so the amount of air flow required in a blade rack data centre is less than 
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the air flow required in a data centre with 1U rack servers. Thus, the saving of fan 

power in the CRAC  unit  has been accomplished. 

 

  

 

 

 

 

 

 

 

Air distribution systems for a data centre 

 Six air distribution systems were introduced by Cho et al. [11]. Each of these 

systems have different return and supply types. Here, six air distribution types have 

been implemented and evaluated with respect to the temperature and velocity fields. 

The six distribution systems are as follows:  

 Overhead distribution-CRAC flooded supply/fully ducted return (O-CS/CR). 

In this configuration, the cold air is supplied by CRAC unit to the data 

centre. Whereas the hot air coming from the rack exhaust is ducted. In this 

case insufficient chilled air will be provided for the racks that are far away 

from the CRAC unit. Also, mixing between hot air and cold air will occur. 

Figure 2.10 Comparison between a 1U rack and a blade rack [34]. 
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 Overhead distribution-CRAC flooded supply/locally ducted return (O-

CS/LR). In this configuration, the cold air is supplied by CRAC by using 

over head duct at the rack inlet. Whereas, the hot exhaust air return directly 

to the CRAC unit. 

 Overhead distribution-locally ducted supply/CRAC flooded return (O-

LS/CR).  It is good to provide the chilled air to the upper server’s inside 

racks, but this does not provide enough chilled air to the bottom server. The 

recirculation of hot air may be reduced by using an overhead supply. 

 Overhead distribution-locally ducted supply/locally ducted return (O-

LS/LR). In this case, the supply air from the CRAC unit is introduced to the 

rack by using duct. Similarly, the hot exhaust air is sucked by the over head 

duct at the hot aisle. Then Case 4 is the best case among other cases due to 

its ducted return method to prevent the recirculation of hot air to the cold 

aisle. 

 Underfloor distribution-locally ducted supply/CRAC flooded return ( U-

LS/CR). This is the most common configuration that used in data centres. 

This configuration is beneficial in providing the chilled air to the lower 

servers’ inside rack. However, the mixing between hot and cold air may 

occur. 
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 Underfloor distribution-locally ducted supply/locally ducted return (U-

LS/LR), as shown in Figure 2.11. As in case 4, this case is used to avoid 

recirculation by using a return duct. 

Figure 2.11 Six types of air distribution systems [11]. 
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 It is shown from Figure 2.11 that the main difference between the air 

distribution methods is the way in which they provide the supply air and take out the 

exhaust air. So, it is shown that the supply air can be provided directly from the 

CRAC unit, underfloor or overhead by using ducts. Similarly, the exhaust air can be 

taken out by the CRAC unit, or by using the ducts connected to the CRAC unit. As 

an example, in case 4, the supply air is introduced to the rack inlet by using 

overhead supply ducts that are connected with the CRAC unit. Whereas, the exhaust 

hot air is sucked in also by using the overhead return duct, the return hot air then is 

cooled down by the CRAC unit, which then supplies it again to the data centre. 

 It is shown from the results that case 4, which is an O-LS/LR, is a suitable 

method with respect to air flow and temperature fields inside the data centre; this is 

because in this case, the recirculation problem is reduced due to using the ducts for 

both supply and return. Therefore, the hot spots inside the data centre are minimized.  

The effect of installation of blanking panels (installed in the unused vertical 

space in  the rack) on the cooling performance was discussed by Rasmussen [35]. 

Blanking panels are physical barriers used to fill the vertical space between the 

servers in the rack, as shown in Figure 2.12. The blanking panels are not commonly 

used because of a lack of knowledge of this technology and also because of the 

difficulty of installation. Figure 2.12 shows the effect of the blanking panel on the 

inlet air temperature of the servers. The experiment was carried out to test the effect 

of blanking panels on the inlet air temperature to the servers in the rack. The inlet air 

temperature at the servers can be reduced between 2.8C to 8.3C by deploying 

blanking plate technology because the mixing is reduced between cold and hot air. 
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Karki et al. [36] discussed a number of techniques that can be used for 

controlling airflow distribution. These techniques include changing the plenum 

height and opening area of the perforated tiles, and installing thin (solid and 

perforated) partitions in the plenum. A number of case studies, using a mathematical 

model, are presented to demonstrate the effectiveness of these techniques. Also a 

computational study of various techniques for controlling the airflow distribution in 

raised-floor data centres has been presented. The key to controlling the airflow 

distribution is the ability to influence the pressure distribution (or the flow field) in 

the plenum. For specified (horizontal) floor dimensions and total flow rate, the 

pressure distribution is governed by  parameters such as the plenum height, the open 

area of perforated tiles, the distribution of the vents on the floor, the relative 

positions of CRAC units and perforated tiles, and the presence of underfloor 

blockages. 

The results of this study have been  summarized, as following: 

 The pressure distribution becomes more uniform as the plenum height is 

increased. (So the plenum depth must be taken into account in the design 

Figure 2.12 Effect of installation of blanking panel on server air inlet temperature [35]. 
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stage, because the changing of plenum depth for the existing data centre is 

very difficult.) 

 The results indicated that the thin partitions offer significant flexibility for 

controlling the airflow distribution, especially in an existing data centre. 

 The effect of the air supply flow rate coming from vents in both cold and hot 

aisles on the inlet air temperature of the racks was analyzed by Schmidt et al.[37]. In 

addition, CFD models based on Flotherm [37] have been applied to show the  

temperature distribution along the racks in a data centre. The analysis includes the 

effect of the CRAC units’ location to the inlet air temperature of the racks. The 

result shows the following: 

 As the flow rate of supply air coming through the vents increases, the room 

temperature of the data centre decreases and vice versa because as the flow 

rate increases, the heat transfer increases, leading to a decrease in the room 

temperature. 

 The inlet air temperature of the rack increases, as more supply air is utilized 

in the hot aisle than in the cold aisle. 

 The location of the CRAC units has an insignificant effect on the inlet air 

temperature. 

Most strategies to manage the environment of data centres consider the return air 

temperature to the CRAC units; so the hotter the supply air to the CRAC units, the 

more efficient their operation. Boucher et al. [38] studied several ways to improve 

the thermal management and energy performance of the data centre by using three 

main actuators placed on the CRAC supply to control the supply temperature, the 

CRAC fan to control the flow rate, and the plenum vent tile opening. Furthermore, 

the new non-dimensional index that describes the amount of hot and cold air mixing 
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(recirculation) is called the Supply Heat Index (SHI) [38] and it is defined, as 

follows: 

 
 vo
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                                                                                                   (2.5) 

Where , 

Ti = the inlet temperature. 

To = the corresponding outlet temperature at the same rack at the same height. 

Tv = the air temperature from the adjacent plenum vent. 

The results show that in the linear relationship between the CRAC temperature and 

the inlet temperature, the fan speed has significant effect on the SHI; additionally, 

the opening area of the vents tile has a direct relation with the  rack closer to the 

CRAC and an inverse  relation to the rack farther away. 

The cooling and energy efficiencies of the data centre were analysed by 

Herrlin [39]. Herrlin defined two indices used to indicate both cooling and energy 

performances. These indices are rack cooling index (RCI) and return temperature 

index (RTI). Rack cooing index (RCI) measures the cooling efficiency of the 

equipment in the data centre, whereas the return temperature index (RTI) measures 

the energy efficiency of the data centre. Also the CFD analysis has been 

implemented to calculate these indices by obtaining both return and supply 

temperatures of the CRAC unit. There are two indices, RCIHI and RCILO, can which 

be extracted from RCI at both ends of high allowable intake temperature and low 

allowable intake temperature. 



- 30 - 

ASHRAE describes that the range of intake temperature varied between 

20C and 25C. However, the allowable range is between 15C and 32.5C. Return 

temperature index (RTI) is written, as follows: 
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Where: 

TReturn: return temperature 

TSupply: supply air temperature. 

TEquip: temperature rise across the electronic equipment. 

The explanation of the RTI index is as follows: 

RTI=100% target (the best energy performance) 

RTI<100% by-pass (the cold air return to the CRAC without cooling the racks) 

RTI100% recirculation (mixing between hot and cold air) 

And the RCIHI definition is as follows: 
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                                                     (2.7) 

Where the total over-temperature refers to the summation of the server intake 

temperature subtracted from the maximum recommended temperature; whereas, the 

maximum allowable over temperature refers to the subtraction of maximum 

allowable temperature and the maximum recommended temperature multiplied by 

the number of servers. 

The interpretation of the index is as follows: 

RCIHI = 100% All intake temperatures ≤ max recommended temperature. 
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RCIHI < 100% At least one intake temperature > max recommended temperature. 

The RCILO definition is as follows: 
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Where the total under-temperature refers to the summation of the subtraction of the 

minimum recommended temperature and the server intake temperature, when the 

server intake temperature is less than the minimum recommended temperature. 

RCILO = 100% All intake temperatures ≥ min recommended temperature 

RCILO < 100% At least one intake temperature < min recommended temperature 

And these indices are useful to ensure that all the server racks within the acceptable 

range of temperature (15C-25C)[17]. 

Air, water and refrigeration cooling systems in a data centre 

Hannemann and Chu [6] reported the comparison between five alternative 

cooling systems for  a data centre to achieve the best one based on the cooling 

performance and the total cost (capital and operation). This study considered a 30 

kW heat dissipation rack in a high-density data centre in order to compare these 

systems. The five alternative cooling approaches are: 

  (1) Standard air cooling, which is used, chilled air coming from the CRAC 

unit to cool the rack, as shown in Figure 2.13(a), where the pink and the blue lines 

are hot return refrigerant and cold supply refrigerant in the condenser respectively. 

 (2) Water augmentation cooling, in which the heat dissipation from the rack 

is removed by both chilled air from the CRAC unit and the back door water heat 

exchanger, as shown in Figure2.13(b), where the light green and dark green lines are 

cold supply water and hot return water in the chiller, respectively. In this case, the 
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heat will be removed directly from the rack. However, this method has a high cost of 

installation and maintenance, and also the risk of forming the condensation at the 

rear heat exchanger may lead to a failure in the system.  

 (3) Refrigerant based augmentation; in this approach, the idea is the same as 

the water approach, except the refrigerant type R134a in back door heat exchanger is 

used rather than a water heat exchanger, as illustrated in Figure 2.13(c). 

  (4) Water touch cooling system; in this approach, the cooling water plates 

are introduced inside the rack to accomplish the direct cooling of heat source and the 

CRAC unit is used to remove the part of heat dissipation by the rack, as shown in 

Figure 2.13(d).  

 (5) Refrigerant touch cooling, which is the same idea as the water touch 

approach, but the refrigerant R134a plates are used rather than water plates. Also, 

this system does not need a chiller unit, as shown in Figure 2.13 (e).  

 In case (a), the typical air cooling is used to cool the rack inside the data 

centre. In this system, the refrigeration cycle is used to cool the hot return air from 

the data centre. Both condenser and compressor are kept outside the data centre, 

whereas the evaporator and expansion are located inside the CRAC unit where the 

heat exchange takes place between the hot return air and the refrigerant agent. The 

results show that the refrigerant touch cooling approach has the best results among 

all of the approaches for saving floor space, cooling power, capital cost and 

operational costs [6]. 
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Figure 2.13 Five alternative cooling systems for data centre [6]. 
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Air side economised system 

 An air side economizer is discussed here as the alternative solution that could 

be used under the category of  air flow management solutions. An air side 

economiser is a mechanical device that is used to regulate the outside air brought 

inside the data centre. A full study of economiser systems for data centres was 

presented by Anubhav et al. [40], and it was found that the energy of the chiller 

could be reduced up to 50% with increasing the inlet temperature from 20C to 

25C. The two main economiser systems are airside economiser systems and fluid-

based economiser systems. The air side economiser system uses the fresh outside air 

to cool the data centre with cooperation from the fan and filter systems, as shown in 

Figure 2.14.  

 

 
Figure 2.14 Air side economizer system [40]. 
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The principle of an airside economiser can be described as introducing the 

fresh outside air to the cold aisle, whereas the hot return air is rejected directly to the 

outside ambient environment. Next, the room air mixed with cold outside air is fed 

back to the CRAC unit. In this technique, the humidification and dehumidification 

are critical parameters that have been taken into account to achieve the 

recommended relative humidity (40%-55%) in the data centre. As a result, the 

saving of cost and energy using this system can reach up to 40% compared with 

using the traditional cooling system in a data centre. However, this system cannot be 

used in hot or humid weather because it is used to supply the data centre air with 

low temperature and suitable humidity.  

Overhead cooling method 

 A heat exchanger cooling system for the data centre was implemented by 

Patel et al. [41]. The data centre prototype with a cooling system was analysed by 

using CFD. The cooling system simply has water-air heat exchangers located in the 

ceiling of the data centre that are called the Data Cool system. These heat 

exchangers have been deployed such that a heat exchanger is located above each 

rack, as shown in Figure 2.15.  



- 36 - 

 

           The idea of this system is to cool the exhaust air coming from the hot aisle in 

the heat exchanger by using chilled water. The main advantage of this system is a 

reduction in usage of floor area compared with the traditional system (hot-cold aisle 

arrangement data centre). It was found that the Data Cool system which is described 

by Patel et al. [41] is an efficient system to reduce the rack inlet temperature, leading 

to reduction of the probability of recirculation problems compared to the raised floor 

system. 

  

 

Figure 2.15 Data Cool system in cold-hot aisle 

arrangement [41]. 
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A further development to the smart cooling system was invented by Patel et al. [42]. 

This approach provides a controlled amount of the cooling fluid flow rate to each 

heat exchanger based on the heating dissipation required for each rack. This system 

contains variable capacity compressors and variable speed fans in order to control 

both the volume flow rate of the air and the speed of the cooling fluid. This 

approach leads to a reduction of the power consumption by the CRAC units. Also in 

this technique, the data centre layout (CRAC units) may be changed based on the 

heating dissipation by the racks in order to achieve the optimal operating manner for 

CRAC units. 

 An alternative of cooling that uses overhead units to cool the data centre was 

described by Stahl et al. [43]. As per Patel et al. [41], the cooling heat exchangers 

are located in the ceiling of the data centre to provide the cooling air to the racks; it 

is called the overhead cooling system. This system has a heat exchanger associated 

with the fan to draw the hot air from the rack exhaust and flow it again at a low 

temperature to the rack intake, as shown in Figure 2.16. The heat exchanging occurs 

between the hot air and the coolant (either chilled water or refrigerant) used inside 

the pipe of the heat exchanger.   
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Portable data centre with a cooling system 

Ice cube data centres are produced by SGI [44]. They are portable data 

centres with easy mobility. The cooling concept of this data centre is represented by 

using the rows of heat exchangers and each heat exchanger consists of two opposite 

rack servers, as shown in Figure 2.17. The hot air is drawn from the back of each 

server in the same heat exchanger and it flows through the plenum, located at the 

back of the rack. The hot air then is cooled down by the heat exchanger using a 

closed loop, chilled water system. Finally, the cooled air is introduced again in the 

cold aisle at a temperature of 24C.  This technique can operate up to 1500 W per 

square foot of complete data centre space. 

 

 

 

Figure 2.16 Overhead cooling system in a data centre [43]. 
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Back door cooling system 

In high density data centres, were the server rack produces up to 30 kW, the 

back door cooler is one technique used to maintain the thermal environment. Figure 

2.18 shows a typical arrangement of a back door cooler (heat exchanger). According 

to Almoli et al. [45], up to 90% of the heat could be removed from CRAC unit by 

deploying both an active and passive back door cooler. Both active and passive back 

door coolers can be defined as an air-water heat exchanger attached at the rack 

exhaust to reduce the rack exhaust temperature. In an active back door cooler, the 

additional fan is used to increase the air flow rate to the heat exchanger. In the 

passive heat exchanger, the server fans are only used to push the air through the heat 

Figure 2.17 Ice cube cooling technique [44]. 
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exchanger. It is considered as an efficient way to cool the racks cooperating with 

CRAC units; also, this technique uses less space than traditional data centre (cold-

hot aisle arrangement) and has the ability to control the environment inside the data 

centre. 

 However, this technique is expensive because each rack needs a chilled 

water system. Also it may lead to water leakage on the floor of the data centre due to 

a large amount of couplings connecting the chilled water pipes [14]. 

 

 

The hybrid cooling system for the racks in a data centre was tested by Udakeri 

et al. [46]. The effect of using a water-air heat exchanger (hybrid cooling system) at 

the back of the rack is observed in this study with two different supply arrangement 

types, which are over-feed supply and under-feed supply. With the over-feed supply, 

Figure 2.18 Rack backdoor cooler. 
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the chilled air is provided from the top of the rack; in the under-feed supply, the 

chilled air is provided from the raised floor vents as in a hot-cold aisle configuration 

data centre. The idea of the hybrid cooling system is to use a water-air heat 

exchanger, which is either a plate and fin or tube and fin heat exchanger. The results 

show that the hybrid cooling system has a significant effect on inlet temperature, 

return temperature and the thermal energy. The inlet temperature could be reduced 

by up to 15C and the return temperature can be reduced by using the hybrid 

solution for both overhead feed supply and underfloor feed supply arrangements. 

Moreover, the energy consumed by the CRAC unit can be reduced up to 55% 

because the hybrid system gets red with a lot of heat [46].    

2.7 High Performance Computing (HPC) data centre 

High Performance data centre (HPC), also are sometimes called super 

computer data centres and can be defined as the data centre that uses multiple 

processers to run programs in less time and to run advanced applications with a 

reliably fast turnaround [47]. The term HPC is mainly used for a system that can 

function above a teraflop, which is a measure of the computer performance in 

trillions of floating point operations per second [47]. The HPC data centre is usually 

used to execute complex applications by academic, military and government 

research facilities. HPC data centres have large volumes of internal components 

inside the server racks that provide large amounts of primary memory and 

processors. The level of usage of the CPUs in these centres is greater than that of 

normal data centres, which can lead to large power consumption per rack. The 

power consumption per rack typically reaches 20 kW and sometimes reaches more 

than 30 kW per rack [48]. High-performance computing equipment that uses blade 

servers consumes much more power per rack than a traditional data centre, leading 



- 42 - 

to more heat production. In such, efficient cooling systems are required to reduce the 

risk of server failures [49] and [50]. 

 Some HPC systems have racks with 30 kW or more [51], so the HPC data 

centre requires special cooling systems to maintain an appropriate range of 

temperature and humidity, as specified by ASHRAE [16]. According to the TOP500 

organization [52], an organization that ranks the supercomputers by their 

performance to determine the world’s 500 fastest super computers, the United State 

possesses the majority of the world’s supercomputers; however, there are 14 other 

countries that also possess them, as of June 2010, as shown in Figure 2.19. 

 

 

Figure 2.19 Supercomputers countries share [52]. 
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The high density data centre can be defined as a data centre with a rack that 

produces at least 14 kW [53], which clearly produces more heat than a low data 

centre density of less than 10 kW per rack. The traditional cooling approach (cold-

hot aisle arrangement) cannot provide high density data centres with sufficient 

cooling [53]. Therefore, other techniques are usually adopted to cool this type of 

data centre. 

   The reliability of the servers inside data centres has been discussed by 

Moore et al. [51]. It is shown from these studies that the reliability (i.e., the mean 

time between failure (MTBF) or mean time to failure (MTTF)) of the servers could 

be decreased by 50% when the temperature is increased by 10C over 21C. 

Moreover, the failure rate can increase by factors of two for servers that operate at a 

temperature that is 15C over 21C  [51]. 

HPC data centre cooling configurations 

In most data centres, CRAC units are used to provide the cold air, as heat is 

exchanged between the IT exhaust hot air streams and the chilled water. Heat 

exchange takes place inside the liquid (or refrigerant) coils, which are placed inside 

the CRAC units within the data centre and this is the most common approach for 

commercial data centres. However, this cooling method is limited for a data centre 

with a rack of up to 8 kW as a maximum limit for heat dissipation [54]; whereas, in 

the HPC data centres, a large amount of heat is produced and this is considered to be 

the greatest challenge in cooling the data centre.  Racks with heat dissipation of 30 

kW are now more common in HPC data centres, and as such, are difficult to cool via 

normal CRAC units, causing difficulty in keeping the data centre in the ASHREA 

temperature limits [53]. Therefore, new cooling methods, such as liquid cooling, 
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could be used in order to cool down the rack inside the HPC data centre. The water 

has approximately 1000 times more heat carrying capacity than air [55]. Thus, liquid 

cooling techniques are becoming more widely used in HPC data centres to maintain 

temperatures inside allowable ranges. Usually, the chilled water, which is used in 

liquid cooling techniques, is supplied between 8C and 15C when the air 

conditioner is used [54]. The liquid cooling of HPC data centres can be implemented 

in different configurations [53], such as the following: 

 Using a back door liquid loop heat exchanger, which sits in front of the rack 

exhaust (either active, with fans, or passive back door coolers). 

 Using cooling pipes that come close to the CPU, which is the main heat 

source of the server. 

 Overhead heat exchangers, which are placed above the rack to cool the hot 

exhaust air and supply cold air to the rack inlet. In this technique, an air-

water heat exchanger is used. 

Air cooling techniques can also be implemented to remove heat inside HPC data 

centres with either cold or hot aisle containment. Containment is an efficient air 

management technique, since it prevents the mixing between cold and hot air inside 

the data centre [53]. Managing heat loads inside HPC data centres with the cooling 

load for the CRAC units will be analysed in the following section. 

2.8   Thermodynamics of a data centre      

   The heat that is produced inside data centres by the IT equipment is removed 

by the cold air coming from the CRAC unit. The equation that is used to evaluate 

the amount of heat removed from the data centre and chiller unit can be expressed as 
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TCmQ P


                                                                                                 (2.9) 

Where, 

Q :  is the amount of heat (W) 



m : is the mass flow rate of air (kg/s) 

PC : is the specific heat of the air or water (J/kg.K) 

T : Temperature difference (K) 

From Equation 2.9, the amount of heat removed from the data centre exactly 

equals the amount of heat removed from the air by the chiller water inside the 

CRAC unit for a set supply or return air temperatures.  

2.8.1 CRAC unit types 

Direct Expansion (DX) CRAC Units 

 The Direct Expansion (DX) CRAC unit was presented by Evans [56]. In this 

type of CRAC unit, the simple vapour compression refrigeration cycle is used to 

cool down the hot return air coming from the rack exhaust, as shown in Figure 2.20. 

The indoor unit components (evaporator and expansion valves) are located inside 

the CRAC unit, whereas the outdoor unit components (compressor and condenser ) 

are located outside the data centre. Refrigerants such as R-134 which is used as the 

cooling agent. In this thesis, this type of  CRAC unit will be implemented because 

the studied data centre which will be shown in chapter 7 is small relative to the real 

data centres that would use the chiller system. The chiller system is predominantly 

used to provide cooling for a large data  centre (200 kW or more) because it has 

greater heat removal capacity than a CRAC unit [57]. 
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Figure 2.20 Direct expansion CRAC unit type [56]. 

Figure 2.21 Cooling loop for the data centre with chiller system[58] 
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Chiller system CRAC unit 

 Figure 2.21 shows the cooling loop of the data centre by using a 

refrigeration chiller cycle and cooling tower. The refrigeration chiller is a simple 

vapour compression cycle with a refrigerant cooling agent. Whereas, the cooling 

tower cools the water by an evaporative cooling concept.  The cooling procedure can 

be described as follows 

First of all, the chilled water (8C-15C) [58] is pumped from the chiller unit 

to the CRAC unit in order to remove the heat inside the data centre. The chilled 

water is used to cool the air that is introduced to the data centre. The hot exhaust air 

from the data centre then flows to the cooling coil inside the CRAC unit.  The heat 

exchange happens between the hot air and chilled water inside the cooling coil to 

cool the supply air again by transfer sensible heat (heat transfer by changing the 

temperature) and latent heat (heat transfer during phase change with constant 

temperatures), from the air to the chilled water. Finally, the warm water is pumped 

into the chiller unit to be cooled again by using cooling towers. In the cooling 

towers, the warm water is sprayed and then the heat is transferred to the outside 

environment by the evaporative cooling concept. In the evaporative cooling, the 

temperature of the water can be significantly reduced during the phase change 

between the liquid water to the water vapour . 
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2.8.2 Coefficient of Performance (COP) of the data centre 

The Coefficient of Performance (COP) is a term that is used to represent the 

efficiency of the refrigerator [59]. The main purpose of a refrigerator is to carry out 

the heat from the refrigerated space. To achieve this, the supply power should be 

enough to carry out the heat from refrigeration space. 

The aim of calculating the COP of the CRAC unit is to detect the efficiency 

of the CRAC unit inside the data centre. In this chapter, the COP of the DX-CRAC 

unit will be used to detect the effectiveness of different data centre configurations. 

The COP of the refrigeration cycle in each CRAC unit can be expressed as  

)(

)(

kWWorkCompressor

kWLoadCooling
COP                                                                         (2.10) 

Where  the cooling load in each CRAC unit can be determined, as shown in 

Equation (2.9) 

 refip TTCmLoadCooling 
.

                                                                         (2.11) 

Where, 



m  : is the air mass flow rate at the CRAC intake (kg/s) 

Cp: is the specific heat of air at constant pressure (kJ /kg. C) 

Ti: is the air inlet temperature of CRAC unit (C) 

Tref: is the CRAC air supply temperature (C) 

Also, the COP can be calculated from the Carnot refrigeration cycle to give 

an indication of the effect of the supply temperature on the COP values, as follows: 
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LH

L
CarnotR

TT

T
COP


,                                                                                         (2.12) 

Where CarnotRCOP , , LT  and HT  are  the coefficient of performance of the Carnot  

refrigeration cycle, the supply temperature to the data centre from the CRAC unit 

(15C), and the  outside environmental temperature (23C), respectively. 

The COP of the DX CRAC unit of a traditional data centre (raised floor, hot-

cold aisle arrangement) varies between 3 to 4.5 [60]. Moore et al. [51] found the 

relationship between the COP of the chiller system and the supply temperature 

inside the data centre, as shown in Figure 2.22. The relationship can be expressed as 

                                                  (2.13) 

Where, T is the CRAC supply temperature in (C) and it is between 10C and 30C. 

The Moore et al. [51] study was completed for the HP labs utility data centre. 

It was found that as the supply temperature increases within the allowable limit, the 

COP also increases, while the CRAC unit uses less energy. So, raising the inlet 

temperature by 5C within the temperature range (15C-25C) leads to a saving of 

up to 40% of the CRAC power [51]. Also, the COP of the chiller system has been 

tested against the rack inlet temperature by Breen et al. [61]. It was found that the 

COP of the chiller system for a data centre can be increased by 8% when the rack 

inlet temperature is increased by 5C within the temperature range (15C-25C). 

458.00008.00068.0 2  TTCOP
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2.9 Conclusion 

The literature review for the data centre cooling technology has been presented in 

this chapter. Several ways are used  to reduce the temperature inside the data centre 

as the following: 

 Controlling air distribution inside the data centre to reduce the mixing 

between hot and cold air. 

 Using some cooling configuration such as cold aisle containment, hot aisle 

containment and back door heat exchanger to reduce the data centre 

temperature. 

Figure 2.22 COP vs. CRAC supply temperature from the HP experiment [51]. 
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 Changing the data centre layout in order to reduce the mixing between cold 

and hot air. 

Finally the HPC data centre has been presented in this chapter. Where The power 

consumption per rack typically reaches 20 kW and sometimes reaches more than 30 

kW per rack [48]. Furthermore, the COP of data centre also has been mentioned to 

detect the efficiency of the CRAC unit inside the data centre. It was found from the 

previous studies that as the supply temperature increases within the acceptable range 

(15C-25C) as the COP of CRAC unit increases. 

 

` 
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3 CHAPTER 3: THE SCOPE OF THE CURRENT WORK 

3.1 Introduction 

The cooling techniques and energy consumption inside the  data centre  are the 

most concern for the mechanical engineering area  as it was mentioned in a lot of 

previous studies as in chapter 2. The objective and the new knowledge (novelty) that 

have been used in this thesis will be described in this chapter. 

3.2 Objective and new knowledge 

The objective of this thesis is to build up the design of the data centre from the 

server level to the room level as will be described later. Also to test different cooling 

configurations for the data centre. Finally the power of the CRAC unit that used to 

supply the chilled air to the data centre will be measured. 

 In this thesis, the air cooling method is used to cool the rack inside the data 

centre because it is a popular cooling method due to easy maintenance and low cost 

[6]. The air flow management cooling methods are represented by using CFD 

analysis. The CFD models are also developed to study the component of a data 

centre (i.e., air flow through servers’ racks). The new model which is a porous 

media model will be used to simulate the server by using CFD model and also 

different turbulence models (standard k- model, RNG k- model, and Realizable k-

 model) have been tested by CFD and validated with the experimental data. Also 

the boundary conditions which are used for server and rack simulation will be 

clearly specify to describe the physics of the problem. The porous approach 

assumption is made because the air flow has the ability to flow through the rack 
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servers, but is restricted by the internal components of the servers. Normally the 

supply of chilled air enters the data centre by the vents via the plenum. After that, 

the air is sucked to the front of servers due to the internal server fans. Finally, the air 

carries away the heat dissipated by the server and returns back to the CRAC unit to 

cool it down again. Furthermore, server blade and rack will be analyzed to simplify 

the data centre by using both Gambit and Fluent software.  Server, rack and room 

levels are included in this study to determine both velocity field and temperature 

distribution inside the data centre. Moreover, some techniques have been 

implemented to increase the data centre efficiency and reduce the hotspots inside the 

data centre. Finally, the compressor energy of the direct expansion CRAC unit will 

be calculated and compared with the different types of the cooling configurations 

inside the data centre.  The scope of the current work can be represented as shown in 

Figure 3.1. 
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Figure 3.1 Scope of the thesis work. 
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4 CHAPTER 4 : MODELLING 

4.1 Introduction 

The modelling analysis of the data centre will be described in this chapter. 

This chapter also describes the numerical solution that is used to solve the thermal 

analysis of the data centre. The data centre can be broken down to three main levels, 

which are the server level, the rack level, and finally, the room level. The flow 

characteristics such as temperature, velocity and pressure fields will be obtained for 

the above three levels (server, rack and room levels). The porous media model will 

used to simulate the server blade with it is internal components. Finally, Three 

different turbulence model (standard k- model, RNG k- model, and Realizable k- 

model) will tested and validated with experimental data. Figure 4.1 shows some 

CFD figures for the server as in (a), rack as in (b) and room as in (c). Computational 

Fluid dynamics (CFD) is used to simulate the flow through server, rack and room. 

The commercial code that is used in this study is the Fluent and the Gambit 

software. The novel method which is used to present the server and rack is done by 

considering the porous media concept, where the internal components of the server 

and rack are assumed to be  porous media with experimental validation. 
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4.2 Computational Fluid Dynamics (CFD) modelling 

 The CFD analysis is the numerical solution that is used to analyze the 

governing equations in the data centre, which are continuity, momentum and energy 

equations [62]. The numerical approximation method is used instead of the 

analytical solution to simplify the solution and save the calculation time. In this 

thesis, the finite volume method is used to discretise the governing partial 

differential equations. In the finite volume method, the governing equation is 

integrated over the control volume to obtain the discretized equation at the nodal 

point [62]. CFD analysis for turbulent model  cannot give an exact solution because 

Figure 4.1 Flow analysis in server, rack and room of the data centre. 
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it just a model and due to turbulence conditions, and due to geometry complication 

of data centre [63],[64] and [65]. However, it predicts approximate solution for the 

flow field inside data centre  

 CFD codes are the codes that use numerical methods to solve and analys the 

fluid flow problems [62]. Some popular commercial codes of CFD are 

CFX/ANSYS, FLUENT, PHOENICS, STAR-CD, Six Sigma, etc. CFD consists of 

three main elements, which are pre-processor, solver and post- processor. The 

function of each element is briefly described, as follows: 

1. Pre-processor: In this stage, the mesh is generated to divide the domain into a 

small number of cells. The solution takes place at each node. The accuracy 

of solution usually depends on the number of the cell; so as the number of 

the cell increases, the accuracy increases, and vice versa. 

2. Solver: in the solver, the numerical method such as the finite volume method 

is implemented to solve the governing equations (continuity equation, 

momentum equations and energy equation) which will be explained in the 

next section. 

3. Post-processor: the analysis of the solution takes place in the post-processor. 

Furthermore, the results can be processed and represented in the figures. 

Also 2-D or 3-D representation might be obtained. 

In this project, the CFD model has been done to break down the components 

of the data centre (servers, racks and room). Furthermore, each component has 

been analyzed to simplify the data centre by using both Gambit  and  Fluent 

software. Both traditional and blade servers are included in this study to give a 

comprehensive idea with respect to the data centre and with a combination of 

both types of servers. Moreover, different cooling configurations have been 
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implemented to reduce the temperature in data centre and this leads to reduction 

of hotspots inside the data centre.  A new model is applied to treat the data 

centre components as a porous media, which will be explained in Section 4.4. 

The 3-D CFD geometry of the data centre has been built by using the Gambit 

program, version 2.4.6, and run by using Fluent Software, version 6.3.26. CFD 

could be used to give a good expectation about  the thermal model inside the 

data centre before building the data centre [66]. 

4.2.1 CFD modelling of data centre air flows 

The governing equations in the laminar region for  velocity, pressure and 

temperature fields are described for three-dimensional analysis in this section. 

a) Continuity equation: this equation describe the conservation of mass in the 

control volume. 

     0



Udiv

t



                                                                                             (4.1) 

The momentum equations in each direction are derived from Newton’s second law 

and state that the force is equal to acceleration times mass.  

b) X-momentum equation:  
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c) Y-momentum equation: 
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d) Z-momentum equation: 
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e) Energy equation: which is the equation that is derived from the first law of 

thermodynamics, which state that the net heat transfer into control volume plus the 

net work done by the same control volume is equal to the energy difference of the 

control volume. 

    QTgraddivkUdivpUTCdiv
t

T
C pp 






                                        (4.5) 

For incompressible flow  is constant so that
t


=0 

Where : 

: The density (kg/ m
3
) 

u: The velocity in x-direction (m/s) 

v: The velocity in y-direction (m/s) 

w: The velocity in z- direction (m/s) 

p: The pressure (Pa) 

Su:  The source term in x-direction, where this represent the effect of the 

permeability in the X direction for the server and racks. 

Sv: The source term in y-direction, where this represents the effect of the 

permeability in the Y direction for the server and racks. 

Sw:  The source term in z-direction, where this represents the effect of the 

permeability in the Z direction for the server and racks. 

Cp: is the specific heat (kJ/kg.K) 

T: temperature (K) 


U : velocity vector ( wkvjuiU 


) 
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k : thermal conductivity (W/m.K) 

Q: energy source term (kW/m
3
) 

: dynamic viscosity (kg/m.s) 

In this study the steady state situation is assumed. Therefore the variables do not 

change with the time in equations 4.2, 4.3, 4.4, and 4.5. 

4.2.2 Non-dimensional analysis for the governing equations 

 The non-dimensional analysis is very important to reduce the dimensional 

parameters to non-dimensional groups, leading to a good understanding of the 

physics of the problem. As an example, the laminar or turbulent modes can be 

known by using dimensionless analysis to obtain the Reynolds number (Re) inside 

the data centre. The non-dimensional coordinates, velocities, pressure and 

temperature are defined, as follows: 
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Where: 

x* :  dimensionless coordinate in x-direction; y* :  dimensionless coordinate in y-

direction; z* :  dimensionless coordinate in z-direction; x  :  Eulerian coordinate in 

x-direction (m); y  :  Eulerian coordinate in y-direction (m); z  :  Eulerian coordinate 
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in z-direction (m); L : characteristic length of the design system (m); u* : 

dimensionless velocity in x-direction; v* : dimensionless velocity in y-direction; w* 

: dimensionless velocity in z-direction; u : velocity in x-direction (m/s); v  : velocity 

in y-direction (m/s); w  : velocity in z-direction (m/s); V0: characteristic velocity of 

the system (m/s); p* : dimensionless pressure; p  : pressure field (Pa); 

  : density of the fluid (kg/m
3
); T* : dimensionless temperature; T  : Temperature 

field (C); T: Surrounding temperature (C); and Ts : surface temperature (C). 

 Therefore, the non-dimensional governing equations can be expressed by 

substituting equations (4.6), (4.7), (4.8) and (4.9) into equations (4.1), (4.2), (4.3), 

(4.4) and (4.5), as follows: 

 Non- dimensional continuity equation: 
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For incompressible flow that means =constant, then the continuity equation can be 

written as  

0*)(*)()( * 













w

z
v

y
u

x
                                                                         (4.11) 

 Non- dimensional x-momentum equation: 
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 Non- dimensional y-momentum equation: 
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 Non- dimensional z-momentum equation: 
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 Non-dimensional energy equation : 
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Three dimensionless parameters have been obtained from non-dimensional 

analysis, which are Reynolds number (Re), Prandtl number (Pr) and Peclet number 

(Pe). The Reynolds number describes the inertia force over the viscous force, the 

Prandtl describes the molecular diffusivity of momentum over the diffusivity of 

heat, and the Peclet number measures the relative strengths of convection and 

diffusion [41]. Thus, Reynolds, Prandtl and Peclet numbers can defined, as follows: 



uL
Re                                                                                                            (4.16) 

Where: 

Re: Reynolds number. 

: The density of the air =1  m
3
/kg 

u: the average velocity (m/s) 

L: characteristic length (m) 

: the dynamic viscosity of the air = 1.78×10
-5

 N.s/m
2
 at atmospheric pressure and 

T= 300K. 

k

C p
Pr                                                                                                            (4.17) 

Pr.RePe                                                                                                          (4.18) 
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The Reynolds number gives an indication for the flow being either laminar or 

turbulent. In our thesis, the turbulent model is used; however, the laminar flow is 

presented to compare between the laminar and turbulent concepts.  

4.3  Laminar flow 

Laminar flow is the flow that moves in laminar layers [46]. The character 

that gives indication either the flow is laminar or turbulent is called the Reynolds 

number and equals the inertia force over the viscous force. Thus, the Reynolds 

number can be expressed as equation 4.16. 

If Re  10
6
, then the flow over the flat plate (server blade) is called the laminar flow 

[59] and this can be applied over the vent flow in data centres. 

The typical flow rate of supply air coming from the CRAC should be 

maintained between 0.1 m
3
/s to 0.65 m

3
/s per tiles, with a 25% opening area [67]. 

The approximate Reynolds numbers in this research in server and room are 1×10
7
 

and 1×10
6
, respectively. The values of Reynolds numbers are calculated by 

detecting the velocity profile for both server and room. Therefore, the turbulent 

condition occurs, meaning that the turbulent model is the most suitable model to 

simulate the flow in the data centre.  

4.4  Turbulent flow 

The turbulent condition can be defined as small instabilities associated with 

disturbances in the fluid streamlines of laminar flow that can eventually lead to a 

chaotic and random state of motion [62], as shown in Figure 4.2.  
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The turbulence is caused by high flow rates, low viscous force or surface 

roughness of the system. The turbulence is associated with fluctuation terms and the 

flow becomes random. The rotational flow structure, called eddies, appears due to 

the turbulence flow. Theses eddies have a characteristic length and velocity. The 

large eddies are dominated by the inertia force; thus, they are inviscid. Transport of 

these eddies occurs due to the extraction of energy of mean flow and this 

phenomena is called vortex stretching. After that, the small eddies are created from 

the large eddies due to this phenomena. This process continues until the eddies 

become so small that the viscous effect becomes more significant. The transfer of 

energy of large eddies to small eddies is called energy cascade [69]. 

4.4.1   Reynolds Averaged Navier-Stokes model (RANS) 

The governing equations can be solved for the turbulent flow by considering 

the fluctuation terms due to the turbulence. Thus, each property term on the previous 

governing equations (4.1, 4.2, 4.3 and 4.4) should be substituted by the property 

term that has two parts: the average property part and the fluctuation part. The new 

Figure 4.2 The flow modes over the smooth airfoil [68]. 
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governing equation is called the Reynolds Average Navier-Stokes equation (RANS) 

and this model is used widely in practical application [62] 

The governing equations in vector form can be expressed for the RANS model as a 

continuity equation 

  0


Udiv                                                                                                            (4.20)                       

Momentum equation (RANS equations) 
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Where  

 )()( TUgradUgradIP 





                                                                   (4.22) 

Where  


U , 



  ,  


'u , and S  are the average velocity vector, average stress tensor,  

velocity fluctuation vector, and additional momentum source term, respectively. 

Energy equation 

  Q

PT

T S
C

gradT
vv

divTUdiv
t

T



1

PrPr































                                            (4.23) 

Where T, v   Pr , and QS  are  temperature, dynamic viscosity, the Prandtl number, 

and energy source term. The subscript T means the Turbulent flow. 



v
Pr                                                                                                                  (4.24) 

pC

k


                                                                                                                (4.25) 
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 Also, there is another turbulence model called Large Eddy Simulation (LES) 

that could be used to solve time-dependent simulation for the large eddies problem. 

In this model, filtering of the size of eddies is applied rather than averaging over 

time, as in RANS. In such, this model solves each size of eddies and then gives a 

more exact solution than RANS. Finally, Direct Numerical Solution (DNS) could be 

used to solve the continuity equation and Navier-Stokes equation, with a starting 

point to come up with a transient solution that solves even the small eddies.  
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The finite volume method which is the numerical model that is integrating the 

governing equations over the control volume in each node. So that each node will be 

solved to obtain velocity, pressure and temperature. Whereas the second up-wind 

scheme is used to give an approximate solution for the discretised equation. This 

scheme considering the flow direction when determining the value of the cell face 

[62] and the pressure-based algorithm, and this algorithm is based on initial guess 

for the pressure to run the momentum equation. And it is used in the Fluent software 

to solve the governing equations, as shown in Figure 4.3. 

 

Figure 4.3 Pressure-based method to solve governing equations [69]. 
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4.4.2 Turbulence k- models 

  In this section, the different k- models will be presented. The main 

difference between them can be summarized as follows: 

1. The calculation method for the turbulent viscosity. 

2. The dissipation equation form and constants. 

4.4.3 Standard k- model: 

The k- model, as developed by Launder and Spalding [70] is widely used in 

industrial application for a fully turbulent  model.  Two more partial differential 

equations are used for the k- model, with the Reynolds Averaged Navier-Stokes 

(RANS) equations, as follows: 
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Where : 

U :  average velocity vector, TU :  average velocity transport vector. 

 : density (kg/m3), t : turbulent viscosity(kg/m.s) 

k : Prandtl number of k ,and  : Prandtl number of . 

And k, ,C1,C2 , and C are constant and equal, as in 1, 1.3, 1.44, 1.92 and 0.09, 

respectively. 

 

 



- 69 - 

 

The turbulent viscosity (Eddy viscosity) can be specified as 


 

2k
Ct                                                                                                    (4.28) 

With respect to the advantage of using the standard k- model, it is the 

simplest model among the models that can be used for a wide range of the industrial 

application and validated turbulent models [62]. However, the k- model gives 

inaccurate results for some cases, such as some unconfined flow, curved boundary 

layer, rotating flow and flow in non-circular ducts [62].  Cho et al. [11] implemented 

the k- model to solve the temperature field of a data centre because it is the most 

effective model to solve the turbulent viscosity and conductivity for large and open-

space environments [11]. 

4.4.4  RNG k- model: 

 The derivation of the new renormalized group (RNG) from the Navier 

Stokes equations in order to account the effect of the small turbulence was done by 

Yakhot et al. [71], so that the small-scale turbulence is involved in the large-scale 

turbulence and in the effective viscosity in the governing equations. The governing 

equations of both k and  of this model can be represented as 

     

    











)()()()(
3

2

)()()()(2)(
)(

TT

TT

teffk

UgradUgradUgradUgradk

UgradUgradUgradUgradkgraddivUkdiv
t

k

  (4.29)                            

  
    

  
k

CUgradUgradUgradUgradk

UgradUgradUgradUgrad
k

CgraddivUdiv
t

TT

TT

teff

2

2

*

1

])()(.)()(
3

2

)()(.)()(2[)(
)(





















 (4.30) 

 



- 70 - 

 

Where : 
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 And k ,  ,C1,C2,C, 0 ,  and are constant and equal in  1.39, 1.39, 1.42, 1.68, 

0.0845, 4.377 and 0.012, respectively. 

 In terms of the RNG k- model, the  equation is now not a main source of 

the error, as in the standard k- model. The RNG k- model is highly recommended 

for indoor environment simulation due to its accuracy and ability to save time in 

computing [72].  Moreover, the RNG k- model is used for forced convection with 

low turbulence level [72]. 

4.4.5  Realizable k- model: 

 A new k- model was derived by Shih et al. [73] to fill the deficiencies of 

both standard and RNG k- models. This model satisfies some mathematical 

constraints on the normal stresses from the physics of turbulent flows. In this 

model, the dynamic equation of the mean vorticity fluctuation at a large Reynolds 

number has been used to describe the dissipation  rate, whereas the positive 

Reynolds stress constraint is applied to define the new eddy viscosity. 

The transport equations for both k and  can be expressed as:  
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Where  

kG  is the generation of the turbulent kinetic energy due to the mean velocity ,
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 /Sk                                                                                                       (4.38) 

and the turbulent viscosity is calculated as 


 

2k
Ct                                                                                                       (4.39) 

C  is now not constant, as in both standard and RNG k-  models. So this term now 

is obtained, as follows: 
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Where  

ijijijij SSU 
~~*                                                                                         (4.41) 

And  
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Where  
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kijkijij                                                                                                  (2.43) 

Where  

ij   is the mean rate of the rotation tensor,  ijk  is alternating symbol or Levi-Civita 

symbol; ijk = +1 if i,j and k are different and in cyclic order (123 = 231 = 312 =1)  

and ijk =-1 if i,j and k are different and anti-cyclic order (321 = 132 = 213 = -1)   ; 

ijk  =0 if any two indices are the same. k  is the angular velocity, and both 0A and 

sA are constant with values of 4.04, and cos6 , respectively. Whereas ijS  is the 

mean strain rate tensor. 

Where  

  can be written as  

ijij

kijkij
SSS

S

SSS
WW 

~
,~),6arccos(3/1  

And finally, the remaining constants of the transport equations which are kCC  ,, 21  

and  are equal to 1.44, 1.9, 1.0 and 1.2, respectively. 

The advantages of this model (Realizable k-  model) can be summarized as 

follows: 

 It is widely used and gives good performance for the rotating flow and free 

flow [73]. 

 It is used for the flow in the channel. 

 Three k- models, which are standard k-, RNG k- and realizable k-,   have 

been tested in this research. Cho et al. [11] recommend the use of standard k- 

models for the environment inside a data centre; whereas, the simulation of the RNG 
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k- could be the best  model [72] to represent the server racks, as will be shown in 

Chapter 3. 

4.4.6 Boundary conditions 

The boundary conditions are considered to be an important part in formulating 

the mathematical model, which is represented by governing equations [62] and [74]. 

The right boundary conditions should be selected to obtain the right solution. 

Actually, the boundary conditions represent the reality of the problem. As an 

example, the wall boundary condition represents the real wall for the problem. The 

boundary conditions which is used in this thesis will be described in detail in the 

following chapters. 

4.5 Porous flow modelling 

A new (novel) model is applied in this thesis to treat the data centre 

components as porous media. This assumption is made because the air  has the 

ability to flow through the rack servers but is restricted by the internal components 

of the servers. The obstructions inside the server rack can be replaced by the 

viscosity resistance and the inertia resistance for the porous media. Similarly, the 

internal components of the server can be treated as porous media with both viscosity 

and inertia resistances. Therefore, a step-by step-design has been incorporated to 

build up the data centre components from the server’s internal components level to 

the data centre room level. 

 Porous media can be defined as media that contains particles separated by 

voids, as shown in Figure 4.4. The fluid can flow through this voids. The resistance 

to the fluid flow is affected by the amount of the particles [75] so that as the amount 

of particles increases, the resistance increases, and vice versa.  
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The pressure drop across the porous block is presented due to the friction 

between the particles and the fluid flow. This pressure drop can be obtained, as 

shown in Section 4.5.1 and Section 4.5.2. 

4.5.1  Darcy’s law  

 Darcy’s law has been established to measure the pressure drop across the 

porous media, as follows: 

xVP 






                                                                                                    (4.44)                                                                                             

Where , 

: is the viscosity of the fluid (kg/m. s) 

: is the permeability of the porous medium (m
2
) 

V: is the axial velocity (m/s) 

Figure 4.4 Schematic of the fluid flow across the porous block [55]. 
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x: is the thickness of the porous medium in x-direction. 

Darcy’s Law is limited just for the laminar flow (low Reynolds number) because the 

inertia resistance does not have any effect where the viscosity resistance is dominant 

[76].  

 In our simulation design, Darcy’s Law has been implemented for the internal 

components to evaluate the permeability, which gives an indication for the viscosity 

resistance because the flow across these components has a low Reynolds number, 

around 1×10
3
. Whereas, the inertial losses have been taken into account for the 

server, rack and the room levels, as described in Section 4.5.2. 

4.5.2 Inertial losses in porous media 

 The inertia loss term can be added for Darcy’s law for the turbulence mode 

[76] and can be expressed as:  

2

2

1
lVClVP 




                                                                                          (4.45) 

The first term in this equation represents the pressure difference due to viscous 

effect. Whereas, the second term represents the pressure difference due to inertia. 

Where, 

P : is the pressure drop through the porous media (Pa) 

 : is the viscosity of the fluid (kg/m.s) 

 : is the permeability of the porous media (m
2
) 

l : is the thickness of the porous media (m) 

V : is the axial velocity (m/s) 
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C : is the inertial resistance 

 : is the density (kg/m
3
) 

The server then can be simulated as a porous block. After that the porous 

blocks will be used instead of server blades inside the rack . It is shown from our 

analysis that the flow through the server and rack are in turbulent mode. Therefore, 

Darcy’s Law is no longer applicable.  

4.6 Fan modelling 

In this section, the fan modelling of 1U server fan is described. The fan of the 

1U server is directly attached at the server exhaust, as shown in Figure 4.5. 

 

 

4.6.1  Fan modelling for the traditional rack server 

 The fan is attached at the server exhaust, as shown in Figure 4.5. The fan is 

considered as a drive force to suck the chilled air from the cold aisle and pass it 

through the server to carry out the dissipated heat. The fan specification is chosen 

from the Camair rotron company’s website [77] and is considered to be the fan of  

Figure 4.5 Location of the fan on the traditional server [32]. 
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the traditional server in our research. The fan used in this research is represented in 

Tables 4.1 and  4.2, and Figure 4.6. 

The fan is selected  for the traditional servers with specification [77], as follows: 

Table 4.1 Electrical specification of studied fan [77]. 

Electrical Specifications: 

 

Rated Voltage 115 VAC 

AC Frequency 60 Hz 

Power Supply 59.0 Watts 

Line Current 0.49 Amps 

Locked Rotor Current 1.35 Amps 

Nominal Speed 3350 RPM 

Table 4.2 Mechanical specification of studied fan [77]. 

Mechanical Specifications: 

Dimensions 6.93in x 4.41in 

Weight 80.0 oz 

Max Airflow @ 0 in H2O 330.0 CFM 

Max Pressure @ 0 CFM 0.871 in H2O 

Noise 65.4 dBA 

Where CFM is cubic feet per minute. 
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Table 4.3 Pressure distribution against the velocity for fan [77]. 

Velocity (m/s) Pressure (Pa) 

0.00 216 

2.07 137 

3.38 92 

4.60 42 

5.03 0 

 

 

 

 

Figure 4.6 Fan drawing [77]. 
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Table 4.3 can be represented as a polynomial profile between the pressure difference  

and the velocity, as follows: 

 

 

 

 

 

 

 

 

 

 

Thus, the pressure of the fan can be represented by a polynomial of third order 

32 413.2201.1687.6221.217 VVVP                                                (4.46) 

The third order polynomial pressure drop is implemented in the Fluent software, 

where the fan curve is required. Only the coefficients are required as an input in 

Fluent. 

  

Figure 4.7 Polynomial fitting of fan curve. 
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4.6.2 Fan modelling for active back cooler 

The fan modelling for the active back door has taken place in the Airedale Ltd. 

company. The pressure drop versus the velocity has been obtained, as per Table 4.4. 

Table 4.4 Pressure distribution against the velocity at 15000 RPM for active back door cooler 

fan. 

Velocity (m/s) Pressure (Pa) 

0.0 4350.0 

9.2 2746.9 

15.1 1847.9 

20.5 849.0 

22.5 0.0 

 

The fan curve can be fitted as a third order polynomial, as in Figure 4.8: 

 

 

 

 

 

 

 

 

Figure 4.8  Fitting curve of the pressure difference with respect to the fan velocity at 

15000RPM for active back door cooler fan. 



- 81 - 

Thus, the pressure of the fan can be represented as the polynomial of third order 

32 54.02.1655.28191.4354 VVVP                                                         (4.47)            

The above equation will be used to specify the fan boundary condition for the 

active back door cooler in the Fluent program. It is shown that the pressure drop for 

the active back door cooler fan is bigger than the pressure drop for each fan that is 

used in the server; this is because the fan that is used for the active back door cooler 

is just one big fan compared to the fan for each server.  

4.7 CFD analysis of server blade 

The numerical method for the data centre is described in detail in sections 4.2 

and 4.4. Also, a new approach, which is the porous media model, has been explained 

in section 4.5 to represent the server blade and the rack inside data centres. Thus, in 

this section, CFD analysis will be implemented by using both Gambit and Fluent 

programmes to simulate the server as a porous model, and then will be compared 

with the experimental data. Thermodynamic properties, such as temperature 

distribution, pressure across the server and the velocity field, will be obtained for 

both the 1U server and the blade server.  The server is considered to be a main 

component of the rack inside the data centre; whereas, other components, such as 

switches and storage, are used to connect between the servers inside the rack and to 

manage the digital information, respectively [14] 
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In this study, both switches and storage components will be assumed to be 

porous blocks where the air flows through them. The storage component is treated as 

a porous block with lower permeability than the switch component and this 

assumption takes place because the storage component is more dense than the switch 

component. In this chapter, the server component is the most considerable 

component inside the rack. The new technique will be presented, which is a porous 

approach to simulate the server, such that it verifies both temperature and pressure 

differences across the server. In such, the experiment has been done to test 

temperature and pressure drops across the server. Then the agreement between the 

CFD analysis and the experimental work has been tested. Both 1U server and blade 

server have been included in this study. The study is carried out with the server of a 

mother board model Thunder K8SPro (S2882) [78] and the HP blade server [79], as 

shown in Figure 4.9 and Figure 4.10 respectively.  The simulation of blade server 

for the Hp C7000 is conducted, as this type of blade server is available at Leeds 

University. The above models for both 1U server and blade server have been 

selected because these types are widely used for the medium load data centre. 

 

 

 

 

 

 

 

 

Figure 4.9 Thunder K8S Pro S882 server mother board [78]. 
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4.8 Traditional server (1U server) 

The 1U server (4.2cm60cm1.1 m) model Thunder K8S Pro S882 is chosen 

for this study because this type of server is available at Leeds University. 

Furthermore, the 1U servers are almost identical in their inside components.  This 

type of server dissipates around 300 W of heat. In this section, discussion regarding 

the traditional server is broken down into two main parts. The first part discusses the 

simulation of internal components of the server, whereas the second part discusses 

the whole server’s geometry.  

4.8.1 CPU analysis in the 1U traditional server 

Several papers were written to study CPU thermal analysis, such as Mohan 

and Govinderajan [80], in which they discussed the comparison between the 

experimental data and the CFD analysis to detect the temperature profile of the CPU 

Figure 4.10 Hp G7 server blade [79]. 
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with changing the CPU geometry. Furthermore, cooling analysis of the CPU in 

consideration of the CPUs geometry has been done by Arularasan and Velraj [81] to 

carry out the optimization design for the heat sink (CPU). With respect to the server 

analysis, Choi et al. [82] conducted 3-D CFD by using Phoenics software analysis to 

study the temperature profile inside the server rack. In such, the ThermoSat which is 

a thermal modelling tool (software tool), which is used to represent the temperature 

profile for the internal components of the server [82]. Moreover, experimental works 

have been done to validate the CFD results. It has been found that the temperature 

inside the server in different points for both experimental data and CFD analysis are 

close to each other, where the error in just 9%.  

A dual processor server has been selected for this study. The emergence of 

using Thermo-Stat is due to the difficulty of fitting the thermal sensor at the right 

place inside the server. Thus, use of the LVEL turbulence model is suggested, which 

indicates that the model needs the nearest wall distance (L), the local velocity 

(VEL), and laminar viscosity to calculate the effective viscosity and to present the 

flow inside the rack server [82]. The LVEL turbulence model is used to represent 

the flow at a low Reynolds number. The concept of this model is to use the 

Algebraic equation by solving the Poisson equation in order to obtain the maximum 

local length scale and local distance to the nearest wall. After that, the Reynolds 

number is obtained by using the above length scales and local speed. Finally, the 

effective viscosity (turbulence viscosity) is solved by solving the Reynolds number 

and the universal law of the wall.  

 In this section, the internal components of the 1U server are analyzed and the 

CPU component is chosen as an example. The main constraint from the cooling 

point of view are the pressure and the temperature differences across the 
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components. Therefore, the internal components such as CPU, memories (Dimms) 

and power supply are simulated to meet these constraints. Due to this, the porous 

media model is tested to ascertain if it satisfies the temperature and the pressure 

differences constraints or not. The real CPU has been compared with the porous 

CPU. The temperature, the pressure and the velocity fields have been obtained in 

this study.  

 CPU simulation is carried out in this study. The actual CPU is  compared 

with the approximation method by assuming the CPU to be a porous model. Both 

actual and approximation CPUs are built by the Gambit Software with geometry of 

7cm in width, 2.5 cm in height and 10 cm in length, as shown in Figure 4.11. 

 

The permeability of the CPU could be calculating in order to apply the 

porous media model. The value of the permeability can be obtained by equalizing 

Figure 4.11 Actual and approximated CPU geometries. 
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the pressure drop across the rectangular channel and Darcy’s Law. The rectangular 

channel represent the  geometry of  the actual CPU inside the server. 

 The pressure drop across the channel, which represents the actual case, can 

be expressed as per Michael et al. [83], as shown in Figure 4.12. This study has been 

done to compare between the pressure drops in both the empty channel and the 

channel with a bubble. 
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µ  is the air viscosity (kg/m.s), Q is the volumetric flow rate (m
3
/s), Q=VA, L  is the 

length of channel (m), W is the Width of the channel (m), and H is the height of the 

channel (m). 

 On other hand, the Darcy pressure drop, which represents the approximation 

method, can be written as: 

Figure 4.12 Diagram for the flow-though channel 
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VLP



                                                                                                        (4.50) 

Where   is the permeability (m
2
) and V is the linear velocity (m/s). 

 The permeability value in Z direction can be obtained from equations (4.48) 

and (4.50) with the CPU geometry values, as mentioned above, and it is equal to 

2.9×10
-7

 m
2
 . 

 the Nusselt number [84] can be expressed as:  

k

hS
Nu                                                                                                             (4.51) 

Where h is the heat transfer coefficient (W/m
2
. K), S is the spacing between the 

plates (m) = 3mm and K  is the thermal conductivity (W/m.K). 

 The Nusselt number of the vertical plate with constant heat flux by the 

processor  [52] can be expressed as:   
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Where L is the length of the plate (m), S is the spacing between the fin (m), Tf is 

average temperature (K), T∞ is the surrounding temperature (K), q is the heat flux 

(W/m
3
),  is Kinematic viscosity (m

2
/s), β is Volume expansion coefficient (1/K)
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 , and  Ra is the Rayleigh number and can be written  as 
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The heat transfer mode between the processor and the CPU is  conduction 

with constant processor temperature at 50C. The value of thermal conductivity (k) 

has been chosen for the Aluminium and it equals to 237 W/m.K. 
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Results and Discussion 

CPU thermal analysis 

The numerical solution to solve temperature, pressure and velocity fields inside the 

CPU of the server has been developed by applying the porous approach. The porous 

flow analysis, with the permeability of 2.9×10
-7

 m
2
 in the Z direction, has been 

implemented to simulate flow through the CPU; whereas, permeability in both the X 

and Y direction is assumed to be 1×10
-20 

m
2
. This assumption for the previous 

permeability values has been done because in real situations, the air has the ability to 

flow in the Z direction with a neglected flow in both X and Y directions, as shown in 

Figure 4.14. Figure 4.13  shows the comparison of CFD study between the actual 

and porous flow model to simulate the CPU.  Figure 4.13 shows the comparison 

between the real CPU and the porous CPU, with respect to the temperature 

distribution and the pressure field. It is shown that there is good agreement between 

both cases in temperature distribution. In this study, the surface at the CPU middle is 

chosen. It is shown that the temperature at the middle surface for both CPU cases  

equals approximately 330 K. Similarly, the pressure has been obtained for both 

cases and also shows good agreement. The CFD analysis has been implemented to 

compare between the methods by using Gambit software to build the geometry and 

Fluent software to obtain  the results. The processor dissipates 89 W inside the 

server, so that the heat from the processor is transferred to the heat sink by 

conduction mode for the real case. Whereas,  in the porous flow model, the heat 

generation divided by the porous volume is added as a source term in the energy 

equation. Figure 4.14(a), Figure 4.14(b) and Figure 4.14(c)  show a good agreement 

between the actual case (red line)  and the assumption case (black line) with respect 
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to temperature, pressure and the velocity fields, respectively. In such, the 

assumption of the CPU as a porous media is a good approximation to simplify the 

actual geometry of the CPU. 

 

Figure 4.13 Comparison between the actual analysis and approximation analysis of the CPU. 
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Figure 4.14 Temperature, pressure and velocity gradient for both actual and 

approximation CPUs in the longitudinal direction (Z) of the CPU. 
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Figure 4.14 (a) shows the temperature distribution across the CPU centre 

line. The red line indicates the real CPU case and the black line indicates the porous 

CPU. It is shown that the maximum temperature equals 340 K and it occurs at the 

CPU inlet; this is because at the CPU inlet, the cooled air does not take a reasonable 

time to reduce the fin temperature and the temperature reduces as the air goes 

through the fins. Whereas, the static pressure in both cases builds up until it reaches 

2.5 Pa, as shown in Figure 4.14 (b). Thus, the porous media approach shows good 

agreement with the real situation. Therefore, the porous approach could be used to 

simulate the internal parts of the server. 

4.8.2 Server Modelling 

 Actual server 

 The actual server schematic based  in the real structure is shown in Figure 

4.15. The actual server has CPUs, DIMMs, fans and a power supply. It is shown 

from in Section 4.8.1 that the CPUs can be simulated as a porous media with  a 

permeability of 2.9×10
-7 

m
2
 in the Z direction and 1×10

-20
 m

2
 in both X and Y 

directions. Similarly, the DIMMs and power supply have been assumed to be porous 

media models. In this study, the fan effect is ignored to simplify the model and this 

assumption does not affect the purpose of the validation study. Furthermore, the 

tunnel has been attached to the actual server to represent the experimental situation, 

as shown in Figure 4.16. 
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Figure 4.15 The block diagram of the server’s 

internal parts. 

Figure 4.16  Experimental set-up geometry for the 1U server. 
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 Different pressure drop values across the server have been used to detect the 

point velocity as the experimental setup was done by a fellow PhD student (private 

communication) [85], as shown in Figure 4.16. The velocity is measured  0.48m 

away from the server outlet at the centre line. The aim of this study is to simulate the 

actual server rack as a porous block by comparing between the CFD analysis and the 

experimental velocity values at different pressure drop across the server. Three 

turbulence models with respect to k- model have been tested for the 1U server, as 

shown in Figure 4.15. The aim of this study is to identify the most suitable k- 

model that provides good agreement with the experimental data, and to identify 

whether the porous media approach can be used. CFD analysis has been created to 

implement these models. The turbulence intensity for both inlet and outlet are 

assumed to be equal to 5% and 1%, respectively. Furthermore, the different 

turbulence intensity values are assigned to check if either of the results change or 

not.  Whereas, the hydraulic diameter for the inlet and the outlet are 0.05508m and 

0.12m, respectively. The velocity field for different pressure drops is obtained to 

compare with experimental data.  

 It is necessary to define the hydraulic diameter for the inlet and the outlet to 

process both in the Fluent program. The hydraulic diameter can be defined as 

P

A
Dh

4
                                                                                                    (4.53) 

So the hydraulic diameter at the inlet and the outlet are 0.05508m and 0.12m, 

respectively. 
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Approximation server 

  The relationship between the velocity profile and the pressure gradient across 

the server has been fitted as a second order polynomial  by using the RNG k- model 

as 

23966.69202.5 VVP   

Whereas, the fitted curve for the experimental data has been expressed as 

28206.62743.5 VVP   

The second order polynomial pressure equation is equivalent to the equation of the 

pressure drop for the porous media, which describes Darcy’s Law plus the inertial 

loss term, as in the following equation: 

2

2

1
lVClVP 




                                                                         (4.54) 

Where P  is pressure drop through the porous media (Pa),  is the viscosity of the 

fluid (kg/m.s), is the permeability of the porous media (m
2
), l  is the thickness of 

the porous media (m),V is the axial velocity (m/s), C  is the Inertial resistance and   

is the density (kg/m
3
). In such, the values of both permeability  and inertial 

resistance C are equal to 1.889×10
-6

 m
2
 and 20.46 m, respectively. 

4.8.3 Boundary Conditions 

The inlet boundary condition for actual and approximation servers are 

assumed to have an intake pressure inlet of 0 Pa gauge pressure. With respect to the 

outlet boundary condition, it is assumed that the static pressure is constant over the 

outlet. Different pressure values have been assigned for the outlet condition to 

obtain the velocity field in order to sketch the relationship between the pressure and 
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the velocity field. All other surfaces are assumed to be no-slip walls, as shown in 

Figure 4.17. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Server air flow analysis 

In this section, three turbulent models with respect to the k- model have 

been tested for the server rack, as shown in Figure 4.16. The aim of this study is to 

simulate the server blade as a porous block by identifying the most suitable k- 

model that provides good agreement with the experimental data. CFD analysis has 

Figure 4.17 The boundary condition used in the CFD analysis of a 1U server rack. 
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been created to implement these models. The turbulence intensity for both inlet and 

outlet are assumed to be equal to 5% and 1%, respectively, as per the experiment 

procedure. Also, the additional  range of the turbulent intensities are included in this 

study, which are 1% at the inlet and 1% at the outlet, 10% at the inlet and 1% at the 

outlet, 5% at the inlet and 5% at the outlet, 10% at the inlet and 5% at the outlet, and 

10% at the inlet and 10% at the outlet. Whereas, the hydraulic diameter for the inlet 

and the outlet are 0.05508m and 0.12m, respectively. The turbulence intensities are 

tested for a range between 1% and 10% to detect how the solution is sensitive for 

this parameter. The velocity point for different pressure drops is obtained to 

compare with the experimental data.  

 CFD modelling of the server 

A tunnel has been attached at the exhaust of the actual server in order to 

represent the experimental situation. The length of the tunnel is assumed to be equal 

to 0.575m, whereas the velocity is measured at 0.48m from the sever exhaust, as in 

the experimental setup. The point velocities for different pressure drops across the 

server have been obtained by using the standard k- , RNG k- and Realizable k- 

models. The velocity field for different k- models has been obtained, as shown in 

Table 4.5. The velocity field is compared with the velocity field that was obtained 

from the experimental procedure. It is shown that the RNG k- model is the best 

behaviour and gives a good agreement with the experimental data compared with 

other k- models.  
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Table 4.5 Velocity for different k- models against the pressure drop. 

 

 

The point velocities for different pressure drops across the server have been 

obtained by using the RNG k- model. The velocities have been tested for the 

following range of the turbulent intensities at the inlet and the outlet as shown in 

Table 4.6  to detect the effect of changing the turbulent intensities on the point 

velocity. 

 

 

 

 

 

       Turbulence model 

 

P (Pa) 

Standard k- 

model  

(m/s) 

RNG k- 

model  

(m/s) 

Realizable 

k- model  

(m/s) 

Experimental  

Data  

(m/s) 

25 1.3 1.5 1.8 2.31 

50 2.6 3.5 3.3 3.10 

100 4.5 4.7 5.1 4.41 

160 9.2 5.5 7.7 5.04 

200 10.9 6.0 8.95 5.71 
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Table 4.6 Turbulent intensity specification for both inlet and outlet. 

 

It is shown in Figure 4.18 that as the turbulent intensity at the inlet increases, 

the  velocity slightly increases and vice versa; whereas, the turbulent intensity at the 

outlet does not have any significant effect on the velocity. Therefore, turbulence 

intensity does not have any significant effect on the results in this specific case. 

 

 

 

Case Turbulent intensity at the inlet Turbulent intensity at the 

outlet 

1 1% 1% 

2 5% 1% 

3 5% 5% 

4 10% 1% 

5 10% 5% 

6 10% 10% 
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Figure 4.19(a), Figure 4.19(b) and Figure 4.19(c) show the comparison 

between the k- models and the experimental data, and all points are fitted as second 

order polynomials. Figure 4.19(a) shows the comparison between the standard k- 

model and the experimental data for the pressure difference against the point 

velocity. It is shown that the trend between the two curves are totally different. The 

intersection point between the two curves at the velocity point equals to 4 m/s, 

where the pressure difference equals 75 Pa. Figure 4.19 (b) shows the relationship 

between the pressure difference across the server and the velocity point in the tunnel 

for both the Realizable k- model and the experimental data. It is shown from the 

Figure that the trend behaviour for this k- model shows greater improvement than 

the behaviour in Figure 4.19(a) for the standard k- model.  
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Figure 4.18 Velocity versus the pressure drop for different turbulence 

intensities. 
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The intersection point between the Realizable k- model and the 

experimental data occurs at a velocity of 3 m/s and the pressure difference equals 50 

Pa. Finally, in Figure 4.19 (c), it is shown that the RNG model is the best model to 

represent the experimental data in trend. The reason for this is that the RNG k- is 

the most suitable model for the forced convection with low turbulence level [78]. It 

is shown from previous studies [82] and [86] that the Reynolds number for the flow 

through the electrical components is low, such that the turbulence level inside the 

server is low. As shown by Zhang [72], the RNG is the best model for this specific 

situation. The RNG k- model is suitable turbulence model to represent the forced 

convection, because the fan is used at tunnel exhaust, with low Reynolds number as 

in this thesis. This is due to usage of modified equation of dissipation and the 

constants that is used in the two partial differential equations to calculate the kinetic 

energy (k) and the dissipation rate (). 
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Figure 4.19 The comparison between k- models and the experimental data for the server. 
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So the porous media technique can be implemented for the server blade due to the 

good agreement between the CFD analysis of the actual server and the experimental 

data. 

The solution domain for this study is specified by using 470590 cells and 

926450 nodes. The mesh study has been done for this case to ensure that the mesh 

independence is achieved and does not affect the results.  The mesh study of the 1U 

server blade has been done as follows in table 4.7. The testing of this problem is the 

velocity point at P=200 Pa for RNG k- model as shown in Figure 4.20 .  

Table 4.7 Number of cells vs. the velocity point for 1U server blade. 

No. Of Cell Velocity point (m/s) 

335010 4.92 

371020 5.59 

431030 5.93 

470590 6 

512010 6 

550300 6 
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It is shown from Figure 4.20 that the number of cells that were used to solve 

the problem was 470590. Therefore, the number of cells that were used is the right 

choice because after increasing the number of cells, the velocity point remains 

constant. 

Temperature difference across the server.  

In this study, the temperature difference across the server has been measured 

by experimental work and compared with CFD analysis. It is shown from both 

Figure 4.21 and Table 4.8 that the temperature measurement from the experimental 

work is in good agreement to the temperature, which is measured by CFD analysis.  

Now both pressure drop and temperature difference across the server are validated 

with experimental data, so that the porous media approach can be used for this type 

of server. 

 

Figure 4.20 Mesh independence study for 1U server blade. 
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Table 4.8 Comparison between experimental and CFD (RNG k- model) with respect to  the 

temperature difference across the server. 

T (K) 

 

 P (Pa) 

 

Experimental 

temperature difference 

(K) 

CFD (RNG k- model) 

temperature difference 

(K) 

52.9 8 9.1 

42.5 7.8 9.7 

32.5 8 9.5 

26.1 7.8 9.1 

20 8 9.1 

0 19 15 

 

Figure 4.21 Comparison between experimental measurements and CFD analysis 

with respect to the temperature difference across the server. 
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4.9 Blade server 

The difference between the blade server and 1U server in the dimension and 

the dense of the internal components. The thickness of the 1U server is equal 

4mm. Whereas, the thickness of blade server is higher and it is equal 

approximately 5 mm or more depend on the dense of the internal components. 

Moreover, the blade server is more in dense of the internal components than 

1U server.  The fan is existing in each 1U server. Whereas, the blade server 

doesn’t have any fan, so the fans are located at the chassis which hold the 

blade servers, Blade server chassis [87] can be defined as a chassis that 

contains the complete computer panel with all necessary parts, such as the 

processer and memory boards. The blade server has been used instead of the 

rack server for the following reasons: 

1. Space limitation, where some elements such as cables and the bulk volume 

of rack in the traditional server rack can be eliminated by using the blade 

server. Therefore, a high number of blade servers can be used in the data 

centre. 

2. Cooling, as the chassis provides the cooling facility to the blades via the fans 

and these fans are connected to the control system to detect the temperature 

values. In such, the fan will operate when the  temperature increases above a 

certain value (25°C), and this is mean that the fans will operate in the 

intermittent mode. As a result, the chassis will consume less power than the 

traditional rack server, with more cooling efficiency. 

3. Hot swapping. This is the ability to add or remove and replace the units 

without powering off the device and this concept is applicable in the blade 

server. In such, the usage of the blade inside the chassis is dependent on the 
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demand of each blade and this concept provides advantages from the 

maintenance point-of-view, so maintenance can be done for each blade 

without affecting the other blades. 

The advantages of introducing the blade servers to the data centre were discussed by 

Intel [88]. It is claimed that there are a lot of significant benefits that can be 

achieved by using the blade servers, such as: 

 Lower price than the traditional rack server. 

 Lower maintenance and operation cost than the traditional server. 

 Lower cooling and power requirements, as shown in Figure 4.22. 

 Saving space inside the data centre. 

Therefore, the usage of a blade server is highly recommended due to the above 

benefits. 

 

However, the disadvantages of blade servers can be summarized by stating 

that the blade server system has an expensive configuration and the blade server 

needs a large amount of cooling to reduce the high temperatures produced by the 

blade server chassis compared with the traditional rack server. Furthermore, due to 

Figure 4.22 Power consumption for both blade and rack servers with two processors [88]. 
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the high density of blade servers inside the chassis, high-speed fans are required, 

leading to noise problems [88]. 

4.9.1 HP server modelling 

The aim of this section is to simulate the HP blade server using the porous 

flow modelling approach. CFD analysis will be done for the HP blade server. The 

HP blade server, as shown in Figure 4.23, is built by using Gambit software, as 

shown in Figure 4.23. 

 

 

 

 

 

 

 

 

 The RNG k- model has been implemented to obtain the velocity field for 

the HP server. This is used because it provides excellent agreement with 

experimental data for the traditional server, as shown in Section 4.8.2.  

 

4.9.2  Boundary Conditions 

Similar to what is done in Section 4.8.3 for 1U server, the boundary condition 

for HP blade server is shown in Figure 4.24. The inlet boundary conditions for 

actual and approximation servers are assumed to be intake pressure inlets of 0 Pa 

gauge pressure. With respect to the outlet boundary condition, it is assumed to be the 

same as the pressure outlet boundary condition. Different pressure values have been 

Velocity point 

Figure 4.23 HP blade server geometry with attached 

tunnel [77]. 
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assigned for the outlet condition to obtain the velocity field in order to sketch the 

relationship between the pressure and the velocity field. All other surfaces are 

assumed to be wall surfaces. 

 

 

Figure 4.24 Boundary condition used in the CFD analysis of an HP 

blade server. 
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4.9.3 Results and Discussion 

Table 4.9 Velocity profile for HP blade server with respect to the pressure drop across the 

server. 

P (Pa) Velocity (m/s) 

25 0.9 

50 1.7 

100 2.4 

160 3.0 

200 4.1 

 

Table 4.9 shows the obtained values of the velocity point which is obtained 

from CFD for different pressure drops across the server. Also, this table can be can 

be represented as a second order polynomial, as shown in Figure 4.25. The pressure 

equation from the fit curve is equivalent to the equation of the pressure drop for the 

porous media, which describes Darcy’s Law plus the inertial loss term as follows 

2

2

1
lVClVP 




                                                                                                           

Where,  P is pressure drop through the porous media (Pa),  is the viscosity of the 

fluid (kg/m.s), is the permeability of the porous media (m
2
), l  is the thickness of 

the porous media (m), V is the axial velocity (m/s), C  is the Inertial resistance and 

  is the density (kg/m
3
). 
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The fitted curve for the pressure drop against velocity can be expressed as 

25377.5494.28 VVP                                                                                 (4.55) 

So that the values of both permeability  and inertial resistance C for the porous 

block which represents the HP blade server are equal to 3.08×10
-7

 m
2
 and 22.6 m, 

respectively 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.25 shows the relationship between the point velocity and the 

pressure drop across the blade server. It is shown that the trend of this relation is 

almost second order polynomial. This relationship has been obtained by using the 

RNG k- model. This model has been used because it gives good agreement in cases 

involving 1U servers, as shown in Section 4.8.2. The results show that the 

permeability value ( ) of the HP blade server is lower than the permeability value 

of the traditional server; this make sense, considering that the HP blade server is 

Figure 4.25 Velocity profile vs. pressure drop in a HP blade server. 
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more dense with internal components than the traditional server (1U server). 

Moreover, the value of the inertial resistance (C) of the blade server is higher than 

the traditional server due to the same reason mentioned above. 

In this situation the comparison between the CFD analysis and experimental 

data is not performed because the method used to obtain the pressure drop across the 

server has already been conducted for the traditional server and validated with 

experimental data by using the RNG k- turbulent model. So, the study which is 

done for the traditional server by using the RNG k- model is considered as a 

sufficient condition and can be applied to the Hp blade server. However, the 

theoretical results for HP blade server could be validated using pressure drop sensors 

in the high performance computing data centre. It is shown from  Section 4.8.2 that 

the porous media model provides excellent agreement with the experimental data. 

Thus, the porous media principle can be implemented for the blade server, as well. 

Furthermore it is shown in the same section that the  turbulence intensities do not 

have any significant effect. Therefore, the turbulence intensities have not been 

changed and values for the inlet and outlet have been assumed to be 5% and 1%, 

respectively. 
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4.10  Conclusion  

The numerical solution method (finite volume method) is represented in this 

chapter to solve the governing equations in data centre. Also the porous model is 

tested to simulate the server blade and its internal components with clear boundary 

conditions. It is found that from this chapter that the CPU can be simulated as a 

porous media by using Darcy’s law and the pressure drop across the heat sink 

channel. After that, three turbulence models which are k- model, RNG k- model, 

and Realizable k- model have tested for the server blade (1U). It is found that the 

RNG model is the best model among others by comparing the results with the 

experimental data. The same analysis has been done for the HP blade server So that 

the server blade and internal components are simulated as a porous block with 

permeability as the following table 4.10. 

Table 4.10 Permeability values for CPU, 1U server, and HP server blade. 

       Components 

 

Permeability 

Direction 

Permeability of 

CPU 

(m
2
) 

Permeability of 

1U server 

(m
2
) 

Permeability of 

HP blade server 

(m
2
) 

X 1×10
-20

 1×10
-20

 1×10
-20

 

Y 1×10
-20

 1×10
-20

 1×10
-20

 

Z 2.9×10
-7

 1.88×10
-6

 3.08×10
-7
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5 CHAPTER 5 : CFD ANALYSIS OF FLOW-THROUGH LEVEL 

RACKS  

5.1 Introduction 

In the previous chapter, the server blade has been simulated as a porous media 

model and shows good agreement with the experimental data. In this chapter, the 

simulation of the rack, consisting of a number of blades, will be explored in detail. 

As was carried out for a single server, the simplification of treating the rack as a 

porous block will be discussed. Thus, this will be used to verify servers to be 

simulated as porous blocks inside the data centre. Following this, cooling techniques 

will be applied to the porous models to ascertain how these techniques can reduce 

the hot spots inside the data centre. The cooling of the rack is the most important 

thing to reduce the temperature inside the data centre, to reduce occurrence of hot 

spots and address the recirculation problem. The components of the rack are the 

servers, switches and storage; the servers have been discussed earlier in Chapter 4. 

          The rack that encloses the servers is shown in Figure 5.1. In a data centre 

where the cold-hot aisle arrangement is used, the racks are arranged to face each 

other with the intake and additional row sections forming the cold aisle. The rear of 

the racks exhausts the air to form the hot aisle. This arrangement is important to 

eliminate the mixing of both hot and cold air streams. Typical rack dimensions that 

are used inside the data centre are 1.1m0.8m2.1m [11]. Typically, the average 

heat dissipation per rack is 4 kW [6], although it can reach 20 kW or above per rack 

in a high density data centre [89].  
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CFD analysis will be described in this chapter to study the geometry 

simplification for the rack of 32 server blades (porous blocks). In this chapter the 

temperature profile for a rack of 32 servers (porous blocks) will be compared with 

different rack configurations such as 16 porous blocks, 8 porous blocks, 4 porous 

blocks, 2 porous blocks and 1 porous block. This study is done to find the minimum 

number that can be used to simplify  32 porous blocks rack. 

 

 

 

Figure 5.1 IT rack inside the data centre [89]. 
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5.2 Rack Cooling Scenarios  

 In this section, the simplification of racks by using a porous media approach 

will be presented by deploying the CFD model for  2-D schemes. This simplification 

will be done to build the geometry easier.  

5.2.1 Traditional cooling for the rack 

 Usually, the data centre is cooled by the chilled air, which is supplied by the 

CRAC unit and then is introduced by the vents in the cold aisle for the cold-hot aisle 

arrangement. After that, the chilled air is sucked by the server fans inside the rack, 

as shown in Figure 5.2. 

 

 

 

 

Figure 5.2 Plan view of air flow through  racks in a data centre. 
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5.2.2 CFD analysis for the rack  

 The aim of this section is to develop a simple model of a rack, which then 

can be used to understand influence of multiple racks on the air flow within a data 

centre. The rack containing 32-servers will be analysed using Fluent to calculate 

both inlet and outlet temperatures of the rack. After this step, the assumption of 

using porous blocks configurations will be tested with respect to the inlet and outlet 

rack temperatures in order to simplify a 32-server rack. 

 The 2-D CFD analysis is used to create the rack geometry by using both 

Gambit software and Fluent software. 32-servers (1U in height) are located inside 

the rack, as shown in Figure 5.3. The basis of this analysis can be assumed as per 

Cho et al. [11]. Where the temperature profile has been tested for six air distribution 

configurations as described in section 2.6.2 by Cho et al.[11] by using CFD analysis 

(STAR-CD software) for different high level inside the data centre. 

 The cold aisle width equals 1.2m. 

 The hot aisle width equals 1m. 

  The rack volume equals 1.1m0.8m1.9m. 

 The vent cross- sectional area equals 0.6m0.6m. 

The flow and thermal specifications have been designed as follows: 

 Each rack dissipates 8 kW. 

 The supply air velocity through each vent equals 1 m/s. 

 The inlet temperature of supply air via the vents equals 15C. 
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Each server dissipates 250 W of heat in this case. The servers have been assumed to 

be porous blocks with both permeability and inertial resistance of 1.88×10
-6

 m
2
 and 

20.46 m, as mentioned in table 4.10 and section 4.8.2 respectively. Each server has 

been inserted inside the rack with the above specifications. 

 Five porous block configurations will be tested to evaluate the accuracy of 

the models. The five configurations are 16 porous blocks, 4 porous blocks, 2 porous 

blocks and 1 porous block. Figure 5.4 shows the five porous block configurations.  

Figure 5.3 Rack configuration. 
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          The porous block permeability is affected by using the combination 

approximation due to the resistance of the wall between the servers, so that the 

permeability decreases as the number of porous blocks decreases. So that the 

permeability values for 16 porous blocks, 8 porous blocks, 4 porous blocks, 2 porous 

blocks and 1 porous block are 1.75×10
-6

 m
2
, 1.62×10

-6
 m

2
, 1.48×10

-6
 m

2
, 1.35×10

-6
 

m
2
 and 1.2×10

-6
 m

2
, respectively. These values have been obtained by using the role 

Figure 5.4 Five porous blocks approximation. 
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of equivalent resistance in parallel, where the inverse of equivalent resistance equals 

to the accumulation of inverses of each resistance, as shown in Equation 5.1 





n

i ieq RR 1

11
                                                                                                  (5.1)  

Where eqR  is the equivalent resistance and n is the number of the servers. In this 

case, the resistance is considered as the permeability. The above permeability values 

for the combinations are simply obtained by using role of the resistance in the 

parallel.  

With respect to the fan model, the specification of the server fan is 

previously shown in Chapter 4. An equivalent fan is used to represent the fan for 

two or more servers by considering the fans as parallel units.  

The boundary  conditions of this study are specified as the normal physical 

situation of a data centre, which  include a velocity inlet at the vent, a pressure outlet 

at the top right of the room, a fan at the server exhaust, an interior space at the server 

inlet, and symmetrical at the end of cold aisle.  Finally, all other surfaces were 

selected as a wall boundary condition, as shown in Figure 5.5. 

 

 

 

 

 

 

 

 

 

Figure 5.5 Boundary conditions for tested rack inside a data centre. 
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The boundary conditions also can be represented, as per Table 5.1. 

Table 5.1 Boundary conditions used in Fluent 

 

5.3  Results and Discussion 

The temperature distribution on the rack is used to characterize the data 

centre. The study is carried out with inlet velocity of 1 m/s. The inlet temperature of 

the air is 287K. The Reynolds number for the flow through the vent that is 

calculated to detect either the laminar or turbulent model  by using equation 4.16. 

Where the length scale for the vent equals to 0.6 m. The Reynolds number is equal 

to 33708 . Thus, the turbulence model should be implemented in this case. It is 

shown that the Reynolds number is relatively low in the turbulent region. However,  

the most suitable turbulence model for this case is the standard k- model, as 

Boundary Boundary condition in Fluent 

Air inlet Inlet velocity ( 1m/s) 

Air exhaust Pressure outlet (Pout=0 Pa) 

Rack intake Interior 

Rack exhaust Fan, as described in Chapter 4 

Cold Aisle Symmetrical 

Hot Aisle Wall 

Other boundaries Wall 
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mentioned by Cho et al. [11]. Cho et al [11] have used this model and obtained good 

accuracy. 

Figure 5.6  shows the temperature distribution of the rack inside the data 

centre. It is shown that the hot spot occurs at the top of the rack; that is due to flow 

recirculation of the hot air in the hot aisle. These hot spots affect the IT equipment 

reliability and lifespan. This figure shows the temperature at the inlet increasing 

along with the height of the rack. This happens because of the mixing between the 

hot exhaust air and cold supply air, causing an increase in the inlet air temperature. 

In such cases, the supply temperature comes from the vent lower than the rack inlet 

temperature and does not reflect the real rack intake temperature, because the 

mixing between the hot and cold air in the cold aisle raises the air temperature 

coming from the vents. 

 

 

Figure 5.6 Temperature distribution in a rack inside the data centre. 
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The solution domain for this study is specified by using 19800 cells and 

22000 nodes. The mesh study has been done for this case to ensure that the mesh 

independence is achieved and does not affect the results.  The mesh study of the rack 

of 32 server blades has been done as follows in table 5.2. The testing of this problem 

is the maximum temperature that forming hot spot as shown in Figure 5.6.  

Table 5.2 Number of cells vs. the maximum temperature for the rack of 32 server blades. 

No. Of Cell Max. Temperature (K) 

13010 305.9 

14960 306.7 

16200 307.3 

17900 307.8 

19800 308 

21500 308 

23010 308 

 

 

 

 

 

 

 

 

 

Figure 5.7 Mesh independence study for the 32 server rack. 
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 The temperature distribution along with both the rack inlet (red curve) and 

rack outlet (black curve) are shown in Figure 5.8. This illustrates that the rack inlet 

temperature increases along the rack’s height, while the temperature difference 

between the inlet and the outlet decreases for the upper server; this is a gain due to 

the recirculation problem.  

 

 

 

 

 

The recirculation problem when the hot air mixes from the hot aisle to the 

cold aisle is shown in Figure 5.9. The hot air steam is recirculated in the upper 

servers due to the density difference between the cold and hot air in both cold and 

hot aisles. It is also shown from Figure 5.9 that the flow of the hot air streams, which 

is in blue arrows, mixes with supply cold air and this leads to increase in the 

temperature for the upper servers. 

 

 

 

Figure 5.8 Temperature distribution along both rack inlet and rack exhaust. 
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The configurations, which are shown in Figure 5.4, are tested. Figures 5.10 

to 5.14 show the comparison between the temperature distributions for the 32-server 

rack and the simplified models. Both inlet rack and outlet rack temperature 

distributions are compared between the actual rack (32-server rack) (red curve) and 

the assumptions (black curves). The temperature distributions between the 32-server 

rack and the assumption should be the same to apply the assumption of rack 

configurations; otherwise, this assumption is no longer valid. It is shown from 

Figures 5.10 and 5.11 that the temperature distributions are almost the same for both 

the 32-server rack and the assumption analysis for the first two configurations (16 

porous blocks and 8 porous blocks); whereas, the assumptions for 4 porous blocks, 2 

porous blocks and 1 porous block, as shown in Figures 5.12, 5.13 and 5.14, 

respectively, are not judged as realistic because the temperature distributions for 

both rack inlet and rack outlet are different than the temperature distribution for the 

32-server rack. As a result, it is shown from Figure 5.10 that both the rack inlet and 

Figure 5.9 Velocity field (m/s) for a 32-server rack inside a data centre. 
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outlet temperature for the 32-server (red dots) and the rack intake temperature for 

the 16 porous blocks configuration (black dots) are almost the same. Thus, the 

temperature distribution for both rack and rack exhaust are identical, so this 

combination assumption of 16 porous blocks could be used instead of the 32-server 

rack. Analysis shows that the 8 porous blocks also behaves like the 32-server rack. 

Thus, the 8-server combination can be used to represent the 32-server rack. On the 

other hand, the configurations of 4 porous blocks, 2 porous blocks and 1 porous 

blocks, as shown in Figure 5.12, Figure 5.13 and Figure 5.14, respectively, do not 

match that of the 32-servers with respect to the rack inlet and rack exhaust 

temperatures. 
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Figure 5.10 Comparison between inlet and outlet temperature distributions for the 32-server 

rack and 16 porous blocks. 
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Figure 5.11 Comparison between inlet and outlet temperature distributions for the 32-server 

rack and 8 porous blocks 
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Figure 5.12 Comparison between inlet and outlet temperature distributions for the 32-server rack and 

4 porous blocks. 
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Figure 5.13 Comparison between inlet and outlet temperature distributions for the 32-server rack 

and 2 porous blocks. 
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Figure 5.14 Comparison between inlet and outlet temperature distributions for the 32-server rack 

and 1 porous block. 
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The temperature distribution for the porous block configurations inside the 

data centre are shown in Figure 5.15, Figure 5.16 and Figure 5.17. Figure 5.15 

illustrates that the temperature distribution for both 16 porous blocks and 8 porous 

blocks are very close to the temperature distribution for the 32-server rack, as shown 

in Figure 5.6. The temperature distribution for other configurations is markedly 

different than the 32-server rack case. Thus, the minimum number of porous blocks 

representing a 32-server rack in this study is 8 blocks. Relying on this conclusion, 

the 3-D geometry could be built of 8 porous blocks instead of a 32-server rack. The 

accuracy of this approach is compared to the 32-server rack with respect to both the 

inlet and exhaust temperatures for the rack. It is shown from the results that the 

average inlet temperature difference between the 32-server rack and the 8 porous 

blocks is 0.8 K, whereas the average exhaust temperature difference is 1.5 K. 

Therefore, the temperature in the case of the 8 porous blocks configuration is almost 

the same as that of the 32-server rack. 
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Figure 5.15 Temperature fields for the 16 and 8 porous blocks configurations. 



- 133 - 

 

 

 
Figure 5.16 Temperature fields for the 4 and 2 porous blocks configurations. 
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Figure 5.18 shows that the velocity distribution for 16 servers and 8 servers  

and the maximum velocity is equal 1.09 m/s for both cases. The assumption of 16 

and 8 porous blocks configurations have been taken into account because they 

provide good agreement with the 32-server rack as shown in Figure 5.9. 

 

 

 

 

Figure 5.17 Temperature fields for 1 porous block configuration. 
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Figure 5.18 Velocity fields (m/s) through 16 and 8 porous blocks configurations. 
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5.4 Conclusion  

In this chapter five rack configurations as shown in Figure 5.4 have been 

compared with 32 porous blocks rack. It is found from the results that the 

temperature profiles at rack inlet and exhaust for 16 porous blocks and 8 porous 

blocks configuration are matching the temperature profile for the 32 porous block 

rack. Furthermore the velocity field for 32, 16, and 8 porous blocks are same. So 

that, Based on the results the minimum number of porous blocks that could be used 

to represent 32 porous blocks rack is 8 porous blocks configuration. This 

simplification will be implemented in next chapter to simplify the geometry building 

in 3-D scheme. 
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6 CHAPTER 6: DATA CENTRE COOLING CONFIGURATIONS 

6.1 Introduction 

In this chapter, a 3-D analysis will be considered for the small section of a data 

centre that used by Cho et al. [11]. In chapter 5, the 2-D analysis for the rack has 

been carried out to simplify the rack. The results show that the 8 porous blocks 

configuration can be used instead of the 32-server rack. So the 8 porous blocks 

inside the small data centre will be presented as a traditional data centre (cold-hot 

aisle arrangement). The cooling techniques, such as cold aisle containment, hot aisle 

containment and passive back door cooler will be tested to define the effect of these 

techniques on the temperature distribution inside the data centre. 

6.2 3-D Analysis for cold-hot aisle arrangement. 

It is shown from chapter 5 that the 32-server rack can be simplified by using 

just 8 porous blocks to represent each rack. This assumption has been verified by 

comparing the temperature fields at both rack inlet and exhaust between both the 32-

server rack and 8 porous blocks. The agreement for the temperature field for both 

the 32-server rack and 8 porous blocks was good. Figure 6.1 shows the top view of 

the data centre that will be tested with a cold- hot aisle arrangement, as is commonly 

found in data centres. Four racks with 8 porous blocks have been built using Gambit 

software. The Navier Stokes equations (Equations 4.20 and 4.21) and the energy 

equation (Equation 4.23) will be solved by using Fluent software. The dimensions of 

the tested data centre are shown in Figure 6.1, with room height of 2.4 m. The 

dimensions of the rack have been selected, as per Section 5.2.2. 
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Each vent with blue colour (as shown in blue in Figure 6.1) provides the cold 

air that comes from the CRAC unit through the under-floor plenum. The data centre 

exhaust is located at the top of each hot aisle.  The dimensions of the tested data 

centre have been selected, as per Cho et al. [11]. Cho et al.’s [11] dimensions for the 

tested data centre were 1.2 m and 1m for the cold and hot aisle, respectively; 

however, the selected study is just a section of Cho et al.’s [11] data centre. 

The standard  k- model is used in this study due to justification provided by 

Cho et al. [11], who showed that is k- model may be used for a large and open-

spaced environment. The velocity of the air from each vent is set to 1 m/s, with the 

temperature of 15C.  The heat dissipation from each rack is 8 kW.  

  

 

Figure 6.1 Top view for the tested data centre with a cold-hot aisle arrangement. 
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The solution domain for this study is specified by using 403703 cells  around 

the rack where the hot spots will appear. The mesh study has been done for this case 

to ensure that the mesh independence is achieved and does not affect the results.  

The mesh study of the traditional data centre has been done as follows in table 6.1.  

Table 6.1 Number of cells vs. the maximum temperature for the traditional data centre. 

Number of cells Maximum temperature (K) 

203560 306.51 

305021 308.72 

350100 309.55 

403703 310.24 

454501 310.24 

473112 310.24 

502310 310.24 
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 The number of cells that were used to solve the problem was 403703. In 

such, the number of cells that were used is the right choice because after increasing 

the number of cells the maximum temperature remains constant  as shown in Figure 

6.2. 

6.3 An Assessment of the cold aisle containment technique 

 Cold aisle containment is a technique that is used to prevent the 

recirculation phenomena in order to provide the cold air stream to the rack inlet 

without any mixing with the hot air from the hot aisle. A physical barrier is used to 

cover the cold aisle in order to overcome any mixing between the cold and hot air. 

This prevents hot spots. The energy will be saved and the cooling efficiency will be 

improved, while the humidification and dehumidification can be reduced when the 

Figure 6.2 Mesh independence study for the traditional data centre. 
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cold aisle containment is used because the hot and cold air streams are separated 

[30]. 

The cold aisle containment technique will be tested to compare the 

traditional data centre (cold-hot aisle arrangement) and this technique to detect 

whether the cold aisle containment technique is good technique to reduce the data 

centre temperature. Figure 6.3 shows the top view of the  data centre with the cold 

containment technique where the inlet is the blue colour vents, and the outlet on the 

top of hot aisle 

 

6.4 An Assessment of the hot aisle containment technique 

The principle of the hot aisle containment technique is similar to the cold 

aisle technique but the physical barrier is used to cover the hot aisle rather than cold 

aisle. The hot aisle technique is a technique that is used to prevent mixing between 

the cold and hot air inside the data centre [30]. This technique also will be tested in 

Figure 6.3 Cold aisle containment in the data centre. 
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this stage to detect the effect of this strategy on the cooling point inside the data 

centre. The geometry has been built using Gambit software, as shown in Figure 6.4 

and the governing equations have been solved in Fluent software to obtain the 

velocity, the pressure and the temperature fields. The inlet and outlet for this 

configuration is same as cold aisle containment configuration. 

  

In this technique, the  room temperature will be expected to be at supply 

temperature because the hot air will be contained and exhausted outside the data 

centre. Thus, a uniform  intake temperature along the rack height will be expected. 

These assumptions will be tested by using  the CFD analysis. 

6.5 An assessment of a back door cooler 

There are two different types of back door coolers: the active back door 

cooler and the passive back door cooler. With respect to the active back door cooler, 

the fan is utilized to draw the air in order to increase the air flow rate, leading to an 

Figure 6.4 Hot aisle containment in the data centre. 
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increase of heat transfer between the hot air stream and the chilled water inside the 

back door cooler. In terms of the passive back door cooler, the heat exchanger is 

installed at the rack exhaust without using fans. A full comparison will be done 

between these two types to examine the most suitable technique to maintain the 

temperature inside the data centre. 

6.5.1 Active back door cooler 

In the active back door cooler, the water air heat exchanger is installed at the 

rack exhaust. The system is provided by using the fan at the heat exchanger, as 

shown in Figure 6.5. The chilled water is provided to the heat exchanger to cool 

down the hot air stream coming from the rack exhaust.  

 

 

 

 

 

 

 

 

 

 

6.5.2 Passive back door cooler 

In the passive back door cooler, the water air heat exchanger is installed at 

the rack exhaust without using any auxiliaries such as a fan, as shown in Figure 6.6. 

The chilled water is provided to the heat exchanger to cool down the hot air stream 

coming from the rack exhaust. The forced convection heat transfer occurs due to the 

Figure 6.5 Schematic of the active back door cooler. 
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fan of the servers. As before, after the chilled water carries the heat from the hot air, 

the temperature of the water increases and the temperature of the air decreases. 

Finally, the hot water is sent to the cooling tower to cool the water and then send it 

back to the heat exchanger. 

 

 

 

 

 

 

 

 

 

 

 

 

6.5.3 CFD analysis of the back door cooler 

The server rack is simulated as a porous media with permeability in the x, y 

and z directions, which are 1.889×10
-6

 m
2
, 1×10

-20
 m

2 
 and 1×10

-20
 m

2 
, respectively, 

as mentioned in table 4.10. The back door cooler is also simulated as a porous media 

with the same permeability value, except in the X direction, the permeability equals  

1×10
-8

 m
2 

because the heat exchanger has a greater resistance to flow than the rack 

and this permeability value has been obtained based on the pressure drop across the 

Figure 6.6 Schematic of passive back door cooler. 
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heat exchanger by the experimental work [85]. In both active and passive back door 

coolers, the following boundary conditions and governing equations have been 

specified, as per Figure 6.7. 

 

Three regions have been specified: region A, region B and region C. Region 

A and region C represent the hot aisles, where region B represents the cold aisle. At 

the boundaries of region B, both temperature and velocity have been specified as 

Figure 6.7 The boundary conditions and governing equations that are used to solve back door 

coolers. 
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inlet boundary conditions. With respect to the passive door cooler at the left of 

Figure 6.7, both rack and back door heat exchanger have been assumed as porous 

media. The rack exhaust has been assumed as the fan boundary condition; whereas, 

the back door cooler exhaust has been assumed as a radiator, where the forced 

convection heat transfer occurs between the hot air and the cold water in the 

radiator. Similarly, for the active back door cooler at the right of figure, the 

boundary conditions have been assumed exactly the same as the passive back door 

cooler; however, an additional fan has been installed at the air gap exhaust. 

 The heat transfer coefficient h can be obtained for the fin and tube heat 

exchanger (back door cooler), as per Tang et al. [90]. 

71.0
UCh                                                                                                   (6.1) 

Equation 6.1  is calibrated to obtain the constant value C by using  experimental 

curve between heat transfer coefficient and velocity which is obtained by 

Thompson[85]. 

The second order polynomial curve is obtained as follows 

 

 

 

 

 

 

Figure 6.8 The experimental data for air side convective 

heat transfer coefficient for different speed values. 
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27.9450794 VVh   (W/m
2
.K) 

The constant C is calibrated by using experimental data and it equals 900 

The fitting curve between the heat transfer coefficient (h) and the velocity (V) for 

the Tang’s equation 6.1 can be represented as 

71.0
900Uh   

Whereas the loss coefficient for the radiator can be represented as  

2

2

V

P
K




                                                                                              (6.2) 

6.6 Result and Discussion 

Five cooling techniques have been simulated in order to examine the choice 

of techniques on both temperature and velocity fields inside the data centre. In the 

first stage, the CFD analysis has been done for the traditional data centre, which is a 

cold-hot aisle arrangement, to test both the temperature and velocity fields inside the 

data centre. In this case, the 8 porous blocks rack is used to represent the 32-server 

racks. This representation has been implemented due to the results in chapter 5. It is 

shown from Figure 6.9 that the intake temperature for the rack increases at the top of 

the rack and this happens due to the recirculation problem when the hot air mixes 

with the cold air in the cold aisle. The temperature is not uniform at the rack inlet 

due to this flow recirculation.  
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The model shown in Figure 6.9 has been validated with Cho et al. [11] section 

and the temperature profiles are matched. 

 Cooling techniques have been  implemented in order to overcome the flow 

recirculation problem. The first technique that is applied in this study is the hot aisle 

containment, as shown in Figure 6.10 (a). Whereas, Figure 6.10 (b) shows the cold 

aisle containment. 

 

Figure 6.9 Temperature fields for the cold-hot aisle arrangement. 



- 149 - 

 Figure 6.11 shows the comparison between the cold aisle containment and 

the hot aisle containment with respect to the temperature distribution. It shows that 

the intake temperature for both techniques is almost same and it verifies that the 

temperature is between 15C and 19C.  

Also, it is shown in Figure 6.11 that the hot spots are overcome due to  

covering the cold aisle in the cold aisle containment case and the hot aisle in the hot 

aisle containment case, so there is no longer mixing between the hot and cold air in 

the data centre. 

Concerning the rack intake temperature, it is shown that the rack intake 

temperature has been improved by using either cold aisle or hot aisle containment 

techniques. As an example, the average rack intake temperature in the traditional 

data centre (cold-hot aisle arrangement with no containment), as shown in Figure 

6.9, equals 304 K and it was measured in the Fluent program. Whereas, the average 

rack intake temperature for both cold aisle containment and hot aisle containment is 

288 K and 290 K, respectively. This means that the rack intake temperature is 

improved by 16 K with the cold aisle containment technique and 14 K with the hot 

Figure 6.10 Cold and Hot aisle containment techniques [29]. 



- 150 - 

aisle containment technique. It is shown that the rack intake temperatures in both 

cold and hot aisle containment techniques are close to the inlet temperature (i.e., 288 

K). The reduction of rack inlet temperature leads to an increase in the lifespan of the 

server racks inside the data centres. 

 

Figure 6.11 CFD analysis for both hot and cold aisle containments with respect to temperature 

distribution. 
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The comparison between the temperatures at rack intake and rack exhaust  

for cold aisle containment, hot aisle containment, and traditional data centre  is 

shown graphically in Figure 6.12 and 6.13. Figure 6.12 clearly shows that the rack 

inlet temperatures for the both cold aisle containment technique, as in Figure 6.12 

(a) (red dots), and hot aisle containment technique, as in Figure 6.12 (b) (red dots), 

are lower  than that of the traditional data centre (black dots), even for the upper 

servers. This happens because of recirculation in the traditional data centre as 

opposed to the recirculation in both hot and cold aisle containment techniques, 

which is absolutely overcome by separating the cold and hot air streams. Therefore, 

using either cold aisle containment or hot aisle containment techniques decreases the 

rack intake temperature and reduces the hot spots inside the data centre.  Also, it is 

shown from Figure 6.13 (a) and (b) that the rack exhaust temperature for both cold 

aisle containment and hot aisle containment techniques are almost constant along the 

rack height and equal to 35C. Whereas, the rack exhaust temperature for the 

traditional data centre is not constant and this is due to the bypass for the cold air to 

the hot aisle. 
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Figure 6.12  Comparison between the cold aisle containment technique, the hot aisle 

containment technique and the traditional data centre with respect to rack inlet 

temperature. 



- 153 - 

 

 

Figure 6.13 Comparison between the cold aisle containment technique, the hot aisle 

containment technique and the traditional data centre with respect to rack exhaust 

temperature. 
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The comparison between the active back door cooler and passive back door 

cooler with respect to the temperature at the rack inlet and rack exhaust is shown in 

Figure 6.14. It is shown that the exhaust rack temperature of the active back door 

cooler is lower than that of the passive back door cooler. Likewise, the inlet rack 

temperature in the active back door cooler is lower than that of the passive back 

door cooler . It is shown from Figure 6.14 that the active back door cooler reduces 

the temperature field inside the data centre because in the active back door cooler, 

the additional fan has been insulated before the back heat exchanger. The maximum 

temperatures inside the data centre reach 29C and 31C for the active back door 

cooler and the passive back door cooler, respectively 

In terms of the comparison between the back door cooler technique and  

traditional data centre, it is shown that the intake temperature at the rack can be 

decreased by using either a passive back door cooler or an active back door cooler. 

That is means that the hot spots inside the data centre can be reduced by using the 

back door cooler technique. The specific heat of liquid (water), which is used in the 

back door cooler, is much greater than the air (mCp). And this depends on the flow 

rate of water. In such, the temperature inside the data centre will be reduced by 

using the back door cooler technique. 
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Figure 6.14 Rack inlet and exhaust temperatures for both active and passive back door coolers. 
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Figure 6.15 Temperature field inside the data centre for the back door cooler 

technique. 
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Figure 6.16 Temperature profile for cold aisle containment, hot aisle containment, active back door cooler, and 

passive back door cooler. 
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6.7 Conclusion 

In this chapter 3-D analysis has been tested to detect the temperature profile for 

five cooling configurations inside the data centre which are cold-hot aisle 

arrangement, cold aisle containment, hot aisle containment, passive back door cooler 

and active back door cooler as shown in Figure 6.16. It is shown that the 

recirculation problem can be reduced by using either cold aisle containment or hot 

aisle containment instead of using traditional data centre (cold-hot aisle 

arrangement) and this leads to reduction of the hot spots inside the data centre. 

Furthermore, the temperature distribution inside the data centre could be reduced by 

using either a passive back door cooler or an active back door cooler. The reduction 

in temperature is due to the back door heat exchanger which is used in both the 

active and passive back door cooler. However, using the back door cooler consumes 

extra power to run the heat exchanger and this means that further studies are needed 

in energy analysis for the back door cooler to check if it is economic or not . Finally, 

the comparison between active and passive back door coolers is made. It is shown 

from the results that the maximum temperature in the active back door cooler case is 

lower than the maximum temperature of the passive back cooler case due to using an 

additional fan in the active back door cooler. The additional fan that is used in the 

active back door cooler increases the air flow which leads an  increase in the heat 

transfer between the cold air and exhaust hot air dissipated from servers inside the 

rack. This point should be taken into account when the comparison between the 

active and passive back door coolers is made. 
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7 CHAPTER 7 :CFD ANALYSIS OF DIFFERENT COOLING 

CONFIGURATIONS OF  HPC DATA CENTRES 

7.1 Introduction 

 HPC data centres will be discussed in this chapter, particularly within the 

context of different cooling configurations. Different cooling approaches, as 

discussed in Chapter 6, could be used to reduce the power consumption inside HPC 

data centres; at the same time, the Coefficient of Performance (COP) of cooling 

components can be improved by slightly increasing the supply temperature of data 

centres within the acceptable range (15C-25C) [16], leading to an increase of the 

COP of the cooling unit. Thus, the power input for the CRAC unit will be tested for 

different cooling configurations inside the data centre when a COP is assumed. The 

cooling configurations that will be investigated theoretically in this chapter are: 

cold-hot aisle arrangement, hot aisle containment, cold aisle containment, and active 

and passive back door coolers. Furthermore, the comparison between the active and 

passive back door coolers will be drawn to detect which approach is better with 

respect to reducing the CRAC power consumption. 

7.2 CRAC power input for different cooling configurations 

The power input to the CRAC unit  will be obtained for both direct 

expansion (DX) and chiller systems. Three cooling configurations—cold-hot aisle 

arrangement (traditional data centre),  hot aisle  containment, and cold aisle 

containment—will be analysed. In this section, the data centre with  8 kW per rack 

will be tested. The cooling configurations that will be tested are the same as those in 
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Chapter 6. The CRAC power input values for each cooling configuration will be 

compared to detect the best cooling configuration that provides the lowest value of 

power input to the CRAC for the same COP value.  

7.2.1 CRAC power input for cold-hot aisle arrangement 

 The CRAC power input (electrical power input) value for a traditional data 

centre will be presented in this section. The dimensions for the tested data centre are 

assumed to be the same as in Section 6.2 and shown in Figure 6.1. Each rack will 

dissipate 8 kW; that is, each server block dissipates 1000 W, and each rack contains 

8 server blocks. The calculation for the CRAC power input of a DX CRAC unit 

requires the air supply temperature to be set at 15C, the  return temperature that will 

be obtained by using CFD analysis, and the COP for the DX CRAC unit. In a 

traditional data centre, the supply temperature could not be increased because the 

room temperature will increase. The maximum allowable data centre temperature is 

38 C, as per ASHRAE [17]. This is maximum temperature in which the equipment 

can operate without its reliability being affected. 

 For this case, the COP for the DX CRAC unit can be assumed to be between 

3 to 4.5 [60]. In this analysis, the COP will be assumed to be 3.5. Then, the CRAC 

power input can be obtained as 

COP

Q
W L

in                                                                                                       (7.1) 

Where , 

inW  is the CRAC power inlet (kW) 

LQ  is the cooling load (kW), and can be calculated as per Equation 2.11. 
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 From the CFD analysis, the return temperature is found to be 36 C at a 15C 

supply temperature when the cold-hot aisle configuration is used. The return 

temperature is a bit high because in this situation, each rack dissipates 8 kW so the 

total amount of heat is around 32 kW in a small data centre volume ( 36.96 m
3
). In 

such, more mixing between hot and cold air can be expected. Also, the mass flow 

rate for the air through the vent is found via the CFD calculations to be 1.45 kg/s. 

The specific heat capacity CP for the air equals 1.05 kJ/kg.K at air temperature 

equals 20C and atmospheric pressure. 

Then the DX CRAC power input can be calculated, as follows: 

    kWTTCmQ SRPL 9.31153605.145.1 


 

Then 

kW
COP

Q
W L

in 1.9
5.3

9.31
  

So, as the supply temperature increases, the return temperature increases, 

too. For example, when the supply temperature is increased to 18C, the return 

temperature is calculated via the CFD analysis to be 38C and this is the maximum 

allowable temperature at the inlet condition inside the data centre. In such, the 

supply temperature cannot be increased above  18C. 

 Whereas, the indication for the COP of a CRAC chiller unit can be obtained 

using Equation 2.13; for example, the COPs are 2 and 2.67 with 15C and 18 C 

supply temperatures, respectively. This COP value is not the exact value; rather, it is 

just an indication for the COP value because Equation 2.13 is only valid for the 

special HPC data centre. However, this equation gives a good indication for the 
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variation in COP value with respect to the supply temperature of the chiller CRAC 

unit. 

7.2.2 CRAC power input of cold aisle and hot aisle containment 

configurations. 

The aim of this section is to assess the effect of changing the inlet supply 

temperature on the power of the CRAC unit in data centres, which adopt either cold 

or hot aisle containment strategies, and to determine which technique provides better 

performance for both CRAC power input and maintaining room temperature. The 

configurations of both cold aisle and hot aisle containment systems are assumed as 

per sections 6.3 and 6.4, respectively. The cold aisle containment solution was 

presented by Fakhim et al. [91] and demonstrated results that show that the 

temperature of the hot spots reduces and the temperatures for both cold and hot 

aisles are decreased. The different supply temperatures have been applied and 

analysed in the CFD analysis to calculate the required CRAC power input of the DX 

unit. 

The maximum recommended supply temperature is 25C as per ASHRAE 

[17]. Thus, the range of supply temperatures from 15C to 25 C could be applied. 

Tables 7.1 and 7.2  show the relationship between the supply temperature, the return 

temperature,  the room temperature and the CRAC power input. All temperatures are 

obtained from the CFD analysis, apart from the supply temperature, which is 

assigned as an inlet boundary condition. 
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Table 7.1 CRAC power input values for different supply temperatures in cold aisle 

containment technique at COP =3.5. 

Supply 

temperature  

(C) 

Return 

temperature 

(C) 

Room 

temperature 

(C) 

CRAC input 

power  

(kW) 

15 35 34.5 8.64 

18 37.1 37 8.25 

21 39.1 39 7.81 

 

Table 7.2 CRAC power input values for different supply temperatures in hot aisle containment 

technique at COP=3.5. 

Supply 

temperature  

(C) 

Return 

temperature 

(C) 

Room 

temperature 

(C) 

CRAC input 

power  

(kW) 

15 35.3 21 8.76 

18 37.6 22.5 8.46 

21 39.3 25 7.90 

 

It can be seen from Tables 7.1 and 7.2 that as the supply temperature 

increases, the CRAC power input values decrease because the temperature 

difference decreases; however, improvement could be greater with the elevated 

temperatures.  Also it is shown that the hot aisle containment is better than the cold 
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aisle containment with respect to the room temperature, which is obtained via the 

CFD analysis. It is shown that for cold aisle containment, the temperature of the 

room reaches 39C when the supply temperature is set to 21C. Whereas, the 

temperature of the room reaches 25C at the same supply temperature in the hot 

aisle containment. Therefore, in terms of the comfort criterion inside the data centre, 

the hot aisle containment is highly recommended [29].  It is also shown that the 

CRAC power input values at a COP of 3.5 for both cold and hot aisle containment 

techniques are almost the same because the return CRAC temperatures are almost 

equal according to the CFD results. The relationship between the supply temperature 

and the CRAC power input for the DX CRAC unit in both cold aisle and hot aisle 

containments can be represented by the following Figure 7.1. 

 

 

 

 

 

 

 

 

 

 It is shown from Figure 7.1 that the as the CRAC supply temperature 

increases, the compressor power decreases, and vice versa. This will lead to an 

increase of the COP for DX CRAC units inside data centres. 

Figure 7.1 Relationship between CRAC power input and supply temperature for 

both cold and hot aisle containments at COP=3.5. 
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    Figure 7.2 shows the relationship between the CRAC power input (kW) 

and the room temperature for both cold aisle containment and hot aisle containment. 

It is shown that as the room temperature increases, the CRAC power input 

decreases. However, the room temperature in the hot aisle containment 

configuration is still in the recommended region (21C-28C), as per ASHRAE’s 

standard for indoor environments [92]. Whereas, the room temperature reaches 39C 

in the cold aisle containment because in this case, the rack exhaust temperature  is 

exactly the same as the room temperature, so that there is no mixing between cold 

and hot air to reduce the room temperature. This temperature is out of the 

recommended region.  

 With respect to comparison between the traditional data centre and both 

cold and hot aisle containments configurations, it is shown that the compressor 

power (CRAC power input) can be reduced by around 1.1 kW when either cold or 

hot aisle containment configurations are used versus the normal arrangement of cold 

and hot aisles. 
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In terms of the chiller CRAC, the indication of COP can be obtained for both 

cooling configurations by using only the supply temperature, as is mentioned in 

Section 2.8.2. The values of COP of the chiller system can be calculated by using 

Equation 2.10. The values of COP for supply temperature of 15C, 18C and 21C 

are 2, 2.67 and 3.47, respectively. 

 

 

 

 

 

Figure 7.2 CRAC power input vs. room temperature for both hot and cold aisle 

containments at COP=3.5. 



- 167 - 

 

7.2.3 CRAC power input for active and passive backdoor coolers 

The aim of this section is to analyse the effect of using both active and 

passive back door liquid loop heat exchangers on the CRAC power input and to 

detect which configuration has better performance. The configurations used in this 

study are cold aisle containment, hot aisle containment, passive back door cooler 

and active back door cooler. The configuration of both active and passive back door 

heat exchangers have been addressed in Section 6.5. The different supply 

temperatures have been applied and analysed by CFD to calculate DX CRAC unit 

power requirements. A COP of 3.5 will be assumed. In this study, different CRAC 

supply temperatures will be applied within the allowable range to find the effect of 

changing the supply temperature on the DX CRAC compressor unit. 

 The CFD is used to calculate the CRAC power input by measuring the return 

CRAC temperature for different supply temperatures. Tables 7.3 and 7.4  show the 

relationship between the supply temperature, the return temperature, and the total 

power input for passive and active back door liquid loop heat exchanger, 

respectively. 
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Table 7.3 Power input values for different supply temperatures in passive back door cooler at 

COP =3.5. 

Supply 

temperature  

(C) 

Return 

temperature 

(C) 

CRAC 

input 

power  

(kW) 

Chiller power 

input for the 

passive back door 

cooler 

(kW) 

Total power 

input 

(kW) 

15 27.1 5.22 3.14 8.36 

18 27.6 4.14 2.81 6.95 

21 28.1 3.06 2.53 5.59 

 

Table 7.4 Power input values for different supply temperatures in active back door cooler at 

COP =3.5. 

Supply 

temperature  

(C) 

Return 

temperature 

(C) 

CRAC 

input 

power  

(kW) 

Chiller power 

input for the 

active back door 

cooler 

(kW) 

Total power 

input 

(kW) 

15 25.5 4.53 3.71 8.24 

18 25.9 3.41 3.25 6.66 

21 26.3 2.28 2.91 5.19 
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It is shown from both Tables 7.3 and 7.4 that the CRAC power input 

decreases when the supply temperature increases within the acceptable range (15C-

25C), and this is due to decreasing in the temperature difference between the supply 

and return temperatures. Also the total power decreases when the supply 

temperature decreases too. This leads to reduction in the amount of cooling load, 

which results in a corresponding decrease in the CRAC power input and the total 

power for both active and passive back door coolers. Also, it is shown from these 

tables that the CRAC power input (compressor work of the refrigeration cycle) 

could be reduced to around 0.7 kW when an active back door cooler is installed. 

However, the pumping of the water, which is used to remove the heat from the back 

door cooler and the fans consume power. 

The relationship between the supply temperature and the CRAC power input 

for the DX CRAC unit for both active and passive back door heat exchanger 

configurations is represented in Figure 7.3. 

 

 

 

 

 

 

 

 

Figure 7.3 Relationship between CRAC power input and supply temperature 

for both passive and active back door coolers at COP=3.5. 
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At the end of this study, the full comparison has been done between four 

cooling configurations—cold aisle containment, hot aisle containment, passive back 

door cooler and active back door cooler—as per Figure 7.4. This comparison has 

been done at specific conditions, when the DX CRAC unit is used with a COP of 

3.5, and chiller unit with COP of 3.5 to operate back door coolers. It is shown from 

Figure 7.4 that the lowest total cooling power input can be achieved when the active 

back door cooler is used among the four cooling configurations. Therefore, the cost 

of the electrical work used in the CRAC unit and chiller unit can be reduced when 

the active back door cooler is used. However, the cost of  installation of back door 

coolers is not considered in this study.  

 

 

Figure 7.4 Total cooling power input of DX CRAC  and chiller units vs. CRAC supply 

temperature four cooling configurations at COP=3.5. 
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Further study of active and passive back door coolers in high density data 

centres will be presented in Section 7.3 to detect the effect of using active and 

passive back door coolers in HPC data centres and how they affect on the 

temperature inside the data centres and the CRAC power consumption.  

7.3 Back door cooler in HPC data centre. 

 In this section, the comparison between active and passive back door coolers 

that are used in an HPC data centre will be presented. The rack will be  analysed to 

use with both an active and passive back door cooler. The comparison is based on 

changing the heat dissipation load of the rack for both active and passive back door 

coolers. The comparison between the active and passive back door heat exchangers 

with respect to the rack intake and exhaust temperatures will be assessed using a 

CFD analysis. The heat load from the IT systems takes values of 15 kW, 25 kW and 

30 kW per rack. 

 The same specifications for both active and passive back door coolers is 

assumed, as per Section 6.5, and  has been published by Almoli et al. [45], where 

they considered  two rows of three racks and each rack had 4 server blocks. The 

Hagen-Poiseuille equation is used to determine the pressure drop across the 1U 

server where a hydraulic diameter, Dh=2R, of 1U servers is used to give 

L
R

v
P

2

8
                                                                                                        (7.2) 
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Where ; 

: is the viscosity of the fluid (kg/m. s) 

R : is the hydraulic radius of the channel (m) 

: is the axial velocity (m/s) 

L: is the length of channel in the X direction 

Whereas, the hydraulic diameter of the server is calculated, as follows: 

m
D

R

P

A
D

h

h

012.0
2

4





 

Then, the pressure drop across the channel is calculated as  

 

v
L

P
9941.0


                                                                                        (7.3) 

This approach enables the permeability, α, of the servers to be calculated, where 

Darcy’s Law is assumed to calculate the pressure drop across the porous model, as 

follows: 

xvP 






                                                                                                 (7.4) 

Then, 

v
x

P



5107894.1 





                                                                             (7.5) 

22

88

R

v

L

P
L

R

v
P






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The value of permeability then can be obtained by comparing Equations (7.3) and 

(7.5), giving α=1.8×10
-5

 m
2
. 

 The permeability above has been obtained by using Equations (7.2) and 

(7.4), pressure drop across the pipe, and Darcy’s Law, respectively, as described by 

Almoli et al. [45]. However, the permeability of the server blocks in this chapter  has 

been obtained by measuring the pressure drop across the server for different flow 

rates, as described in Chapter 4. 

7.3.1 CFD analysis of back door cooler inside a HPC data centre 

Chapter 4 has demonstrated that the porous approach to represent the server 

rack is valid. Therefore, here, a rack with 8 servers is assumed as in Chapter 5 and it 

was shown that 8 server blocks in a rack can be used to represent 32-rack servers. 

The momentum equations and the energy equations will be solved with the 

additional source terms, as follows:  

rack

rack
Q

rack

i
V

Q
SUS  and




                                                                 (7.6) 

In equation (7.6), αrack is the permeability of the rack, Qrack is the rate of heat 

generation inside the rack and Vrack is the volume of the rack equalling 1.182m
3
. The  

value of αrack is 1.889×10
-6 

m
2
 as in table 4.10, and SQ=  12682W/m

3
, 21137.8W/m

3
, 

and 25365.2W/m
3
, which represents 15 kW, 25 kW and 30 kW per rack, 

respectively. 

The back door cooler is assumed to be a porous media with permeability 

values of 1×10
-8

 m
2
, 1×10

-12
 m

2
 and 1×10

-20
 m

2
 in X, Y and Z directions, 

respectively as highlighted in Chapter 6. Therefore, the momentum equations are 

also solved with an additional Darcian source term that is expressed as  
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US
coolerdoorback

i



                                                                            (7.7) 

The amount of heat that passes the back door cooler is removed by the 

following equation: 

)( refair TTAhmQ                                                                                           (7.8) 

Where, m is the mass flow rate of air across the back door cooler; h and A are its 

average convective heat transfer coefficient and surface area of back door cooler, 

respectively; Tair is the temperature of the air stream coming from the rack exhaust; 

and Tref is the set point temperature of the back door cooler that varies between 13C 

and 18C in an HPC system liquid loop back door cooler at the University of Leeds. 

Therefore, it is assumed to be the average value, which is 15.5C in this study.  The 

convective heat transfer coefficient (h) is actually a function of U and its variation is 

based on equation 6.1, as suggested by Tang et al. [90], for a fin and tube heat 

exchanger. 

7.3.2 Results and discussion 

In this section the comparison between active and passive back door coolers 

will be discussed. Also, the power consumption of the CRAC will be obtained for a 

cold-hot aisle arrangement (traditional data centre), active back door cooler and 

passive back door cooler. Both inlet and exhaust rack temperatures are obtained by 

using CFD analysis. It is shown from Table 7.5 and Table 7.6 that both rack inlet 

and rack exhaust temperatures for the active back door cooler are lower than those 

of the passive back door cooler. The difference of temperature is due to the 

additional fan that is installed in the active back door cooler. The additional fan in 

the active back door cooler increases the heat transfer rate between the  back door 
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heat exchanger and the hot air stream by increasing the air stream velocity, thus 

leading to an increased heat  transfer coefficient. The exhaust temperature for the 

active back door cooler is consistently lower than the temperature of the passive 

back door cooler for heat loads of 15, 25 and 30kW per rack. The exhaust 

temperature for the active back door cooler is around 4-5C less than that of the 

passive back door cooler for all rack heat dissipations. This implies that the power 

consumption by the CRAC will be reduced due to the decrease of the exhaust 

temperature. However, the cost of installing either a passive back door cooler or an 

active back door cooler, and the cost of cooling the water passing in the door heat 

exchanger, should be taken into account.  
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Table 7.5 CFD analysis for rack intake temperatures for both active and passive back door 

cooler for different rack heat consumption (kW). 

Heat 

dissipation load 

Rack intake temperature 

15 kW  

 

 

 

25 kW 

 

 

30 kW  
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Table 7.6 CFD analysis for rack exhaust temperatures for both active and passive back door 

cooler for different rack heat consumption (kW). 

Heat 

dissipation 

load 

Rack exhaust temperature 

15 kW  

25 kW  

 

30 kW  
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The mass flow rates across the CRAC unit and the back door coolers are 

obtained from the CFD analysis. The  mass flow rate across the CRAC unit is 3.5 

kg/s, and the mass flow rate across the active and passive back door coolers are 4.57 

kg/s and 3.25 kg/s, respectively. In Table 7.7, the temperature differences across 

both active and passive back door coolers are 4 K and 5 K, respectively.  

 The CRAC loads are presented in Table 7.7, where the calculations are 

based on a data centre with 4 racks, with each rack producing 25 kW of heat load. It 

is shown that the CRAC unit load decreases when the back door coolers are used. 

For the CRAC alone inside the data centre, it must remove 100kW of  heat. 

Whereas, the CRAC load is reduced by up to 69% when the passive back door 

cooler is applied, and when the active back door cooler is used, the CRAC load can 

be reduced by up to 77% over configurations with no back door heat exchangers. 

Therefore, the active back door cooler is more efficient than the passive back door 

cooler in reducing the load on the CRAC unit.  

Table 7.7 Heat load calculations for the CRAC unit and a back door cooler for a data centre 

with four racks at 25 kW each. 

Data centre 

configuration 

Heat load on CRAC Heat load on back door 

cooler 

CRAC 
 outletinletpCRAC TTCm 

.

=100 kW doorbackacrosspdoorback TCm 
.

=0 

CRAC + passive 32.12 kW 68.16 kW 

CRAC + Active 23.45 kW 76.8 kW 
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7.4 Conclusion  

This chapter includes the comparison between different cooling 

configurations, such as cold aisle containment, hot aisle containment, active back 

door cooler and passive back door cooler. It is shown that the cooling power input 

for the CRAC unit could be reduced when both active and passive back door coolers 

are used. However, these results do not reflect the actual situation for the back door 

cooler because in this study it is shown that the total cooling power input for all 

cooling configurations are close to each other as shown in Figure 7.4 . however, the 

minimum total cooling power input could be achieved when the active back door 

cooler is used. After that, a comparison between an active back door cooler and a 

passive back door cooler in a HPC data centre was conducted. The additional fan in 

the active back door cooler increases the heat transfer rate between the  back door 

heat exchanger and the hot air stream by increasing the air stream velocity, thus 

leading to an increased heat  transfer coefficient. It is shown from this study that the 

CRAC load could be decreased up to 77% when the active back door cooler is used, 

and 69% when the passive back door cooler is used. However, the back door cooler 

techniques need greater study to define the true economical energy efficiency 

benefits for a range of data centres. In such, more detailed cost/benefit analysis 

should be considered. Also, the energy, maintenance, and installation costs should 

be taken into account when the back door coolers cooling configurations are used. 
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8 CHAPTER 8: CONCLUSIONS 

8.1 General discussion 

Air cooling methods are commonly used to cool server racks inside data 

centres because of their low capital cost and maintenance [6]. This thesis focuses on 

the use of CFD methods to optimise air cooling in data centres. Previous CFD 

studies, such as those undertaken by Cho et al. [11], for instance, are difficult to 

reproduce for comparison owing to insufficient details about the boundary 

conditions being used. Also, CFD analysis has been used by Beitemal et al. [15] to 

test the effect of the failure of the CRAC unit on the cooling of the data centre 

without any clarification of the boundary conditions that have been used in CFD 

analysis. It was shown that the smart redundant cooling system could be used to 

prevent the rack failure by removing the load in high density areas and redistributing 

the load to other low density areas inside the data centre. Additionally, a lot of CFD 

studies have been done to detect the rack inlet temperature, such as [28] and [37], 

with different room layouts. Also, the boundary conditions that have been used are 

not clear in previous CFD studies. Therefore, in this thesis, the boundary conditions 

are clearly described to give a full picture of how the server and rack are treated 

inside a data centre. 

CFD analysis is used in this thesis to analyse data centre design and to detect 

the effect of managing the air flow in server racks. Consequently, the cooling air 

flows for the components of data centres, such as servers and racks, have been 

analysed by using CFD analysis to determine the environmental condition inside the 

data centre (temperature, pressure and velocity fields). First, a porous approach to 

modelling flow in sever racks has been tested to simulate the server inside the data 
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centre in order to simplify the components’ geometry. The results obtained, which 

are pressure drop and temperature distribution across servers and server outlet 

velocity, have been validated with experimental data for a single blade. Secondly, 

the rack level has been simplified by using an 8 porous block rack instead of 32-

server rack. Finally, the compressor work of the direct expansion CRAC unit has 

been evaluated for different cooling configurations. The various cooling 

configurations studied in this thesis are cold-hot aisle arrangement, cold aisle 

containment, hot aisle containments and back door coolers (active back door cooler 

and passive back door cooler). Furthermore,  the comparison between the active and 

passive back door coolers has been done to study the effect of using these techniques 

on the CRAC heat load. The following conclusions can be drawn from the results of 

this study: 

1. It is found that the RNG k- model is more accurate than other k- models when 

the 1U server  is simulated. This is consistent with studies showing that the 

RNG k- is the most suitable model for the forced convection with a low 

turbulence level [58]. So that, the RNG k- model is the best Reynolds 

Averaged Navier- Stokes (RANS) model for this specific situation. 

2.  The  CPU inside a 1U server  has been simulated as a porous media and 

validated with experimental measurements with respect to the temperature 

distribution and pressure drop. Also, it is shown that the  porous media model 

provides good agreement with experimental data for a 1 U server  with respect to 

both temperature and pressure drop across the server. Therefore, the porous 

media assumption is made because the air has the ability to flow through the rack 

servers but is restricted by the internal components of the servers. The 



- 182 - 

obstructions inside the server rack can be replaced by viscous and internal 

resistances for the porous media. 

3. In order to simplify the geometry of a 32-server rack, a comparison has been 

carried out on the temperature distribution of a 32-server rack inside the data 

centre with 16 porous blocks, 8 porous blocks, 4 porous blocks, 2 porous blocks 

and 1 porous block. The results show that both 16 porous blocks and 8 porous 

blocks  gives an excellent agreement with a 32-server rack with respect to 

temperature distribution. It is found that 8 porous blocks is the lowest level that 

can be used to represent a 32-server rack, as discussed in Chapter 5.  

4.  The Reynolds number is relatively low (i.e,. around 5000) in the turbulent 

region inside the server. However, the Reynolds number would be high in the 

vent section (i.e., 10
6
). Therefore, the standard k- turbulence model is 

appropriate inside the room,  as mentioned by Cho et al. [11] and Beitemal et al. 

[15]. 

5. Based on the CFD model, which is presented in this thesis, hot spots inside the 

data centre can be reduced by using either cold aisle containment or hot aisle 

containment configurations because of the usage of the physical barriers to 

increase the degree of separation between the hot and cold  aisles. This reduces 

the mixing of cold air and hot air in the cold aisle.  

6. Using the hot aisle containment technique is better than using the cold aisle 

containment technique with respect to maintaining comfortable environmental 

criteria inside the data centre. In the cold aisle containment case, the room 

temperature is close to the exhaust temperature and it may reach to 35C; this 

temperature is out of the comfortable temperature range, which is 21C -28C, 

as described by ASHRAE [92]. Whereas, the room temperature inside the data 

centre with hot aisle containment is close to the supply temperature and this 
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temperature is in the acceptable comfortable temperature range. Because of the  

specific heat of liquid (water), which is much greater than that of the air, the 

back door cooler could be used to reduce the rack exhaust temperature by using 

an air-water heat exchanger at the rear of the racks. In such, the liquid cooling 

loop is close the IT equipment and, in some cases, is used inside the server to 

remove the heat directly from the CPUs. This solution has an advantage of 

removing a higher amount of heat than that which can be removed by the air 

cooling systems. On the other hand, the main disadvantages of the liquid (water) 

system are its high cost and potential leakage problems. The leakage problem 

could damage the IT equipment. 

7. The CFD analysis shows that the compressor power of a direct expansion (DX) 

CRAC unit can be reduced when either cold aisle containment or hot aisle 

containment configurations are used instead of a traditional arrangement. This is 

because the supply temperature can be increased, and thus, the temperature 

difference between the return and supply decreases. 

8. The back door cooler is a promising technique to reduce the rack exhaust 

temperature based on the results in Chapter 7. Therefore, the room temperature 

is reduced, and this leads to reduction of the CRAC unit load. 

9.  In this study, it is found that the active back door cooler is a better cooling 

configuration than the passive back door cooler, cold aisle containment, and hot 

aisle containment configurations, with respect to reducing the total cooling load. 

The exhaust rack temperature is a main parameter that is considered because it 

is the main parameter that causes the hot spots inside the data centre and affects 

the rack lifespan [15]. Therefore, using a back door cooler is an effective way to 

reduce the exhaust rack temperature because it is close to the heat source; this is 

accomplished by placing the heat exchanger directly at the rack exhaust. The 
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additional fan in the active back door cooler increases the heat transfer rate 

between the  back door heat exchanger and the hot air stream by increasing the 

air stream velocity, thus leading to an increased heat  transfer coefficient. 

However, the back door cooler techniques need further study to define the true 

economical energy efficiency benefits for a range of data centres. In such, a 

more detailed cost/benefit analysis should be considered. Also the energy, 

maintenance and installation costs should be taken into account when the back 

door cooler cooling configurations are used. 
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8.2 Future Work 

In this thesis, the traditional server (1U server)  is simulated by using CFD 

analysis and experimentally validated; then, different cooling configurations have 

been tested. It is suggested that future studies could be conducted, as follows: 

1. In future research, much more experimental work is needed to validate the 

CFD models of the rack and room levels inside the data centre, and a wide 

range of data centres can be used to generalize the results because the results 

presented here are for a limited case.  

2. Also, in the case of using back door coolers, further study is needed to 

calculate the installation, maintenance and energy costs. Therefore, a more 

detailed cost/benefit analysis of back door coolers could be done.  

3. The blade server could be applied in the same way as this thesis is presented. 

Also, the comparison between the 1U server and blade server could be 

tested. After that, in the rack level, the rack with 1U servers and the rack 

with blade server chassis could be compared with respect to the fan power 

required to operate the blade server chassis rack.  

4. Different cooling configurations could be implemented for the rack with 

blade servers. Also real-time simulations that account for variable server 

loads could be handled.  

5. Free cooling technique could be applied for the back door cooler 

configuration in a data centre, in which free cooling could be used to the 

water loop that cools the back door heat exchanger. However, the free 

cooling depends on the geographic location of the data centre and seasonal 

conditions. 
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10 APPENDIX  

On the following pages, publication resulting from this study [ Almoli et al.,2012] is 

presented. 


