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ABSTRACT 

The Great Sumatra earthquake and resulting devastating tsunami in 2004 have 
highlighted the significance of earthquake risk assessment that can effectively 
include all main associated hazards, such as tsunami. An integrated quantification of 
earthquake and tsunami risk is challenging due to mathematical and computational 
issues as well as limited data, and as such it has not been done before in developing 
countries. In addition, the conventional Probabilistic Seismic Hazard Assessment 
(PSHA) generally assumes a Poissonian earthquake model with a stationary rate of 
hazard. However, hazard rates increase with elapsed time since last large earthquake, 
or when a seismic gap is present along a fault, and thus, a time dependent (non-
Poissonian) PSHA model is generally more suitable. 

The Earthquake Risk Assessment (ERA) Framework developed at the University of 
Sheffield is extended in this study to account for tsunami and to include a time 
dependent hazard assessment. The ERA Framework is based on a stochastic 
approach that utilizes readily available seismological information. Hence, it is 
suitable for use in developing countries. 

The extended framework is used to carry out earthquake and tsunami hazard 
assessments for Sumatra. This study finds that a maximum PGA of 0.65g on bedrock 
is expected in the area, a value comparable with that found in other recent studies, 
but higher than the Indonesian seismic code SNI 03-1726-2002 (the code uses a 
value of 0.3g). In addition, the time dependent model of this study captured the 
increased rate of hazard in the middle segment of the Sumatra Subduction Zone, 
which is consistent with the location of the seismic gap. Currently, the seismicity of 
this region has increased about 2 times above that of the long term rates. An average 
tsunami height of 20.7 m is estimated for Padang city at 10% probability of 
exceedance in 50 years. 

This study estimates that total earthquake and tsunami risks for buildings in Padang 
are approximately £54.5 million and £30.8 million per annum, respectively. The 
annual fatality risk due to tsunamis is much higher than that due to earthquakes, 
which is approximately 2000 and 8 fatalities, respectively. 

Total earthquake premiums for the existing building stock of Padang are estimated to 
be 36.4‰, 16.6‰, 8.1‰ and 3.1‰ for UBM, CBM, RCI and steel structures, 
respectively. For tsunami hazard, the recommended premium rates are 11.7‰, 9.9‰ 
and 7‰ for UBM, CBM, RCI/steel structures, respectively. For seismically designed 
structures, the premium rates decrease about 80% and 25% for earthquake and 
tsunami hazards, respectively. Earthquake insurance rates applied by insurance 
companies in Indonesia are comparable with those estimated for seismically 
designed structures (1.9‰ for RC/steel buildings and 4.7‰ for other buildings). 

Mitigation strategies to minimize the risks are proposed including the enforcement of 
seismic design provisions for all buildings in Padang, nationwide obligatory seismic 
insurance for buildings, tsunami vertical evacuations shelters and tsunami energy 
dissipation efforts (e.g. offshore barriers, coastal vegetation). At least 17 points of 
tsunami evacuations refuges are proposed for Padang city, to increase the survival 
probability of the residents in the area. 



iii 
 

TABLE OF CONTENTS 

ACKNOWLEDGEMENTS ..................................................................... i 

ABSTRACT .................................................................................................. ii 

TABLE OF CONTENTS .......................................................................... iii 

LIST OF FIGURES .................................................................................... x 

LIST OF TABLES ...................................................................................... xx 

ABBREVIATIONS ..................................................................................... xxii 

CHAPTER 1 

INTRODUCTION 

1.1. INTRODUCTION .................................................................................... 1 

1.2. RESEARCH AIM AND OBJECTIVES .................................................... 4 

1.3. LAYOUT OF THE THESIS ..................................................................... 5 

CHAPTER 2 

LITERATURE REVIEW 

2.1. INTRODUCTION .................................................................................... 6 

2.2. RISK ASSESSMENT FRAMEWORK ..................................................... 6 

2.2.1. Earthquake and Tsunami Risk Assessment ..................................... 8 

2.2.2. Probabilistic Risk Assessment and the Insurance Rate for  

 Hazards .......................................................................................... 9 

2.2.3. Existing Risk Assessment Frameworks .......................................... 10 

2.3. SEISMIC HAZARD ASSESSMENT ....................................................... 11 

2.3.1. Main Components of Seismic Hazard Assessment .......................... 12 

2.3.1.1. Seismic Zone Definition .................................................. 12 

2.3.1.2. Earthquake Recurrence Relationship ................................ 13 

2.3.1.3. Ground Motion Attenuation Relationship ......................... 14 

2.3.1.4. Physical Earthquake Models ............................................ 16 

2.3.2. Conventional Probabilistic Seismic Hazard Analysis (PSHA)......... 18 



iv 
 

2.3.3. PSHA with Stochastic Method ....................................................... 20 

2.3.4. Time Dependent Seismic Hazard Assessment................................. 24 

2.3.5. Previous PSHA studies of Sumatra ................................................. 31 

2.4. TSUNAMI HAZARD ASSESSMENT ..................................................... 36 

2.4.1. Introduction to Tsunami Hazard ..................................................... 36 

2.4.2. Magnitude Scale of Tsunami .......................................................... 38 

2.4.3. Estimation of Tsunami Wave Height from Earthquake Magnitude.. 40 

2.4.4. Tsunami Inland Penetration ............................................................ 43 

2.4.5. Probabilistic Tsunami Hazard Analysis (PTHA) ............................. 44 

2.4.6. Tsunami Numerical Simulations ..................................................... 45 

2.4.7. Previous Tsunami Hazard Assessments for Sumatra ....................... 47 

2.5. VULNERABILITY FUNCTIONS FOR BUILDINGS.............................. 48 

2.5.1. Earthquake Vulnerability Curves .................................................... 48 

2.5.2. Tsunami Vulnerability Curves ........................................................ 50 

2.6. EXISTING MITIGATION STRATEGIES IN THE CASE STUDY AREA 52 

2.6.1. Indonesian Seismic Design Standard for Buildings ......................... 52 

2.6.2. Tsunami Evacuation Maps for Padang City .................................... 53 

2.6.3. Tsunami Early Warning System ..................................................... 56 

2.7. SUMMARY ............................................................................................. 59 

CHAPTER 3 

METHODOLOGY FOR EARTHQUAKE AND TSUNAMI RISK 

ASSESSMENT FRAMEWORK 

3.1. INTRODUCTION .................................................................................... 62 

3.2. PROBABILISTIC EARTHQUAKE HAZARD ASSESSMENT (PSHA) . 62 

3.2.1. Generation of Synthetic Earthquakes ............................................. 63 

3.2.2. Integration of Earthquake Recurrence Relationship into the PSHA 

Module .......................................................................................... 65 

3.2.3. Modulation of Seismicity Rate ...................................................... 66 

3.2.4. The Procedure of PSHA Module ................................................... 68 

3.2.5. Development of a Hazard Curve .................................................... 72 

3.3. PROBABILISTIC TSUNAMI HAZARD ASSESSMENT (PTHA) .......... 73 



v 
 

3.3.1. Estimation of Tsunami Run-Up Heights for Sumatra ..................... 74 

3.3.2. The Rate of Tsunami for Each Magnitude of Earthquakes ............. 75 

3.3.3. The Procedure of PTHA Module ................................................... 76 

3.4. EARTHQUAKE AND TSUNAMI RISK ASSESSMENT  

FRAMEWORK ........................................................................................ 78 

3.4.1. The Selection of Vulnerability Functions for the Building Stock in 

Padang .......................................................................................... 78 

3.4.2. The Procedure Adopted in the Earthquake and Tsunami Risk 

Assessment Module ....................................................................... 83 

3.4.2.1. Probabilistic Earthquake Risk Assessment ....................... 84 

3.4.2.2. Probabilistic Tsunami Risk Assessment ........................... 86 

3.5. SUMMARY ............................................................................................. 88 

CHAPTER 4 

DATA COLLECTION AND ANALYSIS FOR EARTHQUAKE 

AND TSUNAMI RISK ASSESSMENTS 

4.1. INTRODUCTION .................................................................................... 89 

4.2. TECTONIC SITUATION OF SUMATRA ............................................... 89 

4.3. EARTHQUAKE ZONES.......................................................................... 93 

4.4. EARTHQUAKE CATALOGUE .............................................................. 95 

4.5. CONVERSION OF EARTHQUAKE MAGNITUDES ............................. 96 

4.6. EARTHQUAKE RECURRENCE RELATIONSHIP ................................ 97 

4.7. GROUND MOTION ATTENUATION RELATIONSHIP........................ 101 

4.8. GEOLOGICAL MAP AND SOIL TYPES OF PADANG CITY ............... 103 

4.9. TSUNAMI SOURCE IN SUMATRA ....................................................... 104 

4.10. TSUNAMI CATALOGUE ....................................................................... 106 

4.11. BATHYMETRY OF SUMATRA ............................................................. 108 

4.12. POPULATION DATA ............................................................................. 110 

4.13. BUILDING INVENTORY ....................................................................... 110 

4.14. SUMMARY ............................................................................................. 114 

 



vi 
 

 

CHAPTER 5 

THE PROBABILISTIC SEISMIC HAZARD ASSESSMENT OF 

SUMATRA 

5.1. INTRODUCTION .................................................................................... 116 

5.2. VERIFICATION OF PSHA MODULE .................................................... 116 

5.2.1. The Sensitivity of the PSHA Module to Different Magnitude  

Ranges .......................................................................................... 116 

5.2.2. The Sensitivity of PSHA to the Number of Simulations ................. 117 

5.2.3. The Effects of Seismicity Declustering In Seismic Hazard  

Assessment .................................................................................... 118 

5.3. TIME INDEPENDENT PSHA ................................................................. 119 

5.4. THE SEISMIC HAZARD FOR PADANG CITY ..................................... 122 

5.5. TIME DEPENDENT PSHA ..................................................................... 127 

5.6. SUMMARY ............................................................................................. 130 

CHAPTER 6 

THE PROBABILISTIC TSUNAMI HAZARD ASSESSMENT OF 

SUMATRA 

6.1. INTRODUCTION .................................................................................... 132 

6.2. DISCUSSION OF TSUNAMI NUMERICAL SIMULATIONS ............... 132 

6.2.1. Effect of Fault Types on Tsunami Heights ..................................... 132 

6.2.2. Tsunami Arrival Time at Padang city ............................................ 138 

6.2.3. The Effect of Bathymetry .............................................................. 139 

6.3. ESTIMATION OF TSUNAMI RUN-UP HEIGHTS FOR SUMATRA .... 140 

6.4. PROBABILISTIC TSUNAMI HAZARD ASSESSMENT........................ 145 

6.4.1. Probabilistic Tsunami Hazard Analysis for Sumatra ...................... 145 

6.4.2. Tsunami Rate and Hazard Curve for Padang city ........................... 147 

6.4.3. Deaggregation of Tsunami Hazard for Padang city ........................ 149 

6.5. ESTIMATION OF TSUNAMI FORCES ON BUILDINGS ...................... 150 



vii 
 

6.5.1. The Determination of Tsunami Wave Parameters and Inland 

Penetration for Padang city ............................................................ 150 

6.5.2. The Estimation of Tsunami Forces for Padang city ........................ 151 

6.5.2.1. Hydrostatic Force ............................................................ 152 

6.5.2.2. Hydrodynamic Force ....................................................... 153 

6.5.2.3. Impulsive Force ............................................................... 155 

6.6. SUMMARY ............................................................................................. 157 

CHAPTER 7 

EARTHQUAKE AND TSUNAMI RISK ASSESSMENTS AND 

MITIGATION STRATEGIES FOR PADANG CITY 

7.1. INTRODUCTION .................................................................................... 159 

7.2. VERIFICATION OF THE SEISMIC RISK MODEL WITH A REAL  

EVENT..................................................................................................... 159 

7.3. SEISMIC RISK FOR PADANG CITY ..................................................... 166 

7.3.1. Earthquake Risk ............................................................................ 166 

7.3.2. Tsunami Risk ................................................................................ 171 

7.4. FATALITY ESTIMATION FOR PADANG CITY................................... 174 

7.4.1. Earthquake Fatality Estimation ...................................................... 174 

7.4.2. Tsunami Fatality Estimation .......................................................... 175 

7.5. EARTHQUAKE AND TSUNAMI INSURANCE PREMIUM FOR 

BUILDINGS IN PADANG ...................................................................... 176 

7.5.1. Earthquake Insurance Premium ..................................................... 177 

7.5.2. Tsunami Insurance Premium ......................................................... 180 

7.6. MITIGATION STRATEGIES .................................................................. 181 

7.6.1. Seismic Provision for Buildings in Padang .................................... 181 

7.6.2. Earthquake and Tsunami Building Insurance ................................. 185 

7.6.3. Tsunami Vertical Evacuation Shelters ........................................... 186 

7.6.4. Tsunami Energy Dissipation Efforts .............................................. 191 

7.7. SUMMARY ............................................................................................. 195 

 



viii 
 

 

CHAPTER 8 

CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE 

WORKS 

8.1. INTRODUCTION .................................................................................... 197 

8.2. CONCLUSIONS ...................................................................................... 197 

8.2.1. Probabilistic Seismic Hazard Assessment (PSHA) ......................... 197 

8.2.2. Probabilistic Tsunami Hazard Assessment (PTHA) ....................... 199 

8.2.3. Risk Assessment ............................................................................ 200 

8.2.4. Mitigation Strategies ..................................................................... 202 

8.3. LIMITATIONS OF THIS STUDY AND RECOMMENDATIONS FOR 

FUTURE WORKS ................................................................................ 203 

REFERENCES ............................................................................................ 206 

APPENDIX A 

Tsunami Catalogue of Sumatra .......................................................................... 222 

APPENDIX B 

Parameters of the tsunami events simulated in the tsunami numerical analyses .. 224 

APPENDIX C 

Building inventory for Padang City .................................................................... 226 

APPENDIX D 

Assignment of earthquake vulnerability functions for existing building stock in 

Padang ............................................................................................................... 229 



ix 
 

APPENDIX E 

E.1. Rating Scheme Quality for Structures  (GESI, 2001) ................................. 230 

E.2. Vulnerability Curve Assignments (GESI, 2001) ........................................ 231 

E.3. The average damage state of a building for a given PGA (GESI, 2001) ..... 232 

APPENDIX F 

Tsunami Numerical Model ................................................................................. 233 

 



x 
 

LIST OF FIGURES 

CHAPTER 1 

Figure 1.1. Tsunami hazard: (a). Inland penetration of Tsunami wave train (Shimbun, 

2011); (b). Shattered buildings and debris following the earthquake and 

tsunami in Japan (Kyodo, 2011) ................................................................ 2 

CHAPTER 2 

Figure 2.1. Earthquake distribution models: (a) Gutenberg-Richter model; (b) 

Characteristic earthquake model (Wesnousky, 1994) ................................ 14 

Figure 2.2.  Generation of new random event and earthquake intensity: (a). spreading 

from focal point; (b). spreading from the rupture line or EFL (Khan, 2011) 23 

Figure 2.3.  Area of synthetic earthquake event and its orientation related to the fault 

line (Khan, 2011) ...................................................................................... 23 

Figure 2.4.  Illustration of conditional probability calculation based on a probability 

density function (WGCEP, 2003) .............................................................. 25 

Figure 2.5. Comparison of several probability models used in long-term earthquake 

forecasting (WGCEP, 2003) ..................................................................... 27 

Figure 2.6. Modulation of the long-term mean regional rates using the time-varying 

rate function,  f(t) (Reasenberg et al., 2003) .............................................. 29 

Figure 2.7. Seismic hazard map of Sumatra (SNI 03-1726-2002, 2002) ............. 32 

Figure 2.8. Seismic hazard map of Sumatra at 10% probability of exceedance in 50 

years on rock site (Petersen et al., 2004).................................................... 33 

Figure 2.9. Seismic hazard map of Sumatra at 10% probability of exceedance in 50 

years on rock site (Irsyam et al., 2008) ...................................................... 33 

Figure 2.10. Maps of Peak Ground Acceleration (PGA) of Sumatra: a). for 10% 

probability of exceedance in 50 years; and b). for 2% probability of exceedance 

in 50 years (Irsyam et al., 2010) ................................................................ 35 



xi 
 

Figure 2.11.  Idealised models of tsunami waves (Bryant, 2001) ........................ 37 

Figure 2.12.  The illustration of Tsunami Mechanism, unscaled (USGS, 2008) .. 37 

Figure 2.13. Various terms associated with tsunami (Bryant, 2001).................... 38 

Figure 2.14. Tide gauge record at Miyako, Japan due to the 1960 Chilean earthquake 

that triggered distant tsunami (Satake, 2002) ............................................. 38 

Figure 2.15. Cross sectional area of inundated coast and volume of tsunami (Bryant, 

2001) ........................................................................................................ 43 

Figure 2.16. Former tsunami evacuation maps for Padang city ........................... 54 

Figure 2.17. The new version of tsunami evacuation maps for Padang city ........ 55 

Figure 2.18. An illustration of the tsunami early warning system in Indonesia 

(InaTEWS) ............................................................................................... 57 

Figure 2.19.  The procedure of the Tsunami Early Warning System in Indonesia 

(InaTEWS) based on the information from BMKG-Padang Panjang, Indonesia  

(Wilkinson, Alarcon, Mulyani, Chian, and Whittle, 2009) ......................... 59 

CHAPTER 3 

Figure 3.1. Definition of area for generating randomised synthetic events .......... 64 

Figure 3.2. Calculation of earthquake occurrence for a magnitude range using the 

Gutenberg-Richter recurrence relationship ................................................ 66 

Figure 3.3. Recurrence relationship for the Sumatra Subduction Zone with different 

periods of time .......................................................................................... 67 

Figure 3.4. The varying rate of the Sumatra Subduction Zone ............................ 68 

Figure 3.5. Flow chart for the PSHA module...................................................... 71 

Figure 3.6. Determination of hazard curve based on the outcomes of PSHA:  

a). the rate of hazard; b). hazard curve....................................................... 73 

Figure 3.7. The fault ruptures of the tsunami models for Sumatra ....................... 74 



xii 
 

Figure 3.8. Probability of tsunami occurrence in terms of the moment magnitude of 

earthquake (Mw) based on the tsunami catalogue of Sumatra .................... 76 

Figure 3.9. Procedure for Probabilistic Tsunami Hazard Assessment (PTHA) .... 78 

Figure 3.10. Correlation between ground acceleration and damage state for existing 

building stock in Padang (GESI, 2001) ..................................................... 79 

Figure 3.11. Correlation between ground acceleration and average damage state for 

seismically strengthened structures in Padang (GESI, 2001) ..................... 79 

Figure 3.12. The comparison of GESI (2001) and Kyriakides (2007) vulnerability 

functions with the empirical MDR for reinforced concrete buildings in  

Padang  ...................................................................................................... 80 

Figure 3.13. Correlation between tsunami height and mean damage level for existing 

building stock in Padang (Tinti et al., 2011) .............................................. 82 

Figure 3.14. Correlation between tsunami height and mean damage level for 

seismically strengthened structures in Padang ........................................... 82 

Figure 3.15. Flow chart of the earthquake risk module ....................................... 85 

Figure 3.16. Flowchart of the tsunami risk module ............................................. 87 

CHAPTER 4 

Figure 4.1. Primary tectonic elements of Sumatra (Natawidjaja, 2002) ............... 90 

Figure 4.2. Sumatra Subduction System from the floor of Indian Ocean to Malay 

Peninsula, drawn to scale (Barber et al., 2005) .......................................... 90 

Figure 4.3. The great subduction zone interface facing Padang city in West Sumatra, 

figure redrawn from Beetham (2009) ........................................................ 91 

Figure  4.4.   Seismicity  of  Sumatra  in  a  cross  section  perpendicular  to  Padang  city  

plotted by ZMAP software developed by Wiemer (2001) .......................... 91 



xiii 
 

Figure 4.5. Patches with strong inter-seismic coupling on the Sunda megathrust 

associated with large seismic ruptures (Konca et al., 2008) and the estimated 

location of seismic gap .............................................................................. 92 

Figure 4.6.  Geometry of sliver plate as a result of plate slip partitioning process 

(McCaffrey, 2009) .................................................................................... 93 

Figure 4.7.  Earthquake zones of Sumatra (Mw ≥ 6.0) ........................................ 94 

Figure 4.8. Comparison of earthquake catalogues of Sumatra for Mw ≥ 5 .......... 96 

Figure 4.9. Comparison of some magnitude scales with moment magnitude scale 

(Heaton et al., 1986) ................................................................................. 97 

Figure 4.10. Comparison of seismicity rate estimated using earthquake recurrence 

relationship and the instrumental catalogue of Sumatra (105 years) ........... 98 

Figure 4.11. Estimated number of earthquakes for 475 years based on recurrence 

relationship and 105 years of instrumental catalogue ................................. 98 

Figure 4.12. Recurrence relationships for the Sumatra Subduction Zone developed 

based on the full and declustered earthquake catalogues ............................ 99 

Figure 4.13. Recurrence relationships for typical seismic sources in Sumatra for full 

and declustered (based on Gardner & Knopoff’s algorithm) earthquake 

catalogues ................................................................................................. 100 

Figure 4.14. Definition of fault source geometries for ground motion calculation 101 

Figure 4.15. Ground Attenuation predictions vs. real strong motion records for the 

Mw 7.6 West Sumatra earthquake in 2009 ................................................ 102 

Figure 4.16. Ratio between the estimated ground attenuation and the real strong 

motion records for various earthquakes occurred in the Sumatra Fault ...... 103 

Figure 4.17. Geological map (a) and soil classification (b) of Padang city .......... 104 

Figure 4.18.  Tsunami sources in Indian Ocean (IOC, 2008) .............................. 105 

Figure 4.19. Distributions of tsunamigenic earthquakes in Sumatra & Pacific Ocean 

in terms of earthquake magnitude (Puspito and Gunawan, 2005) ............... 105 



xiv 
 

Figure 4.20. Distributions of tsunamigenic earthquakes in Sumatra & Pacific Ocean 

in terms of earthquake focal depth (Puspito and Gunawan, 2005) .............. 106 

Figure 4.21.  Earthquake Magnitude vs. Tsunami Intensity for Sumatra region and 

Pacific Ocean (Puspito and Gunawan, 2005) ............................................. 106 

Figure 4.22. Spatial distribution of tsunamigenic earthquakes in Sumatra........... 107 

Figure 4.23. Characteristics of tsunamigenic earthquakes in Sumatra ................. 108 

Figure 4.24. Bathymetry of Sumatra (GEBCO, 2012) ........................................ 109 

Figure 4.25. A three dimensional view of Sumatra Bathymetry plotted using NAMI-

DANCE software (not scaled) ................................................................... 109 

Figure 4.26. Population density of Padang city (total population/km2) ............... 110 

Figure 4.27. An example of a building layer from the BAKOSURTANAL digital 

map for Padang city (scale 1:10,000) ........................................................ 111 

Figure 4.28. Typical satellite imagery for residential, commercial and industrial areas 

in Padang city (Google Earth, 2011) ......................................................... 112 

Figure 4.29. Distribution of structural categories within the Padang area ............ 113 

Figure 4.30. Estimated areas of buildings (m2) for each grid in Padang city ....... 114 

CHAPTER 5 

Figure 5.1. Artificial seismic hazard maps of the Padang region at 10% probability of 

exceedance in 50 years for magnitude range analyses: a). Type 1; b). Type 2; 

and c). Type 3 ........................................................................................... 117 

Figure 5.2. Seismic hazard maps of the Padang region at 10% probability of 

exceedance in 50 years for different number of simulations: a). 200 

simulations; b). 250 simulations; c). 300 simulations ................................ 118 

Figure 5.3. Seismic hazard maps of Sumatra at 10% probability of exceedance in 50 

years for 100 simulations: a). based on full catalogue; b). based on the 

declustered catalogue ................................................................................ 119 



xv 
 

Figure 5.4. Seismic hazard maps for Sumatra for 10% probability of exceedance in 

50 years based on the proposed method (300 simulations)......................... 120 

Figure 5.5. Seismic hazard maps of Sumatra for 10% probability of exceedance in 50 

years based on Khan’s method .................................................................. 121 

Figure 5.6. Ratio of PGA obtained from Khan’s method and the new method for each 

grid in the case study region ...................................................................... 122 

Figure 5.7. Seismic hazard map at 10% probability of exceedance in 50 years for 

Padang city (PGA in g): (a). on rock site condition; (b). based on the ground 

surface as shown in Figure 4.17. ............................................................... 123 

Figure 5.8. Rate of earthquake hazard for Padang city on bed rock ..................... 124 

Figure 5.9. Earthquake hazard curve for Padang city for 50 years (bed rock) ...... 124 

Figure 5.10. Contributions of all seismic sources to seismic hazard in Padang .... 125 

Figure 5.11. Contributions of the SSZ to seismic hazard in Padang .................... 126 

Figure 5.12. Contributions of the SFZ to seismic hazard in Padang .................... 126 

Figure 5.13. Comparison of uniform hazard spectra obtained in this study with those 

given in the 2002 Indonesian seismic code for Padang city (5% damping, 10% 

probability of exceedance in 50 years) ...................................................... 127 

Figure 5.14. Estimation of varying rates �(t) to modulate the seismicity on the Aceh 

Segment of the subduction area ................................................................. 129 

Figure 5.15. Estimated seismic hazard maps for the next 5 years at 5% probability of 

exceedance in 5 years................................................................................ 130 

CHAPTER 6 

Figure 6.1. Tsunami numerical simulation for Sumatra (strike slip rupture 

mechanism): a). Maximum tsunami amplitudes; and b). Tsunami amplitudes 

with time recorded at the gauge stations in Padang area ............................ 133 



xvi 
 

Figure 6.2. Tsunami numerical simulation for Sumatra (thrust rupture mechanism): 

a). Maximum tsunami amplitudes; and b). Tsunami amplitudes with time 

recorded at the gauge stations in Padang area ............................................ 134 

Figure 6.3. Tsunami numerical simulation for Sumatra: a). Maximum tsunami 

amplitudes; and b). Tsunami amplitudes with time recorded at the gauge 

stations in Padang area .............................................................................. 135 

Figure 6.4. Tsunami numerical simulation for Sumatra: a). Maximum tsunami 

amplitudes; and b). Tsunami amplitudes with time recorded at the gauge 

stations in Padang area .............................................................................. 136 

Figure 6.5. Tsunami numerical simulation for Sumatra: a). Maximum tsunami 

amplitudes; and b). Tsunami amplitudes with time recorded at the gauge 

stations in Padang area .............................................................................. 137 

Figure 6.6. Arrival time of first tsunami waves at Padang city with distance from 

tsunami source .......................................................................................... 138 

Figure 6.7. Cross section of bathymetry facing West of Aceh vs. tsunami run-up 

triggered by the artificial Mw 8.6 earthquake (Figure 6.2) ......................... 139 

Figure 6.8. Cross section of bathymetry facing Padang city vs. tsunami run-up 

triggered by the Mw 9.1 (Figure 6.5) and Mw 9.0 (Figure 6.4) earthquakes 140 

Figure 6.9. Attenuation of tsunami wave amplitudes with distances ................... 141 

Figure 6.10. Comparison of maximum tsunami heights (Ht) estimated using R0 

proposed by Abe (1995) (dashed blue line) and R0 proposed in this study (solid 

red line) .................................................................................................... 142 

Figure 6.11. Correlation between Mt and Mw for Sumatra: the solid line expresses   

Mt = Mw and the dash line shows a threshold for tsunami earthquake....... 143 

Figure 6.12. Comparison among the estimated local mean tsunami height (blue line), 

the  estimated  local  maximum  at  each  segment  (red  line)  and  the  observed  

maximum  tsunami  wave  heights  (green  circle).  Most  events  in  the  dashed  

boxes are either located near field or directly facing the tsunami sources .. 144 



xvii 
 

Figure 6.13. Time independent PTHA for 475 return period of tsunami ............. 145 

Figure 6.14. Time dependent PTHA (2012-2017) for tsunami events with a 475 

return period ............................................................................................. 147 

Figure 6.15. The estimated tsunami height above the base of structures for Padang 

city at 10% probability of exceedance in 50 years ..................................... 148 

Figure 6.16. The rate of tsunami hazard for Padang city ..................................... 148 

Figure 6.17. Tsunami hazard curve for Padang city for a 50 year period ............. 149 

Figure 6.18. Average tsunami heights for each range of earthquake magnitudes and 

distances that contributes to Padang city ................................................... 150 

Figure 6.19. Seismic performance objectives for structural designs (SEAOC, 1995 

cited in FEMA P646, 2008) ...................................................................... 151 

Figure 6.20. Distribution of hydrostatic force (FEMA P646, 2008) .................... 153 

Figure 6.21. Distribution of hydrodynamic forces (FEMA P646, 2008) .............. 154 

Figure 6.22. Correlation of hydrodynamic force (Fd) and impulsive force (Fs) per 

unit width with the ground elevation at the base of structure (z) for Padang  

city ........................................................................................................... 155 

Figure 6.23. Distribution of hydrodynamic impulsive and drag forces (FEMA P646, 

2008) ........................................................................................................ 156 

CHAPTER 7 

Figure 7.1. The epicentre of the Mw 7.6 Padang earthquake in 2009  

(USGS, 2012) ........................................................................................... 160 

Figure 7.2. The predicted PGA of the Mw 7.6 earthquake in Padang .................. 160 

Figure 7.3. The predicted mean damage ratio (MDR) for the buildings in Padang due 

to the Mw 7.6 earthquake based on GESI vulnerability curves .................. 163 

Figure 7.4. Damage level of houses due to the earthquake in Padang city 

(MapAction, 2009) ................................................................................... 164 



xviii 
 

Figure 7.5. The estimated average loss/m2 for Padang city due to the Mw 7.6 

earthquake ................................................................................................ 165 

Figure 7.6. The predicted damage and unit loss for each type of structure in  

Padang ...................................................................................................... 165 

Figure 7.7. The estimated average risk in the area due to the Mw 7.6 earthquake 166 

Figure 7.8. The estimated pure risk premium (PRP) for the existing building stock in 

Padang with poor seismic performance based on GESI (2001) vulnerability 

curves ....................................................................................................... 168 

Figure 7.9. The estimated pure risk premium (PRP) for seismically designed building 

stock in Padang based on GESI (2001) vulnerability curves ...................... 169 

Figure 7.10. The estimated annual risk for RC structures based on Kyriakides (2007) 

vulnerability curves: a). pre-seismic RC buildings; and b). modern-seismic RC 

buildings ................................................................................................... 170 

Figure 7.11. The estimated pure risk premium (PRP) for the existing building stock 

in Padang subjected to tsunami hazard ...................................................... 172 

Figure 7.12. The estimated tsunami pure risk premium (PRP) for seismically 

designed structures in Padang subjected to tsunami hazard........................ 173 

Figure 7.13. Estimated mean annual fatality for Padang city due to earthquake  

hazard ....................................................................................................... 174 

Figure 7.14. Comparison of fatality rates for different countries (Jaiswal and Wald, 

2010) ........................................................................................................ 175 

Figure 7.15. Estimated mean annual fatality for Padang city due to tsunami  

hazard ....................................................................................................... 176 

Figure 7.16. Earthquake hazard curve for Padang city in comparison with the hazard 

curve of Antalya City in Turkey ................................................................ 178 

Figure 7.17. Comparison between insurance rates obtained in this study (existing and 

seismically design buildings) and the insurance rates applied by two insurance 

companies (MAIPARK and ACA insurance) for Padang city .................... 180 



xix 
 

Figure 7.18. Predicted total insurance premium per 1000 building value for  

Padang ...................................................................................................... 181 

Figure 7.19. Estimated average risk in the area due to the Mw 7.6 earthquake for 

seismically designed building stock in Padang .......................................... 182 

Figure 7.20. Predicted annual earthquake risk in Padang: a). existing building stock; 

b). seismically designed buildings ............................................................. 183 

Figure 7.21. Earthquake MDR per year for building categories in Padang .......... 183 

Figure 7.22. Annual earthquake risk/m2 per year for building categories in  

Padang ...................................................................................................... 184 

Figure 7.23. Predicted annual tsunami risk in Padang: a). existing building stock;  

b). seismically designed buildings ............................................................. 184 

Figure 7.24. Tsunami MDR per year for building categories in Padang .............. 185 

Figure 7.25. Annual tsunami risk/m2 per year for existing building stock in  

Padang ...................................................................................................... 185 

Figure 7.26. Vertical evacuation shelter plan for the city of Padang.................... 187 

Figure 7.27. Several examples of tsunami vertical evacuation system in Japan 

(FEMA, 2008) .......................................................................................... 191 

Figure 7.28. Coastal management plan for Padang city ...................................... 194 

  

 



xx 
 

LIST OF TABLES 

CHAPTER 2 

Table 2.1. Extrapolation of Regional Rate (Reasenberg et al., 2003) .................. 30 

Table 2.2. Tsunami magnitude scale (Iida, 1963 cited in Bryant, 2001) .............. 39 

Table 2.3. Soloviev’s tsunami intensity scale (Horikawa and Shuto, 1983 cited in 

Bryant, 2001) ............................................................................................ 39 

Table 2.4. Manning’s coefficient associated with land surface (Bryant, 2001) .... 44 

Table 2.5.  Typical standards adopted for buildings in Jakarta  

(Hoedajanto, 2007) ................................................................................... 53 

CHAPTER 3 

Table 3.1. Input data required for the PSHA module .......................................... 69 

Table 3.2. Input data required for the PTHA module .......................................... 77 

Table 3.3. GESI building damage states (GESI, 2001) ....................................... 80 

Table 3.4. The estimation of mean damage ratio for RCI buildings in Padang based 

on the damage data of the Mw 7.6 earthquake ........................................... 81 

Table 3.5. Damage levels for buildings (Tinti et al., 2011) ................................. 83 

Table 3.6. Input data for the earthquake risk assessment module ........................ 85 

Table 3.7. Input data for tsunami risk assessment module .................................. 86 

CHAPTER 4 

Table 4.1. Magnitude conversion equations for Indonesia  

(Asrurifak et al., 2010) .............................................................................. 96 

Table 4.2. Composition of buildings in Padang based on the land use of the  

areas ......................................................................................................... 113 



xxi 
 

CHAPTER 5 

Table 5.1. Different types of magnitude range for assessing the PSHA module .. 117 

Table 5.2. Ground motion category in terms of perceived shaking (USGS, 2009) 123 

Table 5.3. Extrapolation of Varying Rates .......................................................... 129 

CHAPTER 7 

Table 7.1. Number of damaged buildings due to the Mw 7.6 Padang earthquake of 30 

September 2009 (BNPB, 2009) ................................................................. 161 

Table 7.2. The estimation of building loss due to the Mw 7.6 Padang earthquake of 

30 September 2009 ................................................................................... 162 

Table 7.3. Recorded fatality due to recent deadly earthquakes around West Sumatra 

region (USGS, 2012) ................................................................................ 175 

Table 7.4. Average earthquake pure rate premium (PRP) and total insurance 

premium (TP) for all building categories in Padang .................................. 177 

Table 7.5. Indonesian earthquake insurance rate in 2007 (MAIPARK, 2007) ..... 179 

Table 7.6. Indonesian earthquake insurance rate in 2010 (MAIPARK, 2011) ..... 179 

Table 7.7. Average tsunami pure rate premium (PRP) and total insurance premium 

(TP) for Padang city .................................................................................. 180 

Table 7.8. Typical human walking speed (Park et al., 2012) ............................... 188 

Table 7.9. Delay time for various recognition level (Park et al., 2012)................ 188 

 

 

 



xxii 
 

ABBREVIATIONS 

AFE  Annual Frequency of Exceedance 

ASEAN  Association of Southeast Asian Nations 

AU  Area Unit 

BAKORSURTANAL Indonesian government agency for surveying and mapping 

BMKG  Indonesian Agency for Meteorology, Climatology and 
Geophysics 

BN  Bayesians Network 

BPT  Brownian Passage Time 

CBM  Confined Brick Masonry 

EADR  Expected Annual Damage Ratio 

EEFIT  Earthquake Engineering Field Investigation Team 

EFL  Earthquake Fault Length 

EM-DAT  Emergency Events Database 

EQ-RACY Earthquake Risk Assessment Cyprus 

ERA  Earthquake Risk Assessment 

FEM Finite Element Method  

FEMA  Federal Emergency Management Agency 

GEBCO  General Bathymetric Chart of the Oceans 

GESI  Global Earthquake Safety Initiative 

GITEWS  German Indonesia Tsunami Early Warning System 

GPS  Global Positioning System 

HAZUS Hazards United States 

HRC  Homogeneous Reinforced Concrete 

IDNDR  International Decade of Natural Disaster Reduction 

InaTEWS  Indonesian Tsunami Early Warning System 

IOC  Intergovernmental Oceanographic Commission 



xxiii 
 

LF  Load Factor 

MDR  Mean Damage Ratio 

NCEDC  Northern California Earthquake Data Centre 

NEIC  National Earthquake Information Centre 

NOAA National Oceanic and Atmospheric Administration 

OCHA  Office for the Coordination of Humanitarian Affairs 

PGA  Peak Ground Acceleration 

PDF Probability Distribution Function 

PMEL  Pacific Marine Environmental Laboratory 

PRP  Pure Risk Premium 

PSHA  Probabilistic Seismic Hazard Assessment 

PSTHA  Probabilistic Seismic and Tsunami Hazard Assessment 

PTHA  Probabilistic Tsunami Hazard Assessment 

RA  Rupture Area 

RADIUS Risk Assessment tools for Diagnosis of Urban areas against 
Seismic disasters 

RC  Reinforced Concrete 

RCI  Reinforced Concrete frame structures with masonry Infill 

RLD  Sub-surface Rupture Length 

RW  Rupture Width 

SCHEMA  Scenarios for Tsunami Hazard Induced Emergency 
Management 

SFZ  Sumatra Fault Zone 

SNI  Indonesian National Standard 

SPT Standard Penetration Test 

SRL  Surface Rupture Length 

SSZ  Sumatra Subduction Zone 

STWAVE  Steady-State Spectral Wave 



xxiv 
 

TP  Total Premium 

UBC  Uniform Building Code 

UBM  Unreinforced Brick Masonry 

USA United States of America 

USGS  United States Geological Survey 

WGCEP  Working Group on California Earthquake Probabilities 



Chapter 1  Introduction 

1 
 

CHAPTER 1 

INTRODUCTION 

1.1. INTRODUCTION 

As a result of rapid growth in population, seismic risk across moderate and high 

seismicity regions increases continuously.  It is estimated that until now, in the 21st 

century, more than 700,000 people were killed due to earthquakes, which affected 

more than 90 million people and resulted in over $ 450 billion of economic losses 

(EM-DAT, 2011). Spence (2007) points out that developing countries are more likely 

to be exposed to higher risk.  This is mostly due to unpreparedness or inadequate 

mitigation strategies to deal with the hazards. However, the concern in devising 

seismic mitigation strategies in developing countries is generally low either due to 

ignorance, lack of human resources and detailed seismological data, or to other 

pressing natural needs.  To address this problem, a cost effective and simple seismic 

risk framework is required, so that it can be easily adopted and implemented in 

developing countries (Khan, 2011; Kythreoti, 2002). 

A key element for developing good mitigation strategies is to identify the potential 

hazard and risk.  Experience from past earthquakes demonstrates that hazards 

triggered by earthquakes such as tsunami, liquefaction and landslides pose serious 

dangers. Recent examples include the Mw 9.0 Japan earthquake in 2011 and the Mw 

9.1 great Sumatra earthquake in 2004. Both events triggered large tsunami leading to 

very high death tolls and displaced millions of people. The devastating effects of the 

tsunami in Japan are shown in Figure 1.1. Another example is the Mw 7.6 West 

Sumatra Earthquake in 2009 which resulted in more than 1,000 fatalities mostly 

caused by a massive landslide (Wilkinson et al., 2009). Despite rigorous research 

conducted in addressing earthquakes and associated hazards, most studies rarely 

include their combination into a risk assessment framework  (Dominey-Howes et al., 

2010; FEMA, 2009; IDNDR, 1990-2000; Khan, 2011; Kythreoti, 2002; Moharram et 

al., 2008; Mouroux and Le Brun, 2006). Hence, the overall risk for regions prone to 

these hazards is likely to be underestimated. 
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Figure 1.1. Tsunami hazard: (a). Inland penetration of Tsunami wave train (Shimbun, 

2011); (b). Shattered buildings and debris following the earthquake and tsunami in 

Japan (Kyodo, 2011) 

To focus on tsunami hazard, the massive consequences of the Great Sumatra 

Earthquake in 2004 could have been reduced had there been tsunami mitigation 

strategies. Tsunami mitigation strategies must be developed based on tsunami hazard 

assessment. Therefore, an integrated quantification of earthquakes and associated 

tsunamis is required, which remains a challenge. A “scenario” or “deterministic” 

approach is generally adopted to evaluate tsunami hazard. However, the scenario 

approach has limited applications for broader policy and planning decisions 

(Burbidge et al., 2008). This highlights the importance of a probabilistic approach. 

Nevertheless, undertaking Probabilistic Tsunami Hazard Assessment (PTHA) is 

difficult. 

For seismic hazard, the Probabilistic Seismic Hazard Assessment (PSHA) method 

pioneered by Cornell (1968) is widely used. This conventional PSHA is used to 

identify earthquake ground motions for a particular site. The method has four 

components which include the identification of seismic zones, earthquake recurrence 

functions, ground motion attenuation relationships and distance from seismic zones 

to site. The expected ground motion level is obtained by integrating probability 

density  functions  for  the  last  3  components  above  for  all  seismic  zones.  In  this  

approach, a Poissonian model is generally assumed to characterise earthquake 

distribution. Musson (2000) states that the use of a Poissonian model is convenient, 

as the mathematical and computational solutions for earthquake occurrence 

probability are technically simple. However, if a non-Poissonian model is adopted, 

(a) (b) 
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the difficulty of the mathematical and computational solutions may increase since it 

involves more complex and a non-uniform seismicity models (Musson, 2000). 

Nevertheless, the problems are likely no longer prohibitive given the expansion of 

modern statistical methods (i.e. Bayesian integrals) as well as rapid development of 

computer power in the last decade. The non-Poissonian model is compulsory for a 

time-dependent PSHA, which takes into account the Elastic Rebound Theory, with a 

varying rate of hazard over time. Hazard rate increases extensively when the elapsed 

time since the last large earthquake has almost reached its return period or when 

seismic gaps are present in a region. For this case, a time independent (Poissonian 

model) PSHA model is not satisfactory, as people are unaware of the increasing 

upcoming hazards. 

Musson (2000) proposed an alternative method to perform seismic hazard 

assessment in the UK. He adopted a stochastic technique using Monte Carlo 

simulations to produce synthetic earthquakes. This method does not require the 

integration procedure as that of the conventional PSHA. Consequently, the method 

has the adaptability to utilise different seismicity models including the non-

Poissonian. In addition, this stochastic approach can also be extended to directly 

estimate the associated risk and to incorporate earthquake associated hazards such as 

tsunami, liquefaction and landslides. The approach was utilised by Kythreoti (2002) 

and Khan (2011) to develop an Earthquake Risk Assessment Framework (ERA 

Framework) that contains a PSHA module and seismic risk module. Nevertheless, 

earthquake associated hazards were not taken into account in this framework. 

The generation of synthetic events in the Musson’s approach was based on long term 

seismicity using earthquake recurrence relationships. The synthetic events were 

randomly generated over seismic zones defined in a particular area. However, Khan 

et al. (2010) argued that this approach would result in arbitrarily smearing the 

seismicity over the seismic zones. Hence, Khan (2011) generated synthetic 

earthquakes based on real events in an earthquake catalogue and utilised a fault 

rupture mode for each event as a defined location for the synthetic events. It was 

assumed that the fault rupture was oriented along the predominant fault line for a 

given zone. Khan (2011) showed that the generation of synthetic events within a 

defined boundary could maintain the known seismicity distribution in the 

investigated region. 
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However, Khan’s approach heavily relied on an instrumental earthquake catalogue, 

which was assumed to represent the regional seismicity well, as it was the case for 

the Islamabad-Peshawar region, his case study area. As a result, the reliability of 

Khan’s approach depends on the completeness of earthquake catalogues. 

Nevertheless, such complete earthquake catalogues are often lacking, particularly in 

developing countries. 

1.2. RESEARCH AIM AND OBJECTIVES 

The main aim of this research is to extend the ERA Framework developed by Khan 

(2011) at the University of Sheffield to account for tsunami and time-dependency of 

hazards. It should be noted that this study only takes into account earthquake-

generated tsunami. Any tsunamis trigger by other hazards such as landslide, volcanic 

eruptions and meteorite impact are beyond the scope of this study.  

Padang  city,  the  capital  of  West  Sumatra  Province,  in  Indonesia  is  selected  as  the  

case study area. The case study region has a long history of earthquakes and tsunami 

with the presence of a seismic gap, which may lead to a mega thrust tsunamigenic 

earthquake in the near future. The accomplishment of the main aim requires several 

objectives as follows: 

1. Extend the existing earthquake catalogue to appropriately characterise the 

seismicity of the case study region. 

2. Extend the existing Probabilistic Seismic Hazard Assessment (PSHA) method to 

account for time independent and time dependent seismicity models. 

3. Perform tsunami numerical analysis methods to complement tsunami databases, 

which are lacking for the examined area.  

4. Develop a Probabilistic Tsunami Hazard Assessment (PTHA) module to 

complement the modified ERA Framework.  

5. Carry out a risk assessment by taking into account all probable levels of 

earthquake and tsunami hazards in the case study region. 

6. Propose mitigation strategies for Padang city. 
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1.3. LAYOUT OF THE THESIS 

Chapter 2 presents a review of the literature available on the various aspects of 

seismology, earthquake hazard assessment, tsunami hazard assessment, vulnerability 

of existing structures, risk assessment, as well as earthquake mitigation strategies. 

Chapter 3 describes the methodology adopted to upgrade the existing ERA 

Framework including the development of a time dependent seismicity model, the 

incorporation  of  the  tsunami  hazard  assessment,  and  the  estimation  of  the  risks  

associated with earthquake and tsunami hazards. 

Chapter 4 presents data collection for ERA Framework as well as preliminary 

analyses of the obtained data. 

Chapters 5 and 6 present the outcomes and discussions of earthquake hazard 

assessment (PSHA) and tsunami hazard assessment (PTHA), respectively.  

Chapter 7 presents the results of risk assessment and proposes earthquake and 

tsunami mitigation strategies that are suitable for Padang city. 

In Chapter 8, the main conclusions from the present study are drawn, along with 

recommendations for further work. 
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CHAPTER 2 

LITERATURE REVIEW 

2.1. INTRODUCTION 

The following sections present a literature review as a background for the 

development of the earthquake and tsunami risk assessment framework. This subject 

is multi-disciplinary and involves seismology, geophysics and structural engineering 

expertise. This chapter focuses on seismic risk assessment framework and its 

components including Probabilistic Seismic Hazard Assessment (PSHA), 

Probabilistic Tsunami Hazard Assessment (PTHA) and the vulnerability of existing 

building stock. Mitigation strategies associated with the risk are also presented in this 

chapter.  

2.2. RISK ASSESSMENT FRAMEWORK 

In general terms, risk can be defined as potential loss or consequence if exposed to a 

particular hazard. The determination of risk requires three components including 

hazard or encounter probability, exposure and vulnerability. Hazard represents any 

sources of potential damage or adverse effects on any elements at risk such as 

buildings, people, houses, bridges, etc. (CCOHS, 2009). Exposure denotes the 

probability that the elements at risk will be present when the hazard occurred. 

Vulnerability is defined as the reduced capacity of the elements at risk due to a given 

level of hazard. The probable consequence resulted from the hazard at a particular 

element is called a specific risk. The specific risk �𝑅𝑠𝑝𝑒𝑐� is a product of hazard 

(encounter probability) and vulnerability as shown in Equation 2.1 (Eckert et al., 

2012). 

𝑅𝑠𝑝𝑒𝑐 =  � 𝑝(𝑦) 𝑉(𝑧𝑤,𝑦) 𝑑𝑦
∞

0
 2.1 

Where, 

𝑝(𝑦) : hazard or encounter probability of y-hazard 

𝑉(𝑧𝑤,𝑦) : the vulnerability of w-element at risk 

𝑧𝑤 : the value of the w-element  
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Based on Equation 2.1, the total risk (R) of the elements can be estimated as follows: 

𝑅 =  �𝑝(𝑧𝑤) 𝑧𝑤 𝑅𝑠𝑝𝑒𝑐
𝑤

 2.2 

where, 

𝑝(𝑧𝑤) : the exposure of w-element 

The ∑ 𝑝(𝑧𝑤) 𝑧𝑤𝑤  term of the equation above is also known as probable maximum 

loss.  

Ferson (2003) emphasised the sources of uncertainties in risk analysis including the 

lack of empirical data, the incorporation of subjective/judgmental information as well 

as the selection of mathematical model adopted in the analysis. To get reliable 

outcomes, these uncertainties need to be properly addressed. The use of Bayesian 

approach to quantify the uncertainty in the risk assessment framework was 

highlighted by many studies (Eckert et al., 2012; Ferson, 2003; Li et al., 2010; 

Rüttener et al., 1996) and its applications to deal with imprecise data were given by  

Egozcue and Rüttener (1996) and Rüttener et al. (1996). The formulation of the 

Bayesian rule for improving inference in the field of risk assessment was given in 

Berger (1985 cited in Eckert et al., 2012) as follows: 

𝑝(𝜃|𝑦𝑜𝑏𝑠)  ∝ 𝑝(𝜃)  × 𝑝(𝑦𝑜𝑏𝑠|𝜃)  2.3 

where, 

𝜃 : a vector of unknown parameters 

𝑝(𝜃) : a prior distribution representing extra data information   

𝑝(𝜃|𝑦𝑜𝑏𝑠) : the posterior distribution of the parameters given the available data 

sample 𝑦𝑜𝑏𝑠 

𝑝(𝑦𝑜𝑏𝑠|𝜃) : the probability of the data as realisations of 𝑝(𝜃|𝑦𝑜𝑏𝑠)  

The posterior distribution given above formally expresses the uncertainty associated 

with the partial knowledge of 𝜃 in the risk equation and its integration will lead to 

Bayesian risk as follows: 

𝑅𝐵𝑊(𝑑, 𝑦𝑜𝑏𝑠) = �𝑝(𝜃|𝑦𝑜𝑏𝑠)  × 𝑅𝑤(𝑑,𝜃) 𝑑𝜃   2.4 

where, 𝑅𝑤(𝑑,𝜃) denotes a risk function for the system given a decisional variable 𝑑 

and the type of element at risk 𝑤 (Eckert et al., 2012). Using the Bayesian method 
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Eckert et al. (2012) found that the inclusion of uncertainty in the risk model might 

lead to more cautious recommendation as a consequence of imperfect knowledge. 

Ferson (2003) pointed out the main advantages of the Bayesian method including: 1). 

The method accounts for parameter uncertainty of a probability model; 2). The 

method allows the incorporation of subjective information (i.e. expert opinion, 

personal judgement, etc.) often required in the risk assessment; 3). The approach 

always gives precise answer even when the supporting data are very limited. 

Nevertheless, Ferson (2003) reviewed the shortcomings of the Bayesian method 

including: 1). The difficulty of selecting prior distribution and likelihood function for 

the method; 2). The method sometimes leads to overconfidence and arbitrariness in 

its solutions; 3). The Bayesian method is computationally difficult particularly for 

determining the normalizing factor of the Bayes’ rule; 4). The Bayesian method does 

not differentiate between incertitude and equiprobability. Despite of those 

disadvantages, the Bayesian method provides a robust mathematical model to 

estimate the distribution of random variables particularly in the field of seismic risk 

(Rüttener et al., 1996). 

2.2.1. Earthquake and Tsunami Risk Assessment 

In seismology, seismic risk refers to the expected loss due to earthquake and its 

following hazards (i.e. tsunami, landslide, and liquefaction) in a region for a 

specified period of time. To estimate the seismic risk for buildings in Cyprus, 

Kythreoti (2002) used the following relation: 

𝑅 =  ���𝐻𝑖  ×  𝑉𝑖𝑗�  ×  𝐶𝑗

𝑚

𝑗=1

𝑛

𝑖=1

 2.5 

where,  

Hi  : the magnitude/quantity of hazard-i, which is equivalent to 𝑝(𝑦) in  

   Equation 2.1 

Vij : the vulnerability of element-j exposed to the hazard-I, which is equivalent  

   to 𝑉(𝑧𝑤,𝑦) in Equation 2.1 

Cj : the value of the exposed type of structure-j (e.g. masonry buildings, steel  

   structures, reinforced concrete structures, etc.) in a particular region,  

   which is equal with 𝑧𝑤 in Equation 2.1 
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It should be noted that the equation above is specifically derived for buildings. 

Therefore, the exposure is taken as 1 assuming that the buildings will remain in their 

place when the hazard occurred. The �𝐻𝑖  ×  𝑉𝑖𝑗� element in Equation 2.5 denotes the 

specific risk �𝑅𝑠𝑝𝑒𝑐� as given in Equation 2.1. 

If the hazard, vulnerability functions and the value of an element at risk in the 

examined area are available, the seismic risk can be easily estimated. The 

quantification of hazards is discussed in Sections 2.3 and 2.4. The vulnerability 

function for earthquake and tsunami hazards are discussed in Section 2.5, which, in 

this study, is limited to vulnerability functions for building. This is to consider that 

the main monetary losses due to seismic events in Padang are mainly contributed by 

structural damage, as shown from the Mw 7.6 of the  Padang earthquake (Wilkinson 

et al., 2009). 

2.2.2. Probabilistic Risk Assessment and the Insurance Rate for Hazards 

Risk assessment can be performed probabilistically by taking into account all 

probable level of hazards in the examined area. The risk can be estimated annually 

and the annual risk is generally used as a foundation to determine the insurance rate 

of hazard. The annual risk is usually expressed in terms of pure risk premiums (PRP) 

and is a function of expected annual damage ratio (EADRk) and building value 

(INSV), as shown in Equation 2.6. 

𝑃𝑅𝑃𝑘 =  𝐸𝐴𝐷𝑅𝑘  × 𝐼𝑁𝑆𝑉  2.6 

The EADRk involves the integration of all hazard levels (SHj) and the associated 

mean damage ratio (MDRk), as shown in Equation 2.7. Different hazard parameters 

can be incorporated into Equation 2.7. For example, the SHj can be referred to the 

annual probability of a particular PGA (Peak Ground Acceleration) for earthquake 

risk assessment and can be denoted as the annual probability of a particular tsunami 

height (Ht), if the tsunami risk is the main concern. 

𝐸𝐴𝐷𝑅𝑘 =  ∑ 𝑀𝐷𝑅𝑘(𝑗)  ×  𝑆𝐻𝑗𝑗  2.7 

where, 

EADRk  : Expected annual damage ratio for k-type of structure 

SHj  : The annual probability of a certain level of hazard 
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MDRk (j) : Average damage ratio for k-type of structure at certain level  

of hazard-j  

Total insurance premium (TPk) is determined by applying a load factor (LF) into the 

pure risk premium. The load factor takes into account hidden uncertainties, 

administration, taxes and profits for the insurance company (Yucemen, 2005). The 

relationship between TPk and PRPk is defined in Equation 2.8.  

( )LFPRPTP kk −= 1  2.8 

where, 

TPk   : Total insurance premium for k type of structure 

PRPk  : Pure risk premium for k type of structure 

LF  : Load factor, taken as 0.4 (Yucemen, 2005) 

2.2.3. Existing Risk Assessment Frameworks 

Several risk assessment frameworks were available including  HAZUS (FEMA, 

2003; FEMA, 2009), RADIUS, RISK-UE, EQ-RACY and ERA Framework. 

HAZUS was a Geographic Information System (GIS) based program for analysing 

potential loss in the United State of America due to earthquake, hurricane and floods 

(FEMA, 2009). The HAZUS’s earthquake model was mainly developed to assess 

risk subjected to earthquake ground motions and ground failure. The incorporation of 

tsunami hazard in the HAZUS program is still under development. 

RADIUS (IDNDR, 1999) was intended to provide preliminary estimations of 

earthquake risk, particularly for developing countries. A scenario or deterministic 

approach was adopted in the RADIUS program. Hence, its application was limited to 

identify seismic risk for mitigation purposes. 

RISK-UE (Mouroux and Le Brun, 2006) was a seismic risk assessment project 

specifically designed for European cities. A GIS environment was used in the RISK-

UE project. However, the risk was estimated based on damage scenarios from some 

plausible earthquakes in an investigated area; thus, the method did not take 

probabilistic assessment into account.  

EQ-RACY was a probabilistic seismic risk assessment framework developed at the 

University of Sheffield by Kythreoti (2002). The risk framework was developed for 
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low to medium seismicity regions such as Cyprus. Afterwards, Khan (2011) 

developed ERA (Earthquake Risk Assessment) Framework to expand EQ-RACY, so 

that it could be more generally applicable to include high seismicity areas. The ERA 

Framework was based on GIS environment and produced a probabilistic hazard and 

risk estimates due to earthquake ground motions. However, it did not consider 

earthquake associated hazards such as tsunami, liquefaction and landslides. 

2.3. SEISMIC HAZARD ASSESSMENT 

Thenhaus and Campbell (2003) define seismic hazard as the probability of 

experiencing a certain level of earthquake intensity and its consequent hazards 

(including ground shaking, liquefaction, landslides and tsunami) in a particular 

region within a period of time.  The main outcome of seismic hazard assessment is a 

hazard curve indicating the probability of exceedance for selected ground motion 

parameters (i.e. peak ground acceleration (PGA) or spectral acceleration) at a site for 

a given period of time (Bommer and Abrahamson, 2006).  

In the past, seismic hazard was assessed mainly using a deterministic approach 

considering single or few earthquake scenarios. Nevertheless, this approach has the 

issue of which earthquake should be selected as the scenario for the hazard 

assessment (Sabetta, 2005; Thenhaus and Campbell, 2003).  Using the worst case 

scenario, usually a maximum magnitude earthquake expected in a region is 

appropriate for the design of critical structures, such as nuclear power plants. This is 

because, in this case, failure could lead to catastrophic consequences. However, 

using this scenario for all structures may be too conservative, especially since the 

probability of the occurrence of the resulting ground motion may be too low or the 

consequences of failure are less important. For earthquake risk assessment of a large 

region, as that examined in this study, the deterministic method is not adequate. 

Progress in seismological statistics and seismic hazard studies, as well as 

computational tools, allowed the development of Probabilistic Seismic Hazard 

Assessment (PSHA). This method was pioneered by Cornell (1968) and it took into 

account the contribution of all seismic sources for a particular site. In other words, 

PSHA comprises a large number of deterministic analyses (Abrahamson, 2006).  

Many other PSHA methods have since been developed including a stochastic PSHA 
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method and a time-dependent PSHA model; these are discussed further in the 

following sub-sections after the conventional PSHA method is introduced. 

2.3.1. Main Components of Seismic Hazard Assessment  

Several steps are required to perform seismic hazard assessment, including 

identifying seismic sources of the investigated area, defining seismic zones, 

assessing earthquake recurrence relationships and assigning appropriate ground 

motion attenuation equations. Seismic source identification requires a basic 

understanding of the tectonic setting of the assessed region (as discussed in more 

detail in Chapter 4).  The other steps of PSHA are presented in the following 

sections. 

2.3.1.1. Seismic Zone Definition 

A seismic zone can be defined as an area that shares comparable type and 

distribution of earthquakes. Generally, the boundary of a seismic zone is determined 

by considering the tectonic configuration, seismic source characteristics and 

seismicity distribution of the examined area. However, the definition of a seismic 

zone boundary involves subjective decisions (Sabetta, 2005), so different studies 

with similar case study areas are likely to produce different seismic zones.  

Most PSHA models assume that seismicity in a seismic zone is uniformly 

distributed, which can lead to spatial smoothing of seismicity (see section 2.3.2). To 

deal with this problem, Khan (2011) proposed a method of generating randomised 

synthetic earthquakes around real events as will be discussed in section 2.3.3. This 

approach closely resembles the past seismicity of a region. In Khan’s approach, 

seismic zones are only used to define areas with similar tectonic characteristics, as 

well as to determine the direction of earthquake ruptures that correspond to the strike 

angle of main faults. The selection of seismic zones for the study region is shown in 

Chapter 4. 

2.3.1.2. Earthquake Recurrence Relationship 

The earthquake recurrence relationship gives the expected number of earthquakes 

occurring  in a region for a defined period of time (Elnashai and Sarno, 2008). The 

earthquake recurrence relationship is essential for Probabilistic Seismic Hazard 
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Assessment (PSHA) since it allows all probable magnitudes of earthquakes to be 

evaluated in PSHA studies. The recurrence relationship is also useful to approximate 

the seismicity of an investigated area which lacks seismicity records. The simplest 

and most well-known recurrence relationship was proposed by Gutenberg and 

Richter (1954) with their frequency-magnitude relationship as follows: 

log𝑁 = 𝑎 + 𝑏 .𝑀 2.9 

where, 

𝑁   : the number of earthquakes per year greater than or equal to 𝑀 

M   : earthquake magnitude 

𝑎 and b : regressed constants from the observed seismological data 

The Gutenberg-Richter recurrence distribution assumes a Poissonian process for 

earthquake occurrence. Therefore, it implies a relatively stationary seismicity and 

assumes that each earthquake occurs independently. Wesnousky (1994) argued that 

for some regions, their seismicity did not follow the Gutenberg-Richter distribution. 

Instead, the Gutenberg-Richter distribution only reflects part of the regional 

seismicity as revealed in the Characteristic Earthquake Model (see Figure 2.1). The 

characteristic model applies seismicity data at lower magnitudes and geologic data at 

higher magnitude earthquakes (Sabetta, 2005). Selecting the most appropriate 

earthquake recurrence model is critical to conduct a reliable seismic hazard analysis. 

Applying the Gutenberg-Richter model to an area where its seismicity does not 

follow the power law distribution may overestimate the hazard (Khan, 2011). 

Nevertheless, it is reasonable to use the truncated Gutenberg-Richter relation, if 

available fault information is not sufficient (Sabetta, 2005). 
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Figure 2.1. Earthquake distribution models: (a) Gutenberg-Richter model; (b) 

Characteristic earthquake model (Wesnousky, 1994) 

2.3.1.3. Ground Motion Attenuation Relationship 

Ground motion attenuation relationships estimate ground motion parameters (e.g. 

peak ground acceleration, velocity and displacement) as seismic waves radiate from 

the earthquake hypocentre to the surrounding regions. These relationships correlate 

earthquake parameters to earthquake magnitude, focal distance, soil condition, and 

fault type. Attenuation relationships can be derived either empirically, using 

earthquake ground motion records, or theoretically, using a seismological model of 

synthetic ground motions (Elnashai and Sarno, 2008).  Ground attenuation models 

are generally developed for a specific site. However, if they are not available, 

attenuation relationships developed for other areas can be adopted, provided both 

regions have comparable tectonic and geological situations (Irsyam et al., 2008).   

Various ground motion attenuation relationships are commonly used for assessing 

seismic hazard in Indonesia. For a subduction zone environment, attenuation 

functions produced by Youngs (1997), Atkinson and Boore (2003) are commonly 

adopted (Asrurifak et al., 2010; Irsyam et al., 2008; Petersen et al., 2004; Sengara et 

al., 2007; SNI 03-1726-2002, 2002). The attenuation relationships for rock and soil 

sites developed by Youngs  (1997) are shown in Equations 2.10 and 2.11, 

respectively. 
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ln𝑌 =  0.2418 + 1.414𝑀 + 𝐶1 + 𝐶2 (10 −𝑀)3
+ 𝐶3 ln�𝑟𝑟𝑢𝑝 + 1.7818 𝑒0.554𝑀� + 0.00607𝐻
+ 0.3846𝑍𝑇 

2.10 

ln𝑌 =  −0.6687 + 1.438𝑀 + 𝐶1 + 𝐶2 (10 −𝑀)3
+  𝐶3 ln�𝑟𝑟𝑢𝑝 + 1.097 𝑒0.617𝑀� + 0.00648𝐻
+ 0.3643𝑍𝑇 

2.11 

where, 

𝑌   : spectral acceleration (g) 

M   : earthquake moment magnitude 

𝑟𝑟𝑢𝑝 : the closest distance to rupture surface (km) 

H : depth (km) 

ZT : source type (0 for interface and 1 for intraslab) 

𝐶1,𝐶2, and 𝐶3: the coefficients to be determined (see Youngs, 1997) 

For a shallow crustal environment, the equations from Boore et al. (1997) and Sadigh 

et al. (1997) are frequently used. The attenuation relationship from Boore et al. 

(1997) is shown in the following equations: 

ln𝑌 =  𝑏1 +  𝑏2 (𝑀− 6) +  𝑏3(𝑀− 6)2 +  𝑏5 . ln 𝑟 +  𝑏𝑣 . ln
𝑉𝑆
𝑉𝐴

 2.12 

𝑟 =  �𝑟𝑗𝑏2 + ℎ2 2.13 

where, 

𝑌  : the ground motion parameter (peak horizontal acceleration or pseudo 

acceleration response in g) 

M  : earthquake moment magnitude 

𝑟𝑗𝑏  : distance (km) 

h : fictitious depth determine by regression 

𝑉𝑆  : average shear-wave velocity to 30 m (m/sec) 

𝑏1, 𝑏2, 𝑏3, 𝑏5,ℎ, 𝑏𝑣 and 𝑉𝐴 : the coefficients to be determined as shown in  

Boore et al. (1997) 

The attenuation relationships for rock and deep soil sites from Sadigh et al. (1997) 

are shown in Equations 2.14 and 2.15, respectively. 
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ln𝑌 =  𝐶1 +  𝐶2 (8.5𝑀)2.5

+  𝐶4  ln�𝑟𝑟𝑢𝑝 + exp(𝐶5 + 𝐶6𝑀)� + 𝐶7 ln�𝑟𝑟𝑢𝑝 + 2� 2.14 

ln𝑌 =  𝐶1 +  𝐶2𝑀
−  𝐶3  ln�𝑟𝑟𝑢𝑝 + 𝐶4e(𝐶5𝑀)� + 𝐶6 + 𝐶7(8.5 −𝑀)2.5 2.15 

where, 

𝑌   : peak horizontal acceleration or pseudo acceleration response (g) 

M  : earthquake moment magnitude 

𝑟𝑟𝑢𝑝 : the closest distance to rupture surface (km) 

𝐶1,𝐶2,𝐶3,𝐶4,𝐶5,𝐶6and 𝐶7 : the coefficients to be determined (see Sadigh et 

al., 1997)  

Recently, new attenuation models were developed based on the earthquakes in 

Indonesia (Megawati and Pan, 2010; Parithusta, 2007).  Parithusta (2007) derived an 

attenuation relationship based on Indonesian earthquake databases to account for 

deep source events with focal depth up to 150 km. This was considered necessary 

since most existing attenuation relationships were produced for shallow earthquakes 

with focal depth around 10–50 km, which were not suitable for deep events 

commonly found in Indonesia (Parithusta, 2007). The deep source events are 

generally associated with subduction or Benioff zones in the region. Megawati and 

Pan (2010) also developed an attenuation relationship for megathrust earthquakes in 

Sumatra. Their attenuation function was intended for distant regions, about 200-1500 

km from earthquake epicentres. Hence, this was not suitable for near field 

earthquakes (<200 km) for which Megawati and Pan (2010) suggested the use of an 

attenuation equation derived by Atkinson and Boore (2003). 

2.3.1.4. Physical Earthquake Models 

A physical earthquake model is a fundamental element for seismic hazard analysis. It 

allows the computation of earthquake shaking intensity as well as assessing 

earthquake interactions using rupture scenarios. The standard physical models 

generally assume an elastic whole space, two dimensional and quasi-static 

earthquake simulations (Ward, 2000). The models require a complex geometry of 

major active faults, the specification of failure law (e.g. Coulomb Failure Criterion) 

as well as rigorous seismological information including, slip distribution, slip rates, 

stress drop, healing time and the frictional coefficient of fault elements. The 
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frictional coefficient is the difference between static and dynamic frictional 

coefficients (µi
s - µi

d). The static frictional coefficient (µi
s) denotes the ratio of shear 

to normal stress for surface at rest and the dynamic coefficient (µi
d) represents the 

ratio for surfaces in a relative motion. Failure on a fault segment may occur when the 

static frictional coefficient is equal to the dynamic coefficient (Rundle, 1988).  

Based on an improved standard physical model, Ward (2000) successfully simulated 

the 1906 San Francisco earthquake and showed fault interactions in San Francisco 

bay area associated with the event. Ward (2000) found that the released stresses from 

a fault might accelerate or delay the occurrence of nearby earthquakes. Furthermore, 

Ward (2000) plotted the earthquake recurrence times produced by the model and 

obtained a comparable result with those of the existing earthquake catalogue. 

Consequently, Ward (2000) showed that the physical earthquake model could give 

realistic outcomes and could be a good alternative for estimating earthquake 

probabilities and hazard. 

Robinson and Benites (1995) used the physical earthquake model to generate long 

catalogue of synthetic seismicity for faults in Wellington region, New Zealand and 

obtained detailed rupture histories for the area. Robinson and Benites (1995) found 

that the clustering of large earthquakes (M>7.2) occurred due to the interaction 

between the subduction thrust and one of the overlying strike-slip faults in the 

region. Similar studies were conducted by Rundle et al. (2005). Rundle et al. (2005) 

developed a physical earthquake model with a simulation based approach and 

highlighted its significance for estimating the statistical distribution of recurrence 

times between great earthquakes. Rundle et al. (2005) argued that the estimation of 

earthquake sequence with a purely field-based approach might not be accurate due to 

the limited length of earthquake catalogues. Consequently, Rundle et al. (2005) 

carried out numerical simulations for San Andreas fault that represented the 

seismicity of the area for over 40,000 years. The outcomes showed that the method 

approximated the recurrence times better than the field-based approach. The method 

adopted by Rundle et al. (2005) was initially developed by Rundle (1988). Rundle 

(1988) treated earthquakes as “perturbations” or short term fluctuations on the long-

term motion of plate tectonics and applied interaction among fault segments during 

slip, which led to the construction of the interaction matrix. Rundle (1988) found that 

the geometry of fault segments took an effect in the fault interactions. Rundle (1988) 
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observed that long and slender fault patches were likely to produce regular slip 

patterns and small interaction coefficient. In contrast, nearly square fault segments 

would produce more irregular slip patterns and higher interaction coefficient.    

2.3.2. Conventional Probabilistic Seismic Hazard Analysis (PSHA) 

Cornell (1968) initially developed PSHA to find the desired correlation between 

ground motion parameters (i.e. Modified Mercalli Intensity, peak-ground velocity, 

peak-ground acceleration, etc.) and their average return period for a particular site. 

The method consists of at least four main components including identification of 

seismic sources, earthquake recurrence functions, ground attenuation relationships 

and distance from seismic source to the site, as discussed previously.  The PSHA 

technique integrates earthquake magnitude and distance to a hazard site for each 

seismic source and sums their contribution to the study area as expressed in Equation 

2.16 (Thenhaus and Campbell, 2003):  

[ ] ( ) ( ) ( )∑ ∫ ∫
−

≥=≥
iSources

M

M MR
MRMi dmdrmrfmfRMxXPvxX

max

0

..,λ  2.16 

where,  

[ ]xX ≥λ   : the annual frequency of ground shaking exceeding a    

given level xX =  

iv   : the annual rate of earthquake for seismic source-i with 

magnitudes between Mo and Mmax 

( )RMxXP ,≥   : probability that certain level of ground motion will be 

exceeded for a given magnitude M and distance R 

fM(m) and fR(r): probability density function for magnitude and distance 

from seismic sources to the site, respectively 

The probability of exceedance of an observed ground motion parameter, [ ]xXP ≥ , is 

computed from Equation 2.17. 

[ ] [ ]( )xXtexXP ≥−−=≥ λ.1  2.17 

where, t in the above equation denotes the exposure period of engineering interest. 

18 
 



Chapter 2  Literature Review 

An important outcome of seismic hazard assessment is to identify design earthquakes 

that contribute to the hazard. This is generally required for structural design 

purposes. The standard PSHA characterises earthquake events in terms of probability 

density functions (see Equation 2.16). As a result, identifying a design earthquake is 

challenging due to the integration of all seismic sources, magnitudes and distances 

(Abrahamson, 2006). An alternative procedure, also known as a deaggregation 

technique, can be performed to obtain the controlling earthquake by computing a 

fractional contribution of each seismic source to the total hazard. Nevertheless, the 

deaggregation procedure has some issues regarding selection of bin size, grouping of 

scenarios and which set of quantities should be chosen as the base for the 

deaggregation. Abrahamson (2006) showed that the deaggregation procedure could 

lead to an unrealistic earthquake scenario if the hazard in the area was controlled by 

two or more seismic sources. In addition, the integration nature of the conventional 

PSHA has made actual risk difficult to be estimated directly from PSHA. This is 

because the method requires the integration of vulnerability functions to get 

conditional probability of damage given by a particular level of ground shaking 

(Musson, 2000). 

It is assumed in the conventional PSHA that seismicity in a seismic source zone is 

uniformly distributed. Abrahamson (2006) argued that this assumption smoothed the 

historical seismicity. Very little smoothing would closely represent the historical 

seismicity, yet it does not allow future earthquakes to take place in a region with no 

historical seismic activity. On the other hand, very large smoothing would overrate 

the seismicity in the region with little or no historical earthquakes (Abrahamson, 

2006). Therefore, the selection of an appropriate size for seismic source zones or 

level of spatial smoothing is challenging issues. Inappropriate degree of spatial 

smoothing will lead to unreliable results (Musson, 2004).  Musson (2004) proposed a 

method to measure optimum smoothing using Monte Carlo simulations. He produced 

synthetic earthquakes randomly within a seismic zone and compared the result with 

the historical seismicity of the region. The size of the zone was considered 

appropriate if the distribution of synthetic events was consistent with historical 

seismicity. However, this approach only worked well to identify overly sized seismic 

zones (Musson, 2004). 
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In addition, the standard PSHA method assumes earthquake events occur randomly 

and independently. This implies that the earthquake recurrence function follows a 

Poisson distribution and fore-shock and after-shock events should be discarded from 

the earthquake catalogue (Petersen et al., 2007b) to minimise the dependency of each 

event. A method proposed by Gardner and  Knopoff (1974) can be utilised to remove 

aftershocks using a time and distance window as a function of earthquake magnitude. 

However, whether the main earthquakes are Poissonian or non-Poissonian events 

remains unclear, thus yielding a certain degree of uncertainty. 

The Poissonian model provides ease of the integration process as required in PSHA.  

This model is time independent, and as a result a constant hazard rate is applied over 

a given exposure time. However, this assumption does not agree with the Elastic 

Rebound Theory, which aims to characterise the real behaviour of earthquakes. The 

elastic rebound approach assumes that earthquake occurrence depends on past 

seismicity including time, size and location of preceding events (Adnan et al., 2005; 

Cramer et al., 2000; Ferraes, 2003; Petersen et al., 2007b; WGCEP, 1988; WGCEP, 

1995; WGCEP, 2003). Non-Poissonian or time-dependent models with varying 

hazard rate can be incorporated into PSHA, but would involve the use of more 

complex mathematical and computational formulations than for the conventional 

PSHA. 

2.3.3. PSHA with Stochastic Method 

PSHA using the stochastic method is based on Cornell’s approach. However, instead 

of solving the total probability theorem as required in the conventional PSHA, the 

stochastic approach directly calculates earthquake ground motions from synthetic 

earthquake catalogues  (Khan, 2011; Kythreoti, 2002; Musson, 2000; Musson, 2004; 

Shapira, 1983; Weatherill and Burton, 2010).  

Musson (2000) used Monte Carlo simulation to generate synthetic events for each 

seismic zone. The synthetic events were produced randomly within a seismic zone 

assuming that the seismicity in a seismic zone was uniformly distributed. The Monte 

Carlo approach allows flexibility in the selection of seismicity models to be adopted 

in the hazard, including non-Poissonian models for a time dependent PSHA without 

extensive programming. The uncertainties of input parameters in this method are 

easier to deal with using distribution functions with observed mean and standard 
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deviations, as shown by Weatherill and Burton (2010). In addition, the outcome of 

PSHA with the Monte Carlo approach can be directly incorporated to calculate the 

risk for each event, which is challenging to achieve in the standard PSHA due to the 

integration of vulnerability and hazard probability density functions. Musson (2000) 

compared the results of PSHA obtained from both conventional and Monte Carlo 

methods and found that, given the same input data, the outcomes of Monte Carlo 

approach were comparable with those of conventional method. However, the 

reliability of the Monte Carlo method increased with an increasing number of 

simulations. As a consequence, this method was computationally slow, especially 

when it involved a large number of simulations for high seismicity regions.  

However, this issue is becoming less important with increasing computer power 

(Musson, 2000).  

Alternative stochastic PSHA methods were proposed at the University of Sheffield 

(Khan, 2011; Kythreoti, 2002). Khan et al. (2010) argued that Musson’s approach 

tended to overestimate the hazard since the locations of synthetic earthquakes were 

equally smeared over the seismic zones. Therefore, Kythreoti (2002) and Khan 

(2011) generated synthetic earthquakes based on a defined boundary for each real 

event in the earthquake catalogue. 

Kythreoti (2002) carried out a parametric study for seismic hazard parameters such 

as earthquake magnitude, epicentral location and focal depth, and showed that 

uncertainties due to the determination of the hazard parameters can affect the 

reliability of seismic hazard assessment. Therefore, Kythreoti (2002) took into 

account those uncertainties to determine the parameters of new synthetic earthquakes 

(Equation 2.18 and Equation 2.19). 

( )RMR NeMM .0 ±=  2.18 

( )RHR NeHH .0 ±=  2.19 

where,  

MR  : the magnitude of a new synthetic event 

M0  : the magnitude of a real earthquake 

eM  : the error of earthquake magnitude determination 

NR  : a random number within a given range 
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HR  : the focal depth of a new synthetic event 

H0  : the focal depth of a real earthquake 

eH  : the error of focal depth determination 

Kythreoti (2002) assessed the seismic hazard for Cyprus, which has low to moderate 

seismicity. Kythreoti (2002) assumed that seismic waves spread from the earthquake 

hypocentre in a circular shape (Figure 2.2a) due to the limited rupture length of low 

to moderate magnitude earthquakes. Based on that assumption, Kythreoti generated 

synthetic earthquakes within the boundary of the estimated fault rupture. However, 

the relatively circular mode of fault rupture can only be used to represent low to 

moderate magnitude earthquakes. Whilst for large magnitude earthquakes, the waves 

radiate along the rupture line (Garcia-Fernandez and Egozcue, 1989; Khan, 2011; 

Khan et al., 2010), as illustrated in Figure 2.2b. Khan (2011) extended Kythreoti’s 

method to take into account high magnitude earthquakes and used Pakistan as a case 

study. Khan produced new synthetic earthquakes along the length and directivity of 

fault ruptures, as illustrated in Figure 2.2b and Figure 2.3, and calculated fault 

rupture characteristics such as rupture length, width and area using empirical 

equations developed by Wells and Coppersmith (1994). Most recent empirical 

relations to scale earthquake source parameters have been proposed by various 

studies (Blaser et al., 2010; Strasser et al., 2010); however, the relations are only 

derived for subduction environments. 

To minimise the incompleteness of instrumental earthquake catalogues, Khan (2011) 

merged historical and instrumental earthquake catalogues. He divided the earthquake 

magnitudes into 7 magnitude ranges (Mw 0-6, Mw 6-6.5, Mw 6.5-7, Mw 7-7.5,         

Mw 7.5-8, Mw 8-8.5 and Mw ≥8.5) and produced new synthetic earthquakes by 

randomising earthquake parameters in the combined catalogue. The randomisation of 

earthquake magnitude and focal depth was carried out over the error margins eM and 

eH as expressed in Equations 2.18 and 2.19, respectively. Afterwards, Khan (2011) 

selected the new synthetic events randomly to produce the same number of events for 

each magnitude category in the instrumental catalogue. In brief, Khan (2011) used 

the number of events in the instrumental catalogue to represent seismicity of a region 

and to prevent the overestimation of hazard due to the inclusion of historical 

earthquakes. The selected synthetic events were then simulated to obtain a ground 

motion response using ground motion attenuation relationships. 
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Figure 2.2.  Generation of new random event and earthquake intensity: (a). spreading 

from focal point; (b). spreading from the rupture line or EFL (Khan, 2011) 

 
Figure 2.3.  Area of synthetic earthquake event and its orientation related to the fault 

line (Khan, 2011) 

The reliability of Khan’s approach depends strongly on the completeness of the 

earthquake catalogues. A minimum duration of instrumental catalogue, which covers 

at least one sequence of the longest earthquake return period of the area, is required 

for this method. Otherwise, the method may underestimate the return period of 

higher magnitude earthquakes, which could result in a higher hazard; it can also 

underrate earthquake rates, particularly for lower magnitude events. For example, an 

area with a history of mega magnitude earthquakes may require a few hundred years 

of instrumental catalogue to represent its seismicity well. This extensive instrumental 

catalogue is rarely, if ever, available, particularly for developing countries.  In 

addition, unexpectedly large magnitude earthquakes such as those that hit Japan in 

2011 (Mw 9.0) and Sumatra in 2004 (Mw 9.1) have shown that sometimes the 

historical records do not contain all probable earthquakes in a region. Therefore, a 

method should be developed to take into account potential earthquakes, especially 

along seismic gaps. This topic is discussed in Chapter 3.  
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2.3.4. Time Dependent Seismic Hazard Assessment 

The development of a time dependent seismic hazard model is intended to extend 

conventional PSHA by applying a varying hazard rate to the PSHA model. It is 

assumed that in a time dependent model, the probability of earthquake occurrence 

depends on the time since last large earthquake (WGCEP, 1995). In other words, 

major or characteristic earthquakes might occur if the elastic strains on a fault 

segment have re-accumulated to the amount that was released in previous large 

earthquakes (WGCEP, 2003). This assumption agrees with the Elastic Rebound 

Theory, which explains the earthquake mechanism. Consequently, the hazard rate 

increases when elapsed time since the last large earthquake has almost reached its 

return period or when seismic gaps are present in a region. For both cases, a time 

independent PSHA model is not satisfactory as it does not recognise the increased 

rate of upcoming hazards. Thus, the time dependent model is more effective for 

identifying short-term hazard (Akinci et al., 2009).  

Petersen et al. (2007) compared time independent and time dependent PSHA for 

California, assuming a 10% probability of exceedance for 30 years since 2006. They 

found that the differences of PGA values between time dependent and time 

independent were approximately 10-15%. The distinctions were more obvious near 

time dependent sources, where seismicity of the areas clearly showed a periodic 

nature. The PGA values for areas distant from the time dependent sources were 

comparable with those of the time independent model. 

A time-dependent PSHA requires several parameters to be known, including elapsed 

time since last large earthquake, as well as the definition of the fault segments. 

Appropriate fault segmentation is essential to get reliable earthquake recurrence 

interval parameters for hazard assessment. Inadequate segmentation may lead to 

inaccurate results (WGCEP, 1988). Fault segments are defined based on earthquake 

slip rate, fault creep, historical earthquakes and the geometry of examined faults 

(Field, 2007; WGCEP, 1988). A basic assumption to determine segment ruptures is 

that the total slip rate produced by the estimated earthquake rate is equivalent to the 

slip rate of long term seismicity (WGCEP, 1995).  In general, a single segment, or 

multi segment ruptures, can be used for estimating rupture probabilities. The single 

segment rupture produces a lower recurrence interval that leads to higher hazard 
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probabilities (2007 WGCEP, 2008). However, this approach results in more practical 

calculations, as presented in the earlier versions of the WGCEP’s models (WGCEP, 

1988; WGCEP, 1990). The multi segment rupture approach requires extensive 

calculations, more seismological information and produces more uncertainties. 

There are various models for assessing time dependent seismic hazards. Most models 

utilise the probability density function (pdf) of earthquake recurrence intervals. 

Figure 2.4 illustrates the underlying principles of probability calculation for a time 

dependent seismic hazard, which can be described as follows (WGCEP, 2003): 

( ) ( )∫
∞

=
T

dttfTF  2.20 

( ) ( ) ( )tFtfth =  2.21 

where, 

𝐹(𝑇) :  probability that at least time T will elapse between successive events 

𝑓(𝑇) :  probability density function indicating the likelihood of failure from T  

to T+∆T with condition that the major event has not occurred prior to T 

T :  elapsed time since last earthquake 

∆T :  time interval 

ℎ(𝑡) :  hazard function 

Conditional probability that one or more earthquake will occur on a seismic source 

during a particular time interval is defined as follows: 

𝑃(𝑇 ≤ 𝑡 ≤ 𝑇 + ∆𝑇|𝑡 > 𝑇) =  
𝐹(𝑇)−  𝐹(𝑇 + ∆𝑇)

𝐹(𝑇)  2.22 

  

 
Figure 2.4.  Illustration of conditional probability calculation based on a probability 

density function (WGCEP, 2003) 
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As mentioned earlier, the probability distribution of hazard rate in the time dependent 

approach is assumed to be varied with time. Accordingly, renewal models of 

probability distributions are generally used including gamma, Weibull, log-normal 

(Petersen et al., 2007b; WGCEP, 1988; WGCEP, 1990; WGCEP, 1995) and 

Brownian Passage Time (2007 WGCEP, 2008; Akinci et al., 2009; Matthews et al., 

2002; WGCEP, 2003). The renewal models take into account the statistical 

distribution of rupture times (WGCEP, 2003). Generally, the models require at least 

two parameters including mean recurrence intervals (𝜇) and the variability of the 

recurrence interval. The mean recurrence interval is defined as follows: 

𝜇 = 1/𝜆 2.23 

where, λ is the mean rate of events per unit time.  

The probability distribution function (PDF) of gamma distribution is shown in 

Equation 2.24 with a shape parameter k and scale parameter λ. The density function 

of gamma distribution resembles the exponential distribution as k=1. 

𝑓(𝑡) =  𝜆
𝑘 𝑡𝑘−1 𝑒−𝜆𝑡

Γ(𝑘)  ,       𝑘, 𝜆 > 0, 𝑡 ≥ 0 2.24 

Where, Γ(𝑘) is the gamma function �Γ(𝑘) =  ∫ 𝑡𝑘−1 𝑒−𝑡 𝑑𝑡∞
0 �. 

Equation 2.25 shows the PDF of Weibull distribution. Similar with the gamma 

distribution, the behaviour of the Weibull distribution depends on the value of shape 

parameter k. A value of 𝑘 < 1 indicates a decreased rate of hazard over time, 𝑘 = 1 

shows a constant rate and 𝑘 > 1 indicates an increased rate with time. 

𝑓(𝑡) =  𝑘
𝜆

 �𝑡
𝜆
�
𝑘−1

𝑒−(𝑡/𝜆)𝑘  ,       𝑘, 𝜆 > 0, 𝑡 ≥ 0 2.25 

Other commonly used distributions in the time dependent approach are lognormal 

and Brownian Passage Time (BPT). The lognormal distribution is generally 

applicable for circumstances with multiplicative random effects (Soong, 2004).  The 

lognormal distribution contains two parameters, σ and µ, which denote standard 

deviation and mean recurrence interval, respectively. The shape of the lognormal 

distribution depends on the value of σ. Smaller values of σ will produce higher peak 

of distribution. The PDF of the lognormal distribution is shown in Equation 2.26. 
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𝑓(𝑡) =  1
𝑡 √2𝜋𝜎2

 𝑒
−(ln 𝑡−𝜇)2

2𝜎2  ,       𝜎2 > 0, 𝑡 ≥ 0 2.26 

The shape of lognormal distribution is really close to that of the BPT, as seen in 

Figure 2.5b. However, after reaching a maximum value, the hazard function of the 

BPT distribution is not abruptly decreased as that observed in the lognormal model. 

The key parameters to determine the BPT distribution are the mean recurrence 

interval (µ) and aperiodicity (α). Aperiodicity characterises the irregularity of the 

length of interval between successive events (WGCEP, 2003). Smaller values of α 

indicate a relatively regular sequence of events and the distribution becomes more 

Poisson-like with increasing values of α. The PDF of the BPT distribution is shown 

in Equation 2.27.  

𝑓(𝑡) =  � 𝜇
2𝜋𝛼2𝑡3

  𝑒−
(𝑡−𝜇)2

2𝜇𝑡𝛼2  ,       𝛼, 𝜇 > 0, 𝑡 ≥ 0 2.27 

Where,  

µ : mean recurrence interval 

σ : standard deviation of the distribution 

α : the variability of recurrence interval (𝛼 = 𝜎/𝜇) 

 
Figure 2.5. Comparison of several probability models used in long-term earthquake 

forecasting (WGCEP, 2003) 

Figure 2.5 plots the probability models commonly used for PSHA. It shows that the 

exponential or Poissonian models do not take into account elapsed time since the last 

large earthquake and it applies a constant hazard rate over the exposure time (Figure 

2.5b). This means that the probability of a large earthquake occurring the next day 

after a recent event is equivalent to the probability of such event happening a 

(a). (b). 

27 
 



Chapter 2  Literature Review 

hundred years later on the fault segment. This assumption does not represent the 

physics of the earthquake process well. Therefore, the Poissonian model is only 

appropriate to be used in the case of limited availability of seismological information 

(WGCEP, 2003). 

In contrast, the renewal models, such as Brownian Passage Time (BPT), lognormal, 

gamma and Weibull, apply zero failure rates instantaneously after an event and 

assume varying hazard rate over time (see in Figure 2.5). Nishenko and Buland 

(1987) assessed the distribution of earthquake recurrence intervals using empirical 

data. They concluded that the lognormal model gave the best fit to the normalised 

recurrence interval distribution compared with the exponential, gamma and Weibull 

models. However, WGCEP (2003) argued that a hazard function based on the 

lognormal distribution always goes to zero as time (t) reaches infinity (Figure 2.5b). 

This condition does not satisfy the long-term behaviour of the earthquake renewal 

cycle (Matthews et al., 2002). Therefore, WGCEP (2003) adopted the BPT 

distribution for their time dependent PSHA model. To consider that the shape of the 

BPT distribution is really close to that of lognormal (see Figure 2.5b), hence, the 

BPT function represents well the distribution of earthquake recurrence interval 

(WGCEP, 2003).  

Ellsworth et al. (1999) estimated aperiodicity based on 37 series of recurrent 

earthquakes, which ranged from 3 to 13 sequences of events and found that a finite 

length of sequences (two or three intervals between events) could lead to unreliable 

aperiodicity values. Akinci et al. (2009) limited their aperiodicity calculations to the 

sequences that had at least three and four close intervals (i.e. 5 events). It means that, 

to get acceptable values of aperiodicity, a long duration of earthquake catalogues that 

contain a few sequences of major earthquakes is required. This information is rarely 

available for most regions, even more so for developing countries. 

Reasenberg et al. (2003) argued that the previous time dependent models did not 

appropriately account for the stress shadow effect of the 1906 earthquake in 

California. Consequently, their results could overestimate the hazard. Therefore, 

Reasenberg et al. (2003) proposed an alternative method for assessing earthquake 

probabilities. The so-called empirical model is based on earthquake rates from 

historical earthquake activity and is basically a variant of the Poisson model. 
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However, it modulates the long-term mean rate of earthquakes in the Poisson 

distribution to be non-stationary and time dependent, as illustrated in Figure 2.6. 

Future seismicity can be estimated by extrapolating 𝛾(𝑡) forward in time 

(Reasenberg et al., 2003; WGCEP, 2003).  

 
Figure 2.6. Modulation of the long-term mean regional rates using the time-varying 

rate function,  f(t) (Reasenberg et al., 2003) 

The time varying rate function 𝛾(𝑡) (similar to 𝑓(𝑡) in Figure 2.6) is given by 

Equation 2.28 and earthquake probability for fault-i with mean rate 𝜆𝑖 is shown in 

Equation 2.29 (WGCEP, 2003). 

𝛾(𝑡) =  𝜆(𝑡) 𝜆⁄  2.28 

𝑃𝑖
𝐸𝑚𝑝 = 1 −  𝑒−𝛾� 𝜆𝑖 Δ𝑡 2.29 

where, 

𝜆(𝑡)  :  varying rate estimated from historical earthquake records 

𝜆 :   long term mean rate of earthquakes in the region 

 𝛾̅  :  average of 𝛾(𝑡) over (𝑡, 𝑡 + Δ𝑡) 

The empirical approach complements other models since it takes into account 

moderate size earthquakes (M≥5.5), which are not considered in the BPT, Poisson or 

time-predictable probability models (WGCEP, 2003).  Moreover, the method can be 

easily adapted for upgrading the existing stochastic PSHA models (Khan, 2011; 

Kythreoti, 2002; Musson, 2000) to be time dependent. The empirical model has been 

implemented in various studies to estimate seismic hazard empirically (2007 
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WGCEP, 2008; WGCEP, 2003). The empirical model will adequately fit the 

observed regional seismicity rates considering that there are no significant altering 

events (Felzer, 2008). Reasenberg et al. (2003) calculated seismicity rates in ten 

different models for the San Francisco Bay region and took the average of those for 

the final seismicity rates (see Table 2.1). Model A to D were performed by taking 

mean rate of earthquakes over certain time periods and magnitude ranges. Model E 

and F assumed a linear increase of seismicity. Model G to J adopted a seismic cycle 

model so that seismicity rates would drop immediately after large earthquakes. 

Felzer (2008) only took into account Reasenberg’s mean method to develop the 

empirical model for California. Felzer (2008) argued that the seismicity rate in San 

Francisco Bay region did not linearly increase as suggested by Reasenberg’s model E 

and Felzer (2008) added that the G to J models were also lacking accuracy, since the 

seismicity rates were likely to be dropped after the end of aftershock sequence and 

most foreshock sequences were short; thus they did not represent the long term 

seismicity of the San Francisco region well, which was hypothesised by a seismic 

cycle model. However, seismicity characteristics are different among regions; 

therefore, further investigations are recommended to enhance the use of the linear 

trend or the seismic cycle models for a time dependent seismic hazard model. 

Table 2.1. Extrapolation of Regional Rate (Reasenberg et al., 2003) 

Model Data Time 
Period Method 

Mean rate 
(M≥6.7) in 
2002-20311 

Mean of f(t) 
in 2002-20312 

Mean of f(t) 
over one 

cycle 

A M ≥ 3.0 1942-1998 Mean 0.014 0.47 - 

B M ≥ 3.0 1984-1998 Mean 0.016 0.53 - 

C M ≥ 5.5 1906-2000 Mean 0.011 0.37 - 

D M ≥ 5.5 1979-2000 Mean 0.020 0.67 - 

E M ≥ 3.0 1942-1998 Linear trend 0.016 0.53 - 

F M ≥ 3.0 1970-1998 Linear trend 0.020 0.67 - 

G M ≥ 5.5 1970-2156 Seismic cycle-linear rise 0.027 0.90 1.00 

H M ≥ 5.5 1970-2351 Seismic cycle-linear rise 0.020 0.67 1.15 

I M ≥ 5.5 1970-2156 Seismic cycle-exponential rise 0.019 0.63 0.96 

J M ≥ 5.5 1970-2351 Seismic cycle-exponential rise 0.014 0.47 0.74 

Rundle et al. (2005) performed numerical simulations to estimate time dependent 

probability of great earthquakes in San Francisco region using a physical earthquake 

1 Rates are extrapolated to M ≥ 6.7 by assuming a Guntenberg-Richter relation with b=0.9. 
2 Based on a long-term mean annual rate (M ≥ 6.7) of 0.031.  
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model (see Section 2.3.1.4). The simulation based method was different with those 

given by WGCEP (2003) since it did not directly use the probability distribution of 

recurrence times. Instead, the probability distribution was characterized by modelling 

the slip on fault segments; thus, fault interactions and frictional physics were taken 

into account (Rundle et al., 2005). In the method, detailed slip history of fault 

segments for longer duration of seismicity and the interaction among neighbouring 

faults could be obtained, which were difficult to be achieved in the conventional 

field-based approach. Nevertheless, the numerical simulation models require 

rigorous seismological information (see Section 2.3.1.4), which is rarely available in 

developing countries. 

2.3.5. Previous PSHA studies of Sumatra 

An early seismic hazard study of Indonesia was presented in the first Indonesian 

Earthquake Resistant Design Code for Buildings (PPTI-UG-1983). The hazard map 

was produced by Beca Carter Hollings and Ferner, in 1978, as part of the bilateral 

collaboration between Indonesia and New Zealand (Irsyam et al., 2010; Sutjipto, 

1994). The seismic hazard map was developed based on a 200 year earthquake 

recurrence period and divided the Indonesian region into 6 seismic zones. Almost 

two decades later, the seismic code was revised to comply with the American 

Uniform Building Code (UBC) 1997. The code was ratified in 2002 and is known as 

SNI 03-1726-2002. In this code, an earthquake return period of 500 years was 

assumed for the seismic hazard assessment and the hazard map basically consists of 

6 seismic zones with 0.30g as the maximum value for base rock accelerations (Figure 

2.7). Presently, the SNI 03-1726-2002 is still the official seismic design code for 

buildings in Indonesia. 
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Figure 2.7. Seismic hazard map of Sumatra (SNI 03-1726-2002, 2002) 

The seismic activity in Indonesia has increased significantly in the past decades. The 

Great Sumatra earthquake with Mw 9.1 struck northern part of Sumatra in 2004. This 

was followed by a destructive tsunami and resulted in more than 200,000 fatalities. 

This event highlighted the importance of identifying potential hazard, particularly for 

the susceptible regions. Since then, more seismic hazard studies were carried out for 

the Indonesian regions (Asrurifak et al., 2010; Briggs et al., 2008; Chlieh et al., 2008; 

Irsyam et al., 2008; Irsyam et al., 2010; Petersen et al., 2007a; Petersen et al., 2004; 

Sengara et al., 2007; Sieh, 2005; Sieh, 2007; Sieh et al., 2008) and most of them 

recommended seismic hazard maps with higher PGA values than currently applied in 

the Indonesian seismic codes. Figure 2.8 and Figure 2.9 show seismic hazard maps 

for the Sumatra area developed by Petersen et al. (2004) and Irsyam et al. (2008), 

respectively. 
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Figure 2.8. Seismic hazard map of Sumatra at 10% probability of exceedance in 50 

years on rock site (Petersen et al., 2004) 

 

Figure 2.9. Seismic hazard map of Sumatra at 10% probability of exceedance in 50 

years on rock site (Irsyam et al., 2008) 
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Considering the recent seismicity of Indonesia as well as recently available 

seismological data, the Indonesian Ministry of Public Works initiated a revision of 

the Indonesian seismic code in 2006. A revision team was formed that consisted of 

government agencies, academics, and professionals with various expertise including 

geology, seismology, tomography, crustal deformation, earthquake geotechnical and 

structural engineering (Irsyam et al., 2010). The team proposed new hazard maps of 

Indonesia for 10% and 2% probability of exceedance in 50 years. The seismic hazard 

assessment was carried out using the conventional PSHA method with constant 

hazard rate over the exposure period (a time independent PSHA model). Figure 2.10 

illustrates the proposed hazard maps, which shows higher acceleration values than 

those of the former code. The increase of hazard values is due to the use of three 

dimensional (3D) fault models as well as the adoption of higher maximum 

magnitude as a result of mega magnitude earthquakes occurring in the recent years 

(Asrurifak et al., 2010). 
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Figure 2.10. Maps of Peak Ground Acceleration (PGA) of Sumatra: a). for 10% 

probability of exceedance in 50 years; and b). for 2% probability of exceedance in 50 

years (Irsyam et al., 2010) 

(b). 

PGA 

PGA 

(a). 
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2.4. TSUNAMI HAZARD ASSESSMENT  

2.4.1. Introduction to Tsunami Hazard 

“Tsunami” in Japanese means “harbour wave”’ (“tsu”= harbour, “nami” = wave) as 

cited in IOC (2008).  Tsunami can be defined as a series of travelling waves 

associated with impulsive disturbances in the oceans (i.e. earthquake, volcanic 

eruptions, submarine landslide or meteorite impact), which has a great wave length 

and period (IOC, 2008). In deep oceans, the length of tsunami waves can exceed 500 

km with period between 100 to 2000 seconds. In deep sea, the height of tsunami 

waves is relatively small (less than 0.4 m) and sometimes goes unnoticed (Bryant, 

2001). However, the tsunami height increases considerably in shallow water. 

Tsunami waves travel very quickly, depending on the depth of sea water. The waves 

move around 600-900 km/hour in deep ocean, about 100-300 km/hour in continental 

shelf and around 36 km/hour on shore (Bryant, 2001). The velocity of tsunami at sea 

(assumed as long and linear waves) can be estimated using Equation 2.30 and the 

velocity on shore can be approximated by Equation 2.31 (Bryant, 2001).  

dgC =  2.30 

sr Hgv 2=  2.31 

where,  

C  : celerity of the wave (m/s) 

g  : gravitational acceleration (9.81 m/s2) 

d  : water depth (m) 

𝑣𝑟  : velocity of run-up (m/s) 

𝐻𝑠  : wave height at shore or the toe of the beach (m) 

In addition, the tsunami waves are not travelling at the same speed.  Long-period 

waves travel faster than the shorter ones and reach the shore earlier.  As a result, 

there could be a series of tsunami waves in one tsunami event. This phenomenon is 

known as dispersion.  Tsunami waves can be idealised into several forms, as 

illustrated in Figure 2.11.  In deep oceans, the waves suit the sinusoidal form.  

However, as the waves approach the shoreline, the waves are better modelled as 

solitary or N-waves (Bryant, 2001). 
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Figure 2.11.  Idealised models of tsunami waves (Bryant, 2001) 

The mechanism of a tsunami can be described in a few stages including initiation, 

split, amplification and run-up (Figure 2.12).  The initiation process begins as the sea 

floor suddenly deforms and vertically displaces the overlying water.  The displaced 

water is pushed above mean sea level and exerts potential energy. The potential 

energy is then transformed into kinetic energy through the propagation of tsunami 

waves.  At the latter stage, the tsunami waves split and move into two opposite 

directions. The waves that travel landward may cause local tsunami (< 100 km of 

travel distance) and the waves that move seaward may result in regional (100-1000 

km) and distant tsunami (> 1000 km of travel distance). As the tsunami reaches the 

continental shelf, tsunami amplitude increases, but the period of the wave decreases.  

As a result, the waves would be steepened and create run-up onshore (USGS, 2008). 

A tsunami run-up (Hr) characterises the height of a tsunami onshore, above mean sea 

level (see Figure 2.13).  A tide gauge record in Japan, due to a distant tsunami, is 

shown in Figure 2.14. The figure illustrates the determination of tsunami amplitude 

and wave height from tide data. 

 

Figure 2.12.  The illustration of Tsunami Mechanism, unscaled (USGS, 2008) 

37 
 



Chapter 2  Literature Review 

 

 

Figure 2.13. Various terms associated with tsunami (Bryant, 2001) 

 

Figure 2.14. Tide gauge record at Miyako, Japan due to the 1960 Chilean earthquake 

that triggered distant tsunami (Satake, 2002) 

2.4.2. Magnitude Scale of Tsunami 

The intensity scale of tsunami was initially proposed by Sieberg in 1927 and then 

modified by Ambraseys in 1962 (Levin and Nosov, 2009). The Sieberg-Ambraseys 

tsunami intensity scale categorises tsunami in terms of their destructive effect on 

coastal areas. These early generations of tsunami scales do not contain any tsunami 

physical parameters such as tsunami run-up height and wave length.   

In 1942, Imamura developed a tsunami magnitude based on tsunami run-up height. 

The method was later improved by Iida (Levin and Nosov, 2009) and has since been 

known as the Imamura-Iida scale. The Imamura-Iida scale is widely used in tsunami 
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catalogues. The Imamura-Iida scale is defined in Equation 2.32  and presented in 

Table 2.2. 

( )max2log rII Hm =  2.32 

where, 

mII  : Imamura-Iida’s tsunami magnitude scale 

Hrmax  : maximum tsunami run-up height (m) 

Table 2.2. Tsunami magnitude scale (Iida, 1963 cited in Bryant, 2001) 

Earthquake Magnitude 
(Richter Scale) 

Tsunami 
Magnitude 

Maximum 
Run-up (m) 

6.0 -2 < 0.3 
6.5 -1 0.50 – 0.75 
7.0 0 1.00 – 1.50 
7.5 1 2.00 – 3.00 
8.0 2 4.00 – 6.00 
8.2 3 8.00 – 12.0 
8.5 4 16.0 – 24.0 
8.8 5 > 32 

The maximum run-up heights of tsunami along coastlines are likely to be varied. 

Hence, Soloviev modified the Imamura-Iida scale to take into account the variability 

of tsunami heights along a coast.  Instead of using maximum tsunami run-up height, 

Soloviev utilised mean run-up height as seen in Equation 2.33 and Table 2.3. The 

scale was later known as the “Soloviev-Imamura Tsunami Intensity Scale”.  

( )HI 2log2/1 +=  2.33 

where, 

I  : Soloviev’s tsunami intensity 

H : mean tsunami run-up height on the coast closest to tsunami source (m) 

Table 2.3. Soloviev’s tsunami intensity scale (Horikawa and Shuto, 1983 cited in 

Bryant, 2001) 

Tsunami 
Intensity 

Mean Run-up 
Height (m) 

Maximum Run-up 
Height (m) 

-3.0 0.1 0.1 
-2.0 0.2 0.2 
-1.0 0.4 0.4 
0.0 0.7 0.9 
1.0 1.5 2.1 
2.0 2.8 4.8 
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Tsunami 
Intensity 

Mean Run-up 
Height (m) 

Maximum Run-up 
Height (m) 

2.5 4.0 7.9 
3.0 5.7 13.4 
3.5 8.0 22.9 
4.0 11.3 40.3 
4.5 16.0 73.9 

Abe (1979) developed a tsunami magnitude scale (Mt) based on the maximum 

amplitude of tsunami waves recorded by tide gauges. Abe observed that the 

maximum tsunami amplitudes (H) in the Pacific region were strongly related to the 

earthquake moment magnitudes (Mw). This suggested that tsunami magnitude scale 

(Mt) could also be correlated to Mw. Abe (1979) calibrated the instrumental tsunami 

data in the Pacific region and equated Mt = Mw to obtain a constant “C”. Initially, 

the method was applied for far-field tsunami. Then, the method was improved to 

include near-field events. Abe defined the tsunami magnitude formula as the 

following (Abe, 1981; Abe, 1985; Abe, 1995): 

( ) ( ) DRaHMt ++= log.log   2.34 

where,  

H : maximum tsunami amplitude (m) 

Mt : earthquake moment magnitude 

R : epicentral distance (km) 

a : a constant to characterise tsunami amplitude-decay relation with distance 

D : a constant required to fulfil Mt = Mw on the average for the calibration  

   data set 

Abe (1989) demonstrated that the Mt scale represents the seismic moment and the 

physical parameters of tsunamigenic earthquakes, as discussed in the next section. 

2.4.3. Estimation of Tsunami Wave Height from Earthquake Magnitude  

Further research was conducted to determine the correlation of the tsunami 

parameters such as wave amplitude and distance with the tsunami magnitude scale 

Mt (Abe, 1981; Abe, 1985; Abe, 1995). An empirical approach was adopted and the 

tsunami data from the tide stations in Japan were assessed.  Abe (1981, 1985 and 

1995) found that the maximum amplitude of tsunami waves corresponded to seismic 

moment (Mo) produced by the earthquake, which was related to rupture areas, 
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average sea floor displacement, as well as shear modulus of the rocks where the area 

ruptured.  The Mw scale was related to the seismic moment as follows: 

( ) 5.11.16log −= ow MM  2.35 

SDMo µ=  2.36 

where,  

Mw : earthquake moment magnitude 

Mo : seismic moment (dyne.cm) 

 µ : rigidity (dyne/cm2) 

D : the average displacement of fault (cm) 

S : the area of the fault (cm2) 

Tsunami amplitude can be estimated from Equation 2.34 by assuming Mt=Mw. 

Through a regression procedure, Abe (1981) obtained a relation for tsunami 

propagation distance in Japan, as shown in Equation 2.37. 

( ) ( ) CRMH wt +−−= 55.5loglog  2.37 

where,  

Ht  : tsunami height (m) 

Mw  : earthquake moment magnitude 

R  : distance (km) 

C  : constant (C = 0.00 for tsunami in the fore arc and C = 0.2 for tsunami in  

   the back arc) 

Equation 2.37 is applicable for regional data of 100-3500 km. However, the equation 

would produce extremely large wave heights for near field events. In this case, Abe 

(1995) proposed a minimum distance (Ro) and limited the tsunami height near 

tsunami source, as shown in equations 2.38 and 2.39. 

( ) 25.25.0log −= wo MR  2.38 

( ) CMH wr +−= 30.35.0log  
2.39 

where,  

Ro  : the radius of a circular fault (km)  

Hr  : limiting tsunami height near the source (m) 
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Based on tsunami observation data, Abe (1995) reported that for a local tsunami, Ht 

actually represents local mean of tsunami run-up height and 2Ht corresponds to the 

maximum run-up of local tsunami at each segment.  For regional tsunami, Hr 

represents the maximum of local tsunami height and 2Hr characterises the maximum 

of all data (Hmax). Verification against tsunami observation data shows that Equation 

2.39 tends to overestimate tsunami run-up heights. However, the method is 

applicable for near-field tsunami warning systems that require rapid evaluation of 

tsunami amplitudes (Abe, 1995). Abe’s approach is relatively simple and takes into 

account the quantitative parameters of tsunami including wave heights and epicentral 

distance. Nevertheless, the method does not take into account the effect of 

bathymetry or topography of an area.  Abe (1995) argued that the mean-height of 

tsunami was less responsive to topographic irregularities than the tsunami maximum 

height, thus the method is acceptable for tsunami hazard analysis for mitigation 

purposes. Moreover, Abe (1989) showed that regional variation has a negligible 

effect on the amplitude-distance relation, with the condition that the number of 

stations is considerable and well distributed. 

Nevertheless, Abe’s amplitude-distance relation is not applicable to tsunami 

earthquakes. A tsunami earthquake refers to an earthquake that produces immensely 

large tsunami despite its weak seismic waves (Abe, 1989). Kanamori (1972) 

characterises the tsunami earthquake as an earthquake that has long period of fault 

rupture, moderately small rupture zone, but exceptionally large average 

displacement. Abe (1989) compared the earthquake surface wave magnitude (Ms) 

and the tsunami magnitude of the tsunamigenic events in Japan. The result shows 

that most tsunamigenic events produce a good correlation between Mt and Ms. 

However, the trend tends to deviate for tsunami earthquakes. Based on this finding, 

Abe (1989) categorises an event as tsunami earthquake if (Mt – Ms) ≥ 0.5. 

There are several factors affecting run-up heights such as configuration of the shore, 

diffraction, standing wave resonance, edge wave that moves at right angles to the 

shoreline and refraction energy (Bryant, 2001).  Generally, a tsunami dissipates its 

energy through a frictional attenuation with the seabed. Steep shoreline has lesser 

amount of frictional attenuation, and therefore, dissipates less energy than that of the 

lower slope coastline. Abe (1985) observed that the tsunami potential in the Japan 

sea is larger than that in the Pacific ocean. Abe discovered that the difference is 
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contributed by the assumed rigidity of the source medium between the Japan Sea and 

Pacific Ocean for determining their seismic moments. The difference leads to about 

0.2 unit of Mt. In addition, the geometry of a fault rupture plays a significant role for 

tsunami potential. Bryant (2001) reveals three types of faults that can trigger tsunami 

including a vertical strike-slip fault and a dip-slip fault, which includes normal and 

thrust fault types. However, an event on a thrust fault has more potential for 

generating tsunami. 

2.4.4. Tsunami Inland Penetration 

The extent of tsunami inundation depends on the volume of water passing onshore.  

Long periods of tsunami waves usually produce greater inundation.  The cross-

sectional area of inundated shoreline is equal to the cross-sectional area under the 

tsunami as shown in Figure 2.15.  Inland penetration of tsunami can be estimated, as 

the following (Bryant, 2001): 

( ) knHx s
233.1

max
−=  2.40 

where,  

xmax  : limit of inland incursion (m) 

Hs  : water height onshore 

n  : Manning coefficient, which reflects surface roughness of penetrated  

   lands (see Table 2.4). 

k  : denotes a constant (=0.06)  

 
Figure 2.15. Cross sectional area of inundated coast and volume of tsunami (Bryant, 

2001) 
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Table 2.4. Manning’s coefficient associated with land surface (Bryant, 2001) 

No. Coast Surface Type Manning’s Coefficient 

1. Very smooth terrain such as mud flats or pastures 0.015 

2. Areas covered by buildings 0.03 

3. Densely treed landscapes 0.07 

2.4.5. Probabilistic Tsunami Hazard Analysis (PTHA) 

In the past, tsunami hazard assessment mainly relied on scenario or deterministic 

models.  Deterministic hazard analysis is usually used to assess tsunami hazard prior 

to the development of the probabilistic model. As is also the case for the 

deterministic seismic hazard model; the deterministic tsunami model is known for its 

conservatism in terms of selecting maximum credible events. The method is likely to 

set higher limits of input parameters, especially when the scenarios do not consider 

the historical events (Geist and Parsons, 2006). However, the approach has been 

improved by the development of Probabilistic Tsunami Hazard Analysis (PTHA), 

which is based on the PSHA method. The PTHA has distinct principles from those of 

PSHA. The PTHA must consider far field sources to take into account regional 

tsunamis (about 100 to 1000 km of travel distance) as well as distant tsunamis (more 

than 1000 km of tsunami travel distance). PSHA depends on attenuation 

relationships; whereas PTHA is based on tsunami propagation models (Geist and 

Parsons, 2006). Empirical and computational models of PTHA are generally used in 

tsunami hazard assessments. The empirical method is suitable for a region with 

relatively complete tsunami catalogue (Brizuela, 2005; Burbidge et al., 2008; Geist 

and Parsons, 2006) and the computational method is preferable for areas with lack of 

tsunami data (Appuhamy, 2007; Løvholt et al., 2008; Parsons and Geist, 2009; 

Power et al., 2007; Puspito and Gunawan, 2005). The empirical method is easier to 

implement and requires moderate modelling capabilities. However, the method is 

unable to appropriately characterise local characteristics of tsunamis, which results in 

increased uncertainty (Strunz et al., 2011). On the other hand, the numerical method 

involves tsunami numerical simulations to obtain tsunami parameters, including 

tsunami wave heights in an examined area. The method requires a physical model of 

tsunamis including hydraulic parameters so that more detailed analysis of tsunami 

hazard can be obtained (Strunz et al., 2011). Furthermore, the tsunami numerical 
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models can be integrated with Monte Carlo simulations to generate a synthetic 

tsunami catalogue (Geist and Parsons, 2006; Power et al., 2007). Synthetic 

tsunamigenic earthquakes are produced to complement tsunami data in the 

investigated study areas. 

Latief et al. (2008) proposed an integrated probabilistic seismic and tsunami hazard 

analysis (PSTHA) method. The method was based on the well-established PSHA that 

consisted of a recurrence model for potential tsunami sources, maximum magnitude, 

total probability theorem and the wave propagation to the investigated site. Latief et 

al. (2009) carried out a probabilistic tsunami hazard assessment for the city of  Banda 

Aceh in Sumatra. The method used a PSHA computer program, called EZ-FRISK, to 

find the relationship of subduction earthquake magnitude, peak acceleration and 

tsunami height, which corresponded to various return periods (Latief et al., 2008; 

Latief et al., 2009). To assess the tsunami hazard probabilistically, Latief et al. 

(2009) only activated the subduction zone as the main tsunami source of the area. 

Hence, the return period of the tsunamigenic earthquakes could be obtained. 

Nevertheless, the study did not take into account far field tsunami sources and 

applied a constant rate of tsunami occurrence for every earthquake magnitude 

considered in the analysis. In fact, not every earthquake in the subduction area could 

produce a tsunami. Larger earthquakes (Mw > 7.5) are more likely to generate 

tsunami than the smaller ones; thus, they have different rates. As a consequence, this 

method is valid if the minimum threshold of earthquake magnitude is sufficiently 

high to ensure the occurrence of tsunami, and the contribution of far field tsunami 

sources to the hazard in the area is negligible. 

2.4.6. Tsunami Numerical Simulations 

Various tsunami numerical propagation models can be utilised for tsunami hazard 

assessment including MOST (Titov and Gonzalez, 1997), SAGE Model (Gisler et al., 

2006; Løvholt et al., 2008), TUNAMI (Imamura et al., 2006), NAMI-DANCE 

(Zaytsev et al., 2002).  

The MOST (Method of Splitting Tsunami) model was developed by Titov of PMEL 

(Pacific Marine Environmental Laboratory) and Synolakis of University of Southern 

California. The program had been used as standard tools for tsunami estimations for 

NOAA (National Oceanic and Atmospheric Administration) Centre for Tsunami 
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Research in the USA. The program was based on a finite difference method. The 

MOST propagation model accounted for numerical dispersion scheme, Coriolis force 

and non-linear shallow water wave equations in spherical coordinates, which were 

numerically solved using a splitting method (Titov and Gonzalez, 1997). The MOST 

had the capability to compute all stages of tsunami process such as tsunami 

generation, propagation and run-up and the model was used to simulate the 1996 

Andreanov tsunami and the resulted runup distributions were comparable with those 

of the actual observations (Titov and Gonzalez, 1997). In tsunami numerical 

simulations, relatively coarse grids can approximate the wave in deep water well; 

however, as the wave reached shallow water, high-resolution grids are required. 

Hence, nested computational grids were utilized in the MOST model to allow better 

approximation of wavelength in the area of interest with minimum errors. 

Nevertheless, the MOST model was only made available to close collaborators of the 

NOAA (NOAA, personal communication, 2010). 

The SAGE model is a multi-material adaptive grid Eulerian code based on a high 

resolution Godunov scheme initiated by Michael Gittings for Science Applications 

International (SAIC) and Los Alamos National Laboratory or LANL (Gisler et al., 

2006). The SAGE model allowed the simulations of landslide model and the resulted 

tsunami generation. Løvholt et al. (2008) used the SAGE model to simulate La 

Palma Island tsunami, which was triggered by submarine landslide. Nevertheless, the 

tsunami triggered by submarine landslides has different characteristics from those 

generated by the displacement of seafloor due to earthquake (Bryant, 2001). First, the 

direction of landslide tsunami is more focus than that of the earthquake tsunami. 

Second, the waves of landslide tsunami are asymmetric near tsunami source and 

better characterized by N-waves (see Figure 2.11), while the earthquake tsunami 

waves tend to be symmetrical near source. Therefore, an analytical formula to 

compute the fault rupture and the displacement of seabed is required for the SAGE 

model to be applicable for simulating tsunami generated by earthquakes. Hence, 

Løvholt et al. (2012) extended the SAGE model to include tsunami generated by 

earthquake and utilised the analytical formula of Okada (1985) to determine the fault 

rupture characteristics of earthquakes. Løvholt et al. (2012) then used the SAGE 

model to assess tsunami hazard in eastern Indonesia deterministically. However, the 

dry land inundation of tsunami in the investigated area has not been taken into 
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account in the model. Instead, wave surface elevations near the shoreline were 

considered as a good approximation for the coastal inundation (Løvholt et al., 2012). 

The TUNAMI (Tohoku University's Numerical Analysis Model for Investigation of 

Near field tsunamis) model was developed by the Disaster Control Research Centre 

of Tohoku University in Japan for TIME (Tsunami Inundation Modelling Exchange) 

project (Imamura et al., 2006). The TUNAMI model solved Nonlinear Shallow 

Water equations (NSW) using leap frog scheme numerical solution procedures (Goto 

and Ogawa, 1991; Imamura, 1989; Shuto et al., 1990).  Zaytsev et al. (2002) stated 

that the Nonlinear Shallow Water equations provided acceptable error limit as well 

as reasonable computational time and memory. The numerical algorithm of 

TUNAMI was adopted by the NAMI-DANCE model (Zaytsev et al., 2002). In 

addition, the NAMI-DANCE extended the model to include the calculation of 

current velocity distributions and their directions at selected time interval, relative 

damage levels associated with drag and impact forces as well as equipped the model 

with more interactive interface (e.g. 3D plots, tsunami animations, etc.). However, a 

nested domain system had just integrated in the new version of NAMI-DANCE 

model (Yalciner, personal communication, January 17th, 2012). Detailed information 

on the mathematical and numerical basis of the NAMI-DANCE model can be found 

in Appendix F of this thesis. 

2.4.7. Previous Tsunami Hazard Assessments for Sumatra 

Borrero et al. (2006) carried out tsunami inundation modelling for western Sumatra. 

Few tsunami simulations were conducted, including the 1797 events, the 1833 events 

and four other tsunami scenarios with earthquake magnitude up to Mw 9.3. The 

magnitudes of the 1797 and 1833 events were estimated between Mw 8.4-8.6 and Mw 

8.6-8.9 respectively. Borrero et al. (2006) used the patterns of uplifted coral on the 

Mentawai Islands to model seafloor deformations based on the works of Natawidjaja 

et al. (2004). The study assumed that the 1797 event produced a rupture length about 

300 km with average slip around 6 m; and the 1833 event produced a rupture length 

of about 320 km, with slip up to 18 m. The resulting wave heights and inundation 

distances were compared for Padang city and Bengkulu city in western Sumatra. The 

outcomes showed that Bengkulu was likely to experience greater tsunami inundation 

than Padang. It appears that the Mentawai islands shield the Padang area from the 
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direct impact of the region’s maximum seafloor uplift. These large adjacent offshore 

islands do not exist for Bengkulu; thus the area is exposed to the direct impact of the 

region maximum uplift (Borrero et al., 2006). Nevertheless, Borrero et al. (2006) 

only considered local tsunamis and the analysis was based on few tsunami scenarios 

(deterministic tsunami hazard assessment). Therefore, the approach is only suitable 

for mitigation purposes. For wider application (i.e. design criteria, etc.), a 

probabilistic tsunami hazard analysis should be conducted. 

Latief et al. (2009) carried out a probabilistic tsunami hazard assessment (PTHA) for 

the city of  Banda Aceh in Sumatra. They found that the Mw 9.2 tsunamigenic 

earthquake in Aceh has a corresponding return period of 520 years and generates a 

tsunami height of 9.10 m in the case study area. Tsunami inundation modelling for 

several probable scenarios obtained from the PTHA was conducted for the city of 

Banda Aceh. The outcomes were useful for tsunami mitigation strategy, tsunami 

design criteria for building and infrastructures as well as tsunami warning system 

(Latief et al., 2009). 

The estimation of tsunami hazard for some regions in Indonesia was also conducted 

through a GITEWS Project (Rudloff et al., 2009). The project was a joint 

cooperation between German and Indonesian governments as a response to the great 

Sumatran tsunami in 2004. The project produced tsunami hazard maps for several 

pilot areas in Indonesia  including Padang, Cilacap and Bali (Strunz et al., 2011). In 

addition, the project helped the Indonesian government develop the Tsunami Early 

Warning System as well as to estimate the tsunami risk in Indonesia.  

2.5. VULNERABILITY FUNCTIONS FOR BUILDINGS 

2.5.1. Earthquake Vulnerability Curves 

Vulnerability is defined as the loss of a given element at risk subjected to a given 

level of hazard (Coburn and Spence, 2002). Vulnerability functions relate the 

probability of exceedance of multiple damage states to a parameter of hazard level 

(Rossetto and Elnashai, 2003). The hazard parameter can vary for different types of 

hazards such as PGA for earthquake or tsunami height for tsunami risk assessment. 

Vulnerability functions can be expressed in many terms including damage states and 

damage ratios.  
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There are four fundamental methods to develop vulnerability curves for structures: 

empirical, judgmental, analytical and hybrid. The empirical methods utilise damage 

data distribution from post-earthquake surveys. This method is reliable provided that 

a large quantity of reliable damage data of similar construction is available and the 

data covers a wide range of ground motions (Rossetto and Elnashai, 2003). However, 

such damage data are often lacking. As a consequence, various datasets from 

different countries can be used (Rossetto and Elnashai, 2003; Spence et al., 1992). 

Nevertheless, heterogeneity of building damage data can be a major source of 

uncertainty in the empirical approach when used for regions with specific 

construction practices. Judgemental vulnerability curves can be developed based on 

estimation, knowledge and experience of structural engineers who are experts in 

earthquake engineering (Ahmad, 2011). The reliability of this method strongly 

depends on the experience and opinion of the experts, and therefore, its uncertainty is 

difficult to measure. Analytical vulnerability curves are obtained through the 

analytical procedure of structural models under increasing earthquake loads. The 

resulting deformations are related to damage distributions, which are used to develop 

the vulnerability functions. This method has gained popularity in recent years, along 

with the rapid development of computational tools. Many special features of 

structural response can be taken into account in the analytical model including shear-

flexural-axial load interaction, re-bar buckling, bond and shear failure (Ahmad, 

2011). However, for some cases, appropriate structural modelling remains a 

challenge such as the modelling of infill walls, architectural finishes and unexpected 

brittle failure modes due to poor materials or bad detailing. The hybrid method 

combines the previous techniques to deal with the uncertainties arising from limited 

empirical damage data, the subjectivity of judgemental approach and modelling 

issues in analytical method (Ahmad, 2011). 

Numerous studies were conducted to develop vulnerability curves for structures 

subjected to earthquake hazard. GESI (2001) proposed vulnerability curves for 

different types of structures based on site observations as well as other existing 

studies on vulnerability. GESI applied a scoring system to take into account the 

quality of design, construction and materials; therefore, engineering judgements are 

required for selecting the appropriate vulnerability curve. 
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Rossetto and Elnashai (2003) produced fragility functions for European-type 

Reinforced Concrete (RC) structures based on earthquake post-damage distributions. 

As many as 99 datasets from 19 earthquakes (340,000 RC structures in total) were 

utilised, mostly from European countries. The heterogeneous damage data were then 

transformed into a homogeneous reinforced concrete (HRC) scale, which was 

calibrated experimentally to obtain seismic resistance for different structural systems 

(Rossetto and Elnashai, 2003). Vulnerability curves for different building ages-

classes were developed using the combined observation and test data. 

Kyriakides (2007) carried out analytical vulnerability analyses for typical RC 

structures by considering different types of buildings stock in Cyprus for different 

periods of constructions including “pre”, “basic” and “modern” seismic structures.  

The analytical models took into account flexural, shear and bond failures in members 

and joints of RC buildings.  Kyriakides (2007) observed that the damage modes of 

“pre” and “basic” seismic structures were mainly due to brittle failures. As a 

consequence, rapid increase in damage took place just before failure. The work of 

Kyriakides (2007) was extended by Ahmad (2011) to examine the vulnerability of 

RC structures with low strength concrete, typically found in developing countries 

(Pakistan as a case study). Ahmad (2011) highlighted that early damage 

accumulation and brittle failure were the typical problems for low-rise pre-seismic 

design RC buildings. However, more gradual damage was observed for the 1st 

generation of seismic design structures. 

2.5.2. Tsunami Vulnerability Curves 

Tsunami vulnerability curves can be developed using similar methods as for 

earthquakes. However, it is found that most of the existing tsunami vulnerability 

functions are based on the empirical approach (Koshimura et al., 2009; Peiris, 2006; 

Reese et al., 2011; Reese et al., 2007; Suppasri et al., 2012). This can be attributed to 

the complications of modelling interactions between tsunami waves and the response 

of structures that would be damaged by the earthquake. 

Suppasri et al. (2012) produced fragility curves for wooden houses in Japan. The 

vulnerability curves were developed based on observations of damage in the Miyagi 

prefecture after it was hit by the great tsunami of Japan in 2011. Suppasri et al. 

(2012) found that an inundation depth greater than 4 m would totally demolish 
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wooden structures and an inundation depth of about 3 m could lead to severe 

damage. 

Reese et al. (2007) developed empirical vulnerability relationships based on the 

observed damages of buildings due to the 2006 tsunami in South Java, Indonesia.  

The tsunami was triggered by an earthquake with a magnitude of 7.7 at the southern 

coast of West Java.  It was reported that the event generated an average tsunami run-

up in the range of 2-4 m above normal sea level. Therefore, the vulnerability curves 

proposed by Reese et al. (2007) were limited to a maximum tsunami height of 4 m. 

Reese et al. (2007) categorised the buildings in the region into four classes: 

timber/bamboo structure, traditional brick masonry building, brick masonry building 

with RC columns and RC structure with brick infill walls.  It was found that different 

types of structures produced different levels of damage. Total damage was observed 

for older brick houses, about 50% for newer buildings of confined brick masonry 

types and approximately 5-20% for engineered RC structures. However, punch-out 

of rudimentary brick-walls was generally observed. In addition, Reese et al. (2007) 

developed relationships for death and injury rates based on the casualty data of the 

events as a function of water depth. 

Other empirical tsunami damage functions were produced as part of the Scenarios for 

Tsunami Hazard-induced Emergency Management (SCHEMA) project (Scheer et 

al., 2011; Tinti et al., 2011; Valencia et al., 2011). The vulnerability curves were 

developed based on damage data collected from field surveys in Banda Aceh 

(Sumatra), Indonesia after the 2004 Indian Ocean tsunami. Very high resolution (40-

60 cm or better) satellite imagery was used to complement the damage database 

obtained in the field survey (Valencia et al., 2011). Valencia et al. (2011) revealed 

that the buildings in Indonesia had similarities with the building typology in the 

European-Mediterranean areas. The SCHEMA project, as cited in Valencia et al. 

(2011), categorised the buildings in Aceh into 6 types: light construction in wood or 

timber without any design (A), brick not reinforced masonry (B), brick with 

reinforced column and masonry infill (C), collective buildings/concrete not 

reinforced (D) and well-designed buildings with RC columns and infill walls (E) and 

religious building/mosque (M). However, the vulnerability curve for the RC 

structures (Type E) was only limited to mid-rise structures up to 3 storeys. The 

damage datasets for the high rise RC buildings were limited; hence, the vulnerability 
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function could not be developed. The vulnerability curves for A to E types of 

building can be seen in SCHEMA technical report (Tinti et al., 2011). 

2.6. EXISTING MITIGATION STRATEGIES IN THE CASE 

STUDY AREA 

2.6.1. Indonesian Seismic Design Standard for Buildings 

The first Indonesian seismic design standard for buildings was initially developed in 

1983 (PPTGIUG-1983). The code was basically adopted from the New Zealand 

seismic design code and accounted for a 200-year earthquake recurrence period. The 

code was amended in 1987 (SKBI-1.3.53: 1987) and ratified as one of the Indonesian 

National Standards in 1989 (Sutjipto, 1994). The 1987 code categorised the 

Indonesian region into 6 zones. The seismicity level decreased from Zone-1 to Zone-

6 and Padang city was part of Zone-3.  

In 2002, the code was revised to account for a 500-year earthquake recurrence period 

(SNI 03-1726-2002, 2002). As a consequence, the PGA values in the former seismic 

standard were lower than those of the 2002 code. However, comparable values of 

seismic base shear force could be obtained for both seismic standards, since the 1987 

code adopted a lower reduction factor R (SNI 03-1726-2002, 2002). Moreover, some 

soil types that were classified as soft soil in the former code were considered as 

medium soil in the latter code. This reduced further the seismic loads obtained from 

the 2002 code. To some extent, the 2002 code is more similar to the American UBC 

1997. 

In 2006, a team was formed by the Indonesian Ministry of Public Works to improve 

the Indonesian seismic design standard for buildings. The team proposed new 

seismic hazard maps for Indonesia (Irsyam et al., 2010); however, the completion of 

the new code is still in progress. Typical building standards in Indonesia for different 

periods of structures are summarised in Table 2.5. 
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Table 2.5.  Typical standards adopted for buildings in Jakarta (Hoedajanto, 2007) 

No. Building Era Building Code 

1. Before 1970 GBV and PBI 1955 (concrete) 

2. 1970-1980 PBI 1971(concrete) 

3. 1990-2000 SNI 03-2847-1991 (concrete) and PPTGIUG 1983 (earthquake) 

4. 2000-date SNI 03-2847-2002 (concrete) and SNI 03-1726-2002 (earthquake) 

2.6.2. Tsunami Evacuation Maps for Padang City 

After the devastating Indian Ocean tsunami in 2004, many studies highlighted the 

significance of tsunami risk in the city of Padang (Borrero et al., 2006; Chlieh et al., 

2008; Sieh, 2005; Sieh, 2007; Sieh et al., 2008). The city is home to about 1 million 

people and has large infrastructures. Moreover, the most populated area of the city is 

situated near the coast with low lying areas in which the distance to higher ground 

with elevation > 5 m is approximately 30 km. High level of hazard, large exposure 

and the geographical conditions of the city contribute to the high risk in Padang city. 

Since the 2004 tsunami, many attempts have been made to minimise tsunami risk in 

the area. The first tsunami evacuation maps for Padang city were produced a few 

years after the 2004 Indian Ocean Tsunami (see Figure 2.16). The evacuation maps 

categorised the city into 5 zones based on their altitudes above mean sea levels.  

Zone-I was marked as a red zone with elevation of 0-5 m from mean sea level, which 

has the highest risk to be inundated by tsunami and covers the most populated areas 

of Padang. Zone-II, Zone-III, Zone-IV and Zone-V are assigned for areas with 

elevations of 5-10 m, 10-25 m, 25-100 m and >100 m, respectively. Tsunami 

evacuation routes are also shown in the maps. The routes basically provide the 

shortest way to reach higher ground.  
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Figure 2.16. Former tsunami evacuation maps for Padang city 

In addition, some buildings in the area that could be used as evacuation shelters were 

also highlighted in the evacuation maps. However, most of the recommended 

evacuation structures were damaged during the Mw 7.6 earthquake of Padang in 

2009. The event was not tsunamigenic; hence, the damage was solely triggered by 

earthquake ground motions. Therefore, it appeared that the majority of the 

recommended evacuations structures were not even seismically designed. 

Consequently, they were not appropriate for tsunami evacuation purposes. Tsunami 

evacuation shelters should be capable of resisting both earthquake ground motion 

and tsunami forces. If the 2009 event was tsunamigenic, these buildings could have 

been a death trap for the evacuees and caused more fatalities. 

The tsunami evacuation maps were later revised in 2010. Unlike the former 

evacuation maps, which were merely based on topography, the new evacuation maps 

were developed on the basis of the most plausible rupture scenarios in the area. The 

studies were initiated from a group of scientists from USA, Japan, Germany and 
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Indonesia. Schlurmann et al. (2010) revealed that the next large earthquake near 

Padang would probably be associated with a 200 year cycle. Therefore, Schlurmann 

et al. (2010) suggested the 1833 tsunamigenic earthquake as a realistic and 

historically proven scenario for Padang city. An accurate modelling of tsunami 

inundation and run up was performed using a very detailed model of near-shore 

bathymetry and coastal topography (Schlurmann et al., 2010). The tsunami hazard 

map for Padang was then officially released in May 2010. Based on the tsunami 

inundation map, it revealed that approximately 265.000 people in Padang are 

exposed to tsunami and only 170.000 of them (who live further inland) are likely to 

reach the evacuation areas within 30 minutes (Schlurmann et al., 2010). The latest 

version of tsunami evacuation maps in Padang is shown in Figure 2.17. 

 
Figure 2.17. The new version of tsunami evacuation maps for Padang city 
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2.6.3. Tsunami Early Warning System 

The Indonesian Tsunami Early Warning System (InaTEWS) was launched in 2008. 

The InaTEWS was developed with strong collaboration between Indonesia and 

Germany under the GITEWS Project (German Indonesian Tsunami Early Warning 

System) from 2005 to 2011 (Münch et al., 2011; Rudloff et al., 2009; Schlurmann 

and Siebert, 2011; Steinmetz et al., 2010). The operation of InaTEWS is under the 

management of the Indonesian Meteorological, Climatological and Geophysical 

Agency (BMKG). The BMKG not only provides a real time tsunami warning for 

Indonesia, but also for other countries in the Indian Ocean and ASEAN (Prih-Harjadi 

and Fauzi, 2009). To serve this purpose, massive instrumentation is required that 

include 160 broadband seismic stations, 500 accelerograph stations, 60 tide gauges, 

20 DART buoys and several continuous GPS stations for monitoring purposes. Prih-

Harjadi and Fauzi (2009) revealed that about 148 broadband seismograph stations, 

85 accelerographs, 57 tide gauges, 19 DART buoys and 19 GPS stations were 

installed in the region. Therefore, more investment is still required.  

The scheme of InaTEWS is illustrated in Figure 2.18. The initial stage of the tsunami 

warning system involves the determination of earthquake information such as 

earthquake magnitude, location and any ground movements and shape changes due 

to the earthquake. The estimation of earthquake magnitude and location is performed 

with SeisComP3 software (Hanka et al., 2010) and the ground movements are 

measured by GPS stations. The InaTEWS has a tsunami database that incorporates 

thousands of tsunami scenarios in the region. Based on the earthquake information, 

the best correlated scenario is selected from the database to predict whether the event 

is tsunamigenic or not; and if tsunamigenic, tsunami heights on the affected coast are 

estimated. At the same time, pressure sensors installed on the ocean floor measure 

the earthquake shock and report it to nearby buoys. The buoys then measure the 

lengthened-stretched peak of tsunami wave and raise the alarm via telecom satellite 

to the tsunami warning headquarter. To avoid false alarm, further verification is 

conducted through the observation of tide gauges.  A sudden drop in sea level 

indicates that a tsunami is heading to the coasts. Once all information is collected and 

the occurrence of tsunami is highly plausible, the chief officer at the tsunami 

headquarter will raise a tsunami warning. 
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Figure 2.18. An illustration of the tsunami early warning system in Indonesia 

(InaTEWS) 

To deal with the uncertainties of the warning process, Blaser et al. (2012) proposed 

the incorporation of Bayesians networks (BNs) in a real-time tsunami warning. 

Details of the approach can be found in Blaser et al. (2011). Blaser et al. (2012) 

estimated the probability of tsunami occurrence for the 10 recent earthquakes 

offshore Sumatra. The outcomes were then compared with real-time tsunami warning 

issued by the Indonesian officials (BMKG), as well as the available tide gauges or 

observation data in the region. The results showed good correlation with the existing 

data; however, for some events, discrepancies were considerable. The main problem 

was due to difficulties in estimating the real-time moment magnitude of earthquake, 

which had to be obtained very quickly (within 5 minutes after the earthquake). The 

reliability of BN approach depended on moment magnitude (Blaser et al., 2012). The 

difference between the real-time and post-processing magnitude estimates could lead 

to underestimation or overestimation of tsunami probability. In addition, the BN 

approach was not capable of estimating the probability of tsunami earthquakes. The 

tsunami earthquakes ruptured really slowly and emitted little high frequency energy, 

thus reliable real-time moment magnitude estimates were difficult to achieve (Blaser 
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et al., 2012). Nevertheless, the integration of BN approach in tsunami early warning 

system provided a more effective way to deal with the uncertainties for estimating 

the appropriate tsunami warning level. 

The main challenge of a tsunami early warning system in Indonesia is to issue the 

warning immediately after the earthquake. This is because of its geographic and 

tectonic situation, which is very close to tsunami sources. As a consequence, the 

region is susceptible to local tsunamis that can reach the coast within 20-40 minutes 

after the earthquake. A quick decision may result in false alarm that can affect the 

credibility of tsunami warning in the future. However, late warning can result in 

insufficient time for the evacuation procedure.  The InaTEWS can issue the first 

tsunami warning within 5 minutes after the earthquake (see Figure 2.19).  

The dissemination of the warning is conducted in many ways, including: sirens, 

electronic media (TV/radio) and automatic SMS to the affected residence. Tsunami 

evacuation drills have been conducted in many prone regions in Indonesia. However, 

the systematic and periodic evacuation drills have to be maintained by the 

government and local authorities. 
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Figure 2.19.  The procedure of the Tsunami Early Warning System in Indonesia 

(InaTEWS) based on the information from BMKG-Padang Panjang, Indonesia  

(Wilkinson, Alarcon, Mulyani, Chian, and Whittle, 2009) 

2.7. SUMMARY 

 The significance of probabilistic seismic hazard method (PSHA) is highlighted 

and compared with deterministic/scenario approach.  
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 The conventional PSHA method requires an integration of PSHA components for 

each seismic zone including earthquake recurrence function, ground motion 

attenuation relationship and distance from a seismic zone to a particular site (see 

Equation 2.16).  

 A Poissonian seismicity model is generally adopted in the conventional PSHA by 

assuming a stationary hazard rate with time. The integration nature of the 

conventional PSHA restricts its adaptability to utilise a non-Poissonian seismicity 

model, which is compulsory for a time dependent hazard assessment.  

 The conventional method requires a deaggregation procedure to obtain the 

contribution of each seismic source to total hazard in an area. The deaggregation 

procedure may lead to uncertainties due to the selection of bin size, the grouping 

of scenario and the selection of quantities utilized in the deaggregation process. 

 A stochastic PSHA method is developed based on the conventional approach. 

However, instead of solving the total probability theorem, the stochastic 

approach directly calculates earthquake ground motions for all events in 

earthquake catalogue. Consequently, other seismicity models including the non-

Poissonian can be easily utilized in the stochastic method.  

 A risk assessment can be directly conducted in the stochastic PSHA method, 

which is difficult to perform in the conventional approach. 

 A deterministic tsunami hazard assessment is generally adopted prior to the 

development of probabilistic model (PTHA). The PTHA commonly uses 

empirical and computational methods. The empirical method requires an 

extended tsunami catalogue, which is limited for most regions. For areas with 

limited tsunami data, the computational method is more suitable. However, the 

computational method requires a sophisticated hydrodynamic modelling of 

tsunamis. 

 Existing risk assessments frameworks are reviewed including HAZUS, RADIUS, 

RISK-UE, EQ-RACY and ERA Framework. These frameworks are mainly 

developed to assess risk associated with earthquake ground motions. Therefore, 

earthquake associated hazards (e.g. tsunami, liquefaction and landslides) are not 
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taken into account. As a result, the overall risk for regions prone to these hazards 

is likely to be underestimated. 

 Existing Indonesian seismic design standard for buildings, tsunami evacuation 

maps and tsunami early warning system are reviewed as part of earthquake and 

tsunami mitigation strategies in Indonesia. 
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CHAPTER 3 

METHODOLOGY FOR EARTHQUAKE AND TSUNAMI 

RISK ASSESSMENT FRAMEWORK 

3.1. INTRODUCTION 

This chapter discusses the methodology used to extend the earthquake risk 

assessment framework (ERA Framework) developed at the University of Sheffield. 

The extension includes the incorporation of a time dependent seismic hazard (PSHA) 

as well as the estimation of tsunami hazard (PTHA). A time dependent PSHA model 

is proposed to account for the variability of hazard rate due to seismic gaps. Tsunami 

hazard triggered by earthquakes is also incorporated into the ERA Framework. The 

quantification of risk associated with earthquake and tsunami is performed 

probabilistically to take into account all probable level of hazard in the area. The 

extended modules are discussed in the following sections. 

3.2. PROBABILISTIC EARTHQUAKE HAZARD ASSESSMENT 

(PSHA) 

The seismic hazard assessment in this study is an extension of the stochastic PSHA 

model developed by Khan (2011) who used the instrumental earthquake catalogue to 

characterise the seismicity of the region. As discussed in Section 2.3.3, the reliability 

of this method depends strongly on the completeness of earthquake catalogues. As 

information on instrumental earthquakes for the case study area is scarce (Mulyani et 

al., 2010), the existing earthquake catalogue is extended using synthetic events. The 

synthetic events are generated by randomising the uncertainties of earthquake 

parameters in the earthquake catalogue, which is discussed in Section 3.2.1. To 

appropriately characterise the seismicity of the region, earthquake recurrence 

relationships are incorporated in the PSHA module, which is presented in Section 

3.2.2. This approach is relatively similar to that proposed by Musson (2000). 

However, unlike Musson’s approach, the locations of synthetic earthquakes in this 

study are not equally smeared over the seismic zones,  but radiate along the rupture 

line, as suggested by Khan (2011). As a result, the probability of earthquakes 
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occurring along seismic sources is higher than other areas, which is consistent with 

the real distribution of earthquakes. 

In addition, the stochastic PSHA model developed by Khan (2011) is expanded to 

include time dependency. The time dependent model takes into account elapsed time 

since the last large earthquake to comply with the Elastic Rebound Theory. The 

model foresees the increase of earthquake hazard due to the existence of seismic gaps 

in the region of West Sumatra. A non-stationary rate of hazard, as suggested by 

Reasenberg et al. (2003), is utilised. The modulation of earthquake rates in the 

investigated area is discussed in Section 3.2.3. The procedure of the PSHA module 

of  this  study  and  the  development  of  hazard  curves  for  the  case  study  area  are  

presented in Sections 3.2.4 and 3.2.5, respectively. 

3.2.1. Generation of Synthetic Earthquakes 

It is assumed in the conventional PSHA method that seismicity distribution is 

uniformly distributed over a seismic zone. However, Abrahamson (2006) argues that 

the  approach  tends  to  spatially  smear  the  seismicity,  which  may  lead  to  spatial  

inaccuracies in hazard values (Khan, 2011). Hence, a stochastic method that utilise 

existing earthquake catalogue to generate synthetic events is adopted in this study as 

proposed by Khan (2011). This approach randomises the locations of synthetic 

events within a certain boundary of real events as shown in Figure 3.1; hence, the 

spatial distribution of seismicity in the examined region can be maintained (Khan, 

2011). 

The synthetic earthquakes are generated by randomising the uncertainties of 

earthquake parameters such as earthquake magnitude, focal depth and epicentral 

location. The randomisation is performed over the margin of the parameter 

uncertainties as shown in Equation 2.18 and Equation 2.19. The magnitude of the 

synthetic events is estimated from magnitude determination and conversion errors, 

which are taken as ±0.20 for events initially recorded in moment magnitude (Mw), 

and ±0.41 for converted Mw (Khan, 2011). Focal depth is randomised ±15% from the 

original values (Khan, 2011; Kythreoti, 2002). The location of the new earthquakes 

is  placed  around  the  Epicentre  Fault  Length  (EFL)  of  the  past  events  with  an  

orientation  parallel  to  the  strike  angle  of  the  main  fault  (Khan  et  al.,  2010).   Fault  
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rupture characteristics are estimated using Wells and Coppersmith (1994) empirical 

relationships as shown below: 

log(ܴܵܮ) = −3.22 +  ௪ 3.1ܯ	0.69

log(ܴܦܮ) = −2.44 +  ௪ 3.2ܯ	0.59

log(ܴܹ) = −1.01 +  ௪ 3.3ܯ	0.32

log(ܴܣ) = −3.49 +  ௪ 3.4ܯ	0.91

where, 

SRL : surface rupture length 

RLD : sub-surface rupture length 

RW : rupture width 

RA : rupture area 

The standard deviations for Equations 3.1, 3.2, 3.3 and 3.4 are 0.22, 0.16, 0.15 and 

0.24, respectively. The errors of these empirical equations are incorporated in 

estimating the fault rupture characteristics, which are required to generate synthetic 

events. 

Khan (2011) uses a constant value of ±25 km along the EFL to define the area for 

generating new randomised events. However, the characteristics of fault ruptures are 

not constant and strongly depend on the magnitude of earthquakes (Mw). Instead of 

using a constant width value, this study utilises the fault rupture width (RW), as 

defined in Equation 3.3, to determine the area for new synthetic events (Figure 3.1). 

 

Figure 3.1. Definition of area for generating randomised synthetic events 
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3.2.2. Integration of Earthquake Recurrence Relationship into the PSHA 

Module 

The stochastic PSHA involves direct simulations of all probable earthquakes in a 

region  to  obtain  the  possible  ground  motions  in  the  area.  The  reliability  of  this  

approach depends strongly on the characterisation of earthquake rates as well as the 

number of simulations performed. Khan (2011) used the number of earthquakes in 

the instrumental catalogue to represent the rate of seismicity of Pakistan. Khan used 

this approach to avoid using the recurrence relationships in PSHA. As pointed out in 

Chapter 2, Khan’s assumption is valid providing that the earthquake catalogue is 

complete and the length of the catalogue should at least correspond to one seismic 

cycle. This issue is highlighted in Chapter 4, section 4.6.  

To address this issue, earthquake recurrence relationships are incorporated into the 

PSHA module to characterise the seismicity of the investigated area. The number of 

earthquakes for every simulation is determined based on earthquake recurrence 

relationships. The event number is obtained by multiplying the annual rate of 

earthquakes (N) with a specified time period (T), as illustrated in Figure 3.2. The 

time period expresses the length of seismicity considered in the study and should at 

least correspond to one seismic cycle, which is equivalent to the maximum return 

period of earthquakes in the area.  

In this approach, all events in the earthquake catalogue are categorised into several 

magnitude ranges (0≤Mw<6, 6≤Mw<6.5, 6.5≤ Mw<7, 7≤ Mw<7.5, 7.5≤ Mw<8, 8≤ 

Mw<8.5, Mw ≥8.5). The number of events for each magnitude range is calculated 

using Equation 3.5, and this procedure is performed for all seismic zones, as 

discussed in Section 4.3. The synthetic events are generated based on the event 

number	൫ܰெି(ெ	ା	∆ெ)൯, the number of simulations performed, varying rate (see 

Section 3.2.3) as well as the number of events in the existing catalogue. The original 

and synthetic earthquake catalogues are then merged to create an earthquake 

database for the area. A randomised earthquake catalogue is generated for each 

simulation considered in the analysis by randomly selecting the events in the 

database according to the number of events obtained from the recurrence 

relationship	൫ܰெି(ெ	ା	∆ெ)൯. 



Chapter 3                                                   Methodology for Earthquake and Tsunami Risk Assessment Framework 

66 
 

 
Figure 3.2. Calculation of earthquake occurrence for a magnitude range using the 

Gutenberg-Richter recurrence relationship 

ܰெି(ெ	ା	∆ெ) = 	ܰெ −	ܰெ	ା	∆ெ 3.5 

where, 

ܰெି(ெ	ା	∆ெ) : the total number of events for a magnitude range  

  ൫ܯ ≤ ௪ܯ < ܯ) +  ൯ in a seismic zone(ܯ∆

ܰெ  : the cumulative number of events for Mw ≥ M 

ܰெ	ା	∆ெ : the cumulative number of events for Mw ≥ (M+∆M) 

3.2.3. Modulation of Seismicity Rate 

An empirical model proposed by Reasenberg et al. (2003) is adopted to include time 

dependency in the PSHA module. This approach is a time-varying Poisson model, 

which allows a non-stationary seismicity rate (Matthews and Reasenberg, 1988; 

Reasenberg et al., 2003). It is assumed that a seismicity rate follows a regional 

earthquake cycle, which corresponds to the recurrences of the largest earthquake in a 

region (WGCEP, 2003). A time-varying function (ݐ)ߛ is applied to modulate the 

average long-term rate as discussed in Chapter 2. The varying rate is calculated using 

Equation 2.28. 

This approach employs the Gutenberg-Richter distribution (logܰ = ܽ −  to	௪)ܯ.ܾ

obtain the long term rate of seismicity for each region or fault segment. The initial 

stage involves estimating the “b” value of the recurrence relationship using the 
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instrumental catalogue with a magnitude range and time period for which the 

catalogue is complete. It is assumed that this “b” value  is  constant  over  time.  The  

variability of seismicity rate is then taken into account by assigning “a” as a free 

parameter (Reasenberg et al., 2003). Therefore, the value of “a” is adjusted to fit the 

seismicity for a specified period, as illustrated in Figure 3.3.  

 
Figure 3.3. Recurrence relationship for the Sumatra Subduction Zone with different 

periods of time 

The figure compares the average seismicity for different periods in the Sumatra 

Subduction Zone (SSZ). The period 1907-2004 gives the average seismicity before 

the  Mw 9.1 mega-thrust earthquake, which is lower than the long term rate. The 

period 2004-2012 implies that the seismicity after the event increases significantly, 

up to 5 times that of the long term rate. The varying rate (ݐ)ߛ of the SSZ since 1963 

is plotted in Figure 3.4. The value of (ݐ)ߛ is obtained by using the annual frequency 

of earthquakes in the magnitude range of 4.0-5.5. The magnitude range is selected to 

consider that the earthquakes in that interval occur more frequently; thus, the data is 

sufficiently available. The annual rate for different magnitude ranges can also be 

estimated based on (ݐ)ߛ and the Gutenberg-Richter distribution with fixed “b” value. 
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Figure 3.4. The varying rate of the Sumatra Subduction Zone 

In addition, the (ݐ)ߛ function can be extrapolated with time to estimate the seismicity 

in the near future (test), as suggested by Reasenberg et al. (2003). The extrapolated 

varying  rate  of  Sumatra  for  the  next  5  years  can  be  found  in  Table  5.3.  Once  the  

varying rate is obtained, the long term recurrence function can be modulated for a 

time dependent PSHA by multiplying the ܰெି(ெ	ା	∆ெ) value with	(ݐ)ߛ. It should be 

pointed out that assigning the (ݐ)ߛ value as “1” indicates a time independent hazard 

assessment. 

3.2.4. The Procedure of PSHA Module 

The PSHA module requires some input data including earthquake catalogue, soil 

parameters, geographic information, seismic zones, seismicity rates and the number 

of events for each magnitude range (see Table 3.1). The initial procedure begins with 

screening the earthquake catalogue to remove any events that produce PGA less than 

the  minimum PGA threshold.  This  step  is  addressed  to  remove  unnecessary  events  

(e.g. low magnitude earthquakes with long distance to the investigated site), which 

can prolong the duration of the analysis. The screened catalogue is also useful to 

determine the minimum threshold of the earthquake magnitude considered in the 

analysis. 
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Table 3.1. Input data required for the PSHA module 

Input Data Input Files1 Description 
Study Area Area.shp Polygon shapefile of the investigated area that consists of 

Area Units (AUs)  
Earthquake 
Catalogue 

InstCatA.csv Combination of historical and instrumental catalogues 
that contains earthquake information including date, time, 
location, focal depth and magnitude (Mw) 

Soil 
Information 

UCSoil.csv Soil type information for each AU 

Geographical 
Information 

UCGeo.csv Geographical information for each AU 

Seismic 
Zones 

SZones.csv Tectonic information (strike angle, fault mechanism) and 
the boundary definition for each seismic zone 

Recurrence 
Relationship 

EqRec.csv The number of earthquakes for each magnitude range and 
each seismic zones for T period of time ൫ܰெି(ெ	ା	∆ெ)൯. 

Hazard Rate 
 (࢚)ࢽ

ZonRate.csv Hazard rate for each magnitude range and each seismic 
zones for a particular period of time (test). 

The next stage involves categorising the screened events into a magnitude range and 

seismic zone, which are defined in Section 5.2 and Section 4.3, respectively. These 

categorised events are utilised to generate synthetic earthquakes in the investigated 

area. The number of synthetic events is computed based on the total number of 

events	൫ܰெି(ெ	ା	∆ெ)൯, varying rate	(ݐ)ߛ, the number of simulations (S) as well as the 

number of events in the existing catalogue. The synthetic events are generated within 

a defined area, as shown in Figure 3.1, and then merged with the categorised events 

to create an earthquake database. This database corresponds to (T x S) years of 

earthquake catalogue. 

Subsequently, randomised earthquake catalogues for each simulation is produced by 

randomly selecting the events in the earthquake database to the number of events in 

the recurrence relationship multiplied by the varying rate	ቀܰெି(ெ	ା	∆ெ)	.		(ݐ)ߛቁ. For a 

time dependent PSHA, a time dependency factor (ݐ)ߛ	is applied to modulate the 

seismicity for a particular time (test). However, the value of (ݐ)ߛ can also be assigned 

as “1” for a time independent PSHA. 

The last stage of the PSHA module requires the estimation of earthquake ground 

accelerations (PGA) for all events in the randomised earthquake catalogues. The 

                                                
1 Suffix ‘.csv’ denotes comma separated file and ‘shp’ denotes a shapefile of GIS program. 
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PGA is calculated using ground attenuation relationships, which are selected based 

on tectonic environments in the case study area. The PGA calculations are performed 

for every Area Unit (AU) in the examined area. The flowchart of the PSHA module 

can be seen in Figure 3.5. 
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Figure 3.5. Flow chart for the PSHA module 
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3.2.5. Development of a Hazard Curve 

The hazard curve is useful to show the distribution of ground motions for a particular 

period of time in an area. The hazard curve allows the flexibility to select the level of 

hazard to be used for many applications, including determining seismic performance 

objectives for structural designs (e.g. 10% and 2% probability of exceedance in 50 

years that correspond to 475 and 2500 years of earthquake return periods, 

respectively) as well as mitigation strategies. The proposed PSHA method requires a 

relatively straightforward technique for developing the hazard curve; however, this is 

not done in the previous version of the ERA Framework. The previous version of the 

ERA Framework mainly produces a seismic hazard map for a particular probability 

of exceedance in a given exposure time. Hence, the PGA values associated with 

other exceedance probabilities (or return periods) are not computed and the hazard 

curve is not drawn. The hazard curve involves the calculation of annual frequency 

for each value of PGA for each Area Unit (AU), as described in Equation 3.6. 

݊௉ீ஺ି஺௡௡௨௔௟ =
݊௉ீ஺ି்
ܶ	.		ܵ 	 3.6 

where, 

݊௉ீ஺ି஺௡௡௨௔௟  : the annual frequency of occurrence of a particular PGA. 

݊௉ீ஺ି்  : the frequency of occurrence of a particular PGA for T  

	period of time. 

ܶ  : the length of seismicity considered in the study 

ܵ  : the number of simulations performed in the analysis 

The  cumulative  distribution  of  the  PGA  (ܰ) can be obtained by cumulatively 

summing up the annual frequency of PGA values (݊௉ீ஺ି஺௡௡௨௔௟) in descending 

order. The return period of the earthquake, which produces the PGA value, can be 

determined from the cumulative annual frequency using the relationship               

௥ܶ = 	1 ݊௉ீ஺ି஺௡௡௨௔௟⁄ . The correlation between PGA and the associated return period 

denotes the rate of hazard as show in Figure 3.6(a). The time interval of this Poisson 

process follows an exponential distribution with a cumulative distribution function 

(CDF) as shown in Equation 3.7. The equation indicates earthquake probability of 

exceedance that corresponds to a particular exposure period, which is required to 

develop a hazard curve as shown in Figure 3.6(b). 
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	ܣܩܲ)ܲ ≥ (௜ܣܩܲ = 1 −	݁ష೟/೅ೝ	 3.7 

where, 

	ܣܩܲ)ܲ ≥  ௜)      : the probability that PGA will be greater than or equalܣܩܲ

to PGAi in the next t years (the probability of 

exceedance) 

 exposure time :   ݐ

௥ܶ   : the return period of PGAi 

 

Figure 3.6. Determination of hazard curve based on the outcomes of PSHA: a). the 

rate of hazard; b). hazard curve 

3.3. PROBABILISTIC TSUNAMI HAZARD ASSESSMENT 

(PTHA) 

Tsunami  hazard  assessment  in  this  study  is  an  extension  of  the  PSHA discussed  in  

the previous chapter. The method is based on a stochastic approach and combines a 

few methodologies from previous studies (Abe, 1995; Khan, 2011; Musson, 2000). 

Tsunami numerical analysis is performed to complete tsunami data that is lacking for 

Sumatra.  The  numerical  analysis  simulates  tsunami  propagation  to  coastal  areas  to  

obtain tsunami heights. Tsunami numerical analysis is conducted using NAMI-

DANCE  software  (Zaytsev  et  al.,  2002).  The  simulations  are  carried  out  for  

significant tsunami events in the tsunami catalogue of Sumatra (BMKG, 2010; 

Gusiakov, 2001; NOAA, 2011). Some synthetic events are also included in the 

analysis to complement the data. 

Hazard Curve for “t” years 
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It  is  assumed  that  earthquake  epicentres  for  each  tsunami  model  are  located  in  the  

middle of a fault rupture line. Although the directivity and the propagation of fault 

rupture from earthquake epicentres are unknown and varied, this assumption is fairly 

reasonable for this study. It is found from the preliminary numerical analysis that 

earthquakes with a magnitude below 7 trigger very small tsunami; thus, the tsunami 

heights are likely to be negligible. Therefore, the earthquake magnitude range 

considered in the analysis is between Mw 7.0 and Mw 9.1. Detailed information of the 

tsunami models can be found in Appendix B and the corresponding fault ruptures are 

plotted in Figure 3.7. 

 
Figure 3.7. The fault ruptures of the tsunami models for Sumatra 

3.3.1. Estimation of Tsunami Run-Up Heights for Sumatra 

The outcomes of tsunami numerical simulations are examined to study the 

relationship among earthquake moment magnitudes (Mw), closest distances and 

tsunami wave heights at the case study area. This method was introduced by Abe 

(1995, 1985, and 1981), as discussed in Chapter 2 Section 2.4.3. However, Abe’s 

approach requires past tsunami data recorded by tide stations installed at an 
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investigated  area,  which  are  not  available  for  Sumatra.  Therefore,  instead  of  using  

past tide gauge records of tsunamis, this study utilises tsunami wave heights obtained 

from the tsunami numerical analyses. The initial form of Abe’s equation (see 

Equation 2.34) is used to correlate earthquake magnitude with various distances and 

tsunami wave heights. 

Abe (1981, 1995) assumes that the “R” variable in Equation 2.34 is the distance from 

earthquake epicentre to the tide stations along the shortest oceanic path, due to the 

uncertainty in tsunami sources in past events. In this study, the tsunami source for 

each simulation is defined for each tsunami numerical model; hence, the closest 

distance from tsunami source to tide station can be obtained. 

The constant “a” in Equation 2.34 represents the attenuation of tsunami wave 

amplitude with distance.  The value is obtained through a linear least square 

regression analysis of log (H) and log (R) dataset. Once the “a” value is found, the 

constant “D” can be calculated by equating Mt with Mw as follows: 

( ) ( )RHMD w loglog --=  3.8 

The relationship between earthquake moment magnitude and tsunami parameters is 

necessary for quick estimation of tsunami heights in this study. This is the simplest 

method for determining the heights of all probable tsunamis in a tsunami framework. 

The integration of tsunami numerical analysis into the tsunami framework is hard to 

achieve in this study for several reasons. First, most tsunami numerical analyses are 

based on a finite difference method to solve the long wave equation of tsunami. The 

analysis basically requires a 3D model to take into account many components, 

including the deformation of a tsunami source as well as the bathymetry of the sea. 

As a result, the analysis requires extensive calculation for each tsunami simulation; 

therefore, it is not suitable for the stochastic technique adopted in this study. Second, 

tsunami numerical simulation is time consuming. Thus, simulating the thousands of 

probable tsunamis in this study is not time efficient and is computationally 

expensive. 

3.3.2. The Rate of Tsunami for Each Magnitude of Earthquakes 

In this study, the rate of tsunami for each magnitude of earthquakes is examined. The 

tsunami rate basically represents the ratio between the number of tsunamigenic 
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events and the number of all earthquakes for every earthquake magnitude. This ratio 

is required to estimate the proportion of tsunamigenic events in the randomised 

earthquake catalogue, which is generated from the PSHA framework. The rate of 

tsunami for Sumatra is shown in Figure 3.8. The correlation in Figure 3.8 is 

developed from thrust fault events at the Sumatra Subduction Zone (SSZ), which is 

the main source of tsunami in the region. Figure 3.8 also shows that lower 

earthquake magnitudes would have lower tsunami rate and the rate would linearly 

increase up to Mw 7.5. The tsunami rate remains constant afterwards. 

 
Figure 3.8. Probability of tsunami occurrence in terms of the moment magnitude of 

earthquake (Mw) based on the tsunami catalogue of Sumatra 

3.3.3. The Procedure of PTHA Module 

The tsunami module requires some additional input data, including tide gauge 

locations and tsunami rate, as shown in Table 3.2. The tide gauge data specify the 

points where the tsunami hazard would be assessed and should be placed onshore. 

The tsunami rate represents the proportion of tsunamigenic events from the total 

events occurring in the SSZ for each magnitude range of earthquakes. Hence, the 

number of tsunamigenic events can be estimated simply by multiplying the tsunami 

rate with the number of events in the earthquake catalogue for each magnitude range. 
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Table 3.2. Input data required for the PTHA module 

Input Data Input Files2 Description 

Tide gauges TideGauges.csv The coordinates (longitude and latitude)  
of tide gauges in an investigated area 

Tsunami Rate  TRate.csv The rate of tsunami for each magnitude 
range and each seismic zone 

Random 
Catalogue 

Cat####.csv Randomised earthquake catalogue from 
“RandCat” folder 

The procedure of the PTHA module is shown in Figure 3.9. It starts with selecting 

the potentially tsunamigenic events as explained below from the randomised 

earthquake catalogue (previously generated in the PSHA module). The tsunamigenic 

events are then stored in a tsunami catalogue. It is observed from the data (Figure 

4.2.3) that 90% of tsunamis in Sumatra are triggered by thrust fault earthquakes in 

the Sumatra subduction zone, with a focal depth of ≤ 80 km and an earthquake 

magnitude of Mw ≥ 6.5. Therefore, the tsunamigenic earthquakes in this study are 

selected based on these criteria. Moreover, the PTHA method proposed in this study 

is only applicable to ordinary tsunamigenic earthquakes. The anomalous tsunami 

earthquakes, as defined in Section 2.4.3, are beyond the scope of this study.  

The events in the tsunami catalogue are selected randomly from the number of 

tsunamis estimated from the tsunami rate, which is saved into Randomised Tsunami 

Catalogue. The tsunami heights for each randomised event are then calculated using 

Equation 2.34 for every location of tide gauges. Hence, the tsunami height at each 

tide gauge for a defined return period can be determined using a similar procedure 

used in PSHA (see Section 3.2.5). Following the same procedure, the tsunami hazard 

curve for the region can also be obtained. 

 

                                                
2 Suffix ‘.csv’ denotes comma separated file. 
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Figure 3.9. Procedure for Probabilistic Tsunami Hazard Assessment (PTHA) 

3.4. EARTHQUAKE AND TSUNAMI RISK ASSESSMENT 

FRAMEWORK 

3.4.1. The Selection of Vulnerability Functions for the Building Stock in 

Padang 

To determine the earthquake and tsunami risk, vulnerability curves for each type of 

structures in Padang are required. The vulnerability curves correlate the expected 

ground motions (or tsunami heights) with the mean damage ratio of the existing 

building stock in the region. For earthquake risk, this study adopts vulnerability 

curves proposed by GESI (2001), since GESI provides flexibility in selecting the 
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project includes data from many countries including Indonesia. The assignment of 

vulnerability curves to represent building stock in Padang is discussed in Appendix 

E, and the chosen vulnerability curves are shown in Figure 3.10. Vulnerability curves 

for improved seismic performance to the level of modern seismic design standard are 

shown in Figure 3.11. GESI vulnerability curves comprise 4 damage states, which 

are defined in Table 3.3. 

 
Figure 3.10. Correlation between ground acceleration and damage state for existing 

building stock in Padang (GESI, 2001) 

 
Figure 3.11. Correlation between ground acceleration and average damage state for 

seismically strengthened structures in Padang (GESI, 2001) 
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Table 3.3. GESI building damage states (GESI, 2001) 

Damage State Description 

None, slight or 
moderate 

Ranging from no damage to non-structural damage and minor 
structural damage. 

Extensive Extensive structural and non-structural damage. Localised life-
threatening situations are common. 

Partial collapse Building is entirely structurally compromised and on the verge 
of collapse or small portion of the building has collapsed. 

Complete collapse Building is entirely destroyed, with significant portions of the 
building collapsed.  

In addition, vulnerability curves developed by Kyriakides (2007) for reinforced 

concrete structures are also utilised in this study. It is assumed that Kyriakides’s low 

pre-seismic and modern seismic RC structures comply with the existing and seismic 

designed buildings in Padang. Kyriakides’s vulnerability curves in comparison with 

those of GESI (2001) are shown in Figure 3.12.  

Table 3.4 shows the estimated mean damage ratio (MDR) of existing RCI buildings 

in Padang subjected to Mw 7.6 earthquake occurring in the area. The event produced 

a MDR of 18% in the area. The vulnerability curves proposed by GESI (2001) and 

Kyriakides (2007) for reinforced concrete structures appear to be comparable with 

the value of this empirical  MDR, as seen in Figure 3.12, and therefore,  are suitable 

for this study. 

 
Figure 3.12. The comparison of GESI (2001) and Kyriakides (2007) vulnerability 

functions with the empirical MDR for reinforced concrete buildings in Padang 
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Table 3.4. The estimation of mean damage ratio for RCI buildings in Padang based 

on the damage data of the Mw 7.6 earthquake 

Damage 
State (DS) 

Central Damage Ratio 
(CDR) % - HAZUS (1999) 

Probability of DS 
(PGA 0.26g at Padang city) 

None 0 0.606 
Light 20 0.173 
Moderate 55 0.125 
Extensive 80 0.096 
 MDR = 0.180 

For tsunami hazard assessment, the vulnerability curves proposed by (Tinti et al., 

2011) are used. The vulnerability curves were developed as part of the SCHEMA 

project (a consortium of 11 organisations in the European Union, Turkey and 

Morocco) aiming to build up tsunami hazard, vulnerability and impact damage maps 

for Europe and Mediterranean. The project used post tsunami data from Banda Aceh 

(Sumatra, Indonesia) after the Indian Ocean tsunami in 2004 (Valencia et al., 2011). 

Therefore, the vulnerability curves are perfectly applicable for this study. The 

adopted vulnerability curves are shown in Figure 3.13. No data exist for improved 

structures. However, it is accepted that the forces from ground motion (PGA) and 

tsunami at height (Ht) have similar effects on structures. Vulnerability curves for the 

seismically strengthened structures can be developed by using the ratios from Figure 

3.10 and Figure 3.11. These curves are seen in Figure 3.14 and the description for 

each damage scale is shown in Table 3.5.  
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Figure 3.13. Correlation between tsunami height and mean damage level for existing 

building stock in Padang (Tinti et al., 2011) 

 
Figure 3.14. Correlation between tsunami height and mean damage level for 

seismically strengthened structures in Padang
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Table 3.5. Damage levels for buildings (Tinti et al., 2011) 

Damage 
Level Damage on Structure Use as shelter/ 

post crisis use 
Detection by Earth 

observation 

D0 
No 
damage 

No significant damage 
 

Shelter/ 
immediate 
occupancy 
 

No sign of damage visible on 
building and surrounding 
environment. The absence of 
damage cannot be proved only 
through space imagery. 

D1 
Light 
damage 

No structural damage - minor 
damage, repairable: chipping of 
plaster, minor visible cracking, 
damage to windows, doors. 

Shelter / 
immediate 
occupancy 
 

Barely visible 

D2 
Important 
damage 

Important damage, but no 
structural damage: out-of-plane 
failure or collapse of parts of 
wall sections or panels without 
compromising structural 
integrity, leaving foundations 
partly exposed. 

Evacuation / 
Unsuitable for 
immediate 
occupancy, but 
suitable after 
repair 

Damage on roof hardly 
visible. Other damage not 
visible. 
 

D3 
Heavy 
damage 

Structural damage that could 
affect the building stability: out-
of-plane failure or collapse of 
masonry, partial collapse of 
floors, excessive scouring and 
collapse of sections of structure 
due to settlement. 

Evacuation / 
Demolition 
required since 
unsuitable for 
occupancy 
 

Not or hardly visible if roofs 
have not been removed 

D4 
Partial 
failure 

Heavy damages compromising 
structural integrity, partial 
collapse of the building 

Evacuation / 
Complete 
demolition 
required  

Visible 
 

D5 
Collapse 

Complete collapse: foundations 
and floor slabs visible and 
exposed. 

Evacuation Very visible 

 

3.4.2. The Procedure Adopted in the Earthquake and Tsunami Risk 

Assessment Module 

The main outcomes of the risk assessment module are loss and casualty estimation. 

The loss estimation requires building inventory, vulnerability curves and the 

estimated ground motion parameter corresponding to a particular period of time. The 

prediction of casualty involves death and injury rate functions, building inventory, as 

well as population data (Khan, 2011). In this case, the population data must at least 

contain the rate of occupancy at any time in the investigated area. This information is 

not available for the case study region. Hence, the risk assessment module in this 
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study only includes the loss estimation for building damage subjected to earthquake 

and tsunami hazards. 

The risk assessment takes into account the annual frequency of exceedance for all 

events, which are generated in the PSHA and PTHA modules. It should be noted that 

this study only takes into account mean damage ratio (MDR) ≥ 2%, which represents 

the minimum threshold of damage covered by earthquake insurance (Deniz, 2006). 

3.4.2.1. Probabilistic Earthquake Risk Assessment  

The procedure of earthquake risk assessment begins with reading the building 

inventory data for each area unit (AU), as given in Appendix C. In this case study, 

the data contain only the area of buildings for each building category in the region. 

Hazard data files for all AUs calculated in the PSHA module are incorporated into 

the risk assessment module. The hazard data files summarise the outcomes of PSHA 

in terms of PGA and its return period (T) and arrange them in a descending order. 

Therefore, it is more convenient, for computation, to utilise the hazard curves instead 

of reading the raw data from the PSHA module. Afterwards, the annual frequency of 

exceedance (AFE) associated with a particular PGA is calculated from its return 

period  (AFE  =  1/T).  Then,  the  corresponding  mean  damage  ratio  (MDR)  for  each  

building category is obtained from the vulnerability curves. The annual MDR at a 

certain level of ground motion can be obtained simply by multiplying the annual rate 

of  occurrence  (computed  from AFE)  with  the  MDR.  The  summation  of  the  annual  

MDR  for  all  events  represents  the  total  annual  MDR  for  the  area  unit.  The  

multiplication of building inventory data, building value and the total annual MDR 

produces the annual losses for each building category in the area unit. The input data 

for  the  earthquake  risk  module  are  shown in  Table  3.6,  whilst  the  flowchart  of  the  

earthquake risk module is shown in Figure 3.15. 
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Table 3.6. Input data for the earthquake risk assessment module 

Input Data Input Files3 Description 

Building 
inventory 

UCInv.csv Building inventory data for each type of 
structure in every AU 

Earthquake 
Hazard Data 
Files 

HazCur####.csv Ground motion rate (PGA vs. its return 
period) for every AU 

Earthquake 
vulnerability 
curves  

VULCUR.csv Earthquake vulnerability curves for every 
typology of structures 

 

Figure 3.15. Flow chart of the earthquake risk module 

                                                
3 Suffix ‘.csv’ denotes comma separated file. 
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3.4.2.2. Probabilistic Tsunami Risk Assessment  

A similar method to the earthquake risk module is applied to estimate tsunami risk. 

However, instead of using ground motion response (PGA), tsunami risk calculation 

involves tsunami height (Ht) as the parameter to determine the level of damage. The 

tsunami heights are the main outcome of the PTHA module. In addition, ground 

elevation information for each area unit is required to determine the maximum water 

height above the base of structure (hmax).  The  structural  damage  for  each  building  

category is predicted using tsunami vulnerability curves proposed by (Tinti et al., 

2011). The tsunami vulnerability functions correlate hmax with MDR; and hence, the 

damage value can be predicted. The input data for the tsunami risk module are shown 

in Table 3.7 and the flowchart is shown in Figure 3.16.  

Table 3.7. Input data for tsunami risk assessment module 

Input Data Input Files4 Description 

Building 
inventory 

UCInv.csv Building inventory data for each type of 
structure in every AU 

Tsunami 
Hazard Data 
Files 

HazCur####.csv The rate of tsunami height in the area 

Tsunami 
vulnerability 
curves 

VULCUR-Tsu.csv Tsunami vulnerability curves for every 
typology of structures 

Elevation data UCElv.csv Elevation  information  at  the  centroid  of  
each AU  

                                                
4 Suffix ‘.csv’ denotes comma separated file. 
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Figure 3.16. Flowchart of the tsunami risk module 
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3.5. SUMMARY 

§ An earthquake risk assessment framework (ERA Framework), developed at the 

University of Sheffield, is extended to take tsunami hazard and time dependent 

hazard assessment into account. The framework consists of three main tasks, 

PSHA module, PTHA module and risk module. These modules are developed 

based on stochastic approach with readily available seismological information. 

§ For the PSHA module, a method is developed to extend the existing earthquake 

catalogue by generating synthetic events. The synthetic events are produced 

using a method by Khan (2011). However, this study also integrates earthquake 

recurrence relationships, as proposed by Musson (2000), to characterise 

seismicity. In addition, a method to include a time dependent approach for hazard 

assessment is proposed to consider the non-stationary rate of hazard with time.  

§ The integration of PTHA module in the framework is conducted by selecting 

tsunamigenic events in the randomised earthquake catalogue based on defined 

criteria. To take into account tsunami probability for different magnitudes of 

earthquakes, a tsunami rate is applied in the random selection procedure. 

Tsunami heights are computed for these randomised events. 

§ Probabilistic risk assessments are conducted for both earthquake and tsunami 

hazards. The risk is determined using hazard curves obtained from the hazard 

modules, vulnerability functions and inventory database in the investigated area. 

The risk assessment in this study foresees the expected building loss and fatalities 

due to earthquake and tsunami hazards. 
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CHAPTER 4 

DATA COLLECTION AND ANALYSIS FOR 

EARTHQUAKE AND TSUNAMI RISK ASSESSMENTS  

4.1. INTRODUCTION 

This chapter presents the data collection and analysis required to perform the seismic 

risk assessment. Key parameters such as the tectonic setting of Sumatra, earthquake 

zones, earthquake catalogue, magnitude conversion as well as selection of 

attenuation relationships are presented for conducting seismic hazard assessment. 

Tsunami catalogue, bathymetry and topography maps are also collected, as required 

in tsunami hazard assessment. Population data and building inventory are obtained 

and utilised as main parameters to determine seismic risk. 

4.2. TECTONIC SITUATION OF SUMATRA 

Sumatra has high seismicity due to the collision between the Indian-Australian and 

Eurasian  tectonic  plates.   The  process  was  initiated  around  ~100  Ma  when  the  

northern edge of the Indian-Australian plate subducted beneath the Sunda continental 

margin.  Consequently, the Sunda trench was formed as a result of the northward 

movement of the Indian-Australian into Eurasian plate, as illustrated in Figure 4.1 

and Figure 4.2. The slip rate along the plate boundary is around 52-60 mm/year 

(Natawidjaja, 2002). This subduction area has become one of the major seismic 

sources for Sumatra and is known as the Sumatra Subduction Zone (SSZ). The SSZ 

can be distinguished into 2 zones: interface and intraplate.  The interface zone is 

close to the subduction trench and is known for producing large and shallow 

earthquakes due to its low-dip-angle of about 13-15° (Irsyam et al., 2008). The most 

notable earthquake ever recorded in this zone was the Mw 9.1 Great Sumatra 

Earthquake in 2004. In contrast, the intraplate zone (also known as the Benioff zone) 

is located further away from the Sunda trench.  This zone has a dip angle of around 

40°-45° and consequently, generates deeper earthquakes with focal depth up to 200 

km (Newcomb and McCann, 1987).  Earthquakes with magnitude up to Ms 8.1 were 

recorded in this intraplate region (Irsyam et al., 2008). 
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Figure 4.1. Primary tectonic elements of Sumatra (Natawidjaja, 2002) 

 

Figure 4.2. Sumatra Subduction System from the floor of Indian Ocean to Malay 

Peninsula, drawn to scale (Barber et al., 2005) 

Beetham (2009) estimated the cross section of the subduction zone facing Padang 

city as shown in Figure 4.3, which appears to be consistent with the observed 

seismicity of West Sumatra (see Figure 4.4). 
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Figure 4.3. The great subduction zone interface facing Padang city in West Sumatra, 

figure redrawn from Beetham (2009) 

 
Figure 4.4.  Seismicity of Sumatra in a cross section perpendicular to Padang city 

plotted by ZMAP software developed by Wiemer (2001) 
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Great Sumatra Earthquake in 2004. A few months after the large earthquake, another 
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the 2004 event. Other major events with magnitudes of Mw 8.4 and Mw 7.9 hit further 

south of the SSZ in 2007. These series of large earthquakes have left a segment in the 

Mentawai area, which remains unruptured for nearly 2 centuries, as shown in Figure 
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4.5. The existence of the unruptured segment, as known as a seismic gap, is 

highlighted by many studies (Borrero et al., 2006; Chlieh et al., 2008; Konca et al., 

2008; Sieh, 2005; Sieh, 2007; Sieh et al., 2008). This seismic gap may lead to a mega 

thrust earthquake that is potentially tsunamigenic in a near future. 

 

Figure 4.5. Patches with strong inter-seismic coupling on the Sunda megathrust 

associated with large seismic ruptures (Konca et al., 2008) and the estimated location 

of seismic gap 

The Sumatra Fault Zone (SFZ) is another important seismic source for Sumatra.  The 

SFZ  runs  from  the  north  to  the  south  of  Sumatra  Island  for  about  1900  km.  The  

oblique convergence between Indian-Australian and Eurasian Plates of the Sumatra 

subduction zone had formed the SFZ to take up the shear components of the plate 

movements (McCaffrey, 2009), as illustrated in Figure 4.6. The SFZ is characterised 

as a strike slip fault with dextral movement.  The slip rates across the SFZ vary 

around 6 mm/year near Sunda strait, 25 mm close to the equator and 50 mm/year 

near the Andaman sea (Genrich et al., 2000). Other studies revealed that the Sumatra 

fault moved westward with slip rates between 11-27 mm/year (Natawidjaja, 2002). 

In addition, Natawidjaja (2002) showed that the Sumatra fault was highly segmented.  

Seismic Gap 
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At least 19 segments were identified and most of the segments were shorter than 100 

km.  Only two segments were observed longer than 200 km (Natawidjaja, 2002).  A 

highly segmented fault and a wide step-over had limited the areas of slip ruptures in 

the SFZ, which consequently produced lower magnitude earthquakes. Historical 

records showed that this fault was capable of producing Mw ≤ 7.5 (McCaffrey, 2009). 

 
Figure 4.6.  Geometry of sliver plate as a result of plate slip partitioning process 

(McCaffrey, 2009) 

4.3. EARTHQUAKE ZONES 

As discussed earlier, the seismic sources of Sumatra are characterised into two main 

categories: subduction and strike slip zones. The subduction zone has a thrust slip 

mechanism located along the Sumatra Subduction Zones (SSZ). While the strike slip 

zone is situated along the Sumatra fault (SFZ) as well as the Sumatra volcanic arc. 

To consider areas with undefined fault characteristics, one more category of seismic 

sources is added, which is classified as a background seismicity zone.  

The SSZ, SFZ and the background zones are then divided into smaller sections to 

account for different levels of seismicity along the main seismic sources. The 

boundary of the smaller zones is determined based on the tectonic configuration, 

seismicity level, seismicity distribution as well as fault segmentation collected from 

previous studies.  Consequently, it is assumed that each earthquake zone follows an 

earthquake recurrence relationship. This is a standard procedure for conventional 

PSHA. However, in this project, a method proposed by Khan (2011) is adopted by 

generating synthetic earthquakes randomly within an estimated rupture area of real 

earthquakes. Unlike the conventional method that tends to smooth seismicity, this 

approach produces more realistic earthquake distribution, which is scattered around 
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main faults.  As a result, seismicity in a zone boundary is not uniformly distributed. 

Therefore, this solves the problem of smoothing seismicity in conventional PSHA. 

However, it should be pointed out that in Khan’s method, the directivity of fault 

rupture follows the strike angle of the main fault. Consequently, a seismic zone 

should only cover an area with similar tectonic characteristics. Figure 4.7 shows the 

earthquake zones used for this project. 

 

Figure 4.7.  Earthquake zones of Sumatra (Mw ≥ 6.0) 
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4.4. EARTHQUAKE CATALOGUE 

Earthquake catalogues are freely accessible on various international seismological 

databases  such  as  National  Earthquake  Information  Centre-United  State  Geological  

Survey  (NEIC-USGS),  Northern  California  Earthquake  Data  Centre-United  State  

Geological Survey (NCEDC-USGS), International Seismological Centre (ISC) and 

the Indonesian Meteorology, Climatology and Geophysics Agency (BMKG).  The 

extent of catalogue completeness varies among different sources and different 

regions. For example, the ISC catalogue has recorded historical earthquakes of 

Sumatra since 1907, the NCEDC catalogue since 1963 and the NEIC catalogue since 

1973. The BMKG has provided online access for earthquake databases in Indonesia 

since 2004. Hendriyawan (2007 cited in Irsyam, et al., 2008) revealed that 

earthquake catalogues for the Southeast Asia regions were relatively complete since 

1978 for magnitude interval 5 ≤ Mw < 6, since 1972 for magnitude interval 6 ≤ Mw < 

7 and since 1900s for Mw ≥ 7. 

Figure 4.8 shows the cumulative number of earthquakes for different earthquake 

catalogues. The figure indicates that the level of seismic recording for Sumatra can 

be separated into 3 main periods: 1907-1963, 1963-2004, and 2004-date. The steeper 

gradient at the latter period indicates that earthquake recording in Sumatra improved 

significantly since the Mw 9.1 Great Sumatra earthquake in 2004. The figure also 

reveals that ISC catalogue contains more events compared with NEIC and NCEDC 

catalogues. However, the events in the NEIC and NCEDC catalogues have been 

reviewed by removing duplicate solutions for similar events. In addition, most of the 

existing earthquake catalogues lack detailed information, particularly for historical 

earthquakes occurring when instrumental seismic observations are not available. In 

such a case, any information from paleoseismological studies is utilised to fill in the 

missing information. Therefore, the earthquake catalogue used for this project is 

basically a compilation of the ISC, NEIC and NCEDC catalogues combined with 

historical events from paleoseismological studies (Gusiakov, 2001; Natawidjaja, 

2002; NOAA, 2011).  
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Figure 4.8. Comparison of earthquake catalogues of Sumatra for Mw ≥ 5 

4.5. CONVERSION OF EARTHQUAKE MAGNITUDES 

Earthquake catalogues usually contain various magnitude scales including 

Richter/local magnitude (ML), body-wave magnitudes (mb), duration magnitude 

(MD), surface-wave magnitudes (MS) energy magnitude (ME) and moment 

magnitudes (MW). For this study, Mw scale is used since the other magnitude scales 

have limitations in measuring large earthquakes (see Figure 4.9).  However, the 

number of events measured in Mw is relatively limited; therefore, earthquakes 

recorded in other magnitude scales are utilised and converted to Mw using earthquake 

magnitude conversion equations. Asrurifak et al. (2010) performed regression 

analysis to obtain magnitude conversion equations for earthquakes in Indonesia 

(Table 4.1). These equations are used in this study. 

Table 4.1. Magnitude conversion equations for Indonesia (Asrurifak et al., 2010) 

Conversion Correlation Number 
of Data 

Range of 
Magnitude 

Consistency 
(R2) 

Mw = 0.143Ms
2 – 1.051Ms + 7.285 3173 4.5 ≤ MS ≤ 8.6 93.9% 

Mw = 0.114mb
2 – 0.556mb + 5.560 978 4.9 ≤ mb ≤ 8.2 72.0% 

Mw = 0.787ME + 1.537  154 5.2 ≤ ME ≤ 7.3 71.2% 
mb = 0.125ML

2 - 0.389 ML + 3.513 722 3.0 ≤ ML ≤ 6.2 56.1% 
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Figure 4.9. Comparison of some magnitude scales with moment magnitude scale 

(Heaton et al., 1986) 
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and the expected number of events computed with and without earthquake recurrence 

relationship is presented in Figure 4.10 and Figure 4.11, respectively. 

 
Figure 4.10. Comparison of seismicity rate estimated using earthquake recurrence 

relationship and the instrumental catalogue of Sumatra (105 years) 

 
Figure 4.11. Estimated number of earthquakes for 475 years based on recurrence 

relationship and 105 years of instrumental catalogue 
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study (see Equation 2.9). An improved recurrence model can be easily utilised in the 

PSHA module when the required data become available.  

The PSHA model adopted in this study assumes that each earthquake occurs 

independently, and therefore, follows the Poisson process. To achieve this, various 

methods are proposed to decluster the earthquake catalogue (Gardner and Knopoff, 

1974; Reasenberg, 1985). The declustering process basically removes the accessory 

shocks (preshocks and aftershocks) from the catalogue; thus enabling to obtain a 

better approximation for the rate of main earthquakes. However, experience from 

past earthquakes shows that accessory shocks can cause damage and should not be 

excluded from risk studies. 

The comparison of recurrence relationships for non-declustered and declustered 

earthquake catalogues for Sumatra is presented in Figure 4.12. For the declustered 

catalogues, a time and distance window proposed by Gardner & Knopoff (1974) and 

a declustering criteria used by Reasenberg (1985) are adopted. It is observed that 

Gardner & Knopoff’s algorithm tends to eliminate low magnitude events (about 75% 

of the events discarded) resulting in lower “b” values (see Equation 2.9). The 

Reasenberg’s method removes around 25% of the earthquakes and the resulted “b” 

value is closer to the non-declustered approach. Lower “b” value indicates a higher 

ratio of large to small earthquakes. 

 

Figure 4.12. Recurrence relationships for the Sumatra Subduction Zone developed 

based on the full and declustered earthquake catalogues 
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Figure 4.13 illustrates the recurrence relationships for major seismic sources of 

Sumatra. The figure shows that the Sumatra Subduction Zone (SSZ) has the highest 

seismicity rate compared with the Sumatra Fault Zone (SFZ) and the background 

seismicity zones. The SSZ and Background-01 zone have a lower gradient (lower 

absolute “b” value) and a higher proportion of large events. The SSZ is notable for 

producing mega magnitude earthquakes such as the Mw 9.1 earthquake in 2004. The 

Background-01 zone is a transform zone located on the Indian Ocean near the 

subduction zone, and it is also known to produce large magnitude earthquakes. Two 

consecutive large earthquakes (Mw 8.6 and 8.2) occurred in this zone in 2012. The 

SFZ produces smaller magnitude events (≤ Mw 7.7). However, the SFZ is located in 

the  mainland  of  Sumatra,  so  it  has  the  potential  to  produce  high  earthquake  

intensities in the region. The Background-02 zone is considered as a low seismicity 

area, which is located on the eastern part of Sumatra and around the Malay 

Peninsula. 

 
Figure 4.13. Recurrence relationships for typical seismic sources in Sumatra for full 

and declustered (based on Gardner & Knopoff’s algorithm) earthquake catalogues 
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4.7. GROUND MOTION ATTENUATION RELATIONSHIP 

Ground motion attenuation relationships are selected by comparing suitable 

equations with earthquake strong motion data. A 3-D fault source model is adopted 

in this study for better modelling of fault source geometries including dip angle, 

strike angle and fault rupture characteristics, as shown in Figure 4.14. The interface 

and intraslab events in the subduction area are differentiated based on their faulting 

mechanism, as proposed by Youngs et al. (1997). It is reported that the focal depth of 

interface earthquakes are mostly shallower than 50 km and the intraslab events 

typically  occur  at  depths  below  50  km  (Atkinson  and  Boore,  2003;  Youngs  et  al.,  

1997). 

 

Figure 4.14. Definition of fault source geometries for ground motion calculation 

For the Sumatra subduction area, attenuation equations are verified with the ground 

motion data of Mw 7.6 West Sumatra earthquake in 2009 provided by BMKG (2009). 

The earthquake occurred deep in the Sumatra Subduction Zone with a focal depth of 

71 km. The soil information of the recording stations is not available.  

The comparison shown in Figure 4.15 demonstrates that Parithusta (2007) equations 

tend to overestimate the ground motion at close distance. In addition, the Parithusta‘s 

equations do not distinguish the interface and in-slab events in subduction zone. The 

Atkinson and Boore (2003) attenuation equations provide reasonable estimates of 

ground accelerations. However, Atkinson and Boore (2003) equations are saturated 

at  Mw 8.5  for  interface  events  and  at  Mw 8.0 for in-slab events. Consequently, the 

equations are not suitable for Sumatra, which has a long history of mega magnitude 

earthquakes (up to Mw 9.1). Youngs et al. (1997) equations compare well with the 

data, but provide a lower estimate at close distances. To consider the location of 
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subduction area, which is away from the mainland of Sumatra, it is reasonable to 

select Youngs et al. (1997) ground motion attenuation relations for the Sumatra 

Subduction Zone.  

 

Figure 4.15. Ground Attenuation predictions vs. real strong motion records for the 

Mw 7.6 West Sumatra earthquake in 2009 

Unlike for the Sumatra subduction zone, the strong motion data are not available for 

the Sumatra Fault Zone. However, BMKG provided earthquake data from 2008 to 

2009 recorded by a seismic station in Padang Panjang, West Sumatra. The ratio of 

predicted to recorded accelerations is shown in Figure 4.16. Based on these data, the 

Boore et al. (1997) attenuation equation appears  to overestimate the ground motions. 

In contrast, Sadigh et al. (1997) equation fits the earthquake data better. Hence, 

Sadigh’s attenuation equation is used to calculate earthquake ground motions for the 

Sumatra fault zone. 
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Figure 4.16. Ratio between the estimated ground attenuation and the real strong 

motion records for various earthquakes occurred in the Sumatra Fault 

4.8. GEOLOGICAL MAP AND SOIL TYPES OF PADANG CITY 

The identification of soil types is necessary for seismic hazard assessment since the 

intensity of earthquake ground motions is strongly correlated to the soil condition in 

an area.  For this project, the soil type of Padang city is taken from a local geological 

map obtained from the Indonesian Geological Agency, Department of Energy and 

Mineral Resources, as shown in Figure 4.17. The map reveals that Padang area is 

mostly based on alluvium deposits, which cover the low lying part of the city. EERI 

(2009) reported that the subsurface of the alluvium deposits primarily consists of 
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water levels. Near river banks, the soil is typically loose and saturated fine sand. On 

the other hand, the soil types on the eastern side of Padang are mostly stiff soil and 

rock. This highland area is formed by the Barisan Range that is mainly composed of 

andesite, tuff, granite, limestone and quaternary volcanic deposits. The details of 

Padang’s geology as well as its soil classification can be seen in Figure 4.17. 
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Figure 4.17. Geological map (a) and soil classification (b) of Padang city 
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shown in Figure 4.19, Figure 4.20 and Figure 4.21. Figure 4.19 shows that most 

tsunamis in Sumatra are triggered by earthquakes with a magnitude range of 6.6-7. 

Unlike tsunamis in the Pacific Ocean, considerable number of tsunamis in Sumatra is 

triggered by relatively deep earthquakes as shown in Figure 4.20. 

 

Figure 4.18.  Tsunami sources in Indian Ocean (IOC, 2008) 

 

Figure 4.19. Distributions of tsunamigenic earthquakes in Sumatra & Pacific Ocean 

in terms of earthquake magnitude (Puspito and Gunawan, 2005) 
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Figure 4.20. Distributions of tsunamigenic earthquakes in Sumatra & Pacific Ocean 

in terms of earthquake focal depth (Puspito and Gunawan, 2005) 

 

Figure 4.21.  Earthquake Magnitude vs. Tsunami Intensity for Sumatra region and 

Pacific Ocean (Puspito and Gunawan, 2005) 

4.10. TSUNAMI CATALOGUE 

For this project, the tsunami catalogue of Sumatra is compiled from many sources 

including the Indonesian national agency (BMKG, 2010), National Oceanic and 

Atmospheric Administration of USA (NOAA, 2011), the Russian Oceanographic 

Commission (Tsunami Laboratory Novosibirsk, 2005) as well as various other 

studies (Gusiakov, 2001; Hamzah et al., 2000; Puspito and Gunawan, 2005). Most 

tsunamis in Sumatra are triggered by earthquakes; only a few of them are caused by 

other hazards such as landslides and volcanic eruptions. For that reason, this study 
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only considers tsunami events triggered by earthquakes. Only reliable records, which 

have validity codes of 3 (probable tsunami) and 4 (definite tsunami), are included in 

the tsunami catalogues. The wave heights as well as the spatial distribution of 

tsunamigenic earthquakes in Sumatra are presented in Figure 4.22 and Appendix A. 

 

Figure 4.22. Spatial distribution of tsunamigenic earthquakes in Sumatra 

The intensity of a tsunami depends, to some extent, on the characteristics of the 

earthquake. For the Sumatra region, the magnitude of tsunamigenic earthquakes 

ranges between Mw 5.4 and 9.1. However, the probability that a tsunami would be 

triggered by an earthquake with magnitude less than Mw 6.5  is  only  10%.  The  

weighted average of magnitude is 7.367 with standard deviation of 1.399 (Figure 

4.23). Beside the magnitude, the focal depth of the tsunamigenic earthquake is also 

important for triggering the hazard. The focal depths of tsunamigenic earthquakes in 

Sumatra are around 10 to 133 km with weighted mean of 41.15 km. However, most 

of the tsunamigenic earthquakes in Sumatra are generated by shallow events with 

depth around 20 km. 
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Figure 4.23. Characteristics of tsunamigenic earthquakes in Sumatra 

4.11. BATHYMETRY OF SUMATRA 

A gridded bathymetry data from GEBCO (2012) is used for the numerical tsunami 

analysis. The resolution of the data is 30 arc-second grid, which is obtained from a 

combination of quality-controlled ship depth soundings with interpolation between 

sounding points guided by satellite-derived gravity data (GEBCO, 2012). Land data 

is mostly based on the Shuttle Radar Topography Mission (SRTM30) gridded digital 

elevation model (GEBCO, 2012). The GEBCO data provides a global coverage of 

bathymetry and can be obtained for free. The GEBCO bathymetry of Sumatra is 

plotted in Figure 4.24 and a three dimensional plot of the bathymetry is presented in 

Figure 4.25. It is observed that the subducting plate (the Indo-Australian plate) at the 

Sumatra Subduction Zone is relatively deep, which is around 5 km below the mean 

sea level. The depths of the ocean are getting shallower at the overriding plate. In 

addition, a deep trench (approximately 2000 m below mean sea level) exists between 

the mainland of Sumatra and the smaller islands near the subduction interface. As a 

consequence, this creates steep bathymetry at most parts of the western coast of 

Sumatra.  
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Figure 4.24. Bathymetry of Sumatra (GEBCO, 2012) 

 
Figure 4.25. A three dimensional view of Sumatra Bathymetry plotted using NAMI-

DANCE software (not scaled) 
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4.12. POPULATION DATA 

Population data of Padang city are obtained from Indonesian Central Bureau of 

Statistics.  The data contains population distribution for each sub-district in Padang 

based on the census conducted in 2010. Total area of Padang city is 698 km2 with an 

estimated population of 833,584; resulting in a population density of 1194 

people/km2.  Figure 4.26 shows the population density of the city, which is highly 

distributed around the low lying coastal areas.  

 

Figure 4.26. Population density of Padang city (total population/km2) 
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agency for surveying and mapping). The map contains a layer with the plans of 

buildings in the region, as shown in Figure 4.27. However, the map does not provide 

the number of storeys for each building as well as the typology of structures.  

 

Figure 4.27. An example of a building layer from the BAKOSURTANAL digital 

map for Padang city (scale 1:10,000) 

A  field  survey  by  the  EEFIT  team  reveals  that  the  structures  in  Padang  mainly  

consist of unreinforced masonry, confined masonry and reinforced concrete frames 

with masonry infill (Chian et al., 2010; Wilkinson et al., 2009; Wilkinson et al., 

2012). Based on a personal communication with a government official from the 

urban planning agency of Padang city, the region currently has 203,450 residential 

houses and 20% of them are classified as semi-permanent (wood and unreinforced 

masonry constructions). The other 80% are generally constructed with either brick 

with reinforced columns (confined masonry) or RC frames with masonry infills and 

typically  have  1  or  2  storeys.  The  city  has  about  1,572  buildings  for  public  or  

commercial purposes, which are mainly constructed from RC frames with masonry 

infills. The use of steel structures is limited and generally found in large commercial 

buildings or industrial facilities. 

To estimate the distribution for each type of structures in the investigated area, visual 

inspections from satellite imagery (Google Earth, 2011) are performed. The area is 

divided into several categories such as residential, commercial, industrial facilities 
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and combinations of the aforementioned categories (see Figure 4.28). The Padang 

region is subdivided into small rectangular grids and a category is assigned to each 

grid. The percentage of each type of structure for every category is determined and 

its average is shown in Table 4.2. . The assigned building category for each grid is 

shown in Figure 4.29. The “NA” category in the figure denotes an area with limited 

or no observed building stock. The estimated area of buildings for each grid in 

Padang city is shown in Figure 4.30. The figure shows that the building density is 

higher along the coastal area of Padang. Full details are given in Appendix C. 

 
Figure 4.28. Typical satellite imagery for residential, commercial and industrial areas 

in Padang city (Google Earth, 2011) 
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Table 4.2. Composition of buildings in Padang based on the land use of the areas 

Category % UBM1 % CBM2 % RCI3 % Steel4 

1. Rural residential area (R-1) 17.3 69.0 13.6 0.1 

2. Residential area in the city (R-2) 13.1 52.2 34.6 0.1 

3. Residential and commercial area 
at the outskirt of the city (RC-1) 

6.7 26.6 66.5 0.2 

4. Residential and commercial area 
in the city (RC-2) 

1.5 6.1 92.0 0.4 

5. Residential and industrial area 
(RI) 

11.6 46.6 27.2 14.6 

6. Residential, commercial and 
industrial area (RCI) 

3.0 12.1 80.4 4.5 

 

 

Figure 4.29. Distribution of structural categories within the Padang area 
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Figure 4.30. Estimated areas of buildings (m2) for each grid in Padang city 

4.14. SUMMARY 

§ Seismic sources in Sumatra are reviewed and these are dominated by the Sumatra 

Subduction Zone (SSZ) and the Sumatra Fault  Zone (SFZ).  The seismic source 

information is important to determine the seismic zones of the region along with 

other information including fault slip mechanism, tectonic configuration, 

seismicity level, seismicity distribution as well as fault segmentations.  

§ The earthquake catalogue used in this study is compiled from many sources 

including ISC, NEIC, NCEDC and historical events from paleoseismological 

studies. The earthquake catalogue is utilized to determine earthquake recurrence 

relationships in the investigated area as well as to generate synthetic events in the 

PSHA module. 

§ Earthquake moment magnitude scale (Mw)  is  used  in  this  study.  Hence,  any  

earthquakes recorded in other scales are converted to Mw using magnitude 

conversion equations proposed by Asrurifak et al. (2010).  

§ Ground motion attenuation equations proposed by Youngs et al. (1997) and 

Sadigh et al. (1997) are utilised in the PSHA module to calculate PGA in the SSZ 

and SFZ, respectively. 
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§ Detailed soil data for Padang city is not available. Therefore, the soil information 

is inferred from a geological map issued by the Indonesian Geological Agency, 

Department of Energy and Mineral Resources. The soil information is required to 

calculate PGA using the attenuation relationships. 

§ A tsunami catalogue for Sumatra is compiled from many sources including 

BMKG (2010), NOAA (2011) and Tsunami Laboratory Novosibirsk (2005). The 

tsunami catalogue is used to determine tsunami rate (Figure 3.8) and the 

characteristics of tsunamigenic earthquakes in Sumatra (Figure 4.23). 

§ A gridded bathymetry data from GEBCO (2012) is utilized for the numerical 

tsunami analysis. 

§ Population data of Padang city is obtained from the Indonesian Central Bureau of 

Statistics based on the census conducted in 2010. This data is necessary for the 

estimation of fatality risk. 

§ Building inventory data are required for building loss estimation. Building 

inventory for Padang is developed based on a digital map produced by PT. Exsa 

International in collaboration with BAKORSURTANAL. However, the inventory 

map does not contain the distribution for each type of structure in the investigated 

area; hence, visual inspections from satellite imagery (Google Earth, 2011) are 

performed.  
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CHAPTER 5 

THE PROBABILISTIC SEISMIC HAZARD ASSESSMENT 

OF SUMATRA 

5.1. INTRODUCTION 

This chapter discusses the main outcomes of the PSHA performed for Sumatra. The 

use of a magnitude range to represent the earthquake recurrence relation is initially 

investigated. The success of the declustering procedure to remove accessory shocks 

in earthquake catalogue is also examined. Several hazard maps are produced based 

on three different techniques including two based on time independent PSHA 

(Khan’s model and the proposed model) and a time dependent model. A seismic 

hazard curve and a uniform hazard spectrum are produced for Padang city, West 

Sumatra. 

5.2. VERIFICATION OF PSHA MODULE 

5.2.1. The Sensitivity of the PSHA Module to Different Magnitude Ranges 

As discussed in Chapter 3, the PSHA module uses specified magnitude ranges to 

control  the  seismicity  for  each  zone.  However,  the  outcome  of  the  PSHA  module  

should be consistent, regardless of the magnitude range adopted in the analysis. To 

investigate this, three simulations are performed using different magnitude ranges, as 

shown in Table 5.1. An identical earthquake catalogue is used for each simulation, 

and no synthetic earthquakes are included at this stage. The resulting seismic hazard 

maps are shown in Figure 5.1, which shows that all simulations produce comparable 

hazard  maps.  It  can  be  concluded  that  the  outcomes  of  the  PSHA  module  do  not  

depend on the assumed magnitude ranges providing that a sufficient number of 

simulations are conducted, and hence, a magnitude range of 0.5 (Type 2) is selected 

for this study. It should be pointed out that the hazard maps in Figure 5.1 do not 

represent the real earthquake hazard of Padang city, since the simulations involve 

limited events, which do not characterise the seismicity of the region well.  
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Table 5.1. Different types of magnitude range for assessing the PSHA module 

Type 
Magnitude Ranges 

1 2 3 4 5 6 7 
1 0≤Mw<6.5 6.5≤Mw<6.75 6.75≤ Mw<7 7≤ Mw<7.25 7.25≤ Mw<7.5 7.5≤ Mw<8  Mw ≥8 
2 0≤Mw<6 6≤Mw<6.5 6.5≤ Mw<7 7≤ Mw<7.5 7.5≤ Mw<8 8≤ Mw<8.5 Mw ≥8.5 
3 0≤Mw<4 4≤Mw<5 5≤ Mw<6 6≤ Mw<7 7≤ Mw<8 8≤ Mw<9 Mw ≥9 

 

 

Figure 5.1. Artificial seismic hazard maps of the Padang region at 10% probability of 

exceedance in 50 years for magnitude range analyses: a). Type 1; b). Type 2; and c). 

Type 3 

5.2.2. The Sensitivity of PSHA to the Number of Simulations 

As discussed earlier in Chapter 2, the reliability of the stochastic seismic hazard 

approach increases with the number of simulations performed. Consequently, this 

section investigates the acceptable number of simulations that should be conducted in 

the case study area. Three different numbers of simulations (200, 250 and 300 

simulations) are carried out for Padang city and the outcomes are compared in Figure 

5.2. It can be seen that the seismic hazard maps for Sumatra region converge after 

250  simulations.  However,  the  differences  of  the  outcomes  among  the  three  

simulations are not significant. The average difference of PGA values between the 

200 and 250 simulations is only 1.29%, and the average difference between the 250 

and 300 simulations is only 0.72%. Lower seismicity areas may require less 

simulations since those areas contain less events.  
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Figure 5.2. Seismic hazard maps of the Padang region at 10% probability of 

exceedance in 50 years for different number of simulations: a). 200 simulations; b). 

250 simulations; c). 300 simulations 

5.2.3. The Effects of Seismicity Declustering in Seismic Hazard Assessment 

Seismicity declustering is a procedure that removes aftershocks and preshocks from 

the earthquake catalogue. The procedure mainly removes lower magnitude events 

from the earthquake catalogue to obtain only independent events. To investigate the 

effect of the seismicity declustering on the seismic hazard, two PSHA studies are 

conducted using the declustered and full (non-declustered) earthquake catalogues of 

Sumatra. The declustered catalogue follows Reasenberg’s (1985) algorithm. The 

outcomes are presented in Figure 5.3(a) and Figure 5.3(b), which show comparable 

hazard maps. The average difference between the ground motion values calculated 

using the declustered and the full catalogues is about 5.5%. Since the difference 

between the two hazard maps is not really significant, in this study, the full 

earthquake catalogue is adopted for the PSHA simulations. 
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Figure 5.3. Seismic hazard maps of Sumatra at 10% probability of exceedance in 50 

years for 100 simulations: a). based on full catalogue; b). based on the declustered 

catalogue 

5.3. TIME INDEPENDENT PSHA 

Although spectral acceleration is a better parameter to approximate the motion of 

structures under earthquake loading, the seismic hazard map produced in this study is 

expressed in terms of PGA. This is to consider that PGA is still used in the current 

Indonesian seismic code (SNI 03-1726-2002, 2002) and the majority of buildings in 

Padang is low rise structures with short natural period and limited ductility. For these 

reasons, the use of PGA is realistic. In addition, the available vulnerability curves for 

the buildings in the case study area are expressed in terms of PGA. The vulnerability 

curves are required to assess earthquake risk in the investigated area as discussed in 

Chapter 7. 

The seismic hazard map in Figure 5.4 is produced based on the stochastic PSHA 

method proposed in Chapter 3. Three hundred simulations are performed based on 

the Monte Carlo approach. In comparison with existing hazard maps, the PGA values 

of the new method are considerably higher than those given in the Indonesian 

seismic design code for buildings, SNI 03-1726-2002 (shown in Figure 2.7). In the 

2002 seismic code, the PGA of the Sumatra Fault Zone (SFZ) ranges between 0.20g 

and 0.25g. However, the hazard map in Figure 5.3 reveals that the ground motions 
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for the SFZ can reach up to 0.65g. Despite the fact that the subduction zone is 

capable of generating greater magnitude earthquakes, at a small source to site 

distance, the shallow crustal earthquakes in the SFZ may produce higher peak 

acceleration, as highlighted by Youngs et al. (1997).  

The hazard map in Figure 5.4 appears to be comparable with the hazard maps by 

Petersen et al. (2004), Irsyam et al. (2008) and Irsyam et al. (2010) ( see Figure 2.8 

Figure 2.9 and Figure 2.10, respectively). Nevertheless, the PGA values of Petersen’s 

and Irsyam’s are better distributed around the main Sumatran faults. This is due to 

the nature of the conventional seismic hazard methods adopted in those studies, 

which tend to smooth the seismicity over a seismic source. In addition, Petersen et al. 

(2004) use only interplate attenuation equations for the subduction environment, 

which result in higher ground motion values for the subduction areas. 

 
Figure 5.4. Seismic hazard maps for Sumatra for 10% probability of exceedance in 

50 years based on the proposed method (300 simulations) 

Figure 5.5 presents a hazard map based on Khan’s approach. The ground motion 

values obtained from Khan’s and the new method are then compared in terms of 

PGA ratios, as presented in Figure 5.6. The white colour grids in the figure show the 
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PGA values with the margin of about 15% difference from the hazard map in Figure 

5.4. The 15% range is selected to consider the random nature of the stochastic PSHA, 

which is not likely to produce identical results for each simulation. The orange grids 

define the areas where PGA values are underestimated in Khan’s method and the 

blue grids indicate overestimates. Observing the ratio distribution in Figure 5.6, it 

can be concluded that Khan’s method tends to underestimate the hazard in the 

Sumatra fault area (SFZ). This is because Khan’s method uses the instrumental 

catalogue to represent the seismicity. The instrumental catalogue of Sumatra has only 

been available in the last 50 years, with varying completeness periods corresponding 

to the magnitude of earthquakes. It is understood that the early period of the 

instrumental catalogue lacks low to moderate magnitude earthquakes, which 

dominate the seismicity in the SFZ. As a consequence, Khan’s method 

underestimates the hazard in the SFZ. In addition, it is observed that the current 

seismicity of the SFZ is lower than its mean long-term seismicity, which can lead to 

the underestimation of the hazard in the area.  

 

Figure 5.5. Seismic hazard maps of Sumatra for 10% probability of exceedance in 50 

years based on Khan’s method 

On the other hand, Khan’s approach seems to over-estimate the seismic hazard in the 

Padang segment (green box in Figure 5.6). The segment has coincidentally been 

0.1

0.2

0.3
0.

3

0.3

0.2

0.3

0.
3

0.2

0.3

0.3

0 .2

0.2

Legend
PSHA-Khan (P475)
PGA (g)

0.01 - 0.10

0.10 - 0.20

0.20 - 0.30

0.30 - 0.40

0.40 - 0.65

±

0 200 400100
Km



Chapter 5                                                                          The Probabilistic Seismic Hazard Assessment of Sumatra 
 
 

122 
 

identified as a seismic gap in the Sumatra Subduction Zone (SFZ). The seismicity of 

the Padang segment has increased significantly since 2005 and has currently reached 

about 2.52 times its average long-term seismicity. It is more likely that Khan’s PSHA 

method represents the recent seismicity of the Padang area, which results in the 

increment of hazard above the average long-term seismicity.  

In addition, it is observed that earthquake recording in Sumatra has improved 

significantly  since  the  Mw 9.1 Great Sumatra earthquake in 2004, as mentioned in 

Section 4.4. Hence, the increased rate of seismicity in the Padang segments becomes 

better documented than before. 

 

Figure 5.6. Ratio of PGA obtained from Khan’s method and the new method for each 

grid in the case study region 

5.4. THE SEISMIC HAZARD FOR PADANG CITY 

Seismic hazard assessment conducted in Padang city shows that the area is likely to 

experience PGA of 0.24g–0.40g, as shown in Figure 5.7. The seismic hazard maps 

are estimated at 10% probability of exceedance in 50 years, as given in the current 

Indonesian seismic code for buildings (SNI 03-1726-2002, 2002). At rock site 

conditions, the expected PGA is around 0.24g-0.30g (Figure 5.7a), and this is 
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classified as “very strong” in the USGS perceived motion category (Table 5.2). 

However, the ground motions can be amplified by the local soil conditions (Figure 

5.7b) and the most densely populated area of Padang city is likely to experience a 

“severe” level of ground motions of 0.35g-0.40g. The local soil condition is 

characterised using the geological map of Padang (Figure 4.17) and the PGA 

associated with the soil type of the area is determined using the attenuation 

relationships (see Equations 2.10 – 2.15). 

 
Figure 5.7. Seismic hazard map at 10% probability of exceedance in 50 years for 

Padang city (PGA in g): (a). on rock site condition; (b). based on the ground surface 

as shown in Figure 4.17. 

Table 5.2. Ground motion category in terms of perceived shaking (USGS, 2009) 

Perceived Shaking PGA (g) Perceived Shaking PGA (g) 
1. Not Felt < 0.0017 6. Very Strong 0.1800 – 0.3400 
2. Weak 0.0017 – 0.0140 7. Severe 0.3400 – 0.6500 
3. Light 0.0140 – 0.0390 8. Violent 0.6500 – 1.2400 
4. Moderate 0.0390 – 0.0920 9. Extreme > 1.2400 
5. Strong 0.0920 – 0.1800   
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Figure 5.8 and Figure 5.9 represent the average rates of ground motions as well as 

their probability of exceedance in 50 years for Padang city. The average peak ground 

accelerations of the region are 0.23g and 0.3g for 10% and 2% probability of 

exceedance in 50 years, respectively. These PGA values correspond to 475 and 2500 

years of return period, respectively. 

 
Figure 5.8. Rate of earthquake hazard for Padang city on bed rock 

 
Figure 5.9. Earthquake hazard curve for Padang city for 50 years (bed rock) 

The stochastic PSHA approach in this study has an advantage, in that it allows direct 

identification of design earthquakes that contribute to the hazard in an area. The 

seismic source contribution cannot be directly attained in the conventional PSHA, 

and therefore, a deaggregation procedure is required. As discussed in Section 2.3.2, 

the deaggregation procedure is known for having some issues related to the selection 

of bin size, the grouping of scenario and set of quantities which should be chosen as 

the base for the deaggregation (Abrahamson, 2006). 
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Figure 5.10, Figure 5.11 and Figure 5.12 show the contributions of all seismic 

sources, the SSZ and the SFZ to the seismic hazard in Padang, respectively. For the 

subduction area, the highest ground motions are mostly generated by near field 

events from the intraplate zone with a magnitude range of Mw 7.5-8 and focal 

distances of about 0-50 km from the city. The mega-thrust events on the subduction 

interface produce lower values of PGA. This is due to the location of the subduction 

interface,  which  is  further  away  from  the  city  (more  than  100  km).  However,  the  

interface earthquakes are capable of producing large magnitude earthquakes with 

shallow focal depth, which can trigger tsunami. The earthquakes occurring on the 

Sumatran fault (SFZ) generally affect the eastern part of the city, which has less 

population and infrastructure. The significant events from this zone can be 

characterised as Mw 7-8 at relatively close distances to the city (around 0-100 km 

from Padang city). 

 

Figure 5.10. Contributions of all seismic sources to seismic hazard in Padang 
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Figure 5.11. Contributions of the SSZ to seismic hazard in Padang 

 

Figure 5.12. Contributions of the SFZ to seismic hazard in Padang 

Previous studies show that spectral acceleration (SA) is a better parameter to 

represent seismic demand for buildings rather than PGA. In this study, an attempt has 

been made to develop uniform hazard spectra for Padang city at 475 return periods 

(see Figure 5.13). The hazard spectra are estimated using the attenuation equations 

utilised in the PSHA module (Sadigh et al., 1997; Youngs et al., 1997). For a short 

period ground motion (T<0.2 second), it is expected that the spectral accelerations 

would reach 0.76g on rock sites and 0.82g on soil. For long period ground motions 

(T>1 second), a lower acceleration is expected, which is 0.33g on rock sites and 

0.49g on soil sites. These values are comparable with the proposed spectral 

0.00

0.05

0.10

0.15

0.20

0-50
50-100

100-150

150-200

200-250

250-300

300-350

350-400

400-450

450-500

500-550

550-600

600-800

800-1000 5-5.5

5.5-6

6-6.5
6.5-7

7-7.5
7.5-8

8-8.5
8.5-9

9-9.5
A

ve
ra

ge
 P

G
A 

(g
)

Distance (Km)

Magnitude Range

0.00
0.02
0.04
0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.20

0-50
50-100

100-150

150-200

200-250

250-300

300-350

350-400

400-450

450-500

500-550

550-600

600-800

800-1000 5-5.5

5.5-6

6-6.5

6.5-7
7-7.5

7.5-8
8-8.5

8.5-9
9-9.5

Av
er

ag
e 

PG
A

 (g
)

Distance (Km)

Magnitude Range



Chapter 5                                                                          The Probabilistic Seismic Hazard Assessment of Sumatra 
 
 

127 
 

accelerations in the last revision of the Indonesian seismic code (Irsyam et al., 2010). 

For Padang city, the proposed code gives 0.7-0.8g and 0.3-0.4g for 0.2 second and 

1.0 second of spectral accelerations, respectively. Figure 5.13 also shows the design 

spectrum of the 2002 Indonesian seismic code, which is assigned for Padang (Zone-

5). For soil sites, it is observed that the design spectrum given in the code is still in 

the range of spectral acceleration obtained in this study. However, the spectral values 

given in the 2002 code on bed rock sites appear to be lower than those obtained in 

this study, particularly for short period ground motions. This problem is shown when 

the Mw 7.6 earthquake occurred near Padang in 2009 (Behnamfar and Afshari, 2013; 

Wilkinson et al., 2009).  Thus, a revision of the design spectra in the 2002 seismic 

code is required. 

 
Figure 5.13. Comparison of uniform hazard spectra obtained in this study with those 

given in the 2002 Indonesian seismic code for Padang city (5% damping, 10% 

probability of exceedance in 50 years) 
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In this study, the estimation of varying rates is only performed for the SSZ since the 

region is dominated by large magnitude earthquakes, which are assumed to have 

periodic recurrence intervals. Other seismic sources such as the SFZ, the 

Background-01 and the Background-02 zones are mostly dominated by small to 

moderate earthquakes, which tend to have random distribution of recurrence 

intervals.  Moreover,  unlike the SSZ, the segment boundaries of the other zones are 

not really apparent.  

Figure 5.14 shows an example of varying rates for the Aceh Segment on the Sumatra 

subduction area. The last large event in the segment is the Mw 9.1 earthquake in 

2004. The blue dot series in Figure 5.14 represent the varying rate estimated from the 

earthquake catalogue. Dashed red lines show the average of the varying rates for 

each 3 year period. The dashed green line shows the average of the long-term 

varying rate. The black line is the curve of the varying rates smoothed with a 5 year 

moving average window. The figure shows that the seismicity tends to decrease after 

the mega thrust event, and the segment is likely to experience a “varying rate” drop 

in the near future. 

Four models are developed to observe the rates required in the time dependent 

approach. Model A is determined by taking the average of varying rates (the blue dot 

series) from 1990 to 2011, for which the Mw ≥ 4 earthquakes are complete. Model B 

is the average of the varying rates between 2004 and 2011, which has been observed 

as the period with the highest rate. Model C and D are the exponential trends of the 

blue dot series and the red line, respectively, extrapolated for the next 5 years (2012-

2017). The 5 year period of extrapolation is considered since the seismicity data of 

Sumatra are very limited and do not cover a full seismic cycle as required in the time 

dependent approach. For this case, a short term extrapolation is more reasonable by 

assuming that the seismicity does not change abruptly over a short period. The 

varying rates for each segment in the SSZ are summarised in Table 5.3. 
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Figure 5.14. Estimation of varying rates g(t) to modulate the seismicity on the Aceh 

Segment of the subduction area 

Table 5.3. Extrapolation of Varying Rates 

Model: A B C D Mean (C+D) 
Time Period 1990-2011 2004-2011 2012-2017 2012-2017 2012-2017 
Method Mean Mean Exponential 

Trend 
(Average) 

Exponential 
Trend 

(Average) 

Exponential 
Trend 

(Average) g(t): 
  

- Zone 1 3.12 7.27 0.52 0.65 0.59 
- Zone 2 1.05 2.57 0.14 0.18 0.16 
- Zone 3 2.17 5.49 0.83 0.76 0.79 
- Zone 4 1.10 2.31 2.71 2.34 2.52 
- Zone 5 0.67 1.62 2.25 1.24 1.74 
- Zone 6 0.37 0.40 0.13 0.26 0.19 
- Zone 7 0.43 0.55 0.82 0.43 0.62 
- Zone 8 0.43 0.95 0.66 0.30 0.48 

The most appropriate time dependent PSHA is the one using the average of 

extrapolation models C and D (see Table 5.3). The result is shown in Figure 5.15. 

The hazard map in the figure represents the seismicity rate of Sumatra in the next 5 
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years.  It  is  observed that the middle segments of the SSZ (Zone 4 and Zone 5) are 

likely to experience higher ground motions in the near future in a range of 0.30-

0.40g.  This  segment  is  the  estimated  location  of  the  seismic  gap  in  the  subduction  

area (see Figure 4.5), and therefore, the time dependent approach proposed in this 

study is capable of capturing the non-stationary rate of seismicity in the examined 

area.  

It should be pointed out that the time dependent PSHA in this study does not intend 

to predict earthquake occurrence. However, the method is aimed to look for the 

increasing upcoming hazard in the region; thus, appropriate mitigation strategies can 

be applied in the prone area. 

 
Figure 5.15. Estimated seismic hazard maps for the next 5 years at 5% probability of 

exceedance in 5 years 

5.6. SUMMARY 

§ The effect of different magnitude ranges adopted in the PSHA module is 

investigated and appears to be negligible providing that a sufficient number of 
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simulations is performed. It is observed that 250 simulations are sufficient for 

Padang city in order to get a convergent result.  

§ A time independent PSHA is conducted for Sumatra and compared with those of 

previous studies. It is observed that the Indonesian seismic code SNI 03-1726-

2002 (see Figure 2.7) applies 0.3g as the maximum PGA on bedrock in the 

region. However, this study finds that a maximum PGA of 0.65g on bedrock is 

expected in the area, which is consistent with the findings of recent studies 

(Irsyam et al., 2008; Irsyam et al., 2010; Petersen et al., 2004).  

§ For Padang city, the existing Indonesian code (SNI 03-1726-2002) applies a PGA 

value of 0.25g at 10% probability of exceedance in 50 years, which is about 8% 

higher than that obtained in this study. This study estimates an average PGA of 

0.23g and 0.3g on bed rock site for 10% and 2% probability of exceedance in 50 

years (see Figure 5.8 and Figure 5.9), respectively. 

§ It is found that uniform hazard spectra on rock site condition of this study is 

higher than those required in the SNI 03-1726-2002, particularly for low natural 

period of buildings (see Figure 5.13).  

§ The contributions of major seismic sources to seismic hazard in Padang are 

shown in Figure 5.10. The figure reveals that higher PGAs are most likely 

generated by near field events from the intraplate of the SSZ. However, the 

interface earthquakes are capable of producing large magnitude earthquakes with 

shallow focal depth, which can trigger tsunamis. The earthquakes occurring on 

the Sumatran fault (SFZ) generally affect the eastern part of the city, which has 

less population and infrastructures. 

§ A time-dependent PSHA method is developed in this study to take into account 

the non-stationary rate of seismicity. The method is not intended to predict 

earthquake, but to build more awareness to the upcoming hazards for mitigation 

purposes. This study finds that the middle segments of the SSZ are likely to 

increase (about 2.52 times for Zone 4 and 1.74 times for Zone-5) and experience 

higher ground motions in the near future (in a range of 0.30-0.40g). 

§ A time-dependent hazard map is produced for Sumatra region. The map is 

capable of capturing the increase rate of hazard near Padang segment, which is 

consistent with the location of seismic gap estimated from previous studies (see 

Figure 5.15). 
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CHAPTER 6 

THE PROBABILISTIC TSUNAMI HAZARD ASSESSMENT 

OF SUMATRA 

6.1. INTRODUCTION 

The  outcomes  of  the  tsunami  hazard  assessment  are  presented  in  this  chapter.  The  

tsunami numerical simulations for Sumatra are first examined and the relationship 

between tsunami wave heights and earthquake magnitudes is discussed. The 

expected arrival time of tsunami waves for various distances from the coastal area of 

Padang is also assessed. The attained results are incorporated into a tsunami hazard 

framework for which the expected height of tsunami for Padang city is identified 

probabilistically. The expected wave height that corresponds to a 10% probability of 

exceedance in 50 years is determined for the Padang region. 

6.2. DISCUSSION OF TSUNAMI NUMERICAL SIMULATIONS 

6.2.1. The Effect of Fault Types on Tsunami Heights 

The  outcomes  of  typical  tsunami  simulations  are  presented  in  Figure  6.1  to  Figure  

6.5. The full results are shown in Appendix B. As expected, the maximum heights of 

tsunami are proportional to the moment magnitude (Mw) of earthquakes. The main 

components for determining Mw include fault rupture area and average displacement, 

as shown in Equations 2.35 and 2.36. The vertical component of fault displacements 

plays important role in producing higher tsunami waves. To verify this, two tsunami 

simulations with different types of ruptures (thrust and strike slip faults) are 

performed and the resulting wave heights are compared in Figure 6.1(a) and Figure 

6.2(a). Identical earthquake magnitude as well as similar epicentral location is set for 

both models. It is found that the maximum wave amplitude for the thrust event is 

almost 5 times that of the strike slip event. Since the main tsunami source of Sumatra 

is the Sumatra Subduction Zone (Figure 4.7), which generates thrust events, the 

tsunami hazard assessment in this study only takes into account the thrust fault 

earthquakes from this zone. 
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Figure 6.1. Tsunami numerical simulation for Sumatra (strike slip rupture 

mechanism): a). Maximum tsunami amplitudes; and b). Tsunami amplitudes with 

time recorded at the gauge stations in Padang area 
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Figure 6.2. Tsunami numerical simulation for Sumatra (thrust rupture mechanism): 

a). Maximum tsunami amplitudes; and b). Tsunami amplitudes with time recorded at 

the gauge stations in Padang area 
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Figure 6.3. Tsunami numerical simulation for Sumatra: a). Maximum tsunami 

amplitudes; and b). Tsunami amplitudes with time recorded at the gauge stations in 

Padang area 
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Figure 6.4. Tsunami numerical simulation for Sumatra: a). Maximum tsunami 

amplitudes; and b). Tsunami amplitudes with time recorded at the gauge stations in 

Padang area 
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Figure 6.5. Tsunami numerical simulation for Sumatra: a). Maximum tsunami 

amplitudes; and b). Tsunami amplitudes with time recorded at the gauge stations in 

Padang area 
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6.2.2. Tsunami Arrival Time at Padang City 

The travel time of tsunami waves to the coast of Padang city is also examined. The 

time histories for several simulations are shown in Figures 6.1(b) to 6.5(b), and the 

correlation  of  tsunami  travelling  time  with  distance  is  shown  in  Figure  6.6.  As  

discussed earlier, most tsunamis in Sumatra are triggered by thrust earthquakes in the 

subduction zone. For the near-field intraplate earthquakes, the waves could reach the 

shoreline within 15 minutes following the earthquake. However, the earthquake 

magnitudes in the intraplate zone are generally smaller and deeper than those in the 

subduction interface, resulting in lower tsunami potential. For the interface events, 

the distance of tsunami source is around 100-300 km from the coast of Padang.  

Consequently, the travelling time to Padang city is approximately 25 minutes or 

longer, depending on the distance to the tsunami source. This finding is consistent 

with a tsunami study conducted by Borrero et al. (2006) for western Sumatra. 

 
Figure 6.6. Arrival time of first tsunami waves at Padang city with distance from 

tsunami source 

The tsunami time histories reveal that the coastal area of Padang city can be 

subjected to a series of tsunami waves in one tsunami event. For close distance 

tsunamis, the first wave is likely to have the maximum amplitude, as seen in Figure 

6.4(b). However, this might not be the case for long distance tsunamis. Since tsunami 

waves do not travel at the same speeds, the maximum wave could reach the coastal 

area after several waves, as seen in Figure 6.2(b), Figure 6.3(b) and Figure 6.5(b). 
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6.2.3. The Effect of Bathymetry 

It is also observed that the region close to the tsunami source and directly facing the 

rupture line is likely to experience higher tsunami waves (see Figure 6.2(a) to Figure 

6.5(a)). However, maximum wave heights in different regions can vary, depending 

on the bathymetric profile of the oceanic floor. The tsunami waves can be shoaled, 

refracted or diffracted by bathymetric obstacles (i.e. islands, sea mounts, etc.) so that 

the tsunami energy gets focussed (or defocussed) towards a shoreline.  

Figure 6.2(a) and Figure 6.3(a) show that the tsunami waves have reached maximum 

heights before reaching the shore. It appears that some of the tsunami energy is 

dissipated in the continental shelf, which results in smaller wave heights onshore. 

This phenomenon is likely to be caused by the bathymetric profile of the area, which 

has wider continental shelf. As the tsunami moves into shallow water, the waves 

shoal resulting in increasing wave heights. However, the wave speeds and lengths are 

decreased and the wave periods remain constant.  

 
Figure 6.7. Cross section of bathymetry facing West of Aceh vs. tsunami run-up 

triggered by the artificial Mw 8.6 earthquake (Figure 6.2) 

Figure 6.4(a) and Figure 6.5(a) demonstrate two different events of tsunami near 

Padang region with earthquake magnitudes of Mw 9.0 and Mw 9.1, respectively. The 

fault rupture of the first event is located below the Mentawai islands and the latter 
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event is situated close to the interface of the Sumatra subduction zone. The event 

illustrated in Figure 6.4(a) produces major consequences for the city of Padang. 

Maximum tsunami amplitude of 20 m is expected from such event. This condition 

might be exacerbated by steep bathymetry at the coast of Padang. Figure 6.8 reveals 

that, despite being closer to the tsunami source, the maximum tsunami amplitude at 

the Mentawai islands is comparable to that at the Padang area. This finding is in line 

with Abe’s (1995) approach that applies constant maximum amplitudes for regions 

close to the tsunami source. Figure 6.5(a) reveals that the Padang area is shielded by 

the Mentawai islands from a tsunami event in the subduction interface. As a 

consequence, the tsunami heights tend to decrease in most areas of Padang. 

Nevertheless, significant tsunami heights are still likely to occur along the coastal 

area of Padang due to the refraction and the focussing effect of tsunami waves.  

 

Figure 6.8. Cross section of bathymetry facing Padang city vs. tsunami run-up 

triggered by the Mw 9.1 (Figure 6.5) and Mw 9.0 (Figure 6.4) earthquakes 

6.3. ESTIMATION OF TSUNAMI RUN-UP HEIGHTS FOR 

SUMATRA 

The correlation between earthquake magnitude scale (Mw) and tsunami wave heights 

for Sumatra is estimated based on a method proposed by Abe (1979, 1981, 1985, 

1995), as presented in Section 2.4.3. The results of tsunami numerical analyses for 

  

    

Mw 9.1 - Interface

Mw 9.0 - Intraplate 

Siberut 
Island 

Padang 
city 

Continental Shelf



Chapter 6                                                                        The Probabilistic Tsunami Hazard Assessment of Sumatra 
 
 

141 
 

Sumatra for four different magnitudes are utilised and compared in Figure 6.9. The 

figure shows the attenuation of tsunami waves with distances for the four earthquake 

magnitudes. The least square solutions for the results of magnitudes 9.1, 8.7, 8.5 and 

7.8 produce the gradients (or “a” values) of 1.012, 1.034, 0.983 and 1.048, 

respectively. The “a” value of 1 is, therefore, adopted for Sumatra, and this is 

consistent with the findings of Abe (1995). 

 
Figure 6.9. Attenuation of tsunami wave amplitudes with distances 

The constant “D” in Equation 2.34 for each data series is estimated using the least 

square fit, which results in a value of 5.91 with a standard error of 2.77 for tsunami 

height. Consequently, the tsunami heights for the Sumatra region are estimated as 

follows: 

( ) 91.5loglog --= RMH wt   6.1 

where, 

Ht  : the heights of tsunami waves (m) 

Mw  : the moment magnitude of earthquake 

R  : the closest distance from tide station to tsunami source (km) 

To avoid excessively high wave amplitude near the tsunami source, Abe (1995) 

suggests that the relation above should be limited to a minimum distance of “R0” and 

above. The value of “R0” is taken as the radius of a circular fault, as shown in 

Equation 2.38. However, this study finds that half of the fault rupture width, or 

ܴௐ 2⁄ , defined by Wells and Coppersmith (1994), is more appropriate for limiting 
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the minimum distance in the investigated area. Therefore, the tsunami heights near 

the source can be estimated as follows: 

( )61.141.0
0 10.

2
1 -= wMR   6.2 

( ) 91.5loglog 0 --= RMH wr  6.3 

where, 

0R  : minimum distance (km) 

Hr  : limiting tsunami height near the source (m) 

Figure 6.10 compares the tsunami heights (Ht) obtained using R0 defined by Abe 

(1995) and R0 proposed in this study. Abe’s approach tends to underestimate the 

maximum  tsunami  height  and  the  R0 proposed in this study can approximate the 

maximum tsunami height well. The figure shows that some observed data in the 

brown circle  appear  to  be  significantly  lower  than  those  of  the  estimated  relations.  

This deviation can be caused by the bathymetry effect of the adjacent coastline with 

wider continental shelf resulting in low tsunami heights. 

 
Figure 6.10. Comparison of maximum tsunami heights (Ht) estimated using R0 

proposed by Abe (1995) (dashed blue line) and R0 proposed in this study (solid red 

line) 

Figure 6.11 shows the correlation between tsunami magnitude and earthquake 

moment magnitude calculated using the equations proposed in this study. 

0.1

1

10

100

10 100 1000

H 
(m

)

Distance (Km)

H_obv
Ht - Proposed
Ht - Abe



Chapter 6                                                                        The Probabilistic Tsunami Hazard Assessment of Sumatra 
 
 

143 
 

 
Figure 6.11. Correlation between Mt and Mw for Sumatra: the solid line expresses   

Mt = Mw and the dash line shows a threshold for tsunami earthquake 

Abe (1995) compared the tsunami height (Ht) relationship with the observation data 

and  found  that  Ht statistically represented the local mean heights of tsunami; 2Ht 

characterised the maximum of local mean heights; and 2Hr represented the observed 

maximum heights or the limiting run-up heights for large earthquakes. A similar 

outcome is obtained in this study. However, it is found that Equation 6.1 is 

applicable only if the investigated areas are not directly facing the tsunami sources. 

This problem is shown in Figure 6.12 in which the tsunami heights, estimated with 

Equations 6.1 to 6.3, and the data obtained from the tsunami numerical analysis are 

compared. The figure shows that the data in the dashed-black boxes tend to deviate 

from the estimated tsunami relationships (blue and red lines). The data in the dashed-

black boxes represent the events which are directly opposing the corresponding 

tsunami source or fault rupture line. For this case, the limiting tsunami height (2Hr) is 

more appropriate. As a consequence, this study applies 2Hr to estimate the maximum 

wave heights at areas with near-field distance (<R0) or directly facing the rupture 

line. 
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Figure 6.12. Comparison among the estimated local mean tsunami height (blue line), 

the estimated local maximum at each segment (red line) and the observed maximum 

tsunami wave heights (green circle). Most events in the dashed boxes are either 

located near field or directly facing the tsunami sources 
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6.4. PROBABILISTIC TSUNAMI HAZARD ASSESSMENT 

6.4.1. Probabilistic Tsunami Hazard Analysis for Sumatra 

The potency of tsunami hazard in Sumatra is assessed probabilistically based on the 

stochastic method presented in Section 3.3. The tsunami hazard for Sumatra at 10% 

probability of exceedance in 50 years (a 475 return period) is shown in Figure 6.13. 

The hazard is determined based on the average long-term rate of seismicity of 

Sumatra and, hence, it follows the time independent approach. 

 
Figure 6.13. Time independent PTHA for 475 return period of tsunami 

By  assessing  the  tsunami  hazard  on  the  west  coast  of  Sumatra,  it  appears  that  the  

upper sections (Aceh, North Sumatra and part of Padang segments) are more 

susceptible to higher tsunamis. These segments are known to have higher seismicity 

with historic mega magnitude earthquakes. A maximum tsunami run-up of 50.5 m 

was recorded in Aceh during the catastrophic Indian Ocean tsunami in 2004 (NOAA, 

2011). The Mw 9.1 earthquake that triggered the tsunami had an estimated return 

period of about 500 years. This study obtains a maximum tsunami height of 42 m for 

the area. The outcome is reasonable considering that the obtained tsunami height 

corresponds to a return period of 475 years. In addition, Gusiakov (2012) and BMKG 

(2010) recorded the tsunami heights of 34.5 m and 30 m, respectively, for the event, 

which are comparable with the estimated average run-up for Aceh area, as shown in 

Figure 6.13. 
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The Aceh segment has deeper sea than that of the lower segments (see figures 4.24 

and 4.25). A tsunami occurring at deeper sea displaces more volume of water, which 

can generate more energy as well as higher tsunami waves. Unlike the middle part of 

the island (North Sumatra and Padang segments), the Aceh segment is not shielded 

by adjacent offshore islands. The adjacent islands can act as a barricade and dissipate 

part of the tsunami energy, particularly from the events occurring at the interface of 

the subduction zone. This boundary condition is also occurring at Bengkulu and 

Lampung segments of the southern part of Sumatra. 

The North Sumatra and Padang segments are situated in the middle of an active 

subduction zone. This might intensify the level of hazard in the areas. It is known 

that the rupture zone of a mega magnitude earthquake can extend to hundreds or 

thousands kilometres from its epicentre. As a consequence, the tsunami hazard in the 

North Sumatra and Padang segments may be compounded by events from their upper 

and lower segments.  

Local bathymetry can also have an effect to the extent of tsunami hazard in an area. 

The North Sumatra segment is likely to experience lower tsunami heights due to its 

wider continental shelf along the coastline.  In contrast, the Padang segment has 

narrower bathymetry which can lead to an increase in the impact of tsunami waves.  

The Lampung segment has a relatively low level of tsunami hazard compared with 

the other segments. It is found that the region is mostly dominated by lower 

magnitude earthquakes (up to Mw 7.9) resulting in lower tsunami probability and 

lower level of tsunami hazard. 

To take into account the non-stationary rate of seismicity with time, a time dependent 

tsunami hazard assessment is also performed as shown in Figure 6.14. The hazard 

map is produced based on the outcome of the time dependent PSHA (see Section 

2.3.4). In this case, the seismicity rate of the subduction zone in the investigated area 

is examined and extrapolated for the next 5 years (from 2012 to 2017). The results 

show that the level of hazard for the Aceh segment has significantly decreased since 

the last tsunami in 2004. However, the hazard increases at the southern part of the 

island (Padang and Bengkulu segments), as shown in Figure 6.14. This finding is 

expected and consistent with the outcomes of the time dependent PSHA. The 

existence of a seismic gap in the middle part of Sumatra has increased the tsunami 
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hazard in those areas. As a consequence, the hazard level for the surrounding regions 

is also increased due to the extension of earthquake fault ruptures. This condition is 

shown in Figure 6.14 where the level of hazard at the lower tip of the North Sumatra 

segment and the upper tip of the Lampung segment is increased. 

 
Figure 6.14. Time dependent PTHA (2012-2017) for tsunami events with a 475 

return period 

6.4.2. Tsunami Rate and Hazard Curve for Padang City 

The probabilistic tsunami hazard assessment performed in this study reveals that the 

city of Padang is susceptible to an average tsunami height of 20.7 m at 10% 

probability of exceedance in 50 years. However, the heights of tsunami can vary 

across the region depending on the local bathymetry and topography in the area. 

Figure 6.15 shows the estimation of tsunami height above the base of structures, 

which is basically the difference between the average tsunami height and the ground 

elevations of the region. The figure highlights the high tsunami risk along the coastal 

area of Padang, particularly at the northern part of the city with a low lying area. 

The corresponding rate of tsunami hazard is plotted in Figure 6.16, which shows that 

the return period of significant tsunami (≥ 10 m) is relatively long, approximately 

200 years. A hazard curve that implies the probability of exceedance for each 

tsunami height in 50 years is shown in Figure 6.17. An average tsunami height of 28 

m is expected for 2500 years of return period corresponding to 2% probability of 
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exceedance in 50 years. The hazard curve is compulsory to determine the required 

tsunami height for tsunami design loads of structures. 

 
Figure 6.15. The estimated tsunami height above the base of structures for Padang 

city at 10% probability of exceedance in 50 years 

 
Figure 6.16. The rate of tsunami hazard for Padang city 
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Figure 6.17. Tsunami hazard curve for Padang city for a 50 year period 

6.4.3. Deaggregation of Tsunami Hazard for Padang City 

Figure 6.18 shows the deaggregation of tsunami hazard for Padang city in terms of 

earthquake magnitudes and epicentral distances. It is observed that the near field 

tsunamis in the subduction intraplate zone have less contribution to the tsunami 

hazard in Padang city. In addition, most of the tsunamis in this zone are triggered by 

earthquake magnitudes of Mw 7.0 and above. It is also found that the highest 

tsunamis for the area are produced by earthquakes with a magnitude range of Mw 

9.0-9.5 with an epicentral distance of about 150-200 km from the city. The tsunami 

sources of these events are located at the interface of the subduction zone, which is 

perpendicular to the city. Figure 6.18 also reveals that most tsunamis at the 

subduction interface are generated by earthquakes with Mw ≥ 8.0 and long distance 

events occurring in this zone are capable of inundating the city with a considerable 

tsunami height. A distant tsunami, as far as 400 km from the tsunami source, can 

produce great consequences to the city. This finding highlights the difference 

between earthquake and tsunami hazard assessment. Unlike earthquake hazard 

assessment, tsunami hazard assessment has to take into account distant events. 
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Figure 6.18. Average tsunami heights for each range of earthquake magnitudes and 

distances that contributes to Padang city 

6.5. ESTIMATION OF TSUNAMI FORCES ON BUILDINGS 

6.5.1. Determination of Tsunami Wave Parameters and Inland Penetration for 

Padang City 

Tsunami wave parameters (i.e. velocity and distance of inundation area) can be 

determined by a detailed numerical model with a very fine grid size (< 10 m) in 

tsunami run-up zones (FEMA P646, 2008). In this study, accurate near shore 

bathymetry and detailed topographical data in the examined area are not available. 

Therefore, tsunami wave velocity as well as the distance of inland penetration is 

roughly estimated from tsunami height onshore, as defined in Equations 2.30 and 

2.40. A return period of 475 years is adopted for the design tsunami (as used in the 

seismic design of buildings), as illustrated in Figure 6.19. Consequently, an average 

tsunami wave height of 20.7 m, at 10% probability of exceedance in 50 years, is 

obtained for Padang city and the average velocity onshore is roughly estimated to be 

14 m/s (~50 km/hour).  
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Figure 6.19. Seismic performance objectives for structural designs (SEAOC, 1995 

cited in FEMA P646, 2008) 

The depths of tsunami inundation vary across the region depending on the terrain 

condition onshore. A smooth terrain dissipates less energy; therefore, the tsunami 

wave can travel further inland. In contrast, a densely vegetated landscape and 

densely populated buildings can dissipate more tsunami energy. A rough estimation 

for the case study area reveals that  the tsunami waves can travel up to 15 km on a 

smooth terrain, 3.8 km on areas covered with buildings and about 0.7 km on a 

densely vegetated landscape. It appears that the densely vegetated terrain is an 

effective environment to dissipate energy and limit the inland penetration of tsunami. 

Coastal vegetation as a natural barrier for tsunami can be used as an alternative for 

developing countries, where the cost of tsunami protection structures is prohibitive 

(Iimura and Tanaka, 2012; Tanaka et al., 2011; Tanaka et al., 2007).  

6.5.2. Estimation of Tsunami Forces for Padang City 

The catastrophic consequences of tsunami have motivated the development of 

vertical evacuation buildings to protect human lives in prone areas. Many tsunami 

design criteria were proposed for tsunami shelters (CCH, 2000; FEMA P55, 2011; 

FEMA P646, 2008; Lukkunaprasit et al., 2009a; Lukkunaprasit et al., 2009b; Yeh, 

2007). Lukkunaprasit et al. (2009b) compared the tsunami forces obtained from the 

current tsunami guideline FEMA P646 (2008) with experimental works. The study 

revealed that the FEMA P646 approach was reasonable and produced the upper 
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bound of maximum tsunami design forces. Therefore, the determination of tsunami 

forces in this  study is based on FEMA P646 (2008). 

There are various assumptions adopted by FEMA P646 (2008) for estimating the 

tsunami  forces  acting  on  buildings.  It  is  assumed  that  the  fluid  density  of  tsunami  

flow is 1.2 times the density of freshwater, which is equal to ߩ௦=1200 kg/m3. To take 

into account the significant variability in determining tsunami run-up heights, the 

design run-up elevation (R) is assumed to be 1.3 times the predicted maximum run-

up elevation (R*). As a consequence, the design run-up elevation for Padang city is 

assigned as 26.9 m. To anticipate great uncertainty, any tsunami design parameters 

(e.g. flow velocity, depth and momentum flux) acquired from numerical simulations 

should not be considered less than 80% the values obtained from the analytical 

solutions as required in FEMA P646 (2008). The analytical solutions are derived 

from one-dimensional fully nonlinear shallow-water-wave theory with a uniformly 

sloping beach as explained in details in Appendix E, FEMA P646 (2008). The 

analytical solutions involve some simplifications and assumptions, which may lead 

to conservative values of tsunami design parameters. However, this conservatism 

may provide higher factor of safety in terms of structural design viewpoint, which is 

compulsory for tsunami evacuation buildings. 

FEMA P646 (2008) specifies that the design of tsunami vertical evacuation 

structures has to take into account several loads including hydrostatic forces, buoyant 

forces, hydrodynamic forces, impulsive forces, debris impact forces, debris damming 

forces, uplift forces and additional gravity loads from retained water on elevated 

floors. However, only hydrostatic, hydrodynamic and impulsive forces are discussed 

here since these forces are directly correlated to the tsunami height obtained in this 

study. 

6.5.2.1. Hydrostatic Force 

Hydrostatic pressure is produced by still or slowly moving water, which acts 

perpendicular on a planar surface (structure or structural component). The 

hydrostatic forces affect mainly long structures and may not be so relevant to 

structures  with  a  short  width,  as  water  can  quickly  flow  and  inundate  all  sides  

(FEMA P646, 2008; Palermo et al., 2009; Yeh, 2007). The hydrostatic force can be 
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estimated using Equation 6.4, and its distribution on structures is illustrated in Figure 

6.20. 

2
max...

2
1 hbgApF swch r==  

6.4 

where, 

Fh  : horizontal hydrostatic force (Newton) 

pc  : hydrostatic pressure (Pa) 

Aw  : the wetted area of the panel (m2) 

rs  : fluid density of tsunami flow (=1200 kg/m3) 

g : gravitational acceleration (= 9.81 m/s2) 

b : breadth or width of the wall or structural component (m) 

hmax : maximum water height above the base of the wall at the structure  

   location (m) 

 

Figure 6.20. Distribution of hydrostatic force (FEMA P646, 2008) 

Considering the design tsunami run-up height for Padang city, the resulting 

hydrostatic force per meter width on structural components can be as high as 4262 

kN. 

6.5.2.2. Hydrodynamic Force 

Hydrodynamic force arises when tsunami bore flows around a structure with a 

moderate to high velocity (Palermo et al., 2009). The hydrodynamic force is also 

known as a drag force and is developed as a combination of lateral forces induced by 

the pressure from the moving mass of water and friction of forces as the water flows 



Chapter 6                                                                        The Probabilistic Tsunami Hazard Assessment of Sumatra 
 
 

154 
 

around the structures (FEMA P646, 2008). The hydrodynamic force can be 

determined using Equation 6.5 and is illustrated in Figure 6.21. 

( )max
2...

2
1 uhBCF dsd r=  

6.5 

where, 

Fs  : hydrodynamic force (Newton) 

rs  : fluid density of tsunami flow (=1200 kg/m3) 

Cd : drag coefficient (Cd = 2 for square and rectangular columns;  

   Cd = 1.2 for cylindrical columns) 

B : the breadth of structure in the plane normal to the direction of  

   flow (m) 

(ℎ	ݑଶ)௠௔௫ : momentum flux per unit mass (u = flow velocity; h = flow depth) 

 

Figure 6.21. Distribution of hydrodynamic forces (FEMA P646, 2008) 

The determination of hydrodynamic forces should be based on momentum flux 

(hu2)max, which represents the transfer rate of momentum per unit area. The 

maximum momentum flux can be obtained from detailed numerical simulation 

models as well as existing simulation data (FEMA P646, 2008). In the absence of the 

detailed tsunami model, the value of maximum momentum flux can be estimated 

using a relationship derived by Yeh (2006). Yeh (2006) developed envelope curves 

of ℎݑଶ along a uniformly sloping beach based on an analytical solution of nonlinear 

shallow-water theory. Afterwards, Yeh (2007) transformed the equation to be a 

function of ground elevation as shown in Equation 6.6.  
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where, 

R  : design run-up elevation (m) 

z : ground elevation at the base of structure (m) 

(ℎ	ݑଶ)௠௔௫ : momentum flux per unit mass (m3/s2) 

Using Equations 6.5 and 6.6, the potential hydrodynamic forces for Padang city, 

subjected to the 475 year return period of tsunami, can be obtained, as shown by the 

dashed black curve in Figure 6.22. The forces obtained in Figure 6.22 are determined 

based on the assumption that the structure is fully submerged by a tsunami wave as 

high as 26.9 m. It should be noted that most regions in Padang city are situated in 

low lying areas with an elevation less than 5 m above mean sea level. As a 

consequence, the region is susceptible to experience great hydrodynamic forces of 

about 725-1065 kN per meter width of structures. 

 
Figure 6.22. Correlation of hydrodynamic force (Fd) and impulsive force (Fs) per unit 

width with the ground elevation at the base of structure (z) for Padang city 

6.5.2.3. Impulsive Force 

Impulsive force (surge force) is produced by the leading edge of surge water that 

impinges the structure (Yeh, 2007). There are a few methods for calculating the 

impulsive force of tsunami. The first method derived the impulsive force by 
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summing the hydrostatic force with the change in linear momentum at the 

impingement of a surge front on a vertical wall (Yeh, 2007), as shown in Equation 

6.7. This method is initially developed by Dames and Moore (1980 as cited in 

Palermo et al., 2009) and has been suggested by many studies (CCH, 2000; Okada et 

al., 2005; Palermo et al., 2009).  

25.4 hgFs r=  6.7 

Where, h is surge height. 

Nevertheless, Yeh et al. (2005) argued that Equation 6.7 may overestimate the surge 

force. Laboratory evidence from a previous study (Arnason, 2005 cited in Palermo et 

al., 2009) showed that the maximum surge force was approximately 1.5 times the 

subsequent hydrodynamic force. Therefore, FEMA P646 (2008) used this outcome to 

determine the impulsive force, as shown in Equation 6.8. 

ds FF 5.1=  6.8 

Where, Fd is hydrodynamic force.  

The impulsive forces for Padang city, estimated using Equation 6.8, are shown in 

Figure 6.22 (solid red curve), and the distribution of the impulsive force is shown in 

Figure 6.23. 

 

Figure 6.23. Distribution of hydrodynamic impulsive and drag forces (FEMA P646, 

2008) 
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6.6. SUMMARY 

§ Tsunami hazard in Sumatra is assessed to take into account thrust earthquakes in 

the Sumatra Subduction Zone (SSZ). In this study, the PTHA method estimates 

the heights of tsunamis that correspond to tsunamigenic events in the earthquake 

catalogue (generated in the PSHA module). 

§ A relationship is developed based on tsunami numerical simulations to correlate 

tsunami parameters such as tsunami height, earthquake magnitude and closest 

distance to tsunami source in Sumatra (see Equation 6.1). The relationship is 

utilized for rapid estimation of tsunami heights in the PTHA module. 

§ It  is  estimated  that  tsunamis  occurring  in  the  intraplate  of  the  SSZ are  likely  to  

reach the coastal area of Padang in 15 minutes (or longer) following the 

earthquakes. The travel time of tsunamis in the interface zone is approximately 

25 minutes or longer, depending on the distance to the tsunami sources (see 

Figure 6.6). 

§ Tsunami wave heights in a region depend on the bathymetric profile of the 

oceanic floor and the topographic condition. 

§ The middle segments of the SSZ (particularly around Padang and Bengkulu 

segments) are susceptible to higher level of tsunami hazard in the near future due 

to an increased seismicity (see Figure 6.13 and Figure 6.14). In contrast, the 

hazard level at the Northern part of Sumatra tends to decrease after the 2004 and 

2005 events. 

§ This study found that unlike earthquake hazard assessment, tsunami hazard 

assessment must consider both near-field and far-field tsunami sources. Near 

field tsunamis from intraplate of the SSZ are mostly generated by earthquakes 

located within 150 km from the coast of Padang with Mw≥7.0. Most tsunamis 

from the Sumatra subduction interface are generally triggered by earthquakes 

occurring more than 150 km from the coast with Mw≥8.0. Distant tsunamis from 

these interface events are capable of inundating the city with considerable 

tsunami heights (≥10m). The contributions of each tsunami source to tsunami 

hazard in Padang are shown in Figure 6.18.  

§ Tsunami rates and tsunami hazard curves are produced for Padang city, as shown 

in Figure 6.16 and Figure 6.17, respectively. It is found that the return period of 

significant tsunamis (≥10m) is approximately 200 years. An average tsunami 
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height of 20.7m and 28m is expected in the area at 10% and 2% probability of 

exceedance in 50 years, respectively. 

§ Hydrostatic, hydrodynamic and impulsive forces associated with a 475 year 

tsunami event are estimated for Padang city, based on a method proposed by 

FEMA P646 (2008). A hydrostatic force of 4262 kN per meter width of structural 

components  is  estimated  for  the  region.  It  is  predicted  that  the  area  can  be  

subjected to hydrodynamic forces in the range of 725-1065 kN per meter width. 

The maximum surge force is approximately 1.5 times the value of the 

hydrodynamic forces. 
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CHAPTER 7 

EARTHQUAKE AND TSUNAMI RISK ASSESSMENTS AND 

MITIGATION STRATEGIES FOR PADANG CITY  

7.1. INTRODUCTION 

This chapter examines and discusses earthquake and tsunami risk for Padang city. In 

this study, the main outcomes of the risk assessment are the estimated building losses 

and fatalities subjected to all probable levels of hazards. The earthquake risk model 

is validated against the damage data of the Mw 7.6 earthquake of Padang. The 

estimated annual loss for each building category in the examined region is compared 

with the building insurance premium tariffs from two insurance companies in 

Indonesia, specifically dealing with earthquake risk. The outcomes of the risk 

assessment are utilised to recommend earthquake and tsunami mitigation strategies 

for the city of Padang. 

7.2. VERIFICATION OF THE SEISMIC RISK MODEL WITH A 

REAL EVENT 

To validate the seismic risk model developed in this study, the loss due to the Mw 7.6 

Padang earthquake of 30 September 2009 is estimated and compared with the 

existing loss data. The earthquake occurred at the intraplate of the subduction zone; 

and  thus  the  focal  depth  was  relatively  deep  at  about  81  km.  The  epicentre  of  the  

event was around 60 km from the city of Padang, as shown in Figure 7.1. The 

predicted peak ground acceleration was estimated at 0.27g (Figure 7.2), which was 

consistent with the strong ground motion records obtained from BMKG, the 

Indonesian meteorology and geophysics agency (Wilkinson et al., 2012) 
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Figure 7.1. The epicentre of the Mw 7.6 Padang earthquake in 2009 (USGS, 2012) 

 

Figure 7.2. The predicted PGA of the Mw 7.6 earthquake in Padang 

The Indonesian government estimated that the earthquake caused an economic loss 

of about Rp. 21.58 trillion (approximately £ 1.4 billion) in West Sumatra. The 

damaged data for Padang city was reported by the Indonesian mitigation agency, as 

shown in Table 7.1. Based on the data, the building loss for the area can be assessed 

using the building inventory information, as discussed in Section 4.13. An estimated 

loss of £1,179 million is obtained for the region (Table 7.2).  
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Table 7.1. Number of damaged buildings due to the Mw 7.6 Padang earthquake of 30 

September 2009 (BNPB, 2009) 

Building Function 
Number of damaged buildings 

Lightly 
Damaged 

Moderately 
Damaged 

Heavily 
Damaged 

1. Residential 37587 38485 40406 
2. Schools 1606 1038 903 
3. Hospitals 9 10 2 
4. Offices 59 19 14 
5. Religious 238 211 169 
6. Commercials 5 10 5 
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Table 7.2. The estimation of building loss due to the Mw 7.6 Padang earthquake of 30 September 2009 

No. Building 
Functions Type Number of 

Buildings 

Average 
Area per 
Unit (m2) 

Unit 
Price1 
(GBP) 

Building Loss for Each Damage Level (GBP) 
Total (GBP) 

Light2 Moderate3 Heavy4 

1. Residential5 UBM 15259 110 64.50 7,510,970.80 14,307,761.90 20,960,861.80 42,779,594.60 
  CBM 60802 110 96.75 44,893,818.10 85,518,912.50 125,285,151.30 255,697,882.00 
  RCI 40301 300 161.25 135,260,023.20 257,658,862.20 377,470,065.80 770,388,951.20 
  Steel 116 2400 193.50 3,752,879.30 7,148,916.40 10,473,157.90 21,374,953.60 
          

2. Public or UBM 64 110 64.50 23,264.30 54,829.70 122,409.10 200,503.10 
 Commercial6 CBM 262 110 96.75 141,912.30 334,461.30 746,695.20 1,223,068.90 

  RCI 3954 300 161.25 9,728,715.20 22,928,792.60 51,189,241.50 83,846,749.20 

  Steel 17 2400 193.50 406,068.10 957,027.90 2,136,594.40 3,499,690.40 

Total Loss: 201,717,651.30 388,909,564.50 588,384,177.00 1,179,011,393.00 

                                                
1 Estimated building cost/m2 in 2009 
2 Assumed 20% of MDR 
3 Assumed 40% of MDR 
4 Assumed 60% of MDR 
5 The percentage of buildings for each type of structure is determined from Table 4.2 assuming R-2 category 
6 The percentage of buildings for each type of structure is determined from Table 4.2 assuming RC-2 category 
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Using the seismic hazard and risk model developed in this study, it is estimated that 

the damages in Padang for the event reach £ 1,122 million. This value is only 4.76% 

lower than that obtained from the damage statistic. This difference is not significant 

given the approximate nature of both methods. The estimated ratio between the loss 

and the value of buildings is shown in Figure 7.3. By comparing Figure 7.3 and 

Figure 4.29, it is observed that the residential areas (R-1 and R-2 categories in Figure 

4.29) are mostly affected by the earthquake. This finding is consistent with the 

BNPB data in Table 7.1.  

 
Figure 7.3. The predicted mean damage ratio (MDR) for the buildings in Padang due 

to the Mw 7.6 earthquake based on GESI vulnerability curves 

MapAction (2009) released a damage distribution map for Padang due to the 

earthquake. The map was developed based on the data from Indonesian Statistical 

Agency, OCHA and the Indonesian Ministry of Public Works (see Figure 7.4). 

Considerable difference is observed between the damage distribution in Figure 7.3 

and Figure 7.4, particularly at the eastern and southern part of the city. MapAction 

(2009) estimated a damage level of 13-100% in the areas. However, this study finds 

that most of the eastern and southern areas are uninhabited (or have a very limited 

population), and therefore, they are categorised as “NA” in the building inventory 
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database (Figure 4.27). A comparable damage distribution is observed throughout the 

main part of the city with the percentage of damage about 3-30%.  However, Figure 

7.4 shows higher values for some areas near the coast. The field survey after the 

earthquake revealed that liquefaction occurred near the coastal region, which 

exacerbated the level of damage in the area. The liquefaction effect is not taken into 

account in this study, and therefore, the level of damage obtained is likely to be 

underestimated. 

 

Figure 7.4. Damage level of houses due to the earthquake in Padang city 

(MapAction, 2009) 

Figure 7.5 shows the estimated loss per m2 of buildings in Padang subjected to the 

event. It is observed that the buildings in the densely populated areas are more 

susceptible to the earthquake (red and orange zones in Figure 7.5(a)). An average 

Total Damage  
(% of all households) 
 



Chapter 7                            Earthquake and Tsunami Risk Assessments and Mitigation Strategies for Padang city 
 

165 
 

loss of about £ 26-42 per square meter is predicted for most parts of the city. The risk 

model in this study estimates that about 37% of UBM structures are damaged during 

the event, something expected considering the poor seismic performance of the UBM 

structures.  However, the RCI buildings have the highest loss per square meter due to 

their higher construction cost. The comparison of the damage and building loss/m2 

for every type of structure is shown in Figure 7.6. 

 

Figure 7.5. The estimated average loss/m2 for Padang city due to the Mw 7.6 

earthquake 

 
Figure 7.6. The predicted damage and unit loss for each type of structure in Padang 
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Figure 7.7 shows the average loss of buildings per unit grid. It appears that the worse 

affected regions are located near the city centre of Padang with total economic 

consequences up to £138 million per unit grid. This outcome is comparable with the 

findings of an EEFIT field survey in Padang in which the author participated as a 

team member (Chian et al., 2010; Wilkinson et al., 2009; Wilkinson et al., 2012). 

Poor quality materials, lack of seismic detailing and poor seismic design are among 

the main problems identified in the damaged structures. Although the Indonesian 

seismic design guideline for buildings was introduced since 1983, the use of seismic 

design in building practices was not evident. As a consequence, the structures were 

vulnerable, and therefore, the seismic risk was considerably high. 

 

Figure 7.7. The estimated average risk in the area due to the Mw 7.6 earthquake 

7.3. SEISMIC RISK FOR PADANG CITY 

7.3.1. Earthquake Risk 

Padang city is exposed to high earthquake risk due to the high level of hazard, high 

vulnerability at the existing building stock and large exposure. The city is home to 

almost 1 million people and is a major city in the West Sumatra province of 

Indonesia. The risk model in this study estimates that the earthquake risk in Padang 

could reach £54.5 million per annum. As previously mentioned, this considerable 
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risk can be attributed to poor building quality. It should be emphasised that most 

buildings are not constructed according to the Indonesian seismic design standard.  

In this study, the risk assessment is performed considering four building categories: 

UBM, CBM, RCI and steel frame structures. It is assumed that most of the existing 

building stock in Padang is substandard with poor seismic performance, as observed 

during the EEFIT field survey (Wilkinson et al., 2009; Wilkinson et al., 2012). 

However, some seismically designed buildings are also present in the area. 

Therefore, the risk assessment is conducted for both substandard and seismically 

designed structures. 

The  outcomes  of  the  risk  assessment  are  expressed  in  terms  of  pure  risk  premium  

(PRP), as shown in Figure 7.8 and Figure 7.9. The PRP denotes estimated loss per 

mil (building value). Figure 7.8 reveals that the existing unreinforced brick masonry 

(UBM)  structure  is  extremely  vulnerable  to  earthquakes  with  an  estimated  PRP  of  

15-30‰. Although the risk decreases for a better class of UBM structure (Figure 

7.9), the PRP value is still considerably high (2-10‰ for most regions). Thus, the 

UBM structure is not suitable for high seismicity region such as Padang due to its 

characteristics (rigid, heavyweight and brittle) which result in poor seismic 

resistance. The existing confined brick masonry (CBM) performs better than the 

existing UBM structure (6-15‰). However, CBM structures that comply with 

seismic standard can reduce the risk with estimated PRP of about 1-5‰. A PRP of 2-

10‰ is also predicted for the existing reinforced concrete frame with masonry infill 

(RCI). However, seismically designed RCI structures show a lower risk in the range 

of 0.6-2‰. The existing and seismically designed steel structures show better seismic 

performance compared with the other building types with an estimated PRP of 1-5‰ 

and 0.1-0.5‰, respectively. These structures are normally light weight and used for 

industrial purposes. 
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Figure 7.8. The estimated pure risk premium (PRP) for the existing building stock in 

Padang with poor seismic performance based on GESI (2001) vulnerability curves 
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Figure 7.9. The estimated pure risk premium (PRP) for seismically designed building 

stock in Padang based on GESI (2001) vulnerability curves 

Figure 7.10 shows the annual risk calculated using Kyriakides’s vulnerability curves 

for RC structures.  The risk is smaller than that estimated using GESI’s vulnerability 
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functions. This result is expected because the Kyriakides’s vulnerability curves apply 

a lower rate of damage than those of GESI’s particularly at PGA ≤ 0.45g, as shown 

in Figure 3.12. The differences are fairly significant (approximately 27% for pre-

seismic structure and even more for modern seismic buildings). In addition, the 

vulnerability curve for a modern seismic building proposed by Kyriakides (2007) 

showed a high level of seismic performance. For the modern seismic building model, 

Kyriakides (2007) used a concrete compressive strength of  ௖݂
ᇱ =  20  MPa,  a  steel  

yield strength of ௬݂
ᇱ = 550 MPa and the RC structures were designed to resist a 

maximum ground acceleration of 0.4g (Kyriakides, 2007). These material properties 

are also commonly used for modern designed buildings in Indonesia. The Indonesian 

reinforced concrete standard for buildings (SNI, 2002) states that any structural 

components carrying earthquake load should have a minimum concrete compressive 

strength of ௖݂
ᇱ =  20  MPa.  The  code  has  also  taken  into  account  different  levels  of  

structural ductility as required in modern seismic design standards. Therefore, with 

appropriate seismic detailing and supervision, the high seismic performance, as 

suggested by Kyriakides (2007), can actually be achieved and consequently, can 

further reduce the earthquake risk in Padang. 

 
Figure 7.10. The estimated annual risk for RC structures based on Kyriakides (2007) 

vulnerability curves: a). pre-seismic RC buildings; and b). modern-seismic RC 

buildings 
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7.3.2. Tsunami Risk 

Tsunami occurrence in Padang is infrequent due to the long return period of 

tsunamigenic earthquakes. However, the impact of a tsunami can be immensely 

devastating, as demonstrated by the 2011 tsunami of Japan. The tsunami risk in 

Padang is predicted to be £30.8 million per annum. The risk is lower than the 

predicted earthquake risk which reaches £54.5 million per annum.  

As mentioned in Chapter 3, tsunami risk assessment for all building categories in this 

study is conducted using vulnerability curves proposed by Tinti et al. (2011). The 

vulnerability  curves  were  derived  empirically  based  on  the  damage  data  of  real  

tsunamigenic earthquakes in Indonesia; hence, the contribution from both earthquake 

and tsunami has been taken into account in the vulnerability relationships. 

Consequently, the resulted tsunami risk represents the total risk associated with 

earthquake and its following tsunami. 

The resulting tsunami risk is shown in Figure 7.11 and Figure 7.12 in terms of pure 

risk premium (PRP). As expected, the existing UBM structures are the most 

vulnerable buildings with a maximum PRP of 11‰. A comparable maximum PRP is 

obtained for CBM structures. However, it affects fewer structures closer to the coast. 

The RCI and steel structures show a comparable risk since an identical vulnerability 

curve is assigned for both building categories. A maximum tsunami risk of 3‰ per 

annum is predicted for the existing RCI and steel structures, and the risk decreases by 

36% for the seismically designed structures. 
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Figure 7.11. The estimated pure risk premium (PRP) for the existing building stock 

in Padang subjected to tsunami hazard 
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Figure 7.12. The estimated tsunami pure risk premium (PRP) for seismically 

designed structures in Padang subjected to tsunami hazard 
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7.4. FATALITY ESTIMATION FOR PADANG CITY 

7.4.1. Earthquake Fatality Estimation 

A detailed fatality estimation of Padang city cannot be performed due to limited 

population distribution data associated with the occupancy probability of the area 

with time. However, a rough estimation of fatalities can be conducted using fatality 

curves produced by various studies. In this case, fatality curves developed by Jaiswal 

and Wald (2010), for the USGS’s Prompt Assessment of Global Earthquake for 

Response (PAGER) system, is adopted. The fatality curve incorporates empirical 

fatality data worldwide including Indonesia. It is predicted that the mean earthquake 

risk in Padang is approximately 8 fatalities per annum, concentrated mainly in the 

densely populated region (see Figure 7.13).  

 

Figure 7.13. Estimated mean annual fatality for Padang city due to earthquake hazard 

The estimated number of fatalities above is relatively low compared with the number 

of large earthquakes occurring in the region in the past decade. However, Jaiswal and 

Wald (2010) found that the fatality rate in Indonesia is lower than that of Iran, India 

and Italy, as shown in Figure 7.14. The fatality rate in Figure 7.14 only takes into 

account earthquake ground motion related deaths; hence, secondary effects such as 

fire, tsunami, liquefaction and landslide are not included (Jaiswal and Wald, 2010). 
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(USGS, 2012). It appears that the Mw 7.6 earthquake of Padang caused the highest 

fatality in the area within the last century. By considering the contribution of all 

probable earthquakes over one seismic cycle in the region, the mean annual fatality 

obtained in this study appears to be realistic. 

 

Figure 7.14. Comparison of fatality rates for different countries (Jaiswal and Wald, 

2010) 

Table 7.3. Recorded fatality due to recent deadly earthquakes around West Sumatra 

region (USGS, 2012) 

Earthquake Event Depth 
(km) Location Year Total 

Fatality 
Fatality in 

Padang 

Mw 7.6 – Southern Sumatra 81 0.725°S, 99.856°E 2009 1117 313 

Mw 8.5 – Southern Sumatra 34 4.520°S, 101.374°E 2007 25 1 

Mw 6.4 – Southern Sumatra 19 0.512°S, 100.524°E 2007 67 - 

  

7.4.2. Tsunami Fatality Estimation 

The mean annual number of fatalities due to tsunami in Padang is assessed using the 

death and injury relationship defined by Reese et al. (2007). The fatality relationship 

is developed empirically based on the data of the 2006 tsunami event in Java, 
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Indonesia (see Section 2.5.2). The fatality estimation for Padang city is shown in 

Figure 7.15. The outcome shows that more than 2000 people in Padang may perish 

due to tsunami per annum. Although tsunami events in Padang are infrequent, one 

event can lead to great consequences. In addition, the high fatality risk is due to poor 

tsunami mitigation systems in the region. This can be attributed to the lack of 

tsunami vertical evacuation shelters in low lying coastal areas and the large distance 

from high ground. This finding highlights the importance of appropriate tsunami 

mitigation systems in Padang, which are discussed in Section 7.6. 

 

Figure 7.15. Estimated mean annual fatality for Padang city due to tsunami hazard 

7.5. EARTHQUAKE AND TSUNAMI INSURANCE PREMIUM 

FOR BUILDINGS IN PADANG 
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including a load factor (LF), as described in Equation 2.8. The load factor takes into 

account hidden uncertainties, administration, taxes and profit for the insurance 

company (Yucemen, 2005). This study adopts a load factor of 0.4, as suggested by 
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0 4 82
Km

Legend
Tsunami

Fatality
0 - 5

6 - 50

51 - 100

101 - 200

201 - 400



Chapter 7                            Earthquake and Tsunami Risk Assessments and Mitigation Strategies for Padang city 
 

177 
 

7.5.1. Earthquake Insurance Premium 

The average values of the PRP and total insurance premiums of all building 

categories in this study are summarised in Table 7.4. The table shows higher 

insurance rate for the existing UBM and CBM buildings of about 36.4‰ and 16.6‰, 

respectively. Better quality UBM and CBM buildings can reduce the insurance rate 

to  be  8.1‰  and  3.1‰,  respectively.  The  seismically  designed  RCI  and  steel  

structures provide better seismic resistance, resulting in lower earthquake insurance 

rate. 

Table 7.4. Average earthquake pure rate premium (PRP) and total insurance 

premium (TP) for all building categories in Padang 

Building Category 
Existing Building Stock 

Better Quality/ 
Seismically Designed 

Building Stock 
PRP (‰) TP (‰) PRP (‰) TP (‰) 

1. Unreinforced brick masonry 
(UBM) structures 

21.9 36.4 4.8 8.1 

2. Confined brick masonry 
(CBM) structures 

9.9 16.6 1.9 3.1 

3. Reinforced concrete frame with 
masonry infill (RCI) structures 

4.8 8.1 0.8 1.4 

4. Steel frame structures 1.9 3.1 0.2 0.3 

Figure 7.16 shows a comparison of the hazard between the case study area and the 

city of Antalya in Turkey, as cited in Deniz (2006). The level of hazard for both 

cities is relatively similar. Hence, it is reasonable to compare the insurance rates for 

both cities. Deniz (2006) estimated an insurance rate of 2.63‰ for reinforced 

concrete building in Antalya. This value is within the range of insurance premium for 

the existing and seismically designed RCI buildings in Padang (8.1‰ and 1.4‰, 

respectively). Therefore, the insurance rate obtained in this study is considered 

reasonable. 
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Figure 7.16. Earthquake hazard curve for Padang city in comparison with the hazard 

curve of Antalya City in Turkey 

In addition, earthquake insurance premiums obtained in this study are compared with 

the insurance rates of two insurance companies in Indonesia, ACA and MAIPARK. 

The latter insurance company specialises in earthquake reinsurance, which was 

established from the Indonesian Earthquake Reinsurance Pool in 2003. MAIPARK 

provides earthquake statistics and sets a benchmark for earthquake insurance pricing 

in Indonesia (Bugl, 2005). 

ACA insurance applied a flat rate of 3‰ for all building categories in Sumatra 

(ACA, 2011). MAIRPARK (2007) assigned a maximum earthquake insurance rate of 

3.3‰ for other than RC and steel frame structures in Zone III as the highest risk zone 

in the area (Table 7.5). This tariff was then increased in 2010 to be 4.7‰, as shown 

in  Table  7.6.  Unlike  the  former  tariff,  the  new one  assumes  identical  rate  for  steel,  

wood and RC frame structures and categorises the Indonesian region into five zones. 

The risk increases from Zone I to Zone V and Padang city is categorised into Zone 

V. The comparison of the insurance rates obtained in this study with those given by 

ACA (2011), MAIPARK (2007) and MAIPARK (2011) is shown in Figure 7.17. The 

figure implies that, in most cases, the MAIPARK and ACA insurance rates are lower 

than those estimated for the existing building stock in Padang. However, the 

MAIPARK’s rate suits the insurance premium of the seismically design structures 

well. 

 

1.E-04

1.E-03

1.E-02

1.E-01

1.E+00

1.E+01

0.05 0.15 0.25 0.35 0.45 0.55

Ex
ce

ed
an

ce
 R

at
e 

(1
/y

ea
r)

PGA (g)

Padang-Indonesia
Antalya-Turkey (Deniz, 2006)



Chapter 7                            Earthquake and Tsunami Risk Assessments and Mitigation Strategies for Padang city 
 

179 
 

Table 7.5. Indonesian earthquake insurance rate in 2007 (MAIPARK, 2007) 

Building Category 
Insurance Rate (‰) 

RC 
Frame 

Steel 
Frame Others 

Zone I    
1. Manufacturing/Factory Risk 1.08 1.08 1.22 
2. Other Risks:    

- Up to 3 stories 1.04 1.04 1.13 
- 4 to 9 stories 1.22 1.35 2.70 
- 10 stories and higher 1.35 1.49 Declined 

Zone II    
1. Manufacturing/Factory Risk 1.2 1.2 1.4 
2. Other Risks:    

- Up to 3 stories 1.2 1.2 1.3 
- 4 to 9 stories 1.4 1.5 3.0 
- 10 stories and higher 1.5 1.7 Declined 

Zone III    
1. Manufacturing/Factory Risk 1.3 1.3 1.5 
2. Other Risks:    

- Up to 3 stories 1.3 1.3 1.4 
- 4 to 9 stories 1.5 1.7 3.3 
- 10 stories and higher 1.7 1.8 Declined 

Table 7.6. Indonesian earthquake insurance rate in 2010 (MAIPARK, 2011) 

Building Category 
Insurance Rate (‰) 

Zone I Zone II Zone III Zone IV Zone V 
1. Commercial and Industry (Non Dwelling House) 
- Steel, wood or RC frames  
(≤ 9 storeys) 

0.90 0.95 1.25 1.50 1.90 

- Steel, wood or RC frames  
(> 9 storeys) 

1.35 1.45 1.55 1.60 2.00 

- Others 1.00 1.10 1.55 3.00 4.70 
2. Dwelling House-occupation code 2976 
- Steel, wood or RC frames  0.85 0.95 1.15 1.35 1.60 

- Others 0.90 1.00 1.55 2.75 4.50 

Nevertheless, MAIPARK (2011) revealed that the Mw 7.6 of Padang earthquake in 

2009 caused great loss to the insurance industry in Indonesia. MAIPARK (2011) 

estimated that the insurance companies lost more than Rp 4.7 trillion (about £300 

million) in the event. Considering that the event is not yet the highest probable 

earthquake magnitude of the region, the unexpected loss is likely due to the 

underestimation of the earthquake insurance premium. Although the rate has been 



Chapter 7                            Earthquake and Tsunami Risk Assessments and Mitigation Strategies for Padang city 
 

180 
 

increased since then, the massive loss endured by the insurance industry are likely to 

be repeated if the insured buildings do not have good seismic standard, as assumed in 

the latest insurance tariffs. 

 
Figure 7.17. Comparison between insurance rates obtained in this study (existing and 

seismically design buildings) and the insurance rates applied by two insurance 

companies (MAIPARK and ACA insurance) for Padang city 

7.5.2. Tsunami Insurance Premium 

The tsunami insurance premium for Padang city is summarised in Table 7.7. The 

highest  insurance  rate  applies  to  UBM  buildings  and  then  followed  by  CBM,  RCI  

and steel structures. Equal tsunami insurance rate is estimated for RCI and steel 

structures. Tsunami premium data from insurance companies in Indonesia is not 

available, and thus, no comparison can be performed. 
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premium (TP) for Padang city 
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Building Stock 
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(UBM) structures 

7.03 11.72 5.27 8.78 

2. Confined brick masonry 
(CBM) structures 

5.93 9.88 4.80 8.00 

3. Reinforced concrete frame with 
masonry infill (RCI) structures 

4.20 7.00 2.68 4.47 

4. Steel frame structures 4.20 7.00 2.68 4.47 
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It is observed that seismic strengthening of structures may decrease the vulnerability 

of buildings resulting in a lower tsunami risk. However, the difference is not very 

significant compared with that of earthquake hazard.  

 
Figure 7.18. Predicted total insurance premium per 1000 building value for Padang 

7.6. MITIGATION STRATEGIES 

7.6.1. Seismic Provision for Buildings in Padang 

Seismic provision of buildings can be adopted as a mitigation effort to reduce the 

earthquake risk in Padang. The seismic provision of buildings can not only reduce 

the vulnerability of structures, but also will reduce the number of casualties 

associated with the structural damage. Kythreoti (2002) used a range of 2-4% of 
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strengthening of structures. Kanit and Altin (2010) estimated the cost of 
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For this study, the ratio of 35% is adopted to consider that the typical existing 
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The  estimated  values  of  the  seismic  provision  scenario  above  seem  to  be  a  huge  

investment. However, the amount is insignificant compared to the benefits. The great 

economic loss associated with the Mw 7.6 earthquake in Padang could have been 

minimised, if the vulnerable structures in the area were designed to satisfy the 

seismic design criteria. The earthquake risk model in this study estimates that the 

building loss could have been reduced from £1.122 billion to £564 million; thus 

lowering the loss by about 50%. As a consequence, the fatality reduction would have 

been much higher. The predicted loss per unit grid for seismically designed building 

stock due to the Mw 7.6 event is shown in Figure 7.19. 

 

Figure 7.19. Estimated average risk in the area due to the Mw 7.6 earthquake for 

seismically designed building stock in Padang 

Figure 7.20 shows the annual earthquake risk of the existing and seismically 

designed buildings in Padang. The figure reveals that the existing buildings in the 

area are subjected to a total risk of £54.4 million per annum. However, the risk can 

be significantly reduced to £11 million per annum, if the buildings follow the modern 

seismic design standard. Based on this outcome, it can be revealed that the break 

even time for the seismic provision scenario is approximately 9 years for 

constructing seismic design structures and about 60 years for strengthening the 

existing building stock. Therefore, the latter scenario is only recommended for 
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important buildings in the area. In addition, the new structures must be built to 

comply with the seismic design guideline. 

 

Figure 7.20. Predicted annual earthquake risk in Padang: a). existing building stock; 

b). seismically designed buildings 

The comparison of the predicted MDR and annual risk/m2 for the building categories 

in the area is shown in Figure 7.21 and Figure 7.22. It is observed that although the 

existing RCI structure has much lower MDR than CBM building (Figure 7.21), the 

risk per unit area of the RCI is slightly higher (Figure 7.22). This is due to the high 

cost of the RCI structures. 

  

Figure 7.21. Earthquake MDR per year for building categories in Padang 
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Figure 7.22. Annual earthquake risk/m2 per year for building categories in Padang 

In addition, this study finds that although the seismic design of structures is mainly 

aimed for earthquake risk mitigation, it can also reduce the vulnerability of buildings 

subjected to tsunami. The ERA Framework estimates that the seismic design of 

buildings in Padang can decrease the risk by up to 80% for earthquake hazard and by 

up to 25% for tsunami hazard. The predicted annual risk for the existing building 

stock and seismically designed structures due to tsunami hazard is shown in Figure 

7.23. 

 

Figure 7.23. Predicted annual tsunami risk in Padang: a). existing building stock; b). 
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The resulted MDR and risk per unit area for all building categories in Padang 

subjected to tsunami hazard can be seen in Figure 7.24 and Figure 7.25. The MDR of 

RCI and steel structures is estimated to be similar and appears to be the lowest 

among other building categories. Yet, the risk of steel buildings is higher than that of 

RCI buildings due to the high cost of the steel buildings. 

 

Figure 7.24. Tsunami MDR per year for building categories in Padang 

 
Figure 7.25. Annual tsunami risk/m2 per year for existing building stock in Padang 
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government’s fiscal exposure, but also encourage the risk mitigation and safer 

building practice (Yucemen, 2005). 

7.6.3. Tsunami Vertical Evacuation Shelters 

Padang city is prone to near-field tsunami due to its close distance to one main 

tsunami source.  Tsunami hazard assessment in this study estimates that a tsunami 

occurring in the Sumatra Subduction Zone is likely to hit the city in approximately 

25 minutes (or longer) after the earthquake (see section 6.2.2). To minimise the 

casualties, the residences in the affected area have to be evacuated to higher ground 

before the tsunami arrival. 

Despite being situated in a low lying area, Padang city has two locations of natural 

high grounds that can be utilised as tsunami evacuation sites. The first site, Gunung 

Pangilun is located around 2 km from the coast and has an area of more than 150,000 

m2 with a maximum elevation of about 50 m above the mean sea level. The site can 

be used to evacuate thousands of people and is relatively accessible from the city 

centre of Padang. The second site, Gunung Padang is a hill in the southern part of the 

city and located in front of the Indian Ocean. The site covers huge areas with a 

maximum ground elevation of about 300 m above the mean sea level. However, the 

site is separated from the city centre by the Batang Arau River (see Figure 7.26). The 

access to Gunung Padang is mainly provided by a box-girder bridge with an 8m wide 

and 156m span. To make the area fully functional as a tsunami evacuation site, more 

access bridges should be provided so that the location is more accessible to the 

nearby residences. Therefore, further study is required to assess the appropriate 

number of access bridges by considering the expected number of evacuees in the 

local area. 
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Figure 7.26. Vertical evacuation shelter plan for the city of Padang 
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played a significant role in the survival probability, since it was directly correlated to 
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the delay of evacuation process. Therefore, earthquake and tsunami evacuation drills 

have to be conducted regularly for the residents of Padang. 

Table 7.8. Typical human walking speed (Park et al., 2012) 

Age Typical Walking Speed 

Old (over 65) 1.253 m/s (4.11 ft/s) 

Young (over 13) 1.509 m/s (4.95 ft/s) 

Mean 1.381 m/s (4.53 ft/s) 

Table 7.9. Delay time for various recognition level (Park et al., 2012) 

Level Recognition Level (%) Delay Time (minutes) 

Very Good 80-100 0 

Good 50-80 2 

Average 20-50 5 

Poor 0-20 10 

The information given by Park et al. (2012) can be utilised to develop tsunami 

evacuation shelters in Padang. To adopt a mean walking distance of 1.381 m/s and 

delay time of 5 minutes (average recognition level), the maximum distance to 

evacuation site in Padang is approximately 1.66 km. As a consequence, it appears 

that the available natural evacuation sites in Padang (Gunung Pangilun and Gunung 

Padang) can only be reached by a limited number of people from the immediate area, 

as shown in Figure 7.26. In this case, an artificial tsunami vertical system should be 

provided to shelter the people from tsunami. 

FEMA P646 (2008) defines a tsunami vertical evacuation refuge as a building or 

earthen mound that can provide sufficient elevation to evacuees (above the level of 

tsunami inundation) and is designed and built to withstand tsunami waves. For near 

field tsunami, the vertical evacuation refuge should be capable of resisting both 

earthquake and tsunami loads, which is the case for Padang city.  

Unlike earthquake load, the determination of tsunami load remains challenging. As 

previously mentioned in Chapter 6, tsunami loading comprises many forces 

including hydrostatic forces, buoyant forces, hydrodynamic forces, impulsive forces, 

debris impact forces, debris damming forces, uplift forces and additional gravity 
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loads  from  retained  water  on  elevated  floors  (FEMA,  2008).  Most  of  those  forces  

depend on the tsunami inundation height, which is obtained from tsunami hazard 

assessment. Several studies consider that the 1797 and 1833 tsunamis represent the 

most plausible events for Padang in the near future (Borrero et al., 2006; Schlurmann 

et al., 2010). The 1797 and 1833 events are associated with earthquake magnitude of 

Mw 8.4 and Mw 8.8-9.2, respectively. These events inundated the coastal area of 

Padang in a range of 5-10 m (Ismail et al., 2008). The outcome of PTHA in this 

study reveals that a 10 m high tsunami has a corresponding return period of 200 

years (see Figure 6.16 and Figure 6.17). The 10 m tsunami run-up can be used as a 

minimum threshold for designing tsunami vertical evacuation shelters in Padang. 

However, a higher tsunami height, corresponding to a longer tsunami return period, 

can also be adopted from Figure 6.16 to take into account the uncertainty in 

determining the design height of tsunami run-up. 

Figure 7.26 shows the proposed minimum tsunami evacuation plan for Padang city. 

The evacuation plan is developed based on a maximum distance to the evacuation 

site of 1.66 km, a tsunami run-up height of 10 m, the ground-elevation level and the 

population density in the area. The existing natural high grounds and evacuation 

structures are incorporated in the tsunami evacuation system. It is observed that the 

city requires at least 17 tsunami evacuation points. Two of them are naturally high 

grounds, as shown by the dashed-green circles in Figure 7.26. As a consequence, 15 

of the evacuation points should be constructed artificially (dashed-black circles).  

A few examples of artificial tsunami vertical evacuation refuges are shown in Figure 

7.27 ranging from a berm to a life-saving tower or building. The construction of a 

berm (Figure 7.27(A)) is relatively simple and cost effective. However, it requires a 

lot of space and is more suitable for a less populated region. For an area with a 

limited space, tsunami evacuation structures are more appropriate.  

The use of other buildings as tsunami vertical evacuation shelters is recommended by 

various studies (FEMA, 2008; Yeh et al., 2005). The shelter can be selected from 

existing buildings in the area, which are retrofitted to resist design earthquake and 

tsunami loads (Figure 7.27(D)). The area of the evacuation buildings does not 

necessarily have to be large. The evacuation building can be designed as a refuge to 

one or a few families, as shown in Figure 7.27(B), or it can be constructed to 
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evacuate thousands of people. The type of shelter construction should have resistance 

to buoyant/upward forces. RC or steel structures are generally appropriate for this 

purpose, which are also applicable for Padang city. It should be pointed out that 

tsunami evacuation buildings should be located on some distance inland to avoid 

tsunami wave-breaking force, which is normally not taken into account in the design. 

Generally, the tsunami wave breaks offshore; however, detailed tsunami numerical 

simulations should be performed in the investigated area for better mitigation 

planning. 

Figure 7.26 also shows that Padang has a large proportion of its population near the 

coast. It is observed that the population density in some areas reaches more than 

10,000 people/km2.  Consequently, numerous tsunami vertical evacuation refuges 

have to be built in those regions, which require a lot of investment and planning. 

However, many strategies can be implemented by the local authorities. First, the 

local government can utilise and retrofit public buildings (e.g. schools, office 

buildings, mosques, churches, etc.) in the area as tsunami evacuation shelters. 

Second, the government can enforce that every building higher than 3 stories have to 

provide tsunami evacuation shelters in order to get building permission. Third, the 

government can encourage the residents to voluntarily build safe rooms as tsunami 

evacuation shelters with compensation in return (e.g. tax reduction, free interest loan, 

etc.). Guidelines for the design of tsunami shelters, and their dissemination to local 

engineers, are also required. 
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Figure 7.27. Several examples of tsunami vertical evacuation system in Japan 

(FEMA, 2008) 

7.6.4. Tsunami Energy Dissipation Efforts  

A tsunami event releases huge amounts of energy, which can cause devastating 

consequences to the affected coastal region. Total prevention of the tsunami wave 

propagation towards the coast is extremely difficult. However, many things can be 

done to dissipate part of the tsunami energy. Dissipating tsunami energy not only 

means reducing human casualties, but also decreasing economic consequences.  

Jahromi (2009) suggested that high crested structures (e.g. vertical walls, rubble-

mound structures), low crested/submerged structures (e.g. detached breakwater, 

artificial reefs), and soft structures (e.g. mangroves, sea-grasses) can be adopted to 

dissipate tsunami energy. Jahromi (2009) performed a study on offshore barriers 

(D). Aonae Elementary School for which the upper floors of the 
building are intended as tsunami evacuation shelter. 

(C). Nishiki Tower 

(A). Berm constructed for tsunami refuge in Aonae. (B). Life-saving Tower. 
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using the Steady-State Spectral Wave (STWAVE) model of the Surface Water 

Modelling System (SMS) and found that the offshore barrier can reduce the tsunami 

height by 83%.  

A more eco-friendly approach of using coastal vegetation to dissipate tsunami energy 

was also investigated by various studies (Iimura and Tanaka, 2012; Osti et al., 2009; 

Sonak et al., 2008; Tanaka et al., 2011; Tanaka et al., 2007). The coastal forest 

reflects tsunami waves resulting in a reduction in the flow velocity, pressure and 

inundation depth. In addition, the coastal forest can trap debris, casualties and 

flotsam carried off by tsunami (Iimura and Tanaka, 2012). The efficiency of coastal 

vegetation for tsunami energy dissipation is proportional to the density of the 

vegetation (Iimura and Tanaka, 2012). Iimura and Tanaka (2012) found that an 

increased tree density from the coast can reduce tsunami height more than high 

density at the front. Based on satellite imageries and field data of the 2004 tsunami, 

Shelva (2005 cited in Osti et al., 2009) observed that 30 trees per 100 m2 could 

reduce the maximum flow of tsunami by more than 90%.  

Most of the tsunami energy dissipation methods above are feasible to be constructed 

in Padang. Currently, the city has approximately 8 km of rock groynes to protect the 

shoreline from long shore drift (see Figure 7.28(b)). The groynes can help reduce the 

tsunami energy. However, they may not be efficient, since the structures were not 

designed to resist tsunami waves. In this case, submerged structures or breakwaters 

can be constructed offshore of Padang. The structures should be designed 

appropriately so that they do not disrupt the traffic of the nearby port or sea view 

from the beach, which is one of the tourism assets in Padang. The bathymetry of the 

area shows that the sea depth of 10 m is located around 0.5-4 km from the coast line 

(see Figure 7.28(a)), which can be considered as the location of the submerged 

structures. However, further study is needed to appropriately design the structures 

and investigate their effect on the coast. 

In addition, this study roughly estimates that the inland penetration of a tsunami with 

the recurrence period of 475 years in Padang can be reduced by up to 0.7 km from 

the coastline for an area with a densely treed landscape (see Section 6.5.1). It is 

observed that mangrove plants already exist in the less populated coastal area of 

Padang. However, the number is limited due to the rapid growth of population and 
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coastal deforestation. Hence, the rehabilitation of mangroves is necessary as an eco-

friendly and cost effective solution to dissipate tsunami energy in the region.  Osti et 

al. (2009) pointed out that the rehabilitation of mangrove ecosystems should take into 

account  many aspects  including  the  shape  and  the  size  of  plants,  their  growth  rate,  

life span, role in the ecosystem and benefits to communities. The coastal forest 

rehabilitation can be implemented at swamps or less populated areas of the city, 

particularly  at  the  northern  coastal  area  of  Padang  with  a  depth  of  around  0.7  km  

inland along the coast, as shown in Figure 7.28(b). 
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Figure 7.28. Coastal management plan for Padang city
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7.7. SUMMARY 

§ The risk model developed in this study is verified against building damage data 

obtained from the Mw 7.6 of Padang. It is found that the loss estimated by the risk 

model  is  about  4.76%  lower  than  that  of  the  damage  statistic.  The  results  are  

reasonable considering that the risk model does not take liquefaction into 

account. 

§ This study reveals that existing building stock in Padang is highly vulnerable to 

earthquake and tsunami hazards. Estimated losses of £54.5 million and £30.8 

million per annum are predicted for the building stock in Padang subjected to 

earthquakes and tsunamis, respectively. Building risk associated with tsunami in 

Padang is lower than that of earthquake due to infrequent occurrence of tsunamis 

in the area. 

§ It is found that the existing unreinforced brick masonry buildings are the most 

vulnerable, followed with the confined brick masonry, reinforced concrete 

structures with masonry infill and steel structures. However, the risk is decreased 

considerably if the buildings are designed according to modern seismic design 

standard (by 80% for earthquake and 25% for tsunami).  

§ This study estimates that the fatality risk due to earthquakes and tsunamis are 8 

and 2000 fatalities per annum, respectively. Although tsunami events in Padang 

are infrequent, one event can lead to great fatalities. The high fatality risk can be 

attributed to poor tsunami mitigation systems in the region, including lack of 

tsunami vertical evacuation shelters in low lying coastal areas and the large 

distance from high ground. 

§ It is found that the earthquake insurance tariffs charged by 2 insurance companies 

in Indonesia are consistent with the risk obtained for seismically design 

structures, as shown in Figure 7.17. For RCI buildings, the total premiums 

obtained in this study are 8.1‰ and 1.4‰ for the existing and the seismically 

designed buildings, respectively. Estimated rates for steel structures are 3.1‰ for 

the existing building stock and 0.3‰ for buildings with good seismic 

performance. For other types of structures, the total premiums are estimated to be 

16.6‰ and 3.1‰ for the existing and the seismically designed buildings, 

respectively. ACA Insurance applies a flat rate of 3‰ for all building types. 
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MAIPARK Insurance charges 1.9‰, 1.9‰ and 4.7‰ for RCI, steel and other 

structures, respectively. 

§ Tsunami insurance premiums for Padang are obtained. For the existing building 

stock, the recommended premium rates are 7‰ for RCI/steel structures and 9.9‰ 

for other building types. For seismically designed buildings, insurance rates of 

4.5‰ and 8‰ are suggested for RCI/steel structures and other types of buildings, 

respectively. 

§ Seismic design of structures is mandatory for high seismicity region like Padang 

city and must be included as part of earthquake mitigation strategies. A modern 

seismic design standard (SNI 03-1726-2002) similar to the American UBC 1997 

is available in Indonesia. However, its implementation and supervision for 

buildings in Indonesia are unmeasured. Therefore, the Indonesian government 

must enforce seismic design requirements for all buildings in the region. 

§ A nationwide obligatory seismic insurance for buildings can be used as an 

alternative to reduce the government’s fiscal exposure 

§ Tsunami evacuation sites need to be well distributed and reachable by the 

evacuees within a walking distance. This study finds that the maximum distance 

to evacuation site in Padang is approximately 1.66 km. Therefore, at least 17 

points  of  tsunami  evacuations  refuges  are  required  for  Padang  city,  to  increase  

the survival probability of the residents in the area.  

§ Various types of refuges can be developed including earthen mounds or specially 

designed evacuation buildings. Earthen mounds are more suitable for less 

populated regions as they require a lot of space. Tsunami evacuation buildings 

are a better alternative for more densely populated areas. 

§ Design guidelines for tsunami evacuation shelters should be developed for the 

region. 

§ Many solutions to dissipate tsunami energy in Padang are proposed including the 

development of sea structures (e.g. vertical walls, rubble mound structures, 

breakwaters and artificial reefs) as well as the rehabilitation of mangrove forest 

along the coastal area. The latter approach is more eco-friendly and cost 

effective. However, it is only applicable for less populated areas. 



Chapter 8                                                                                Conclusions and Recommendations for Future Works 
 
 

197 
 

CHAPTER 8 

CONCLUSIONS AND RECOMMENDATIONS FOR 

FUTURE WORKS 

8.1. INTRODUCTION 

An Earthquake Risk Assessment Framework (ERA Framework), suitable for use in 

developing countries, has been developed at the University of Sheffield. A stochastic 

method is used with readily available seismological information. The framework was 

initially developed by Kythreoti (2002) and Khan (2011) to estimate earthquake 

hazard and risk. The framework is extended in this study to take time dependent 

seismicity as well as tsunami hazard into account. An integrated earthquake and 

tsunami risk assessment has been rarely, if ever, conducted in previous studies. 

The extended ERA Framework contains three main parts: PSHA, PTHA, as well as 

earthquake and tsunami risk modules. The main conclusions from each part of the 

framework and mitigation strategies for the case study area (Padang city) are 

presented in the following sections. 

8.2. CONCLUSIONS 

8.2.1. Probabilistic Seismic Hazard Assessment (PSHA) 

From the review of existing PSHA methods it can be concluded that: 

§ The conventional PSHA method assumes that earthquake distribution in a 

seismic zone is uniform. This assumption may spatially smooth the seismicity of 

a region and may affect the reliability of the results. 

§ A Poissonian (time independent) model, generally adopted in the conventional 

PSHA, does not appropriately characterise the observed seismicity due to its 

stationary hazard rate assumption. 

§  The integration nature of the conventional PSHA method has limited the 

flexibility of the method to utilize a non-Poissonian model due to mathematical 

and computational problems.  
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§ The use of instrumental earthquake catalogue to characterize the seismicity of a 

region, as suggested by Khan (2011), may result in unrealistic hazard estimates, 

particularly for the areas where the instrumental catalogues are not representative 

of the seismicity. 

§ The deaggregation procedure to compute the fractional contribution of seismic 

sources to total hazard in the conventional PSHA method may lead to 

uncertainties due to the selection of bin size, the grouping of scenario and the 

selection of quantities utilized in the deaggregation process. 

From the extended PSHA method it can be concluded that: 

§ The utilization of recurrence relationships and the generation of synthetic 

earthquakes based on the rupture areas of real events in the new PSHA method 

have minimized the smoothed seismicity problem, as well as the unrealistic 

hazard estimates associated with the incompleteness of the earthquake catalogue 

(see Figure 4.10). 

§ Seismic hazard maps corresponding to 10% probability of exceedance in 50 years 

are produced for Sumatra (see Figure 5.4). It is observed that the Indonesian 

seismic code SNI-03-1726-2002 (see Figure 2.7) applies 0.3g as the maximum 

PGA on bedrock in the region. However, this study finds that a maximum PGA 

of 0.65g on bedrock is expected in the area. This is consistent with the findings of 

recent studies (Irsyam et al., 2008; Irsyam et al., 2010; Petersen et al., 2004). 

Therefore, the implementation of a new hazard map in the Indonesian seismic 

standard for buildings is required.  

§ For Padang city, an average PGA of 0.23g and 0.3g on bed rock site is expected 

for 10% and 2% probability of exceedance in 50 years (see Figures 5.8 and 5.9). 

For 10% probability of exceedance in 50 years, the existing Indonesian code 

(SNI 03-1726-2002) applies a PGA value of 0.25g in the area, which is about 8% 

higher than that obtained in this study. However, uniform hazard spectra on rock 

site condition of this study shows higher spectral acceleration values than those 

required in the seismic standard, particularly for low natural period of buildings 

(see Figure 5.13).  

§ The deaggregation procedure to obtain hazard contribution from each seismic 

source is not required in the new PSHA methodology because all earthquake 

scenarios and associated PGAs can be obtained from the PSHA database. The 
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contributions of major seismic sources to seismic hazard in Padang are shown in 

Figure 5.10 to Figure 5.12. The figure reveals that higher PGAs are most likely 

generated by near field events from the intraplate of the Sumatra Subduction 

Zone (SSZ). However, the interface earthquakes are capable of producing large 

magnitude earthquakes with shallow focal depth, which can trigger tsunamis. The 

earthquakes occurring on the Sumatran fault (SFZ) generally affect the eastern 

part of the city, which has less population and infrastructure. 

§ A time-dependent PSHA method is developed in this study to take into account 

the  non-stationary  rate  of  hazard  over  time  using  the  empirical  varying  rate  of  

hazard. This time-dependent method is not intended to predict earthquake, but to 

build more awareness to the upcoming hazards for mitigation purposes. This 

study  finds  that  the  seismicity  at  middle  segments  of  the  SSZ  are  likely  to  

increase (about 2.52 times for Zone 4 and 1.74 times for Zone-5) and the region 

may experience higher ground motions in the near future in a range of 0.30-

0.40g. 

§ A time-dependent hazard map is produced for Sumatra region. The map is 

capable of capturing the increase rate of hazard near Padang segment, which is 

consistent with the location of seismic gap estimated from previous studies (see 

Figure 5.15). 

8.2.2. Probabilistic Tsunami Hazard Assessment (PTHA) 

Based on the probabilistic tsunami hazard assessment developed in this study it can 

be concluded that: 

§ A relationship that correlates tsunami height, earthquake magnitude and closest 

distance to tsunami source is established for Sumatra based on tsunami numerical 

simulations (Equation 6.1). The relationship is used for rapid estimation of 

tsunami height in the PTHA module.  

§ An integrated PSHA and PTHA are developed in this study. The PTHA method 

estimates the heights of tsunamis associated with tsunamigenic events in the 

earthquake catalogue generated in the PSHA module. 

§ Tsunami heights and arrival time for Padang city are determined. An average 

tsunami height of 20.7 m is obtained at 10% probability of exceedance in 50 

years. It is estimated that tsunamis occurring in the SSZ will inundate the coastal 
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area of Padang approximately within 15 minutes and 25 minutes after the 

earthquakes for intraplate and interface events, respectively.  

§ It is found that after the 2004 and 2005 tsunamis in North Sumatra, the hazard 

level in the middle part of the Sumatra Subduction Zone increases, particularly 

around the Padang and Bengkulu segments (see Figures 6.13 and 6.14). 

§ This study found that unlike earthquake hazard assessment, tsunami hazard 

assessment must consider both near-field and far-field tsunami sources. Near 

field tsunamis from intraplate of the Sumatra Subduction Zone are mostly 

generated by earthquakes located within 150 km from the coast of Padang with 

Mw≥7.0. Most tsunamis from the Sumatra subduction interface are generally 

triggered by earthquakes occurring more than 150 km from the coast with 

Mw≥8.0. Distant tsunamis from these interface events are capable of inundating 

the city with considerable tsunami heights (≥10m). The contributions of each 

tsunami source to tsunami hazard in Padang are shown in Figure 6.18.  

§ Tsunami rates and tsunami hazard curves are drawn for Padang city, as shown in 

Figures 6.16 and 6.17, respectively. It is found that the return period of 

significant tsunamis (≥10m) is approximately 200 years. An average tsunami 

height of 20.7m and 28m is expected in the area at 10% and 2% probability of 

exceedance in 50 years, respectively. 

§ Hydrostatic, hydrodynamic and impulsive forces associated with a 475 year 

tsunami event are estimated for Padang city based on a method proposed by 

FEMA P646 (2008). A hydrostatic force of 4262 kN per meter width of structural 

components is estimated for the region. It is predicted that the area is subjected to 

hydrodynamic forces in the range of 725-1065 kN per meter width. The 

maximum surge force is approximately 1.5 times the value of the hydrodynamic 

forces. 

8.2.3. Risk Assessment 

A  probabilistic  risk  assessment  framework  has  been  developed  to  estimate  

earthquake and associated tsunami risks. Based on the risk framework it can be 

concluded that: 
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§ The earthquake risk model is verified with building damage data due to the Mw 

7.6 of Padang earthquake. It is found that the loss estimated by the risk model is 

about 4.76% lower than that of the available damage statistic. 

§ Earthquake and tsunami risk assessments are conducted for Padang city for four 

building categories. It is found that the existing unreinforced brick masonry 

buildings are the most vulnerable, followed with the confined brick masonry, 

reinforced concrete structures with masonry infill and steel structures. The 

earthquake risk decreases considerably (about 80%), if the buildings are designed 

according to modern seismic design standard. Tsunami risk for seismic design 

buildings is about 25% lower than that of the existing buildings with poor seismic 

performance. 

§ The earthquake risk obtained in this study is compared with earthquake risk 

premium charged by 2 insurance companies in Indonesia. It is observed that the 

earthquake insurance tariffs are consistent with the risk obtained for seismically 

design structures, as shown in Figure 7.17. For RCI buildings, the total premiums 

obtained in this study are 8.1‰ and 1.4‰ for the existing and the seismically 

designed buildings, respectively. Estimated rates for steel structures are 3.1‰ for 

the existing building stock and 0.3‰ for buildings with good seismic 

performance. For other types of structures, the total premiums are estimated to be 

16.6‰ and 3.1‰ for the existing and the seismically designed buildings, 

respectively. ACA Insurance applies a flat rate of 3‰ for all building types. 

MAIPARK Insurance charges 1.9‰, 1.9‰ and 4.7‰ for RCI, steel and other 

structures, respectively. 

§ Tsunami insurance premiums for Padang are obtained. For the existing building 

stock, the recommended premium rates are 7‰ for RCI/steel structures and 9.9‰ 

for other building types. For seismically designed buildings, insurance rates of 

4.5‰ and 8‰ are suggested for RCI/steel structures and other types of buildings, 

respectively. 

§ Building risk associated with tsunami in Padang is lower than that of earthquake 

due to infrequent occurrence of tsunamis in the area. The earthquake and tsunami 

risk for buildings in Padang is predicted to be £54.5 million and £30.8 million per 

annum, respectively. However, tsunamis can cause an immensely high fatality 

risk than that of earthquakes. This study finds that the fatality risk subjected to 

earthquakes and tsunamis are 8 and 2000 fatalities per annum, respectively. 
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8.2.4. Mitigation Strategies 

§ Seismic design of structures is mandatory for high seismicity region like Padang 

city and must be included as part of earthquake mitigation strategies. A modern 

seismic design standard (SNI 03-1726-2002) similar to the American UBC 1997 

is available in Indonesia. However, its implementation and supervision for 

buildings in Indonesia are immeasurable. Therefore, the Indonesian government 

must enforce seismic design requirements for all buildings in the region. 

§ The Indonesian code, SNI 03-1726-2002, takes into account different ductility 

ranges of structures, as typically found in modern seismic standards. However, 

this study finds that the PGA values given in the earthquake hazard map of the 

code are generally lower than those obtained in this study. Hence, the revision of 

seismic design standard and the inclusion of a new hazard map for the region are 

required. 

§ The level of earthquake and tsunami risks for most Indonesian regions is 

considerably high, as seen in Figures 7.8-7.12. Consequently, the reconstruction 

costs due to the hazard are high and may burden the national economy. A 

nationwide obligatory seismic insurance for buildings can be used as an 

alternative solution to share the burden with building owners and insurance 

companies in the region. Incentives (e.g. tax cuts, free interest loans, etc.) can be 

given in return to encourage building owners to insure their properties. 

§ Tsunami evacuation sites need to be well distributed and reachable by the 

evacuees within a walking distance. This study finds that the maximum distance 

to evacuation site in Padang is approximately 1.66 km. Therefore, at least 17 

points  of  tsunami  evacuations  refuges  are  required  for  Padang  city,  to  increase  

the survival probability of the residents in the area.  

§ Various types of refuges can be developed including earthen mounds or specially 

designed evacuation buildings. Earthen mounds are more suitable for less 

populated regions as they require a lot of space. Tsunami evacuation buildings 

are a better alternative for more densely populated areas. 

§ Design guidelines for tsunami evacuation shelters should be developed for the 

region. 

§ Many solutions to dissipate tsunami energy in Padang are proposed including the 

development of sea structures (e.g. vertical walls, rubble mound structures, 
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breakwaters and artificial reefs) as well as the rehabilitation of mangrove forest 

along the coastal area. The latter approach is more eco-friendly and cost 

effective. However, it is only applicable for less populated areas. 

8.3. LIMITATIONS OF THIS STUDY AND RECOMMENDATIONS 

FOR FUTURE WORKS 

§ The ERA Framework needs to be extended to take into account other earthquake 

associated hazards such as landslide and liquefaction. The landslide and 

liquefaction are generally caused by the stability problems of soil mechanics for 

which earthquake ground motions act as external forces that destabilise the soil 

and trigger the hazards. To incorporate the landslide/liquefaction into the ERA 

Framework, the recurrence relationships of the hazard parameters need to be 

obtained. The main hazard parameters for landslide are sliding mass and sliding 

distributions; while for liquefaction, the shear wave velocity of soil and SPT 

(Standard Penetration Test) resistance at a specific location and a particular depth  

have been used as an indicator for the liquefaction potential. In the absence of 

detailed empirical data, the hazard parameters can be obtained by simulating the 

landslide (or liquefaction) events using a Finite Element Method (FEM). Based 

on the outcomes of the FEM simulations, a correlation between the hazard 

parameters with the level of earthquake ground motions can be acquired; hence, 

any earthquake events that are likely to trigger the landslide/liquefaction on a site 

can be identified. Once the distribution of the hazard rate has been attained for all 

grids in the case study region, a stochastic method as that adopted in the PTHA 

can be implemented by randomly selecting the potential events from the 

randomised earthquake catalogue generated in the PSHA module (see Section 

3.3.3). Then, the hazard curve for landslide or liquefaction can be developed. 

§ The PSHA method developed in this study does not take into account fault 

interactions due to limited seismological information in the investigated area. A 

physical earthquake model can be incorporated in the PSHA module to account 

for the fault interactions as well as to generate long catalogue of synthetic 

seismicity of the region (see Section 2.3.1.4). Consequently, more detailed 

seismological information such as slip distribution, slip rates, frictional 

coefficient,  stress  drop,  and  the  healing  time  of  fault  elements  at  the  examined  
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area are required. The physical earthquake model encompasses the physics of 

fault interactions and the frictional physics of fault segments; thus, it can better 

approximate the seismicity of the region with incomplete period of earthquake 

catalogues such as that of Sumatra. 

§ The uncertainty associated with the lack of data (i.e. the incompleteness of 

earthquake and tsunami catalogues) and the incorporation of subjective 

information (i.e. judgemental vulnerability relationship, visual inspection of 

building inventory) in the ERA Framework hasn’t been addressed in this study. 

Therefore, the incorporation of a formal statistical approach such as Bayesian 

method may improve the reliability of the ERA Framework in the future. 

Furthermore, the Bayesian method may provide a better estimate for the 

recurrence relationships of earthquake and tsunami in the case study region, 

which has relatively short time period of observations.  

§ The hazard and risk maps of this study were produced using the ordinary Kriging 

interpolation of ArcGIS software. The interpolation method assumes that the 

spatial variation is isotropic in all directions. However, given the presence of 

faults and plate boundary in the case study area with a particular direction of 

strike angles, the use of anisotropic Kriging interpolation should be investigated. 

The anisotropic Kriging takes into account spatially dependent variation 

associated with the directivity of seismic sources in the examined region; hence, 

better outcomes may be obtained. 

§ In this study, high resolution bathymetry and topography data of the case study 

area are not available. As a result, wider applications such as the development of 

tsunami inundation maps and a detailed estimation of tsunami forces cannot be 

obtained; hence, they need to be done for future works.  

§ Ground attenuation relationships specifically for Indonesia are not available and 

need to be developed. The development of the ground attenuation relationships 

requires strong ground motion records of earthquakes in the region, which are 

still lacking in Indonesia. 

§ A detailed vulnerability assessment for existing building stock in Indonesia does 

not exist and needs to be conducted to get more accurate risk estimation. 

§ This study uses Gutenberg-Richter relationships to characterise the seismicity of 

the  case  study  region.  A  better  model  of  seismicity  distribution  such  as  
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characteristic earthquake recurrence model can be utilized in the PSHA module 

given that the geological data of the seismic sources in the region are available. 

§ An optimization study to determine the locations of tsunami evacuation sites 

hasn’t been done in this study and needs to be conducted for Padang city. 

§ A tsunami strengthening scheme for existing buildings need to be investigated as 

an alternative for tsunami evacuation refuges. 
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Appendix A. Tsunami Catalogue of Sumatra 

Day Month Year Time Latitude Longitude Depth (Km) Mw Height Intensity Validity Fatality Source 
- - 1770 - -5.00 102.00 - 6.9 1.0 0.5 3  Gusiakov 

10 2 1797 - 0.00 99.00 - 8.0 5.7 3 4 300 Gusiakov 
18 3 1818 - -3.77 102.27 - 7.0 2.0 1.5 3 0 BMKG 
24 11 1833 - -2.39 99.64 75 9.0 4.0 2.5 4  Gusiakov 
29 9 1837 - 5.50 96.00 - 7.3 - 0.5 3  NOAA 
5 1 1843 - 1.50 98.00 70 7.1 2.8 2 4  Gusiakov 

31 10 1847 - 7.33 93.67 - - - - 3  NOAA 
16 2 1861 - -1.00 97.80 70 8.7 7.0 3 4 725 Gusiakov 
9 3 1861 - 0.00 98.00 20 7.0 2.8 2 4  Gusiakov 

26 4 1861 - 1.00 97.50 70 7.0 2.0 1.5 4  Gusiakov 
17 6 1861 - 1.00 97.50 - 6.8 - 0.5 3  NOAA 
25 9 1861 - -1.50 100.00 - 6.5 2.0 1.5 3  Gusiakov 
31 12 1881 - 8.52 92.43 - 7.9 1.2 - 3  NOAA 
26 8 1883 - -6.10 105.40 - - 1.4 1 3  Gusiakov 
27 8 1883 23:36:00 -6.10 105.40 - - 35.0 4.5 4 36000 Gusiakov 
4 1 1907 07:36:00 2.00 94.50 60 - 2.8 2 4 400 Gusiakov 
6 2 1908 - -2.00 100.00 130 7.5 1.4 1 3  Gusiakov 

19 6 1930 - -5.60 105.30 33 6.1 1.5 - 3  Gusiakov 
25 9 1931 23:53:36 -5.00 102.75 87 7.4 1.0 - 3  NOAA 
26 6 1941 20:48:00 12.50 92.50 35 7.6 1.5 - 4 5000 NOAA 
26 9 1957 - -8.20 107.30 33 5.8 1.0 - 3  Gusiakov 
2 4 1964 04:47:14 5.99 95.41 133 6.9 0.0 - 3  Gusiakov 

12 4 1967 20:38:48 5.07 96.22 17 7.4 2.0 1.5 3 14 Gusiakov 
24 2 1982 09:04:10 4.37 97.75 52 5.4 0.1 - 4  Gusiakov 
13 9 2002 11:23:48 13.04 93.07 21 7.8 0.0 0 3 0 Gusiakov 
26 12 2004 23:33:22 3.30 95.98 10 9.1 50.9 4 4 226898 NOAA 
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Day Month Year Time Latitude Longitude Depth (Km) Mw Height Intensity Validity Fatality Source 
28 3 2005 03:50:48 2.09 97.11 30 8.7 3.0 - - 10 BMKG 
10 4 2005 11:40:24 -1.64 99.61 19 6.7 0.4 - - 0 BMKG 
24 7 2005 00:00:00 7.90 92.10 33 7.0 0.0 - - 0 BMKG 
17 7 2006 07:47:29 -9.25 107.41 33 7.7 20.9 - 4 802 NOAA 
12 9 2007 04:10:43 -4.44 101.37 10 8.4 5.0 - 4 - NOAA 
25 2 2008 14:37:12 -2.49 99.97 10 6.5 0.1 - 4 - NOAA 
10 8 2009 22:14:14 14.10 92.89 30 7.5 0.0 - 3 - NOAA 
16 8 2009 15:20:41 -1.48 99.49 21 6.7 0.2 - 4 - NOAA 
2 9 2009 00:00:00 -8.24 107.32 60 7.0 1.0 - - 0 BMKG 

30 9 2009 06:27:41 -0.72 99.87 81 7.6 0.3 - 4 - NOAA 
6 4 2010 06:00:36 2.38 97.05 34 7.8 0.4 - 4 - NOAA 

12 6 2010 10:44:10 7.88 91.94 17 7.5 0.0 - 4 - NOAA 
25 10 2010 16:56:48 -3.49 100.08 10 7.8 7.0 - 4 431 NOAA 
4 4 2011 02:39:36 -10.01 107.69 10 7.1 0.0 - - 0 BMKG 

11 1 2012 14:46:48 2.41 93.09 10 7.1 0.0 - - 0 BMKG 
11 4 2012 15:26:48 2.31 93.06 10 8.6 0.0 - 4 - NOAA 
11 4 2012 17:16:24 0.82 92.42 24 8.1 0.0 - 4 0 BMKG 
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Appendix B. Parameters of the tsunami events simulated in the tsunami numerical analyses 

No Mw1 Depth 
(km) Lon2 Lat3 Strike 

Angle 
Dip 

Angle 
Rake 
Angle Date H4 (m) I5 Validity Fatality Ht

6 (m) time7 
(minutes) 

1 9.1 10 95.98 3.30 322.98 12.00 90.00 26/12/2004 50.9 4.0 4 226898 1.8 93.4 
2 9.0 30 99.64 -2.39 322.98 12.00 90.00 24/11/1833 4.0 2.5 4 - 20.1 12.0 
3 8.7 30 97.11 2.09 322.98 12.00 90.00 28/03/2005 3.0 - - 10 0.7 93.6 
4* 8.6 10 93.06 2.31 322.98 12.00 0.00 11/04/2012 0.0 - 4 - 0.1 90.0 
5 8.5 70 97.41 1.00 322.98 50.00 90.00 16/02/1861 7.0 3.0 4 725 0.4 30.1 
6 8.4 10 101.37 -4.44 322.98 12.00 90.00 12/09/2007 5.0 - 4 - 1.2 60.0 
7* 8.1 24 92.42 0.82 322.98 12.00 0.00 11/04/2012 0.0 - 4 0 0.0 0.0 
8 8 32 99.36 -1.76 322.98 12.00 90.00 10/02/1797 5.7 3.0 4 300 3.4 21.2 
9 7.8 34 97.05 2.38 322.98 12.00 90.00 06/04/2010 0.4 - 4 - 0.0 0.0 

10 7.8 10 100.08 -3.49 322.98 12.00 90.00 25/10/2010 7.0 - 4 431 0.2 47.9 
11 7.6 50 94.50 2.00 322.98 12.00 90.00 04/01/1907 2.8 2.0 4 400 0.0 0.0 
12 7.6 81 99.87 -0.72 322.98 50.00 90.00 30/09/2009 0.3 - 4 - 0.2 2.0 
13 7.5 130 100.00 -2.00 322.98 50.00 90.00 06/02/1908 1.4 1.0 3 - 0.1 7.5 
14 7.4 87 102.75 -5.00 322.98 50.00 90.00 25/09/1931 1.0 - 3 - 0.0 0.0 
15 7.4 17 96.22 5.07 322.98 12.00 90.00 12/04/1967 2.0 1.5 3 14 0.0 0.0 
16 7.3 78 96.00 5.50 322.98 50.00 90.00 29/09/1837 - 0.5 3 - 0.0 0.0 
17 7.2 70 98.00 1.50 322.98 50.00 90.00 05/01/1843 2.8 2.0 4 - 0.0 0.0 
18* 7.1 10 93.09 2.41 322.98 12.00 0.00 11/01/2012 0.0 - - 0 0.0 0.0 
19 7.0 32 102.00 -5.00 322.98 12.00 90.00 -/-/1770 1.0 0.5 3 - 0.0 0.0 
20 7.0 72 102.27 -3.77 322.98 50.00 90.00 18/03/1818 2.0 1.5 3 0 0.0 0.0 
21 7.0 20 98.00 0.00 322.98 12.00 90.00 09/03/1861 2.8 2.0 4 - 0.0 0.0 
22 7.0 70 97.50 1.00 322.98 50.00 90.00 26/04/1861 2.0 1.5 4 - 0.0 0.0 
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No Mw1 Depth 
(km) Lon2 Lat3 Strike 

Angle 
Dip 

Angle 
Rake 
Angle Date H4 (m) I5 Validity Fatality Ht

6 (m) time7 
(minutes) 

23 9.0 30 96.25 2.39 322.98 12.00 90.00 Synthetic - - - - 4.7 62.6 
24 9.1 10 97.79 -1.07 322.98 12.00 90.00 Synthetic - - - - 10.2 39.5 
25 9.1 10 94.28 3.04 322.98 12.00 90.00 Synthetic - - - - 1.8 81.4 
26 9.1 10 100.52 -4.67 322.98 12.00 90.00 Synthetic - - - - 7.4 39.4 

 

1 The moment magnitude of earthquake 
2 The longitude of earthquake epicentre 
3 The latitude of earthquake epicentre 
4 Tsunami wave height at coastal areas of Sumatra recorded by tide gauges  
5 Tsunami Intensity 
6 Maximum tsunami height at Padang city estimated from tsunami numerical simulations 
7 Tsunami arrival time at Padang city estimated from tsunami numerical simulations 
* Strike slip earthquake 
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APPENDIX C 

Building inventory for Padang City 

AU Building Area (m2) AU Building Area (m2) 
UBM RBM RCI Steel UBM RBM RCI Steel 

0 0 0 0 0 27 0 0 0 0 
1 0 0 0 0 28 0 0 0 0 
2 0 0 0 0 29 0 0 0 0 
3 0 0 0 0 30 0 0 0 0 
4 0 0 0 0 31 0 0 0 0 
5 0 0 0 0 32 71.6 286.4 47.5 0 
6 0 0 0 0 33 55727.4 222909.6 122927.5 0 
7 0 0 0 0 34 108461.2 433844.8 239252.5 31344.14 
8 0 0 0 0 35 92546.8 370187.2 204147.5 14733.17 
9 0 0 0 0 36 76041.2 304164.8 167737.5 0 
10 0 0 0 0 37 0 0 0 0 
11 0 0 0 0 38 0 0 0 0 
12 0 0 0 0 39 0 0 0 0 
13 0 0 0 0 40 0 0 0 0 
14 0 0 0 0 41 0 0 0 0 
15 0 0 0 0 42 0 0 0 0 
16 0 0 0 0 43 97.4 389.6 215 0 
17 0 0 0 0 44 179857.4 719429.6 396745 0 
18 0 0 0 0 45 88697.2 354788.8 195655 2161.81 
19 0 0 0 0 46 94682.4 378729.6 208857.5 2171.51 
20 0 0 0 0 47 0 0 0 0 
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AU Building Area (m2) AU Building Area (m2) 
UBM RBM RCI Steel UBM RBM RCI Steel 

21 4561.4 18245.6 3000 0 48 0 0 0 0 
22 89666.6 358666.4 197795 0 49 0 0 0 0 
23 33348.6 133394.4 73562.5 7770.93 50 0 0 0 0 
24 5305.4 21221.6 3490 0 51 0 0 0 0 
25 0 0 0 0 52 0 0 0 0 
26 0 0 0 0 53 0 0 0 0 
54 74818.4 299273.6 623487.5 0 82 0 0 0 0 
55 168091.8 672367.2 1400765 0 83 0 0 0 0 
56 94083 376332 207535 3603.241 84 98.4 393.6 4925 0 
57 89064.6 356258.4 196465 0 85 71544 286176 3577198 61458.94 
58 0 0 0 0 86 65462.2 261848.8 3273108 67241 
59 0 0 0 0 87 147234.8 588939.2 1226955 146402.7 
60 0 0 0 0 88 89666.6 358666.4 197795 0 
61 0 0 0 0 89 89666.6 358666.4 197795 0 
62 0 0 0 0 90 34669.6 138678.4 76477.5 0 
63 0 0 0 0 91 0 0 0 0 
64 45824.2 183296.8 381867.5 0 92 0 0 0 0 
65 231212.2 924848.8 1926768 21856.27 93 35053.6 140214.4 23062.5 24161.2 
66 156803.8 627215.2 103160 4555.191 94 120819.6 483278.4 266512.5 126198.7 
67 129589.8 518359.2 85257.5 0 95 36276.6 145106.4 80022.5 0 
68 76041.2 304164.8 167737.5 0 96 0 0 0 0 
69 0 0 0 0 97 0 0 0 0 
70 0 0 0 0 98 0 0 0 0 
71 0 0 0 0 99 0 0 0 0 
72 0 0 0 0 100 0 0 0 0 
73 0 0 0 0 101 0 0 0 0 
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AU Building Area (m2) AU Building Area (m2) 
UBM RBM RCI Steel UBM RBM RCI Steel 

74 0 0 0 0 102 0 0 0 0 
75 114201.8 456807.2 5710095 24813.36 103 615.2 2460.8 405 12544.28 
76 54489.8 217959.2 2724493 11112.25 104 480.4 1921.6 315 0 
77 157180.4 628721.6 103407.5 2573.384 105 73.4 293.6 47.5 0 
78 100215.6 400862.4 65932.5 0 106 0 0 0 0 
79 201017.2 804068.8 132247.5 0 107 0 0 0 0 
80 0 0 0 0 108 0 0 0 0 
81 0 0 0 0 109 0 0 0 0 

110 0 0 0 0 127 16.2 64.8 10 0 
111 230 920 152.5 0 128 117.4 469.6 77.5 0 
112 1802.4 7209.6 1185 0 129 0 0 0 0 
113 0 0 0 0 130 0 0 0 0 
114 0 0 0 0 131 251 1004 165 0 
115 0 0 0 0 132 0 0 0 0 
116 0 0 0 0 133 0 0 0 0 
117 0 0 0 0 134 0 0 0 0 
118 0 0 0 0 135 0 0 0 0 
119 0 0 0 0 136 0 0 0 0 
120 1620.4 6481.6 1065 0 137 0 0 0 0 
121 191.4 765.6 125 0 138 0 0 0 0 
122 0 0 0 0 139 0 0 0 0 
123 0 0 0 0 140 0 0 0 0 
124 0 0 0 0 141 0 0 0 0 
125 0 0 0 0 142 0 0 0 0 
126 0 0 0 0 143 0 0 0 0 
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APPENDIX D 

Assignment of earthquake vulnerability functions for existing building stock in Padang 

Building Category 
Rating Scheme1 

Total 
Rate 

Curve 
Type Design 

Quality Construction Quality Material Quality 

1. Existing Building Stock with Poor Seismic Performance  
- Unreinforced Brick masonry (UBM) 3 3 1 7 H 
- Confined Brick Masonry (CBM) 3 3 1 7 F 
- Reinforced Concrete Frame with Masonry Infill 

(RCI) 1 2 1 4 E 

- Steel Frame (Steel) 1 2 1 4 D 
      
2. Seismically Designed Building Stock 

- Unreinforced Brick masonry (UBM) 0 0 1 1 E 
- Confined Brick Masonry (CBM) 0 0 1 1 D 
- Reinforced Concrete Frame with Masonry Infill 

(RCI) 0 0 0 0 C 

- Steel Frame (Steel) 0 0 0 0 A 

                                                
1 See APPENDIX E 
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APPENDIX E.1 

Rating Scheme Quality for Structures  (GESI, 2001) 

Quality of design 
0 Engineered with seismic design 
1 Engineered without seismic design, or non-engineered using seismic 

resistant ‘rules of thumb’ (e.g. lintel band for masonry) 
2 Non-engineered, no seismic resistant elements, good proportions 

(short, wide, symmetric) 
3 Non-engineered, no seismic resistant elements, poor proportions tall, 

narrow, or non-symmetric) 
  
Quality of construction 

0 Excellent quality, effective supervision of seismic elements of 
construction 

1 Good quality, some supervision of seismic elements of construction 
2 Moderate quality, no supervision of seismic elements of construction 

but skilled workers 
3 Poor quality, no supervision and unskilled workers 

  
Quality of materials 

0 Good quality materials 
1 Poor quality materials, or poor maintenance of building 
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APPENDIX E.2 

Vulnerability Curve Assignments (GESI, 2001) 

Building Types 0 1 2 3 4 5 6 7 

- Wood A A B B C C C D 

- Steel A B C C D D E F 

- R/C B C D E E F G H 

- R/C, steel infill C D D E E F G H 

- Reinforced masonry C D D E E F F F 

- URM E E F F G G G H 

- Adobe N/A N/A G H H H H I 

- Stone rubble N/A N/A G H H H H I 

- Lightweight shack N/A N/A N/A H H H H I 
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APPENDIX E.3 

The average damage state of a building for a given PGA (GESI, 

2001) 
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APPENDIX F1 

TSUNAMI NUMERICAL MODEL 

I. GOVERNING EQUATIONS 

1.1. Shallow Water Theory  

Tsunamis which are mainly generated by the movement of sea bottom due to 

earthquakes belong to long waves. In the theory of such waves, the vertical 

acceleration of water particles are negligible compared with the gravitational 

acceleration except for an oceanic propagation of tsunami (Kajiura, 1963). 

Consequently, the vertical motion of water particles has no effect on the 

pressure distribution. It is a good approximation that the pressure is hydrostatic. 

Based upon these approximations and neglecting the vertical acceleration, the 

equations of mass conservation and momentum in the three dimensional 

problem (see Figure 1.1) are expressed by the following theory: 

ߟ߲
ݐ߲ + 	

ݑ߲
ݔ߲ + 	

ݒ߲
+ݕ߲ 	

ݓ߲
ݖ߲ = 0 

ݑ߲
ݐ߲ + 	ݑ	

ݑ߲
ݔ߲ + 	ݒ	

ݑ߲
ݕ߲ 	ݓ+

ݑ߲
ݖ߲ +

1
	ߩ
݌߲
ݔ߲ + 	

1
	ߩ
ቆ
߲߬௫௫
ݔ߲ + 	

߲߬௫௬
ݕ߲ + 	

߲߬௫௭
ݖ߲

ቇ = 0 

ݒ߲
ݐ߲ + 	ݑ	

ݒ߲
ݔ߲ + 	ݒ	

ݒ߲
ݕ߲ 	ݓ+

ݒ߲
ݖ߲ +

1
	ߩ
݌߲
ݔ߲ + 	

1
	ߩ
ቆ
߲߬௫௬
ݔ߲ + 	

߲߬௬௬
ݕ߲ + 	

߲߬௬௭
ݖ߲

ቇ = 0 

݃ + 	
1
	ߩ
ߩ߲
ݖ߲ = 0 

1.1 

where  x  and y  are horizontal axes, z - the vertical axis, t - time, h - the still 

water depth, ߟ- the vertical displacement of water surface above the still water 

surface; u , v and w are water particle velocities in the  x,  y  and  z  directions, 

respectively, g-the gravitational acceleration, and ߬௜௝- the normal or tangential 

shear stress in the i-direction on the j-normal plane. 

 

                                                
1 The contents of this appendix are directly quoted and edited from Imamura et al. (2006) as the basis 
for tsunami numerical simulations adopted in this study. 
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Figure 1.1. Central difference 

The equation of momentum in the z-direction with the dynamic conditions at a 

surface that p=0 yields the hydrostatic pressure ݌ = ߟ)݃ߩ −  (ݖ

Any wave propagation problems can be solved by using the governing equations 

(Equation 1.1) with boundary conditions. The dynamic and kinetic conditions at 

surface and bottom are given as follows: 

݌ = 0                                                       at ݖ =  1.2 ߟ

ݓ = 	 డఎ
డ௧

+ 	ݑ	 డఎ
డ௫

+ 	ݒ డఎ
డ௬

                           at ݖ =  1.3 ߟ

ݓ = 	 ݑ− డ௛
డ௫
− 	ݒ డ௛

డ௬
                                  at ݖ = −ℎ 1.4 

At this stage, Equation 1.1 can be integrated from the bottom to the surface by 

using Liebnitz rule. For example, the first term of the momentum equation in the 

x-direction is rewritten as follows: 

න
ݑ߲
ݐ߲ ݖ݀	

ఎ

ି௛
= 	

߲
ݐ߲ 	

න ݖ݀ݑ
ఎ

ି௛
− 	ݑ

ߟ߲
ฬ௭ୀఎݐ߲

+ 	ݑ	
߲(−ℎ)
ݐ߲ 	ቤ

௭ୀି௛
  

With dynamic and kinetic condition - Equations 1.2-1.4, the following two 

dimensional equations can be obtained (this is called the shallow water theory): 
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ܰܯ
ܦ
൰ + 	

߲
ݕ߲
	ቆ
ܰଶ

ܦ
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ቇ 1.5 

Where, D is the total water depth given by ℎ +  ௫ and ߬௬ are the bottom߬ ;ߟ

frictions in the x and y directions; A is the horizontal eddy viscosity which is 

assumed to be constant in space; the shear stress on a surface wave is neglected. 

M and N are the discharge fluxes in the x and y directions which are given by 

ܯ = න ݖ݀	ݑ
ఎ

ି௛
= ℎ)	ݑ	 + (ߟ	 =   ܦ	ݑ

ܰ = න ݖ݀	ݒ
ఎ

ି௛
= ℎ)	ݒ	 + (ߟ	 =  1.6 ܦ	ݒ

1.2. Bottom friction 

The bottom friction is generally expressed as follows, in an analogy to the 

uniform flow, 

߬௫
ߩ

= 	
1

2݃
	
݂
ଶܦ ܯඥ	ܯ	

ଶ + 	ܰଶ  

߬௬
ߩ

= 	
1

2݃
	
݂
ଶܦ 	ܰ	ඥܯ

ଶ + 	ܰଶ 1.7 

Where, f is the friction coefficient. Without any detailed discussion of the 

value of f , it is preferred to use Manning's roughness (n) which is familiar 

among civil engineers. Values of n are given in Table 1.1 (Chow, 1960). 

The friction coefficient (f) and Manning's roughness (n) are related by 

݊ = 	ඨ
ଵ/ଷܦ݂

2݃
 

1.8 

This implies that f becomes rather large when the total depth (D) is small as n 

remains almost constant. Thus, the bottom friction terms are expressed by 
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߬௫
ߩ

= 	
݂݊ଶ

଻ܦ ଷ⁄ ଶܯඥ	ܯ	 + 	ܰଶ  

߬௬
ߩ

= 	
݂݊ଶ

଻ܦ ଷ⁄ 	ܰ	ඥܯଶ + 	ܰଶ 1.9 

Throughout the present model, the expression of bottom friction in Equation 

1.9  is  being  used.  The  value  of  n should be selected depending on the 

condition of the bottom surface according to the Table 1.1. 

Table 1.1 Values of Coefficient of Bottom Friction n  

(after Linsley and Franzini, 1979) 

Channel Material n Channel Material n 

Neat cement, smooth metal 0.010 Natural channels in good condition 0.025 

Rubble masonry 0.017 Natural channels with stones and weeds 0.035 

Smooth earth 0.018 Very poor natural channels 0.060 

 

1.3. Governing equation 

For the propagation of tsunami in the shallow water, the horizontal eddy 

turbulence could be negligible compared to the bottom friction except for 

run-up on the land. The following equations are therefore given as the 

fundamental equations in the present model. 
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1.4. Note on convection terms 

The other expression of the shallow water equation using the averaged 

velocities in x and y directions (u and v) are often introduced by 
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1.11 

It should be noted that the above equation cannot be used in a numerical model 

for runup because it does not satisfy conservation of momentum. For 

example, the convection terms in the momentum equation in the x direction in 

Equation 1.10 divided by D can be modified as 
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The convection terms in Equation 1.10 are not the same as those in Equation 

1.11 and even if the mass conservation equation in Equation 1.10 is applied, the 

third term in left side of Equation 1.12 cannot be eliminated. Note that in the 

case of tidal current with longer wave period than tsunami in which acceleration 

term, the third term in left side of Equation 1.12 is neglected. 

II. NUMERICAL SCHEME 

2.1. Numerical scheme for linearized equation 

For the first step to describe the numerical scheme for the tsunami model, the 

linearized long wave equation without bottom frictions in one-dimensional 

propagation, Equation 2.1, is introduced. 

ߟ߲
ݐ߲

+ 	
ܯ߲
ݔ߲

= 0 2.1 
ܯ߲
ݐ߲

+ ܦ݃	
ߟ߲
ݔ߲

= 0  

The finite difference method can be used to solve the above equation 

numerically. The finite difference method based upon the Taylor expansion 

series is shown as follows. 

,ݔ)ߟ ݐ + Δݐ) = ,ݔ)ߟ	 (ݐ + Δݐ
,ݔ)ߟ߲ (ݐ
ݐ߲

+
Δݐଶ

2
	
߲ଶݔ)ߟ, (ݐ
ଶݐ߲

	
Δݐଷ

3!
߲ଷݔ)ߟ, (ݐ
ଷݐ߲

+ ⋯ 2.2 

Where, Δt is the grid interval. The "forward" difference can be formed by 
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rearranging Equation 2.2 as follows: 

,ݔ)ߟ߲ (ݐ
ݐ߲

= 	
,ݔ)ߟ ݐ + Δݐ) − ,ݔ)ߟ (ݐ

Δݐ
+ ܱ(Δݐ) 2.3 

Where, the first term in the right side of Equation 2.3 is obviously the finite 

difference representation for the first order of time derivative at t = t (see Figure 

1.1). 

The truncation error which has the order of Δݐ,ܱ(Δݐ) is the difference between 

the partial derivative and its finite difference representation. Moreover, the 

Taylor expansion series in Equation 2.2 can be rearranged by replacing Δݐ by 

+Δ2/ݐ and −Δ2/ݐ; thus, "central" difference with the second order of 

truncation error can be obtained.  

,ݔ)ߟ߲ (ݐ
ݐ߲

= 	
ߟ ቀݔ , ݐ + 1

2Δݐቁ − ߟ ቀݔ , ݐ − 1
2 Δݐቁ

Δݐ
+ ܱ(Δݐଶ) 2.4 

It is interesting that although the expression of the finite difference 

representations in Equations 2.3 and 2.4 are similar, the order of truncation 

errors is different. By using the above "central" difference method with the 

staggered numerical points for water level and discharges, which is called the 

staggered leap-frog scheme, Equation 2.1 can be discretised as follows.  

1
Δݐ
൫ߟ௜௡ାଵ − +௜௡൯ߟ

1
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2

1
Δݔ

௜ାଵ௡ߟ) − (௜௡ߟ + ܱ(Δݔଶ) = 0 2.5 

For dealing with discrete values in numerical computations, ݔ)ߟ, ,ݔ)ܯ and (ݐ  (ݐ

are expressed for the case of the staggered leap-frog scheme as 

,ݔ)ߟ (ݐ = ݔΔ݅)ߟ , ݊Δݐ) = 	 ௜௡ߟ   

,ݔ)ܯ (ݐ = ݅)}ܯ + 1/2)Δݔ, (݊ + 1/2)Δݐ} = ௜ାଵ/ଶܯ	
௡ାଵ/ଶ 2.6 

where Δݔ and Δt are the grid sizes in x-direction and in time-t. The point 

schematics for the numerical scheme are illustrated in Figure 2.1. The point for 

water depth-h is the same as those for water elevation, ߟ. 
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௜௡ܦ = 	 ௜௡ߟ + 	 ℎ௜     

 

 
Figure 2.1 The point schematics for the numerical scheme 

The above finite method provides stable result as long as the C.F.L condition is 

satisfied: 

C (celerity) < Δx /Δt 

Details of the stable condition can be found in Chapter 3.1 of Imamura and 

Goto (1988) in which investigated the truncation errors in three kinds of typical 

scheme for long wave simulations and showed that in term of numerical 

accuracy the staggered leap-frog scheme is the best among them. 

2.2. Numerical scheme for convection terms 

In the present numerical scheme, an "upwind" difference scheme is applied to 

the convection terms in order to make the computation stable. The reason 

why this scheme ensures the stability of computation is explained by taking a 

simple convection equation in the following: 

ܨ߲
ݐ߲

+ ܥ
ܨ߲
ݔ߲

= 0 2.7 

Here the coefficient-C is the propagation velocity and is assumed constant. The 

arrangement of computation points in the present scheme requires the forward 

difference scheme for the first order time derivations. This yields 

ܨ߲
ݐ߲

=
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ݐ∆
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ݐ∆
2
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2.8 
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In addition, the central difference is applied to the space derivative. 

ܥ
ܨ߲
ݔ߲

=
ܥ

ݔ∆2
௜ାଵ௡ܨ)	 ௜ିଵ௡ܨ− ) +  2.9 (ଶݔ∆)ܱ

As a result, ܨ௜௡ାଵ is given by 

௜௡ାଵܨ = 	 ௜௞ܨ − ܥ	
ݐ∆

ݔ∆2
௜ାଵ௡ܨ)	 ௜ିଵ௡ܨ− ) 2.10 

The solution of Equation 2.10 is implicitly equivalent the solution of Equation 

2.11 with a truncation error of (Δݐଶ + Δݔଶ). Substituting Equations 2.8 and 2.9 

into Equation 2.7 yields 
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+
ݐ∆
2
	
߲ଶܨ
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+ ܥ
ܨ߲
ݔ߲

= 0 
2.11 

If the second-order derivative with respect to time is rewritten by using the 

following relationship (this assumption is valid for the progressive waves), 
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ଶݐ߲

=
߲
ݐ߲
	൬−ܥ	

ܨ߲
ݔ߲
൰ = ଶܥ

߲ଶܨ
ଶݔ߲

 
 

The solution of Equation 2.11 is the same as the solution of the following 

diffusion equation in which the diffusion coefficient is negative. 

ܨ߲
ݐ߲

+ 	ܥ
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ݔ߲

= 	−
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2
ଶܥ	

߲ଶܨ
ଶݐ߲

 2.12 

A negative diffusion works to amplify round-off errors with time leading to 

instability. Therefore, Equation 2.10 is an unstable difference scheme. More 

details about stable and unstable scheme are discussed in chapter 3.1. 

In order to obtain a stable scheme, the space derivative term is approximated 

by either forward or backward difference depending on the sign of coefficient-C. 

The forward difference can be written as  

	ܥ
ܨ߲
ݔ߲

= 	
ܥ
ݔ∆

௜ାଵ௡ܨ)	 −(௜௡ܨ−
ݔ∆
2
ܥ	
߲ଶܨ
ଶݔ߲

+   (ଶݔ∆)ܱ

and the backward difference can be expressed as 
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	ܥ
ܨ߲
ݔ߲

= 	
ܥ
ݔ∆

௜ିଵ௡ܨ−௜௡ܨ)	 ) +
ݔ∆
2
ܥ	
߲ଶܨ
ଶݔ߲

+   (ଶݔ∆)ܱ

The solution of the corresponding differential equations is within the truncation 

error of ܱ(Δݐଶ + Δݔଶ), for the forward difference 

ܨ߲
ݐ߲

+ ܥ
ܨ߲
ݔ߲

= 	−	
ܥ
2
ݐ∆ܥ)	 + (ݔ∆

߲ଶܨ
ଶݔ߲

 2.13 

and for the backward difference 

ܨ߲
ݐ߲

+ ܥ
ܨ߲
ݔ߲

= 	−	
ܥ
2
ݐ∆ܥ−)	 + (ݔ∆

߲ଶܨ
ଶݔ߲

 2.14 

Therefore, to keep the virtual diffusion coefficient positive (or say to ensure the 

stability of the computation), the backward difference in case of positive C, and 

the forward difference in case  of  negative  C,  in  addition  to  setting  ୼௫
୼௧
	> 	  are |ܥ|

used. In other words, the difference should be taken in the direction of the flow. 

This is the reason why this scheme is called the "upwind" difference. Although 

the leap-frog scheme has the truncation error of the order of ∆ݔଶ as long as the 

convection term concerns, its order become large as ∆ݔ. 

2.3. Numerical scheme for bottom friction term 

The friction term becomes a source of instability if it is discretized with an 

explicit scheme. To make the discussion of instability simple, the following 

momentum equation without convection terms is considered: 

ܯ߲
ݐ߲

+ ܦ݃
ߟ߲
ݔ߲

+
݃݊ଶ

|ܯ|ܯ଻/ଷܦ = 0 2.15 

The explicit form of Equation 2.15 is 

௡ାଵܯ = ൭1 −
݃݊ଶ

ܦ
଻
ଷ

௡ܯ൱|ܯ| − ܦ݃
ߟ߲
ݔ߲

 2.16 

When a velocity become large or a total depth is small in a very shallow water, 

the absolute of coefficient (amplification factor) of the first term on the right 

hand side of Equation 2.16 become more than unity, which leads to numerical 

instability. In order to overcome this problem, an implicit scheme to set a 
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friction term can be basically introduced. For example, a simple implicit form 

௡ାଵܯ =
௡ܯ

൬1 + ݃݊ଶ
଻ܦ ଷ⁄ ൰|ܯ|

−
ܦ݃ ݔ߲ߟ߲

൬1 + ݃݊ଶ
଻ܦ ଷ⁄ ൰|ܯ|

 2.17 

ensures numerical stability, because the amplification factor in Equation 2.17 is 

always less than unity. However the effect of friction in shallow water becomes 

so large that numerical results are dumped. Another implicit form, a combined 

implicit one to the friction term is given by, 

௡ାଵܯ =
௡ܯ ൬1 − ݃݊ଶ

଻ܦ2 ଷ⁄ ൰|ܯ|

൬1 + ݃݊ଶ
଻ܦ2 ଷ⁄ ൰|ܯ|

−
ܦ݃ ݔ߲ߟ߲

൬1 + ݃݊ଶ
଻ܦ2 ଷ⁄ ൰|ܯ|

 2.18 

This scheme also gives a stable result. It is, however, noted that the above 

scheme causes a numerical oscillation at the wave front because the 

amplification factor could be negative. 

The best scheme among some implicit ones should be selected to apply the 

bottom friction term with Manning's roughness. Considering the fact that the 

numerical scheme of convection terms also involves artificial or numerical 

dissipation, selection of Equation 2.17 causes much damping in the result. 

Therefore the present model uses the combined implicit scheme, Equation 2.18. 




