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ABSTRACT

A model of spin accumulation (m) is proposed to develop theoretical approaches to

calculate the m in any arbitrary magnetic structure. The model is based on generalising

the approach of Zhang, Levy and Fert (PRL 88, 236601, 2002). The calculation involves

the layer-wise discretisation of the structure and the development of semi-analytical ap-

proaches to solve for the equilibrium m throughout the structure. Interestingly, the

layer discretisation allows the treatment of diffuse interfaces using a gradual variation of

the magnetic and transport properties across the interface. The effect of the interfaces

between a ferromagnet and a nonmagnet and between two ferromagnets on spin injection

is investigated. The formalism for calculating the m is first generalised by taking m as

the difference of spin-up and spin-down density of states, which is necessary for treating

the interface between different ferromagnets. Then, the effect of atomic species interdif-

fusion at the interface is included by using Ficks law. It is shown that the discontinuity

of the m at the interface depends strongly on the degree of interface mixing.

Subsequently, current-induced domain wall (DW) motion in a ferromagnetic thin

film driven by a spin-polarised current is investigated using an atomistic model coupled

with a standard Landau-Lifshitz-Gilbert equation. The inclusion of the spin-transfer

torque is represented as an additional field. The m is calculated self-consistently and

naturally includes the adiabatic and non-adiabatic contributions depending on the rate

of change of magnetisation relative to the spin diffusion length. In this work, it is

importantly found that the constants µx and βx used in the standard micromagnetic

model do not provide a good description of the spin torque phenomenon due to the

non-physical behaviour. Therefore, it is suggested to describe the spin-transfer torque

directly from the m.

Finally, the evolution of the magnetisation and m are demonstrated by intro-

ducing a spin-polarised current into a material containing a DW whose width is varied

by changing the anisotropy constant. It is found that the adiabatic spin torque tends

to develop in the direction of the magnetisation whereas the non-adiabatic spin torque

arising from the mistracking of conduction electrons and local magnetisation results in

out-of-plane magnetisation components. However, the adiabatic spin torque significantly

dominates the dynamics of magnetisation. The total spin torque acting on the magneti-

sation increases with anisotropy constant due to the increasing magnetisation gradient.

This leads to increasing DW displacement.
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CHAPTER I

Introduction

The spin-transfer torque effect proposed by Slonczewski [1] and Berger [2] in-

troduces an entirely new route for the control of the magnetisation of magnetic struc-

tures [3–5] and for spintronic device concepts. Its mechanism involving the spin-polarised

current has been extensively studied both experimentally [6–8] and theoretically [9–17].

It is noted that spin electronics, using the spin of the electron in addition to its charge, is

an emergent technology with exciting potential. Spin is the quantum mechanical prop-

erty of the electron. Spin can carry information like charge among the devices and it

has the advantage over the charge because of its easier manipulation by the external

magnetic field. Spintronics is also potentially useful since it has two states, instead of

one (charge). The spin orientation can be retained longer over the characteristic length

scale the so-called spin diffusion length (λsdl) which is usually of the order of ten times

larger than the electron mean free path (λmfp). On the other hand, charge can be easily

destroyed by scattering or collision with defects, impurities or other charges [18,19]. This

leads to the new class of device, known as spintronics devices, based on the electron spin

rather than on charge.

The development of spin electronics follows the discovery of giant magnetoresis-

tance (GMR) [20–22]. The GMR effect is associated with the spin-dependent scattering

both at the interfaces and within the magnetic layers. GMR, and the subsequent dis-

covery of tunnelling magnetoresistance (TMR) [23], led rapidly to applications such as

spin-valve read heads for magnetic recording, giving rise to remarkable increases in stor-

age density and revolutionising computer applications and efficiency. The spin-transfer

torque resulting from the exchange interaction between the conduction electrons and

the local magnetisation is an important phenomenon with potential applications as spin

torque oscillators for telecommunications applications and in the switching of Magnetic

Random Access Memory (MRAM) elements. MRAM provides an exciting technological

advance, coupling fast speed, non-volatility and low power requirements [24]. The physics

of the spin torque phenomenon can be described in terms of spin accumulation which
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interacts with the local moment via a quantum mechanical exchange interaction. A po-

larised current is produced by a magnetic film and injected into a second layer, where its

polarisation is rotated into the new magnetisation direction, exerting a reaction torque

on the magnetisation. To gain deeper physical understanding in the mechanism of the

spin-transfer torque, the effect of GMR and TMR will be presented first as the following.

1.1 Giant magnetoresistance (GMR)

The discovery of the GMR effect in the magnetic multilayer by Baibich et al. in 1988 [20]

and Binash et al. in 1989 [21] opened the possibility to the development of spintronics

field. They demonstrated the existence of GMR in multilayers of Fe/Cr which arises

from the spin-dependent transmission of the conduction electrons from Fe layer through

the Cr layer. Subsequently, the GMR effect in the trilayer magnetic system consisting

of two ferromagnetic layers separated by a nonmagnetic layer known as spin valves was

investigated by Dieny et al. [25]. The magnetisation of the first ferromagnet is pinned by

coupling with an antiferromagnet whereas the magnetisation of the second ferromagnet

is free to rotate. GMR represents the change in resistance through the layers of the

magnetic system when the applied magnetic field is varied. Its mechanism based on the

spin-dependent scattering can be theoretically explained by using “two-current model”

proposed by Mott [26–28]. He showed that the electron transport in the ferromagnet is

the result of the spin splitting of the energy bands in the ferromagnet. The conductivity

of the ferromagnet can be described in terms of two independent conducting channels:

spin-up (majority) and spin-down (minority) electrons expressed as the following equa-

tion

σ = σ↑ + σ↓ (1.1)

and the resistivity can also be expressed as

ρ =
ρ↑ρ↓

ρ↑ + ρ↓
(1.2)

where σ denotes the conductivity of the ferromagnet. σ↑(↓) and ρ↑(↓) are the spin-

dependent conductivities and the resistivities of the spin-up(down) channels respectively.
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1.1.1 Band structure

The spin-dependent conduction of the ferromagnetic 3d transition metals can be quali-

tatively understood from the typical band structure as illustrated in figure 1.1. In the

transition metals, the electron d band is split into the majority and minority d bands.

As a result of the exchange splitting, the majority d band is fully occupied whereas the

minority d band is partially occupied. This leads to a different spin-up and spin-down

density of states at the Fermi energy leading to the magnetic moment. The electric

current is carried by the sp electrons due to their low mass and high mobility giving rise

to long mean free path and consequently high conductivity. The sp electrons can scatter

into the unoccupied d band. Therefore, for majority spin channel the conductivity is

governed by sp electrons with the long mean free path responsible for high conductivity

whereas the low conductivity is enhanced for the minority spin channel due to the strong

sp-d hybridisation [29,30] as shown in figure 1.1. Clearly, the d band plays an important

role in the GMR.

Figure 1.1: Illustration of a simplified band structure for the ferromagnet showing the

splitting of the 3d band which gives rise to an unequal spin-up and spin-down density

of states at the Fermi level: The exchange splitting leads to a different conductivity

between majority (up, ↑) and minority (down, ↓) spins.
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1.1.2 Resistor model

The GMR effect was first observed in the CIP (Current In Plane) geometry which is

the magnetic multilayer structure consisting of alternating magnetic and nonmagnetic

layers and the current is injected in the plane of the magnetic system. In the CIP

geometry, GMR depends on the characteristic length scale, i.e., electron mean free path.

To obtain nonzero GMR, the electron mean free path should be longer than the thickness

of multilayer structure. Subsequently, the GMR in CPP (Current Perpendicular to

the Plane) geometry was performed by injecting current perpendicular to the plane

giving rise to higher GMR compared with CIP structure. Therefore, CPP structure is of

particular interest in this thesis. Now consider the GMR in the trilayer system consisting

of two ferromagnetic layers in between the nonmagnetic layer as illustrated in figure 1.2.

The GMR can be determined by considering two configurations of structure: parallel

(P) and antiparallel (AP) states.

Figure 1.2: Schematic illustration of GMR using a simple resistor network model of

parallel (P) and antiparallel (AP) configurations: (left) In parallel state(P), the majority

spin or spin-up channel experiences a low resistance (R↑) throughout the layers whereas

the minority spin or spin-down channel has a high resistance (R↓). (right) In antiparallel

state (AP), both spin channels are of high resistance giving rise to high overall resistance

state.
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According to Mott’s model, the GMR is generally considered from spin-dependent

scattering. For reasons explained before, the minority spins carried by d electrons tend

to be scattered more strongly than the majority spins governed by sp electrons. For the

parallel configuration (P) in figure 1.2 (left panel), the spin-up electrons travel through

the structure almost without the scattering due to the parallel orientation of spin and

the magnetisation in both layers. This results in low resistance for the spin-up channel.

On the other hand, strong scattering is experienced by the spin-down electrons as their

spin direction is antiparallel to the magnetisation of the layers. The strong scattering

is the description of the high resistance in the spin-down channel. The total resistance

of the layers dominated by the spin-up channel becomes low. On the contrary, for the

antiparallel state (AP) in figure 1.2 (right panel) both spin-up and spin-down electrons

experience the strong scattering in one of ferromagnetic layers because of the antiparallel

spin direction with respect to the magnetisation in ferromagnets. Consequently, the total

resistance of the layers is high because of this reason [29,30].

GMR can be observed when the magnetic structure is changed between the low

to high resistance states. The magnetoresistance ratio of figure 1.2 can be determined

by using the resistor model. The total resistance of P and AP states are represented by

two-current channel with the resistance of different layers given by

∆R

R
=

RAP −RP

RP
=

(R↓ −R↑)
2

4R↑R↓
(1.3)

and the resistance of P and AP states are the following

RP =
2R↑R↓
R↑ +R↓

RAP =
R↑ +R↓

2
(1.4)

where the low and high resistances are represented by R↑ and R↓ respectively. We note

that the GMR normalised by the low resistance state (RP ) can be greater than 100 %.

Valet and Fert showed the enhancement of the spin accumulation around the in-

terface region in the CPP geometry [31] arising from interface spin-dependent scattering.

The effect of interface between layers with different band structures becomes significant

to the GMR as the transmission of spins will be spin-dependent. Band matching plays

an important role in the scattering process since the good band matching at the interface

results in the high transmission of electrons across the interface which implies the small
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scattering. Therefore, the interfaces between layers behave as spin-filters. As a conse-

quence of spin-dependent scattering, the spin-up and spin-down density of states are out

of equilibrium, exhibiting a so-called spin accumulation. GMR is associated with the

spin accumulation propagating over the distance of the spin diffusion length. Therefore,

the spin accumulation which is the quantity of interest will be investigated in this work

to study the behaviour of spin transport.

1.2 Tunnel magnetoresistance (TMR)

The spin-dependent scattering significantly contributes to the magnetoresistance as ex-

plained in the previous section. Subsequently, various spintronic phenomena related

to the interplay between magnetism and conduction electrons have been widely inves-

tigated. As a consequence of the advent of GMR, tunnel magnetoresistance (TMR)

originating from the spin-dependent tunnelling occurs in a magnetic tunnel junction

(MTJ) which consists of a thin insulator or semiconductor sandwiched between two fer-

rromagnets. The thin insulating layer acting as a tunnel barrier enables the electrons to

tunnel from one ferromagnet to the other. Similarly to GMR, the TMR is defined as the

change in resistance with the relative orientation of magnetisation in two ferromagnetic

layers.

The discovery of TMR dates back to the work of Julliere in 1975 [23]. He per-

formed the TMR measurement of Fe/Ge/Co MTJ exhibiting a MR ratio of 14% at 4.2K.

According to this model, the spin-polarised tunnelling effect was taken into account. The

magnetoresistance ratio of the MTJ can be expressed in terms of the spin polarisation

parameters of both ferromagnetic layers given by

TMR =
RAP −RP

RP
=

2P1P2

1− P1P2
(1.5)

and

Pi =
N↑

i (EF )−N↓
i (EF )

N↑
i (EF ) +N↓

i (EF )
(1.6)

where Pi is the spin polarisation of the ferromagnet i and N
↑(↓)
i (EF ) is the spin-up(down)

density of state at the Fermi energy of the ferromagnet i.

From the above equation, it shows that the TMR value is based on the spin

polarisation arising from the electrons tunnelling from one ferromagnet to the other
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Figure 1.3: Schematic illustration of TMR effect in MTJ: (left) the parallel orientation of

magnetisation in two ferromagnets known as P state (right) the antiparallel orientation

or AP state

and the spin polarisation is given in terms of the spin-dependent density of states. The

probability of electron tunnelling across the barrier depends on the relative orientation of

magnetisation in two ferromagnets. As illustrated in figure 1.3 (left), for the parallel state

the possibility of electron tunnelling from one ferromagnetic layer to the other through

the barrier tends to be higher due to the availability of more free states leading to a large

tunnelling current and subsequently a low resistance. In contrast, for the antiparallel

orientation spin-up and spin-down channels encounter a bottleneck situation. This gives

rise to a small current of electron tunnelling and also results in a high resistance as

can be seen in figure 1.3 (right). It is interesting to note that the tunnelling current in

TMR effect is mainly contributed from the itinerant d electrons due to the fact that the

spin-split d bands are responsible for ferromagnetism. It is unlike the current in GMR

which is carried by sp electrons.

The Julliere model is admittedly simple, and explained well the TMR effect of

electrons tunnelling from Fe, Ni, and Co into a superconductor. However, it is not

applicable for a a tunneling junction with a thin nonmagnetic metallic interlayer such

as Cu or Ag which is inserted between one of the ferromagnetic layer and the insulating
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barrier as it gives zero TMR inconsistent with the experiment [32]. TMR measurement

at low temperature had received a little attention for more than a decade until the

discovery of GMR in magnetic multilayer. The renewed attention of TMR results in the

development of TMR effect at room temperature [33–35]. Recently, the high TMR in

magnetic tunnel junction (MTJ) structures of CoFeB/MgO/CoFeB was investigated by

S. Ikeda et al. [36, 37]. TMR in the MgO based magnetic tunnel junction can now be

achieved over 600% at room temperature.

1.3 Motivation and thesis outline

The GMR and TMR investigations lead to a significant improvement in the potential ap-

plications in data storage technology and spintronic devices. The high resistance of TMR

allows the development of magnetic random access memory (MRAM), which combines

key advantages such as nonvolatility, exceptional endurance, and fast random access,

making MRAM an important future technology. However, switching of the magnetic

elements is difficult with conventional technology, and present devices predominantly

use the spin-transfer torque phenomenon to achieve switching. The spin-transfer torque

arising from the spin polarised current flowing through a spin valve or MTJ enables the

magnetisation switching. Clearly, the full understanding of the spin torque phenomenon

is important for the development of MRAM and other spin electronic technologies, which

are currently a topic of extensive interest at the fundamental and technological levels.

The mechanism behind GMR and TMR can be interpreted via spin accumulation. Es-

sentially, the calculation of spin accumulation is required in order to have the knowledge

insight into the spin transport behaviour in both GMR and TMR effect.

To understand the nature of spin accumulation, we review the previous work of

ZLF (Zhang, Levy and Fert) [38]. They studied the spin transfer torque under the

assumption that the longitudinal spin accumulation tended to decay to zero in the bulk

of a ferromagnet as depicted in figure 1.4. In principle the spin accumulation represents

the difference between spin up and spin down conduction electron populations. However,

the spin accumulation is commonly defined as the deviation from the equilibrium value;

δm = (n↑−n↑
eq)−(n↓−n↓

eq), where neq refers to the equilibrium (bulk) populations, and

n↑(↓) are the local spin-up(down) carrier densities. This definition was used by ZLF[1]

in their study of the spin accumulation.
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Figure 1.4: Schematic of the behaviour of spin accumulation in the bilayer magnetic

system: The red line shows the longitudinal component of spin accumulation based on

the model proposed by ZLF. Spin accumulation remains constant in the first ferromagnet

as the spin current is fully polarised in this layer. It subsequently decays to zero in the

second ferromagnet over the distance of spin diffusion length.

Figure 1.5: Schematic illustration of the behaviour of the spin ac-

cumulation throughout a multilayer system consisting of conduc-

tor/ferromagnet/nonmagnet/ferromagnet/conductor: The red line shows the de-

velopment of spin accumulation allowed to increase or decrease to the equilibrium level

appropriate for the material.
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In this work, a modified equation is introduced by generalising the solutions for

the spin accumulation. It is proposed to use the different definition of spin accumulation,

m = n↑ − n↓. It clearly shows that two definitions used in ZLF and in this thesis differ

only by the constant factor n↑
eq − n↓

eq which is parallel to the local magnetisation. As

a consequence, these two definitions give rise to the same spin torque and spin current

depending only on the gradient of the spin accumulation. Interestingly, the advantage

of using our definition is obviously seen when dealing with multiple layers with different

equilibrium values, m∞ ≡ n↑
eq−n↓

eq. This is due to the fact that our treatment allows the

longitudinal component of spin accumulation either to increase or decrease to a nonzero

equilibrium value depending on the properties of a material. Figure 1.5 outlines the

approach to be adopted. With the new form of the spin accumulation solution it is

possible to model the development of spin accumulation from an unpolarised current

as it transverses the polarising layer and its evolution throughout the multilayer stack.

Consequently, it effectively describes the spin transfer torque in any magnetic material

at any given position. This approach will be applied to the magnetic system to study

the current-induced domain wall (DW) motion which is exciting for spintronic devices

based on DW motion such as race-track memory. The work also allows the treatment of

interfacial effects which, although important, have received little attention. The detail

of this work will be explained in each chapter as the following.

Chapter 2 of this thesis will give more detail of the spin-dependent transport theory

through the drift-diffusion model which is very important to understand the physics

behind the behaviour of the spin transport. The definition and origin of spin current

and spin accumulation will also be presented.

Chapter 3 will be devoted to the detail of the spin accumulation model proposed

by ZLF. This model is based on the drift-diffusion equations for the charge and spin

current and then applied to a FM/FM bilayer. The physics of this model is sound but

limited in many aspects. Therefore, the limitation of this model will be addressed.

Chapter 4 will outline the modified spin accumulation model developed in this

study. It gives the possibility to investigate the spatial variation of spin transport in

multilayers. The modified model is proposed to develop theoretical approaches to calcu-

late the spin accumulation in any arbitrary magnetic structure. Subsequently, the model

is utilised to give the first calculation of the spin current and spin accumulation in the

bilayer system with both collinear and non-collinear configurations.
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Chapter 5 will present the approach of spin-transfer torque calculation. The spin-

transfer torque which is the contribution of the adiabatic and non-adiabatic torques will

be described directly through the transverse spin accumulation. The developed model of

spin accumulation can be applied generally to a system of many layers, allowing studies

of the spin accumulation as well as the spin torque in systems with spatially varying

magnetisation structures, i.e., a domain wall. Furthermore, the effect of spin diffusion

length and the influence of domain wall thickness will be studied. Importantly, the

invalidity of the spin torque coefficients µx and βx described adiabatic and non-adiabatic

torques in the usual standard form of the micromagnetic model will be pointed out and

discussed in this chapter.

In chapter 6 the effect of diffuse interfaces will be taken into account using the

model of spin accumulation since the practical devices are generally produced by sputter-

ing. It must be expected that the interfaces are not atomically smooth. In addition, the

scaling of device dimensions leads to the influence of the interface effect. Consequently

it is important to develop models of diffuse interfaces. This work suggests to use the

solution of Fick’s law to represent the interface region and then the modified solution

of spin accumulation will be integrated with the diffuse interface model to observe the

transport properties of the systems with different interface thicknesses. This is crucial

as these systems tend to become important for future device design.

Chapter 7 will investigate the dynamic of magnetisation following the introduction

of the spin polarised current by using atomistic model coupled with spin accumulation.

It is worthwhile to note that the atomistic simulation of magnetic system increasingly

becomes an essential tool in understanding the complex behaviour of the magnetic system

such as the diffuse interface while the micromagnetic formalism cannot deal with this

problem. The atomistic model including the effect of spin-transfer torque will be derived

and then applied to the system containing domain walls to observe the current-induced

domain wall motion.

Chapter 8 is the final part of this thesis which concludes the summary of this

work as well as the future work. For the future work, the application of the atomistic

model with spin accumulation to topics of special importance such as spin torque induced

domain wall motion and systems with perpendicular anisotropy will be presented. The

possibility to apply the proposed approach to the MTJ (Magnetic Tunnel Junction),

CoFeB/MgO/CoFeB structrue, will be discussed.
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CHAPTER II

Theory of Spin-dependent transport

This chapter will outline the spin transport theory to describe the physics behind

the mechanism of the spin-polarised current travelling through the magnetic system as

the spin transport phenomenon is of great interest in the potential applications to the

spintronic devices. Evidently from both experimental and theoretical studies, injecting

spin-polarised current from a ferromagnet (FM) to a nonmagnet (NM) results in the

two main quantities of interest: spin accumulation and spin current [39, 40]. The origin

and definition of the spin accumulation and spin current will be necessarily discussed

first before explaining their behaviour by using the spin transport equation, a so-called

“drift-diffusion equation”.

2.1 Spin accumulation

The spin accumulation commonly defined as the nonequilibrium spin density can be de-

scribed by the concept of the spin injection across the interface between a ferromagnet

(FM) and a nonmagnet (NM). The spin accumulation phenomenon was first suggested

by Aronov [41] and experimentally observed by Johnson and Silsbee [42]. This leads

to a number of theoretical works extending the basic models to describe the spin ac-

cumulation. Initially, the basic understanding of the spin transport was provided by

Mott [26–28]. He pointed out that the conductivity in the ferromagnet can be expressed

as the sum of conductivities of the spin-up and spin-down electrons which are inde-

pendent and unequal. It is known as “two-current model” and has been extended to

describe the spin transport properties in the ferromagnet by Fert and Campbell [43].

This model also becomes important to provide the explanation of the magnetoresistance

effect [31,39] as mentioned in chapter 1.

According to the previous work of Van Son et al. [44], the spin transport can be

described in terms of the two-current model. To explain the origin of the spin accumu-

lation with this model, consider the spin transport through the interface between the
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Figure 2.1: The spatial variation of the electrochemical potential for spin-up and spin-

down electrons(dotted lines): The solid line shows the electrochemical potential differ-

ence for spin-up and spin-down electrons which is related to the spin accumulation [46].

ferromagnet and nonmagnet as depicted in figure 2.1 (top panel). Injecting an electric

current into a ferromagnet results in a spin-polarised current, which subsequently flows

across the interface into a nonmagnet giving rise the change in electrochemical potential

(ECP). This change is associated with the distribution of the local spin-up and spin-

down populations. In the absence of the magnetic field, the electrochemical potential

(µ) is the contribution of the chemical potential (µch) and the potential energy as the

given equation.

µ = µch − eV (2.1)

where e denotes the absolute value of the electron charge and V is the electric potential.

µch is the chemical potential which is the energy required to add an electron to a system

and accounts for the kinetic energy of the electrons. For small deviation from equilibrium,

the chemical potential can be expressed in terms of the excess electron density and the

density of state at the Fermi energy, N(EF ), as follows [45]

µch =
n− neq

N(EF )
. (2.2)

In general, the spin accumulation defined as the deviation from the equilibrium

value or excess electron density can be described via the two-current model given by

δm = n− neq = (n↑ − n↑
eq)− (n↓ − n↓

eq) (2.3)
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where δm is the spin accumulation, neq denotes the equilibrium (bulk) populations, and

n↑(↓) are the local spin-up(down) carrier densities.

From the relation in equations (2.2) and (2.3), the spin accumulation can also be

alternatively represented by the difference in electrochemical potential for spin-up and

spin-down electrons, δm ∝ µ = µ↑ − µ↓. As shown in figure 2.1 (bottom panel), the

spatial dependence of the ECP arises from the spin injection. Far from the interface, the

spin-up and spin-down electrons will be in equilibrium whereas their distributions are

significantly changed near the interface due to the mismatch of conductivity across the

interface. As a consequence, the spin accumulation is enhanced close to the interfacial

region. The spin accumulation diffuses into the nonmagnet from the interface and it

tends to decays exponentially to 1/e of its magnitude at the interface over a length scale

associated with the spin relaxation time [46–49].

In the next section, the important physics behind the behaviour of the spin current

and spin accumulation will be outlined as we must implement the appropriate model to

explain the spin transport in spintronic devices. Its underlying physics can be described

through the theory of spin transport based on the drift-diffusion model. Also the trans-

port parameters governing the development of the spin current and spin accumulation,

such as the spin polarisation parameters, the spin diffusion length as well as the diffusion

constant, will be introduced.

2.2 The drift-diffusion model

Electron transport results from the driving force on the conduction electrons in the

system which is enhanced by the gradient of the electrochemical potential, ∇µ. The

gradient in the ECP provides the driving force leading to the diffusion induced electron

transport across the interface. It can be written from equation (2.1) as the following

∇µ = ∇µch − eE

∇µ =
∇n

N(EF )
− eE (2.4)

where n denotes the spin density of state. N(EF ) is the density of state at the Fermi

energy, e is the absolute value of the electron charge and E is the electric field.

The above equation clearly shows that the driving force can arise from either

a spatial varying electron density ∇n or the electric field E. equation (2.4) can be
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rewritten by substituting j = (−σ/e)∇µ and the conductivity from the Einstein relation

σ = e2N(EF )D, then the current density driving the electron transport is as follows

− je

σ
=

∇n

N(EF )
− eE

j = σE−De∇n (2.5)

where σ is the conductivity and D is the diffusion constant.

Equation (2.5) is a so-called drift-diffusion model used to describe the spin trans-

port in the magnetic system. The current density is contributed from two parts. The

first term is the drift current density (jdrift) due to the presence of the electric field. In

the drift model, the spin density remains constant by imposing ∇n = 0 whereas the

difference in the electrochemical potential between two reservoirs related to ∇n is used

to describe the diffusive transport via the diffusion current (jdiffusion).

2.2.1 Charge current model

According to Mott’s model, the transport in the magnetic system can also be described

through the spin-dependent conductivities. Due to the difference in the spin-up and

spin-down conductivities, the current density can be distributed over two spin channels

as follows

j↑ = σ↑E−D↑e∇n↑

j↓ = σ↓E−D↓e∇n↓. (2.6)

Here the charge current and the spin current can be introduced via the two-current

model. The charge current is determined first as the following

je = j↑ + j↓

= (σ↑ + σ↓)E−D↑e∇n↑ −D↓e∇n↓,

and the spin-up and spin-down density of states can be rewritten as

n↑ =

(
n↑ + n↓

2

)
+

(
n↑ − n↓

2

)
n↓ =

(
n↑ + n↓

2

)
−
(
n↑ − n↓

2

)
, (2.7)
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then the charge current is achieved by substituting equation (2.7) into equation (2.6) ,

giving

je = (σ↑ + σ↓)E− D↑e

2
∇(n↑ + n↓)− D↑e

2
∇(n↑ − n↓)− D↓e

2
∇(n↑ + n↓)

+
D↓e

2
∇(n↑ − n↓)

= (σ↑ + σ↓)E − e(D↑ +D↓)

2
∇(n↑ + n↓)− e(D↑ −D↓)

2
∇(n↑ − n↓)

= σE− eD

2
∇n− eβ′D

2
∇δm (2.8)

and

σ = σ↑ + σ↓

D = D↑ +D↓

β′ =
D↑ −D↓

D↑ +D↓

n = n↑ + n↓

δm = n↑ − n↓

where σ is the conductivity, D is the diffusion constant, β′ is the spin polarisation param-

eter for diffusion constant, n is the charge accumulation and δm is the spin accumulation.

σ↑(↓) and D↑(↓) denote the spin-dependent conductivities and the spin-dependent diffu-

sion constants respectively.

From equation (2.8), it can be seen that the charge current arises from the con-

tribution of the drift current in the first term, the charge accumulation and spin accu-

mulation in the second and the last terms respectively [38,50].

2.2.2 Spin current model

Similarly, the spin current can be determined in terms of the two spin channels. It is

expressed as functions of the spin-up and spin-down current densities (j↑(↓)) as follows

jm = j↑ − j↓ = (σ↑ − σ↓)E−D↑e∇n↑ +D↓e∇n↓

= (σ↑ − σ↓)E− D↑e

2
∇(n↑ + n↓)− D↑e

2
∇(n↑ − n↓) +

D↓e

2
∇(n↑ + n↓)

−D↓e

2
∇(n↑ − n↓)

=

(
σ↑ − σ↓

σ↑ + σ↓

)
(σ↑ + σ↓)E− e(D↑ −D↓)

2
∇(n↑ + n↓)− e(D↑ +D↓)

2
∇(n↑ − n↓)
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=

(
σ↑ − σ↓

σ↑ + σ↓

)
(σ↑ + σ↓)E−

(
D↑ −D↓

D↑ +D↓

)
e(D↑ +D↓)

2
∇(n↑ + n↓)

−e(D↑ +D↓)

2
∇(n↑ − n↓)

= βσE− β′ eD

2
∇n− eD

2
∇δm, (2.9)

with the spin polarisation parameter for the conductivity (β) and the spin polarisation

parameter for the diffusion constant (β′) given by

β =
σ↑ − σ↓

σ↑ + σ↓

β′ =
β − β′′

1− ββ′′

where β′′ = N↑(EF )−N↓(EF )
N↑(EF )+N↓(EF )

. For a nonmagnet, the spin polarisation parameters for the

conductivity and for the diffusion constant are zero as the the distribution of two spin

channels are equal, σ↑ = σ↓.

The spin current can also be described by the drift-diffusion model. It originates

from the drift current and the contributions of the charge accumulation and spin accumu-

lation. The drift-diffusion model is a very useful implementation to study the transport

across the interfaces between ferromagnet/nonmagnet and between two ferromagnets.

Therefore, it is important to understand the continuity equation which will be used to

solve the transport problems. The continuity equations for the charge and the spin in

the steady state based on the current conservation are given by [40,51]

∇ · (j↑ + j↓) = 0,

∇ · (j↑ − j↓) = −2e
n↑

τ↑↓
+ 2e

n↓

τ↓↑
(2.10)

where n↑(↓) denote the spin-up and spin-down density of states. The spin-relaxation

rate at which the spin-up(down) electrons scatter to the spin-down(up) electrons is

represented by 1/τ↑↓ and 1/τ↓↑. In equilibrium there is no net transfer of electrons

between up and down states, giving

N↑(EF )

τ↑↓
=

N↓(EF )

τ↓↑

and the average spin-relaxation time(τsf) is introduced as

1

τsf
=

1

τ↑↓
+

1

τ↓↑
.
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In addition, the equation of the spin accumulation motion can be derived by

considering the continuity equations for the spin-up and spin-down electron densities

including the spin-flip scattering [46] given by

e
∂n↑

∂t
+∇ · j↑ = −e

n↑

τ↑↓
+ e

n↓

τ↓↑

e
∂n↓

∂t
+∇ · j↓ = −e

n↓

τ↓↑
+ e

n↑

τ↑↓
. (2.11)

The motion of the spin accumulation can be obtained from the above equation

under the assumption that τ↑↓ = τ↓↑ and then the spin accumulation decays over the

length scale of the average spin-relaxation time as the following

∂δm

∂t
+

∂jm
∂x

= −δm

τsf
. (2.12)

In this chapter, the basic theoretical aspect of the spin-dependent transport was

discussed to understand the physics behind its behaviour. The spin current and spin

accumulation are possible to derive via the two-current model suggested by Mott as

mentioned earlier. Equation (2.12) shows the motion of the spin accumulation associated

with the gradient of the spin current and the spin scattering event. The component of

the spin accumulation will be solved firstly by reviewing the previous work of Zhang,

Levy and Fert (ZLF). The detail will be addressed in the following chapter. ZLF also

introduce the s-d exchange interaction between the conduction electron and the local

magnetisation into the equation of the spin accumulation motion in order to describe

the spin torque. Furthermore, mechanism of the spin-transfer torque arising from a

spin-polarised current injected to the magnetic system will be discussed. The detail and

limitation of the approach proposed by ZLF will be detailed in the following chapter.
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CHAPTER III

Spin Accumulation in the ZLF Model

To understand the behaviour of spin transport in magnetic systems, this chapter

will review the spin accumulation model proposed by Zhang, Levy and Fert (ZLF) in

more detail [38, 52, 53]. They studied the mechanism of the magnetisation switching

driven by spin polarised current in a magnetic bilayer system consisting of two ferro-

magnets separated by a nonmagnetic spacer layer. Subsequently, they proposed a model

of spin accumulation based on diffusive transport in order to calculate the spin transfer

torque acting on the local magnetisation of the ferromagnetic layer. The inclusion of

the spin diffusion becomes very important to understand the magnetoresistance of the

magnetic multilayers for current perpendicular to the plane of the system (CPP-MR).

The solution of the ZLF model points out the important aspect that the spin transfer

torque arises from the transverse spin accumulation which is perpendicular to the local

magnetisation. In other words, the longitudinal spin accumulation does not play a role

in the magnetisation switching [38]. In the last section of the chapter, the limitation of

this approach will be addressed here.

3.1 A magnetic bilayer structure

A new method to manipulate the magnetisation by injecting a spin polarised current

has attracted considerable attention in both theoretical [12–14] and experimental studies

[37,54–56]. To understand the mechanism of the spin torque acting on the magnetisation,

we first review the previous work of Zhang, Levy and Fert (ZLF) [38]. They proposed

a spin torque model based on the spin accumulation and the effect of the spin diffusion

is taken into account in the model. The common usage essentially defines the spin

accumulation as the deviation from the equilibrium value; δm = (n↑−n↑
eq)− (n↓−n↓

eq),

where neq refers to the equilibrium (bulk) populations [38, 57–59]. This definition was

used by ZLF in their study of the spin accumulation.
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The motion of the spin accumulation was considered in a magnetic bilayer struc-

ture consisting of two ferromagnetic layers separated by a nonmagnetic layer. The mag-

netisation of the first ferromagnet (F1) regarded as “the pinned layer” and that of the

second ferromagnet (F2) referred to as “the free layer”are noncollinear as depicted in

figure 3.1. To simplify the calculation, the pinned layer is assumed to be very thick,

exceeding the spin diffusion length (λsdl), which is the average distance of electron travel

before a spin flip event. This means that current achieves maximum polarisation. ZLF

also assume the pinned layer to be a half metal, resulting in a 100% polarised current. In

addition, the nonmagnetic layer is vanishingly thin to conserve the spin current across

the layer and to avoid the spin flip scattering within this layer.

Figure 3.1: Schematic of a magnetic bilayer system consisting of two ferromagnetic layers

separated by a nonmagnetic layer: A thick ferromagnetic layer (F1) behaves as a pinned

layer of which the magnetisation is Mp = cos θez − sin θey. The magnetisation of the

second ferromagnetic layer (F2) regarded as the free layer is aligned in the z direction,

M = ez.

The mechanism of magnetisation switching starts with injecting the spin current

perpendicular to the plane of the layers which is defined as the x direction. Initially, the

spin current flows into the pinned layer causing it to be polarised via the s-d exchange

interaction between the itinerant electrons and the local magnetisation. Subsequently,

the spin-polarised current flows through the free layer and the spin-transfer torque acts

on the spin current to align it in the direction of the free-layer magnetisation. Simul-

taneously, a reaction torque is exerted on the magnetisation of the free layer, causing

magnetisation reorientation.
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3.2 Motion of spin accumulation

Firstly, consider the magnetic bilayer system as shown in figure 3.1. The current is

injected along the x direction which is perpendicular to the plane of the layers. The

linear response of the current to the electrical field including the diffusive transport can

be written in a spinor form,

ĵ(x) = σ̂E(x)− D̂
∂n̂

∂x
, (3.1)

where E(x) is the electric field, ĵ, σ̂, D̂ and n̂ are the 2 × 2 matrices representing

the current, the conductivity, the diffusion constant, and the accumulation at a given

position. The diffusion constant and the conductivity are related via the Einstein relation

σ̂ = e2N̂(EF )D̂ for a degenerate metal, where N̂(EF ) is the density of states at the Fermi

level. These matrices can be expressed in terms of the Pauli spin matrices [38].

The magnetisation current or spin current (jm) can be written in terms of the

modulus of the electrical current (je) and the spin accumulation [38] (m) as,

jm = βjeM− 2D0

[
∂m

∂x
− ββ′M

(
M · ∂m

∂x

)]
(3.2)

where M is the normalised magnetisation of the free layer. The spin polarisation pa-

rameter β for the conductivity is defined as σ = βσ0M and β′ is the spin polarisation

for the diffusion constant defined as D = β′D0M. Coefficients σ0 and D0 are σ/2 and

D/2 respectively.

The motion of the spin accumulation is described via the s-d exchange interaction

between the spin accumulation and the local magnetisation, Hint = −Jm · M. The

equation of motion of the spin accumulation can be expressed as,

dm

dt
+ (J/~)m×M = − m

τsf
(3.3)

where m is the spin accumulation, M is the unit vector for the local magnetisation

of the free layer, J is the exchange energy between the electron spin and the local

magnetisation, ~ is the reduced Planck constant and τsf is the spin-flip relaxation time

of the conduction electrons.

As shown in equation (3.3), the spin accumulation is assumed to precess about the

local magnetisation in the presence of damping with non-conservation of the magnitude

of m. Specifically, the damping term is of the Bloch form − m
τsf

with (τsf ) the spin
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relaxation time of the conduction electrons. The magnitude of the spin accumulation

tends to decay to zero since it is defined as the nonequilibrium spin density and measured

from the equilibrium value, (n↑
eq − n↓

eq). Note that this definition of the accumulation

is equivalent to the quantity δm given earlier. However, for convenience of notation we

use the symbol m, for consistency with ZLF.

3.3 Formalism of spin accumulation

The components of the spin accumulation can be derived from equation (3.3) by replacing

dm
dt with ∂m

∂t + ∂jm
∂x . Subsequently, we obtain,

1

2D0

∂m

∂t
=

∂2m

∂x2
− ββ′M

(
M · ∂

2m

∂x2

)
− m

λ2
sf

− m×M

λ2
J

(3.4)

where λsf =
√

2D0τsf and λJ =
√

2~D0/J .

The spin accumulation is time and position dependent. Because the timescale of

magnetisation changes is much slower than changes in spin accumulation, the stationary

solution of spin accumulation can be obtained with the assumption that the local mag-

netisation is fixed. Then its components can be separated into two parts: longitudinal

(m‖) and transverse (m⊥) modes which are parallel and perpendicular to the direction

of the local magnetisation. Each component of the spin accumulation can be written as,

∂2m‖

∂x2
−

m‖

λ2
sdl

= 0 (3.5)

where λsdl =
√

(1− ββ′)λsf , and

∂2m⊥
∂x2

− m⊥
λ2
sf

− m⊥ ×M

λ2
J

= 0. (3.6)

From equations (3.5) and (3.6), the longitudinal accumulation decays at the length

scale of the spin diffusion length λsdl while the transverse spin accumulation decays at

the length scale of λJ in the case of λsf � λJ .

To simplify the solution of the spin accumulation, a magnetic bilayer is considered

as depicted in figure 3.1. It consists of two ferromagnetic layers separated by a nonmag-

netic spacer. The first ferromagnetic material taken as a “pinned layer” is very thick and
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assumed to be half metallic so that the spin current is fully polarised by virtue of the s-d

exchange interaction. The spacer layer is sufficiently thin to retain the spin-polarized

current across the layer. Furthermore, the simple calculation is made by neglecting the

spin-dependent reflection at the interfaces. The spin accumulation in the free layer (F2),

of which the magnetisation orients in the z direction, is calculated. Meanwhile the mag-

netisation of the pinned layer is aligned on −yz plane, Mp = cos θez − sin θey, where

θ is the angle between the magnetisation of the pinned layer and the that of the free

layer. For this specific configuration, the solution of the spin accumulation comprising

the longitudinal component and the transverse component is found. The longitudinal

accumulation parallel to the magnetisation of the free layer is in the z direction whereas

the transverse component perpendicular to the magnetisation consists of the x and y

components as given by,

mx(x) = G2 exp(−x/l+) +G3 exp(−x/l−)

my(x) = −iG2 exp(−x/l+) + iG3 exp(−x/l−)

mz(x) = G1 exp(−x/λsdl) (3.7)

where the coefficients G1, G2 and G3 can be calculated by imposing continuity of the

spin current and 1/l∓ =
√

(1/λ2
sf )± (i/λ2

J).

3.4 Formalism of spin current

The spin current is the next important physical quantity being determined. From equa-

tion (3.2), in the case that the magnetisation of the free layer is in the z direction, the

spin current at any position of the free layer which is related to the gradient of the spin

accumulation can be determined as follows,

jmx(x) = βjeMx − 2D0

[
∂mx

∂x
− ββ′Mx

(
Mx ·

∂mx

∂x
+My ·

∂my

∂x
+Mz ·

∂mz

∂x

)]
jmy(x) = βjeMy − 2D0

[
∂my

∂x
− ββ′My

(
Mx ·

∂mx

∂x
+My ·

∂my

∂x
+Mz ·

∂mz

∂x

)]
jmz(x) = βjeMz − 2D0

[
∂mz

∂x
− ββ′Mz

(
Mx ·

∂mx

∂x
+My ·

∂my

∂x
+Mz ·

∂mz

∂x

)]
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and M = ez, therefore we obtain,

jmx(x) = −2D0
∂mx

∂x

jmy(x) = −2D0
∂my

∂x

jmz(x) = βje − 2D0(1− ββ′)
∂mz

∂x
. (3.8)

The first derivative of the spin accumulation with respect to the distance x can be

calculated from equation (3.7) as follows,

∂mx(x)

∂x
= −

[
G2

l+
e−x/l+ +

G3

l−
e−x/l−

]
∂my(x)

∂x
= −i

[
−G2

l+
e−x/l+ +

G3

l−
e−x/l−

]
∂mz(x)

∂x
= − G1

λsdl
e−x/λsdl (3.9)

substituting the derivative of the spin accumulation as equation (3.9) into equation (3.8)

one obtains the spin current expressed in terms of the coefficients G1, G2 and G3 which

is given by,

jmx(x) = 2D0

[
G2

l+
e−x/l+ +

G3

l−
e−x/l−

]
jmy(x) = 2D0i

[
−G2

l+
e−x/l+ +

G3

l−
e−x/l−

]
jmz(x) = βje +

2D0(1− ββ′)

λsdl
G1e

−x/λsdl . (3.10)

3.5 Boundary condition: continuity of the spin current

The coefficientsG1, G2 andG3 can be evaluated by using the boundary condition between

layers which is the continuity of spin current [18,38]. Therefore, the boundary condition

at the interface between the pinned layer (PL) and the free layer (FL) is shown below,

jPL
m (0−) = jFL

m (0+)

where 0− and 0+ define the position entering and leaving the interface between the

pinned layer and the free layer. The entering spin current is fully polarised since the

pinned layer is half metallic with the spin polarisation parameter βPL = 1. It results in

jPL
m (0−) = (0, − je sin θ, je cos θ). The continuity of the spin current at the interface

(x = 0) is given as,
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0 = 2D0

[
G2

l+
+

G3

l−

]
−je sin θ = 2D0i

[
−G2

l+
+

G3

l−

]
je cos θ = βje + 2D0(1− ββ′)

G1

λsdl
. (3.11)

Consequently, the coefficients G1, G2 and G3 can be obtained by solving the above

equation.

G1 =
−jeλsdl(β − cos θ)

2D0(1− ββ′)

G2 =
jel+ sin θ

4iD0

G3 = −jel− sin θ

4iD0
(3.12)

3.6 Spin accumulation and spin current

Here, the spin accumulation and spin current in the free layer of the magnetic bilayer

structure are examined to understand their behaviours. The collinear and non-collinear

configurations are investigated by using the formalism of the spin accumulation and the

spin current proposed by Zhang et al. in Ref. [38].

3.6.1 Collinear configuration

The spin accumulation and spin current in the bilayer structure (F1/F2) as described

in Sec. 3.1 are considered. The calculation for a simplified system is performed by

neglecting the effect of the nonmagnetic layer. The first ferromagnet (F1) is assumed to

be half metallic leading to fully spin-polarised current in this layer whereas the second

ferromagnetic (F2) layer is cobalt.

For the collinear configuration, let the magnetisation of the pinned layer be ori-

ented in the same direction as that of the free layer, i.e., the z direction. The spin-

polarised current travels through the free layer in the x direction perpendicular to the

plane of the layers. The value of transport parameters of cobalt (Co) is taken from

Ref. [53]. The spin polarisation parameter (β) for conductivity is 0.5, the spin polarisa-

tion for diffusion constant (β′) is 0.9, the exchange energy (J) is 0.25 eV and the spin

diffusion length (λsdl) is 60 nm. The length scale of λsf and λJ are 80 nm and 4 nm

respectively.
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Figure 3.2: Normalised spin accumulation m/[jeλsdl(1 − β)/(2D0(1 − ββ′)] and spin

current jm/je at any position of the ferromagnetic (free) layer for the collinear config-

uration: The magnetisation in the pinned layer and that in the free layer orient in the

same direction, θ = 0.

As illustrated in figure 3.2, the pinned layer serves as the polariser providing

the spin-polarised current. It tends to follow the direction of the magnetisation in the

pinned layer, i.e., z direction due to the exchange coupling. The spin-polarised current

next flows into, and acts on, the free layer. In this case the magnetisation of two

ferromagnets are aligned exactly, giving rise to zero torque acting on the magnetisation

of the free layer. It results in only longitudinal spin accumulation which is parallel to

the local magnetisation in the free layer. The longitudinal spin accumulation and spin

current decay at the length scale of the spin diffusion length λsdl about 60 nm, while

the transverse spin accumulation disappears for this case.

3.6.2 Non-collinear configuration

Next consider the case of non-collinear configuration. The misalignment angle (θ) be-

tween the magnetisation of two ferromagnets is assumed to be 30◦ off from z axis. The

magnetisation of the pinned layer is Mp = −0.5ey +0.877ez and that of the free layer is

M = ez. To observe the effect of the misalignment on the spin accumulation and spin

current, the treatment discussed above is applied. The results are shown in figure 3.3.
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Figure 3.3: Component of normalised spin accumulation m/[−jeλsdl(β−cos θ)/(2D0(1−

ββ′)] and spin current jm/je at any position of the ferromagnetic(free) layer for the non-

collinear configuration: The magnetisation of the pinned layer and the that of the free

layer are misaligned at the angle of θ = 30◦ off from z axis
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The spin-polarised current leaving the pinned layer is fully polarised, since the

pinned layer is initially assumed to be half metallic, having a spin polarisation param-

eter β = 1. Similar to the collinear configuration, the longitudinal spin accumulation

decays at the length scale of the spin diffusion length. Interestingly, the transverse spin

accumulation comprising x and y components is oscillatory before decaying at the length

scale of 1.414√
λ−2
sf +

√
λ−4
sf +λ−4

J

which is about 5.6 nm. In the case of λsf � λJ , the trans-

verse spin accumulation tends to decay at the length scale at about λJ . Similarly to the

behaviour of the spin accumulation, at the interface x = 0 the incoming spin-polarised

current orients in the direction of magnetisation of the pinned layer, (−yz plane). Sub-

sequently, it flows into the free layer and interacts with the local magnetisation. The

transverse component of the spin current is oscillatory and then decays to zero whereas

the longitudinal component tends to follow the magnetisation in the free layer and de-

cay with the length scale of spin diffusion length as the response of the longitudinal spin

accumulation.

3.7 Limitation of the ZLF model

As discussed earlier, the oversimplified case is chosen to consider the analytical solution

of the spin accumulation. The longitudinal and the transverse spin accumulation are

expressed in terms of the coefficients G1, G2 and G3 which can be obtained from the

boundary conditions of the continuity of the spin current. For this simple case, the solu-

tion of the spin accumulation in the free layer (F2) is determined in the local coordinate

system in which the magnetisation of the free layer is in the z and that of the pinned

layer (F1) orients in the −yz plane.

Therefore, there are two limitations for the model of spin accumulation suggested

by ZLF. Firstly, the formalism of spin accumulation is valid for the simple case with the

specific configuration based on the local coordinate system. In the case of magnetisations

orienting differently from the local coordinate system, the different boundary conditions

will need to be considered. Secondly, longitudinal spin accumulation is allowed to decay

to zero over the length scale of the spin diffusion length since the spin accumulation

is defined as the deviation from the equilibrium value. As shown in equation (3.3), the

equation of motion of the spin accumulation, the damping term drives the system to zero

as −m/τsf . However, for the multilayer structure, each having a different and nonzero
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equilibrium value, the spin accumulation calculated by this approach is not allowed to

increase at any point in the layer. This is not physically realistic. For example, consider

the case of a non-polarised current flowing into a magnet. The form of equation (3.3)

does not allow a spin accumulation to develop as it must.

Consequently, we will generalise the model of spin accumulation being able to

consider the transport behaviour in the multilayer structure with different materials.

The detail of the modified model will be discussed in the next chapter.



46

CHAPTER IV

Generalised Spin Accumulation Model

In this chapter, a general approach to determine the transport phenomena in

a magnetic multilayer structure is proposed. This approach is developed as a model

of the spin accumulation which can be applied generally to a system of many layers,

allowing studies of the spin accumulation in systems not only with spatially varying

magnetisation structures but also with different materials. The proposed approach is

based on generalising the approach of Zhang, Levy and Fert (ZLF) including the diffusive

transport as discussed in the previous chapter.

In this work, I generalise the treatment in two important aspects. Firstly, in

the conventional method the magnetisation is assumed to be homogeneous within each

magnetic layer of the system [38, 53]. To examine the transport across the layer in

which the magnetisation continuously rotates, i.e., a domain wall, it is suggested to

discretise the multilayer system into many thin layers, a so-called “layer by layer method”

[60]. This technique allows us to consider the transport across the system in which the

magnetisation is non-uniform throughout the layer. Subsequently, the modified solution

of the spin accumulation will be applied to each discretised layer.

Secondly, the multilayer system comprises different materials, leading to the dif-

ferent equilibrium values of the spin accumulation. The solution of spin accumulation of

the ZLF model is not applicable to this problem. Importantly, the different equilibrium

values of different materials are taken into account in the modified model. Consequently,

the spin accumulation at any position of the system is obtained. The current approach

has successfully explained the behaviour of spin transport across the multilayer sys-

tem with different materials [61]. Importantly, it is also applicable to the treatment of

interfaces, as shown in chapter 6.
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4.1 Modified ZLF model

To deal with the multiple layers of different materials, one must consider the nature of the

spin accumulation. In principle the spin accumulation represents the difference between

spin up and spin down conduction electron populations. However, the common usage

essentially defines the spin accumulation as the deviation from the equilibrium value;

δm = (n↑ − n↑
eq) − (n↓ − n↓

eq), where neq refers to the equilibrium (bulk) populations

as mentioned in the previous chapter, and n↑(↓) are the local spin-up (down) carrier

densities. This definition was used in the ZLF model and is convenient when a polarised

current is injected. In Ref. [38] the spin accumulation is assumed to precess about the

local magnetisation in the presence of damping with non-conservation of the magnitude

of δm. Specifically, the damping term is of the Bloch form −δm/τsf with (τsf ) the

spin relaxation time of the conduction electrons. Here I propose to use the definition

m = n↑ − n↓. Clearly m and δm differ only by the constant factor n↑
eq − n↓

eq. As a

result the two definitions give rise to the same spin torque (since n↑
eq − n↓

eq is parallel to

the local magnetisation) and spin current (dependent only on the gradient of the spin

accumulation). The advantage of using this definition is seen when dealing with multiple

layers with different m∞ ≡ n↑
eq − n↓

eq.

4.1.1 Modified motion of spin accumulation

In this work the spin accumulation is defined as m = n↑ − n↓. This requires that the

damping term drives the system to an equilibrium value m∞ = n↑
eq −n↓

eq, leading to the

following equation of motion including a damping term of modified Bloch form

dm

dt
+ (J/~)m×M = −m−m∞

τsf
, (4.1)

where M is a unit vector along the local magnetisation direction. It is important to

note that the new definition, used consistently throughout the rest of the thesis, differs

from that used by ZLF (and many others). The spin current expressed in terms of the

modulus of the electric current and the spin accumulation is given by

jm = βjeM− 2D0

[
∂m

∂x
− ββ′M

(
M · ∂m

∂x

)]
, (4.2)

with β the spin polarisation of the conductivity, and β′ the spin polarisation of the

diffusion constant. In order to describe the system with continuously varying magneti-

sation the system is discretised into thin layers in which the magnetisation and transport
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properties are assumed piecewise constant. Therefore, the magnetisation is conserved

throughout the layer, ∂M
∂x = 0, and

∂jm
∂x

= −2D0

[
∂2m

∂x2
− ββ′M

(
M · ∂

2m

∂x2

)]
.

Similarly to the ZLF model, to determine the components of the spin accumulation

dm
dt = ∂m

∂t + ∂jm
∂x is next replaced into equation (4.1), therefore one obtains

1

2D0

∂m

∂t
=

∂2m

∂x2
− ββ′M

(
M · ∂

2m

∂x2

)
− m−m∞

λ2
sf

− m×M

λ2
J

. (4.3)

The relaxation time τsf of the spin accumulation, i.e., of the order of picoseconds,

is much shorter than the characteristic timescale associated with magnetisation changes,

and as a result one can search for a stationary solution for m. The solution can conve-

niently be determined by separatingm into longitudinal and transverse components with

respect to M. The aim is to relax the ZLF assumption that the magnetisation of the

two magnetic layers are coplanar. Specifically, the equations for the spin accumulation

for any arbitrary orientation of the magnetisation are derived. This allows application

of the formalism to general magnetisation structures, for example domain walls.

4.1.2 Basis coordinate system

As discussed in the limitation of the ZLF model, the solution is applicable for the

specific configuration considered in their paper. To generalise the expressions for the

spin accumulation in a magnetic layer arising from an incoming spin polarised cur-

rent, the local magnetisation in the magnetic layer may align in any direction, M =

Mxêx+Myêy +Mzêz. To derive the components of spin accumulation for this arbitrary

orientation of the magnetisation, a modified solution is sought by using the coordinate

system b̂1, b̂2 and b̂3 which are parallel and perpendicular to the local magnetisation

as illustrated in figure 4.1 (right). Therefore, the longitudinal spin accumulation will

be along the direction b̂1, and the two components of the transverse spin accumulation

along the directions b̂2 and b̂3. The basis b̂1, b̂2 and b̂3 can be expressed in the global

coordinate system as follows,

b̂1 = b1xêx + b1yêy + b1zêz

b̂2 = b2xêx + b2yêy + b2zêz

b̂3 = b3xêx + b3yêy + b3zêz.
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Figure 4.1: (left) Magnetisation in the global coordinate system, and (right) in the

rotated basis system

It can be rewritten in the general form as follows, with i = 1, 2, 3 and α = x, y, z

b̂i =
∑
α

biαêα,[
b̂
]

= [biα][êx êy êz]
T . (4.4)

Clearly the coefficients biα cannot be determined unambiguously. They can be

chosen as convenient subject to the constraints b1α = Mα (ensures b̂1//M) and that the

b̂2 and b̂3 are orthogonal to b̂1. The basis system can be easily achieved by rotating the

z axis of the Cartesian coordinate system into the direction of the local magnetisation.

Subsequently as depicted in figure 4.1 (right), the basis b̂1, b̂2 and b̂3 correspond to

the rotated z, x and y axes respectively. As a result of rotating the z axis, the transfor-

mation matrix [T ] involving the direction of magnetisation is employed to calculate the

coefficients biα as follows

[biα] = [T ][Ii]

=


1
D2

2
0 Mx

D2

−MxMy

D1D2

Mz
D1

My

D2

−MxMz
D1D2

−My

D1

Mz
D2

 [Ii]

=


Mx
D2

My

D2

Mz
D2

1
D2

2

−MxMy

D1D2

−MxMz
D1D2

0 Mz
D1

−My

D1

 , (4.5)

where matrices [I1] = [0 0 1]T , [I2] = [1 0 0]T , [I3] = [0 1 0]T , D1 =
√

M2
y +M2

Z and

D2 =
√
M2

x +M2
y +M2

z .
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Finally, the basis coordinate system for the arbitrary orientation of the magneti-

sation is obtained by substituting equation (4.5) into equation (4.4). Consequently, the

direction of the longitudinal and transverse component of the spin accumulation can be

calculated, as in the following sections.

4.1.3 Component of spin accumulation

4.1.3.1 Longitudinal component of spin accumulation (m‖)

The basis coordinate system is required in order to determine the longitudinal and

transverse component of the spin accumulation for the arbitrary orientation of the mag-

netisation. Using this basis and following the ZLF model, the parallel component of the

spin accumulation from equation (4.3) can be rewritten as

∂2m‖

∂x2
−

m‖ −m‖(∞)

λ2
sdl

= 0 (4.6)

The solution of the longitudinal spin accumulation along the direction of basis b̂1

can be solved as the following equation.

m‖(x) = [m‖(∞) + [m‖(0)−m‖(∞)]e−x/λsdl ] b̂1 (4.7)

• Equilibrium value of spin accumulation (m∞)

The nonzero equilibrium value of spin accumulation, m‖(∞) is the difference be-

tween the spin up and spin down density of states (DOS) at the Fermi energy as follows,

m‖(∞) =
[N↑(EF )−N↓(EF )]kBTe

V
. (4.8)

where kB is the Boltzmamn constant, T is the temperature, e is the electron charge and

V is the unit cell volume.

This quantity can be calculated by means of Density Functional Theory (DFT)

calculations. Values of m‖(∞) determined from DFT calculations (provided by Dr. R.

Cuadrado) will be used later in calculations involving Co and NiFe. An example is shown

in figure 4.2 for Co bulk.
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Figure 4.2: Spin resolved density of states of Co bulk [61, 62]: The red lines show the

spin up and spin down density of states, N↑(↓). The thick blue line shows the different

of N↑ −N↓, (courtesy of Dr. R. Cuadrado).

4.1.3.2 Transverse component of spin accumulation (m⊥)

The transverse component of spin accumulation is perpendicular to the local magneti-

sation which will be along the direction b̂2 and b̂3. Its form is preserved as the ZLF

model given by
∂2m⊥
∂x2

− m⊥
λ2
sf

− m⊥ ×M

λ2
J

= 0, (4.9)

but the transverse spin accumulation consists of two components along the directions

b̂2 and b̂3, m⊥ = m⊥,2 + m⊥,3 = m2b̂2 + m3b̂3. Therefore the cross product of the

transverse spin accumulation and the magnetisation in the third term of equation (4.9)

can be expressed as,

m⊥ ×M = (m2b̂2 +m3b̂3)× (b̂1)

= −m2b̂3 +m3b̂2

and then substituting the cross product into equation (4.9), one obtain

∂2(m2b̂2 +m3b̂3)

∂x2
− (m2b̂2 +m3b̂3)

λ2
sf

− (−m2b̂3 +m3b̂2)

λ2
J

= 0[
∂2m2

∂x2
− m2

λ2
sf

− m3

λ2
J

]
b̂2 +

[
∂2m3

∂x2
− m3

λ2
sf

+
m2

λ2
J

]
b̂3 = 0.



4.1. Modified ZLF model 52

The basis b̂2 and b̂3 are orthogonal to each other. As a result, m⊥ can be repre-

sented as a complex quantity. Finally the above equation can be rewritten as;[
∂2m2

∂x2
− m2

λ2
sf

− m3

λ2
J

]
+

[
∂2m3

∂x2
− m3

λ2
sf

+
m2

λ2
J

]
i = 0 (4.10)

From equation (4.10), the magnitude of the transverse spin accumulation along

the direction b̂2 and b̂3 which are m2 and m3 respectively can be calculated.

• Solution of the transverse spin accumulation

The magnitude of the transverse spin accumulation m2 along the direction b̂2 can

be obtained by collecting terms in m2 from the above equation.

∂2m2

∂x2
− m2

λ2
sf

+
im2

λ2
J

= 0

∂2m2

∂x2
−m2

(
1

λ2
sf

− i

λ2
J

)
= 0 (4.11)

Similarly, collecting terms in m3, the magnitude of the transverse spin accumula-

tion m3 along the direction b̂3 can be obtained as follows,

∂2im3

∂x2
− im3

λ2
sf

− m3

λ2
J

= 0

i

[
∂2m3

∂x2
−m3

(
1

λ2
sf

− i

λ2
J

)]
= 0 (4.12)

Subsequently, equations (4.11) and (4.12) can be solved and one seek the solution

of the following form,

m⊥,2(x) = [G2e
−x/l+ +G3e

−x/l− ] b̂2

m⊥,3(x) = [−iG2e
−x/l+ + iG3e

−x/l− ] b̂3, (4.13)

where,

G2 =
m⊥,2(0) + im⊥,3(0)

2
= u+ iv

G3 =
m⊥,2(0)− im⊥,3(0)

2
= u− iv

1/l+ =
√

(1/λ2
sf )− (i/λ2

J) = k1 − ik2

1/l− =
√

(1/λ2
sf ) + (i/λ2

J) = k1 + ik2.
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As shown in equation (4.13), the transverse component is expressed in the incon-

venient form of the complex number. Alternatively, the solution of transverse component

can be rewritten in a sinusoidal function by substituting G2, G3, 1/l+ and 1/l− into the

above equation. Therefore, the solution of transverse component is in the following form

m⊥,2(x) = [G2 exp(−x/l+) +G3 exp(−x/l−)]

= (u+ iv)e−x(k1−ik2) + (u− iv)e−x(k1+ik2)

= (u+ iv)e−k1xeik2x + (u− iv)e−k1xe−ik2x

= (ue−k1x + ive−k1x)[cos(k2x) + i sin(k2x)]

+(ue−k1x − ive−k1x)[cos(k2x)− i sin(k2x)]

= 2e−k1x[u cos(k2x)− v sin(k2x)]

and similarly,

m⊥,3(x) = [−iG2 exp(−x/l+) + iG3 exp(−x/l−)]

= −i(u+ iv)e−x(k1−ik2) + i(u− iv)e−x(k1+ik2)

= −i(u+ iv)e−k1xeik2x + i(u− iv)e−k1xe−ik2x

= −i(ue−k1x + ive−k1x)[cos(k2x) + i sin(k2x)]

+i(ue−k1x − ive−k1x)[cos(k2x)− i sin(k2x)]

= 2e−k1x[u sin(k2x) + v cos(k2x)].

4.1.3.3 Solution of spin accumulation

Consequently, the total spin accumulation is the contribution of the longitudinal and

transverse components, m(x) = m‖(x) + m⊥,2(x) + m⊥,3(x), shown as the following

equations.

m‖(x) = [m‖(∞) + [m‖(0)−m‖(∞)]e−x/λsdl ] b̂1

m⊥,2(x) = 2e−k1x [u cos(k2x)− v sin(k2x)] b̂2

m⊥,3(x) = 2e−k1x [u sin(k2x) + v cos(k2x)] b̂3, (4.14)

with (k1 ± ik2) =
√

λ−2
sf ± iλ−2

J , where λsf =
√

2D0τsf and λJ =
√

2~D0/J . Here

λsdl =
√
1− ββ′λsf is the spin diffusion length of the material, D0 the diffusion constant,

m‖(0), u and v are constants which will be determined shortly. The equilibrium value

of the spin accumulation, m‖(∞), can be calculated as discussed previously.
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4.2 The determination of the coefficients

The spin accumulation in the magnetic layer requires determination of m‖(0), u and v,

which is achieved by imposing continuity of the spin current at the interface. The spin

current for the arbitrary direction of magnetisation, M = Mxêx +Myêy +Mzêz can be

obtained from equation (3.2). It is given by

jmx(x) = βjeMx − 2D0

[
∂mx

∂x
− ββ′Mx

(
M · ∂m

∂x

)]
jmy(x) = βjeMy − 2D0

[
∂my

∂x
− ββ′My

(
M · ∂m

∂x

)]
jmz(x) = βjeMz − 2D0

[
∂mz

∂x
− ββ′Mz

(
M · ∂m

∂x

)]
,

with

M · ∂m
∂x

= Mx
∂mx

∂x
+My

∂my

∂x
+Mz

∂mz

∂x
.

Therefore, the component of spin current in the global coordinate system is written

as follows,

jmx(x) = βjeMx − 2D0

[
∂mx

∂x
− ββ′Mx

(
Mx

∂mx

∂x
+My

∂my

∂x
+Mz

∂mz

∂x

)]
jmy(x) = βjeMy − 2D0

[
∂my

∂x
− ββ′My

(
Mx

∂mx

∂x
+My

∂my

∂x
+Mz

∂mz

∂x

)]
jmz(x) = βjeMz − 2D0

[
∂mz

∂x
− ββ′Mz

(
Mx

∂mx

∂x
+My

∂my

∂x
+Mz

∂mz

∂x

)]
.

4.2.1 Spin current at the interface

The spin current at the interface between the layers (x = 0) is as follows

jmx(0)− βjeMx = 2D0(ββ
′M2

x − 1)
∂mx(0)

∂x
+ 2D0ββ

′MxMy
∂my(0)

∂x

+2D0ββ
′MxMz

∂mz(0)

∂x

jmy(0)− βjeMy = 2D0ββ
′MxMy

∂mx(0)

∂x
+ 2D0(ββ

′M2
y − 1)

∂my(0)

∂x

+2D0ββ
′MyMz

∂mz(0)

∂x

jmz(0)− βjeMz = 2D0ββ
′MxMz

∂mx(0)

∂x
+ 2D0ββ

′MyMz
∂my(0)

∂x

+2D0(ββ
′M2

z − 1)
∂mz(0)

∂x
.
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Then one finds the first derivative of the spin accumulation with respect to the

distance at x = 0 in the matrix form as below. It is expressed in terms of the transport

parameters of the layer and the incoming spin current jm(0) from the previous layer.
∂mx(0)

∂x

∂my(0)
∂x

∂mz(0)
∂x

 =


2D0(ββ

′M2
x − 1) 2D0ββ

′MxMy 2D0ββ
′MxMz

2D0ββ
′MxMy 2D0(ββ

′M2
y − 1) 2D0ββ

′MyMz

2D0ββ
′MxMz 2D0ββ

′MyMz 2D0(ββ
′M2

z − 1)


−1 

jmx(0)− βjeMx

jmy(0)− βjeMy

jmz(0)− βjeMz


(4.15)

The first derivative of spin accumulation in the above equation is easily obtained.

All transport parameters of the magnetic layer depending on the property of material

are known. The incoming spin current (jm) is calculated from the boundary condition

by imposing continuity of the spin current at the interface between layers. In principle,

the transport parameters may vary from layer to layer. However, for clarity I leave the

layer variation as implicit rather than adding label such as βi. Equation (4.15) gives the

gradient of the accumulation at the interface with the previous layer, as determined by

the spin current from the previous layer. From this the unknown coefficients m‖(0), u

and v can be determined as in the following section.

4.2.2 Spin accumulation at the interface

The final step is to use the derivatives of m, determined, using the interface conditions

as equation (4.15) to evaluate the constants m‖(0), u and v which completely determine

the solution for m. The solution of spin accumulation from equation (4.14) is in the

basis coordinate system, b1, b2 and b3. It can be rewritten to represent in the global

coordinate system.

mx(x)êx +my(x)êy +mz(x)êz = m‖(x)b̂1 +m⊥,2(x)b̂2 +m⊥,3(x)b̂3

= m‖(x) [b1xêx + b1yêy + b1zêz]

+m⊥,2(x) [b2xêx + b2yêy + b2zêz]

+m⊥,3(x) [b3xêx + b3yêy + b3zêz]

Consider each component of the spin accumulation in the global coordinate system

mx(x) = b1xm‖(x) + b2xm⊥,2(x) + b3xm⊥,3(x)

my(x) = b1ym‖(x) + b2ym⊥,2(x) + b3ym⊥,3(x)

mz(x) = b1zm‖(x) + b2zm⊥,2(x) + b3zm⊥,3(x).
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Determine the first derivative of the spin accumulation with respect to the distance x,

∂mx(x)

∂x
= b1x

∂m‖(x)

∂x
+ b2x

∂m⊥,2(x)

∂x
+ b3x

∂m⊥,3(x)

∂x
∂my(x)

∂x
= b1y

∂m‖(x)

∂x
+ b2y

∂m⊥,2(x)

∂x
+ b3y

∂m⊥,3(x)

∂x
∂mz(x)

∂x
= b1z

∂m‖(x)

∂x
+ b2z

∂m⊥,2(x)

∂x
+ b3z

∂m⊥,3(x)

∂x
, (4.16)

where

∂m‖(x)

∂x
=

[
m‖(∞)−m‖(0)

]
λsdl

e−x/λsdl

∂m⊥,2(x)

∂x
= −

[
G2

l+
e−x/l+ +

G3

l−
e−x/l−

]
∂m⊥,3(x)

∂x
= −i

[
−G2

l+
e−x/l+ +

G3

l−
e−x/l−

]
.

At the interface (x = 0), one obtains

∂m‖(0)

∂x
=

[
m‖(∞)−m‖(0)

]
λsdl

∂m⊥,2(0)

∂x
= −

[
G2

l+
+

G3

l−

]
= −2k1u− 2k2v

∂m⊥,3(0)

∂x
= −i

[
−G2

l+
+

G3

l−

]
= 2k2u− 2k1v (4.17)

and substitute equation (4.17) into equation (4.16), subsequently one has the following

relationships.

∂mx(0)

∂x
= b1x

[
m‖(∞)−m‖(0)

]
λsdl

+ b2x(−2k1u− 2k2v) + b3x(2k2u− 2k1v)

=
b1xm‖(∞)

λsdl
−

b1xm‖(0)

λsdl
+ (−2b2xk1 + 2b3xk2)u+ (−2b2xk2 − 2b3xk1)v

∂mx(0)

∂x
= b1y

[
m‖(∞)−m‖(0)

]
λsdl

+ b2y(−2k1u− 2k2v) + b3y(2k2u− 2k1v)

=
b1ym‖(∞)

λsdl
−

b1ym‖(0)

λsdl
+ (−2b2yk1 + 2b3yk2)u+ (−2b2yk2 − 2b3yk1)v

∂mx(0)

∂x
= b1z

[
m‖(∞)−m‖(0)

]
λsdl

+ b2z(−2k1u− 2k2v) + b3z(2k2u− 2k1v)

=
b1zm‖(∞)

λsdl
−

b1zm‖(0)

λsdl
+ (−2b2zk1 + 2b3zk2)u+ (−2b2zk2 − 2b3zk1)v

The above equations can be represented in the matrix form as follows
∂mx(0)

∂x

∂my(0)
∂x

∂mz(0)
∂x

 =
m‖(∞)

λsdl


b1x

b1y

b1z

+

− b1x

λsdl
(−2b2xk1 + 2b3xk2) (−2b2xk2 − 2b3xk1)

− b1y
λsdl

(−2b2yk1 + 2b3yk2) (−2b2yk2 − 2b3yk1)

− b1z
λsdl

(−2b2zk1 + 2b3zk2) (−2b2zk2 − 2b3zk1)



m‖(0)

u

v


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Consequently,
m‖(0)

u

v

 =


− b1x

λsdl
(−2b2xk1 + 2b3xk2) (−2b2xk2 − 2b3xk1)

− b1y
λsdl

(−2b2yk1 + 2b3yk2) (−2b2yk2 − 2b3yk1)

− b1z
λsdl

(−2b2zk1 + 2b3zk2) (−2b2zk2 − 2b3zk1)


−1 

∂mx(0)
∂x − b1xm‖(∞)

λsdl

∂my(0)
∂x − b1ym‖(∞)

λsdl

∂mz(0)
∂x − b1zm‖(∞)

λsdl


(4.18)

Finally, the unknown coefficients m‖(0), u and v can be calculated by substituting

the first derivative of the spin accumulation at interface, ∂m(0)
∂x , as equation (4.15) into

equation (4.18).

4.3 Summarised step of calculation

To calculate the spin accumulation of any magnetic system, with spatially varying mag-

netisation structures, the modified solution of spin accumulation is proposed for a general

case. The procedure of this approach is not complicated to follow, but many calculations

in the procedure will be performed. To assist understanding, the steps of the calculation

are summarised here.

Figure 4.3: Schematic of a magnetic bilayer system discretised into a series of thin layers:

In this case magnetisation in the thick ferromagnetic layer (F1) is collinear with that

in the thin ferromagnet (F2), but the numerical procedure applies to structures with

spatially varying magnetisation.

The precedure works by dividing the system into a series of thin layers, i =

0, 1, 2, . . . , n with the thickness tF for each layer and the average magnetisation within

each thin layer is used to calculate the spin accumulation as illustrated in figure 4.3. This
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method allows us to calculate the spin accumulation and spin current at any position of

the system. They can be calculated easily in 7 steps by applying the modified solution

to each thin layer as shown in figure 4.4. One settled on the following procedure.

Figure 4.4: Diagram of the procedure of the spin accumulation calculation

Step 1: To calculate the spin accumulation of the layer i, the incoming spin

current used as the input parameter is required. It flows from the previous layer i − 1

and can be determined by imposing the boundary condition at the interface between

layers (x = 0) which is the continuity of the spin current given by

jim(0) = ji−1
m (tF ).
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Step 2: Consider the basis coordinate system for the local magnetisation aligned

to any direction, Mi. As mentioned in details in Sec. 4.1.2, the basis system expressed in

term of the component of magnetisation can be determined as the following relationship

[
b̂
]
=


Mx
D2

My

D2

Mz
D2

1
D2

2

−MxMy

D1D2

−MxMz
D1D2

0 Mz
D1

−My

D1

 [êx êy êz]
T

where D1 =
√

M2
y +M2

z and D2 =
√

M2
x +M2

y +M2
z .

Step 3: To determine the unknown coefficients used to describe the spin accumu-

lation as seen in equation (4.14), the first derivative of the spin accumulation at x = 0

with respect to the distance is evaluated as the following relationship in matrix form.
∂mx(0)

∂x

∂my(0)
∂x

∂mz(0)
∂x

 =


2D0(ββ

′M2
x − 1) 2D0ββ

′MxMy 2D0ββ
′MxMz

2D0ββ
′MxMy 2D0(ββ

′M2
y − 1) 2D0ββ

′MyMz

2D0ββ
′MxMz 2D0ββ

′MyMz 2D0(ββ
′M2

z − 1)


−1 

jmx(0)− βjeMx

jmy(0)− βjeMy

jmz(0)− βjeMz



Step 4: Subsequently, the unknown coefficients m‖(0), u and v are calculated by

substituting ∂m(0)
∂x from the previous step, all elements of the basis coordinate system as

well as the constants k1 and k2 obtained from the transport parameters into the following

relationship.
m‖(0)

u

v

 =


− b1x

λsdl
(−2b2xk1 + 2b3xk2) (−2b2xk2 − 2b3xk1)

− b1y
λsdl

(−2b2yk1 + 2b3yk2) (−2b2yk2 − 2b3yk1)

− b1z
λsdl

(−2b2zk1 + 2b3zk2) (−2b2zk2 − 2b3zk1)


−1 

∂mx(0)
∂x − b1xm‖(∞)

λsdl

∂my(0)
∂x − b1ym‖(∞)

λsdl

∂mz(0)
∂x − b1zm‖(∞)

λsdl



Step 5: Consequently, the spin accumulation in the basis coordinate system at

x = tF can be worked out by substituting the unknown coefficients achieved from step

4 into the equations below.

m‖(x) = [m‖(∞) + [m‖(0)−m‖(∞)]e−x/λsdl ] b̂1

m⊥,2(x) = 2e−k1x [u cos(k2x)− v sin(k2x)] b̂2

m⊥,3(x) = 2e−k1x [u sin(k2x) + v cos(k2x)] b̂3,

with (k1 ± ik2) =
√

λ−2
sf ± iλ−2

J , where λsf =
√

2D0τsf and λJ =
√

2~D0/J . Here

λsdl =
√
1− ββ′λsf denotes the spin diffusion length of the material, D0 is the diffusion

constant and m‖(∞) is the equilibrium value of the spin accumulation.
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In addition, the component of the spin accumulation in the global coordinate

system is also determined as follows

mx(x) = b1xm‖(x) + b2xm⊥,2(x) + b3xm⊥,3(x)

my(x) = b1ym‖(x) + b2ym⊥,2(x) + b3ym⊥,3(x)

mz(x) = b1zm‖(x) + b2zm⊥,2(x) + b3zm⊥,3(x).

Step 6: The spin current of the layer i at the distance x = tF is the next quantity

of interest. It can be determined directly from the gradient of the spin accumulation as

shown in the following equation. It will be used as the incoming spin current for the

next layer, i+ 1.

jmx(x) = βjeMx − 2D0

[
∂mx

∂x
− ββ′Mx

(
Mx

∂mx

∂x
+My

∂my

∂x
+Mz

∂mz

∂x

)]
jmy(x) = βjeMy − 2D0

[
∂my

∂x
− ββ′My

(
Mx

∂mx

∂x
+My

∂my

∂x
+Mz

∂mz

∂x

)]
jmz(x) = βjeMz − 2D0

[
∂mz

∂x
− ββ′Mz

(
Mx

∂mx

∂x
+My

∂my

∂x
+Mz

∂mz

∂x

)]
.

where

∂mx(x)

∂x
= b1x

∂m‖(x)

∂x
+ b2x

∂m⊥,2(x)

∂x
+ b3x

∂m⊥,3(x)

∂x
∂my(x)

∂x
= b1y

∂m‖(x)

∂x
+ b2y

∂m⊥,2(x)

∂x
+ b3y

∂m⊥,3(x)

∂x
∂mz(x)

∂x
= b1z

∂m‖(x)

∂x
+ b2z

∂m⊥,2(x)

∂x
+ b3z

∂m⊥,3(x)

∂x
,

and

∂m‖(x)

∂x
=

[
m‖(∞)−m‖(0)

]
λsdl

e−x/λsdl

∂m⊥,2(x)

∂x
= 2e−k1x sin(k2x) [k1v − k2u]− 2e−k1x cos(k2x) [k1u+ k2v]

∂m⊥,3(x)

∂x
= −2e−k1x sin(k2x) [k1u+ k2v] + 2e−k1x cos(k2x) [−k1v + k2u] .

Step 7: Repeat step 1 - 6 for all thin layers. Consequently, the spin accumulation

and spin current at any position of the magnetic system are calculated.
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4.4 Spin accumulation and spin current in the bilayer sys-

tem

In this section, the applicability of the modified solution of the spin accumulation is

investigated in a bilayer system of Co/Co. In the first ferromagnetic layer of Co re-

garded as the “pinned layer”, the magnetisation orients in the y direction whereas the

magnetisation in the second Co layer rotates its direction uniformly to 90◦, as illustrated

in figure 4.5.

Figure 4.5: Schematic illustration of the bilayer system (Co/Co): The magnetisation

of the first ferromagnetic layer is fixed in the y direction and that of the second one

gradually changes throughout the layer.

The behaviour of the spin accumulation is investigated not only to check the valid-

ity of the modified solution but also to describe the effect of the spin torque arising from

the spin accumulation in the next chapter. Therefore, I first consider the system shown

in figure 4.5 containing a domain wall. The system is spatially discretised into many thin

layers with the distance between the layers of 5 atomic spacings. The magnetisation in

the second Co layer is allowed to gradually change giving rise to a domain wall within

this layer. The domain wall motion resulting from the spin current will be considered

later. Here I simply evaluate the spatial variation of m and jm throughout the wall. The

spin accumulation is investigated by applying the modified solution to each thin layer

discussed previously.
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Figure 4.6: Normalised magnetisation at any position in the bilayer system (Co/Co):

The position x = 0 is the center of the interface. The position x < 0 and x > 0 show the

first ferromagnetic layer of Co and the second ferromagnetic layer of Co respectively.

 0

 0.2

 0.4

 0.6

 0.8

 1

-20 -10  0  10  20  30

j m
 / 

β 
j e

Distance[nm]

 0

 0.2

 0.4

 0.6

 0.8

 1

 0

 0.0002

 0.0004

 0.0006

 0.0008

 0.001

m
x,

 m
y 

/ m
∞

, C
o

m
z 

/ m
∞

, C
o

x
y
z

Figure 4.7: Normalised spin accumulation and spin current at any position of the Co/Co

system in the global coordinate system
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The static domain wall profile is shown in figure 4.6. The transport parameters of

Co used in spin accumulation calculation are taken from Ref. [53] as the following values,

β = 0.5, β′ = 0.9, D0 = 0.003 m2/s, λsdl = 60 nm and λJ = 4 nm. The equilibrium

value of spin accumulation (m∞) can be calculated from equation (4.8). The fcc lattice

parameter of the Co bulk used here is aCo = 3.46 Å and the difference of the spin up and

spin down density of states(N↑(EF ) − N↓(EF )) is 1.02 states/eV atom [62]. It results

in the equilibrium value of the spin accumulation of m‖(∞) = 3.945 × 107 C/m3 with

kBT = 10 meV

The spin current is introduced to the bilayer system in the x direction. Subse-

quently, it flows through the layer and interacts via the s-d exchange interaction with

the local magnetisation giving rise to a spatially varying spin accumulation. This can

be calculated by applying the generalised ZLF model based on the diffusive transport

with the appropriate boundary condition at the interface, and the results are shown in

figure 4.7. The component of the spin accumulation can be resolved into the in-plane

and the out-of-plane components. It shows that the spin accumulation and spin current

tend to adiabatically follow the direction of magnetisation in both Co layers due to the

exchange interaction between the spin-polarised current and the local magnetisation.

Interestingly, in the second Co layer with the smoothly varying magnetisation, an out-

of-plane (z) component is exhibited owing to the mistracking of conduction electrons, a

so-called “non-adiabatic component”. This is due to the large spin diffusion length. It is

generally much smaller than the in-plane component but significant. The effect of both

components will be discussed fully in the next chapter.

4.5 Summary

In conclusion, the modified solution proposed here can be effectively used to explain the

behaviour of the spin transport at any position of the system by dividing the system

into many thin layers. Specifically, the modified spin accumulation model can be applied

to any arbitrary orientation of the magnetisation by using the transformation matrix

to rotate the magnetisation in the global coordinate system into the basis coordinate

system. Furthermore, it also can be applied to the multilayer structure with different

material by the introduction of the nonzero equilibrium value, m‖(∞). The solution of

the ZLF model can be obtained from the general solution as well. It indicates that the

modified solution is valid for any system.
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This approach will be applied to a bilayer system to calculate the spin torque

coeffecients which are often-used in micromagnetic model in the following chapter. Also,

the modified solution of spin accumulation allowing the inclusion of the effect of diffuse

interface will be studied in chapter 6. Finally, the current-induced domain wall motion

will be investigated by using the proposed model as details in chapter 7.
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CHAPTER V

Spin-transfer torque on a domain wall

In this chapter, the main interest is associated with the spin-transfer torque calcu-

lation. As explained in chapter 1, it can be represented in terms of an interaction between

the local magnetisation and a spin accumulation which is calculated self-consistently and

naturally includes the adiabatic and non-adiabatic contributions. The first section of the

chapter is organised to give an understanding of the spin-transfer torque component re-

lated to Slonczewski’s original model. Then the spin-transfer torque parameters a and

b corresponding to the adiabatic and non-adiabatic torques [12, 13, 16, 38, 58, 63, 64] are

formulated directly from the spin accumulation. Subsequently, the formalism of spin

torque derived from the spin accumulation is applied to the magnetic bilayer system

containing a domain wall (DW) to investigate its behaviour under the influence of the

spin-transfer torque. In this approach, the spin torque parameters a and b are found

to be nonuniform throughout the magnetic layer. The details and importance of this

aspect will be discussed in relation to the usual micromagnetic approach assuming fixed

empirical constants determining the strength of the adiabatic and non-adiabatic terms.

Specifically, the coefficients of adiabatic and non-adiabatic torques in the standard

form [6, 65–68], µx and βx respectively, are considered as a function of the spin torque

parameters a and b. Interestingly, the adiabatic and non-adiabatic contributions depend

on the rate of change of magnetisation. It leads to a divergence of the spin torque

parameters for the case of small gradient of magnetisation. This stresses the importance

of the new route to calculate adiabatic and non-adiabatic torques directly from spin

accumulation instead of the often-used method, assuming that the coefficients µx and

βx are constant. A suitable criterion for the validity of the standard approach will be

presented.

Finally, the influence of the spin diffusion length and the domain wall thickness on

the spin accumulation and spin torque is also studied to deeply understand its behaviour

in a magnetic bilayer system.
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5.1 Spin-transfer torque

The spin-transfer torque, extensively used to manipulate magnetisation and control do-

main wall dynamics, was first proposed theoretically by Berger [2] and Slonczewski [1,69].

Physically, the spin-transfer torque arises from the s-d exchange interaction between the

conduction electron and the local magnetisation. As a result of this interaction, the spin-

transfer torque acting on the local magnetisation contributes two components of torque:

adiabatic and non-adiabatic torques. The first originates from the conduction electron

spins tending to align in the direction of the local magnetisation, whereas the latter can

be interpreted as arising from the mistracking of conduction electron spins and local

magnetisation [70–72]. The qualitative understanding and determination of both adia-

batic and non-adiabatic torques have been discussed by many research groups; although

the adiabatic torque is theoretically well understood, the physics of the non-adiabatic

torque remains ambiguous [9, 64,73–75].

5.1.1 Slonczewski spin torque

According to Slonczewski’s model based on ballistic transport [1, 69, 76–78], the spin-

transfer torque is exerted on the local magnetisation by injecting the spin current into the

magnetic bilayer structure. It arises from the conservation of the spin angular momentum

carried by the conduction electrons. This spin torque is referred to “ a Slonczewski

torque”(TS) given by,

TS =

(
∂M

∂t

)
STT

= γaM× (M×Mp), (5.1)

where a = ~PI
MsV e is a spin torque parameter, I is the electric current, P = N↑−N↓

N↑+N↓ is

the spin polarisation parameter of spin current at the Fermi level, γ = gµB/~ is the

gyromagnetic ratio, Ms is the saturation magnetisation, V is the volume of the sample

and e is the electron charge. M and Mp denote the unit vectors of magnetisation in the

free and pinned layers respectively.

As seen in equation (5.1), the Slonczewski spin torque can be a source of damping

motion forcing the magnetisation of the free layer towards the orientation of magnetisa-

tion in the pinnned layer. This torque is extensively used to describe the mechanism of

the spin torque in the magnetic system [12–14, 63], also namely “adiabatic spin torque”

(AST). If this torque points in the same direction as the natural damping, it can either
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increase or decrease the natural damping of the spin motion depending on the direction

of the injected current. The effect of this torque on the dynamics of magnetisation will

be discussed in more detail in chapter 7.

5.1.2 Field-like torque

Apart from the adiabatic torque, an additional torque enhanced in the magnetic system

via the s-d exchange interaction is introduced as a field-like torque or a perpendicular

spin torque [11, 38,68,76,79], given by

TF = b(M×Mp). (5.2)

It behaves the same way as the external magnetic field leading to precessional

motion around the magnetisation in the pinned layer. The strength of this torque is

characterised by the parameter b. In general, the field-like torque is known as a “non-

adiabatic spin torque” (NAST). It has been explained by various mechanisms such as

momentum transfer, spin mistracking and spin flip scattering [6]. However, its origin is

still controversial. By considering equations (5.1) and (5.2), the non-adiabatic torque is

perpendicular to the adiabatic spin-transfer torque and the magnetisation as shown in

figure 5.1.

Figure 5.1: The contribution of adiabatic and non-adiabatic spin torques to the local

magnetisation in the free layer M: The adiabatic torque orients in the plane of M

and Mp whereas the non-adiabatic torque or field-like torque points to the direction

perpendicular to that plane.
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5.2 Spin torque calculation

As discussed in the previous section, the total spin torque arises from the contribution

of the adiabatic and non-adiabatic torques characterised by parameters a and b. These

parameters have been considered by many authors by means of various transport theories

[11,12,38]. The spin-transfer torque can be represented in terms of an interaction between

the local magnetisation and the spin accumulation as the following equation

H = −Jm ·M (5.3)

where J is the s-d exchange integral, m is the spin accumulation and M is the unit

vector along the local magnetisation direction.

In this section, I will formulate the spin torque in the system as well as the

coefficients a and b describing the adiabatic and non-adiabatic spin torque directly from

the spin accumulation. I first consider the relationship between the accumulation and

spin torque by making a decomposition into adiabatic and non-adiabatic components.

The additional magnetic field arising from the spin accumulation, J ·m, can be written in

terms of the transverse spin accumulation since the longitudinal accumulation does not

induce any torque to affect the motion of magnetisation. Hence, following the approach

of the ZLF [38, 53], the additional field (HST) can be introduced as a function of the

magnetisation of the current (M ) and previous (Mp) layers as

HST = − ∂H
∂M

= Jm⊥

= a(Mp ×M) + b(M×Mp)×M. (5.4)

5.2.1 Total spin torque

To investigate the influence of spin accumulation on the local magnetisation, the ad-

ditional field in the above equation can be introduced in the Landau-Lifschitz-Gilbert

equation (LLG) [12–14,38,63] representing adiabatic and non-adiabatic spin torque con-

tributions as follows

∂M

∂t
= −γM× (Heff + Jm⊥) + αM× ∂M

∂t

= −γ(M×Heff) + αM× ∂M

∂t
− γaM× (Mp ×M)− γb(M×Mp). (5.5)
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From equation (5.5), one can decompose the total spin torque arising from the

additional field HST as follows

STtotal = AST +NAST

= −γaM× (Mp ×M)− γbM×Mp, (5.6)

where the first and second terms of the right hand side represent the adiabatic and

non-adiabatic spin torques, denoted AST and NAST respectively. The above equation

shows that the spin torque can be expressed in terms of spin accumulation and the angle

between the magnetisation of both ferromagnets. In the following sections I consider

the relationship between the micromagnetic representation and the spin accumulation.

Firstly, I relate the coefficients a and b and the spin accumulation.

5.2.2 Spin torque parameters a and b

To calculate the spin torque parameters a and b describing the adiabatic and non-

adiabatic spin torques, one considers the basis coordinate system introduced in chapter

4. The total spin torque arising from the contribution of the adiabatic (AST) and non-

adiabatic spin torques (NAST) can be considered conveniently in the basis coordinate

system.

The local magnetisation in the current layer (M) is along the direction b̂1 as

explained in chapter 4. Therefore, the magnetisation in the previous layer (Mp) is

needed to be transformed into the basis coordinate system by using the transformation

matrix expressed in terms of components of magnetisation in the current layer. The

relationship of magnetisation components in the global and rotated coordinate systems

can be determined as follows

Mp,xêx +Mp,yêy +Mp,zêz = Mp‖b̂1 +Mp⊥,2b̂2 +Mp⊥,3b̂3.

The magnetisation of the previous layer (Mp) in the global coordinate system can

be expressed in terms of the longitudinal and transverse components of the magnetisation

in the basis coordinate system, which are parallel and perpendicular to M respectively,

as below,

Mp,x = b1xMp‖ + b2xMp⊥,2 + b3xMp⊥,3

Mp,y = b1yMp‖ + b2yMp⊥,2 + b3yMp⊥,3

Mp,z = b1zMp‖ + b2zMp⊥,2 + b3zMp⊥,3.
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Therefore, the component of magnetisation in the basis coordinate system can be

rewritten in the matrix form as follows,
Mp‖

Mp⊥,2

Mp⊥,3

 =


b1x b2x b3x

b1y b2y b3y

b1z b2z b3z


−1 

Mp,x

Mp,y

Mp,z



=


Mx
D2

1
D2

2
0

My

D2

−MxMy

D1D2

Mz
D1

Mz
D2

−MxMz
D1D2

−My

D1


−1 

Mp,x

Mp,y

Mp,z

 , (5.7)

where Mx, My and Mz are the x, y and z components of magnetisation in the current

layer respectively. D1 =
√

M2
y +M2

Z and D2 =
√

M2
x +M2

y +M2
z .

The total spin torque can be calculated in the basis coordinate system by sub-

stituting M = b̂1 and Mp = Mp‖b̂1 + Mp⊥,2b̂2 + Mp⊥,3b̂3 into the equation (5.6) as

follows

M× Jm⊥ = a [M× (Mp ×M)] + b [M×Mp] ,

where

[M×Mp] = b̂1 × (Mp‖b̂1 +Mp⊥,2b̂2 +Mp⊥,3b̂3)

= Mp⊥,2b̂3 −Mp⊥,3b̂2 (5.8)

[M× (Mp ×M)] = b̂1 × (−Mp⊥,2b̂3 +Mp⊥,3b̂2)

= Mp⊥,2b̂2 +Mp⊥,3b̂3. (5.9)

Subsequently one obtains the following equation,

M× Jm⊥ = a [M× (Mp ×M)] + b [M×Mp]

b̂1 × (Jm⊥,2b̂2 + Jm⊥,3b̂3) = a(Mp⊥,2b̂2 +Mp⊥,3b̂3) + b(Mp⊥,2b̂3 −Mp⊥,3b̂2)

Jm⊥,2b̂3 − Jm⊥,3b̂2 = (aMp⊥,2 − bMp⊥,3)b̂2 + (aMp⊥,3 + bMp⊥,2)b̂3. (5.10)

From equation (5.10), the coefficients a and b can be determined as follows

−Jm⊥,3 = aMp⊥,2 − bMp⊥,3

Jm⊥,2 = aMp⊥,3 + bMp⊥,2.
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Therefore, the coefficients a and b are given by

a =
J(m⊥,2Mp⊥,3 −m⊥,3Mp⊥,2)

Mp⊥,2
2 +Mp⊥,3

2

b =
J(m⊥,2Mp⊥,2 +m⊥,3Mp⊥,3)

Mp⊥,2
2 +Mp⊥,3

2 ,

where Mp⊥,2 and Mp⊥,3 are the perpendicular component of the magnetisation of the

previous layer along the basis b̂2 and b̂3 respectively. Clearly these can be written as

a =
Jb̂1 · (m⊥ ×Mp⊥)

|Mp⊥|2
=

J |m⊥| sin θ
|Mp⊥|

b =
J(m⊥ ·Mp⊥)

|Mp⊥|2
=

J |m⊥| cos θ
|Mp⊥|

, (5.11)

where m⊥ and Mp⊥ are the transverse components of the spin accumulation and the

magnetisation in the previous layer respectively and θ is the phase angle betweenm⊥ andMp⊥.

In order to achieve the units of spin torque parameter a and b in tesla as the mag-

netic field, the volume of the unit cell (a30), the electric charge (e) and Bohr magnetron

(µB) are inserted into the above equation [38]. Consequently, one obtains

a =
J |m⊥| sin θ

|Mp⊥|
a30
eµB

b =
J |m⊥| cos θ

|Mp⊥|
a30
eµB

. (5.12)

Equation (5.12) describes the magnitude and character of the spin torque. The

magnitude of the spin torque is determined by | m⊥ | / | Mp⊥ |, while the relative

strengths of the AST and NAST terms are determined by the phase angle θ. These

quantities might be expected to depend on the spatial location for the case of non-

uniform magnetisation structures. This will be investigated in the next section along

with consideration of the implication for the usual micromagnetic representation.

To explain the behaviour of the coefficients a and b, it is important to consider

the phase angle θ in above equation. The effect of phase angle can be determined from

the orientation of the transverse spin accumulation and that of magnetisation in the

previous layer as depicted in figure 5.2. For clarity, the magnetisation in the current

layer (M) and that in the previous layer (Mp) are assumed to align in the b̂1b̂2 plane of

the basis coordinate system. Therefore, the transverse component of magnetisation in

the previous layer (Mp,⊥) and the transverse spin accumulation (m⊥) must be oriented

along the direction of basis b̂2 and in the b̂2b̂3 plane respectively.
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Figure 5.2: The orientation of magnetisation and transverse spin accumulation repre-

senting the phase effect on the spin torque parameters

Clearly, the adiabatic torque is along in the direction which is perpendicular to M

and oriented along basis b̂2. Its magnitude is characterised by parameter a depending

on the phase angle (sin θ). Hence, the non-adiabatic torque must be along the direction

of basis b̂3. In addition, the dependence of a and b on θ suggests that a and b may

change sign, as will be demonstrated later.

5.2.3 Divergence of the spin torque parameters

Physically, the origin of the adiabatic and non-adiabatic spin torque terms must be

related to the phase difference between the magnetisation and spin accumulation. There

are many theoretical studies investigating the adiabatic and non-adiabatic torques [9,64,

73–75]. Generally the approach comprises the introduction of terms in the LLG equation

representing adiabatic and non-adiabatic spin torque contributions. These terms involve

constants whose ratio is determined by a phenomenological non-adiabatic parameter βx.

Berger theoretically studied the effect of reaction torque on the system containing a

non-uniform magnetisation [2,80]. The gradient of magnetisation corresponds to change

in spin current to conserve the angular momentum carried by the conduction electron.

The spin torque acting on the magnetisation can be quantitatively described in the

Gilbert form of the LLG equation given by

Γ = −µx
∂M

∂x
+ µxβxM× ∂M

∂x
. (5.13)
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In the standard form as shown in the above equation, the adiabatic and non-

adiabatic torques are expressed in terms of µx and βx [6, 65, 66, 76, 80, 81] respectively.

Typically, the phenomenological non-adiabaticity parameter βx is an unknown variable

and its value has been assumed. The parameters µx and βx which are unknown variables

in the standard Gilbert form can be considered as functions of the coefficients a and b.

Consider the modified LLG equation including the spin torque expressed in terms of the

magnetisation gradient in equation (5.14) given by

dM

dt
= −γM×Heff + αM× dM

dt
− µx

∂M

∂x
+ βxµxM× ∂M

∂x
. (5.14)

The modified LLG taking the Slonczewski torque and the field-like torque into

account can be expressed as a function of the spin torque parameters a and b as follows

dM

dt
= −γM×Heff + αM× dM

dt
− aγ [M× (M×Mp)] + bγ(M×Mp). (5.15)

Therefore, the coefficient µx and βx in the standard form can be represented as

functions of parameters a and b by comparing the last two terms in equation (5.14) with

those in equation (5.15) as follows

−µx
∂M

∂x
= −aγ [M× (M×Mp)]

and

βxµxM× ∂M

∂x
= bγ(M×Mp).

The coefficients µx and βx can be obtained by solving the above equations given by

µx =
aγ ∂M

∂x · [M× (M×Mp)]∣∣∂M
∂x

∣∣2 (5.16)

βx =
bγ(M× ∂M

∂x ) · (M×Mp)

µx

∣∣M× ∂M
∂x

∣∣2 . (5.17)

where ∂M
∂x is the gradient of the local magnetisation with respect to the distance along

the direction of the injected spin current.

Consider the relationship of µx and βx by putting M = Mp+
∂M
∂x ∆x into the cross

product term as follows

M× (M×Mp) = (M ·Mp)M− (M ·M)Mp

= (M · (M− ∂M

∂x
∆x))M− |M|2Mp
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= (1−M · ∂M
∂x

∆x)M− (M− ∂M

∂x
∆x)

= −(M · ∂M
∂x

)∆xM+
∂M

∂x
∆x.

Therefore, the coefficient µx in equation (5.16) can be rewritten as

µx =
aγ ∂M

∂x ·
[
−(M · ∂M

∂x )∆xM+ ∂M
∂x ∆x

]∣∣∂M
∂x

∣∣2
= aγ∆x[1−

(M · ∂M
∂x )2∣∣∂M

∂x

∣∣2 ], (5.18)

and straightforwardly

βx = −bγ∆x

µx
. (5.19)

In general, the parameter µx in the standard form is assumed to be constant

throughout the layer and proportional to the spin current density (je) given by µx =

γ~Pje
2eMs

. The non-adiabatic contribution characterised by parameter βx has been in debate.

In this work as shown in equations (5.18) and (5.19), these parameters can be written

in terms of the coefficients a and b. The unknown variable µx in the standard form is

obtained explicitly since the spin torque parameters a and b can be calculated directly

from the spin accumulation using equation (5.12). Moreover, the parameters µx and βx

depend on the gradient of magnetisation which means that they tend to be nonuniform

and divergent for small gradients, as will be discussed in detail later.

5.3 Spin torque in domain wall structure

Initially the calculation of spin accumulation in the domain wall (DW) structure is pre-

sented in order to verify the modified solution of spin accumulation derived in chapter 4.

It will be applied generally to a system of a series of layers, allowing studies of the spin

accumulation in systems with spatially varying magnetisation structures. In this com-

putational study I also investigate the behaviour of the spin current, the adiabatic and

non-adiabatic torque components, the spin torque parameters a and b in the proposed

model and the coefficients µx and βx in the standard form at any position of the system

in detail in the following.
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5.3.1 Domain wall structure

To demonstrate the use of the formalism in the case of a spatially dependent magnetisa-

tion structure, a bilayer structure consisting of two non-collinear ferromagnets (a pinned

layer F1 and a free layer F2) is considered here. The system is first discretised into small

grids with a cell size of 1.5×1.5×1.5 nm3. The magnetic moment in each cell is then

calculated by averaging over the spins within the cell. As shown in figure 5.3 (a), the

pinned layer is not considered explicitly; its role is simply to provide a spin-polarised

current through the layer under investigation. Meanwhile, a domain wall into the free

layer, which is a single thin film of 60×30×1.5 nm3, is forced by pinning the magnetisa-

tion in the ±y direction at x = 0, L where L (= 60 nm) is the extent of the free layer

in the x-direction.

The magnetisation structure is formed by minimizing the total energy using the

atomistic model with a Heisenberg form of the exchange in a Hamiltonian H which also

includes the anisotropy energy and is given by

H = −
∑
i 6=j

JijSi · Sj −
∑
i

Ku(Si
2 · e2), (5.20)

with the corresponding parameters expressed as energies per atom. Here Jij is the nearest

neighbour exchange integral between the spin site i and j, Si is the local normalised spin

moment at site i, Sj is the normalised spin moment of the neighbouring atom at site j,

Ku is the uniaxial anisotropy constant and e is the unit vector of the easy axis.

The studied system is based on a material with a uniaxial anisotropy constant

of Ku = 2.52 × 106 J/m3 with the y direction as the easy axis, an exchange stiffness

constant of A = 1.4× 10−11 J/m and a lattice constant of a = 3.49 Å [82]. The domain

walls are investigated by observing the magnetisation components at any grid point of

the discretised system. As illustrated figure 5.3 (b), at the centre of the DW the x

component of magnetisation is maximum and the y component is zero, consistent with

the formation of a Néel wall and previous study of the similar system [15].

In order to test the atomistic model the domain wall width is first calculated for

comparison with the analytical expression. The effective DW width (δ) in terms of the

uniaxial anisotropy can be obtained using a micromagnetic approach as follows [82,83]
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Figure 5.3: (a) The investigated structure containing the zero field equilibrium domain

wall: The bilayer structure comprises of two ferromagnetic layers divided into many thin

layers of 5 atomic spacings. The tail-to-tail domain wall is in the free layer with the zero

field and the easy axis is in the y direction. (b) The magnetisation components of the

domain wall in the free layer obtained from atomistic calculation: The distance between

layer is given in units of cells. Lines provide a guide to the eye.

δ = π

√
A

Ku
(5.21)

where Ku is the uniaxial anisotropy constant and A is the exchange stiffness constant.

The calculated domain wall width using atomistic model is approximately 6.86

nm, slightly lower than the analytical value of 7.42 nm due to the finite system size.

From this point, the uniaxial anisotropy constant of Ku = 2.52× 106 J/m3 is applied to

all of the computational test systems in this section.
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5.3.2 Spin accumulation and spin current

After considering the initially equilibrium configuration of domain wall in the free layer,

the average magnetisation within each cell of the discretised system is then used to

calculate the spin accumulation and spin current. The spin accumulation is introduced

by the injection of a spin current along the x-axis, with a spin current density of je =

5× 1011A/m2 as illustrated in figure 5.3 (a).

As mentioned in chapter 4, the spin accumulation is calculated in the basis co-

ordinate system (b̂1, b̂2 and b̂3), with the direction of the local magnetisation as the

direction b̂1. Therefore, equation (4.4) is then applied to each thin layer of the system

to find the basis coordinate system. Subsequently, the modified solution of spin accu-

mulation in equations (4.14) and (4.18) are applied to a series of layers representing the

spatial variation of the magnetisation in a domain wall. Therefore the spin accumulation

at any position is calculated in the rotated basis in the form

m‖(x) = [m‖(∞) + [m‖(0)−m‖(∞)]e−x/λsdl ] b̂1

m⊥,2(x) = 2e−k1x [u cos(k2x)− v sin(k2x)] b̂2

m⊥,3(x) = 2e−k1x [u sin(k2x) + v cos(k2x)] b̂3

where the coefficientsm‖(0), u and v are determined from equation (4.18). The transport

parameters of Co use the values of m‖(∞) = 3.945 × 107 C/m3, β = 0.5 and β′ = 0.9.

The spin diffusion length (λsdl) is taken to be 60 nm from Ref. [53].

Figure 5.4 shows a result of the calculated spin accumulation and spin current

at any position of domain wall in the free layer. The current entering the free layer is

polarised in the direction of the magnetisation of the pinned layer (y direction). This

gives rise to a spin accumulation and spin current whose polarisations tend to follow

the direction of the magnetisation. However, it should be noted that the spin current

and spin accumulation also develop an out-of-plane component. Although the out-of-

plane component of spin accumulation is generally small, it significantly induces the spin

torque in the system. Its influence will be discussed in the next section.
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Figure 5.4: The spin accumulation (m) and spin current (jm) at any position of the free

layer in the global coordinate system after the introduction of spin current density of

je = 5× 1011 A/m2 to the system along the x direction

5.3.3 Spin torque parameters

5.3.3.1 Spin torque parameters a and b

The spin torque parameters a and b in this approach, measuring the strength of the

spin transfer torque arising from the s-d exchange interaction, are investigated next. So

far the magnitude of both spin torque parameters have been under debate and roughly

estimated. However, they can be calculated directly from the spin accumulation as

shown in equation (5.12). These spin torque parameters are proportional to the ratio of

| m⊥ | / | Mp⊥ | and characterised by the phase angle θ given by

a =
J |m⊥| sin θ

|Mp⊥|
a30
eµB

b =
J |m⊥| cos θ

|Mp⊥|
a30
eµB

.
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Figure 5.5: The spin torque parameters a and b as a function of the position in the

domain wall
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Figure 5.6: (top) The spatial variation of ratio |m⊥|
|Mp⊥| (bottom) the angle θm⊥Mp,⊥ be-

tween the transverse component of spin accumulation and that of magnetisation in pre-

vious layer as a function of position in the domain wall. Horizental lines indicate the

angles π/2, π and 3π/2.
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Figure 5.5 depicts the spin torque parameters a and b at any position within the

domain wall calculated from the transverse spin accumulation. The result shows that

they are not uniform throughout the domain wall. At the boundary of the free layer

x = 0, there is no torque due to collinear configuration of the pinning layer leading to

zero value of spin torque parameters. a and b are approximately constant up to the

middle of the domain wall. After the centre of the DW a and b become non-uniform.

The coefficient a varies relatively slowly in the regime where the magnetisation gradient

is approximately constant, followed by a more rapid variation, including a change of sign

at layer number 31. However, b varies significantly from the centre of the wall (layer

number 20).

Figure 5.7: The spatial variation of spin accumulation (blue arrows) with respect to the

local magnetisation (red arrows)

The behaviours of a and b are spatially dependent. Their values correspond to

the spatial variation of the ratio |m⊥|
|Mp⊥| as seen in figure 5.6 (top). The sign of the spin

torque coefficients indicate the direction of the spin accumulation which varies spatially

due to precessional motion. The positions in the domain wall where a and b change in

sign can be considered from the angle θ as illustrated in figure 5.6 (bottom). The motion

of spin accumulation at any position with respect to the local magnetisation direction is

shown in figure 5.7.
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5.3.3.2 Spin torque parameters µx and βx

Let us now consider in more detail of the coefficients µx and βx in the representation of

the AST and NAST. In the current approach, equations (5.12), (5.18) and (5.19) allow

us to evaluate these coefficients from the spin accumulation. It is important to consider

the magnitude of the spin accumulation, which is determined by | m⊥ | / | Mp⊥ | as

well as the phase angle. This angle partially determines the values of µx and βx which

is taken as a (unknown) constant (i.e. spatially independent) in the usual formalism.

Figure 5.8 shows the values of µx and βx through the domain wall. It can be seen

that the coefficient µx is roughly constant in the first half of the domain wall and then

its trend is to exhibit a strong spatial dependence. Also its divergence appears at the

position with the small angle between the magnetisation corresponding to the behaviour

of a.
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Figure 5.8: The spin torque coefficients µx and βx in the standard form at any position

of domain wall in the free layer
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Similarly, the coefficient βx can be determined by the relative strength of the non-

adiabatic and adiabatic terms b/a = cot θ associated with the “phase angle” between the

transverse spin accumulation and the magnetisation. In the first half of the domain wall,

the non-adiabatic coefficient βx is approximately constant, consistent with the behaviour

of θ and | m⊥ | / | Mp⊥ | in figure 5.6. Interestingly, at around layer number 30, µx goes

to zero, leading to a divergence of βx as seen in figure 5.8 (low panel). This effect arises

from the fact that at around layer 30, θ = π and consequently a vanishes while b remains

non-zero as can be seen from equations (5.22). In other words, the divergence must arise

from the disappearance of the adiabatic term a (sin θ → 0). This can arise from the

projection of m onto orthogonal components of the magnetisation, as is essentially done

in equations (5.16) and (5.17). As pointed out by Claudio-Gonzalez et al. [67] this is a

non-physical effect arising from the projection technique itself. Claudio-Gonzalez et al.

take the divergence from | ∂M
∂x |2 but equation (5.18) shows that a can go to zero, as will

be discussed further in section 5.4.4.

The nonuniform adiabatic and non-adiabatic coefficients µx and βx observed in

this calculation are consistent with the work proposed by Claudio-Gonzalez et al. [67].

They also demonstrate that the divergence of these coefficients strongly depends on the

spatial variation of magnetisation gradient. This aspect agrees with the current approach

since |∂M/∂x| = |Mp,⊥|. Therefore, to avoid this situation instead Claudio-Gonzalez et

al. [67] calculate the effective non-adiabatic coefficient βdiff by averaging with the weight

function, | ∂M/∂x |2.

However, in this work it is suggested to consider the magnitude of the transverse

spin accumulation | m⊥ | as functions of transport parameters and the factor which

is determined by | m⊥ | / | Mp⊥ | to investigate the influence of spin diffusion on the

divergence of spin torque coefficients. In general, determination ofm⊥ requires numerical

solution. However, reducing to the case of two layers with in-plane magnetisation (the

case treated by Zhang, Levy and Fert [38]) it is straightforward to show that

| m⊥ | ∝ 1

(λ−4
sdl + λ−4

J )1/4

∝ λsdl

[1 + (λsdl/λJ)4]1/4
. (5.22)

Given the power law dependence on λsdl/λJ one expects a rapid transition between

regimes dominated by small λsdl or small λJ . Also,
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M = Mp +
∂M

∂x
∆x

M×M = M× (Mp‖ +Mp⊥) +M× ∂M

∂x
∆x

M×Mp⊥ = −M× ∂M

∂x
∆x

| Mp⊥ | ∝ | ∂M
∂x

| . (5.23)

To a first approximation this determines the magnitude of µx from equations (5.12) and

(5.18)

| m⊥ |
| Mp⊥ |

∝
λsdl, J

| ∂M/∂x |
. (5.24)

The above equation shows that at least the transport parameters and | ∂M/∂x |

strongly affect the validity of spin torque coefficients used in standard form of micro-

magnetic model, in particular because | ∂M/∂x | is spatially varying. Thus one arrives

at a simple criterion for determining the magnitude of the micromagnetic coefficients in

a way which should assist a more realistic comparison with experimental data at least

in terms of a qualitative comparison of magnetic (∂M/∂x) and transport (λsdl, J) prop-

erties. The influence of transport properties will be presented and discussed in more

details later.

As a result of divergence, the non-physical behaviour of the empirical constants µx

and βx brings into question the use of the standard micromagnetic spin torque formalism.

It strongly suggests that an approach based on the self-consistent solution of the spin ac-

cumulation and magnetisation is physically more realistic and, using the semi-analytical

theory, numerically attractive since the determination of spin accumulation is relatively

fast in relation, for example, to the determination of the local field. Subsequently, the

spin torque investigation will be addressed by applying the spin accumulation formalism

instead of using the spin torque coefficients as the following section.



5.3. Spin torque in domain wall structure 84

5.3.4 Spin torque

The effect of total spin torque component and the contribution of the adiabatic (AST)

and non-adiabatic torques (NAST) on the spatially continuous magnetisation in domain

wall with the same material parameters in the previous section are investigated here.

In this approach, equations (5.12), (5.18) and (5.19) allow to construct the spin torque

terms in the usual micromagnetic form, but from the calculated spin accumulation rather

than relying on empirical constants. Furthermore, the total spin torque is calculated as

a sum of the adiabatic and non-adiabatic torques shown in figure 5.9. Its behaviour

corresponds to the direction of magnetisation within domain wall. Therefore in this case

it can be concluded that the spins of conduction electrons follow the direction of the local

magnetisation known as an adiabatic process leading to AST. Figure 5.9 (a) shows clearly

that the components of AST orient in the plane of magnetisation of domain wall and

the maximum AST appears at the centre of the wall due to a strongly spatially varying

magnetisation, | ∂M/∂x |→ max, well consistent with previous studies [9,67,84,85] . It

is found that the AST becomes the dominant torque of the system as | STtotal |≈| AST |.

On the other hand, the NAST arising from the deviation of conduction electrons

from the adiabatic process acts on domain wall as another source of the external field.

The enhancement of NAST indicates the weak coupling between conduction electrons

and local magnetisation. Its magnitude is a few times smaller than that of AST as

illustrated in figure 5.9 (a) and (b). Nevertheless, it may give rise to the out-of-plane

domain wall observed from the appearance of the z component.

As can be seen in the results, both AST and NAST components are oscillatory

within the domain wall owing to the s-d exchange interaction causing a precession of

conduction electrons around the local magnetisation [85–88]. As depicted in figure 5.9

(c), the results seem to provide evidence that the total spin-transfer torque is significantly

dominated by the adiabatic torque consisting of x and y components, meanwhile the out-

of-plane component arises from the non-adiabatic torque.
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Figure 5.9: (a) Adiabatic spin torque (AST) (b) non-adiabatic spin torque (NAST) (c)

total spin torque (ST) at any position of the domain wall in the free layer



5.4. Effect of spin diffusion length (λsdl) 86

5.4 Effect of spin diffusion length (λsdl)

As mentioned earlier, the transport properties strongly influence the spin transport be-

haviour in the magnetic system. The spin accumulation is associated with not only the

relative orientation of magnetisation but also the length scale of λsdl and λJ . The fol-

lowing investigation will give useful insight into the effect of the spin diffusion length on

the spin transport behaviour: spin current, spin accumulation, spin torque parameters

and spin torque. It should be noted that the results in the rest of this chapter will be

demonstrated in the rotated basis coordinate system.

5.4.1 Spin current and spin accumulation

Before discussing the behaviour of the spin accumulation and spin current as a function

of the domain wall position, it is worthwhile to recall the formalism of spin accumulation

to understand its behaviour. It should be noted that the spin accumulation is defined as

m = n↑−n↓. The system is driven to an equilibrium value m∞ = n↑
eq−n↓

eq by the damp-

ing term as, −(m−m∞)/τsf , with the spin relaxation time of the conduction electrons

(τsf ). Therefore, this demonstrates that the spin diffusion length, proportional to the

spin relaxation time, plays an important role on the behaviour of the spin accumulation.

Here, let us consider the spatial evolution of spin accumulation and spin current

for multiple transport properties by varying the spin diffusion length while the length

scale of λJ representing the strength of the s-d exchange interaction is taken to be 4

nm [53]. As illustrated in figure 5.10, for small values of λsdl, the accumulation is able

to respond to the magnetisation, relaxing to the equilibrium value faster corresponding

to the stronger interaction between the conduction electrons and the magnetisation.

However, large values of λsdl result in the development of non-equilibrium values of m

on traversing the DW. Essentially, for large λsdl the spin accumulation and spin current

interact weakly with the local magnetisation; the results demonstrate that for large λsdl

the spin current and spin accumulation traverse the DW relatively unaffected. This is

reflected in the magnitude and nature of the spin torque as described in the following

section.



5.4. Effect of spin diffusion length (λsdl) 87

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  5  10  15  20  25  30  35  40

j m
,||

 / 
β 

j e
 

Layer number

10 nm
30 nm
60 nm

100 nm

 0.8

 0.85

 0.9

 0.95

 1

m
|| 

/ m
∞

, C
o 

 

2 nm
3 nm
4 nm
5 nm

Figure 5.10: The variation of spin accumulation and spin current as a function of the

position within the domain wall with various spin diffusion lengths between 2 and 100 nm

in the basis coordinate system

5.4.2 Adiabatic and non-adiabatic spin torques

As a result of spin accumulation, for large λsdl the transverse spin accumulation tends

to increasingly develop across the domain wall especially in the centre of the wall since

the spin accumulation deviates more from the equilibrium value. For convenience, the

adiabatic and non-adiabatic torques can be considered in the basis coordinate system.

Both AST and NAST arise from the transverse spin accumulation (m⊥) associated with

the constants k1 and k2 as shown in equation (4.14). It is noted that 1/l+ = (k1− ik2) =√
λ−2
sf − iλ−2

J and then it can be rewritten as follows

k1,2 =

√√√√±λ−2
sf +

√
λ−4
sf + λ−4

J

2

=
1√
2λsf

√
±1 +

√
1 + (λsf/λJ)4.
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Figure 5.11: The spatial variation of the adiabatic (AST) and non-adiabatic (NAST)

torques in the basis coordinate system: AST is in-plane spin torque along the basis b̂2

whereas NAST is out-of-plane torque oriented in the direction of basis b̂3.

Therefore, it is important to consider the ratio of λsf/λJ to describe the response

of spin torque in each regime. The oscillatory behaviour of AST and NAST can be

seen in the regime λsf > λJ whereas there is no oscillation of both torques in the regime

λsf < λJ . Consequently, the critical value of the spin relaxtion length can be determined

in the regime λsf = λJ . In the case of λJ = 4 nm, it is found that the critical value of spin

diffusion length (λsdl,crit) is about 3 nm, approximately consistent with λsf = λJ = 4 nm.

As displayed in figure 5.11, in the regime λsdl ≤ 3 nm both AST and NAST are relatively

small as the spin accumulation is well able to follow the local magnetisation and reaches

the equilibrium value with a short relaxation time. Furthermore, both torques tend to

increase with increasing spin diffusion length in this regime. Obviously, it is observed

that the transverse spin accumulation is mostly absorbed in the centre of the domain

wall resulting in the highest spin torque in this position.

For the critical spin diffusion length λsdl,crit = 3 nm the spin torque is relatively

small, with both AST and NAST terms of similar magnitude. However, with increasing
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λsdl, the adiabatic term quickly becomes dominant. In the regime λsdl ≥ λsdl,crit, spin

torque exhibits the oscillatory behaviour of AST and NAST. The oscillation of both AST

and NAST torques can be observed for large spin diffusion length. Also, the position in

domain wall where AST and NAST change in sign for any given spin diffusion length

corresponds to the phase angle as explained previously. The influence of spin diffusion

length on spin torque parameters a and b will be considered next.

5.4.3 Spin torque parameters a and b

The effect of spin diffusion length on the spin torque parameters a and b is investigated

and discussed here. Figure 5.12 shows the parameters a and b as a function of domain

wall position for different spin diffusion lengths. Both parameters appear to be nonuni-

form corresponding to the nonuniform gradient of magnetisation within the domain wall.

It also results in a nonuniform phase angle. These parameters are more nonuniform with

increasing spin diffusion length, λsdl > λJ .
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Figure 5.12: (top) The spin torque parameters a and (bottom) b as a function of the

position in the domain wall responsible for the adiabatic and non-adiabatic spin torques

for the system with different spin diffusion lengths
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As seen in figure 5.13, increasing spin diffusion length gives rise to increasing in

misalignment of transverse spin accumulation and transverse magnetisation as shown by

the spatial variation of phase angle θ. For small spin diffusion length, λsdl < λJ , the

phase angle tends to be uniform and small. In contrast, the large spin diffusion length

enhances the oscillation in the ratio of |m⊥|
|Mp⊥| and subsequently in spin torque parameters.

The coefficients µx and βx in the usual micromagnetic approach will be next discussed

to observe the effect of λsdl on the coefficient divergence.
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Figure 5.13: (top) The angle θm⊥Mp,⊥ between the transverse component of spin accumu-

lation and that of magnetisation in previous layer as a function of domain wall position

in the free layer with different spin diffusion lengths (bottom) The spatial variation of

ratio |m⊥|
|Mp⊥|

5.4.4 Coefficients βx and µx in the standard form of usual micromag-

netic approach

Consider first the behaviour of µx. In the first half of the DW, µx is essentially inde-

pendent of position. It is also noted that in this region, µx increases with λsdl, as will
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Figure 5.14: Spatial variation of spin torque coefficients µx and βx within DW in the

free layer for various spin diffusion lengths

be discussed further in section 5.5.1. This is consistent with the behaviour of the phase

angle θ and |m⊥|
|Mp⊥| from figure 5.13. However, after the centre of the DW, µx begins to

vary dramatically, an effect increasingly apparent for large λsdl. Similarly, for small λsdl,

βx is reasonably constant in the in the first part of the DW. For larger λsdl, βx exhibits

increasing spatial dependence, actually changing sign at large λsdl. It is also noted that

βx shows divergent behaviour at layer numbers dependent on λsdl. Claudio-Gonzalez et

al. [67] have noted divergent behaviour, which was ascribed to the spatial decomposition

of the spin accumulation. In this work it is found that the divergent behaviour is due to

the zero value of a.

These results suggest that the usual micromagnetic approach is, in general, un-

satisfactory for spin torque calculations. In the following sections I consider further the

validity of the usual micromagnetic approach, that is with constant µx and βx, by inves-

tigating the effect of the DW width. It is found that µx and βx can be taken as constant
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for magnetically soft material such as Fe, but this assumption is not valid for harder

materials such as Co and FePt.

5.5 Effect of domain wall thickness

In this section, the value of the uniaxial anisotropy constant is varied for a parametric

study of the effect of the DW width on the spin torque. The aim is to investigate the

spatial evolution of the spin accumulation and spin torque as a function of the DW

width, and also to investigate the limit of validity of the assumption of constant factors

for the AST and NAST. The anisotropy constant ranges from Ku to 100Ku where Ku is

the typical uniaxial anisotropy constant of cobalt, 4.2 × 105J/m3. This range includes

materials such as FePt and other hard magnetic materials such as SmCo5 and Nd2Fe14B.
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Figure 5.15: Domain wall width versus anisotropy constant: comparison between the

analytical solution and the numerical solution

To observe the uniaxial anisotropy dependence of the spin transport behaviour,

the formation of a Néel wall for different anisotropy is numerically calculated using the

atomistic model as explained earlier. Initially a calculation of the DW width is pre-

sented as a function of the uniaxial anisotropy constant in order to verify the atomistic

calculations in relation to the continuum (micromagnetic) theory. In figure 5.15, the

numerically calculated DW widths for different anisotropy constants are compared with

the analytical solutions calculated from equation (5.21) given by, δ = π
√

A/Ku. As
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expected the DW width decreases with increasing anisotropy constant and the numeri-

cal solution is consistent with the analytical result. This represents a useful test of the

atomistic model in its prediction of the static magnetic properties. Subsequently, the

equilibrium domain wall for various anisotropy constants is used for the spin accumu-

lation calculation. The anisotropy dependence of the spin transport behaviour can be

seen as follows.

5.5.1 Spin current and spin accumulation

Here the spin accumulation and spin current as a function of the DW width are in-

vestigated. The aim is to determine the effect of the magnetisation gradient, roughly

characterised by the inverse of the DWwidth on the spin mistracking effect. The evidence

of the breakdown of the assumption of constant µx and βx for high anisotropy materi-

als is also presented. I start by applying the modified formalism of spin accumulation

to the domain wall and then calculating the spatial longitudinal spin current and spin

accumulation as illustrated in figure 5.16. For convenience and clarity of representation

all results are presented in the rotated basis system.

As discussed previously, the spin accumulation relaxes with the characteristic

length scale of the spin diffusion length associated with the spin flip scattering toward

the direction of magnetisation. The results shown in figure 5.16 clearly suggest that the

spin mistracking is strongly dependent on the DW width. Recalling that the data are

presented in the rotated basis, any mistracking is apparent as a deviation from unity of

the normalised m‖ and jm,‖ values. With increasing anisotropy, there is a clear increase

in the mistracking resulting from the inability of the spin accumulation to follow the

increasingly rapid spatial magnetisation changes [85,89–92]. In summary, a large uniax-

ial anisotropy decreases the inability of conduction electrons to adiabatically follow the

strongly spatially varying magnetisation [93] causing the spin mistracking.

As previously mentioned, the domain wall width (δ) is a crucial parameter in

the spin transport behaviour. Therefore, it is worthwhile to consider the magnitude of

the transverse spin accumulation as a function of DW width, since the transverse spin

accumulation induces a spin torque acting on the local magnetisation given by
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Figure 5.16: The unixial anisotropy dependence of the longitudinal spin accumulation

and spin current: The spin diffusion length is taken as 60 nm.

| m⊥ | =
√

| m⊥,2 |2 + | m⊥,3 |2

= 2e−k1x
√

[u cos(k2x)− v sin(k2x)]
2 + [u sin(k2x) + v cos(k2x)]

2

= 2e−k1x
√

u2 + v2.

As shown in equation (4.18), the unknown coefficients u and v are expressed in terms

of λsdl/λJ and ∂m/∂x. However, it is found that the gradient of spin accumulation is

proportional to the gradient of spin current associated with the magnetisation gradient

as follows

∂m/∂x ∝ ∂jm/∂x

∝ ∂M/∂x

and then one obtains

| m⊥ | ∝ | ∂M/∂x | λsdl

[1 + (λsdl/λJ)4]1/4
. (5.25)
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Figure 5.17: (a) The magnitude of transverse spin accumulation as a function of 1/δ

associated with the gradient magnetisation (∇xM) and (b) that as a function of domain

wall width(δ)

The above equation shows that the transverse spin accumulation strongly depends

on the gradient of magnetisation within the domain wall, inversely proportional to the

domain wall width (1/δ). In figure 5.17, the magnitude of the transverse spin accumula-

tion at the center of domain wall is observed as a function of DW width and the gradient

of magnetisation via 1/δ. Interestingly, there is an indication of a linear variation for

small | m⊥ |, consistent with equation (5.25). However, the exploration of this region
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would require simulation of large DW widths, which is beyond the current investigation.

For a narrow DW, conduction electrons flow with spins largely undeviated across

the strongly spatially varying magnetisation (large∇xM) giving rise to a large transverse

spin accumulation. In turn, the transverse spin accumulation decreases with increasing

DW width resulting from a weak spin mistracking as depicted in figure 5.17 (a) and (b).

Interestingly, A saturation of transverse spin accumulation is observed at DW width

about δ ≈ λsdl = 3 nm due to the finite system size. The result implies that mistracking

of the conduction electrons with the local magnetisation increases significantly for smaller

DW width. Also, this result can be used to describe the spin torque exerted on a DW

as it originates from the transverse spin accumulation which will be shown in the next

section.

5.5.2 Spin-transfer torque

In figure 5.18, the total spin torque, AST and NAST are plotted as a function of DW

width. The effect of DW width on the adiabatic and non-adiabatic spin torques is larger

in a narrow wall due to the larger magnetisation gradient resulting from a strong uniaxial

anisotropy as expected. The contribution of AST is expected to prevail for a wide DW,

whereas the NAST is supposed to be more effective in the narrow wall. Obviously,

the oscillation of NAST about the DW centre can be observed for a very narrow wall

due to the abrupt change in local magnetisation consistent with the previous work in

Ref. [86,88]. As discussed in relation to the transverse spin accumulation in the previous

section, the explanation of the behaviour of spin torque created within the DW follows

from the fact that decreasing the DW width by increasing anisotropy leads to a stronger

mistracking of conduction electrons and magnetisation. Similarly to the effect of the

spin diffusion length, the AST is still the main contribution to the total spin torque.

In addition, the AST can be a few orders of magnitude larger than that in NAST

particularly in the regime of large anisotropy.
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Figure 5.18: Spatial total spin torque, AST and NAST within DW for different

anisotropy constants: Ku is the typical uniaxial anisotropy constant of cobalt, 4.2 ×

105J/m3.

5.5.3 Validity of the spin torque coefficients in usual micromagnetic

approach

The earlier results in sections 5.4 and 5.5 clearly show the effect of the spin diffusion

length and the gradient of magnetisation within DW on the spin transport behaviour. It

can be concluded that conduction electrons cannot reach equilibrium, that is collinearity

with the local magnetisation, within the spatial extent of the DW in a narrow wall with a

large spin diffusion length. However, the coefficients µx and βx are possibly applicable to
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a very wide DW of which width is comparable to λsdl. This results in uniform spin torque

coefficients as illustrated in figure 5.19. To study the criterion of applicability of the spin

torque coefficients in the usual micromagnetic approach, the static domain wall pattern

with a small anisotropy of Ku = 4.2 × 104 J/m3 is considered. This anisotropy value

gives rise to domain wall width of about 27 nm, much greater than the spin diffusion

length of 2 nm.
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Figure 5.19: Spatial variation of the spin torque coefficients within a wide DW with the

uniaxial anisotropy of 4.2× 104J/m3 and the spin diffusion length at 2 nm

As shown in figure 5.19, the spin torque coefficients tend to be uniform throughout

the DW. The effect of pinning as well as the finite size effect cause the kink at the

boundary of the DW. The results indicate that the spin torque coefficients used in

usual micromagnetic approach are probably applicable to describe the behaviour of spin

transport in the magnetic system with a large DW width and a small spin diffusion

length in the regime of λsdl < λJ . Nevertheless, the typical value of the spin diffusion

length is large, for instance, 60 nm for Co.
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Consequently, I also consider the criterion for the validity of spin torque coefficients

used in the usual micromagnetic model for a realistic system with a large spin diffusion

length, taken to be 60 nm. For comparison, the magnetic systems Fe, Co and FePt

of which the domain wall width are 200 nm, 18 nm and 4 nm respectively [94–98] are

investigated.
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Figure 5.20: The spin torque coefficients used in the usual micromagnetic model as a

function of x/δ: x is the position of the magnetic system and δ is the DW width.

The spin torque coefficients µx and βx of the magnetic systems Fe, Co and FePt

are plotted as a function of x/δ where x is distance from the centre of the DW and δ

is the DW width. As illustrated in figure 5.20, the spin torque coefficients used in the

micromagnetic model are applicable to describe the spin transport behaviour for the

case of δ > λsdl. For the case of Fe, the DW width is much larger than the spin diffusion

length giving rise to the uniform spin torque coefficients. This is because of the slowly

varying magnetisation within DW allowing the spin accumulation to closely follow the

magnetisation. Interestingly, the value of the coefficient βx becomes negative for this

soft material. The nonuniform coefficients can be observed in Co for which the DW
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width is smaller than the spin diffusion length. Interestingly, in the case of FePt, where

the DW width is much smaller than the spin diffusion length, the coefficients exhibit a

strong spatial dependence and a sign change in both µx and βx. Clearly, the spin torque

coefficients in the standard form are probably valid for the magnetic system of which

the DW width is larger than the spin diffusion length. For both the harder magnetic

materials, the variation of the coefficients, especially βx, becomes very significant.

5.6 Summary

In summary of this chapter, the possible way to calculate the spin torque parameters

a, b and coefficients µx, βx used to describe AST and NAST in the standard form of

the usual micromagnetic approach is studied. These spin torque parameters can be

calculated directly from the spin accumulation. The model developed here is applied to

the static domain wall pattern obtained from an atomistic model. It allows us to study

the behaviour of the conduction electron spins travelling across the DW. Interestingly,

it is found that the spin torque coefficients are spatially dependent and their divergence

can be significantly observed at a very small angle between magnetisation leading to a

tiny gradient of magnetisation. Therefore, it is strongly suggested to calculate the spin

torque directly from the spin accumulation instead. The investigations presented in this

chapter indicate an important limitation of the micromagnetic approach. It was shown

that µx and βx can be taken as approximately constant for DW widths comparable to

the spin diffusion length. Given typical values of λsdl of tens of nm, the micromagnetic

approach can only be justified for application to soft magnetic materials.

The proposed model will be more realistic in case that the diffuse interface is taken

into account in the model. The nature of the interface is an important factor in spin

injection and consequently in the phenomenon of spin torque but it still has received

little attention. Therefore, the inclusion of diffuse interface will be considered in the

following chapter.
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CHAPTER VI

Modelling of spin injection across diffuse interfaces

Injection of spin polarised current is of great interest for potential new spintronic

devices. In particular, the spin transport across interfaces has become increasingly im-

portant since the discovery of the giant magnetoresistance (GMR) and tunneling mag-

netoresistance (TMR). The GMR effect is associated with the spin-dependent scattering

both at the interfaces and within the magnetic layers [40,99–101] since the magnitude of

GMR is strongly dependent on the spin-dependent resistivity. The concept of spin injec-

tion across the interface between a ferromagnet and a non-magnet was first suggested by

Aronov [41] and experimentally observed by Johnson and Silsbee [42]. Injecting an elec-

tric current into a ferromagnet results in a spin-polarised current, which subsequently

flows across the interface into a non-magnet giving rise to a spin current in the non-

magnet and spin accumulation close to the interfacial region. The spin accumulation

diffuses into the nonmagnet from the interface with a length scale associated with the

spin relaxation time [47–49].

Clearly, the nature of the interface is an important factor in spin injection, and

consequently in the phenomenon of spin torque [67, 87], which relies on spin injection.

However, the effect of diffuse interfaces has received relatively little attention. Zhang,

Levy and Fert (ZLF) [38] studied the spin accumulation arising from the injection of a

polarised current produced by a pinned Ferro-Magnetic (FM) layer into a second FM

layer, which results in a discontinuity of the spin accumulation across the interface.

Shpiro, Levy and Zhang [53] used a similar formalism to develop a semi-analytical ap-

proach to diffuse interfaces in which the degree of continuity of the spin accumulation

was determined by an effective interface resistance.

In this work, I generalise these approaches in two important ways. Firstly, I use a

definition of the spin accumulation based on the spin-up and spin-down density of states

rather than deviations from the equilibrium value as detailed in chapter 4. While this

does not affect the spin torque it does provide a physically sound basis for the treatment

of interfaces between FM layers of different materials. Secondly a simple model of the
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behavior of diffused interfaces is proposed. The model is applied to the study of the

transmission of spin current and the development of spin accumulation between two FM

layers of different properties and also between FM/Non-Magnetic (NM) layers.

6.1 Model of the interfacial layer

6.1.1 Diffuse interface concentration profile

The structure of the interface between the different materials is modelled with the dif-

fused concentration profile. The interface region is considered as a layer where the

interdiffusion of species follows Fick’s law. For computational simplicity, the diffusion

in the magnetic system used in this work is one dimensional propagation, along the

x direction. The solution of Fick’s law suggested to describe the characteristic of the

interface is obtained by solving the following properties.

Fick’s first law : the diffusion flux (J) across the layer is proportional to the

concentration gradient.

J = −Dion
∂C

∂x
(6.1)

Fick’s second law : the concentration (C), which is time and position dependent,

can be expressed as a function of second derivative of the concentration gradient through

the ion diffusion constant (D).

∂C

∂t
= −∂J

∂x
∂C

∂t
= Dion

∂2C

∂x2
(6.2)

The system including the interface is divided into many thin layers each of thick-

ness tF , and using Fick’s law, I model the diffusion of the local magnetic ion concentration

for each layer i at any given position x of the system and over time t as

Ci(x, t;T ) =
tFC0√
πx0

· exp
[
−(x/x0)

2
]
. (6.3)

Here C0 is the initial atom concentration, x0 = 2
√
Diont, with Dion the ion diffu-

sion constant which depends on the system temperature. These parameters characterise

the width of the interface region (tIF ). The simple model assumes that the structure

is fabricated at elevated temperatures and consequently the width of the interface de-

pends on the deposition temperature (through Dion) and the time t. Here I treat x0 in
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a parametric study in order to investigate the effect of the interface diffusion on the spin

current and spin accumulation. The concentration profile can be obtained by using the

superposition of the local concentrations,

C(x, t) =
∑
i

Ci(x, t). (6.4)

To give an example, the system of ferromagnet and nonmagnet (FM/NM) is first

considered by dividing into many thin layers. Then the local concentration (Ci) equa-

tion (6.3) has been applied to each thin layer i with x0 = 0.2 nm as illustrated in

figure 6.1. Consequently, the total concentration (C) of the ferromagnetic ion at any po-

sition of the system can be achieved by using the superposition of the local concentration

in equation (6.4).
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Figure 6.1: The local and total concentration of cobalt atom at any position of the Co/Cu

system with x0 = 0.2 nm: Red lines show the contribution of the Co atom diffusion in

each layer. Blue square shows the net concentration of Co arising from the contribution

of all local concentrations.

Similarly, the concentration of the nonmagnetic ion (Cu) can be calculated in the

same way as Co. Figure 6.2 (a) shows the concentration of the Co and Cu atoms at any

position. In the interfacial region with the thickness of tIF , the interface mixing of the

Co and Cu atoms is enhanced. It is proportional to the width of the diffuse interface

which is controlled by x0.
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Figure 6.2: (a) The concentration of Co and Cu atoms at any position of the FM/NM

system with the thickness of the interface of tIF (b) The concentration of the Co ion at

any position with different width of interface controlled by varying x0

In experiment, the parameter x0 involved the ion diffusion constant (Dion) and the

time t can be measured via the thickness of interface. Therefore, it is possible to model

the interface region for a realistic system. Compared with the experimental results, the

ion concentration profile is a good method to describe the interdiffusion of ions in the

interface. The computational result as illustrated in figure 6.2 is consistent with several

experimental works [102–105]. To investigate the influence of the interface thickness on

the spin transport behaviour, the parameter x0 is varied giving rise to different width of

the interfaces as seen in figure 6.2 (b). In practice, the degree of intermixing, resulting

from controlling the ion diffusion between layers, could be governed by changing the

growth temperature [103, 106]. Evidently, increasing growth temperature broadens the

interface region.
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6.1.2 Transport parameters

Next, the calculated concentration profiles are used to model the spatial variation within

the interface of the transport parameters: the spin polarisations β, β′, the spin diffusion

length λsdl, the exchange s-d integral J and m‖(∞) as illustrated in figure 6.3. In this

initial study I make the simplifying assumption that the local parameters can be taken

as a linear combination of the bulk parameters weighted by the local concentrations.

Thus, for 2 materials (a, b) of a given structure,

P (x) = PaC(x)a + PbC(x)b, (6.5)

where P (x) is any transport parameter at position x. Pa,b is the transport parameter

of (a, b) and C(x)a,b is the concentration of each atomic species obtained from equations

(6.3) and (6.4).
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Figure 6.3: The transport parameters at any position of the system Co/Cu with x0 =

0.2 nm: The position x = 0 is the centre of the interface. The positions x < 0 and x > 0

show the layer of Co and Cu respectively.

6.2 Spin injection in FM/NM bilayers

To investigate the spin accumulation and spin current at any position, the modified

formalism in equation (4.1) has been employed for simulating spin transport in each

layer. The boundary condition is that the spin current is continuous across the inter-

face. ZLF [38] assumed an atomically sharp interface, giving rise to a discontinuity in

spin accumulation. Shpiro, Levy and Zhang [53] developed a semi-analytical approach
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to diffuse interfaces in which the effect of the interface on the spin accumulation was

incorporated through an effective interface resistance. Here, I calculate the spin accumu-

lation and spin current across the diffusive interface directly, and for different interface

thicknesses, which are controlled by varying parameter x0.

Figure 6.4: Schematic of the FM/NM bilayer (Co/Cu) with collinear magnetisation: The

magnitude of the magnetisation is gradully decreased in the interface region due to the

interdiffusion between Co and Cu ions.

We first consider the effects of diffuse interfaces in FM/NM bilayers as shown in

figure 6.4. The calculation starts with the layer discretisation and then the concentration

profile is calculated by employing equation (6.3). The transport parameters at any

position are shown in figure 6.3 using the values of m‖(∞) = 3.945×107 C/m3, β = 0.5,

β′ = 0.9 and λsdl = 60 nm for Co [53]. The spin polarisation of Cu is zero due to

N↑(EF ) = N↓(EF ) as shown in several works, for instance see Ref. [107]. This gives rise

to zero equilibrium value m‖(∞) = 0 and the spin diffusion length is taken to be 600

nm.

Subsequently, the spin accumulation and the spin current are investigated by

using the modified solution as described in chapter 4. The results for an FM/NM

bilayer are shown in figure 6.5 (a) and (b). Typically, in the modified solution, the

spin accumulation consists of longitudinal and transverse components. In this case no

transverse components of m and jm develop. It can be seen in figure 6.5 (a) that the spin

accumulation follows the direction of the magnetisation and the degree of continuity,

∆m ≡ m(0+) − m(0−), is governed by the “degree of interface mixing”. Specifically,

for x0 = 0, m is discontinuous across the interface(x = 0). With increasingly diffuse

interfaces characterised by large values of x0 the degree of discontinuity in m at x = 0

decreases.
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Figure 6.5: (a) The spin accumulation m and (b) spin current jm at any position of the

Co/Cu system with different x0: The position x = 0 is the center of the interface. The

positions x < 0 and x > 0 show the layer of Co and Cu respectively. m will eventually

decay to 0 in the NM for x > λCu
sdl . (c) The degree of the discontinuity of the spin

accumulation as a function of the interface thickness
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This is demonstrated in figure 6.5 (c), which shows the rapid decrease in the

discontinuity of m with x0. Importantly, even modest interface roughness of the order

of 1 monolayer is sufficient to ensure continuity of m. It is interesting to note the very

slow decrease of m and jm in the NM. This is consistent with a decay over the length

scale of the spin diffusion length of the nonmagnet, i.e., λCu
sdl = 600 nm in agreement

with a previous study [107].

6.2.1 Semi-analytical calculation

It is possible to simplify the formalism for a FM/NM bilayer where the magnetisation at

any point is collinear. This is an important special case since it relates to the injection

of a spin current into a non-magnet. In the following I develop an expression allowing

the direct semi-analytical calculation of the spin accumulation and spin current for this

geometry. In this case there are no transverse components of m, which remains parallel

to the magnetisation and of magnitude

m = m(∞) + [m(0)−m(∞)]e−x/λsdl . (6.6)

Because of the spatial variation of the transport parameters, equation (6.6) is not

convenient to express the overall spatial variation of m. Instead a local solution is sought

based on
dm

dx
=

−[m0 −m(∞)]

λsdl
e−x/λsdl . (6.7)

The spin current is given by

jm = βjeM− 2D0

[
dm

dx
− ββ′M(M · dm

dx
)

]
,

and for the case of m collinear with M this becomes

jm = βje − 2D0(1− ββ′)
dm

dx
. (6.8)

Consider the boundary condition at the interface which requires the imposition of

continuity of spin current, jm,i+1(0
−) = jm,i+1(0

+), where

jm,i+1(0
−) = βije − 2Di

0(1− βiβ
′
i)
dmi+1(0

−)

dx

jm,i+1(0
+) = βi+1je − 2Di+1

0 (1− βi+1β
′
i+1)

dmi+1(0
+)

dx
,
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Figure 6.6: Schematic of the numerical approach to the calculation of m for a FM/NM

bilayer. 0− and 0+ define values entering and leaving the interface.

and, the derivative of the spin accumulation at the interface

dmi+1(0
−)

dx
=

−[mi(0
+)−mi(∞)]

λi
sdl

e−tF /λi
sdl

dmi+1(0
+)

dx
=

−[mi+1(0
+)−mi+1(∞)]

λi+1
sdl

.

Therefore, one obtains;

mi+1(0
−) = mi(∞) + [mi(0

+)−mi(∞)]e−tF /λi
sdl (6.9)

mi+1(0
+) = −λi+1

sdl

[
(βi+1 − βi)je + 2Di

0(1− βiβ
′
i)

dmi+1(0
−)

dx

2Di+1
0 (1− βi+1β′

i+1)

]

=
(βi+1 − βi)jeλ

i+1
sdl

2Di+1
0 (1− βi+1β′

i+1)
+

Di
0(1− βiβ

′
i)λ

i+1
sdl

Di+1
0 (1− βi+1β′

i+1)λ
i
sdl

[mi+1(0
−)−mi(∞)]

(6.10)

Equations (6.9) and (6.10) allow to propagate the solution across a given layer and

into the next. Continuous application of the equations describes the variation of m and

subsequently jm for the entire structure. These equations allow a simple treatment of

the important case of spin injection from a ferromagnet into a nonmagnet. It is verified

that calculations using equations (6.9) and (6.10) reproduce the full numerical results in

figure 6.5, including the result that the spin accumulation after traversing the interface

is (in the approximations used here) independent of the interface width. This suggests

that the spin injection into a non-magnet is relatively unaffected by the variation in

transport properties due to interface diffusion, but may be increased by other factors

such as scattering at the interface, which could easily be introduced into the current
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approach. In addition, the continuity of the spin accumulation strongly depends on the

transport parameters of the materials in between the interface.

6.3 Spin injection in FM/FM bilayers

6.3.1 Collinear configuration

I now use the modified formalism to study the case of two collinear ferromagnets, each

having a different, and non-zero, value of m‖(∞). Specifically I investigate the spin

accumulation and spin current across a Co/NiFe interface with the magnetisation of

both layers collinear in the y direction. The concentration of Co and NiFe ions are

determined first using the solution of Fick’s law. The transport parameters at any

position are calculated as previously, and are shown in figure 6.7. The value of transport

parameters of Co and NiFe are taken from Ref. [53]. For NiFe the transport parameters

are used as the following values β = 0.7, β′ = 0.95 and λsdl = 5 nm.
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Figure 6.7: The transport parameters at any position of the system of two ferromagnets

(Co/NiFe) corresponding to the concentration profile with x0 = 0.1 nm

Importantly, the nonzero equilibrium values of spin accumulation of Co and NiFe

are calculated by employing equation (4.8) from ab-initio information provided by Dr.

R Cuadrado. The fcc and bcc lattice parameters of the Co and NiFe bulk, respectively,

are used in this work as the following values: aCo=3.46 Å and aNiFe=2.72 Å. In figure 6.8

the DOS of both materials are shown, and as relevant main characteristic for this study,

one can observe that the values of the minority-spin states at the Fermi level are higher

than the majority-spin ones in both cases which are in good agreement with the work
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of Park et al. [62]. The calculated values are: N↑(EF )−N↓(EF ) = 1.02 states/eV·atom

and N↑(EF ) − N↓(EF ) = 1.41 states/eV·atom or m‖(∞) = 3.945 × 107 C/m3 and

m‖(∞) = 1.118× 108 C/m3 for Co and NiFe respectively. As a result in figure 6.7, the

equilibrium value, m∞, at any position of the system is likely to vary from the value of

Co to the value of NiFe.
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Figure 6.8: (a) Spin density of states of Co and (b) NiFe bulk provided by Dr. R

Caudrado [61,62]

Let us consider x0 = 0.1 nm. As shown in figure 6.9, the spin accumulation

increases in NiFe, reflecting its higher spin polarisation. Also, the spin current increases

in the NiFe layer because of the high spin polarisation β of the conductivity in NiFe.

In addition, both spin accumulation and spin current reach the equilibrium values in

the second ferromagnet (NiFe) over the spin diffusion length. This increase in m in

NiFe is accessible only on the introduction of the modified damping term in equation

(4.1) allowing the evolution to a non-zero value of m‖(∞), consistent with treating the
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spin accumulation as the difference of the spin up and spin down density of states.

The formalism allows the complete description of any multilayer system including the

polarising effect of a pinned layer on an incoming non-polarised current.
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bilayer system

6.3.2 Non-collinear configuration

Finally let us illustrate the components of spin accumulation induced by a non-collinear

structure in a Co/NiFe bilayer as shown in figure 6.10 by injecting a spin current, je =

5 × 1011 A/m2, along the x direction. The magnetisation in Co and NiFe layers are

oriented at 60◦ and the magnetisation direction rotates linearly in the interface region.

The magnetisation of Co is in the y direction, whereas that of NiFe is in yz plane.

The magnetisation profile can be seen in figure 6.11 (top) and the width of interface is

approximately 0.325 nm.

The spin accumulation at any position of the non-collinear system is possible to

be calculated using the proposed model including the diffuse interface as previously. It

can be seen in figure 6.11 (bottom) that the spin accumulation follows the direction of

magnetisation as the y and z components develop. Interestingly, the y component of

spin accumulation is oscillatory in the interfacial region arising from the appearance of

the x or out-of-plane component of the spin accumulation. The oscillation decreases

with decreasing the angle between magnetisations in Co and NiFe.
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Figure 6.10: The non-collinear magnetisation configuration in a Co/NiFe system: Mag-

netisation in NiFe layer is oriented at 60◦ of that in Co layer.
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Figure 6.11: (top) The non-collinear magnetisation configuration in a Co/NiFe system

with 60◦: The direction of magnetisation in the interface region gradually rotates to 60◦

compared with that in Co layer. (bottom) The spin accumulation at any position of the

system

The out-of-plane component of spin accumulation tends to develop from the inter-

face and decays to zero over the length scale at 10 nm which is the transverse relaxation

length. It is very small compared with the in-plane component but significant. Note that

the spin-transfer torque created on the local magnetisation arises from the transverse
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component. Therefore the x component of the spin accumulation gives rise to the spin

torque in the interfacial layer. Subsequently, the spin torque at any position of the system

is calculated directly from the transverse spin accumulation (m⊥), ST = J(M ×m⊥).

The component of the spin torque is illustrated in figure 6.12 (bottom). The maximum

value of the spin torque exists in the interface corresponding to the angle between mag-

netisation and spin accumulation (θMm) as shown in figure 6.12 (top). It becomes zero

at about 10 nm corresponding to the transverse relaxation length. The contribution of

the y and z components is regarded as the “adiabatic spin torque” and the out-of-plane

component, x, is referred to the “ non-adiabatic spin torque”.
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Figure 6.12: (top) The angle of magnetisation between layers(θMMp) and that be-

tween magnetisation and spin accumulation(θMm) (bottom) The component of total

spin-transfer torque at any position of the non-collinear structure

Importantly, out of the interface region x > 0.1625 nm, the magnetisations be-

tween discretisation layers are oriented in the same direction. In principle, the spin

torque should be zero in this region since it is calculated from the following equation,

ST = J(M×m⊥) = a(M× (Mp ×M)) + b(M×Mp).

As the above equation, the spin torque can be obtained in 2 alternative ways: it is
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calculated directly from the spin accumulation which I suggested and from the coefficients

a and b as in the previous study [12,13,38,63]. The coefficients a and b are not significant

for the collinear magnetisation as M × Mp = 0, leading to zero spin-transfer torque.

This formalism is used to estimate the spin torque in the magnetic system under the

assumption that the spin accumulation completely follows the magnetisation direction

for the collinear magnetisation. In other words, the collinear magnetisation, M//Mp,

results in the collinear between M and m, M ×m⊥ = 0. In this study (chapter 5), it

is found that the spin torque calculated from the coefficients a and b is not appropriate

to describe the behaviour of the spin transport especially in the system with gradual

variation of magnetisation in the interface.

6.4 Summary

In conclusion, the equation of spin accumulation is generalised to describe its behavior at

any position within a magnetic multilayer and the effect of interface diffusion is modelled

using Fick’s law. The model was applied to study ferromagnet/non-magnet (FM/NM)

bilayers as well as between two ferromagnets (FM/FM). In the case of FM/NM bilayers a

simple semi-analytic approach of the spin accumulation was formulated. This approach

links the behavior of spin accumulation at the interface, in a physically transparent way,

to a degree of interface mixing determined by known physical parameters, principally

the ion diffusion constant Dion. It is found that relatively modest amounts of interface

diffusion give rise to continuity of m. Importantly, this formalism allows to directly

simulate the sharp variation of m due to the interface.

Now, the spin transport behaviour within the domain wall explained in chapter 5

and the inclusion of the diffuse interface discussed in this chapter are well understood.

Next, it is essential to study the spin transport behaviour with time evolution as it

is extensively applied to the spintronic devices based on current-induced domain wall

motion. The detail will be discussed in the following chapter.
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CHAPTER VII

Magnetisation dynamics including the effect of spin torque

The manipulation of magnetisation using a spin-polarised current, the so-called

“current-induced domain wall motion” has been intensively studied [9–17] due to possible

applications in DW-based magnetic devices such as race-track memory [108, 109] and

logical operation in devices such as magnetic random access memory (MRAM) [110,111].

The key advantage of this technique is that the current-induced magnetisation reversal

can be confined to a small spatial area leading to many potential applications and the

possibility to reduce the size of devices, unlike the conventional technique of field-induced

domain wall motion. Therefore, this chapter will deal with the topic of how to control the

magnetic domain wall by means of spin injection. It will become necessary to understand

the dynamics of magnetisation in the presence of spin-transfer torque extending from

chapter 5 which explains the mechanism of spin transport in the static domain wall

pattern.

The first part of this chapter will outline the implementation employed here to

observe the dynamics of magnetisation within a domain wall. The appearance of spin-

transfer torque is taken into account in the atomistic model via the s-d exchange inter-

action between the spin accumulation and the local magnetisation as an additional field.

The usual Landau-Lifshitz-Gilbert (LLG) equation of motion at the atomistic level is

then modified by including the effect of the spin transfer torque. The second part will

provide the details of numerical technique used in this work to investigate the response

of the magnetisation within domain wall in the application of spin injection with time

evolution.

The final part of this thesis will mainly deal with investigating the magnetisation

dynamics of a bilayer magnetic system consisting of two ferromagnets separated by

a nonmagnetic spacer layer in the presence of spin-transfer torque. In this work, I

investigate not only the effect of the spin polarized current on the dynamics of the

magnetisation in a single domain wall of the free layer, but also the complicated dynamic

behaviour of the response of the domain wall displacement due to the spin transfer
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torques. Furthermore, current-induced domain wall motion is studied by injecting a

current with different magnitudes perpendicular to the plane of the bilayer system. This

allows the investigation of effects such as the critical current density (the minimum spin

current required to move the domain wall), the domain wall displacement, domain wall

velocity, domain wall width as well as the degree of nonadaibaticity. All details will be

discussed as the following.

7.1 Basic idea of current-induced domain wall motion

The current-induced domain wall motion can be simply explained in the head-to-head

domain wall pattern as shown in figure 7.1. It is noteworthy that the magnetic domain

is the region within which all elementary magnetic moments align in the same direc-

tion. Therefore, the DW is the transition region between two magnetic domains. As

can be seen in the figure below, the arrow in the DW shows the direction of the local

magnetisation and its direction gradually changes throughout the DW.

Figure 7.1: Schematic illustration of current-induced DW motion: (a) A head-to-head

DW pattern (b) The spin of conduction electron follows the direction of the local mag-

netisation due to s-d exchange interaction. (c) As a result of the reaction torque acting

on the local magnetisation, the local magnetisation is reoriented and consequently the

DW is displaced by injecting spin current. [112].
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The mechanism of the spin-transfer torque in slowly varying magnetisation struc-

ture, i.e., domain wall, starts with injecting the spin current carried by the conduction

electron into the magnetic domain wall. It then flows through the DW resulting in the s-

d exchange interaction between spin current and local magnetisation. As a consequence,

spin-transfer torque acts on the spin current to adiabatically align itself in the direction

of local magnetisation. Simultaneously, a reaction torque proportional to the spin cur-

rent density is created on the local magnetisation within DW causing the magnetisation

reorientation as illustrated in figure 7.1. In the case of a sufficiently large spin current

density, domain wall can be translated easily in the direction of the electron flow [112].

7.2 Atomistic model

I will begin with discussion of the atomistic model underlying the spin-transfer torque

effect. To model the magnetic system including the effect of spin-transfer torque, it is

important to first consider the classical spin Hamiltonian used to describe the energetics

of magnetic system and then the modified usual LLG equation, modelling approach to

describe the dynamic motion of magnetisation at an atomistic level, will be derived.

Finally, the numerical technique used to investigate the dynamic behaviour will be de-

tailed.

7.2.1 Classical spin Hamiltonian (H)

The spin system is modelled using a classical spin Hamiltonian, with the parameters of

cobalt. The classical spin Hamiltonian using the Heisenberg (H) form of exchange can

be written as follows [113]

H = Hexc +Hani +Happ, (7.1)

denoting terms for the exchange interaction, magnetic anisotropy and externally applied

magnetic field respectively. The contribution of each term to the total free energy are

given as the following.

7.2.1.1 The exchange interaction and energy

The interaction between magnetic moments in a magnetic system can be classified into

three main types: direct exchange, indirect exchange and superexchange. In this work,
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the short-range exchange interaction will be included in the Heisenberg form. The ex-

change energy for the system of interacting atomic moments can be represented by the

Heisenberg Hamiltonian form summing over the nearest neighbours only as follows

Hexc = −
∑
i6=j

JijSi · Sj (7.2)

where Jij is the nearest neighbour exchange integral between the spin site i and j, Si is

the local normalised spin moment and Sj is the normalised spin moment of neighbouring

atom at site j. The normalised spin is taken from the actual spin moment, Si = µs/ | µs |.

Importantly, the sign of the exchange integral significantly corresponds to the

orientation of neighbouring spins with minimum exchange energy. According to the

Bethe-Slater curve [82, 83], Jij > 0 for ferromagnetic materials where neighboring spins

align in parallel, for instance, Fe, Co and Ni. For anti-ferromagnets the spins prefer to

align anti-parallel, Jij < 0. The exchange energy results in the magnetic ordering mean-

while the preferred direction of spin moments is dominated by the magnetic anisotropy

which will be presented as the following.

7.2.1.2 The magnetocrystalline anisotropy energy

The intrinsic property of the material playing an important role in the shape of the

hysteresis loop is magnetic anisotropy. In principle, there are several kinds of anisotropy,

but only intrinsic anisotropy known as magnetocrystalline anisotropy will be considered

here. Its effect arises from the interaction between the spin and orbital motion of each

electron, which generally favours lying in a specific lattice direction in the absence of

external field, a so-called easy direction [83].

The most common form of anisotropy in the materials of interest is uniaxial

anisotropy, where the spin moments tend to align along a single axis, namely the easy

axis (e). It is found that the anisotropy energy depends only on the relative orientation

of the magnetisation with respect to easy axis. For uniaxial anisotropy the energy can be

written as a function of the angle θ between magnetisation and easy axis in the following

form.

Hani = K0 +K1sin
2θ +K2sin

4θ + . . . (7.3)

whereK0, K1, K2, . . . are the anisotropy constants which measure the strength of anisotropy

with the dimensions of energy per unit volume (J/m3).
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From the expansion in equation (7.3), the first term is usually ignored due to its

angular independence and the small higher order terms in this series can be neglected.

Therefore the anisotropy energy can be simplified to

Hani = K1sin
2θ (7.4)

but cos θ = S · e, where S is normalised spin and e is the unit vector of easy axis. Also

K1 in the above equation represents the uniaxial anisotropy, therefore one can substitute

K1 with Ku as follows

Hani = Kusin
2θ = Ku(1− cos2θ)

= Ku(1− cos2θ) = Ku(1− (S · e)2)

= Ku −Ku(S · e)2.

The first term of above equation can be negligible as it is angular independent.

Subsequently, the uniaxial anisotropy of the magnetic system at the atomistic level can

be consider by summing the anisotropy of all spins given by

Hani = −Ku

∑
i

(Si · e)2 (7.5)

where Ku is the anisotropy energy per atom.

7.2.1.3 The applied field energy

In the case of the magnetic system subject to the external applied field denoted as Happ,

the interaction between the magnetic system and the external applied field arises. This

interaction energy is referred to as Zeeman energy given by

Happ = −µs

∑
i

Si ·Happ (7.6)

In equation (7.1), the spin Hamiltonian represents the energies in the magnetic

system including the exchange energy in the first term, the anisotropy energy and the

external applied field respectively. It can be rewritten by substituting equations (7.2)-

(7.6) into equation (7.1), then the final form of spin Hamiltonian is given by

H = −
∑
i6=j

JijSi · Sj −Ku

∑
i

(Si · e)2 − µs

∑
i

Si ·Happ. (7.7)
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Besides the energetics of the magnetic system provided in the spin Hamiltonian,

the demagnetising field and the thermal fluctuation field should be taken into account

in the model. The inclusion of the demagnetising field is determined separately in order

to reduce the computational time for the large-scale atomistic calculation by using a

technique developed by Boerner et al. [114] based on a macrocell approximation. As the

thermal fluctuation is temperature dependent, the Langevin Dynamics [83, 115] will be

used to include the effect of temperature to the model. The demagnetising field and ther-

mal field will be detailed in the following sections although this work will concentrate on

the current-induced domain wall motion with athermal case. The nonzero temperature

case will be studied comprehensively for future work.

7.2.1.4 The demagnetising energy

The demagnetising energy is connected with the magnetic created by the magnetic body

itself. The dipole consisting of the north and south poles is established on the mag-

netised body generating magnetic fields both inside and outside itself. In general, the

demagnetising or dipolar field arises in the opposite direction to magnetisation and its

value depends on the geometry of the magnetic body. The demagnetising energy can

be calculated by an integral over the volume (V ) of the magnetic body as the following

equation [83,116]

Hdip = −1

2

∫
M ·HddV (7.8)

where the demagnetising or dipolar field is defined as Hd = −NdM, Nd is demagnetising

factor which is dependent on the shape of material, µ0 is permeability of free space and

M is the unit vector of the magnetisation.

In general, the demagnetising energy at position r of the magnetic system arises

from the contribution from all the other magnetic moments and from itself. However,

in the small and symmetric magnetic systems consisting of a single domain, the self-

demagnetising field is often neglected. Therefore, in this work the demagnetising field

contributed from all the other magnetic moments is calculated. The calculation of de-

magnetising field is time consuming due to the long-ranged interaction. In the following,

the calculation of the demagnetising energy is considered based on the technique devel-

oped by Boerner et al. [114] to accelerate the calculation.
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Figure 7.2: Schematic representation of the supercell approach used to calculate the

demagnetisation field: The system is discretised into many supercells. Each supercell

consisting of several spins is represented by the averaged moment.

This approach proceeds by first dividing the thin sample into many small cells

known as a “supercell”. The magnetic moment in each supercell is then calculated by

averaging over the spins within the cell. Finally, the averaged moments are used to

calculate the local dipolar field within each cell which is taken as representative of all

spins within that cell as shown in figure 7.2. The demagnetising energy expressed in

terms of the contribution from all the magnetic moments is given by

Hdip,i = −
∑
j 6=i

[
3(~µi · ~rij)(~µj · ~rij)

|~rij |5
− ~µi · ~µj

|~rij |3

]

where ~µi is the magnetic moment of a supercell site i, ~µj is the magnetic moment of

a supercell site j and ~rij and and | ~rij | are the vector and the distance between the

supercells i and j respectively. But a unit vector between supercells is rij =
~rij
|~rij | , and

then substitute into the above equation as follows

Hdip,i = −
∑
j 6=i

[
3(~µi · rij)(~µj · rij)− ~µi · ~µj

|~rij |3

]
.

The demagnetising or dipolar field can be calculated as the first derivative of the

dipolar interaction energy (Hdip,i) with respect to the magnetic moment i therefore

Hdip,i = −
∂Hdip,i

∂~µi
=
∑
j 6=i

[
3(~µj · rij)rij − ~µj

|~rij |3

]

but the magnetic moment in the supercell site j is ~µj = µsµj , then the dipolar field of

the supercell site i can be written as the following
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Hdip,i = µs

∑
i 6=j

[
3(µj · rij)rij − µj

|~rij |3

]

where µs is the magnitude of the spin moment and µj is a unit vector of the magnetic

moment of the supercell site j.

The above expression is the dipolar field in CGS units, therefore the dipolar in-

teraction field strength can be written in the SI unit of tesla as

Hdip,i =
µ0µs

4πa3

∑
i6=j

[
3(µj · rij)rij − µj

|~rij |3

]
(7.9)

where µj =
natom∑
i=1

Si is a unit vector of the magnetic moment in the supercell site j which

is found from the summation of spin moments in the supercell j, µ0 is the permeability

of free space, a is the atomic lattice spacing, |~rij | is the distance between the supercell

sites calculated from their integer coordinates and natom is the number of atoms in each

supercell.

7.2.1.5 Thermal field

The thermal fluctuation of the spin moments arising from the effect of temperature can

be taken into account in the atomistic model using Langevin Dynamics in the formalism

of Brown [115], under the assumption that the inclusion of temperature can be repre-

sented by a random field term [117–121]. The introduction of the thermal fluctuation

into the atomistic model enables to study the ferromagnetic-paramagnetic transition.

The statistical properties of the fluctuation field (Hi
th(t)) represented by a Gaussian

distribution are given by the following equation〈
Hi

th(t)
〉

= 0〈
Hi

th(t)H
j
th(t

′)
〉

=
2αkBT

µsγ
δijδ(t− t′), (7.10)

where i, j are the Cartesian components, Hth is a random field with the Gaussian

fluctuations, 2αkBT/(µsγ) is the factor measuring the strength of thermal fluctuation,

kB is the Boltzmann constant, T is the system temperature in Kelvin, α is the damping

parameter describing the coupling of the spin system to the heat bath phenomenologically

and γ is the absolute value of the gyromagnetic ratio. In this thesis I use γ = 1.76 ×

1011s−1T−1 and the units of µs are in JT−1.
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To observe the spin dynamics including the effect of temperature in the atomistic

model, the thermal fluctuation is represented by a Gaussian distribution Γ(t) in three

dimensions with a mean of zero. The thermal field on each spin site i at each time step

(∆t) can be calculated as follows

Hi
th(t) = Γ(t)

√
2αkBT

γµs∆t
. (7.11)

Consequently the effective local field which includes Zeeman, exchange, anisotropy,

demagnetisation contributions and a random thermal field acting on the spin site i in

the atomistic model is given by

Hi
eff = − 1

µs

∂H
∂Si

+Hdip,i +Hi
th , (7.12)

where H denotes the spin Hamiltonian as seen in equation (7.7),

H = −
∑
i6=j

JijSi · Sj −Ku

∑
i

(Si · e)2 − µs

∑
i

Si ·Happ.

In the following section, the atomistic simulation will be outlined. The energetics

of the magnetic system will be described by using the spin Hamiltonian as mentioned

previously. The effect of spin-transfer torque will be represented as an additional field.

Therefore, all possible fields acting on the spin will be linked with the standard Landau-

Lifshitz-Gilbert (LLG) equation to investigate the dynamics of spin moments in the

introduction of spin-transfer torque. It is noted that the rest of this work will only

investigate the effect of spin-transfer torque on DW motion at zero temperature as the

following details.

7.2.2 Introduction of the spin-transfer torque

To investigate the effect of the spin-transfer torque in the atomistic model, the s-d model

is used to present the a qualitative description of the spin-transfer torque acting on the

spin moment via the spin accumulation. The exchange energy due to the s-d exchange

interaction of the spin accumulation and the local spin moment can be described as,

Hsd = −Jm · S, where J is the s-d exchange integral. The effect of the spin torque on

the dynamic motion of spin moment can be accounted into the standard Gilbert form

as an additional field, Jm, given by [38,52,53]

∂S

∂t
= −γS× (Heff + Jm) + αS× ∂S

∂t
. (7.13)
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For convenient numerical integration, equation (7.13) can be converted into Landau-

Lifshitz-Gilbert (LLG) form, giving the final form

∂S

∂t
= − γ

(1 + α2)
S× (Heff + Jm)− γα

(1 + α2)
[S× (S× (Heff + Jm))] ,

(7.14)

where γ is the absolute gyromagnetic ratio, α is the damping constant, S is the local

normalised spin and Heff is the effective field contributed from the exchange field, the

anisotropy field, the external applied field, thermal field as well as the demagnetising

field as mentioned previously.

According to equation (7.14), the first and second terms represent the precessional

and damping motions of the spin moment respectively. The local effective field Heff leads

to damped precessional motion into the direction of the local effective field. Interestingly,

the additional field due to the presence of the injected spin current, Jm, gives rise to the

contribution of adiabatic and non-adiabatic torques. This term describes the spin torque

effect on the spin motion and indicates that the additional field due to the spin-transfer

torque can be another source of precessional and damping terms [12,40].

Figure 7.3: Schematic representation of the spin-transfer torque consisting of the AST

and NAST in the rotated basis system

To calculate the adiabatic (AST) and non-adiabatic spin torques (NAST), let us

consider the rotated basis system in which the spin moment in the current layer (S) is

along b̂1 direction whereas that in the previous layer (Sp) is oriented in the plane b̂1b̂2.

In this basis system as shown in figure 7.3, the adiabatic and non-adiabatic torques can
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be determined from the total spin torque via s-d exchange interaction as follows

ST = S × Jm

= b̂1 × J(m‖b̂1 +m⊥,2b̂2 +m⊥,3b̂3)

= −Jm⊥,3b̂2 + Jm⊥,2b̂3. (7.15)

As previously mentioned in chapter 5, the AST is the in-plane torque whereas the

NAST is introduced as the field-like torque or the out-of-plane torque. Therefore, the

spin moments in the rotated basis system as illustrated in figure 7.3 result in the AST

and NAST along the directions of b̂2 and b̂3 respectively. As a consequence, the AST

and NAST in the rotated basis system are given by

AST = −Jm⊥,3b̂2

NAST = Jm⊥,2b̂3. (7.16)

The above equation shows that the AST and NAST can be achieved directly via

the spin accumulation. Subsequently, the dynamics of spin motion including the effect

of the spin-transfer torque can be investigated by employing equation (7.14). Various

numerical techniques [122–125] have been developed to solve the LLG equation in the

presence of the spin injection. In this work, the Heun scheme will be used to investigate

the spin motion as described in the following.

7.2.3 Numerical technique

The dynamics of spins in the presence of the spin-transfer torque can be observed by

means of the standard LLG equation with the additional field due to spin torque as

shown in equation (7.14). Due to the nonlinear behaviour, it is necessary to solve this

equation numerically as the analytical solutions cannot be derived in the general case.

Primitively, Euler’s method is commonly used for the time integration of LLG equation

by considering the spin motion in a single discretised time step, ∆t. It assumes a linear

change in the spin direction in each time step. The predicted point considered by the

Euler’s method can be underestimated or overestimated therefore a small time step is

required in order to get small error. However, even if the small time step is used, not

only does the computational cost tend to increase but also the numerical error starts to

accumulate due to a large number of time steps [113].
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In this work, I will apply the Huen scheme which is an improved integration

scheme. To reduce the error of Euler’s method and to allow the use of a larger time

step, a predictor-corrector algorithm will be applied. It starts with predicting the new

spin direction in the next time step based on the standard Euler integration referred as

“predictor algorithm” given by

St+1,Euler = St +∆tS′
t (7.17)

and the derivative of spin moment at time t is as follows

S′
t =

−γ

(1 + α2)
[St ×H+ αSt × (St ×H)] (7.18)

where the effective field including the additional field due to spin-transfer torque is

H = Heff + Jm⊥.

It should be noted that the new spins are renormalised after both the predictor

and corrector steps since the Huen scheme does not preserve the spin unit vector length.

Also the effective field and the spin torque field must be recalculated as the spin positions

have changed. Subsequently, the predicted spin position and revised local effective field

(Hnew) are used to calculate the final spin position, a so-called “corrector algorithm”.

The correction of predicted spin position is performed in the Heun scheme by using the

average derivative at the old spin(S′) and new spin(S′
t+1,Euler) positions to obtain more

accurate direction of the spin moments as the following

St+1,Heun = St +
∆t

2
[S′

t + S′
t+1,Euler] , (7.19)

where

S′
t+1,Euler =

−γ

(1 + α2)
[St+1,Euler ×Hnew + αSt+1,Euler × (St+1,Euler ×Hnew)] .

The Heun scheme is a simple but powerful numerical technique. In a complete

integration time step, every spin moment in the magnetic system is simulated. The

dynamic motion of spin moments can be investigated by repeating the predictor-corrector

algorithm for the system many times.
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7.3 Current-induced domain wall motion

In this work, the dynamics of magnetisation in the bilayer system consisting of two

ferromagnets (FMs) as explained in Sec. 5.3.1 is investigated. The current-induced

domain wall motion can be studied by injecting a spin current perpendicular to the

plane of the bilayer. In this computational study, the investigation is presented in two

sections. Firstly the effect of the spin transfer torque on the domain wall dynamics,

the time evolution of domain wall displacement as well as DW velocity is investigated.

Furthermore, the effect of the current density (je) is also studied by injecting a current

with different magnitudes. This allows the investigation of the critical current density

which is the minimum spin current required to move the domain wall. Secondly, the

effect of DW width on the time evolution of the DW displacement and DW velocity is

then considered.

7.3.1 Time evolution of magnetisation and spin torque

A bilayer structure is modelled with the dimension of the free layer of 60×30×1.5 nm3.

As mentioned earlier, in order to calculate the spin accumulation and spin torque the

system is discretised into cells with a size of 1.5 × 1.5 × 1.5 nm3. A domain wall is

forced into the free layer by fixing the antiparallel magnetisation at the boundaries as

illustrated in figure 7.4. The DW profile is transverse the xy plane.

Figure 7.4: The tail-to-tail domain wall contained in the second ferromagnet of the bi-

layer system with the uniaxial anisotropy constant of Ku = 2.52×106 J/m3: The arrows

indicate the direction of magnetisation. The magnetisation along the y direction is rep-

resented by blue color. In contrast, the red color shows the orientation of magnetisation

in the −y direction.
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Figure 7.5: Schematic representation of the magnetisation component with time evolu-

tion from 0 ns to the equilibration time of 0.6 ns: The current density injected into the

bilayer system containing the DW is 50 MA/cm2.

The first investigation of interest is the effect of the spin-transfer torque on the

domain wall motion by introducing the current density of 50 MA/cm2 into the bilayer

system. The current-induced domain wall motion can be observed through the compo-

nent of magnetisation. As depicted in figure 7.5, the variation of magnetisation with

time is investigated in order to understand the effect of the spin-torque. In the absence

of the spin-transfer torque at t = 0 ns, the DW is situated centrally and the position of

the DW centre is defined by the maximum magnetisation of the x component and zero

of the y component. The DW initially moves when the spin current is injected above
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the critical value. DW has the translational motion into the right which is the direction

of the injected current and it tends to stop moving at the equilibration time t = 0.6 ns

with the finite DW displacement. Specifically, an out-of-plane or z component slightly

develops during the propagation time. Its appearance comes from the fact that the do-

main wall interacts with the strong pinning site. It is evidence of DW deformation due

to interaction with the pinning site.

Figure 7.6: Visualisation of the current-induced domain wall motion with time evolution

from 0 ns to the equilibration time of 0.6 ns with the current of 50 MA/cm2
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It is also illustrative to investigate the domain wall motion driven by the spin-

transfer torque via the visualisation as demonstrated in figure 7.6. This figure shows

the top view of the spin direction at the atomic resolution. The blue and red colours

represent the spin direction along y and −y directions respectively. The white area

indicates the domain wall region. For this current density, it is found that the domain

wall is slightly displaced from the initial position and the domain wall width does not

decrease. This is because the spin current density is not sufficiently high.

In order to investigate the origin of the oscillatory behaviour, the current density

injected into the DWmust be high enough. Therefore, a current density of 1000MA/cm2

is chosen. The magnetisation component at the initial DW centre at layer number of

20 is investigated in its time evolution after the introduction of the spin-transfer torque.

Figure 7.7 clearly shows that the spin-transfer torque acting on magnetisation causes

the deformation of DW leading to precessional motion of x and z components. This is

the precession of the equilibrium magnetisation about the effective field determined by

the interaction with the pinning site.

Also, it is interesting to consider the time variation of the spin-transfer torque

naturally including the adiabatic and non-adiabatic torques to understand its evolution.

The x and y components of the spin torque are regarded as the adiabatic torque tending

to develop towards the direction of magnetisation meanwhile the z component of spin

torque arises from the contribution of the non-adiabatic torque or the out-of-plane torque.

The spin torque acting on the local magnetisation due to the spin-polarised current

results in the translation of the DW. As a consequence, the spatial spin torque at different

times as illustrated in figure 7.8 corresponds to the time variation of magnetisation in

figure 7.5. It is found that the equilibrium is established after the introduction of spin

injection for 0.6 ns. In addition, it is evidently shown that the magnitude of the adiabatic

and non-adiabatic torques remain constant with time evolution and the domain wall

width is not significantly decreased from the initial state as the spin current density of

50 MA/cm2 is not high enough to force the DW against the pinning sites.
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Figure 7.7: The magnetisation component of the intial DW centre with time evolution

after injecting the spin current with the density of 1000 MA/cm2
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Figure 7.8: The time evolution of the spatial spin-transfer torque with je = 50 MA/cm2
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7.3.2 DW displacement and velocity

The next investigation of interest is the effect of the current density on the domain

wall motion. The strength of the spin-transfer torque can be controlled by varying the

magnitude of the current density. This leads to the investigation of the critical spin

current density (je), which is the minimum value to initiate domain wall motion. It

is first noted that the calculation in this section observed the domain wall motion in

the bilayer system with the anisotropy constant of Ku = 2.52× 106 J/m3 giving rise to

the domain wall width of approximately 6.86 nm. The application of the spin-polarised

current induces a displacement of the DW position with time evolution, as shown in

figure 7.9 (top panel). DW displacement is monitored by observing the shift of the

DW centre from the initial position at each time step. It can be seen that the DW

displacement is time dependent and increases linearly in the first time period before

reaching a steady state with finite displacement due to the interaction with the pinning

site. The equilibration time of DW displacement tends to decrease with increasing spin

current density.

To describe the behaviour of the DW displacement with different regimes of the

spin current density, it is important to consider the critical current density, which can

be evaluated through the initial DW velocity. The initial velocity is calculated by deter-

mining the rate of change of the DW displacement in the first 0.1 ns as the DW shows

uniform translational motion during that period. The relation between the initial DW

velocity as a function of the current density is plotted on a semi-logarithmic scale as

shown in figure 7.9 (bottom panel). It is found that the critical current density causing

the DW motion is 0.5 MA/cm2. For a small current density je < jcrite , the domain wall

motion does not occur. The spin-transfer torque acting on the magnetisation within the

domain wall created by the spin current below the critical value is not sufficiently strong

to move the domain wall.

On increasing the current density above the critical value, the domain wall moves

uniformly without any precession along the direction of the injected spin current. This

motion induced by the spin current is due to the conservation of the angular momentum.

Furthermore, the domain wall motion is accompanied by oscillatory behaviour, which

tends to be observed with a high current density over 100 MA/cm2. The oscillation

of DW displacement indicates the forth and back motion of DW before reaching the

equilibrium state. Interestingly, as a result of increasing current density to an extremely
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Figure 7.9: (top) The time variation of domain wall displacement with different current

densities in the dimension of MA/cm2 (bottom) The initial DW velocity as a function

of current density: The critical current density, minimum current density required to

move DW is 0.5 MA/cm2.

high value je = 1000 MA/cm2, the dynamic behaviour of the DW is also oscillatory,

but exhibits a stable precessional state deviating around a finite wall displacement. At

equilibrium, the DW displacement oscillates at a high frequency of 300 GHz since the

pinned DW essentially acts as a spin-torque oscillator. This also implies the appearance

of the out-of-plane component of magnetisation resulting from the non-adiabatic torque,

consistent with the previous study in Ref. [14]. In addition, the non-adiabatic torque

driving the DW in the stable precessional state is strong enough to deform the Néel

wall so as to have a significant out-of-plane component, which results in the oscillatory

propagation.
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7.4 Current-induced DW motion: the effect of the domain

wall width

In this section, the effect of the domain wall width on the magnetisation dynamics is

investigated. This is done by introducing a spin-polarised current into a bilayer system

containing a domain wall whose width is varied by changing the anisotropy constant.

The domain wall profile with different anisotropy constants can be seen in figure 7.10.

The magnetisation is allowed to continuously vary throughout the layer with the pinning

sites at the boundaries. The width of the domain wall is varied by increasing the uniaxial

anisotropy constant to investigate the influence of the magnetic anisotropy to the spin-

transfer torque emerged in the domain wall. The anisotropy constant is varied from the

typical anisotropy value of cobalt Ku = 4.2 × 105 J/m3 up to 100 times of that value.

The x and y components of DW profile can be used to characterise the centre of DW

and the DW width. The z component of the magnetisation is zero according to the usual

properties of the Néel wall for the thin sample.

-1

-0.5

 0

 0.5

 1

 0  5  10  15  20  25  30  35  40

M
y

Layer Number

 0

 0.2

 0.4

 0.6

 0.8

 1

M
x

Ku
2Ku
4Ku
6Ku

10Ku

Figure 7.10: The domain wall profile transverse in the xy plane with various anisotropy

constants: The uniaxial anisotropy constant of cobalt is Ku = 4.2 × 105 J/m3. The

distance between layer is given in units of cells, corresponding to 5 atomic spacings.
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A detailed qualitative investigation of the current-induced DW motion with the

effect of anisotropy constant will be discussed in the following.

7.4.1 DW displacement and velocity

Firstly, a spin current with the density of 50 A/m2 is injected into the bilayer system

along the x direction in order to observe the manipulation of the magnetisation within the

DW with different anisotropy constants. The magnetisation configuration is illustrated

in figure 7.11 after the introduction of the spin current for 1 ns. It shows that the DW

motion is initiated after injecting the spin current into the system. The centre of the

domain wall moves from the initial position along the direction of the spin current. This

arises from the exchange interaction between the spin current and the local magnetisation

within the DW. The system with high anisotropy is easily displaced due to a larger

gradient of magnetisation within the DW giving rise to a high magnitude of spin torque

acting on it. Interestingly, the DW centre of the system with the anisotropy constant of

Ku is unchanged. This implies that the density of spin current injected to the system is

below the critical value. For a wide domain wall, the high current density is required to

initiate the DW motion. In contrast, the DWs with high anisotropy are able to move,

which implicitly indicates that the critical current density of the narrow DW is lower.

In addition, the out-of-plane component is likely to be large for high anisotropy.

Furthermore, it is also worthwhile to observe the dynamic behaviour of the DW

motion via the DW displacement and the initial DW velocity. As illustrated in figure 7.12

(top panel), the DW displacement is not noticeable for a very wide wall, specifically for

uniaxial anisotropy constants of Ku and 2Ku. The DW exhibits transient oscillatory

behaviour back to its initial position. Hence, a higher spin current density is needed in

order to initiate the translation of DW for these cases. On the other hand, displacement

of the narrow DW tends to be more easily initiated than the wide DW. This is because

of the strong interaction between the spin current and the local magnetisation gradient

within the DW giving rise to a large spin-transfer torque. For a low anisotropy, the

linear response of the DW displacement occurs in the first 0.1 ns and then reaches the

equilibrium state. For a high anisotropy, the DW displacement deviates from linear

behaviour and the precessional motion is enhanced for several cycles in the first ns

before reaching the equilibrium state. The deviation from the linear behaviour in the

first period becomes stronger for higher anisotropy. In the case of this spin current
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density, the stable precessional state is not established as the current density is not high

enough to push the DW against the pining sites.
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Figure 7.11: The component of magnetisation in the second FM with various anisotropy

constants after the introduction of the spin current for 1 ns: The centre of the DWs are

displaced in the direction of the injected spin current. The system with high anisotropy

constant leading to a large gradient of magnetisation within domain wall results in a

large displacement of the DW.

In addition, the initial DW velocity as a function of the DW width is subsequently

considered. Obviously, the DW width becomes a sensitive parameter to the initial DW

velocity as can be seen in figure 7.12 (bottom panel). The initial DW velocity is decreased

with increasing DW width caused by the decreasing magnetisation gradient. This rela-
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tion can be used to evaluate the critical DW width for each spin current density. The

current density of 50 MA/cm2 is able to move a DW along the direction of the injected

spin current in case of the DW width less than 11.2 nm.
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Figure 7.12: (top) The time-dependent variation of the domain wall displacement and

(bottom) the initial domain wall velocity of different uniaxial anisotropy systems with

the spin current density of 50 MA/cm2

7.4.2 Spin-transfer torque

In this part, the spin transfer torque consisting of adiabatic (AST) and non-adiabatic

(NAST) components is investigated. As mentioned before, the total spin-transfer torque

is mainly contributed by the AST resulting from the spin accumulation component fol-

lowing the direction of the local magnetisation whereas the out-of-plane torque comes

from the NAST arising from the electron mistracking. The strength of the spin-transfer
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Figure 7.13: The thickness dependence of a maximum of adiabatic spin torque (AST),

non-adiabatic spin torque (NAST) and the degree of nonadiabaticity (DNAST)

torque on the DW can be represented by considering the maximum value occurring at

any position over the DW region given that its contribution is nonuniform throughout

the DW. In addition, the degree of non-adiabatic torque or the so-called nonadiabaticity

(DNAST), which characterises the relative influence of the NAST on the DW compared

with the AST, is also evaluated as the following equation.

DNAST =
| NASTmax |
| ASTmax |

(7.20)

where the nonadiabaticity is denoted as DNAST. | NASTmax | and | ASTmax | are the

maximum value of adiabatic and non-adiabatic torques within DW.

Clearly, as shown in figure 7.13, both adiabatic and non-adiabatic torques tend

to be more effective in narrow DW due to the large gradient of magnetisation. It can

also be seen that the nonadaibaticity factor becomes more significant for a small DW

width. This is schematically shown in figure 7.13. In contrast, the pure adiabatic torque

is likely to dominate the total torque, with negligible non-adiabatic torque, for a large

DW width. This is consistent with previous studies [9, 66].

7.5 Summary

In conclusion, in this chapter I applied the modified formalism of spin accumulation as

explained in chapter 4 and an atomistic model, to study the dynamics of magnetisation
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within the DW in the presence of a spin-transfer torque. The spin polarised current

flowing into the ferromagnet leads to a spin accumulation exerting the torque on the

local magnetisation. The results show the translation of the domain wall along the

direction of the injected current. The total spin torque contributed by adiabatic and

non-adiabatic torques at any position within the DW is considered here. The results

in the final section indicate that both torques are inversely proportional to domain

wall width. Furthermore, it is found that the adiabatic torque dominates the total

spin torque meanwhile the adiabatic torque controls the out-of-plane component of spin

torque. Finally, the nonadiabaticity factor is also determined to indicate the strength

of the non-adiabatic torque. It tends to decay to zero as the DW width increases. The

material with high anisotropy such as FePt giving rise to narrow domain wall is more

effective for data storage application as the enhancement of high spin-transfer torque

occurs.

Up to this point of the thesis, I proposed the modified formalism of the spin accu-

mulation based on a generalisation of the previous work of ZLF. The modified solution

of spin accumulation was applied to study the spin transport behaviour in the bilayer

system including the effect of a diffuse interface. In addition, the implementation of

modified solution and the atomistic model is used to study the dynamics of the mag-

netisation as discussed in this chapter. The final chapter discussed next will summarise

all results presented previously and then outline the future prospects for the modified

approach.
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CHAPTER VIII

Conclusions and future work

8.1 Conclusions

In conclusion, the modified spin accumulation model based on diffusive transport is

proposed to describe the behaviour of spin transport in the magnetic bilayer system.

It is verified that the general solution of spin accumulation in this work reduces to the

specific case of the previous work of ZLF. The modified model is also applicable for the

multilayer structure with different materials leading to the different nonzero equilibrium

values of spin accumulation. It is applied to the bilayer system with both collinear and

non-collinear configurations to observe the spin transport properties. The results show

that the spin current and spin accumulation tend to follow the direction of the local

magnetisation. Interestingly, an out-of-plane component of spin accumulation can be

observed owing to the mistracking of the conduction electrons.

The spin-transfer torque contributions from the adiabatic and non-adiabatic torques

can be described directly by the spin accumulation. The adiabatic and non-adiabatic

torques parameters in the standard form, µx and βx, can be solved and expressed in

terms of the spin accumulation. In general, these coefficients are assumed to be constant

throughout the layers. However, it is found that they strongly depend on the spatial

variation of magnetisation giving rise to the nonuniform behaviour throughout the lay-

ers. The angular dependence causes the divergence of the coefficients at the small angle

between magnetisation. Importantly, it was concluded that the constants µx and βx

used in the standard micromagnetic model do not provide a good description of the spin

torque phenomenon due to the non-physical behaviour except for the case of soft mate-

rials with large domain wall widths. Instead, the approach based on the self-consistent

solution of spin accumulation is suggested. As a result of spin torque calculations, it

was shown that the adiabatic torque significantly controls the total spin-transfer torque

in the system compared to the non-adiabatic torque. However, the non-adiabatic torque

causes the out-of-plane component of the total spin-transfer torque.
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According to the results in chapter 5, there are two important factors affecting the

spin transport properties. The first significant factor is the spin diffusion length. The

mistracking of conduction electrons increases with increasing spin diffusion length. For

a large spin diffusion length, a weak interaction between the conduction electron and the

local magnetisation is exhibited. This also results in the oscillatory behaviour in spin-

transfer torque. The second crucial factor is the domain wall width controlled by varying

the anisotropy constant. The magnitude of transverse spin accumulation which inter-

prets the mistracking of the conduction electrons with the local magnetisation increases

significantly in a narrow DW. The results indicate that the spin torque coefficients used

in the usual micromagnetic approach are probably applicable to describe the behaviour

of spin transport in the magnetic system with a large DW width but this approach is

not valid for harder magnetic materials. In the final section of chapter 5, the coefficients

µx and βx tend to be uniform and valid to describe the spatial spin torques in Fe system

where the DW width is comparable with the spin diffusion length.

Subsequently, the effect of a diffuse interface is taken into account, by applying the

solution of Fick’s law to describe the interface. The current approach links the behaviour

of spin accumulation at the interface, in a physically transparent way, to a degree of in-

terface mixing determined by known physical parameters, principally the ion diffusion

constant Dion. In practice it is noted that many spintronic applications such as STM-

RAM (Spin Torque Magnetoresistive Random Access Memory) and ST nano-oscillators

require high current densities and any interface diffusion at elevated temperatures could

be expected to give rise to a larger penetration of the spin accumulation m from the

interface. It is found that relatively modest amounts of interface diffusion give rise to

continuity of m. Importantly, the formalism outlined in this thesis allows to directly

simulate the sharp variation of m due to the interface. Finally, it is noted that the

approach proposed here provides a rather general framework for the study of interface

effects. In particular, it is assumed that the local properties are a linear combination

of the bulk properties weighted by the concentration of species. Generalisation of this

aspect is relatively easy and may be used to improve matching to experimental condi-

tions. The findings in this work are relevant to fundamental physics and technological

applications.

Finally, the current-induced domain wall motion in a bilayer system was inves-

tigated theoretically using an atomistic model based on the standard LLG equation
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including the effect of the spin transfer torque. The spin polarised current leads to a

spin accumulation which exerts a torque on the local magnetisation. It results in the

translation of the domain wall in the direction of the injected conduction electrons. The

spin torque contributed by adiabatic and non-adiabatic torques is considered. Their mag-

nitudes are inversely proportional to the domain wall width. Furthermore, it is found

that the adiabatic torque dominates the total spin torque whereas the non-adiabatic

torque controls the out-of-plane component of the total spin torque. The domain wall

width becomes the important parameter relative to the transport length scales. Finally,

the nonadiabaticity factor is also determined to indicate the strength of non-adiabatic

torque. It tends to decay to zero as the thickness increases. The material with high

anisotropy giving rise to narrow domain wall is more effective for data storage applica-

tion.

8.2 Future work

Spin torque-induced magnetisation switching is a possible technique to control and ma-

nipulate the orientation of the magnetisation. The spin-transfer torque arising from the

spin polarised current flowing through a spin valve or MTJ structures enables the mag-

netisation switching. This phenomenon provides a new concept for the development of

advanced MRAM, nonvolatile logics and readers in hard disk drives.

This work not only generates interesting results, but also the modified spin accu-

mulation model is applicable to investigate the spin transport behaviour in real devices

such as the read head in hard disk drive. In general, the computational models of read

sensors are based on micromagnetic approaches. Although successful, micromagnetic

approach is limited in a number of ways which makes the formalism inappropriate for

spin transport investigation with further scaling of device dimensions, which increases

the influence of the interface roughness. Therefore, one proposal for further work is

aimed at developing a model of spin accumulation and spin transport in multilayer sys-

tems for GMR calculation at the atomistic level. The theory will be employed in an

atomistic model to simulate GMR and spin torque effects in readers taking into account

the interface roughness and nonzero temperatures. Furthermore, the effect of elevated

temperatures produced by the heating effect of the current would be worth investigation.

This includes studies of the enhanced magnetisation fluctuations at the interface and to

determine its level of significance as a noise source.
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Another possible future work is to develop a model of calculation of TMR in

magnetic tunnel junctions (MTJs). MTJs using a MgO tunnel barrier gives rise to a

high ratio of tunnel magnetoresistance. Given that CoFeB is magnetically soft, it is

well known that the perpendicular anisotropy in CoFeB-MgO MTJs arises due to the

interfacial anisotropy. Evidently, the perpendicular magnetic anisotropy (PMA) arises

at the interface between the ferromagnetic transition metal and insulator. Ohno’s group

at Tohoku university experimentally studied the magnetic properties of CoFeB/MgO

structure of which the PMA exhibits at the interface [37]. It results in a giant tun-

nel magnetoresistance ratio in MTJs. Therefore, understanding the thickness, size and

temperature dependent magnetic properties of CoFeB-MgO MTJs is an important step

towards optimization of this system for spintronics applications. Subsequently, the spin

transport in MTJ could be studied by using the atomistic model coupled with the mod-

ified spin accumulation model.

In the respect of model development, the improvement of the interface model is of

great interest for future work. This may give rise to a better explanation of the scattering

mechanism within the interface region. Also the model is possibly developed for the case

of the non-uniform currents.



PUBLICATIONS AND PRESENTATIONS 145

PUBLICATIONS AND PRESENTATIONS

Publications

• “ Modeling spin injection across diffuse interfaces ”, P. Chureemart, R Cuadrado,

I D’Amico and RW Chantrell, Physical Review B 87 (19), 195310, 2013

• “ Dynamics of domain wall driven by spin-transfer torque ”, P. Chureemart,

RFL Evans and RW Chantrell, Physical Review B 83 (18), 184416, 2011

• “ Magnetic orientation in advanced recording media ”, J. Chureemart, P. Chureemart,

RFL Evans, RW Chantrell and K O’ Grady, J. Phys. D: Appl. Phys. 44 455002,

2011

Papers under preparation

• “ Self-Consistent Calculation of Adiabatic and Non-adiabatic Spin Torque ”, P.

Chureemart, I. D’Amico, and R. W. Chantrell, to be submitted to Physical

Review Letters

• “ Influence of uniaxial anisotropy on domain wall motion driven by non-local spin

torque ”, P. Chureemart, R. F. L. Evans, I. D’Amico, and R. Chantrell, to be

submitted to Physical Review B

• “ Atomistic calculation of the temperature dependent anisotropy of CoFeB-MgO

magnetic tunnel junctions ”, P. Chureemart, R. F. L. Evans, H. Sato, H. Ohno

and R.W. Chantrell, to be submitted to Applied Physics Letters

Invited talk

• “ Self-Consistent Calculation of Adiabatic and Non-adiabatic Spin Torque ”, P.

Chureemart, R. F. L. Evans, I. D’Amico, and R. W. Chantrell, 9th RIEC Inter-

national Workshop on SPINTRONICS, June 2012, Tohoku University, Japan



PUBLICATIONS AND PRESENTATIONS 146

Oral presentations

• “ A model of spin injection including the effect of interface diffusion ”, P. Chureemart,

R. Cuadrado, I. D’Amico and R. W. Chantrell, The 12th Joint MMM/Intermag

Conference, January 2013, Chicago, Illinois, USA

• “ Atomistic modelling of magnetization dynamics with spin accumulation ”, P.

Chureemart, R. F. L. Evans, I. D’Amico, and R. Chantrell, INTERMAG 2012,

May 2012, Vancouver, Canada

• “ Atomistic modelling of magnetization dynamics with spin torque ”, P. Chureemart,

R. F. L. Evans, I. D’Amico, and R. Chantrell, THE 19th INTERNATIONAL CON-

FERENCE ON MAGNETISM, July 2012, Busan, Korea

• “Study of Spin Torque in Multilayer Structures Including Combined Drift Diffusion

and Effect of Diffuse Interfacial Layer ” P. Chureemart, J. L. Gay, I. D’Amico

and R.W. Chantrell, INTERMAG 2011, April 2011, Taipei, Taiwan

• “ Study of spin torque in multilayer structures via combined drift diffusion and

atomistic modelling techniques ” P. Chureemart, J. L. Gay, I. D’Amico and

R.W. Chantrell, 55th MMM, November 2010, Atlanta, USA

• “ Study of spin torque in multilayer structures via combined drift diffusion and

atomistic modelling techniques ”, J. L. Gay, P. Chureemart, I. D’Amico, R. W.

Chantrell, JEMS10, August 2010, Krakow, Poland.

Poster presentation

• “ Atomistic calculation of the temperature dependent anisotropy of CoFe-MgO mag-

netic tunnel junctions ”, P. Chureemart, R. F. L. Evans and R.W. Chantrell,

The 12th Joint MMM/Intermag Conference, January 2013, Chicago, Illinois, USA



LIST OF SYMBOLS 147

LIST OF SYMBOLS

| ~rij | Distance between supercell i and j

α Damping constant

β Spin polarisation parameter for conductivity

β′ Spin polarisation parameter for diffusion constant

βx Spin torque coefficient used to explain non-adiabatic toque in the standard form

δ Domain wall width

γ Absolute gyromagnetic ratio given by γ = gµB/~ = 1.76× 1011 rad s−1T−1

b̂ Basis coordinate system comprising b̂1, b̂2 and b̂3 which are parallel and perpen-

dicular to the local magnetisation

ê Global coordinate system comprising êx, êy and êz which are along the x, y and

z directions respectively.

σ̂ 2× 2 matrix of conductivity

D̂ 2× 2 matrix of diffusion constant

ĵ 2× 2 matrix of current

n̂ 2× 2 matrix of accumulation

~ Reduced Planck constant

λJ Length scale given by,
√

2~D0/J

λmfp Electron mean free path

λsdl Spin diffusion length

λsf Spin relaxation length given by,
√

Dτsf

E Electric field

j Current density

je Charge current density
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jm Spin current density

M Normalised magnetisation

m Spin accumulation

Meq Equilibrium magnetisation

m‖ Longitudinal spin accumulation

m⊥ Transverse spin accumulation

Mp Unit vectors of magnetisation in the pinned layer

m⊥,2 Transverse spin accumulation along the direction b̂2

m⊥,3 Transverse spin accumulation along the direction b̂3

Mp,⊥ Transverse magnetisation in the pinned layer

δm Nonequilibrium spin density of state

H Classical spin Hamiltonian

µ Electrochemical potential

µ↑(↓) Electrochemical potential for spin-up(down) electrons

µch Chemical potential

µB Bohr magneton, µB = 9.274× 1024 J/T

µx Spin torque coefficient used to explain adiabatic toque in the standard form

ρ Resistivity

ρ↑(↓) Spin-dependent resistivities of the spin-up(down) channels

σ Conductivity of the ferromagnet

σ↑(↓) Spin-dependent conductivities of the spin-up(down) channels

τ↑↓(↓↑) Spin-relaxation time at which the spin-up(down) electrons scatter to the spin-

down(up) electrons

τsf Average spin-relaxation time of the conduction electron
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AP Antiparallel state

AST Adiabatic spin torque

CIP Current in plane

CPP Current Perpendicular to the plane

DW Domain wall

ECP Electrochemical potential

FM Ferromagnet

GMR Giant magnetoresistance

MRAM Magnetic random access memory

MTJ Magnetic tunnel junction

NAST Non-adiabatic spin torque

NM Nonmagnet

PMA Perpendicular magnetic anisotropy

P Parallel state

TMR Tunnelling magnetoresistance

TF Field-like torque or perpendicular spin torque

TS Slonczewski torque

θ Angle between the magnetisation of the pinned layer and that of the free layer

~rij Vector between supercell i and j

a Parameter describing the strength of adiabatic torque(AST)

b Parameter describing the strength of non-adiabatic torque(NAST)

C Atom concentration

D Diffusion constant

D↑(↓) Spin-dependent diffusion constants
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DNAST Nonadiabaticity

Dion Ion diffusion constant

e Absolute value of the electron charge

J Exchange energy between the electron spin and the local magnetization

j↑(↓) Current density of spin-up(down) channels

Jij Nearest neighbor exchange integral between the spin site i and j

jmx x component of spin current

jmy y component of spin current

jmz z component of spin current

kB Boltzmamn constant

Ku Anisotropy energy per atom

k1,2 Length scale given by (k1 ± ik2) =
√

λ−2
sf ± iλ−2

J

l∓ Length scales given by 1/l∓ =
√

(1/λ2
sf )± (i/λ2

J)

Ms Saturation magnetisation

mx x component of spin accumulation

my y component of spin accumulation

mz z component of spin accumulation

N(EF ) Density of state at the Fermi energy

n↑(↓) Local spin-up(down) carrier densities

N
↑(↓)
i (EF ) Spin-up(down) density of state at the Fermi energy

n
↑(↓)
eq Equilibrium(bulk) populations of spin-up(down) density of states

Pi Spin polarisation of the ferromagnet

R↓ High resistance

R↑ Low resistance
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RP Resistance of parallel state(P)

RAP Resistance of anti-parallel state(AP)

T Temperature

Tnon Nonconservation of the spin angular momentum

V Unit cell volume

Si Local normalised spin moment

Sj Normalised spin moment of neighbouring atom at site j

m∞ Equilibrium value of spin accumulation

~µi, j Magnetic moment of supercell site i, j
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