
  

 

MODELLING AND ANALYSIS OF CHATTER  

MITIGATION STRATEGIES IN MILLING 

 

by 

Khaled Saleh 

Submitted in fulfilment of the degree of Doctor of Philosophy 

June 2013 

 

 

 

Department of Mechanical Engineering 

Sheffield, UK 

 

 

 

Supervisor: Dr N. D. Sims 

 



 

 

II 

 

ABSTRACT 

Machining stability plays a major role in improving machine tool performance and 

product quality. Uncontrolled chatter phenomenon causes too many defects and 

problems in manufacturing industry such as increased surface roughness, tool wear 

and even machine breakdown.  

In this subject area, great effort has been focused on developing different mechanisms 

and techniques in an attempt to reduce and control the machining vibrations. Spindle 

speed variation is one of the common approaches that has received attention recently. 

Non-uniform tool geometry is an alternative method that could be used for 

regenerative chatter suppression. Basically these two methods focus on breaking up 

the regeneration of surface waves.  

A phenomenon known a process damping also has a vital effect on the stability 

improvement, particularly at low cutting speeds. Process damping is believed to be 

influenced by the interference of the relief face of the cutting tool with the waveform 

traced on the arc surface. An alternative explanation for process damping is known 

with the short regenerative effect. This concept is based on the distribution of forces 

along the tool flank face.  

In the present research, a new approach based upon energy analysis is developed for 

more detailed interpretation of the stability of these different chatter mitigation 

mechanisms. Moreover, a comprehensive time domain model is developed to allow 

multiple effects such as variable spindle speed, process damping, loss of contact, 

variable helix tool and energy to be considered. Meanwhile performance of this 

milling model has been further benchmarked along with these effects to enable the 

numerical prediction to be computed more quickly with an acceptable numerical 

accuracy. 
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1 CHAPTER 1 INTRODUCTION 

1.1 Background 

Milling is one of the most well-known material removal techniques, where material is 

removed from a workpiece using a rotating cutter. The rotating cutter can be a single or 

multi flute tool to produce chips in one tool cycle. In the milling process, usually 

milling cutter is mounted on a rotating spindle to remove the material by the free end 

from the workpiece which usually is clamped on the table is linearly moved towards the 

cutter, as shown in Figure ‎1.1. The process can be categorised as down-milling or up-

milling depending on the direction of the cutter rotation with respect to the feed 

direction.  

Milling is considered a critical process not only because it can remove the unwanted 

part of materials efficiently, but also because it can create almost all kinds of contoured 

surface smoothly. However, milling is a very complicated machining process. It is a 

discontinuous cutting process with varying chip load and forces. Moreover, the tool 

geometry in milling is complex. Along the milling tool edges, the rake and clearance 

angles vary with respect to the distance from the milling tool tip. In addition, for the 

helical end mills, chip thickness and the cutting forces are varying along the flute axis as 

the helix and pitch angles are changed. Therefore, the analysis of milling process and 

milling tool performance is always a big challenge.  

In general, during the cutting processes, three different mechanical vibrations can occur 

due to the lack of dynamic stiffness of one or several elements of the system composed 

by the machine tool, the tool holder, the cutting tool and the workpiece material. These 

three types of vibrations are known as free vibrations, forced vibrations and self-excited 

vibrations. Free vibrations occur when the mechanical system is displaced from its 

equilibrium and is allowed to vibrate freely. Forced vibrations appear due to external 

excitations. The principal source of forced vibrations in milling processes is when each 

cutting tooth enters and exits the workpiece. Free and forced vibrations can be avoided 

or reduced when the cause of the vibration is identified. However, self-excited 
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vibrations (or regenerative chatter) extract energy from the interaction between the 

cutting tool and the workpiece during the machining process. This phenomenon is a 

result of an unstable interaction between the machining forces and the structural 

deflections. The forces generated when the cutting tool and part come into contact 

produce significant structural deflections. These structural deflections modulate the chip 

thickness that, in turn, changes the machining forces. For certain cutting conditions, this 

closed-loop, self-excited system becomes unstable and regenerative chatter occurs. 

Regenerative chatter may result in excessive machining forces and tool wear, tool 

failure, and scrap parts due to unacceptable surface finish, thus severely decreasing 

operation productivity and part quality [1]. 

When chatter occurs, the vibration amplitude will increase continuously until the 

relative displacement between the cutter and workpiece is so large that the cutter will 

leave the workpiece for part of the time. This becomes a nonlinear behaviour, which 

limits the vibration amplitude to a finite value. The magnitude of vibration depends on 

the cutting force characteristics, such as the magnitude and direction of the cutting 

forces, and the tooth passing frequency at which a cutting flute comes in contact with 

the workpiece. The dynamic characteristics of the entire machining system in terms of 

the natural frequencies the damping coefficients and the stiffness of the machine tool 

structure, also affect the vibration magnitude.  

The cutting forces characteristics of the milling process are much more complex than 

that of turning. Milling operation is characterised by a multi-tooth cutter, and the cutting 

process itself is interrupted (the cutter flute was not in contact with the workpiece all the 

time).  In addition, the direction of the cutting forces generated by each tooth does not 

remain constant with respect to machine tool structure as for turning operations, rather it 

changes direction as function of cutter position. This makes determining the stability 

limit of the milling process much more complex.  In addition, the interrupted behaviour 

and discontinuity of milling process will result in large cutting variation and hence 

vibrations are unavoidable in the milling operations.   
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Chatter avoidance techniques aim to prevent chatter from occurring during the 

machining process, by selecting spindle speed and axial depth of cut based on a stability 

chart, the so-called stability lobe diagram, as shown in Figure ‎1.2. This was first 

introduced by Tobias and Fishwick [2] . If the process parameters are above the stability 

borderline, chatter will occur, however, if the process parameters are below the stability 

borderline, chatter will not occur. The critical stability borderline is the depth-of-cut 

below which stable machining is guaranteed regardless of the spindle speed. The lobed 

behaviour of the stability borderline allows stable lobe-regions to form; thus, at specific 

ranges of spindle speeds, the depth-of-cut may be substantially increased beyond the 

critical stability limit. These lobe-regions become smaller as the spindle speed decreases. 

However, stability is increased at low spindle speeds due to the process damping 

phenomenon [2].  

In general, mitigation of chatter refers to a method to improve the stability margin in the 

cutting process. Various methods for chatter control have been proposed such as damping, 

spindle speed manipulation or variation, and vibration absorbers. Vibration absorption 

method refers to adding an additional mass to the structure to passively absorb the 

unwanted vibration energy [3-6], whereas active control requires external power to 

counteract the unwanted vibration [7-10].  

Energy dissipation mechanisms have been recognised as a vital technique for chatter 

mitigation. Besides the damping produced from the structure of machine tools, the machining 

process itself can add damping to the system through a phenomenon known as process 

damping. This phenomenon is recognized as tool/workpiece interference [2, 11-20], or 

the short regenerative effect [21-23].  

Disruption of the regenerative effect is also proposed to improve the machining stability. 

For example, the use of a non-uniform cutting tool, i.e. with variable pitch and variable 

helix milling tools has been proposed to increase the stable limit [20, 24-28]. Another 

popular technique is using spindle speed variation, by considering nominal spindle 

speed and frequency continuous to vary the spindle speed is the other method to disrupt 

regenerative effects [29-38].  
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1.2 Aims and Objectives 

The aim of this research is to perform a model based investigation of chatter mitigation 

in milling. The main objectives of this study are to: 

 Develop an existing milling model (which was used for constant speed 

machining) to consider variable speed machining.  

 Extend the self- excited damping ratio technique to investigate the stability of 

variable speed machining.  

 Develop an energy balance method as a new technique for investigating the 

basic underlying cause of regenerative chatter, including the effect of non-

linearity due to the loss of contact and process damping.  

 Apply the energy analysis to the case of variable helix tools under process 

damped conditions.  

 Apply the energy analysis for process damping based upon the concept known 

as the short regenerative effect. 

 To measure model performance by benchmarking different applications of 

chatter detection and mitigation techniques.   

1.3 Thesis outline  

The structure of the thesis is organised as follows. The layout of thesis is presented in 

the schematically in Figure ‎1.3. 

The next chapter presents and reviews the literature, which begins by reviewing types of 

the mechanical vibrations, followed by previous research on the theory and the 

mechanism of the regenerative chatter. The prediction, detection and control of machine 

tool chatter are described. Due to the abovementioned focus in terms of the variable 

speed machining, process damping, variable helix tool, and regenerative effects, 

literature review pays special attention to these mechanisms.  

In Chapter 3 the Simulink model used to simulate the vibration motion of the cutting 

tool and the workpiece is discussed. The model formulation is briefly described. Milling 
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kinematics for uncut chip thickness calculation and tool-workpiece interference volume 

computation, and milling forces (shear and process damping forces) are explained.  

In Chapter 4 a variable spindle speed in time domain milling model is presented. A 

mechanism for modelling spindle speed variation is explained. The so-called peak to 

peak method [39] for chatter stability analysis is applied. However this method did not 

offer a formal interpretation of the stability behaviour. Consequently, the self-excitation 

damping ratio concept [40] is applied for variable spindle milling. The proposed chatter 

stability criterion and signal processing mechanism are discussed, and the stability 

analysis for linear and triangular speed variations are presented. However, even the self-

excited damping ratio did not provide a comprehensive interpretation of the stability 

behaviour, particularly for stable cases. Therefore, a new approach used upon energy 

analysis is developed. 

Chapter 5 focuses on developing an energy balance approach for chatter analysis. 

Application of the energy balance for chatter detection is performed for simple single 

tooth cutting and multi-teeth cutting. Energy balance approach is applied for the 

stability analysis is illustrated and the importance of the different energy dissipation 

mechanisms are investigated and quantified.  

In Chapter 6,   for the milling operation, process damping effects for chatter suppression 

are presented. The amount of dissipated energy by the process damping mechanism and 

loss of contact behaviour are measured and illustrated. Influences of several cutting 

parameters including tool geometry on the process damping behaviour are quantifiably 

investigated. Since the energy analysis approach has offered a realistic investigation in 

measuring process damping effects, consequently application of this approach is 

extended to consider different effects.  
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Chapter 7 presents the influence of the variable helix tools on system stability through 

the energy balance analysis. Modelling the energy behaviour in multiple degree of 

freedom systems is explained. The interaction between the variable helix tools and 

process damping is then explored.  

Chapter 8 focuses on investigating the effects of process damping based on the short 

regenerative effect. The energy analysis approach is used to quantifiably demonstrate 

the influence of the tool-workpiece interference mechanism and the theory of the short 

regenerative effect using the numerical model. Rates of the energy dissipation by the 

short regenerative effects are measured and compared to that dissipated by the tool flank 

interference mechanism.  

Finally Chapter 9 presents the conclusion of this research and some suggestions for 

further work.  
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2 CHAPTER 2 LITERATURE REVIEW 

2.1 Generalities 

In recent decades, machining technologies have been developed very rapidly, and the 

advanced machines in particular have experienced significant changes such as the 

incorporation of numerical control systems. Every year it is possible to observe at fairs, 

conferences and of course, in the market, how production capabilities have increased. 

The accuracy and productivity are being enhanced constantly with innovative solutions 

to achieve market demands or even raise them to higher quality levels. For several years, 

analysis of machine tool vibrations and instability issues has received significant 

attention in order to improve the metal removal process. However, despite these 

enhancements in the manufacturing sector, there are still some limitations and 

challenges that arise.  

Chatter vibration has been, for the last sixty years or more, a limitation of improving 

productivity and part quality in metal removal processes. This phenomenon has been a 

common issue for academic and industrial research. It should be noted that most of the 

machines and structures are not rigid bodies, but rather systems consisting of elastic 

components that respond to external or internal forces with finite deformations. In 1907, 

Taylor [41] stated that chatter is the “most obscure and delicate of all problems facing 

the machinist”. Several years later, Tobias [42] stated in the preface of his book: 

“Machine tool development in recent decades has created an increasing number of 

vibration problems. Machine tool designers in early development phases are worried 

about vibration characteristics; production engineers know that vibrations diminish tool 

life, generate unacceptable surface finishes on the parts and reduce productivity”. 

Nowadays, authors still refer to vibrations as a limiting factor, one of the most important 

machining challenges and, of course, an aspect to be improved [1]. 

2.2 Mechanical Vibrations in Metal Cut 

Metal cutting processes can involve all three types of mechanical vibrations, which can 

be attributed to the lack of dynamic stiffness of one or several elements of the system 
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comprising the machine tool, the tool holder, the cutting tool and the workpiece material. 

These three types of vibrations are known as free vibrations, forced vibrations and self-

excited vibrations [1].This classification is based on the external energy sources which 

are briefly defined in the next sections.   

1- Free vibrations: When any external energy source is applied to initiate 

vibrations and is then removed, the consequential vibrations are known as free 

vibrations. In the absence of non-conservative forces, free vibrations sustain 

themselves and are periodic. The structure will vibrate in its natural modes until 

the damping causes the motion to die out [43]. 

2- Forced vibrations: Forced vibrations occur due to external harmonic 

excitations. The principle source of forced vibrations in milling processes is 

when the cutting edge enters and exits the workpiece. However, forced 

vibrations are also associated, for example, with unbalanced bearings or cutting 

tools, or it can be transmitted by other machine tools through the workshop floor. 

Free and forced vibrations can be avoided or reduced if the causes of the 

vibration are identified. In this field, a variety of methods and techniques have 

been developed to mitigate and reduce their occurrence [44].  

3- Self-excited vibration: Self-excited vibration in milling is also known as chatter. 

Chatter extracts energy to start grows continuously, as a result of the interaction 

between the cutting tool and the workpiece during the machining process. 

Chatter is further classified into regenerative chatter and non-regenerative 

chatter. The regenerative effect is caused by the undulation of successive cuts, 

where the tool removes a wavy surface generated in the previous pass. Non 

regenerative vibration is maintained by the cutting force fluctuations that are 

induced by the tool-workpiece relative displacement of a periodic nature [45] . 

In this chapter, the theory and the mechanism of chatter during machining are 

introduced. This chapter also discusses the previous work of other researchers in chatter 

suppression techniques. 
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2.3 Chatter Vibrations in Machining 

Chatter is a form of unstable self-excited vibration in dynamic metal cutting. It has been 

and is still considered a challenging task for manufacturing research. This can be 

attributed to two principle factors: first the complexity of the phenomenon makes its 

study and understanding nontrivial. Second, the negative effects of chatter stimulate 

interest in solving the problem [1]. With regard to the first factor, chatter is a highly 

complex phenomenon due to the diversity of elements that can be composed of the 

dynamic system and its behaviour: the cutting tool, the tool holder, the workpiece 

material, the machine tool structure and the cutting parameters. Predicting its 

occurrence is still the subject of much research, even though the regenerative effect, the 

main cause of chatter, was identified and studied very early on [2, 46]. Moreover, 

chatter can occur in different metal removal processes, including milling [46-52] and 

turning [29, 31, 47, 53-63]. Regarding the second factor, chatter occurrence has several 

negative effects [1]: 

 Poor surface quality.  

 Unacceptable inaccuracy.  

 Excessive noise.  

 Disproportionate tool wear.  

 Machine tool damage. 

 Reduced material removal rate. 

 Increased costs in terms of production time. 

 Waste of materials.  

 Waste of energy.  

 Environmental impact in terms of materials and energy.  

 Costs of recycling. 

For these reasons, chatter avoidance is an issue of enormous interest. In workshops, 

machine tool operators often select conservative cutting parameters to avoid chatter, and 

consequently production is reduced. In some cases, additional manual operations are 

required to clean chatter marks left on the part’s surface.  
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2.4 Chatter Mechanism 

Many factors including cutting conditions, tool geometry, material properties, and 

structural characteristics have played a major role in defining whether or not chatter will 

occur.  The theory of chatter in metal cutting has been well developed since the 1950’s.  

It is well documented that the fundamental cause of chatter under most machining 

conditions is the regeneration effect [39, 64]. Even when forced vibrations are 

extremely small, the slightest marks left on the cutting surface causes vibrations in the 

chip thickness for the following tooth. This regenerative effect is the most important 

cause of chatter. For this reason it has become a convention that “chatter” only refers to 

regenerative chatter. It is possible to distinguish between frictional chatter, mode 

coupling chatter and regenerative chatter based on the mechanism that causes the 

vibration. Frictional chatter occurs when rubbing on the clearance face excites vibration 

in the direction of the tangential force and limits in the radial force direction. Mode 

coupling chatter exists as the vibration in the radial direction generates vibration in the 

tangential direction and vice versa. This results in simultaneous vibration in the 

tangential and radial force directions. This can be caused by a number of sources such 

as friction on the rake and clearance surfaces, chip thickness variation, shear angle 

oscillations and the regeneration effect [1].   

Regenerative chatter often occurs because most cutting operations involve overlapping 

cuts which can be a source of vibration amplification. Considering the machining 

operation in Figure ‎2.1, the combination of the waviness on the surface left by the 

previous tooth and vibration of the currently cutting tooth creates the periodically 

changing chip thickness. In other words, tool vibrations leave a wavy surface and when 

the cutting tooth is in the cut, it encounters this wavy surface and generates a new wavy 

surface. The chip thickness and, hence, the forces on the cutting tool vary due to the 

phase difference between the wave left by the previous tooth and the wave left by the 

current one. This phenomenon can greatly amplify vibrations, and therefore instability. 
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 Figure ‎2.2 shows how the chip thickness variation depends on the phase shift   between 

the undulations of successive cutting teeth paths. Figure ‎2.2(a) shows that a zero phase 

shift produces a constant chip thickness despite the disturbances in the system. 

Figure ‎2.2(b) and (c) present the chip load with a phase shift π/2 and the extreme case of 

a   phase shift, both of which can lead to unstable conditions [65, 66]. This oscillating 

chip thickness causes varying forces, which in turn adds more vibrations into the system. 

This feedback in the process is the regeneration effect which may cause instability.  

The phase shift,   radians, can be calculated as a function of tooth period,  , and chatter 

frequency,    [65, 66]: 

   
 

  
     (‎2.1) 

where   is the number of complete wave marks on the surface during each tooth period 

and 
 

2 
 is the remaining fraction of a cycle between subsequent tooth passes. 

It can be seen that the most stable condition, as far as the regenerative effect is 

concerned, is when the tooth passing frequency is an integer fraction of the chatter 

frequency, which results in a zero phase shift. This corresponds to spindle speed   (rpm) 

[65] of: 

   
     

  
                (‎2.2) 

2.5 Chatter Prediction  

A number of modelling mechanisms have been developed for better investigation of the 

machining dynamics and chatter. For example, Tobias and Fishwick [2] presented a 

graphical method of stability analysis using the Nyquist plot of the transfer function G(s) 

for the flexible system. Chatter was also  investigated analytically by Tlusty [67, 68] 

and Tobias [42] who developed the stability lobe diagram that describes the relationship 

between the depth of cut and spindle speed. The analytical prediction was then 

reproduced based on control system theory.   
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The dynamics of the cutting process and chatter were analysed and modelled in the 

frequency domain or in the time domain. The frequency domain analysis leads to the 

identification of chatter-free cutting conditions such as spindle speed, axial and radial 

depth of cut. Merritt [69] presented an elegant stability theory using a system theory 

terminology and derived a comprehensive stability criterion. A detailed theoretical 

analysis of the milling process has been developed by Sridhar et al. [37]. Opitz et al [70] 

developed a general closed-loop representation of a dynamic machining operation that 

can be applied to both turning and milling. Minis et al. [52, 60] redeveloped the analysis 

by applying the theory of periodic differential equations to the milling dynamic 

equations. This method was applied to a theoretical milling system to predict the critical 

depth of cut for chatter-free milling under various rotational speeds. Shi and Tobias [71] 

proposed a theory of finite amplitude machine tool instability to consider the effects of 

the two non-linear phenomena caused by: the tool leaving the workpiece material, and a 

non-linear characteristic of the cutting force. The former arises in all cutting processes 

when the vibration amplitudes are sufficiently large. The latter is specific and depends 

on the workpiece material and other factors, such as tool geometry. Altintas and Budak 

[72] presented an alternative method for the analytical prediction of stability lobes in 

milling. The stability analysis of the dynamic milling system leads to analytical 

relations for the chatter limits which can be used to generate the stability diagrams.  

Most of the previous analytical modelling and analysis of chatter in machining are 

usually based on a number of simplifying assumptions, such as an average direction of 

the cutting force, or an infinitely large cutter diameter [73]. However, chatter is in fact 

always a nonlinear process. It is well known that when chatter starts, it does not grow 

indefinitely but stabilises at limited amplitude of vibration. Tlusty and Ismail [74] 

pointed out that once the vibration is large enough, the tool jumps out of the cut for a 

part of its vibratory period. During this time, the force is no longer proportional to chip 

thickness but it is simply zero. In an effort to improve on the accuracy of the prediction 

and to gain more insight into the cutting operation, and with the advancement of 

computing technology, time domain simulation models were developed. This method is 

quite powerful since it allows various tool geometries and nonlinearities such as the 
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variation in chip thickness, the changing orientation of the cutting force, the possibility 

that the tool may lose contact with the workpiece, and others. 

Time domain models are used to predict cutting forces, torque, power, dimensional 

surface finish and the amplitudes and frequency of vibration [75]. Tlusty and Ismail [74, 

76] used the time domain digital simulations to describe the dynamic behaviour of 

milling and investigated the boundary region between the stable and the unstable 

conditions. Tlusty et al. [39, 77] also investigated the dynamics of high-speed milling 

using the time domain simulation. Lee et al. [59] examined the effects of workpiece 

dynamics on the cutting process.  

However when using time domain simulations to predict the borderline of stability in 

milling, it is often difficult to distinguish between cases of vibrations due to instability 

and cases of excessive vibrations due to large periodic forces. Using predicted 

vibrations or cutting forces may not properly isolate chatter from stable forced vibration. 

The model developed by Altintas and Lee [78] used differences in peak-to-peak force 

between simulations of a rigid versus flexible workpiece/cutter system. The simulation 

provided good results for half and full immersion cuts, but has difficulties detecting 

chatter at small radial immersions, particularly with large static deflections [79]. In 

addition the peak-to-peak technique was also used in [19, 39, 60] to identify the stability 

boundary during the constant speed machining cases.  

Campomanes and Altintas [79] proposed a chatter criteria based on predicted uncut chip 

thickness. A non-dimensional chatter coefficient,   , was defined as: 

   
      

      
 

where       is the maximum uncut chip thickness during a dynamic time domain 

simulation, and        is the maximum uncut chip thickness during a time domain 

simulation in which the workpiece and tool are rigid. The margin of stability behaviour 

was assumed at    1 25; an unstable chatter condition is triggered when             
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In addition Li et al [80] employed a numerical method to solve the differential equations 

governing the dynamics of the milling system. They proposed that the ratio of the 

predicted maximum dynamic cutting force to the predicted maximum static cutting 

force was used as a criterion for the chatter stability. More recently, Sims [40] 

developed a new method called the self-excitation damping ratio for analysing the 

chatter stability of time-domain milling. The method relies on signal processing of the 

predicted vibrations.  

The once-per-revolution sampling method was also used for evaluating the milling 

stability [81]. This notion is based on Poincare mapping techniques; the stability can be 

evaluated by plotting the x direction versus y direction tool motions and identifying the 

once-per-revolution sampled data points. For stable cuts, the synchronously sampled 

points approach a fixed point on the Poincare map and thus provide a tight distribution. 

Physically, this means that the forced vibrations repeat once per tooth pass. In other 

words, the tool motions are synchronous with the spindle rotation and the tool returns to 

approximately the same position in each revolution under steady state conditions. In 

contrast, tool motions during the chatter vibrations are not synchronous with spindle 

rotation; instead, they occur near the natural frequency corresponding to the most 

flexible system mode due to the nature of self-excited vibrations. For these unstable 

behaviours, the tool does not return to the same position each revolution. Rather, the 

once-per-revolution sampled distribution can tend toward an elliptical shape due to the 

quasi-periodic nature of chatter [81].  

2.6 Existing Chatter Mitigation Strategies 

Merrit [69] demonstrated that regenerative chatter occurs when there is an interaction 

between the structural dynamics of a machine tool and the dynamics of the cutting 

process. A closed loop feedback diagram was also introduced to represent regenerative 

chatter in a control perspective, as shown in Figure ‎2.3. Due to the detrimental nature of 

chatter, great efforts are still focusing on investigating what is the most effective 

approach which can be used for avoiding or suppressing this kind of vibration.  
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Now some of these approaches which are considered in this research are listed below:  

 Spindle speed control 

 Process damping  phenomenon of tool flank interference 

 Non-uniform tool geometry method 

 The process damping phenomenon known as the short regenerative effect 

These methods are now briefly reviewed. 

2.6.1 Spindle Speed Control 

Spindle speed selection or modulations are very common approaches that have been 

used to avoid or reduce chatter during the machining process. Spindle speed selection is 

an offline approach where information about the dynamic system or previous cutting 

data is used to improve machining stability by tuning the spindle speed. However 

spindle speed modulation manipulates the spindle speed or cutting conditions, (i.e. axial 

or radial depth of cut) during machining.  

Tlusty [77] proposed that changing the spindle speed can stabilise an unstable 

machining  process in the stability lobe diagram, particularly by use of the lobbing 

effect at  high cutting speed. Kurdi et al.[82] applied Temporal Finite Element Analysis 

as an analytical approach to select optimum operating conditions, (spindle speed and 

depth of cut) when optimising material removal rate and surface location error 

simultaneously in order to search for a stable cutting operation. Tarng and Lee [83] 

considered the relationships between spindle speed and phase angle difference. They 

assumed a 90 degree phase angle for the largest machining stability. Spindle speed 

selection is sometimes considered unsuccessful way due to the power, torque, and speed 

limitations of the machine.  

A spindle speed modulation procedure is an on-line method used for chatter suppression. 

This method controls cutting speed or reduces radial or axial depth of cut when chatter 

is detected. Delio et al. [84] for instance, detected the dominant chatter frequency by 

sensing the sound with a microphone, then analysed its frequency. The speed was 

regulated to search for a stable process after an audio signal detected the loud noise of 
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an unstable machining process. Sim et al. [85] used a similar approach to detect chatter, 

integrated with a knowledge based system of the machine tools, cutting tools and 

machinability data. Then spindle speed and feed rate were modified when chatter was 

detected.  

Another common online technique that has received some attention is the use of 

continuously varying spindle speed during the milling process. This technique is based 

on varying the spindle speed around the mean value. Lin et al [33] for example 

considered a nominal spindle speed, amplitude ratio and the frequency ratio for 

controlling the speed variation in face milling. Altintas and Chan [30] proposed a digital 

dynamic milling simulation model to investigate the influence of various cutting and  

tool conditions as well as structural parameters on the stability of milling. It has been 

shown that when the spindle speed is sufficiently oscillated, the wave regeneration 

mechanism in dynamic milling can be disturbed and chatter vibrations can be 

suppressed. For example, in Liao and Young’s [32] experiment, the variable spindle 

speed approach was used to reduce chatter by maintaining the phase angle at 90 degrees. 

Furthermore,  Sastry et al. [86]  proposed a solution technique based on a discrete time 

approach to the stability problem for the variable spindle speed face-milling process. A 

finite difference scheme is used to discretised the system and model it as a linear time 

varying (LTV) system with multiple time delays. Tsao et al’s [38] presented an 

analytical method for chatter stability analysis of the variable speed face-milling process. 

By using tool position rather than time as the independent variable, the time varying 

time delay in the system equations is converted to a constant delay in the angle domain.  

Ismail et al [31] employed  spindle speed modulation for real-time control of chatter in 

peripheral milling. Yilmaz et al.[87], presented a new method of multi-level random 

spindle speed variation. Sri and Beddini [36], and Pakdemirli and Ulsoy [88], 

considered the mechanism of spindle speed variation for chatter suppression using the 

delay differential equations with periodically perturbed delays. Al-Regib et al.[29], 

introduced the concept of programming the spindle speed variation for minimum energy 

input by the cutting process. More recently, Seguy et al.[89] studied the effect of 
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spindle speed variation in a high speed domain using a semi-discretisation method for 

computing the optimal amplitudes and frequencies of the speed modulations.  

2.6.2 Non-Uniform Tool Geometry Method 

Variable helix and/or pitch tools are an alternative method that focuses on disrupting the 

regenerative effect to increase the stable region of the stability lobe diagram for milling 

problems.  In the case of variable helix/pitch cutters, the phase between two subsequent 

waves is not constant for all teeth, thus disturbing the regeneration mechanism. This can 

reduce the modulation in chip thickness and disrupt vibrations, which consequently 

increases the stability of the process. As an example, the uniform and variable helix/ 

pitch tool’s effectiveness in disrupting the regenerative waviness can be visualized in 

Figure ‎2.4. For the uniform tool (Figure ‎2.4(a)), the variation in phase delay between 

any subsequent waves is regular and relatively severe, and this could result in more 

forcing functions that impart energy into the system, such that the effect is self-exciting. 

Under the variable helix/pitch tool (Figure ‎2.4(b)), however, the variation in the phase 

delay is not as severe and the resulting irregular force may not be sufficient to create a 

self-exciting effect. In other words, by disrupting the time delay, the system will not be 

able to sustain the same phase between subsequent surface undulations, or equally, the 

same vibration frequency to cause chatter.  

The effectiveness of variable pitch cutters in suppressing chatter vibrations during 

milling was first demonstrated by Slavicek [27]. He proposed a rectilinear tool motion 

for the cutting teeth and applied the orthogonal stability theory for non-uniform tooth 

pitch. By assuming an alternating pitch variation, he obtained a stability limit expression 

as a function of the variation in the pitch. Non uniform tool geometry can be used with 

variable helix angles or with non-constant pitch angles. Altintas et al. [24] presented an 

analytical model used to analyse the stability with variable pitch cutters. For a given 

process and a desired spindle speed, they optimised the tooth pitch by plotting the axial 

depth of a cut as a function of the first and second pitch angle, which led to a 

stabilisation of the process. Based on this model, Turner et al [90] investigated the 

variation of the variable helix and variable pitch angles to increase stability. They 
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proposed a nonlinear condition or process damping disturbed stable phase between 

subsequent teeth. Budak [25] used a similar method for designing the variable pitch to 

maximize the stability limit. The analytical method is only suitable for variable pitch 

tools at high radial immersion. Recently, Sims et al. [26] investigated the stability of 

variable pitch and variable helix end mills by adopting the semi-discretisation method. 

Yusoff and Sims [28] optimized variable helix tools, combining the semi-discretisation 

method with differential evolution. 

2.6.3 Process Damping Phenomenon  

Besides the damping produced from the structure of machine tools, the machining 

process itself can add damping to the system through a phenomenon known as process 

damping. Tobias and Fishwick [2] proposed that such a force occurs when the tool flank 

face rubs against the wavy workpiece surface at low spindle speeds. Tlusty [68] 

demonstrated the process damping mechanism schematically as shown in Figure ‎2.5. 

Here at the low cutting speeds, vibration marks imprinted on the surface become 

narrower and hence the tool flank rubs against it. This causes an additional forces act 

against the vibration velocity to produce a damping. Process damping forces have a 

fundamental effect when the tool travels from point A to C compared with when it 

travels from C to D. This means that while the velocity of the vibratory moment is 

acting downwards from A to C it encounters a greater reactive force than when it rises 

from C to D. The variation in the thrust force is in opposite phase to the velocity and 

acts as damping [68]. 

Lee et al. [16] and Fontaine et al. [14] proved experimentally that incorporating process 

damping forces can have a vital effect in increasing  machining stability, particularly at 

low cutting speeds, which allows higher depths of cut to be used, thereby increasing 

material removal rates. Therefore process damping due to the tool/workpiece 

interference is considered as another successful strategy which can be involved in 

chatter mitigation at lower surface speeds.   

However, even to date, there are limited modelling studies that include process damping 

forces. This is possibly due to the complexity of the fundamental mechanism of the 
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process damping forces, or because these forces depend principally on both the tool 

geometry and the cutting condition at the instantaneous interference region. Recently 

studying process damping in milling operations has received significant interest, using 

simulation or experimental methods (or both). For example, Montgomery and Altintas 

[17] used a model-based approach to investigate ploughing forces. Delio et al. [12] 

considered the wavelength of chatter vibration and the loss of process damping 

behaviour at higher spindle speeds. Elbestawi et al. [13] modelled process damping 

effects when cutting aluminium and showed that the model could produce additional 

damping forces due to the tool flank/workpiece interference. Ranganath et al. [18] also 

developed a time-domain model of process damped milling and compared the results to 

experimental data from an aluminium alloy workpiece. Huang and Wang [15] proposed 

a model that considered the consequences of chatter vibration on the effective rake and 

relief angles. They included additional empirical parameters in their model so that the 

cutting stiffness became a function of these effective angles and thereby produced a 

process damping effect.  

Recently, Budak and Tunc [11] developed a method for identification and simulation of 

process damping. Process damping coefficients are obtained from chatter tests. The 

method is generalized by determining the indentation force coefficient responsible for 

the process damping through the energy analysis. This coefficient is then used for 

process damping and the stability limit prediction in different cases. These predictions 

are verified by time domain simulations and experimental results.  

Yusuff et al. [20] performed milling experiments to evaluate the performance of process 

damping under different tool geometries (edge radius, rake and relief angles and 

variable helix/pitch). The results clearly indicated that variable helix/pitch angles most 

significantly increase process damping performance. Additionally, increased cutting 

edge radius moderately improved process damping performance, while rake and relief 

angles have a smaller and closely coupled effect. More recently, Sims [19] developed a 

model to investigate the influence of feed rate on process damping in milling. A 

qualitative agreement is found between experimental behaviour and the numerical 

model. In particular, the model predicts a strong relationship between the workpiece 
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feed rate (expressed as a feed per tooth), and the acceptable chatter stability defined by 

the process damping wavelength. 

In a cutting test conducted by Budak and Tunc [11], a phenomenon known as a limit 

cycle was observed in some cases. Authors attributed this to the existence of process 

damping. It was proposed that limit cycle behaviour could be caused by the nonlinear 

variation of the damping forces with the vibration amplitudes [11]. When the stability 

limit is exceeded, the vibration amplitudes are expected to grow when process damping 

effects are not considered. However, with the presence of process damping as the 

vibration amplitude starts increasing, the process damping also increases, providing 

more stability effects. As a consequence, vibrations will be inhibited at a particular limit 

where the system behaves as marginally stable. However a disturbance to the system by 

increasing or decreasing the vibration amplitudes will cause process damping effects to 

increase or decrease as well. In this case, limit cycle behaviour could be reached again. 

Therefore it can be said that vibration amplitudes, and thus process damping effects are 

proportional to the cutting depth, and the vibrations may stabilise at different limit 

cycles for different cutting depths of cut for a given cutting speed. However, at a 

particular depth, the increase in the process damping becomes insufficient to stabilise 

the process. Consequently, there will be two different stability limits for a cutting speed. 

The first one is the cutting depth at which the limit cycle behaviour starts (i.e., the 

minimum stability limit), whereas the second is the cutting depth at which the limit 

cycle behaviour diminishes and the vibration amplitudes are starting to grow 

increasingly (i.e., the maximum stability limit for the same speed) [11].  

It should be stated that most of the previously published work considered the stability 

limit based on the minimum limit, whereas analysing the limit cycle behaviour under 

the process damping effect has not been considered yet.  
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2.6.4 The Short Regenerative Effect 

It is well known that increased stability behaviour is commonly observed at low speed 

machining. In the past, this improved stability is attributed to the energy dissipated due 

to the interference between the tool relief face and the work surface as described above. 

However, an alternative representation known as a short regenerative effect has recently 

been introduced for stability improvement particularly at lower turning speeds [21-23, 

91]. Stepan was the first to propose that instead of modelling the cutting forces as a 

single point force, at the tool tip [91], these forces (see Figure ‎2.6) could be assumed to 

have a distribution per unit length with varying magnitudes along the tool chip interface. 

In addition Khasawneh, et al. [21] investigated the influence of the distributed force 

model on the stability behaviour of continuous and interrupted turning. They described 

an approach to transform the distributed-delay equations into a discrete-delay system. 

Theoretical stability investigations are performed using a state-space Temporal Finite 

Element Analysis technique. More recently, Taylor, et al [23] employed a frequency 

domain approach for solving the short regenerative model in turning. The short 

regenerative effect was investigated based on an estimation of the chip contact time on 

the tool rake face, along with knowledge of a weighting function that distributes the 

cutting force along the tool rake face as a function of the chip thickness along the rake 

face. It has been shown that none of these weighting functions can provide sufficient 

increases in stability for the model to match experimentally observed data. 

2.7 Time Domain Modelling  

In recent years, time domain modelling has been used extensively since it provides 

realistic information regarding the chatter stability and the qualitative evaluation of the 

chatter severity as well as the arc surface behaviour. In addition there are some other 

advantages of time domain techniques over other methods of stability analysis of chatter. 

For example, time domain simulations provide more insight into the dynamics of the 

milling operation. Some early simplistic models ignored the dynamics of the tool and 

workpiece system and the changing directions of the milling forces were developed for 

more advanced models. Tlusty was the pioneer in this field, and he used time domain 
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modelling to consider the changes in the cutting force’s directions due to a rotating 

cutter and the helical flutes [64]. A comparison done by Tlusty [92] between the 

stability limits obtained by the improved formulation of the dynamic cutting forces and 

from the previous simplified models showed significant differences.  

Time domain modelling has also been used for some physical and qualitative analyses 

of chatter instability. For instance, observations of the relationship between machining 

stability and structural flexibility are made in [76]. While the stability lobe diagram 

approximates the maximum allowable depth of cut for a chosen spindle speed as the 

quantitative aspect of chatter, while the qualitative aspect of the severity of chatter can 

be understood from the amplitudes of cutting forces, chip thickness and displacements. 

Normally this information is not available from the stability lobe diagram. 

Time domain modelling offers a better illustration about the basic non-linearity in the 

chatter phenomenon which is the jumping of the tool out of the cut, due to excessive 

vibrations. Kline and DeVor [93] considered time domain modelling to study the effects 

of run-out on milling forces. However, the regeneration effect of chatter was not 

considered, validating the model only for the case of static milling. In addition, 

Ranganath et al. [18] developed an improved model, which considers effects of cutter 

deflection, and the damping effect of flank face contact with the workpiece, while the  

force’s dynamics are modelled, but it does not study regeneration and chatter. 

Time doming modelling allows multiple effects to be considered and their relative 

contribution on the stability behaviour to be assessed. Turner et al [90] used the time 

domain chatter recognition and analytical models to explore the effect of the variable 

helix and variable pitch angles on increasing stability, simulation outputs was tested 

against the experimental results. They proposed process damping and a disturbed stable 

phase between subsequent teeth, to inhibit the onset of chatter. This argument was quite 

difficult to be tested experimentally. Budak and Tunc [11] used a new analytical 

approach for identification of the indentation force coefficient responsible for process 

damping through energy analysis. This coefficient is then used for process damping and 
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stability limit predictions in different cases and predictions are verified by time domain 

simulations and experimental results. 

In addition, during the machining process, chatter can be predicted by the experience of 

the operator, due to the sound produced during the cut or the characteristics of the 

machined surface. However, in order to avoid the possibility of human error, and to 

increase productivity, researchers have been motivated to develop advanced chatter 

detection techniques. Following this trend, a number of techniques have been developed 

for rapid chatter detection and analysis. The more common approaches are: once-per 

revolution, peak-to-peak, the chip thickness ratio and more advanced self-excited 

damping ratio which were briefly reviewed in the Section ‎2.5. However, at this point, 

the performance of these techniques will be briefly evaluated: As the once per 

revolution sampling and the chip thickness variance have almost the same behaviour, 

here the chatter threshold must be chosen to be slightly higher than the stable value, but 

not so high as to give a stable depth prediction that is too high. For the peak-to-peak 

method, there is no evident value for the chatter threshold, but the value does not start to 

increase more sharply after the onset of instability. The self-excitation damping ratio 

has a physical stability margin value (zero), but it requires more signal processing steps 

than the other methods and may not be appropriate for variable pitch tools [44].     

2.8  Summary  

This chapter has reviewed some types of mechanical vibration. The theory and the 

mechanism of self-excited vibration are discussed including some early and recent 

research concerning chatter prediction. Next, a number of the existing chatter mitigation 

techniques were reviewed such as: varying the spindle speed, a process damping 

mechanism due to the tool/workpiece interference, non uniform tool geometry and short 

regenerative effect.  

It is clear that comprehensive time domain models can offer a useful insight into the 

machine behaviour. They are able to predict cutting forces, power, machined surface 

amplitudes and frequency of vibration so that detailed investigations of chatter 
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mitigation methods can be performed. These effects are often difficult to measure by 

other means for instance: loss of contact and process damping are difficult to measure 

experimentally, tool geometry cannot be precisely controlled, and the poor signal to 

noise ratio during the actual machining process makes it difficult to interpret observed 

behaviour. Consequently, time domain modelling can serve a useful purpose in 

providing more insight into complex chatter mitigation techniques.  

As a result, this thesis will focus on developing a comprehensive time domain model, 

along with a novel energy-based analysis method. These two tools will then be used to 

explore typical chatter mitigation methods in a simulation environment. This numerical 

method does not offer any scope within this thesis for experimental validation of the 

model. To overcome this, the model assumptions were matched to those found in the 

common literature, and where possible the numerical predictions were compared to 

experimental results from existing literature.  
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Figure ‎2.2 Regeneration process during and phase influence on chip thickness 
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Figure ‎2.3 Chatter as a closed loop system by Merritt [69, 94] 



 

 

28 

 

h

workpiece

Chip thickness(b)  Milling Cutter with 

Variable Pitch Anglesh

workpiece

Chip thickness
(a)  Milling Cutter with 

Regular Angles

 
Figure ‎2.4  Regenerative waviness behaviour 
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Figure ‎2.5 Process damping mechanism 
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Figure ‎2.6 Schematic diagram of a distributed force model uses a stress distribution over  

the tool rake face and applies a finite time for the chip to travel along the tool-chip interface. 
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3 CHAPTER 3 MODEL FOR TIME DOMAIN MILLING 

3.1 Introduction 

A number of time-domain models have been developed to better understand the milling 

process. There are certain advantages of time domain techniques over other methods of 

stability analysis of chatter. The time domain method provides a realistic simulation of 

the cutting process and chatter instability, since the number of assumptions involved is 

minimised. The combination of the feed and the relative oscillations between the tool 

and the workpiece can be incorporated. A qualitative evaluation in terms of severity of 

the chatter and accuracy of surface finish can be achieved. A comprehensive time-

domain simulation can predict the time-history of vibrations during the machining 

process. Nonlinearity behaviour such as loss of contact and process damping can be 

easily included. It provides more insight into the dynamics of the milling operation [95]. 

However, the only drawback of time domain simulations is the extreme computational 

cost that is required, and the difficulty of clearly interpreting the system stability from 

the predicted response.  

 In the present research, the model proposed by Sims [19, 40] is developed to be used in 

this research. It should be noted that the aim in this Chapter is not to create a new model 

of milling, but instead use Sheffield’s existing time domain model, whose performance 

has been tested in several published applications. For instance, chatter stability detection 

[40], and investigation feed rate effects on process damping behaviour [19] have been 

previously explored along the constant spindle speeds. However during this research 

this model will be developed to consider the variable spindle speed and the cutting 

energy computation.  

The Simulink milling model shown in Figure ‎3.1 has been designed based on the same 

concept of the chatter loop diagram (Figure ‎2.3).The model consists of three main 

blocks: milling kinematics, milling forces and system dynamics. The milling kinematics 

systems are where the C-program is coded for the chip thickness and the indentation 

contact computation. This block is connected with the milling forces block which 
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contains on other subsystems blocks as shown in Figure ‎3.2. These simple Simulink 

blocks are associated with milling forces (shear and process damping forces) 

calculations. The output of the milling forces block will be fed to the system dynamics 

block where the system relative displacements and the velocities are computed. Finally 

the output of this block in terms of the system relative displacement is combined with 

the appropriate feed rate to feed the milling kinematics block, thereby the loop is closed.  

The main model program is coded in the C-programming language which can be 

interfaced with the Matlab/Simulink software. Here the simulation is executed through 

fixed time intervals, moreover the concept of discretising the tool/workpiece model is 

adopted to compute the chip thickness, the interference contact volume and cutting 

forces at each step time. In addition computational effort was reduced by compiling the 

model as a C-program executable. This enables multiple simulation runs to be 

performed on a cluster of desktop computers [96]. 

 In this research, the model assumptions are similar to those found in common literature 

for example in [79, 97]: 

 The tool stiffness and cutting force coefficient are assumed constant. 

 The cutting forces are evaluated using the linear-edge force model.  

 The cutting geometry is modelled using a discretised kinematics algorithm. This 

provides a realistic representation of how the cutter and the workpiece interact 

during vibratory milling.  

The inputs and outputs simulation data of this model are stored in the Matlab m-files.  

1- The main model inputs are:  

i. Dynamic parameters: natural frequency, stiffness and damping ratio or 

the equivalent (mass, stiffness and damping coefficient) for each mode of 

vibration. 

ii. Tool geometry parameters: number of teeth, tool radius, helix angle 

and flank clearance angle and length.  
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iii. Cutting parameters: spindle speed, feed per tooth, depth of cut, cutting 

stiffness coefficient, radial immersion, cutting mode, process damping 

normal forces coefficient and process damping friction coefficient. 

iv. Simulation parameters: number of cycles, iterations per cycle and 

number of axial layers. 

2- The main model outputs are: 

The main outputs which can be considered from this model are cutting forces (shear and 

process damping forces), system relative displacement and velocity, chip thickness, tool 

rotational angle, the interference contact (area or volume), tool rotation angle and 

possibly the arc surfaced trajectory.    

Now, having defined all the simulation inputs, the simulation is performed according to 

the flow chart shown in Figure ‎3.3 for the milling kinematics simulation. The simulation 

is executed for each step time. At every step time, the angular position of cutting tooth 

is determined, then for each tooth that is engaged in the cut region, the instantaneous of 

the chip thickness and the flank interference contact are calculated. These results are 

used for calculating the components of the cutting forces (cutting and process damping 

forces). These cutting forces are resolved in the x and y direction (as appropriate) using 

the predictive milling force model as will be described in later sections.  

Having computed the total cutting forces, the instantaneous system displacements and 

velocities in x and y direction can be determined by solving the differential equations of 

the system using the Runge-Kutta 4
th

 order numerical method, as implemented by  the 

Simulink.  

The model formulation will be presented in more details in the next section.  

3.2 Model Formulation 

With reference to Figure ‎3.4 the kinematics model begins by dividing the tool into    

discrete axial slices (layers) to model the tool /workpiece geometry within each slice. 

Two coordinate systems are used: a local coordinate            based upon the centre of 
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the tool with angles taken relative to the feed direction, and a global coordinate system 

      based upon the workpiece feed direction. The relative displacements of the 

workpiece and tool (accounting for feed rate and vibration effects) are provided as input 

for the chip thickness calculation. The basis of the computation is the manipulation of a 

set of arrays of Cartesian coordinates (one array for each tooth on each axial slice), that 

define the surface of the workpiece that was produced by that tooth. The array length 

represents a complete revolution of the tooth, therefore with each tooth revolution the 

array values are overwritten, or updated. For each time step in the simulation, the 

following calculations are repeated for each tooth on each axial slice [40]: 

1. The position of the tooth is calculated based upon the current simulation time, 

and the spindle speed. 

2. The workpiece surface array for the present tooth is updated. 

3. The instantaneous chip thickness for the present tooth is calculated, based upon 

the current tooth position, and the surface array for the preceding tooth. 

4. The geometrical interference between the tool flank and just-cut surface is 

calculated. 

The Simulink model shown in Figure ‎3.1 adopts the state space formulation which can 

be used to represent even the coupled dynamics between the x and y directions for multi 

degree milling system. In addition, the cutting forces (Figure ‎3.2) were expressed with 

subsystems of standard Simulink blocks, whereas the more complex kinematics model 

was performed in a c-program that interfaces with Simulink via the s-function/mex-file 

[98]. Now the model aspects will be descried in more details. 

3.3 Milling Kinematics  

Milling is an intermittent multi-point operation which involves feeding the workpiece 

into a rotating cutter. The milling operation can generally be divided into two categories: 

peripheral and face milling. In peripheral milling, the cut surface is parallel to the axis 

of the cutting tool. In face milling, the working surface is perpendicular to the cutting 

tool. In addition, milling can also be classified into two main orientations as shown in 
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Figure ‎3.5. Milling in which the cutter rotates in direction against the feed of the 

workpiece is known up-milling or conventional milling (Figure ‎3.5(a)): here the chip 

thickness starts at zero thickness and increases up to the maximum. The orientation in 

which the workpiece is fed in the direction of the cutter rotation (Figure ‎3.5(b)) is 

known as down-milling or climb milling: here each tooth engages the material at a 

definite point, and the width of the cut starts at the maximum and decreases to zero.   

In addition the instantaneous chip thickness for the milling is described with reference 

to Figure ‎3.6, at any instantaneous point in time, the chip thickness   can be calculated 

based upon the current tooth position and the workpiece surface coordinates 

representing the surface from the previous tooth pass.  Moreover the flank contact or the 

interference region (area or volume) between just the cut-surface and the current 

position of the tool is then determined based upon the relief angle   and the maximum 

allowable interference contact length (flank length)   . This interference contact (area or 

volume) is then used to calculate the normal forces that arise due to process damping 

mechanism. The workpiece material that has been penetrated by the flank surface is 

assumed to plastically deform so that it follows the flank surface.  

Details of calculating the milling chip thickness and interference contact volume are 

now explained.  

3.3.1 Chip Thickness Calculation in Time Domain Milling 

In milling process, calculating the instantaneous uncut chip thickness   accurately is 

very essential step for estimating the radial and tangential cutting forces on the cutter at 

each cutting point. This section discusses the method that incorporates simultaneously 

the cutter/workpiece relationships and the immersion angle variation into the calculation. 

It should be noted that, chip thickness simulation of this model is following similar 

procedure that developed by Sims [40], Campomanes and Altintas [79] and Peigne et al 

[99] which now is summarised.  

In general by considering the regeneration model, the calculation is determined based 

on the relative positions between the current tooth tip and the workpiece surface layer 
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generated by the preceding tooth pass. The engagement/separation of the cutter from the 

workpiece is instantaneously identified. It should be known that during the chip 

thickness simulation, centre of the tool is used as a reference for all the computed 

dimensions.  

The milling kinematics model begins by discretising the tool/workpiece contact 

geometry to    number of axial slices (layers) as shown in Figure ‎3.4(a), each layer 

consisting of an array of      data points. At each instantaneous point of time, the chip 

thickness is calculated upon the current tooth position and the workpiece surface 

coordinates representing the surface from the previous tooth pass. This is demonstrated 

in Figure ‎3.6(b), which shows an example for simulating the chip thickness using a tool 

with uniform teeth. Here the data points stored in the workpiece surface arrays for each 

tooth. The instantaneous chip thickness   is calculated using a circular interpolation 

method between the two closest points,     and     left by the preceding tooth      on 

the previous arc surface     , and the    current cutting tooth tip position     at the 

current arc surface  . The close-up Figure ‎3.6(b) shows how the chip thickness   is 

calculated based upon the intersection of two lines. One line is the line from the present 

tooth’s position to the tool centre, and the other is the line of the segment of the 

workpiece surface array for the previous tooth.  

However, during the milling process the tooth can lose contact with the workpiece 

surface due to the rotation outside of the cut, or the excessive vibrations between the 

tool and workpiece. The latter case is illustrated in Figure ‎3.6(d), where the tooth tip 

does not intersect the surface array     generated by the preceding tooth. In this case, 

the surface array   for the current tooth is updated by interpolation between the data 

points on the layer surface     . In physical terms this is equivalent to the workpiece 

surface being unchanged, since the tooth is not cutting. In this situation, the value of the 

instantaneous chip thickness becomes negative     . These values of the chip thickness 

are called loss of contact chip thickness     which in Chapter 5 will be used to measure 

what is called loss of contact energy. The procedure of calculating the chip thickness is 

now demonstrated in more detail:  
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1- Identifying the Current Tooth Position:  

For each step time the instantaneous tooth position at the current axial layer is identified. 

Figure ‎3.7 shows an example of the geometry of the chip thickness during the milling 

process. Here coordinates of the current cutting tooth             are determined by the 

means of the tool radius    and its angular position    along the cutting region. The 

mathematical relationship of defining the angular position                  including 

the constant helix angle and the instantaneous coordinate             is expressed as 

follows:   

              
       

  
 
       

  
 

(‎3.1) 

  

                  

                   

(‎3.2) 

where    is the angular position of the cutting tool, calculated from its angular 

velocity,   and the time,  ,            is the angular position of each tooth i relative 

to the reference tooth,   is the regular helix angle,    is the radius of the cutter, and    is 

the total number of axial discretisation layers. 

2- Defining the Workpiece Arc Surface Points:  

At each step time the workpiece surface is digitised by a number of points, each data 

point is defined in global coordinates stored in an array. Along the segment geometry 

the two closest arc surface points     and     on the previous arc surface      at the 

points    and   respectively (Figure ‎3.7) are defined using c-program codes.  These 

points are defined in the global coordinates             and             with angular 

positions               respectively. These slope angles are calculated based on the 

global coordinates using the four-quadrant inverse tangent function as follows:   

                     

                       

(‎3.3) 
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3- Calculate Dimensions of the Intercept Segment Geometry  

For each step time the dimensions of this segment are calculated and updated. Here with 

reference to Figure ‎3.7 dimensions    and    are measured as the distance from the tool 

centre position O to the defined arc surface points     ( ) and     ( ) on the previous 

arc surface respectively. These dimensions    and    with the slope angles           

respectively are calculated as follows: 

 

                  
 
  

                  
 
 

(‎3.4) 

             

           

(‎3.5) 

 

 Angles           are defining the angular position of the arc surface points     and 

    relative to the current tooth radius position. Then the intersection angles     , ,   

and dimension      can be found: 

 

              

         
    

                

         
            

   
 

       
            

   
 

(‎3.6) 

 

Now the intercept segment radius    is calculated which is equal to the distance from the 

current tool centre O to the point O' (Figure ‎3.7). When the angle    is equal to zero the 

radius of intercept segment     is equal to the dimension              according to the 

triangle         (Figure ‎3.7). However, if the angle    (     ) equals zero then the 

radius     will equal the dimension               

     
                               
                                

  
(‎3.7) 

 

In addition when the angle          is not found or equals zero, then the intercept 

segment radius    is calculated based on the         triangle relationship. However 
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when the angle  (     ) equals zero then the radius of the intercept segment    can be 

found from the triangle (     ). 

    

 
 

  
      

             
                              

 
      

            
                                    

  
(‎3.8) 

 

If the all dimensions of the cutting segment are found and computed. The intercept 

segment radius    will be calculated along the both triangles (     ) and (     ) 

geometries and select the highest value as shown in Figure ‎3.7.  
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(‎3.9) 

 

Now with reference to Figure ‎3.7, the instantaneous uncut chip thickness   is measured 

as the distance between the current tooth edge             at point C and the 

intersection point O' that is crossing the intersect segment dimension    . In other 

words, the instantaneous uncut chip thickness   is equal to the current tooth radius    

minus the radius of the intercept segment   :  

             (‎3.10) 

4- Update the Intercept Segment Radius   

During the milling process the workpiece is fed into the cutter at the rate    (mm/tooth). 

Therefore radius of the intercept segment    needs to be updated for each step time. 

Since in this model the cutting tooth is assumed to be sharp-edged then the intercept 

segment radius is updated based on the current tooth radius and position as follows:    

During the simulation at each step time the value of the intercept segment radius    is 

checked to determine whether the tooth is in the cut or not. If the current value is not 
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found, this means the tooth is rotating outside the cut (due to the vibration or rotating 

outside the cutting segment), in this case the intercept segment radius    is updated to be 

set equals to the current tool radius   ,      ). Then the radius of the intercept segment 

   is recalculated for each new surface layer as previously explained. Furthermore, 

coordinates of the current tool point             on the current layer are updated by 

using the current updated tool radius and converted to global coordinates as follows: 

 

                

                    
 

(‎3.11) 

 

Finally values of the dynamic chip thickness   for each tooth    and each layer   are 

stored in arrays to be input data for the cutting force calculation. 

3.3.2 Modelling Tool/Workpiece Interference Contact Region 

It  is well known  that  during the metal cut the  tooth edge is not perfectly sharp, and  

that  even a very carefully treated  tool  edge  can not  retain its original  sharpness after  

engaging  a cut. It is also believed that  material  that moves  in front  of  the tool edge is 

severely retarded [100] due to the friction between material layers. As a result, the  

separation  of material  around  the  tool  tip may effectively occur  along  the segment 

of  a circular arc with a finite radius [101, 102], as  shown  in Figure ‎3.8. The size of  

this  effective radius  depends  on  the tool  geometry and work  materials ,  as well as  

the  cutting  conditions,  for  example ,  cutting  at  either  a low cutting  speed or  a 

small  uncut  chip thickness  usually creates  a large effective radius [103]. With 

reference to the same figure, due to the finite effective radius, the material approaching 

the tool cutting edge may be deformed in one of two ways. In the upper segment, the 

material is deformed and removed as a part of the chip. In the lower part, due to an 

effective large negative rake angle, the  material  can not  move up ward to  become part 

of  the chip but instead is extruded and pressed under the tool [104, 105]. This extruded 

material flows under the tool tip and eventually departs from under the tool flank face. 

During this extrusion process, the material is displaced down ward different distances 

according to the shape of the contact surface. The maximum surface displacement here 

is called the depth of tool penetration, which refers to the penetration of the tool into the 

workpiece. The total volume of the material displaced at any given instant is dependent 
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not only on the sharpness of the tool tip but also on the instantaneous cutting conditions 

[103]. In addition, in dynamic milling, the volume of material displaced by the flank face 

of the cutting tool through the penetration mechanism is varying as the tool vibrates and 

changes the instantaneous cutting direction. The relationship between the volume and 

the tool position for this model which considers a sharp tool is described below.  

With reference to the close up view in Figure ‎3.6(c) shows a scenario of how the tool 

flank/workpiece interference is occurred. As described in [19], the current relief contact 

length     is calculated from the intersection of two lines. One line represents the flank 

face of the tool, and the other line is the relevant segment of the workpiece surface array 

for the present tooth. If the workpiece is assumed to plastically deform, then any 

workpiece surface array elements within the interference zone are moved radially 

outwards as shown by the arrow. The most straightforward physical mechanism for the 

flank forces is to consider the total penetration length multiplied by the thickness of 

each slice to give the effective contact area between the tool flank and workpiece (for 

each slice) [19]. This method was applied by a small number of researchers for instance  

Montgomery and Altintas [17], Budak and Tunc [11] and Ahmadi and Ismail [106]. 

However this method is not utilising all of the information that is available concerning 

the flank/workpiece penetration. For example, what if the penetration is much deeper 

but confined to the same contact length? A more complex contact model would account 

for this issue, but at the expense of the computation efforts required. An alternative is to 

consider the flank normal force to be proportional to penetration volume of material that 

is pressed by the tooth flank face.  

The interference volume is defined as the material forced below the cutting tool’s flank 

face. This material is displaced beneath the radial cutting edge and the clearance face. 

For example Ranganath et al [18, 107] and Wu [108] used this method for modelling 

process damping forces. They proposed calculating the instantaneous interface volume 

by considering the region of the work surface from the tool tip extending backwards 

along the flank face of the tool. The cutting tool is assumed to have a zero edge radius. 

It should be noted that, the arc surface points are calculated after considering the effects 
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of cutter deflection, run out and the actual feed of the tool. Therefore the model does not 

impose any restrictions on the machined surfaces. The arc surface is traced out by these 

points which are then used to calculate the volume of the interference.  

The question arises here as to whether the workpiece material that penetrates the flank 

undergoes a permanent deformation, thereby changing the geometry of the just-cut 

surface. Two extremes are fully elastic deformation (where the workpiece surface in 

unaffected), and fully plastic deformation. In the latter case, the material penetrating the 

tool flank will be removed and the workpiece surface redefined to align with the flank 

surface. 

In the most recent studies such as [11, 13, 16, 18, 47, 107-109] process damping forces 

were modelled based on the volume interference between the tooth flank face and the 

wavy surface of the workpiece. The interference geometry is discretised into a number 

of segments. The volumes of these segments are calculated and added to each other to 

represent the total interference volume that is pressed beneath the tool flank face.  

Figure ‎3.9 shows a scenario of the interference mechanism during the milling. Here the 

cutting tool is assumed to be a sharp edge with a nominal clearance angle  . During the 

interference mechanism, the following contact points on the flank face and the arc 

surface are defined: 

             Coordinates of the contact point generated by the leading edge of 

the sharp tool at a tooth engagement angle    .  

           Coordinates of the contact point generated by the leading edge on the 

machined workpiece surface.  

           Coordinates of the contact point on the flank face and corresponds to 

the point on the workpiece arc surface          .  
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1- Penetration of the Tool Flank Face 

Data points of the workpiece arc surface that are penetrating the tooth relief face are 

defined as follows: 

 With reference to Figure ‎3.9 the flank region of the cutting tooth is firstly 

defined. The flank angle    is calculated based on the global coordinates using 

the trigonometry relationships as follows:  

 
              

        

   
     

                   

 (‎3.12) 

 

 Coordinates of the current tooth position point             is defined on the 

current arc surface   using the tooth radius and the engagement angle    at the 

current time step    : 

 
              

               

(‎3.13) 

 

 Then the coordinates of the previous point                     is determined by 

performing the C-program codes, this point is defined on the arc surface    

(Figure ‎3.10) that was generated at the time step        .  

 
                                    

                                     

 

(‎3.14) 

 

Determine the position of this point relative to the position of the current tool tip 

(Figure ‎3.10). This can be achieved by calculating the dimension     and the slope 

angle   . Using results of the Equation  (‎3.14) of the defined arc surface points relative 

to current tooth edge. 

 

                                        

        
               

               
         

 

 
   

   (‎3.15) 

 

 Convert the dimension     into the tool coordinates            
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               

                 

(‎3.16) 

 

 Assuming the tooth geometry is sharp (tool wear is not considered), the 

coordinate     of the point that is located on the tool clearance face and 

corresponding with its coordinate     is calculated as follows. 

                  (‎3.17) 

 In this model plastic deformation mechanism is considered during the metal 

cutting. Therefore the arc surface points that are penetrating the tool flank face 

are calculated. As can be seen in Figure ‎3.10 when the coordinates     of these 

points are greater than the flank face coordinates    , then the position of each 

point is calculated (dimension     and slope     are calculated based on the 

coordinates     of the tool clearance face as follows: 
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(‎3.18) 

 

 Convert the dimension     into the tool coordinates            

 
                 

                   

(‎3.19) 

 

2- Modify the Interference Contact Region 

Calculating an accurate interference contact volume is very essential step for accurate 

process damping forces. In some cases, the calculated points are possibly laid in the 

flank region but are not interfacing with the flank face as shown in Figure ‎3.11. In this 

situation, these points should be modified. The first case can be assumed as when the 

point is located at the beginning of the interference region is not interfacing with the 

tool flank face (case1 in Figure ‎3.11). This occurs only when the coordinate      of this 

point is less than its coordinate     , this means that the dimension     is negative, 

whereas the coordinate      of the second point is greater than its coordinate     , and 
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its dimension value     is greater than zero. Therefore, to find the starting point of the 

front interference contact, the first point should be moved backwards to be located on 

the tool flank face using the follow expression:   

 
    

         
       

       
                                        

                                                                                                                                  
 

(‎3.20) 

 

 

However, for the case 2 in Figure ‎3.11, the point here is located at the end of contact 

region which possibly is not interfering with the tool flank face. This occurs only when 

the coordinate        of this point is less than its coordinate     , this means that its 

dimension     is less than zero.  Whereas the coordinate      of the first point is greater 

than its coordinate     , thereby its dimension     is greater than zero. Therefore, to 

find the point that defines the end of the interference contact, the second point should be 

moved inwards to be located on the tool flank face as follows:   

 
   

        
       

       
                                          

                                                                                                      
                                                                                                                     

 
(‎3.21) 

 

3. Calculating the Interference Volume  

In order to calculate the interference volume accurately, the contact region is sliced into 

number of segments. Volumes of these segments are numerically calculated and added 

to each other to estimate the total volume of the interference region that is pressed by 

the tool flank face. Figure ‎3.12 shows a close-up view of the modelled interference 

contact region at certain step time. The interference volume of each segment is 

expressed as follows: 

            (‎3.22) 

The volume of each segment    is calculated by multiplying the slice thickness    by 

each computed segment area    which is calculated by using the trapezoid method.  

Having calculated all the segment volumes          for each tooth Nt then a numerical 
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integration is used to calculate the total volume of the interference region  . The total 

interference contact volume is given as follows:   

 

               

  

   

  

 

 
    (‎3.23) 

 

The output values of the interference contact volume are stored in arrays and sent to the 

milling forces block as an input data to calculate the process damping forces.   

 

3.4 Milling Forces  

3.4.1 Modelling Cutting Forces 

It is well known that cutting forces are directly proportional to the chip area behaviour 

[68, 110, 111]. A simplified orthogonal cutting force has been introduced in [68] to 

model dynamics of the forces in the cutting process. The cutting forces that are 

expressed in equation (‎3.24) composed of the tangential cutting force    which is 

directly proportional to the chip area, and the radial cutting force    which is orthogonal 

and proportional to the tangential force. The chip area is determined by product of the 

chip thickness h and the depth of cut b.   

 
          

                   
(‎3.24) 

where    and    are the tangential and radial specific cutting pressure respectively, 

and       is the chip area. This model is corresponding to a straight tooth cutter [68]. 

However, in practice most of the milling tools may have a uniform or variable helical 

flute, so each flute penetrates into the workpiece depending on the angular position 

along the helix angle as shown in Figure ‎3.4. The geometry of the chip formation and 

the milling force components are also illustrated in the same figure.  

Now, by considering the cutting geometry shown in Figure ‎3.4 both the tool and 

workpiece are discretised into a number of layers    along the axial depth of the cut  . 

For the end-mill each layer has a disk shape with thickness    
 

  
  (Figure ‎3.4 (b)). As 

with many previous publications [18, 40, 49, 79], at each axial layer the cutting force of 
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each tooth is calculated by product of the instantaneous cross-sectional area of uncut 

chip and the cutting pressure coefficient. At any step time the cutting forces due to the 

mechanics of chip generation are given by: 

 

      
 

 

  

           

      
 

 

  

           

             (‎3.25) 

where      , is the cutting force that acting in the radial direction of the tooth for layer   

and tooth   . Likewise,       is the cutting force due to the chip mechanics acting in the 

tangential direction of the tooth    and layer  .  Subscripts           are referring to the 

radial and tangential cutting respectively. Whereas coefficients     and     are widely 

used cutting forces coefficients that must be empirically obtained for a particular 

workpiece and (often) a particular tool. The edge or rubbing force coefficients     and 

     can be also included in the model formulation, but in this thesis for simplicity they 

are initially assumed to be zero. 

Then these forces are transformed to the global coordinates based on the immersion 

angle    as shown in Figure ‎3.4(c) the cutting forces are resolved into components      

and      and summed up in the x and y directions respectively.  

 
      

       
       

 

 
        

           

      
       

       
 

 
        

           

                  

(‎3.26) 

 

 

           

  

   

  

   

 

           

  

   

  

   

 

 

 

(‎3.27) 

 

 

 

 

 



 

 

46 

 

3.4.2 Process Damping Forces  

It is believed that the process damping phenomenon exists due to the variation on the 

actual clearance or relief angle of the tool whilst cutting a wavy surface and its relation 

to the thrust on the cutter [112]. When the tool or workpiece vibrates during cutting, 

waves are generated on the workpiece surface as a result. Process damping occurs 

where the edge and flank of the cutting tool interfere with these waves. This 

interference causes a force out of phase with the vibration motion, which has a damping 

effect [113]. Some researchers assumed that process damping forces can be a result 

from the surface contact between the tool and workpiece [114], however the prevalent 

definition was expressed by Wu [103] is that process damping occurs due to ploughing, 

i.e. deformation of the workpiece by the tool.   

In addition, experimental research has shown  that  the  flank relief  angle ( ) of  the  

cutting  tool  has  a strong damping  effect on  the  cutting  process. This effect is 

attributed to the  actual  contact  between the  workpiece and  the  tool  relief face which 

includes  the  tool cutting edge and  its adjacent flank face [115].  

Having calculated the workpiece/flank contact volume, the process damping forces are 

then calculated as follows: 

 

          
        

 

      
        

         
 

 

(‎3.28) 

With reference to Figure ‎3.4(c),       
 is the cutting force due to process damping 

acting in the direction normal to the flank face, for layer   and tooth   . Meanwhile, 

      
is the frictional force acting on the direction of the flank face. Equation (‎3.28) has 

introduced two new variables: the process damping normal force coefficient    , and a 

corresponding coefficient of friction   . 

In addition the ploughing forces (process damping forces) can be resolved into 

components     
 and     

 acting in the x and y directions respectively:  

       
       

       
 

 
          

             (‎3.29) 
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  (‎3.30) 

 

where    is the number of teeth on the tool and    is the number of axial layers. 

  

3.4.3 Total Cutting Forces  

The total forces acting on the tool in the global   and   directions then are determined 

as follows: 

           

           

 

(‎3.31) 

These forces are then sent to the machining dynamics model where the system vibration 

is computed.   

3.5 Model System Dynamics  

Having calculated the total cutting forces that are acting on the tool, the corresponding 

system displacements can be obtained by modelling the structural dynamics of the 

flexible tool/workpiece. Figure ‎3.13 shows an example of the vibratory model used for 

machining dynamics modelling of milling. The cutter is considered to be a one-degree-of-

freedom spring-damper vibratory system in the two commonly orthogonal directions x and y. 

The cutting forces exciting the system in the feed (x) and normal (y) directions are causing 

dynamic displacements x and y, respectively. These displacements are then fed back to the 

milling kinematics model. The dynamics of this milling system can be represented by 

the differential equations of motion as follows: 

 
                     

                     

(‎3.32) 
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where    and    , are the masses,    and    are the damping coefficients,      and    

are the stiffness of the machine tool structure in directions x and y, respectively, and 

      and        are the components of the cutting force that are applied on the tool in 

the directions of   and   respectively. The dynamic characteristics  of  the  machine  

tool structure,  including  the masses, damping  coefficient, and stiffness,  or in  another 

form  of  the  dynamic  stiffness, natural frequency, and the damping ratio, can be 

obtained from the modal testing.  

Most of the available time domain simulations for chatter in machining use the 4
th

 

Runge–Kutta method to solve the differential equations because of the accuracy. Here 

the continuous time variable   is replaced by the discrete variable   , and the differential 

equations are solved progressively in constant time increment   , starting from known 

initial conditions. In general, better accuracy is obtained by choosing a smaller time step, 

but the number of computations will then increase [73].  

For the Simulink model used in this research, the governing equations (‎3.32) are solved 

by considering the fourth order Runge-Kutta method at fixed time steps.  The time step 

is defined by (   
  

         
  , where iters is number of the samples or steps per tool 

revolution and    is the spindle speed in revolution per minute. In general, this model 

performs well along this time step selection. As an example for implementing the 4
th

 

Runge-Kutta to solve the differential equation (‎3.32) is presented in Appendix B [73]. 

With reference to this model shown in Figure ‎3.1, the equations of motion are solved in 

the time domain using relevant Simulink blocks to calculate the vibrations of the system. 

These vibrations are then fed back to calculate the instantaneous dynamic chip thickness. 

Once the instantaneous chip thickness is determined, the cutting force components can 

be predicted from the predictive force model as described in the previous section. It is 

assumed that the dynamic cutting forces in milling react instantaneously to the changes 

in  undeformed chip geometry  that  are  occurring  due  to  the  dynamic regenerative 

effects.  
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3.6 Summary  

In this chapter, the formulation of the Simulink model has been illustrated. In addition 

the model’s aspects have been described: milling kinematics, milling forces, and system 

dynamics. The milling kinematics calculates the chip thickness and tool/ workpiece 

interference contact volume. The milling forces calculate the shear cutting forces that 

are proportional with the chip thickness, and process damping forces that are 

proportional with the tool/workpiece contact volume.  

Cutting process can become nonlinear for various reasons. In some cases, a nonlinear 

relationship between the cutting forces and the chip thickness can be observed. 

Excessive vibrations can lead to the tool leaving the cut so that the cutting force 

becomes zero. The advantage of a time-domain model is that these issues can be 

directly included in the model. Nevertheless, a linear model can still give a first 

approximation to the chatter stability. It should be noted that the techniques developed 

here are equally applicable to models with nonlinear components. Finally modelling 

system dynamics with an example of two degree of freedom are described to show how 

the system displacement can be modelled in x or y directions.  

In the following chapters, the Simulink model will be used to consider different effects 

of the chatter mitigation mechanisms. In next the Chapter 4, the effects of the variable 

spindle speed will be explored. The model will then be extended to consider energy 

calculations, to explore process damping effects, variable helix tool and short 

regenerative effects.  
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Figure ‎3.1 Main Simulink model with process damped milling. 
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Figure ‎3.2  Cutting forces calculation in Simulink subsystem. 
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Figure ‎3.3 Flowchart of the Simulation 
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Figure ‎3.4  Milling dynamic model, giving the relative position between the cutting tool 

and the workpiece at each axial ‘‘layer’’ 
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Figure ‎3.5 Tool and Workpiece Geometry during up and down milling 
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Figure ‎3.6 Simulation of the instantaneous chip thickness for a tool with 6 teeth[19]. 
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Figure ‎3.7 geometry of the chip thickness during the milling process 
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Figure ‎3.8 the ploughing mechanism 
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Figure ‎3.9 Tooth Flank Interference Geometry 
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Figure ‎3.10 modelling points that penetrate the tool flank face 
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Figure ‎3.11 Modifying the Penetration Region 
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Figure ‎3.12 Modelling of the interference Contact Region 
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Figure ‎3.13 Two modes of the spring damper vibratory model of milling operation 
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4 CHAPTER 4 VARIABLE SPINDLE SPEED IN TIME DOMAIN MILLING 

4.1   Introduction 

Machining instability was traditionally overcome by selecting conservative cutting 

conditions, such as reducing feed rate or depth of cut [38]. More recent work has 

proposed continuously varying spindle speeds during milling. This is suggested as an 

effective technique to suppress regenerative chatter, which has become the focus of 

interest for many studies. Ismail et al.[31], for example employed the spindle speed 

modulation for real-time control of chatter in peripheral milling. Yilmaz et al.[87], 

presented a new method of multi-level random spindle speed variation. Sri and Beddini 

[36] and Pakdemirli and Ulsoy [88] considered the mechanism of spindle speed 

variation for chatter suppression using the delay differential equations with periodically 

perturbed delays. Seguy et al. [116] studied the effect of spindle speed variation in the 

high-speed domain using a semi-discretisation method for computing the optimal 

amplitudes and frequencies of the speed modulations. In addition Al-Regib et al. [29] 

considered the concept of programming the spindle speed variation for minimum energy 

input by the cutting process.  

In general, models designed for determining and analysing machining stability of 

Constant Speed Machining (CSM) are not directly applicable to Variable Speed 

Machining (VSM) due to the presence of the time varying delay in the differential 

equations[117]. Therefore special mathematical techniques are used for analysing 

machining stability, since the corresponding mathematical model is a delayed-

differential equation with a time varying delay term. Insperger and Stepan [118] for 

example considered the semi-discretisation method to study numerically a single degree 

of freedom model with time varying delayed equation. Jayaram et al. [117] analysed the 

system by considering a special combination of Fourier expansion and Bessel functions. 

Tsao et al [38] presented an angle domain analytical method for chatter stability 

analysis of variable speed milling. In this method, the system equations were 

transformed to the angle domain, using the spindle angular position instead of the time 

as the independent variable. The time varying delay in the system equations is converted 
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to a constant delay in the angle domain. However, the analysis presented in their study 

was for the simplified situation of continuous cutting with only single tooth in cut at any 

point of time.  

However, the techniques and the procedures that are used in the current model as will be 

described in this chapter allow the above limitations to be overcome. This approach can 

be also applied to systems with multiple modes of vibration, and involving interrupted 

cutting with multiple teeth engaged in the cut simultaneously. It is also straightforward 

to include a nonlinear relationship between cutting force and chip thickness, and the 

periodic excitation force is inherently modelled. Consequently, the present chapter will 

describe a modification of the existing model so that it can be used for variable speed 

machining.  

This chapter formed a two conference papers, abstracts are given in Appendix A1 and A2. 

4.2 Mechanism of the Spindle Speed Variation 

Periodic spindle speed variation is considered in the form: 

                     (‎4.1) 

where    is the mean spindle speed,    is the amplitude of the speed variation and 

               is a periodic shape function that varies between -1 and 1[116]. In the 

literature, mostly sinusoidal, triangular or square-wave modulations are considered. In 

this chapter a triangular speed variation shown in Figure ‎4.1will be considered.  It is 

assumed that the spindle speed variation is periodic at period    with a mean value   , 

frequency ratio     and speed amplitude ratio    . According to the general notation 

in the corresponding previous studies, the amplitude and the frequency of the speed 

variation is normalized by the mean spindle speed   , as:  

 

    
    

    
 

    
  

     

 
(‎4.2) 
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In practical applications, the maximum value for     is about 0.3 [116]. This 

represents a variation of 30% of the spindle speed and results in a variation of 30% of 

the feed by tooth due to the constant feed velocity.     is the ratio between the 

variation frequency    and the average spindle frequency 
    

  
. The variation frequency 

   is typically about 1-2 Hz [116]. 

In this work, by using the normalized parameters introduced above, the triangular 

milling speed trajectory can be approximated. Sample of the Matlab codes in Appendix 

(D1) show how this speed trajectory are can be calculated based on the average spindle 

speed periodicity   . However, the speed periodicity was determined based on the ratio 

of the speed variation frequency       and the mean value of the spindle speed    as 

follows: 

     
  

       
 (‎4.3) 

In addition, amplitude ratio     is used to define the limits of this speed trajectory, 

here as shown in the Figure ‎4.1 the limits of the speed at  points (1, 3, … odd numbers) 

are greater than the nominal value    with value         whereas the limits at points 

(2,4,…. even numbers) are less than the nominal value    with amount          

        
                                              

                                        
  (‎4.4) 

Then the spindle speed trajectory is stored in array in terms of the instantaneous number 

of revolutions    versus the instantaneous spindle speed value  .  

4.3 Milling Time Domain Simulation 

4.3.1 Constant Speed Machining (CSM) 

Consider the schematic representation of milling shown in Figure ‎3.4(a). Here, a milling 

tool with multi cutting teeth is removing material from a workpiece. It should be 

highlighted that regenerative chatter can occur even in a linear one degree of freedom 

system due to the presence of a delay term in the forcing function; consequently a single 

degree freedom is considered here. However, it is straightforward to extend the 
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presented relationships to systems with many degrees-of-freedom, as would occur in 

many practical scenarios. Therefore, for simplicity the structure is assumed to be flexible 

in the y-direction, while the feed is parallel to the x-direction, the dynamic model is defined by 

the equation: 

   
   

   
   

  

  
        (‎4.5) 

It should be re-iterated that the force    is a function of the current and delayed 

vibration  , along with the instantaneous angle of the tool. Consequently, equation (‎4.5) 

is a delay-differential equation with nonlinear and time-periodic coefficients.  

In order to predict the time response of this system, a discretised model is formulated in 

the Simulink modelling environment that is shown in Figure ‎4.2. The model consists of 

three aspects, namely milling kinematics, milling forces, and system dynamics. These 

components were described with more details in the Chapter ‎3. 

4.3.2 Variable Speed Machining (VSM) 

Traditionally real-time is used as the independent variable for writing the solution of the 

equations of motion. This is particularly the case when simulating dynamic systems 

using the Simulink modelling environment. Here, physical time (with units of seconds) 

is assumed to be the independent variable, and a wide range of numerical integration 

routines are available for solving the equations of motion (e.g. the 4th order Runge 

Kutta method, etc). 

However, a close inspection of the Simulink formulation described above reveals that 

the milling kinematics model requires a fixed number of time steps for each revolution 

of the tool. This means that a fixed-step solver (e.g. the Runga Kutta method) must be 

used, and the spindle speed must be fixed. In this section, this problem is overcome by 

using tool revolution as the independent variable in rewriting the system equation of 

motion. Consequently, ‘Simulink time’ is no longer equal to physical time, but rather 

the number of tool revolutions. With this approach, a fixed step solver will always 

involve a fixed number of time steps per tool revolution, even if the spindle speed is 

changed. This concept will now be derived more formally. 
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4.4 System Equation in Variable Speed Machining 

With reference to equation (‎4.5), the relationship between physical time   and 

instantaneous spindle speed   is: 

   

  
    (rev/sec) (‎4.6) 

where     is the number of tool revolutions, the velocity can then be rewritten using the 

chain rule as: 

 
  

  
 

  

   

   
  

 
  

   
   

 

(‎4.7) 

 

Moreover the system acceleration can be rewritten as: 

 
   

   
 

   

   
    

  

   

  

  
      (‎4.8) 

Here, the rate of change of spindle speed    can be rewritten to give: 

 
   

   
 

   

   
    

  

   

  

   
      (‎4.9) 

The equation of motion (‎4.5) can then be written in terms of the derivative expressions 

on the right-hand-side of equations (‎4.7) and (‎4.9) 

              
  

   
     

   

   
    

  

   

  

   
   

   (‎4.10) 

 

This can be rearranged to give: 

 
   

   
  

 
  

     
 

       

    
 

  

   

  

   
 

 

 

  

   

  

   
 

   (‎4.11) 

 

The system dynamics which are represented by the equation of motion    (‎4.11) give rise 

to the Simulink system shown in Figure ‎4.3. 

4.5 Numerical Study  

In order to demonstrate the implementation of the proposed model, a simple milling 

scenario with one degree of freedom is considered. The milling parameters were chosen 

to closely match those used in previous work by Seguy et al [89, 116], and are 

summarised Table ‎4-1. 
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To begin with, the milling spindle speed was assumed to be constant and the chatter 

stability was evaluated using the semi-discretisation method as implemented in 

reference [89, 116]. This served to check the validity of the time-domain model for the 

constant speed scenario. A variable spindle speed was then used in the time-domain 

model, with a triangular speed variation around a mean value. This was defined in 

accordance with reference [89, 116], with the parameters RVA and RVF fixed at 0.28 

and 0.003 respectively.  

For the time-domain simulations, the peak-to-peak displacement technique is used to 

determine the system displacement, since it is considered to be an effective method used 

for chatter detection. Previous studies [39, 40, 89, 116] have showed that the peak-to-

peak approach provides a rapid means of identifying the stability boundary during time 

domain computation of the constant speed milling. However in the variable spindle 

speed case, it will be seen that the system displacement does not reach a steady state 

condition, making the peak-to-peak method difficult to use as a judgement of chatter 

stability. 

It should be pointed out that the parameters chosen in the present study may not 

completely match those used in reference [89], since the tool helix angle, tool radial 

immersion; number of tool cycles, and number of simulation axial layers were not given. 

4.6 Results and Discussion  

Before presenting an analysis of the chatter stability, it is worth illustrating the time 

response of the system, and describing the implementation of the peak-to-peak 

displacement method for analysing the chatter stability as presented in Figure ‎4.4. A 

typical result of the case of constant speed machining (CSM=9100 rpm) is shown in 

Figure ‎4.4(a). As can be seen from the closed view (Figure ‎4.4(a)) the steady state is 

reached and the peak-to-peak displacement is used to evaluate the system stability. 

However Figure ‎4.4(b) and (d) demonstrate the case of variable speed machining. Here, 

the triangular waveform of the spindle speed is varying periodically about the mean 

value of the speed ( m=9100 rpm) as shown in Figure ‎4.4(d). Figure ‎4.4 (b) illustrates 
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the overall chatter level which is clearly stabilized at a level significantly lower 

compared to the constant speed machining case (Figure ‎4.4 (a)). Thereby the system 

here is considered to be stable. The comparison between the constant speed machining 

and variable speed machining is further illustrated in Figure ‎4.4(c). From this plot it can 

be clearly noticed that variable speed machining approach has lower and almost 

constant vibration which indicates significantly greater stability than for the constant 

spindle speed condition. However, close inspection of the closed view displacement 

signal shown in Figure ‎4.4(b) reveals a response that is no longer periodic with each 

tool revolution, due to the influence of the variable spindle speed. For consistency, the 

peak-to-peak measurements were therefore obtained from the data within the last period 

of the spindle speed waveform. 

Now, in order to implement the peak-to-peak displacement approach, the maximum and 

minimum values of the displacement (Figure ‎4.4) is obtained. In the case of chatter 

instability, the displacement magnitude is expected to grow exponentially, so the value 

obtained depends entirely on the number of simulated tool revolutions (i.e. the length of 

the simulation time-span). Nevertheless, the magnitude obtained for completely stable 

cases depends only on the forced vibrations. Consequently, if the peak-to-peak values 

are plotted as a function of depth of cut  , then a clear transition is observed at the depth 

of cut corresponding to the stability boundary.  

Next, a number of simulation tests at a constant speed have been conducted in order to 

verify the model. The results are shown in Figure ‎4.5. Stability of the constant speed 

machining is predicted using the semi-discretisation method. This method can be used to 

derive stability charts for constant spindle speed, and the variation of the delay arose due to the 

accurate modelling of the feed motion [34]. In order to verify the results obtained by semi-

discretisation, the system’s behaviour is determined as well by time domain simulations for 

some particular spindle speeds. The predicted behaviour of the system corresponds to the 

constant cutting speed is compared with the system behaviour when these speeds are 

continuously varied.   
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The stability lobe diagram for the constant spindle speed case is shown in Figure ‎4.5(a). 

Here, regions below the line indicate a prediction of stable, chatter-free machining, 

whilst regions above the line are associated with chatter. The individual markers at 4000 

and 9100 rev/min correspond to milling conditions used in the time-domain simulations 

of the constant spindle speed. 

As can be seen from the Figure ‎4.5(b), at 4000 rev/min the magnitudes of the peak-to-

peak displacements increase proportionally with the axial depth of cut  . This case is 

related with a stable cutting process where the amplitudes of the forced vibrations are 

linearly increasing with the increased depth of cut. The use of a single axial discretised 

layer in the time domain model implies that the tool helix angle is 0 degrees, resulting in 

high forced vibration amplitudes that do not occur in practice. Figure ‎4.5(c) shows the 

peak-to-peak displacements at 9100 rev/min. A sharp transition occurs at   0.6mm, 

corresponding to the margin of stability indicated in Figure ‎4.5(a).  

Figure ‎4.5(d) shows the peak-to-peak displacements acquired by time domain 

simulation for the variable spindle speed simulations at 9100 rpm. From this plot it can 

be seen that there appears to be a transition in the peak-to-peak amplitudes at   2mm, 

which indicates significantly greater stability than for the constant spindle speed 

condition (Figure ‎4.5(c)). This result is further illustrated in the Figure ‎4.5 (e) where the 

critical depth of cut at spindle speed 9100 rpm is increased from 0.6mm (constant speed 

machining) to about 2mm (variable speed machining).  

These results agree reasonably well with those given in [89, 116], and the small 

differences could be attributed to the different parameters used in the simulations. 

Consequently these outcomes have validated the proposed variable spindle speed 

modelling procedure.  

However, close inspection of the displacement signal shown in Figure ‎4.4 reveals that 

the transient behaviour of the signal that is arising due to the spindle speed alterations 

makes the peak-to-peak approach unable to provide an accurate measurement of chatter 

stability for variable spindle speed simulations, and that alternative methods are 
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required. Here the self-excited damping ratio approach (which is presented in reference 

[40]) is considered to be the more appropriate method for analyzing milling stability 

behaviour. This signal processing approach will be introduced in the next section.   

4.7 The Self-Excitation Damping Ratio 

Recently a number of time domain simulations and analytical approaches have been 

developed for chatter detection. However the problem arises of how to ascertain, based 

upon the computed data, whether the simulated cut was stable or unstable.  For example 

the peak-to-peak (PTP) technique was used to identify the stability boundary during the 

constant cutting machining such as in [39, 40, 89]. However for the variable speed 

machining case it can be seen that the system displacement does not reach a steady state 

condition, making the peak-to-peak method difficult to use as a judgment of chatter 

stability. Therefore a signal processing method is considered as an effective method 

used to analyse chatter and the stability boundary of this case. Sims [40], implemented 

this approach for a constant speed machining case as well which provides more 

information on the behaviour of the self-excited vibrations.  

In this section two scenarios of the variable speed mechanisms are considered, and the 

Matlab codes are used to identify these speed trajectories. In the first scenario, effects of 

a linear varying the spindle speed with different accelerations behaviours are 

investigated. With reference to Figure ‎4.6 the instantaneous spindle speed is determined 

according to the acceleration ratio       which is calculated based on the start and 

ending spindle speeds (             ) respectively, in addition to the total number of 

tool revolutions   .  

 

                

               
       

  

 
(‎4.12) 

 

However, the second scenario is associated with the periodic triangular speed variation 

which has trajectory similar to that described in Section ‎4.2.  
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4.8 Damping Ratio for the Chatter Criterion 

The theory of the free vibration has been well explained in a number of the vibration 

text books for example [119]. In this subject, it is well known that behaviour of the 

viscously damped system under the free vibration may take one of the vibration 

behaviours shown in Figure ‎4.7. With reference to equation (‎4.13) the damping ratio 

  can be estimated based upon the logarithmic decrement   relationship, which it is 

measured by taking the logarithm between two amplitudes of two successive vibration 

cycles,    and   . 

      
  

  
        

 

  
        (‎4.13) 

With reference to Figure ‎4.7, there are three scenarios associated with linear viscously 

damped systems. In the first scenario (a) there is positive damping (       , this 

because the measured value of the logarithmic decrement   is positive. This reveals that 

the amplitude of the advanced cycle    is always smaller than the preceding cycle   , 

and this indicates that vibration amplitudes of this scenario are always decaying which 

finally leading the system to be stable. In the second scenario (b) there is zero damping 

(    . Here the logarithmic decrement   is zero, because vibration amplitudes are 

always equal (      , and this indicates the system is marginally stable. However in 

the third scenario (c) there is negative damping (       . Here the logarithmic 

decrement    is negative; this can be attributed to the vibration amplitude of the 

advanced cycle    being greater than the previous cycle   . Now, self-excited vibration 

is assumed to behave in the same fashion [40], and the logarithmic decrement was 

developed to measure the chatter stability through the constant milling speed. 

Consequently this concept will be extended to measure the milling stability due to the 

variable spindle milling.  

It well known in milling processes particularly, that the obtained machined vibrations 

are usually dominated by the forced vibrations due to the tool rotation behaviour. 

Therefore, the self-excitations that give rise to chatter will be contaminated with the 
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force vibrations. This can be tackled by using a relevant signal processing technique 

which is briefly described in the next section. 

4.9 Methodology of the Signal Processing 

During the milling process, self-excited vibrations that cause chatter are usually 

contaminated by the forced vibrations (due to the rotation of the tool) which are 

dominating the response of the system. This is particularly the case at the region of 

marginal chatter instability, where the self-excited vibration will grow very slowly [40]. 

Consequently the signal process based upon the Fourier analysis is used as the most 

appropriated technique to separate the self-excited vibration from the forced vibration. 

This concept was widely used in milling experiments and simulations [40, 84], to 

analyse the stability of the steady-state response of the cutting process. It should be 

noted that, during the variable cutting speed a transient behaviour is mostly occurring at 

locations where the spindle speed are changing.  In what follows, the Fourier analysis 

will be extended to consider these transient responses of the system, thereby allowing 

calculation of the damping ratio of the system even before the system reaches the steady 

state condition. The analysis approach used in the present study is an extension of 

original approach in [40] which is now summarised.  

The flowchart in Figure ‎4.8 summarises the evaluation of the chatter criterion. The first 

stage (A) is to perform the time-domain simulation of the cutting process under given 

parameters (e.g., variable spindle speed, depth of cut, and cutting geometry). This leads 

to predicted vibration data   for single degree of freedom of the system in y-direction 

which possibly contained a transient behaviour. Before dividing this signal  into    

frames (B in Figure ‎4.8), it is important for this signal to be recorded at a sample rate at 

an integer multiple of the spindle speed rotation frequency. This allows each frame   to 

contain data   that represents one complete revolution        of the milling tool. In this 

case frames numbers will correspond with the spindle rotations.  

After that the discrete Fourier transform is then applied for each frame, this is stage (C) 

in Figure ‎4.8. Here, each frame will contain a series of complex numbers which are 
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representing the magnitude and phase of the vibration at frequencies that are exactly 

corresponding with the tool rotational frequency  . Since the used tool has uniform 

pitch teeth, frequencies of the forced vibrations will all lie on the spectral lines, which 

are multiple of the teeth passing frequency. This means, there is no spectral leakage of 

the forced vibrations, so they do not contaminate other regions of the Fourier transform. 

Therefore these spectral lines can be easily ignored (D in Figure ‎4.8) by setting their 

values to zero, so that the Fourier transform only contains information on the self-

excited vibrations [40]. Now the frequencies of the data at each frame are studied to see 

whether the vibration frequencies grow or decay. However a large number of the 

spectral lines can be found in each frame, and in practice these may have only low 

magnitude [40], therefore they can be ignored (E in Figure ‎4.8) by selecting the spectral 

lines that have a maximum for each frame. These lines can then be plotted on a natural-

logarithmic scale, thereby indicating the vibration behaviour per revolution of the tool 

(F in Figure ‎4.8). 

Now in order to determine the damping ratio, the data are then fitted by a straight line 

where gradient represents the logarithmic    decay per revolution. The maximum value 

of the logarithmic decay per revolution          that can define the least stable self 

excited oscillations is resulted from selecting the index         that corresponds to the 

steepest gradient. It should be noted that there will be a number of these oscillations per 

revolution of the tool, so the value of          does not represent the logarithmic 

decrement per vibration cycle. Since the Fourier transform operation is averaging the 

magnitude of these oscillations within each frame so the number of the self-excited 

oscillations        per tool revolution can be determined. Then the damping ratio   can 

be estimated by [40]: 

   
        

           
 

(‎4.14) 

 

Some Matlab codes in Appendix D2 demonstrate the procedure of how the damping 

ratio can be estimated.  
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4.10 Stability Analysis  

In the present contribution, the time domain modelling approach is combined with the 

signal processing method in order to illustrate the stability of the VSM. A simple 

milling scenario with one degree of freedom is considered. The techniques and the 

procedures that are used in the current model can be applied to systems with multiple 

modes of vibration, and involving interrupted cutting with multiple teeth engaged in the 

cut simultaneously. It is also straightforward to include a nonlinear relationship between 

cutting force and chip thickness, and the periodic excitation force is inherently modelled. 

To begin, model validation is presented by repeating some of the analysis presented in 

[89, 116]. The milling parameters were chosen to closely match those used in previous 

work by [89, 116] and are summarized in Table ‎4-1. A variable spindle speed was then 

used in the time-domain model, with a triangular speed variation around a mean value. 

This was defined in accordance with reference [89, 116], with fixed parameters of  RVA 

and RVF.  

To begin with demonstrating the difference in the chatter behaviour for constant speed 

machining and variable speed machining, a small selection of the results is considered.  

In addition the stability lobe diagram for the constant spindle speed case is produced. 

The self- excited damping ratio technique is then used for stability investigation. Here 

chatter was analysed by considering two cases of the milling speed variation. In the first 

case, at a constant depth of cut of        , milling speed was accelerated from 7500 

to 10000 rpm. This procedure was performed for different scenarios of the spindle 

accelerations. In the second case, the milling speed was assumed to be variable with a 

periodic triangular speed variation around a mean value         rpm. For the time-

domain simulations, the signal processing technique is used to analyze the data signal of 

the simulated chatter and to determine so called self-excited damping ratio of each case 

of the simulation. It should be pointed out that the parameters are chosen in the present 

study may not completely match those used in reference [89, 116] since the tool helix 

angle; tool radial immersion; number of tool cycles, and number of simulation axial 

layers were not given. 
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4.11 Results and Discussion 

4.11.1 Stability Analysis for Accelerating Spindle Speed 

 As can be seen in Figure ‎4.4 chatter levels are significantly reduced when the spindle 

speed varies periodically with triangular waveform. Now in this section, effects of 

linearly varying the spindle speed with different acceleration behaviours are 

investigated. Figure ‎4.9 shows the overall results of changing the spindle acceleration 

on the milling stability behaviour. Figure ‎4.9(a) shows the stability lobe with markers (*) 

A and () B are corresponding to the start and end of the milling speed variation. In this 

case, simulation starts from an unstable region at 7500 rpm (associated with a secondary 

Hopf bifurcation) and ends by the stable region at 10000 rpm, while markers at (○) C, 

(□) D and (×) E correspond to the boundary of the stability at that defined milling 

speeds at the same depth of cut 1mm.  

Figure ‎4.9(b) shows the variation of the milling speed from 7500 to 10000 rpm with 

accelerations 12.5, 25, 50 and 125 rpm/rev, while Figure ‎4.9 (c), (d), (e) and (f) of show 

the evaluation of the chatter obtained by the time domain simulation, at these variable 

milling speeds and the depth of cut 1mm, the maximum amplitude (Xes) for each frame 

was plotted in logarithmic scale to show whether the vibration amplitudes are  growing 

or decaying.  As can be seen from the Figure ‎4.9(c) the stages of the cutting stability are 

changing along the milling speed variation with a low acceleration of 12.5 rpm/rev.  

Here milling machining starts from unstable region where the chatter grows steadily 

between points A and C. Then the signal of the self-excited vibration is decaying 

between the points C to D and beyond the point E, these are corresponding to stable 

cutting regions. However chatter vibrations are steeply growing between points D’ (star) 

and E.  

However the stable region between points D and D’ in plot (c) is inspected and can be 

attributed to the acceleration of the spindle. Figure ‎4.9(d), (e) and (f) demonstrate the 

stages of the chatter behaviour obtained from accelerating the spindle speed faster at 25, 

50 and 125 rpm/rev respectively. Here the result obtained from the time domain 
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simulation is clearly demonstrating that, stability region (C to D) was reduced by 

increasing the milling speed acceleration through all the cases.  

However there is a positive point of this approach which is that the sharp growth of the 

chatter (D’ to E) through the flip bifurcation region is reduced by increasing the spindle 

acceleration. This result is considered as worthy of more investigations for high speed 

machining.  

4.11.2 Stability Analysis for Triangular Speed Variation 

For the same range of the spindle speed variation that is highlighted on plot (a) of 

(Figure ‎4.9) the depth of cut was now changed, and the chatter is analysed as shown in 

Figure ‎4.10. Plot (a) shows the triangular speed variation around the mean value 

            in a periodic fashion, with a fundamental period 6 tool revolutions per 

one tool cycle, while plot (b) shows the results of the chatter analysis obtained from 

simulating this speed with the given frequency ratio RVF and amplitude ratio RVA.  

In this section, the analysis frames have been overlapped to three frames per two cycles 

of the tool revolutions         , so as to increase the number of data points available. 

As can be seen from the plot (b) for depth of cuts 0.2 and 0.8 mm the data of the self-

excited vibrations (fitted by straight lines) declining with each tool rotation, and the 

patterns of the signal are in a periodic fashion, giving a positive damping ratio of 

 =0.00024 and .00023 respectively. Increasing depth of cut results is decreasing of the 

damping ratio values      . This indicates that the system is approaching the stability 

boundary where the values of the damping ration     . This can be clearly realised 

from the case of the depth of cut       , here the signal of the chatter is almost 

periodic with less slope inclination of the vibration data, giving a positive damping ratio 

value             . This means at this depth of cut the system is approximately 

reaching the stability boundary, which this case gives a more stability than the constant 

speed machining case.  However increasing the depth of cut to       mm the system 

becomes unstable. The self-excited vibrations now grow with each cycle, and the signal 

is start losing its periodicity, giving a negative           . Increasing depth of cut 
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3mm causes the instability to worsen, the vibrations grow rapidly at a higher rate, and 

the signal is clearly losing the periodicity behaviour, giving         .  

These outcomes are clearly agreed with results in [89, 116], were the margin stability of 

this milling scenario is defined at the depth of cut      . However small differences 

could be attributed to the different parameters used in the simulations. Consequently 

these outcomes have validated the proposed variable spindle speed modelling procedure.  

4.12 Summary 

In this chapter, a comprehensive milling simulation model has been modified to account 

for milling scenarios that involve a variable spindle speed. The model is formulated in a 

Simulink environment, and in order to accommodate variable spindle speeds the system 

equation of motion has been reformulated in non-dimensional time. As a result, the 

simulation time used as the independent variable in Simulink becomes the tool 

revolution, rather than the simulated time in seconds.  

The model results have been validated by comparing a small selection of simulation 

results with the work presented in reference [89, 116]. Reasonable agreement was 

observed, but the present study has re-enforced the issue of analyzing chatter stability 

for variable spindle speed simulations.  

Chatter amplitude can be significantly reduced by using a periodic triangular speed 

variation approach. In addition, accelerating the spindle speed linearly shows some 

positive results of reducing the sharp growth of the chatter through the flip bifurcation 

region. This promise is considered as worthy of more investigations for high speed 

machining.  

It is clear that peak to peak approach is unable to provide a formal and accurate 

interpretation of chatter stability for variable speed machining, whereas signal 

processing approach has provided some formal interpretation of chatter stability for 

variable spindle speed simulations.  
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However, with reference to Figure ‎4.10 it can be seen that self-excited damping ratio 

did not provide a comprehensive interpretation of the stability behaviour. This can be 

observed particularly for the stable cases where the lines that are fitting the maximum 

amplitudes (Xes) of each frame almost horizontal and straight, whereas, due to the 

proposed theory these lines are expected to be in decaying style since they were 

representing the stable behaviour as shown in constant speed machining case [40]. This 

can be attributed to the effect of the speed variation behaviour on the spectral lines 

approach, thereby the influence of varying chatter frequency can be not fully considered. 

Other nonlinearities such as process damping are also likely to cause such the variations 

in the chatter frequency. Therefore self-excited damping ratio is suggested to be 

unsatisfactory approach to offer comprehensive insight.  

Consequently, an alternative approach for chatter analysis will be developed. The new 

developed approach is using an energy based method. In the next chapter a 

comprehensive analysis approach will be developed to be suitable for investigating the 

stability of all types of machining.   
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Sample Parameter Values 

D tool diameter 25 mm 

Nt number of teeth 3 

 flute helix 00 

re radial immersion 2 mm 

ft feed per tooth 1 mm 

m mass 1.637 kg 

fn natural frequency 222.5 Hz 

ζ damping ratio 0.005 

RVA amplitude ratio 0.28 

RVF frequency ratio 0.003 

Table ‎4-1 Input Simulation Parameters 

 

ωm

ωm (1+ RVA)

ω (rpm)

τt (rev)τ/2 3τ/2τ

ωm (1- RVA)

1
3 5

2 4

2τ

(RVA. ωm )

60/(RVF. ωm)

 

Figure ‎4.1 Typical triangular shape variation 
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Figure ‎4.2: Simulink model of milling vibrations. 

 

Figure ‎4.3: Simulink model structure in non-dimensional time 
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Figure ‎4.4 Unsteady simulation outputs for VSM 



 

 

77 

 

 

Figure ‎4.5 Model Simulation Results 
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Figure ‎4.6 Typical linear Spindle Acceleration 
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Figure ‎4.7 Free vibrations of a linear, viscously damped system with positive (ζ=0.1) 

zero (ζ=0) and negative (ζ=−0.1) damping, corresponding to stable, marginally stable, 

and unstable self-excited vibration systems, source [40]. 
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Figure ‎4.8 Flow chart to illustrate evaluation of the chatter criterion [40]. 
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Figure ‎4.9 Effect of the changing spindle acceleration in milling stability. 
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(b) Ramped Spindle Speed from 7500 to 10000 rpm             
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Figure ‎4.10 Model simulation results, (a) Triangular spindle speed variation, 

 (b) Chatter analysis due to the periodic milling speed. 
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5 CHAPTER 5 ENERGY BALANCE FOR CHATTER ANALYSIS 

5.1 Introduction 

In recent years, different energy balance methods have been proposed by a small 

number of researchers to invstigate the effectivenss of some techniques used for chatter 

supression. Al-Regib, et al [29] for example introduced the concept of minimum cutting 

energy input to study chatter suppression based on varying the spindle speed. Budak and 

Tunk [11] presented a practical and modelling method for determining the process 

damping coefficient based on balancing the internal damping energy. More recently, 

Ahmadi and Ismail [106] used the same approach to develop the stability lobes 

analytically taking into account the effect of the process damping. 

In this chapter, a new energy balance approach is used for studying chatter stability 

behaviour. This is based on balancing all the energies crossing the system boundary. For 

the machining operations the main energy balance is taken between the transmitted 

energy due to the total cutting forces and the dissipated energy due to structural and 

process damping mechanisms and loss of contact behaviour. This approach has been 

validated by selecting some milling scenarios where the results have been previously 

published.  

5.2 System Boundary for System Dynamics  

In a thermodynamic system, or simply a system, the system boundary is defined as the 

quantity of matter or region in space chosen for study. The region outside the system is 

called the surroundings. The real or imaginary surface that separates the system from its 

surroundings is called the boundary [120]. Physically, any system consists of a well-

defined set of bodies that are interacting by means of forces. Any bodies that lie outside 

the boundary of the system reside in the surroundings. The state of the system is a set of 

measurable physical quantities that completely characterise the system. Therefore the 

system boundary is known as the boundary that separates the internal components of a 

system from the external entities. These entities can also be called effectors. Energy 
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balance for a dynamic milling system with a single mode is presented in the current 

chapter. Multi degree of freedom system will be presented in the next chapter.    

5.3 Energy Balance in Single Degree of Freedom Systems 

The diagram shown in Figure ‎5.1(a) represents a simple machining system. Machining 

dynamics are represented as lumped parameters in the y-direction with a single degree 

of freedom system. In fact this analysis can be easily extended to multi degree systems 

as can be seen in the next chapter. Now with reference to the same diagram, the 

equation of motion can be expressed as: 

               (‎5.1) 

where           are the system equivalent mass, system viscous damping coefficient, 

and the system stiffness respectively, whereas         are the mass, displacement, relative 

velocity and the acceleration respectively,    are the total forces acting on the mass. 

The boundary defined by the dashed line, separates the internal components from the 

system’s surrounding (outside effectors). With reference to Figure ‎5.1(b) the internal 

components are consisting of the inertia force       due to the structural mass 

movement which possess a kinetic energy, and the spring force      due to the spring 

deflection which generates a potential energy. In this system the potential energy and 

kinetic energy are the two types of mechanical energy, and are conservative. Whereas, 

the system’s surrounding (Figure ‎5.1(b)) is represented by the structural damping forces 

      which cause energy to flow out of the system, and the total cutting forces    which 

normally do a positive work on the system. However, when the process damping forces 

are included, then the total cutting forces        will include theses process damping 

forces        along with shear cutting forces      . Including the process damping forces 

could reduce the work done on the system, due to the energy dissipative nature of these 

forces.   

It should be known that, through the milling kinematics computation the positive and 

the negative values of the chip thickness could be measured which are called idealised 

chip thickness (hidl). The positive values of the chip thickness are called cutting chip 
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thickness (hc) whereas the negative values are called loss of contact chip thickness (hloc). 

The idealised chip thickness is associated with calculating the idealised forces      , 

whereas the loss of contact chip thickness is associated with calculating forces will be 

called loss of contact forces Floc. Now, as show Figure ‎5.1(b), cutting force    is equal 

to the idealised force      but after removing loss of contact forces     . However the 

procedure of how this force modelled is explained in the next section. 

 Now, the total cutting force is expressed as follows: 

                         (‎5.2) 

By substituting equation (‎5.2) in equation (‎5.1), then the system equation of motion 

includes all forces becomes as follows: 

                          (‎5.3) 

The forces in Equation (‎5.3) have direct effects on the energy behaviour. Idealised 

forces      cause energy to flow into the system, whereas structural and process 

damping and loss of contact forces all causes the energy flow out of the system.  

Effects of these forces are further illustrated in Figure ‎5.1(c) which shows the boundary 

of the system with the corresponding work done by each force in Equation (‎5.3). Here 

the sign convention is chosen so that positive values correspond to work done on the 

system, i.e. power is flowing into the system, whereas the negative sign corresponds 

with power flows out of the system. Therefore the energy balance theory for this system 

can be now developed. The instantaneous power corresponding to each force which is 

highlighted in Equation (‎5.3) calculated as                                            . 

Then these powers are integrated with respect to the time, to obtain the instantaneous 

work done. The balance of the total work done on the system as follows: 

 

     

  

  

       

  

  

         

  

  

    

      

   

  

           

   

  

         

   

  

     

(‎5.4) 

 

where            are the starts and exit cutting time respectively.  
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According to the conservation of energy theory, energy cannot be created or destroyed, 

just transformed from one form to another. Therefore any created kinetic energy is 

converted to the potential energy. The boundary of this conservative system (Figure ‎5.1) 

is defined as the system of mass and the spring. Consequently the kinetic energy and the 

potential energy are conservative at any instant of time and hence, they are not 

considered. 

            

  

  

        

  

  

     

 

(‎5.5) 

 

Therefore, the work done on this conservative system only due to the following forces 

1- The idealised forces      (i.e. forces that include cutting and loss-of contact 

forces) due to the positive and negative values of the chip thickness.  

2- The loss-of contact forces      which are associated with the negative values of 

the chip thickness due to the vibration behaviour.  

3- The structure damping forces    which are associated with the system structural 

behaviour.  

4- The process damping forces      which are associated with the rubbing 

behaviour. Effects of this force are considered in Chapter 6.   

Generally, at the steady state limit cycle behaviour, the energy balance equation can be 

expressed:   

      

   

  

          

   

  

       

  

  

          

   

  

        (‎5.6) 

Or in general can be written in the form:  

                  (‎5.7) 

where      is the idealised work don by the idealised forces     ,     work done by the 

structural damping forces   ,       loss of contact work resulted from the loss of contact 

forces       and      process damping work due to the rubbing forces    . 
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It should be known that, the instantaneous work obtained directly from the model is 

accumulative work with units in Joules (J). However, energy can be also measured in 

rates by dividing the instantaneous work done over the instantaneous tool revolutions 

which units become in joules/revolutions (J/rev). Therefore energy rates can be useful 

indicator used to investigate the system stability behaviours through comparing the 

transmitted and the dissipated energy per tool revolution. 

Before analysing the results of the energy balance approach it is worth while to recap 

the methodology of calculating the work done on the system during this chapter. In this 

chapter the process damping effects are not considered. The instantaneous power 

corresponding to other forces     ,       and    is calculated directly in the model. Then 

these powers are integrated with respect to the instantaneous cutting time to respectively 

obtain the accumulative work done on the system                  . The energy 

behaviour of this system along the steady state limit cycle behaviour can be defined as: 

              (‎5.8) 

Again the sign convention is chosen so that the positive sign corresponds to work being 

done on the system, i.e. energy flows (transmitted) into the system, whereas negative 

sign corresponds with the energy flows out (dissipated) of the system. 

5.4 Example for Turning Operations  

To begin, a simple turning scenario is considered, with one degree of freedom, to 

illustrate how the energy behaves in the system during the single point machining 

process. A simple Simulink model as shown in Figure ‎5.2 is developed to adopt the 

block diagram of vibration in regenerative cutting with a simplified turning problem 

described in [68]. The work done by the cutting forces, loss of contact forces and 

structural damping forces are directly calculated among the Simulink blocks.   

Simulation parameters of the simplified chatter in turning are chosen from the example 

9.13 in [68]. Table ‎5-1 shows full details of the set up system parameters with two 

scenarios, a high depth of cut (b=2.5mm), and a low depth of cut (b=1mm).  
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5.5 Results and Discussion 

5.5.1 First Scenario at Depth of Cut b=2.5mm. 

Figure ‎5.3 shows results of the work done and chip thickness behaviours of the turning 

operation.  Simulation is performed according to the first cutting scenario at the depth of 

cut b=2.5mm and the constant cutting speed  = 800 rpm. As can be seen in Figure ‎5.3(a) 

the work done by the idealised forces is always positive and increasing. This can be 

attributed to the fact that the instantaneous idealised power is always positive. Here the 

average rate of change in the flow of the work is the slope of the work done (with 

respect to time) curve. From the same Figure ‎5.3(a) the vibration level is exponentially 

growing until the tool starts jumping out of the cut. Consequently a loss of contact 

behaviour now can be measured. Since these energy values are negative, this means loss 

of contact energy is always flowing out of the system, which can be attributed to the 

nonlinear behaviour of the system. Moreover since the damping energy is always 

flowing out of the system so the damping power is also negative. Basically this 

dissipated energy is converted to heat energy.  

Figure ‎5.3 (b) shows the net work done on the system due to the total cutting forces. 

Here the work is positive and increases until the steady-state limit cycle oscillation is 

reached. Since the stead state limit cycle behaviour is reached the net work done on the 

system remains a constant. This can be attributed to the dissipated energy rates 

becoming equal to that transmitted energy rate. Consequently the average net power 

flow into the system is zero. The slope of the net work done on the system curve is 

horizontal. There is a flow of the power in and out of the system, but the average net 

power flow is zero.  

This phenomenon is further observed in the Figure ‎5.3(c) which shows the chip 

thickness behaviour. Chip thickness grows until the loss-of-contact occurs, thereby 

increasing the nonlinearity of the system. As a result loss of contact mechanism has 

caused the chip thickness levels to stabilise after about 50 revolutions of the tool. 

General analysis of this cutting scenario: the response of the system is unstable. The 
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vibration level grows here to limit where loss of contact occurs, therefore the steady 

state of the limit cycle oscillation is observed.  

5.5.2 Second Scenario at Low Depth of Cut b=1mm. 

Figure ‎5.4 exhibits the energy and chip thickness behaviours for the second simulation 

scenario with depth of cut b=1 mm. It is very obvious here the response of the system is 

stable along the simulation period. Since the tool/workpiece are always in the contact 

(i.e. no loss-of-contact), thus loss-of-contact energy is always zero as shown in 

Figure ‎5.4(a). In addition, as the system is stable, chip thickness behaviour remains 

constant as shown in the Figure ‎5.4(c), there is no more change in the vibration and the 

damper power (the rate of energy dissipation) becomes zero. Therefore the net work 

done on the system Figure ‎5.4(b) remains a constant corresponding to the work done in 

compressing the structural spring, under the action of constant chip thickness.  

5.6 Milling Operations  

In this section a confirmed milling scenario is considered for validating both the energy 

analysis approach and the model performance. Here the energy balance approach is 

applied for investigating the chatter stability in up milling without considering the 

process damping effects. For this milling scenario, model details and simulation 

parameters can be found in [40]. Table ‎5-2 shows full details of the set up system 

parameters with four different depths of cut scenarios. It should be noted that process 

damping effects are not considered in this cutting scenario, thus the part of the model 

that related to the process damping simulation was deactivated.  

Before demonstrating how the energy behaves in the milling system, it is worth to 

briefly highlight the main aspects of the model used in this work. The milling model 

used in this study is single degree of freedom model in y-direction as shown in 

Figure ‎5.8. Here, the energy calculation is also shown.  

In addition, for the interrupting cut, limits of the cutting segment need to be carefully 

defined since it has a great effect in computing the chip thickness, which in turn plays a 

major role in estimating the cutting force behaviour and the energy associated with loss 
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of contact. The procedure of how the limits of the cutting segment can be carefully 

defined will be discussed in the next Section.  

5.6.1  Loss of Contact Energy Analysis 

For the interrupted cutting, chip thickness (formation along the cutting segment    as 

shown in Figure ‎5.5) is not constant. When the tool rotates outside this region (tool loss 

contact with the workpiece) the chip thickness and cutting become zero. Now, in order 

to determine an accurate loss-of-contact energy, limits of the cutting segment need to be 

carefully defined. With reference to Figure ‎5.5 (a) and (b) tool rotation angles and the 

dimensions are measured relative to the feed direction (x-direction), now as can be seen 

from the same figures the tooth     starts cutting at the point A and exits at the point B, 

so this milling segment is defined by the start     and exit     cutting angles and indeed 

on the radial immersion dimension    , which can be mathematically expressed as 

follows:  

 

                                                 

              
     

  
  

                       

          
     

  
 

                                      
                    

 
(‎5.9) 

 

where the    tool radius and    is the radial immersion.  

However, feed motion has a vital effect on the cutting duration and the static entry and 

exit cutting angles. Balachandran and Zhao [121] and Long et al [122] presented the 

influence of the feed motion on the entry and  exit cutting angles in the milling 

operation. They also found that the changes are occurred in the cutting zone and the 

immersion with respect to the workpiece and tool motion. At any instant, the relative 

motion of the tool/workpiece system is responding in x or y direction (which is 

appropriate) will either enhance or weaken the tooth engagement in the radial directions 

depending upon the angular positions. At some locations (start or exit of the cut), the 

tooth may rotate out of the cut; that is, the tooth may lose contact with the workpiece, 

thus changing the cutting immersion angle. In addition, the change in the static cutting 

zone to the dynamic cutting zone can cause some other issues such as in some cases the 
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machined material may not be completely removed from the entire cutting region, and 

during the modelling process an overlapping surfaces issues are mostly occurring. For 

further information about how the immersion of the tool changes due to the dynamic 

cutting zone, readers can be referred to [121].   

Therefore in order to overcome these issues it was suggested to modify the start and exit 

cutting angles. Balachandran and Zhao [121] and Long et al [122] assumed a small 

angle    in which one either advances the cutting start angle for up milling or delays 

the exit angle for down milling. The angular deviation for this static cutting zone has 

been approximated by: 

         
    
   

 (‎5.10) 

where the delay    along the feed direction is constant in [121],     is the feed motion  

and    is the tool radius. Generally,     was assumed to be a small angle taking a value 

at least    under typical milling conditions. However in this work        is assumed 

to advance the entry angle or delay the exit angle.  

Therefore, with reference to Figure ‎5.6 during the chip thickness calculation, the cutting 

tooth will enter and leave the new cutting region at the points   and   for both milling 

modes (up-milling Figure ‎5.6a and down-milling Figure ‎5.6b), limits of these cutting 

segments are now defined as follows: 

 

                             

           
       

  
  

                    

            
       

  
 

                          
                       

 
(‎5.11) 

 

However, when the loss contact response that depends on the loss of contact chip 

thickness      is determined a careful consideration should be considered here, the small 

added angle    to the main cutting sector (AB) is generating an extra distance (AC) and 

(BD). This allows the simulation algorithm to produce an extra negative chip thickness 

called rotation chip thickness       which are associated with the distance AC 

(Figure ‎5.6a) or BD (Figure ‎5.6b).This scenario produces an additional force called 

rotation loss-of-contact force       . However such this force is not associated with the 
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cutting process, therefore this value should be eliminated from the main force 

calculation. Consequently the rotation chip thickness       along the cutting distance 

(CD) should be excluded from the loss of contact chip thickness     . Therefore, angles 

     (up-milling) and      (down-milling) are both reduced by the same value of the 

added angle      
 
 
.  

Now, the loss of contact chip thickness      and the idealised chip thickness      are 

both measured from the main cutting segment (AB) (Figure ‎5.6(a) and (b)). However 

when there is no loss of contact between the tool and the workpiece, the value of the 

loss of contact chip thickness is simply zero (       , and the idealised chip thickness 

        involves only on the positive values of the cutting chip thickness     .  

The above scenario of how to model the chip thicknesses       ,      and        can be 

summarised in the following mathematical expressions: 

First of all define the cutting region  

               (‎5.12) 

Remove rotation loss of contact      

                                           
                                             

  (‎5.13) 

Measure chip thicknesses  

  

                                                        
                                                                 

                        
   

              

(‎5.14) 

 

where    is the instantaneous tool immersion angle,   is the instantaneous chip 

thickness value and       in this work. These mathematical expressions are then 

interpreted to a Simulink blocks as shown in Figure ‎5.7. The calculated chip thickness is 

classified for the idealised      and loss of contact      chip thickness to respectively 

correspond with the idealised forces       and the loss of contact forces       forces 

calculation. Finally these Simulink blocks are added to the main milling model shown 

in Figure ‎5.8 to calculate all the corresponding energies during the machining process.  
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Once the model is finalized, a model convergence is performed along different numbers 

of iterations (samples/revolution), different number of the axial layers and different 

numbers of tool revolutions. In addition, the model results are validated by comparing 

the current model outputs in terms of total cutting forces    and the chip thickness   

with the original model outputs [40].  

5.6.2 Results and Discussion  

In this milling scenario, for a single spindle speed, the depth of cut is changed 

incrementally, and the work done on the system is calculated for each cutting scenario 

as shown in Figure ‎5.9. The plots in Figure ‎5.9(a) compare the behaviour of the 

accumulative work                    done on the system caused by the idealised 

forces, loss of contact and structural damping behaviours respectively, whereas plots in 

Figure ‎5.9(b) shows the behaviour of the net work                 done on the 

system. Plots in Figure ‎5.9(c) and Figure ‎5.9(d) respectively show the behaviour of the 

chip thickness and the total cutting forces at the last tool revolution.  

For the depth of cuts b=10mm and 12mm, there is no loss of contact work          

(Figure ‎5.9 (a)). It can be seen also in Figure ‎5.9(b), the net power flow into the system 

is constant, and thereby the rate change of the net energy is zero. This can be attributed 

to the stable cut, where the tool/workpiece is always in contact causing, and there is not 

variations in the cutting forces as shown in Figure ‎5.9 (d) (cutting forces signal is more 

smoother). Therefore the vibration level is decaying here to a level that is barely 

discernable on the chip thickness (Figure ‎5.9 (c)). Here, the chip thickness settles at a 

constant level with the periodic change in the thicknesses that are attributed to each 

tooth entering and leaving the cut. Structural damping is still dissipating the energy of 

the forced vibration due to the period cutting forces. This is in contrast with the pervious 

turning example.  

Increasing depth of cut to 14 mm results in system instability. Vibrations start to grow 

exponentially, and loss-of-contact energy is observed with each cycle (Figure ‎5.9 (a)). 

Loss of contact energy has negative values as this corresponds to the energy dissipation 

due to the nonlinear behaviour. The behaviour of the loss of contact can be clearly 
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discernable from the chip thickness behaviour at the last tool revolution (Figure ‎5.9 (c)). 

Despite the energy dissipation by the structural damping and the loss of contact 

behaviour, the net energy that flows into the system due to the cutting forces still 

exhibits an exponential growth (Figure ‎5.9 (b)). Increasing depth of cut to 16 mm causes 

the instability to worsen since the vibration amplitudes are severely increased causing a 

considerable increase in the loss-of-contact energy as shown in Figure ‎5.9(a). Here the 

net work done on the system also increases at higher rates causing the energy to flow 

into the system, (Figure ‎5.9 (b)). However, towards the final few revolutions the energy 

flows into the system becomes equivalent to that flows out of the system, this leads to 

stabilise the net work done at a certain level as in shown in Figure ‎5.9 (b).  

This can be further explained with reference to Figure ‎5.9 (c), which shows the teeth are 

losing contact with the workpiece due to the high force variations as shown in 

Figure ‎5.9 (d). This means the system has dissipated more energy as the loss of contact 

behaviour increases. This phenomenon is more pronounced for 18 mm depth of cut. In 

this scenario, the dissipated energy by the loss-of-contact behaviour and the structural 

damping have caused the level of the net energy stabilises after about 10 revolutions 

(Figure ‎5.9(b)). Here the curve of the net work done on the system is horizontal. This 

behaviour is associated with the steady-state limit cycle oscillations.  

Figure ‎5.10 compares the forces behaviour at the last tool revolution. Here the highest 

variations in the cutting forces can be clearly seen at the depth of cut b=18mm. This can 

be attributed to the vibration levels become so severe here causing high rates of the loss 

of contact which leads the system to become unstable. However, force’s variations are 

considerably decreased at the low depths of cut. Therefore the vibration level is 

decaying here. This can be clearly realised from the loss of contact levels are vanishing 

at b=10mm, therefore the system becomes stable.  

In general, the behaviour of the energy flow in or out of the system is found 

proportional with the depth of cut. As the depth of cut increases, the cutting energy that 

flows into the system increases. Despite of the dissipated energy by both loss of contact 

and structural damping, in some cases the net energy flow in the system increases to 
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limit where the system reach the limit cycle behaviour. In fact at that level, there is a 

flow of the power in and out of the system, but the average change in the power flow is 

zero.  

5.7 Summary   

In this chapter, a new technique for modelling machining stability in time-domain 

simulations has been proposed. The method is based on balancing all the energy rates 

that are crossing the system boundary. In this chapter this method is only applied for 

tools with regular pitch teeth and constant cutting speed, with no process damping 

effects. Further work is needed to adapt the energy analysis approach for the case of 

variable tool geometry and for variable cutting speed.  

Compared to existing chatter analysis methods, the method has the following 

advantages: 

1. The stability behaviour is predicted to be similar to that in [40].  

2.  The nonlinearity behaviour (loss of the contact) due to the vibration behaviour 

can be clearly illustrated.  

3. The model is capable to compute the imposed energy due to the cutting forces 

and the dissipated energy due to structural damping and loss of contact 

behaviour.   

4. Energy analysis approach has shown a realistic interpretation and quantifiable 

investigation for machining stability.  

5. In addition, energy based analysis builds upon the usefulness of the damping 

analysis in Chapter 4, and is more applicable to nonlinear systems.   

 In the next chapter, energy analysis approach will be applied to consider effects of the 

process damping mechanism. 
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Turning Operation 

Cutting Speed 800 (rpm) 

Iteration per revolution 500 (iters) 

Number of revolutions 60 cycles 

Mass 100 (kg) 

Stiffness 4x10
7
 (N/m) 

Damping 5320 (N sec/m) 

Cutting stiffness 2x10
9
 (N/m

2
) 

Width of cut (first scenario ) 2.5x10
-3 

 (m) 

Width of cut (second scenario) 1x10
-3

 (m) 

Table ‎5-1 Turning System Parameters 

 

Milling without process damping 

Cutting Speed  3000 (rpm) 

Iteration per revolution 256 (iters) 

Number of revolutions  50 cycles 

frequency  700 (Hz) 

Stiffness  8x10
7
 (N/m) 

Damping ratio 0.3%  

    

    

796.1 (N/mm
2
) 

168.8 (N/mm
2
) 

Width of cuts (b) 12,14,16 &18 (mm) 

Tool diameter  

Number of teeth 

20 (mm) 

4 

Flute helix 

Milling Mode 

0
o
(axial flute) 

up-milling 

Radial immersion  8(mm) 

Feed per tooth 0.05 (mm) 

Table ‎5-2 Up milling process without process damping 
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Figure ‎5.1(a) A simple machining dynamic boundary, (b) Diagram shows all the forces 

acting on the mass, (c) diagram shows all the energies crossing the system boundary 

 

Figure ‎5.2 Simulink Model for Turning Simulation 
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Figure ‎5.3 Simulation results of the first machining scenario 

 

Figure ‎5.4 Simulation results of the second machining scenario 
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Figure ‎5.5 Milling Operation (a) Up-milling and (b) Down-milling 
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Figure ‎5.6 Loss of contact behaviour along the milling sector, 

(a) up-milling mode and (b) down-milling mode 
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Figure ‎5.7 Simulink Blocks for calculating the idealised and loss of contact forces 

 

Figure ‎5.8 Simulink Model for Milling Operations 
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Figure ‎5.9 simulation results for up-milling operation 
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Figure ‎5.10 Compare forces behaviour at the last tool revolution  
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6 CHAPTER 6 ENERGY BALANCE FOR PROCESS DAMPING  

6.1 Introduction 

The mechanism of process damping due to the tool and workpiece interference is a 

commonly used strategy for machining chatter suppression, particularly at low cutting 

speeds. Whilst this phenomenon has been extensively discussed in the literature [2, 11-

13, 17, 19, 20, 47, 107], there is no agreement as to the full physical mechanisms that 

lead to increasing the stability. Finding a mathematical model to represent this 

behaviour has been researched significantly, and several theories have been created to 

explain it in a physical sense. Nevertheless, there is still not a straightforward technique 

which can be used to measure and illustrate how these forces are quantifiably affecting 

the stability. 

Consequently, in this chapter, by using the newly developed energy balance approach, it 

is straightforward to measure the amount of dissipated energy due to the work done by 

process damping forces. This allows the performance of the process damping “flank 

interference mechanism” to be explored through the simulation of the milling process. 

Furthermore, the performance of the process damping under different cutting conditions 

and the tool geometry effects will be investigated.  

6.2 Tool/Workpiece Interference Mechanism 

It is accepted that process damping depends on the contact pressure and the volume of 

the deformed material under the tool relief face. Therefore the concept of the process 

damping mechanism is defined as the interaction between the relief face of the cutting 

tool and the waveform traced by the cutting edge [13, 92, 107]. The commonly 

proposed mechanism of process damping is shown schematically in Figure ‎6.1. Here in 

the presence of the straight flank face, as the tooth penetrates the workpiece, the 

material approaching the cutting edge is separated into two parts. For the upper part, the 

material is removed as a part of the chip, whereas for the lower part, the material that 

cannot move upward is compressed under the flank face of the tooth. The volume of the 
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displaced material is dependent on the tool/workpiece geometry and also on the 

instantaneous cutting conditions. The elastic-plastic deformation creates a pressure 

under the flank face which results in more process damping force, particularly when the 

tool travels downwards (point ‘B’ Figure ‎6.1), whereas the  interference is minimised 

when the tool travels upwards on the wave (position ‘D’ in Figure ‎6.1) due to the 

positive slope of the machined surface. 

With reference to the same Figure ‎6.1, this type of process damping mechanism is 

considered in the current model. As explained in Section‎0 process damping forces are 

modelled based on the ploughing force      acting on each tooth and in the direction of 

the normal to the flank surface. This is usually proportional to the indentation volume Vt.  

However frictional force      is acting in a direction parallel with the tool flank face and 

proportional with the frictional coefficient   .  

It is well known that the process damping forces that arise due to the flank interference 

concept are not linear, therefore modelling of process damping is still complicated and 

the basic subject matter has not been fully understood. Therefore in this chapter, 

simulated process damping effects are investigated by using the new analysis approach 

that was developed in the previous chapter. Energy analysis provides a reasonable 

quantifiable measurement for the process damping performance.  

6.3 Modelling System Boundary in Two Dimensions   

Before analysing the results, the system dynamics and the system boundary need to be 

defined and reviewed. In this chapter, process damping effects are studied in two 

different milling scenarios. In the first scenario, the milling dynamics are considered 

just in one direction normal to the feed direction and represented with a single degree of 

freedom. The system boundary and the energy calculation of this scenario were 

previously discussed in Chapter 5. However for the second milling scenario, the system 

dynamics are also represented with a single degree of freedom, however in two 

orthogonal directions x and y. Therefore the system boundary and energy calculation of 

this milling scenario will now be briefly reviewed.   
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The equations of motion for this system are expressed as follows: 

 
                 

                 

(‎6.1) 

 

The system equations of motion are interpreted using simple Simulink blocks to 

represent the system dynamics behaviour in x and y directions as shown in Figure ‎6.4(a) 

and (b). In addition, a set of a simple Simulink blocks for the energy calculation in x 

and y directions respectively can also be seen in same figure. 

As described in the previous chapter, the system boundary should define all the internal 

and external components that are affecting the system in any direction. Now, Figure ‎6.2 

shows the case of the milling scenario with system dynamics in x and y directions.  This 

means any energy that crosses the system boundary will be defined and measured. With 

reference to Figure ‎6.2(b), here there are two types of energies which are crossing the 

system boundary. Firstly, energy flowing into the system in x and y directions is known 

as the idealised energy (      and      ). Secondly, energy flowing out of the system in 

x and y directions is known as dissipated energy. The dissipated energy includes the 

process damping energy (     and     ), the structural damping (    and    ) and 

loss of contact energy (      and      ).  

In summary, the model shown in Figure ‎6.3 will be used in this chapter to quantifiably 

investigate the performance of the process damping due to the flank interference 

mechanism. For a comprehensive investigation, stability behaviour of two scenarios is 

investigated based on analysing the behaviour of the process damping and the loss of 

contact energy rates in both x and y directions, which are calculated as follows:  

 
                    

                      

(‎6.2) 

 

In addition, energy dissipation can also be computed in percentage terms.  This provides 

a clear comparison measurement between the process damping and loss of contact 

mechanisms:   
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For loss of contact:          
    

           
     

 

(‎6.3) 

For process damping:         
   

           
      

 

These values are then plotted in contour plots or with reference to the variable 

parameters. This part of the calculation is performed by using Matlab codes stored in a 

Matlab script file, using the simulated data generated by Simulink.  

6.4 Simulation Conditions 

In summary, the main aim of this study is to demonstrate how the milling stability 

behaviour is affected by dissipating more energy from the system due to the process 

damping mechanism. Therefore a small selection of the results previously confirmed are 

listed in Table ‎6-1, to replicate a previous study [19]. Then in the second milling 

scenario, the simulation is carried out to investigate the influence of the process 

damping in two x and y directions based on the influence of the depth of cuts, clearance 

angles, radial immersion and the natural frequency. The stability degree was 

distinguished based on the behaviour of the energy rates per tool revolution. Simulation 

parameters are summarised in  

Table ‎6-2 and Table ‎6-3 which are chosen from the work published in [11, 123]. Model 

results are validated based on a small selection; however a small difference is observed 

which could be attributed to the lack of information provided in the literature. Despite 

this, the model shows almost the same behaviour.  

6.5 Results and Discussion 

6.5.1 System Dynamics with One Mode in One Direction  

Figure ‎6.5 shows behaviours of the work done on the system caused by the following 

forces: idealized forces (    ), loss of contact forces (    ), structural damping forces (  ) 

and process damping forces (   ), at a depth of cut b=20 mm and spindle speed   =290 
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rpm. Here the work done by the idealized forces      is positive which means these 

forces are always causing energy to flow into the system. However the work done by 

the other forces (    ,    and    ) is negative which means all these forces are causing 

energy to flow out of the system (dissipating energy).  

The effects of the process damping on the degree of stability are investigated by 

analyzing the energy behaviour in the system. As can be seen in Figure ‎6.5(a), the 

highest dissipated energy was due to the work done by the process damping forces 

(   ). In addition, the work done (  ) by the structural damping forces is also visible. 

However loss of contact energy behaviour (    ) is negligible. This can be attributed to 

the process damping effects which had played a major role in suppressing the chatter. 

However Figure ‎6.5(b) shows almost the opposite scenario, since the effects of the 

process damping are not included, therefore the amount of dissipated energy from the 

system is significantly reduced, whereas the amount of transmitted energy (    ) to the 

system is considerably increased by almost 3 times, particularly at the last tool cycle 

compared to Figure ‎6.5(a). It was also evident that loss of contact energy has a sharp 

increase after 23 tool revolutions. This can be attributed to the vibration amplitudes 

severely growing here which causes more loss of contact behaviour. Therefore the 

structure damping was provoked to dissipate the imposed energy. As a result, the 

dissipated energy by the structural damping behaviour is markedly higher compared to 

that in Figure ‎6.5(a). Furthermore, it can also be noticed that, towards the last tool 

cycles, the total dissipated energy from the system is almost equivalent to the total 

energy supplied to the system as shown in Figure ‎6.5(a) and (b) particularly. This 

behaviour can be attributed to the onset of steady state limit cycle oscillations.   

Figure ‎6.6 compares the behaviour of the net cutting energy                      

per revolution and the total damping energy                    per tool 

revolution. Here the behaviour of the energy was evaluated based on the presence (+pd) 

and absence (-pd) the process damping effects. These results are chosen particularly to 

demonstrate the effects of the process damping on chatter suppression. Without the 

process damping effect, the rates of the total cutting energy per tool revolution 
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  are clearly higher compared to that        

  obtained from the milling 

scenario which includes the process damping effect. In addition, the same behaviour can 

be seen for the dissipated energy rates. The total dissipated energy rates        
  

without including process damping are considerably greater than that       
  obtained 

from the milling scenario considering the process damping.  

Next, the process damping performance was further investigated  using five depths of 

cut (10, 15, 20, 25 and 30 mm) for the maximum chip thicknesses of 75μm to emulate 

the experimental data in [19]. For each depth of cut, the simulation is performed for 

spindle speeds  =200 to 560rpm. Here for each simulated scenario, the energy rates of 

the process damping per tool revolution      were calculated, and the results are 

presented in Figure ‎6.7. It is very clear particularly at low cutting speeds, that process 

damping energy rates are increasing by increasing the depth of cut. In other words, more 

rubbing behaviour is occurring for higher depth of cuts particularly at low spindle 

speeds.  However at the high cutting speeds, process damping effects for dissipating the 

energy per tool revolution vanishes. This can be attributed to the surface speed increase, 

and the increased wavelength of the wavy surface generated by the chatter. 

Consequently the interference behaviour between the tool flank face and the workpiece 

surface never occurs, so that process damping forces do not exist, and thereby there is 

no work done by these forces. With reference to Figure ‎6.7, the dissipated energy rates 

at the depth of cut b=30mm are severely fluctuating along the cutting speeds up to 

 =440 rpm. After this cutting speed, process damping is not dissipating energy 

anymore, which caused a catastrophic simulation failure.  

Figure ‎6.8 further demonstrates and compares the energy behaviour for process 

damping and loss of contact in contour representation. It is very that clear process 

damping energy rates are increased as the depth of cut is increased, particularly at low 

cutting speeds. In these cutting conditions the process damping rates are sufficient to 

dissipate the vibration energy (Figure ‎6.8(a)). Consequently the loss of contact energy 

was not significant and is not shown in Figure ‎6.8(b).  
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6.5.2 System Dynamics with One Mode in Two Directions 

Simulation verification for time domain milling was performed through selecting a 

confirmed data set previously published in [11]. Energies that are crossing the system 

boundary in all directions are calculated for each revolution. For each milling scenario 

the average rate of the dissipated energy was calculated from the last tool revolutions. 

This means these energy rates are measured after the system is reaching the steady state 

limit cycle behaviour.  

1- Effect of Depth of Cut 

Figure ‎6.9, presents loss of contact energy rates without including the process damping 

effects. As can be seen in plots (a), (b) and (c), energy rates were respectively  measured 

at the selected cutting speeds  =2083 rpm, 2290 rpm and 3750 rpm at depths of cut 

b=0.2 to 1.6 mm. According to these results, loss of contact energy rates were sharply 

increased just from the depth of cut b=0.4mm. This means beyond this cutting limit, the 

rates of the vibration energy that are imposed onto the system are sharply increased, 

leading to instability. 

In order to demonstrate process damping effects on stability improvement, the 

simulations including the process damping effects are repeated for the same cutting 

conditions. Then the results of the process damping and loss of contact energy rates are 

both presented in Figure ‎6.10. At the cutting speed  =2083 rpm (Figure ‎6.10(a)), the 

process damping energy rates increase along the depths of cut. It is very obvious here 

that the process damping effects are sufficient to dissipate the imposed vibration energy 

leading to more stability. Consequently energy rates of the loss of contact were invisible 

along all these cutting conditions. 

For the cutting speed  =2290 rpm (Figure ‎6.10 (b)), loss of contact energy rates were 

not emerging along the depths of cut up to b=1.4mm, because the process damping 

effects are still dominant here to dissipate the vibration energy. However beyond these 

depths of cut vibration amplitudes are clearly growing causing the system to lose 

stability.  
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However for the cutting speed  =3750 rpm, Figure ‎6.10(c), loss of contact energy rates 

are clearly higher and dominate compared to the process damping energy rates. For this 

cutting speed process, the damping effects cannot dissipate the vibration energy even at 

the lower depth of cut b=0.4mm. As a result, energy rates of the loss of contact become 

significant. These outcomes agree reasonably with the results in [11]. 

Process damping and loss of contact energy rates are further compared through the 

contour plot shown in Figure ‎6.11. It is very obvious here that at low cutting speeds 

process damping is dominant in dissipating the vibration energy. For instance at the 

cutting speed  =1800 rpm process damping was efficiently dissipating the vibration 

energy up to a depth of cut b=2mm, whereas loss of contact energy is negligible. 

However process damping energy rates are decreased at the high cutting speeds. This 

can clearly be seen along the cutting speeds  =2400 to 3200 rpm, where the process 

damping effects become insufficient to dissipate the imposed vibration energy along the 

depths of cut greater than b=1 mm. This allows the vibration energy to significantly 

increase, which in turn provokes loss of contact energy to rise at high rates. 

2- Effect of Clearance Angle  

Effects of the flank clearance angles on the process damping performance and thereby 

on the stability limits can be investigated through the energy behaviour. Results of the 

process damping and loss of contact energy rates are presented in Figure ‎6.12. Here for 

each flank relief angle (                  ), the simulation is performed to calculate 

these energy rates along the cutting speeds ω                  . For the flank relief 

angle      the results are shown in Figure ‎6.12(a). It can be seen here that the process 

damping effects are significant and sufficient to dissipate the vibration energy and 

prevent the loss of contact energy to emerge along all the cutting speeds. For the flank 

angle      (Figure ‎6.12(b)) at the low cutting speeds, almost the same behaviour can 

be seen. However, loss of contact energy becomes visible at the cutting speeds greater 

than        rpm. For the angle        results are presented in Figure ‎6.12(c). Here 

the process damping effects are clearly decreased since the loss of contact energy rates 

are steadily increased to become almost similar to the process damping energy rates, 
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particularly along the high cutting speeds. However for the clearance angle       

(Figure ‎6.12(d)), it is very obvious that loss of contact energy rate is dominant and the 

process damping has become absolutely ineffective to dissipate the imposed vibration 

energy. 

3- Effect of Natural Frequency  

The influence of natural frequency on the process damping energy behaviour is 

demonstrated in Figure ‎6.14. Here the amount of dissipated energy by the process 

damping mechanism is measured as a percentage. This percentage measurement is 

based on the total dissipated energy from the system calculated from equation (‎6.3). For 

the natural frequency       = 343 Hz the dissipated energy is stabilised at 3%, whereas 

18.4% for      =681Hz, and 39.9% for the      =1195Hz. To summarise, the process 

damping performance increases for higher natural frequencies. This is because the high 

frequency generates small wave lengths thereby more tool/workpiece interference, 

which leads to more process damping forces. 

4- Effect of Radial Immersion 

The effects of radial immersion on the process damping performance are also 

investigated, and the results are presented in Figure ‎6.14. The dissipated energy by the 

process damping energy mechanism is measured in rates (J/rev) as shown in 

Figure ‎6.14(a) and as a percentage as shown in Figure ‎6.14(b). According to these 

results, high immersion rates provide high dissipated energy rates of the process 

damping. This can be attributed to the increase in the interference contact between the 

tool flank face and the workpiece surface. For the redial immersion   =35%, the 

dissipated energy rates by the process damping after the steady state limit cycle 

behaviour is reached are 0.024 J/rev; this rate accounts for about 15% of the total 

dissipated energy from the system. However for the radial immersions   = 50%, 70% 

and 100%, the energy rates are respectively recorded at 0.055J/rev, 0.121 J/rev and 0.91 

J/rev, whereas the  percentages respectively are 22 %, 28% and 54%. 
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6.6 Summary  

A new analysis methodology based on the energy analysis has been implemented for 

process damping simulations. The effect of the process damping mechanism in vibration 

suppression is illustrated and the relative importance of different energy dissipation 

mechanisms is observed and quantified. Here influence of cutting parameters including 

tool geometry, on the process damping due to the flank interference mechanism is 

quantifiably investigated. In milling, increasing the contact length between the tool 

flank face and the work surface results in higher process damping, thus higher energy 

dissipation. This means that decreasing the clearance angle increases the energy 

dissipation. This is well-known in practice, but this chapter has provided a new 

visualised interpretation based upon the proposed energy analysis.   

It is also demonstrated that an increased radial depth of cut leads to a significant 

increase in the stability behaviours, unlike the case for high cutting speeds where the 

effect of process damping vanishes. Natural frequency is another important parameter 

affecting the stability; higher frequency leads to increase in the tool/workpiece contact 

behaviour and thereby an increase in the rates of the process damping energy dissipation. 

The steady-state limit cycle behaviour under the process damping effects is investigated.  

In this work, the amount of the energy dissipation due to the rubbing behaviour was 

quantifiably measured. This provides a clear representation about how the process 

damping performance is affected by the cutting parameters and tools the geometry, and 

thereby on the machining stability behaviour. These outcomes become quite important 

in selecting the appropriate tool in practice.  

With reference to the previous results, energy analysis has been considered as a 

reasonable approach which can be used for assessing the relative contribution of the 

process damping for stability improvement. Consequently implementation of this 

approach will be extended to analyse the interaction between the variable helix and 

process damping on the chatter mitigation. This will be the main subject of the next 

chapter.   
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Parameter                                                    Value 

Number of cycles 40 

Iterations per cycle 12000 

Number of axial layers (nl) 30 

Stiffness 40x10
6
 (N/m) 

Damping ratio 0.01% 

Natural frequency 600 (Hz) 

    

    

1676 (N/mm
2
) 

503 (N/mm
2
) 

Width of cuts (b) 10,15,10,15,20,25&30 (mm) 

Tool diameter 

Number of teeth 

16 (mm) 

4 

Flute helix 

Milling Mode 

30
o
(axial flute) 

down-milling 

Radial immersion 1(mm) 

Feed per tooth 0.155(mm/tooth) 

Process damping friction coefficient ( ) 0.25 

Process damping normal forces 

coefficient (Knp) 

 

80 (Nmm
-2

) 

Tooth flank length (lflank) 0.3mm 

Tooth relief angle ( ) 5
o
 

Table ‎6-1 Simulation parameters of the milling including process damping 

 

case  ( o
) ri 

(%) 

     kx 

(N/ m) 

fnx  

(Hz) 

ζx 

(%) 

ky 

(N/ m) 

fny  

(Hz) 

ζy 

(%) 

 

Ref. 

1 3 50 9.73 3110 1.43 10.35 3106 1.68 [11] 

2 3,5,7,10 50 15.9 1267 2.62 15.9 1267 2.62 [11] 

3 3 50     16 

15.6 

15 

1195 

 681 

 343 

1.49 

1.25 

1.04 

16 

15.6 

15 

1195 

681 

343 

1.49 

1.25 

1.04 

 

[11] 

4 3 35,50, 

70,100 

8.1 1370 1.9 7.7 1330 1.9 [123] 

 

Table ‎6-2 simulation parameters for second scenario 
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case Spindle speeds (rpm) Kp (N/mm
3
) Ktc (N/mm

2
) Krc (N/mm

2
) Ref. 

1 

2 

3 

2083, 2290, 3750 

1390 

1390 

40000 

40000 

70000 

 

900 

900 

900 

270 

270 

270 

[11] 

27] 

27] 

4 900 1.5x10
4
 1150 345 [123] 

Table ‎6-3 Spindle speeds and cutting forces coefficients 
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Figure ‎6.1 tool clearance face and the arc surface interference  
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Figure ‎6.2 Schematic diagram of a: (a) 2D system dynamics with boundary, and (b) 

Energy behaviour 
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Figure ‎6.3 Simulink Milling Model including Chip thickness transfer function 
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Figure ‎6.4 Simulink Blocks: (a) System dynamics and energy calculation in x-directions. 

(b) System dynamics and energy calculation in y-direction 
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Figure ‎6.5  compare the cumulative work done on the system 

(a) with process damping (b) without process damping . 

 

Figure ‎6.6 compare the net energy behaviour per tool revolution 

(+pd) with process damping , (-pd) without process damping
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Figure ‎6.7 Effect depth of cut on process damping energy rates 

 

Figure ‎6.8 Contour plot for the energy dissipation  
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Figure ‎6.9 effect depth of cuts on loss of contact energy behaviour  

without process damping effects  

 

Figure ‎6.10 effect depth of cut on process damping  

and loss of contact energy behaviour 
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Figure ‎6.11 compare process damping and loss of contact energy behaviours 

 

Figure ‎6.12 Effect flank relief angles on the energy behaviour 
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Figure ‎6.13 effect natural frequency on the process damping energy behaviour 

 

Figure ‎6.14 effect of radial depth of cut on the energy behaviour 
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7 CHAPTER 7 ENERGY ANALYSIS FOR PROCESS DAMPING AND 

VARIABLE HELIX MILLING 

7.1 Introduction 

Variable helix/pitch tools have been proposed as a vital method to improve stability 

during milling. Most of the research done for the variable helix/pitch tools such as in 

[20, 26, 90, 124, 125] was on predicting the chatter stability. In the context of this work, 

a variable helix tool is defined as one where the helix angle changes from one flute to 

the next but is a constant along a single flute, also referred to as an alternate helix cutter.  

The phase delay between the inner and the outer waves has a fundamental effect on the 

stability of cutting. Figure ‎7.1 shows different angular positions of teeth on the tool 

circumference. For instance diagram (a) shows an end mill with equal pitch, diagram (b) 

shows an end mill with a variable helix and an equal pitch angle, diagram (c) 

demonstrates a uniform helix variable end-teeth pitch angle, and diagram (d) shows an 

end mill with both a variable helix and end-teeth angles, which is adopted in this study.   

Turner [90] studied the influence of variable helix/pitch end-mill on machining stability, 

using analytical and time domain methods. In some cases neither model accurately 

predicted the stability, for example the stability of the variable helix tool (VH4 Fig1[90]) 

was much greater than the standard helix equivalent. Turner attributed this to the 

process damping effects, and the stable phases along the flute length inhibiting the onset 

of regenerative chatter. This proposition is very difficult to test experimentally. 

However a time domain model could offer a comprehensive representation of the 

kinematics of milling, and process damping can be included. The model could therefore 

offer a reasonable explanation for the observed empirical results. Furthermore the 

energy analysis approach that has been described in the previous chapters provides a 

useful analysis for such a complex system. 
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The procedure of this work is summarised as follows: 

1. Extend the energy analysis approach to a multi degree of freedom system. 

2. Reconsider the scenarios published in [90] and in [20] to study how variable 

helix/pitch tools affect the machining stability .  

3. Include the process damping mechanism to determine if it has an effect on the 

machining stability, according to Turner’s argument [90].  

7.2 Modelling System Dynamics in 3-DOF System 

In Chapter 6, the system boundary with the energy balance approach for the single 

degree of freedom system is explained. Moreover the procedure of defining the cutting 

segments and loss of contact forces computation are described. However in this section, 

milling dynamics for the multi degree of freedom system will be explained.  

Therefore, this section only considers the system dynamics with 3-DOF modes in two 

orthogonal x and y directions. Here the structural damping energies will be defined with 

each damping element at each mode. In this model, the state-space formulation shown 

in (‎7.1) is considered:  

 
           

          

(‎7.1) 

 

The state space formula is used as Simulink blocks to predict the vibration 

displacements and velocities in x and y directions as shown in Figure ‎7.2. The input and 

output of the state space function are carefully defined, particularly for this model 

because the vibration velocity of each mode needs to be defined for the energy 

calculation. Therefore, as shown in Figure ‎7.2, the input of the state space function is 

the net cutting forces            , whereas the outputs are the system displacements (x 

and y) and velocities (   and   ).     

Generally, the state space matrices A, B, C and D (Equation (‎7.1)) are defined based on 

the uncoupled system equations of motion as shown in Appendix C. The Matlab codes 

in Appendix D3 are used to define the system dynamics. Now, having defined all the 
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parameters of the system dynamics in both directions, then state space matrices for both 

directions can be defined:  

 

State matrix A  

      

 

 
 
 
 
 
 
 

      
      
      

    
           

       

     
           

      

      
           

      
 
 
 
 
 
 

     

 
(‎7.2) 

Input matrix B        

 
 
 
 
 
 

 
 
 

   
  

   
  

   
   

 
 
 
 
 

     

   (‎7.3) 

Output matrix C 

 
        

 
 
 
 

 
 
 
 

 
 
 
 

 
 
 
 

 
 
 
 

 
 
 
 

  

 

(‎7.4) 

Feed through matrix D                 (‎7.5) 

From the output matrix C, the output can be set to be the displacement, velocity or both. 

Here for this case the first row of the output matrix C is referring to the total 

displacement; whereas the second, third and forth rows are related to the velocities in 

model coordinates.    

7.3 Energy Analysis for 3-Dof System  

In Section ‎5.3 (Chapter 5), the system boundary was defined for a single degree of 

freedom system in two directions. However, in this Section the system dynamics are 

represented with three-degree of freedom, the system was described by a coupled a 
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three equations of motion in two directions x and y, as shown in Figure ‎7.3(a). After 

decoupling the system equations of motion, the system dynamics can be represented by 

an equivalent uncoupled mass, stiffness and damper as shown in Figure ‎7.3(b) (see 

Appendix C2). This allows the system equations of motion to be solved as a single 

degree freedom procedure. Then the system boundary is defined as internal components 

and the surrounding effecters in both directions as shown in Figure ‎7.4(a). Briefly, as 

shown in Figure ‎7.4(b), the equivalent internal and external components that are acting 

on the system boundary in x and y directions are: inertia forces         and         spring 

forces        and       , structural damping forces         and         and the total cutting 

forces    and   . It should be pointed out that these cutting forces are composed of the 

idealised forces        , process damping forces       , and loss of contact forces        . 

The relationship between these forces has been explained previously in chapter ‎5.  

Now, having defined all these forces, the corresponding work done on the system can be 

determined. Figure ‎7.4(c) shows the direction of the work done on the system; a positive 

sign means the work will be done on the system so the energy will flow into the system, 

whereas a negative sign means the work will be done to flow the energy out of the 

system. Briefly here, idealised work done          
 has a positive direction in x and y. 

This means this energy is always transmitted into the system. However, the work done 

by the structural damping        
, loss of contact           

 and the process damping 

        
 for x and y directions are negative. This means the work done here is always 

for dissipating the energy from the system. It should be noted that all these energies are 

directly calculated in the model using the simple Simulink blocks shown in Figure ‎7.5 .  

With reference to the same Figure ‎7.5, the state-space function is represented by a 

Simulink block to evaluate the system dynamics and determine the total system 

displacement and three detached velocities in model coordinates. These detached 

velocities are corresponding with each mode. Now, each velocity is used to determine 

the corresponding mode’s structural energy. The velocity of the first mode    is used to 

calculate the energy from the first structural damping mode    , whereas the second and 
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third mode’s velocities     and    are used for computing the energies of the second and 

third structural damping modes     and     respectively. Then these energies are summed 

together to produce the total structural damping energy of the system (  ).   

However, the loss of contact energy (    ), process damping energy (   ) and the 

idealised energy (    ) are calculated from the total system velocity (  ) which is 

determined by summing together all the mode velocities after they have been scaled by 

their eigenvectors (   (see Appendix C2). This means, each mode velocity is multiplied 

by its eigenvector as following: 

First mode:            

Second mode:           
(‎7.6) 

 

Third mode:            

Total scaled velocity :                            =    +    +      

The procedures of calculating the energy behaviour are expressed by the equation (‎7.7). 

 

               
        

  

  

        
        

  

  

        
        

  

  

 

                          

  

  

 

                        

  

  

 

                          

  

  

 

    

 

 

(‎7.7) 

 

All these energies are calculated in both directions x and y. In order to measure the 

system stability through the energy balance approach, these energies which are crossing 

the system boundary are summed. 

 
                                     (‎7.8) 

It should be reiterated that the instantaneous determined energies shown in Equation 

(‎7.8) are accumulative energies with units in Joules (J). However, in this chapter, energy 
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rates in joule/revolution (J/rev) are also used to investigate the degree of stability due to 

the variable helix tools and the process damping phenomenon effects.  

7.4 Simulation Approach 

In the Simulink model, a non-uniform helix introduces a different pitch angle at each 

axial segment of the cutter. In this Chapter, variable helix angles are defined by the 

Matlab codes (Appendix D4). The variable angles are defined according to the total tool 

teeth number Nt and along the discretised axial layers l (Figure ‎7.6), then the values of 

the helix angles are stored in an array with size [    ].  

    

                

   
                

              (‎7.9) 

Experimental data from two confirmed studies are considered to analyse the chatter 

stability due to the influence of variable helix tools and the process damping mechanism. 

For the scenario of the one degree of freedom system, the experimental data at the low 

radial immersion (summarised in Table ‎7-1) was selected from [20] to represent the 

dynamics parameters of the tool and the workpiece. However, for the second milling 

scenario the investigation is carried out along the simulation parameters listed in 

Table ‎7-2 which represents a small selection from the experimental work in [90].  

Having finalized all the simulation parameters, Matlab codes are used to define the 

values of the helix angles and store them in an array (Equation 7.9). Then the simulation 

is carried out along the selected parameters to calculate the cutting forces which are 

composed of the idealised, loss of contact and process damping forces. Next, along with 

the total cutting forces, the system dynamics are modelled as a spring-mass-damper 

(Figure ‎7.7) for a one degree of freedom system, whereas it is modelled in a state-space 

formulation (Figure ‎7.5) for a 3-DOF system to determine the system displacements and 

velocities. The obtained system velocities are then multiplied by the related forces to 

determine the instantaneous power that corresponds with each force. Then each of the 

instantaneous powers is directly integrated in the model with respect to the time to 



 

 

126 

 

calculate the cumulative energy. The cumulative energies obtained directly from the 

model are: the idealised energy        , loss of contact energy        , structural 

damping energy     , and the process damping energy       . Then the energy rates 

per revolution are calculated by dividing the instantaneous cumulative energies by the 

instantaneous tool revolutions which are      ,      ,      and    . Now, after all the 

energies are defined, the degree of stability along the regular and variable helix tools are 

measured and compared. In addition, the performance of the process damping along the 

regular and variable helix tools is measured and compared to the loss of contact 

behaviour.   

In addition, arc surfaces including rubbing behaviour due to the variable and the regular 

helix tools effects are also investigated. The components of the arc surface data in x and 

y directions are extracted from the model at the last data point of the tool revolution. 

Here one step time contains a full revolution of data points to define the arc surface for 

all of the axial layers    and the number of the cutting teeth   . These data are then 

stored in an array with dimensions        . Rubbing data are also extracted from the 

last tool revolution.  

Arc’s surfaces including the rubbing behaviour were firstly defined along the Cartesian 

coordinates x and y. However, these plots did not offer a clear representation for the arc 

surface behaviour. Therefore polar coordinates were proposed to be an alternative way 

to demonstrate the machined arc surface behaviour. Consequently all the Cartesian data 

are converted to polar coordinates after the linear trends and feed rate displacement are 

removed. This means each data point is defined by the radius (  ) and its angle     .  

This procedure is performed through Matlab codes (see Appendix D5). 
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7.5   Results and Discussion  

7.5.1 Variable Helix Tool in SDOF System  

Yusoff et al [20] investigated the stability of a regular and variable helix tool under 

process damping conditions. Their work was purely experimental, with no modelling of 

the system. They used a custom-built flexible workpiece to provide a tightly controlled 

single degree of freedom system. The experimental procedure involved increasing the 

spindle speed for a given depth of cut, until severe chatter occurred. This spindle speed 

was then rewritten as a chatter wavelength (process damping wavelength) based on the 

cutting conditions. They found that the regular helix tool become unstable at spindle 

speeds above 255 rpm (         , Fig11,[20]), whereas the variable helix tool 

remained stable until at least 600 rpm. The aim of this section is to compare Yusoff’s 

experimental results with that from the Simulink model, and to use the energy analysis 

method to explore the process damping provided by each tool.   

Figure ‎7.8 compares the behaviour of the chip thickness variations for both regular and 

variable helix tools. This comparison is made at the last tool revolution and with the 

same cutting conditions. In general, when the system is stable the output chip thickness 

is a smooth shape, whereas it becomes jagged when the system loses stability. For the 

regular tool (Figure ‎7.8 (a)) the behaviour of the chips’ thickness obtained by three 

cutting teeth results in equal spaces and the same amplitudes. It is quite obvious here 

that chatter is very severe which makes the teeth lose their contact to zero. This 

behaviour makes the output shape of the chips’ thickness spiky. However, for the 

variable helix tool (Figure ‎7.8 (b)), it is very clear the behaviour of the obtained chips’ 

thickness results in irregular spaces and different amplitudes. In addition, the chatter is 

not severe here compared to the regular helix tool (Figure ‎7.8 (a)).  

Now from this comparison it can be concluded that a regular tool provides higher chip 

variation compared to that obtained from the variable helix tool in Figure ‎7.8 (b). 

Consequently loss of contact energy rates for the regular tool become higher than the 

variable helix tools. On other words, a variable helix tool is more stable compared to a 

regular tool.  
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Figure ‎7.9 shows the behaviour of the process damping and loss of contact energy rates 

due to the regular tool. As can be seen in Figure ‎7.9(a), along the first 9 tool revolutions 

the idealised        and the process damping      energy rates have a sharp increase. 

However, the idealised energy rates       are then changed to have a steady increase 

and record about 0.125J/rev at the last tool revolution, whereas the energy rates from the 

process damping       and loss of contact       are respectively stabilised at 0.077 

J/rev and 0.022 J/rev. 

The performance of the process damping is compared to loss of contact behaviour as 

shown in Figure ‎7.9(b). Here the process damping and the loss of contact energy are 

measured in percentage using equation (6.3). It is very obvious here that after the first 9 

revolutions the energy dissipated by the process damping mechanism remains almost 

constant at 61.5%, whereas the energy dissipated by the loss of contact behaviour 

remains at 17.5%. The most interesting result that can be drawn here is that at the 

beginning of the cut the process damping performance was significantly higher in 

dissipating the vibration energy, which effectively inhibits the loss of contact energy.    

Now, the regular cutting tool is replaced by a variable helix tool and the simulation is 

repeated along the same cutting conditions. Behaviours of the transmitted and dissipated 

energy rates are significantly changed as shown in Figure ‎7.10. From Figure ‎7.10(a), it 

can be seen that the rates of the transmitted energy are stabilised at         

       J/rev, whereas process damping dissipates the vibration energy at      

       J/rev. However loss of contact energy       has almost vanished here. This can 

be attributed to the process damping effects which become sufficient to dissipate the 

imposed vibration energy. This can be clearly observed in Figure ‎7.10(b) which shows 

that process damping dissipates almost 73.7 % of the total energy. However there is no 

loss of contact energy recorded, and as a consequence the vibration energy here is 

totally dissipated by both the process damping and structural damping.  

Figure ‎7.11 demonstrates the predicted behaviour for both tools across a range of 

spindle speeds. Here, the loss of contact energy rate is compared to the process damping 

energy rate. It can be seen that for the regular pitch/helix tool, the two energy 
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dissipation mechanisms have similar magnitudes once the speed is more than 270 rpm. 

In contrast, the variable helix tool has very small levels of loss of contact energy 

dissipation rate for the majority of spindle speeds. Meanwhile, the process damping 

energy dissipation rate is considerably higher. This suggested that for some reason the 

variable helix tool is able to reach a steady-state limit cycle with much lower energy 

dissipation rates than the regular tool. Furthermore, for many of spindle speeds, the 

energy rate associated with loss of contact is very small.  

The results in Figure ‎7.11 show repeating patterns that are consistent with the stability 

lobes for each of the two tools. This is further illustrated in Figure ‎7.12. Here, the semi-

discretisation method [126] is used to obtain stability lobe diagrams (Figure ‎7.12 (a)). 

The stability boundary is defined by the depth of cut where the semi-discretisation 

method predicts a characteristic multiplier (CM) greater than or equal to 1. 

Consequently, Figure 7.12 compares the energy dissipation for the regular 

(Figure ‎7.12(b)) and variable helix (Figure ‎7.12(c)) tools to the magnitude of the CMs 

(Figure ‎7.12(d)), at the depth of cut is 2mm. 

At low spindle speeds, the variable helix tool appears to have much higher CMs than the 

regular tool, which suggests that the tool should have been more unstable. This makes it 

more surprising that the variable helix tool was deemed ‘chatter free’ or ‘process 

damping’ in both the corresponding experiments [20] and the simulation analysis 

( Figure ‎7.12(c)).  

In order to explore this further, the rubbing and loss of contact mechanisms on the arc 

surface behaviour are investigated further. Small results are presented in Figure ‎7.13 

which are selected at the cutting condition spindle speed  =255 rpm and depth of cut 

b=2mm. Here the behaviour of the arc’s surfaces at the axial layer number l=10 with 

rubbing effects are presented in the polar coordinates. Each data point here is 

represented by the radius    and its inclination angle    is measured from the tool centre.  

Now a clear representation for the arc surfaces including the loss of contact and rubbing 

behaviour effects are presented in Figure ‎7.13.  Results of the regular tool are shown in 

Figure ‎7.13(a); it is very clear to see here that amplitudes of the arc’s surfaces and the 
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phase difference are almost similar along the cutting passes. Moreover, it can be seen 

that rubbing and loss of contact are both occurring as illustrated respectively by the “■” 

and “●” markers. Here more loss of contact happens compared to rubbing.   

Now, results of the variable helix tool are shown in Figure ‎7.13 (b). It is quite clear here 

that waveform’s amplitudes and the phase delay are irregular. It can also be noticed that 

at some stages of the cut, some teeth are cutting with same phase. In addition, rubbing 

behaviour is clearly higher here as highlighted by “■” markers in Figure ‎7.13(b). It 

seems process damping effects are sufficient enough here to dissipate the vibration 

energy which prevents loss of contact from arising.  

7.5.2 Variable Helix Tool in 3-DOF System 

In this section investigations are carried out to consider the influence of the variable 

helix tools on the system stability with a three degree of freedom. The aims here are to 

consider cutting conditions that are similar to those used experimentally by Turner et al 

[90], when they first proposed that variable helix tools offer enhanced process damping. 

This also allows more validation for the energy approach in analysing the machining 

stability with more complex system dynamics.  

Now, for the regular and the variable helix tools, results of the process damping and loss 

of contact energy rates are presented in contour plots, as shown respectively in 

Figure ‎7.14 and Figure ‎7.15. These contour plots are performed along the cutting speeds 

               rpm for different depths of cut up to b=3mm. Here it can be seen 

that energy dissipation levels are increasing as the depth of cut becomes greater. 

However, beyond the depth of cut b=2.5 mm process damping energy rates become 

clearly lower than the loss of contact for the regular tool (Figure ‎7.14), whereas in 

contrast for variable helix tool (Figure ‎7.15).This can clearly be observed in Figure ‎7.16 

which compares the process damping and loss of contact energy rates for a variable 

helix tool in plot (a) and the regular tool in plot (b). It is very clear that for the variable 

helix tool, process damping becomes effective in dissipating the energy just after the 

depth of cut b=1mm, with energy rates that are higher than the loss of contact along all 

the depths of the cut (plot (a)). Almost the same behaviour for the regular tool is also 
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shown (plot (b)), however loss of contact energy rates become dominant at the depth of 

cut at almost b=2.5mm.  

Further comparisons between the regular and variable helix tool’s performance are 

presented in Figure ‎7.17. Along these cutting conditions, the produced process damping 

energy rates from both tools are linearly increased with almost the same levels (plot (a)). 

However, the obtained loss-of-contact energy rates from both tools are exponentially 

increased and are much higher for the regular tool (plot (b)).  

Further investigations of the regular and variable helix tool’s effects on the stability 

behaviour are performed at greater depths of cut. For the variable helix tool, the 

behaviour of the loss of contact and the process damping energy rates are also presented 

in contour plots as shown respectively in Figure ‎7.18(a) and Figure ‎7.18(b).  It is very 

obvious beyond the depth of cut b=3.25mm, energy rates of the process damping are 

clearly lower than that obtained from the loss of contact behaviour. This can be 

attributed to chatter levels become so severe here causing more loss of contact which in 

turn leads to more reduction in the rubbing behaviour. For the regular tool, results of the 

loss of contact and process damping energy rates are also presented in contour plots as 

shown respectively in Figure ‎7.19(a) and Figure ‎7.19(b). It is quite clear here loss of 

contact energy rates are considerably higher compared to the process damping energy 

rates. This can be attributed to the vibration amplitudes were grown more severely here 

compared to that of variable helix tool (Figure ‎7.18). In addition, energy rates of the loss 

of contact become significantly high at the depth of cut b=4.5mm where the system 

becomes completely instable causing a simulation failure.  

In summary, compared to a regular tool, the degree of stability of a variable helix tool is 

higher due to more rubbing which occurs and which leads to more energy dissipation.   
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7.6  Summary 

In this chapter, a comparison of the milling stability for the regular and variable helix 

end mills is presented using a new analysis approach. The energy approach has analysed 

the effects of the variable helix tools on machining stability through the time domain 

simulation. In addition, this approach has enhanced the possibility of investigating the 

variable helix and pitch tools under the process damping effects.  

Stability behaviour of the regular and variable helix tools was investigated by 

comparing behaviours of the loss of contact and the process damping energy rates, 

which showed a reasonable correspondence with the stability lobes and the 

characteristic multiplier’s behaviours. Variable helix tools showed greatly enhanced 

stability compared to a regular tool, especially at low speeds.  

Rubbing behaviour and loss of contact effects are presented on the workpiece surface. 

The phase delay between any subsequent arc’s surfaces was disrupted along the variable 

helix tool, whereas it remains uniform for a regular tool. In addition, a regular tool 

provides high chip thickness variation compared to the variable helix tool behaviour.  

Process damping performance has been investigated along with the variable helix tool’s 

effects. The time domain model has offered a comprehensive representation of the 

kinematics of milling, including the process damping phenomena. However it does not 

offer a reasonable explanation for the case observed from the empirical results in (VH4 

Fig1) [90], which did not match with the model’s results.  

The developed energy analysis is considered as a capable approach for measuring and 

investigating the interaction between the variable helix tool’s performance under the 

process damping effects that can be utilized both in designing new milling cutters and in 

identifying cutting parameter regions of extremely high material removal rates. 

Now, this approach will be further implemented to investigate the performance of the 

short regenerative effect on the milling stability compared to the process damping due 

to the flank interference mechanism. This subject will be presented in the next chapter.  
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Simulation parameters of 1-DOF system 

Iterations per cycle (–) 1280 

Number of axial layers l (–) 30 

Radial cutting force coefficient      (N/mm
2
) 187.5 

Tangential cutting force coefficient     (N/mm
2
)  1250 

Process damping friction coefficient (–)  0.3 

Process damping normal force coefficient     (N/mm
3
)  40 

Number of teeth Nt (–)  3 

Tool diameter D (mm)  16 

Tooth flank length lf (mm)  0.2 

Tool relief angle   (deg)  6 

Tool helix angle   (deg)  30 

Tool variable helix angles     (deg) 48,44,43 

Tool variable pitch angle    (deg) 84, 220, 55 

Depth of cut b (mm)  2 

Radial immersion re (mm)  1 

y-direction natural frequency (Hz)  200 

mass (kg)  1.41 

y-direction damping ratio (–)  0.0078 

Table ‎7-1 simulation parameters for one degree system dynamics 
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Simulation parameters for 3-DOF system 

Iterations per cycle (–) 1280 

Number of axial layers l (–) 40 

Radial cutting force coefficient Krc  (N/mm
2
) 160 

Tangential cutting force coefficient Ktc (N/mm
2
)  400 

Radial cutting edge force coefficient Kre (N/mm
2
) 30 

Tangential cutting edge force coefficient Kte (N/mm
2
) 26 

Process damping friction coefficient _ (–)  0.3 

Process damping normal force coefficient Knp 

(N/mm
3
)  

40 

Number of teeth Nt (–)  4 

Tool diameter D (mm)  16 

Tooth flank length lf (mm)  0.5 

Tool relief angle   (deg)  7 

Tool helix angle λh(deg)  35 

Tool variable helix angles  λvh(deg) 35, 40, 35, 40 

Tool variable pitch angle φvp(deg) 107, 73, 107, 73 

Depth of cut b (mm)  (Vary) 

Radial immersion re (mm)  16 

Spindle Speed   (rpm) 4000 

Modal parameters in x-direction:   

Natural frequency fnx (Hz)  2061, 2609, 3032 

Stiffness Kx (N/m)  1.932e7,5.192e7, 4.433e8 

damping ratio ζx (–)  0.0162, 0.0541, 0.0129 

Modal parameters in y-direction:   

Natural frequency fny (Hz)  2058, 2444, 2992 

Stiffness Ky (N/m)  1.886e7,  9.190e7, 1.902e8 

damping ratio ζy (–)  0.0227, 0.0224, 0.0164 

Table ‎7-2 simulation parameters for 3-degree of freedom system  
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Figure ‎7.1 Angular position of edges for end mills on tool circumference (a) End mill 

with equal pitch. (b) End mill with variable helix angle and equal pitch. (c) End mill 

with uniform helix and variable pitch angle. (d) End mill with both variable helix and 

variable helix angles. 
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Figure ‎7.2 State Space in Simulink blocks form. 
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Figure ‎7.3 Two directional milling with 3DOF system 
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Figure ‎7.4 (a) system dynamics with equivalent mass, damper and spring, 

(b) forces acting on the system boundary, (c) energy behaviour acting on 

the system boundary 
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Figure ‎7.5 System dynamics in Simulink blocks 
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Figure ‎7.6 Discretisation of tool into axial slices 
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Figure ‎7.7 system dynamics are modelled as spring-mass-damper 

 

Figure ‎7.8 chip thickness variation at the last tool revolution, (a) regular tool, (b) 

variable helix tool. 
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Figure ‎7.9  Energy behaviour for the regular tool 

 

Figure ‎7.10  Energy behaviour due to the variable helix tool 
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Figure ‎7.11 comparison of the process damping and loss of contact energy dissipation 

for different cutting speeds, (a) regular tool at b=2mm, (b) variable helix tool at b=2mm. 
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Figure ‎7.12 compare behaviours of (a) stability lobes diagram, (b) loss of contact 

energy rates at b=2mm, (c) process damping energy rates at b=2mm and (d) 

characteristic multipliers at b=2mm. 
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Figure ‎7.13 Arc surfaces, loss of contact and rubbing behaviours 

 (a) regular tool (b) variable helix tool 

 

Figure ‎7.14 compare energy behaviour when regular tools are used 

(a) loss of contact (b) process damping 
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Figure ‎7.15 compare energy behaviour when the variable helix tools are used 

(a) loss of contact (b) process damping 

 

 

Figure ‎7.16 compare energy behaviour (a) variable helix tool (b) regular tool 
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Figure ‎7.17 compare regular and variable helix tools performance  

 

 
Figure ‎7.18 compare energy rates in contour plots for variable helix tool 

(a) loss of contact energy (b) process damping 
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Figure ‎7.19 compare energy rates in contour plots for the regular tool 

(a) loss of contact energy (b) process damping  
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8 CHAPTER 8 PROCESS DAMPING AND SHORT REGENERATIVE 

EFFECT 

8.1 Introduction  

The short regenerative effect is an alternative mechanism to explain increased stability 

at lower speeds. It was initially introduced by Stépán [22], who proposed that instead of 

modelling the cutting forces as a single point force, it could be assumed that the contact 

between the chip and the tool can be seen to be distributed along the rake face of the 

tool along a contact length lc shown in Figure ‎8.1. Khasawneh et al. [21]  theoretically 

showed that in turning, the distributed cutting forces along the tooth  face causes a short 

delay term in the governing equation of motion. This distributed delay was proved to 

increase the stability limit at low speeds. However, they did not carry out any 

experiments to check if this kind of force distribution needs to be considered when 

explaining low speed stability. 

More recently, Taylor et al.[23], developed a signal processing approach to analyse the 

behaviour of the two process damping mechanisms ‘flank interference concept’ and 

‘short regenerative effect’ in turning. For the short regenerative effect, they conclude 

that this mechanism relies on an estimation of the chip contact time on the tool rake face, 

along with knowledge of a weighting function that distributes the cutting force along the 

tool rake face as a function of the chip thickness along the rake face. They also revealed 

that none of these weighting functions can provide sufficient increases in stability for 

their model to match the experimental observed data. 

It should be noted that to date there is no literature that has proposed to model or 

investigate the influence of the short regenerative effect mechanism in milling. This 

could be because this mechanism is quite complicated and the basic subject matter has 

not fully been recognised. Moreover there is not a straightforward technique which can 

be used to measure and illustrate how this mechanism affects the stability behaviour.  
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However, since the model used in this thesis has the ability to consider the process 

damping due to the tool/workpiece interferences mechanism, it will also be developed 

here to consider the concept of the short regenerative effect.   

In addition, the new proposed technique based upon energy analysis will be 

implemented to investigate the influence of this phenomenon on the milling stability. 

Moreover, the obtained results from the short regenerative effect concept will be 

compared with other results including process damping due to the flank interference 

mechanism.  

8.2 The Short Regenerative Effect 

It is well known that increased stability behaviour is commonly observed at low speed 

machining due to the phenomenon known as process damping. In the past, this 

phenomenon was attributed to the rubbing behaviour that occurs by the interference 

mechanism between the tool flank face and the work surface. However, another 

representation known as the short regenerative effect has recently been introduced for 

stability improvement at lower turning speeds [21-23, 91].  

Now, following Taylor et al. [23], the theory of the short regenerative effect concept 

with some mathematical expressions will be briefly reviewed and  described. With 

reference to Figure ‎8.1(b), the contact between the chip and the tool is assumed to be 

distributed along the rake face of the tool along the face length lc. The distributed force 

along this contact length is assumed to be proportional to the instantaneous chip 

thickness that is in contact with the tool rake face, and not the uncut chip thickness at 

the tool tip. This assumption leads to an additional delay term which was introduced to 

the block diagram as a transfer function filter Gh(s), as shown in Figure ‎8.2 [23]. Taylor 

has listed some weighting functions that were first proposed by Stépán [91].  According 

to this hypothesis, the cutting force can be estimated as follows [23] : 

                          

   

 

 

    

 (‎8.1) 
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Here,    is the short time delay,     represents the time taken for the chip to pass along 

the contact length lc and      is a weighting function.   

The proposed weighting functions were converted to transfer functions to represent the 

relationship between this short time delayed chip thickness and the total cutting force. 

This was obtained by taking the Laplace transforms for the equation (‎8.1) and 

performing the integration along the time      the chip needs to pass along the tool rake 

length. The obtained transfer function in Equation (‎8.2) is based on the cutting force and 

instantaneous chip thickness. This means that this transfer function becomes a filter to 

connect the chip thickness and the cutting forces as shown in the cutting process 

diagram Figure ‎8.2. 

      
     

       
 

 

 (‎8.2) 

 

Table ‎8-1 shows a list of the weighting functions and corresponding transfer functions 

as proposed by Taylor et al [23] . 

The short time delayed chip thickness     is basically determined from the chip surface 

velocity     and the chip contact length    . It is well known that during the chip 

formation, the angle of the primary shear plane leads to compression of the chip before 

it travels up the rake face [21, 23]. Consequently, the chip velocity vc is determined 

based upon the surface velocity vs (m/min) the chip compression ratio    (   
  

  
 . 

Therefore the total chip contact time     can be determined by [23]:  

     
    

  
     (‎8.3) 

Here the material considered in this work is Al7075 and the average chip/rake face 

contact length            was selected according to experimental work done by 

César [127]. However, the compression ratio      was also taken from the 

experimental work done by Chee [128]. 

It should be stated that this model involves a number of assumptions regarding the form 

of the stress distribution and its relationship with the short-delayed chip thickness. The 
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present contribution does not intend to investigate these assumptions in any detail. 

Instead, some of the selection of weighting functions listed in Table ‎8-1(proposed in 

[23]) will be investigated, so that their influence on improving the  milling stability can 

be ascertained.  

8.3 Numerical Study 

The influence of the short regenerative effect will be investigated using an energy 

analysis approach. The stability degree will be measured based on the behaviour of the 

loss of contact energy rates for each tool revolution. Simulation parameters are 

summarised in Table ‎8-2 chosen from the work published in [129]. 

However before analysing the results, the system dynamics and the system boundary 

need to be reviewed briefly. In this chapter the system dynamics are represented with a 

single degree of freedom system with mass, spring and damper in two directions x and y. 

However model formulation, the system boundary and energy calculations have been 

explained previously in earlier chapters. In addition, the transfer functions developed 

are then interpreted into simple Simulink blocks as can be seen for example in the 

exponential transfer function Gh_exp presented in Figure ‎8.3. Then these transfer function 

blocks are added to the main milling model as a subsystem Simulink block connecting 

the chip thickness block with the cutting forces block as shown in Figure ‎8.4.     

Again this work does not aim to validate or calibrate these model parameters, but 

published data has been used to obtain realistic values of the chip contact length and 

some potential weighting functions have been considered to measure milling stability 

behaviour. 

8.4 Results and Discussion  

As can be seen in Figure ‎8.5, loss of contact energy rates are used to investigate the 

stability behaviour under the influence of the short regenerative effect concept and the 

flank interference mechanism when compared to the normal system behaviour.   
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Figure ‎8.5(a) shows energy rates of the normal model without including the process 

damping effects. Here energy rates are considerably higher even at the low cutting 

speeds. The rates are also increased along the depths of cut up to b=1.5mm. Beyond this 

depth of cut, the vibration energy increases significantly causing a simulation failure.   

Figure ‎8.5(b) presents the energy behaviour of the loss of contact when the rubbing 

effects due to flank interference mechanism are included. It can be seen here that there 

is more improvement in the stability, particularly at the low cutting speeds. Loss of 

contact energy remains almost constant at 0.002 J/rev. However, these energy rates are 

slightly increased at the high cutting speeds. For example at the cutting speed 1500 rpm, 

the loss of contact energy starts at the depth of cut b=2mm with energy rate       

=0.002J/rev to reach the maximum rate with 0.008 J/rev at b=3mm. 

However plots (c), (d) and (e) in Figure ‎8.5 present the behaviour of the loss of contact 

energy rates that are obtained by the short regenerative effect, due to the influence of the 

following weighting functions: exponential Gh-exp, constant Gh-con and linear Gh-lin 

respectively. It should be known that process damping (flank interference mechanism) 

effects are not included here. Now from these plots it can be seen that these functions 

have different effects on the degree of the stability since the energy rates of the loss of 

contact are different. In general these weighting functions have shown a considerable 

improvement in the stability behaviour compared to the normal model in plot(a); 

however they did not offer a better performance compared to the process damping 

mechanism shown in plot (b).   

Now the effects of the weighting function including the process damping mechanism 

(flank interference mechanism) on the stability behaviour are investigated and 

illustrated in Figure ‎8.6. Here energy rates of the loss of contact are used to demonstrate 

the results as contour plots. Plots (a), (b) and (c) show the loss of contact energy rates 

respectively for the systems: exponential weighting function with the process damping 

effects (Gh-exp), constant weighting function with the process damping effects (Gh-con) 

and linear weighting function with the process damping effects (Gh-lin), are much 

decreased compared to the system just including the process damping effects in plot (d).  
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In general, the stability behaviour is clearly improved since the rates of the loss of 

contact energy are decreased through all these systems. However the degree of stability 

was slightly different from one system to another. Here the exponential Gh-exp and the 

constant Gh-con weighting functions almost have the same performance although it is 

slightly higher for the Gh-con, particularly at high spindle speeds. However the linear 

weighting function Gh-lin showed the lowest stability degree since the obtained energy 

rates are quite high compared to the other functions. Despite of the machining process 

being different, the main trends of these outcomes are almost in agreement with that 

observed in [23].  

8.5 Summary  

A specific contribution of the current chapter is the introduction of a new phenomenon 

of the process damping in milling where a distributed cutting force model is used.  

 The new analysis approach based upon the energy analysis has been applied to 

investigate the physical explanation for the process damping effects. Process damping 

due to the tool/workpiece interference mechanism has been combined with the short 

regenerative effect. The model is validated by selecting a confirmed simulation data 

previously published. The main conclusive remarks are: 

 

1. The energy approach can be used to investigate the chatter stability behaviour 

due to the process damping effects by both the flank interference mechanism and 

short regenerative effect. 

2. The distributed force model also provides an alternative explanation for the 

improved stability of milling while still allowing more investigation.  

3. Different shape functions for the force distribution have shown an improvement 

in the stability behaviour through the reduction in the loss of contact energy 

rates compared to the normal system (system without process damping or 

weighting functions effects). However, it has been shown that none of these 
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functions can provide a sufficient increase in stability for the model to match the 

process damping effects. 

4. The loss-of-contact energy rates are much decreased when the flank interference 

mechanism is combined with the short regenerative effect. This reveals that 

stability could be increased by considering both process damping mechanisms.  

5. This study has not aimed to validate or calibrate the model parameters, but 

published data has been used to obtain realistic values of the chip contact length 

and a range of potential weighting functions have been considered. 

Possible tasks for future research include experimental verification and/or a 

comparison study with historical models of process damping. This will avert the 

complications of previous works which either uses the damping term which is 

inversely proportional to spindle speed or a displaced volume relationship which 

must be numerically and experimentally calibrated. 
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Description Weighting Functions 

        
Transfer Functions 

     
Exponential 

  
 

   
   

          
 

 
 

      
  

 

        
              

Constant  

   
 

          

   
 

Linear  

   
   

  
   

  
                

  
   

 

Table ‎8-1 Weighting Functions and the Corresponding Chip Transfer Functions [23] 

 

Simulation parameters  

Stiffness Kx=5.6x10
6
 (N/m) 

Ky=5.7x10
6
 (N/m) 

 

Structural damping  Cx=115.29Ns/m 

Cy=95.35Ns/m 

 

Natural frequency fx=603 (Hz) 

fy=666 (Hz) 

 

    

   

700 (N/mm
2
) 

0.07 

Tool diameter 

Number of teeth 

25.4 (mm) 

3 

Flute helix 

Milling Mode 

0
o
(axial flute) 

up-milling 

Radial immersion 50% 

Feed per tooth 0.07(mm/tooth) 

Process damping friction coefficient ( ) 0.3 

Process damping normal forces 

coefficient (Knp) 

 

1.5x10
5
 (Nmm

-3
) 

Table ‎8-2 simulation parameters 
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Figure ‎8.1 (a) the interference contact region, and  

(b) distributed force on the rake tool face 
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Figure ‎8.2 Block diagram of cutting process in the traditional stability model,[23] 
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Figure ‎8.3 Exponential Transfer Function Gh_exp 

 

Figure ‎8.4 Simulink Milling Model including Chip thickness transfer function 
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Figure ‎8.5 compare behaviour of the loss of contact energy rates due to the normal 

weighting functions and process damping mechanism 
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Figure ‎8.6 compare behaviour of the loss of contact energy rates due to the weighting 

functions including process damping effects 
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9 CHAPTER 9 CONCLUSION AND FURTHER WORK 

9.1 Summary of Thesis  

In Chapter 4 of this research, a comprehensive milling simulation model has been 

modified to involve a variable spindle speed mechanism. The model was formulated in 

a Simulink environment, and in order to consider variable spindle speeds the system 

equations of motion have been rewritten in non-dimensional time. This was achieved by 

using tool revolutions as independent variable instead of time in seconds. The peak-to-

peak (PTP) approach was used for analysing the simulation results. However this 

approach was unable to provide a formal and accurate interpretation of chatter stability 

for variable spindle speed simulations, consequently the self-excited damping ratio was 

used as the alternative method for this investigation.    

In Chapter 5, a new analysis method was introduced. This method is based on balancing 

the cutting energies and the damping energies that are crossing the system boundary. 

The new analysis approach has been used to describe and investigate the stability 

behaviour for both turning and milling.   

In Chapter 6 new analysis method was used to investigate the process damping 

phenomenon based upon the flank interference contact. The influence of several cutting 

conditions and tool geometry parameters was investigated through simulation. The new 

analysis approach proposed in this research has enabled a physical explanation for the 

process damping mechanism. Process damping performance on chatter suppression was 

quantifiably measured and investigated.   

In Chapter 7, the simulation and analysis was extended to also consider the special case 

of variable helix tools. The energy analysis was further developed to consider multi 

degree of freedom system dynamics. To the author’s knowledge this is the first study 

that has modelled the process damping of variable helix tools. Enhanced process 

damping was observed for these tools, in approximate agreement with previous 

experimental results in literature.  
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In Chapter 8 an alternative mechanism for the process damping phenomenon based 

upon the short regenerative effect has been investigated, using the energy balance. To 

the authors knowledge this is the first study that has simultaneously modelled the short 

regenerative effect and tool flank interference in milling. The study showed that the 

short regenerative effect can add further damping behaviour over and above that caused 

by tool flank interference.  

The conclusions and contributions will now be listed and recommendations for future 

works suggested. 

9.2 Conclusions 

1- The self excited damping ratio can provide a formal interpretation of instability 

for variable spindle speed milling simulations, but it cannot interpret stable 

behaviour. This can be observed particularly for the stable cases where the lines 

that are fitting the maximum amplitudes (Xes) of each frame almost horizontal 

and straight, whereas, due to the proposed theory these lines are expected to be 

in decaying style since they were representing the stable behaviour as shown in 

constant speed machining [40]. The reason of that can be attributed to the effect 

of the speed variation behaviour on the spectral lines approach, in addition to the 

time-variant dominant frequencies is the stable response of the system, thereby 

the influence of varying chatter frequency can be not fully considered. Other 

nonlinearities such as process damping are also likely to cause such the 

variations in the chatter frequency. Therefore self-excited damping ratio is 

suggested to be unsatisfactory approach to offer comprehensive insight.  

 

2- An energy balance approach has been developed as an alternative method of 

exploring the system stability from time domain simulation data. The approach 

has been shown to provide a useful and quantifiable interpretation that can be 

applied to various nonlinearities including the fundamental loss of contact that 

occurs under high vibration levels.     
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3- The energy balance approach has been used to explore the simulated behaviour 

when tool flank interference is modelled. This allows an accurate interpretation 

of the energy dissipation associated with the interference effects. Furthermore, 

the magnitude of this energy dissipation can be compared to that observed from 

the simulated tool losing contact with the workpiece. This provides some new 

insight into how these two nonlinearities act to limit the amplitude of unstable 

chatter vibrations in practice.  

4-  For the special case of simulated variable helix tools, it has been observed that 

process damping appears to have an even more beneficial effect at low spindle 

speeds. Although the energy analysis method has provided some useful 

visualisation of this enhanced stability. The underlining mechanisms require 

further investigation.  Furthermore, the literature provides experimental evidence 

that enhanced stability occurs at higher spindle speeds range than that found in 

the present modelling work.   

5- Finally, the combination of tool flank interference and the short regenerative 

effect have been modelled and analysed using energy method. The simulations 

suggest that the combined phenomena provide even greater energy dissipation.  

9.3 Contributions from Current Work 

 The main contributions of this work are: 

 A milling model has been developed to consider variable speeds by considering 

non dimensional time. This technique was not considered before; however Tsao 

et al [3] presented a method for a simplified situation of continuous cutting with 

only one tooth in cut at any point of time. The work described in this thesis was 

presented at an international conference (RASD 2010) see Appendix A1.  

 

 The self-excited damping ratio technique was applied for the first time to 

variable speed machining (VSM). For this case it was seen that the system 

displacement does not reach a steady state condition, making the common 

techniques such as peak-to-peak method difficult to use as a judgement of 
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chatter stability. The result of this work was a published in conference paper see 

(WCE2012) Appendix A2.  

 The main contribution of this research is the introduction of a new 

comprehensive method for chatter stability analysis that allows more realistic 

and detailed investigation for chatter stability in time domain simulation. The 

idealised cutting energy, loss of contact energy, process damping energy and the 

structural damping energy of the milling system are directly measured in the 

milling model.   

 The new analysis method has been applied to simulations that consider three 

topical methods for mitigation of chatter: variable helix tools, tool flank 

interference, and the short regenerative effect. This has provided new insight 

into the relation performance of these phenomena.   

 Finally, it is worth reiterating that this study has focussed on a method based 

approach. However, wherever possible the simulation scenarios have been based 

upon conditions used for experimental testing in the literature  

9.4 Suggestions for Future Work 

A number of areas are suggested for further work.  

 First, time constraints meant that the energy balance approach was not applied for 

the case of variable speed machining. With hindsight, this would have been on 

obvious step in the research. However, at the time the main focus of the research 

topic was the process damping phenomenon.  

 Second, it is clear that variable helix tools do provide an interesting process 

damping behaviour that appears to offer enhance stability.  Further experimental 

work is needed to explore this.  

 Finally the short regenerative effect has received very little attention. Measurement 

of this phenomenon is likely to be extremely challenging, but such experiments 

could provide useful new insight.  
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10 APPENDIX A: ABSTRACTS OF CONFERENCE PUBLICATIONS 

APPENDIX A1 

 

A NEW APPROACH TO TIME DOMAIN SIMULATION OF VARIABLE SPINDLE 

SPEED MILLING 

ABSTRACT 

During metal machining, unstable self-excited vibrations (known as regenerative 

chatter) can occur, leading to poor surface finish, excessive tool wear, and damage to 

the machine. Consequently there has been a great deal of research (experiments and 

numerical simulations) to understand the mechanisms of regenerative chatter so that 

productivity can be enhanced. 

Spindle speed variation is one technique for improving regenerative chatter stability that 

has received some attention in the research literature. However, this approach results in 

stability boundaries that are defined by delay-differential equations with periodic 

coefficients and variable time delays. Consequently from a practical standpoint it seems 

very difficult to determine the theoretical stability boundary, let along the acceptable 

stability boundary in practical scenarios. 

In the present study, a Simulink model that can predict regenerative chatter in milling is 

modified to enable its use under variable spindle speed conditions. This is achieved by 

rewriting the equations of motion in non-dimensional time, where the non-dimensional 

time is equal to the number of simulated revolutions of the tool. In this way, the 

relationship between non-dimensional time and physical time can be altered to achieve a 

variable spindle speed. Results from the model are compared to previous publications 

predicting variable spindle speed chatter stability. 
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APPENDIX A2  

(WCE2012) 

The Self-Excitation Damping Ratio in Time-Domain Variable Speed Milling 

 

ABSTRACT 

During metal machining, unstable self-excited vibrations (known as regenerative chatter) can 

occur, leading to poor surface finish, excessive tool wear, and damage to the machine. 

Consequently there has been a great deal of research (experiments and numerical simulations) 

to understand the mechanisms of regenerative chatter so that productivity can be enhanced.  

A chatter suppression method that has received attention recently is the spindle speed 

variation technique whereby greater depth of cut can be achieved by continuous by 

varying the spindle speed. However, this approach results in stability boundaries that are 

defined by delay-differential equations with periodic coefficients and variable time 

delays. Consequently from a practical standpoint it seems very difficult to determine the 

theoretical stability boundary, let alone the acceptable stability boundary in practical 

scenarios.  

In the present study, a Simulink model which is designed for milling chatter simulation 

is modified to enable its use under variable spindle speed circumstances. This is 

achieved by rewriting the equations of motion in non-dimensional time where the non-

dimensional is representative of the number of simulated tool revolutions. In this way, 

the relationship between non-dimensional time and physical time can be altered to 

achieve a variable spindle speed. A signal processing technique is then adopted for 

analysing the chatter stability of time-domain variable speed milling. This method relies 

on signal periodicity of the predicted vibrations of the tool and workpiece, to calculate 

the so-called self-excitation damping ratio. Results from the model are compared to 

previous publications predicting variable spindle speed chatter stability.  
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11 APPENDIX B: AN EXAMPLE FOR THE 4
TH

 RUNGE-KUTTA TO  

For the x-coordinate of the equation (‎3.32) can be written as: 

    
 

  

                 
B-I 

 

The initial conditions            are assumed to be know as  

  
         

            
  

 

B-II 

 

By letting     , this equation is reduced to the following two first order equation 

  
    

           
  B-III 

The basis of the method can be developed from the Taylor expansion of      and      

about the previous time step  , with the time interval being      . Subtracting and 

ignoring higher order terms, the following recurrence formula are obtained, 
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B-V 

 

The differential equation for the y-coordinate can be solved in the same way. 
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12 APPENDIX C: MILLING DYANAMICS IN 3-DOF SYSTEM 

APPENDIX C1: SYSTEM EQUATIONS OF MOTION 

With the reference to Figure C.1the system equations of motion are determined in x and 

y directions as follows: 
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These equations (C-1) and (C-2) can be represented in matrices forms as follows:  
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Define mass, stiffness and structural damping matrices according to the x and y system 

directions: 

 

        
        
       
        

 

     

 

      

       
             

                

 

     

 

      
       

             
                

 

     

 

(C-5) 

 

Since the state-space model represents the relationship between the inputs and the 

outputs of the system, so the state vector can be coordinate independent by decoupling 

the equations (C-3) and (C-4) as can be seen in next section.  
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Figure C1 Two directional milling with 3-DOF coupled system 
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APPENDIX C 2 : Modal Analysis for Decupling the Equations of Motion 

Firstly the system is assumed to be under free vibration behaviour for the un-damped 

system to calculate the eigenvalues and eigenvectors of the system.  

                (C-6) 

Assume a harmonic solution:                             
     and 

         
          substitute these equations in matrix equation we can obtain the 

eigenvalues and eigenvector solutions: 

        
                  (C-7) 

Pre-multiplied by       

 
       

                       

                                  

(C-8) 

 

where    
 

  
    

Matlab codes (see Appendix D2) are used to determine matrices of the system 

eigenvalues    and eigenvectors  . Now having determined the natural frequencies and 

modes for the un-damped case, the generalised mass, stiffness and damping       

            and        respectively) are then determined. However the system 

damping here is approximated proportional, i.e proportional to the stiffness K of the 

system: 

       (C-9) 

where β is a constant (This constant has physical unit, β in [sec]) and can be 

approximated as follows:  

 

 
       

             
                

 

     

    

       
            

                

 

     

 

Then                           
  

  
 

  (C-10) 
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Now the new values of the damping coefficients   ,     and    are defined according to 

the assumption (                    ). So the damping matrix is determined by 

substitute matrix (C-5) in matrix (C-9) as follows: 

       

           
                       

                
 

     

 

(C-11) 

 

Similar to the undamped modal analysis, it is considered the modal transformation takes 

the form:          ,           and          .  The equation of motion becomes:  

                                   (C-12) 

Pre-multiply the equation above by ’ and substitute matrices (     and      in (C-)) 

and (    in (C-12)) to obtain uncoupled equation of motion: 

                                                         (C-13) 

Now the system become uncoupled and can be represented as shown in Figure C2.  This 

is the uncoupled diagonal system equation in matrix form for x and y directions.  
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Figure C2 Two directional milling with 3-DOF decoupled system 

 

 



 

 

180 

 

13 APPENDIX D: MATLAB PROGRAM CODES 

 

APPENDIX D1 

%A sample of the Matlab codes for the triangular milling 

speed trajectory  

%input parameters  

pd.cycles;   %number of revolutions 

pd.omega_m;  % mean spindle speed  

pd.RVA;      % amplitude ratio 

pd.RVF;      % frequency ratio    

pd.Tv=60/(pd.RVF*pd.omega_m);% determine signal periodicity  

 

pd.Na=pd.RVA*pd.omega_m;  

pd.t=(0:pd.Tv/2:pd.cycles); %define speed signal length 

 

%define speed signal upper limits 

pd.n(1:2:length(pd.t))=pd.omega_m+pd.Na;  

 

%define speed signal lower limits 

pd.n(2:2:length(pd.t))=pd.omega_m-pd.Na;  

 

pd.omega=[pd.n]';   %speed signal  

pd.time=[pd.t]';    %speed period signal 

 

APPENDIX D2 

% Sample of the Matlab codes for calculating damping ratio 

 

nt                                              % define number of teeth     

iters                                          %define number of iteration per revolution 

y                                                % define vibration signal 

x=y(3:end);                               %strip the first 3 data points 

x=buffer(x,iters,iters-iters);      %buffer the rest divided to frames  

X=fft(x);                                   %take the fft 

nanind=1:nt:size(X,1);              %tooth passing indexes 

X(nanind,:)=nan;                       %set to nan (remove forced vibration) 

X=X(2:end/2,:);                         %use only first half, and not DC value 

X=X(:,nt+1:end);                       %don't use first cycle+1 

[dummy,kps]=max(abs(X))        %find spectral indexes which have a local maximum 

kps=unique(kps);                         %select those indexes 

for n=1:length(kps);                    %for each useful spectral index, kp          
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Xkp=log(abs(X(kps(n),:))); 

polycoeff=polyfit(1:length(Xkp),Xkp,1);  % curve fit 

DeltaRkp(n)=-polycoeff(1);                        % evaluate log decrement 

end 

[DeltaRm, kpm]=min (DeltaRkp);     %DeltaR for this observation and 

corresponding index kpm  

Kpm= kps (kpm); 

[DeltaR, kpmax  kpmaxm]=min(DeltaRm);     %DeltaR is lowest decay per rev 

kpmax=Kpm (kpmaxm);                                   %Get corresponding spectral index 

zeta=DeltaR, kpmax  /2/pi/kpmax*nt;               %Evaluate corresponding damping 

ratio. 

 

APPENDIX D3 

% Sample of the Matlab codes for determining the system dynamics parameters. 

%Define input parameters  

% stiffness, natural frequency and damping ratio in x-directions  

kx=[kx1 kx2 kx3];   

fnx=[fnx1 fnx2 fnx3]; 

zx=[zx1 zx2 zx3]; 

% Stiffness, natural frequency and damping ratio in y-directions 

ky=[ky1 ky2 ky3]; 

fny=[fny1 fny2 fny3]; 

zy=[zy1 zy2 zy3]; 

%Determine Mass matrix and stiffness matrix in x and y directions 

Mx=[kx(1)/(fnx(1)*2*pi).^2 0 0;0 kx(2)/(fnx(2)*2*pi).^2 0;0 0 

kx(3)/(fnx(3)*2*pi).^2]; 

Kx=[kx(1) -kx(1) 0;-kx(1) kx(1)+kx(2) -kx(2);0 -kx(2) kx(2)+kx(3)]; 

My=[ky(1)/(fny(1)*2*pi).^2 0 0;0 ky(2)/(fny(2)*2*pi).^2 0;0 0 

ky(3)/(fny(3)*2*pi).^2]; 

Ky=[ky(1) -ky(1) 0;-ky(1) ky(1)+ky(2) -ky(2);0 -ky(2) ky(2)+ky(3)]; 

%Equation of motions  

P=eye(3);     % identity matrix  

Sx=Kx\Mx; 

Sy=Ky\My; 
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% the modal model: 

[Vx,Lx]=eig(P,Sx); 

[Vy,Ly]=eig(P,Sy); 

Lx=diag(Lx);                %the natural frequencies squared 

Ly=diag(Ly); 

% sorts the eigenvalues and eigenvectors: 

[Lx,indx]=sort (Lx); 

Vx=-Vx(:,indx); 

[Ly,indy]=sort(Ly); 

Vy=-Vy(:,indy); 

%define modal mass, damping and stiffness 

mrx=diag(diag(Vx'*Mx*Vx)); 

krx=diag(diag(Vx'*Kx*Vx)); 

cx1=Mx(1)*(zx(1).*2.*(fnx(1)*2*pi)); 

mry=diag(diag(Vy'*My*Vy)); 

kry=diag(diag(Vy'*Ky*Vy)); 

cy1=My(1)*(zy(1).*2.*(fny(1)*2*pi)); 

% define proportional damping coefficient.(damping proportional with stiffness)  

%define the new damping coefficient  

betax=(cx1/kx(1));                  

cx2=betax*kx(2); 

cx3=betax*kx(3); 

cx=[cx1 -cx1 0;-cx1 cx1+cx2 -cx2;0 -cx2 cx2+cx3]; 

crx=diag(diag(Vx'*cx*Vx)); 

betay=(cy1/ky(1)); 

cy2=betay*ky(2); 

cy3=betay*ky(3); 

cy=[cy1 -cy1 0;-cy1 cy1+cy2 -cy2;0 -cy2 cy2+cy3]; 

cry=diag(diag(Vy'*cy*Vy)); 

% define the state space matrices   

Tx=length(krx); 
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pd.Ax=[zeros(Tx)              eye(Tx) 

-(krx*inv(mrx))   -(crx*inv(mrx))]; 

      pd.Bx=[zeros(Tx,1); 1/mrx(1,1); 1/mrx(2,2); 1/mrx(3,3)] 

pd.Cx=[1 1 1 0 0 0;0 0 0 1 0 0;0 0 0 0 1 0;0 0 0 0 0 1]; 

pd.Dx(1:min(size(pd.Cx)),:)=0; 

Ty=length (kry); 

pd.Ay=[zeros(Ty)              eye(Ty) 

-(kry*inv(mry))   -(cry*inv(mry))]; 

pd.By=[zeros(Ty,1); 1/mry(1,1); 1/mrx=y(2,2); 1/mry(3,3)]; 

pd.Cy=[1 1 1 0 0 0;0 0 0 1 0 0;0 0 0 0 1 0;0 0 0 0 0 1]; 

pd.Dy(1:min(size(pd.Cy)),:)=0; 

APPENDIX D4 

% Sample of the Matlab codes for defining the variable helix angle 

pd.helix1=[hel1 hel2 hel3 hel4] *pi/180; % converts angles to radians   

pd.numlayers=la                                                     %define number of axial layers 

pd.numteeth =Nt                      %define number of cutter teeth   

for j=1:pd.numlayers 

pd.helix(j,:)=pd.helix1(:,1:pd.numteeth) 

end 

 

APPENDIX D5 

% Sample of the Matlab codes for plotting the arc surface and rubbing behaviour.  

%Calculate the displacement due the feed rate  

xf=pd.feed*pd.numteeth*pd.omega/2/pi*time (end); 

%Select the rubbing data from the process damping mechanism at the last tool 

revolution 

Fpd1                           %process damping forces data 

nt= numteeth;          % Number of teeth (arc surfaces) 

for n=1:nt                 % For each arc surfaces 

l=l1;                     % each layer 

fdd=Fpd1(l1,n,:)~=0;    % Select the indices for rubbing 1 when occur and 0         

when not.  
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ssx=sx(l1,1+iters*(n-1):iters*n);    % Define arc surfaces data (x and y components) 

ssy=sy(l1,1+iters*(n-1):iters*n);    % for the current tooth nt at the last revolution 

% Removes feed rate displacement effect and converts arc surface data points to the 

polar coordinates   

[th,r]=cart2pol(ssx-xf,ssy); 

indr=((~isnan(r)));         % remove what is not a number 

indr=indr(1:iters); 

rubind=(fdd(indr));   % Index number to define the rubbing data points 

rd=detrend(r(indr)); % remove any linear trends  

thd=th(indr); 

%plot polar arc surface with rubbing behaviour after removing a linear trends 

figure; 

hold all 

plot((thd/pi*180),rd) 

plot(thd(rubind)/pi*180,(rd(rubind)),'d') 

ha=gca; 

set(ha, 'xdir', 'reverse');     % reverse the axis to be from right to left 

end 

 

 


