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Abstract

Surveillance systems aim to detect sudden changes or aberrations in data series which
might signal the possibility of disease outbreaks. Early detection with a low false alarm
rate (FAR) is the main aim of outbreak detection as used in health surveillance or
in regard to bioterrorism. Multivariate surveillance is preferable to univariate surveil-
lance since correlation between series (CBS) is recognized and incorporated and so small
but consistent shifts are more likely to be detected. In this thesis, sufficient reduction
(SR) methods are considered. These are dimensionality reduction tools for multivariate
surveillance which have proved promising for handling CBS, and lag between change
points (LCP), but have not previously been used when correlation within series (CWS)
is present.

We develop SR methods for reducing a p-dimensional multivariate series to a univariate
series of statistics shown to be sufficient for monitoring a sudden, but persistent, shift
in a multivariate process of normal or Poisson data. CBS, CWS and LCP are all taken
into account, as health data typically exhibit these forms of association. Different types
of change point and shift sizes are investigated. A standard one-sided EWMA chart is
used as a detection tool. Due to the nature of health data, the one-sided EWMA chart
is modified for independent Poisson data and to allow for CWS in normal and Poisson
processes. The performance of the proposed method is compared with existing SR and
parallel methods. A simulation study shows that the proposed method is superior,
giving a shorter delay and a lower FAR than other methods which have high FARs when
CWS is clearly present. Although their high FAR can be improved by using a suitably
modified EWMA chart, the proposed method still gives shorter delays than the others.
The implementation of the proposed methods is illustrated with four real data sets.
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Chapter 1

Introduction

1.1 Introduction

Public health surveillance has been defined by the Centers for Disease Control and Pre-
vention (CDC) as ‘the ongoing, systematic collection, analysis, and interpretation of data
(e.g., regarding agent/hazard, risk factor, exposure, health event) essential to the plan-
ning, implementation, and evaluation of public health practice, closely integrated with,
the timely dissemination of these data to those responsible for prevention and control
(CDC, 2009). Public health organizations have been emphasizing focus on public health
surveillance since the exposure of anthrax in the USA in 2001 and subsequent outbreaks
of other communicable diseases such as severe acute respiratory syndrome (SARS) in
2002, avian influenza (bird flu) in 2003 and swine flu in 2009 (Goldenberg et al., 2002;
Fienberg and Shmueli, 2005; Shmueli and Fienberg, 2006; Rolka et al., 2007). Another
purpose in developing such systems is the possibility of detecting evidence of bioter-
rorism, since it is not easy to know when an attack has occurred until huge numbers
of people become sick or obvious symptoms are clearly presented (Stoto et al., 2004;
Fienberg and Shmueli, 2005; Rolka et al., 2007; Shmueli and Burkom, 2010). In this
usage, the monitoring is referred to “biosurveillance” (Burkom et al., 2004; Fienberg
and Shmueli, 2005; Shmueli and Fienberg, 2006; Fricker et al., 2007; Rolka et al., 2007).

The main purposes of surveillance systems are to monitor and be able to detect an oc-
currence of an outbreak as soon as possible after it has started. The sooner the public
health organization can detect occurrence of a disease outbreak, the more people will be
safe from disease transmission. The performance of such system relies on how quickly
it can signal the disease outbreak and how accurate it is (i.e. a short delay in detection
with low false alarm rate is required) (Fienberg and Shmueli, 2005; Frisén, 2005; Shmueli
and Fienberg, 2006; Rolka et al., 2007). Several statistical techniques, such as statistical
process control methods and statistical modelling techniques have been implemented in
practice. Research in this area has focused on improving the performance of outbreak
detection which is practically applicable for public health surveillance (Sonesson and
Bock, 2003; Frisén, 2005; Woodall, 2006). However, no gold standard methods or crite-
ria for public health surveillance have been agreed. Due to the nature of disease data,
which are noisy and vary over time, the statistical methods proposed for a particular
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disease or under particular circumstances might not be applicable in another due to the
violation of assumptions or changed circumstances. (Strat, 2005; Fienberg and Shmueli,
2005; Rolka et al., 2007; Shmueli and Fienberg, 2006; Shmueli and Burkom, 2010; Unkel
et al., 2012)

Public health surveillance can be categorized depending on the purposes of use and the
numbers of series monitored (see more detail in section 2.1.1). Univariate surveillance
monitors a univariate series or several series separately, while multivariate surveillance
monitors the p dimensional multivariate series together. The advantages of multivariate
over univariate surveillance is that the correlation between series is taken into account,
thus small shifts in series are more likely to be detected (MacGregor, 1995; Mohtashemi
et al., 2007; Montgomery, 2009; Shmueli and Burkom, 2010; Unkel et al., 2012). Having
reviewed the advantages and disadvantages of various statistical methods used in multi-
variate surveillance (chapter 2) and considered the limitations of health data which are
dependent over time, this thesis proposes sufficient reduction methods, which are based
on the dimensionality reduction and the sufficiency principle, for detecting a mean shift
in a multivariate process of autocorrelated data.

According to the sufficiency property, the p dimensional multivariate series is reduced to
a univariate series of likelihood ratio statistics summarizing all relevant information from
the original series. The likelihood ratio statistics are derived from the likelihood ratio
between in control and out of control stages defined according to a change point of the
process. By the factorization theorem, a univariate series of likelihood ratio statistics has
been proved to be sufficient for monitoring a shift in the multivariate process (Wessman,
1998; Frisén et al., 2011). As a result of the sufficient reduction, the univariate series
can be easily monitored with a univariate control chart in order to avoid the complexity
of using multivariate control charts (see more discussion of multivariate control chart in
chapter 2). Sufficient reduction methods have been proposed under various assumptions
and the main aim of the thesis is to weaken these assumptions and so to broaden the
applicability of sufficient reduction methods in public health surveillance. More details
of sufficient reduction methods are provided in chapter 4. The structure of the thesis is
summarized briefly as follows.

1.2 Thesis structure

Chapter 2 gives the background to public health surveillance and how it can be cate-
gorized according to the purpose of use and the data used. The use of real data and
simulated data in system evaluation is also discussed. Statistical methods used for
univariate and multivariate surveillance are reviewed with some limitations discussed.
The conclusion summarizes the limitations of statistical methods used for multivariate
surveillance and the rationale as to why sufficient reduction methods would be preferable
for detecting a shift in a multivariate process.

Since rapid and correct identification is desired, chapter 3 reviews the measures used to
evaluate system performance in public health surveillance. Since there are many sta-
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tistical methods used and proposed for health surveillance, possible optimality criteria
are also considered in order to choose the optimal methods for the surveillance. Having
reviewed the measures, those used to evaluate the performance of sufficient reduction
methods proposed in this thesis are defined.

In chapter 4, the background of the sufficiency property and the existing sufficient reduc-
tion (SR) methods proposed by Wessman (1998) and Frisén et al. (2011) are reviewed.
The limitations of the existing SR methods proposed for detecting a shift in a multi-
variate process of independent observations are discussed and an extension permitting
such methods to detect a shift in a process of (normally distributed) dependent obser-
vations in public health surveillance is presented. Correlation within series, correlation
between series and various types of change point are incorporated. System evaluation is
conducted by simulation study, using a standard one-sided EWMA chart as a detection
tool. The performance of the proposed SR methods is compared with those of the ex-
isting SR methods.

According to the results from chapter 4, the existing SR methods produce high false
alarm for detecting a shift in an autocorrelated process when a standard one-sided
EWMA chart is used. Therefore, in chapter 5, the one-sided EWMA chart is mod-
ified to account for the autocorrelation in a process in order to see the improvement
in the detection performance of the existing SR methods for detecting a shift in the
autocorrelated process. Apart from this, the robustness of the SR methods against mis-
specified parameters used in the sufficient reduction, such as correlation within series,
correlation between series, types of change points and shift size we want to detect, is
conducted using a simulation study.

In chapter 6, due to the nature of sparse disease data which are low counts, the SR
methods have been extended for detecting a shift in a process of Poisson data. However,
the assumptions made for the SR methods for normal data cannot be applied in the
Poisson case (see the discussion in chapter 6). One-sided EWMA charts for detecting a
shift in a process of both independent and dependent Poisson data are modified. The
detection performance of the SR methods proposed for Poisson data are evaluated via
simulation study.

Chapter 7 provides four case studies implementing SR methods with four real data sets
(influenza mortality data (USA), scarlet fever notifications (UK), Greek pollution data
(Greece) and Swedish radiation data (Sweden)). Due to the assumptions made for the
SR methods, some data sets cannot be used directly and some preliminary analysis is
needed. The limitations of using real data for system evaluation is also discussed.

Chapter 8 discusses the performance of SR methods for detecting a mean shift in different
scenarios. Their limitations are also discussed with suggestions for the further study and
how the SR methods can be improved for public health surveillance.
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Chapter 2

Statistical methods used in health
surveillance

This chapter gives an overview of public health surveillance and reviews the statistical
methods used in the area. According to the definition given in chapter 1, public heath
surveillance can be categorized in different ways depending on the purposes of the surveil-
lance and the type of health data. The details are provided in section 2.1 with some
considerations in using health data in public health surveillance. Section 2.2 provides
an overview of statistical methods used for univariate and multivariate surveillance with
details of the practical methods in use. More details of commonly used statistical meth-
ods or those proposed in research studies are given along with some of their limitations.
In this chapter, the methods used were roughly categorized into four groups according
to the calculation procedure and implementation. The four groups are statistical pro-
cess control (SPC) methods, those based on likelihood ratio methods, disease modelling
(time series techniques and statistical modelling) and other methods (spatio-temporal
statistics and scan statistics, etc.). The details of each method are provided separately
in the subsequent sections (sections 2.3 - 2.6). Section 2.7 summarizes the uses of sta-
tistical methods for detecting a shift in a multivariate process with the considerations
of how they can be developed for the purpose of outbreak detection in public health
surveillance.

2.1 Overview of public health surveillance

2.1.1 Types of public health surveillance

2.1.1.1 Disease surveillance and syndromic surveillance

Traditional or disease surveillance has been used by public health organizations for mon-
itoring aberrations which might give a possible signal of an outbreak. The numbers of
confirmed cases or diagnosed cases, mortality or morbidity rates recorded weekly or
monthly from hospitals or health centres are monitored and compared regularly with
thresholds or alarm limits calculated from historical data (Stroup et al., 2004; Meynard
et al., 2008). With regard to the use of diagnosed cases in disease surveillance, the
performance of outbreak detection of such system depends on the accuracy of reported

5
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cases and reporting delays of such data. Normally, reported cases are diagnosed by gen-
eral practitioners in different hospitals or health centres, the different definitions of case
diagnosis may cause under or over reported cases. The delays in confirming results by
laboratories also causes a delay in outbreak detection (Fienberg and Shmueli, 2005).

As an alternative, syndromic surveillance has been developed in order to avoid reporting
delays when using numbers of confirmed cases or diagnosed cases in disease surveillance.
Syndromic surveillance is also an on-going system used to monitor aberrations for a
possibility of a disease outbreak. Rather than using numbers of reported cases as in dis-
ease surveillance, syndromic surveillance uses pre-diagnosis data and health-related data
including use of health care services for monitoring aberrations as a clue or indication
of a possibility of a disease outbreak (Burkom, 2003; Elliot, 2010; Shmueli and Burkom,
2010; Unkel et al., 2012).

Although the timeliness of syndromic surveillance is likely to be better than disease
surveillance, as the (variable) delays in awaiting confirmed or diagnosed cases is avoided,
the performance of such a system depends on the reliability of health-related data and
pre-diagnosis data which may contain lots of noise and might not be representative of
the public health.

2.1.1.2 Retrospective and prospective surveillance

Public health surveillance can also be categorized into two different groups according to
the purpose of the surveillance. Retrospective surveillance uses health data to explain
the course of a disease outbreak and how the disease has been transmitted. The aims of
retrospective surveillance are to know and be aware of the variation and the development
of the disease nature, which can be used by the organization to develop health policy
for future disease or outbreak prevention (Sonesson and Bock, 2003). Several statistical
methods such as time series and statistical modelling are used to describe the variation
in disease nature, whereas spatial and scan statistics are used to investigate the pattern
of disease clustering and disease mapping (Lawson and Kleinman, 2005).

Unlike retrospective surveillance, the main aim of prospective surveillance is to monitor
aberrations for outbreak detection purposes. In prospective surveillance, health data are
used for capturing the variation in disease nature, and then some fitted model is used
for predicting expected numbers of cases for future periods. Thresholds or alarm limits
are calculated against which to compare observed counts in the future. The system will
signal an alarm if the observed count exceeds an alarm limit. To detect aberrations
during a period of time, statistical process control (SPC) methods are widely used in
public health surveillance (Strat, 2005; Woodall, 2006). Also, time series and statistical
modelling techniques, used to forecast and calculate the threshold for observed counts in
the future, are either implemented directly or applied with SPC methods (Höhle et al.,
2009; Paul, 2010).
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2.1.2 Data used in public health surveillance

2.1.2.1 Data used for disease surveillance and syndromic surveillance

Obviously, the numbers of confirmed or diagnosed cases have been used in disease surveil-
lance. Even though the delay in reporting cases from hospitals or health centres may
cause a delay in outbreak detection, such data is more accurate and reliable than pre-
diagnosis data used in syndromic surveillance since at least the reported cases have been
confirmed by medical staff or laboratories. In syndromic surveillance, health-related
data and pre-diagnosis data are used for monitoring an occurrence of disease. These
kinds of data are used as an indicator which might give a possible signal when an out-
break has occurred since it has been thought that people will first treat themselves with
medication sold at pharmacies, or phone health service centres, before going to hospital
(Stoto et al., 2004; Fienberg and Shmueli, 2005). Example of health-related data are in-
formation from hospitals and health centres on numbers of patients symptoms, numbers
of chief complaints and numbers of emergency department visits (Jackson et al., 2007;
Meynard et al., 2008), while pre-diagnosis data is the data collected from the first stages
of illness, such as number of phone calls to health centres, over-the-counter pharmacy
sales, and work and school absenteeism (Burkom, 2003; Buehler et al., 2004; Fienberg
and Shmueli, 2005; Cooper et al., 2006). Recently, there have been uses of search engines
on the internet. For example, the number of searches for the word “flu” were observed,
aggregated and used to monitor influenza activity in several countries (Google, 2010).

The advantages of syndromic surveillance are firstly that it is more likely to give an early
detection; secondly that some kinds of such data, for example drug sales in pharmacies,
are collected routinely and made available for public users and researchers without any
ethical issues concerning use of patient information from hospitals and thirdly that some
sources of data, such as medication sales, provide additional useful information for inves-
tigations in public health surveillance (e.g. postcodes and specific details of customers)
(Fienberg and Shmueli, 2005). However, there are some limitations in using health-
related and pre-diagnosis data. Such data contain a lot of noise, so it is hard to know
whether it can be used as truly representative of underlying health. For example, in-
creasing medication sales might be due to either a disease outbreak, or unusual events
such as sales promotion or long holidays (Fienberg and Shmueli, 2005). The results
from the use of health-related and pre-diagnosis data in syndromic surveillance should
therefore be interpreted with care.

2.1.2.2 Univariate data and multivariate data

Typically, public health surveillance has used univariate data, a single series, for moni-
toring occurrence of disease at a local level (i.e. for one particular region). Even though
univariate series monitoring is easy to implement, the interpretation of the result from
outbreak detection is limited since it can be interpreted only locally. Additionally, there
might be other variables or characteristics which might be better used for detecting a
disease outbreak. In order to incorporate other variables which might improve the per-
formance of outbreak detection, multivariate data have been introduced in public health
surveillance for outbreak detection. Multivariate data for public health surveillance can



8 Chapter 2. Statistical methods used in health surveillance

be either one variable or characteristic measured in several regions (e.g. number of chief
complaints from five hospitals) or different variables or characteristics measured in a
particular region (e.g. number of chief complaints, phone calls and emergency depart-
ment visits to a specific hospital), or a combination of the two (multiple variables in
multiple regions). There are several statistical techniques proposed and used for moni-
toring multivariate data, such as dimensionality reduction, parallel surveillance, scalar
accumulation and vector accumulation. The details of these methods are provided in
section 2.2.2.

The advantages of using multivariate data in public health surveillance is that the co-
variance and correlation between series may be taken into account. For example, if there
is a correlation pattern between numbers of phone calls in five hospitals, monitoring data
from each hospital separately might not be able to detect a disease outbreak, but in-
stead, monitoring by using multivariate methods might give a possibility for detecting an
occurrence of outbreak more rapidly after it has started (MacGregor, 1995; Mohtashemi
et al., 2007; Shmueli and Burkom, 2010; Unkel et al., 2012). Apart from the direct cor-
relation between series mentioned previously, due to the nature of a disease and disease
transmission, the cross-correlation, expressing the relationship with time lag between
series, should also be considered. Incorporating the cross-correlation between series
properly by monitoring realigned multivariate data according to the time lag between
series might be able to detect small shifts between series which are not large enough
to detect by monitoring such data in a ordinary way. The idea of incorporating time
lag between series was found in Frisén et al. (2011), though data are assumed indepen-
dent (i.e. no correlation between series). This is discussed in more details in section 4.2.4.

Even though the multivariate surveillance has advantage of taking correlation between
series into account, it faces the problem of signal interpretation since sometime it is hard
to know which variable contributed to the signal (MacGregor, 1995; Bersimis et al.,
2007). The advantages and disadvantages of univariate surveillance and multivariate
surveillance are described in section 2.2.

2.1.2.3 Real health data and simulated data

To assess the performance of outbreak detection in public health surveillance, statistical
methods have been evaluated with either real health data or simulated data or both.
Using real health data to develop such system gives external validity as the result might
be used and interpreted in practice for detecting a real disease outbreak. However, it
might not be possible to evaluate the timeliness, which measures the delay of outbreak
detection, since the date of disease exposure is rarely exactly known (as is whether or
not a disease outbreak has truly occurred) (Buckeridge, 2007; Meynard et al., 2008).

To make a sensible evaluation, simulated data have been used in system development
in order to avoid the problem of unknown date of disease exposure. It can also be used
to investigate the robustness of proposed statistical methods under different outbreak
conditions or circumstances (Mandl et al., 2004; Hutwagner et al., 2005). For system
evaluation, statistical simulation is used to simulate either background data or outbreak
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signals or both. Outbreak signals are injected into background data and, therefore, time-
liness can be evaluated precisely as the date of exposure is known according to the time
of the injected signals. However, simulated data gives only internal validity. Although
the results from simulation show effective performance of outbreak detection, the system
might not be useful for real outbreak situations (Meynard et al., 2008).

Several studies have developed tools to simulate data used in syndromic surveillance or
biosurveillance for purposes of system evaluation. Simulated data are generated by in-
corporating some additional concerns for public health surveillance such as seasonality,
holidays, day of the week effects, and spatial information, while different characteristics
of the outbreak signal can also be generated for investigating performance of outbreak
detection (Lotze et al., 2010; Höhle, 2007; Maciejewski et al., 2009). In addition, to per-
mit assessment of both internal and external validity, real, or pseudo-real, health data
might be used as background along with simulated outbreak signals to evaluate system
performance for outbreak detection (Lotze et al., 2010; Frisén, 2007).

Due to the ethical issue and a rare event of spare disease or bio-terrorism attack, heath
or biosurveillance data is rarely available for researchers. Several studies proposed the
methods to simulate health data in different circumstances in order to use the data
for evaluating the statistical techniques proposed for heath surveillance (Höhle, 2007;
Maciejewski et al., 2009; Lotze et al., 2010; Yahav and Shmueli, 2012b). The details of
these methods are provided in section 2.6.5.

2.1.3 Data related issues

Some consideration should be given to issues concerning data used in public health
surveillance. Firstly, health data are normally autocorrelated over time. Secondly, the
data used for on-line monitoring, such as numbers of diagnosed cases, numbers of emer-
gency department visits and numbers of phone calls to health centres, are non-negative
count data which are more likely to be Poisson or negative binomial data rather than
data from a normal distribution.

In order to use statistical techniques to develop tools for public health surveillance,
one needs to consider these limitations. For example, control charts, which are one of
statistical techniques widely used in this research area, are constructed from the basis
of normality assumptions, where data are assumed to be continuous, independent and
normally distributed. Applying control chart directly to health data might violate nor-
mality assumptions and lead to wrong conclusions. Moreover, autocorrelation with past
observations should be considered and taken into account for developing tools for the
surveillance. Several studies have used generalized linear models for fitting health data
and modified control charts for monitoring health data which are assumed Poisson or
negative binomial distributed (Farrington et al., 1996; Held et al., 2005; Höhle and Paul,
2007; Paul, 2010).

Thirdly, due to non-negative count data monitoring, the main focus of the surveillance is
to detect a sudden change in a positive direction, where a change in a negative direction
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is less important for the surveillance since it might imply a better health scenario or a
non-epidemic period. Therefore, some statistical methods, such as control charts, will
need to be modified for detecting a shift in positive directions (i.e. only upper control
limits will be used).

Finally, in order to detect a change which might give a possible signal for a disease out-
break, one should make a distinction between non-epidemic (or endemic) and epidemic
periods to make sure that a change from non-epidemic periods causes a possible signal for
epidemic periods. Non-epidemic or endemic periods represent normal situations where
health data fluctuate around normal level due to the natural variation in health data.
Epidemic periods represent an outbreak period, where a disease spread and results in
higher numbers of cases than expected normal level of heath data in endemic periods.
For this reason, background or baseline data representing non-epidemic periods should
remain at the ‘normal’ level and not contain the data from epidemic periods in order to
distinguish a change from baseline data when an outbreak occurs (Fienberg and Shmueli,
2005). Due to the natural variation in real health data, it might be difficult to discrim-
inate epidemic periods from non-epidemic periods since the date of disease exposure is
rarely known and the strong evidence of substantially increasing numbers of cases might
not be presented clearly. In this case, judgments from epidemiologists might be needed.
For simulation study, simulated baseline data should represent non-epidemic periods, so
that deviation from the baseline data results from injected simulated outbreak signals
(Fienberg and Shmueli, 2005; Hutwagner et al., 2005).

2.2 Overview of methods used in public health surveillance

The type of surveillance can be categorized by number of series or variables (p) mon-
itored. Univariate surveillance is used to monitor univariate data (p = 1), whereas
multivariate surveillance is used for monitor multivariate series (p > 1). The statistical
techniques used for univariate surveillance are quite straightforward, while those for mul-
tivariate surveillance are more complicated. Statistical techniques used for univariate
and multivariate surveillance are summarized as follow. More details of specific methods
are given in following sections.

2.2.1 Statistical methods for univariate surveillance

Statistical techniques used for monitoring univariate data can be roughly grouped into
four groups. The first group is Statistical Process Control (SPC) techniques which in-
cludes Shewhart charts (e.g. p-chart and u-chart), cumulative sum (CUSUM) charts
and exponentially weighted moving average (EWMA) charts. Control charts are used
to monitor an aberration which might occur during a period of time. A test statistic
is calculated and monitored continuously by comparing with the corresponding control
limits. Once the test statistic goes beyond the control limits, the alarm will be signalled.

Secondly, several statistical techniques used for univariate surveillance are based on sta-
tistical modelling. The purpose of statistical modelling in public health surveillance is to
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explain the variation of disease nature by modelling observed data with time or other ex-
planatory variables which might affect the variation observed . Once the model is fitted,
a prediction is made in order to calculate thresholds for monitoring future observations.
The alarm will be flagged, if the observed data is greater than the thresholds. There are
various techniques based on statistical modelling such as the Serfling model (Serfling,
1963), the Stroup approach (Stroup et al., 1993), the Farrington approach (Farrington
et al., 1996), generalized linear models (Farrington and Andrews, 2004; Jackson et al.,
2007; Kleiman et al., 2004) and branching process models (Held et al., 2005). Similarly,
time series techniques have also been used in order to capture the time dependency in
observed data. One-step ahead forecasting is used to predict and calculate thresholds
for the next observation. There are several types of time series models used for this pur-
pose, such as autoregressive (AR) models, moving average (MA) models, autoregressive
integrated moving average (ARIMA) models, seasonal autoregressive integrated moving
average (SARIMA) models (Pérez et al., 1998; Reis and Mandl, 2003) and dynamic lin-
ear (DLM) models (Cowling et al., 2006).

Thirdly, several proposed statistical techniques are based on likelihood ratio (LR) method.
The ratio is defined between the distributions of an out of control process and an in con-
trol process (Frisén, 2003; Zhou et al., 2010). The ratios are monitored continuously
with specified alarm limits. In order to calculate the ratio, the distributions and param-
eters need to be specified. It has been suggested that the likelihood ratio method fulfills
the criteria of optimal surveillance described in Frisén (2003). However, sometimes it
is hard to implement since the distribution of in control and out of control processes
are unknown (Frisén, 2003, 2009; Sonesson and Frisén, 2005). Several studies have used
likelihood ratio methods for parallel surveillance (i.e. multiple univariate surveillance,
see below) (Andersson, 2008) and implemented likelihood ratio methods with other sta-
tistical methods such as CUSUM charta or generalized likelihood ratio (Höhle and Paul,
2007; Zhou et al., 2010). Apart from these, a fourth, non-parametric, approach for de-
tecting an increasing incidence in public health surveillance was proposed by Frisén et al.
(2007).

2.2.2 Statistical methods for multivariate surveillance

Due to the availability of multivariate health data, multivariate surveillance has been
considered since it might give a better chance of outbreak detection than univariate
surveillance. Statistical techniques used for multivariate surveillance are categorized
into four groups depending on the methods used to calculate test statistics. The meth-
ods are dimensionality reduction (principal components and sufficient reduction), par-
allel surveillance, scalar accumulation (Hotelling’s T 2 charts) and vector accumulation
(MCUSUM and MEWMA charts) (Sonesson and Frisén, 2005; Frisén et al., 2011). De-
tails of each method are summarized as follows.

2.2.2.1 Dimensionality reduction

Because of the high dimension of multivariate data, a dimensionality reduction approach
is proposed in order to reduce the number of variables to be monitored. Grouping or



12 Chapter 2. Statistical methods used in health surveillance

reducing dimensionality can be done by using principal component analysis where co-
variance and correlation between variables are taken into account (Scranton et al., 1996;
Mohtashemi et al., 2007) and sufficient reduction methods (Frisén et al., 2011). The test
statistics, which can be either the scores of major principal components or likelihood ra-
tio statistics, are monitored continuously by the statistical techniques used in univariate
surveillance (e.g. likelihood ratio statistics monitored via EWMA charts (Frisén et al.,
2011)) or multivariate surveillance (e.g. scores from first-five principal components used
in a parallel surveillance (Mohtashemi et al., 2007)). Additionally, loadings from ma-
jor principal components can also be used for reducing numbers of variables used to
be monitored by selecting and monitoring those original variables which contribute to
large values of loadings, while variables which have small values of loadings might be
removed. This might save cost and time for data collection since only fewer variables
will be collected. However, as well as loss of some information, another drawback of
dimensionality reduction is that when an alarm is flagged, it is sometimes difficult to
interpret which variable causes the alarm (Bersimis et al., 2007).

2.2.2.2 Parallel surveillance

Unlike dimensionality reduction, parallel surveillance uses a univariate surveillance tech-
nique to monitor each variable of a multivariate collection in parallel (Sonesson and
Frisén, 2005). For example, numbers of diagnosed cases from five hospitals are moni-
tored by using five EWMA charts separately. The alarm will be flagged if any one of
the charts gives an out of control signal. Obviously, the signal resulting from a par-
allel surveillance indicates which variable causes a disease outbreak since the variables
are independently monitored. However, if correlation between series is present and the
evidence of high incidence is not strong, monitoring each variable separately may not
detect the signal of an outbreak since the correlation between series has been ignored
(MacGregor, 1995). Additionally, monitoring and testing many variables at the same
time leads to multiplicity problems, which increase the type I error from using statis-
tical test repeatedly (though, it might be adjusted by a Bonferroni correction or the
union-intersection principle (Frisén, 2003; Andersson, 2007; Marshall et al., 2004)) .

2.2.2.3 Scalar accumulation

Scalar accumulation is another approach for multivariate surveillance where the compo-
nents of the multivariate series at each time point are summarized into a scalar statistic.
This series of scalar statistics are monitored by univariate surveillance (Sonesson and
Frisén, 2005). A Hotelling’s T 2 chart is one example of scalar accumulation where T 2

is calculated from multivariate series and monitored with a Shewhart scheme (Frisén,
2007; Andersson, 2007) (the details of the Hotelling’s T 2 chart are provided in section
2.3.2.1). Even though the covariance of the multivariate series is incorporated, the scalar
accumulation approach still faces the difficulty of signal interpretation.

2.2.2.4 Vector accumulation

Correspondingly, vector accumulation uses accumulated information from each compo-
nent of multivariate series by transforming the vector of component-wise alarm statistics
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into a scalar statistic. This scalar statistic is again monitored with a threshold or alarm
limit. The system will flag an alarm if the scalar statistic is greater than this limit
(Sonesson and Frisén, 2005). There are several statistical methods based on vector ac-
cumulation approach such as multivariate cumulative sum (MCUSUM) charts (Crosier,
1988; Pignatiello and Runger, 1990), and multivariate exponentially weighted moving
average (MEWMA) charts (Lowry et al., 1992).

2.2.3 Statistical methods in current use

There are several statistical techniques which have been used for public health surveil-
lance in practice. The mostly common used are statistical process control and statistical
modelling methods (Burkom et al., 2004; Shmueli and Burkom, 2010) such as CUSUM
and EWMA charts and the methods based on the Farrington approach (Farrington et al.,
1996). Several public health surveillance systems have been implemented and used in
practice in the United States of America such as ESSENCE, EARS and RODS.

Electronic Surveillance System for the Early Notification of Community-based Epidemics
(ESSENCE), a web-based syndromic surveillance system, has been developed for mon-
itoring the health status of military health care beneficiaries since 1999 (Pavlin, 2003).
ESSENCE uses non-traditional data sources, such as emergency department chief com-
plaints, over-the-counter medication sales and absenteeism rates in order to give an
earlier signal for outbreak detection (ESSENCE, 2010). Tools for ESSENCE are based
on SPC methods. Raw data are monitored with a EWMA chart and a Shewhart I-chart
is applied to residuals from a fitted linear regression model with time, day of week and
holiday effects as explanatory variables.

In 2001, the Centers of Disease Control and Prevention (CDC) developed an Early Aber-
ration Reporting System (EARS) as a pioneering method for monitoring bioterrorism
since the terrorist attacks using anthrax in September 11, 2001 (EARS, 2010). This
system consists of three modified CUSUM charts called C1, C2 and C3. C1 and C2 are
modified CUSUM charts with different sliding window baselines, while C3 is a truncated
CUSUM chart used for accumulating deviation from the past three years (EARS, 2010;
Shmueli and Burkom, 2010). Likewise, SPC has also been used for public health surveil-
lance in RODS (Real-time Outbreak and Disease Surveillance) (RODS, 2010). Several
statistical methods including control charts have been implemented and used as tools
for outbreak detection such as an MA chart with sliding window baseline of 120 days;
the nonstandard combination of CUSUM and EWMA charts where the CUSUM chart
is used to monitor the predicted next day count from a EWMA chart; a recursive least
squares (RLS) algorithm where parameters in an autoregressive model are continuously
updated with minimized prediction error; and a Shewhart-I chart with the de-trended
count data from wavelet decomposition (Shmueli and Burkom, 2010).

In the UK, several public health organizations have used surveillance systems for mon-
itoring disease outbreaks such as NHS (National Health Service) Direct, HPA (Health
Protection Agency), HPS (Health Protection Scotland) and CDSC (the Public Health
Wales Communicable Disease Surveillance Centre). Practical public health surveillances
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have been developed by using statistical modelling based on the Farrington approach
(Farrington et al., 1996) (see detail in section 2.5.2) (Unkel et al., 2012). NHS Direct
and the HPA have used symptoms based on daily the phone call data to monitor the
occurrence of influenza and other seasonal communicable diseases (Andrews, 2010; El-
liot, 2010). The HPA uses the Farrington approach, an overdispersed Poisson linear
regression model with time as an explanatory variable, to fit the data (Andrews, 2010),
while HPS uses a slightly different Farrington approach by including the effects of sea-
son, public holiday, weekday and weekend in the model (Robertson, 2010; Kavanagh
et al., 2012). Daily calls to NHS Direct categorized by syndrome, call outcome and post
code are monitored routinely by control charts (Elliot, 2010). Another system developed
from the Farrington approach is an ERS (Exception Reporting System), which has been
implemented to health surveillance in Scotland using NHS24 data (NHS24, 2012). This
system is used for monitoring influenza-like syndromes in Scotland. Data from the past
28 consecutive days before the current count are used as a baseline and fitted by an
overdispersed Poisson linear regression model with the effects of days of the week and
holidays (Kavanagh et al., 2010; Unkel et al., 2012; Kavanagh et al., 2012).

In European countries, the Basic Surveillance Network (BSN) has started for gathering
and sharing useful information about infectious communicable disease in European com-
munity since 2000 (Ternhag et al., 2004; Hulth, 2010). This network provides a database
for surveillance data, for example date of onset, age and sex, of over 40 communicable
diseases. Similar to the UK, public health organizations in several European countries
have implemented statistical methods in public health surveillance. For example, the
Robert Koch Institute (RKI), which is an organization responsible for disease control
and prevention in Germany, uses the Farrington approach (Farrington et al., 1996), the
Stroup approach (Stroup et al., 1989) (see detail in section 2.5.2) and SatScan (SatScan,
2010) for disease monitoring. Likewise, in Denmark and the Netherlands, the Farrington
approach and the Stroup approach have also been used, while in Sweden, apart from
those methods, the semi-parametric method (Frisén et al., 2007) (see detail in section
2.4.1) has been implemented (Hulth, 2010).

2.3 Statistical process control

Statistical process control (SPC) was developed for controlling product quality in manu-
facturing processes but has since been used practically in health surveillance (Hutwagner
et al., 2005; Fricker and Rolka, 2006; Woodall, 2006; Shmueli and Burkom, 2010; Unkel
et al., 2012). Control charts, one tool of SPC, are widely used for monitoring an aber-
ration in a process for the purpose of a process improvement in industry or outbreak
detection in health surveillance. Generally, a control chart is a line graph displaying
ongoing data or statistics collected or calculated. The values are plotted along with an
lower control limit (LCL) and upper control limit (UCL) calculated from the distribution
of the process characteristic. If points lie between these limit, the process is called ‘in
control’ (i.e. no aberration or anomaly in the process). On the other hand, if any point
goes beyond either the lower or upper control limit, the process is called ‘out of control’
(or is in an out of control stage; i.e. there might be a shift or aberration occurring in



2.3. Statistical process control 15

the process). The process is then examined to find the cause of the deviation.

Normally, the use of control chart is defined into two phases. Phase I (or the training
set) is for retrospective analysis and is where the control chart is constructed. The
lower and upper control limits are calculated according to the parameters defined, or
the estimates estimated from the data, in this phase. Phase II (or the test set) is for
prospective surveillance where the control limits calculated from phase I are used to
monitor data or statistics in a process (Oakland, 1990; Bersimis et al., 2007). The issue
of defining phases I and II is discussed in section 2.3.3. The performance in detecting a
change in a process is commonly evaluated through the average run length. The average
run length (ARL) is the average of number of points plotted on the control chart before
a point falls outside the control limits. The in control average run length (ARL0 ) is
the average run length when there is no change or abberation during the process (i.e.
process is in control). In other word, ARL0 the average run length until a false alarm
occurs (see more details in section 3.2). The out of control average run length (ARL1 )
is the average run length when a true change or abberation has occurred in a process
(Oakland, 1990; Montgomery, 2009). Ideally, large ARL0 is preferred if the process is
still in control, while small ARL1 is required since we want to detect a change in the
process as soon as possible when the process is out of control. In this thesis SPC tools
for health surveillance are categorized into two groups: SPC for univariate surveillance
and SPC for multivariate surveillance. The development of SPC tools used in both are
summarized as follows.

2.3.1 SPC for univariate surveillance

Several univariate control charts have been used for health surveillance. In order to
detect a small increasing incidence which might be an evidence of a possible outbreak,
CUSUM charts and EWMA charts are commonly used rather than Shewhart charts
which perform better for detecting a large shift (Bersimis et al., 2007; Montgomery,
2009). The details of each method are provided in the sections below.

2.3.1.1 Shewhart chart

The Shewhart chart was proposed by Walter Shewhart in the 1920s (Montgomery, 2009).
Theoretically, Shewhart charts were set up under normality assumptions, so (univariate)
data are assumed to be independently normally distributed. Data used in an online-
process are monitored with control limits which are confidence intervals of process char-
acteristics (mean, standard deviation and proportion, etc.) calculated according to a
specific probability of false alarm or type I error (�). An alarm will be signalled if the
current observation goes beyond the control limits. Types of Shewhart charts depend on
characteristics monitored and whether they are from continuous or count data. In many
cases, health data are count data, p-charts are used to monitor mortality and morbidity
rates (Shephard, 2006; Fox, 2007), while u-chart have been used to monitor the number
of diagnosed cases in units or regions (Hanslik et al., 2001).

However, Shewhart charts perform best in detecting large shifts which is not the aim of
disease surveillance where we want to detect early a small shift (Frisén, 2007). Addition-
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ally, comparing the current observation (or a statistics based in the current observation)
with control limits to identify an alarm may not be sensible for health surveillance since
health data normally are dependent, i.e. time-correlated. So due to the dependence in
health data, the previous information should be taken in the consideration. Also, using
fixed thresholds, calculated from parameters estimated in phase I, to decide on an alarm
may lead to wrong decisions if gradual changes are present (Frisén et al., 2007; Frisén,
2007; Marshall et al., 2004; Höhle, 2008).

2.3.1.2 Cumulative Sum (CUSUM) charts

Unlike Shewhart charts that use only the current observation to decide on an alarm,
CUSUM charts use all information in the process to date to decide whether an aber-
ration has occurred. CUSUM charts perform better for detecting a small shift than
Shewhart chart (Bersimis et al., 2007; MacGregor, 1995; Montgomery, 2009) since they
monitor the accumulation of deviations between observations and a target value of the
process. Therefore, an increasing small shift might be represented in such deviations.
The recommended value for the control limit, or a decision bound, is five times the pro-
cess standard deviation of phase I (Montgomery, 2009). The charts will flag an alarm if
the cumulative sum of the deviations goes beyond these decision bounds. For the pur-
pose of outbreak detection, a one-sided upper CUSUM chart is used to detect a positive
shift in prevalence.

Some developments of CUSUM charts are C1, C2 and C3 charts. These are the modified
CUSUM charts with different sliding window baseline (i.e. the baseline data in phase I,
which are used for estimating parameters in a process, are updated and moved consec-
utively over time relative to a current observation) (Shmueli and Burkom, 2010).

CUSUM charts were developed for manufacturing processes, so the data and the devia-
tion are assumed to be continuous. Therefore, using CUSUM charts without adjustment
may be not suitable as health data are usuaslly count data. In order to monitor count
data, several studies have modified CUSUM charts by transforming Poisson data to nor-
mality, so that an ordinary CUSUM chart can be applied (Rossi et al., 1999; Meyer et al.,
2008), and by adjusting parameters used to construct CUSUM charts for time-varying
count data and the count data with the association of geographical regions (Rogerson
and Yamada, 2004).

2.3.1.3 Exponentially Weighted Moving Average (EWMA) charts

Like CUSUM charts, EWMA charts are useful for detecting a small shift in a process. All
information in the past is used to calculate test statistics and control limits by weighting
all past observations. The smoothing constant (�; 0 < � ≤ 1) gives more weight to the
current observation and less to past observations. The range of smoothing constant is
between 0 and 1, where � = 1 gives all weight to the current observation and ignores
the rest, so this is similar to Shewhart chart (Montgomery, 2009). The choice of � is
important since an early change may be detected by EWMA chart with small � , while
a later change may be detected with a larger value of � (Frisén et al., 2007). The test
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or EWMA statistic used to construct EWMA chart can be calculated from

zt = �yt + (1− �)zt−1, z0 = �0 (2.1)

where zt is the EWMA statistic at time t (Montgomery, 2009) and �0 is the process
target. The lower and upper control limits (LCL and UCL) can be calculated from

LCL = �0 − L
√
�2zt (2.2)

UCL = �0 + L
√
�2zt (2.3)

where �2zt is the variance of EWMA statistics and L is the width of the control limits.
The variance can be either the exact process variance or the asymptotic variance. As t
gets larger, the asymptotic variance might be used (Montgomery, 2009). More details
of EWMA charts used in this thesis are provided in section 4.2.5 (chapter 4). EWMA
charts have been implemented in practical health surveillance systems such as ESSENCE
(Shmueli and Burkom, 2010). They have also been used in some research studies in public
health surveillance as a tool used for monitoring the performance of proposed statistical
methods for both univariate surveillance and parallel surveillance for multivariate data
(Andersson, 2007; Frisén et al., 2011; Frisén, 2009). More detail concerning EWMA
charts is given in chapter 4.

2.3.2 SPC for multivariate surveillance

For multivariate surveillance, the univariate control charts used for univariate surveil-
lance can be applied in parallel surveillance and to monitor the univariate statistics from
the dimensionality reduction methods (e.g. the score from the first principal component
or the likelihood ratio statistics from the sufficient reduction methods). Apart from this,
multivariate control charts have been developed for the purpose of detecting directly
aberrations in multivariate processes or series where the covariance and correlation be-
tween series are taken in account. There are several statistical techniques proposed
for multivariate surveillance such as Chi square and Hotelling’s T 2 charts, Multivariate
Cumulative Sums (MCUSUM) charts and Multivariate Exponentially Weighted Moving
Average (MEWMA) charts. Details of each method are described below.

2.3.2.1 Chi square chart and Hotelling’s T 2 chart

Chi square charts and Hotelling’s T 2 charts use the same procedure to construct a
multivariate control chart which is based on a scalar accumulation approach. The former
uses the known covariance (Σ0 ) to calculate test statistics, while the latter uses the
estimated covariance (S ) instead. The Chi square chart and Hotelling’s T 2 charts
use the idea of multivariate analysis (multivariate �2 and Hotelling’s T 2 ) applied in
a Shewhart-like SPC scheme (Hotelling, 1974; MacGregor, 1995). At each time point,
the test statistic (�2 or T 2 ), which is a Mahalanobis distance between the observation
and the in control state mean (�0 ), is calculated and monitored against an alarm limit.
An alarm will be raised if the test statistic exceeds an alarm limit (MacGregor, 1995;
Bersimis et al., 2007). Since these charts use a Shewhart-like SPC scheme, they face the
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same problem as Shewhart chart in that the decision is made only on the basis of the
current observation, without involving previous information (Mason and Young, 2008).
Also it is shown in several research studies that it performs best in detecting a large
shift which is not typically the purpose of public health surveillance (MacGregor, 1995;
Frisén, 2007; Andersson, 2008).

2.3.2.2 Multivariate Cumulative Sum (MCUSUM) charts

Based on the univariate CUSUM scheme, several types of MCUSUM were proposed in or-
der to monitor a small shift in a process. Crosier (1988) proposed two MCUSUM charts.
The first is based on a scalar accumulation where the square root of T 2 from Hotelling’s
T 2 method is monitored with a univariate CUSUM chart. The second is based on a
vector accumulation approach where the scalar statistic that would be monitored by a
univariate CUSUM scheme is replaced by a vector of similar components, each relating
to a component of the multivariate series. Having specified the in control average run
length (ARL0 ), an alarm limit can be calculated by a Markov chain approach (Brook and
Evans, 1972; Crosier, 1988). The results from simulation studies showed that MCUSUM
based on vector accumulation performs better than the one based on scalar accumulation
since it gave a faster detection and also indicates direction the mean shift (Crosier, 1988).

Similarly, Pignatiello and Runger (1990) proposed another two MCUSUM charts based
on scalar accumulation and vector accumulation (Pignatiello and Runger, 1990). The
purposes of these two MCUSUM charts are the same as the MCUSUM charts proposed
by Crosier (1988) but the calculation procedures are slightly different. The results from
their study showed that performance of both sets of charts were similar (Crosier, 1988;
Bersimis et al., 2007). MCUSUM charts proposed by Crosier (1988) and Pignatiello and
Runger (1990) have been widely used and implemented in many research studied for
both process or quality control and also in public health surveillance (Marshall et al.,
2004; Fricker, 2007; Fricker et al., 2007; Bodnar and Schmid, 2007).

2.3.2.3 Multivariate Exponentially Weighted Moving Average (MEWMA)
charts

Lowry et al. (1992) proposed a MEWMA chart derived from a standard univariate
EWMA chart. At each time point, t , the p dimensional vector observation is used to
calculate a test statistic using smoothing parameters, � , defined as a p × p diagonal
matrix with entries representing smoothing parameter �i used to weight the past ob-
servations for each series. Note that if � is an identity matrix (I ), a MEWMA chart
will be similar to Hotelling’s T 2 chart. Like univariate EWMA charts, MEWMA chart
can be constructed by using either an exact or asymptotic variance. An alarm will be
sounded if the test statistic exceeds than an alarm limit determined by simulation for a
specified ARL0 (Lowry et al., 1992; Bersimis et al., 2007).

Generally, the proposed multivariate control charts (i.e. MCUSUM and MEWMA chart)
are directionally invariant meaning that they are designed to detect a mean shift in all di-
rections which is not the interest of public health surveillance (Fricker, 2007). Therefore,
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several authors have modified multivariate control charts in order to focus only detect-
ing a positive shift rather than negative shift, such as directionally sensitive Hotelling’s
T 2 chart (Fricker, 2007), modified MCUSUM charts (Testik and Runger, 2006; Fricker,
2007; Fricker et al., 2007) and modified MEWMA charts (Testik and Runger, 2006;
Fricker, 2007; Fricker et al., 2007; Joner et al., 2008). However due to the complexity,
the implementation of these methods are rarely in practice use.

With regard to the use of control charts in multivariate surveillance (parallel surveillance,
scalar accumulation and vector accumulation), the results from several studies have
shown that the vector accumulation approach is the best since it gives the smallest ARL
for detecting changes in process (Pignatiello and Runger, 1990), whereas the parallel
approach performs slightly better if a shift is clearly presented in one region or series
(Rogerson and Yamada, 2004). Also the MCUSUM chart based on vector accumulation
is superior to MCUSUM based on scalar accumulation (Crosier, 1988).

2.3.3 Limitations

Originally, the tools of statistical process control (SPC) were developed for product
quality control in industrial processes but have subsequently been implemented for mon-
itoring for possible signals of disease outbreaks in public health surveillance. However,
there are some limitations of the use of SPC applications in public health. Theoreti-
cally, control charts were developed from the assumption of normal distributions, and the
data much more strongly are assumed to be independent as well as normally distributed.
Therefore, applying control chart directly to health data might violate these assumptions,
since health data are usually dependent counts, often correlated over time (Sonesson and
Bock, 2003; Shmueli and Burkom, 2010). Consequently, Shewhart, CUSUM and EWMA
charts which are widely used in public health surveillance must be considerably adjusted
before being used for monitoring health data.

In order to use control chart to monitor aberrations in health surveillance, there are
some other points to be considered. Firstly, the baseline or background data (phase
I), used to estimate and calculate control or alarm limits in phase II, should represent
non-epidemic period so observations in a period of outbreak should be removed (Shmueli
and Burkom, 2010). However, due to the substantial natural variation in health data,
it is often hard to know either whether or when an outbreak has occurred. Therefore,
defining a non-epidemic period is not easy, and the judgement from an epidemiologist
may be needed. Secondly, in public health surveillance, only a positive shift is of interest,
and control charts, especially for multivariate surveillance, should be modified carefully
for detecting positive increasing incidences or a shift in a positive direction (Testik and
Runger, 2006; Fricker, 2007; Fricker et al., 2007; Joner et al., 2008). Moreover, using a
fixed threshold or alarm limit based on parameters in phase I to monitor aberrations
in phase II (e.g. Shewhart charts and CUSUM charts) may not be proper since the
variation of health data may change over time.

In addition, unlike univariate control chart, the interpretation of an alarm from multi-
variate control chart is not easily made, since it is difficult to know which variable has
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contributed a signal (MacGregor, 1995; Bersimis et al., 2007), especially for multivariate
control chart developed by dimensionality reduction (i.e. principal components), scalar
accumulation (Hotelling’s T 2 chart) and vector accumulation (MCUSUM and MEWMA
charts). Even though a parallel surveillance, where each variable is monitored separately
in parallel, gives a clear interpretation of an alarm, it faces a multiplicity problem re-
garding the multiple testing at the same time (Sonesson and Frisén, 2005; Frisén, 2009;
Shmueli and Burkom, 2010). An alarm from the multivariate surveillance is considered
primarily as a warning of a possible signal of an occurrence of disease outbreak.

The performance of a control chart for detecting aberration during a process is evaluated
by the average run length (ARL). Good performance of outbreak detection relies on a
small ARL1 for fixed ARL0 . In order to compare control chart performances, ARL0 for
each method needs to be fixed, then ARL1 can be sensibly compared.

Several studies have suggested ways to improve the use of SPC in the outbreak detection
over several issues such as dependent data, the direction of shifts and non-parametric for
multivariate control charts (Woodall, 2006). The key problem of dependent data (i.e.
autocorrelation within series) may be handled by studying the robustness of ordinary
methods; modifying ordinary methods with wider alarm limits based on the correct
variance; or autocorrelation and monitoring residuals from time series models (Frisén
et al., 2007; Höhle, 2010).

2.4 Statistical methods based on LR method

Several statistical methods used for detecting a change in a process are developed from
the principle of the likelihood ratio (LR) methods. These methods derive from the like-
lihood ratio between two distributions in the process, i.e. in control and out of control
stages. It has been proved that the methods based on the LR method are optimal under
the detection probability and minimal expected delay criteria (Shiryaev, 1963; Frisén
and de Maré, 1991; Frisén, 2005) (see more detail in section 3.3). Methods based on LR
methods have been proposed and used in several studies such as Shiryaev-Robert (SIR)
method (Shiryaev, 1963; Roberts, 1966), the generalized likelihood ratio (GLR) method
(Lai, 1995; Höhle and Paul, 2007; Höhle, 2010; Zhou et al., 2010), sufficient reduction
methods (Wessman (1998); Frisén et al. (2011)), the LRpar and LRjoint methods (An-
dersson, 2007) and semi-nonparametric method (Frisén et al., 2007).

Most of the methods were proposed and used for univariate surveillance using a uni-
variate control chart as a detection tool (e.g. SIR and GLR and semi-nonparametric
methods). However, these methods can also be used in parallel for multivariate surveil-
lance. LRpar was also proposed as a parallel method, while LRjoint and sufficient
reduction methods were proposed for multivariate surveillance where the p dimensional
multivariate series are incorporated in the likelihood ratio. Brief details of some of these
methods are summarized in the following sections.
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2.4.1 Semi-parametric method

In order to avoid problem in finding a proper baseline in parametric approaches where
parameters have to be estimated from baseline data, Frisén et al. (2007) proposed a
semi-parametric method for detecting monotonic increasing incidences without requiring
historical baseline data. This method is based on a likelihood ratio test between the out of
control stages, where the mean starts increasing monotonically after an in control stage,
where the mean of the process is constant. The likelihood ratio statistic is calculated
sequentially from the ratio between the current observation at time t , yt , and the average
of observations since surveillance started if yt is greater than yt−1 ; otherwise an average
of observations since surveillance has started is used instead of yt . A decision as to
whether or not there is a shift in the process is made sequentially. The evaluation of
such a system was made with real data and simulated data from Poisson distributions
by comparing sensitivity, specificity and timeliness (Frisén et al., 2007).

2.4.2 Sufficient reduction method

The sufficient reduction method is one of methods able to perform multivariate surveil-
lance based on dimensionality reduction. The dimensionality reduction is developed
with regard to sufficiency properties (i.e. no information from the p dimensions is lost).
Wessman (1998) first proposed the sufficient reduction method for detecting a simulta-
neous shift of a parameter in a multivariate process of independent observations while
incorporating the correlation between series. The derived sequence from the sufficient re-
duction was proved to be sufficient for monitoring a mean shift in a multivariate process
(Wessman, 1998). Later Frisén et al. (2011) developed the method for detecting changes
with time lags in the multivariate process. The detection performance of such methods is
evaluated by monitoring the derived univariate sequences with EWMA charts. It shows
that they perform better (with shorter delay) than parallel surveillance or monitoring
the original series with MEWMA charts (Frisén et al., 2011). More details and the lim-
itations of sufficient reduction methods proposed by Wessman (1998) and Frisén et al.
(2011) are provided in sections 4.2.3 and 4.2.4, respectively.

2.4.3 LRpar and LRjoint methods

Andersson (2007) proposed two statistical techniques based on the likelihood ratio (LR)
called LRpar and LRjoint. LRpar is a parallel method between in and out of control
stages for multiple series (i.e. each marginal density is monitored separately), whereas
LRjoint is derived from the full likelihood ratio of the joint density between in and
out of control stages. The derivation of LRpar and LRjoint statistics can be found in
Andersson (2007), illustrated with bivariate normal distributions. The calculation of
LRjoint statistics is complicated as all possible joint densities between in and out of
control stages are considered. An alarm will be flagged, if the test statistics exceed an
alarm limit derived from the distribution of change points. The detection performance of
such methods are compared with monitoring the original series with Hotelling’s T 2 chart.
Hotelling’s T 2 chart performs better in detecting simultaneous changes when there is
no correlation between series, while LRjoint performs better in detecting changes with
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time lags with correlation between series present. LRpar outperforms Hotelling’s T 2 for
detecting changes with time lags between two independent series (Andersson, 2007).

2.4.4 Limitations

Even though the statistical methods based on the likelihood ratio are optimal under the
criterion, mentioned earlier in section 2.2.1, it is difficult to implement the LR methods in
practice since the distributions of the process both in control stage or out of control stages
may be unknown or difficult to identify. However, they do have advantages over other
methods for detecting shifts in multivariate processes, especially for sufficient reduction
methods where the relevant information from the original data is taken into account
while achieving dimensionality reduction. In order to use sufficient reduction methods
in public health surveillance, there are some further limitations to be considered. For
example, such methods have so far been developed under the specific assumption that
the data are independent over time and so may be unsuitable for health data, which are
typically dependent over time. The semi-parametric approach has only been illustrated
for univariate surveillance, hence it can only be used in a parallel mode. Also, the results
from the method should be interpreted carefully since a monotonic increasing incidence
might not signal a true outbreak since it can occur naturally as the beginning of an
annual disease season (Frisén et al., 2007).

2.5 Disease modelling

Disease modelling has been used for both retrospective and prospective surveillance. It
has been used to describe and explain the variation in disease outbreaks using histori-
cal data for retrospective surveillance, while fitting a model and predicting an expected
count and an alarm limit for monitoring aberrations in the future is the aim of prospec-
tive surveillance. One reason why disease modelling has been widely used is because of
the nature of health data. Health or biosurveillance data are normally dependent over
time or locations. Therefore, the use of statistical process control may not be applicable
since the usual assumption of independent observations is violated.

A more indirect use has been to fit models to explain structural variation in health data
and then leave residuals, assumed independent, to be assessed via some standard surveil-
lance techniques. There have been uses of many types of statistical modelling methods
in public health surveillance, such as time series techniques, regression models, gener-
alized linear models and branching process models. In this study, statistical techniques
used in disease modelling are categorized into two groups: time series techniques and
statistical modelling (regression model, generalized linear model and branching process
model). The details of each type are discussed below.

2.5.1 Time series techniques

Time series techniques such as AR, MA, ARIMA models have been used for both retro-
spective and prospective surveillance. In prospective surveillance, time series techniques
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are used to model the variation of health data in order to make a prediction as a thresh-
old for the next count. Typically, autoregressive terms are used to explain the variation
and the dependence on the past observations during a period of time using ARIMA
models (Pérez et al., 1998; Reis and Mandl, 2003). However, due to the large natural
variation of health data and its diversity across series, the data may not be stationary
over time, therefore using time series models with fixed estimated parameters may not
be appropriate. Wang et al. (2005) proposed a model incorporating sine and cosine
function for capturing seasonality and also allowing the autoregressive term to change
over time. Likewise, state space models (dynamic linear models) which allow parame-
ters changing over time have been recently used in several studies (Cowling et al., 2006;
Diggle and Stanton, 2008). Time series models have frequently been implemented in
univariate surveillance (Pérez et al., 1998; Reis and Mandl, 2003; Wang et al., 2005;
Cowling et al., 2006), while multivariate time series, generally more complicated, are
rarely used (Bodnar and Schmid, 2007).

2.5.2 Statistical modelling techniques

Apart from time series techniques, several other forms of statistical modelling have
been used for both univariate surveillance and multivariate surveillance. Obviously,
univariate surveillance uses statistical modelling to fit a single series, while multivariate
series can be either fitted separately under parallel surveillance or fitted by incorporating
correlation between series or neighbourhoods using a multivariate model of some form.
Some techniques used in public health surveillance are summarized below.

2.5.2.1 Serfling model

Proposed by Serfling (1963), the Serfling model has been implemented and widely used
as a basis for modelling baseline data for ‘non-epidemic’ or ‘endemic’ periods (i.e. health
data fluctuating around the ‘normal’ level due to the natural variation) in many studies
(Wang et al., 2005; Held et al., 2005; Höhle et al., 2009; Pelat et al., 2007). The approach
is based on three parts: a trend, the variation due to seasonality, and the deviations
between expected and observed counts for calculating an alarm limit. Let yt be the
observation at time t , then the Serfling model can be written as

ŷt = �̂0 + �̂1t+ �̂2t sin �t + �̂3t cos �t

where � is a linear function of t , �t = (2�t/52) for weekly data, and �̂ is the estimated
parameter of a trend (Serfling, 1963). The parameters in the model can be estimated
by least squares. An alarm limit is set at the upper limit of 90% prediction interval
where the variance is calculated from the sum of squares of the differences between
fitted values and observed values for the non-epidemic periods. Since it has only been
used for univariate surveillance or parallel surveillance, the correlation between series is
not incorporated. In order to capture seasonality, a long historical baseline data may be
required. Also, since seasonality and specific term are incorporated the in model, the
data under study should be relatively regular over time (Strat, 2005).
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2.5.2.2 Stroup approach

Stroup et al. (1989) proposed a surveillance method specifically for identifying aberra-
tions in public health data. This aims to monitor whether the number of cases currently
observed is different from the number of cases in the past. Therefore, to assess the sig-
nificance of an observation in current week (y0 ), the corresponding baseline data for y0
consists of the corresponding weeks and the ‘surrounding’ weeks (the preceding and fol-
lowing weeks) in each of five previous years (15 observations), denoted by y1, y2, ..., y15 .
Using a classical parametric method based on normality assumptions, the 95% prediction
intervals for the expected value calculated from the corresponding baseline are used as
alarm limits for outbreak detection purposes. The result from this approach is typically
presented graphically in a horizontal bar chart on a log scale of the ratio between the
current observation and the mean of the corresponding baseline data. A vertical line on
x-axis at x = 1 indicates where the two are equal, while lengths of bars from this vertical
to the left and right sides represent how far the incidences are lower or higher than the
reference level, respectively (Stroup et al., 1989). This method, called a Current and
Past Experience Graph (CPEG), has been implemented in several studies (Cox, 2004;
Farrington and Andrews, 2004; Meynard et al., 2008).

It has been suggested that the calculations based on normality assumptions may not be
appropriate, since the mean is sensitive to outliers. Using the mean as a denominator of
the ratio may influence the capability of the method for outbreak detection since small
increases are not likely to be detected. The median of the corresponding baseline data
might therefore be an alternative choice (Stroup et al., 1989). However, a problem which
is not so easily avoided is that even though selecting the corresponding baseline data
might handle the seasonality in the data, it ignores longer scale autocorrelation between
time points as only data from three consecutive weeks of each year are selected (Lawson
and Kleinman, 2005). A trend is not also incorporated (Strat, 2005). Moreover, due to
the nature of health data, which are typically small positive counts, a variant on the
method based on the Poisson distribution should be applied (Stroup et al., 1989, 1993;
Cox, 2004; Meynard et al., 2008).

2.5.2.3 Farrington approach

Farrington et al. (1996) proposed a Poisson generalized linear model adjusted for overdis-
pesion for modelling count data in public health surveillance. A linear trend term in
time t is incorporated in the model, and the seasonal variation is taken into account by
selecting a corresponding baseline from past years for monitoring the current week. The
baseline set of similar form to that proposed by Stroup et al. (1989) has been imple-
mented in the Farrington approach by defining parameters w and b . w is a window half
width (i.e. x−w to x+w for the current week (x)) and b is number of the years back.
So, if x is the observation in the current week of year ℎ , the corresponding baseline data
are the data for week x− w to week x+ w of year from ℎ− b to ℎ− 1. Let yi be the
observation at time i ,(i = 1, 2, , t), the Farrington model can be written as

log�i = �+ �ti

where E(Yi) = �i and V (Yi) = ��i . Thresholds can be calculated as an upper prediction
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interval for ŷi (Farrington et al., 1996). The authors also proposed the calculation of
a threshold for detecting a change in small counts and correcting for past outbreaks
in the baseline data. The Farrington approach has been widely used in univariate and
parallel surveillance in practical use and research studies (Meyer et al., 2008; Höhle,
2008; Andrews, 2010; Elliot, 2010; Robertson, 2010; Unkel et al., 2012; Kavanagh et al.,
2012) (see detail in section 2.2.3). With regard to the use of corresponding baseline
data, as with the Stroup approach, the Farrington approach also has the limitation of
not incorporating autocorrelation of consecutive past observations.

2.5.2.4 Branching process model

The model proposed by Held et al. (2005) was derived from a Poisson branching pro-
cess model consisting of both parameter-driven and observation-driven components. A
parameter-driven component is used to describe the endemic variation including trend
and seasonality, while an observation-driven component is used for explaining epidemic
patterns with an auto-regression on the observation at the previous time point. A Pois-
son branching process model can be expressed as

Zt = Xt + Yt, t = 1, 2, , t with

Xt ∼ Poisson(�), for endemic term, and

Yt∣Yt−1 ∼ Poisson(�yt−1), for epidemic term.

For univariate surveillance, the series is modelled with a generalized linear model (GLM)
with Poisson observation and identity link. The GLM model with endemic term (� ) and
epidemic terms (�yt−1 ) can be written as follows.

�t = �t + �yt−1

where �t = exp (� + �t +
∑s

t=1(yt sin(2�t/52) + yt cos(2�t/52))), for weekly data, s is
the number of harmonics to include and � is an autoregressive parameter.

For multivariate surveillance, multivariate series can be modelled either by using parallel
surveillance or by incorporating correlation between series or neighbourhoods into the
model. Parallel surveillance can be carried out by using the model described above, where
the autoregressive term of each series is defined separately. In order to incorporate the
correlation between series, the subscripts of parameters in both endemic and epidemic
components are added according to the units within the multivariate series. The model
based on GLM with identity link can be found in Held et al. (2005); Höhle et al. (2009).
A number of extensions have subsequently been considered. Instead of using a fixed
autoregressive term (�) during the monitoring period, a Bayesian change point model
was used in order to allow �i to change over time (Held et al., 2006). Later, Paul et al.
(2008) investigated the dependence between different series (i.e. pathogens) and between
different or neighbouring locations. The data were modelled by a GLM with negative
binomial observations. The autoregressive effects were investigated with different weights
for past observations and different time lags (Paul et al., 2008). Moreover, the model
proposed by Held et al. (2005) was modified by allowing the autoregressive parameter (�)
to change over time, however, the model was illustrated only for univariate surveillance
(Paul, 2010).
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2.5.3 Limitations

The main limitation of using time series techniques in public health surveillance is the
non-stationarity of health data. Although many non-stationary patterns might be trans-
formed to be stationary by differencing, the variation due to unexplainable patterns and
the diversity across the series may still remain. Due to the non-stationary data, the
estimated parameters in the model need to be sequentially updated. Therefore, ARIMA
model might be suitable for retrospective surveillance rather than prospective surveil-
lance (Shmueli and Burkom, 2010). Moreover, the performance of systems developed
by time series techniques might depend on the characteristics of outbreaks we want to
detect. Incorporating other explanatory variables might improve the detection perfor-
mance (Wang et al., 2005). The results of Wang et al. (2005) suggest that a small
outbreak is unlikely to be detected by a model with updated parameters and the results
of comparing three methods (CUSUM chart, regression model and dynamic linear model
(DLM)) by Cowling et al. (2006) indicate that a CUSUM chart is preferred for detecting
small shifts and DLM performs better than a simple regression.

Obviously, univariate statistical modelling is commonly used, while multivariate mod-
elling is rarely in practical use. Even though the statistical modelling can be imple-
mented in a parallel surveillance for multivariate series, the multiplicity problem is still
of concern along with the issues of neglecting correlation between series. Some proposed
statistical modelling methods, such as Stroup and Farrington approaches, can only be
applied for univariate surveillance or parallel surveillance. According to the Stroup ap-
proach, the corresponding baseline data were chosen to handle the seasonality in data.
However, it ignores the pattern of a trend and autocorrelation between past consecutive
observations. Also, the calculation method based on normality assumption may not be
appropriate for small positive counts (Strat, 2005). The Farrington approach has been
implemented in multivariate surveillance, but the implementation is just a parallel com-
parison in which, again, the autoregressive effect and the dependence between series were
not taken into account (Höhle et al., 2009). Regarding the branching process model, in
order to incorporate the effect of time and spatial dependency of multivariate series, one
is reliant on techniques for identifying those effects (Held et al., 2005).

2.6 Other methods

There have been a variety of other statistical methods used in public health surveillance
in different conditions and circumstances. Some studies have used one statistical method
directly, while some have used combinations of methods for the purpose of outbreak
detection such as the use of disease clustering statistics with CUSUM charts. Brief
details of some of these other techniques are summarized below.

2.6.1 Spatial analysis, spatial-temporal analysis and scan statistics

Apart from statistical modelling which can incorporate the dependency of spatial loca-
tions or neighbourhoods in the model (Held et al., 2005), spatial and spatio-temporal
analysis and scan statistics use the information on case locations if available for disease
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mapping, disease clustering and ecological analysis (Lawson and Kleinman, 2005). Spa-
tial analysis or point process analysis uses points, or case locations, to examine whether
or not there is a pattern of randomness or disease clustering. Spatial patterns can be
examined by using the K(s) function, calculating the expected number of further events
within distance s of an arbitrary event. K(s) is likely to be large at small distances
if there is evidence of disease clustering (Diggle, 2007). In order to monitor the spa-
tial pattern with time varying, Diggle (1995) extended K(s) to K(s, t) which is the
expected number of further events within distance s and time t of an arbitrary event of
the process (Diggle, 2007).

Likewise, scan statistics proposed by Kulldorff (1997) are also used for investigating the
degree of spatial randomness. Circles with varying radii are randomly created across the
area, then the likelihood ratio between the observed and the expected numbers of cases
within them are calculated. Evidence of disease clustering is reflected by high likelihood
ratios (Kulldorff, 1997). Later, spatio-temporal scan statistics have been proposed and
used to investigate whether or not cases are randomly distributed over space and time.
The method extended the use of circles to cylinders, where the heights of the cylinders
represent time (Kulldorff, 2001). Many studies have used spatial or spatio-temporal
analysis in public health surveillance. However, spatial analysis is generally suitable for
a retrospective surveillance, to examine how a disease has spread, while spatio-temporal
analysis is more suitable for prospective surveillance where changes in spatial distribu-
tion are monitored over time (Kulldorff, 2001).

Several studies have applied spatial analysis (to monitor space) in conjunction with
SPC (to monitor time) for investigating spatial patterns in prospective surveillance.
For example, Tango statistics and Knox statistics, which indicate the degree of disease
clustering, are monitored with CUSUM charts (Rogerson, 1997, 2001). In the case
of multivariate surveillance, different data sets such as number of phone calls, chief
complaint and emergency department visits in the same area can be monitored for
spatial pattern by using multivariate scan statistics (Kulldorff et al., 2007).

2.6.2 Methods developed by Bayesian approaches

Some of the methods mentioned above have been modified to incorporate prior knowledge
in a Bayesian framework. For example, from the scan statistics and multivariate scan
statistics proposed by Kulldorff (1997 and 2007), Bayesian spatial scan statistics and
multivariate Bayesian scan statistics have been developed (Neill et al., 2005, 2007).
More generally, Bayesian approaches have been implemented with Markov models in
public health surveillance in order to detect a shift between endemic and epidemic states
such as a Bayesian Markov switching model (Mart́ınez-Beneito et al., 2008), a Bayesian
hierarchical model (Spencer et al., 2011) and a Hidden Markov model where the state is
unobserved (Le Strat and Carrat, 1999). Additionally, Perry and Allen (2005) used the
probability from a posterior distribution to flag an alarm if a high unusually posterior
probability of outbreak is presented (Perry and Allen, 2005). The main difference of
these methods is how the parameters are estimated. These models are used for univariate
surveillance and also can be extended for the multivariate case. However, due to the
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computation time, these methods might present difficulties for prospective surveillance
since the model needs to be refitted or updated over time (Unkel et al., 2012).

2.6.3 Principal component analysis

As mentioned in section 2.2.2, there have also been the uses of the scores of the first
principal component monitored by several control charts such Shewhart chart, CUSUM
and EWMA charts. The results showed that the use of dimensionality reduction (i.e. the
first principal component) improve the process capability as the sensitivity of detection
increased (Kullaa, 2003) and the ARL (Average Run Length) from such approach is
smaller than the ARL from the ordinary MEWMA chart (Scranton et al., 1996). As well
as its use in dimensionality reduction in multivariate surveillance, principal component
analysis can also be used for detecting an outlier during a process which might possibly
signal when an outbreak has occurred. The standardized scores of major and minor
principal components are used to investigate outliers for outbreak detection purposes
(Mohtashemi et al., 2007). However, users might need to use more than one component
in order to get sufficient information from the original data from the principal component
analysis. Therefore, with regard to the dimensionality reduction, a univariate series of
statistics summarizing relevant information from the sufficient reduction method might
be preferable than the principal component analysis (Wessman, 1998).

2.6.4 Poisson regression chart

The Poisson regression chart or the generalized likelihood ratio (GLR) test chart are
implemented in several studies (Höhle and Paul, 2007; Höhle, 2010; Zhou et al., 2010).
Höhle and Paul (2007) proposed a (seasonal) Poisson regression chart based on a gen-
eralized linear model used for monitoring aberrations arising in disease surveillance.
Parameters are estimated by using GLM and then the likelihood ratio (LR) detector
and the generalized likelihood ratio (GLR) detector between in and out-of-control stages
is recursively computed and monitored using a generalization of the CUSUM scheme
(Höhle and Paul, 2007). Later, the LR CUSUM detector was modified for online mon-
itoring for a change point in categorical time series (Höhle, 2010). Similarly, the GLR
statistics are monitored with a EWMA chart in Zhou et al. (2010). Like the methods
based on the likelihood ratio, the LR detector is derived from the ratio between in control
and out of control stages, which sometimes might be unknown or hard to identify.

2.6.5 Simulated health data

Since health or biosurveillance data are rarely available for researchers, several studies
have proposed techniques or functions for simulating health data and outbreak signals for
the purpose of system development and evaluation. Lotze et al. (2010) proposed meth-
ods for simulating multivariate health data and mimicking real health data incorporating
additional effects such as seasonality, holiday and day of week effects (Lotze et al., 2010).
These simulations are based on the multivariate normal distribution, and thus the sim-
ulated data may not be sensible for health surveillance. Later, due to the complexity of
the multivariate Poisson distribution, Yahav and Shmueli (2012b) proposed methods for
generating multivariate Poisson series used in management science application (Yahav
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and Shmueli, 2012b). Höhle (2007) has developed a function in the surveillance package
in R used to simulate health data based on his proposed branching process model (Held
et al., 2005; Höhle, 2007). Maciejewski et al. (2009) proposed SYDOVAT (Synthetic
Syndromic Surveillance Data Creation Toolkit) used for generating syndromic surveil-
lance data for system evaluation. Generated data consist of locations, detail of illness
(e.g. symptoms) and background information of patient in monitored areas. Outbreak
signals can also be generated and injected to background data for the purpose of system
evaluation (Maciejewski et al., 2009).

2.6.6 Other methods

Due to the nature of health data, some methods such as wavelet decomposition (Shmueli
and Fienberg, 2006) and Fourier transforms (Goldenberg et al., 2002) have been used to
remove noise from data before monitoring with other statistical methods.

2.7 Conclusions

Having reviewed the statistical methods used in public health surveillance, none of the
methods perform uniformly better than the others. Each shows advantages over the
others in some conditions, but always with some limitations. For example, several types
of control charts developed under the normality assumptions might not be directly used
to monitor health data which are non-normally distributed and correlated over time.
Even though the time series and disease modelling might capture the dependence in the
health data, they are preferred to used for retrospective rather than prospective surveil-
lance since fitting the proper models and predicting an alarm limit for the next count
might be difficult due to the nature and non-stationarity of health data. Also, there
have been several statistical methods for public health surveillance proposed under cer-
tain assumptions but used in different applications which might be problematic because
of violation of assumptions (Unkel et al., 2012).

Considering the statistical methods used for multivariate surveillance, parallel surveil-
lance, which is easy to implement and practical, suffers from a problem of multiplicity,
since it relies on multiple tests, while the others (dimensionality reduction, scalar and
vector accumulation) have the problem of signal interpretation since once the dimension
is reduced to one, it is difficult to know which variable (series) caused a signal. However,
unlike using control charts in industrial or manufacturing process, where the cause of a
signal needs to be identified for a process capability, a signal in health surveillance is used
primarily as a warning of a possible disease outbreak. Therefore, signal interpretation is
not our main concern in this thesis. Due to the complexity, multiple univariate control
charts are more commonly used in heath surveillance rather than multivariate control
charts. Hotelling’s T 2 , MCUSUM and MEWMA charts, which are directionally invari-
ant, might not be directly appropriate to use in health surveillance since only a positive
shift is of interest. Although the adjustment of these charts for detecting a particular
positive shift has been proposed in several studies, they are rarely used in practice (Pig-
natiello and Runger, 1990; Fricker, 2007; Joner et al., 2008; Yahav and Shmueli, 2012a).
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Having considered the methods currently available for multivariate surveillance, in this
thesis we aim to develop the sufficient reduction method for detecting a mean shift
in public health surveillance. Compared to the principal component analysis where
some information is lost from using only the first component (Scranton et al., 1996;
Kullaa, 2003), sufficient reduction methods can be thought of as an ideal dimension
reduction method. The idea of the sufficient reduction methods is to appeal to the
sufficiency principle (see more details in section 4.2.1) to identify a lower dimensional
function of the original series which retains all relevant information to detect a shift in the
multivariate process. Even though the sufficient reduction methods have a limitation
over signal interpretation, it is still preferable than the others for health surveillance
since its derived univariate series can be easily monitored with univariate control charts
in order to avoid the complexity of multivariate charts. As mentioned earlier, in order
to use sufficient reduction methods in public health surveillance, such methods need to
be modified. More details of such methods and how they can be developed for public
health surveillance are provided in chapter 4.



Chapter 3

System evaluation

3.1 System evaluation

Many studies have focused on the development of detection performance of public health
surveillance systems. A system’s performance depends on how quickly it can detect a
possible signal for a disease outbreak and how accurate it is. Due to the advantages
and drawbacks of using real data and simulated data in health surveillance discussed in
section 2.1.2.3, several kinds of health data have been used in the system evaluation:
real data (real background data with real shift), simulated data (simulated background
data and simulated outbreak signals) or mixed (real background data with simulated
outbreak signals) (Burkom, 2003; Hutwagner et al., 2005; Fienberg and Shmueli, 2005;
Watkins et al., 2006; Jackson et al., 2007; Buckeridge, 2007). The use of real and simu-
lated data in system evaluation are summarized in section 2.1.2.3.

Various types of measures have been used in the system evaluation such as sensitivity,
specificity, timeliness, average run length, false alarm rate, probability of successful
detection and predictive value. More details of measures used in the system evaluation
are provided in section 3.2, followed by the optimality of surveillance methods in section
3.3. Having reviewed the measures used to evaluate detection performance, those chosen
for use in this thesis are defined in section 3.4.

3.2 Measures for system evaluation

For the purpose of detecting a disease outbreak in public health surveillance, a decision
as to whether or not there is a shift of aberration or anomaly in a process is made
sequentially at each time t , t = 1, 2, ... Let � be the change point of a process and
tA the time of an alarm. The system will flag an alarm at time tA if a test statistic
exceed a threshold or alarm limit. A summary of measures used for system evaluation
is given in Table 3.1 (Frisén, 2003; Sonesson and Bock, 2003; Farrington and Andrews,
2004; Hutwagner et al., 2005; Buckeridge, 2007) and the discussion is provided afterward.

31
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Table 3.1: A summary of measures used for system evaluation

Measure Definition

Sensitivity Proportion of outbreak signals correctly identified by system.

Specificity Proportion of non-outbreak signals correctly identified by system.

ROC curve A receiver operating characteristic curve is a plot of sensitivity against
false alarm rate (1-specificity) used for assessing the precision of pre-
diction of outbreak detection.

Timeliness Timeliness or delay in detection can be measured by

ED (Expected Delay) is the expected value of a delay between the
change time (�) and the time of alarm (tA).

ED(t) = E(max(0, tA − t)∣� = t)

ED typically tends to zero as t increases. Therefore, the delay con-
ditional on no alarm before � was proposed (Frisén, 2003):

CED (Conditional Expected Delay) is the expected delay for a specific
time change, � , conditional on there being no alarm before � .

CED(t) = E(tA − �)∣tA ≥ � = t)

ARL1 (Average Run Length for an out of control stage) is the aver-
age run length until an alarm is signalled when the true change has
occurred (see section 2.3).

ARL1 = E(tA∣� ≤ t)

False alarm False alarm or false detection can be measured by ARL0, PFA and
FAR.

Continued on next page
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Table 3.1: A summary of measures used for system evaluation (continued)

Measure Definition

False alarm ARL0 (Average Run Length for an in control stage) is the average
run length until an alarm is signalled where there is no outbreak or
change during the surveillance period (see section 2.3).

ARL0 = E(tA∣� > t) or ARL0 = E(tA∣� =∞)

PFA (Probability of False Alarm) is the probability that alarm was
trigged before the true change has occurred.

PFA = P (tA > �)

FAR (False Alarm Rate) is the proportion that alarm was trigged
before the true change has occurred.

FAR = P (tA > �)

PSD Probability of successful detection is the probability that a delay in
outbreak detection is no longer than d, where d is a specified period
for detecting a particular disease. The usefulness of PSD is that it
measures the ability for outbreak detection in a limited time after
change has occurred.

PSD(d, t) = P (tA − � < d∣tA ≥ � = t)

PV Predictive value is the the probability that a true change has occurred
when an alarm is signalled (Frisén, 1992).

PV(t) = P (tA ≤ � ∣tA = t)

An efficient surveillance system requires high sensitivity and specificity with low false
alarm rate and a short delay. Probability of successful detection and predictive value
are also expected to be high, while the average run length should be large for the in
control stage (ARL0 ) and small for the out of control state (ARL1 ) (i.e. the system
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should flag an alarm as soon as possible when a change has occurred). The proposed
statistical techniques used in public health surveillance were evaluated by using various
kinds of criteria mentioned above. However, there seems no gold standard surveillance
system or even standard evaluation methods used in the field. The proposed methods
are evaluated with one or more measures which sometimes are more or less suitable for
the particular situation. The choice of evaluation measure in public health surveillance,
for both retrospective and prospective surveillance, is given further consideration below.

Sensitivity, specificity and ROC curve have been widely used in medical diagnosis tests
and also applied for assessing the performance of outbreak detection in public health
surveillance in many studies (Farrington et al., 1996; Dafni et al., 2004; Buehler et al.,
2004; Fienberg and Shmueli, 2005; Hutwagner et al., 2005; Cowling et al., 2006; Kleinman
and Abrams, 2006; Frisén, 2007; Paul, 2010). Since, the calculations of such measures
are based on the proportion of outbreak detections of a fixed sample in a known time
period, they are more appropriate to use for retrospective surveillance, where the times
of surveillance are known and fixed, rather than in on-line or perspective surveillance
(Frisén, 2005). Therefore, for retrospective surveillance, false alarms can be measured by
specificity, while sensitivity is used to evaluate detection ability. In addition, ROC curves
have been implemented under the assumption of a stationary process over the entire se-
ries, and so might not be applicable in public health surveillance where the stationarity
assumption might be violated. Moreover, sensitivity, specificity and ROC curves can
only be used for evaluating the precision of detection, not for delay in detection. There-
fore, an AMOC (Activity Monitoring Operating Characteristic) curve, which is a plot
of timeliness against false positive rate, might be preferable (Shmueli and Burkom, 2010).

For prospective surveillance, the false alarm rate can be measured by ARL0 (average
run length in the in control state), while the timeliness or the delay of detection can be
measured by ED (expected delay), CED (conditional expected delay) and ARL1 (aver-
age run length in out of control state). ARL1 is the measure used for assessing a delay
in detection in many research studies (Frisén, 2005), but rarely used in biosurveillance
literature and practice (Shmueli and Burkom, 2010). There are some concerns over us-
ing ARL1 in system evaluation. Strictly, ARL1 is the out of control average run length
measuring the run length until the system signals an alarm assuming that a change
occurred when the surveillance started. Therefore, ARL1 might not be suitable for as-
sessing the timeliness in prospective surveillance since a true change in health data is
not likely to occur at the same time as the surveillance starts (Sonesson and Bock, 2003;
Frisén, 2003). Apart from these, PV (predictive value) and PSD (probability of success-
ful detection) have been suggested for evaluating the system performance for prospective
disease surveillance (Frisén et al., 2007).

Additionally, some surveillance tools developed by statistical modelling, such as time
series techniques and branching process model, have used MAPE (Mean Absolute Per-
centage Error), MSPE (Mean Squared Prediction Error) and RMSE (the Root Mean
Squared Error) for system evaluation (Reis and Mandl, 2003; Held et al., 2005; Burkom
et al., 2007). However, these criteria measure how well the models are fitted rather than
assessing the performance of outbreak detection of the systems developed by such meth-
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ods. The assessment of system performance for prospective surveillance should depend
on how accurate the model prediction will be for detecting an aberration which might
signal an occurrence of disease. Some studies have suggested and used proper scoring
rules to assess model prediction (Held et al., 2005; Czado et al., 2009; Höhle, 2010; Held
et al., 2010). A proper scoring rule is used to assess the calibration and sharpness of
probabilistic forecasts by assigning a numerical score based on the predictive distribu-
tion and the event that occurs. A larger score implies a better probabilistic prediction
(Gneiting and Raftery, 2007; Held et al., 2010). Therefore, a proper scoring rule might
be another criterion used to evaluate the performance of the model’s predictions, showing
whether or not there is a high possibility of detecting a true signal of a disease outbreak.

3.3 Optimality of surveillance methods

Having identified a number of performance measures, it is useful to consider whether
any proposed detection method can be proven to be ‘best’ in terms of optimizing certain
of these criteria. Obviously, a short delay in detection with a low false alarm rate plays
an important role in describing the performance of outbreak detection in public health
surveillance. Various measurements have been used to evaluate the statistical methods
for surveillance. In order to choose an optimal surveillance method, the optimality of
statistical surveillance methods has been considered. Frisén and de Maré (1991); Frisén
(2003) studied the optimality properties of statistical surveillance methods for detecting
a mean shift in a univariate process under the assumptions that a shift in mean level at
time � indicates a change in a process shifting from one distribution to another. It is
also required that the data before change and after change need to be independently and
identically distributed. The optimality criteria considered under this assumptions are
maximal detection probability, minimal expected delay, minimal ARL1 for fixed ARL0

and minimax optimality.

The maximal detection probability for a fixed false alarm rate is considered as one of
the optimality criteria. The higher the detection probability is, the more accurate is
detection. Also, a system that gives minimum expected delay for a fixed false alarm
rate would be preferred. Consider the average run length normally used in the SPC, if
a process has shifted, then minimum ARL1 for fixed ARL0 is required. On the other
hand, to be pessimistic, the worst case of the conditional expected delay after a change
point is also considered. In the worst case, having fixed the false alarm rate and cal-
culated maximum CED after a change point, a system that give a minimal maximum
CED would be preferred (i.e. minimizes the maximum value of CED).

With respect to the optimality criteria mentioned above, the likelihood ratio (LR)
method (see detail in section 2.4) is optimal under maximal detection probability and
minimal expected delay criteria. Shewhart charts are optimal under the same criteria for
detecting a large mean shift. EWMA charts with small values of smoothing parameter
are optimal under maximal detection probability criteria, whereas CUSUM charts are
optimal under minimax optimality criteria. More details can be found in (Frisén and
de Maré, 1991; Frisén, 2003; Sonesson and Bock, 2003).
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However, due to the nature of health data which are more variable, autocorrelated and
non-stationary, these optimality criteria might not easily be applied with the statisti-
cal methods used in public health surveillance due to the assumptions defining in each
criterion (see more details in Frisén (2003, 2005)). In view of this limitation, empirical
measures are suggested for use in the system evaluation in public health surveillance
(Unkel et al., 2012). Also, in multivariate surveillance, the optimality criteria might
be difficult to specify due to the different aspects of multivariate problems in surveil-
lance (Frisén, 2003). Even though the optimality of the multivariate statistical methods
cannot be proved, Frisén et al. (2011) showed that sufficient reduction methods for de-
tecting changes with time lags (see section 4.2.4) perform well for the condition that the
optimality might not hold.

3.4 Measures for system evaluation used in this thesis

Having reviewed the measures used for system evaluation, the detection performance of
statistical methods proposed and used in this thesis is evaluated by considering the time-
liness, and correct and false detection rate of the system. For the purpose of outbreak
detection in public health surveillance, in this thesis, we aim to detect a mean shift in a
process within 7 time points (e.g. days or weeks) of a shift at time �.

From Table 3.1, the timeliness is measured by conditional expected delay (CED) which
is defined as the expected delay for a specific change point given that there is no false
alarm before a true change occurs. False detection is measured by the false alarm rate
(FAR) defined as the proportion of false alarms, i.e. alarms raised before a true change
occurs (tA < � ). We define correct and false detection rate by reference to PSD in Table
3.1 and our requirement to detect a shift within 7 time points (an arbitrary but sensible
period), i.e. d = 7. The correct detection is measured by the true alarm rate (TAR),
defined as the proportion of correct identifications where a system gives a signal within
7 time points after a true change occurs (tA − � ≤ 6∣tA ≥ � ). On the other hand, non-
detection rate (NDR), the proportion of cases in which the system fails to detect any
change in the process within 7 time points when a shift truly occurs (tA−� ≥ 7∣tA ≥ � ),
is used to measure the failure detection of the system. Short CED, high TAR, with low
FAR and NDR are desired. The definitions of CED, TAR, FAR and NDR are given
below.

CED = E(tA − � ∣tA ≥ �)

TAR = P (tA − � ≤ 6∣tA ≥ �)

FAR = P (tA < �)

NDR = P (tA − � ≥ 7∣tA ≥ �) = 1− TAR− FAR

Ideally, we construct our detection scheme to provide practical and reasonable values
for TAR, FAR and NDR, denoted by TAR0 , FAR0 and NDR0 . As considered in
several studies (Burkom et al., 2008; Watkins et al., 2009; Kuang et al., 2012) typical
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requirements are

TAR0 = 0.90

FAR0 = 0.05

NDR0 = 0.05.

Note that not all proposed schemes meet these target in practice.

The methods proposed or used in this thesis are evaluated by use of a simulation study
to estimate CED, FAR, TAR and NDR. The results are based on 10,000 simulations.
Let ĈED, T̂AR, F̂AR and N̂DR be the estimators of CED, TAR, FAR and NDR,
respectively. According to the simulations, the sampling distribution of each estimator
is considered. With 10,000 simulations, the standard error of each estimator is sufficiently
small to investigate differences in the measure between the methods. More details of
sampling distribution and the standard error of each measure considered in the thesis
are given in Section 3.5.

3.5 Performance comparison

For the purpose of comparison, the following sections detail the sampling distribution of
each measure and the sampling distribution of the difference in the measure between two
methods. Even though the comparison of detection performance between the methods
are conducted by using the same data set generated from 10,000 simulations, we assume
that the estimates for each method are approximately independent and normally dis-
tributed with mean and variance defined in each section separately.

A comparison of detection performance between the methods is conducted by perform-
ing a two-sided hypothesis test at significance level 0.05. The difference of the measure
between two methods is compared against the critical value (i.e. 1.96 times the standard
error of the difference of measure between two methods).

Let D be the delay, before which the system can detect a shift, up to a maximum of 7
time points after the process has shifted (i.e. D = 0, 1, 2, ..., 6). Thus, D has a discrete
Uniform distribution

D ∼ U(0, 6),

with the mean and variance

E(D) = (a+ b)/2 = 3 = �

V (D) = (m2 − 1)/12 = 4 = �2

where a = 0, b = 6 and m = b− a+ 1.

Let n be the number of simulations (n = 10, 000). Following the Central Limit Theorem,
the sampling distribution of sample mean, D̄ , is

D̄ ∼ N(�, �2/n).
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Let TA, FA and ND be a true alarm, false alarm and non-detection defined below

TA = I[0 ≤ D ≤ 6],

FA = I[D < 0],

ND = I[D ≥ 7],

where I[P] is an indicator function of statement P having value 1 if the statement P is
true. Having defined the notation above, the details of the sampling distribution and
the critical value for each measure are defined as follows.

3.5.1 TAR

The TAR is estimated by

T̂AR =
1

n

n∑
i=1

TA.

Thus, the sampling distribution of T̂AR follows normal distribution with mean and
variance defined below

T̂AR ∼ N(�T̂AR, �
2
T̂AR

),

where

�T̂AR = TAR

and

�2
T̂AR

=
TAR(1− TAR)

n
.

Let T̂ARi and T̂ARj be the estimators of TAR for methods i and j (i ∕= j ). We
compare the difference of TAR between two methods by considering

T̂ARi − T̂ARj ∼ N(�T̂ARi−T̂ARj
, �2

T̂ARi−T̂ARj
),

where �T̂ARi−T̂ARj
= TARi − TARj and �2

T̂ARi−T̂ARj
= �2

T̂ARi
+ �2

T̂ARj
(i.e. two samples

are independent). The standard error of the difference of TAR between two methods is

S.E.(T̂ARi − T̂ARj) =

√
TARi(1− TARi)

n
+

TARj(1− TARj)

n
.

The TARs of two methods are significantly different at the level 0.05, if

∣t̂ari − t̂arj ∣ > (1.96× S.E.(TARi − TARj)),

where t̂ari is the estimate, or observed value, of T̂ARi of method i from 10,000 simu-
lations.

The sampling distributions of F̂AR and N̂DR and the sampling distributions of the
differences of these measures between the methods can be defined in a similar way.
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3.5.2 CED

From the definition of CED, we estimate CED from

ĈED =
D̄

1− FAR
.

Note that even though FAR can be estimated from the simulations, the sampling dis-
tribution of ĈED might be difficult to identify. Therefore, we consider the sampling
distribution of ĈED assuming that FAR is a constant value equal to FAR0 = 0.05
which is the value the scheme was designed to achieve. Thus, the sampling distribution
of ĈED follows normal distribution with mean and variance defined below

ĈED ∼ N
(
�ĈED, �

2
ĈED

)
,

where

�ĈED =
�

1− FAR
(3.1)

and

�2
ĈED

=
�2

n(1− FAR)2
.

Let ĈEDi and ĈEDj be the estimators of CED for methods i and j (i ∕= j ). We
compare the difference of CED between two methods by considering

ĈEDi − ĈEDj ∼ N(�ĈEDi−ĈEDj
, �2

ĈEDi−ĈEDj
),

where �ĈEDi−ĈEDj
= �ĈEDi

−�ĈEDj
and �2

ĈEDi−ĈEDj
= �2

ĈEDi
+�2

ĈEDj
(because we assume

that the two sample measures are approximately independent). The standard error of

the difference of ĈED between two methods is

S.E.(ĈEDi − ĈEDj) =

√
�2

n(1− FAR)2
+

�2

n(1− FAR)2
.

The CEDs of two methods is significantly different at the level 0.05, if

∣ĉedi − ĉedj ∣ > (1.96× S.E.(ĈEDi − ĈEDj)),

where ĉedi is the estimate, or observed value, of ĈEDi of method i from 10,000 simu-
lations.

3.6 Critical values and result format

Although the standard error of the estimators can be estimated directly from the sim-
ulations, we prefer to calculate them according to their sampling distributions by using
the practical values used as targets in construction of the detection scheme in Section
3.4. This decision is considered further below. Thus, the critical values (1.96 times the
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standard error of the difference of measure between two methods) are calculated by using
TAR0 , FAR0 and NDR0 . For example, the critical value for the CED comparison is

1.96× S.E.(ĈEDi − ĈEDj) = 1.96×

√
4

n(1− 0.05)2
+

4

n(1− 0.05)2
= 0.058.

We calculate the critical values for each comparison and list them in Table 3.2.

Table 3.2: Critical values for performance comparison

Comparison Critical value

CEDi - CEDj 1.96× S.E.(ĈEDi - ĈEDj) = 0.058

TARi - TARj 1.96× S.E.(T̂ARi - T̂ARj = 0.008 or 0.8%

FARi - FARj 1.96× S.E.(F̂ARi - F̂ARj) = 0.006 or 0.6%

NDRi - NDRj 1.96× S.E.(N̂DRi - N̂DRj) = 0.006 or 0.6%

The differences in detection performance of potential methods are investigated by com-
paring the differences in estimated performance statistics (estimated from the simula-
tions) against the critical values defined in Table 3.2.

Before proceeding, we make a brief check on the advisability of our decision to calculate
the critical values according to the requirement of the practical scheme in terms of
acceptable TAR0 , FAR0 and NDR0 by comparing them also with versions calculated
from the the standard error of the measure estimated directly by its variability in the
10,000 simulations. Tables A.7 and A.8 in Appendix A are examples of the critical values
calculated from the simulations for Section 4.6.1. P, F, W and C1 in the tables stand for
Parallel, Frisén, Wessman and our proposed method (Case 1), respectively. Overall, the
critical values estimated from the simulations are slightly lower than the critical values
calculated from the defined scheme requirements. Therefore, for convenience, we regard
the critical values defined in Table 3.2 as “upper bounds” and use them to investigate
the significance of differences in measures between the methods in Chapters 4, 5 and 6.

3.7 Conclusions

This chapter provides details of how statistical methods used for health surveillance are
evaluated. Due to the varied nature of potential data, several kinds of data have been
used in the system evaluation. Various measures have also been used in practice and
research studies. However, they should be used with care, since some measures are more
appropriate for evaluating retrospective rather than prospective surveillance system.

In public health surveillance, where a rapid detection with low false alarm rate is re-
quired, statistical methods which can be shown to be optimal under various desirable
optimality criteria are preferable. However, again the complex nature of available data
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means that in many situations it is not possible to identify a practical, optimal method.
In this thesis, therefore, we consider performance across a platform of four measures
as our performance profile. The critical values which will be used in the performance
comparison between the methods are defined.
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Chapter 4

Sufficient reduction methods for
normal data

4.1 Introduction

In this chapter, we will focus on the sufficient reduction (SR) method used for reducing
the dimension of a p dimensional multivariate series to a univariate series of likelihood
ratio statistics. The idea of sufficient reduction methods has been implemented in several
studies. Wessman (1998) and Frisén et al. (2011) proposed SR methods for detection of
a sudden but persistent shift in multivariate series. Wessman aimed to detect a simulta-
neous change, where shifts in p series occur at the same time, while Frisén et al. (2011)
allow for detecting changes with time lag between series. Both methods are proposed by
assuming that observations in each series are independent over time. While Wessman
(1998) allows for correlation between series (CBS), Frisén et al. (2011) does not (see
more details in Section 4.2.3 and 4.2.4). Consideration of such assumptions suggests
that the methods proposed by Wessman (1998) and Frisén et al. (2011) can be used for
an industrial or manufacturing context as such data are assumed to be independent over
time. However, in order to use sufficient reduction method in public health surveillance,
correlation within series (CWS) should be taken into account since health data are usu-
ally dependent over time.

To handle the presence of an autocorrelation in a process, several studies have suggested
and used the model-based approach. The model residuals are subjected to the univariate
surveillance methods used for detecting a mean shift in a process of independent data
such as control charts (e.g. Alwan and Roberts (1988); Montgomery and Mastrangelo
(1991); Harris and Ross (1991); Kramer and Schmid (1997); Schmid (1997); MacCarthy
and Wasusri (2001); Frisén (2003)). However, the model-based approach might be more
suitable for retrospective surveillance rather than prospective surveillance, since in the
prospective case, a decision whether or not there is a shift in the process is made se-
quentially, and so repeated refitting model is required. Sometimes it is hard to identify
the state of a process as in control or out of control. A change in a process might not
be clearly seen from this approach since the parameters are re-estimated and updated
over time. Using the model residuals from refitting the model at each time point in

43
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prospective surveillance might therefore be inappropriate. Alternatively, instead of re-
fitting the model over time, data in the in control stage are fitted and then the residuals
are calculated from the difference between the observed values and the predictions from
the fitted model. However, making predictions far ahead might not be sensible, since the
independence of residuals might not hold (Box et al., 1994). Noting these limitations,
the residuals from model-based approach might not be suitable for prospective health
surveillance.

Apart from CWS, taking CBS into account in the multivariate surveillance should also
be considered since small shifts are more likely to be detected when CBS is present and
incorporated properly. Also, if data are correlated with lag between series, incorporating
time lag with corresponding cross-correlation between series might improve the detection
performance. In this chapter, we aim to develop the sufficient reduction method to detect
a mean shift in a p dimensional multivariate series by taking both CWS and CBS into
account as well as the possibility of lagged shifts. The background to sufficient reduction
methods and the sufficient reduction methods proposed by Wessman (1998) and Frisén
et al. (2011) are given in Section 4.2. In Section 4.3, the proposed methods for use in
public health surveillance are summarized, with the detailed derivation for independent
and dependent observations in sections 4.4 and 4.5, respectively. System evaluation and
concluding remarks are provided in sections 4.6 and 4.7, respectively.

4.2 Background to sufficient reduction methods

4.2.1 Sufficiency

Sufficiency is a key property for parameter estimation in which all relevant information
contained in data regarding the parameter is collected and summarized succinctly. An
estimator or a statistic which has this property is called a sufficient statistic.

Following Cox and Hinkley (1974), we define the definition of a sufficient statistic and
the factorization theorem used for deriving such statistics as follows.

Definition 4.1 A statistic T is defined to be a sufficient statistic for a family of
distributions ℱ if and only if the conditional distribution fX∣T (x∣t) is the same for all
distributions in ℱ . In the parametric case this means that fX∣T (x∣t; �) is the same for
all values of � and so does not depend on �, � ∈ Ω. Additionally, T is said to be minimal
sufficient if T is a function of all other sufficient statistics that can be found.

Factorization theorem Let L(x; �) be the likelihood function of X . A statistic T
is sufficient for � in the family ℱ if there exist functions ℎ(x) and g(T ; �) such that for
all � ∈ Ω,

L(x; �) = ℎ(x)g(T ; �)

where ℎ(x) is a function that depends on observations but does not depend on the pa-
rameter � and g(T ; �) is a function that depends on � and depends on observations
only through the value of T .
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Since a decision as to whether there is a shift in a process will be made sequentially, we
also consider the definition of sufficiency of a sequence of statistics which is

Definition 4.2 Let xt be a p dimensional vector of observations at time t, t = 1, 2, ..., s.
A sequence T1(x1), T2(x2), ... of statistics is a sufficient sequence of statistics for fami-
lies ℱ1,ℱ2, ... of distributions if for all s , Ts(xs) is a sufficient statistic for family ℱs
(Arnold, 1988).

Both definitions are used to develop SR methods for detecting a shift in the distribution
of a multivariate process. Details of SR methods and their implementation are provided
in subsequent sections.

4.2.2 SR methods

In a similar vein, sufficient reduction methods use the sufficiency principle to reduce the
dimension of a p dimensional multivariate series to a univariate series of likelihood ratio
statistics summarising all relevant information from the original series (Wessman, 1998;
Frisén et al., 2011). In comparison with other statistical methods used for multivari-
ate surveillance, SR methods automatically handle the multiplicity problem of parallel
surveillance and also the loss of some information from the original series by other meth-
ods used for dimensionality reduction such as principal component analysis where only
the first, or the first few, component(s) is (are) used (Kullaa, 2003). Therefore, in taking
all relevant information from the original series by use of sufficient statistics, SR meth-
ods should give a better result for detecting a shift in the parameter of the multivariate
process.

In multivariate surveillance we define x t as a p dimensional vector representing the
observation made on a p dimensional multivariate series at time t .

x t =

⎛⎜⎝ x1,t
...
xp,t

⎞⎟⎠ ,

where xi,t is an observation of a random variable Xi observed at time t , t = 1, 2, ..., s .
Let �i be the time of a change point occurring in series i (i = 1, 2, ..., p). We consider
two types of change points: simultaneous changes (�1 = �2 = ... = �p = � ) and changes
with time lag (i.e. �i = �j + lij , where lij is the lag between series i and series j and
i < j ). Assume that changes occur sequentially (�1 < �2 < ... < �p), we regard the ear-
liest change point in one of the p series, denoted by � = min(�1, �2, ..., �p), as a change
or shift in the process.

For simplicity, the background of SR methods in this section is illustrated for only
the case of detecting a simultaneous change in a process of independent observations
(no CWS). Detecting changes with time lags is considered as an extension case of the
method and detailed in Section 4.2.4. Both ideas are also used to develop SR methods
for detecting changes in a process of dependent observations (CWS) which are detailed
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in Section 4.5.

In order to detect a simultaneous change in a process, indicated by a shift in the con-
sistent distributions, we define two stages of the process according to the change point
� . An ‘in control’ stage (I ) is where there has been no shift in the distributions, while
an ‘out of control’ stage (O ) is where the distributions of the process have shifted at
the change point � . Let F I and FO be the two completely specified distributions of in
control and out of control stages defined as follows.

Xt ∼ Ft =

{
F I t < � in control stage
FO t ≥ � out of control stage

At each decision time s (s = 1, 2, ...), the decision will be made as to whether the
process is in control, I(s) = {� > s} , or out of control, O(s) = {� ≤ s} . According to
the change point � , the available information at time s is Xs = (x1,x2, ...,xs) which
has (because of the independence assumption) a distribution from the family

Xs ∼ ℱs =

{
ℱI(s) = {F I}s s < � in control stage

ℱO(s) = {
∪
�<s(F

I)�−1 × (FO)�−s−1} s ≥ � out of control stage

(Wessman, 1998).

Having assumed that data are continuous and independent over time, let f I(x t) and
fO(x t) be the probability density function (pdf) of in control and out of control stages,
respectively. We define a ratio

lr(xt) =
fO(xt)

f I(xt)
, t = 1, 2, ..., s

and a sequence

lrt(xs) = {lr(xt), lr(xt+1), ..., lr(xs)}, s = 1, 2, ...

Let L(xt∣�) be the likelihood function of the p dimensional multivariate series given
that a change occurs at time � . The sequence of statistics used for monitoring a shift
in a process of independent observations, for any s , can be derived from

L(xt∣�) =

�−1∏
t=1

f I(x t)
s∏
t=�

fO(x t)

=
s∏
t=1

f I(x t)
s∏
t=�

fO(x t)

f I(x t)

= ℎ(xs)

s∏
t=�

lr(xt) = ℎ(xs)k(lr� (xs)) (4.1)

where ℎ and k are two real valued functions. By the factorization theorem, the vector
lr� (xs) = {lr(x� ), lr(x�+1), ..., lr(xs)} , which is a sequence of likelihood ratio statistics,
is sufficient for the distribution family of Xs , {ℱI(s),ℱO(s)} , defined by a change point
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� . Equivalently, since lr� (xs) is sufficient for any decision time s , by the definition 4.2,
the sequence {lr� (xs); s = 1, 2, ...} is a sufficient sequence of statistics for the sequence
of families {ℱI(s),ℱO(s); s = 1, 2, ...} (Wessman, 1998).

In order to implement the SR method to detect a shift in a process from ℱI(s) to ℱO(s) ,
the vector lr1(xs) is used for detecting a shift for any decision time s since the process
started at time t = 1. Consequently, this also makes the sequence {lr1(xs); s = 1, 2, ...}
a sufficient sequence of statistics for the sequence of families {ℱI(s),ℱO(s); s = 1, 2, ...} .
The idea of the sufficient reduction can therefore be used to derive a sequence of like-
lihood ratio statistics which is sufficient to detect a shift in a parameter in a process,
such as for detecting a mean shift (Wessman, 1998; Frisén et al., 2011) or a variance
shift (Wessman, 1998). In this thesis the shift in the distributions is considered and
investigated as a shift in the mean vector between in control and out of control stages
because it is the most sensible and practical use in public health surveillance. The SR
methods developed for detecting the mean shift proposed by Wessman (1998) (simulta-
neous change) and Frisén et al. (2011) (changes with time lags) are reviewed in sections
4.2.3 and 4.2.4, respectively.

Since the dimension of the multivariate series is reduced to one by the sufficient re-
duction, the optimality properties (see Section 3.3) of univariate surveillance used for
detecting a change between two distributions (in control and out of control stages) can
be applied. Frisén and de Maré (1991) showed that the likelihood ratio method, which
is the likelihood ratio between two distributions in the process (i.e. in control and out
of control stage according to the change point � ), has properties of minimal expected
delay and maximal detection probability. This can also be applied to SR methods since
the SR methods derive a sequence of likelihood ratio statistics based on the likelihood
ratio between out of control and in control stage given that a simultaneous change of
a process occurs at t = � . Data in both stages are still independent and identically
distributed over time. Thus, in the case of a simultaneous change, where the process
is clearly shifted between two distributions, the SR method is optimal under minimal
expected delay and maximal detection probability properties. However, these properties
might not hold in the case of detecting changes with time lag since the distributions of
the process has shifted more than once (see more detail in Section 4.2.4).

4.2.3 SR method of Wessman (1998)

Wessman proposed SR methods to detect a shift in distributions of a multivariate process
of independent observations when the change point � is fixed and known, and when � is
stochastic from known distribution (e.g. geometric distribution with intensity � ). The
use of SR methods to detect the shift in the parameter vector of a distribution from
the exponential family was given with specific examples of detecting a shift in mean or
variance of a multivariate normal distribution. Note that the examples used all assumed
the distributional form was unchanged though this is not a requirement of the methods.
The proposed likelihood ratio statistics derived for detecting mean or variance shift can
be found in the original paper (Wessman, 1998). In this study we will consider a mean
shift only. The assumptions underlying his method are summarized as follows:
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∙ aim to detect a sudden, but persistent, shift in mean a process of multivariate
normal distributed observations.

∙ observations are independent (no correlation within series (CWS)).

∙ Correlation between series (CBS) is taken into account.

∙ consider simultaneous changes (i.e. �1 = �2 = ... = �p = � ).

∙ a change point � of the process is known.

∙ the distributional form and the variance of the process are unchanged over time.

The idea of deriving a sequence which is sufficient for detecting a shift in distribution
in Section 4.2.2 is used here, but a shift in a mean vector, � , is considered specifically.
Assuming that a simultaneous change occurs at time �, the in control stage (I ) is where
� is unchanged and the out of control stage (O ) is where mean shifts have occurred in p
series at time � . The mean vector of the process for in control and out of control stages
can be defined as

�t =

{
�I = (�I1, ..., �

I
p)
′ t < � in control stage

�O = (�O1 , ..., �
O
p )′ t ≥ � out of control stage

and

F (x t;�) ∼
{
F I(x t;�

I) t < � in control stage
FO(x t;�

O) t ≥ � out of control stage

where t = 1, 2, ..., s . The mean of in control and out of control stages of series i are
denoted by �Ii and �Oi , respectively, and Σ is a covariance matrix which is unchanged
over time. Having assumed that observations are independent, we define

lr(xt;�) =
fO(xt;�

O)

f I(xt;�I)
, t = 1, 2, ..., s

For convenience, we assume that the shift in � does not change the distributional form
of f I(xt;�

I) and fO(xt;�
O) which come from the same exponential family distribution.

Since a shift � is of interest, we define �O − �I as a natural parameter for this case.
We also assume, for definiteness that data are multivariate normally distributed. The
likelihood function at decision time s given that change occurs at � is

L(xt;�∣�) =

s∏
t=1

f I(x t;�
I)

s∏
t=�

fO(x t;�
O)

f I(x t;�I)

= ℎ(xs)
s∏
t=�

lr(xt;�
O − �I)

= ℎ(xs)

s∏
t=�

(�O − �I)′Mt(x t) (4.2)
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where Mt(x t) is a minimal sufficient statistics for �O −�I at time t . According to the
factorization theorem, the likelihood ratio statistics at time t , Tt(x t), used for detecting
a mean shift at time t is

Tt(x t) = (�O − �I)′Mt(x t) = (�O − �I)′Σ−1x t, t = 1, 2, ..., s

From Section 4.2.2, it follows that lr� (xs;�
O−�I) = {lr(x� ), ..., lr(xs)} is sufficient for

monitoring a shift in distribution, which in this case is the mean shift �O − �I for any
decision time s . Since the vector lrt(xs;�

O −�I) is used to monitor a process from its
start, it can be simply written as

lr1(xs) = {T1(x 1), ..., Ts(x s)}, t = 1, 2, ..., s

From definition, it follows that the sequence {lr1(xs), s = 1, 2, ...} is a sufficient se-
quence of statistics for detecting a mean shift in a multivariate normal process.

Let c be a p×1 matrix which is the difference between the in control and out of control
means, i.e. c = �O − �I , �O > �I . In order to use the Wessman method to detect
a desired shift size in a process, c is pre-specified. The use of such method might be
implemented for detecting a change in public health surveillance, since a minimum shift
in health data indicating an epidemic period can be specified. Due to the nature of a
disease outbreak, a minimum shift which we want to detect can be defined in different
ways. More details of how the shift size, c , is defined in the public health surveillance
context are given in Section 4.3.2.

According to the optimality of SR methods mentioned in Section 4.2.2, the SR method
proposed by Wessman for detecting a simultaneous mean shift in a process of indepen-
dent observations is also optimal since the process has shifted between two fully-specified
distributions. In this case, despite the shift in the mean vector, the data are still inde-
pendently and identically normally distributed before and after the change point.

4.2.4 SR method of Frisén et al. (2011)

Frisén et al. (2011) developed the SR method proposed by Wessman (1998) by consid-
ering time lags between series and two types of change point (i.e. simultaneous changes
or changes with time lag). A sequence of likelihood ratio statistics is derived in a similar
manner, but there are some differences in the assumptions they make. Most assumptions
are similar to those of Wessman, except

∙ the p series are independent (no CBS)

∙ there are known time lags between change points (LCP) of the different series. The
degenerate case of zero lag, simultaneous change, is considered as a special case.

A sequence of statistics for detection of shifts in the parameter vector of a distribution
in the exponential family when changes occur with known time lag can be derived in
a similar manner to Section 4.2.2. The derivation of this method can be found in the
original paper (Frisén et al., 2011). For simplicity Frisén et al. illustrate such a method
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for detecting a shift in a bivariate normal process (p = 2) with unit covariance matrix.

In the bivariate case, the shift size that we want to detect in series i is ci , i = 1, 2.
Like the Wessman method, ci need to be pre-specified. Assume that two series are
independent (CBS = 0), the in control and out of control of two series, X1 and X2 , in
the bivariate normal case are defined as follows.

X1,t ∼
{
N(�I1, 1) t < �1 in control stage
N(�O1 , 1) t ≥ �1 out of control stage

X2,t ∼
{
N(�I2, 1) t < �2 in control stage
N(�O2 , 1) t ≥ �2 out of control stage

where t = 1, 2, ..., �1, ..., �2, ..., s and �i,1 = �i,0 + ci . The covariance matrix between X1

and X2 , which is unchanged over time, is denoted by Σ =

(
1 0
0 1

)
.

Let l be the known time lag between change points in two series, X1 and X2 , (i.e.
l = �2 − �1, labelling the series so that �2 > �1) and xi,t be an observation at time t
in series i . Since a sudden, but persistent, shift of a parameter vector is of interest, we
assume that the first change occurs in X1 at time t = �1 , where �I1 shifts to �O1 , and
then l time points later the second change occurs in X2 at time t = �2 = �1 + l (i.e. �I2
shifts to �O2 ), t = 1, 2, ..., �1, ..., �2, ..., s . So the change point of the process in this case
is denoted by � = �1 = min(�1, �2).

Instead of using xt =
(
x1,t x2,t

)′
in the sufficient reduction like the Wessman method,

it turns out that for efficient monitoring it is sensible to realign the series so that they
are at the same point in their evolution. If LCP is known, we examine x1,t alongside
x2,t+l , which is later defined as

yt =
(
x1,t x2,t+l

)′
.

Due to the availability of data, at each s , x1,t and x2,t+l are used in the sufficient re-
duction for t = 1, 2, ...., s− l . For t = s− l+ 1, ...., s , data from X1 only, x1,t , are used,
since x2,t+l from X2 is not yet available (Frisén et al., 2011). Frisén et al. derived a
sequence of likelihood ratio statistics used for monitoring a change with time lag from
the likelihood function of bivariate normal series according to a change point � , a known
time lag l and the availability of data.

Let f I(xi,t) and fO(xi,t) be the pdf of in control and out of control stages, respectively,
for series i . We have
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L(xt;�∣� ;�) =
�−1∏
t=1

f I(x1,t;�
I
1)f I(x2,t;�

I
2)
�+l−1∏
t=�

fO(x1,t;�
O
1 )f I(x2,t;�

I
2)

×
s∏

t=�+l

fO(x1,t;�
O
1 )fO(x2,t;�

O
2 )

=

s∏
t=1

f I(x1,t;�
I
1)f I(x2,t;�

I
2)

�+l−1∏
t=�

fO(x1,t;�
O
1 )f I(x2,t;�

I
2)

f I(x1,t;�I1)f I(x2,t;�I2)

×
s∏

t=�+l

fO(x1,t;�
O
1 )fO(x2,t;�

O
1 )

f I(x1,t;�I1)f I(x2,t;�I2)

= ℎ(xs)

s−l∏
t=�

fO(x1,t;�
O
1 )fO(x2,t+l;�

O
1 )

f I(x1,t;�I1)f I(x2,t+l;�
I
2)

s∏
t=s−l+1

fO(x1,t;�
O
1 )

f I(x1,t;�I1)

= ℎ(xs)
s−l∏
t=�

fO(yt;�
O)

f I(yt;�
I)

s∏
t=s−l+1

fO(x1,t;�
O
1 )

f I(x1,t;�I1)
, (4.3)

where yt ∼ N(�,Σ), �I =
(
�I1 �I2

)′
, �O =

(
�O1 �O2

)′
and Σ =

(
1 0
0 1

)
.

Similarly to the Wessman method, by the factorization theorem, the vector lrt(xs),
t = 1, 2, ..., s , which is sufficient for monitoring a change with known time lag in a
process for any decision time s , can be written as a set of likelihood ratio statistics,
Tt(xt), with

lr1(xs) = {T1(x1), ..., Ts(xs)}

where

Tt(xt) =

{
c1 x1,t + c2 x2,t+l t = 1, 2, ..., s− l
c1 x1,t t = s− l + 1, ..., s

(4.4)

for ci = �Oi − �Ii the shift size that we want to detect in series i . Consequently, the
sequence {lr1(xs), s = 1, 2, ...} is also a sufficient sequence of statistics for a change with
time lag in bivariate normal process. This idea can be extended for the p dimensional
multivariate case.

If LCP = 0 and CBS = 0, the SR method proposed by Frisén et al. is similar to the SR
method by Wessman where the mean shifts at � . In the case of simultaneous change, the
SR method proposed by Frisén et al. is still optimal since the process has shifted between
two distributions at change point � and data are still independently and identically
normally distributed over time. However, in the case of changes with time lags, the
optimality cannot be guaranteed since the requirement for identical distributions might
not be satisfied as the process has shifted more than once. For example, in the case
of bivariate series, there are three stages to consider; 1)X1 and X2 both in control, 2)
X1 is out of control but X2 is still in control, 3) both are out of control. Even though,
the SR method is not optimal for detecting changes with time lags, Frisén et al. gives
examples from a simulation study showing that the SR methods proposed for detecting
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changes with time lags perform well compared to other methods used in multivariate
surveillance such as parallel EWMA charts and MEWMA chart (Frisén et al., 2011).

4.2.5 Detection tools for SR methods

After the dimensionality reduction, the derived (univariate) sequence of statistics is mon-
itored by a simple univariate control chart such as a Shewhart chart (Wessman, 1998)
or EWMA chart (Frisén et al., 2011). A shift in parameter is indicated by an alarm sig-
nalled by the control chart. However, there are some limitations in using control charts
for outbreak detection purposes. These limitations are discussed in Section 2.3.3.

Generally, a common (two-sided) EWMA chart is a plot of EWMA statistics along
with upper and lower control limits calculated from the estimated parameter from an
in control stage. The system will flag an alarm if any points of the statistics go beyond
either upper or lower control limits (Montgomery, 2009). Let zt be a EWMA statistic
at time t , the two-sided EWMA statistic can be calculated from

zt = �xt + (1− �)zt−1, z0 = �I

where �I is the process target. The mean and the exact variance of Zt are

E(Zt) = �I

V (Zt) = �2
�

2− �
(1− (1− �)2t), (4.5)

where �2 is the variance of the process. For large t , t → ∞ , from equation (4.5) the
asymptotic variance of Zt is

V (Zt) = �2
�

2− �
. (4.6)

These two variances give different UCLs. It is suggested one use the exact control limit
if the values of t is small (Montgomery, 2009), however, due to its simplicity, the asymp-
totic control limit is more commonly used (Borror et al., 1998; Frisén et al., 2011; Shiau
and Hsu, 2005).

Since detecting a positive shift is the main interest in public health surveillance, a one-
sided EWMA chart is preferred over a two-sided EWMA chart. Focusing on detecting
the positive shift, the one-sided EWMA statistics is considered instead of two-sided
statistics. In order to avoid inertia problem, for a quicker detection, the one-sided
EWMA statistics is calculated by resetting zt to the target process, �I , if zt < �I .
Having assumed that data are normally distributed and independent over time, the
one-sided EWMA statistics can be calculated from

zt = max(�I , �xt + (1− �)zt−1), z0 = �I

(Harris and Ross, 1991; Schmid, 1997; Morais and Pacheco, 2001; Hu et al., 2011). The
one-sided EWMA statistics are monitored with upper control limits adjusted for the
desired ARL0 . ARL0 (Average Run Length; for an in control stage), is the average run
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length until an alarm is signalled where there is no change during the surveillance period
(see more detail of ARL0 in Section 3.2).

Given our adjustment to produce a one-sided EWMA chart, the exact variance for the
two-sided version stated in equation (4.5) might not hold. Obviously, due to the use of
the maximum function in the one-sided EWMA statistics, the variance of the one-sided
chart will be less than or equal to the variance of the two-sided chart. However, several
studies have used the asymptotic variance of the two-sided chart (equation (6.44)) as an
upper bound for the variance of the one-sided chart due to its simplicity (Morais and
Pacheco, 2001; Hu et al., 2011). Thus, in this thesis, we construct a one-sided EWMA
chart based on the asymptotic variance. Let L be the width of a control chart, the
upper control limit is calculated from

UCL = �I + L

√
�2

�

2− �
(Robinson and Ho, 1978; Crowder, 1989; Shu et al., 2007).

To construct upper control limits for a one-sided EWMA chart, the values of L and �
need to be specified in order to meet the desired the average run length (ARL0 ) (Lucas
and Saccucci, 1990; Montgomery, 2009). It has been suggested that values of � in the
range 0.05 < � < 0.25 (Montgomery, 2009) or 0.2 < � < 0.3 (Hunter, 1986) work well.
Frisén et al. (2011) used � = 0.35 in their simulation study. In this study, we arbitrarily
chose � = 0.3, the value in between 0.25 and 0.35 giving a little more weight on the
current observation. To make the sensible comparison between the SR methods and the
parallel methods, we define ARL0 = 370 for the Frisén et al., Wessman and later our
own methods and ARL0 = 741 for parallel method adjusted for multiplicity (see more
detail in Section 4.2.6). According to the defined � and desired ARL0 , L = 2.815 for
ARL0 = 370 and L = 3.046 for ARL0 = 741. The choices of L and � corresponding
to desired ARLs for a standard one-sided EWMA chart can be obtained from package
‘spc’ in R (Knoth, 2012).

4.2.6 Parallel method

The parallel method is introduced in this section since it is used as a baseline to compare
the performance of SR methods against (Section 4.6). Due to its simplicity, the parallel
method is commonly used in multivariate surveillance. Each single series from the p di-
mensional multivariate series is monitored separately, by the same univariate statistical
methods, in parallel. The earliest change from any one of the p series is regarded as the
change of the multivariate process. Even though this method is easy for implementation
in practice, the problem of multiplicity from multiple hypothesis testing and ignoring
CBS are major concerns (see Section 2.2.2).

Due to the limitations mentioned above, SR methods have the advantage over the paral-
lel methods by taking CBS into account (in Wessman case) and reducing the dimension
of multivariate series to a univariate series so that it can be monitored by using a uni-
variate statistical method avoiding the multiplicity problem.
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A one-sided EWMA chart is used as a detection tool for both SR and parallel methods.
For a sensible comparison, the parallel method is adjusted for the multiplicity problem
by using the Bonferroni correction by adjusting the desired ARL0 . For a one-sided
EWMA chart used for the Frisén and Wessman and later our proposed methods, we
define ARL0 = 370. Let q be the probability that any point exceeds the upper control
limit (UCL), ARL0 can be expressed as

ARL0 =
1

q
=

1

P (zt > UCL∣� = �I)
= 370,

so q = 0.0027 (Borror et al., 1998; Montgomery, 2009). In order to use the parallel
method for monitoring a mean shift in a bivariate process where the data in each series
are monitored separately in parallel, the probability q defined above is divided by 2
according to the Bonferroni correction to address the multiplicity from monitoring two
series in parallel. Therefore, the ARL0 for the parallel method is

ARL0 =
1

q
=

1

0.00135
= 740.7 ≃ 741

4.3 Proposed extensions to SR methods

In order to develop the SR methods proposed by Wessman (1998) and Frisén et al. (2011),
we further consider their limitations and aim to broaden their applicability. Wessman
and Frisén et al. proposed the SR methods based on the assumption of independent
observations (no CWS). While the former allows CBS, the latter does not. Using such
methods for outbreak detection might not be appropriate as health data are usually
dependent over time. Moreover, types of change points (LCP) between series are also
another issue for Wessman (1998) as he considered only simultaneous changes. There-
fore, Frisén’s method might have advantages over Wessman’s method if LCP is clearly
present.

In order to bridge these gaps, we aim to develop SR method by taking both CBS and
CWS along with LCP between series into account. Again, in this study, deriving likeli-
hood ratio statistics for detecting a mean shift in the multivariate process is our main
interest, while a shift in variance might be considered later on.

According to whether CWS, CBS and LCP between series are considered, we categorize
methods for sufficient reduction. Table 4.1 below summarizes the methods proposed by
Wessman (1998) (W) and Frisén et al. (2011) (F) along with five new cases proposed in
this chapter in order to make the technique more suitable for outbreak detection.

For independent observations (no CWS), we develop the SR method for detecting a
mean shift when CBS and LCP are present (Case 1) (see Section 4.4). This will be
a case of developing the SR method proposed by Wessman (1998) to allow for LCP
between series. In Section 4.5, we focus on developing SR methods for detecting a mean
shift in a process of dependent observations (CWS) under the different conditions when
either CBS or LCP or both are present (Cases 2-5). Details of the forms of CWS, CBS
and LCP considered in this study are provided in the following sections.
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Table 4.1: Summary of existing SR methods and proposed SR methods

CWS
No, i.e. indep. obs. Yes, i.e. dep. obs.

CBS CBS
No Yes No Yes

Time lag
No W and F W Case 2 Case 3
Yes F Case 1 Case 4 Case 5

4.3.1 Correlation within series (CWS)

Due to the nature of health data, we aim to derive a SR method for monitoring a mean
shift in a p dimensional multivariate series when CWS is present. The correlation within
series will be represented by using the normal autoregressive model of order 1 (AR(1)
model), where the current time point, xt , is conditional on the previous time point,
xt−1 . The simple AR(1) model is defined as

xt = �xt−1 + �t,

where t = 1, 2, ..., s , � is an autoregressive coefficient (−1 < � < 1) and �t are random
white noise with N(0, �2� ).

Consider the bivariate case, so the model for each series can be written as

xt = �xt−1 + �t,

where xt =

(
x1,t
x2,t

)
, � = diag(�1 �2) =

(
�1 0
0 �2

)
, (−1 < �i < 1, i = 1, 2), and

�t =

(
�1,t
�2,t

)
.

Note that the innovations �1,t and �2,t follow the assumptions below.

1 E(�i,t) = 0

2 E(�1,t, �2,t) = 

3 E(�i,t, �i,t−l) = 0 (i.e. no autocorrelation in the innovation series)

Therefore, the covariance matrix, Σ� , of innovations �1,t and �2,t is

Σ� =

(
�21� 
 �21�

)
,

where  , the covariance between �1,t and �2,t at time t , is a constant. If two series are
independent,  = 0.



56 Chapter 4. Sufficient reduction methods for normal data

Because of the CWS, the likelihood function for � is defined as below. Note that the
independent case (no CWS, �i = 0) is a special case of this case when xt does not
depend on xt−1 .

L(xt;�) = f(x1;�)
s∏
t=2

f(xt∣xt−1;�),

where t = 1, 2, ..., s .

With regard to a stationary AR(1) process, the mean and variance of the process are
defined below

� = E(Xt) = 0

Σ = V (Xt) = (1− �)−1Σ�(1− �)−1

Thus, for the initial value xt , t = 1, we define

Xt ∼ N2(�,Σ)

The probability density function of the bivariate series observed at time t = 1 is

f(x1;�,Σ) =
1

2�∣Σ∣1/2
exp{−1

2
(x1 − �)′Σ−1(x1 − �)} (4.7)

where x 1 = (x1,1 x2,1)
′ and Σ =

(
�21 �12
�12 �22

)
.

The conditional mean and conditional variance of the observation at time t = 2, 3, ..., s
is

� = E(Xt∣Xt−1 = xt−1) = �xt−1

Σ� = V (Xt∣Xt−1 = xt−1) = V (�t) = Σ� (4.8)

where Σ� = Σ−�Σ�′ (Reinsel, 1993; Lotze et al., 2010). We will use this approach to
calculate the conditional variance based on the prior estimate of Σ, although it could
also be estimated by direct maximum likelihood approach, the method commonly used
to estimate parameters in AR(1) model (Lütkepohl, 1993; Brockwell and Davis, 2002).

Thus, for t = 2, 3, ..., s ,
Xt∣Xt−1 ∼ N2(�xt−1,Σ�)

The conditional pdf’s needed at times t = 2, 3, ..., s are

f(x t∣x t−1;�,Σ�) =
1

2�∣Σ�∣1/2
exp{−1

2
(x t − �x t−1)

′Σ−1� (x t − �x t−1)}. (4.9)

The pdf and conditional pdf will be used to derive a sequence of statistics according to
the types of change points. SR methods developed for dependent data are provided in
Section 4.5.
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4.3.2 Correlation between series (CBS)

SR method have the advantage over parallel methods of taking CBS into account, which
might improve detection capability. The relationships between the mean shifts of the
series modelled through CBS can be different types, defined, for example, according to
patient behaviours and disease natures. Let c = (c1, c2, ..., cp)

′ be a vector of shift size
we want to detect (i.e. ci is the shift size in series i). Two situations for the relations
between mean shifts in health data are described below.

Consider patient behaviour concerning how they react or treat themselves when they are
infected. When people become ill, some of them may go to a hospital to receive medical
treatment and the others may treat themselves by taking medicine from pharmacists.
So the number of people infected might relate to values of other variables. For example,
a shift in number of people infected might be reflected in a shift in number of phone
calls to health centres, emergency department visits, pharmacy sales and work or school
absenteeism, etc. Therefore, in this case we assume that a mean shift in one series might
be reflected in a mean shift in the rest of the p dimensional multivariate series. The
relations between mean shifts of the series are determined by the correlations between
series 1. If �1i is the correlation between series 1 (where the initial shift occurs; in this
case the number infected) and series i (i ∕= 1), the shift size in series i , ci (i ∕= 1), is
determined by �1i and the shift size in series 1, c1 . Therefore,

c =

⎛⎜⎜⎜⎝
c1
c2
...
cp

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝
c1

�12 c1
...

�1p c1

⎞⎟⎟⎟⎠
If we consider the nature of a disease, the vector of shift size c may be defined in a
different way. In this case, we assume that the shifts in series i occur sequentially and,
therefore, the relations of mean shifts between the series also depend on CBS in the
corresponding order. An example might be the meaning of how symptoms develop after
disease exposure. For example, in the case of hand, foot and mouth disease, the early
symptoms developed are fever and small red spots in the mouth. One or two days af-
terwards, the later symptoms are mouth lesions and finally a skin rash a further one or
two days later (NHS, 2012). Therefore, if there is an increase in the number of people
having a fever with red spots, it might reflected in a shift in the numbers of subsequent
symptoms later on.

In this case, with suitable labelling of the series, the mean shift in series i is ci =
�(i−1)i ci−1 . The vector of shift sizes is thus

c =

⎛⎜⎜⎜⎜⎜⎝
c1
c2
c3
...
cp

⎞⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎝
c1

�12 c1
�23 c2

...
�(p−1)p cp−1

⎞⎟⎟⎟⎟⎟⎠
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Of course, in the bivariate case, the two scenarios are not distinguishable.

Figures 4.1 and 4.2 illustrate the simultaneous mean shifts in a bivariate process of
independent and dependent observations, respectively. If there is no CBS (Figure 4.1
(a) and 4.2 (a)), the mean shift in the first series does not affect the mean shift in the
second. On the other hand, the shift in the first series will be reflected in the second
series if CBS is clearly present (Figure 4.1 (b) and 4.2 (b)). Here, c2 depends on c1 and
the strength of CBS. In the case of non-simultaneous changes, the order of changes might
need to be specified, however, the similar arguments to those above can be applied.
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Figure 4.1: The illustration of relation of mean shift between series when there is no
CWS (� = 0) with a) no CBS (� = 0) and b) CBS (� = 0.6). Shift occurs at time =
150

4.3.3 Types of changes

Two types of mean shifts in a multivariate process considered in this study are si-
multaneous changes and changes with time lags. In case of simultaneous changes,
where the mean of series i (i = 1, 2, .., p) has shifted from �Ii to �Oi at time � (i.e.
�1 = �2 = ... = �p = � ), the mean vector, � , of in control and out of control stages is

�t =

{
�I = (�I1, ..., �

I
p)
′ t < � in control stage

�O = (�O1 , ..., �
O
p )′ t ≥ � out of control stage

In case of changes with time lags, with suitable labelling of the series, we assume that
changes occur sequentially (�1 < �2 < ... < �p ) with known time lags li where li =
�i+1 − �i . The earliest change point is regarded as a change point a process denoted by
� = �1 = min(�1, �2, ..., �p). The mean vectors of in control stage, �I , and out of control
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Figure 4.2: The illustration of relation of mean shift between series when there is CWS
(� = 0.6) with a) no CBS (� = 0) and b) CBS (� = 0.6). Shift occurs at time = 150.

stage, �O , are

�I = (�I1, ..., �
I
p)
′ t < �1

and

�O =

⎧⎨⎩
(�O1 , �

I
2, �

I
3, ..., �

I
p)
′ �1 ≤ t < �2

(�O1 , �
O
2 , �

I
3, ..., �

I
p)
′ �2 ≤ t < �3

. . . . . .
(�O1 , �

O
2 , ..., �

O
p−1, �

O
p )′ t ≥ �p

where t = 1, 2, ..., s.

4.3.4 Assumptions of proposed SR methods

In this study, we propose SR methods for detecting a mean shift in multivariate process
by incorporating CWS, CBS and types of change points in sufficient reduction. For sim-
plicity, the SR methods developed in this study are illustrated by bivariate normal series
(p = 2) but most extend naturally (see the discussion in Chapter 8). The assumptions
of the sufficient reduction methods proposed in this study are

∙ aim to detect a sudden, but persistent, shift in mean of bivariate process;

∙ data are bivariate normally distributed;

∙ allow for CWS and CBS;

∙ decision regarding detection of a mean shift will be made at each decision time
point (t = 1, 2, ..., s);
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∙ two types of change points are investigated. Simultaneous changes (�1 = �2 = � )
and changes with time lags ( l = �2 − �1, �2 > �1 , t = 1, 2, ..., �1, ..., �2, ..., s);

∙ the mean shift size we aim to detect in series i is denoted by ci which is pre-
specified (i.e. the process mean of series i has shifted from �Ii to �Oi where
�Oi = �Ii + ci );

∙ due to the CBS denoted by � , the mean shift in one series will be reflected in
another if CBS, � , is present (i.e. c2 = �c1 );

∙ the variance of the process is unchanged over time;

∙ the sequence of statistics derived for detecting a mean shift for any s will be
monitored by a one-sided EWMA chart with � = 0.3 and ARL0 = 370 (Fricker
et al., 2007; Joner et al., 2008; Montgomery, 2009);

∙ the performance of detection will be measured by the conditional expected delay
(CED), true alarm rate (TAR), false alarm rate (FAR) and non-detection rate
(NDR) (see more details in Section 3.4).

The SR method developed for detecting a mean shift in a process of independent obser-
vations (no CWS) when CBS and LCP are present (case 1) is detailed in Section 4.4,
while SR methods developed for a process of dependent observations (CWS) when either
CBS or LCP or both are present (cases 2-5, see Table 4.1) are provided in Section 4.5.

4.4 SR methods for independent observations

As mentioned previously Wessman (1998) and Frisén et al. (2011) derived SR methods
based on the assumption that observations in each series are independent (no CWS).
However, the former allows for CBS but not for LCP, while the latter does not allow
for CBS but does for LCP. In this section we provide a comprehensive analysis of all
combinations from the previous studies. In the case of independent observations, we
define the in control and out of control of series X1 and X2 in the bivariate normal case
as follows.

X1,t ∼
{
N(�I1, �

2
1) t < �1 in control stage

N(�O1 , �
2
1) t ≥ �1 out of control stage

X1,t ∼
{
N(�I2, �

2
2) t < �2 in control state

N(�O2 , �
2
2) t ≥ �2 out of control stat

where t = 1, 2, ..., �1, ..., �2, ..., s (�2 = �1 + l) and �Oi = �Ii + ci . The covariance matrix

between X1 and X2 , which is unchanged over time, is denoted by Σ =

(
�21 �12
�12 �22

)
.
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4.4.1 Case 1 (No CWS but CBS and LCP)

Here we develop a SR method for detecting a mean shift in bivariate normal series when
CBS and LCP between two series, X1 and X2 , are present. LCP is defined as the known
time lag of change points between two series ( l = �2 − �1 , where �2 > �1 ). Of course,
putting l = 0 give the ‘CBS but no lag’ case.

Regarding the LCP between series, like the Frisén method, x1,t and x2,t+l are used in
SR method instead of x1,t and x2,t . For convenience we then define

y t =

(
x1,t
x2,t+l

)
Incorporating the known time lag l by using y t instead of x t makes detecting changes
with the known time lag equivalent to the case of detecting simultaneous change, since
both changes (at �1 and �2 = �1+l ) occur at the same time at time �1 , if y t is used.
Therefore in the case of LCP, �1 is defined as a change point of the process.

Due to the data available in this case (see Section 4.2.4), the pdf of in control and out
of control states according the change points, �1 , are defined as follow.

f(y t;�) =

⎧⎨⎩
f(y t;�

I) t = 1, ..., �1 − 1 in control stage
f(y t;�

O) t = �1, ..., s− l out of control stage
f(x1,t;�

O
1 ) t = s− l + 1, ..., s out of control stage

where �O = �I + c , �I =

(
�I1
�I2

)
, �O =

(
�O1
�O2

)
and c =

(
c1
c2

)
. The covariance

matrix, Σy , is unchanged over time, Σy =

(
�21 �y
�y �22

)
, where �y is the covariance

between x1,t and x2,t+l .

The pdf of the bivariate process defined according to the change points are given in the
subsequent sections as follows.

4.4.1.1 Stage 1: in control stage

At time t = 1, 2, ..., �1 − 1, X1 and X2 are both in control.

Yt ∼ N2(�
I ,Σy)

The pdf of bivariate process can be written as

f(y t;�
I ,Σy) =

1

2�∣Σy∣1/2
exp{−1

2

(
y t − �I

)′
Σ−1y

(
y t − �I

)
}

where t = 1, 2, ..., �1 − 1.
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4.4.1.2 Stage 2: out of control stage while x2,t+l is still available

At time t = �1, ..., �1+l, ..., s− l , X1 and X2 are both out of control.

Yt ∼ N2(�
O,Σy)

At this stage the mean of the X1 series has shifted from �I1 to �O1 (�O1 = �I1+c1 ) at time
t = �1 . The mean of the X2 series has shifted from �I2 to �O2 (�O2 = �I2 + c2, c2 = �c1 )
at time �2 = �1 + l . The pdf of the bivariate process can be written as

f(y t;�
O,Σy) =

1

2�∣Σy∣1/2
exp{−1

2

(
y t − �O

)′
Σ−1y

(
y t − �O

)
}

where t = �1, �1 + 1, ..., �1 + l, ..., s− l .

4.4.1.3 Stage 3: out of control stage while only x1,t is available

At time t = s− l + 1, ..., s , at this stage X1 is still out of control, but data from series
X2 , x2,t+l , are not yet available. Therefore data from X1 only will be used, having
univariate normal distribution.

X1,t ∼ N(�O1 , �
2
1)

where �O1 = �I1 + c1 . The pdf of univariate normal distribution can be written as

f(x1,t;�
O
1 , �

2
1) =

1√
2��21

exp{− 1

2�21
(x1,t − �O1 )2}

where t = s− l + 1, ..., s .

From equation (4.1), the likelihood function of process according to the change points
and LCP between series can be illustrated as

L(yt;�∣�1) =

�1−1∏
t=1

f I(yt;�
I)

s−l∏
t=�1

fO(yt;�
O)

s∏
t=s−l+1

fO(x1,t;�
O
1 )

=

s−l∏
t=1

f I(yt;�
I)

s∏
t=s−l+1

f I(x1,t;�
I
1)

s−l∏
t=�1

fO(yt;�
O)

f I(yt;�
I)

s∏
t=s−l+1

fO(x1,t;�
O
1 )

f I(x1,t;�I1)

= ℎ(xs)
s−l∏
t=�1

fO(yt;�
O)

f I(yt;�
I)

s∏
t=s−l+1

fO(x1,t;�
O
1 )

f I(x1,t;�I1)

= ℎ(xs) lr�1(xs;�
O − �I) (4.10)

where t = 1, 2, ..., �1, ..., �1 + l, ...., s− l, ..., s (i.e. �2 = �1 + l).

Similarly to the Wessman argument, lr�1(xs) is a sufficient sequence for monitoring a
mean shift with known time lag in a process for any decision time s . By the factorization
theorem, Tt(xt) is a likelihood ratio statistic for detecting a mean shift in process at time
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t . Therefore, the sufficient sequence lr1(xs) for monitoring a mean shift with time lag
in the process is the sequence

lr1(xs) = {T1(x1), ..., Ts(xs), }

where

Tt(xt) =

{
c′Σ−1y t t = 1, 2, ..., s− l
c1x1,t/�

2
1 t = s− l + 1, ..., s

(4.11)

where c2 = �c1 . The derivation is detailed in Section A.1 in Appendix A.

4.5 SR methods for dependent observations (CWS)

In order to investigate a mean shift in the bivariate time series, in and out of control
stages are defined according to a change point in each series (�1 and �2 ). During the in
control state, the conditional mean for series i is �Ii = �ixi,t−1 , while during the out of
control state, the conditional mean for series i is �Oi = �ixi,t−1 + ci , where i = 1, 2 and
ci is the constant shift size we aim to detect in series i . Thus

X1,t∣X1,t−1 ∼
{
N(�I1, �

2
1�) t < �1 in control state

N(�O1 , �
2
1�) t ≥ �1 out of control state

X2,t∣X2,t−1 ∼
{
N(�I2, �

2
2�) t < �2 in control state

N(�O2 , �
2
2�) t ≥ �2 out of control state

where t = 1, 2, ..., �1, ..., �2, ..., s and �1 ≤ �2 ). The covariance matrix, Σ , for t = 1 and
the conditional covariance matrix, Σ� , for t = 2, 3, ..., s are unchanged over time.

The sufficient reduction methods proposed for detecting a mean shift in bivariate time
series when either LCP or CBS or both are present (cases 2, 3, 4 and 5; see Table 4.1)
will be detailed in the following sections.

4.5.1 Case 2 (CWS but no CBS or LCP)

Assuming that there is no CBS or LCP between series, then changes occur at the same
time � (�1 = �2 = � ) and � > 1. To derive a sequence of likelihood ratio statistics, we
define the pdf of the bivariate series (t = 1) and the conditional pdf of bivariate series
(t = 2, ..., s) for in and out of control stages according to change point � as follows

f(x t;�) =

⎧⎨⎩
f I(x 1;�

I) t = 1 in control state
f I(x t∣x t−1;�I) t < � in control state
fO(x t∣x t−1;�O) t ≥ � out control state

4.5.1.1 Stage 1: the initial in control stage

At time t = 1, an in control stage, X1 and X2 are both in control.

Xt ∼ N2(�
I ,Σ)

The pdf of the series is similar to the pdf defined in equation (4.7) with mean �I =(
�I1 �I2

)′
and variance Σ =

(
�21 0
0 �22

)
since there is no CBS.
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4.5.1.2 Stage 2: in control stage

At time t = 2, 3, ..., � − 1, the process is still in control.

Xt∣Xt−1 ∼ N(�I ,Σ�)

The conditional pdf of the process is similar to the conditional pdf defined in equation
(4.9), where the condition mean and variance are �I = E(Xt∣Xt−1 = xt−1) = �xt−1
and Σ� = V (Xt∣Xt−1 = xt−1) = V (�t) = Σ− �Σ�′ , respectively.

4.5.1.3 Stage 3: out of control stage

At time t = �, � + 1, ..., s ,

Xt∣Xt−1 ∼ N(�O,Σ�)

The process is out of control, the conditional mean changes from �I to �O = E(Xt∣Xt−1 =
xt−1) = �x t−1 + c , though the conditional covariance matrix, Σ� = Σ− �Σ�′ , is con-
stant over time. Assume that c =

(
c1 c2

)′
is the vector of constant shift sizes in the

means of the X1 and X2 series which we aim to detect.

From the bivariate normal distribution defined at each stage, the likelihood function of
of bivariate series given that a mean shift occurs at � can be defined as

L(xt;�∣�) = f I(x1;�0)
�−1∏
t=2

f I(xt∣xt−1;�I)
s∏
t=�

fO(xt∣xt−1;�O)

= f I(x1;�0)
s∏
t=2

f I(xt∣xt−1;�I)
s∏
t=�

fO(xt∣xt−1;�O)

f I(xt∣xt−1;�I)

= ℎ(xs)

s∏
t=�

lr(xt;�
O − �I)

= ℎ(xs) k(lr� (xs;�
O − �I)), (4.12)

where t = 1, 2, ..., �, ..., s .

From Section 4.2.3, we know a sufficient sequence lr1(xs) for monitoring a mean shift
in a process when CWS is present is

lr1(xs) = {T1(x1), ..., Ts(xs)}

and

Tt(xt) = c′Σ−1�

(
x1,t − �1x1,t−1
x2,t − �2x1,t−1

)
,

where t = 1, 2, ..., s and Σ� = Σ − �Σ�′ . The full derivation for this case is provided
in Section A.2 in Appendix A.
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4.5.2 Case 3 (CWS and CBS but no LCP)

If CBS is present, the likelihood ratio statistic, Tt(xt), used for detecting a simultaneous
change (no LCP) in the bivariate series is a generalization of case 2 when CBS is not
zero (i.e. �12 ∕= 0) but this has no effect on the argument. Therefore, the likelihood
ratio statistics derived for this case are

Tt(xt) = c′Σ−1�

(
x1,t − �1x1,t−1
x2,t − �2x1,t−1

)
(4.13)

where t = 1, 2, ..., s , c2 = �c1 and Σ� = Σ− �Σ�′ , Σ =

(
�21 �12
�12 �22

)
.

4.5.3 Case 4 (CWS, LCP but no CBS)

Like case 1, assuming that time lag between change points is known ( l = �2−�1 ), we then
monitor y t rather than x t . Also, due to the known time lag and the lack of availability
of the data from the later parts of series X2 (see Section 4.2.4), the initial pdf for t = 1
and the conditional pdf for t = 2, 3, ..., s of bivariate series defined for in control and
out of control stages given that the change point of the process is �1 = min(�1, �2) and
LCP between series are summarized as follows.

f(y t;�) =

⎧⎨⎩
f I(y t;�

I) t = 1 in control state
f I(y t∣y t−1;�I) t = 2, ..., �1 − 1 in control state
fO(y t∣y t−1;�O) t = �1, ..., s− l out of control state
fO(x1,t∣x1,t−1;�O1 ) t = s− l + 1, ..., s out of control state

where �O = �I + c and t = 1, 2, ..., s .

4.5.3.1 Stage 1: the initial in control stage

At time t = 1, the pdf of the bivariate series can be written in a similar form defined
in equation (4.7), where y t =

(
x1,t x2,t+l

)′
, �I =

(
�I1 �I2

)′
and due to no CBS,

Σ =

(
�21 0
0 �22

)
.

4.5.3.2 Stage 2: in control stage

At time t = 2, 3, ..., �1 − 1, X1 and X2 are both in control.

Yt∣Yt−l ∼ N(�I ,Σ�)

The conditional mean and variance of the bivariate series are

�I = E(Yt∣Yt−1 = yt−1) = �y t−1

Σ� = V (Yt∣Yt−1 = yt−1) = Σ− �Σy�
′′

The conditional pdf of the series is similar to that in equation (4.9).
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4.5.3.3 Stage 3: out of control stage while x2,t+l is still available

At time t = �1, ..., �1 + l, ..., s− l , both X1 and X2 are out of control. Thus

Yt∣Yt−l ∼ N(�O,Σ�).

The conditional mean and variance are

�O = E(Yt∣Yt−1 = yt−1) = �y t−1 + c

Σ� = V (Yt∣Yt−1 = yt−1) = Σ− �Σy�
′

With the parameters defined above, the conditional pdf of the series is similar to that
in equation (4.9).

4.5.3.4 Stage 4: out of control stage while only x1,t is available

At time t = s − l + 1, ..., s , at this stage X1 is still out of control, while data from X2

series, x2,t+l , are not yet available. We have

X1,t∣X1,t−1 ∼ N(�O1 , �
2
1�)

The conditional mean and variance of x1,t at this stage will be

�O1 = E(X1,t∣X1,t−1) = �1x1,t−1 + c1

�21� = V ar(X1,t∣X1,t−1) = V ar(�1,t)

The conditional pdf of X1 series at time t = s− l + 1, ..., s can be written as

f(x1,t∣x1,t−1;�1, �21�) =
1√

2��21�
exp{− 1

2�21�
(x1,t − (�1x1,t−1 + c1))

2}

where t = s− l + 1, ..., s .

From the pdfs defined above, the likelihood function of the series when there is LCP
between series can be written as

L(yt;�∣�1) = f I(y1;�
I)

�1−1∏
t=2

f I(y t∣y t−1;�I)
s−l∏
t=�1

fO(y t∣y t−1;�O)
s∏

t=s−l+1

fO(x1,t∣x1,t−1;�O1 )

= ℎ(xs)
s−l∏
t=�1

fO(y t∣y t−1;�O)

f I(y t∣y t−1;�I)

s∏
t=s−l+1

fO(x1,t∣x1,t−1;�O1 )

f I(x1,t∣x1,t−1;�I1)

= ℎ(xs) lr�1(xs;�
O − �I) (4.14)

From Section 4.2.4 and 4.4.1, a sequence lr�1(xs;�
O − �I) is sufficient for detecting a

mean shift with known time lag l . By the factorization theorem, the sufficient sequence
for monitoring a mean shift in a process when CWS and LCP are both present is

lr1(xs;�
O − �I) = {T1(x1), ..., Ts(xs)}
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and

Tt(xt) =

⎧⎨⎩
c′Σ−1� (yt − �yt−1) t = 1, ..., s− l

c1(x1,t − �x1,t−1)/�21� t = s− l + 1, ...., s

where t = 1, 2, ..., �1, ..., s− l, ..., s , c2 = �c1 and Σ� = Σ− �Σy�
′ , Σy =

(
�21 0
0 �22

)
.

The derivation of sufficient statistics for case 4 is also provided in Section A.3 in Appendix
A.

4.5.4 Case 5 (CWS, LCP and CBS)

The sequence of likelihood ratio statistics for monitoring a change with time lag in bi-
variate time series when both CWS and CBS are present is again generalization of case
4 when CBS is not zero. Again, the generalization does not affect the sufficiency argu-
ment, therefore, the sequence derived for detecting a mean shift in bivariate series, for
any s , in this case is

c′Σ−1� (yt − �yt−1) t = 1, ..., s− l

c1(x1,t − �x1,t−1)/�21� t = s− l + 1, ...., s

where t = 1, 2, ..., s− l, ..., s . Σ� = Σ− �Σy�
′ where Σy =

(
�21 �y
�y �22

)
.

4.6 System evaluation

The evaluation of the SR methods proposed in this chapter is conducted using a simu-
lation study. Bivariate series are generated from the bivariate normal distribution with
mean and variance defined below.

Xt ∼ N2

((
10
5

)
,

(
1 �12
�12 1

))
Since the variance in each series is one, the correlation between series (CBS) is equal to
the covariance, i.e. � = �12 . Data are also generated with different values of CWS and
CBS and types of change points between series in order to investigated the detection
performances under different conditions.

∙ CBS: � = 0, 0.2, 0.4 or 0.6

∙ CWS: �i = 0, 0.2, 0.4 or 0.6 (i.e. for simplicity, each series has the same �i )

∙ LCP: simultaneous change ( l = 0) and change with time lag ( l = 5)

The mean shift size we aim to detect in this study is set at either two and three times
the standard deviation of original series in the in control stage. Therefore, in case of
mean shift size two,

c =
(
c1 �c1

)′
=
(

2 2�
)′
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A shift of size c is added to the data at and after time � . In the case of lag between
series ( l), a shift is added to the first series at time � and to the second series at time
� + l . Note that, in this chapter, we aim to evaluate the detection performance of SR
methods for detecting a pre-specified shift size (i.e. 2 or 3 time standard deviation of
the original series in the in control stage). Therefore, a shift size, c , is pre-specified and
so the data with the added signals are generated according to c . The performance of
such methods for detecting a shift size which might be smaller or or greater than c will
be investigated in Chapter 5.

The performance of detection of our proposed methods are compared against three other
methods.

∙ Parallel method adjusted for multiplicity (see Section 4.2.6 )

∙ Frisén (LCP but no CWS and no CBS) (Frisén et al., 2011)

∙ Wessman (CBS but no CWS or LCP) (Wessman, 1998)

A one-sided EWMA chart is used as a tool for detecting a shift in the process (see Section
4.2.5). Several statistics are used to evaluate and compare the detection performance of
each method, namely conditional expected delay (CED), true alarm rate (TAR), false
alarm rate (FAR) and non-detection rate (NDR). Let tA be the time of an alarm, then
define:

CED = E(tA − � ∣tA ≥ �)

FAR = P (tA < �)

TAR = P (tA − � ≤ 6∣tA ≥ �)

NDR = P (tA − � ≥ 7∣tA ≥ �) = 1− FAR− TAR

More details of measurements for system evaluation are provided in Section 3.4. The de-
tection performance between the methods are investigated by comparing the differences
of these statistics estimated from the simulations against the critical values defined in
Section 3.6.

The results are from 10,000 simulations. The system evaluation for three different sce-
narios are provided in subsequent sections with some illustrations from the simulation
study. Both types of change points will be considered in each scenario. The three
scenarios are

∙ scenario 1: CBS but no CWS

∙ scenario 2: CWS but no CBS

∙ scenario 3: CWS and CBS

In each scenario, examples of the EWMA charts are illustrated. The vertical dotted line
indicates the change point of the process and the horizontal dashed line is the upper
control limit. The comparison of the detection performance between four methods is
illustrated in bar charts, where P, F, W and Ck stand for Parallel, Frisén, Wessman
and our proposed method Case k, respectively. The original results from the simulation
study are given in Tables A.1 - A.6 in Appendix A.



4.6. System evaluation 69

4.6.1 Scenario 1 (CBS but no CWS)

We assume that observations in each series are independent (no CWS). Three levels of
CBS (0.2, 0.4 and 0.6) and two types of change points (simultaneous change ( l = 0)
and changes with time lag ( l = 5)) are considered. This scenario is used to investigate
the effect of not taking CBS into account in the Frisén method and not taking LCP into
account in the Wessman method. The bar charts comparing the detection performance
for detecting simultaneous changes and changes with time lag are shown in Figures 4.3
and 4.4, respectively, while the original results from the simulation are given in Tables
A.1 and A.2, respectively, in Appendix A.

Major differences are only apparent in CED; the reader is referred to Tables A.1 and
A.2 (in Appendix A) to observe slight differences in f̂ar and n̂dr. In the case of si-
multaneous change, if CBS is low, there is no difference in the performance between
Frisén and Wessman methods. However, if CBS is moderate or high, Wessman method
perform significantly differently from Frisén method by giving shorter ĉed, while there
is no significant difference in TAR, FAR and NDR between the methods.

On the other hand, in the case of change with time lag, there is no difference in all
measures between Frisén and our method (case 1) since both are accounted for the time
lag. The CEDs of Frisén and our methods are significantly different from the others.
Ignoring the LCP between series in Wessman method gives a longer ĉed compared to
Frisén and our methods (Table A.2). Figure 4.5 shows the EWMA charts of the four
methods for detecting changes with time lag. The parallel method (Figure 4.5 (b-c))
and Wessman method (Figure 4.5 (e)) give longer detection than the others.

For both cases, the parallel method performs significantly differently from other methods
by giving a longer delay, although generally a lower f̂ar, compared to the others. This
improved f̂ar is because the parallel method is adjusted for multiplicity, so its upper
control limit is slightly higher than those of other methods. Also, unsurprisingly, the
larger shift size is more likely to be detected than smaller shift size; all methods perform
better in detecting a shift of 3 times the standard deviation of the original data than
one of size 2.

4.6.2 Scenario 2 (CWS but no CBS)

We investigate the performance of detection when CWS is clearly present in each series,
but with no CBS. The examples of the EWMA chart for detecting simultaneous changes
and changes with time lag are illustrated in Figures 4.6 and 4.7, respectively. Since
evidence of CWS is still present in the sequence of statistics derived by older meth-
ods, an alarm is flagged before a true change occurs which is regarded as a false alarm.
Both Figures are examples of false alarms produced by the parallel, Frisén and Wessman
methods, while the proposed methods (cases 2 and 4) have less chance of producing false
alarms as CWS is accounted for in the sufficient reduction. This effect can be seen from
the plots of autocorrelation function of the likelihood ratio statistics of the four methods
used for detecting the simultaneous changes (Figure A.1) and changes with time lag
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Figure 4.3: A bar chart comparing the performance in detecting simultaneous changes
in scenario 1: (a) - (d) shift size = 2 and (e) - (h) shift size = 3.
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Figure 4.4: A bar chart comparing the performance in detecting changes with time lag
in scenario 1: (a) - (d) shift size = 2 and (e) - (h) shift size = 3.
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Figure 4.5: An example of scenario 1 with changes with time lag (shift size 2, no CWS
and CBS = 0.6): (a) plot of the original series, (b) - (c) one-sided EWMA charts of
parallel methods, (d), (e) and (f) one-sided EWMA charts of Frisén, Wessman and
proposed method (case 1), respectively.
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(Figure A.2) in Appendix A.

The bar charts comparing the detection performance for detecting simultaneous changes
and changes with time lag are shown in Figures 4.8 and 4.9, respectively, with the
full results from the simulation in Tables A.3 and A.4, respectively, in Appendix A.
The proposed SR methods developed for detecting simultaneous change (case 2), and
developed for changes with time lag (case 4), perform significantly differently from other

methods by giving shorter ĉed and lower f̂ar. The same pattern is repeated when the
shift size is large, though a larger shift size is, of course, generally detected more easily
than a smaller one. Due to the high CWS resulting in high variation in data (CWS = 0.6)
(i.e. a small shift size is hardly to be detected), the NDR of our method is significantly
different from the others for detecting a small shift size. From Figures 4.8(d) and 4.9(d),

it seems as though our method gives higher n̂dr than the others for detecting a small
shift size when CWS is large. However, while our method failed to detect a small shift
size, other methods give high false alarm instead due to the effect of CWS. The t̂ar
and n̂dr is substantially improved when shift size is large, especially for the SR methods
(cases 2 and 4). Additionally, higher CWS, higher f̂ars are produced by the parallel,
Frisén and Wessman methods for both types of change point. This is because the SR
methods take CWS into account, while the others do not. Also ignoring LCP by using
the ordinary Wessman method to detect changes with time lag gives a longer delay with
high f̂ar.

4.6.3 Scenario 3 (CWS and CBS)

Having fixed CWS (� = 0.6), the detection performance is investigated with different
values of CBS (� = 0.2, 0.4, 0.6). As in scenario 2 where observations are also dependent
over time (CWS = 0.6), the adjusted parallel, Frisén and Wessman methods produce
high numbers of false alarms since the effect of CWS is still present in the derived se-
quence of statistics and this often produces a false alarm before a true change occurs
(see Figures A.3 and A.4 in Appendix A). This effect can also be observed from the plot
of EWMA charts in Figures 4.10 and 4.11. The pattern of results is the same for both
simultaneous change and change with time lag.

The bar charts comparing the detection performance for simultaneous changes and
changes with time lag are shown in Figures 4.12 and 4.13, respectively, and full re-
sults are given in Tables A.5 and A.6, respectively, in Appendix A. Again, whether or
not there is LCP between series, our method (cases 3 and 5) performs significantly dif-

ferently from other methods by giving shorter ĉed and lower f̂ar, especially when CBS
is large. Unsurprisingly, the pattern is repeated when shift size is large; also t̂ar and n̂dr
are improved, with shorter ĉed. Additionally, ignoring LCP in the Wessman method for
detecting changes with time lag (Table A.6) gives slightly worse result, for detecting a
small shift size, compared to the Frisén method, which does not take CBS into account.
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Figure 4.6: An example of scenario 2 (simultaneous changes, shift size 2, CWS = 0.6
and no CBS): (a) plot of the original series, (b) - (c) one-sided EWMA charts of parallel
methods, (d), (e) and (f) one-sided EWMA charts of Frisén, Wessman and proposed
method (case 2), respectively.
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Figure 4.7: An example of scenario 2 (changes with time lag, shift size 2, CWS = 0.6
and no CBS): (a) plot of the original series, (b) - (c) one-sided EWMA charts of parallel
methods, (d), (e) and (f) one-sided EWMA charts of Frisén, Wessman and proposed
method (case 4), respectively.
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Figure 4.8: A bar chart comparing the performance in detecting simultaneous changes
in scenario 2: (a) - (d) shift size = 2 and (e) - (h) shift size = 3.
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Figure 4.9: A bar chart comparing the performance in detecting changes with time lag
in scenario 2: (a) - (d) shift size = 2 and (e) - (h) shift size = 3.
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Figure 4.10: An example of scenario 3 (simultaneous changes, shift size 2, CWS = 0.6
and CBS = 0.6): (a) plot of the original series, (b) - (c) one-sided EWMA charts of
parallel methods, (d), (e) and (f) one-sided EWMA charts of Frisén, Wessman and
proposed method (case 3), respectively.
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Figure 4.11: An example of scenario 3 (change with time lag, shift size 2, CWS = 0.6 and
CBS = 0.6): (a) plot of the original series, (b) - (c) one-sided EWMA charts of parallel
methods, (d), (e) and (f) one-sided EWMA charts of Frisén, Wessman and proposed
method (case 5), respectively.
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Figure 4.12: A bar chart comparing the performance in detecting simultaneous changes
in scenario 3: (a) - (d) shift size = 2 and (e) - (h) shift size = 3.
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Figure 4.13: A bar chart comparing the performance in detecting changes with time lag
in scenario 3: (a) - (d) shift size = 2 and (e) - (h) shift size = 3.
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4.7 Conclusions

In this study sufficient reduction methods are proposed for detecting a persistent mean
shift in multivariate series under different conditions (CWS, CBS and LCP). Our pro-
posed methods perform better than adjusted parallel, Frisén and Wessman methods
when applied under conditions in which these effects occur. If the true LCP can be
identified, sufficient reduction methods proposed for simultaneous changes and changes
with time lag give similar results (i.e. detecting changes with time lag is the generaliza-
tion case of detecting simultaneous change if time lag is known).

Whether or not there is LCP between series, if CWS is clearly present, our proposed
method gives better results, with shorter CED and lower FAR, than the others. Ignoring
CWS (i.e. in the adjusted parallel, Frisén and Wessman methods) delays detection and
produces a high FAR since the effect of CWS is still present in the derived likelihood ratio
statistics. Therefore, monitoring such series using the one-sided EWMA chart produces
a higher FAR because it violates the assumption of the EWMA chart where data need
to be independent over time. Also, recognizing CBS gives a chance of detecting even
a small shift in the process mean. Thus, Wessman’s method performs slightly better
than Frisén’s in detecting a simultaneous change when CBS is clearly present with no
CWS. However, it perform worse than Frisén’s method for detecting changes with time
lag since LCP is not incorporated.

Since the effect of CWS is still present in the derived sequence of statistics, using a
one-sided EWMA chart developed for independent data as a detection tool produces
high false alarm rates. Thus, a univariate detection tool for monitoring a change in the
process of autocorrelated data might be needed. It can be clearly seen that ignoring or
mis-specifying the parameters (CWS, CBS and LCP) in the sufficient reduction leads to
the wrong conclusion. The effects of, possibly imprecise, mis-specification and estimation
of CWS, CBS and LCP also need to be considered in order to improve the capability
for outbreak detection. Apart from this, data and the added signals used in the system
evaluation are generated according to the pre-specified shift size aimed to detect. The
detection performance for detecting a shift which is smaller or greater than the the
pre-specified shift size might be considered. These aspects are investigated further in
Chapter 5.
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Chapter 5

Extended sufficient reduction
methods (normal case)

5.1 Background

In the previous chapter, sufficient reduction (SR) methods used for detecting a mean shift
in a process of dependent observations are proposed and compared with existing meth-
ods. We found that if data are autocorrelated, the SR methods proposed for detecting a
mean shift in a process of independent data (e.g. the Frisén method (Frisén et al., 2011)
and Wessman method (Wessman, 1998)) produce high false alarms when we monitor the
derived sequence of likelihood ratio statistics with a standard one-sided EWMA chart.
Since both methods do not take correlation within series (CWS) into account, the effect
of CWS is still present in the derived sequence of likelihood ratio statistics resulting in
high FAR when monitored with a standard one-sided EWMA chart for independent data.

Furthermore, we can see that SR methods perform ineffectively if the parameters, such
as CWS, CBS and LCP, are not specified appropriately in the sufficient reduction. For
example, if there is a correlation between series (CBS), the Wessman method gives bet-
ter results than Frisén method since it takes CBS into account. However, it performs
poorly compared to Frisén for detecting a change with time lag. As mentioned pre-
viously, both also perform poorly, by producing high FAR, for detecting change in an
autocorrelated process. Due to the variation in health data, noticing and appropriately
specifying the parameters used in SR methods might improve the detection performance.

Additionally, the data with the shifted mean used in the system evaluation in the previ-
ous chapter are generated according to the pre-specified shift size that we want to detect
by the SR methods. In this chapter, having defined a pre-specified shift size, we also
aim to investigate the performance of the methods for detecting a shift in the process
which might be smaller or greater than the pre-specified size. Obviously, a larger shift
is more likely to be detected than a smaller one, however, we still want to investigate
how SR methods perform in this case. The performance of such methods are compared
with the parallel methods which basically do not require the prior specification of the
shift size to be detected.

81
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Noting these limitations, we extend the SR methods for normal data (Chapter 4) by
modifying a standard one-sided EWMA chart for monitoring a positive shift in a process
of dependent observations and by studying the robustness of the SR methods for the
mis-specification of parameters and specification of shift size in the sufficient reduction.
We believe that using a one-sided EWMA chart modified for autocorrelated data and
specifying parameters appropriately in the sufficient reduction will improve the detection
performance and reduce false alarm rates. The modification of one-sided EWMA chart
is detailed in Section 5.2, while the robustness study of SR methods are given Section
5.3.

5.2 The modification of a one-sided EWMA chart to ac-
commodate autocorrelated data

As mentioned previously, ignoring CWS by monitoring dependent data with a standard
EWMA chart gives a high false alarm rate. This feature has been noticed previously
with possible modification proposed. Examples of the violation of independence in con-
trol charts can be found in Alwan and Roberts (1988); Harris and Ross (1991); English
et al. (2000); Mohtashemi et al. (2007); Weiß (2011). To modify control charts for
autocorrelated process, two possible ways are to calculate control limits adjusted for
autocorrelation or to apply model residuals to a standard control chart, called a residual
chart (Alwan and Roberts, 1988) (the model-based approach). To handle the autocor-
relation in a process, many studies have suggested and used model residuals, which are
assumed identically and independently normal distributed, with the standard control
charts (e.g. Alwan and Roberts (1988); Montgomery and Mastrangelo (1991); Harris
and Ross (1991); Kramer and Schmid (1997); Schmid (1997); MacCarthy and Wasusri
(2001); Frisén (2003)).

However, there are some limitations of using model residuals with control charts for in-
dependent data. It was found that applying model residuals to standard control charts is
less effective when a process is highly positively autocorrelated (Harris and Ross, 1991).
Even though residuals, which are the difference between observed values and one-step
ahead predictions, are independent, this might not be true for predictions further ahead
(Box et al., 1994). Fitting a perfect model in order to get iid residuals might also be
difficult in practice and the estimation error of model parameters can also affect the
detection performance, with shorter ARL0 and longer ARL1 (Adams and Tseng, 1998).

One-sided EWMA charts for detecting a positive shift have been developed in several
studies (e.g. Robinson and Ho (1978); Crowder (1989); Harris and Ross (1991); Schmid
(1997); Shu et al. (2007); Hu et al. (2011)), however, most of them are developed only
for a process of independent observations. Even though EWMA charts for monitoring
autocorrelated data have been modified in several studies, most of them are based on
model-based approach (MacCarthy and Wasusri, 2001; English et al., 2000; Shiau and
Hsu, 2005) and only few are based on adjusting the control limits (Kramer and Schmid,
1997; Schmid and Schöne, 1997; Shiau and Hsu, 2005). These authors have all consid-
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ered a standard two-sided chart, so the modification for detecting only a positive shift
is not readily available.

In this chapter, we aim to modify the one-sided EWMA chart for detecting a positive
shift in an autocorrelated process by adjusting the upper control limits accounted for
autocorrelation in an AR(1) process by using the Monte Carlo simulation proposed for
modifying a two-sided EWMA chart for positively autocorrelated process in Shiau and
Hsu (2005). Shiau and colleagues modified a two-sided EWMA chart for an AR(1) pro-
cess with positive autocorrelation (0 < � < 1). The restriction to the case of positive
autocorrelation does not cause practical problems, since real data often exhibit this fea-
ture.

Let xt be an observed value of the AR(1) model defined below.

xt = �xt−1 + �t, (5.1)

where t = 1, 2, ..., s , � is an autoregressive coefficient (0 < � < 1) and �t ∼ N(0, 1). A
two-sided EWMA statistic, zt , can be calculated from

zt = �xt + (1− �)zt−1, z0 = �I , (5.2)

where � is a smoothing parameter and �I is a target value or the mean of an in control
stage. The correlation within series (CWS) is taken into account by considering the the
autoregressive coefficient from the AR(1) process. Regarding the CWS, the mean and
the asymptotic variance used to construct the EWMA chart are

E(Zt) = �I (5.3)

V (Zt) =
1

1− �2

(
�

2− �

)
(1 + �(1− �))

(1− �(1− �))
(5.4)

(Wieringa, 1999; Shiau and Hsu, 2005). The asymptotic variance is thus derived by
taking the autoregressive coefficient of the AR(1) model into account. The derivation of
the variance can be found in Wieringa (1999). The lower and upper control limits (LCL
and UCL) for a two-sided EWMA chart for autocorrelated process can be calculated
from

LCL = �I − L
√
V (Zt) (5.5)

UCL = �I + L
√
V (Zt) (5.6)

where L is the width of the control limits chosen to achieve the desired ARL0 . Note that
the control limits of EWMA chart for autocorrelated process are wider than those for
in independent process due to the increase in the variance of the autocorrelated process
(Wieringa, 1999). The limit L can be obtained by using Monte Carlo simulation. The
values of the limit, L , for various values of � and � for ARL0 = 370 can be found in
Shiau and Hsu (2005).

To modify the one-sided EWMA chart for for an AR(1) process with positive autocorre-
lation, a one-sided EWMA statistic is calculated instead of a two-sided EWMA statistic
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and monitored with the upper control limit only. Like Section 4.2.5, Chapter 4, the
one-sided EWMA statistic can be calculated from

zt = max(�I , � xt + (1− �)zt−1), t > 0, (5.7)

whereas the upper control limit is calculated from

UCL = �I + L

√
1

1− �2

(
�

2− �

)
(1 + �(1− �))

(1− �(1− �))
. (5.8)

Let N be a number of iterations, � be a parameter of AR(1), 0 < � < 1, process and
RL0 be an run length. The width L can be obtained from the ARL calculation by using
the Monte Carlo simulation defined as follows.

step 1 specify initial values of L and � and calculate UCL from equation (5.8)

step 2 set t = 1

step 3 generate xt which follow from AR(1) model with �t ∼ N(0, 1) and calculate
one-sided EWMA statistics from equation (5.7)

step 4 if zt > UCL , process is out of control and RL0 = t ; otherwise, set t = t+ 1 and
go back to step 3

step 5 repeat steps 2 - 4 N times (N = 100, 000)

step 6 average RL0 from N iterations to get the in control average run length (ARL0 )

Having defined a desired ARL0 = 370 (or 741 for parallel method adjusted for multi-
plicity), � and � , according to the procedure defined above, the limit L is chosen to
archive the desired ARL0 . Having tried the different values of limit L in the Monte
Carlo simulation, the limits L suitable for the desired ARL0 (370 or 741) and � = 0.3
are summarized in Table 5.1.

According to the results of scenarios 2 and 3 in Chapter 4, ignoring CWS in the autocor-
related process produce a high false alarm rate. The one-sided EWMA chart modified
for the autocorrelated process was then used in Section 5.2.1 to re-evaluate the detection
performance of the parallel, Frisén, Wessman and our proposed methods for detecting
a mean shift in the autocorrelated process in order to see how the false alarm rate is
improved.

5.2.1 Re-evaluation of SR methods

From the previous chapter, it can be seen that the parallel, Frisén and Wessman meth-
ods give high false alarm rate (FAR) when CWS is present. In this section, we aim to
investigate how the false alarm rates of such methods can be improved if CWS is taken
into account properly in the one-sided EWMA chart modified for autocorrelated data.
To see whether the modified one-sided EWMA chart can improve FAR, we evaluate the
detection performance of such methods by conducting a simulation study and using a
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modified one-sided EWMA chart defined in Section 5.2 as a detection tool. In order to
see the improvement of the FAR, the results in this section are compared to those in
Chapter 4, where a standard one-sided EWMA chart for independent data is used as a
detection tool. In the previous chapter, even though our proposed methods produced
lower FAR since the CWS has been taken out, they are also included principally in the
simulation in order to investigate whether the modification of one-sided EWMA chart
is necessarily needed for our methods.

In order to see the improvement and make a sensible comparison, the data, parameters,
shift sizes and types of change points defined and used in scenarios 2 and 3 in Chapter
4 are also used in this chapter. Here, however, the sequences of statistics derived from
the four methods are monitored with the modified one-sided EWMA chart with � = 0.3
and ARL0 = 370 (or ARL0 = 741 for the parallel method adjusted for multiplicity).
The detection performance is evaluated by estimating CED, TAR, FAR, and NDR from
the simulations (see more details in Section 3.4). The detection performance between
the methods are investigated by comparing the differences of these statistics estimated
from the simulations against the critical values defined in Table 3.2.

The results for each scenario are summarized with the examples of the EWMA charts.
The vertical dotted line indicates the change point of the process and the horizontal
dashed line is the upper control limit. The comparison of the detection performance is
illustrated in bar charts, where P, F, W and Ck stand for Parallel, Frisén, Wessman and
our proposed method Case k, respectively. The full results from the simulation study
are given in Appendix B.

5.2.2 Scenario 2: CWS and no CBS

Assume that two series are independent (CBS = 0), three levels of CWS (0.2, 0.4 and
0.6) are investigated. Figures 5.1 and 5.2 show an example of using standard and mod-
ified charts for detecting simultaneous changes and changes with time lag, respectively.
It can be seen that the control limits of the modified chart of parallel, Frisén and Wess-
man methods are higher than those of the standard charts since they are accounting for
the effect of CWS in the parallel data and the derived sequence of statistics. However
control limits of our methods are only slightly different since the CWS has already been
removed during the sufficient reduction and so the likelihood ratio statistics are (nearly)
independent. This makes the modification of one-sided EWMA chart for autocorrelated

Table 5.1: The limits L for the modified one-sided EWMA charts for an AR(1) process
with positive autocorrelation (ARL0 = 370, 741) when �t ∼ N(0, 1)

ARL0 �
Autoregressive coefficient (�)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

370 0.3 2.817 2.779 2.737 2.691 2.639 2.576 2.495 2.387 2.190
741 0.3 3.124 3.108 2.981 2.906 2.883 2.817 2.782 2.685 2.497
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data essentially unnecessary for our methods.

With the modified one-sided EWMA chart, the detection performance of the four meth-
ods for detecting simultaneous changes and changes with time lag are illustrated in
Figures 5.3 and 5.4, and the full results from the simulation are summarized in Tables
B.1 and B.2 in Appendix B. Compared to the results of scenario 2 with the standard
one-sided EWMA charts (Figures 4.8 and 4.9 in Chapter 4), the performances of parallel,
Frisén and Wessman methods with the modified charts are significantly different from
those with the standard charts by substantially reducing f̂ar and increasing t̂ar. The
f̂ar and t̂ar of our methods (case 2 and case 4) are slightly improved despite the CWS
already having been removed in the sufficient reduction.

Due to the higher control limits adjusted for CWS in the modified charts, four methods
give higher n̂dr for detecting a small shift size compared to monitoring with the standard
charts, especially when CWS is strong. However, the n̂dr is improved when the shift size
is large. Whether standard or modified chart is used, the CED of our proposed method
is significantly different from other methods by giving shorter ĉed for detecting a small
shift size when CBS = 0.4 and 0.6.

5.2.3 Scenario 3: CWS and CBS

Having fixed CWS (� = 0.6), three levels of CBS (0.2, 0.4 and 0.6) are investigated.
Figures 5.5 and 5.6 show an example of using standard and modified one-sided EWMA
charts for detecting simultaneous changes and changes with time lag, respectively. Like
scenario 2, the control limits of modified charts of parallel, Frisén and Wessman meth-
ods are higher than those of standard charts due to the the adjustment of CWS in the
process, while there is little difference in both limits in our methods.

Using a modified one-sided EWMA chart, the detection performance of the four methods
for detecting simultaneous changes and changes with time lag are illustrated in Figures
5.7 and 5.8 and the full original results are summarized in Tables B.3 and B.4 in Ap-
pendix B. To see the improvement, the results in this section are compared to the results
of scenario 3 with the standard charts (Figures 4.12 and 4.13) in Chapter 4.

As with the results of scenario 2 comparing monitoring with standard and modified
charts, the same pattern is repeated here. Overall, the detection performances of the
parallel, Frisén and Wessman methods with the modified charts are significantly differ-
ent from the results with the standard charts by giving lower f̂ar and higher t̂ar, while
there is only slight improvement in our methods (case 3 and case 5) because the method
inherently allows for the CWS.

Irrespective of whatever the standard or modified chart is used, our proposed methods
still perform significantly differently from other methods by giving shorter ĉed for de-
tecting a small shift size. However, when shift size is large, our methods perform slightly
different to Wessman method to detect the simultaneous changes and to Frisén method
to detect changes with time lags.



5.2. The modification of a one-sided EWMA chart to accommodate
autocorrelated data 87

0 50 100 150 200

2
4

6
8

10
12

14
16

Time 
 (a)

X1 series
X2 series

0 50 100 150 200

10
11

12
13

O
ne

−
si

de
d 

E
W

M
A

 s
ta

tis
tic

s

Time 
 (b)

Ewma stats (Parallel, X1)
UCL (standard)
UCL (modified)

0 50 100 150 200

4.
0

4.
5

5.
0

5.
5

6.
0

6.
5

7.
0

7.
5

O
ne

−
si

de
d 

E
W

M
A

 s
ta

tis
tic

s

Time 
 (c)

Ewma stats (Parallel, X2)
UCL (standard)
UCL (modified)

0 50 100 150 200

10
11

12
13

O
ne

−
si

de
d 

E
W

M
A

 s
ta

tis
tic

s

Time 
 (d)

Ewma stats (Frisén)
UCL (standard)
UCL (modified)

0 50 100 150 200

24
26

28
30

32

O
ne

−
si

de
d 

E
W

M
A

 s
ta

tis
tic

s

Time 
 (e)

Ewma stats (Wessman)
UCL (standard)
UCL (modified)

0 50 100 150 200

15
16

17
18

19
20

21

O
ne

−
si

de
d 

E
W

M
A

 s
ta

tis
tic

s

Time 
 (f)

Ewma stats (Case 2)
UCL (standard)
UCL (modified)

Figure 5.1: An example of scenario 2 (simultaneous changes, shift size 2, CWS = 0.6
and no CBS): (a) plot of the original series, (b) - (c) one-sided EWMA charts of parallel
methods, (d), (e) and (f) one-sided EWMA charts of Frisén, Wessman and our methods
(case 2), respectively.
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Figure 5.2: An example of scenario 2 (changes with time lag, shift size 2, CWS = 0.6
and no CBS): (a) plot of the original series, (b) - (c) one-sided EWMA charts of parallel
methods, (d), (e) and (f) one-sided EWMA charts of Frisén, Wessman and our methods
(case 4), respectively.
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Figure 5.3: A bar chart comparing the performance in detecting simultaneous changes
in scenario 2: (a) - (d) shift size = 2 and (e) - (h) shift size = 3.
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Figure 5.4: A bar chart comparing the performance in detecting changes with time lag
in scenario 2: (a) - (d) shift size = 2 and (e) - (h) shift size = 3.
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Figure 5.5: An example of scenario 3 (simultaneous changes, shift size 2, CWS = 0.6
and CBS = 0.6): (a) plot of the original series, (b) - (c) one-sided EWMA charts of
parallel methods, (d), (e) and (f) one-sided EWMA charts of Frisén, Wessman and our
methods (case 3), respectively.
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Figure 5.6: An example of scenario 3 (change with time lag, shift size 2, CWS = 0.6 and
CBS = 0.6): (a) plot of the original series, (b) - (c) one-sided EWMA charts of parallel
methods, (d), (e) and (f) one-sided EWMA charts of Frisén, Wessman and our methods
(case 5), respectively.
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Figure 5.7: A bar chart comparing the performance in detecting simultaneous changes
in scenario 3: (a) - (d) shift size = 2 and (e) - (h) shift size = 3.
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Figure 5.8: A bar chart comparing the performance in detecting changes with time lag
in scenario 3: (a) - (d) shift size = 2 and (e) - (h) shift size = 3.
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5.3 Robustness study

In this section we aim to investigate the robustness of SR methods against mis-specified
parameters used in sufficient reduction, such as CWS, CBS and LCP, and specification of
shift size aimed to detect. The effect of mis-specification of parameters and specification
of shift size are investigated separately with different possible scenarios. The robustness
study is conducted by using simulation. For simplicity, data are generated from the
bivariate normal distribution. The performance of detection is evaluated by estimating
CED, TAR, FAR and NDR defined in Section 3.4. Since SR methods are proposed
under different assumptions, we investigate the robustness of SR methods by choosing
a suitable SR method with the corresponding one-sided EWMA chart for each scenario.
Section 5.3.1 provides the details the robustness of SR methods against mis-specified
parameters and the results from simulations, while the study of the specification of shift
size aimed to detect by the SR methods are provided in Section 5.3.2

5.3.1 Mis-specification of parameters

For simplicity, we conduct the simulation study by using the bivariate normal series
(p = 2) generated according to the parameters correctly specified in each scenario. To
investigate the robustness against mis-specified parameters in the SR methods, two dif-
ferent shift sizes are investigated. In this section, the pre-specified shift size, c , aimed
to be detected by the SR methods is a shift of size either 2 or 3 (i.e. 2 or 3 times
standard deviation of original data). Since there are three main parameters used in SR
methods (CWS, CBS and LCP), the effect of mis-specifying each parameter is investi-
gated separately in different scenarios. There are ten possible scenarios where one of
these parameters are mis-specified. We investigate the robustness of mis-specifying one
parameter by varying the value of that parameter and fixing the values of the other two.
The robustness of the SR methods is investigated by comparing the detection perfor-
mance between using the correctly specified parameters (i.e. those used to generate the
data), estimates of the parameters estimated from the in control stage and several mis-
specified values of the parameters in the sufficient reduction (see below). Additionally,
both standard and modified EWMA charts are considered as detection tools.

Let N be the number of simulations and c be the pre-specified shift size to be detected by
the SR methods, the procedure of the robustness study of mis-specification of parameter
for each scenario can be described as follows.

step 1 a bivariate series is generated according to the correctly specified parameters
defined in each scenario. We consider scenarios covering possibilities of each of
CWS and CBS being specified as 0 and 0.6.

step 2 a change point of a process, � , is randomly selected (� > 150; i.e. to make sure
that the in control baseline is long enough for parameter estimation). A shift of
size c is added to the data at and after time � . In the case of lag between series
( l), a shift is added to the first series at time � and to the second series at time
� + l .
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step 3 estimates of the correlation parameters (CBS and CWS) are estimated from the
in control baseline.

step 4 the data are used to derive a sequence of likelihood ratio statistics by using
the correctly specified parameter in the sufficient reduction. The sequence is then
monitored with the corresponding one-sided EWMA chart defined in each scenario.
The delay in detection is recorded (i.e. tA − � , where tA is a time of an alarm).
If tA − � ≥ 7, NA (non-applicable) is reported (i.e. system fails to detect a shift
within 7 time points).

step 5 repeat step 4 but the estimated parameter is used in the sufficient reduction
instead

step 6 repeat step 4 but the mis-specified value of parameter (i.e. 0, 0.2, 0.4 or 0.8)
is used instead. The step is repeated until all mis-specified values are used. The
delay in detection for each value is recorded separately.

step 7 repeat steps 1-6 N times (N = 10, 000). The CED, TAR, FAR and NDR are
estimated from the results in each step (NB there are four sets of results from step
6).

Thus, in each scenario, six results of detection performance from using six values of the
parameter (i.e. correctly specified parameter, the estimate of the parameter and four mis-
specified values of the parameter) in the sufficient reduction are compared. Each result
is from 10,000 simulations. In the case of mis-specification of LCP (Section 5.3.1.3),
five mis-specified values of LCP are investigated, therefore, the detection performances
are compared between seven results, each from 10,000 simulations. The difference in
performances of the SR methods using different sets of parameters are investigated by
comparing the differences of the statistics estimated from the simulations against the
critical values defined in Table 3.2. The comparison of the detection performance for
each scenario is illustrated in a bar chart, where ‘Est.’ represents the results from using
the estimated parameter in the sufficient reduction. More details of ten possible scenarios
with correctly specified parameter, the values of mis-specified parameters, a suitable SR
method and the corresponding one-sided EWMA chart are given in Sections 5.3.1.1 -
5.3.1.3. The estimation method for each parameter is given in Section 5.3.1.4.

5.3.1.1 Mis-specification of CWS

Having assumed that data are dependent over time, in this section we aim to investigate
how SR methods are robust when CWS is mis-specified. Four possible scenarios with
the values of correctly specified parameters and mis-specified parameters along with a
suitable SR method and the corresponding one-sided EWMA chart for each scenario
are listed in Table 5.2. Data used in each scenario are generated according to correctly
specified parameters defined in the Table 5.2. Four values of mis-specified CWS (0, 0.2,
0.4 and 0.8) are investigated. Since data are autocorrelated over time (CWS = 0.6), our
methods proposed for detecting a shift in a process of dependent observations (cases 2
- 5, Chapter 4) are used in these scenarios. Also, since the CWS has been removed by
our proposed methods, there is little difference whether a standard or modified EWMA
chart is used, thus, we use the standard chart for all scenarios in this section.
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Table 5.2: Four scenarios of mis-specification of CWS

Scenario
Correctly specified parameters Mis-specified

Method Chart
CWS CBS LCP CWS

R1 0.6 0 0 0, 0.2, 0.4, 0.8 Case 2 standard
R2 0.6 0 5 0, 0.2, 0.4, 0.8 Case 4 standard
R3 0.6 0.6 0 0, 0.2, 0.4, 0.8 Case 3 standard
R4 0.6 0.6 5 0, 0.2, 0.4, 0.8 Case 5 standard

5.3.1.2 Mis-specification of CBS

In this case, we assume that two series are dependent with CBS = 0.6. Four scenarios
with a suitable SR method and the corresponding one-sided EWMA chart for each
scenario are detailed in Table 5.3. Data used in each scenario are generated according to
the correctly specified parameters defined in the Table 5.3. Four values of mis-specified
CBS (0, 0.2, 0.4 and 0.8) are investigated. Wessman’s method and our method (case 1,
Chapter 4) are used to detect the mean shift in the process of independent data (CWS
= 0), while our methods (cases 3 and 5, Chapter 4) are used for detecting the mean shift
in the autocorrelated process (CWS = 0.6).

Table 5.3: Four scenarios of mis-specification of CBS

Scenario
Correctly specified parameters Mis-specified

Method Chart
CBS CWS LCP CBS

R5 0.6 0 0 0, 0.2, 0.4, 0.8 Wessman standard
R6 0.6 0 5 0, 0.2, 0.4, 0.8 Case 1 standard
R7 0.6 0.6 0 0, 0.2, 0.4, 0.8 Case 3 standard
R8 0.6 0.6 5 0, 0.2, 0.4, 0.8 Case 5 standard

5.3.1.3 Mis-specification of LCP

According to the SR assumptions defined in Chapter 4, the relation of shift sizes between
series is determined by CBS. If two series are independent, we investigate the shift size
from one series only. Therefore, a lag between series is not necessarily considered if two
series are independent. In this section we aim to investigate the effect of mis-specifying
lag between series by assuming that the two series are correlated with LCP = 5 and
CBS = 0.6. Two possible scenarios with a suitable SR method and the corresponding
one-sided EWMA chart for each scenario are detailed in Table 5.4. Data used in each
scenario are generated according to the correctly specified parameters defined in Table
5.4. Five values of mis-specified lag (0, 3, 4, 6 and 7) are investigated. SR methods
proposed for detecting changes with time lag in the process of independent data (case
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1) and the autocorrelated process (case 5) are used.

Table 5.4: Two scenarios of mis-specification of LCP

Scenario
Correctly specified parameters Mis-specified

Method Chart
LCP CBS CWS LCP

R9 5 0.6 0 0, 3, 4, 6, 7 Case 1 standard
R10 5 0.6 0.6 0, 3, 4, 6, 7 Case 5 standard

5.3.1.4 Parameter estimation

The second general form of mis-specification of parameters we shall investigate is that
arising when the values of parameter are not assumed known but are estimated from
the in control stage of the process. There are many ways of estimating the relevant
parameters (� , � and l (lag between series)), but in the following section we outline the
standard methods that we have selected.

5.3.1.4.1 Correlation within series

In this study we assume that data are autocorrelated in a form of an autoregressive
model of order 1 where the current observation is conditional on the previous observa-
tion. There are three way to estimate the autoregressive coefficient; maximum likelihood,
least squares and solving the Yule-Walker equations. The maximum likelihood is prefer-
able to the others since it provided a unified, and entirely practicable, procedure for
estimating parameters in the autoregressive model which can be obtained by a numer-
ical maximization (Diggle, 1990; Triantafyllopoulos, 2009). The maximum likelihood
estimator can be obtained by maximizing the log likelihood function of the AR(1) pro-
cess with respect to the parameter in the model (Diggle, 1990; Brockwell and Davis,
2002; Triantafyllopoulos, 2009). The maximum likelihood approach is widely used in
practice and also available in packages. For example, the maximum likelihood estima-
tors can be obtained by using function arima in R (Cowpertwait and Metcalfe, 2009).

5.3.1.4.2 Correlation between series

Let �l be the correlation between X1 and X2 at lag l ( l = 0, 1, ...) which is defined as

�l = Cor(X1,t, X2,t+l) =
Cov(X1,t, X2,t+l)√
V ar(X1,t)V ar(X2,t+l)

=
E[(X1 − �X1)(X2 − �X2)]√

V ar(X1,t)V ar(X2,t+l)

For detecting a simultaneous change ( l = 0), the estimate of CBS, r0 , can be calculated
from

r0 =

∑n
t=1(X1,t − X̄1)(X2,t − X̄2)√∑n

t=1(X1,t − X̄1)2
∑n

t=1(X2,t − X̄2)2
, (5.9)

where X̄i =
∑n

i=1Xi/n , i = 1, 2.
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Figure 5.9: The illustration of lag estimation between two series.

In case of changes with time lags, the cross correlation at lag l ( l > 0), �l , is considered
instead. The estimate of the cross correlation, rl , is

rl =

∑n−l
t=1(X1,t − X̄1)(X2,t+l − X̄2)√∑n−l

t=1(X1,t − X̄1)2
∑n−l

t=1(X2,t+l − X̄2)2
(5.10)

where X̄i =
∑n−l

i=1 xi/n− l , i = 1, 2.

5.3.1.4.3 Lag between change points

LCP is estimated from cross correlation between X1 and X2 (equation (5.10)). The
cross correlation also can be obtained by using the ccf function in R which estimates
the correlation between Xt+l and Yt (Cowpertwait and Metcalfe, 2009). In our case, we
estimate the cross correlation between X1,t and X2,t+l by using ccf(X2,t+l, X1,t). The
lag that gives the highest cross correlation is regarded as the lag between series. However
if data are autocorrelated over time, calculating cross correlation from the original data
might be misleading. Alternatively, it is suggested to assess cross correlation from model
residuals or using pre-whitening approach. In this study we chose to estimate the cross
correlation from the model residuals. The illustration of how LCP is estimated is shown
in Figure 5.9. In figure 5.9 (a), X1 and X2 series are generated with CWS = 0.4 and
CBS = 0.4 where X2 follows X1 at lag 5. The plot of the autocorrelation function of
the residuals, from fitting the AR(1) model, in 5.9 (b) indicates that the estimated LCP
is 5 since it gives the highest correlation at lag 5.
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Figure 5.10: Scenarios R1 and R2 (Mis-specification of CWS): (a-b) and (c-d) scenario
R1 for shift sizes 2 and 3, and (e-f) and (g-h) scenario R2 for shift sizes 2 and 3.

5.3.1.5 Results

5.3.1.5.1 Mis-specification of CWS

The detection performances of scenarios R1 and R2 are illustrated in Figure 5.10, while
those for scenarios R3 and R4 are in Figure 5.11. In both Figures the correctly specified
CWS is 0.6 and the estimated CWS is denoted by Est. The results from the simulation
study are provided in Tables B.5 - B.8, in Appendix B. In the case of two independent
series (scenarios R1 and R2), there is no difference in the results from using correctly
specified CWS and estimated CWS, while the results from using mis-specified values of
CWS are significantly different by showing longer ĉed, lower t̂ar and higher f̂ar. The
larger the difference between mis-specified CWS and correctly specified CWS, the longer
ĉed, lower t̂ar and higher f̂ar produced. Even though using mis-specified CWS = 0.8
produces less f̂ar, it gives the lowest t̂ar with the highest n̂dr. However, the t̂ar and n̂dr
is improved when the shift size is large. In the case of two dependent series (scenarios
R3 and R4), a similar pattern is repeated, since our methods (cases 3 and 5) take CBS
into account, resulting in only slight differences in detection performance. Even though
our proposed methods (cases 2, 3, 4 and 5) account for CWS, mis-specifying CWS in

the sufficient reduction delays the detection and gives high f̂ar.

5.3.1.5.2 Mis-specification of CBS

The detection performances of four scenarios (R5 - R8) are illustrated in Figures 5.12
and 5.13. In both Figures the correctly specified CBS is 0.6 and the estimated CBS
is denoted by Est. The results from the simulation study are provided in Tables B.9 -
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Figure 5.11: Scenarios R3 and R4 (Mis-specification of CWS): (a-b) and (c-d) scenario
R3 for shift sizes 2 and 3, and (e-f) and (g-h) scenario R4 for shift sizes 2 and 3.

B.12 in Appendix B. As expected, there is no difference in all measures between using
correctly specified CBS and estimated CBS in the sufficient reduction for both types of
change point.

In the independent process, mis-specifying CBS in detecting a simultaneous changes
(scenario R5, Figure 5.12 (a-d)) gives worse results with longer ĉed and slightly lower

t̂ar, higher f̂ar and n̂dr than those for detecting changes with time lag (scenario R6,
Figure 5.12 (e-f)). The larger the difference between mis-specified CBS and correctly

specified CBS, the longer the ĉed produced. The CEDs of using mis-specified CBS
are significantly different from using correctly specified CBS for detecting simultaneous
change (scenario R5), while there is no difference in CED for detecting changes with
time lag (scenario R6). Also, there is no difference in FAR and NDR for all shift sizes.
The same pattern is repeated for detecting mean shifts in the autocorrelated process
in scenarios R7 and R8 (Figure 5.13), although the n̂dr is quite high due to the CWS.

However, n̂dr is improved when shift size is large.

It can be seen that the effect of mis-specifying CBS is more obvious in detecting simul-
taneous changes rather than changes with time lags. This is because due to the LCP, at
the decision time t , t = s− l+ 1, ..., s , the likelihood ratio statistics is derived based on
the information in one series only (i.e. the information of another series is not available
yet) and so CBS is not incorporated at time t , t = s− l+ 1, ..., s . This makes the effect
of mis-specifying CBS less for detecting changes with time lags.
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Figure 5.12: Scenarios R5 and R6 (Mis-specification of CBS): (a-b) and (c-d) scenario
R5 for shift sizes 2 and 3, and (e-f) and (g-h) scenario R6 for shift sizes 2 and 3.
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Figure 5.13: Scenarios R7 and R8 (Mis-specification of CBS): (a-b) and (c-d) scenario
R7 for shift sizes 2 and 3, and (e-f) and (g-h) scenario R8 for shift sizes 2 and 3.
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Figure 5.14: Scenarios R9 and R10 (Mis-specification of LCP): (a-b) and (c-d) scenario
R9 for shift sizes 2 and 3, and (e-f) and (g-h) scenario R10 for shift sizes 2 and 3.

5.3.1.5.3 Mis-specification of LCP

Having assumed that there is lag between series (LCP = 5) which is related to corre-
lation between series (CBS ∕= 0), the detection performances of scenarios R9 and R10
are illustrated in Figure 5.14 (a-b) and (c-d), respectively. In both Figures the correctly
specified LCP is 5 and the estimated LCP is denoted by Est. The full results from the
simulation study are provided in Tables B.13 and B.14 in Appendix B. Assuming that
the observations are independent (scenario R9), mis-specifying LCP delays detection

with longer ĉed at all shift sizes. There is no difference in the performances between
using correctly specified LCP and estimated LCP, while the more LCP is mis-specified,
the longer ĉed with lower t̂ar and higher f̂ar produced. The same pattern is repeated for
the autocorrelated process (Scenario R10). Due to the CWS, n̂dr is quite high compared

to scenario R9. However, again, the n̂dr is substantially improved when the shift size is
large.

5.3.2 Specification of shift size

Since a shift size that we want to detect by the SR methods needs to be pre-specified,
in this section we aim to investigate the detection performance of the SR methods if
the shift in a process is smaller or greater than that pre-specified. To investigate the
detection performance, we pre-specify a shift of size 2 as a shift size that we aim to
detect by the SR methods. We investigate the performance in detecting various shift
sizes for simultaneous changes. Changes with time lag, which are considered as the gen-
eralization case of the simultaneous change if time lag is known, could be investigated
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in the similar manner but are not presented here. The detection performance of SR
methods are compared against those from the parallel method since pre-specified shift
shift is not a requirement of the parallel method. However, we anticipate that due to
the adjustment for the multiplicity in the parallel methods, it will still perform less well
than the SR methods.

Four possible scenarios, with details of a suitable SR method and the corresponding
one-sided EWMA chart in each scenario, are summarized in Table 5.5. Data are gen-
erated according to the parameters defined in each scenario. We define c = 2 as the
pre-specified shift size which SR methods are designed to detect and d as a shift size
in the actual process simulated. Five different shift sizes (d = 0.5, 1, 2, 3, 4) are inves-
tigated. In scenarios R11 and R12, the parallel method is monitored with a standard
one-sided EWMA chart, while in scenarios R13 and R14 (for the autocorrelated process,
CWS = 0.6), the one-sided EWMA chart modified for autocorrelated data (see Section
5.2) is used instead, in order to avoid a high false alarm rate.

Let N be the number of simulations. The robustness study for specification of shift size
can be described as follows.

step 1 a bivariate series is generated according to parameters (CWS, CBS and LCP)
defined in each scenario.

step 2 a change point of a process, � , is randomly selected (� > 150; i.e. to make sure
that the in control baseline is long enough for the parameter estimation). A shift
of size d is added to the data at time � and thereafter.

step 3 data (parallel method) and a derived sequence of statistics (from SR methods
designed to detect a specified shift size of c = 2) are monitored with the appropriate
one-sided EWMA chart. The delay in detection for each method is recorded (i.e.
tA − � , where tA is the time of an alarm). If tA − � ≥ 7, NA (non-applicable) is
reported, i.e. system fails to detect a shift within 7 time points.

step 4 repeat steps 1-3 N times (N = 10, 000). The CED, TAR, FAR and NDR for
each method are estimated.

In each scenario, this entire procedure is repeated for five values of shift size in a process
d , d = 0.5, 1, 2, 3, 4. The performances of the SR methods for detecting different shift
sizes are investigated by comparing the differences of the statistics estimated from the
simulations against the critical values defined in Table 3.2.

5.3.2.1 Results

Having pre-specified a shift of size 2 as that which the SR method is designed to detect,
five different values of actual shift in the process are investigated. The comparisons of
the detection performance of the parallel and the SR methods are illustrated in Figures
5.15 (scenarios R11 and R12) and 5.16 (scenarios R13 and R14). The full results from
the simulation study are summarized in Tables B.15 - B.18, respectively, in Appendix
B. Overall, the CED, TAR and NDR of the methods for detecting different shift sizes
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Table 5.5: Four scenarios of specification of shift sizes

Scenario
Parameters Pre-specified Shift size

Method Chart
CWS CBS LCP shift size in a process

R11 0 0 0 2 0.5, 1, 2, 3, 4 Frisén standard
R12 0 0.6 0 2 0.5, 1, 2, 3, 4 Wessman standard
R13 0.6 0 0 2 0.5, 1, 2, 3, 4 Case 2 standard
R14 0.6 0.6 0 2 0.5, 1, 2, 3, 4 Case 4 standard

are significantly different. However, there is no difference in FAR for all cases. Unsur-
prisingly, the larger shift size, the shorter delay with higher t̂ar and lower n̂dr produced.

Consider process of independent data (scenarios R11 and R12), the Frisén and Wessman

methods perform significantly differently from the parallel method by giving shorter ĉed,
higher t̂ar and lower f̂ar. As expected, larger shift size are generally easier to detect even
if they differ from the pre-specified value. In the case of autocorrelated process (scenarios
R13 and R14), the same pattern is repeated. Since a small shift size (d = 0.5) is unlikely
to be detected in the autocorrelated process (CWS = 0.6), the t̂ar is quite low (10% or

less). The ĉed, which is calculated based on the true detection, of this shift size might be
misleading since the calculations are only from the true detection (i.e. 10% or fewer of
the simulations). Overall, even though the shift size we aim to detect by the SR methods
needs to be pre-specified, such methods still perform well for detecting the shift size in
a process which might be smaller or greater than the pre-specified value. Due to the
adjustment for the multiplicity, the parallel method, for which the specification of shift
size is not required, performs significantly differently from the SR methods by showing
longer ĉed, lower t̂ar and higher n̂dr.

5.4 Conclusions

Since not incorporating CWS in the sufficient reduction delays the detection and pro-
duces many false alarms in Parallel, Frisén and Wessman methods, a one-sided EWMA
chart modified for detecting a positive shift in an autocorrelated process is proposed.
The comparison between using standard and modified one-sided EWMA chart is car-
ried out by using those charts to monitor the parallel data and the derived sequence
of statistics from three methods (Frisén and Wessman and our methods). The FAR of
Parallel, Frisén and Wessman methods is improved substantially if the modified chart is
used, even though the CED is slightly higher due to the higher control limits of the mod-
ified chart adjusted for the CWS. There is little difference in the detection performance
between charts in our methods, since the CWS has been removed during the sufficient
reduction. This makes the modification of one-sided EWMA chart for autocorrelated
process unnecessary for our methods. Taking CWS into account by using either SR
methods proposed for autocorrelated data (our methods) or using modified one-sided
EWMA chart for autocorrelated data should improve the performance of detection and



104 Chapter 5. Extended sufficient reduction methods (normal case)

0.5 1 2 3 4

0
1

2
3

4
5

6

 Shift size 
 (a)

ce
d

Parallel
Frisén

0.5 1 2 3 4
P

er
ce

nt
ag

e

0
20

40
60

80
10

0

ndr

far

tar

 Shift size 
 (b)

0.5 1 2 3 4

P
er

ce
nt

ag
e

0
20

40
60

80
10

0

ndr

far

tar

 Shift size 
 (c)

0.5 1 2 3 4

0
1

2
3

4
5

6

 Shift size 
 (d)

ce
d

Parallel
Wessman

0.5 1 2 3 4

P
er

ce
nt

ag
e

0
20

40
60

80
10

0

ndr

far

tar

 Shift size 
 (e)

0.5 1 2 3 4
P

er
ce

nt
ag

e

0
20

40
60

80
10

0

ndr

far

tar

 Shift size 
 (f)

Figure 5.15: Scenarios 11 and 12 (Specification of shift size): (a-c) results for parallel
and Frisén methods, scenario R11 and (d-f) results for parallel and Wessman methods,
scenario R12.
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Figure 5.16: Scenarios 13 and 14 (Specification of shift size): (a-c) results for parallel
and case 2 methods, scenario R13 and (d-f) results for parallel and case 4 methods,
scenario R14.
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reduce false alarm rates. Therefore, due to the nature of original data and the depen-
dency of the derived likelihood ratio statistics, the one-sided EWMA chart should be
chosen carefully since the result will be misleading if an inappropriate detection tool is
used. Overall, comparing the detection performances of scenarios 2 and 3 between using
a standard EWMA chart (Chapter 4) and a modified EWMA chart (Chapter 5), our
proposed methods with the standard chart give shorter delay than other methods with
the modified chart due to the higher control limits adjusted for CWS in the modified
chart.

Apart from not taking CWS into account, mis-specifying parameters used in the suffi-
cient reduction is another concern. A simulation study was set up to investigate how
SR methods perform if the parameter (CWS, CBS or LCP) is mis-specified in some
way. The detection performance using the correctly specified parameter, an estimated
parameter (estimated using a standard method) and mis-specified values of parameter
are compared. As expected, the results of using estimated parameter are quite similar
to those of using the correctly specified parameter (i.e. that used to generate the data),
while using mis-specified values of the parameter gave poor detection performance. Mis-
specifying CWS gave the worst scenarios by giving longer CED and higher FAR for
detecting simultaneous changes and changes with time lags. Mis-specifying CBS gave
longer delays in detecting simultaneous change, but no appreciable difference in detect-
ing change with time lags. Even though the effect of mis-specifying CBS is not quite as
strong compared to those of mis-specifying CWS, the detection performance is improved
if CBS is taken into account appropriately. Also, if LCP is truly present, mis-specifying
LCP also gives worse results with longer CED. In this case, the results might be mis-
leading because not only is a mis-specified LCP used, but this also affects the cross
correlation between series (CBS) which will be mis-calculated due to mis-specified LCP.

Since a shift size, which the method aims to detect, must be pre-specified for SR methods,
data with different shift sizes in the process are used to investigate how the SR meth-
ods perform when the shift size in the process is less or greater than that pre-specified.
The results from the simulation shows that the SR methods still perform better than
the parallel method, which does not require the specification of shift size. A large shift
size is more likely to be detected than a small shift size even if it differs from the value
pre-specified.

The SR methods considered in this thesis are proposed to detect a step change in the
mean of a process. However, according to the nature of diseases and the limiting assump-
tions of the SR methods, the robustness study of the SR methods might be extended in
several respects. For example, in public health surveillance, changes in health data might
be of several shapes (e.g. single spike, linear, exponential shapes or epidemic curves)
depending on types of disease (Goldenberg et al., 2002; Mandl et al., 2004; Wang et al.,
2005; Jackson et al., 2007). Thus a robustness study of how SR methods perform in
detecting a mean shift within different shapes might be of interest but is not presented
here.
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Chapter 6

Sufficient reduction methods for
Poisson data

6.1 Background

In previous chapters, we proposed sufficient reduction (SR) methods for detecting a shift
in public health surveillance by assuming that data are normal distributed. However,
incidences for some diseases, such as emerging or sparse diseases, might be small counts.
Such data are preferably considered as coming from a Poisson distribution rather than a
normal distribution. In this chapter we aim to develop sufficient reduction methods for
detecting a mean shift in a process of Poisson data. One important thing to be noted
is that unlike detecting a mean shift in normal data, where the variance is assumed
unchanged over time, mean and variance of Poisson distribution are not separable. If
there is a shift in mean level of Poisson data, of course, the variance will shift as well.
Therefore, the SR methods for Poisson data are developed under this consideration.

Before we develop SR methods for Poisson data, we note that an alternative (and perhaps
simpler) way to monitor a mean shift in a process of Poisson data is to monitor residuals
from a Poisson regression model. It is assumed that (Pearson) residuals are independent
and normal distributed. Thus they can be handled by the SR methods proposed for
normal data in Chapter 4. Details of fitting Poisson regression models are provided in
Section 6.2. Even though using model residuals instead of actual Poisson data might be
an alternative way for monitoring mean shift, we still want to develop SR methods for
Poisson data in order to investigate whether or not monitoring actual Poisson data by SR
methods has advantages over the alternative method mentioned above. Bivariate Poisson
series and the relations between series considered in this study are defined in Section 6.3.

SR methods for Poisson data are developed under four different scenarios: either cor-
relation within series (CWS) or correlation between series (CBS) or neither or both is
(are) present. Detail of each scenario is given in Section 6.4. The detection performance
of SR methods are compared with parallel and Frisén methods. With regard to the
distribution of derived likelihood ratio statistics, the one-sided EWMA chart, which is
used as a detection tool in this study, should be chosen carefully for each method. It
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was found later (see Section 6.6) that the sequences of likelihood ratio statistics derived
from SR methods proposed for Poisson data look more normal than Poisson. Therefore,
the derived sequences from SR methods are monitored with a one-sided EWMA chart
for normal data. On the other hand, the actual data in the parallel method, which are
Poisson distributed, are monitored with a one-sided EWMA chart for Poisson data. In
this chapter, one-sided EWMA charts for Poisson data are modified for monitoring a
mean shift in the parallel method. Details of the modification of the one-sided EWMA
chart for independent and dependent Poisson data are given in Sections 6.5.1 and 6.5.2,
respectively. The comparison of detection performances between the three methods is
conducted via a simulation study. The results are summarized in Section 6.6 with tables
and figures followed by conclusions in Section 6.7.

6.2 Poisson regression model

Since health data are normally count data, the Poisson regression model has been used in
public health surveillance, either retrospective or prospective, in several studies. Count
data are fitted with a Poisson regression model by using a log link function, g(�t),
which links the mean of response variable (Yt ), �t , to a linear predictor, �t , and so
to explanatory variables (X1,t, ..., Xk,t ). In general, a Poisson regression model can be
written as

g(�t) = �t = �0 + �1x1,t + ...+ �kxk,t

where �0, ..., �k are coefficients and xk,t is the observed value of explanatory variable
k at time t . The log link, which is the natural logarithm of the mean of the response
variable, is

g(�t) = log(�t) = �0 + �1x1,t + ...+ �kxk,t

Therefore,

E(Yt) = �t = exp(�0 + �1x1,t + ...+ �kxk,t)

(Dobson and Barnett, 2008).

With regard to Poisson data, where the variance is equal to, or a function of the mean,
we investigate how well the model fits by considering Pearson residuals, which are the
difference between yi and �̂t standardized by the estimated Poisson standard deviation.
We consider the Pearson residuals because they are commonly used to assess the gen-
eralized linear models due to their direct analogy with linear models. If the model fits
well, the residuals fluctuate around zero and are approximately standard normal when
�t is large and the sample size is not too small. Pearson residuals at time t can be
calculated from

et =
yt − �̂t√
V (�̂t)

=
yt − �̂t√

�̂t

where �̂t is an estimate of �t (Agresti, 2007).

Before developing SR methods for Poisson data, we want to investigate whether or
not there are the advantages in using Pearson residuals, which are assumed normally
distributed, with SR methods proposed for normal data in chapter 4. If it works well,



6.2. Poisson regression model 109

the extension of SR methods for Poisson data, which is more complicated, might not be
necessary. For simplicity as a toy example, we consider two independent Poisson series
(i.e. both are without CWS and CBS). Data in each series are generated from Poisson
distribution with parameter � = 5. In order to evaluate the detection performance, let �
be a change point which divides the process into two stages, in control (t = 1, ..., � − 1)
and out of control (t = �, ..., s). A mean shift of size 2 is added to series i at time
t = �, ..., s . Data for in control and out of control stages are defined below.

Xi ∼ Pois(5), t = 1, ..., � − 1 (in control stage)
Xi ∼ Pois(7), t = �, ..., s (out of control stage)

where i = 1, 2. Due to the data generated with parameter �i , we fit Poisson regression
model with only an intercept as a constant mean level to each series separately. Data
and the model for each series are defined as follows.

Xi ∼ Pois(�i)

E(Xi,t) = �i,t = exp(�0)

There are two different ways of fitting models considered in this study. The first ap-
proach, called M1, is to fit Poisson regression model defined above to the in control stage
data (t = 1, ..., � − 1) and then make s− � − 1 steps ahead forecasts for the rest. The
residuals from the first part are from fitting the model (t = 1, ..., � − 1, while the rest
are from subtracting the predictions from observed data (t = �, ..., s). The M1 model
can be written as

E(Xi,t) = �i,t = exp(�0), t = 1, 2, ..., � − 1

The second approach, called M2, is to refit the model defined above at each time t using
data available from t = 1, 2, ..., t . The M2 model can be written as

E(Xi,t) = �i,t = exp(�t), t = 1, 2, ..., s

Residuals from each model are monitored separately in the parallel method and used as
the data in SR methods proposed for normal data since they are approximately normally
distributed. Detection performance is evaluated by monitoring the parallel residual se-
ries or derived sequences from SR methods with a EWMA chart. Since residuals are
assumed to be independent and normally distributed with mean zero, a standard one-
sided EWMA chart for independent normal data is used.

Even though using the model residuals, which are approximately normally distributed,
is the common method for handling autocorrelated and non-normal data, in the case of
prospective surveillance, where a decision is made sequentially, it should be used with
care. Using residuals from model M1 is commonly used, since a step change in mean
might be seen by fitting the model and making a prediction according to the constant
mean level observed in the in control stage. However, Box et al. (1994) suggested that
residuals from making predictions far ahead from the in control stage might not be
independent (Box et al., 1994). Refitting time series at each time point in model M2
is computationally time consuming and might oversmooth a step change which is more
obviously seen from the M1 model approach. Therefore, one might be open to other
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methods, such as modified sufficient reduction methods (see Section 6.3). We compare
the methods below, but note specifically that in order to use the model residuals with
the sufficient reduction methods proposed for normal data, one should check particularly
carefully whether or not the model fits well so that the residuals are approximately
normally distributed.

6.3 Bivariate Poisson series

In this study we aim to develop SR methods for Poisson data. For simplicity we consider
only bivariate Poisson (BP) series (two dimensions, p = 2) with no lag between series
(i.e. only simultaneous change is considered), while the extension to multivariate Poisson
series might be considered as a further study. As in the normal case, SR methods
proposed for Poisson data are aimed to take both CWS and CBS into account. For the
BP series considered in this study, we define x t as a two dimensional vector representing
the observation made on a BP series at time t , t = 1, ..., s

x t =

(
x1,t
x2,t

)
Regarding CWS, the definitions of BP series for independent and dependent observations
are given in Sections 6.3.1 and 6.3.2, respectively. Since mean and variance of Poisson
distribution are not separable, the relation of mean shifts between series is defined dif-
ferently from the normal case and is detailed in Section 6.3.3.

6.3.1 Independent observations

Assume that data in each series are independent (CWS = 0), BP series (X1 and X2 )
can be defined according to the CBS. If two series are independent (CBS = 0), X1 and
X2 are independent random variables from Poisson distributions with parameters �1
and �2 , respectively. The joint probability function is

f(xt;�1, �2) = e−(�1+�2)
�x11
x1!

�x22
x2!

(6.1)

The mean and variance of each series are

E(Xi) = V (Xi) = �Xi (6.2)

where Cov(X1, X2) = 0.

If two series are dependent (CBS ∕= 0), BP series can be generated by the trivari-
ate reduction method (Holgate, 1964; Johnson et al., 1997; Karlis and Ntzoufras, 2005;
Yahav and Shmueli, 2012b). The idea is to construct X1 and X2 from three mutu-
ally independent Poisson random variables. Let Z1 , Z2 and Z3 be mutually inde-
pendent random variables from Poisson distributions with parameters �1 , �2 and �3 ,
respectively. The random variables X1 and X2 follow a bivariate Poisson distribution,
X1, X2 ∼ BP (�1, �2, �3), if
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X1 = Z1 + Z3 and X2 = Z2 + Z3

Marginally, X1 and X2 follow Poisson distributions with means (and variances), covari-
ance and correlation between series defined below.

E(Xi) = V (Xi) = �i + �3 = �Xi (6.3)

Cov(X1, X2) = �3

Cor(X1, X2) =
�3√

(�1 + �3)(�2 + �3)

The probability function (pdf) of BP distribution can be written as

f(x t;�1, �2, �3) = e−(�1+�2+�3)
�x11
x1!

�x22
x2!

m∑
j=0

(
x1
j

)(
x2
j

)
j!

(
�3
�1�2

)j
(6.4)

where m = min(x1, x2) (Johnson et al., 1997; Karlis and Ntzoufras, 2005). The depen-
dence between series is measured by �3 . If �3 = 0, X1 and X2 are independent and so
the pdf will be similar to equation (6.1).

6.3.2 Dependent observations

In the case of dependent observations, we consider bivariate Poisson series in which each
series has an autoregressive model of order 1 (AR(1)) which is generally defined by

xt = �xt−1 + �t, (6.5)

where � is an autoregressive coefficient, 0 < � < 1, and �t is Gaussian random noise
with N(0, �2� ).

With regard to positive count data, an autoregressive model for Poisson data, a Poisson
integer-valued autoregressive model (Poisson INAR model), was introduced by McKenzie
(1985, 1988), Al-Osh and Alzaid (1987) and Alzaid and Al-Osh (1990). In addition to the
use of Poisson innovation terms, the use of binomial thinning was introduced, replacing
scalar multiplication in the original AR(1) model defined above by a binomial thinning
operator denoted by * . Let Xt be a positive discrete random variable and Yi a sequence
of independent Bernoulli trials, B(1, �), such that P (Yi = 1) = � = 1−P (Yi = 0). �∗X
is a binomial random variable defined from

� ∗ x =

x∑
i=1

Yi

(Steutel and Van Harn, 1979). Thus, �∗x is the number of success from x independent
trials with probability of success � for each trial (McKenzie, 1988; Cardinal et al., 1999).

To develop the Poisson INAR(1) model, the scalar multiplication in AR(1) model (equa-
tion (6.5)) is replaced by the binomial thinning operator. Let Rt be a random variable
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following a Poisson distribution with parameter � . A Poisson integer-valued autoregres-
sive model of degree 1 (Poisson INAR(1) model) can be written as

xt = � ∗ xt−1 + rt. (6.6)

Thus, xt is a stationary process of a Poisson random variable of mean �/(1 − �) and
Gaussian AR(1)-like properties (McKenzie, 1985, 1988). The conditional mean, condi-
tional variance and the autoregressive function of degree 1 can be calculated from

E(Xt∣Xt−1) = �xt−1 + � (6.7)

V (Xt∣Xt−1) = �(1− �)xt−1 + � (6.8)

Cor(Xt, Xt+1) = �

(McKenzie, 1985, 1988). The conditional probability function is given by

f(xt∣xt−1) =

g∑
j=0

(
xt−1
j

)
�j(1− �)xt−1−j e

−��xt−j

(xt − j)!
, (6.9)

where g = min(xt, xt−1). The idea of using Poisson INAR(1) in public health surveil-
lance can be explained in the sense that Xt is the number of patients admitted to hospital
on day t , Rt is the number of new patients on day t and � ∗ Xt−1 is the number of
previous patients still in the hospital (Al-Osh and Alzaid, 1987; Strat, 2005).

In the case of bivariate series, if the two series are independent (CBS = 0), X1 and X2 are
independent and follow Poisson INAR(1) process with R1,t ∼ P (�1) and R2,t ∼ P (�2),
respectively. According to equation (6.9), the conditional pdf of independent bivariate
Poisson INAR(1) process can be written as

f(xt∣xt−1;�1, �2, �1, �2) =

g1∑
j=0

(
x1,t−1

j

)
�j1(1− �1)x1,t−1−j .

e−�1�
x1,t−j
1

(x1,t − j)!
.

g2∑
j=0

(
x2,t−1

j

)
�j2(1− �2)x2,t−1−j .

e−�2�
x2,t−j
2

(x2,t − j)!
(6.10)

where g1 = min(x1,t, x1,t−1) and g2 = min(x2,t, x2,t−1). The mean and variance of
series i is

E(Xi) = V (Xi) = �i/(1− �i), (6.11)

while the conditional mean and variance of each series are as follows.

E(Xi,t∣Xi,t−1) = �ixt−1 + �i (6.12)

V (Xi,t∣Xi,t−1) = �i(1− �i)xt−1 + �i (6.13)

Cor(Xi,t, Xi,t+1) = �i

If the two series are not independent (CBS ∕= 0), Pedeli and Karlis (2005) have extended
the idea of the Poisson INAR(1) model and BP distribution defined in Section 6.3.1 to
propose a model for two dependent Poisson INAR(1) processes called a Poisson Bivariate
Integer-Valued Autoregressive Model of degree 1 (Poisson BINAR(1) model). Let X1
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and X2 be a positive integer random variable and R1, R2 ∼ BP (�1, �2, �3), the Poisson
BINAR(1) model can be written as

x1,t = �1 ∗ x1,t−1 + r1,t,

x2,t = �2 ∗ x2,t−1 + r2,t,

where �i is an autoregressive coefficient of series i , i = 1, 2, respectively. Since R1, R2 ∼
BP (�1, �2, �3), E(Ri) = �i+�3 and Cov(R1, R2) = �3 . The mean, variance, covariance
and correlation between series can be calculated from

E(Xi) = V (Xi) =
�i + �3
1− �i

= �Xi (6.14)

Cov(X1, X2) =
�3

1− �1�2

Cor(X1, X2) =
�3
√

(1− �1)(1− �2)
(1− �1�2)

√
(�1 + �3)(�2 + �3)

Cor(Xi,t, Xi,t+1) = �i

Due to the correlation within series of lag 1, the conditional mean, variance and covari-
ance can be calculated from

E(Xi,t∣Xi,t−1) = �ixi,t−1 + �i + �3 (6.15)

V (Xi,t∣Xi,t−1) = �i(1− �i)xi,t−1 + �i + �3 (6.16)

Cov(X1,t, X2,t∣X1,t−1, X2,t−1) = �3

(Pedeli and Karlis, 2005).

The conditional probability function of Poisson BINAR(1) model can be derived from the
convolution of two binomial distributions and the bivariate Poisson distribution defined
below.

X1,t ∼ Bin(X1,t−1, �1)

X2,t ∼ Bin(X2,t−1, �2)

R1,t, R2,t ∼ BP (�1, �2, �3)

Thus,

f(xt∣xt−1;�1, �2, �1, �2, �3) =

g1∑
r1=0

g2∑
r2=0

f1(x1,t − r1)f2(x2,t − r2)f3(r1, r2)

=

g1∑
r1=0

g2∑
r2=0

{(
x1,t−1
x1,t − r1

)
�
x1,t−r1
1 (1− �1)x1,t−1−x1,t−r1 .(

x2,t−1
x2,t − r2

)
�
x2,t−r2
2 (1− �2)x2,t−1−x2,t−r2 .

e−(�1+�2+�3)
�r11
r1!

�r22
r2!

.

m∑
j=0

(
r1
j

)(
r2
j

)
j!

(
�3
�1�2

)j}
, (6.17)
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where g1 = min(x1,t, x1,t−1), g2 = min(x2,t, x2,t−1) and m = min(r1, r2).

6.3.3 Relation of mean shift between series

The relation of mean shifts between BP series is considered in a different way from the
normal case. For normal data, we assumed that the variance is unchanged over time,
while the mean has shifted from one to another level (see more detail in Section 4.3.2).
Unfortunately, the mean and variance of Poisson distribution cannot be separated, so
the variance will change according to a shift in mean. This has implications for the type
of real data which can be described by Poisson models. However, in many instances, it
is not unreasonable that if true disease incidence rises, counts of infected patients will
become more variable at a similar rate, so the coupling of mean and variance is not
unrealistic.

With regard to the BP distribution defined above, means (and also variances) of X1 and
X2 are related to the covariance between series (�3 ). If the covariance changes, it will
affect the mean levels in both series. Therefore, in Poisson data, we investigate a mean
shift in Poisson process considered as a consequence of a shift in covariance. A shift in
covariance is reflected in a mean shift in both series if X1 and X2 are not independent
(�3 ∕= 0 and CBS ∕= 0). On the other hand, if two series are independent, a shift in any
one series can occur independently. In this study we assume that if CBS = 0, a mean
shift occurs in X1 series only.

Let c be the constant mean shift size we want to detect. In the case of two independent
series, X1 ∼ P (�1) and X2 ∼ P (�2) are independent Poisson random variables. If there
is a mean shift of size c in a process, X1 ∼ P (�1 + c). The mean and variance after the
process has shifted (t = �, ..., s) are

E(X1) = V (X1) = �1 + c (6.18)

E(X2) = V (X2) = �2 (6.19)

On the other hand, if X1 and X2 are correlated with BP (�1, �2, �3), we investigate
the mean shift of size c in both series from a shift of size c in covariance parameter
(Z3 ∼ P (�3 + c)). After the process has shifted X1 and X2 follow BP (�1, �2, �3 + c)
with mean, variance, covariance and correlation between series defined as follows.

E(Xi) = V (Xi) = �i + �3 + c (6.20)

Cov(X1, X2) = �3 + c

Cor(X1, X2) =
�3 + c√

(�1 + �3 + c)(�2 + �3 + c)

Note that, in the case of independent observations (CWS = 0), the mean shift size, c, in
both series is the same as the covariance shift size due to the trivariate reduction method
used for BP distribution.

For a process of dependent observations (CWS ∕= 0), the relation of mean shifts between
series can be defined in a similar manner. We investigate the relation of mean shift from
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a shift in covariance between series (�3 ) defined in R1,t, R2,t ∼ BP (�1, �2, �3), while
X1,t ∼ Bin(X1,t−1, �1) and X2,t ∼ Bin(X2,t−1, �2) are the same for both stages. If two
series are independent (CBS = 0; �3 = 0), the mean shift occurs in the X1 series only.
The mean and variance of Poisson INAR(1) process after the process has shifted are

E(X1) = V (X1) =
�1 + c

1− �1
(6.21)

E(X2) = V (X2) =
�2

1− �2
(6.22)

and the conditional mean and variance of Poisson INAR(1) process are

E(X1,t∣X1,t−1) = �1x1,t−1 + �1 + c (6.23)

V (X1,t∣X1,t−1) = �1(1− �1)x1,t−1 + �1 + c (6.24)

E(X2,t∣X2,t−1) = �2x2,t−1 + �2 (6.25)

V (X2,t∣X2,t−1) = �2(1− �2)x2,t−1 + �2. (6.26)

On the other hand, if two series are dependent (CBS ∕= 0; �3 ∕= 0), the mean shift occurs
in both series. The shift in each series depends on the shift of size c in the covariance
and �i . The mean and variance of Poisson INAR(1) process after the process has shifted
are

E(Xi) = V (Xi) =
�i + �3 + c

1− �i
(6.27)

Cov(X1, X2) =
�3 + c

1− �1�2

Cor(X1, X2) =
(�3 + c)

√
(1− �1)(1− �2)

(1− �1�2)
√

(�1 + �3 + c)(�2 + �3 + c)

and the conditional mean and variance of the process are

E(Xi,t∣Xi,t−1) = �ixi,t−1 + �i + �3 + c (6.28)

V (Xi,t∣Xi,t−1) = �i(1− �i)xi,t−1 + �i + �3 + c (6.29)

Cov(X1,t, X2,t∣X1,t−1, X2,t−1) = �3 + c

where i = 1, 2 (Pedeli and Karlis, 2005).

6.4 SR methods for Poisson data

Wessman and Frisén proposed SR methods for detecting a mean shift in any exponential
family distribution, including the Poisson distribution, however, their work proceeded
under the assumption that observations are independent (CWS = 0) (Wessman, 1998;
Frisén et al., 2011) which is not typically assumption in health surveillance. To bridge
the gap, in this section we aim to develop SR methods for detecting a mean shift in
a process of Poisson count data. As mentioned previously, detecting mean shift in a
Poisson process is not quite straightforward as mean and variance are not separable. A
shift in mean results in an increase in variance of a process as well. For simplicity, we
develop SR methods for Poisson data for detecting a mean shift in a BP series. The
assumptions made in this study are
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∙ aim to detect a sudden, but persistent, mean shift in bivariate Poisson series (X1

and X2 )

∙ allow for CWS and CBS

∙ simultaneous change, denoted by � , only is considered

∙ investigate the relation of mean shifts via the covariance between series

∙ if CBS ∕= 0, mean shifts occur in both series at time � ; otherwise, a mean shift
occurs in one series, X1 , at time � if CBS = 0 (i.e. covariance is zero)

SR methods for Poisson data can be derived in a similar manner to Chapter 4 (SR
methods for Normal data). Let Xs = (x1,x2, ...,xs) be the available information at time
s , t = 1, 2, ..., s . A sequence of likelihood ratio statistics for detecting a mean shift in a
Poisson process, lrt(xs), can be derived from the likelihood ratio between out of control
and in control stages (see more details in Section 4.2.2).

In this chapter, we define l(x t;�∣�) as the log likelihood function of bivariate Poisson se-
ries given that a change occurs at time � where � is a set of parameters, � = (�1, �2, �3)
for a simple BP distribution and � = (�1, �2, �1, �2, �3) for a Poisson BINAR(1) process.
In order to derive a likelihood ratio statistic, we also define the ratio

lr(x t;�) = ln
f(x t;�

O)

f(x t;�
I)

(6.30)

where f(x t;�
I) and f(x t;�

O) is the probability function (pdf) of in control (I ) and
out of control (O) stages, respectively, and a sequence

lrt(xs) = {lr(xt), lr(xt+1), ..., lr(xs)}, s = 1, 2, ... (6.31)

Similar to the SR methods proposed in Chapter 4, firstly assume that data are indepen-
dent (CWS = 0). The sequence of likelihood ratio statistics for monitoring a mean shift
in BP process can be derived from

l(xt;�∣�) =

�−1∑
t=1

ln f(x t;�
I) +

s∑
t=�

ln f(x t;�
O)

=
s∑
t=1

ln f(x t;�
I) +

s∑
t=�

ln
f(x t;�

O)

f(x t;�
I)

= ℎ(xs) +
s∑
t=�

lr(x t;�
O − �I)

= ℎ(xs) + k(lr� (xs;�
O − �I)) (6.32)

where ℎ and k are two real functions and xs = (x1,x2, ...,xs) is the information avail-
able at time s .
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By the factorization theorem, it was proved that a sequence lrt(xs;�
O−�I)) is sufficient

to monitor a shift in parameters, (�O − �I)), in a bivariate process (Wessman, 1998;
Frisén et al., 2011). A sequence lrt(xs;�

O − �I)) also can be written in a form of
likelihood ratio statistics

lrt(xs) = {Tt(xt), ..., Ts(xs)}, t = 1, 2, ..., s (6.33)

where Tt(xt) is likelihood ratio statistic derived from the ratio, lr(x t;�), at time t (see
more detail in Section 4.2.2).

In this chapter SR methods for Poisson data are proposed for four different cases listed
below.

∙ Case 1: no CWS or CBS

∙ Case 2: no CWS but CBS

∙ Case 3: CWS but no CBS

∙ Case 4: CWS and CBS

The distribution of X1 and X2 defined for in control and out of control stages and the
derivation of SR method for each case are given in each section separately.

6.4.1 Case 1 (no CWS or CBS)

In this case, we assume that observations in each series are independent (CWS = 0) and
the two series are independent. Since CBS = 0, a mean shift of size c occurs in X1

series only at time � . X1 and X2 follow Poisson distributions with parameters �1 and
�2 defined for in control and out of control stages as below.

X1,t ∼ P (�I1)
X2,t ∼ P (�I2)

}
t < � in control stage

X1,t ∼ P (�O1 )
X2,t ∼ P (�I2)

}
t ≥ � out control stage

where �Ii and �Oi are the parameters of in control and out of control stages of series
i and �O1 = �I1 + c . The mean and variance of in control and out of control stage are
defined in equations (6.2) and (6.18), respectively, while the joint pdf of the BP distri-
bution, of in control stage, f(x t;�

I
1, �

I
2), and out of control stage, f(x t;�

O
1 , �

I
2), with

corresponding parameters can be written in the form of equation (6.1).

According to the principle of SR methods defined in equation (6.32), a sequence of
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likelihood ratio statistics can be derived from

l(x t;�1, �2∣�) =

�−1∑
t=1

ln f(x t;�
I
1, �

I
2) +

s∑
t=�

ln f(x t;�
O
1 , �

I
2)

=
s∑
t=1

ln f(x t;�
I
1, �

I
2) +

s∑
t=�

ln
f(x t;�

O
1 , �

I
2)

f(x t;�I1, �
I
2)

= ℎ(xs) +
s∑
t=�

lr(x t;�
O
1 − �I1)

= ℎ(xs) + k(lr� (xs;�
O
1 − �I1)) (6.34)

Let Tt(xt) be a likelihood ratio statistic for detecting mean shift of size c in a process
at time t . From equation (6.34), by the factorization theorem, a sequence lrt(xs) which
is sufficient for monitoring a mean shift in BP process when CWS = 0 and CBS = 0 is

lr1(xs;�
O
1 − �I1) = {T1(x 1), ..., Ts(x s)}

and

Tt(x t) = x1,t ln

(
�O1
�I1

)
(6.35)

where �O1 = �I1 + c and t = 1, 2, ..., s . Since there is no correlation between series, a
shift occurs only in the X1 series, and the likelihood ratio statistics are based on X1

only. The derivation for this case is provided in Section C.1 in Appendix C.

6.4.2 Case 2 (no CWS but CBS)

In this case we still assume that observations in each series are independent (CWS =
0), but X1 and X2 are correlated with the covariance �3 . Due to no CWS, X1 and
X2 follow a BP distribution with parameters, �1, �2, �3 . A mean shift of size c in both
series is reflected from a change in covariance (�O3 −�I3 ). The distributions of in control
and out of control stages are defined below.

X1,t, X2,t ∼
{
BP (�I1, �

I
2, �

I
3) t < � in control stage

BP (�I1, �
I
2, �

O
3 ) t ≥ � out of control stage

where �I3 and �O3 are the covariances of in control and out of control stages and
�O3 = �I3 + c . Means and variances of in control and out of control stages can be
calculated from equations (6.3) and (6.20), respectively. The pdf of the BP distribution,
of in control stage, f(x t;�

I
1, �

I
2, �

I
3), and out of control stage, f(x t;�

I
1, �

I
2, �

O
3 ), with

corresponding parameters can be written in the form set out in equation (6.4).

In this case, we aim to detect mean shifts in both series which shift from �i + �I3 to
�i + �O3 , i = 1, 2. From equation (6.32), a sequence of likelihood ratio statistics for the
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shift can be derived from

l(x t;�1, �2, �3∣�) =
�−1∑
t=1

ln f(x t;�
I
1, �

I
2, �

I
3) +

s∑
t=�

ln f(x t;�
I
1, �

I
2, �

O
3 )

=

s∑
t=1

ln f(x t;�
I
1, �

I
2, �

I
3) +

s∑
t=�

ln
f(x t;�

I
1, �

I
2, �

O
3 )

f(x t;�I1, �
I
2, �

I
3)

= ℎ(xs) +
s∑
t=�

lr(x t;�
O
3 − �I3)

= ℎ(xs) + k(lr� (xs;�
O
3 − �I3)) (6.36)

By the factorization theorem, a sequence of statistics, Tt(x t), which is sufficient for
monitoring a mean shift in BP series when CBS ∕= 0, is

lr1(xs;�
O
3 − �I3) = {T1(x 1), ..., Ts(x s)}

and

Tt(x t) = ln

⎛⎜⎜⎝
∑m

j=0

(
x1,t
j

)(
x2,t
j

)
j!
(

�O3
�I1�

I
2

)j
∑m

j=0

(
x1,t
j

)(
x2,t
j

)
j!
(

�I3
�I1�

I
2

)j
⎞⎟⎟⎠ (6.37)

where �O3 = �I3 + c and m = min(x1,t, x2,t). The likelihood ratio statistic is derived ac-
cording to the shift in covariance (�O3 −�I3) which is reflected in mean shifts in both series.

Even though X1 and X2 can be theoretically generated from a BP distribution according
to the trivariate reduction method, it might be difficult to know the combination of �1, �2
and �3 used to construct the X1 and X2 series in practice. Based on the trivariate
reduction method, these three parameters can be estimated from the mean levels and
the covariance between series during the in control stage. Let �̂j be the estimate of
parameter �j , j = 1, 2, 3, and �̂IXi

be the estimated in control mean level of series i .
The estimated parameters can be calculated from

�̂I3 = Ĉov(X1, X2)

�̂Ii = �̂IX,i − �̂I3
Thus, the SR calculation for case 2 is based on the estimated parameters calculated as
above. The derivation of likelihood ratio statistics in this case is provided in Section C.2
in Appendix C.

6.4.3 Case 3 (CWS but no CBS)

In this case we assume that observations within each series are autocorrelated, but X1

and X2 are independent. X1 and X2 are two independent Poisson INAR(1) processes
with a Poisson marginal distribution defined in Section 6.3.1. Since CBS = 0, we aim to
detect a mean shift in X1 only, while the mean level of X2 is the same. Let R1,t and R2,t

be mutually independent random variables from Poisson distributions with parameters
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�1 and �2 . In this case we investigate a mean shift from a shift in parameter of R1,t in
X1 series. The distributions of in control and out of control stages are define below.

X1,t ∼ Bin(X1,t−1, �1)
X2,t ∼ Bin(X2,t−1, �2)

R1,t ∼ P (�I1)
R2,t ∼ P (�I2)

⎫⎬⎭ t < � in control stage

X1,t ∼ Bin(X1,t−1, �1)
X2,t ∼ Bin(X2,t−1, �2)

R1,t ∼ P (�O1 )
R2,t ∼ P (�I2)

⎫⎬⎭ t ≥ � out control stage

where �O1 = �I1 + c .

In this case we aim to detect a mean shift of size c in X1 only. The mean and variance
and the conditional mean and conditional variance of the in control stage are defined in
equations (6.11) and (6.12), respectively, while those defined for the out of control stage
are in equations (6.21) and (6.23), respectively.

The conditional pdf of X1 and X2 of in control and out of control stages with the
corresponding parameters can be written in the form defined in equation (6.10). Due
to CWS, a sequence of likelihood ratio statistics can be derived from the log likelihood
function of pdf (t = 1) and the conditional pdf (t = 2, ..., s) of BP series between out
of control and in control stages, which is

l(x t;�1, �2, �1, �2∣�) = ln f(x 1;�
I
1, �

I
2) +

�−1∑
t=2

ln f(x t∣x t−1;�1, �2, �I1, �I2)

+

s∑
t=�

ln f(x t∣x t−1;�1, �2, �O1 , �I2)

= ln f(x 1;�
I
1, �

I
2) +

s∑
t=2

ln f(x t∣x t−1;�1, �2, �I1, �I2)

+

s∑
t=�

ln
f(x t∣x t−1;�O1 , �I2)

f(x t∣x t−1;�I1, �I2)

= ℎ(xs) +

s∑
t=�

lr(x t∣x t−1;�O1 − �I1)

= ℎ(xs) + k(lr� (xs;�
O
1 − �I1)) (6.38)

where f(x 1;�
I
1, �

I
2) is the joint pdf of R1,t and R2,t at t = 1.
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By the factorization theorem, from equation (6.38), a sufficient sequence lrt(xs) for
monitoring a mean shift in independent bivariate Poisson INAR(1) process is

lr1(xs;�
O
1 − �I1) = {T1(x 1), ..., Ts(x s)}

and

Tt(x t) =

∑g1
j=0

(
x1,t−1
j

)
�j1(1− �1)x1,t−1−j .

(�O1 )x1,t−j

(x1,t−j)!∑g1
j=0

(
x1,t−1
j

)
�j1(1− �1)x1,t−1−j .

(�I1)
x1,t−j

(x1,t−j)!

(6.39)

where �O1 = �I1 + c and t = 1, 2, ..., s . The derivation of likelihood ratio statistics for
this case is provided in Section C.3 in Appendix C.

6.4.4 Case 4 (CWS and CBS)

In this case, we allow for both CWS and CBS, therefore, X1 and X2 follow a Poisson
BINAR(1) process defined in Section 6.3.2. Let R1,t and R2,t be random variables from
a BP distribution with parameters �1, �2, �3 , where �3 ∕= 0. We aim to detect mean
shifts occurring in both series reflected from a shift of size c in covariance between R1,t

and R2,t . Since the Poisson BINAR(1) process is the convolution of two binomial distri-
butions and the BP distribution, the distribution of in control and out of control stages
are defined below.

X1,t ∼ Bin(X1,t−1, �1)
X2,t ∼ Bin(X2,t−1, �2)

R1,t, R2,t ∼ BP (�I1, �
I
2, �

I
3)

⎫⎬⎭ t < � in control stage

X1,t ∼ Bin(X1,t−1, �1)
X2,t ∼ Bin(X2,t−1, �2)

R1,t, R2,t ∼ BP (�I1, �
I
2, �

O
3 )

⎫⎬⎭ t ≥ � out control stage

where �O3 = �I3 + c . The mean and variance and the conditional mean and conditional
variance of the in control stages are defined in equations (6.14) and (6.15), respectively,
while those of the out of control stage are defined in equations (6.27) and (6.28), respec-
tively.

The conditional pdf of the Poisson BINAR(1) process with the defined parameters can
be written as in equation (6.17). A sequence of likelihood ratio statistics derived from
the log likelihood function of pdf (t = 1) and the conditional pdf (t = 2, ..., s) of the
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BINAR(1) process is

l(x t;�1, �2, �1, �2, �3∣�) = ln f(x 1 : �I1, �
I
2, �

I
3) +

�−1∑
t=2

ln f(x t∣x t−1;�1, �2, �I1, �I2, �I3)

+

s∑
t=�

ln f(x t∣x t−1;�1, �2, �I1, �I2, �O3 )

= ln f(x 1;�
I
1, �

I
2, �

I
3) +

s∑
t=2

ln f(x t∣x t−1;�1, �2, �I1, �I2, �I3)

+
s∑
t=�

ln
f(x t∣x t−1;�1, �2, �I1, �I2, �O3 )

f(x t∣x t−1;�1, �2, �I1, �I2, �I3)

= ℎ(xs) +
s∑
t=�

lr(x t∣x t−1;�O3 − �I3)

= ℎ(xs) + k(lr� (xs;�
O
3 − �I3)) (6.40)

where f(x 1;�
I
1, �

I
2, �

I
3) is the joint pdf of the BP distribution between R1,t and R2,t at

t = 1. By the factorization theorem, from equation (6.40), a sufficient sequence lrt(xs)
for monitoring a mean shift in Poisson BINAR(1) process is

lr1(xs;�
O
3 − �I3) = {T1(x 1), ..., Ts(x s)}

and

Tt(x t) = ln
vt
wt
, t = 1, 2, ..., s (6.41)

where

vt =

g1∑
r1=0
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, �O3 = �I3 + c and
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As mentioned in Section 6.4.2, the parameters of the BP distribution (�1, �2, �3 ) might
be difficult to know or define in practice. However, once we have the estimated covariance
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Ĉov(X1, X2 ) and autoregressive coefficients ( �̂i ), the estimated parameters, �̂I1, �̂
I
2, �̂

I
3

for the in control stage, can be calculated from

�̂I3 = Ĉov(X1, X2)(1− �̂I1�̂I2)

�̂Ii = �̂IXi
(1− �̂Ii )− �̂I3

Thus, the SR calculation for case 4 is based on the estimated parameters calculated as
above. The derivation of likelihood ratio statistics for this case is provided in Section
C.4 in Appendix C.

6.5 Modified one-sided EWMA chart for Poisson data

A simple Shewhart c chart, proposed for detecting nonconforming products in manu-
facturing industry, is one of the existing charts used for monitoring a shift in a process
of Poisson data. However, a c chart is not very effective for detecting a small shift,
since a decision as to whether a process is out of control is made on the basis of a
current observation only. To detect a small positive mean shift in a Poisson process,
we aim to use a one-sided EWMA chart for Poisson data because it is more sensitive
(Gan, 1990; Borror et al., 1998; Testik et al., 2006). The development of Poisson EWMA
charts for independent and dependent observations exists in the literature, with some
limitations. For example, some of them are proposed for detecting both upward and
downward shifts (i.e. two-sided charts) (Borror et al., 1998; Testik et al., 2006; Weiß,
2009). In this section, we aim to modify one-sided EWMA charts for monitoring a mean
shift in a process of independent Poisson data (CWS = 0) and of Poisson INAR(1) data
(CWS ∕= 0). Details of the modification for each chart are provided in Sections 6.5.1
and 6.5.2 separately.

6.5.1 Modified one-sided EWMA chart for independent observations

The EWMA chart for Poisson data was introduced by Gan (1990) by rounding EWMA
statistics so that they are positive integers. Later Borror et al. (1998) proposed a two-
sided Poisson EWMA chart which proceeded without losing any information from round-
ing EWMA statistics and had smaller ARL compared to Shewhart’s c chart and Gan’s
chart. Hu et al. (2011) compared four modified one-sided EWMA charts for detecting
a linear drift in a Poisson mean. The four methods were a standard EWMA chart with
only an upper control limit, resetting EWMA statistics below the target mean by the
target mean, resetting observations below the target mean by the target mean and the
adaptive EWMA chart. However, none of these perform uniformly better than others
for various drift sizes (Hu et al., 2011) and we are not primarily concerned here with a
mean drift scenario, but rather a step change.

In this study we extend the idea of Borror et al. (1998) to develop a one-sided EWMA
chart for independent Poisson data. Let Xt be a random variable from Poisson distribu-
tion with parameter �I and � be a constant smoothing parameter required in EWMA
charts. The in control mean is denoted by �I , while �O is the out of control mean of
the process and we assume, since it is the practically interesting case, that �O > �I .
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One-sided EWMA statistics for detecting a positive shift in a process can calculated
from

zt = max(�I , �xt + (1− �)zt−1), t > 0 (6.42)

where z0 = �I . The mean and the exact variance of Zt are

E(Zt) = �I

V (Zt) =
�

2− �
(1− (1− �)2t)�I (6.43)

For large t , t→∞ , from equation (6.43) the asymptotic variance of Zt is

V (Zt) =
��I

2− �
(6.44)

In this study we construct one-sided EWMA chart based on this asymptotic variance.
Thus, the upper control limit (UCL) can be calculated from

UCL = �I + L

√
��I

2− �
(6.45)

where L is the width of the control limits for a specified � and a desired ARL0 .

The width L for a specific � and ARL0 can be obtained by ARL calculation using
the Markov chain approach (Brook and Evans, 1972; Lucas and Saccucci, 1990; Borror
et al., 1998). Let (LCL,UCL) be an interval divided to K subintervals, where the jtℎ

subinterval, (LCLj , UCLj), can be defined as

LCLj = LCL+
(j − 1)(UCL− LCL)

K

UCLj = LCL+
j(UCL− LCL)

K

and mi is the midpoint of the itℎ subinterval

mi = LCL+
(2j − 1)(UCL− LCL)

2K

A (K + 1)st interval is an absorbing state representing an out of control region above
UCL , where a process is stopped when points fall outside the UCL . Thus, the ARL is
the expected time to absorption of the Markov chain (Borror et al., 1998).

The run length distribution of an EWMA chart is determined by its initial probability
vector and transition probability matrix (Lucas and Saccucci, 1990). Let p be a K × 1
initial probability vector, where pj represents the probability that zt starts in state j .
For a upper or one-sided EWMA chart, p usually has 1 as the first entry and 0s at
every other entry so that the probabilities sum to one (Brook and Evans, 1972; Lucas
and Saccucci, 1990; Shu et al., 2007).



6.5. Modified one-sided EWMA chart for Poisson data 125

Let Q be a K ×K transition probability matrix among the in control stages where qij
is the probability of moving from state i to state j in one step defined as

qij =

{
P (Zt < LCLj), j = 1
P (LCLj < Zt < UCLj ∣zt−1 = mi), j > 1

Thus,

qij =

⎧⎨⎩
P (Xt < LCL+ UCL−LCL

2K� (−(1− �)(2i− 1))) j = 1

P (Xt < LCL+ UCL−LCL
2K� (2j − (1− �)(2i− 1)))

−P (Xt < LCL+ UCL−LCL
2K� (2(j − 1)− (1− �)(2i− 1))) j > 1

(6.46)

(Borror et al., 1998).

From Lucas and Saccucci (1990), the ARL0 for one-sided Poisson EWMA chart can be
calculated from

ARL0 = p′(I−Q)−11 (6.47)

Having specified � = 0.3 (see Section 4.2.5), the in control mean (�I ) and number of
subintervals (K ) and, the ARL’s calculation using the Markov chain approach defined
above can be summarized as follow.

step 1 specify initial value of L , LCL = �I and calculate UCL from equation (6.45)

step 2 calculate the transition probability matrix, Q from equation (6.46)

step 3 calculate ARL0 from equation (6.47)

According to the ARL calculation defined above, the limit L is chosen to achieve a
desired in control average run length, ARL0 = 370 or ARL0 = 741, adjusted for multi-
plicity in parallel methods. For � = 0.3, L = 3.093 for ARL0 = 370 and L = 3.374 for
ARL0 = 741, for an in control mean of 5. Limits (L) for various values of � are given
in Table C.1 in Appendix C.

6.5.2 Modified one-sided EWMA chart for dependent observations

While control charts for monitoring for mean shift in autocorrelated process of normal
data exist in the literature (Schmid, 1997; Lu and Reynolds, 1999; Shiau and Hsu, 2005;
Montgomery, 2009), those for autocorrelated process of Poisson data are rare (Weiß,
2009, 2011). Weiß (2009) proposed a two-sided EWMA chart for Poisson INAR(1) pro-
cess. This chart is called the combined EWMA chart since it combined the use of a
Shewhart c chart and the Poisson EWMA chart proposed by Gan (1990). This chart
suffers limitations from the choices of six design parameters (from two charts) which need
to be defined with care and sometime appears to be overparameterized (Weiß, 2009).
Later (Weiß, 2011) proposed a one-sided EWMA chart for the Poisson INAR(1) process
using only three design parameters, however, it suffers from rounding EWMA statis-
tics as in Gan (1990)’s approach, resulting in oversmoothed data. He then proposed
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a one-sided s EWMA chart by using different types of rounding operators. It shows
an improvement and a good sensitivity for detecting a large shift; however, our interest
might well be in small shifts, so we pursue our own method.

To modify a one-sided EWMA chart for Poisson INAR(1) process with positive auto-
correlation, we use the same approach as set out in Section 5.2. Let Xt be a random
variable from a Poisson INAR(1) process, with marginal Poisson distribution with pa-
rameter � , Rt ∼ P (�), and � an autoregressive coefficient of degree 1. The in control
mean is denoted by �I , while �O is the out of control mean. One-sided EWMA statistics
can calculated from

zt = max(�I , �xt + (1− �)zt−1), t > 0. (6.48)

The in control mean and the variance of Zt are

E(Zt) = �I =
�

1− �

V (Zt) =
�

1− �

(
�

2− �

)
(1 + �(1− �))

(1− �(1− �))

where � is an autoregressive coefficient, 0 < � < 1 (Wieringa, 1999; Shiau and Hsu,
2005). Thus, the upper control limit (UCL) can be calculated from

UCL = �I + L

√
�

1− �

(
�

2− �

)
(1 + �(1− �))

(1− �(1− �))
(6.49)

where L be the width of the control limits for a specified � and a desired ARL0 .

The calculation for ARL0 for a specific L and � is carried by using Monte Carlo simula-
tion defined in Section 5.2. Let N be a number of iterations, �I and � be parameters of
Poisson INAR(1) process and RL0 be an in control run length. The ARL’s calculation
are defined as follows

step 1 specify initial values of L and � and calculate UCL from equation (6.49)

step 2 set t = 1

step 3 generate xt which follow Poisson INAR(1) process with parameters �I and �
and calculate EWMA statistics from equation (6.48)

step 4 if zt > UCL , process is out of control and RL0 = t ; otherwise, set t = t+ 1 and
go back to step 3

step 5 repeat steps 2-4 N times (N = 100, 000)

step 6 average RL0 from N iterations to get the in control average run length (ARL0 )

Having specified � = 0.3 (see Section 4.2.5) and defined a desired ARL0 , the limits L
for different values of � can be obtained by using the same procedure defined above.
The limits L used for one-sided EWMA chart for Poisson INAR(1) process for � = 5
and ARL0 = 370, 741 are summarized in Table 6.1.



6.6. Simulation study 127

Table 6.1: The limits (L) for the modified one-sided EWMA charts (ARL0 = 370, 741)
for Poisson INAR(1) process for � = 5

ARL0 �
Autoregressive coefficient (�)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

370 0.3 3.104 3.062 3.013 2.949 2.875 2.782 2.669 2.516 2.270
741 0.3 3.458 3.357 3.349 3.286 3.161 3.075 2.923 2.836 2.595

6.6 Simulation study

The performance of detecting a mean shift in a Poisson process is evaluated from a
simulation study by assuming that

∙ bivariate Poisson series are generated according to the distribution and parameters
defined in each section

∙ simultaneous change at time � is considered

∙ mean shifts of sizes 2 and 3 are investigated by adding them to the BP series at
time � and afterwards

∙ if two series are independent, a shift occurs in X1 series only (i.e. model residuals,
case 1 and case 3), otherwise shifts occur in both series due to CBS (i.e. case 2
and case 4) (see Section 6.3.3)

∙ a one-sided EWMA chart is chosen according to the nature of data or derived
statistics to be monitored. For example, in the parallel method, since the origi-
nal Poisson data are monitored separately in parallel, a one-sided EWMA chart
modified for independent and dependent Poisson data (Sections 6.5.1 and 6.5.2)
is used with � = 0.3 and ARL0 = 741. For Frisén, Wessman and our methods,
one-sided EWMA charts for independent or dependent normal data (Sections 4.2.5
and 5.2), with � = 0.3 and ARL0 = 370, are used instead, since the likelihood
ratio statistics from these methods look more normal than Poisson (see results in
Section 6.6.2).

∙ the detection performances are evaluated by comparing the conditional expected
delay (CED), true alarm rate (TAR), false alarm rate (FAR) and non-detection rate
(NDR) between the three methods. Details of each measurement are summarized
in Section 3.4).

The detection performance between the methods are investigated by comparing the
differences of CED, TAR, FAR and NDR between the methods estimated from the
simulations against the critical values defined in Section 3.6. Section 6.6.1 provides
the results of using residuals from fitting Poisson regression models with SR methods
proposed for normal data, while the results of four cases of our proposed SR methods
for Poisson data are provided in Section 6.6.2. In each section, examples of the EWMA
charts are illustrated. The vertical dotted line indicates the change point of the process
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and the horizontal dashed line is the upper control limit. The comparison of the detection
performance between the methods is illustrated in bar charts, where P, F, W and Ck
stand for Parallel, Frisén, Wessman and our proposed method Case k, respectively. The
full results from the simulation study are given in Tables C.2 - C.7 in Appendix C.

6.6.1 Model residuals

In this section, we aim to show that residuals from Poisson regression model might be
used with SR methods proposed for normal data. A simple example is illustrated with
two independent Poisson series, X1 and X2 , defined as follows.

X1,t ∼ P (�I1)
X2,t ∼ P (�I2)

}
t < � in control stage

X1,t ∼ P (�O1 )
X2,t ∼ P (�I2)

}
t ≥ � out control stage

where �Ii = 5 and �O1 = �I1 + c .

Two Poisson regression models, M1 and M2, are fitted as defined in Section 6.2. Resid-
uals from each model are checked as whether they are approximately independent and
normal distributed. Diagnostic plots for M1 and M2 are shown in Figures C.1 and C.2,
respectively, in Appendix C. It can be seen that residuals from M1 model are approx-
imately normally distributed, while X1 residuals from M2 model are far from normal,
resulting in slow detection.

Residuals from the two models are used with SR methods proposed for normal data and
monitored with standard one-sided EWMA charts for independent normal data. The
example of detection charts of using residuals from M1 and M2 models are shown in
Figures 6.1 and 6.2, respectively. The performance of detecting mean shifts of sizes 2
and 3 between three methods, parallel adjusted for multiplicity, Frisén and Wessman
methods, is illustrated in Figure 6.3, while the full results from the simulation are given
in Table C.2 in Appendix C.

Overall, Frisén and Wessman methods perform significantly better than the parallel
method, as expected. Using residuals from M1 models gives significantly shorter ĉed,
though with lower t̂ar and higher n̂dr, than for the M2 model. Refitting the model
at each time point in M2 model is computationally time consuming and also slows the
detection because parameters at each time point are re-estimated over time. Since in
control and out of control parameters are not estimated separately as in the M1 model,
refitting and re-estimating parameters at each time point smooths a step change be-
tween in control and out of control stages which results in the underestimation of the
parameter in the out of control stage.

This is an example of monitoring BP series by using model residuals assumed normally
distributed with SR methods proposed for independent normal data. Further cases of
detecting a mean shift in BP series when CWS ∕= 0 and/or CBS ∕= 0 can be investigated
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in a similar manner to that set out in Section 6.2 (i.e. with modified EWMA charts if
necessary).

6.6.2 Actual Poisson data

In this section, actual bivariate Poisson data are used with our SR methods proposed for
detecting a mean shift in Poisson data. Our proposed methods are compared with the
Frisén method and the parallel method adjusted for multiplicity. We consider the Frisén
method because it was proposed for detecting a mean shift in any exponential family
distribution, including the Poisson distribution, while the Wessman method illustrated
in this study was only explicitly derived for detecting a change in a normal mean (see
more details in Chapter 4).

Several types of one sided EWMA charts are used depending on the distribution of data
or the derived likelihood ratio statistics by the SR methods. It can be seen later that
even though the actual data are Poisson distributed, the derived sequence of likelihood
ratio statistics from Frisén and our proposed methods look more normal than Poisson.
Therefore, the statistics from Frisén and our methods are monitored with a standard
one-sided EWMA chart for normal data, while the actual data in the parallel method
are monitored with one-sided EWMA chart for Poisson data. More details of the charts
are given in each section separately.

6.6.2.1 Case 1: no CWS or CBS

Assume that CWS = 0 and CBS = 0, so that two independent Poisson series, X1 and
X2 , as defined in Section 6.6.1 are considered. X1 and X2 are generated from Poisson
distribution with parameter �i = 5. Since CBS = 0, the data considered for the Frisén
and our methods in this case are from the X1 series only. The diagnostic plots of the raw
data and likelihood ratio statistics from Frisén and our methods are shown in Figure C.3
in Appendix C. From Figure C.3, parallel data are monitored with one-sided EWMA
chart modified for independent Poisson data (Section 6.5.1), while the statistics from
Frisén and our methods, which look more normal than Poisson, are monitored with a
one-sided EWMA chart for normal data (Section 4.2.5). An example of detection plot
for detecting a mean shift of size 2 is illustrated in Figure 6.4. The performance in
detecting mean shifts of sizes 2 and 3 of the three methods are illustrated in Figure 6.5,
while the original results from the simulation are summarized in Table C.3 in Appendix
C.

As expected, Frisén and our methods perform equally well and significantly differently
from the parallel method. A large shift size is more likely to be detected with shorter
ĉed, higher t̂ar and lower n̂dr. Compared with the results from Section 6.6.1, the three
methods show a significant improvement in detection with shorter delay and lower f̂ar,
but with lower t̂ar and higher n̂dr than using model residuals from M1 and M2 models
for all shift sizes. However, in prospective surveillance, early detection with low false
alarm rate is considered much more important. Thus this case shows that even though
residuals from fitting Poisson regression model might be used as a simple alternative
way to detect a mean shift in BP series, it delays the detection in Section 6.6.1.
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Figure 6.1: An example of detection performance for the M1 model (shift size 2,
CWS = 0 and CBS = 0): (a) residual plot, (b) plot of likelihood ratio statistics from
Frisén and Wessman methods, (c) - (d) one-sided EWMA charts of parallel method and
(e) - (f) one-sided EWMA charts for Frisén and Wessman methods.
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Figure 6.2: An example of detection performance for the M2 model (shift size 2,
CWS = 0 and CBS = 0): (a) residual plot, (b) plot of likelihood ratio statistics from
Frisén and Wessman methods, (c) - (d) one-sided EWMA charts of parallel method and
(e) - (f) one-sided EWMA charts for Frisén and Wessman methods.
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Figure 6.3: A bar chart comparing the performance in detecting the mean shift of sizes
2 and 3 in the process: (a) - (c) M1 model and (d) - (f) M2 model.

6.6.2.2 Case 2: no CWS but CBS

Having assumed that the two series are correlated with each other, X1 and X2 are gen-
erated from a BP distribution with three parameters, �1, �2 and �3 . Three different sets
of parameters considered in this case illustrate differing levels of dependency between
series. The mean level and CBS in each set for the in control stage are summarized in
Table 6.2. Diagnostic plots of actual data and likelihood ratio statistics of Frisén and our
methods are shown in Figure C.4 in Appendix C. The one-sided EWMA charts defined
for each method in case 1 can also be applied in this case. The example of the detec-
tion plots of the three methods is shown in Figure 6.6, while the detection performance
in detecting a mean shift of sizes 2 and 3 of the three methods are illustrated in Fig-
ure 6.7. The full results from the simulation are summarized in Table C.4 in Appendix C.

Table 6.2: Set of parameters of BP distribution for case 2

Parameters Mean level
CWS CBS

(�1, �2, �3) (E(Xi))

4,4,1 5 0 0.2
3,3,2 5 0 0.4
2,2,3 5 0 0.6

Unsurprisingly, a larger shift size is detected more quickly than smaller shift size. Our
method performs significantly differently from the parallel and Frisén methods by show-
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Figure 6.4: An example of detection performance for case 1 (shift size 2, CWS = 0
and CBS = 0): (a) data plot, (b) plot of likelihood ratio statistics from Frisén and our
methods, (c) - (d) one-sided EWMA charts for parallel method and (e) - (f) one-sided
EWMA chart for Frisén and our methods.
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Figure 6.5: A bar chart comparing the performance in detecting the mean shifts of sizes
2 and 3 of case 1 (CWS = 0 and CBS = 0).

ing shorter ĉed and lower n̂dr for all shift sizes. Since CBS is not incorporated in the
Frisén and parallel methods, high n̂drs are produced here when CBS increases. Overall,
from Figure 6.7, even though our proposed method gives higher f̂ar, the CED and TAR
of our method is significantly better for detecting a small shift size for all levels of CBS
and a large shift size when CBS is high.

Compared to the results of the normal case (scenario 1 in Chapter 4, when CBS ∕= 0 and
CWS = 0), all three methods perform worse in detecting a shift in the Poisson process,

giving lower t̂ar and higher n̂dr. However, this might be due to the nature of Poisson
data, where the mean and variance are not separable. A (positive) shift is unlikely to
be detected because of the larger variation resulting from the mean shift in the process.
The larger variance after the change point can be seen from the data plot and the plot
of likelihood ratio statistics (Figures 6.6 (a) and (b)).

6.6.2.3 Case 3: CWS but no CBS

In this case, we assume that observations in each series are dependent over time. Three
different levels of CWS are investigated (0.2, 0.4 and 0.6). Two types of EWMA charts,
one-sided EWMA charts for independent and dependent data are used as detection tools
in this case. This is because, we note the results in Chapter 4, where parallel and Frisén
methods, which do not take CWS into account, are found to have a high false alarm
rate if data are autocorrelated. Thus, we aim to use both charts to show how detection
performance improves when the proper control chart, accounting for autocorrelation, is
used.

Here we assume that the X1 and X2 series are independent (CBS = 0) and are from
the Poisson INAR(1) model with parameter �i and �i defined in Section 6.4.3. The
in control parameters of the model in each series and its mean level are summarized in
Table 6.3.

Since X1 and X2 are from the Poisson INAR(1) model, the parallel method is used with
modified one-sided EWMA charts for independent and dependent Poisson data (Sections
6.5.1 and 6.5.2). Likelihood ratio statistics derived from Frisén and our method (case
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Figure 6.6: An example of detection performance of case 2 (shift size 3, CWS = 0 and
CBS = 0.6): (a) data plot, (b) plot of likelihood ratio statistics from Frisén and our
methods, (c) - (d) one-sided EWMA charts for parallel method and (e) - (f) one-sided
EWMA chart for Frisén and our methods.
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Figure 6.7: A bar chart comparing the detection performance of case 2 (CWS = 0 and
CBS ∕= 0): (a) - (d) shift size = 2 and (e) - (h) shift size = 3.

Table 6.3: Parameters of Poisson INAR(1) model for case 3

Parameter
CBS

Mean level
�i �i (E(Xi))

5 0.2 0 6.25
5 0.4 0 8.33
5 0.6 0 12.5

3), which look more normally than Poisson distributed (Figure C.5 in Appendix C), are
monitored with a standard one-sided EWMA chart for independent normal data (Section
4.2.5) and a modified one-sided EWMA chart for dependent normal data (Section 5.2).
An example of detecting a mean shift of size 3 is shown in Figure 6.8. The upper
control limits of the modified charts for the parallel and Frisén methods are higher than
those of the standard charts due to the adjustment for the autocorrelation, resulting in
slow detection. The detection performances of the three methods for detecting mean
shift of sizes 2 and 3 are illustrated in Figures 6.9 and 6.10, respectively. The full
results from the simulation are given in Tables C.5 and C.6, respectively, in Appendix
C. Note that, in the tables, standard and modified for Frisén and our method represent
standard and modified charts for independent and dependent normal data, while those
for parallel method represent modified charts for independent and dependent Poisson
data, respectively.

Overall, the CED of our method performs is significantly different from the CED of
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Figure 6.8: An example of detection performance of case 3 (shift size 3, CWS = 0.6
and CBS = 0): (a) data plot, (b) plot of likelihood ratio statistics from Frisén and our
methods, (c) - (d) one-sided EWMA charts for parallel method and (e) - (f) one-sided
EWMA chart for Frisén and our methods.



138 Chapter 6. Sufficient reduction methods for Poisson data

0.2 0.4 0.6

0
1

2
3

4
5

6
7

 CWS 
 (a)

ce
d

Parallel
Frisén
Case 3

P F C3

P
er

ce
nt

ag
e

0
20

40
60

80
10

0

 CWS = 0.2 
 (b)

ndr

far

tar

P F C3

P
er

ce
nt

ag
e

0
20

40
60

80
10

0

 CWS = 0.4 
 (c)

ndr

far

tar

P F C3

P
er

ce
nt

ag
e

0
20

40
60

80
10

0

 CWS = 0.6 
 (d)

ndr

far

tar

0.2 0.4 0.6

0
1

2
3

4
5

6
7

 CWS 
 (e)

ce
d

Parallel
Frisén
Case 3

P F C3

P
er

ce
nt

ag
e

0
20

40
60

80
10

0

 CWS = 0.2 
 (f)

ndr

far

tar

P F C3

P
er

ce
nt

ag
e

0
20

40
60

80
10

0

 CWS = 0.4 
 (g)

ndr

far

tar

P F C3

P
er

ce
nt

ag
e

0
20

40
60

80
10

0

 CWS = 0.6 
 (h)

ndr

far

tar

Figure 6.9: A bar chart comparing the detection performance of case 3 (CWS ∕= 0, CBS
= 0 and shift size = 2): (a) - (c) the results from standard one-sided EWMA charts and
(d) - (f) the results from modified one-sided EWMA charts.
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Figure 6.10: A bar chart comparing the detection performance of case 3 (CWS ∕= 0,
CBS = 0 and shift size = 3): (a) - (c) the results from standard one-sided EWMA charts
and (d) - (f ) the results from modified one-sided EWMA charts.
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other methods. Our method gives shorter delays for all levels of CWS and shift sizes.
As expected, parallel and Frisén methods give high false alarm when standard EWMA
charts for independent data are used. Irrespective of whether the standard or modified
chart is used, the CED of our method is significantly different from the others. Even
though our method give a quicker detection (shorter ĉed), the t̂ar, f̂ar and n̂dr are not
uniformly better than other methods. For example, our method performs significantly
differently from other methods by giving higher t̂ar and lower n̂dr for all shift sizes
when CWS is high (Figures 6.9 (d and f) and 6.10 (d and f)). The plots of the auto-
correlation function of actual Poisson data (X1 and X2 ) and likelihood ratio statistics
from Frisén and our methods (Figure C.7 in Appendix C) show that our method clearly
removes CWS, while the effect of CWS are still present in parallel data and the statistics
from Frisén methods. The f̂ar of parallel and Frisén methods are substantially improved
when modified EWMA charts for dependent data are used, while those of our method
are slightly improved since CWS has been removed in the sufficient reduction. The par-
allel method gives the lowest f̂ar, however, overall it performs significantly differently
from other methods by showing the longest ĉed, lowest t̂ar and highest n̂dr due to high
upper control limits adjusted for multiplicity.

As mentioned previously in case 2, due to the large variation resulting from the shift
in mean, the three methods perform moderate compared to their performances in the
normal case (scenario 2, Chapter 4) with lower t̂ar and higher n̂dr. Due to the large

variance after the mean shifted, a shift is unlikely to be detected resulting in high n̂dr.

6.6.2.4 Case 4: CWS and CBS

In this case we want to investigate the detection performance when X1 and X2 are
dependent with both CWS and CBS. X1 and X2 follow the Poisson BINAR(1) model
defined in Section 6.3.2. The parameters of the in control stage of each series are sum-
marized in Table 6.4. Like case 3, both standard and modified one-sided EWMA charts
are used the show how the FAR is improved.

Table 6.4: Set of parameters of Poisson BINAR(1) model for case 4

Parameters Mean level
CWS CBS

(�1, �2, �3) (E(Xi))

3,3,2 12.5 � = 0.6 � = 0.25
1,1,4 12.5 � = 0.6 � = 0.5

Diagnostic plot for each method (Figure C.6 in Appendix C) shows that the parallel
data are still Poisson distributed, while likelihood ratio statistics for Frisén look more
normal than Poisson. Even though the statistics of our method are not quite normally
distributed, with the presence of heavy tails and some outliers, a one-sided EWMA chart
for normal data is still used, though with some concern over its applicability. There-
fore, the standard and modified one-sided EWMA charts defined in case 3 for the three
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methods are also applied in this case. An example of detecting a mean shift of size
3 in autocorrelated process are shown in Figure 6.11. The detection performances in
detecting mean shift of sizes 2 and 3 are illustrated in Figures 6.12 and 6.13, respec-
tively, while the full results from the simulation are provided in Table C.7 in Appendix C.

Since CWS is recognized and allowed for, our proposed method performs significantly
differently from other methods by showing shorter ĉed for all shift sizes. However,
the t̂ar, f̂ar and n̂dr are not uniformly better than the others. For example, with the
standard chart, the t̂ar of our method is higher than other methods when shift size is
large. On the other hand, with the modified chart, the t̂ar of our method is lower than
other methods, especially when shift size is large.

Overall, even though our method gives a shorter delay for all shift sizes, it still produces
high f̂ar compared to the others even if the modified EWMA chart for autocorrelated
data is used. This can be investigated from the plots of the autocorrelation functions of
parallel data and likelihood ratio statistics from Frisén and our methods (Figure C.8 in
Appendix C). Figure C.8 shows that our method clearly removes CWS, while the effect

of CWS is still present in parallel and Frisén methods. Thus, the high f̂ar in our methods
is not because of CWS, but it might be because of the presence of outliers in normal Q-Q
plot of likelihood ratio statistics derived from our method. More generally, using a one-
sided EWMA chart for normal data with our methods might not be inappropriate, since
the statistics are not quite normal. Thus, a proper control chart for the corresponding
distribution of likelihood ratio statistics might be considered in order to improve the
detection performance.

6.7 Conclusions

In this chapter we aim to detect a mean shift in a bivariate Poisson process. Two possible
approaches considered are using model residuals with SR methods proposed for normal
data and deriving four possible cases of SR methods for Poisson data. The detection
performance of each method or case is evaluated by simulation and compared with re-
sults of parallel, Wessman and Frisén methods. Modified one-sided EWMA chart for
independent and dependent Poisson data are proposed for monitoring a shift by the par-
allel method, while the derived statistics of Wessman, Frisén and our proposed methods
are monitored with one-sided EWMA charts for normal data.

The use of methods specific to Poisson data has advantages over the use of (normally dis-
tributed) model residuals from a Poisson regression model. Using the residuals slows the
detection due to correlated residuals from long step ahead forecasts and oversmoothed
estimated parameters from refitting a model for prospective surveillance. Results from
using actual Poisson data in the SR methods show that if there is no CBS or CWS in
the process, our and the Frisén methods perform equally and better than the parallel
method since the Frisén method is also proposed for detecting a shift in a any exponen-
tial family distribution, including the Poisson.
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Figure 6.11: An example of detection performance of case 4 (shift size 3, CWS = 0.6
and CBS = 0.5): (a) data plot, (b) plot of likelihood ratio statistics from Frisén and our
methods, (c) - (d) one-sided EWMA charts for parallel method and (d) - (f) one-sided
EWMA chart for Frisén and our methods.
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Figure 6.12: A bar chart comparing the detection performance of case 4 (CWS ∕= 0,
CBS ∕= 0 and shift size = 2): (a) - (d) the results from standard one-sided EWMA
charts and (e) - (h) the results from modified one-sided EWMA charts.
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Figure 6.13: A bar chart comparing the detection performance of case 4 (CWS ∕= 0,
CBS ∕= 0 and shift size = 3): (a) - (d) the results from standard one-sided EWMA
charts and (e) - (h) the results from modified one-sided EWMA charts.
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Overall, either if CWS or CBS or both are present, our proposed method gives shorter
delay than other methods, however, the TAR, FAR and NDR of such methods are not
uniformly better than those of the others. For example, if CBS only is present, our
method gives shorter delay and higher TAR for detecting a small shift size for all levels
of CBS and for detecting a large shift size when CBS is high.

If CWS is clearly present, either with or without CBS, our method still gives shorter
delay than the others no matter whether a standard or modified chart is used. The
FARs of the parallel and Frisén are high due to the effect of CWS being present in the
data and derived statistics. However, they can be improved by using a modified chart
for autocorrelated data. As a result, NDR is also improved, but the delays of detection
are still longer than our method. While FARs of the parallel and Frisén are improved
with the modified charts, the FAR of our method is only slightly better since CWS
has already been removed in the sufficient reduction. So with the modified chart, the
TAR, FAR and NDR of the Frisén method might be better than our method at some
level of CWS or CBS, though our method still gives quicker detection (i.e. shorter delay).

Apparently, from the simulation results, the high FAR of our method occurs when CBS
is present. There might be two possible reasons to consider. Firstly, our SR methods
derive a sequence of likelihood ratio statistics according to a shift in a covariance which
results in a mean shift in the process. So if the two series are not independent and the
mean shift is due to a shift in the covariance, our methods might be more sensitive to
the shift, producing FAR, than the other methods which do not incorporate CBS in
the sufficient reduction. It can be observed from the diagnostic plots that the derived
statistics from our method are not quite normally distributed, with the presence of some
outliers which tend to produce false alarms easily. Thus, alternative modification of the
one-sided EWMA chart for monitoring a mean shift in a bivariate Poisson process should
be considered, with due regard to the exact distribution of likelihood ratio statistics.

Secondly, due to the equivalence of mean and variance of Poisson data, which cannot be
separated, the variance of the process is shifted correspondingly to a shift in the process
mean. A shift is unlikely to be detected because of the large variation (or variance)
resulting from the mean shift in the process. Monitoring a mean shift in the process
with a one-sided EWMA chart either for normal and Poisson data, where the control
limit is calculated based on the parameters estimated in the in control stage, might not
be relevant for the Poisson case, since not only the mean change is shifted, but also the
variance. Thus results should be interpreted with care or other types of control charts,
i.e. charts for monitoring both mean and variance, might be considered.
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Chapter 7

Case studies: The
implementation of SR methods

7.1 Background

Having evaluated the detection performance of SR methods via simulation study, this
chapter aims to illustrate the implementation of sufficient reduction methods in prac-
tice. Three case studies from four real data sets observed for health and environmental
surveillance are used in this chapter.

∙ Case study 1: Influenza mortality data, USA

∙ Case study 2: Scarlet fever notifications, UK

∙ Case study 3: Greek pollution data, Greece

∙ Case study 4: Swedish radiation and snow depth data, Sweden

The influenza mortality data in the USA are available online from CDC WONDER
website (CDC WONDER, 2012), while the others were restricted data, but were made
available by request for the purpose of academic research. The scarlet fever notifications
were kindly provided by Dr Paul Clearly, the Health Protection Agency North West
Regional Epidemiology Unit (HPA, 2012). The Greek pollution data were provided by
Dr Sotiris Bersimis (Bersimis, pers. comm.). The Swedish radiation data were kindly
provided by Dr Eric Järpe with authorization from the Swedish Radiation Safety Au-
thority (SRSA, 2012), while the snow depth data were made available by the Swedish
Meteorological and Hydrological Institute (SMHI, 2012).

The first two case studies provide evidence of a real shift in the data (section 7.2), while
there is no evidence of a real or significant shift in the two last data sets (section 7.3).
Since there is no significant shift in the latter, simulated outbreak signals are injected
to both data in order to be able to evaluate the detection performance of SR methods.
Also, due to the non-stationarity in the Greek and Swedish data sets, actual data can-
not be directly used with SR methods since they do meet the assumptions of the SR
methods. Therefore, in case studies 3 and 4, residuals from fitting time series models are

145
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used instead of observed data. Details of data preparation for this cases are provided in
section 7.3.1.

Since we do not have long historical data, for the purpose of system evaluation data in
each series are divided into two parts: training and test sets. The training data are used
to investigate correlation within and between series, lag between series and to assess
the parameters used in the SR methods and EWMA charts, while the test data is used
to test the detection performance of the methods. To evaluate this performance, an
appropriate one sided EWMA chart (i.e. modified if necessary, as in sections 5.2 and
6.5.2), with � = 0.3 and ARL0 = 370 for Wessman, Frisén and our proposed methods
and ARL0 = 741 for the parallel method adjusted for multiplicity, is chosen according
to the nature and characteristics of data in each case study.

The detection performance of the four methods is evaluated by measuring the delay be-
fore the system detects a shift once it has started (i.e. measured from the defined change
point of the process). Zero delay means that the system triggers an alarm on the day,
or week, that a change began (i.e. an alarm is flagged on the same day or week as the
change point). A negative delay indicates a false alarm; but see further discussion below.

Details of the data, definition of training and test sets and the appropriate one-sided
EWMA chart for each case study are summarized in separate sections. Section 7.2 covers
case studies 1 and 2, , while case studies 3 and 4 are in section 7.3.

7.2 Actual data with real shifts

In this section, actual weekly data with real shifts from two data sets, the USA in-
fluenza and UK scarlet fever data sets, are used to illustrate SR methods. The USA
influenza data provides an example of detecting a mean shift with correlation and time
lag between series in a process of normal data, while the UK scarlet fever data set is an
example of detecting a mean shift with no lag between series in a process of Poisson data.

In order to evaluate detection performance with actual data, we need to know the exact
date of disease outbreak in order to measure how fast the system can detect a mean
shift. However, in practice, it is difficult to identify the date of the outbreak (Meynard
et al., 2008; Burkom, 2003; Unkel et al., 2012). Therefore, in order to evaluate detection
performance, we choose a suitably dramatic shift to be regarded as the change point of
the process, � . The training set is defined as the non-epidemic or non-peak period up
to 4 weeks (an arbitrary ‘guard region’) prior to the defined change point of the process
in order to allow for uncertainty in subjectively defining the date of change point. The
training set is thus the data observed at times t = 1, ..., � − 4, while the test set is the
data observed at times � − 3, ..., s . Details of training and test sets for each data set are
provided below. Note that since the detection performance of the methods are compared
against each other, subjectively choosing a change point of the process is not a critical
issue for the system comparison in this study.
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7.2.1 Influenza mortality data, USA

The weekly influenza mortality data set collected by CDC WONDER (2012) in the USA
is considered. The full data set consists of influenza mortality data reported weekly
from 122 cities in the USA for 1996 - 2013. From historical data (1993 - 1998), a peak
influenza period is defined as a 4-consecutive-week period during the last few weeks of
one year and the first few weeks of the following year. It is reported that influenza
notifications in Los Angeles and several cities in late December, 1997 and early January
1998 are higher than those in the last six years (Glaser et al., 2002).

In this example, we identify the data from San Francisco and Las Vegas in 1997 - 1998,
cities not far from Los Angeles which also show an increase in the mortality in late
December in 1997, as a suitable pair of series to illustrate the implementation of SR
methods, since the non-peak periods of the two series can be identified clearly and meet
the requirements of SR methods (i.e. both are normal distributed with evidence of
correlation and lag between series, see more detail in next section). The data from Los
Angeles was considered but is unsuitable because it contains a lot of missing values
during the non-peak period. Although long historical data are available, we use only
two-years data, 1997 - 1998, since data are non-stationary with a seasonal pattern every
year. Defining a non-peak period or training data from the full historical data might
not be easy or practical since suitable weeks would not be consecutive. Additionally, in
many applications, very limited prior data is available. Thus, it is more realistic if we
use the non-peak period in 1997, as a training data, to test whether or not we can detect
a shift in the last few weeks of 1997 and the first few weeks of 1998. More details are
given in the next section.

7.2.1.1 Training and test sets and detection tools

The weekly influenza mortality data in San Francisco and Las Vegas in 1997 - 1998 are
plotted in Figure 7.1. It is clear that there is an increase in the mortality at the beginning
of each year during weeks 1 - 11 in both series, with evidence of time lag between series
with the San Francisco series running slightly ahead of the Las Vegas series. Due to the
dramatic shift in the second week of 1998 in San Francisco, we chose the second week of
1998 as the change point of the process. Since the change point is subjectively chosen,
we exclude 4 weeks prior for the training data, which must be chosen from a non-peak
period, and define

∙ the training data: weeks 12 - 51, 1997

∙ the test data: weeks 52 - 53, 1997 and weeks 1 - 53, 1998

∙ the change point: week 2, 1998

The plot of the defined training and test sets is shown in Figures 7.2. The vertical dashed
line separates the training data and test data, while the vertical dotted line represents
the supposed change point of the process.

In order to choose a proper SR method and detection tool for this data set, both series
are checked as to whether or not they are independent and normally distributed with
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Figure 7.1: Plots of the influenza mortality data in San Francisco and Las Vegas. The
vertical dotted line represents the change point of the process.
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Figure 7.2: Plots of the training and test data for San Francisco and Las Vegas series.
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Table 7.1: Parameter estimation for the training sets (case study 1)

Series Mean Standard deviation
Cross correlation

(Lag = 2)

San Francisco 12.722 3.493
0.431

Las Vegas 8.729 3.105

or without the evidence of lag between series. The check plots of the training data for
San Francisco and Las Vegas series are shown in Figures D.1 and D.2 in appendix D,
respectively. The lag between series is investigated from the plot of cross-correlation
function in Figure D.3. From the plots, observations in each series are independent and
normally distributed. The series are correlated with 2 weeks lag. The mean and stan-
dard deviation of each training set are summarized in Table 7.1

In view of our decision regarding the nature of the data, the appropriate version of our
SR method is that in case 1 of chapter 4, i.e. that for detecting changes with time lag in
a process of independent normal data. It is compared with other three methods: parallel
adjusted for multiplicity, Frisén and Wessman methods. Since the data are independent
and normally distributed, a standard one-sided EWMA chart is used.

Regarding the relation of shift sizes between series defined in section 4.3.2, if the two
series are correlated, the shift size in one series reflects in the shift size in another due
to the correlation between series. Let ci be a shift size we aim to detect in series i
and �̂ be the estimated correlation between series. If two series are not independent
(� ∕= 0), the shift in the second series is determined by the shift in the first series and
the CBS, i.e. c2 = �̂c1 . As shown in section 5.3.2, the SR method is fairly robust to
mis-specification of the ci . Thus, in this example we aim to detect a mean shift of size
2 times the standard deviation of the training data. Due to the time lag between series,
the shift size, c1 is calculated from the standard deviation of the San Francisco series,
so c1 = 6.986, while the shift size we will be seeking to identify in the Las Vegas series
is c2 = 0.431c1 = 3.011.

7.2.1.2 Results

Relative to the defined change point of the process in week 2, 1998, Table 7.2 summarizes
the actual delays (in weeks) from the four methods. Since lag and correlation between
series are incorporated, our method gives earlier detection than the Frisén and Wessman
and parallel methods. Although the negative delays might usually be regarded as false
alarms, since the change point (week 2, 1998) is subjectively chosen, this might be con-
sidered as evidence that the process has shifted gradually from week 53 in 1997 which
might possibly be detected by our method which takes both lag and correlation between
series into account. Also it is reported that influenza notification in Los Angeles was
substantially high in weeks 52 - 53, 1997 and weeks 1 - 2, 1998 (Glaser et al., 2002).
Therefore, the date of the disease outbreak in San Francisco and Los Angeles might
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Table 7.2: Actual week delay for detecting the mean shift in the process (case study 1)

Method Delays in weeks (week detected)

Adj. Parallel 0 (week 2, 1998)
Frisén -1 (week 1, 1998)

Wessman -1 (week 1, 1998)
Case 1 -2 (week 53, 1997)

actually be in the last two weeks of 1997.

Even though the change point of the process is difficult to identify, recognizing and
incorporating the correlation and lag between series properly in the sufficient reduction
gives more chance of detecting a shift in the process. In this case, the Frisén method,
which incorporates the lag between series, but not the correlation between series, gives
longer delay by failing to detect gradual shift in the two series. The plots of detection
performance of the four methods are shown in Figure 7.3.

7.2.2 Scarlet fever notifications, UK

This section provides an example of using SR methods for detecting a mean shift in
bivariate Poisson data. The anonymized aggregated counts of scarlet fever notifications
in Greater Manchester (GM) and Cheshire & Merseyside (C&M) in 2011 - 2012 provided
by the Health Protection Agency North West Regional Epidemiology Unit (HPA, 2012)
are used. Since the data are low counts, the SR method proposed for Poisson data
(chapter 6) is considered in this example.

7.2.2.1 Training and test sets and detection tools

Figure 7.4 shows the weekly scarlet fever notifications in GM and C&M in weeks 1 - 53,
2011 and weeks 1 - 47, 2012. Since this disease tends to be most common during winter
and spring (HPA, 2011), there is a peak a few weeks in January in 2011 and a dramatic
shift in the 2nd week of 2012. Due to the high peak in 2012, we chose to regard the 2nd

week of 2012 as the change point of the process. The training set is chosen from the
non-peak period of 2011. As in case study 1, due to subjectively choosing the change
point, we allow 4 weeks prior to the change point as a part of the test data. The training
and test periods are defined as below.

∙ the training data: weeks 15 - 49, 2011

∙ the test data: weeks 50 - 52, 2011 and weeks 1 - 47, 2012

∙ the change point: week 2, 2012

The plot of the defined training and test sets is shown in Figure 7.5. The vertical dashed
line separates the training data and test data, while the vertical dotted line represents
the change point of the process.
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Figure 7.3: Results for detecting a mean shift in the San Francisco (SF) and Las Ve-
gas (LV) series: (a) data plot, (b) - (c) EWMA plots of parallel methods for SF and
LV, respectively, (d), (e) and (f) EWMA plots of Frisén, Wessman and our methods,
respectively.
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The histograms and Poisson Q-Q plots of training set of the two series (Figures D.4 and
D.5 in appendix D) show that data in each series are Poisson rather than normal, with
no evidence of correlation within series. The cross-correlation function plot (Figure D.6)
indicates that the series are correlated with zero lag. The mean and standard deviation
of each training set are summarized in Table 7.3

Table 7.3: Parameter estimation for the training sets (case study 2)

Series Mean Standard deviation
Correlation
(Lag = 0)

Greater Manchester 1.528 1.444
0.344

Cheshire & Merseyside 0.417 0.554

Since the two series are dependent, the relation of mean shift sizes between series is con-
sidered as defined in section 4.3.2 (i.e. a shift in one series reflects in a shift in another
due to CBS). From Table 7.3, the mean and variance of GM are quite high compared to
those of C&M, so the mean shift in the GM series might obviously be detected easily.
We then subjectively define GM series as the first series and C&M as the second. Thus,
the size of the mean shift of C&M series ‘depends’ on the shift size of GM series and
CBS, i.e. c2 = �c1 ).

As shown in section 5.3.2, the SR method is fairly robust to mis-specification of the ci . In
this example we aim to detect a mean shift of size twice the standard deviation of training
data of GM series. From Table 7.3, the shift size we want to detect in GM series, c1 is
2.888, while the shift size we aim to detect in the C&M series is c2 = 0.344c1 = 0.993,
respectively. Since the data are reasonably Poisson distributed, our method (case 2,
chapter 6) proposed for detecting a mean shift in a bivariate Poisson process, Frisén
and parallel (adjusted for multiplicity) methods are used. Due to the distribution of
the data and derived statistics from SR methods, the parallel data are monitored with
modified one-sided EWMA charts for independent Poisson data (section 6.5.1, chapter
6), while the derived statistics from Frisén and our proposed methods are monitored
with a standard one-sided EWMA charts for independent normal data.

7.2.2.2 Results

The detection performance of the three methods is summarized in Table 7.4. Our method
gives earlier detection than other methods, although it is technically a false alarm rela-
tive to the defined change point. Frisén and parallel methods perform equally detecting
a mean shift in the 2nd week of 2012 where the dramatic shift occurs. Once again, if
we allow for the uncertainty of subjectively choosing the change point, the false alarm
might be considered as a genuine warning of disease outbreak. It can be seen from the
data plot (Figure 7.6 (a)) and the EWMA plot for our method (Figure 7.6(e)) that the
alarm was given in week 50, 2011, where there are small shifts occurring in both series.
By taking correlation between series into account, our methods might be able correctly
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Table 7.4: Actual week delay for detecting the mean shift in the process (case study 2)

Method Delays in weeks (week detected)

Adj. Parallel 0 (week 2, 2012)
Frisén 0 (week 2, 2012)
Case 2 -4 (week 50, 2011)

to recognize these small simultaneous shifts as indicative of an outbreak, while they fail
to trigger alarms under the other two methods.

Note that due to the nature of the Poisson distribution where the mean and variance
cannot be separated, the shift in mean results in the shift in the variance. This can be
seen from the plot of the training and test data in Figure 7.5. The variance of the two
series substantially increases after the change point, so a control chart for monitoring a
variance shift might be considered as an alternative detection tool. Also, some of the
data are zero counts, the zero inflated Poisson EWMA chart accounting for rare events
or zero counts in the process might also be considered instead (Fatahi et al., 2012).

7.3 Residual data with simulated shifts

In this section, we use the Greek pollution data and the Swedish radiation data to il-
lustrate the implementation of SR methods. The data set has been collected routinely
due to environmental concerns. For the Greek pollution data set, two variables (hu-
midity and ozone levels) measured in Athens, provides an example of detecting a mean
shift with no time lag between series, while the Swedish radiation data set, one variable
(radiation level) measured from two different areas, exhibits both correlation and time
lag between series. However, the actual data for both data sets cannot be directly used
with the SR methods proposed for detecting a shift in mean levels (i.e. from �0 to �1 ),
since they show evidence of non-stationarity. Preliminary analysis is used to investigate
whether derived data might be suitable to use with these methods.

Since there is no real or significant mean shift in the data set, artificial signals of different
shift sizes are injected into the data for the purpose of system evaluation. The details of
conducting preliminary analysis, calculating appropriate mean shift sizes, defining the
training and test data sets, investigating correlation and lag between series, specifying
detection tools and system evaluation are given in Section 7.3.1.

7.3.1 Data preparation and evaluation tools

7.3.1.1 Preliminary analysis

The preliminary analysis is conducted to investigate whether the data set can be used to
demonstrate SR methods. As mentioned above, the Greek data sets are not stationary.
Figure 7.7 shows the non-stationarity in humidity and ozone level in Athens in 2006. Due
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Figure 7.6: Results for detecting a mean shift in Greater Manchester (GM) and Cheshire
& Merseyside (C&M) series: (a) data plot, (b) - (c) EWMA charts of parallel methods
for GM and C&M, respectively, (d) and (e) EWMA charts of Frisén and our methods,
respectively.
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to the non-stationarity, the original data might not be suitable to use to demonstrate the
SR methods. In order to detect a step change, for which SR method is proposed, we aim
to use model residuals, assumed approximately identically and normally distributed,
from fitting time series models to illustrate the SR methods. Since SR methods are
proposed under different assumptions, the residuals are then assessed in order to choose
a suitable SR method for monitoring a shift in the process. More details of the fitted
model are provided for each set separately.

7.3.1.2 Mean shift size

As has been noted, there is no real or significant mean shift in either data set, and so
artificial signals are calculated and added to the residuals for the purpose of system
evaluation. The shift size we want to detect in each series is pre-specified and calculated
proportional to the standard deviation of residuals. However, the standard deviation of
the residuals in each series is quite different due to the variation in the actual data. So
the mean shift in each series will not be equal since it depends on how large the standard
deviation is.

To make a sensible comparison in detecting the same ‘size’ of mean shift for all series,
residuals in each series are standardized by their own mean and variance. This makes
the standardized residuals for all series have the same variance of 1. Four different shift
sizes are investigated in this study, namely 0.5, 1, 2, and 3 times the standard deviation
of the series. These shift sizes then are injected to the test data, detailed in the next
section, for the purpose of system evaluation.

7.3.1.3 Training and test data sets

Since we have data only one year for each data set, we divide each series into two parts:
a training set (before injected mean change), and test set (after change). The training
data are used to investigate correlation within and between series, lag between series and
to estimate the parameters used in the SR methods and EWMA charts. The test data
is where artificial signals have been added. The first point of the test set is defined as
the change point of the process. Due to no real or significant shift in either data set, the
training set in each data set is chosen from a non-peak period, while the rest is defined
as a test set.

The artificial signals will be added to the test data according to the specified change
point and lag between series. If there is no lag between the two series, signals will be
added on the same day and after, the change point, to both series. On the other hand,
if there is an evidence of a lag, l, between series, the signals will be added to the first
series according to the change point defined above, then l time points later, signals will
be added to the other. Details of training and test sets for pollution and radiation data
sets are summarized in each section separately.
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7.3.1.4 Detection tools and system evaluation

To compare the performance in detection, four different methods: parallel method ad-
justed for multiplicity, Frisén method (Frisén et al., 2011), Wessman method (Wessman,
1998) and our proposed methods (case 3 and case 5 in chapter 4) are considered in this
section. The derived sequence of statistics will be monitored with two types of EWMA
chart: a standard EWMA chart for independent normal data and a modified EWMA
for dependent normal data. An appropriate EWMA chart (i.e. standard or modified
charts) is chosen according to the nature of the residuals. More details of the EWMA
chart used in each example is defined in each section separately.

The four methods are evaluated by comparing the actual delay measured from the day
the signal is first added (the change point of a process) until the system gives a signal.
For example, if the actual delay is 2, it means that the system can detect a mean shift
2 days after the mean has shifted. Negative actual delay means a false alarm. In public
health surveillance, we want to detect changes as soon as possible. In this study we
aim to detect a mean shift within 7 days (an arbitrary but sensible period), therefore,
if the actual delay is longer than 7 days, it is considered unacceptable and reported as
non-applicable (NA) in this study.

7.3.2 Greek pollution data

Due to concerns over air pollution, several substances in the air, such as Ozone, CO,
NO and SO, are measured daily in Athens, Greece. In this study, we choose to monitor
ozone and humidity levels since ozone is one of important indicators of air pollution and
it is also influenced by humid air conditions. Data were made available by Dr Sotiris
Bersimis (Bersimis, pers. comm.). Humidity and ozone levels (�g/m3 ) measured daily
at Thrakomakedones station in Athens during 2006 are plotted in Figure 7.7. It can be
clearly seen that they are negatively correlated. The actual ozone and humidity levels
might not be a good example to illustrate the SR methods since the mean levels in both
series are not quite stable. Therefore, using model residuals instead of actual data might
be more suitable in this case.

Since the use of the model residuals in the surveillance relies on how well the model fits,
in this example we fit two different models to the Greek data set in order to show how SR
methods can be used under different conditions. Generally, independent and normally
distributed residuals are required because they can be simply used with the SR methods
proposed for normal data and monitored with a standard chart. However, sometime it
might be difficult to find a perfectly fitting model. Some patterns or variations might still
be present in the model residuals which might not be independent over time. To handle
this dependence, even of the ‘residual data’, the SR methods proposed for dependent
observations might have to be considered.

7.3.2.1 Preliminary analysis

From Figure 7.7, both series are not stationary and quite varied during the year. We
consider two different models: time series and regression models called ‘Model A’ and
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Figure 7.7: Plots of (a) humidity level (�g/m3 ) and (b) ozone level (�g/m3 ).

‘Model B’, respectively. The details of each model are described as follows.

Model A: Time series models

The lagged scatter plots (Figure D.7) and the plots of the autocorrelation function (ACF)
and partial autocorrelation function (PACF) of both series (Figure D.8), in Appendix D,
present a trend and non-white noise sequence with a slow decay in the ACF, representing
a non-stationarity, thus differencing is needed.

Let XHt and XOt be humidity and ozone levels measured on day t . After first order
differencing, the differenced data for each series, YHt and YOt , where

YHt = XHt −XHt−1 ,

YOt = XOt −XOt−1

and t = 1, 2, ..., 265, show stationarity. The stationarity can be observed from the lagged
scatter plots of the differenced data for humidity and ozone series shown in Figure D.9
in Appendix D. The plots of the differenced data and the plots of the ACF and PACF
of the differenced data for humidity and ozone series are given in Figures D.10 and D.11,
respectively, in Appendix D.

The appropriate orders for a time series model for each series are considered from the
plots of the ACF and PACF of the differenced data. For the humidity series, there is a
sharp cut-off in the plot of ACF with significant ACF at lags 1 and 4 (Figures D.10 (b)).
We consider the Moving Average (MA) model of order 4 as the appropriate time series
model for describing the variation in the differenced humidity data since this is a much
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simpler method because the residuals of the MA(4) model are look more independent and
normally distributed than those of MA(1) model. The MA(4) model of the differenced
data can be written as

YHt = 0.0078 + �t − 0.278�t−1 − 0.1916�t−2 − 0.0913�t−3 − 0.2338�t−4, �t ∼ N(0, 27.56),

or

XHt = 0.0078 +XHt−1 + �t − 0.278�t−1 − 0.1916�t−2 − 0.0913�t−3 − 0.2338�t−4.

The diagnostic plots of the model are given in Figure D.12 in in Appendix D.

For the ozone series, there is a sharp cut off in the plot of the ACF with significant
ACF at lags 1, 2 and 4 (Figure D.11 (b)). Since the residuals from the MA(4) are more
independent and normally distributed than those from the MA(1) and MA(2) models,
we choose the MA(4) model as the appropriate time series for describing the variation
in the differenced ozone data. The MA(4) model of the differenced data can be written
as

YOt = −0.0335+�t−0.3640�t−1−0.2020�t−2−0.0565�t−3−0.1376�t−4, �t ∼ N(0, 177.4),

or

XOt = −0.0335 +XOt−1 + �t − 0.3640�t−1 − 0.2020�t−2 − 0.0565�t−3 − 0.1376�t−4.

The diagnostic plots of the model are given in Figure D.13 in in Appendix D.

Model B: Regression models

Since data in both series are quite varied during the year, the data can be fitted by using
either sine and cosine functions or a factor month. Since we do not have long historical
data to define a proper number of harmonics or frequencies for sine and cosine functions
and ozone level in each month is quite different, we then fit regression models using a
factor month as a covariate. The regression model for each series can be written as

XHt = �1 + �2(Feb) + �3(Mar) + �4(Apr) + ...+ �11(Nov) + �12(Dec) + �t

XOt = �1 + �2(Feb) + �3(Mar) + �4(Apr) + ...+ �11(Nov) + �12(Dec) + �t

where �i are regression coefficient, i = 1, 2, ..., 12 and �t is a random error assumed
independent and normally distributed. The estimates and R2 for each model are sum-
marized in Table D.1 with the diagnostic plot for each model in Figures D.14 and D.15
in appendix D. Residuals for both series look much more constant in mean once the
variation due to the factor month have been taken out. Even though they are approx-
imately normal distributed, they are not independent. The plots of ACF and PACF
indicate the AR patterns.

The residuals in each series from both models are standardized in order to permit sensible
comparison for detecting the same shift sizes and so the humidity and ozone series have
the same variance of 1. The mean and variance of the standardized residuals for Models
A and B are summarized in Table 7.5. The standardized residuals for both series are
then used as the data in the sufficient reduction. The training and test sets for each
series are defined in next section.
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Table 7.5: Means and variance of standardized residuals of the two series (case study 3)

Series
Model A Model B

Mean Variance Mean Variance

Humidity 1.407e-17 1.0 -7.089e-18 1.0
Ozone 2.338e-17 1.0 5.449e-18 1.0

7.3.2.2 Training and test sets

Since there is no real shift in either series, the change of the process is chosen arbitrarily
on 1 July, 2006 which divides the training and test sets for each series as below.

∙ the training set: 1 January - 30 June 2006

∙ the test set: 1 July - 31 December 2006

∙ the change point: 1 July 2006

The standardized residuals for each series from the previous section are divided into two
parts according to the change point defined above. The training data, the standardized
residuals, for each series from each model were checked in order to asses whether they
follow the SR assumptions and whether or not there is a lag between series.

Consider the plots of training data from Model A. The normal QQ plots and the his-
tograms of each series (Figures D.16 and D.17, in Appendix D) show that the stan-
dardized residuals in each series are independent and normally distributed. The two
series are negatively correlated with lag zero, which can be observed from the plot of
the cross correlation function (CCF) in Figure D.18, in Appendix D. The appropriate
versions of the SR method are the Frisén method (Frisén et al., 2011), Wessman method
(Wessman, 1998) and our proposed method case 1 of chapter 4 (where the lag between
series is zero). Both methods were proposed for detecting a mean shift with no lag in a
process of independent normal data. The mean and variance of training data for each
series are summarized in Table 7.6.

Table 7.6: Parameter estimation of the training set (Model A)

Series Mean Variance
Correlation
(Lag = 0)

Humidity -0.073 1.017
-0.445

Ozone 0.095 1.098

For the Model B residuals, the plot of the cross correlation function (CCF) in Figure
D.19, in appendix D, also shows that two series are negatively correlated with lag zero.
The normal QQ plots of each series (Figures D.20 and D.21, in Appendix D) show that
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the standardized residuals are not quite normally distributed, with evidence of AR(1)
patterns visible in the plots of the ACF and PACF. Due to the correlation within and
between series, the appropriate version of our SR method considered in this example is
that in case 3 of chapter 4, i.e. that for detecting a mean shift with no lag in a process of
dependent normal data. The mean and variance and autoregressive coefficient of AR(1)
model calculated from the training data for each series are summarized in Table 7.7.

Table 7.7: Parameter estimation of the training set (Model B)

Series Mean Variance
Autoregressive Correlation

coefficient (Lag = 0)

Humidity 2.068e-18 0.972 0.550
-0.522

Ozone 6.725e-18 1.051 0.417

Regarding the relation of shift sizes between series defined in section 4.3.2, the shift size
in one series is reflected in the shift size in another due to the correlation between series,
i.e. c2 = �̂c1 . Even though there is no lag between series, we define the humidity level
as the first series since ozone level depends on the humidity in the air. Four different
shift sizes, which are 0.5, 1, 2 and 3 times the standard deviation of the training data
of the first series, are investigated. Since the standard deviation of the training data
set for each series is roughly 1. Thus, for simplicity, the shift sizes we aim to detect in
the humidity series, c1 , are taken as exactly 0.5, 1, 2 and 3. Correspondingly, due to
CBS, the shift sizes we aim to detect in ozone series from the Model A and Model B are
c2 = −0.445c1 and c2 = −0.522c1 , respectively.

Due to the negative correlation between series, shifts occur in the opposite directions,
i.e. an upward shift in the humidity series and a downward shift in ozone. Since there
is no lag between series, artificial signals of sizes c1 and c2 are added into the test set
in both series from 1 July to 31 December 2006. For example, the plot of standardized
residuals from Model A with added signals of size 2 (humidity series) and of size -0.844
(ozone series) are shown in Figure 7.8.

Since a shift might occur in either direction, the residuals from Model A are monitored
with a standard two-sided EWMA chart for independent normal data (Section 2.3.1.3).
Due to the CWS being present in the Model B residuals, a standard two-sided EWMA
chart for independent normal data (section 2.3.1.3) and a modified two-sided EWMA
chart for dependent normal data (section 5.2) are used as detection tools in order to
avoid the false alarms. The limit L for the standard two-sided chart can be obtained
from the ‘spc’ package in R, while the limit L for the modified two-sided chart can
be obtained from Shiau and Hsu (2005). However, Shiau and Hsu (2005) provided the
limit L of the modified two-sided EWMA chart for a specific ARL0 = 370, the parallel
method adjusted for multiplicity, which might be preferable, but requires the limit L
for ARL0 = 741, is not considered in this example.
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Figure 7.8: Plots of a) standardized residuals and b) standardized residuals with added
signals (Model A).

7.3.2.3 Results

For Model A, the actual delays (days) of the four methods for detecting four different
shift sizes with standard two-sided EWMA charts are summarized in Table 7.8. The
example of detection plots for detecting a mean shift of sizes 2 and -0.89 in humidity
and ozone series, respectively, is shown in Figure 7.9. As expected, larger mean shift
sizes are detected more quickly than smaller shifts. All methods fail to detect the small
shift sizes. The Wessman and our method perform equally and better than the parallel
and Frisén methods for detecting the largest shift size since CBS is taken into account
in the Wessman and our methods. All methods perform equally to detect a shift of size 2.

Table 7.8: Actual delays for monitoring four shift sizes (Model A)

Method EWMA chart
Shift size in humidity series (c1)
0.5 1 2 3

Parallel standard NA NA 1 1
Frisén standard NA NA 1 1
Wessman standard NA NA 1 0
Proposed standard NA NA 1 0

For Model B, the actual delays (days) of the three methods for detecting four different
shift sizes with both standard and modified two-sided EWMA charts are summarized in
Table 7.9. The example of detection plots for detecting a mean shift of sizes 2 and -1.044
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Figure 7.9: Results for detecting a mean shift of sizes 2 and -0.844 in humidity and
ozone series (Model A): (a) plot of standardized residuals, (b) and (c) plots of parallel
methods with standard chart, respectively, (d), (e) and (f) plots of Frisén, Wessman and
our proposed methods, respectively.
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in humidity and ozone series, respectively, is shown in Figure 7.10. All methods fail to
detect the small shift sizes, 0.5 and 1, however, our proposed method gives shorter delays
than other methods for detecting the larger shift sizes. The parallel, Frisén and Wessman
methods give false alarms due to the autocorrelation present in the parallel data and
derived sequence of statistics from the Frisén and Wessman methods. However, they can
be improved by using a modified EWMA chart accounting for the autocorrelation instead
of standard EWMA chart for independent data (Figure 7.10 (d) - (e)), but still respond
slightly more slowly than our method. While the other methods can be improved by
using modified EWMA chart, our proposed method, which incorporates both CBS and
CWS, gives the same result for both charts since CWS has already been removed in the
sufficient reduction. This makes the use of modified EWMA chart is unnecessary in this
case.

Table 7.9: Actual delays for monitoring four shift sizes (Model B)

Method EWMA chart
Shift size in humidity series (c1)
0.5 1 2 3

Parallel
standard -136 -136 -136 -136
modified - - - -

Frisén
standard -136 -136 -136 -136
modified NA NA 2 2

Wessman
standard -136 -136 -136 -136
modified NA NA 2 2

Proposed
standard NA NA 1 1
modified NA NA 1 1

7.3.3 Swedish radiation data

The Swedish radiation data set used in this example is the radiation levels measured
at two stations (Overtörnea and Pajala) in Sweden during 1998 by the Swedish Radia-
tion Safety Authority for research purposes (SRSA, 2012). The plot of daily radiation
levels (nSv/h (nanoSievert per hour)) from the two stations are shown in Figure 7.11
(a). It can be clearly seen that radiation levels for both stations increase from May and
remain fairly stable until October before decreasing in November and December. As
in the previous example, the actual data cannot be directly monitored, as they are not
stationary during the year and are related to other climate covariates. In this study we
consider daily snow depth levels (cm) in 1998, measured by the Swedish Meteorological
and Hydrological Institute (SMHI, 2012), as a covariate. The plot of snow depth levels
in Overtörnea and Pajala are shown in Figure 7.11 (b).

These data were analyzed previously by Järpe (2000) and it was planned to conduct a
comparative study. The radiation level was fitted by considering snow depth level and
the period of the year as covariates. The period of the year was considered as another
covariate because it corresponds to the nature of the snow (i.e. due to accumulated
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Figure 7.10: Results for detecting a mean shift of sizes 2 and -1.044 in humidity and
ozone series (Model B): (a) plot of standardized residuals, (b) and (c) plots of parallel
methods with standard chart, respectively, (d), (e) and (f) plots of Frisén, Wessman and
our proposed methods, respectively.
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Figure 7.11: Plots of a) radiation level and b) snow depth level measured from Overtörnea
and Pajala.

snow during winter, snow is mostly soft and porous in the first half year and more hard
and icy during the second) (Järpe, 2000). However, the residuals from the fitted models
are not quite stationary during the surveillance period. Thus, the residuals from the
Swedish data set might be not a good example to illustrate the use of SR methods which
are proposed to detect a shift in mean level during the process. Therefore, we do not
conduct any further analysis of this data set.

7.4 Conclusions

Four data sets are used to illustrate the SR methods. Due to the nature and variation
in data, two types of data sets are used: actual data with real shifts and model residuals
with added artificial signals. The former has the advantage over the latter since the
result can be interpreted in practice. However, the system evaluation is quite difficult
because a change point of the process is unknown and difficult to identify. Since the
change point is chosen arbitrarily for the purpose of system evaluation, the false alarm
can be considered either a real false alarm or a genuine warning of disease outbreak
which has actually occurred before the time we declared the official start (change point).

Alternatively, in order to avoid a false alarm occurring during an arbitrary ‘guard region’,
which is defined as a part of the test data to allow for uncertainty in subjectively defining
the date of change point, one might exclude this region from the test data and consider
this region as a gap between the training and test data. A decision as to whether or not
a process is out of control will not be made during this gap in order to avoid a false alarm.
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On the other hand, evaluating system performance by using model residuals with added
signals is more straightforward since the change point of the process and the shift sizes
are assumed known. However, the difficulty of using the residuals is that it is difficult
to interpret the results in practice. For example, in public health we aim to detect a
positive mean shift in a process, the negative correlation between the two residual series
might not be easy to interpret in this case. Unfortunately, we were unable to source any
real data with a definitively dated outbreak.

No matter what type of data is used to detect a mean shift in the process, the methods
and one-sided EWMA chart should be chosen carefully according to the nature of the
data and the derived likelihood ratio statistics (e.g. since SR methods proposed for
normal or Poisson data differ). For example, ignoring CWS in parallel, Frisén and
Wessman methods give false alarms when a standard chart is used. Even though the
use of modified chart improves this problem, they give longer delays compared to our
methods due to higher control limits.
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Chapter 8

Discussion

For the purpose of detecting an abberation or anomaly which might signal the possibility
of disease outbreak in public health surveillance, multivariate surveillance is preferable
to univariate surveillance, since the correlation between series (CBS) is recognized and
incorporated. A small, but persistent, shift is more likely to be detected if CBS is present
and all the series are monitored together. The sufficient reduction method is considered.
This is one of the dimensionality reduction tools for multivariate surveillance and has
proved promising for handling CBS and lag between change points (LCP). Respective
the principle of sufficiency, the SR method reduces a p-dimensional multivariate series
to a univariate series of statistics by taking all relevant information from the original
series into account. By the factorization theorem, the derived univariate series has been
shown to be sufficient for monitoring a sudden, but persistent, in the multivariate pro-
cess. To date this method has been proposed for handing CBS and lag between change
point (LCP) in a process of independent data, but they had not previously been used
when correlation within series (CWS) is present.

In public health surveillance, health data are often dependent over time and might also be
low counts for rare events or sparse diseases. To handle these issues, we firstly proposed
SR methods under different distributions: either data are normal or Poisson distributed.
Three parameters (CWS, CBS and LCP) are incorporated in the sufficient reduction.
In this thesis, we assume that data are autocorrelated (CWS), coming from AR1 model.
The relation of the mean shift between series is determined by the correlation between
series. Two types of change point (simultaneous changes and changes with time lag) and
various shift sizes are investigated. Since an upward shift is typically of interest than a
downward shift in health surveillance, a suitable one-sided EWMA chart (e.g. a stan-
dard chart or a modified chart to allow for the autocorrelation) is used as a detection tool.

The system evaluation is conducted by the simulation study. Early detection with a low
false alarm rate is required. Four measures, the conditional expected delay (CED), true
alarm rate (TAR), false alarm rate (FAR) and non-detection rate (NDR), are consid-
ered. The detection performance of the proposed SR methods are compared against the
existing SR methods (Frisén method (Frisén et al., 2011) and Wessman method (Wess-
man, 1998)) and the parallel method adjusted for multiplicity. The results, with some
limitations and suggestions for further study, are discussed in separate sections below.

169
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8.1 SR methods for normal data

In order to overcome the limitations of the Frisén and Wessman methods, which assume
that observations are independent over time and do not incorporate CBS in the former
and LCP in the latter, the SR methods proposed for detecting a mean shift in a pro-
cess of autocorrelated data are proposed by incorporating any or all of CWS and CBS
and LCP in the sufficient reduction. As expected, the parallel method performs poorly
compared to the others due to the higher control limit adjusted for multiplicity. Also, as
expected, the Frisén method performs better for detecting changes with time lag than
the Wessman method and worse than the Wessman and our methods when there is CBS.

If CWS is cleary present, our proposed methods perform better with shorter CED, higher
TAR and lower FAR than the Frisén, Wessman and parallel methods. Even though, our
proposed methods give higher NDR for detecting a small shift size, the NDR improves
when shift size is large. From the plot of the autocorrelation function, the high FAR
in the parallel, Frisén and Wessman methods is due to the effect of CWS being present
in the parallel data and the derived sequence of likelihood ratio statistics, violating the
assumption of a standard one-sided EWMA chart, namely that the data need to be
independent over time.

The FAR and TAR of such methods are substantially improved by monitoring the par-
allel data and the derived sequences with a one-sided EWMA chart modified to allow for
autocorrelation in a process. However, due to the higher control limits of the modified
charts, those three methods still give longer CED than our method. Since the CWS is
incorporated in our proposed methods, whether the standard or modified chart is used,
there is little difference in their performance. This makes the modified chart unnecessary
for our methods. Overall, the four methods give higher NDR for detecting a small shift
size. However, NDR is improved when the shift size is large, i.e. a small shift size is
more unlikely to be detected than a large shift size. Even though the illustration of
SR methods in based on the bivariate case, the multivariate case can be extended in a
similar manner.

The SR methods are proposed assuming that data are autocorrelated with the AR1 pat-
tern. Due to the nature of diseases in public health surveillance, different types of time
series models might be considered. For example, the nature of endemic disease might be
related to the seasons or some other periods of a year, therefore, time series models with
a seasonal component might be considered. Larger term dependence models (AR(p),
p > 1) might also be relevant in some circumstances. Also, we proposed the SR methods
assuming that the variance and the estimates of CWS, CBS and LCP estimated from
the in control stage are unchanged over time. However, this might not be realistic due
to the non-stationarity in the data. Thus time series models, which allow for the uncer-
tainty in variance (heteroscedasticity or volatility), might be considered as alternatives.
For example, the heteroscedasticity or volatility might be incorporated by considering
an autoregressive conditional heteroscedastic model (ARCH model) instead of an AR1
model.
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In principle, the SR method is proposed for detecting a step, but persistent, shift in
a mean parameter by deriving the likelihood ratio statistics from the likelihood ratio
between the out of control and in control stages, assuming that other parameters are
unchanged over time. However, in some cases, the CWS, CBS or variance cannot be
controlled due to the nature of diseases or types of shifts (e.g. gradual, linear or expo-
nential shift). Updating parameters or re-defining the stages of the process might be
investigated. More discussion is provided in section 8.3.

8.2 SR methods for Poisson data

The idea of SR methods has been extended to detect a simultaneous mean shift in a pro-
cess of Poisson data since health data for rare events or sparse diseases are low counts.
Previous SR methods (Frisén method (Frisén et al., 2011) and Wessman method (Wess-
man, 1998)) considered this possibility since they were derived for exponential family
distribution, but here we have incorporated CWS as well as CBS. The SR methods
for detecting a change with time lag can be extended as a special case of simultaneous
changes of known time lags, but have not been fully worked through here. Since the
mean and variance of Poisson data cannot be separated, a shift in mean also induces a
variance shift in the process. Therefore, the assumptions of SR methods defined for nor-
mal data (e.g. variance is unchanged over time) do not hold in this case. Two one-sided
EWMA charts are modified for monitoring independent and dependent Poisson data via
the parallel method.

The use of residuals from Poisson regression model, assumed identically and indepen-
dently normally distributed, with the SR methods proposed for normal data is considered
and conducted as the alternative way for monitoring a shift in a Poisson process. How-
ever, due to the limitations of monitoring residuals in prospective surveillance, the use of
a method specific to Poisson data has an advantage over the use of the residuals which
slows detection and gives high FAR.

The detection performance of our methods proposed for Poisson data are compared
against the Frisén method and parallel method adjusted for multiplicity. Again, the
parallel method performs worse than the others due to the high control limit after ad-
justment for multiplicity. Our method performs equally to the Frisén method, when
there is no CWS or CBS in the process, and better than the others for detecting a small
shift size when CBS is present. As expected, whether a standard or modified chart is
used, the proposed methods perform better, by giving shorter CED, than the others
when CWS is clearly present. However, the TAR, FAR and NDR of our methods are
not uniformly better than the other methods for all levels of CBS and CWS. The FAR
and NDR of the Frisén and parallel methods are substantially improved with a modified
chart, while there is little difference in our methods since CWS has been removed in the
sufficient reduction. Even though the FAR and NDR of the Frisén and parallel methods
can be improved with a modified chart, their delays in detection are still longer than our
methods.



172 Chapter 8. Discussion

Several limitations, with some suggestions for SR methods for Poisson data, are consid-
ered. Firstly, our methods produce higher FAR than the others when CBS is present.
Since the likelihood ratio statistics is derived according to the shift in covariance, which
results in the mean shift in the process, our method might be more sensitive to detect-
ing a shift in a process if two series are not independent. Outliers observed from the
density plot of the derived statistics tend to produce false alarm easily than the other
methods. Also, even though we monitor the derived likelihood ratio statistics with the
standard EWMA chart for normal, the statistics are not perfectly identically normally
distributed. A suitable modification to the EWMA chart should be considered carefully
with regard to the exact distribution of the likelihood ratio statistics.

Secondly, due to the complex probability function of the bivariate Poisson distribution
and the Poisson bivariate integer-valued autoregressive model of degree 1, the likelihood
ratio statistics cannot be factorized easily according to the factorization theorem. This
makes the calculation of our methods more complicated than the Frisén methods. How-
ever, for the process of independent Poisson data (no CBS or CWS), our method is
similar to the Frisén method.

Thirdly, according to the trivariate reduction method, which is used to construct the
bivariate Poisson series from three mutually independent Poisson random variables, neg-
ative CBS is not allowed since the parameters for those variables need to be positive.
Even though this limitation of using the trivariate reduction method is fairly unimpor-
tant in public health surveillance where we mainly focus on a shift in a positive direction,
it might be useful to pursue this possibility for other applications. A method used to
generate multivariate Poisson data with negative correlation can be found in Yahav and
Shmueli (2012b), however, CWS is not allowed.

Finally, assuming that the mean and variance of Poisson data are equal and cannot
be separated might be unrealistic in health surveillance. Thus, the negative binomial
distribution allowing for the overdispersion in Poisson data might be considered instead
of the Poisson distribution. Also frequent zero count for rare events in Poisson data
should be taken in the consideration in further study.

8.3 Outbreak characteristics

In this thesis, we proposed the SR methods for detecting a sudden, but persistent, mean
shift in a process. However, in practice, there might be several types of outbreak shapes
to consider, for example, a gradual, linear or exponential mean shift. These types of
shifts have been used in several studies to evaluate the system performance of several
methods proposed for public surveillance (Goldenberg et al., 2002; Mandl et al., 2004;
Wang et al., 2005; Buckeridge, 2007; Jackson et al., 2007). In order to implement the
SR methods for detecting those shifts, it should be noted that the likelihood ratio statis-
tics is derived based on the likelihood ratio between the out of control and in control
stages. Unlike the sudden, but persistent, case where the process is divided into two-
steps according to a single step shift, other shifts make more than two-step changes
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in a process. Therefore, definition of simple in control and out of control stages with
the corresponding parameters in each stage is difficult or impossible. In this case the
optimality of sufficient reduction methods for detecting a shift in parameter between
two distributions might not be hold. Before attempting to develop such methods for
detecting these more complex shifts, one might investigate those SR methods; proposed
for detecting a simple sudden, but persistent, shift to see how robust they are; though
presumably longer delays should be expected.

In addition, the SR methods can be implemented in several research areas such as envi-
ronmental surveillance and financial surveillance where detecting a change in a process is
of interest. Due to the data used in environmental and financial surveillance, continuous
surveillance, where decision is made continuously or more frequently than the discrete
surveillance common in public health (where a decision is made daily or weekly), might
be considered.

8.4 Modified one-sided EWMA chart

Even though the statistical process control is not the main topic of this thesis, three
types of one-sided EWMA charts are modified in order to use as detection tools in the
system evaluation of SR methods for normal data and of the parallel method for Poisson
data. The smoothing parameter and in control average run length are arbitrarily defined
in order to make a sensible and reliable comparison in this thesis. Further study of the
robustness of such charts should be conducted by investigating the performance of the
charts with different values of smoothing parameter and in control average run length.

Also, there are several ways to modify a one-sided EWMA chart, depending on how one-
sided EWMA statistics are calculated: for example, standard EWMA statistics, resetting
EWMA statistics below the target mean by the target mean, resetting observations
below the target mean by the target mean and the adaptive EWMA chart (Harris and
Ross, 1991; Schmid, 1997; Hu et al., 2011). Different ways of calculating the EWMA
statistics might affect the detection performance, especially for different types of shift in
the process. Thus, a robustness study of the modified one-sided EWMA charts and the
calculation of EWMA statistics for different types of shifts might be considered.

8.5 Conclusions

Sufficient reduction methods have been proposed for reducing a multivariate process of
normal or Poisson data paying due regard to the purpose of health surveillance and the
nature of health data. Correlation within and between series and lag between change
points are incorporated. A derived sequence of likelihood ratio statistics from the SR
methods summarizes all relevant information from the original series and has proved to
be sufficient for detecting a mean shift in the multivariate process.

The results from a simulation study show that recognizing and incorporating the pa-
rameters appropriately in the SR methods improved the detection performance, with
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shorter delay and lower false alarm rate. Ignoring correlation within series gives worse
results, by producing high false alarms, than ignoring correlation between series, which
causes failure to detect a small shift in the process. If two series are correlated with time
lag between series, incorporating the lag and the correlation between series properly also
improves the detection ability of such methods.

Even though, sufficient reduction methods have been proposed under specific assump-
tions (e.g. data have a pattern of AR1 model), the idea can be extended depending
on the nature of the data and types of change point. Sufficient reduction methods can
therefore be used not only in public health surveillance, but also to detection of a change
point in a process in several disciplines.



Appendix A

SR methods for normal data

A.1 Sufficient statistics for case 1 (no CWS but CBS and
LCP)

From equation (4.10), due to the known time lag and the availability of data, Tt(xt) for
t = 1, 2, ..., s− l can be derived from

s−l∏
t=�1

fO(y t;�
O)

f I(y t;�
I)

=

s−l∏
t=�1

exp− 1
2{(yt − �O)′Σ−1(yt − �O)}

exp− 1
2{(yt − �I)′Σ−1(yt − �I)}

= exp{
s−l∑
t=�1

((�O − �I)′Σ−1y t)

− 1

2

s−l∑
t=�1

(�O
′
Σ−1�O − �I

′
Σ−1�I)} (A.1)

Hence by the factorization theorem, the likelihood ratio statistics Tt(xt) for t = 1, 2, ..., s− l
are derived from equation (A.1) as

Tt(yt) = (�O − �I)′Σ−1yt

=

(
�O1 − �I1
�O2 − �I1

)′
Σ−1

(
x1,t
x2,t+l

)
=

(
c1
c2

)′
Σ−1

(
x1,t
x2,t+l

)

From equation (4.10), the likelihood ratio statistics Tt(xt) for t = s− l+ 1, ..., s can be
derived from
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s∏
t=s−l+1

fO(x1,t;�
O
1 )

f I(x1,t;�I1)
=

s∏
t=s−l+1

exp − 1
2�2

1
{(x1,t − �O1 )2}

exp − 1
2�2

1
{(x1,t − �I1)2}

=

s∏
t=s−l+1

exp − 1

2�2
1

{−2�O1 x1,t + 2�I1x1,t + (�O1 )2 − (�I1)2}

= exp{
s∑
t=�

((�O1 − �I1)x1,t/�
2
1)− 1

2�2
1

s∑
t=�

((�O1 )2 − (�I1)2)} (A.2)

By the factorization, the likelihood ratio statistics for detecting changes with time lag
for t = s− l + 1, ..., s are

Tt(xt) = c1x1,t/�
2
1

where t = s− l + 1, ..., s .

A.2 Sufficient statistics for case 2 (CWS but no CBS or
LCP)

From equation (4.12), according to the change point of a process at time � , a likelihood
ratio statistics Tt(xt) for t = 1, 2, ..., s can be derived from

s∏
t=�

f(xt∣xt−1;�O)

f(xt∣xt−1;�I)
=

s∏
t=�

exp − 1
2{(xt − (�xt−1 + c))′Σ−1� (xt − (�xt−1 + c))}

exp − 1
2{(xt − �xt−1)′Σ

−1
� (xt − �xt−1)}

=
s∏
t=�

exp − 1
2{((xt − �xt−1)− c)′Σ−1� ((xt − �xt−1)− c)}

exp − 1
2{((xt − �xt−1)− 0)′Σ−1� ((xt − �xt−1)− 0)}

=

s∏
t=�

exp − 1

2
{−2cΣ−1� (xt − �xt−1) + c′Σ−1� c}

= exp{
s∑

t=�1

(c′Σ−1� (xt − �xt−1))−
1

2

s∑
t=�1

(c′Σ−1� c)} (A.3)

where xt =

(
x1,t
x2,t

)
and c =

(
c1
c2

)
.

By the factorization theorem, the likelihood ratio statistics in this case, derived from
equation (A.3) can be written as

Tt(xt) = c′Σ−1� (xt − �xt−1)

=
(
c1 c2

)
Σ−1�

(
x1,t − �1x1,t−1
x2,t − �2x2,t−1

)
where t = 1, 2, ..., s .



A.3. Sufficient statistics for case 4 (CWS, LCP but no CBS) 177

A.3 Sufficient statistics for case 4 (CWS, LCP but no CBS)

From equation (4.14), due to the known time lag and the availability of data, the likeli-
hood ratio statistic Tt(xt) for t = 1, 2, ..., s− l can be derived from

s−l∏
t=�1

f(yt∣yt−1;�O)

f(yt∣yt−1;�I)
=

s−l∏
t=�1

exp − 1
2{(yt − (�yt−1 + c))′Σ−1� (yt − (�yt−1 + c))}

exp − 1
2{(yt − �yt−1)

′Σ−1� (yt − �yt−1)}

=
s−l∏
t=�1

exp − 1
2{((yt − �yt−1)− c)′Σ−1� ((yt − �yt−1)− c)}

exp − 1
2{((yt − �yt−1)− 0)′Σ−1� ((yt − �yt−1)− 0)}

=

s−l∏
t=�1

exp − 1

2
{−2c′Σ−1� (yt − �yt−1) + c′Σ−1� c}

= exp{
s−l∑
t=�1

(c′Σ−1� (yt − �yt−1))−
1

2

s−l∑
t=�1

(c′Σ−1� c)} (A.4)

where yt =

(
x1,t
x2,t+l

)
and c =

(
c1
c2

)
.

Hence by the factorization theorem, the likelihood ratio statistics Tt(xt) for t = 1, 2, ..., s− l
are derived from equation (A.4) as

Tt(xt) = c′Σ−1� (yt − �yt−1)

=
(
c1 c2

)
Σ−1�

(
x1,t − �1x1,t+l−1
x2,t − �2x2,t+l−1

)
where t = 1, 2, ..., s− l .

From equation (4.12), the likelihood ratio statistic Tt(xt) for t = s− l + 1, ..., s can be
derived from

s∏
t=s−l+1

f(x1,t∣x1,t−1;�O1 )

f(x1,t∣x1,t−1;�I1)
=

s∏
t=s−l+1

exp − 1
2{(x1,t − (�1x1,t−1 + c1))

2/�21,�}
exp − 1

2{(x1,t − (�1x1,t−1))2/�21,�}

=

s∏
t=s−l+1

exp − 1
2{((x1,t − �1x1,t−1)− c1)

2/�21,�}
exp − 1

2{((x1,t − �1x1,t−1)− 0)2/�21,�}

=

s∏
t=s−l+1

exp − 1

2
{−2c1(x1,t − �1x1,t−1)/�21,� + c21/�

2
1,�}

= exp{
s∑

t=s−l+1

(c1(x1,t − �1x1,t−1)/�21,�)−
1

2

s∑
t=s−l+1

(c21/�
2
1,�)}
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By factorization theorem, the likelihood ratio statistics Tt(xt) for detecting a mean shift
with time lag for t = s− l + 1, ..., s are

Tt(xt) = c1(x1,t − �1x1,t−1)/�21,�.

Table A.1: Results of scenario 1 (CBS but no CWS) for detecting simultaneous changes

CWS = 0
Estimate

Method
LCP = 0

Shift size CBS Parallel Frisén Wessman

2

� = 0.2

ĉed 2.284 1.999 1.929

t̂ar 94.0 94.3 94.7

f̂ar 5.6 5.3 5.1

n̂dr 0.4 0.4 0.2

� = 0.4

ĉed 2.252 2.075 1.929

t̂ar 94.7 94.1 94.7

f̂ar 4.9 5.4 5.1

n̂dr 0.4 0.5 0.2

� = 0.6

ĉed 2.215 2.066 1.929

t̂ar 94.8 94.0 94.7

f̂ar 4.9 5.5 5.1

n̂dr 0.3 0.5 0.2

3

� = 0.2

ĉed 0.978 0.852 0.804

t̂ar 94.4 94.7 94.9

f̂ar 5.6 5.3 5.1

n̂dr 0.0 0.0 0.0

� = 0.4

ĉed 0.966 0.916 0.803

t̂ar 95.1 94.6 94.9

f̂ar 4.9 5.4 5.1

n̂dr 0.0 0.0 0.0

� = 0.6

ĉed 0.942 0.943 0.804

t̂ar 95.1 94.5 94.9

f̂ar 4.9 5.5 5.1

n̂dr 0.0 0.0 0.0
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Table A.2: Results of scenario 1 (CBS but no CWS) for detecting changes with time
lag)

No CWS (� = 0)
Estimate

Method
Shift size CBS Parallel Frisén Wessman Case 1

2

� = 0.2

ĉed 2.295 1.926 1.931 1.924

t̂ar 94.5 94.1 93.4 94.0

f̂ar 5.1 5.5 6.2 5.6

n̂dr 0.4 0.4 0.3 0.4

� = 0.4

ĉed 2.284 1.923 2.160 1.919

t̂ar 95.1 93.9 93.6 93.9

f̂ar 4.5 5.7 5.7 5.7

n̂dr 0.4 0.4 0.7 0.4

� = 0.6

ĉed 2.287 1.924 2.690 1.917

t̂ar 94.9 93.8 92.5 93.9

f̂ar 4.7 5.8 6.1 5.7

n̂dr 0.4 0.4 0.4 0.4

3

� = 0.2

ĉed 0.982 0.806 0.799 0.803

t̂ar 95.0 94.5 93.7 94.4

f̂ar 5.0 5.5 6.2 5.6

n̂dr 0 0 0 0

� = 0.4

ĉed 0.977 0.810 0.934 0.808

t̂ar 95.5 94.3 94.3 94.3

f̂ar 4.5 5.7 5.7 5.7

n̂dr 0 0 0 0

� = 0.6

ĉed 0.979 0.810 1.228 0.807

t̂ar 95.3 94.2 92.9 94.3

f̂ar 4.7 5.8 6.1 5.7

n̂dr 0 0 0 0
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Table A.3: Results of scenario 2 (CWS but no CBS) for detecting simultaneous changes

CBS = 0
Estimate

Method
LCP = 0

Shift size CWS Parallel Frisén Wessman Case 2

2

� = 0.2

ĉed 2.288 2.237 2.255 2.132

t̂ar 86.4 88.7 88.0 92.4

f̂ar 12.6 10.6 11.3 6.2

n̂dr 1.0 0.7 0.7 1.4

� = 0.4

ĉed 2.611 2.463 2.481 2.139

t̂ar 75.2 80.1 79.7 85.2

f̂ar 23.4 18.8 19.4 6.5

n̂dr 1.4 1.1 0.9 8.3

� = 0.6

ĉed 4.658 4.121 4.149 3.202

t̂ar 62.9 71.3 70.9 76.8

f̂ar 35.6 27.2 27.7 6.3

n̂dr 1.5 1.5 1.4 16.9

3

� = 0.2
ĉed 1.144 1.118 1.127 1.066

t̂ar 87.4 89.4 88.7 93.8

f̂ar 12.6 10.6 11.3 6.2

n̂dr 0.0 0.0 0.0 0.0

� = 0.4

ĉed 1.305 1.231 1.241 1.069

t̂ar 76.6 81.2 80.6 93.4

f̂ar 23.4 18.8 19.4 6.5

n̂dr 0.0 0.0 0.0 0.1

� = 0.6

ĉed 3.106 2.747 2.766 2.134

t̂ar 64.4 72.8 72.3 93.1

f̂ar 35.6 27.2 27.7 6.3

n̂dr 0.0 0.0 0.0 0.6
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Table A.4: Results of scenario 2 (CWS but no CBS) for detecting changes with time lag

CBS = 0
Estimate

Method
LCP = 5

Shift size CWS Parallel Frisén Wessman Case 4

2

� = 0.2

ĉed 2.270 2.249 2.288 2.132

t̂ar 87.1 88.2 86.8 92.2

f̂ar 11.9 11.1 12.6 6.2

n̂dr 1.0 0.7 0.6 1.6

� = 0.4

ĉed 2.581 2.469 2.528 2.143

t̂ar 76.1 79.9 78.0 85.8

f̂ar 22.5 19.0 20.9 6.7

n̂dr 1.4 1.1 1.1 7.5

� = 0.6

ĉed 4.615 4.161 4.281 3.202

t̂ar 63.2 70.7 68.5 78.1

f̂ar 35.0 27.9 30.1 6.3

n̂dr 1.8 1.4 1.4 15.6

3

� = 0.2

ĉed 1.132 1.124 1.144 1.066

t̂ar 88.3 88.9 87.4 93.8

f̂ar 11.7 11.1 12.6 6.2

n̂dr 0.0 0.0 0.0 0.0

� = 0.4

ĉed 1.285 1.235 1.264 1.071

t̂ar 77.8 81.0 79.1 93.3

f̂ar 22.2 19.0 20.9 6.6

n̂dr 0.0 0.0 0.0 0.1

� = 0.6

ĉed 2.403 2.330 2.308 2.134

t̂ar 65.7 72.1 69.9 93.1

f̂ar 34.3 27.9 30.1 6.3

n̂dr 0.0 0.0 0.0 0.6
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Figure A.1: a) and (b) ACF plots of X1 and X2 series and (c), (d) and (e) ACF plots
of likelihood ratio statistics from Frisén, Wessman and and proposed method (case 2),
respectively (scenario 2: simultaneous changes and shift size = 2).

0 5 10 15

−
0.

2
0.

2
0.

6
1.

0

A
C

F

Lag 
 (a)

0 5 10 15

−
0.

2
0.

2
0.

6
1.

0

A
C

F

Lag 
 (b)

0 5 10 15

−
0.

2
0.

2
0.

6
1.

0

A
C

F

Lag 
 (c)

0 5 10 15

−
0.

2
0.

2
0.

6
1.

0

A
C

F

Lag 
 (d)

0 5 10 15

−
0.

2
0.

2
0.

6
1.

0

A
C

F

Lag 
 (e)

Figure A.2: a) and (b) ACF plots of X1 and X2 series and (c), (d) and (e) ACF plots
of likelihood ratio statistics from Frisén, Wessman and and proposed method (case 4),
respectively (scenario 2: changes with time lag and shift size = 2).
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Table A.5: Results of scenario 3 (CWS and CBS) for detecting simultaneous changes

CWS = 0.6
Estimate

Method
LCP = 0

Shift size CBS Parallel Frisén Wessman Case 3

2

� = 0.2

ĉed 4.587 4.054 4.149 3.202

t̂ar 63.9 72.3 70.9 76.9

f̂ar 34.6 26.0 27.7 6.3

n̂dr 1.5 1.7 1.4 16.8

� = 0.4

ĉed 4.451 4.048 4.149 3.202

t̂ar 65.9 71.9 70.9 77.1

f̂ar 32.6 25.9 27.7 6.3

n̂dr 1.5 2.2 1.4 16.6

� = 0.6

ĉed 4.267 4.048 4.149 3.205

t̂ar 68.8 72.0 70.9 77.4

f̂ar 29.7 25.9 27.7 6.4

n̂dr 1.5 2.1 1.4 16.2

3

� = 0.2

ĉed 3.058 2.702 2.766 2.134

t̂ar 65.4 74.0 72.3 93.2

f̂ar 34.6 26.0 27.7 6.3

n̂dr 0.0 0.0 0.0 0.5

� = 0.4

ĉed 2.967 2.699 2.766 2.134

t̂ar 67.4 74.1 72.3 93.2

f̂ar 32.6 25.9 27.7 6.3

n̂dr 0.0 0.0 0.0 0.5

� = 0.6

ĉed 2.844 2.699 2.766 2.137

t̂ar 70.3 74.1 72.3 93.0

f̂ar 29.7 25.9 27.7 6.4

n̂dr 0.0 0.0 0.0 0.6
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Table A.6: Results of scenario 3 (CWS and CBS) for detecting changes with time lag

CWS = 0.6
Estimate

Method
LCP = 5

Shift size Cross-CBS Parallel Frisén Wessman Case 5

2

� = 0.2

ĉed 4.538 4.115 4.285 3.202

t̂ar 64.4 71.5 68.5 78.1

f̂ar 33.9 27.1 30.0 6.3

n̂dr 1.7 1.4 1.5 15.6

� = 0.4

ĉed 4.412 4.149 4.213 3.212

t̂ar 66.2 70.9 69.1 77.8

f̂ar 32.0 27.7 28.8 6.6

n̂dr 1.8 1.4 2.1 15.6

� = 0.6

ĉed 4.129 4.138 4.189 3.219

t̂ar 69.3 71.1 69.2 77.6

f̂ar 28.9 27.5 28.4 6.8

n̂dr 1.8 1.4 2.4 15.6

3

� = 0.2

ĉed 3.003 2.743 2.857 2.134

t̂ar 66.6 72.9 69.9 93.1

f̂ar 33.4 27.1 30.0 6.3

n̂dr 0.0 0.0 0.1 0.6

� = 0.4

ĉed 2.924 2.766 2.809 2.141

t̂ar 68.4 72.3 71.1 92.8

f̂ar 31.6 27.7 28.8 6.6

n̂dr 0.0 0.0 0.1 0.6

� = 0.6

ĉed 2.801 2.758 2.793 2.146

t̂ar 71.4 72.5 71.4 92.6

f̂ar 28.6 27.5 28.4 6.8

n̂dr 0.0 0.0 0.2 0.6
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Figure A.3: a) and (b) ACF plots of X1 and X2 series and (c), (d) and (e) ACF plots
of likelihood ratio statistics from Frisén, Wessman and and proposed method (case 3),
respectively (scenario 3: simultaneous changes and shift size = 2).
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Figure A.4: a) and (b) ACF plots of X1 and X2 series and (c), (d) and (e) ACF plots
of likelihood ratio statistics from Frisén, Wessman and and proposed method (case 5),
respectively (scenario 3: changes with time lag and shift size = 2).
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Table A.7: Critical values for scenario 1 (simultaneous changes)

CBS Comparison
Critical value (method i - method j)

P - F P - W F - W

0.2

CEDi − CEDj 0.031 0.031 0.030
TARi − TARj 0.60 0.58 0.56
FARi − FARj 0.53 0.52 0.51
NDRi −NDRj 0.30 0.27 0.24

0.4

CEDi − CEDj 0.031 0.031 0.031
TARi − TARj 0.59 0.57 0.57
FARi − FARj 0.52 0.50 0.52
NDRi −NDRj 0.30 0.27 0.24

0.6

CEDi − CEDj 0.031 0.031 0.031
TARi − TARj 0.59 0.57 0.57
FARi − FARj 0.52 0.51 0.52
NDRi −NDRj 0.29 0.26 0.24

Table A.8: Critical values for scenario 1 (changes with time lag)

CBS Comparison
Critical value (method i - method j)

P - F P - W P - C1 F - W F - C1 W - C1

0.2

CEDi − CEDj 0.031 0.031 0.031 0.031 0.030 0.031
TARi − TARj 0.58 0.60 0.58 0.59 0.57 0.59
FARi − FARj 0.52 0.54 0.52 0.55 0.53 0.55
NDRi −NDRj 0.27 0.29 0.27 0.23 0.21 0.22

0.4

CEDi − CEDj 0.031 0.033 0.031 0.033 0.031 0.033
TARi − TARj 0.57 0.60 0.57 0.60 0.58 0.60
FARi − FARj 0.51 0.51 0.51 0.54 0.54 0.54
NDRi −NDRj 0.28 0.31 0.27 0.27 0.21 0.26

0.6

CEDi − CEDj 0.031 0.036 0.031 0.035 0.031 0.035
TARi − TARj 0.58 0.63 0.58 0.63 0.58 0.63
FARi − FARj 0.52 0.55 0.52 0.57 0.54 0.57
NDRi −NDRj 0.28 0.33 0.27 0.28 0.21 0.28



Appendix B

The extension of SR methods for
normal data

Table B.1: Results of scenario 2 (CWS but no CBS) for detecting simultaneous changes,
monitored with modified one-sided EWMA chart for autocorrelated data

Shift size CWS Estimate
Method

Parallel Frisén Wessman Case 2

2

0.2

ĉed 3.158 2.117 2.119 2.119

t̂ar 90.1 93.3 93.0 92.3

f̂ar 5.0 5.1 5.6 5.6

n̂dr 4.9 1.6 1.4 2.1

0.4

ĉed 3.198 3.175 3.195 2.218

t̂ar 83.0 88.2 87.9 85.3

f̂ar 6.2 5.5 6.1 5.3

n̂dr 10.8 6.3 6.0 9.4

0.6

ĉed 4.329 4.264 4.301 3.181

t̂ar 75.6 81.1 80.5 76.0

f̂ar 7.6 6.2 7.0 5.7

n̂dr 16.8 12.7 12.5 18.3

3

0.2

ĉed 1.053 1.054 1.059 1.059

t̂ar 95.0 94.9 94.4 94.4

f̂ar 5.0 5.1 5.6 5.6

n̂dr 0.0 0.0 0.0 0.0

0.4

ĉed 2.186 2.116 2.130 1.056

t̂ar 91.4 94.4 93.9 94.6

f̂ar 8.5 5.5 6.1 5.3

n̂dr 0.1 0.1 0.0 0.1

0.6

ĉed 3.247 2.132 2.150 2.121

t̂ar 91.7 93.5 92.9 93.5

f̂ar 7.6 6.3 7.0 5.7

n̂dr 0.7 0.2 0.1 0.8
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Table B.2: Results of scenario 2 (CWS but no CBS) for detecting changes with time lag,
monitored with modified one-sided EWMA chart for autocorrelated data

Shift size CWS Estimate
Method

Parallel Frisén Wessman Case 4

2

0.2

ĉed 3.148 2.105 2.148 2.116

t̂ar 90.3 93.3 91.6 92.3

f̂ar 4.7 5.0 6.9 5.5

n̂dr 5.0 1.7 1.5 2.2

0.4

ĉed 3.198 3.175 3.226 2.304

t̂ar 82.9 88.1 87.5 85.8

f̂ar 6.2 5.5 7.0 5.3

n̂dr 10.9 6.4 5.5 8.9

0.6

ĉed 4.324 4.267 4.315 3.185

t̂ar 75.6 80.9 81.2 76.5

f̂ar 7.5 6.3 7.3 5.8

n̂dr 16.9 12.8 11.5 17.7

3

0.2

ĉed 1.048 1.053 1.074 1.058

t̂ar 95.4 95.0 93.1 94.5

f̂ar 4.6 5.0 6.9 5.5

n̂dr 0.0 0.0 0.0 0.0

0.4

ĉed 2.121 2.116 2.1518 1.056

t̂ar 94.2 94.4 92.9 94.6

f̂ar 5.7 5.5 7.0 5.3

n̂dr 0.1 0.1 0.1 0.1

0.6

ĉed 3.243 2.134 2.157 2.121

t̂ar 91.8 93.4 92.4 93.7

f̂ar 7.5 6.3 7.3 5.7

n̂dr 0.7 0.3 0.3 0.6
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Table B.3: Results of scenario 3 (CWS and CBS) for detecting simultaneous changes,
monitored with modified one-sided EWMA chart for autocorrelated data

Shift size CWS Estimate
Method

Parallel Frisén Wessman Case 3

2

0.2

ĉed 4.324 4.293 4.231 3.181

t̂ar 76.0 80.0 80.5 76.0

f̂ar 7.5 6.4 7.0 5.7

n̂dr 16.5 13.6 12.5 18.3

0.4

ĉed 4.329 4.299 4.231 3.168

t̂ar 76.6 79.1 80.5 76.6

f̂ar 7.6 6.3 7.0 5.3

n̂dr 15.8 14.6 12.5 18.1

0.6

ĉed 4.320 4.299 4.231 3.168

t̂ar 77.0 79.0 80.5 76.5

f̂ar 7.4 6.3 7.0 5.3

n̂dr 15.6 14.7 12.5 18.2

3

0.2

ĉed 3.243 3.205 2.151 2.121

t̂ar 91.8 93.2 92.9 93.5

f̂ar 7.5 6.4 7.0 5.7

n̂dr 0.7 0.4 0.1 0.8

0.4

ĉed 3.248 3.202 2.151 2.112

t̂ar 91.7 93.0 92.9 94.1

f̂ar 7.6 6.3 7.0 5.3

n̂dr 0.7 0.7 0.1 0.6

0.6

ĉed 3.240 3.204 2.151 2.112

t̂ar 91.9 93.0 92.9 94.1

f̂ar 7.4 6.3 7.0 5.3

n̂dr 0.7 0.7 0.1 0.6
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Table B.4: Results of scenario 3 (CWS and CBS) for detecting changes with time lag,
monitored with modified one-sided EWMA chart for autocorrelated data

Shift size CWS Estimate
Method

Parallel Frisén Wessman Case 5

2

0.2

ĉed 4.320 4.292 4.357 3.178

t̂ar 75.7 80.5 79.8 76.7

f̂ar 7.4 6.8 8.2 5.6

n̂dr 16.9 12.7 12.0 17.7

0.4

ĉed 4.320 4.302 4.367 3.171

t̂ar 75.9 79.9 80.1 76.8

f̂ar 7.4 7.0 8.4 5.4

n̂dr 16.7 13.1 11.5 17.8

0.6

ĉed 4.306 4.301 5.507 3.171

t̂ar 76.1 79.9 78.2 76.7

f̂ar 7.1 7.0 9.2 5.4

n̂dr 16.8 13.1 12.6 17.9

3

0.2

ĉed 3.240 2.146 2.179 2.119

t̂ar 91.9 92.9 91.3 93.7

f̂ar 7.4 6.8 8.2 5.6

n̂dr 0.7 0.3 0.5 0.7

0.4

ĉed 3.236 2.150 3.275 2.114

t̂ar 92.0 92.7 90.9 94.0

f̂ar 7.3 7.0 8.4 5.4

n̂dr 0.7 0.3 0.7 0.6

0.6

ĉed 3.226 2.151 3.304 2.114

t̂ar 92.3 92.7 89.9 94.0

f̂ar 7.0 7.0 9.2 5.4

n̂dr 0.7 0.3 0.9 0.6

Table B.5: Scenario R1 (mis-specification of CWS: CWS = 0.6, CBS = 0 and LCP = 0)

Method
Shift

Estimate
Specified Estimated Mis-specified CWS

size CWS = 0.6 CWS 0.0 0.2 0.4 0.8

Case 2

2

ĉed 2.482 2.542 3.140 2.903 2.656 2.352

t̂ar 63.3 64.0 60.3 61.8 63.2 23.8

f̂ar 5.3 6.3 27.7 23.3 14.7 1.6

n̂dr 31.4 29.7 12.0 14.9 22.1 74.6

3

ĉed 1.930 1.908 2.292 2.127 1.985 2.042

t̂ar 87.8 86.5 71.4 75.7 83.4 61.2

f̂ar 5.3 6.3 27.7 23.3 14.7 1.6

n̂dr 6.9 7.2 0.9 1.0 1.9 37.2
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Table B.6: Scenario R2 (mis-specification of CWS: CWS = 0.6, CBS = 0 and LCP = 5)

Method
Shift

Estimate
Specified Estimated Mis-specified CWS

size CWS = 0.6 CWS 0.0 0.2 0.4 0.8

Case 4

2

ĉed 2.502 2.538 3.169 2.928 2.681 2.338

t̂ar 63.5 64.5 60.2 62.1 63.1 23.1

f̂ar 5.5 6.3 28.1 23.5 15.3 1.7

n̂dr 31.0 29.2 11.7 14.4 21.6 75.2

3

ĉed 1.928 1.904 2.314 2.119 1.963 2.034

t̂ar 87.6 87.0 70.8 75.5 82.7 62.2

f̂ar 5.5 6.3 28.1 23.4 15.8 1.6

n̂dr 6.9 6.7 1.1 1.1 2.0 36.2

Table B.7: Scenario R3 (mis-specification of CWS: CWS = 0.6, CBS = 0.6 and LCP = 0)

Method
Shift

Estimate
Specified Estimated Mis-specified CWS

size CWS = 0.6 CWS 0.0 0.2 0.4 0.8

Case 3

2

ĉed 2.482 2.539 3.140 2.903 2.656 2.352

t̂ar 63.3 64.5 60.3 61.8 63.2 23.8

f̂ar 5.3 6.4 27.7 23.3 14.7 1.6

n̂dr 31.4 29.1 12.0 14.9 22.1 74.6

3

ĉed 1.930 1.897 2.292 2.127 1.945 2.042

t̂ar 87.8 86.4 71.4 75.7 83.4 61.2

f̂ar 5.3 6.4 27.7 23.3 14.7 1.6

n̂dr 6.9 7.2 0.9 1.0 1.9 37.2

Table B.8: Scenario R4 (mis-specification of CWS: CWS = 0.6, CBS = 0.6 and LCP = 5)

Method
Shift

Estimate
Specified Estimated Mis-specified CWS

size CWS = 0.6 CWS 0.0 0.2 0.4 0.8

Case 5

2

ĉed 2.508 2.564 3.187 2.936 2.670 2.438

t̂ar 63.5 64.2 59.9 62.2 63.1 23.0

f̂ar 5.8 6.8 28.5 23.7 15.1 1.8

n̂dr 30.7 29.0 11.6 14.3 21.7 75.2

3

ĉed 1.953 1.925 2.324 2.124 1.942 2.036

t̂ar 87.3 86.5 70.4 75.3 82.9 62.2

f̂ar 5.8 6.8 28.5 23.6 15.2 1.7

n̂dr 6.9 6.7 1.1 1.1 1.9 36.1
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Table B.9: Scenario R5 (mis-specification of CBS: CBS = 0.6, CWS = 0 and LCP = 0)

Method
Shift

Estimate
Specified Estimated Mis-specified CBS

size CBS = 0.6 CBS 0.0 0.2 0.4 0.8

Wessman

2

ĉed 1.771 1.772 1.908 1.871 1.844 1.876

t̂ar 90.5 91.1 88.7 89.3 90.1 89.8

f̂ar 5.3 5.1 5.5 5.3 5.2 5.7

n̂dr 4.5 3.8 5.8 5.4 4.7 4.5

3

ĉed 0.863 0.804 0.941 0.913 0.816 0.861

t̂ar 94.7 94.9 94.5 94.7 94.8 94.3

f̂ar 5.3 5.1 5.5 5.3 5.2 5.7

n̂dr 0.0 0.0 0.0 0.0 0.0 0.0

Table B.10: Scenario R6 (mis-specification of CBS: CBS = 0.6, CWS = 0 and LCP = 5)

Method
Shift

Estimate
Specified Estimated Mis-specified CBS

size CBS = 0.6 CBS 0.0 0.2 0.4 0.8

Case 1

2

ĉed 1.771 1.763 1.835 1.803 1.789 1.796

t̂ar 90.7 90.7 90.3 90.5 90.4 90.0

f̂ar 5.3 5.7 5.7 5.5 5.6 6.1

n̂dr 4.0 3.6 4.0 4.0 4.0 3.9

3

ĉed 0.802 0.799 0.822 0.812 0.807 0.816

t̂ar 94.7 94.3 94.3 94.5 94.4 94.0

f̂ar 5.3 5.7 5.7 5.5 5.6 6.0

n̂dr 0.0 0.0 0.0 0.0 0.0 0.0

Table B.11: Scenario R7 (mis-specification of CBS: CBS = 0.6, CWS = 0.6 and
LCP = 0)

Method
Shift

Estimate
Specified Estimated Mis-specified CBS

size CBS = 0.6 CBS 0.0 0.2 0.4 0.8

Case 3

2

ĉed 2.511 2.500 2.586 2.559 2.549 2.538

t̂ar 55.2 55.5 50.8 51.6 53.4 52.8

f̂ar 6.8 7.1 7.3 7.3 6.8 7.4

n̂dr 38.0 37.4 41.9 41.1 39.8 39.8

3

ĉed 1.928 1.921 2.043 2.015 1.960 1.955

t̂ar 86.1 85.6 82.9 83.8 85.6 83.1

f̂ar 6.8 7.1 7.3 7.3 6.8 7.4

n̂dr 7.1 7.3 9.8 8.9 7.6 9.5
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Table B.12: Scenario R8 (mis-specification of CBS: CBS = 0.6, CWS = 0.6 and
LCP = 5)

Method
Shift

Estimate
Specified Estimated Mis-specified CBS

size CBS = 0.6 CBS 0.0 0.2 0.4 0.8

Case 5

2

ĉed 2.516 2.514 2.519 2.519 2.513 2.521

t̂ar 55.1 55.5 55.6 55.4 55.9 55.6

f̂ar 7.1 7.1 8.4 8.2 7.6 7.7

n̂dr 37.8 37.3 36.0 36.4 36.5 36.7

3

ĉed 1.919 1.926 1.931 1.929 1.923 1.925

t̂ar 85.3 85.3 84.2 84.3 84.9 85.0

f̂ar 6.9 7.0 8.2 8.0 7.5 7.4

n̂dr 7.8 7.7 7.6 7.7 7.6 7.6

Table B.13: Scenario R9 (mis-specification of LCP: LCP = 5, CBS = 0.6 and CWS = 0)

Method
Shift

Estimate
Specified Estimated Mis-specified LCP

size LCP = 5 LCP 0 3 4 6 7

Case 1

2

ĉed 1.779 1.779 2.207 1.965 1.872 1.911 1.936

t̂ar 90.2 90.2 77.4 85.7 82.4 83.8 82.7

f̂ar 5.7 5.7 6.7 10.5 13.8 12.4 13.8

n̂dr 4.1 4.1 15.9 3.8 3.8 3.8 3.5

3

ĉed 0.807 0.807 1.238 0.903 0.860 0.857 0.877

t̂ar 94.3 94.3 92.5 89.5 86.3 86.4 89.1

f̂ar 5.7 5.7 6.7 10.5 13.7 13.6 10.9

n̂dr 0.0 0.0 0.8 0.0 0.0 0.0 0.0

Table B.14: Scenario R10 (mis-specification of LCP: LCP = 5, CBS = 0.6 and
CWS = 0.6)

Method
Shift

Estimate
Specified Estimated Mis-specified LCP

size LCP = 5 LCP 0 3 4 6 7

Case 5

2

ĉed 2.564 2.564 2.676 2.673 2.626 2.716 2.695

t̂ar 54.2 54.2 39.4 52.9 51.7 50.5 51.1

f̂ar 6.8 6.8 7.4 11.9 13.6 13.6 12.0

n̂dr 39.0 39.0 53.2 35.2 34.7 35.9 36.9

3

ĉed 1.925 1.925 2.275 2.027 1.967 2.053 2.044

t̂ar 86.5 86.5 72.9 82.2 80.5 80.9 82.2

f̂ar 6.8 6.8 7.4 11.8 13.2 12.9 11.6

n̂dr 6.7 6.7 19.7 6.0 6.3 6.2 6.2
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Table B.15: Scenario R11 (specification of shift size: CBS = 0, CWS = 0 and LCP = 0)

Method Estimate
Shift size in the process

0.5 1 2 3 4

Parallel

ĉed 4.289 4.143 2.270 0.986 0.454

t̂ar 12.8 46.4 92.9 94.0 94.0

f̂ar 6.0 6.0 6.0 6.0 6.0

n̂dr 81.2 47.6 1.1 0 0

Frisén

ĉed 4.203 3.979 1.921 0.815 0.370

t̂ar 16.9 55.2 93.8 94.6 94.6

f̂ar 5.4 5.4 5.4 5.4 5.4

n̂dr 77.7 39.4 0.8 0 0

Table B.16: Scenario R12 (specification of shift size: CBS = 0.6, CWS = 0 and LCP = 0)

Method Estimate
Shift size in the process

0.5 1 2 3 4

Parallel

ĉed 4.292 4.083 2.182 0.942 0.426

t̂ar 14.7 50.4 94.3 95.1 95.1

f̂ar 4.9 4.9 4.9 4.9 4.9

n̂dr 80.4 44.7 0.8 0 0

Wessman

ĉed 4.209 3.913 1.895 0.804 0.322

t̂ar 17.9 56.2 94.2 94.9 94.9

f̂ar 5.1 5.1 5.1 5.1 5.1

n̂dr 77.0 38.7 0.7 0 0

Table B.17: Scenario R13 (specification of shift size: CBS = 0, CWS = 0.6 and LCP = 0)

Method Estimate
Shift size in the process

0.5 1 2 3 4

Parallel

ĉed 4.355 4.817 4.423 3.092 2.152

t̂ar 8.3 21.5 71.2 90.8 92.4

f̂ar 7.6 7.6 7.6 7.6 7.6

n̂dr 84.1 70.9 21.2 1.6 0

Case 2

ĉed 4.057 4.241 3.547 2.177 1.223

t̂ar 10.6 27.0 74.1 92.8 93.7

f̂ar 6.3 6.3 6.3 6.3 6.3

n̂dr 83.1 66.7 19.6 0.9 0
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Table B.18: Scenario R14 (specification of shift size: CBS = 0.6, CWS = 0.6 and
LCP = 0)

Method Estimate
Shift size in the process

0.5 1 2 3 4

Parallel

ĉed 4.164 4.728 4.302 2.999 2.086

t̂ar 9.7 23.8 73.2 91.3 92.6

f̂ar 7.4 7.4 7.4 7.4 7.4

n̂dr 82.9 68.8 19.4 1.3 0

Case 4

ĉed 3.980 4.234 3.543 2.160 1.218

t̂ar 10.9 27.3 74.6 92.5 93.6

f̂ar 6.4 6.4 6.4 6.4 6.4

n̂dr 82.7 66.3 19.0 1.1 0

.
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Appendix C

SR methods for Poisson data

C.1 Sufficient statistics for case 1 (no CWS or CBS)

From equation (6.34), Tt(x t) can be derived from

s∑
t=�

lr(x t;�
O
1 − �I1) =

s∑
t=�

ln
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f(x t;�

O
1 , �
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(C.1)

By the factorization theorem, the likelihood ratio statistics Tt(xt) derived from equation
(C.1) are

Tt(x t) = x1,t ln

(
�I1 + c

�I1

)
, t = 1, 2, ..., s
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C.2 Sufficient statistics for case 2 (no CWS but CBS)

From equation (6.36), Tt(x t) can be derived from
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where m = min(x1,t, x2,t). By the factorization theorem, the likelihood ratio statistics
Tt(xt) derived according to the change in covariance (�O3 − �I3) are
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C.3 Sufficient statistics for case 3 (CWS but no CBS)

From equation (6.38), Tt(x t) can be derived from
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By the factorization theorem, the likelihood ratio statistics Tt(xt) derived from equation
(C.3) are
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C.4 Sufficient statistics for case 4 (CWS and CBS)

From equation (6.40), Tt(x t) can be derived from
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. e−(�I1+�
I
2+�

I
3)

(�I1)r1

r1!

(�I2)r2

r2!

.
m∑
j=0

(
r1
j

)(
r2
j

)
j!

(
�I3
�I1�

I
2

)j}

and

f(xt∣xt−1;�1, �2�
I
1, �

I
2, �

O
3 ) =

g1∑
r1=0

g2∑
r2=0

{(
x1,t−1

x1,t − r1

)
�
x1,t−r1
1 (1− �1)x1,t−1−x1,t−r1

.

(
x2,t−1

x2,t − r2

)
�
x2,t−r2
2 (1− �2)x2,t−1−x2,t−r2

. e−(�I1+�
I
2+�

I
3+c)

(�I1)r1

r1!

(�I2)r2

r2!

.

m∑
j=0

(
r1
j

)(
r2
j

)
j!

(
�I3 + c

�I1�
I
2

)j}

By the factorization theorem, the likelihood ratio statistics Tt(xt) derived from equation
(C.3) are

Tt(x t) = ln
vt
wt
, t = 1, 2, ..., s
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Table C.1: The limits (L) for the modified one-sided EWMA charts for independent
Poisson data for an in control mean of 5

ARL0
smoothing parameter (�)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

370 2.758 2.976 3.093 3.178 3.195 3.278 3.301 3.244 3.203
741 3.051 3.264 3.374 3.448 3.485 3.556 3.542 3.523 3.560

Table C.2: Detection performance of using model residuals with SR methods

Model
Shift

Estimate
Method

size Parallel Frisén Wessman

M1

2

ĉed 4.191 3.977 3.997

t̂ar 42.4 50.1 50.7

f̂ar 13.0 11.3 11.6

n̂dr 44.6 38.6 37.7

3

ĉed 3.628 3.339 3.329

t̂ar 69.2 75.0 75.0

f̂ar 13.0 11.3 11.6

n̂dr 17.8 13.7 13.4

M2

2

ĉed 4.596 4.509 4.525

t̂ar 46.3 53.9 54.6

f̂ar 13.0 11.3 11.6

n̂dr 40.7 34.8 33.8

3

ĉed 3.906 3.578 3.559

t̂ar 72.8 78.3 78.1

f̂ar 13.0 11.3 11.6

n̂dr 14.2 10.4 10.3
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Table C.3: Detection performance for case 1

Shift size Estimate
Method

Parallel Frisén Case 1

2

ĉed 4.071 3.852 3.852

t̂ar 34.4 49.5 49.5

f̂ar 5.1 9.9 9.9

n̂dr 60.5 40.6 40.6

3

ĉed 3.732 3.259 3.259

t̂ar 65.4 76.7 76.7

f̂ar 5.1 9.9 9.9

n̂dr 29.5 13.4 13.4
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Table C.4: Detection performance for case 2

Shift size CBS Estimate
Method

Parallel Frisén Case 2

2

� = 0.2

ĉed 4.027 3.546 3.424

t̂ar 49.3 68.3 69.7

f̂ar 5.1 8.8 13.4

n̂dr 45.6 22.9 16.9

� = 0.4

ĉed 4.043 3.678 3.639

t̂ar 47.1 63.4 65.0

f̂ar 4.9 8.9 12.0

n̂dr 48.0 27.7 23.0

� = 0.6

ĉed 4.054 3.821 3.742

t̂ar 44.3 58.3 59.8

f̂ar 4.6 9.5 10.6

n̂dr 51.1 32.2 29.6

3

� = 0.2

ĉed 3.361 2.562 2.397

t̂ar 80.9 87.2 84.4

f̂ar 5.1 8.8 13.1

n̂dr 14.0 4.0 2.5

� = 0.4

ĉed 3.391 2.769 2.715

t̂ar 78.6 84.7 83.5

f̂ar 4.9 8.9 11.8

n̂dr 16.5 6.4 4.7

� = 0.6

ĉed 3.453 3.017 2.949

t̂ar 76.4 82.0 82.1

f̂ar 4.6 9.5 10.7

n̂dr 19.0 8.5 7.3
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Table C.5: Detection performance for case 3 (shift size = 2)

Shift size CWS Estimate Chart
Method

Parallel Frisén Case 3

2

� = 0.2

ĉed
standard 4.287 4.075 3.834
modified 4.224 3.945 3.843

t̂ar
standard 38.8 51.9 46.0
modified 28.8 45.3 42.8

f̂ar
standard 11.9 16.7 8.8
modified 4.4 8.6 7.3

n̂dr
standard 49.3 31.4 45.2
modified 66.8 46.1 49.9

� = 0.4

ĉed
standard 5.074 4.856 4.051
modified 4.648 4.463 3.995

t̂ar
standard 38.8 48.5 40.2
modified 25.3 39.8 36.9

f̂ar
standard 21.0 24.3 8.9
modified 4.6 8.5 7.2

n̂dr
standard 40.2 27.2 50.9
modified 70.1 51.7 55.9

� = 0.6

ĉed
standard 6.814 6.221 4.546
modified 5.487 5.432 4.540

t̂ar
standard 31.6 40.5 42.7
modified 20.0 30.5 33.1

f̂ar
standard 31.3 30.2 10.9
modified 5.6 8.7 8.8

n̂dr
standard 37.1 29.3 46.4
modified 74.4 60.8 58.1
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Table C.6: Detection performance for case 3 (shift size = 3)

Shift size CWS Estimate Chart
Method

Parallel Frisén Case 3

3

� = 0.2

ĉed
standard 3.779 3.348 3.233
modified 3.839 3.399 3.300

t̂ar
standard 66.3 72.4 71.4
modified 58.2 71.7 69.8

f̂ar
standard 11.9 16.7 9.2
modified 4.4 8.6 7.4

n̂dr
standard 21.8 10.9 19.4
modified 37.4 19.7 22.8

� = 0.4

ĉed
standard 4.347 3.919 3.482
modified 4.218 3.884 3.564

t̂ar
standard 61.8 66.3 67.6
modified 53.0 66.9 64.0

f̂ar
standard 21.0 24.3 9.4
modified 4.6 8.5 7.3

n̂dr
standard 17.2 9.4 23.0
modified 42.4 24.6 27.8

� = 0.6

ĉed
standard 5.973 5.270 3.976
modified 5.076 4.839 3.983

t̂ar
standard 51.3 58.3 61.1
modified 45.7 57.1 58.9

f̂ar
standard 31.3 30.3 11.3
modified 5.6 8.7 8.9

n̂dr
standard 17.3 11.4 27.6
modified 48.7 34.2 32.2
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Table C.7: Detection performance for case 4

Shift size
CWS

Estimate Chart
Method

CBS Parallel Frisén Case 4

2

ĉed
standard 4.503 4.169 3.705
modified 4.013 3.779 3.685

t̂ar
standard 53.9 56.5 56.1

� = 0.6 modified 44.8 56.4 55.5
� = 0.25

f̂ar
standard 31.7 32.5 19.8
modified 6.2 8.5 15.2

n̂dr
standard 14.4 11.0 24.1
modified 49.0 35.1 29.3

ĉed
standard 4.406 4.322 3.780
modified 4.029 3.868 3.733

t̂ar
standard 52.0 53.6 53.8

� = 0.6 modified 42.9 50.8 51.4
� = 0.5

f̂ar
standard 29.8 32.1 17.0
modified 5.7 8.1 13.1

n̂dr
standard 18.2 14.3 29.2
modified 51.4 41.1 35.5

3

ĉed
standard 3.485 3.051 2.988
modified 3.545 3.127 3.032

t̂ar
standard 64.2 63.5 70.5

� = 0.6 modified 73.8 80.5 73.5
� = 0.25

f̂ar
standard 32.9 34.7 23.5
modified 6.7 9.4 18.1

n̂dr
standard 2.9 1.8 6.0
modified 19.5 10.1 8.4

ĉed
standard 3.608 3.307 3.197
modified 3.560 3.301 3.240

t̂ar
standard 64.7 63.2 69.0

� = 0.6 modified 71.5 76.9 71.9
� = 0.5

f̂ar
standard 31.4 33.9 20.3
modified 6.4 9.0 15.4

n̂dr
standard 3.9 2.9 10.7
modified 22.1 14.1 12.7
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Figure C.1: Diagnostic plots for model M1: (a) data plot, (b) residual plot, (c) - (d)
histograms of X1 and X2 residuals, respectively, (e) - (f) normal Q-Q plots of X1 and
X2 residuals, respectively.
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Figure C.2: Diagnostic plots for model M2: (a) data plot, (b) residual plot, (c) - (d)
histograms of X1 and X2 residuals, respectively, (e) - (f) normal Q-Q plots of X1 and
X2 residuals, respectively.
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Figure C.3: Diagnostic plots for case 1: (a) - (b) Poisson Q-Q plots of X1 and X2

series, respectively, (c) - (d) and (e) - (f) Poisson and Normal Q-Q plots of likelihood
ratio statistics from Frisén and our methods, respectively.
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Figure C.4: Diagnostic plots for case 2: (a) - (b) Poisson Q-Q plots of X1 and X2

series, respectively, (c) - (d) and (e) - (f) Poisson and Normal Q-Q plots of likelihood
ratio statistics from Frisén and our methods, respectively.
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Figure C.5: Diagnostic plots for case 3: (a) - (b) Poisson Q-Q plots of X1 and X2

series, respectively, (c) - (d) and (e) - (f) Poisson and Normal Q-Q plots of likelihood
ratio statistics from Frisén and our methods, respectively.
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Figure C.6: Diagnostic plots for case 4: (a) - (b) Poisson Q-Q plots of X1 and X2

series, respectively, (c) - (d) and (e) - (f) Poisson and Normal Q-Q plots of likelihood
ratio statistics from Frisén and our methods, respectively.
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Figure C.7: The autocorrelation function plots of (a) X1 series, (b) X2 series, (c)
sufficient statistics from Frisén method and (d) likelihood ratio statistics from case 3.
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Figure C.8: The autocorrelation function plots of (a) X1 series, (b) X2 series, (c)
sufficient statistics from Frisén method and (d) likelihood ratio statistics from case 4.



210 Appendix C. SR methods for Poisson data



Appendix D

The implementation of SR
methods

(a)

F
re

qu
en

cy

5 10 15 20

0
4

8
12 ●

●

●

●
●

●
●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●
●●

−2 −1 0 1 2

5
10

15
20

S
am

pl
e 

Q
ua

nt
ile

s

Theoretical Quantiles 
 (b)

0 5 10 15

−
0.

2
0.

4
0.

8

A
C

F

Lag 
 (c)

2 4 6 8 10 12 14

−
0.

3
0.

0
0.

2

P
ar

tia
l A

C
F

Lag 
 (d)

Figure D.1: Plots for the training data set for San Francisco series: (a) histogram,
(b) Normal Q-Q plot, (c) and (d) plots of the autocorrelation and partial correlation
functions, respectively.
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Figure D.2: Plots for the training data set for Las Vegas series: (a) histogram, (b) Normal
Q-Q plot, (c) and (d) plots of the autocorrelation and partial correlation functions,
respectively.
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Figure D.3: Plot of the cross correlation function of the training sets for San Francisco
and Las Vegas series.
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Figure D.4: Plots of training data set for Greater Manchester series: (a) histogram,
(b) Poisson Q-Q plot, (c) and (d) plots of the autocorrelation and partial correlation
functions, respectively.
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Figure D.5: Plots of training data set for Cheshire & Merseyside series: (a) histogram,
(b) Poisson Q-Q plot, (c) and (d) plots of the autocorrelation and partial correlation
functions, respectively.
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ester and Cheshire & Merseyside series.
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Figure D.7: Scatter plots of the data for (a) humidity and (b) ozone series.
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Figure D.8: Plots of ACF and PACF of (a) - (b) humidity series and (c) - (d) ozone
series.
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Figure D.9: Scatter plots of the differenced data for (a) humidity and (b) ozone series.



216 Appendix D. The implementation of SR methods

0 100 200 300

−
20

0
10

Time (day) 
 (a)

0 5 10 15 20 25

−
0.

2
0.

2
0.

6
1.

0

A
C

F

Lag 
 (b)

5 10 15 20 25

−
0.

20
−

0.
05

0.
10

P
ar

tia
l A

C
F

Lag 
 (c)

Figure D.10: Plots of (a) differenced data, (b) ACF and (c) PACF for humidity series.
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Figure D.11: Plots of (a) differenced data, (b) ACF and (c) PACF for ozone series.
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Figure D.12: Diagnostic plots for the humidity model (Model A): (a) residual plot,
(b) histogram, (c) normal Q-Q plot, (d) and (e) plots of autocorrelation and partial
correlation functions, respectively.
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Figure D.13: Diagnostic plots for the ozone model (Model A): (a) residual plot, (b)
histogram, (c) normal Q-Q plot, (d) and (e) plots of the autocorrelation and partial
correlation functions, respectively.
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Figure D.14: Diagnostic plots for the humidity model (Model B): (a) residual plot,
(b) histogram, (c) normal Q-Q plot, (d) and (e) plots of autocorrelation and partial
correlation functions, respectively.
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Figure D.15: Diagnostic plots for the ozone model (Model B): (a) residual plot, (b) his-
togram, (c) normal Q-Q plot, (d) and (e) plots of autocorrelation and partial correlation
functions, respectively.
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Table D.1: Parameter estimation for the regression models

Coefficient Humidity model Ozone model

�1 77.13 49.90
�2 -2.56 12.52
�3 -2.93 27.32
�4 -8.66 51.96
�5 -9.64 59.89
�6 -10.19 59.32
�7 -16.06 69.99
�8 -12.19 53.42
�9 -4.59 29.67
�10 5.06 11.01
�11 1.44 7.79
�12 4.58 -0.97

R2 0.4633 0.7178
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Figure D.16: Plots for the training data set for humidity series (Model A): (a) residual
plot, (b) normal Q-Q plot, (c) and (d) plots of the autocorrelation and partial correlation
functions of the training data set.
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Figure D.17: Plots for the training data set for ozone series (Model A): (a) residual plot,
(b) normal Q-Q plot, (c) and (d) plots of the autocorrelation and partial correlation
functions of the training data set.
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Figure D.18: Plot of the cross correlation function of the training data set for humidity
and ozone series (Model A).
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Figure D.19: Plot of the cross correlation function of the training data set for humidity
and ozone series (Model B).
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Figure D.20: Plots for the training data set for humidity series (Model B): (a) residual
plot, (b) histogram, (c) normal Q-Q plot, (d) and (e) plots of the autocorrelation and
partial correlation functions of the training data set.
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Figure D.21: Plots for the training data set for ozone series (Model B): (a) residual plot,
(b) histogram, (c) normal Q-Q plot, (d) and (e) plots of the autocorrelation and partial
correlation functions of the training data set.
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Göteborg, Swenden.

Johnson, N., S. Kotz, and N. Balakrishnan (1997). Discrete multivariate distributions.
John Wiley & Sons, Inc., New York.

Joner, M., W. Woodall, M. Reynolds, and R. Fricker (2008). A one-sided MEWMA
chart for health surveillance. Quality and Reliability Engineering International 24,
503–518.

Karlis, D. and I. Ntzoufras (2005). Bivariate Poisson and diagonal inflated bivariate
Poisson regression models in R. Journal of Statistical Software 14 (10).

Kavanagh, K., C. Roberson, and J. McMenamin (2010). Exception reporting of
influenza-like syndromed in scotland using nhs24 data, experience during the influenza
a h1n1v pandemic. In Statistical Methods for Outbreak Detection, The Open Univer-
sity, Milton Keynes, UK.

Kavanagh, K., C. Roberson, H. Murdoch, G. Crooks, and J. McMenamin (2012). Syn-
dromic surveillance of influenza-like illness in Scotland during the influenza a H1N1v
pandemic. Journal of the Royal Statistical Society: Series A (Statistics and Soci-
ety) 175 (4), 939–958.

Kleiman, K., R. Lazarus, and R. Platt (2004). A generalized linear mixed models ap-
proach for detecting incident clusters of disease in small areas, with an application to
biological terrorism. American Journal of Epidemiology 159 (3), 217–224.

Kleinman, K. and A. Abrams (2006). Assessing surveillance using sensitivity, specificity
and timeliness. Statistical Methods in Medical Research 15, 445–464.

Knoth, S. (2012, September). Package ‘spc’. http://cran.r-project.org/web/packages/
spc/spc.pdf.



Bibliography 229

Kramer, H. and W. Schmid (1997). Control charts for time series. Nonlinear Analysis,
Theory, Methods & Applications 30 (7), 4007–4016.

Kuang, J., W. Z. Yang, D. L. Zhou, Z. J. Li, and Y. J. Lan (2012). Epidemic features af-
fecting the performance of outbreak detection algorithms. BMC Public Health 12 (418).

Kullaa, J. (2003). Damage detection of the z24 bridge using control charts. Mechanical
Systems and Signal Processing 17 (1), 163–170.

Kulldorff, M. (1997). A spatial scan statistic. Communications in Statistics, Theory and
Methods 26, 1481–1496.

Kulldorff, M. (2001). Prospective time periodic geographic disease surveillance using
scan statistics. Journal of Royal Statistics Society. Series A 164, 61–72.

Kulldorff, M., F. Mostashari, L. Duczmal, K. Yih, K. Kleinman, and R. Platt (2007).
Multivariate scan statistics for disease surveillance. Statistics in Medicine 26 (8), 1824–
1833.

Lai, T. L. (1995). Sequential changepoint detection in quality control and dynamical
systems. Journal of the Royal Statistical Society, Series B 57 (4), 613–658.

Lawson, A. and K. Kleinman (2005). Introduction: Spatial and syndromic surveillance
for public health. In Spatial & Syndromic Surveillance for Public Health. Wiley, Chich-
ester.

Le Strat, Y. and F. Carrat (1999). Monitoring epidemiologic surveillance data using
hidden Markov models. Statistics in Medicine 18, 3463–3478.

Lotze, T., G. Shmueli, and I. Yahav (2010). Simulating and evaluating biosurveillance
datasets. In Biosurveillance: Methods and Case studies. Taylor & Francis, CRC Press.

Lowry, C., W. Woodall, C. Champ, and H. Rigdon (1992). A multivariate exponentially
weighted moving average control chart. Technometrics 34 (1), 46–53.

Lu, C. W. and J. Reynolds, M. R. (1999). Control charts for monitoring the mean and
variance of autocorrelated processes. Journal of Quality Technology 31, 259–274.

Lucas, J. M. and M. S. Saccucci (1990). Exponentially weighted moving average control
schemes Properties and enhancements. Technometrics 32 (1), 1–12.

Lütkepohl, H. (1993). Introduction to multiple time series analysis (2nd ed.). Springer-
Verlag, NewYork.

MacCarthy, B. L. and T. Wasusri (2001). Statistical process control for monitoring
scheduling performance — addressing the problem of correlated data. The Journal of
the Operational Research Society 52 (7), 810–820.

MacGregor, J. (1995). Statistical process control of multivariate process. Control Engi-
neering Practice 3 (3), 403–414.



230 Bibliography

Maciejewski, R., R. Hafen, S. Rudolph, G. Tebbetts, W. Cleveland, and D. Ebert (2009).
Generating synthetic syndromic surveillance data for evaluating visual-analysis tech-
niques. IEEE Computer Graphics and Applications 29 (3), 18–28.

Mandl, K., B. Reis, and C. Cassa (2004). Measuring outbreak-detection performance by
using controlled feature set simulations. Morbidity and Mortality Weekly Report 53,
130–136.

Marshall, C., N. Best, A. Bottle, and P. Aylin (2004). Statistical issues in the prospective
monitoring of health outcomes across multiple units. Journal of the Royal Statistical
Society 167 (3), 541–559.

Mart́ınez-Beneito, M., D. Conesa, A. López-Qu´lez, and A. López-Maside (2008).
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