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Abstract 

An efficient FAS muldgrid solution strategy is presented for the accurate and 

economic simulation of convection dominated flows. The use of a high-order 

approximation to the convective transport terms found in the governing equations of 

motion has been investigated in conjunction with an unsegregated smoothing 

technique. 

Results are presented for a sequence of problems of increasing complexity 

requiring that careful attention be directed toward; the proper treatment of different 

types of boundary condition. The classical two-dimensional problem of flow idlid- 

driven cavity is investigated in depth for flows at Reynolds numbers of 100,400 and 

1 000. This gives an extremely good indication of the power of a multigrid approach. 

Next, the'solution methodology is applied to flow in a three-dimensional lid- 

driven cavity at different Reynolds numbers, with cross-reference being made to 

predictions obtained in the corresponding two-dimensional simulations, and to the flow 

over a step discontinuity in the case of an abruptly expanding channel. Although, at 

first sight, these problems appear to require only minor extensions to the existing 

approach, it is found that they are rather more idiosyncratic. 

Finally, the governing equations and numerical algorithm are extended to 

encompass the treatment of thermally driven flows. Ile solution to two such problems 

is presented and compared with corresponding results obtained by traditional methods. 
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Nomenclature 

The following is a list of frequently used symbols in this thesis. Additional notation is 

used and this is defined when introduced. 

A general scalar quantity 

t Time 

Xi The distance in the jth co-ordinate direction 

r Diffusion coefficient 

S# Source term for ý 

U Velocity in the x co-ordinate, direction 

v Velocity in the y co-ordinate'direction 

w Velocity in the z co-ordinate direction 

h Finite difference mesh spacing 

Tij Truncation error at the point (xi, yj) 

Lij Differential operator 

Lij Difference operator 

ýk Normalised face value 

Pe Peclet number, uh 
r 

p Pressure 

P Density 

9 Viscosity 

v Kinematic viscosity 

0 Exponential factor of increase in computer time with the number nodes 

Y Rate of residual reduction 

Wavelength 

rici Residual in the continuity equation 

riuj Residual in the u-momentum equation 

rivi Residual in the v-momentum equation 
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t 9 Residual in the temperature equation 

A Coefficient in finite difference equation 

V Strearnfunction 

(0 Vorticity 

Qk Solution vector on grid k 
rk Residual vector on grid k 

jfk Constant source vector on grid k 

0 Finite difference operator on grid k 

e Approximation vector for (: 2ý 

Sk Correction to e 

Vk Source vector for multigrid equations 
M Finest grid level 

k-1 
k Interpolation operator from k to k- 1 
k 
k-1 Interpolation operator from k- I to k 

11 Reduction factor in multigrid algorithm 
FGWU Fine grid work units 

Rn Residual at nth iteration 

0 Multigrid convergence factor 
ýN ý at a boundary 

Pr Prandtl number, defined in text 

Gr Grashof number, defined in text 

Ra Rayleigh number, defined in text 

Nu Nusselt number, defined in text 
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1.1. Overview 

In recent years high speed digital computers have begun to play an increasing role 

in engineering design. The field of Computational Fluid Dynamics (CFD) has evolved 

at an equally rapid rate such that the two together are now beginning to challenge the 

superiority of experimentation as a design toot capable of predicting the flow within, 

through and around complex engineering configurations. At present they represent 

complementary rather than competitive approaches, but the relative role of these two 

flow visualisation techniques is gradually changing. The time is not too far off when 

experimentation will be relegated to the secondary design phase, one of validation and 

refinement of global simulations for the entire flow field rather than for extensive 

parameter studies as in the past. 

Computational Fluid Dynamics, although a relatively young discipline, covers a 

vast spectrum of interests and methodologies several of which have become research 

topics in their own right - grid generation techniques47, body fitted coordinates9, 

turbulence modelling3l, solution procedures35,24 etc.. It is impossible therefore to give 

an exhaustive review of the subject; we can only skim the surface, taking care to place 

the work reported here into context. 

Numerical simulation is well suited to the analysis of a wide range of complex 

fluid flows. In some cases it even permits investigations to be carried out for situations 

that cannot be readily or easily duplicated experimentally. For example, consider the 

flow of a coolant through a complicated pipe network adjacent to the core of a nuclear 

reactor. Such simulations are extremely useful in assisting an investigator to visualise 

how shape changes effect the global characteristics of a flow field. Prediction of the 

essential features of the flow pattern (such as recirculation zones) in such situations is 

important in order to enable engineers to design efficient and safe devices at minimum 

cost. 

The discrete forms used to compute fluid flow are derived from approximations 

to the full Navier-Stokes equationsi -a set of non-linear partial differential equations 
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which govem such motions. '17hey comprise, in the main, finite eleme-nt36 and finite 

difference/volume techniques38. In each case the domain of interest is subdivided to 

produce a computational grid or mesh with appropriate boundary conditions at the 

periphery. 'nie question as to which approach is best is somewhat academic since they 

both excel and fail under different circumstances. However, in line with general 

current engineering practise a finite volume formulation has been adopted here; 

primarily because it gives one the ability to solve large problems at a small 

computational cost, thus having the edge over a finite element approach which has the 

flexibility to handle rather more complex geometries. 

The approaches presently available for dealing with the equations governing the 

motion of a fluid are hierarchical and can be categorised according to the degree of 

approximation involved: 

(a) Solution of the full Navier-Stokes equations 

(b) Solution of time-averaged Navier-Stokes equations 

(c) Laminar viscous flow simulations 

(d) Non-linear inviscid flow solutions 

(e) Linearised inviscid flow solutions 
Category (a) and (b) type solutions allow for the presence of turbulence in the system. 

The former is known as the Direct (or Large Eddy) Simulation Approach37 - research 

in this area is quite intensive but solutions of this type are practically non-existent. 

Some very simple problems have been investigated but the computing power required 

to solve flows of engineering interest does not exist. The latter approach is 

realisable27,26 and has therefore proved popular within the engineering community. It 

continues to be the focus for extensive research and development, 25. However, the 

principle difficulty that still has to be overcome is the realisation of a suitably general 

turbulence model. 

We turn now to inviscid flow methods, categories (d) and (e). Tlie former involve 

the solution of the Euler equationsl and are now more-or-less established as accurate 

design tools within the aircraft industry, as a means of predicting the flow around a 
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class of aircraft components. Similarly, the category (e) approach is used routinely in 

aircraft and vehicle design22 and is at a mature stage of development - panel and 

vortex lattice2O methods belong to this set. 

The incompressible steady-state flow problems to be considered here fall into 

category (c) and are governed by a set of elliptic, coupled partial differential equations 

which, when written in a discrete form give rise to a non-linear coupled matrix system, 

the solution vector of which is required to be found accurately and efficiently. How 

effectively this can be done reflects the main theme of this thesis. 

1.2. Background 

Having identified the problem to be addressed the strategy required to solve it 

accurately and efficiently can be formulated in terms of the discretisation employed on 

a given mesh and the method of solution of the resultant algebraic system of equations 

, respectively. 

For convection dominated flows the method of approximating the first order 

convective terms present in the conservation equations is of particular importance, 

having been the subject of controversy for a number of years. Indeed, it has spawned a 
19,21,42,44,29 whole series of publications on the subject 

It was soon recognised that the use of central differencing for the convection term 

produces unphysical oscillations in a solution causing it to diverge or at best be 

seriously corrupted48,34. Upwind differencing on the other hand, although stable, is 

38 beset with the problem of inherent false, or numerical, diffusion . In 1972 Spalding46 

hit upon the idea of merging the two to produce what is now commonly know as the 

hybrid scheme. Unfortunately, this however does not solve the problem - switching 
between the two types of differencing is constrained in such a way that as the non- 

linearity of the flow increases the upwind approximation is used predominantly. Even 

so, it is worth noting at this point that the hybrid scheme still enjoys wide-spread usage 

in many off-the-shelf fluid flow software packages available to industry. 
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In 1979 the work of Leonard28 ushered in a new realisation with regard to the 

inadequacy of the hybrid scheme. He proposed a new non-diffusive high-order 

approximations to convective transport - Quadratic Upstream Interpolation for 

Convection Kinematics (QUICK). The superiority of QUICK in relation to the solution 

of laminar flow problems has been reported by several authors16,19, the only 

noticeable drawback being associted with a slight increases in computing time. 

However since one is able to generate results on a course grid with QUICK that are 

much more accurate than those obtained on a very fine grid with hybrid differencing 

the increase incurred is more than compensated for. Unfortunately, the same cannot be 

said of QUICK for the case of turbulent flow simulationl4,19 - the inherent lack of 
boundedness associated with this scheme can lead to disastrous consequences. For 

example, negative turbulent kinetic energies may arise which, besides being 

unphysical, may destroy the solution completely. Although we are not concerned in 

this thesis with simulating turbulent flow one would hope that the methodology 

presented may eventually be extended to such problems, in which case QUICK may be 

deemed to lack the element of robustness that one desires. 

There has been a spate of activity of late to develop an accurate, high-order, 

bounded approximation to convective transport. Several such have been 

proposed39,40,52, but they are all rather similar relying on rather ad hoc means for 

maintaining boundedness, which incidently cannot be guaranteed. However, a new 

scheme, Curvature Compensated Convective Transport (CCCT) developed by Gaskell 

and Lau15 possess all of the above properties and guarantees boundedness. Also, it is 

very robust having been applied to a range of complex turbulent flows in various 

geometries13' incorporating in some cases combustion effects3. This scheme exhibits 

another rather interesting feature in that both of the high order approximations 

mentioned above (central, QUICK) and others, can be obtained from its generic form, 

thus removing the need to code each one of them separately should the need arise. This 

then was the approximation adopted to model the convective transport terms contained 
in the governing equations of motion. 
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The task at hand is to develop a strategy for solving the large system of algebraic 

equations, generated by the discretisation process, as efficiently as possible. Here we 

have approached this problem with the aid of a multigrid technique which in itself 

raises several important considerations. In particular, what form of solver (smoother) 

to use? Note that when using a multigrid method the tendency is to use the term 

smoother rather than solver since the object is to smooth the error on a given grid 

rather than to solve the problem there exactly . T'he choice of smoother can be critical 

in relation to the performance of the multigrid algorithm. 

The principle difficulty in relation to solving fluid flow problems numerically is 

that the pressure field, which drives the motion, is not known a priori. The classical 

way of overcoming this problem is to use a vorticity-streamfunction formulation 

whereby the explicit appearance of the pressure is eliminated from the transport 

equations17. However, the short comings of this approach are the difficulty of 

specifying boundary conditions for the vorticity and extension of the method to three- 

dimensions. Once again these problems are exacerbated in turbulent flow situations. 

In recent years it has become common practise to adopt the primative variable 

formulation with regard to engineering problems; the velocity components and 

pressure (or pressure correction) being determined from their own transport equations. 

A literature search soon reveals the Semi-Implicit Pressure-Linked Equation 

(SEMPLE) algorithm attributed to Patankar and Spalding33 to be, by far, the most 

popular method of solution in this case. Like the hybrid scheme it enjoys wide spread 

usage, being the principle methodology for most, if not all, commercially available 

software packages. Over the years variants of SIMPLE have emerged - SIMPLER32 ' 
SIMPLECII and pISO23 but it is debatable as to whether they represent any great 

improvement over the original formulation when used in connection with complex 

flow situations. In all cases the matrix solver used in conjunction with this approach is 

the well known Tri-Diagonal Matrix Algorithm CIDMA)7. 

The SEMPLE algorithm is used extensively by both scientists and engineers alike 

which would suggest that it cannot be ignored as a possible smoother for use with a 
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multigrid algorithm. Clearly it would be preferable from the point of view of existing 

codes if an appropriate version of the latter could simply be "boot strapped" to them. 

Indeed, it is the fact that SIMPLE is at the heart of the Rolls-Royce PACE program 

that prompted Shaw and Sivaloganathan to investigate its suitability in such a role. 

They have shown SEMPLE to have good theoretical smoothing properties43 and have 

obtained solutions to the well known lid-driven cavity problem on grids as fme as 

1/6445 - they were unable to go further because of computer storage limitations. 

Lonsdale30 has also been successful in using a multigridded version of the S11MPLEC 

algorithm to investigate the problem of the flow of air between two rotating discs - the 

finest grid employed being 1165. 

1 It is important to stress however, that SEMPLE represents a segregated (or 

decoupled) solver. 'nat is, the velocity and pressure fields are decoupled and solved 

sequentially, the latter being determined via a derived pressure equation. Another 

solver which falls into this category is the Distributive Gauss-Seidel (DGS)6 approach 

but it has enjoyed only limited application. Obviously it would be preferable to solve 

the equations directly, thus requiring no iterative procedure. But this is impractical 

from both computer processing time and storage capacity requirements. Recently 

however, several attempts have been made to devise a solver that treats the variables 

simultaneously, in an unsegregated fashion, thus maintaining the physical coupling 

between them. 

In 1983 Zedan and Schneider5O proposed an unsegregated solution technique 

know as the Direct Banded Simultaneous Variable Solution (DBSVS) method. 

Applying it to a simple test problem in order to examine pressure-velocity coupling, 

the found it to be strongest in the immediate vicinity of the current node. 'Mis enabled 

them to devise a variant of the above called the Strongly Implicit Simultaneous 

Variable Solution (SISVS) method5l. They reported some success in applying it to the 

lid-driven cavity problem at various Reynolds numbers. Unfortunately they were 

restricted to using a very course mesh, 1/10, and although the results look promising it 

is difficult to do a direct comparison with similar results obtained by other means. At 
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present, further applications of the method would appear to be restricted by the amount 

of storage required to accommodate the resultant coefficient matrices. 

Similarly, the Coupled Equation Line Solver (CELS) proposed by Galpin, van 

Doormaal and Raithby in 198512, solves the conservation equations in their original 

form. The method proceeds line-by-line, the solution domain being swept in each co- 

ordinate direction separately until convergence is obtained. Unfortunately it requires 

special adaptations in order to maintain stability. This together with its rather complex 

overall nature effectively rules it out at present as an appropriate solver for use with a 

multigrid scheme. 

The Block Implicit Method (BIM) on the other hand, suggested by Vanka49, is 

easily comprehended and efficient. It is a point-by-point method in that each of the 

control volumes covering the solution domain are visited in turn, the velocities and 

pressures their being updated simultaneously. Consequently, each velocity is 

incremented twice thus ensuring the stability lacking with a single update. The 

methods simplicity and low operational count made it the obvious choice for use with, 

and in the development of, a multigrid method. Unlike the SEMPLE method it has not 

been possible to look at the theoretical smoothing properties of the BEA hence an 

intuitive approach had to be adopted in performing the computations presented in this 

thesis. It was gratifying therefore to have heard quite recently, from an independent 

source, 41, that a preliminary, all be it limited, analysis has revealed the latter to have a 

superior smoothing rate. 

There are two schools thought governing the use of multigrids. One concentrates 

on rigorous mathematical analysis of the convergence of multigrid algebraic solvers18, 

the other addresses the practical development of efficient multigrid algorithMS4,5. In 

terms of practical computational fluid dynamics (CFD) applications it is often only the 

latter approach that can be realistically pursued. Brandt started the wheels rolling in 

the seventies when he identified the practical significance of using mulfigrids and was 

the first to apply the principle to CFD problems. However his willingness to proceed 

without adherence to strict mathematical proof has been blamed for not drawing the 
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attention of numerical analysts' to the idea quickly enough. Similarly, in the early 

stages, he was unable to convince CFD experts of the value of multigrids. The 

breakthrough has only come during the last five years or so and today physicists, 

engineers and CFD experts alike are actively engaged in the multigrid area on a broad 

front. 

Putting aside the question of mathematical rigour in relation to the application of 

multigrids there are two ways one might wish to proceed. 

It is often the case in CFD situations that a large code already exists, for the 

solution of a particular class of fluid flow problems, that has taken many people a large 

number of years to develop. Such codes often take several minutes if not hours to run 

and any reductions that could be achieved via some form of multigrid approach would 

be welcome. Since the method of discretisation, the grid structure and the solution 

strategy have already be chosen ones only hope, from a cost effective point of view, is 

to introduce an element multigridding into the overall algorithm, as a means of 

accelerating its convergence rate, without having to completely rewrite the source 

code. Clearly, there are limitations as to what can be achieved by proceeding in this 

manner. 

However, if one is starting from scratch there is a great deal more that can be 

done. The concern here is not merely to accelerate already existing convergence rates 

but to achieve optimal multigrid convergence for a given problem by designing a 

complete multigrid solution strategy. This is done first by selecting a suitable 

discrefisation procedure and smoothing technique as outlined above, followed by 

adopting optimal grid structures and by optimal tailoring of the multigrid components 

to the flows under investigation. 

1.3. Outline of Present Work 

We begin by considering some important aspects of numerical approximations to 

the equations governing incompressible fluid flow; in particular the factors which 

dictate the choice of a suitable model for convective transport. 
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Different types of solver are reviewed in Chapter 3 in relation to their use with a 

multigrid algorithm. The Block Implicit Method is identified as being the most suitable 

and is applied to the classical fluids problem of flow in a two-dimensional lid-driven 

cavity8, at three different Reynolds numbers. An optimal method of sweeping through 

the computational grid is formulated and the predicted flow fields obtained with both 

hybrid and CCCT differencing are compared. 

In Chapter 4a multigrid solution strategy is presented following a review of such 

practises in the past The finer points of restriction and prolongation operators are 

discussed and the concept of fine grid work units is introduced. The multigrid version 

of the Block Implicit Method which results is applied once again to the two- 

dimensional lid-driven cavity problem. The information generated gives a clear 

insight into the advantages of using a multigrid approach to solve this problem. Grid 

independent convergence is achieved and savings in computer time in the region of 

two orders of magnitude are achieved when results are compared with the data given in 

Chapter 3 for the same flows. 

'ne multigrid solution strategy described in Chapter 4 is extended in Chapter 5 to 

encompass a more complicated class of flow problems. Here careful consideration has 

to be given to the treatment of derivative boundary conditions and the associated 

transferral of information between grids. First, the flow in a three-dimensional lid- 

driven cavity is investigated at Reynolds numbers of 100 and 1000. Cross reference is 

made to their corresponding two-dimensional flows and once again the property of grid 

independent convergence is achieved by the multigrid algorithm. Comparisons are also 

shown for results obtained for the same problem using a straight forward SEMPLE 

approach16. Second, The flow through a two-dimensional sudden expansion is 

considered. This is an intrinsically more complicated problem because it contains an 

outflow derivative boundary condition. The handling of such a condition is not trivial. 

The smoothing method and the problem formulation used here were such that solutions 

could only be obtained at low Reynolds numbers. 
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In Chapter 6 the methodology is extended still further to look at two thermal 

problems -a square cavity with conducting walIS2 and one with insulated walls. The 

latter is perhaps more commonly known as the double-glazing problemlO. The results 

obtained in both cases are extremely encouraging. Grid independent convergence is 

achieved in a fraction of the times reported by other author using traditional approachs 

to solve such problems. 

Finally, conclusions and suggestions for future development of the present work 

are presented in Chapter 7. 
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Chapter 2 

DISCRETISATION OF THE GOVERNING EQUATIONS 
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2.1. Introduction 

In this chapter several important aspects of numerical approximations to 

incompressible flow are considered in detail, before proceeding to the main body of 

the text. It is instructive to consider, without loss of generality, the equation governing 

the transport of a scalar quantity, ý, through such a fluid, which can be written in 

Cartesian co-ordinates as 

i(-U±))- 
= -L(rA) +s Dxj Dxj axj 

[ 

time rate ]+ [convective [&T! sion + ource of change term I rm 

I IS 

term 

11 

where ui is the velocity component in the xi direction, r is a constant scalar diffusion 

coefficient and S+ represents a source term for ý. We shall now use this equation to 

highlight the fundamental ideas behind discretisation techniques before proceeding to 

the equations governing fluid flow, in Chapter 3. 

In order to find a numerical solution to equation (2.1) we must construct a set of 

algebraic equations whose solution give a discrete representation of the continuum 

problem. In line with accepted practice, first introduced by Harlow and Welch5, the 

solution domain is divided up into a series of contiguous finite control volumes. A set 

of algebraic equations is then constructed for each control volume based on a staggered 

grid arrangement - the scalar quantity is calculated at a point in the centre of each 

control volume, whereas velocity components are calculated at the interfaces (see 

Figure 2.1). 

For steady-state flows the time derivative in equation (2.1) disappears and if we 

consider the absence of any source terms we get 

to (r-ý ) (2.2) Txi- 'ýX-j axi 

which when integrated over a control volume gives 
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d- momentum 

scalar 

v- momentum 

Figure 2.1: Staggered grid arrangement for velocity and scalar control volumes on a 
two-dimensional grid. 
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ujj 
dXldX2'ý f-lr'-Oýt dxldx2- (23) 

axj axj axj 
Writing this in two-dimensional component form and expanding one gets 

uý dxdy + J-Lvý dxdy = J-LrýA dxdy +" rA (2.4) fýx 
ay ax ax ay 

Ky- 

whichgives 0- Sý%XAO-V(-- CC., V\AVA VJ\AVNAe) 

1 Z)o aý (2.5) 1(rt, )i"hj-(rT-)i-; I ay i ay 
This equation represents the conservation of the scalar ý over this control volume, each 

term representing a particular flux. 

Ile next step is to find a way of approximating the face values of ý namely ýj.,, 4j, 
Oj--, 4j, Oij,, A, and ýjjA. This is done by constructing an interpolating polynomial in terms 

of neighbouring nodes. Several schemes for doing this have been proposed, some of 

which are outlined later. All concentrate on the correct modelling of the convective 

term 
lu±j, 

which is by far the most troublesome. Ideally any numerical model for 
Dxj 

convection should comply with the prerequisite set of desirable properties outlined in 

section 2.2. 

Discretisation of the diffusion terms is by comparison relatively simple; central 

differencing is invariably used, as it is throughout this thesis. 

2.2. Fundamental Principles 

One reason for the large number of different schemes in existence is the apparent 

lack of rigorous testing techniques. Experimental results are difficult to obtain for 

many of the flows considered, the primary reason for using numerical methods in the 

first instance being the prohibitive cost of experimentation. Several test problems have 

been reported, but direct comparisons are rarely made. The test problems employed are 

often simple (one-dimensional, linear etc. ) and as such the results do not necessarily 

correlate with or reflect the characteristics of many complex flows of interest. 
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Several concepts have been used to evaluate the schemes and these are discussed 

below. I 

2.2.1. Accuracy of Discretisation 

There are two measures used for assessing accuracy of discrete approximations. 

They are 'order of truncation error' and 'order of interpolation error in the 

approximating polynomial' - applied to finite difference and finite volume schemes, 

respectively. 

Ile truncation error is defined as the difference between the differential operator 

and the Taylor Series expansion of the difference operator; that is 

Tij = L'i - 1-ij, (2.6) 

where Lij and 1ý-j are the differential operator and difference operator, respectively. For 

example, consider the well known central differencing formula 

CuFA-Ij (2.7) laf)'j 
2h 

Expanding this in terms of a Taylor Series gives 

ýj±jj4q±h(2t)jj+ ij±.! 

ý( a3ý 
)lj4C(W). (2.9) ax 2 aX2 6 ax3 

So that 

(a'o)il=-L 
[2h(-ýt)jj+-! ý(2! ý. )jjZ(hs) (2.9) ax 2h ax 3 ax 3 

11 

and therefore 

=(A) (aý )3 4). Tij ij- il=.! 
ý(4jj4ah 

(2.10) 
ax ax 6W 

Accordingly central differencing is said to be of order two or second order accurate. 

With a control volume formulation, the order is defined as the order of the error 

of the interpolation used. T'hus linear interpolation (which corresponds to central 

differencing) is of order two: this is the same as the order of the truncation error. 
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However, these two definitions do not give the same values for higher order schemes. 

It is doubtful however, whether the concept of truncation error is relevant to 

highly complex fluid flows. ShyyI5,17 has shown that it is only meaningful for those 

Fourier components of the real solution having a wave number0(21r/h). For higher 

wave numbers, C(-! ) the error is independent of the mesh size and the order of h) 

accuracy is irrelevant. If rapid changes of ý occur, they cannot be resolved over one 

mesh spacing unless h is prohibitively small. A decrease in h will only cut down the 

occurrence of error regions, but can never resolve arbitrarily steep gradients that often 

occur. So truncation error may not, in general, give a good indication of the accuracy 

of an approximation - see, for example, Gaskell and Lau2. 

2.2.2. Convective Stability 

Ile stability concept used for time dependent flows can be extended to steady- 

state computations merely by considering the iteration number to represent time7. 

Consider the nodal value ýj. Any disturbance to ýj from outside influences must 

reduce or enhance q (the flux into the control volume centred on i) in accordance with 

whether ýj increases or decreases in order to ensure convective stability. In short, the 

scheme must have negative feedback. This concept can be stated mathematically as 

follows: 

Define the 'feedback function' of the convective influx to be 1ý-', then aýj 

<0 stable sensitivity 

aýj =0 neutral sensitivity 
>0 unstable sensitivity 

Leonard6 has shown that any numerical approximation to convection not 

possessing an element of upwind bias cannot have convective stability and vice versa. 
From a physical viewpoint we can see that convection is associated with the transport 

of fluid from upstream to downstream, therefore any numerical approximation should 

reflect this property. 
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As well as convective stability there is the analogous property of diffusive 

stability; that is the sensitivity of DIF, the diffusive flux, to changes in ýj . When the 

diffusive term is approximated by central differencing, this is always negative. 

Sometimes this is sufficient to counter-balance a positive convective sensitivity, but 

for flows where the cell Reynolds number (uhtv also known as the Peclet number) is 

high (convection dominated) it is inadequate. 

2.2.3. Conservative Form 

A discretisation scheme is said to be conservative if there are no effective source 

terms in the algebraic analogue, that do not appear in the governing partial differential 

equation. If this is the case, then the algebraic equation mirrors the conservative 

property of the differential equation exactly. This can be stated mathematically as 
follows. 

If is the approximation to 2ý- then the discretisation scheme is conservative if it is ax ax 

of the form; 

TjH%, j ........ ........ ýj-, )], (2.12) 
x 

where H is a function of 21 arguments which must for consistency satisfy 

H(41,41. ') 
= 4ij. 

Or put more simply, conservation is obeyed if the computed flux through the right 
hand side of the control volume centred at ij is equivalent to the flux through the left 

hand side of the control volume centred at i+lj. 'ne concept of conservation is not as 
important for when sources are present as it is for cases in which they are absent, 
because erroneous sources will be introduced by source term approximations anyway. 

2.2.4. Diagonal Dominance 

All the discretisation schemes outlined section 2.3 produce systems of algebraic 

equations that have to be solved by iterative techniques. Ilerefore, the fonn of the 

coefficient matrix generated by these techniques can be important. It can be seen that 
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solutions, ý, to the scalar transport equation in the absence of source terms must lie 

within the bounds min(N) and max(oh) where Ot is the boundary function. Any 

discretisation scheme must reflect this. A sufficient condition for satisfaction of this 
Vý 

property is that the solution matrix is diagonally dominant, that is, jaj>yjajj, ýI. 
if, 

- 
The 

property of diagonal dominance also ensures that the coefficient matrix is numerically 

stable. Attempts to satisfy this criterion have dominated much of the recent research 

into developing a new generation of high-order bounded schemes13,14,19 for 

convective transport. 

2.2.5. Boundedness 

In terms of the above definition, many of the higher-order schemes presently 

available are unbounded, yet they are found often to generate perfectly acceptable 

results, if the conditions are favourable. Gaskell and Lau state4 "It is arguable therefore 

that strict adherence to diagonal dominance and its satisfaction as a prerequisite for 

bounded solutions could be misleading since it represents, in some cases, only a 

sufficient condition for guaranteeing boundedness. " Consequently they have suggested 

a more physically relevant definition of boundedness, by using the idea of interpolative 

boundedness. Consider a control volume centred. at i-1 and define a normalised face 

value, $, as 

(4-4i-2) 
= (41-412)' (2.13) 

then for interpolative boundedness must lie within the bounds of its neighbouring 

values at the nodes i& i-1 (given that there is no source present). So it is required that 

ýj-ýj c (ýj-jjl when $i-l E (--, I] and $ih E: when ý-, e 

Interpolative boundedness, as defined here, is a necessary but not sufficient 

condition, for computed boundedness. Gaskell and Lau go further and define a 
Convective Boundedness Criterion (CBC) for implicit steady state flow conditions, 

that ensures computed boundedness. 
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Criterion Define a continuous increasing function or a union of piecewise 

continuous increasing functions, f relating the modelled normalised face value, to 

the normalised upstream nodal value, $j-j, that is f($, 
-j), then a finite difference 

approximation to ý, -% 
is bounded if. - 

i) for f is bounded below by the function $j-%4j-j and above by unity and 

passes through the points (0,0) and (1,1). 

ii) for $j-%4[0,11 f is equal to $i-,. 

This is shown graphically in Figure 2.2. It differs from the property of diagonal 

dominance in that it is based on physical reasoning rather than mathematical 

abstraction. It represents a radical shift of emphasis and forms the basis of the 

Curvature Compensated Convective Transport (CCCT) approximation outlined in the 

next section. 

2.3. Methods of Discretising the Convective Term 

It is worthwhile reviewing the various discretisation schemes in prominent use for 

the prediction of recirculating flow. These are examined and discussed in terms of the 

concepts introduced above, with reference to Table 2.1 and Figure 2.3 The former lists 

some well known discretisation schemes and their associated properties while the latter 

shows their corresponding normalised profiles in relation to the CBC. 

2.3.1. First-order interpolation 

As a first attempt it would seem logical to use linear interpolation, let 

ý(x) =a+ bx. 

This gives, 

(2.14) 

C., hj ýý 
ýjjj44ýjj 

2 

and 
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-1 

Figure 2.2: Diagrammatic representation of the convection boundedness criterion. The 
line $j-%4j-j and the shaded area indicate the region over which the criterion is valid. 

Figure 2.3: Normalised values of for various well known approximations. 
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�. iJ-1-_1j 

2 

similar expressions being obtained for ý, 
jpj 

and ýjj, %. 

For the case of constant velocity UO the left hand side of (2.7) reduces to 

UO 
11 

(2.16) 

and using linear interpolation this becomes 

Oi. lj--Clj (2.17) 
2h 

and so in finite difference terms we have 'central' differencing. 

The central differencing scheme has been used extensively in engineering 

situations for the numerical solution of partial differential equations with even order 

derivatives. It gives high accuracy (truncation error order two) and has a minimum of 

computational complexity. However, its use for the odd-ordered derivatives found in 

convection problems leads to unrealistic solutions or non-convergence of the iterative 

scheme. Several authors18,9 have found that central differencing leads to divergence, 

or that the solution is seen to contain unphysical oscillations, popularly known as 
'wiggles'. The non-convergence can be attributed to the neutral convective stability of 

central differencing; an erroneous accumulation of the scalar ý is not counteracted by 

the scheme. Roache12 showed that central differencing gives physically unrealistic 

solutions when the Peclet number is greater than 2 (this is referred to as the critical 
Peclet number). Central differencing is interpolatively, but not computationally 
bounded. 

2.3.2. Zeroth-order Interpolation - Upwind Differencing 

From a physical view point, advection is associated with the transport of a scalar 
from upstream to downstream and any numerical approximation should reflect this and 

so must possess an element of upwind bias. So faced with the problems of central 

differencing, zeroth-order interpolation was proposed as an alternative. Let 
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ý(x) = constan4 (2.18) 

giving 

ýj, %j -- ýjj if U>O, (2.19) 

ti+, hj Cr Clj if U<O, 

C-1hi ý*-Ij if U>O, 

Clhj: ý-ýij if U<O. 

Once again consider the constant velocity case, with UO > 0, then 

UO 
C, %j-A-, hj 

--u 
ýij-oi-lj (2.20) 

1hIIh 11 

which corresponds to a backward finite difference formula. The 'critical' Peclet 

number in this case is infinity and the convective stability is less than zero. It is both 

computationally and interpolatively bounded and is conservative. So theoretically 

solutions should always be obtainable and convergence should be guaranteed. This has 

been borne out in practise by many authors. However, this is only a first order 

technique and investigation of the truncation error reveals some interesting reasons for 

this stability or 'robustness'. Consider the one dimensional linear equation 

u-PA=r a24, 
U>O. ax aX2 

We shall use central differencing for diffusion and upwind for convection. Define the 

truncation error as 

-5ý- r(22A). (2.22) aX2 I 

and substitute in the Taylor series for the two derivatives, to give 
2k 

2) Ti=uA+-H-'-i -r2LO+O(h (2.23) ax 2 DX2 DX2 
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=jk -r2!! 
ýt 

(, +_Ilh )+C(h2). 
aX aX2 2r 

It can be seen that the truncation error of the upwind scheme corresponds to an 

'artificial' or 'numerical' diffusion, Indeed this term becomes larger than the natural 

diffusion when -!! 
h 

>1 or when Pe>2, that is just in the regions where central is unstable. 2r 

It is this numerical diffusion that accounts for the stability of the upwind scheme. So, 

it is clear that upwind's stability advantage over central differencing is gained at the 

expense of accuracy. As stated by Roache12, to call this a solution to the instability is 

rather fictitious. It merely represents the introduction of a damping factor. Gaskell and 

Lau2 have observed that this numerical diffusion completely obscures the features of 

some fluid flows, proving to be particularly poor for turbulent flow situations3. 

2.3.3. The hybrid scheme 

In 1972 Spalding proposed the hybrid scheme16 as a compromise. This is a 

combination of the upwind and central differencing schemes described above, with one 

or the other being used on the basis of a specified criterion; namely, if Pe<2 then 

central differencing is used, otherwise upwind differencing is used and diffusion is 

neglected. 

Clearly, this scheme reduces to upwind for high Reynolds number flows. 

However, it is important to note that despite its inherent inaccuracy it has been used 

extensively over the past 16 years in both academic and commercial spheres. In fact it 

forms the basis of several popular software packages. Ile essential feature of the 

hybrid scheme (not shown in Table 2.1 since it is either equivalent to central or upwind 

differencing) is that central differencing is accurate and stable when the Peclet number 

is below 2 (and so is used then) otherwise upwind which is stable for all Peclet 

numbers is used . So it is accurate when Pe<2, but for all other values it has the same 

deficiencies as upwind. It's popularity is based on its ability to generate bounded 

solutions in many different flow regimes. On the other hand the above analysis shows 

that this advantage is based on somewhat dubious grounds. 
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2.3.4. The Skew Upwind Differencing Scheme (SUDS) 

Raithby proposed this scheme in 197610, foHowing a wide-ranging investigation 

by him of the main deficiencies of the upwind approximation 11. His goal was to 

establish a better approximation to convective transport in regions where the grid line 

and velocity direction are not closely aligned; a situation that upwinding is known to 

deal with rather poorly. He assumes a local profile of the form 

Cl + C&-H--X-ýL)l (2.24) 
vv 

where (u, v) is the prevalent velocity at the face where the value of ý is required and 

V=Tu-'+v', C, andC2being obtained from values located upstream from the chosen face. 

The scheme itself is rather unwieldy and the reader is referred to the author's original 

text for further details of its implementation; associated results can also be found in 

Raithby's paperIO. 

Later Raithby proposed a further refinement called the Skew Upstream Weighted 

Differencing Scheme (SLJWDS). The scheme has a third term in the interpolating 

polynomial 

C3 exp( Pux + pvy (2.25) 
rr 

This is intended to improve approximations when Pe=I, that is when both convection 

and diffusion play an important part in determining the flow field. However, the 

implementation of such schemes can be very complicated and they only go part of the 

way towards curing the ills of upwind differencing, since they are not fully bounded. 

This has lead to the development of even higher order approximations to convective 

transport, the most significant of which are reviewed below. 

2.3.5. Second Order Upwind Differencing 

This scheme was proposed by Atias, Wolfstein and Israell in 1977. In order to 

approximate the flux ýj-. hj they used the two upwind points located at 0-, Ij and Oj-2j. In 

which case 
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30i-Ijr4i-2i 

if U>O. (2.26) 
2 

For constant velocity, UO>O, this gives 

U0 
(uý)j, 1/2j-(uýj-1/2j) 

=2 (3ý, j-4ýj-jj+ýj-7j). (2.27) 

This scheme is more accurate (interpolative error equal to two) than upwinding, and 

this improvement has been seen practically. But, it is prone to oscillatory solutions and 

is neither computationally nor interpolatively bounded. Even so this scheme is 

receiving renewed attention by turbulence modellers, several of whom have been 

reported as acknowledging it to be the best approach in turbulent flow simulations8. 

2.3.6. Quadratic Upwind Interpolation 

In 1979 Leonard6 proposed the Quadratic Upwind Interpolation for Convective 

Kinematics (QUICK) scheme. This employs an upwind biased quadratic profile to 

approximate face values. 

Assume a quadratic profile, V*--a+bx+cxý through ýjj, ýj-jj and ýj-2j. This gives 

C%! =. 
ý4ij+ 3 Cli--i C-2j- (2.28) 848 

With constant velocity, UO>O, 

U0 
(Wj,. 'hj-(0j-1/2j) =8 (30, jj+30q-70j-jj-f, ýj-2j). (2.29) 

A two-dimensional version of the QUICK scheme can be derived using a 

polynomial in both x and y, as follows 

ý(x, y)--a+bx+cy+dx2+fXy+ey2. (2.30) 

So 

'A 
f ý(-1/2, y) dy 
-, A 
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,A 

=f[ 
bd ex a a- 2 -i-cy+Z--4 +fy)2 dy 

3 
. ki+ 

848 24 

It can also be extended to three dimensions. 

Most authors wishing to use a higher order technique have chosen this one. It has 

an interpolative error of order three and is conservative. Also, it has been shown4 to 

accurately predict complicated fluid phenomena that are missed by the hybrid 

technique. It has no formal numerical diffusion, but it is not bounded. It is found to 

produce oscillatory solutions in regions of sharp changes in gradient of a dependent 

variable, but in the main it is very accurate and computationally efficient. 

2.3.7. Curvature Compensated Convective Transport - CCCT 

It can be seen from the above discussion that the answer to the question "Which 

discretisation shall we useT' lies in two places. On the one hand we have the hybrid 

scheme which is bounded and stable but often highly diffusive. On the other hand we 

have QUICK which is accurate and non-diffusive, but which is unbounded. 

Gaskell and Lau4 have outlined a solution to this dichotomy. They set about 

devising a scheme that was both high order and non-diffusive, but also bounded. They 

have suggested a scheme that is third order, where the definition of order is 

meaningful, but that also deals with areas of steep gradients( where QUICK fails) in a 

physically realistic manner. This scheme satisfies the Convection Boundedness 

Criterion outlined above. 

Although its derivation as rather complex, the algorithm itself is incredibly simple 

and easy to program. For u>O we have that 

1 
-1 + 2a ýjj +1 (2.32) 
41[. 81-c+'-li- 

[i+ct]ý'-2i 

where 
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$'-ýj-i- (2ý-ý, 
-Fl 

(X= , 

2ýj-jj-l 

$i-Ij 
and ae (-118,3/8) if [0,11 

3$i-lj and ae (0,3/81 if ýj-jj [0,1/6) 
and cc c [-1/8,0) if $i-li (516,1] 

3 and a=o if $i-lj e [1/6,5/61 
8 

This is an appropriate point to remind ourselves of the object of the present work; 

namely to develop a robust , flexible and accurate multigrid solution strategy for 

predicting fluid flows. Clearly the discretisation approach adopted represents a crucial 

part of any such approach, and thus warrants careful consideration. CCCT reflects all 

of the desirable attributes discussed in section 2.2 and in view of this was considered to 

represent the most appropriate choice. 

Also CCCT represents a generic approximation to convection in that it can be 

used to generate several of the other schemes described above, by fixing the value of a 

- see Table 2.1. Last, but not least, the originators of CCCT have satisfactorily applied 

it to a wide range of turbulent flow problems which is an important factor regarding 

the extension of the present methodology to the treatment of such flows. 

Note that since the problems considered in subsequent chapters do not exhibit a 

lack of boundedness*2, cc can be set equal to zero to yield maximum accuracy. 
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Chapter 3 

CHOOSING A SMOOTHING TECHNIQUE 
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3.1. Introduction 

Having chosen a suitable discretisation procedure, bearing in mind the desirable 

attributes discussed in Chapter 2, a system of algebraic equations can be constructed to 

represent the continuum problem over some domain of interest. 

This thesis is concemed specifically with the solution of the equations of motion 

which govern steady laminar flow of a viscous fluid, which when written in terms of 

dimensionless coordinates and the Reynolds number, Re, becomel 

au" 
ax" 

(3.1 

a1-;? p a1 au. 
XT 

cc = 1,2,3 (3.1 b) -5xp (Uaup) ax. + -W p Dxp 

I 

Re xp 

I 

where p is the pressure, and u, and x, are the velocity and distance in the cc coordinate 

direction respectively. Henceforth we shall dispense with the idea of a general 

transport equation. 

Considering two-dimensional flow and integrating equations (3.1a and b) over a 

control volume centred at the node (ij) we get 

(u 2 )i+%j - (u 2 )i--%j + (VU)ij+% + (VU)iHh I Pi+lf-pij (3.2a) 
hph 

(ui+lj + ui-lj + uij+l + uji-I - 4uij), 
Re h2 

(UV) (UV) i-lhj + (V),, 
ý., A + (V2)ipi I Pij+i-Pij (3.2b) 

hph 

+I (vi+lj + vi-Ij + vii+l + vii-I - 4vij), 
Re h2 

uij - U, 
-lj 

+ vij - vij-1 
(3.2c) 

where h, the mesh spacing, is taken to be the same in each coordinate direction (as is 

the case throughout this thesis). The control volumes corresponding to each of these 
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equations are shown in Figure 2.1 of the previous chapter. Tlie velocities on the right 

hand side of equations (3.2a and b) are at the points corresponding to finite difference 

nodes and need no further approximation. The fluxes on the left hand side, however, 

are required at points between nodes and must be approximated. Each term is split into 

two parts - one involving the advecting velocity and the other the advected velocity. 

The latter is the same as the scalar variable ý used in Chapter 2. 'Me advecting velocity 

is approximated by linear interpolation and the advected velocity by whatever scheme 

has been chosen. This gives, 

Fi,, hjtk., %j - Fi-mjui-. %j + Fij. %uij,. % - Fij-%ui-, A =- -L 
Pi+ij-Pij (3.3) 

ph 

(ui, lj + ui-lj + uijl + uij-1-4uij), 
Re h2 

where 

U'+1)4u'j 

2h 

'j U'-lj4u' 
2h 

Fjj+ýý vij+'+Vij 
2h 

vij-'+Vij 
2h 

If we assume the approximation to, say, uj,,,, jj to be of the form 

Ui+%j ý- C7lUi+2j + Cr2Ui+lj + CT3Uij + C74UTI 'I ý (3.4) 

where the cr's are the coefficients of the interpolating polynomial. We then get 

a, +2jUi+2j+ a,,, Ijui., Ij + aý-Ijuj-jj + a, 
-2, 

Ui-2j+ aýj+2%+2+ a4, luij+l + aj-jujj-j+ 3, j: -Aý-2 

4+1 
Pi+Ii-Pii 

ph 
(3.5) 

where, for example, 
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a,., -2i ý a, Fi,, Aj 

and 

a, lj = cr2Fwhj + (: rFphj 
I 

Reh2 

Finally, the algebraic equation can be written as 

i: Aklum + -L 
p'+lj-Pij 

= 0, (3.6) 
k=it2j±lj2=-: jt2j±lj 

ph 

where 

a, j =I AkL 
koij*j 

Following a similar procedure for v, we get a system of algebraic equations, 

1 
klUkl +1 

Pi+IS-Pij 

. 
ýA, -ý0, (3.7a) 

ph 

-pj 1: Akj + -ý 
pij-*'l 'j = 0, (3.7b) kl 

ph 

. 
uij-ui-13+Vij-Viý-, 

= (3.7c) 

Having generated such a large system of algebraic equations, the problem has 

been transformed into one of achieving their fast and accurate solution. On the whole 

they can be very difficult to solve by direct inversion, because they are both large in 

number and nonlinear. The object of this chapter will be to discuss the problems 

associated with the solution of such systems and to outline some of the methods that 

have been proposed in relation to performing such a task as effectively a possible. 

3.2. Solution Techniques 

Engineers are constantly on the look-out for ever more accurate solutions to fluid 

flows of practical interest, and for the solution to increasingly more complicated 

problems. The latter requirement may be viewed merely as an extension of the former, 

since the overriding need is for greater accuracy (less error) from the method of 
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solution. Given a particular fluid flow, there are only two ways of achieving this. 

First, one can devise a more accurate discretisation scheme (see Chapter 2), and 

second, one can reduce the mesh spacing, h. In the previous chapter it was stated that 

the error associated with a particular method of discretisation is always proportional to 

h" where nýti. So for a scheme of any order a reduction in h will lead to a reduction in 

the error (subject to the comments in Chapter 2 concerning the relevance of order of 

approximation in regions of sharp changes in gradient). Techniques for reducing 

discretisation error in the former sense have already been dealt with; the latter 

alternative will be reviewed here. 

Reducing h, thereby using more discrete nodes or grid points, has its limitations, 

the first being the number of data values that can be stored in the core memory of a 

given computer. For example, a fluids problem in three dimensions with a mesh size of 

1/32 (which is only just sufficient for many problems) requires one megabyte of 

storage for the three velocity components and pressure alone, regardless of any 

necessary work arrays for residuals or fluxes. 

Another point that should be borne in mind is that the number of floating point 

operations performed in one iterative sweep of a solution technique is directly 

proportional to the number of nodes, that is to 1/hI, where d is the number of 

dimensions. 

Finally, the number of iterations required to achieve a converged solution 

increases as the number of nodes increases, which can be seen for the different solution 

techniques listed in Table 3.1. This together with the above point shows that cpu 

(central processing unit) time is governed by a power law relation of the form cpu a0 

where 0>1 (typically about 1.7). 

The effect of the first two restrictions outlined above can be reduced, but not 

elimi nated, by adopting efficient algorithms and programming techniques. The third 

can be analysed more theoretically, and hopefully overcome. 
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Number of nodes Number iteradons 
42 20 
82 83 
16; 151 
32 2 180 
642 243 
128 2 1 698 

Table 3.1: Number of iterations for the solution of the lid-driven cavity at Reynolds 
number of 1 000 with CCCT(a=O) differencing, for the number of nodes shown. 

3.3. Rate of Convergence for Traditional Iterative Solvers 

Consider Figure 3.1, showing the plot of the residual against iteration number for 

the Block hnplicit Method (see sub-section 3.4.6) applied to the lid-driven cavity 

problem (Reynolds number 1000), which will be described more fully later. It can be 

seen that although the initial convergence rate is rapid it soon slows down, taking a 

long time to reach full convergence. Figure 3.2 shows a plot of the rate of 

convergence, y--W/R-1, against number of iterations for the same test case, illustrating 

that while y is small initially it soon increases and approaches a value of one, implying 

very slow convergence. Ile larger the number of finite difference nodes the more 

pronounced this problem becomes, see Figure 3.3. 

Consider now the local behaviour of a typical relaxation technique. The algebraic 

equations are solved locally such that the errors there are reduced significantly, but this 

has little effect on the global error. The global or smooth errors (i. e. ones with 

wavelength ?. ýs. h) are only gradually eliminated by successive relaxation sweeps 

because their variations are not local. In view of this let us reconsider Figure 3. L It 

can be seen that initially the error decreases rapidly - corresponding to elimination of 

the local errors (wavelength X=h). 'Me slow convergence that emerges later is caused 

by the relaxation procedure inefficiently attempting to reduce the smooth errors. This 

inefficiency leads to the increase of -y seen in Figure 3.2. As the number of nodes 

employed is increased, relaxation becomes localised to ever smaller regions, while any 

such procedure is required to eliminate errors with a wavelength ever more removed 

from the local mesh size. This explains the deterioration of convergence in relation to 
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Figure 3.1: Plot of residual against number of iterations obtained on a grid with 128 
internal nodes and CCCT (cc=-O) differencing, t., 
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Figure 3.3: Plot of residual against number of iterations obtained with different number 
of internal nodes as shown: (a) 12,82, (b) 642, (c) 321 and (d) 161. 
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the increase in nodes. 

Given that the relaxation scheme is most efficient for errors with wavelengths 

similar to that of the mesh size, we can c onsider ways of improving our solution 

techniques. An error with a wavelength X that cannot be efficiently eliminated on a 

particular mesh, may however be successfully handled on a mesh of a different size. 

Consequently we could use several meshsizes to eliminate all the wavelengths of a 

given error, optimally. This idea forms the basis of the multigrid technique described 

more fully in the next chapter. A further advantage to be gained from employing such 

a procedure would be that relaxation sweeps carried out on a coarser mesh are 

computationally less expensive than those canied out on finer ones. 

These features are attractive and advantageous, and should therefore, if possible, 

be exploited. However, before constructing and implementing a multigrid technique 

one must select a suitable relaxation scheme or "smoothee, (- so called because we 

only wish to smooth the error on a given grid, not eliminate it). 

3.4. Smoothing Techniques 

In order to simulate flows of practical interest the non-linear equations describing 

the motion are linearised in some way so as to allow updates to the solution to be 

computed. Ile way that a smoother deals with this linearisation and the solution 
locally, is very important -a poor choice can partially negate the benefits that can be 

accrued with a multigrid algorithm. If it fails to adequately cope with non-linearities, 

such difficulties may become pronoupced at high Reynolds numbers. 

Many systems of algebraic equations have a one-to-one equivalence of equations 

to unknowns. The relaxation scheme is usually based around this equivalence. Each 

discrete equation is satisfied by changing one unknown - for the elliptic system under 

consideration here, one can use the u-momenturn equation to up&te u, the v- 

momentum for v, etc.. When proceeding to the continuity equation it would appear 

natural to employ it as a means of updating the pressure, especially since pressure 

nodes are positioned at the same places as those where mass continuity is calculated 
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when a staggered grid arrangement is used. However, pressure does not appear 

directly in the continuity equation and so this is not possible. It is important to 

remember that it is the system of equations as a whole that is elliptic, not the individual 

equations themselves and therefore ideally, the system should be treated as a whole. 

There are two alternative approaches to solving the above problem; either the 

equations of motion are solved simultaneously as a coupled set, or the system can be 

decoupled and a derived pressure equation employed to determine the pressure field. 

The most popular option to date has been the latter, which represents the basic idea 

behind the extremely successful and widely used SIMPLE algorithm devised by 

Spalding and Patankar16, but unsegregated solvers are beginning to play a more 

prominent role. Since the choice of smoother is central to the solution strategy as a 

whole, some of the more important ones that the are available in the literature are 

described below. Where appropriate, their use in conjunction with a multigrid 

algorithm is also discussed. 

3.4.1. The Semi-Implicit Method for Pressure-Linked Equations (SIMPLE) 

Equation (3.7a) can be rewritten as 

jkN. i--= F, Akulukl+aj(pi, li-pij). 1 11 koi; loj (3.8) 

(The negative sign has been removed by writing AM-Akl. ) 

The first step in the procedure is to assume a pressure field p* which, when 

substituted into equation (3.8), gives the associated velocity field u*, 

A, 'ju, j= Y, Akjukl+aj(pi, li-pij). (3.9) koi; loj 

Obviously, the u* velocity field will not exactly satisfy the continuity equation, unless 

the exact pressure field has been used in equation (3.9). Accordingly, the velocity and 

pressure fields will need to be corrected; 

u--u*+u', 
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P=P*+P,. 
Subtracting (3.9) from (3.8) gives 

(3.11) 

u Aýju, j'ý=ýlaukl'+3ij(pi+ljý-pij"). (3.12) 

This equation together with equations (3.7c) and (3.10) form a complex system. 

Patankar and Spalding found'that neglecting the first term in the right hand side of 

equation (3.12) gave a simplified expression which resulted in a more economic 

computational procedure. So 

u, j'ý=Djj(pjjý-pj+jjj, 

where 

aý"j 
A, j 

Equation (3.10) now becomes 

ij+Djj(pjj'ý- (3.14) uii=u j Pi+li). 

Introducing this equation and corresponding forms for uj-jj, yjj, vjj-j into equation (3.7c) 

gives, 

a, jpij1-- Y, AkPkl'+b, (3.15) k--i±l ý-=lt: 1 

with 

aij = Y, ak, 

and 

000 b--Uio-li-uii+Vii-l-vij' 

Equation (3.15) is used to update the velocities via equation (3.13) and pressure via 

equation (3.11). 'Mis new pressure field is used to repeat the process until convergence 

is achieved. 
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The popularity of the above method has lead to the development of several 

alternative formulations such as SEMpLER14,15 and SHvIPLEC4. However, it is 

interesting to note that Chleboun3 reports that as the problem under consideration 

becomes more complex the difference in the overall performance of these becomes 

less apparent. This has also been observed by Jones12. 

The one major drawback of this technique is that it decouples the momentum and 

continuity equations, such that each one is solved sequentially. Thus, no account is 

taken of changes in the 'other' variables whilst iterating. These 'other' variables are in 

effect 'frozen'. This evidently affects the coupling, and thus the effectiveness of the 

solution technique as a whole, in treating non-linearities in the algebraic equations. It 

has become common practice to solve for each variable in a line-by-line alternating 

direction fashion, which tends to cope with the non-linearities better than, say, a 

point-by-point method9. 

The widespread adoption of this approach in industrial and academic spheres 

means that it obviously cannot be ignored from the point of view of marrying it with a 

multigrid algorithm. In fact prompted by an examination of the Rolls Royce PACE 

program, Shaw and Sivaloganathan19,20 made a thorough investigation of its 

suitability in such a role. This is discussed in more detail in Chapter 4. 

3.4.2. The Distributive Gauss-Seidel Approach (DGS) 

In view of the ellipticity of the system and the problem of p not appearing in the 

continuity equation, Brandt2 proposed that, fol-lowing relaxation of the velocities in the 

normal way (i. e., using the momentum equations), one should use a 'distributive' 

relaxation for p. Such an approach changes the velocity and pressure values at several 

nodes in the vicinity of the current point, so as to satisfy the continuity equation, 

without changing the residuals of the remaining equations in the system. 

Let 
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(Ui+%j - Ut-%j + Vi+lhj - Vi-Jhj) 

h 

be the continuity residual at (xi, y) before relaxing there. 

The relaxation step consists of the following 9 steps; 

u Whi = uijhj +8 

ui-jhj = ui-lhj -8 

Vi+lhj = vwhj +5 

vi-, ij = VpAj -8 

Pij : -- Pij + 
48 
h 

5 
P'+lj ý: A+lj -h 

8 
P, P'-'J '-lj -h 

5 
pij+l 

Pu-i = Pij-i - 

and 5= -ýr, 'j- 4. 

(3.17) 

So the continuity residual disappears and the momentum residuals are unchanged. 

However, the problems inherent in SEMPLE are still present. 

Each of the candidate smoothers outlined above is seen to update the variables 

sequentially, and so represents 'decoupled' or 'segregated' solution techniques which 

can lead to slower solution times, and in some cases even divergence18. 

A preferable approach would be one that solved the equations directly, thus 

requiring no iterative procedure. However, as mentioned earlier, this is impractical 
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from both processing time and storage capacity considerations, but several attempts 

have been made to develop a solver that treats the variables in an unsegregated 

iterative manner. 

3.4.3. A Coupled Equation Line Solver - (CELS) 

This solution technique, proposed by Galpin, van Doormaal and Raithby5 in 

1985, solves the conservation equations in their original form , and so requires no 

derived pressure correction equation. The method proceeds line-by-line, the solution 

domain being swept in each co-ordinate direction separately until convergence is 

obtained. On each line all the equations (momentum and mass conservation) are solved 

at once and all the variables (up) are updated simultaneously. 

CELS differs from the SEMPLE technique in which a sweep of the whole domain 

is carried out for one variable before proceeding to the next. Galpin et al found CELS 

to be more stable and efficient for the test cases that they considered, features that can 

be explained in terms of the superior coupling of the equations. Galpin and Raithby6 

have also suggested an extension of this method for the treatment of thermal flows. 

Consider the equations along the jth line, 

II Pi+i-Pi u A, Y-lu' 1++ Aý, juýj h ri, i- . ui 

IIvIAv A+v-jvj-j + A,: vi + A,, Ivi, l +-= ri, (3.19) 
h 

vi, rc (3.20) 

Equation (3.20) gives an expression for vi', which is used in equation (3.19) to yield an 

expression for p,, which in turn is substituted into equation (3.18). '17his can then be 

solved to give the uj's along the line, followed by the vi's from equation (3.20) and then 

the p, s from equation (3.19). 
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However, the method requires two special adaptations for stability. First, the 

pressure update must be amended to account for the lack of coupling in the transverse 

direction. Second, the solution method on the last line must be adjusted to account for 

the boundary conditions and the difference between the number of unknowns and the 

number of equations for each variable. The latter problem represents an undesirable 

constraint, and this together with it's rather complex overall nature effectively ruled it 

out as an appropriate solver. This is not to say however that it does not have a 

promising future, if these problems can be overcome, perhaps by adopting a different 

grid arrangement (see Chapter 7). 

3.4.4. A Direct Banded Simultaneous Variable Solution (DBSVS) 

Zedan and Schneider23 carried out an investigation into unsegregated solution 

strategies and proposed a technique of their own. They considered the two momentum 

equations; 

Alu + APp = P, (3.21) 

Alv + A'PP = F, (3.22) 

which give 

-(k')-'A'Pp + (Aý')71F', (3.23) 

-(A")-'A'Pp (A'Y'F'. (2.24) 

Here Aýu is a pentadiagonal matrix and (XI)-WP can be found using forward and 

backward substitution. These expressions can be used in the continuity equation to 

generate an equation for pressure. Having found this pressure the velocities can be 

calculated from equations (3.21) and (3.22). 

In order to investigate the properties of this direct technique, -- Zedan and 
Schneider assembled the coefficient matrices for a simple, small test problem and 

examined the velocity-pres sure coupling. They found that the coupling was strongest 
in the region immediately surrounding the current node. 
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In view of this, they suggested that when assembling the necessary matrices only 

the coefficients associated with nearby nodes be used to calculate the coefficients in 

(A')-IAIP etcetera. The resulting matrix for p- APP - is found to have a thirteen point 

structure, and is solved using the Strongly Implicit Procedure (SEP) - proposed by 

Jacobs11 for biharmonic problems . 
An iterative process is used to accommodate the 

approximation. This solution technique is called Approximate Effect Simultaneous 

Variable Solution (AESVS). 

Later, Zedan and Schneider24 suggested a further variant named the Strongly 

Implicit Simultaneous Variable Solution (SISVS). This is similar to AESVS, but has 

fewer coefficients in the matrices, uses pentadiagonal and bidiagonal forms and 

implements a partial cancellation parameter in the SIEP. T'hey applied this method to the 

well-known two dimensional lid-driven cavity problem, for Reynolds numbers of 100, 

400 and 1 000, on a mesh of 102, using Skew Upwind Differencing17 for the 

convective term. Ile results appear to be good, but no comparisons were given with 

other techniques. 

The extension of this technique to large grids would probably make the associated 

matrices unmanageable, and the use of higher order approximations to convection, 

such as CCCT differencing8 would increase the number of non-zero coefficients quite 

considerably. However, this work does give some insight into the behaviour of 

unsegregated solution techniques. 

3.4.5. A Block Implicit Algorithm using Newton's Method 

Recently Vanka2l implemented an algorithm which makes use of Newton's 

method. The problem is formulated as follows; 

F(X)=O 

X=(Xll, XI2 

(3.25) 

F=(F, I, F, 2t 
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where 

)ý-j=(ui,, vi,, Pi, ), r, 

Fij=(Fi'j, Fij, Fij)T. 

A Newton Method is then used to solve equation (3.25), 

[DF f 
xý, i -. F�, (3.26) 

ax 11-1 

or 
kaXF ] 

x 
(3.27) 

The problem of performing differentiation for all variables is eased by the use of 

exponential differencing14, but is still rather complex. The linear equation (3.27) is 

solved using a direct technique. 

This algorithm is obviously complicated to implement and requires large amounts 

of storage. If a discretisation technique other than the exponential is used, the 

differentiation of F is even more problematic. To overcome the storage problem, 

Vanka suggested alternative ordering of the grid points (to make the Jacobian matrix 

more sparse) and the splitting of the domain into smaller subdomains for separate 

calculation. However, this method was not used because of its impracticality. 

3.4.6. The Block Implicit Method (BIM) 

Vanka22 subsequently proposed a scheme that is both simple to implement and 

efficient. He named it Symmetrical Coupled Gauss-Seidel (SCGS), but it may be 

thought of as a combination of DGS and CGS (Collective Gauss-Seidel - used on an 

unstaggered mesh when (ujj, vjj, pjj) are updated simultaneously at each point - usually 

unstable). With SCGS in two dimensions, the four velocities and one pressure 

corresponding to one control volume are updated simultaneously by inverting a5x5 

matrix. Each control volume is visited in turn. Thus each velocity is updated twice. 

Vanka observed that this ensured the stability that a single update lacked. He 
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implemented this scheme with hybrid differencing and multigridding, with good 

results with mesh sizes of 1/320 and Re=2000. 

The details of the implementation adopted here differ in some ways from those of 

Vanka and are thus outlined in full. 

Consider the control volume shown in Figure 3.4. We wish to update the 

unknowns fujj, uý-jj, vjj, yjj-j, p,, jj. The equations are 

for u., m= i& i-1, n=j 

T, Aj'a 
Pak+ln7PmL 

= 0, iauia +- 
ph 

for v., m= i, n=j & j- 1 

Pmn+1-13r= 
)dVkl + 

ph 

and 

Uij-ui-ij Vii-Vij-1 
-+= 

h 

'Mese can be written in tenns of residuals and corrections as 

I Aij AiTuiF 
ph =qj, 

AuI 
Pij U i-Ijui-Ij --= rý-Jj, 
ph 

vI Aj v A.. jvjj --ý rj, 
ph 

vI P'j 
i-ljvi-ij --- rivij, 

ph 

IIf, 
I 

ul+lj Vij7Vij-I 
r 

h+h 

(3.28) 

(3.29) 

(3.30) 

(3.31) 

to yield the following matrix system 
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Aýj 
h 

h 

Aij 1 
h 

Ajýj I 
h 

ph ph ph ph 

ru $j ii 
Ui-ij ri, -Ij Vii rivi Iv vii-I rij-1 
Pij j rici 

(3.32) 

This diagonal doubly bordered sparse matrix can be decomposed into lower and 

upper diagonal (LU) form, the unknown values being found by forward and back 

substitution. 'Me procedure is very efficient and is outlined in Appendix IEL 

As a result of the linearisation involved in the calculation of Aý and A' from 

values at the previous iterate, the corrections need to be underrelaxed. The velocities 

are multiplied by cý, before being applied, and the pressure by cý. 

After carrying out this procedure at (xi, yj) we continue to (xi-, I, yj), reevaluate the 

matrix and evaluate a new set of corrections. ne solution proceeds in order of 

increasing i then 

This method demonstrates simplicity and low operation count. As such it was 

considered to be the most appropriate technique to employ for evaluating a higher 

order discretisation multigrid scheme. 

3.5. Application of the Block Implicit Method 

The problem of the two-dimensional lid-driven cavity was solved using both 

hybrid and CCCT(a = 0) for Reynolds numbers 100,400 and 1 000, with numbers of 

internal nodes ranging from 42 to M2. The geometry and boundary conditions are 

shown in Figure 3.5. The equations and grid used here require no boundary condition 

for the pressure. This is dealt with by specifying the pressure at a certain-point to be 

zero. So after one iteration, the new value of the pressure at the specified point is 

subtracted from all the pressure values. In the work presented here this point was 

taken to be at x=0.5, y=0.5. 
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%I r% 

U=l V=O 

Figure 3.5: Lid-driven cavity flow configuration and boundary conditions. 
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The iteration proceeds until the residual is less than a prescribed value. Here, this 

value is taken to be 5x io-5 The residual is measured on the basis of the 11.112 norm, i. e. 

i? + rlif )P rf + rv 
r ij (3.33) 

Many authors have presented work in this area without giving adequate 

descriptions of boundary conditions and their implementation. Also, there appears to 

be several different approaches, and therefore a detailed explanation of the methods 

used here will be given. 

3.5.1. Boundary Conditions 

Consider Figure 3.6(a). The boundary nodes are positioned on the boundary at a 

distance hi2 from the near boundary nodes. In the set of algebraic equations the 

coefficients of the near boundary values are amended to account for this halved mesh- 

size. 

In the interior of the domain, 

a [UO) 
= 

ViAii+1/2 - vij-Aij-lfz 
(3.34) 

DY h 

When using the boundary configuration in Figure 3.6(aýýjj-jf2is given directly by ýjj-,. 

If hybrid is used to approximate ý,,, 2with. ý,, and Oij. 1, the boundary configuration is of 

no consequence. If CCCT(a=o)' is used with ý, j_,, ýjjan#jjj then the interpolating 

polynomial must be amended to take account of the different mesh spacing. 

Also consider ý, ; at the boundary this is approximated as 
[ty 

(h/2) 

An alternative to the above approach was considered; see Figure 3.6(b). Extra points 

are introduced at 'image' positions a distance h from the near boundary nodes and 

therefore equidistant from the boundary on either side. These image nodes are fixed so 
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Figure 3.6(a): Configuration of boundary nodes used here. 

A., 

90, 

Figure 3.6(b): Configuration of boundary nodes using image points. 

a ij+z 

ij+I 

4e00.0.0 64 
j i+Ii 

0 
jj-Z 

Figure 3.7: Computationed molecules for (a) hybrid and (b) CCCT (a=o) differencing. 
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(a) 

(b) 

1: 2- (d) 

Ce) 

(c) 

Figure 3.8: Contour plots for Reynolds number 100 with 16' internal nodes: hybrid (a) - 
(c), CCCT (a = 0) (d) - (e); stremffunction (a) and (d), vorticity (b) and (e) and 
pressure (c) and (f). 

: "fl /i/TiJ Nal 
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as to satisfy the imposed boundary conditions. So, if central differencing is used and 

the boundary value is zero, 01 is set as or if 
2ý-=O then ay 

The first technique is common practice7 and has been successfully applied for a 

wide range of complex problems. Leonard. 13' on the other hand, uses the second 

technique, but has only reported results for simple test problems. Both techniques were 

implemented in the present work. Although the second method is easier to program 

and requires less cpu time per iteration ( there are less logical expressions to evaluate), 

it was seen to require more iterations, so it actually used more cpu time than the first 

technique. Also at high Reynolds numbers it was often unstable, particularly when 

using a multigrid technique. 

In cases where CCCT discretisation is used, when approximating the near- 

boundary values of velocity perpendicular to the boundary, use is made of hybrid16 

differencing to. calculate the near-boundary flux. 

In the problems considered here, there is no boundary condition for pressure. As 

explained earlier, this was resolved by taking a reference point and subtracting its 

value there from all points after each iteration. Vanka22 took this point as one of the 

comers. Here, instead, the value at the centre was calculated as the average of its four 

surrounding values and this average was subtracted from all other nodal values. This 

procedure is just as efficient as Vanka's, but ensures better correspondence between 

the pressures on grids of a different size. 

3.5.2. Sweeping Procedures 

In his original work Vanka22 solved for each control volume one by one in the 

direction of increasing i then j. However, this is obviously no .t the only way. of 

proceeding; i or j could decrease or j could change before i. In fact there are eight 
different Possibilities; 

(1) i increasing j increasing 

i decreasing j increasing 
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(3) i increasing j decreasing 

(4) i decreasing j decreasing 

(5) j increasing i increasing 

(6) j decreasing i increasing 

(7) j increasing i decreasing 

(8) j decreasing i decreasing 

'Me relative performance of these is affected by the predominant flow direction, 

so to choose a particular one would not be meaningful in the general case. A 

combination of some sort would be preferable. As such, several cases were 
investigated; 

(a) (1) then (4) 

(b) (5) then (8) 

(C) (1) then (4) then (5) then (8) 

(d) (1) then (4) then (5) then (8) then (2) then (3) then (6) then (7) 

Of the alternative schemes (c) was observed to be the most successful. It was 

better at smoothing the errors than (a) or (b), but was not as unwieldy as (d). The latter 

performs eight sweeps per iteration, which results in an error reduction that is often far 

greater than required. This can make it inefficient, particularly when using 

multigridding (see next chapter for more details). In Table 3.2 the comparative cpu 

times are given for (a) and (c) when solving the lid-driven cavity problem with various 

mesh spacings for Reynolds numbers of 100 and 1000. 

(a) (C) 
Reynolds no. Reynolds no. 

Mesh 100 1000 100 1000 
42 0.06 0.12 0.05 0.15 
82 0.57 1.51 0.31 2.34 
16 2 5.82 12.92 2.03 15.45 
32ý 75.25 124.97 16.44 73.26 
642 936.63 1193.66 200.16 710.44 

Table 3.2: Computer time (secs. ) for (a) one sweep and (c) four sweeps. 
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3.5-3. Results 

Table 3.3 shows the values of the relaxation factors (velocity - a. , pressure - cý) 

for both discretisations at the three different Reynolds numbers. Those for hybrid vary 

only slightly as the Reynolds number increases but far less than is the case with CCCT. 

Relaxation is necessary because of the linearisation; as Reynolds number increases, the 

problem becomes more non-linear. Therefore, the relaxation factor must decrease. To 

explain why this phenomenon is more pronounced with CCCT, we must consider the 

computational molecule (i. e. the extent of the points involved in calculating an update 

to, say, u) - see Figure 3.7. From this figure it can be seen that in performing one 

calculation for the Block Implicit Method, where two velocities are updated implicitly, 

for hybrid six are not, and for CCCT twelve are not. So for hybrid 1/4 of the points are 

solved implicitly, but for CCCT only 1/7 of the points are solved implicitly. So CCCT 

represents a much cruder linearisation (in terms of the solution technique) and 

therefore requires much lower relaxation factors at higher Reynolds numbers. 

a) hybrid 

Reynolds no. 
Mesh too 400 1000 

42 0.8,1.3 0.8,1.4 0.6,1.6 
82 0.8,1.3 0.9,1.4 0.6,1.6 
162 0.8,1.3 0.8,1.4 0.6,1.6 
312 0.8,1.3 0.8,1.4 0.6,1.6 
642 0.8,1.3 0.8,1.4 0.6,1.6 

1& 1 0.8,1.3 1 0.8,1.4 1 0.6,1.6 

b) CCCT 

Reynolds no. 
Mesh 100 400 1000 

42 0.7,1.3 0.5,1.3 0.2,1.6 
82 0.9,1.3 0.5,1.3 0.2,1.6 
162 1.1,1.4 0.5,1.5 0.2,1.6 
32 2 1.1,1.5 0.6,1.5 0.2,1.6 
642 1.1,1.5 0.8,1.4 0.3,1.6 
128 2 1 1.1,1.5 0.8,1.4 0.3,1.6 

Table 3.3: Relaxation factors m, cý) for hybrid and CCCT(a=O) differencing. 
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From Table 3.4 it can be seen that for both schemes the cpu time obeys the 

relationship 

cpu cc n 
BErA (3.35) 

where BETA = 1.6 - this behaviour was discussed earlier on in the chapter. It can be 

seen that solutions for more than 1282 nodes are impractical with the method as it 

stands. For example, even at a Reynolds number of 100 the time required for a solution 

with 2561 nodes is of the order of 30 000 cpu seconds. 

a) Reynolds no. = 100 
Discretisation 

Mesh hybrid CCCT 
42 0.07 0.05 
82 0.35 0.35 
162 3.24 2.33 
32ý 37.33 19.40 
642 449.35 264.23 
1282 1 5887.91 1 3541.88 

b) ReynoIds no. = 400 

Discretisation 
Mesh hybrid CCCT 

e 0.09 0.08 
82 0.35 0.85 
162 2.26 5.71 
322 20.51 37.29 
642 252.38 279.59 
1282 1 3342.39 1 3772.66 

c) Reynolds no. = 1000 

Discretisation 
Mesh hybrid CCCT 

42 0.07 0.19 
82 0.49 3.20 
W 4.22 23.27 
322 38.13 112.15 
642 309.18 611.12 
128' 1 4232.05 7078.15 

Table 3A Computer time (secs. ) for both discretisation schemes at all Reynolds 
numbers. 
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Figure 3.1 shows a graph of residual against iteration number for Re =1 000 and 

128' nodes. The residual decreases rapidly at first then convergence slows down. This 

is also demonstrated in Figure 3.2 of y against iteration number. 

Tables 3.5 and 3.6 and Figures 3.8 to 3.19 show the results for streamfunction, 

vorticity and pressure. The vorticity is calculated directly from u and v, whilst the 

streamfunction is calculated as the solution of 

VIV = --ü) 

using the Strongly Implicit Procedurell. From these it can be seen that grid 

independence has practically been achieved with 128 nodes. The results for CCCT 

differencing compare well with those of Ghia, Ghia and Shinlo (see Table 3.7), who 

used a coupled strongly - implicit method for a streamfunction-vorticity formulation 

with a multigrid algorithm for h= 1/256. Their results are very accurate not only 

because of the small mesh size employed, but also as a result of the fact that the 

streamfunction and vorticity are calculated directly - not indirectly as in the present 

work. 

Consider Figures 3.8 to 3.19 showing plots of streamfunction, vorticity and 

pressure at the three Reynolds numbers 100,400 and 1000. These results were 

obtained for meshes of 162,32ý, 64' and 1282 internal nodes with both hybrid and CCCT 

discretisation. 

For a Reynolds number of 100 there is little difference between the relative 

performance of the two schemes. They both converge (as h decreases) to similar 

values, that are accurate. CCCT is slightly better at predicting the secondary eddies. It 

is interesting to note that for n>50 the cell Reynolds number (RIVL). is always less than 

two, so the hybrid scheme will reduce to central differencing throughout the flow 

domain. This explains the accuracy for 641 and 1282 points. 

For Reynolds number 400 the differences are more apparent. CCCT gives more 

accurate results with 16' nodes. 'ne contours still differ appreciably for 32' nodes. The 

difference is less visible for 64-' and 1282 nodes, but reference to Tables 3.5 and 3.6 



65 

a) Reynolds number = 100 

Mesh 82 162 32ý 642 1282 

YM 0.08923 0.09841 0.10227 0.10305 0.10301 
X. 0.56250 0.59375 0.60938 0.61719 0.61328 
YM 0.31250 0.28125 0.26563 0.25781 0.26172 
vm 2.1096 2.7770 3.0715 3.1846 3.1462 
Yt - -1.258E-5 -1.581E-5 -1.348E-5 -1.240E-5 
X, 0.90625 0.95313 0.94531 0.94141 
Y, 0.96875 0.92188 0.92969 0.94141 
Vr -0.03535 -0.03820 -0.03997 -0.03343 
vi -4.793E-5 -7.467E-6 -3.143E-6 -2.376E-6 1.9729E-6 
X, 0.06250 0.03125 0.04688 0.03906 0.03516 
Y, 0.93750 0.96875 0.95313 0.96094 0.96484 
vi -. 08561 -. 01651 1 -. 03604 1 02176 1 -0.01568 

b) Reynolds number = 400 
Mesh 82 162 32ý 642 1282 

vm 0.08505 0.09960 0.10844 0.11224 0.11308 
X. 0.56250 0.53125 0.54688 0.55469 0.55859 
YM 0.31250 0.40625 0.39063 0.39844 0.39453 
vm 1.5400 2.2096 2.2341 2.2710 2.290 
Wr - -7.361E-4 -7.238E-4 -6.669E-4 -6.419E-4 
Nr - 0.90625 0.89063 0.88281 0.88672 
Yr - 0.84375 0.85938 0.88281 0.87891 
Vr - -0.43772 -0.4857 -0.4255 -0.4242 
W, -8.342E-5 -1-579E-5 -1.931E-5 -1.476E-5 -1.351E-5 
Y4 0.06250 0.03125 0.04688 0.05469 0.05078 
Y, 0.93750 0.90625 0.95313 0.96094 0.94922 
V, -0.11417 1 -0.08824 -0.04857 1 -0.04580 1 -0.06332 

c) Reynolds no. = 1000 
Mesh 82 161 32ý 642 1282 

Ym 0.08161 0.09825 0.10798 0.11430 0.11574 
X. 0.56250 0.53125 0.51563 0.53906 0.53516 
Ym 0.43750 0.40625 0.42188 0.42969 0.43359 
vm 1.6752 1.8119 1.9082 1.9982 2.0402 
xvr - -1-342E-3 -2.134E-3 -1.812E-3 -1.693E--3 
Xý 0.90625 0.85938 0.86719 0.86328 
yr 0.84375 0.89063 0.88281 0.88672 
vr -1-0957 -. 94255 1.0625 -1.0946 
19, - 1.339E-4 -2.0877E-4 -1.958E-4 -2.197E-4 -2.064E-iý 
X, 0.06250 0.09375 0.07813 0.08594 0.08203 
Y, 0.93750 0.90625 0.92188 0.92969 0.92578 
V, 1 -0.13738 1 -0.38156 1 -0.28050 1 -0.29582 -0.29997 

Table 3.5: Strearnfunction and vorticity data obtained with CCCT(a=O). 
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a) Reynolds = 100 

Mesh 82 16 2 32 2 642 1282 

xvm 0.08664 0.09710 0.10209 0.10308 0.10317 
X. 0.56250 0.59375 0.60939 0.61719 0.61328 
Y. 0.31250 0.28125 0.26563 0.25781 0.26172 
vm 1.980 2.7199 3.0652 3.1838 3.1470 
Wr - -1.217E-5 -1.551E-5 -1.254E-5 -1.224E-5 
Y-1. - 0.90625 0.95313 0.94531 0.94141 
Y, - 0.96875 0.92188 0.94531 0.94141 
Vr - -. 04130 -. 03893 -. 03987 -0.3331 
AV, -4.793E-5 -7.226E-6 -2.800E-6 -2.415E-6 -2.083E-6 
X, 0.06250 0.03125 0.04688 0.03906 0.03516 
Y, 0.93750 0.96875 0.95313 0.92969 0.96484 
V. 1 -. 08561 1 -. 01632 1 -. 03581 1 -. 02186 1 -0.01584 

b) Reynolds no. = 400 

Mesh 82 16 2 32 64 2 1287 

vm 0.06618 0.08140 0.09991 0.11103 0.11306 
X. 0.56250 0.59375 0.57813 0.55469 0.55859 
YM 0.18750 0.34375 0.39063 0.39844 0.39453 
V. 3.9330 1.6886 1.6702 2.0783 2.2492 
vr - - 1.899E-4 -5.447E-4 -6.335E-4 -6.414E-4 
Y. ' - 0.90625 0.89063 0.88281 0.88672 
Yt 0.90625 0.89063 0.88281 0.87891 
vr -0.29438 -0.33968 -0.43227 -0.42802 
Y, -6.041E-5 -8.351E-6 -1.469E-5 -1.45gE-5 -1.354E-5 
X, 0.06250 0.03125 0.04688 0.03906 0.05078 
Y, 0.93750 0.96875 0.95313 0.94531 0.94922 
vi 1 -. 10564 -. 01447 -. 04967 -. 04965 -0.06352 

c) Reynolds no. = 1000 
Mesh 82 16 2 32 2 642 128 2 

vm 0.05473 0.06307 0.08225 0.10170 0.11516 
X. 0.56250 0.59375 0.54688 0.53906 0.53516 
Ym 0.18750 0.40625 0.42188 0.42969 0.43359 
vm 1.0900 1.0468 1.4223 1.7171 1.9907 
Yr - - 1.127E-4 -1.696E-3 -1.812E-3 -1.7427E-3 
Y-1 - 0.90625 0.89063 0.86719 0.86328 
Y, - 0.96875 0.89063 0.88281 0.88672 
V, - -. 31862 -1.0852 -1.0625 -1.1442 
XV, -9.422E-5 -1.524E-4 -1.539E-4 -2.197E-4 -2.21 IE-4 
X, 0.06250 0.09375 0.07813 0.08594 0.08203 
Y, 0.93750 0.90625 0.92188 0.92969 0.92578 
V, 1 -0.16640 1 -0.33400 1 -0.22223 1 -0.29582 1 -0.31167 

Table 3.6: Streamfunction and vorticity data obtained with hybrid 
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Re=100 Re=400 Re= 1000 
Present G, G&S Present G, G&S Present G, G&S 
0.10301 0.10342 0.11308 0.11391 0.11574 0.11793 

xm 0.6133 0.6172 0.5586 0.5547 0.5352 0.5313 
YM 0.2617 0.2656 0.3945 0.3945 0.4336 0.9438 
vm 3.1462 3.1665 2.2900 2.2947 2.0402 2.0497 
y, -1.24E-5 -1.25E-5 -6.42E-4 -6.42E-5 -1.69E-2 -1.75E-3 
X, 0.9414 0.9453 0.8867 0.8906 0.8633 0.8594 
Yr 0.9414 0.9375 0.8789 0.8750 0.8867 0.8906 
Vr -0.03343 -0.03307 0.42420 -0.43352 -1.0946 1.1547 
yj -1.97E-6 -1.75E-6 - 1.35E-5 -1.42E-5 -2.06E-4 -2.3 1 E-4 
X, 0.0352 0.0313 0.0508 0.0508 0.0820 0.0859 
Y, 0.9648 0.9609 0.9492 0.9531 0.9258 0.9220 
V, 1 -0.01568 1 -0.01556 1 -0.06332 -0.05697 -0.29997 1 -0.36175 

Table 3.7: Comparison of results obtained with CCCT(cc--O) using 1281 internal nodes 
with those of Ghia, Ghia and Shin. 

show that CCCT is superior. For n=1281 the maximum cell. Reynolds number is 3.125, 

so with hybrid, central differencing will be used predominantly, in the hybrid case. 

For Reynolds number 1000 there is a significant difference between the two 

schemes. The effect of the numerical diffusion introduced by the hybrid scheme can be 

observed in both the strearnfunction and vorticity plots. In particular, compare Figures 

3.19 (b) and (e). Even with 128' nodes, hybrid underpredicts i4fm by 10%, whereas 

CCCT underpredicts it by only 1%. 

Although the CCCT scheme usually takes longer to converge for a given number 

of nodes, it generates much more accurate results, at lower mesh densities. Taldng the 

results of Ghia, Ghia and Shin as a benchmark, we can perform an analysis of accuracy 
in relation to cpu time (see Figure 3.20). It can be seen that for Reynolds number 

1000, CCCT can generate an answer to a given accuracy in just a fraction of the time 

required with hybrid. 

'Mese results are interesting in themselves, but also serve to illustrate the suitably 

of the BIN1 as a smoother for use with a multigrid technique - see Chapter 4. 
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Figure 3.9: Contour plots for Reynolds number 100 with 32 internal nodes- hybrid (a) - 
(c), CCCT (a = 0) (d) - (e); streamfunction (a) and (d), vorticity (b) and (e) and 
pressure (c) and (f). 



69 

(a) " 

(b (e 

0 
Figure 3.10: Contour plots for Reynolds number 100 with 641 internal nodes: hybrid (a) 
- (c), CCCT (cc = 0) (d) - (e). strearnfunction (a) and (d), vorticity (b) and (e) and 
pressure (c) and (f). 
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Figure 3.11: Contour plots for Reynolds number 100 with 128 2 internal nodes: hybrid 
(a) - (c), CCCT (cc = 0) (d) - (e); strearnfunction (a) and (d), vorticity (b) and (e) and 
pressure (c) and (f). 
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Figure 3.12: Contour plots for Re,. molds number 400 with 16 2 internal nodes: hybrid (a) 
CCCT (cc = 0) (d) - (e); strearnfunction (a) and (d), vorticity (b) and (e) and 

pressure (c) and (f). 
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Figure 3.13: Contour plots for Reynolds number 400 with 32 2 intemal. nodes: hybrid (a) 
- (c), CCCT (a = 0) (d) - (e); strearnfunction (a) and (d), vorticity (b) and (e) and 
pressure (c) and (f). 
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Figure 3.14: Contour plots for Reynolds number 400 with 64' internal nodes: hybrid (a) 
- (c), CCCT (cc = 0) (d) - (e); streamfunction (a) and (d), vorticity (b) and (e) and 
pressure (c) and (f). 
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Figure 3.15: Contour plots for Reynolds number 400 with 128 2 internal nodes: hybrid 
(a) - (c), CCCT (cc = 0) (d) - (e): streamfunction (a) and (d), vorticity (b) and (e) and 
pressure (c) and (f). 
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Figure 3.16: Contour plots for Reynolds number 1 000 with 162 internal nodes: hybrid 
(a) - (c), CCCT (a = 0) (d) - (e); streamfunction (a) and (d), vorticity (b) and (e) and 
pressure (c) and (f). 
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Figure 3.17: Contour plots for Reynolds number 1 000 with 3f internal nodes: hybrid 
(a) - (c), CCCT (a = 0) (d) - (e); streamfunction (a) and (d), vorticity (b) and (e) and 
pressure (c) and (f). 
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Figure 3.18: Contour plots for Reynolds number 1 000 With 642 internal nodes: hybrid 
(a) - (c), CCCT (cx = 0) (d) - (e); strearnfunction (a) and (d), vorticity (b) and (ej and 
pressure (c) and (f). 
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Figure 3.19: Contour plots for Reynolds number 1 000 with 1282 internal nodes: hybrid 
(a) - (c), CCCT (cc = 0) (d) - (e); strearnfunction (a) and (d), vorticity (b) and (ei and 
pressure (c) and (f). 
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Chapter 4 

A MULTIGRID SOLUTION STRATEGY 
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4.1. Introduction 

A serious constraint on the application of CFD techniques to real problems is the 

small number of nodes used. From the test problem considered in Chapter 3 we can see 

that a mesh of 641 nodes is required for accurate solutions, although one of 32ý gives a 

qualitatively correct answer that would suffice in some situations. However, the 

solution of many problems has been attempted for very coarse meshes containing 

approximately 16 2 nodes, which are very inaccurate, especially when hybrid19 

differencing is used. In Chapter 3 the hybrid solution for the lid-driven cavity on a 16 2 

mesh at a Reynolds number of 1 000 gives an error of 46% in the value of the 

maximum streamfunction. 

When solution techniques are extended to three dimensions these problems are 

exacerbated. This has lead many researchers to deal with only two dimensional or 

axisymmetric problems, despite the fact that most flows of practical interest should be 

solved in three dimensions. 

In the past, the main research activity aimed at overcoming the above problems 

has been the design of iterative schemes with higher error reductions. These still have 

the disadvantage of convergence rates tailing off, as described in section 3.3. The one 

idea that has opened the door to practical and accurate solution of such flows is the 

concept of multigrids, which was also outlined briefly in section 3.3. In this chapter the 

theory of multigrids is discussed more fully, various techniques are outlined and results 

obtained with the method adopted here are presented. The problem considered, being 

that of a two-dimensional lid-driven cavity. In subsequent chapters results are 

presented for more demanding flow situations. 

4.2. Multigrid Theory 

We now describe the theoretical basis of the multigrid algorithm in detail. The 

partial differential equations governing the flow (equation 3.1) are discretised to give 

the system 
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Lv=el 

where 0 is the discrete operator representing the partial differential operator, Q1 is the 

solution vector and fl is the source term if any exists. The superscript k denotes the kth 

grid. (: ý' contains all the variables to be found, 

qc 
-": (UIIVIIPI I*** UijVijPij '** UNNVNNPXN) T- 

At any stage of our iterative process we have an approximation to the exact solution 

Q': let us call this q. q' does not satisfy equation (4.1) exactly, so there is a residual rk 

rk = f-k_0(4k). (4.2) 

We now define s, the difference between the approximation and the exact solution by 

Qk = qk+sý (4.3) 

Then from equations (4.3) and (4.1) 

O(q k+Sk) 
= fk 

p (4.4) 

and this gives, using equation (4.2), 

Lýqk+sk) = rk+O(qk). (4.5) 

If the operator 0 is linear we can now write 

O(sk) 
= rk 9 (4.6) 

and solve this to obtain a correction. This method has been used very successfully for 

problems such as those governed by Laplace's equation. However the problems of 

interest to us are non-linear. We could linearise the operator L, and solve equation (4.6) 

using a linear multigrid technique. An alternative method is preferred in which we 

solve for the variable e+sl as a whole in equation (4.5). This is called Full 

Approximation Storage (FAS)I. With a multigrid approach we choose to solve 

equation (4.5) on the coarser grid k-1, where usually hi, -1=2hk. 
Coarsening by a factor 2 

is almost always employed. This simpffies interpolation (see sub-section 4.3.1), yet 

still gives a range of wavelengths close enough for efficient reduction of errors. 
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'Me new equation on grid k- I is 

k-I -')ý lk-llk+l k Lý-'(lk 4k+StL k (4.7) 

where I k-1 represents interpolation from grid k to grid k- 1, called restriction. Relaxation k 

is carried out on this grid (k-1) to a specified tolerance. Then s" is calculated as the 

difference between the initial and final solutions on grid k-1. s" is prolonged 

(interpolated) onto the grid k to give Ik s" which is added to q k. In a similar way an k-1 

equation on grid k-2 can be formed for equation (4.7) by restriction and this equation 

can then be restricted to give an equation on grid k-3, and so on. '111is will give a 

system of equations for grids k=1....... m (m being the finest) 

= (4.9) k 

where 

1-1 rk+o , Fl-l = -I(lk qk)p 

and 

F=F. 

It has been shown theoretically by Brandt and Dinarl (who first proposed these 

techniques) that such an algorithm will be very efficient. It should give convergence 

independent of grid size and so take the same number of iterations for all grids and 7 

see sub-section 3.3) will be constant throughout. 

4.3. Multigrid Techniques 

The above theory has been extensively applied to linear problems, but only 

recently has it been applied to the problems of interest here. Some of the advances in 

this field are outlined below, in order to place the work presented here into context. 

4.3.1. SIMPLE as a multigrid smoother 

As mentioned in sub-section 3.4.1, Shaw and Sivaloganathan 18 have investigated 

the use of the SINDLE12 smoothing technique with an FAS algorithm. In their earlier 
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work17 they showed that SIMPLE had reasonable theoretical smoothing rates. They 

have implemented the scheme with hybrid19 differencing for the two-dimensional lid- 

driven cavity, using a staggered mesh arrangement, such that four fine grid continuity 

cells corresponded to one coarse-grid continuity cell. The algorithm they used 

proceeds as follows: 

1) Pre-smoothing: The initial approximation is smoothed by applying v, 

iterations of SIMPLE. 

Coarse-grid correction: The coarse-grid problem is set up and solved; the 

correction is then transferred onto the fine grid. 

Post-smoothing: The solution is smoothed byV2iterations to eliminate any 

high frequency components introduced by the prolongation. 

In practice a similar procedure is used to solve the equations at stage 2. This is 

done recursively until the coarsest glid is reached; here a solution is 

found 6, 

The results obtained with this method showed h-independent convergence for 

grids containing up to 641 internal nodes. However, as Shaw and Sivaloganathan18 

point out in their paper, the accuracy of these results is restricted by the use of hybrid 

differencing. 

4.3.2. SIMPLE with Linear Multigrid Techniques 

Phillips and Schmidt13,14 have proposed an alternative means of using multigrids 

with SEMPLE They use a linear multigrid technique13 to solve the equations generated 

at each stage of the SEMPLE algorithm. So they use their technique to solve first the 

u-momentum equation, which has its coefficients frozen, and then similarly the v- 

momentum equation. If the problem involves a scalar quantity this is then solved for, 

again using a linear multigrid technique. Finally, a linear multigrid is used to solve the 

Poisson equation for pressure and the velocities are updated to ensure mass 

conservation. 
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This technique is not as efficient as the FAS algorithm because the solutions 

found at each stage are based on coefficients frozen at the previous one, whereas in 

FAS they are updated at every iteration. It is widely believed that obtaining very 

accurate solutions at each individual stage of SEMPLE is not beneficial in terms of the 

overall solution time. It is better to perform more outer iterations. In fact only very few 

iterations are required at each stage, and so the advantages of multigrid techniques are 

at best minimal. 

Phillips and Schmidt implemented this multigrid technique with adaptive 

gridding and QUICK8 discretisation. This gave accurate results for the lid driven and 

thermally driven cavity, for numbers of internal nodes upto 64. They did not present 

any cpu times or iteration counts, so it is not possible to make comparisons or to see if 

they found h-independent convergence. 

This work was continued and analysed by Miller and Schmidt1l. They use the 
SDYTLEC variant proposed by Raithby and van Doormal2 and as before apply linear 

multigrids to the segregated equations. As in the earlier work of Phillips and 

Schmidt14, QUICK is implemented in an unusual manner. Due to solution difficulties 

that they claim to encounter with QUICK, they use hybrid differencing in the 

discretisation and introduce QUICK via corrections in the source terms - the 

corrections which represent the difference between QUICK and hybrid differencing are 

evaluated from values at the previous iterate. This slows down convergence, especially 

as these values are 'frozen' as the algorithm passes over the grids and the segregated 

equations. Gaskell, Lau and Wright5 have implemented QUICK with SIMPLE, and it 

has been employed here (see Chapter 3) for various problems without detriment to 

convergence. It is difficult to understand why Nfiller and Schn-ddtll found their 

approach necessary, when using QUICK directly would be much more efficient. 

'nis technique was implemented for the two dimensional lid-driven cavity 

(described earlier) and a sudden contraction (having fixed rather than derivative 

boundary conditions). The mesh consisted of 32 nodes, which is fairly coarse. For the 

sudden expansion, reductions in cpu time, upto a factor of five times, were achieved. 
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However, for the driven cavity the largest reduction was 37 % and in some cases the 

multigrid technique required more time. h-independence was never completely 

achieved and the cpu times are greater by a factor of about 10 over those reported here. 

4.3.3. DGS as a multigrid smoother 

In their paper Brandt and Dinarl presented results for an FAS algorithm coupled 

with DGS smoothing. The multigrid strategy was an adaptive one and the smoothing 

process was transferred to a coarser grid when the convergence rate increased beyond a 

specified value. The solution was sought on the coarser grid until the initial residual 

had been reduced by a specified factor and then the correction was transferred to the 

fine grid. The coarse-grid problem could in turn be transferred to a yet coarser grid, 

etcetera. 

This was applied to an idealised problem with good results. However, it has not 

been extended to more complex flows. In fact, Linden Stecken and Stuben9 show that 

for higher Reynolds numbers the technique will not converge at all. 

4.3.4. A Multigrid CELS approach 

Hutchinson, GalPin and Raithby7 outline the solution of the Navier-Stokes 

equation using a technique called Additive Correction16 which is conceptually similar 

to multigridding. They applied this to the smoother CELS, outlined in Chapter 3, and 

with Raithby's Upstream Weighted Difference Scheme15 (UWDS). With Additive 

Correction (AC) the coarse-grid equations are derived directly from interpolation of 

the fine grid equations. However, it is the linearised fine grid equations that are 

transferred, so it would appear that this technique corresponds to the usual linear 

multigrid approach for the fine grid equations. This linear multigrid is used to find the 

solution at each time step of a false transient method. 

Hutchinson et al solved the two-dimensional driven cavity problem for grids 

having up to 962 internal nodes. Solutions times were reduced by a factor of 8.7 over 

non-AC CELS. It is difficult to say from the results presented whether h-independent 
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convergence was achieved. A thermal problem was also solved resulting in a reduction 

factor of approximately 2. 

4.3.5. Segregated or Unsegregated Smoothing Techniques? 

The techniques outlined in sub-sections 4.2.1-4.2.3 are all segregated (see 3.4.2); 

they solve for u, v and p separately. The CELS approach outlined in 3.4.3 is 

unsegregated because it solves for u, v and p simultaneously on a line. Unsegregated 

methods are better at smoothing because they take into account all errors 

simultaneously and so introduce fewer spurious modes. This has been borne out by 

Linden et a19, who state that "compared to the above unsegregated multigrid 

approaches segregated multigrid approaches are relatively expensive". Techniques that 

only use multigrid for the linearised problems are even less advantageous, for similar 

reasons. 

4.4. Multigrid with Block Implicit Method 

In Chapter 3a Block Implicit smoothing technique was presented. This technique 

is simple to implement, and stable. It has full unsegregated coupling of momentum and 

continuity and has been successfully applied to the driven cavity problem. In view of 

this it was decided to use it here in the evaluation of a multigrid approach. 

Several multigrid strategies have been proposed and implemented for cycling 

between grids in order to eliminate all errors efficiently. The one used here differs 

from those of Shaw and Sivaloganathan, 18 and Brandt and Dinarl and is outlined 

below. 

(i) The system of equations in (4.8) is set up on all grids k=1, ..., M. 

(ii) The residual of the system on each level is calculated. The one with largest 

residual is selected for smoothing. 

(iii) Ile solution on this grid is smoothed using the Block Implicit Method. This 

is done until the residual has been reduced by a factor il. 
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(iv) 17he difference between the initial and final solution on the present grid is 

calculated. This is the correction for the next finer grid, so it is prolonged and added to 

the solution there. 

(v) If the new grid is not the finest, M, we repeat (W) and (iv). 

(vi) If we have reached the finest grid, it is smoothed until the error has been 

reduced by a factor q. 

One multigrid iteration consists of executing the above sequence once. Iterations 

are continued until the residual on the fine grid is less than a specified tolerance. 

This multigrid strategy is based on the idea that the level with the largest residual 

is the one on which it is most efficient to work at that stage. When this error has been 

eliminated, another grid may be selected. This process is continued until all errors are 

eliminated and the fine grid problem has converged. This strategy was first suggested 

by Falle and Wilson3 and has been successfully implemented by them for a variety of 

problems. 

The residual measure and tolerance are the same as were used for the ordinary 

BIM described in Chapter 3. It can be seen that the formulation of the BIM in terms of 

residuals and updates (as described in 3.4.6) is advantageous for use with multigrids, as 

the values of the residuals are readily available for transfer to coarser grids. 

4.4.1. Restriction and Prolongation 

The grid coarsening adopted here is outlined in Figure 4.1. As stated earlier a 

mesh reduction factor of 2 is used. One coarse-grid scalar cell coincides with four fine 

grid scalar cells. The velocity cells for each grid are orientated in line with what one 

would expect with a procedure for a one-grid technique; this means that coarse and 

fine grid velocity cells do not coincide. 

The nature of the restriction and prolongation operators is dictated by the mesh 

arrangement. Linear interpolation is used for the restriction of velocities, and bi-linear 

interpolation for the restriction of scalars. Ile boundaries are not restricted here as 
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Figure 4.1: Multigrid coarse to find no" configuration: > coarse grid velocity, jo, fine 
grid velocity, 0 coarse grid scalar. * fine grid scalar. 
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they are set at fixed values. Prolongation is also carried out by linear and bi-linear 

interpolation. The exact form of the equations for both restriction and prolongation is 

given in the Appendix 1. The use of quadratic interpolation is reported later. 

However, one aspect of coarsening and interpolation should be mentioned here. 

Consider the right hand side of equation (4.7), 

lk-lrk+Lk--'(Ik-lqk). 
k ic (4.9) 

Now, consider the point (ýJ, .) on the coarse-grid (see Figure 4.2) and the four 

associated fine grid points (ifjf), (ifi-ljf), (ifjf+l)and(iffljf+l). At this point the continuity 

equation is represented by 

-U'i -Viljf 
k-Irk 

U"J; 
-1 

V"j' 
(4.10) 1: 4hh 

Uif+l ý--U,, ý Vif+l ý-Vif+l if-I 
hh 

Ui, jf+I-U, f-l jf+l Viif+l-vi, ý 
+-hIh 

14+1 jf+I-U"jf+l Vif+l jf+l-vif+l 
+-hh 

=-I 
[(Uif+lj; +Uif+ljf+l)-(Uif-lj+uif-ljf+l)+(Vi, jf+l+vif+ljf+l)-(Vijf-l+vifijf-i)], 4h f 

and 

0-1(lk-I ui . -Uic-l j vi j -Vi. jC-1 
k q) =j*+-, 2h 2h 

=I [(Uif+l 
j; +Uif+l jf+l) - (Uif-I i; +Uif-I if+l)+ (vi, jf+l-vif+l jf+l)+(Vi, if-l+ Vif+l ; f-1) 4h 

I 

So that 

k-I rk + L'ýý I (I k- k) 
kk 

Iq 
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Thus the coarse-grid right hand side for the continuity equation is zero. When 

implementing the algorithm this right hand side could be computed along with that for 

the other equations. However, this is seen to be unnecessary from the above analysis. 

In fact it would be disadvantageous to do so, as this would give values of 'round off' 

error rather than zero. 

Sivaloganathan and Shaw18 have also discussed this aspect. They refer to it as 

is continuity satisfaction", i. e. if continuity is satisfied on the fine grid it is automatically 

satisfied on the coarse-grid. They also state that this method of coarsening gives rise 

naturally to compatible momentum control volumes. 

LonsdalelO used a different configuration, based on a non-uniform grid. The 

pressure lines of the finest grid are positioned at points corresponding to the zero of the 

relevant Chebyshev polynomial, so as to cluster points near the boundary. As in our 

approach, velocity lines are positioned halfway between pressure lines. Coarsening is 

done by taking the first and every other fine grid pressure line as a coarse-grid pressure 

line. This maintains the grid line next to the boundary, and is advantageous with 

respect to the handling of coarse-grid boundary conditions. OveraH this technique has 

the benefit of fine grid resolution near-boundaries, but the grid positions and 

coarsening makes it more complex and less adaptable to different geometries and for 

use with higher order discretisation schemes. 

During prolongation, special attention has to be paid to the near-boundary points 

because of the grid configuration at the boundaries. Ile equation for a near-boundary 

cell is different from the others. If the boundary values are used to calculate the near- 

boundary values it is found that prolongation can make the method unstable at high 

Reynolds numbers. It is better to use a zero derivative condition for these points and 

put them equal to their value on the first coarse-grid line. This is not as accurate as one 

might hope, so after each prolongation all the boundary adjacent cells are updated 

once. It has been observed that these measures can reduce cpu time by up to 30%, 

compared with prolongation using boundary values alone (see Table 4.1), and, as 

mentioned earlier, ensure stability. 
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Re 100 1000 
b nb b nb 

4 0.11 0.11 0.24 0.24 
8 0.63 0.63 2.77 3.13 
16 1.97 2.04 7.44 11.53 
32 5.72 5.86 23.65 35.03 
64 19.71 22.53 75.01 115.52 
128 77.01 75.89 228.05 332.80 
256 1 303.03 1 335.64 1 848.69 1026.36 

Table 4.1: Computer time for Reynolds numbers of 100 and 1000 with CCCT(cc=O) 
differencing with (b) and without (nb) boundary iterations. 

4.5. Application of the Multigrid Algorithm with a Block Implicit Method 

The above method was applied to the test problem described in Chapter 3, namely . 
the two-dimensional driven cavity (see Figure 3.1). Solutions were obtained for 

Reynolds numbers of 100,400 and 1000 with hybrid and CCCT(cc-0)4 discretisation. 

The largest number of internal nodes was 256ý. A Full Multigrid. (FMG) algorithm was 

used, i. e. a solution on a coarse-grid was obtained and prolonged to form an initial 

solution on the next fine grid. On the coarsest grid initial conditions of zero were used. 

i. e. u=v=p=O for all x, y. 

4.5.1. Computational Details 

The relaxation factors adopted were those reported in Chapter 3 for the Block 

Implicit Method. It may be advantageous to vary these, but the aim here is to 

demonstrate robustness and so fine tuning was not carried out. With respect to the 

pressure condition, p(O. 5,0.5) = 0.0, Brandt and Dinarl says that this should only be 

applied on one grid. It was found, however, that applying it on all grids had no effect 

on the convergence rate. It was sufficient, though, to only apply it on the coarse-grid. 

This strategy was adopted to save cpu time. Sivaloganathan and Shaw18 have also 

observed this phenomenon. 

The residuals that are transferred to the coarse-grid can be calculated 

"dynamically". Ilat is, at each point the residual, calculated according to equation 

(3.3 1), can be stored in an array ready to be restricted to the coarse-grid at a later stage. 
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This residual is based on values that have yet to be updated and therefore is not the 

same as the actual residual for the solution after all updates have been made. An 

alternative approach is to calculate the correct residuals with an extra sweep, in which 

no updating is done and only residuals are calculated. Such a sweep obviously takes 

time, but only a fraction of that required for one update sweep. Although the latter 

method takes more time than one employing dynamic residuals, it is more than 

compensated for by better error correction and stability. When using dynan-Lic residuals 

to set up a coarse-grid problem the set of equations often do not have a solution and 

cannot be solved to the order of round-off errors. 

Some attention must be paid to the choice of the factor -q in the algorithm. 

Different values of -q can be used on different grids. Here il is restricted to three 

values. One is for the finest grid, one for the coarsest grid and one for all the 

intermediate grids. In earlier work6 these were taken to be 0.1,0.1 & 0.5 for the 

coarsest, intermediate and finest grids respectively. They were chosen so as to ensure 

that most of the smoothing was carried out on the coarse-grids where 11=0.1. On the fine 

grid we wish only to eliminate any errors introduced by the interpolation, and so take 

il--0.5. These factors generated solutions that exhibited h-independent convergence 

behaviour, and were orders of magnitude faster than the ordinary Block Implicit 

Method. 

As described earlier, when a fine grid problem is transferred to a coarse-grid, this 

new problem can then be transferred to an even coarser grid for solution, and so on. 

Eventually the solution is sought on the coarsest grid. Brandt and Dinarl suggest 

solving this problem exactly. An alternative technique can be used to find a solution on 

this grid (e. g. Newton's method), because of the small number of points. 

In view of these ideas it was decided to investigate the use of a factor il=0.001 on 

the coarsest grid. This would give an accurate solution to the coarsest grid problem, 

without spending excessive amounts of time converging to round-off The latter was 

not thought desirable for a problem that was only there to find an intermediate solution 

for the non-linear problem. 
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This strategy was found to improve convergence (see Table 4.2). Not only are the 

solution times less, but the multigrid convergence factor 0 (see equation (4.16)) is less. 

In view of the large savings in cpu time these factors were selected for use with all 

other cases. 

4.5.2. Results 

The results for Reynolds numbers 100,400 and 1 000, and grids of 42 upto 2567 

internal nodes, with hybrid and CCCT are presented in Table 4.3. For each case the 

total cpu time and the number of fine grid work units (FGWU) required are given. The 

fine grid work unit is a measure of the total work done on all grids expressed in terms 

of the work required for one fine grid iteration. For example, if the fine mesh is 1282, 

four iterations on a mesh of 642 is one FGWU, and 64 iterations on a mesh of 161 is one 

FGWU. 

At a first glance at the results, it can easily be seen that the times required are 

significantly less than those for an ordinary block implicit method (see Table 4.4 - the 

bracketed numbers are predictions based on the power law relation given in section 
3.2). On the finest grid the cpu times for the multigrid solution are around 1% of those 

for the non-multigrid case. On coarse grids savings are significant although not as 

dramatic. Multigrids are most optimal for a large range of grids, that cover all the 

different wavelengths of error. Coarser grids cannot cover the same range as finer 

Re 100 1000 
grid (a) (b) (a) (b) 
42 0.11 0.11 0.24 0.24 
82 0.45 0.63 3.83 2.77 
16 2 2.04 1.97 9.95 7.44 
32 6.62 5.72 37.35 23.65 
642 21.17 20.33 105.58 75.01 
12g2 89.10 77.01 372.09 228.05 
256 2 

1 332-55 303.03 1923.32 1 848.69 

Table 4.2: Comparison of computer times (secs. ) with CCCT(a=O) for different sets of 
values for the factor q, (a) (0.1,0.1,0.5) (b) (0.001,0.5,0.5) 
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a) Reynolds number = 100 
hybri d CCCT 

Cpu(secs. ) FGWU Cpu(secs. ) FGWU 
4 0.12 7.00 0.11 5.00 
8 0.55 13.25 0.63 14.25 
16 1.82 11.75 1.97 11.75 
32 6.36 10.48 5.72 8.56 
64 19.71 8.13 20.33 7.63 
128 71.62 7.38 77.01 7.26 
256 277.85 7.18 303.03 7.15 

b) Reynolds number = 400 
hybrid CCCT 

Cpu(secs. ) FGWU Cpu(secs. ) FGWU 
4 0.15 10.00 0.14 8.00 
8 0.76 19.25 1.20 30.00 
16 2.84 18.88 4.03 25.63 
32 10.01 16.91 12.87 20.38 
64 35.55 15.13 36.23 14.12 
128 104.25 10.96 94.99 9.08 
256 311.04 8.09 321.64 1 7.63 

c) Reynolds number = 1000 
hybrid CCCT 

Cpu(secs. ) FGWU Cpu(secs. ) FGWU 
4 0.12 7.00 0.24 20.00 
8 0.84 21.50 2.77 74.00 
16 2.38 15.69 7.44 49.00 
32 12.47 21.52 23.65 38.5 
64 65.88 29.16 75.01 30.19 
128 213.95 23.36 229.05 22.57 
256 474.87 12.66 848.69 20.94 

Table 4.3: Solution time and FGWU for multigrid solutions at Reynolds numbers of 
100,400 and 1 000. 
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Re 100 400 1000 
NMG MG NMG MG NMG MG 

4 0.11 0.11 0.14 0.14 0.24 0.24 
8 0.35 0.63 0.85 1.20 3.20 2.77 
16 2.33 1.97 5.71 4.03 23.37 7.44 
32 19.40 5.72 37.29 12.87 112.15 23.65 
64 264.23 20.33 279.59 36.23 611.12 75.01 
128 3541.88 77.01 3772.66 94.99 7078.15 228.05 
256 (29670.73) , 303.03 1 (12828.00) , 321.64 , (66811.06) 848.69 

Table 4.4: Computer time (secs. ) for multigrid (MG) and non-multigrid (NMG) 
methods with CCCT(a---O) differencing. 

ones and so do not give such large reductions in cpu time. It is not certain that 

ordinary solutions could be found on meshes with 256 2 points - such meshes may make 

ordinary schemes unstable. The only reason that solutions were not obtained on still 

finer grids was the limited amount of memory space available on our computer. This 

could have been overcome by writing values in parts of the solution domain onto disk 

and recalling them when necessary. This would however have increased the computing 

time greatly, and therefore it was decided not to proceed in this way, but to wait for a 

bigger computer. It should also be noted that when compared with earlier work6 these 

computer times are found to be much less, due to the improved multigrid behaviour 

and the use of four sweePs in one iteration. 

It is interesting to analyse Table 4.3 in detail. Cpu times increase between each 

grid by a factor less than four. This is bome out by inspecting the FGWU figures. One 

FGWU on a mesh of size h is equivalent to four FGWU on a mesh of size 2h, so if the 

power law relationship is obeyed the FGWU counts on each grid will be identical. In 

fact it can be seen that they decrease and so the relation is more than satisfied. This is 

explained by the optimality of fine grids detailed in the last paragraph. The 

relationship cpu (x N is equivalent to the property of h-independence, so we have 

achieved h-independence here. 

Consider the definition of y, 
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(4.12) 

where R" is the residual at stage n. Then 

(4.13) 

and so if y is constant 

Ra = fO, (4.14) 

and 

logR' = nlogy + logRý (4.15) 

Therefore, a graph of log R against n, or in this case FGWU, should result in a straight 

line with negative gradient (y<1 => iogy <0). If -y increases then the gradient of this 

graph will increase. In view of this, Figures 4.3-4.8 show log R plotted against FGWU. 

For coarser grids it can be seen that the gradient increases and therefore the rate of 

reduction of the residual is increasing. On these grids multigridding is not optimal, 
because too few grids are being used. As grids get finer and more grids are used, the 

gradient becomes constant and so multigridding is operating optimally. 

Using Table 4.3 one can compare the two discretisations. First, it should be noted 
that one CCCT FGWU requires up to 10% more cpu time than one hybrid FGYI'U, 

depending on the mesh size. Overall CCCT. requires more work units than hybrid, 

though this is only significant for the 2561 mesh solution at a Reynolds number of 

1 000. In some cases CCCT is actually quicker than hybrid. The greater cpu 

requirement at Reynolds number 1 000 is explained by the crude linearisation 

employed in adapting CCCT to the Block Implicit Method (see sub-section 3.4.6). The 

non-linearities become more dominant as the Reynolds number increases. In Figures 

4.9 to 4.11, the solutions for CCCT and hybrid are indistinguishable on a mesh of 256' 

internal nodes, but Table 4.5 shows values of key variables, for which there is a 

noticeable difference. Table 4.6 shows these key variables for the results of Ghia, 

Ghia and Shin, which are in very good agreement with those obtained here. As seen in 
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Figure 4.3: Plot of natural log of the residual against FGNVU, for Reynolds number 100 
and hybrid differencing. 
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Figure 4.5: Plot of natural log of the residual against FGWU, for Reynolds number 400 
and hybrid differencing. 
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Figure 4.6: Plot of natural log of the residual against FGNVU, for Reynolds number 400 
and CCCT ( cc = 0) differencing. 
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Figure 4.9: Contour plots for Reynolds number 100 with 2562 internal nodes; hybrid (a) 
- (c), CCCT ( cc = 0) (d) - (e), stmamfunction (a) and (d), vorticity (b) and (e) and 
pressure (c) and (f). 
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Figure 4.10: Contour plot for Reynolds number 400 for 256 2 internal nodes; hybrid (a) - (c), CCCT (a= 0) (d) - (e), streamfunction. (a) and (d), vorticity (b) and (e) and 
pressure (c) and (f). 
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Re 10 0 400 10 00 
Disc. hybrid CCCT hybrid CCCT hybrid CCCT 

Win 0.10317 0.10327 0.11271 0.11417 0.11608 0.12080 
x 0.61523 0.61523 . 

0.55273 0.55273 0.52930 0.52930 
y 0.26367 0.26367 0.39648 0.39648 0.43555 0.43555 

0), 3.1490 3.1524 2.2513 . 2.3098 1.9877 2.1552 
wr - 1.186E-5 -1.246E-5 -6.238E-4 -6.728E-4 -1.705E-2 1.734E-2 
x 0.94336 0.94336 0.88867 0.88477 0.86133 0.86133 
y 0.93945 0.93945 0.87695 0.87695 0.88867 0.88867 
co, -3.381E-2 -3.357E-2 -4.383E-1 -4.782E-1 -1.133 -1.137 
IV, -1.916E-6 - 1.719E-6 -1.543E-5 -1.303E-5 -2.385E-4 -2.352E-4 
x 0.03320 0.03320 0.05273 0.05273 0.08398 0.08398 
y 0.96299 0.96690 0.95508 0.95117 0.92393 0.91992 
6ý I -1.587E-2 I -1.326E-2 1 -5.78 1E-2 I -5.320E-2 I -3.517E-1 I -3.690E- 1 

Table 4.6: Selected data for the driven cavity with 259 node at various Reynolds 

numbers and with both discretisations. 

Chapter 3 (Figure 3.20), CCCT is more efficient at generating solutions of a given 

accuracy, despite its higher cpu requirement 

Finally, Table 4.7 shows the convergence factor 9, defined by 

L 
final residual fIGWU W (4.16) 
initial residual 

As one would expect, from the results outlined above, the factors obtained with 

multigridding are much lower than those without. The latter increase as the grid is 

refined. This is the manifestation of the theory that says that for fine grids, 

wavelengths that are removed from the mesh size are difficult to eliminate. The 

multigrid convergence factors decrease (on the whole) as mesh size decreases, and 

optimality is achieved. Optimal behaviour is achieved at coarser meshes for lower 

Reynolds numbers, because the information required is not as complex. Linden et a19 

presented results for a hybrid BlIM multigrid technique on a non-staggered mesh. This 

gave convergence factors similar to, but on the whole. - less than, those presented 

here. In view of the use here, of staggered grids and the associated problems (see 
In 0 

Chapter 7) the factors result from this work compare well. The factors for CCCT, 

whilst not differing much for Reynolds numbers of 100 and 400, are not as good as 

those obtained with hybrid at Reynolds number 1000. 'Mis, as explained earlier, is 
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Figure 4.11: Contour plot for Reynolds number I OW for 256 2 internal nodes; hybrid 
(a) - (c), CCCT (a= 0) (d) - (e), streamfunction (a) and (d), vorticity (b) and (e) and 
pressure (c) and (f). 
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a) hybrid 

Re 10 0 40 0 100 01 
NMG MG NMG MG NMG MG 

4 0.32 0.32 0.40 0.40 0.39 0.39 
8 0.45 0.45 0.47 0.60 0.59 0.65 

16 0.71 0.33 0.60 0.55 0.79 0.49 
32 0.89 0.31 0.79 0.55 0.90 0.66 
64 0.96 0.25 0.94 0.53 0.95 0.75 

128 0.99 0.18 0.98 0.40 0.99 0.67 
256 - 1 0.22 1- 1 0.31 1- 0.421 

b) CCCT 

Re 100 400 100 01 
NMG MG NMG MG NMG MG 

4 0.21 0.21 0.38 0.38 0.68 0.68 
8 0.43 0.45 0.71 0.74 0.92 0.87 

16 0.60 0.3 0.80 0.64 0.96 0.77 
32 0.78 0.21 0.88 0.57 0.96 0.74 
64 0.93 0.19 0.93 0.43 0.97 0.70 

128 0.94 0.19 0.95 0.29 0.97 0.64 
256 - 1 0.20 1- 1 0.30 1- 0.651 

Table 4.7: Multigrid convergence factor for both discretisations 

due to the linearisation involved. CCCT performance could be improved by use of a 

solution technique that handled these non-linear temis better (see Chapter 7). The 

sudden drop in the convergence rate for hybrid between meshes of 128' and 256' was 

also observed by Linden et aL This is caused by the change to predominant use of 

central differencing as the cell Reynolds number drops below 2. Upwind differencing, 

with its inherent mesh-dependent numerical diffusion, limits convergence rates. From 

Gaskell, Lau and Wright5 it can be seen that, along the line x=0.5 where velocities are 

highest, the velocity gives a cell Reynolds number of 2 or less (with a 1292grid) from y 

= 0.09 to y=1.0. So central differencing is used throughout at least 90% of the flow 

region. Ilis means that corrections to regions of the fine-mesh discretised with central 

differencing are also calculated with central differencing on the coarser mesh. This 

does not always happen on lower levels and so convergence is degraded. It must be 

said that this demonstrates that central differencing is well suited to a multigrid 

approach. However, it is necessary to maintain the cel-l Reynolds number less than 2 

throughout the flow domain, which clearly is totafly impractical. 
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Chapter 5 

EXTENSION OF METHOD TO MORE COMPLEX SITUATIONS 
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5.1. Introduction 

In the Chapter 4 an efficient solution strategy for simulating recirculating flows 

was outlined. It consists of a multigrid algorithm and unsegregated solver and was 

shown to be capable of producing solutions to the problem of flow in a lid-driven 

cavity, on very fine meshes. The problem examined is of interest because of the large 

areas of recirculation contained by the flow. It would be premature, at this stage, to 

suggest that the problem was representative of all flows of this type, which may 

possess more complicated features. In order to assen the usefulness of the method 

more fully we must apply it to more varied flow situations. 

One important aspect of many real life problems is that they are best posed in a 

three-dimensional co-ordinate system. Two-dimensional or axisymmetric 

simplifications cannot always fully capture the features inherent in them. However, the 

main drawback to extending solution techniques to three dimensions is the order of 

magnitude increase in the number of finite difference nodes required, which leads to a 

corresponding increase in cpu time. With traditional solvers, where computer time 

increases exponentially with the number of nodes, this can be quite prohibitive. 

However, this problem is not encountered with multigrid methods, and so three 

dimensional solvers are feasible. In view of this it was decided to extend the method to 

three-dimensions. 

The first problem considered here is one of a three-dimensional lid-driven cavity - 

an obvious extension of the problem considered earlier. Solution of this flow field is 

facilitated by the existence of an axis of. symmetry (see Figure 5.1(a)). Consequently, 

only half the cavity need be solved -a derivative boundary condition being applied at 

the plane of symmetry. This leads us to examine a farther extension of the multigrid 

algorithm, namely, the treatment of derivative boundary conditions. 

'Me second test case considered involves a more rigorous test of our treatment of 

derivative conditions. 'I'he sudden expansion of a plane channel has a derivative 

condition at the the outflow. This has caused problems in the past for researchers 
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attempting to use multigrids for this type of flow - it is even problematic for non- 

multigrid solution procedures. For multigrids to be accepted by Computational Fluid 

Dynamicists in general, such problems must be overcome, because outflows conditions 

are often encountered in flow situations. Multigrids offer the advantage of fine mesh 

resolution, that such flows require. 

These two problems form a significant extension of the algorithm presented in 

Chapter 4. 

5.2. The Three Dimensional Lid Driven Cavity 

The equations for three dimensional incompressible flow in cartesian coordinates 

are 

I+1 a2u', 

axj X, Re axj2 

auj 
axj 

The grid arrangement is staggered in a manner analogous to that in two- 

dimensions, with a pressure or scalar node positioned at the centre of each cubic 

control volume and a velocity perpendicular to and at the centre of each face (see 

Figure 5.1(b)). Each of the above equations is integrated over this control volume to 

form an algebraic set of equations. - 

'ne flow configuration for this test case is given in Figure 5.1 (a). The moving 

waU is in the plane y--O, where the velocity component w is equal to one. The 

remaining velocities on this waU and all the velocities on each of other the walls are set 

equal to zero, except that is, at the plane of symmetry. Here, u is is set to zero tocyether 

with the derivatives -Lv and ax ax 

Some researchers have found difficulty extending their solution technique to three 

dimensions, because of algoridimic complications. This problem was not encountered 

with the smoothing technique employed here. The Block Implicit Method is easily 
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Figure 5.2: Velocity vectors obtained with hybrid for Reynolds number 100. 
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Figure 5.3: Velocity vectors obtained with CCCT (a = 0) for Reynolds number 100. 
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modified for a three dimensional domain. Each control volume is visited in turn, the 

six velocities and one pressure associated with it being updated simultaneously. The 

system generated by the equations for these variables form a 7x7 coefficient matrix of 

a similar nature to that generated in two dimensions. Once again, this is easily solved 

using W-decomposition (see Appendix H). As before the corrections are multiplied by 

relaxation factors cý, and ap, after they have been calculated. 

As we saw in Chapter 3 an important feature of the Block Implicit Method is the 

significance of the order in which the cells are visited. The procedure adopted 

therefore allows for four sweeps within one iterative cycle in a manner similar to 

before. 'nat is 

(1) i increasing j increasing k increasing 

(2) i decreasing j decreasing k decreasing 

(3) j increasing i increasing k increasing 

(4) j decreasing i decreasing k decreasing 

As in Chapter 3 it was considered undesirable to carry out too many sweeps 

within one iteration as this would make the smoother inefficient on fine grids. 

The derivative boundary condition is implemented in an explicit manner. During 

one iteration the present values are assumed fixed and used in 

the calculation of updates. After the iteration has been carried out the boundary values 

are updated to satisfy the boundary conditions. If hybrid'O differencing is used a linear 

profile is assumed over the boundary layer, that is, if is the boundary value and ýN, -, 
the value adjacent to the boundary (see Figure 3.6(a)), we assume that 

ý(x)=a+bx. 

So 

ýN-a 

and 
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bh 
2 

Therefore 

a--ý,,, j 

and 

Hence 

COM, 

which implies that 

44N-1. 

If CCCT(cc--0)5 is used a quadratic profile is assumed, namely 

Vx) = a+bx+cx 2, 

giving 

,: ýq = 

and 

bh 
a- 2 

3bh 9ch 2 
24 

So 

a= 

and 

-! -%-2-9ýN-1+8ý0- 3h 

Hence 
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Co)--Ol 

implying that 

MN 

These formulae correspond to the use of an 'image' point as proposed by Leonard6. 

All other boundary conditions are treated as before. 

When multigridding, special attention must be paid to the treatment of derivative 

conditions. Incorrect implementation can lead to degradation of convergence and even 

completely annul the advantages of multigrids. The procedure used here is as follows. 

(i) When the fine grid values are restricted onto the coarse grid, the 

boundary values are also restricted using linear interpolation. 

(ii) These boundary values are then updated during the smoothing process 

on the coarse grid. 

(iii) When the correction is prolonged, a correction to the boundary values is 

also prolonged using linear interpolation. 

(iv) The fine grid is then smoothed with updating of boundaries. 

The reasoning behind this strategy is covered in a discussion of derivative boundary 

conditions later in this chapter. Great care must be taken when programming such 

algorithms since even a single "bug" can completely destroy multigrid convergence, 

while still producing the correct solution. 

The restriction and prolongation of information is carried via linear interpolation 

in a manner analogous to the two-dimensional case. The only exception is that at a 

boundary where a zero derivative condition is specified, near boundary values are 

updated using the boundary values themselves. In other respects the implementation 

of the multigrid is exactly the same as for the two-dimensional problem. 

5.3. Results 

Results were obtained for Reynolds numbers of 100 and 1 000 with a grid system 

containing upto 32 x 32 x 16 internal nodes for both hybrid and CCCT differencing. 
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The residual definition is analogous with that in two-dimensions and the tolerance is 

again taken as RIV. This was found to be the largest number of nodes that it was 

possible to employ within the memory restrictions of our computer. 

Salient results are presented in Tables 5.1 to 5.5 Figures 5.2 to 5.12. From 

Figures 5.2 to 5.5, showing velocity vectors, it is interesting to compare the two 

solutions obtained with hybrid and CCCT(a--O) differencing. CCCT resolves the eddy 

in the top left of 5.5(d) at Reynolds number of 1000 much better than hybrid. This 

has also been observed by Gaskell and Lau4 for various flows containing one or more 

recirculating zones. Figure 5.6 show a comparison of the centreline velocities for the 

flow at Reynolds numbers of 100 and 1 000. Although these are practically 

indistinguishable in the former case, they show significant differences in the latter. 

Figures 5.7 to 5.8 for the strearnfunction and vorticity on the central plane also 

highlight the differences between the two solutions. At Reynolds number 1 000 the 

predicted flows are significantly different, due to the numerical diffusion inherent in 

hybrid. Such differences, on what may be considered to be a relatively fine mesh for a 

three-dimensional problem, demonstrates the benefits of using a higher order 

convective transport approximation. An advantage that is gained only at the expense 

of a slight increase in computer time. The figures show results consistent with those 

obtained for the two-dimensional cavity on the same meshes. The data in Table 5.1. for 

streamfunction maxima and minima, shows that these values are less then those 

predicted in the two-dimensional simulations - see Tables 3.5 and 3.6. This is due to 

the retarding effect of the side walls. 

The relaxation factors are given in Table 5.2. From Table 5.3 it can be seen that 

the computer time is proportional to the number of nodes and that h-independence has 

been achieved. These times are lower compared with those for BIM and SEMPLE 

(Table 5.4) and show that multigrids make the solution of three-dimensional flow 

easily realisable. Figures 5.9 to 5.12 show plots of log R against FGWU. These are 

predominantly straight lines, apart that is from some minor deviations as the residual 

approaches the tolerance for Reynolds number 1 000. The number of levels used is 
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Figure 5.6: Velocity profiles at the centre plan (x = 0.5) for CCCT ((x = 0) (full line] 
and hybrid [dashed line]. (a) Re 1000 :w on line z=0.5, (b) Re = 1000 :v on line y 
= 0.5, (c) Re = 100: w on line z=0.5 (d) Re = 100: v on line y=0.5. 
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, ýl 

(b) 

(c) 

(d) 

Ce) 

(f) 

Figure 5.7: Contour plots on central plane (x = 0.5) for Reynolds number 100 using 
32x32x16 internal nodes: hybrid (a) - (c), CCCT (a = 0) (d) - (e); streamfunction (a) 
and (d), vorticity (b) and (e) and pressure (c) and (f). 
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Figure 5.8: Contour plots on central plane (x = 0.5) for Reynolds number 1 000 using 
32x32xI6 internal nodes: hybrid (a) - (c), CCCT (a = 0) (d) - (e); strearnfunction (a) 
and (d), vorticity (b) and (e) and pressure (c) and (f). 
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Figure 5.9: Plot of the natural log of the residual against FGVru for Reynolds number 
100 and hybrid differencing. 
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Figure 5.10; Plot of the natural log of the residual against FGNVU for Reynolds number 
100 and CCCT (a = 0) differencing. 
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Figure 5.11: Plot of the natural log of the residdal against FGWU for Reynolds number 
1 000 and hybrid differencing. 
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Re 10 0 10 00 
Disc. hybrid CCCT hybrid CCCT 

w. n 0.09520 0.09552 0.05933 0.06345 
x 0.60938 0.60938 0.60938 0.57813 
y 0.23438 0.23438 0.45313 0.4438 

Win 2.8547 2.8457 0.65841 0.61654 
V, -4.3376E-5 -4.9384E-5 -3.7386E-4 -5.2424E-4 
x 0.20313 0.20313 0.10938 0.10938 
y 0.98438 0.98438 0.92188 0.92188 
q -0.26656 -0.27657 -0.43824 -0.61021 
Vr -3.8767E-4 -4.3010E-4 -1.4111E-3 -1.8898E-3 
x 0.92188 0.92188 0.89063 0.89063 
y 0.85938 0.85938 0.89063 0.89063 
Cor -0.19746 -0.20151 -1.2666 -1.0940 

Table 5.1: Selected data for the three-dimensional lid-driven cavity for both discretisa- 
tions and Reynolds numbers. 

100 1000 
hybrid 
CCCT 

(0.8,1.3) 
(1.0,1.3) 

(0.6,1.4) 
(0.2,1.6) 

Table 5.2: Relaxation factors for hybrid and CCCT(a=O) at Reynolds numbers of 100 
and 1 000. 

Re 100 1000 
Disc. hybrid CCCT hybr id CCCT 
CPU FGWU CPU FGNVU CPU FGY*rU CPU FGWU 

4x4x2 0.22 7.00 0.25 7.00 0.22 7.60 0.56 16.00 
8x8x4 3.54 12.25 2.91 8.50 2.44 8.39 8.84 28.00 

16xl6x8 20.52 8.48 17.81 6.03 21.55 8.67 61.19 23.09 

_32x32xl6 
1 114.74 1 5.68 1 129.18 5.38 144.81 7.24 383.53 17.16 

Table 5.3: Computer time(secs. ) and FGNVU for the three-dimensional lid-driven cavi- 
ty. 

Scheme B LM SUVEPLE MG 
16xl6x8 

32x32xl6 
100.25 

2578.24 
75.20 

1430.01 
61.19 

383.53 

Table 5.4: Comparison of computer times for the Block Implicit Method, SEVWLE and 
the Multigrid technique presented here, with CCCT(cc=O) and at Reynolds number of 
1000. 

much smaller than is the case for the two-dimensional cavity, so that multigridding is 

not optimal which in itself may contribute to the degradation of convergence. Table 

5.5 shows the multigrid convergence rate (defined in equation 4.16) for this test case. 
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Re 100 10 00 
Disc. hybrid CCCT hybrid CCCT 
4x4x2 0.42 0.26 0.43 0.70 
8x8x4 0.51 0.33 0.39 0.75 

16xl6x8 0.37 0.24 0.42 0.75 
32x32xl6 0.25 1 0.33 0.39 0.65 

Table 5.5: Multigrid convergence rates for the three-dimensional lid-driven cavity for 
the cases exan-dned here. 

They improve as the number of levesl gets larger, indicating that if the use of more 

levels was possible, then the rates would be even lower. Comparing these rates with 

those in Chapter 4, it can be seen that they are slightly lower. This would suggest that 

the incorporation of three-dimensions and a derivative boundary condition has had no 

adverse effect on the convergence of the multigrid technique used here. 

5.4. Flow Through a Sudden Expansion 

The geometry of this test problem is shown in Figure 5.13. The length of the 

channel is 16 times the width of entry. This allows sufficient distance for a physical 
flow to have achieved uniform conditions. The entry velocity is specified as a 

parabolic profile with 

1116 
f udy= I 
0 

The step itself is located at a distance of 1/16 from the entry and the expansion ratio is 

2. 

The most salient aspect with regard to multigridding, is the outflow condition. 

When Fuchs3 looked at this flow configuration he got around the problem by 

specifying a parabolic velocity at the outflow. This, however, does not give the same 

results as for a derivative condition and is unsatisfactory. Vankal I solved the problem 

of the three-dimensional lid-driven cavity described above without making use of 

symmetry, thus not requiring the use of a derivative condition. Clearly, in a general 

sense this is an unsatisfactory approach and in a subsequent paper12 he rectified this 



135 

0 

I aIaIP. I. 
a S5 

1 

s 

a 

:I a- - 

a 

01 

.0 lý 

a- 

1-1 

C) 

iz 

Ici 
0 
r. 
>b 
U 

CA r_ 
ce 
X 
u 

.a 43 
;Z 

ZZ: -z -0 
t. 

r_ 

42 
ce 

02 

0 > 

. JD 

c) 



136 

shortcon-ting by implementing an outflow derivative boundary condition, with a three- 

dimensional version of the sudden expansion problem. He did this by restricting the 

boundary conditions onto a coarser mesh and using these as fixed conditions not 

derivative ones. He then prolonged only the interior values onto the fine grid. In order 

to do this successfully he had to impose the global mass conservation equation 

ju. ds =0 

on the fine grid. This amounts to scaling the outflow to equal the inflow. Failure to do 

this would create a set of coarse grid equations with an inherent mass error which 

would be insoluble with fixed conditions. Vanka's results were quick, but did not show 

h-independence. The exponential factor, D (cpu a W) was found to be of the order of 

1.3. 

'ne use of fixed boundary values on coarse grids is an erroneous concept carried 

over from linear multigrids where coarse grid equations are to solve directly for a 

correction. In non-linear FAS algorithms the coarse grid equations solve for the full 

variables and thus derivative conditions should be applied. This has been confirmed 

by other researchers9,2, and borne out by the work of the author, where more optimal 

multigridding was achieved with the correct formulation. 

In the present work scaling is used to impose global mass conservation, and 

derivative conditions are imposed on all grids as seen in the previous test problem. The 

near-boundary nodes were fixed a distance -ý- from the boundary and a form of image 
2 

point was used to impose the conditions (see sub-section 3.5.1). With the outflow 

velocity the near value is at a distance h and a value occurs on the boundary, so no 

image point can be used. The condition is therefore imposed directly over a distance h. 

Obviously, on different grids this length varies and is equivalent to representing a 

different problem on each grid. Unfortunately, this inconsistency is unavoidable with a 

staggered grid configuration. 
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Apart from those mentioned above, the details of the implementation for the 

sudden expansion are more or less identical to previous cases. Tle residual is as 

defined in equation (3.33) and the tolerance is w-5. The relaxation factors (c4,, ctp) are 

(0.1,1.6). In view of comparative performance of the two difference schemes it was 

decided to make use of CCCT only. 

Solutions were only obtained for a Reynolds number of 50 - defined as 

U. "L 
v 

where U,,, is the average velocity at the inlet, L is the width of the inlet and v is the 

kinematic viscosity. The resulting computer times are presented in Table 5.6. 

Solutions at higher Reynolds numbers proved difficult to obtain. Ibis is due to 

the point-by-point nature of the solver, which necessitates very low relaxation factors. 

I'lie results (see Figure 5.14) obtained compare well with those of a comparison 

exercisel, with results within a few percent of those given for reattachment length. 

Multigrid convergence is not achieved in full (see Figure 5.15), but solution times are 

much less than could be achieved with an ordinary technique. This degradation is a 

consequence of several factors. 

(i) The outflow condition is not properly dealt with. In particular the 

treatment of the velocity perpendicular to the outflow plane is unsatisfactory, due to 

the inconsistency between grids. 

(ii) There is a singularity at the comer of the expansion. The continuum 

Mesh Cpu. (secs. ) FGWU 
16xl _ 1.62 80.0 
32x2 6.96 121.0 
64x4 23.76 99.24 
128x8 87.04 97.09 

256x16 398.72 
Table 5.6: Computer time and FGNVU for the sudden expansion at Reynolds of 50 and 
with CCCT(a=O) differencing. 
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Figure 5.15: Plot of natural log of residual against FGWU for Reynolds nurnber 50 
obtained with CCCT (cc = 0) differencing. 
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hypotheses leads to an infinite vorticity at this point, which the numerical solution tries 

to reflect (this can be observed from Figure 5.14). The nature of this problem as posed 

numerically is different on each level. This inconsistency leads to degradation of 

convergence8. 

(iii) The smoother is unsuited to such an unidirectional flow with sharp 

gradients present in certain areas, as observed by Linden et al. 7. The smoother itself 

does not perform well, and so effects the multigrid convergence. 

(iv) The physics of the flow itself is more complex than the geometry might 

suggest. Fuchs3, for example, observed that even for moderate Reynolds number the 

flow exhibits oscillatory solutions and bifurcations. 

The unsatisfactory convergence is highlighted in Table 5.7 of multigrid IM 

converence rates (defined in equation (4.16)). The values are much higher than those 

for both the two- and three-dimensional lid-driven cavity, but even so they are less 

than they would be for a non-multigrid techique, where they would be greater than 

0.99 on finer meshes. 

There are several possible ways of overcoming these problems which are 

discussed in Chapter 7. 
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Chapter 6 

THERMALLY DRIVEN FLOWS 
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6.1. Introduction 

Work reported so far has focussed on fluid flow problems of a complex nature, 

but ones that involve only the transferral of mass and momentum in a conservative 

system. However, in an engineering environment, many problems of practical interest 

may also involve additional physical properties such as turbulence or energy 

production via combustion, or some other means. In which case the governing 

equations of motion multiply in number, introducing additional parameters into the Z> 

system. Could a multigrid solution strategy be adapted here? 

Processes invoving heat release, such as chemical reaction, can be extremely 

difficult to model and present computational fluid dynamicists with a rather acute 

problem, due to the inclusion of variable density. Consequently, the treatment of such 

flows in best left to a competent practitioner. Little work has been reported in this area, 

and therefore it is difficult to comment here on the benefits that might be accrued from 

the use of a multigrid approach in solving such problems. 

In the case of turbulence the additional parameters that arise, derive from the 

necessary use of turbulence modelS7 in order to make such problems tractable. They 

are, needless to say, inherently complex and computationally demanding - even for the 

simplest of flows. One major drawback of such models is the use of wall functions as a 

means of predicting the flow behaviour at nodal points adjacent to solid boundaries. 

Traditionally this has proved to be a most satisfactory way of accounting for laminar 

boundary layers that cannot be adequately resolved since, in general, their physical 

length-scale is less than the computational mesh spacing. However, it is envisaged that 

this would introduce incompatibilities between meshes when using a multigrid 

technique. Nevertheless, it is not premature to postulate that it should eventually be 

possible to solve such systems with the aid of multi-rids. 0 

Fortunately, a class of problems does exist that are of great practical interest and 

yet are not problematic in the sense of the flows described above. These are thermal 

problems which occur in abundance in several ares such as power generation, domestic 
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heating and insulation, climatic and environmental change. The equations of motion 

are a simple extension of those given in Chapter 3 

a (pujuj) = --ýl ++ 5i2gpT axj axi axj 2 

D 
. (UjT) =k 

a2T 
axj Cpp aXj2 

These can be non-dimensionalised using 

ip 

Ui 
P, 

P 

Ur pur 

xi, = 
X, 0= T 
L, AT' 

where Ur= 9PATL ýi 
.a reference velocity 

L is the width of the cavity 

AT is the temperature difference. 

Ignoring the dashed superscript this gives 

(6.2) 
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Prandd number, Pr - 
cpýL 
k 

Grashof number, Gr = 
9PATI2. 

v2 

and 

Rayleighnumber, Ra = Gr Pr 
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These equations make use of the Boussinesq approximation for steady flows, 

which is valid for small values of 0. This assumes that density variations are negligible 

except in the buoyancy term in the momentum equation It involves assun-dng that p 

becomes p,, pAT in the buoyancy term and p, ) elsewhere, where p, ) is a constant. 

The temperature equation (6.4) written in two-dimensions 

auo avo I a2o a2() 

-ýX- + -ay = Tr-%Pr 
IDX2 

+1 (6.5) 

is discretised as follows. The temperature node is situated at the centre of the finite 

control volume, in the same place as the pressure. Equation (6.5) can then be integrated 

over a control volume to give 

(Uo)i--%j-(UO)i+lhj (V())ij+ý(VO)q'A 1i Ij -0 ij 
()ii-()i-lj 

+ 
Oij+1 

-0ij ()ij-oij-l 
+=- 

[ý'+h 
2h2h hh (5ýpr 

or 

Uij()i+%j - 'ý--Ij%-hj vijoij+%-Vij-i ()ii-, h 1 Oi+lj+Oi-lj+Oij+, +Oij-1-40ij 

h+h =-6-rýpr tý 

1. 
(6.7) 

The temperature at faces of the control volume are calculated using interpolation, the 

velocities there, on the other hand, are known calculated by using interpolation. The 

value of T required in the vertical momentum equation is calculated using linear 

interpolation. 

The Block Implicit Method is easily adapted to solve for thermal flows. In the 

two-dimensional case a sixth equation is obtained in addition to the continuity and four 

momentum equations already encountered. To include this equation in the matrix 

given in equation (3.32) would destroy its doubly bordered form and therefore 

necessitate the use of a less efficient solver. Instead, the coefficient matrix (3.32) is 

solved as before, the additional equation for temperature being solved seperately 

afterwards. This leads to some decoupling of the thermal effects. However, to include 

these effects efficiently would require the use of a different solver. Galpin and 

Raithby4 have discussed the importance of tempera ture-veloci ty coupling and 
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proposed a scheme that satisfactorily accounts for the former. It is based on the CELS 

technique (see sub-section 3.4.3), but for the reasons outlined in earlier discussions this 

method was not considered to represent a viable alternative for use in evaluating a 

multigrid approach to recirculating thermal flows. It was also decided to stick with the 

solver used so far which gave good results for the non-thermal problems, and is 

superior to SIMPLE (which is troublesome for thermal problems, as outlined by 

Raithby4 and experienced by work at Rolls-Royce. )9 A further relaxation factor has to 

be introduced for the temperature. The residual used is analogous to that in equation 

(3.33). i. e. 

+ (6.8) 

The multigrid technique needs very little modification for thermal flows. One 

extra equation is added for each grid. The temperature is restricted and prolonged in 

the same manner as the pressure, apart, that is, from adaptations at the boundaries, 

which are outlined below for each of the test problems investigated. In view of the 
A e, i'A C, A 

comparative performance of hybrid and CCCT(a=0)5 differencing it wa*o make use 

of the latter only. 

6.2. A Thermally Driven Cavity with Conducting Walls 

In addition to equation (6.2) this problem is defined by the following boundary 

conditions, see Figure 6.1 (a), 

(a) on x=O, u=v=O, O= I 

(b) on x=1, u=v=O, 0=0 

(c) on y=O and y=1, u=v=O, 0 =1-x. 
This corresponds to a thermally driven cavity with conducting top and bottom walls. 

Solutions were found for this problem with Prandtl number, Pr = 0.71, (corresponding 

to air) and Rayleigh numbers of 103,104, W, and 106, on meshes containing upto 2562 

internal nodes. Rayleigh numbers greater than these have been observed, both 

numerically and experimentally, to give bifurcating solutionsl and so were not sought 
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an 

Figure 6.1: Flow configuration and boundary conditions for the thermally driven cavity 
with (a) conducting and (b) insulated top and bottom walls 



147 

here. 

Prolongation of near boundary nodes was accomplished in the same way as in the 

case of the two-dimensional lid-driven cavity, that is a zero derivative condition was 

employed there. The results for various numbers of nodes and with CCCT(a=O) 

discretisation are shown in Tables 6.1 and 6.2 and in Figures 6.2 to 6.5. The 41, 'ýd 
is the 

value of the streamfunction at (x, y) = (0.5,0.5). It is calculated as the mean of the 

surrounding four values. 4r. is the maximum nodal value of xV in the flow. again x 

and y give the position where the maximum occurs. Ku- is the average Nusselt number 

over the cavity. This is deirmed as 

Ru- = 
! JQ(x, y)dV, (6.9) vv 

where 

Q(X, y) = u0- Dx 

Nu,. is the maximum Nusselt. number in the vertical plane and y its position and 

similarly for Nu,, j,, and x. U, is the maximum horizontal velocity on the vertical mid 

plane at y. Similarly, V,,.,,, is the maximum vertical velocity on the horizontal mid 

plane at x. 

Whilst at Ra=lW the temperature contours (see Figure 6.2(c)) remain roughly 

vertical they begin to bend at Ra=IW (Figure 6.3(c)) and at Ra=iw (Figure 6.4(c)) a 

central zone of horizontal contours is seen to have developed. This results in a region 

of flow that is slowly moving with respect to the bulk of the fluid, which can be seen in Zn' 

Figure 6.4(a). This phenomenon can also be observed in Figures 6.5(a) and (b) 

depicting strearnfunction and vorticity, particularly when Ra=101. As this region 

develops the position of the maximum streamfunction (see Table 6.1) leaves the centre 

of the cavity and two equal maxima develop. The regions of greatest vorticity are 0 
adjacent to the boundary (the two vertical ones). These regions present most difficulty 0 

for both discretisation and solution technique. Such widely varying regivi-Z point to 

the use of adaptive meshing8, which is discussed in this context in Chapter 7. 
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(a) 

0 
(b) 

(c) 

L--J 

LH 
Figure 6.2: Contour plots for Rayleigh number ICP with 256 2 internal nodes, for the 
thermally driven cavity with conducting top and bottom walls: (a) Streamfunction, (b) 
vorticity and (c) temperature. 
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(a) 

(b) 

(c) 

------------------ 

((i. 
Figure 6.3: Contour plots for Rayleigh number 104with 256 2 internal nodes, for the 
thermally driven cavity with conducting top and bottom walls: (a) Streamfunction, (b) 

vorticity and (c) temperature. 
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(a) 

(b) 

(c) 

/ 
Figure 6.4: Contour plots for Rayleigh number W with 2561 internal nodes, for the 
thermally driven cavity with conducting top and bottom walls: (a) Stream-function, (b) 
vorticity and (c) temperature. 
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(a) 

0 

(b) 

(c) 

fl 

Figure 6.5: Contour plots for Rayleigh number icý with 256 2 internal nodes, for the 
thermally driven cavity with conducting top and bottom walls: (a) Streamfunction, (b) 

vorticity and (c) temperature. 
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Ra W 104 io, io, 

Nimid 1.220 6.338 12.260 19.6115 
Yn= - - 12.662 22.047 

x 0.336 0.2195 

y - - 0.625 0.784 
U�u 3.796 20.377 55.21 124.20 

y 0.815 0.834 0.881 0.904 
Vrriax 3.812 22.999 80.777 253.60 

x 0.178 0.127 0.068 0.041 
Nu 1.058 1.920 3.785 7.2992 

Nu. �� 1.225 2.521 4.942 23.283 
y 0.258 0.305 0.299 0.212 

Nu�ý 0.871 0.838 0.965 2.324 
y 0.793 0.891 1 0.965 1 1.0 

Table 6.1: Selected characteristic data for the thermally driven cavity with conducting 
walls. 

Rayleigh number 
Mesh 1co 104 101 106 

42 0.22 0.34 0.60 - 
82 1.23 1.87 3.99 - 
16 2 2.47 3.95 7.94 27.57 
32ý 7.10 8.87 17.10 81.61 
642 25.01 27.74 38.97 139.39 
1282 96.11 99.68 114.68 280.25 
250 377.97 1 382.23 1 399.65 1 700.67 

Table 6.2: Computer time for the solution of the thermally driven cavity with conduct- 
ing walls. 

The computer times for this flow are given in Table 6.2. These increase for 

increasing Rayleigh number, because of the increasing complexity of the flow, 

particularly in the near boundary regions. 'Me requirement that cpu time is 

proportional to the number of nodes is more than satisfied. As the number of nodes 

increases the FGWU requirement decreases, and the use of a large number of levels 

leads to optimal multigridding. Figures 6.6 to 6.9 show the log of residual against 

FGNVU. As seen in Chapter 4 this should be a straight line, which from examination of I 
these graphs is seen to be the case. It can also be observed, again, that multigridding 0 

becomes more optimal with an increase in the number of levels. Table 5.3 gives the 

multigrid convergence rate as defined in equation (4.16). They are less than those for 

the two-dimensional cavity, but direct comparison is not valid because of the different 
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Figure 6.6: Plot of the natural log of the residual against FGWU for Rayleigh number 
101 in the case of the thermally driven cavity with conducting top and bottom walls. 
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Figure 6.7: Plot of the natural log of the residual against FGWU for Rayleigh number 
101 in the case of the thermally driven cavity with conducting top and bottom walls. 
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Figure 6.8: Plot of the natural log of the residual against FGV; U for Rayleigh number 
10' in the case of the thermally driven cavity with conducting top and bottom walls. 
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Ra lo, 104 W 106 

42 0.40 0.48 0.65 - 
82 0.62 0.69 0.99 - 
162 0.22 0.47 0.66 - 
32ý 0.20 0.23 0.56 0.90 
642 0.20 0.22 0.40 0.64 
12g2 0.21 0.24 0.31 0.57 
2561 0.26 1 0.26 1 0.33 1 0.54 

Table 6.3: Multigrid convergence rates for the cases considered in section 6.2 

flow regime and different dimensionless parameters. However, the values indicate that 

incorporating thermal effects does not a detrimental effect on multigrid convergence. 

Boonkkamp solved this problem using a time dependent set of equations to 

converge to a steady state. His method used an alternating direction Euler method with 

a pressure correction. The results, while at different Rayleigh numbers, bear out the 

solutions obtained here. Boonkkamp's main investigation was of the bifurcation of 

solutions to the flow at Rayleigh number of 3. OxIO6. 

6.3. A Thermally Driven Cavity with Insulating Walls 

This problem is a more widely known extension of the previous one . It is often 

referred to as the "Double Glazing" problem, for obvious reasons. It differs from the 

above case in that the the top and bottom walls are perfectly insulated, (see Figure 

6.1 (b)) and so the boundary condi tions become, 

(a) on all faces u=v=O 

(b) 0=1 on x=O 

(c) 0=0 on x=1 

(d) -20 =0 on y=O and y= 1. an 

The derivative boundary condition is dealt with as described in Chapter 5. The 

near boundary values of the temperature are prolonged using the boundary values. The 

boundary values themselves are prolonged as well. 

The results are presented in Tables 6.4,6.5 and 6.6 and in Figures 6.10 to 6.13. 

Solutions were again obtained for Rayleigh numbers of 1W, 104,105 & 106 at Prandtl 
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Ra 10, 104 1()ý lcý 

Yrud 1.178 5.069 9.093 16.444 
Yn= - - 9.595 16.743 

x 0.291 0.152 
y - - 0.599 0.547 

U,,, 3.660 16.135 34.17 64.14 
y 0.815 0.922 0.854 0.850 

VrrAx 3.697 19.622 69.44 219.33 
x 0.178 0.119 0.065 0.037 

iTu- 1.117 2.251 4.564 8.870 
Nuir 

, ax 1.498 3.460 7.797 18.078 
y 0.125 0.156 0.090 0.039 

Nu,,, i. 0.650 0.572 0.751 0.980 
y 1.0 1.0 1.0 1.0 

Table 6A Selected characteristic data for the thennally driven cavity with adiabatic 
walls. 
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Figure 6.10: Contour plots for Rayleigh number W with 256 2 internal nodes, for the 
thermally driven cavity with insulated top and bottom walls: (a) Strearnfunction, (b) 
vorticity and (c) temperature. 
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(a) 

(b) 

(c) 

Figure 6.11: Contour plots for Rayleigh number 10' with 2562 internal nodes, for the 
thermally driven cavity with insulated top and bottom walls: (a) Streamfunction, (b) 
vorticity and (c) temperature. 
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(a) 

(b) 

(c) 

Figure 6.12: Contour plots for Rayleigh number 1(ý with 2562 internal nodes, for the 
thermally driven cavity with insulated top and bottom walls: (a) Strearnfunction, (b) 
vorticity and (c) temperature. 
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(a) 

(b) 

(c) 

Figure 6.13: Contour plots for Rayleigh number 106 with 256; internal nodes, for the 
thermally driven cavity with insulated top and bottom walls: (a) Strearnfunction, (b) 
vorticity and (c) temperature. 
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number of 0.71 on grids of upto 2562 internal nodes. Boonkkamp observed that for 

Rayleigh number greater than 101 the solution was periodic. As before an increase in 

the Rayleigh number leads to separation of the streamfunction maximum into two, and 

the development of a region of slow flow and horizontal temperature contours. The 

zero derivative on the top and bottom boundaries results in a greater bunching of the 

temperature contours near the left and right boundaries. Gradients of temperature are 

even larger. The value of the maximum strearnfunction is lower. 

In 1983 de Vahl DaviS2 presented a benchmark solution for this problem. He used 

a strearnfunction-vorticity formulation with central differencing and Richardson 

Ra 1()3 io, W W 

Vnüd +0.03 -0.06 -0.3 +0.8 
yn= - - -0.2 +0.8 

x - 1.4 +0.6 
y -0.5 0.0 

u�, ý� +0.3 +0.3 -1.6 -0.7 
y +0.2 +0.1 -0.1 0.0 

vmax 0.0 +0.02 -0.2 +0,01 
x 0.0 +0.6 -1.5 +2.1 iý7U- 

-0.09 +0.4 +1.0 +0.8 
Nurrßx -0.5 +1.9 +LO +0.8 

y +35.9 +9.0 +l1.1 +3.2 
Nu�li� -6.10 -2.4 -3.01 -0.9 

y 0.0 0.0 0.0 0.0 
Table 6.5: Percentage error of the present solution compared with that of de Vahl 
Davis. 

Rayleigh number 
Mesh 103 1w 106 

42 0.17 0.21 - 
82 1.46 5.16 3.48 - 
16 2 5.04 9.15 13.93 36.58 
32ý 15.79 27.37 54.02 90.07 
647 33.97 81.31 211.44 312.65 
1282 105.85 153.60 794.16 1114.52 
256' 391.68 1 439.71 1 3833.78 3902.44 

Table 6.6: Computer time for the solution of the thermally driven cavity with adiabatic 
walls. 
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extrapolation. Several characteristics of the flow were given. Due to the difference in 

formulation and consequent differences in the non-dimensionalisation the results from 

equation (6.5) must be scaled as follows 

u=ux GrN3r 

v=vx GrAPr 

In de Vahl Davis' work streamfunction was known and from this velocities were 

calculated. From temperature, heat flux was calculated as 

Q(X, Y) = UO - 
ae 
ax * (6.10) 

Before comparing the solutions found here with those of de Vahl Davis we should 

consider how they were obtained. When a maximum value was sought by de Vahl 

Davis, it and its location were calculated by numerical differentiation using a fourth 

order polynomial approximation. de Vahl Davis observed, "The interpolated values 
differed from the closest of the adjacent mesh point values by no more than I per cent 
in every case except one. " In the present work only mesh point values were used. The 

grid in de Vahl Davis' work was non-staggered and based on a finite difference rather 

than a finite volume. Due to these factors is was not possible to calculate the heat flux 

with exactly the same operators as de Vahl Davis. 

Table 6.5 shows percentage errors between the data in Table 6.4 and that of the 
benchmark solution. These show very close agreement between the two, particularly in 

view of the above comments, and the estimated error of the benchmark solutions given 

by de Vahl Davis as 0.1,0.2,0.3 and 1.0 for Rayleigh numbers of 103,104 , 1W and 10, 

respectively. The largest discrepancy is in the values of Num,, and Nuj.. This is caused 

by particular difficulty in calculating 
2T 

at the boundaries. These errors compare well ax 

with the comparison exercise by de Vahl Davis3. They are of the same order as the 

other techniques. Over 30 methods were evaluated, using finite volumes, differences 

and elements, for both vorticity-streamfunction and primitive variable formulations, 
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Figure 6.14: Plot of the natural log of the residual against FGWU for Raýleigh number 
101 in the case of the thermally driven cavity with insulated top and bottom walls. 
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Figure 6.15: Plot. of the natural log of the residual against FGWU for Rayleigh number 
W in the case of the thermally driven cavity with insulated top and bottom walls. 
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Figure 6.16: 'Plot of the natural log of the residual against FGWLJ for Rayleigh number 
101 in the case of the thermally driven cavity with insulated top and bottom walls. 
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Figure 6.17: Plot of the natural log of the residual against FGWU for Rayleigh number 
106 in the case of the thermally driven cavity with insulated top and bottom walls. 
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different orders of discretisation and various solution strategies. The largest number of 

finite difference nodes used was 652. 

It can be seen that the method used here is efficient in producing accurate 

solutions in short times for thermal problems. For a solution on a 402 mesh at a 

Rayleigh number of UP Boonkkamp's method used 3600 seconds on a Cyber 

computer. Here, solutions are achieved in a fraction of the time. These times are also 

much less then those of an earlier study6. This is due to an improved multigrid 

strategy and the use of multiple sweeps in the smoother. From Table 6.6 it can be 

seen that FGvVU decreases as the number of internal nodes increases, so h- 

independence is achieved. From Figures 14-17it can be seen that multigrid 

convergence is achieved. Table 6.7 shows multigrid convergence rate as defined in 

equation(4.16). Overall these rates are slightly higher than for the cavity with perfectly 

conducting walls. This is probably a reflection of the use of derivative conditions, but 

as the number of grids increases the effect din-dnishes. So it seems that once optimal' 

behaviour is approached the effect of the derivative conditions is minimal. 

Ra io, 104 V 106 

42 0.40 0.48 0.65 - 
82 0.69 0.93 0.95 - 
162 0.65 0.68 0.87 - 
32ý 0.58 0.76 0.67 0.90 
642 0.28 0.69 0.40 0.75 
1282 0.26 0.33 0.37 0.59 
2562 , 0.28 , 0.30 , 0.28 , 0.54 

Table 6.7: Multigrid convergence rates for the cases considered in section 6.3 
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Chapter 7 

CONCLUSION 
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A multigrid scheme has been presented that uses an unsegregated smoother with a 

higher order approximation to convective transport. This novel approach has been 

applied to a variety of test cases. On the whole the results from these are encouraging 

and give reason to believe that multigrid techniques are viable and useful in 

Computational Fluid Dynamics. 

The solution times for the various test cases are much lower than could be 

obtained with traditional methods. This shows that multigrids enable us to find 

solutions to complex problems, and problems in three-dimensions that would not have 

been possible before. 'ne emphasis has been to find solutions to problems of 

engineering interest, while bearing in mind theoretical considerations. Even though an 

in depth theoretical investigation was not carried out, h-independent convergence was 

achieved and the convergence rates compare well with theoretical ones, contained in 

the literature, for multigrid techniques generally. For the cases considered here the 

numbers of nodes used are equal to, or larger, than those used in other work, and the 

solutions obtained must be considered to be amongst some of the most accurate 

available. 

As is often the case, the present work throws up as many questions and problems 

as it answers! One problem is the complexity of the method, which is an important 

consideration with respect to its incorporation in industrial codes. However, this must 

be weighed against the reduction in cost from its use. One advantage of the sensitivity 

of multigrid to incorrect implementaflon, is that it can often detect (by exhibiting 

degraded convergence) unphysical aspects of the discretisation or problem 

formulation. 

The BEW used here is not ideally suited for the large computational molecule of 

higher order schemes such as CCCT. This means that low relaxation factors must be 

used as the non-linear effects increase. As CCCT represents by far the best option for 

discretisation of the equations, this problem should be investigated further. One 

remedy for this would be to use a superior treatment of the non-linear terms when 
discretising the Navier-Stokes equations3. This should improve convergence by taking 
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greater account of coupling between variables. The principle answer would be to 

develop a solution technique well suited to CCCT. This could well be a line-by-line 

solver as opposed to a point-by-point one. Such solvers have been observed to be well 

suited to higher-order differencing, because they treat the equations in a fully implicit 

manner along ihe line6. They are particularly good at reducing errors with a 

wavelength similar to the rneshsize6' which is just the property we require of a 

smoother. Another avenue worth pursuing, but rather more radical than the above in 

terms of conventional work in this area, is that of using an explicit time-dependent or 

false transient solution technique. These have no problem in deciding the order of 

solution over the domain as all calculations are based on old values. The residuals 

required with multigrid are readily available for use, requiring no extra calculation as 

with semi-implicit schemes (BIM, CELS, SIMPLE). Such a technique could be simply 

and efficiently adapted for solution in a vector processor or transputer, both of which 

are becoming increasingly available. The problem of trying to find steady state 

solutions at high values of Reynolds number or Rayleigh number to problems that may 

well be periodic (as can happen with the backward facing step and the thermal cases 

investigated here) would not occur. In fact, such solutions should be easily obtained 

and examined. 

The staggered grid used here and in many other works, generates its own 

problems. One is the specification of outflow boundary conditions and the effect of this 

on multigrids, as found in Chapter 5. 'Me boundary treatment in general is extremely 

cumbersome and requires special consideration for multigrids. It is also very 

problematic from the aspect of constructing and programming restriction and 

prolongation operators. The multigrid strategy may well work better if a non-staggered 
formulation were adopted. Several authors5,2,1 have used such a grid with primitive 

variables and obtained good results. 

An alternative grid arrangement could incorporate the idea of Lonsdale, whose 

grid coarsening maintains the near-boundary point at a constant distance from the 

boundary while varying meshsizes in the interior. This improves the consistency of 
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boundary treatment between grids. 

The problems encountered with singularities in Chapter 5, could be alleviated by 

the use of an aiWytical solution in the region near to a singularity. This idec, has been 

used elsewhere4, but may need further attention for use with multigrids. 

Further points worth investigation are the use of a Newton solver for the coarsest 

grid problem, and the implementation of CCCT(variable cc) with multigrid giving 

particular attention to the transfer of the a. 's between grid levels. 

Investigation is also required into the relationship between grids with regard to 

interpolation and boundary conditions in multigrids and also into the possibility of a 

closer correspondence between interpolation in the restriction and prolongation 

operators and interpolation in the control volume discretisation. 
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Appendix I- Interpolation Operators 

The two-dimensional interpolation operators are as follows. 

Restriction of a Scalar 

This operator is used for the restriction of pressure and the scalars stored at the centre 

of the control volumes. Here, it is shown for pressure. It sweeps through the domain 

considering each i and j value in turn. If ý and ý are the i and j values of the point on 

the coarse grid, then if and j,, the i and j values on the fine grid, are defined as 

if = 2i, 
., 

jf = 2j, 

The equation for p(i, . 
j") is 

P(U I P(ifif)+P(ifif-, )+P(ir-lif)+P(if-lif-1) 
4 

Restriction of Velocity 

This is used for the two velocity components. With i, i, if and if defined as above 

U(ifjf)+U(ifjf-1) 
2 

VO. j. ) = 
V(ifif)+v(if-lif) 

2 

Prolongation of a Scalar 

Sweeping through the domain as above, with if = 2i, ý- I and jf = 2jý- I then 

P(ifif) - 
9p(U, )+3(p(ic, 71, j, )+p(ýj, 71))+p(ý-ij,: 71) 

16 

9p(i, j, -l)+3(p(i, ý-1j, -I)+p(i, j,; ))+p(je-ij, ) 
P(ifif-1) = 16 

P(ir-lif) 
9p(i, -Ij, )+3(p(i,: 71jd-l)+p(U, ))+p(i,, j, ý-1) 

16 
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9p(i, -l jc, -l)+3 (p(ý&7 1)+p(ý- I j,, ))+P(icic) 
16 

Prolongation of Velocity 

With if, jf, i, and ic. defined as for pressure 

U(if, jf) = 

u(if, jr-1) = 

3(u(ic 
u(ir-ljf) 

j, )+U(i, ý-lj, ))+U(icic7l)+U(ic7lic7l) 

8 

3(u(i,, j. -I)+U(i,, 71de-1))+u(l, -, 
Jc)+u(lc- 'i 

u(if-lir-1) = 

and 

3v(i,. j, )+v(i, -Ij, 
V(if, jf) = 

3v(i, 7-1, j, , 
ýv(ýj, 

v(if-lif) -4 

3(v(ic 
, 
j, )+V(ic jc71))+V(i, 71jc)+V(i, 71jd-1) 

8 

3(v(ic-I jj+v(i, ý- I jr . 71))+V(icjr)+V(U, -I) 

8 

The interpolation for three-dimensions is the obvious extension of the two-dimensional 

case. 
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Appendix III -Solution of a banded matrix 

Consider the matrix system 

000 cl 
0 a2 00 C2 

XI r, 

X2 rz 
00 a3 0 C3 X3 r3 

000 a4 C4 X4 r4 

Lb, b2 b3 b4 0j 
X5 rs 

The matrix can be decomposed into a lower and upper form, LU 

al 0 0 0 cl 
0 a2 0 0 c2 

0 0 a3 () C3 

0 0 0 a4 C4 

b, b2 b3 b4 0 

M, 0 0 0 0 1 0 0 0 ul 
0 M2 0 0 0 0 1 0 0 U2 

0 0 M3 0 0 0 0 1 0 U3 

0 0 0 M4 0 0 0 0 1 U4 

. 
11 12 13 14 M5 9 0 0 0 1- 

M, 0 0 0 MIUI 
0 M2 0 0 m2u2 

0 0 M3 0 M3U3 

0 0 0 M4 n'4U4 

11 12 13 14 lIUI+12U2+13U3+14U4+M5j 

So for i=I to 4 

4. = bi 

ný- = a, 

UI =- 

and 
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4 
M5 = -YIiui. 

i=l 

Having solved these equations the x, are calculated as follows 

Obtain the zi by 

for i= 1 to 4 

ri 
ný. 

4 riC. 
Z5 

i=i M5 

Then obtain the xi by 

X5 ý Z5 

for i=4 to 1 

Xi = Zi - UiZ5- 

The analogous technique for a 7x7 matrix is derived as above, trivially. 


