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Abstract

Ontologies have been proposed and studied in the last couple of decades as

a way to capture and share people’s knowledge about the world in a way that

is processable by computer systems. Ontologies have the potential to serve as a

bridge between the human conceptual understanding of the world and the data

produced, processed and stored in computer systems. However, ontologies so far

have failed to gather widespread adoption, failing to realise the original vision of

the semantic web as a next generation of the world wide web: where everyone

would be able to contribute and interlink their data and knowledge as easily as

they can contribute and interlink their websites.

One of the main reasons for this lack of widespread adoption of ontologies is

the steep learning curve for authoring them: most people find it too difficult to

learn the syntax and formal semantics of ontology languages. Most research has

tried to alleviate this problem by finding ways to help people to collaborate with

knowledge engineers when building ontologies; this approach however, requires

the wide availability of knowledge engineers, who in practice are scarce. In the

context of the semantic web, recent research has started looking at ways to di-

rectly capture knowledge from domain experts as ontologies. One such approach

advocates the use of Controlled Natural Languages (CNL) as a promising way to

alleviate the syntactical impediment to writing ontological constructs. However,

not much is yet known about the capabilities and limitations of CNL-based ontol-

ogy authoring by domain experts. It is also unknown what type of automatic tool

support can and should be provided to novice ontology authors, although such

intelligent tool support is becoming possible due to advances in reasoning with

existing ontologies and other related areas such as natural language processing.

This PhD investigates how CNL-based ontology authoring systems can make

ontology authoring more accessible to domain experts by providing intelligent



tool support. In particular, this thesis iteratively investigates the impact of pro-

viding various types of intelligent tool support for authoring ontologies using the

Web Ontology Language (OWL) and a controlled natural language called Rabbit.

After each iteration of added tool support, we evaluate how it impacts the ontol-

ogy authoring process and what are the main limitations of the resulting ontology

authoring system. Based on the found limitations, we decide which further tool

support would be most beneficial to novice ontology authors. This methodol-

ogy resulted in iteratively providing support for (i) understanding the syntactic

capabilities and limitations of the chosen controlled natural language; (ii) fol-

lowing appropriate ontology engineering methodologies; (iii) fostering awareness

about the logical consequences of adding new knowledge to an ontology and (iv)

interacting with the ontology authoring system via dialogues.

The main contributions of this PhD are (i) showing that domain experts

benefit from guidance about the ontology authoring process and understandable

syntax error messages for finding the correct CNL syntax; (ii) the definition

of a framework to integrate the syntactical and semantic analyses of ontology

authors’ inputs; (iii) showing that intuitive feedback about the integration of

ontology authors’ inputs into an existing ontology benefits ontology authors as

they become aware of potential ontology defects; (iv) the definition of a framework

to analyse and describe ontology authoring in terms of dialogue moves and their

discourse structure.
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Chapter 1

Introduction

The process of formally capturing human knowledge has been investigated for

many years in the field of computer science. Ontologies [56] have been proposed

and studied in the last couple of decades as a way to formally capture and share

people’s knowledge about the world in a way that is processable by computer

systems. Ontologies have the potential to serve as a bridge between the human

conceptual understanding of the world and the data produced, processed and

stored in computer systems. The Semantic Web [12] envisages ontologies as a

key component for enabling the large scale integration and sharing of the rich

data sets held by public organisations and businesses. This vision requires the

availability, and thus the development, of ontologies ranging from small domain

ontologies to large ontologies linked to legacy datasets [3, 39]. However, the time

and effort required to create ontological structures is one of the major reasons

for the reluctance of large organisations and businesses to utilise SW technologies

[3, 90].

Ontology Authoring is the process of developing ontologies. This process is

performed by one or more ontology authors, people who directly contribute to the

formal capture of knowledge in the form of ontological structures. Most ontology

authoring tools are designed to be used by knowledge engineers, specialists with

appropriate knowledge engineering skills but who may lack the necessary domain

expertise to create the relevant ontologies [47]. Finding knowledge engineers com-

petent in a specific knowledge domain to be captured in an ontology is a luxury.

The most common case is to ask domain experts, people who are subject matter

1



experts, to provide relevant knowledge sources, or apply knowledge elicitation

techniques to discover information directly from the expert, while knowledge en-

gineers encode the ontology using available ontology authoring tools. Apart from

creating an extra layer of bureaucracy in the development cycle [90], this ap-

proach can hinder the ontology construction process and may have a negative

impact on the quality of the resultant ontology (e.g. poor documentation, in-

consistency of terminology used, incorrect or incomplete knowledge constructs).

There is thus a need for intuitive ontology authoring : enabling domain experts

to directly contribute their knowledge to ontologies without requiring extensive

training in knowledge engineering or ontology authoring tools.

Existing research has shown strong support for using a Controlled Natural

Language (CNL) – an engineered language that is the subset of a natural lan-

guage and is computer processable – as a basis for making ontology authoring

tools more intuitive [33, 47, 80, 122, 125]. CNLs enable the syntactic expression

of knowledge in a way that can be automatically converted into an appropriate

logical formalism [40]. CNLs seem to be a a step in the right direction; how-

ever, domain experts still need support about other aspects relevant to ontology

authoring [93].

This thesis investigates how CNL-based ontology authoring systems can make

ontology authoring more accessible to domain experts by providing intelligent tool

support. In particular, this thesis iteratively investigates the impact of provid-

ing various types of intelligent tool support for authoring ontologies using the

Web Ontology Language (OWL) [115] and a controlled natural language called

Rabbit. After each iteration of added tool support, we evaluate how it impacts

the ontology authoring process and what are the main limitations of the result-

ing ontology authoring system. Based on the found limitations, we decide which

further tool support would be most beneficial to domain experts who are novice

ontology authors. Following this methodology, this thesis presents a novel holistic

framework for combining syntactic, semantic and interaction analyses in order to

provide intelligent support for (i) understanding the syntactic capabilities and

limitations of the chosen controlled natural language; (ii) following appropriate

ontology engineering methodologies and (iii) fostering awareness about the logical

consequences of adding new knowledge to an ontology.

2



The hypotheses that drive this PhD are that: Holistic intelligent tool support

based on CNL can enable the active involvement of domain experts in ontology

authoring. In addition, integration of syntactic support (in the form of a CNL)

with semantic and interactive tool support can improve the effective involvement

of domain experts in the ontology authoring. From these hypotheses we derive

the following research questions which we address in this thesis:

� How can CNL-based tool support be integrated with support for follow-

ing an ontology authoring methodology and how does such combined tool

support affect ontology authoring by domain experts?

� How can the syntactic analysis required for understanding textual inputs

(such as CNL) be formalised and integrated with semantic analysis of the

inputs in order to provide understandable feedback to domain experts?

� How can dialogue systems be used to formalise and improve ontology au-

thoring interactions for better support of domain experts?

We will present a novel ontology authoring tool that enables domain experts

to build ontologies using a CNL and that guides them through an ontology au-

thoring methodology. We formalise the (i) syntactic analysis process required to

understand textual inputs and generate syntactic feedback (ii) semantic analysis

process required to understand the logical consequences of adding new facts to an

ontology and (iii) discourse analysis required to provide intelligent interactions

and fine-grained support to ontology authors. At the start of this research we

have made the following assumptions:

� OWL and Rabbit are representative examples of ontology languages and

controlled natural languages for ontology authoring,

� domain experts:

– have good knowledge of the domain to be modelled,

– can provide descriptions and knowledge sources for concepts and rela-

tionships of the domain;
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– usually have no previous experience building ontologies1, but may have

experience building other types of models in their specific domain.

This thesis resulted in a number of original research contribution:

� a new tool for directly involving domain experts in ontology authoring.

� a novel framework for providing syntactic and semantic feedback for ontol-

ogy assertions.

� a novel dialogue framework for formalising ontology authoring interactions.

This thesis is organised in six chapters. We first will provide an overview of

the research context for ontology authoring in Chapter 2, where we will justify the

need for making ontology authoring more intuitive. We then will present various

approaches for involving domain experts and motivate our choice for using CNLs

as a suitable basis to achieve this goal. We will also review the main issues and

research challenges on the topic and relate them to this research.

The first iteration of tool support for intuitive ontology authoring will be

presented in Chapter 3. We will present ROO, a CNL-based ontology authoring

tool designed to support the involvement of domain experts. We will present an

existing design for a CNL and an ontology authoring methodology, which we use

as the blueprint for designing and implementing the tool. The chapter will then

present original work by giving a detailed description of the ontology authoring

tool. This description will include various design decisions about how to imple-

ment a CNL parser for an expressive language using standard natural language

processing tools. We will also describe how to provide guidance to domain ex-

perts based on an ontology authoring methodology. This chapter concludes by

describing an evaluation study of the tool compared to a similar CNL-based tool.

Based on the experiences with ROO, we performed a second iteration of our

research, which is described in Chapter 4. In this second iteration, we noticed

that extending our CNL parser to provide feedback about inputs which are not

proper CNL was cumbersome and could be improved. We also noticed that

1In this thesis, when we use the term novice ontology author, we assume that this person is

also a domain expert.
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use of ROO could result in ontology defects being introduced. The chapter will

introduce a formal description of the process of syntactically and semantically

analysing the inputs of ontology authors (OAs). This chapter will then present

a novel integration analysis strategy that is applied to generate feedback for

ontology authors. We will present an evaluation to control whether ontology

authors benefit from such semantic feedback and whether they understand it

without having a background in formal logics.

The evaluations of ROO and the integration analysis from Chapters 3 and 4

indicate that appropriate feedback during ontology authoring could benefit from

complex interactions between the ontology author and the system; this led to a

third iteration of our research, presented in Chapter 5. This chapter will address

interaction problems in ontology authoring systems by presenting a framework

for describing ontology authoring interactions in terms of dialogue plans. We will

present existing work related to dialogues for ontology authoring and will intro-

duce the general area of dialogue systems. The dialogue framework for ontology

authoring is then defined in detail and validated by (i) formalising an existing

ontology authoring interaction as a dialogue (ii) adapting and formalising a dia-

logue to make it more intuitive for novice ontology authors and (iii) presenting

the implementation of the dialogue framework and the formalised dialogue inter-

actions.

Finally, Chapter 6 will summarise the main aspects of the research, discussing

the main contributions of each iteration and future directions of research.
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Chapter 2

Intuitive Ontology Authoring

Ontology languages appear to offer a unique opportunity for people to formally

describe their knowledge. The vision of the Semantic Web sees such formal de-

scriptions being used to give context to data that is published online, which in

turn can be exploited by computers to foster sharing and discoverability of knowl-

edge on the web. However, capturing formal descriptions in the form of ontologies

is not a trivial task. This has resulted in a broad literature on ontologies, ontol-

ogy languages, ontology engineering and ontology authoring. This chapter aims

to define the area of ontology authoring; in doing so, this chapter also narrows

the scope of this PhD.

The next sections will set the context and the theoretical foundations that

underpin this research. The sections show the need for making the ontology

authoring process more intuitive and accessible to people, in particular to do-

main experts. Furthermore, we motivate our decision to use Controlled Natural

Languages as our main approach for achieving more intuitive ontology authoring.

2.1 Ontology Authoring

In this PhD, we use the term Ontology Authoring for the process of creating or

editing a formal ontology. Vital steps in this process are the understanding of

existing knowledge and the formulation of new knowledge in an ontology language.

This section aims to provide an overview of ontology authoring. We do this by

defining what are ontologies and introducing the general research area of ontology
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2.1 Ontology Authoring

engineering. We also describe the classical tools which are used for ontology

authoring, which are meant to be used by knowledge engineers.

2.1.1 Preliminaries

Ontologies

The output of the ontology authoring process is an ontology. A common def-

inition of Ontology is given by Gruber as a “formal, explicit specification of a

shared conceptualisation” [55]. In this PhD we assume that the goal of ontology

authoring is to produce such an ontology. However, achieving the conditions of

“explicitness” and “shared conceptualisation” can take a long time, thus we will

also call any intermediate formal representation of knowledge an ontology1 .

In order to produce a formal representation of knowledge we assume the use of

an ontology language: a formal language that can be used to represent knowledge

about the world in a manner that minimises ambiguity. Various such languages

have been developed which vary in terms of expressivity, underpinning logic, level

of standardisation, computational complexity, tool support, etc. Recent exam-

ples of ontology languages are the Web Ontology Language (OWL) 2, Common

Logic [34], F-Logic [88], the Resource Description Framework (RDF)3 and the

RDF Schema language (RDFS)4.

It is worth noting that current ontology languages are based on decades of

research into knowledge representation and expert systems. Early expert sys-

tems, like MYCIN [20] used rules to capture the domain knowledge and identi-

fied the need to capture knowledge in formal languages. Another early language

for capturing knowledge is Prolog[129], a declarative (and general programming)

language which is still in use today and enables the specification of knowledge

in terms of facts and rules. Besides rule-based knowledge representation, there

1That is: in this thesis, we will not require ontologies to be shared between a community

or have some level of coverage of the domain. This is because in this thesis, we focus instead

on the knowledge formulation aspects of ontology authoring.
2http://www.w3.org/TR/owl2-overview/
3http://www.w3.org/TR/rdf-primer/
4http://www.w3.org/TR/rdf-schema/
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2.1 Ontology Authoring

are also various frame-based languages such as the Frame Representation Lan-

guage (FRL) [116], KL-ONE [18], CycL [100]. Description logics have led to new

languages such as DAML [71] and OIL [70], the direct precursors to OWL.

In this PhD we will target ontologies based on OWL. The main reasons for

choosing this language are as follows:

Expressivity OWL is based on the SROIQ description logic. This means it

is more expressive than lightweight ontology languages such as RDF and

SKOS, but less expressive than F-Logic or Common Logic. OWL is a fairly

expressive language: it enables the definition of complex terminological

knowledge (concepts and relations) as well as factual knowledge (instances).

OWL is a good choice for this PhD because we assume that the more

expressive an ontology language is, the more tool support is required to

use the language correctly. Hence, we expect OWL to be a good choice for

investigating tool support for enabling more intuitive ontology authoring

since it provides the right balance of expressivity.

Note that in this thesis, we distinguish between lightweight and heavyweight

ontologies, which are terms that are related to the ontology language ex-

pressivity. Lightweight ontologies are those that only provide a glossary of

concepts and relations as well as some simple hierarchical organisation of

those concepts. Ontologies languages with limited expressivity like RDF

and SKOS can be used to create such ontologies. Heavyweight ontologies

include more complex relations between concepts and relations like, for ex-

ample disjunction of concepts, anonymous concepts and property chains.

More expressive languages can be used to create such ontologies, but can

also be used to create lightweight ontologies, simply by using only a subset

of the provided language constructs.

Standardisation OWL is a W3C standard. This is important to minimise com-

patibility issues in the future and to ensure a fixed language definition. Sev-

eral other languages (RDF, Common Logic) have also been standardised.

Popularity and Tool Support OWL and RDF have gained great popularity

in the last decade. This means that example ontologies are readily available.
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2.1 Ontology Authoring

Furthermore, the popularity of these languages means that there is a pool

of research and production tools and algorithms that we can reuse in our

research.

Designed for the Web OWL has been designed with the Web in mind. This

makes it more likely that existing ontologies in this language are published

in the web. This availability of existing ontologies can be useful for our

research.

There is a push to creating ontologies, because their formally encoded knowl-

edge can be used in various ways [87]: enabling and improving search; retrieval

of information; improving the presentation of information; facilitating the inte-

gration of heterogeneous information; enabling reusability and interoperability of

information systems; and enabling personalisation services.

Ontology Engineering

The push for creating useful ontologies, paired with the realisation that ontologies

are software artifacts has resulted in a new discipline called Ontology Engineering.

This discipline is very broad and studies:

methodologies for ontology construction which prescribe steps that need to be

taken when constructing ontologies. Example methodologies are METHON-

TOLOGY [44], Uschold & King [138], On-to-Knowledge [131] and the

NeON methodology [130].

approaches that can be taken for building ontologies. Example approaches

include automatic learning of ontologies from existing data sources and

construction of ontologies based on existing thesauri [105, 142].

tools for supporting ontology construction and validation. This includes ontol-

ogy authoring systems [91, 94, 134], tools for matching ontologies [42], tools

for checking the consistency of ontologies [106], tools for ontology debug-

ging [82] etc.

ontology evaluation defines methods for evaluating created ontologies [43, 57].
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2.1 Ontology Authoring

The first methodologies, approaches and tools often assumed that only Knowl-

edge Engineers, individuals trained in formal logics and ontology modelling,

would build ontologies. This is reflected in the mainstream ontology authoring

systems such as Protégé and TopBraid, which require extensive training before

being usable. This resulted in a bottleneck for ontology creation, since:

� only a limited number of people had the skills to build ontologies, but lacked

knowledge about the domain to be captured in an ontology.

� conversely, the domain experts, individuals who have the knowledge about

the domain to be modelled, lacked the skills to formulate this knowledge as

ontology constructs.

Recently, this resulted in a series of new methodologies, approaches and tools

that try to make ontology authoring more intuitive. The goal of these new ap-

proaches is to facilitate the active involvement of domain experts in ontology

authoring. We discuss these developments in the next section.

2.1.2 Involving Domain Experts

Promoting the active involvement of domain experts in the ontology author-

ing process has been an important trend in recent research efforts in Ontology

Engineering.1 In the area of the semantic web, two recent ontology engineering

methodologies have suggested possible ways to achieve the involvement of domain

experts in ontology engineering.

DynamOnt The DynamOnt project [54] pointed out that existing methodolo-

gies did not support domain experts because they lacked appropriate sup-

port for communities and collaboration. The project aimed at producing

a methodology where domain experts could create lightweight ontological

models that could be used as part of an “evolving conceptual model”. To

1Note that the wider problem of acquiring knowledge from domain experts is a longstanding

problem in expert systems and various techniques have been researched to facilitate knowledge

acquisition, for example in [17]. The novelty now is that, in the context of the web, the presence

of a knowledge engineer is more unlikely, while the ease to publish ontologies on the web makes

it more important for domain experts to be able to create ontologies.
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achieve this, DynamOnt proposed to reuse existing methodologies (Uschold

& King [138] and CommonKADS [121]) while (i) adding guidance for do-

main experts so they can act as knowledge engineers; (ii) encouraging col-

laboration; and (iii) grounding the resultant ontologies using foundational

ontologies such as DOLCE [50].

HCOME Similar to DynamOnt, the HCOME methodology [92] argued that

traditional ontology construction methodologies such as METHONTOL-

OGY [44], Uschold & King [138], On-to-Knowledge [131], rely too much

on the knowledge engineer for development, maintenance and evolution of

ontologies and minimize the role of the domain experts. The HCOME

methodology proposes to support individual domain experts by enabling

them to collaborate in the construction of ontologies with a community of

knowledge workers.

DynamOnt and HCOME have both pointed out limitations of traditional

ontology construction methodologies and suggested to involve domain experts by

(i) considering ontology construction as a joint process involving both domain

experts and knowledge engineers and (ii) providing domain experts with suitable

guidance to ensure their active involvement in ontology authoring. Below, we

will discuss various approaches and tools that have been suggested to foment the

involvement of domain experts.

More recently, the Kanga methodology [93] for ontology construction has

been developed. Kanga has been informed by experiences at Ordnance Survey

when building several ontologies in the topographical domain. Kanga adds to

the existing ontology methodologies focusing on domain experts’ involvement by

clearly identifying the assumptions about domain experts and distinguishing the

phases where domain experts or knowledge engineers should be involved. Most

other methodologies also explicitly include the domain expert. Where Kanga

differs is in the emphasis it places on the domain expert and the central role

that the expert plays. Kanga requires the domain expert to take the lead role,

guided by the knowledge engineer but nevertheless in control. So where Kanga

differs is not in that it involves the domain expert where others do not, rather

the degree to which it involves them. Additionally, Kanga does not sacrifice the
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expressivity of the resultant ontologies and describes how domain experts can be

involved in the construction of highly expressive and interconnected ontologies by

using a Controlled Natural Language interface. Thus Kanga has largely adapted

best practice to place greater emphasis on the domain expert and therefore the

novelty in Kanga results purely from this shift of emphasis. Since we will base

our work in Chapter 3 on the Kanga methodology, we provide an overview of

Kanga in Section 3.1.

Approaches and Tools

Several approaches and tools to involve domain experts in the ontology construc-

tion process have been proposed in recent years. We discuss these approaches

here and highlight target contributions for this PhD. Note that the following

approaches are not exclusive of each other; that is, these approaches are often

compatible and can be (and have been) combined to minimise drawbacks of the

separate approaches.

Ontology Engineering tools that improve collaboration focus on sup-

porting a community of people (including domain experts) to build ontologies,

e.g. HCONE1 [92] and Web Protégé [136]. These tools provide communication

and Web 2.0 techniques – such as discussion forums – to aid users to propose,

document and implement changes to the ontology. The main advantage of this

approach is that it encourages the formation of a community of both domain

experts and knowledge engineers to collaborate in building the ontology. These

tools improve the communication between domain experts and knowledge engi-

neers, which may motivate domain experts to provide more input into the ontol-

ogy construction process. However, the means to edit the ontology are similar

to traditional tools, e.g. Protégé, which makes domain experts heavily depen-

dent on knowledge engineers to formalise the ontologies. Recent studies explore

customised interfaces that domain experts can be comfortable with (predefined

forms or excel sheets) and can be converted into OWL [120, 137]. This clearly

has potential for facilitating domain experts’ involvement in ontology engineering,

1Note that HCONE is the ontology authoring tool that supports the HCOME methodology.

12



2.1 Ontology Authoring

however their participation is currently restricted to discussions and the popu-

lation of ontologies with specific instances and subclasses without being directly

involved in the adding of new formal definitions. Hence, the ontology constructs

are actually composed by a group of knowledge engineers (who may or may not be

domain experts), while the domain experts without knowledge engineering expe-

rience mainly provide the knowledge sources and are involved in the verification

of the ontology. The reported experimental studies indicate that this approach

enables the involvement of domain experts; however this involvement is limited,

since the presence of knowledge engineers is still required in order to produce

ontologies.

Semantic Wikis [51] are extensions allowing the wiki manager to define a

broad ontology structure that corresponds to wiki pages. Users then refine the

ontology by editing and semantically tagging wiki pages. The wiki interface hides

the ontology formalisms from the users, in this case domain experts, who can add

information to the ontology model by editing wiki pages. Note that to make the

interaction intuitive, an initial ontology needs to be created with input from

both domain experts and knowledge engineers (e.g. to create semantic forms in

Semantic Media Wiki). Semantic wikis offer a flexible approach for lightweight

ontology engineering. However, they are inappropriate for heavyweight ontology

engineering which requires more expressive logical formalisms, such as description

logic and OWL.

Ontology Maturing[19, 119] aims to reuse semi-structured data produced

by knowledge workers such as emails, tags and existing schemas and classifi-

cations to produce lightweight ontologies and eventually heavyweight ontologies.

This approach looks at ways for users to add formal semantics to existing data one

layer at a time. Proposed tools, e.g. SOBOLEO [19], for extracting a lightweight

ontology based on a set of tags or existing schema provide intuitive ways for

domain experts to encode their knowledge of the existing data. However, this

work does not seem to have follow-up studies that show the suitability of this

approach for producing heavyweight ontologies. The available literature indi-

cates that this approach only achieves minor contributions from people without

knowledge engineering skills to the ontology maturing process.
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Ontology Understanding aims to make it easier to understand what type

of knowledge is represented by a particular ontology. This is achieved through a

variety of techniques such as (i) ontology summarisation where the main concepts

in an ontology are extracted [113]; (ii) showing relevant metadata [62]; (iii) show-

ing Ontology Visualisations to gain insights into the structure of ontologies and

linked data [108]. Domain experts can benefit from these approaches by getting

a high-level understanding of existing ontologies that they can reuse or extend.

However, these techniques do not always translate to enabling domain experts

to add new knowledge to the ontologies. From the three techniques mentioned

above, only ontology visualisations can be used to provide visual interfaces for

editing ontologies [94], but still require learning the available interface and learn-

ing about how the interface relates to the ontology language.

Limitations of Knowledge Formulation

A common limitation of all of the presented approaches and tools is that they

only enable knowledge formulation of lightweight ontologies by domain experts. A

possible cause for this limitation is that they all rely on Graphical User Interfaces

(GUIs) to enable knowledge formulation. The problem with this approach is that

the GUI must provide a different GUI component for each construct in the target

ontology language. In this case, domain experts need to learn the different types

of components and they also need to have a rough idea of the meaning of each

component. Designing such GUIs in an intuitive way can be very challenging.

For example, a GUI that show subsumption hierarchies can be misinterpreted by

users, resulting in the use of mereological relations instead [60]. Another example

of a component that is difficult to make intuitive is shown in figure 2.1; this is a

component for entering object property restrictions in OWL where the user needs

to know the meaning of OWL terminology such as Restriction type (existential,

universal or cardinality), a Restricted property, filler and cardinality.

The discussion of the various approaches that use GUI components indicate

that it is difficult to produce a GUI that is sufficiently flexible and intuitive in

order to facilitate knowledge formulation for expressive ontology languages [87,

137]. As a way to get past these limitations, a novel approach has been proposed

based on Controlled Natural Languages, which we discuss next.
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Figure 2.1: Screenshot of the Object Restriction Creator component in Protégé 4.

Controlled Natural Language as a Way Forward

Recently, a new approach that relies on the use of Controlled Natural Language

(CNL) interfaces [46] to perform ontology engineering has been explored. A CNL,

in this case, is a formal language that closely resembles natural language. The

main advantage of such an approach is that it drastically lowers the barrier for

domain experts to understand existing ontologies and to contribute statements to

the ontology. Compared to the other approaches discussed above, this is the only

approach that does not require collaboration with a knowledge engineer while

still allowing the full use of the ontology language.

Because this is such a promising approach, this PhD will use a CNL as the

way to achieve knowledge formulation by domain experts. We discuss existing

research on CNLs for ontology authoring in more detail in the following section.

To sum up this section, the presented approaches show that in practice, it is
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very difficult to achieve effective domain experts’ involvement without appropriate

tool support. This PhD aims to contribute to this area of research by investigating

a number of novel ways to provide tool support to domain experts.

2.2 CNL-Based Ontology Authoring

A Controlled Natural Language (CNL) is a language that is based on a nat-

ural language (e.g. English), but that is restricted (i.e. controlled) in some as-

pect [141] (e.g. its vocabulary, morphology, syntax or interpretation). The idea of

formally defining a sublanguage of a natural language for computer processing was

pioneered in the 1970s. For example, in [111] an early form of a controlled natural

language is used to construct a “conversational domain”, where the translation

between a natural language sentence into a formalised structure is performed by

a human intermediary. As another early example of a CNL, [107]proposes the

definition of a CNL as an interface for writing SQL queries. The idea of defin-

ing a sublanguage for English and French was used to automatically translate

restricted domains such as meteorology and aviation manuals [73].

The pioneering work of the 1970s and 1980s has evolved and currently, in

the context of ontology authoring for domain experts, CNLs can be used to help

them:

Understand existing Ontologies. CNLs can be used to generate CNL sen-

tences from an existing ontology [2, 16, 139]. In this case, the focus when

defining the CNL is on making the CNL sentences easy to understand and

making sure that they reflect the semantics of the ontology language. Such

CNLs can improve domain expert participation, however since such a CNL

is not necessarily easy to write, the participation of domain experts is lim-

ited. That is, domain experts cannot directly contribute their own knowl-

edge to the ontology, but have to rely on somebody who can formulate

knowledge in the formal ontology language. An example of a CNL that is

designed for readability but not writability is presented in [128].

Query existing Ontologies. CNLs can be designed to help domain experts

formulate questions to be presented to the ontology. This is helpful for
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ontologies that are quite large, since browsing through the ontology may

be difficult in such cases. This is also helpful for heavyweight ontologies,

since such ontologies can contain implicit knowledge that follows from the

explicitly stated knowledge and the ontology language semantics. Having a

CNL to formulate questions helps domain experts understand what knowl-

edge is captured in the ontology. CNLs that have been proposed for query

answering include [4, 13, 23, 132]. These languages make it easier for do-

main experts to evaluate an ontology, as they can pose questions that need

to be answered based on the ontology and a set of instances. To the best of

our knowledge these languages can only be used to formulate queries; they

cannot be used to construct ontologies because they do not support the

input of new knowledge into the ontology. They may however, be closely

related to languages that do allow authoring.

Formulate Knowledge. CNLs can be defined which focus on both understand-

ability and writability. In particular, these types of CNLs can be automat-

ically converted into some target ontology language. Such CNLs are very

promising for involving domain experts, since they allow for the direct in-

volvement of the domain authors. The promise of such CNLs is that domain

experts will no longer be dependent on people who can formulate knowl-

edge in an obscure logical syntax. Below, we look at existing CNL-based

approaches for knowledge formulation in more detail.

2.2.1 CNLs for Knowledge Formulation

We now discuss various CNLs that have been proposed in the literature to facil-

itate knowledge formulation by domain experts. For each CNL we:

� discuss any relevant design decisions and history. In particular we describe

how the grammar is specified, whether there is an intermediate representa-

tion that is used and what the target logical language is for the CNL.

� state whether CNL is linked to a tool that provides support for entering

valid inputs;
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� discuss any findings and limitations that have been reported in the literature

and

� provide a small number of example sentences in the CNL to provide a feeling

for the language.

ACE Attempto Controlled English [45, 80] is the most mature CNL having orig-

inally been created to translate into First Order Logic. The grammar of

ACE is specified using a Definite Clause Grammar [112], which is then

parsed into an intermediate representation in the form of a Discourse Rep-

resentation Structure [83]. This structure can then be converted into first

order logic.

A subset of ACE is now used to drive an ontology authoring applications

called ACE View [77] where the resulting sentences are translated into OWL

and SWRL. ACE View provides a CNL interface to enter and view ontology

knowledge that is automatically translated into OWL.

A major limitation for achieving active involvement by domain experts is

that ACE View requires knowledge engineering expertise in order to be

used effectively. This is due to the lack of guidance through the ontology

construction process, which is missing in ACE View.

ACE View provides bi-directional conversion between OWL and ACE. This

allows ACE View to import existing OWL ontologies and generate corre-

sponding ACE sentences. The bi-directionality also allows ACE View to

adapt and expose advanced functionality from Protégé 4. For example, in-

ferred axioms can be shown as ACE sentences and explanations of some

inferred axioms can also be rendered as lists of ACE sentences.

ACE has also been used in various promising directions for making ontol-

ogy authoring more intuitive. ACE has been integrated in a multilingual

semantic wiki [78]. It has also served as the basis of a speech recognition

system [79], demonstrating the versatility of the CNL approach, which is

not bound to purely textual inputs. Finally, ACE has been used to provide

a paraphrasing service to help domain experts get an alternative rendering
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for ontological statements [81]. It is not clear how useful these features are

since no systematic evaluation of these features has been reported.

Examples of ACE sentences taken from [123] are:

� If something X is larger than something Y then Y is not larger

than X.

� Every river-stretch has-part at most 2 confluences.

� For every factory its part is a building whose purpose is a

manufacturing.

CPL The Computer-Processable Language is another mature CNL, developed

at Boeing, and used in the HALO project [4, 24, 26]. HALO improved over

other CNL approaches by providing a more holistic approach: the CNL is

provided in conjunction with support of the ontology construction process

and not just as a standalone tool for entering knowledge into the system.

Within the HALO project, CPL is used to formulate queries, rather than to

capture domain knowledge 1. A missed opportunity in this case is that no

systematic evaluation was performed to study the impact of the CNL aspect

combined with tool support to aid domain experts in ontology authoring

tasks.

CPL is parsed using a broad coverage chart parser [58], which generates

an intermediate representation called a “logical form” which resembles a

abstract syntax tree, but includes some logic-type symbols. This logical

form is finally translated into a frame-based language called Knowledge Ma-

chine [27], which is based on first-order logic. Example sentences from [24]

are:

� An object is thrown from the top of a cliff.

� The object falls from the top of the cliff to the ground.

SOS The Sydney Ontology Syntax [29] is a CNL that targets OWL. We are not

aware of any tool support for the Sydney OWL Syntax, although SOS is

1Knowledge capture is performed using a graphical representation.
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a language that is based on PENG (Processable English), which provided

tool support in the form of an editor with auto-completion features [124].

The PENG editor also proposed the use of reasoning services to provide

warnings and error messages based on results of theorem provers; however,

no evaluation was reported to show how useful such services were in prac-

tice [124].

PENG uses a similar approach as ACE by starting with a Definite Clause

Grammar to define the language constructs. It differs from ACE in that it

then uses a top-down chart parser before constructing the Discourse Rep-

resentation Structure, which is finally translated into a first-order notation.

In the case of the Sydney OWL Syntax, the final step is to convert from

that first-order notation to OWL. Example SOS sentences from [123] are:

� If X is larger than Y then Y is larger than X.

� Every river stretch has at most 2 confluences as a part.

� Every factory has a building as part that has a manufacturing

as a purpose.

CLOnE Controlled Language for Ontology Editing is a CNL developed us-

ing standard Natural Language Processing techniques [47]. The reported

CLOnE language is a proof of concept in the sense that it only covers a

small subset of OWL. This small subset is enough for building lightweight

ontologies. One contribution reported in [47] was performing a comparative

study between CLOnE and Protégé. This study showed increased efficiency

in building ontologies using a controlled natural language as opposed to the

classic Protégé user interface.

CLOnE is defined in terms of a JAPE [30, Chapter 7] transducer that

matches regular expressions over basic NLP annotations as its input: sen-

tence splitting, part-of-speech and morphology analysis. Matched patterns

are directly translated into OWL constructs without an intermediate rep-

resentation. Example sentences from [47] are:

� Persons are authors of documents.
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2.2 CNL-Based Ontology Authoring

� Carl Pollard and Ivan Sag are authors of ’Head-Driven Phrase

Structure Grammar’.

Rabbit is a CNL developed by the Ordnance Survey as part of a methodology for

involving domain experts (in the case of the Ordnance Survey: geographers,

cartographers, etc.) in ontology authoring. When this PhD started, the

language consisted only of a rough specification of the types of sentences

that should be allowed in Rabbit. No tool support was available for parsing

the language, converting it to OWL or helping domain experts to write

this CNL. However, due to the combination of the ontology engineering

methodology, our collaboration with Ordnance Survey and the following

design decisions of the CNL, we have chosen this CNL as the starting point

for our investigations:

� the use of one CNL pattern to represent one OWL axiom type

� lightweight intermediate representation (no requirement for anaphora

resolution, no need for Discourse Representation Structure);

� direct control of the language and tool development (none of the other

available CNLs at the time were open source)1;

� full support of OWL constructs.

We provide a more detailed look at the Rabbit language in Section 3.1.1; a

few example sentences taken from [123] are:

� The relationship ‘‘is larger than’’ is asymmetric.

� Every River Stretch has part at most two confluences.

� Every Factory has a part Building that has Purpose Manufacturing.

The CNLs discussed above differ in some of their design choices regarding

how strongly they aim to recreate natural language sentences and how easy it

is to define computable linguistic restrictions on the language. In the end, how-

ever, languages targeting the same ontology language tend to be similar to each

other [123].

1The ACE parser has now been open sourced.
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Conclusion

Evaluation of existing CNLs for ontology authoring have shown positive results

regarding the intuitive understandability of CNL sentences [41, 96], at least in

the case of small sets of CNL sentences. Results are less positive regarding the

writability of CNLs, and point at the need for tool support for producing syntac-

tically correct sentences. However, one of the main benefits of CNLs is that they

enable the provision of such tool support due to the formal syntactic specification

of CNLs. In the next section we summarise the types of syntactic support that

they enable.

2.2.2 Syntactic Support

CNLs require a formal definition of their syntax (a language grammar), which can

be used to provide a variety of ways to help ontology authors enter syntactically

correct inputs:

1. A first use of this syntax information is to provide templates that the

user can select and then fill in. This works best when the expected in-

put sentences have keywords that are fixed. For example in Rabbit Every

<concept> is a kind of <concept> is a template for declaring a new

subsumption relation between two OWL classes. However, since OWL al-

lows the expression of complex restrictions (anonymous classes) it is difficult

to predict (or provide) all templates that authors may require.

2. Another use of the language grammar is to provide predictive input sup-

port [124], where the system can analyse the current (partial) input and

predict what type of input is necessary at the position of the cursor in or-

der to get a grammatically correct sentence. This analysis is typically used

to show a list of completions: e.g. a list of OWL entities or keywords that

can be used next in order to have a grammatically correct sentence. This

approach tends to work well to remind users of the available vocabulary

and to avoid typing. The approach is less useful when the grammar allows

for a great number of variations or when the list of entities or keywords is

very large; in such cases users may require a long time to find a suitable
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suggestion in the list of completions. This approach can also be seen as

intrusive.

3. The language grammar can be used to display syntax highlighting of the

input. This generally means highlighting which parts of the input are key-

words and which parts of the input refer to the different types of OWL

entities. This helps the user learn the different templates of the language

as well as the main types of entities supported by the language.

4. Another use of syntactic information is the generation of paraphrases [81].

For this, some extra syntactic information is required besides the grammar

of the language: the system needs to know that different syntax trees can

have an equivalent mapping onto OWL. When this is the case, the system

can generate a paraphrase: a different syntactic representation of the input

that has the same OWL translation. This can help the user to decide

whether the input is being interpreted correctly.

The CNL literature has focused on providing technical solutions to achieve

these forms of tool support. However, evaluation of these tool support techniques

has not been systematic and it is not clear how useful the tool support is in

practice for domain experts. There is thus a need for conducting controlled

studies of domain experts performing realistic ontology authoring tasks.

2.3 Discussion and Open Issues

This chapter provided an overview of the research context for intuitive ontology

authoring. We summarise the main issues and research challenges that we found:

� Traditional ontology authoring tools such as Protégé are useful for build-

ing expressive ontologies. They provide several reasoning tools which are

crucial for analysing and debugging ontologies. However, such tools are

intended to be used by knowledge engineers with a background in logic and

ontology modelling. A main research challenge is to facilitate the build-

ing expressive of ontologies by domain experts. This challenge can
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be subdivided in the facilitation of (i) knowledge formulation; (ii) follow-

ing ontology engineering methodologies and (iii) ontology evaluation and

debugging through the use of reasoning services.

� In order to involve domain experts, various new approaches have been pro-

posed based on Web 2.0 and social aspects. Most of these approaches only

partially facilitate knowledge formulation as they only enable the building

of lightweight ontologies by domain experts (see Table 2.1 for a summary

of the approaches). A promising approach is the use of CNLs for ontol-

ogy authoring as it seems to facilitate knowledge formulation using the full

expressivity of ontology languages. However, syntactic tool support is nec-

essary, which has been proposed but has not been evaluated in realistic set-

tings. The main research challenge here is to evaluate the practical use

of CNLs to enable domain experts to build expressive ontologies.

One of the challenges in performing such an evaluation is that CNLs only

provide support for knowledge formulation, while ontology authoring also

requires support for the process of ontology engineering. Another challenge

is thus to provide holistic support for knowledge formulation and

following ontology engineering methodologies to domain experts.

A recent review of Semantic Content Authoring (SCA), summarises the prob-

lems with current authoring ontologies:1

“Many current SCA systems bear a bewildering amount of functions

and algorithms which confuses both the novice and expert users. This

problem causes a significant impediment for a broader use of SCA

systems.” [87]

The work presented in this PhD tackles the research challenges identified

above by contributing to research on making ontology authoring more intuitive for

1The difference between SCA and Ontology Authoring is one of focus on the type of knowl-

edge being captured. While SCA focuses on capturing factual knowledge, OA focuses on gath-

ering conceptual knowledge (both approaches support the capture of both types of knowledge,

though).
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2.3 Discussion and Open Issues

domain experts. In the next chapter we start by building and evaluating a CNL-

based tool that enables domain experts, with no knowledge engineering experience

and without the direct help of knowledge engineers, to build both lightweight

and heavyweight ontologies. Our research intentionally avoids the collaborative

aspects of building ontologies (present in the collaborative and semantic wiki

approaches in Table 2.1) in order to focus on how domain experts can create

ontologies that represent their knowledge of their domain. Contributions of our

work are compatible with – and could improve – collaborative approaches as it

allows communities to be less dependent on knowledge engineers and to produce

more complex ontologies if necessary.
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Chapter 3

ROO: CNL-Based Ontology

Authoring

The main objective of this PhD is to investigate how intelligent tool support can

help domain experts to become actively involved in ontology authoring. The pre-

vious chapter made the case that ontology authoring systems based on Controlled

Natural Languages are a promising approach to achieve this goal. However, ex-

isting CNL-based tools for ontology authoring do not provide enough support to

domain experts. For example, they focus solely on providing a CNL interface,

while ignoring the whole ontology construction process, and thus assume that the

user of the system already has good knowledge engineering skills. Our first step

is thus to investigate how to improve on existing CNL-based ontology authoring

tools through the use of intelligent techniques.

This chapter presents a CNL-based ontology authoring tool designed to sup-

port the involvement of domain experts who are novice ontology authors. We base

this tool on an existing design for a CNL and an ontology authoring methodol-

ogy, which we present in Section 3.1. The chapter then presents our original

work by introducing the ontology authoring tool (in Section 3.2) and proposing

an approach for providing intelligent tool support for (i) formulating valid CNL

statements (Sections 3.3 and 3.3.3) and (ii) following an ontology engineering

methodology to build an ontology (Section 3.3.4). Finally, we describe an eval-

uation of our approach (Sect. 3.4), discuss other practical experiences with the

tool and provide a summary and conclusions in Sect. 3.6.
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Ontology Authoring

3.1 An Existing Methodology for Involving Do-

main Experts in Ontology Authoring

As we mentioned in the previous chapter, the Ordnance Survey (the mapping

agency of Great Britain) has designed Rabbit, a CNL for authoring OWL ontolo-

gies. The design of this CNL was part of larger effort by the Ordnance Survey for

developing a modular topographic domain ontology to facilitate the description

and reuse of its topographic data by third parties [93]. At the heart of ontology

development is the active involvement of domain experts (e.g. geographers and

ecologists), which is reflected in Kanga, the Ordnance Survey’s methodology for

ontology construction [93]. Kanga includes several steps:

� Identifying the scope, purpose and other requirements of the ontology;

� Gathering source knowledge and documents and identifying ontologies for

reuse;

� Capturing the ontology content in a knowledge glossary;

� Formally defining core concepts and relationships between concepts by using

controlled English sentences;

� Converting the controlled English sentences into OWL1;

� Ontology verification and validation.

Following this methodology, the domain expert is engaged in the construction

of a conceptual ontology which involves the first four steps. The knowledge en-

gineer then performs the last two steps, which focus on the logical level of the

ontology.

A crucial component of the Ordnance Survey methodology is the use of a con-

trolled language for authoring the conceptual ontology — a CNL, called Rabbit,

has been developed for this purpose [40].

1OWL (Web Ontology Language) is a W3C standard for authoring ontologies intended to

be used in the Semantic Web. See http://www.w3.org/TR/owl-features/
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3.1 An Existing Methodology for Involving Domain Experts in
Ontology Authoring

3.1.1 The Rabbit Controlled Natural Language

The Ordnance Survey has designed Rabbit [59] to be easy for domain experts

to digest and produce, allowing them to express what they need to in order to

describe their domain1.

The fundamental principles underlying the design of Rabbit are:

� To allow the domain expert to express their knowledge as easily and simply

as possible and in as much detail as necessary. It is written to appear like

a natural English statement;

� To have a well defined grammar and be sufficiently formal to enable those

aspects that can be expressed as OWL to be systematically translatable;

� To recognise that the domain expert alone cannot produce an ontology and

that a knowledge engineer is also necessary;

� To be used in conjunction with tools which help to enforce an authoring

method but not to the point where Rabbit is only readable through tools;

� To be domain independent.

Tables 3.1, 3.2 and 3.3 show commonly used sentence structures for describing

concepts, relationships and individuals. The tables also show the translation of

the Rabbit sentence in the OWL Manchester Syntax [67].2 The language covers

most of the constructs in OWL 2, see [59].

Ordnance Survey has performed a number of user evaluations that helped

the design of Rabbit. First, Rabbit sentences were presented to users (geography

students) along with a multiple choice of possible different interpretations for the

sentence [60]; this showed that most sentences were correctly understood by most

users. This study showed that some constructs of the language had to be changed.

For example, the construct to denote a class assertion is an instance of was

1The Ordnance Survey named the Rabbit language after Rabbit in Winnie the Pooh, who

was actually cleverer than Owl.
2The tables show most of the Rabbit constructs, but not all. For a complete

overview of the language see http://sourceforge.net/apps/mediawiki/confluence/index.

php?title=Rabbit_Language_Overview
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3.1 An Existing Methodology for Involving Domain Experts in
Ontology Authoring

Table 3.1: Example Rabbit sentences for describing concepts. Source: the Ord-

nance Survey hydrology ontology [110].
Description Rabbit Manchester Syntax

Concept Stream is a concept. Class: Stream

Declaration SubClassOf:

owl:Thing

Subjunction Every Cataract is a kind of Waterfall. Class: Cataract

SubClassOf:

Waterfall

Defined A Source is anything that: Class Source:

Class is a kind of Spring or Wetland; EquivalentTo:

feeds a River or a Stream. Spring or Wetland

and feeds some (River or Stream)

Existential Every River flows into a Sea. Class: River

Quantifier SubClassOf:

flowsInto Some Sea

Negation No Backwater has a Current. Class Backwater:

DisjointWith:

have some Current

Union Every Bifurcation is part of Class: Bifurcation

one or more of River or Stream. SubClassOf:

bePartOf some (River or Stream)

Minimal Every Confluence flows from at least Class: Confluence

Cardinality two River Stretches or Streams. SubClassOf:

Restriction (flowFrom min 2 (RiverStretch

or Stream))

Qualified Every Channel has exactly 2 Banks. Class Channel:

Cardinality SubClassOf:

Restriction hasBank exactly 2 Bank

Universal and Every River only flows into a Sea. Class River:

Existential SubClassOf:

Quantifiers flowsInto some Sea

and flowsInto only Sea

Built-in Every Reservoir has purpose Class: Reservoir

Properties for Storage of Water. SubClassOf:

Anonymous havePurpose some (Storage

Classes and (Rabbit:of some Water))

Complex Every Spout gushes Water that Class: Spout

Objects flows from the Ground. SubClassOf:

gush some (Water)

and (flowFrom some Ground))

Disjointness Canal and Disused Canal are Class: Canal

mutually exclusive. DisjointWith:

DisusedCanal

Modality A Broad usually is located in East Anglia. no translation

Homonym Dam (Water) is a concept. Class: Dam Water

Disambiguation Dam (Structure) is a concept. Class: Dam Structure
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Table 3.2: Example Rabbit sentences for describing instances. Source: the Ord-

nance Survey hydrology ontology [110].
Description Rabbit Manchester Syntax

Instance Somerset is a County. Individual somerset:

Declaration Types:

County

Same UK and United Kingdom are Individual: uk

Instance the same thing. SameAs:

unitedKingdom

Different River Wharfe and River Aire are Individual: riverWharfe

Instance different. DifferentFrom:

riverAire

Table 3.3: Example Rabbit sentences for describing relationships. Source: the

Ordnance Survey hydrology ontology [110].
Description Rabbit Manchester Syntax

Relationship enables is a relationship. ObjectProperty: enable

Declaration

SubProperty The relationship flows in is a special ObjectProperty: flowIn

type of the relationship is connected to. SubPropertyOf:

beConnectTo

Inverse The relationship is fed by is the inverse ObjectProperty: beFeedBy

Relationship of feeds. InverseOf:

feed

Range The relationship is capital city of must ObjectProperty: beCapitalCityOf

Restriction have the object Country. Range:

Country

Functional The relationship is capital city of can ObjectProperty: beCapitalCityOf

Property only have one object. Characteristics:

Functional

replaced by is a. A second evaluation compared the user comprehension of

Rabbit sentences versus Manchester Syntax statements [60]. This study confirmed

that Rabbit is easier to understand than Manchester Syntax.

Although users seem to correctly understand the meaning individual Rab-

bit sentences, further studies by Ordnance Survey have shown that this under-

standing does not automatically translate into ability to author ontologies[41, 60].

In these studies, participants were given an introduction to the language, a crib

sheet with common Rabbit sentences and a natural language text that had to be

translated into Rabbit. The studies found that, on average, users only captured

60% of the information into Rabbit. Furthermore, 50% of the written Rabbit sen-
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3.2 ROO: Rabbit to OWL Ontology Authoring Tool

tences, contained syntactic errors. These results clearly suggest that tool support

is required for helping users to formulate correct Rabbit sentences.

Finally, Rabbit has been compared to other controlled languages (ACE [77]

and Sydney OWL Syntax [29]) that target OWL in [123]. This comparison showed

seemingly minor differences between the languages at the lexical and syntactic

level. One of the conclusions is that, for all 3 languages, support is required to

formulate correct sentences and to help users understand the logical meaning of

some constructs.

Relation to this PhD The Ordnance Survey’s methodology for ontology au-

thoring has been of great influence for this PhD. Note that the methodology and

the design of the Rabbit language are not contributions made by this PhD. How-

ever, the specification of a methodology (and its CNL) are not directly useful to

domain experts without training or direct support by an existing Rabbit expert.

For this reason, the Ordnance Survey wanted to provide tool support for both

the methodology and the Rabbit language. This corresponded to our view that

there was a need for intelligent tool support for domain experts and led to our

choice of Rabbit as the CNL to base our work on.

The following sections describe the first original contributions of this PhD:

(i) a description of how we used the Rabbit language specification to provide tool

support for domain experts and (ii) an evaluation of the proposed tool support.

In the following sections, we describe the implementation of a parser based on

the Rabbit specification and the role of that parser in providing a user interface

that is easy to use for domain experts.

3.2 ROO: Rabbit to OWL Ontology Authoring

Tool

ROO is an ontology creation tool based on Protégé 4 that assists domain experts

to build conceptual ontologies. ROO uses Rabbit to enable domain experts to

automatically formalise their knowledge in OWL. ROO provides easy to under-

stand suggestions and task-specific messages to help the user enter correct CNL
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constructs. Appropriate feedback is given to help users recognise concepts, re-

lationships and individuals when writing CNL sentences. Syntax highlighting

based on the parsed structure helps the user recognise CNL patterns.

Although ROO is based on technologies such as OWL and natural lan-

guage processing, ROO avoids exposing technical terminology to ontology au-

thors. ROO prefers to use conceptual terminology that may not be well-defined

in a technical sense, but which is easier to understand for novice users. In the

case of OWL, ROO will avoid introducing terminology such as Object Property,

opting to use relationship instead. In the case of the natural language processing,

ROO avoids using linguistic terminology such as determiner or adjective as much

as possible. When technical terminology is introduced, ROO tries to give specific

examples, preferably coming from the domain (i.e from the ontology itself).

ROO helps users to avoid introducing ambiguity in the resulting ontology. The

CNL tool avoids making assumptions by requiring the declaration of concepts,

relationships and individuals. ROO is aware of cases when parsed sentences could

be ambiguous and warns the user accordingly, preferably suggesting ways to avoid

ambiguity.

ROO provides guidance about how to build ontologies that are easy to reuse.

ROO incorporates a model of Kanga [93], the Ordnance Survey’s ontology en-

gineering methodology, and can make suggestions to the user regarding tasks

that need to be performed to improve the reusability and general quality of the

ontology.

ROO provides easy access to documentation to explain the user interface, the

controlled natural language and the ontology creation process.

3.2.1 Architectural Overview

Fig. 3.1 shows the main architectural elements of ROO, and how these elements

interact with each other. Here, we introduce each architectural element.

The user of ROO interacts with the ROO User Interface, which is a collection

of components that enable domain experts to create and edit ontologies by writing

Rabbit sentences. The user interface uses services provided by the Rabbit Lan-

guage Processor (to parse sentences), the ROO Model Manager (to construct the
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3.2 ROO: Rabbit to OWL Ontology Authoring Tool

Figure 3.1: UML 2.0 functional architectural view of ROO shows the architectural

elements, interfaces and inter-element connections.

ontology) and the Kanga Methodology Model (to suggest ontology construction

tasks to the user).

The Rabbit Language Processor consists of a Rabbit parser – that parses text

into an unambiguous intermediate representation– and a Rabbit to OWL converter

– that converts the unambiguous intermediate representation into OWL. The

ROO Model Manager and the ROO User Interface use the services provided by

the Rabbit Language Processor.

The ROO Model Manager acts as a central point between the underlying

OWL ontology and the other architectural elements. It provides methods to con-

struct the ontology by accepting Rabbit sentences and uses the Kanga Method-

ology Model to validate that the ontology complies with the rules set by Kanga

Methodology. The ROO Model Manager is implemented as a thin layer on top of

Protégé 4 OWL, which already provides services to manage OWL ontologies.

The Kanga Methodology Model provides services to check whether a given

OWL ontology contains annotations and entities that would be expected if the

ontology was built using the Kanga Methodology for ontology construction. If

the ontology is missing annotations or entities, the Kanga Methodology Model

can suggest ontology construction tasks from the Kanga Methodology.
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In the next sections we describe the components of ROO in more detail, in

particular, we describe how the various components can be used to provide intel-

ligent tool support for domain experts.

3.3 Providing Domain Expert-Specific Tool Sup-

port for Rabbit

This section gives an overview of how the Rabbit parser and OWL generator are

implemented (section 3.3.1), gives a detailed description of how ambiguity is used

by the Rabbit parser to provide extra support for domain experts (section 3.3.2)

and explains how the parser implementation is used to provide a user interface

that domain experts can learn quickly (section 3.3.3).

3.3.1 RabbitParser

The Rabbit parser consumes a document containing Rabbit sentences and pro-

duces a parse tree (an intermediate representation of the document). If the parsed

document contains sentences which are not valid Rabbit sentences, the parser

marks these sentences and attaches error messages that should help the users to

correct the sentence.

The Rabbit parser consists of a pipeline of linguistic Processing Resources as

pictured in Fig. 3.2. The implementation of the parser included in ROO follows

the CLOnE [47] approach and is based on the GATE1 text processing environment.

Fig. 3.2 provides an overview of the pipe-line (the current pipeline consists or

around 30 Processing Resources) and shows the three main phases of the parsing

process:

First, there is a pre-processing phase where we use GATE — more specifically

ANNIE[30, Chapter 8] — to perform the basic natural language pre-processing

such as tokenization, sentence splitting, Part of Speech (POS) and morphological

tagging.

1http://gate.ac.uk
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English Tokenizer

Sentence Splitter

POS Tagger

Morphological Analyser

GATE initial parsing

find concepts 
and relationships

find noun and 
verb phrases

Parse Rabbit text

Match Rabbit 
sentence patterns

Disambiguate sentence 
patterns

Build Parsed Result

Validate Parsed Result
find collections of 

concepts and relationships

Mark Rabbit
building blocks

find Rabbit keyphrases

Figure 3.2: Pipeline of Processing Resources for parsing Rabbit constructs. The

input is a file containing Rabbit sentences and the output is a parse tree that

gives access to the information found by the Processing Resources (i.e. the POS

of each word, whether a phrase is a Rabbit keyphrase, or a Rabbit concept, etc.)

The second major phase in parsing Rabbit includes using a gazetteer to

find Rabbit key phrases and using JAPE1 transducers to find and process Rab-

bit constructs based on the annotations gathered during the pre-processing phase.

Roughly speaking, there is one JAPE transducer per Backus Naur Form (BNF)

rule in the Rabbit grammar as shown in table 3.4, although in some cases, our im-

plementation deviates from the Rabbit BNF in order to achieve a better parsing

efficiency or in order to control the amount of ambiguity the user can introduce

(see details in Sect. 3.3.2).2

The final phase during the parsing is the construction of an intermediate rep-

resentation of the parsed text. The Rabbit parser is implemented in Java and

defines a hierarchy of Java interfaces for representing Rabbit constructs. The

base Java interface for Rabbit constructs is an IParsedPart, with example in-

1Java Annotation Pattern Engine [30, Chapter 7] provides a language for finding annotation

patterns during the parsing process. It also provides hooks for invoking Java methods during

the parsing of a text.
2See Appendix A for links to the full Rabbit BNF and the JAPE implementation.
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heriting interfaces IParsedConcept and IParsedKeyphrase. This intermediate

Java representation of the Rabbit input text can be used to implement validations

which would be difficult to capture using only the pattern matching capabilities

of JAPE. For example, we can detect whether concepts in a sentence have been

defined in the ontology and warn the user if this is not the case.

One of the advantages of using the pipeline shown in Figure 3.2 is that it en-

ables processing of the input text with an open lexicon. The ANNIE components

contain generic rules to determine the part-of-speech and morphology of words

but there is no need to have a pre-defined set of words. In comparison, other

CNLs, such as ACE, work better if a closed lexicon – a list of terms relevant to

the domain – has been provided in advance. Use of a closed lexicon is not appro-

priate for ontology authoring, where users will be introducing new vocabulary.

With the open lexicon approach, new terms are added to the ontology and the

ontology is used as an extension to the initial NLP rules provided by ANNIE to

verify that a term has been introduced in the ontology.

Table 3.4: Example of using JAPE to implement the Rabbit BNF
BNF JAPE

<universal subject> ::= Every Rule: UniversalSubjectPattern (

<concept> ({Lookup.minorType == "RABBIT-Every"}): kp1

({RabbitConcept}):concept

):RabbitSubject

<object> ::= [<object prefix>] Rule: ObjectPattern(

<concept> ({ObjectPrefix})? : objectPrefix

[<preposition modifier>] ({RabbitConcept}): concept

({PrepositionModifier})?: prepositionModifier

Generating OWL

ROO automatically translates Rabbit sentences into OWL. This task is performed

by a program that uses the OWL API1 (also used by Protégé) to convert the

output of the Rabbit parser into OWL. This translation is straightforward because

the Rabbit language follows the OWL language closely as shown in tables 3.1, 3.3

and 3.2. These tables only show the minimum of axioms generated to express

the OWL equivalent, in practice the generator also includes annotations such as

1 http://sourceforge.net/projects/owlapi/
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rdf:labels and rabbit:sentence which make the resulting ontology easier to

read (using ROO or Protégé).

Although the current implementation of the OWL generator uses the OWL

API, the mapping from the parsed tree to the corresponding statements in OWL

has been isolated by the API. Hence, creating an OWL generator using an alter-

native API, such as Jena, should be a straightforward task.

Mapping Rabbit Entities to OWL Entities

A crucial step during the parsing and validation of Rabbit sentences is to link

Rabbit Entities (IParsedConcept, IParsedRelation and IParsedInstance) to

OWL Entities (OWL Classes, OWL Object Properties and OWL Individuals).

Similarly to CLOnE [47], we have implemented a canonicalisation procedure

to create a key identifier for the entities. This canonicalisation uses the root

morpheme of the words comprising a Rabbit entity to create an OWL id. The

third sentence in Table 3.3 illustrates the results of this canonicalisation process

as the Rabbit relationship is fed by has been mapped to the canonical name

beFeedBy. Although beFeedBy is not easy to read, the OWL generator also adds

the rdfs:label "is fed by" annotation (not shown in table 3.3, which is used

by most applications instead of the OWL id.

A possible disadvantage of the canonicalisation process is that it allows Rab-

bit sentences which are not correct English. For example, the sentence Every

Confluences flows from at least two Rivers Stretch or Stream, is a valid

Rabbit sentence due to canonicalisation even though (i) Confluences is plural,

which is incongruent with Every and the verb flows from) and (ii) Rivers

Stretch and Stream are singular, but should be plural to match at least two.

We could add more rules to avoid such cases, but we leave that as future work.

For this PhD, this will not be a problem for authors, since we assume they will

tend to write correct English sentences. The described issue can be a problem

for generating Rabbit sentences, as Rabbit sentences may be generated which are

not correct English.

The advantage of generating class identifiers based on the root morpheme is

that the natural language processing engine (GATE, in this case) takes care of
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morphology variations, making it easier for domain experts to write sentences

in the way they would when writing natural language. For example, users write

Every Confluence flows from at least two River Stretches or Streams,

but only need to declare that River Stretch is a concept and Stream is a

concept, without needing to specify the plural forms. By using the morphological

annotations added by ANNIE during the pre-processing stage of Rabbit parsing

(see Sect. 3.3.1), the parser maps River Stretches and River Stretch to the

same OWL class.

3.3.2 Handling Ambiguity in Rabbit sentences

Most constructs in Rabbit contain key phrases which makes the constructs unam-

biguous. For example: River Wharfe and River Aire are different, where

we have underlined the key phrases. The parser can search for text that matches

the pattern <individual> and <individual> are different1.

In order to permit users to give natural names to concepts, relationships and

instances, Rabbit allows these constructs to consist of multiple words. Exam-

ples of concepts that should be valid are: Natural Body of Water, Water for

Irrigation, Fire and Rescue Services and Formula 1. At the same time, the

following relationships are also valid: has pet, flows into, contains, contains

water for, Services (as a relationship meaning “to provide services to”) and

Rescues. This freedom to name Rabbit entities allows users to construct more

natural sentences and to use concepts and relations at an appropriate granu-

larity level for their domain. At the same time, this freedom has the potential

to introduce ambiguities. The Rabbit parser and ROO provide support to avoid

introducing ambiguity in the context of the ontology being built.

Table 3.5 shows an example of how a Rabbit sentence can be interpreted in

different ways depending on its context. The context of a Rabbit sentence is

defined by the set of Rabbit sentences that have been entered for the ontology.

Context 1 in table 3.5 is the empty context. In this case the parser chooses

an interpretation where it expects Water for Irrigation to be a concept and

contains a relationship. However, the parser also has recognised that Water for

1An <individual> can be any number of tokens (excluding keyphrases).
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Table 3.5: Handling translational ambiguity in Rabbit. The table shows how

the sentence Every Irrigation Canal contains Water for Irrigation. is

interpreted depending on the context of Rabbit sentences. Note that input sen-

tence is not ambiguous in the traditional sense; but that there are multiple ways

to translate the sentence into OWL. This is important since these different OWL

representations are not guaranteed to be logically equivalent.
ID Context Manchester Syntax Translation or Error

Sentences Message when translating sentence

Every Irrigation Canal contains Water for

Irrigation.

1 no context 2 errors: missing concepts Irrigation Canal and Water

for Irrigation

1 error: missing relationship contains

1 error: alternative interpretation for Water for

Irrigation’

1 error: alternative interpretation for ’contains’

’Water for Irrigation’

2 Irrigation Canal is a concept. Class: IrrigationCanal

contains is a relationship. SubClassOf:

Water for Irrigation is a concept. contain some WaterForIrrigation

3 Irrigation Canal is a concept. Class: IrrigationCanal

contains is a relationship. SubClassOf:

Water is a concept. contain some (Water

Irrigation is a concept. and (Rabbit:for some Irrigation)

4 Irrigation Canal is a concept. Class: IrrigationCanal

contains water for is a relationship. SubClassOf:

Irrigation is a concept. containWaterFor some Irrigation

5 Irrigation Canal is a concept. 1 error: ’Water for Irrigation’ has an equally

contains is a relationship. possible alternative interpretation ’Water’

Water is a concept. for ’Irrigation’

Irrigation is a concept.

Water for Irrigation is a concept.

Irrigation could interpreted differently as being composed of concepts Water

and Irrigation and linked by the keyphrase for. This shows that the parser

keeps alternative interpretations in the parse tree and uses these to warn and

prevent the user from introducing ambiguity.

The different contexts in table 3.5 illustrate how the parser chooses the cor-

rect interpretation based on the context. For example, in order to decide whether

Water for Irrigation is a single concept or a Rabbit compound object (two

concepts linked by the built-in relationship for) the parse tree validation uses

a disambiguation heuristic that ranks each parsing option based on the enti-
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ties declared in the context. So, if the user has declared concepts Water and

Irrigation, but not Water for Irrigation (as in context 3 in table 3.5), then

the disambiguation heuristic will conclude that Water for Irrigation is more

likely to be a compound object and not a single concept. Alternatively, if the

user has declared concept Water for Irrigation, but not the concepts Water

or Irrigation, then the disambiguation algorithm will rank the interpretation

of Water for Irrigation as a single concept higher than as a compound object

(see context 2 in table 3.5).

The disambiguation heuristic illustrated above is able to identify potentially

ambiguous constructs and benefits the domain experts by giving them more free-

dom to use their own terminology when describing their domain. However, if

the number of alternative interpretations is very large, the heuristic will find too

many potentially ambiguous constructs which can have an adverse result: the

users will not be able to introduce new terminology due to potential ambiguities.

In order to restrict the number of potential ambiguous Rabbit constructs, we:

1. require users to explicitly introduce entities by using the three Rabbit entity

declaration sentences;

2. only allow specific constructs in the Rabbit language to be ambiguous and

3. impose linguistic restrictions on what are valid Rabbit concepts and rela-

tionships.

We explain these three aspects next.

Rabbit Entity Declaration Sentences

The Rabbit parser is able to recognise potential entities (which we call concept can-

didates, relationship candidates and instance candidates) when parsing sentences.

For example, given sentence Every River flows into a Sea., the parser will

recognise that River and Sea are concept candidates and flows into is a rela-

tionship candidate. However, this sentence on its own is not a valid Rabbit sen-

tence because the user has not explicitly introduced the required concepts and

relationships. The parser will currently show error messages stating that concept
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’River’ has not been introduced in the ontology yet. The Rabbit lan-

guage provides entity declaration sentences to introduce concepts (<concept

candidate> is a concept.), relationships (<relationship candidate> is a

relationship.) and instances (<instance candidate> is a <concept>.). The

disadvantage of using entity declaration sentences is that users needs to write

more sentences at the beginning of the ontology construction process. The advan-

tage is that the parser can then use the set of introduced entities to disambiguate

sentence constructs. Furthermore, having an explicit declaration sentence forces

users to consider whether an entity that is introduced is essential for describing

the domain.

Ambiguous Rabbit Constructs

The Rabbit parser only allows two grammatical constructs 1 to be ambiguous:

Objects and Relationship Phrases. Rabbit Objects are translated as (anony-

mous) classes in OWL. Example Objects are: River, Body of Water, Irrigation

of Water and Building that has purpose Education. Objects can be am-

biguous because concept names allow prepositions (see Table 3.6 in Section 3.3.2),

but Rabbit also provides built-in prepositions to combine two concepts into an

Object. For example: Irrigation of Water, can be an Object containing a

single concept (introduced by sentence Irrigation of Water is a concept.),

or it can be an Object that relates concepts Irrigation and Water using the

built-in Rabbit relationship of.

The second potentially ambiguous construct in Rabbit is the Relationship

Phrase, which translates as an anonymous class in OWL by combining a re-

lationship and an Object. Example Relationship Phrases are: has purpose

Education or contains water for Irrigation. Ambiguity is possible in this

case due to the freedom Rabbit gives users to define concepts and relationships.

For example, the user has the freedom to define relationships has purpose or

has as well as concepts Education or Purpose Education. The set of defined

entities affects how the has purpose Education is interpreted.

1Note that these are constructs used only in the intermediate representation and should not

be confused with other types of objects from logic or object-oriented approaches.
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Linguistic Restrictions on Rabbit Entities

The main intuition in linguistically restricting Rabbit concepts and relationships

is that concepts tend to be nouns (River) or noun phrases (Body of Water); and

relationships tend to be verbs (contains) or verb phrases (flows into). The

parser implementation defines JAPE rules that find noun and verb phrases which

are then interpreted as possible concepts or relationships in the Rabbit sentence.

Table 3.6 shows the main rules with examples of valid concept and relationships.

The rules use high-level linguistic definitions, which are themselves defined as

rules that use the Part of Speech tag. For example, Adverb is any token that has

POS RB or VBN (past participle is interpreted as an adverb to handle concepts

such as Written Article). See the GATE User Manual [30, Appendix E] for

the codes used by the POS tagger. 1

Table 3.6: Main JAPE rules for detecting noun and verb phrases in the Rab-

bit parser implementation.
JAPE rule Example

Rule: NounPhrase( Extremely Large River

(Adverb)* (Adjective)* Peer 2 Peer Network

( Boeing 737-300

((Noun) | (SpecialToken))* Fire & Rescue Services

(Noun) (SpecialToken)* Written Article

)

): RabbitNounPhrase

Rule: CompoundNounPhrase ( Body Of Water

(Noun) (Prep) (Noun) School Of Computing

):RabbitNounPhrase North By Northwest

Rule: VerbPhrase ( has

(Verb)+ (Prep)? has purpose

({RabbitNounPhrase})? produces sound by

(Prep)? runs into sea at

):RabbitVerbPhrase is close to

Rule: ComparativeRelation ( is larger than

(CopulaVerb) is older than

(ComparativeAdjective)

({Token.root == "than"})

):RabbitVerbPhrase

1Appendix A has a link to the full JAPE implementation. The jape files findNounPhrase

and findVerbPhrase contain the relevant rules for finding potential entities.
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Rabbit Syntactic Disambiguation Mechanisms

Besides the three mechanisms to restrict the potential for ambiguity in Rab-

bit sentences, the language itself also provides two built-in syntactic mechanisms

to explicitly indicate ambiguity. First, concept names can contain a disambigua-

tion component. For example, the Ordnance Survey Hydrology Ontology defines

two different concepts that have the same name Dam. A Dam refer to both the

physical construction that holds water, or it can refer to the water itself. In or-

der to separate the two concepts, while still using the Dam name, Rabbit allows

users to introduce the concepts as Dam (Water) and Dam (Structure). The user

has to use these names for all the sentences describing the concepts (e.g. Every

Dam (Water) is a kind of Pool (in River). and Every Dam (Water) is

located behind a Dam (Structure).).

The second syntactic disambiguation mechanism relies on the capability of

importing and reusing external ontologies. Rabbit allows users to import an ontol-

ogy by giving that ontology a label. For example Use ontology: [Hydrology]

from http://example.com/Hydrology.rbt, where [Hydrology] is the label. In

that case, the user can refer to concepts defined in the imported ontology as Bank

[Hydrology]. which can be used to disambiguate a concept with the same name

but from a different semantic definition (e.g. Bank [Finance]).

Summary This section discussed a feature of the Rabbit parser, which allows

potential ambiguity of entity names in order to make it easier for domain experts

to write correct Rabbit sentences. In particular, we illustrated a heuristic to per-

form unambiguous entity-mapping based on the context of the ontology being

built. We also discussed a number of aspects of the Rabbit parser and the Rab-

bit language which restrict potential ambiguity or allow users to explicitly avoid

ambiguous entity names. Finally, we stress that these choices for the Rabbit parser

allow only ambiguity regarding entity mapping: at the level of Rabbit sentences,

the choice of OWL axiom type for a Rabbit sentence is always unambiguous.
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Figure 3.3: Graphical user interface of ROO. ROO provides custom tabs and

components to build ontologies that use terminology that is easy to learn by

domain experts.

3.3.3 Support for Editing Rabbit

All features described in the previous sections to make it easier for domain ex-

perts to build ontologies are made available through a customised user interface.

The user interface is built on top of Protégé 4, but provides different tabs and

components that use the Rabbit language instead of Manchester Syntax and class

hierarchies. Fig. 3.3 shows the user interface of ROO. In this section we present

some of the features that ROO provides to make it easier for domain experts to

create ontologies, focusing on those features that are related to the editing of

Rabbit sentences.

Every component in the user interface provides a button that opens a browser
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Figure 3.4: Rabbit Editor component showing syntax highlighting and error feed-

back.

and shows specific help about that user interface component and how it can be

used to create ontologies. The documentation also includes an introduction to

the Kanga methodology and the Rabbit language. The Rabbit language is pre-

sented in different ways to users who are at different stages of the Rabbit learning

curve. As an introduction to the language, the keywords in Rabbit are explained,

which includes descriptions of how to use keywords in sentences and example

sentences. The documentation also provides a reference documentation for the

Rabbit language, which presents sentences that can be used to accomplish on-

tology construction tasks such as introduce a concept, or describe a relationship

specialisation. We also provide an introduction to Rabbit for people who already

know Manchester Syntax and a set of example ontologies to help users get an

idea of how to use Rabbit and ROO.

Once users have received an introduction to Rabbit, they can add knowledge to

the ontology by writing Rabbit sentences. The user interface provides a Rabbit ed-

itor which provides syntax highlighting that uses the intermediate representation

provided by the Rabbit parser. The syntax highlighter uses different colours that
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help the user see which parts of the sentence are recognised as concepts, relation-

ships, instances, labels of imported ontologies and Rabbit keywords.

The Rabbit editor also gives feedback about syntax errors and warnings. This

is done in three different ways: (i) as a list under the editor; (ii) by showing

squiggly lines under the word (or words) causing the error (in red) or warning (in

yellow) and (iii) by showing the error message as a tooltip when the user hovers

over the sentence with the mouse. Fig. 3.4 show an screenshot of the Rabbit editor

that shows syntax highlighting and error feedback.

Finally, the editor also has a list of sentence structures to remind the user

of the correct Rabbit syntax. This list is used in combination with the help

documentation described above.

3.3.4 Support for Following Ontology Engineering Method-

ology

ROO guides the domain expert by following an appropriate ontology construc-

tion methodology. This is achieved by providing a user interface that reflects the

phases of the Kanga methodology where each tab corresponds to a phase in the

methodology. For example, when a user creates a new ontology or opens an exist-

ing ontology, the first tab is for Purpose and Scope. The interface components

encourage entering an annotation for the ontology purpose and a different anno-

tation for the ontology scope. The annotation URIs have already been defined

for the user as they are not expected to learn the OWL annotation system. This

has the advantage that the encoding of the purpose is standardised by the tool,

so it is easy to check whether an ontology has defined its purpose and scope. This

is used by ROO's Guide Dog, a component which contains an internal model of

the Kanga methodology to check the progress of the user in building the ontol-

ogy. The user can ask the guide dog for advice regarding building the ontology.

When this happens, the guide dog inspects the state of the ontology to determine

the current phase in the Kanga methodology and suggests a task to the user

that is appropriate for the current phase. The following types of tasks are sug-

gested: scope and purpose definition, knowledge source definition, declaration of
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concepts and relationships (OWL entities), free text definition of OWL entities,

CNL definition of OWL entities.

The Guide Dog functionality in ROO is driven by a rule-based task planner

implemented in JBoss Drools.1 The task planner defines 11 rules for determining

when a set of ontology construction tasks should be carried out according to the

Kanga methodology. Each rule has the form when LHS then RHS. Where LHS is

a condition expressed in terms of the ontology being constructed. Typical condi-

tions are: whether the ontology contains a specific annotation(e.g. scope annota-

tion); whether the ontology defines more than a specific number of OWL classes

or whether an OWL entity in the ontology contains a specific annotation(e.g.

related rabbit sentence annotation). These LHS conditions are checked us-

ing the OWLAPI to inspect the Ontology, its axioms and its annotations. The

RHS is only triggered when the LHS condition is met. The RHS adds a task to

a list of tasks that the Guide Dog will suggest to the user. Appendix A contains

a link to the full list of rules. As an example, the prescription made by Kanga

that: “Users should enter a natural language description for each concept in the

glossary” is encoded in the following rule:

rule ‘‘Enter free-text definition for

Entity X’’

when

IOntologyWrapper(

hasScope == true,

hasPurpose == true,

numberOfKnowledgeSources > 0)

ew : IOWLEntityWrapper(

hasFreeTextDef == false,

numOfSent:numberOfRabbitSentences)

then

ntc.add(NextTaskSuggestionType.

EnterFreeTextDefinitionForAEntity,

ew);

end

1http://jboss.org/drools/
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When a user invokes the Guide Dog, all the rules are triggered populating the

Guide Dog with a list of tasks that can be presented to the user. The first sug-

gestions for an empty ontology related to entering the scope, purpose, knowledge

sources and initial entities. Once these have been followed, the main sugges-

tions relate to entering the free-text definition or Rabbit sentences for particular

entities.

When the ontology becomes larger, multiple entities may be missing free-text

or Rabbit definitions resulting in a large number of suggestions by the Guide Dog.

In order to keep the focus of the interaction, we reuse the selection model defined

by Protégé 4, which keeps track of which entity is currently selected in the user

interface. The Guide Dog sorts the tasks to give priority to tasks that are related

to the currently selected OWL Entity. Thus, if the user is viewing the concept

Lake, the Guide Dog will first suggest to add a Rabbit sentence for this concept,

instead of suggesting the same for some other, potentially unrelated, concept.

Summary of Tool Support in ROO This section showed the main features

in ROO that provide support to domain experts:

� The Rabbit Parser

– analyses users’ inputs to validate the correct use of the Rabbit language.

The parser aims to provide easy-to-understand messages to help users

produce correct sentences.

– automatically converts correct Rabbit sentences into OWL.

– uses NLP and disambiguation techniques to enable, in a controlled

manner, the use of natural terminology for domain experts. The used

techniques allow the introduction and detection of potentially ambigu-

ous entity names and Rabbit constructs.

� The user interface reflects the steps of the Kanga methodology, guiding the

domain experts through the ontology engineering process.

� The Rabbit editor provides syntax highlighting, error feedback and access

to documentation of the Rabbit language.
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� The Guide Dog provides domain experts with help for deciding what to do

next, based on the Kanga methodology.

3.4 Evaluation

This section presents a comparative user study we performed to study how well our

approach works. The main goal of the evaluation was to assess the effectiveness

of ROO, while following criteria for evaluating ontology tools [61]. The study

addressed three groups of questions:

1. What is the interaction with the tool like? How usable is the tool? Can

domain experts without knowledge engineering skills create OWL ontologies

with ROO?

2. How well does ROO facilitate the ontology construction process? Do users

develop ontology modelling skills as a result of the assistance the tool pro-

vides?

3. What is the quality of the resultant ontologies produced with ROO? Is the

quality influenced by assistance provided by the tool?

In this section we discuss some preliminary usability studies we conducted,

the experimental design and the experimental results. Based on the results, we

will draw conclusions about the benefits of the tool support provided by ROO to

assist domain experts’ involvement in ontology authoring. We will also outline

open issues and point at further development.

3.4.1 Preliminary User Studies

Before conducting the study, we first conducted three preliminary usability stud-

ies with 3-4 users. These studies were conducted during the development of

ROO while new features were still being added. Music was chosen as the do-

main due to the availability of users with subject knowledge. Users were asked

to build an ontology of musical instruments, corresponding to the material in the
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UK A-level1. All participants had studied this specialised level and had played

different musical instruments. The users did not have experience and knowledge

in ontology engineering, their computer background varied from programming to

general computing literacy skills. The sessions were recorded using CamStudio2,

and a member of the ROO team would always be present at the first session for

a user to observe how newcomers would start using the tool. This enabled us

to tune the interface and, most importantly, to polish the user guidance and the

support provided with the CNL interface. It also allowed us to elicit interaction

patterns, which were further examined in follow up studies.

3.4.2 Experimental Design

The study followed a task-based, between-subjects experimental methodology to

compare ROO with a baseline system.

Baseline System. The study compares ROO with a similar tool that allows the

user to author in a CNL. From the available CNL tools for ontology authoring,

ACEView [77] for Protégé was chosen because the user interaction with it is the

closest to the user interaction with ROO: both tools extend Protégé as plug-ins,

support text input in a CNL compatible with OWL-DL, provide error messages

for sentence composition, and produce an ontology in OWL3. The main difference

between ROO and ACEView is that ROO offers assistance with the whole ontology

authoring process.4

Participants. The study involved 16 volunteers from the departments of Ge-

ography (8 students) and Earth and Environment (8 students) at the University

of Leeds. The participants were chosen to closely resemble domain experts who

may perform ontology modelling tasks at Ordnance Survey (Hydrology) or the

1A specialisation which can be chosen in UK upper secondary schools.
2See http://camstudio.org/
3The other available CL ontology authoring tools are CLONE and PENG. They were used

during a pilot but discarded for the actual study. CLONE is more suitable for users with

some knowledge engineering skills, while the users in our study did not have such skills. The

interaction with PENG is pattern-based and is notably different from the ROO interface.
4ACE, the CNL used in ACE View was introduced in Section 2.2.
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UK Environment Agency (Flooding and Water Pollution). The main require-

ment for attending the study was to have knowledge and experience (confirmed

with the modules attended and practical work done) in Hydrology, for Geog-

raphy students, and Flooding and Water Pollution, for Environmental Studies

students. In each domain, 4 participants used ACEView and 4 used ROO; this

was assigned on a random basis. None of the participants was familiar with on-

tologies or ontology construction tools. They had not heard of RDF or OWL.

None had previous background in encoding knowledge and for most participants

structuring knowledge meant writing reports/essays in a structured way.

Scenarios. The study involved two ontology authoring scenarios.

Scenario 1 (Geography participants) This scenario resembles ontology mod-

elling tasks performed by domain experts at Ordnance Survey to describe

geographical features whose spatial representations are included in Ord-

nance Surveys OS MasterMap®1. The participants were asked to describe

several hydrology concepts: River, River Stretch, River Bank, Ditch,

Catch Drain, Balancing Pond, Canal and Reservoir. These concepts

are included in a large Hydrology ontology2 defined by Ordnance Survey.

The Geography participants were familiar with OS MasterMap®, which is

used at the School of Geography at Leeds University.

Scenario 2 (Environmental Studies participants) This scenario resembles

ontology modelling tasks performed by domain experts at one of Ord-

nance Surveys customers –the Environment Agency of England and Wales–

who can use OS MasterMap® for flooding and water pollution analy-

sis. The participants were asked to describe: River, Catchment, Flood

Plain, Ditch, Water Pollution, Sediments, Colloids, Land Use and

Diffuse Pollution. These concepts were selected from a list derived by

1OS MasterMap®www.ordnancesurvey.co.uk/oswebsite/products/osmastermap/ is a

nationally contiguous vector map containing more than 450 million individual features down to

street, address and individual building level, spatial data to approximately 10cm accuracy.
2 www.ordnancesurvey.co.uk/ontology
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an Ordnance Survey researcher interviewing an expert from the Environ-

ment Agency as part of a project to scope a semantic data integration

scenario. Many of these concepts required references to hydrology features

from OS MasterMap® but the participants were unaware of this. None of

the Environment subjects had knowledge of OS MasterMap®. Ontologies

for geography and environment were also produced by Ordnance Survey and

were used as comparators with the ontologies produced by the participants.

Procedure and Materials. 1 Depending on their background, the partici-

pants were sent the corresponding list of concepts, and were asked to prepare

brief textual descriptions for these concepts by using specialised dictionaries or

other sources. Each session was conducted individually and lasted 2 hours. It

included several steps.

Pre-study questionnaire (20 min) included a brief introduction to the study

and several questions to test the participants ontology modelling back-

ground.

Introduction and training with the ontology authoring tool (10 min) was

given to each participant by an experimenter, describing the main parts of

the interface and entering of several definitions from a Building and Places2

ontology. The examples used for the ACEView and ROO sessions were

similar (the differences came from the CL and the errors given by each

tool). The training with ROO also required entering the ontology’s scope

and purpose and knowledge sources.

Interaction with the tool (60 min) The participants had to use the tool al-

located to them to describe the concepts following the descriptions they had

prepared. Each session was monitored by an experimenter who provided

some general help when the participants got stuck with the language. Help

materials with printed examples of the corresponding CL were provided.

The interactions were logged and video recorded. The experimenters kept

notes of the user interaction.
1All materials are available from www.comp.leeds.ac.uk/confluence/study.html
2www.ordnancesurvey.co.uk/ontology
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Post-study questionnaire (20 min) included checking the participants ontol-

ogy modelling background (repeating questions from the pre-study ques-

tionnaire); a usability questionnaire using seven-point Likert scale; and open

questions about benefits, drawbacks, and future improvement of the tool

used.

General impression and clarification (10 min) included a brief interview

with each participant about their general impression of the CL used, in-

teraction with the tool, and any additional aspects the participants wished

to mention.

Data Collected. The following data was collected during the study:

� Questionnaires. Used for examining the usability of each tool and exam-

ining possible changes in the participants understanding of ontology mod-

elling;

� Log data, video records of the sessions, and experimenters notes. Used for

clarifying aspects of the interaction with each tool;

� Resultant OWL ontologies. The quality of these ontologies was analysed

following the O2 framework [49]. The data was analysed quantitatively and

qualitatively. The quantitative analysis used Mann-Whitney U test1 for

discrete measurements and t-test for interval data.

3.4.3 Results

Comparing the Interaction with ROO and ACE-View

Interaction Patterns. Both tools have fairly simple interfaces and were easy

to use. The first quarter of the interaction was usually slower as the participants

had to learn to formulate sentences in the corresponding CNL. During this time,

1 Mann-Whitney U test is a nonparametric equivalent of the between-subjects t-test [126].

It determines whether the median of a variable for one group is significantly different (for 2-tail)

or higher (for 1-tail) from the median of that variable for the second group.
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the definition of the first concept river (common for both scenarios) was com-

pleted. Both tools offer a tab to show the CNL errors, this was used extensively.

Initially, most users did not realise that the error messages refer to incorrect CL

grammar that the computer could not parse or translate into a logical form, rather

than incorrect domain facts. From the second quarter, the users established a

routine to describe a concept, including:

1. Check the NL description for the currently entered concept and identify a

statement with knowledge to be encoded. The ACEView users had a printout

of the descriptions they had prepared, while the ROO users followed the

NL descriptions the tool prompted them to enter.

2. Look for a CL pattern that matches the NL statement. The ACEView users

used only the printed list of CL examples provided, ROO users could, in

addition, see the available patterns within the tool, and they gradually

moved to using this.

3. (Re)Formulate the NL statement in a CL pattern. This usually involved

simplifying the constructs or taking away unnecessary detail, e.g. simple

patterns were easily created, more complex patterns were normally not

written correctly in the first instance and required several iterations and

checking the system feedback.

4. Check for error messages ; if there are no error messages, continue with an-

other NL statement (i.e. go to step 1). When there are error messages,

the users would usually repeat steps 2-4. Some participants would be per-

sist, reformulating the CNL statement until there were no errors (and it

was translated to OWL), while others would continue and leave the CNL

statement with errors (i.e. not encoded in OWL).

For both tools, the users were occupied mostly with steps 3 and 4 and would

often refer to step 2 for a quick check. Two of the eight ACE-View users entered

sentences to describe all concepts from the given list (see scenarios), while none

of the ROO users managed to complete the descriptions; in most cases the last

two concepts were not defined. The main interaction problems were:

55



3.4 Evaluation

Error messages lack detail. When the CL pattern entered was not recog-

nised, the users would not always get informative error messages. In such

cases, the users had to guess what may be misleading, e.g. in ACE-View:

The sentence is not correct ACE syntax. In ROO: Sentence is not

recognised as correct Rabbit sentence.

Error messages confusing. When the user entered sentences which could not

be recognised, they sometimes received error messages that were misleading.

ACEView messages included ??? to indicate unrecognised parts in the

sentence or referred to grammatical constructs which some users found hard

to follow. ROO gave at times misleading suggestions when the sentence was

unrecognised.

Dealing with adjectives and compound noun phrases. Recognising a con-

cept which includes a compound noun phrase (e.g. adjective-noun) can

be a challenging problem. ACEView users often received the message

adjectives are not supported, in which case they had to use hyphen-

ation (see above problem). ROO parses for compound noun phrases and in

most cases could make helpful suggestions about what the concept might

be, e.g. natural waterway, man-made feature. However, when the com-

pound nouns were not recognised and this led to confusing error messages,

e.g. natural body of water was not recognised as a possible concept.

Dealing with a specialised vocabulary. The parsers in both tools could not

recognise some specialised vocabulary which did not allow entering certain

concepts, such as: ACEView: sediment, irritation; ROO: watershed.

ACEView deals with this by pre-entering classes. However, it would be

hard to predict in advance what phrases a user may enter. A more flexible

way would be to allow the user to enter a phrase which should be added to

the vocabulary used by the NL parser.

Next task suggestion not always useful. This problem only applies to ROO since

ACE-View does not have this feature. On several occasions, users ignored

the task suggestions and commented that not all of them were useful. E.g.
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Question ROO ACEView U p Significance

(1-Strongly disagree; 4-Neutral; 7- median median (Mann-Whitney,

Strongly agree) 1-tail)

The error messages helped me write CL

sentences

5 4.5 16.5 p≤0.1 LOW

The error messages were confusing 2 4.5 11.5 p≤0.025 YES

The guide dog was helpful 5 — — — —

The guide dog suggestions were not easy

to understand

2 — — — —

I did not follow the suggestions from

guide dog

4 — — — —

The interaction was demanding 3 4 39 p>0.1 NO

I had no idea what I was doing 2 1.5 16 p>0.1 NO

It took me too long to compose what I

wanted

4 3 21 p>0.1 NO

The interaction was intuitive 5 3.5 11.5 p≤0.025 YES

The feedback was prompt and timely 5 4.5 24 p>0.1 NO

It was clear to me what to do in this tool 5 4.5 24 p>0.1 NO

The tool was frustrating 3 5 5.5 p≤0.01 YES (HIGH)

The tool was unnecessary complex 2.5 3.5 18 p≤0.1 LOW

I’d like to use the tool again 5 4 18.5 p≤0.1 LOW

Table 3.7: Summary of the comparison of the usability of both tools (post-study

questionnaire). From the 14 questions, 11 did not yield any statistically significant

differences between ROO and ACE-View. However, the results indicate that the

error messages in ROO were not experienced as confusing, while ACE-View users

had more trouble understanding error messages. Also, users of ROO found the

interaction intuitive, while this was not the case for ACE-View. Finally, users

did not found ROO frustrating, while they tended to find ACE-View frustrating.

ROO suggested that the participant enter definitions for concepts that were

not directly relevant to the ontology, such as man or bacteria.

Usability. Table 3.7 summarises the findings from the usability questionnaire.

For both tools, the users were positive. ROO was found to be significantly

less frustrating than ACEView, which may be due to the much more intuitive

interface, much less confusing error messages, and the help offered from the guide

dog. The messages in ROO were more helpful, the tool was less complex than

ACEView, and users would be more willing to use ROO again (although note

the low significance).
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Ontology Modelling Skills. The answers to six ontology modelling questions

(covering the main steps and building blocks in conceptual models, definition of

ontology, concepts, and relations) in the pre- and post-study questionnaires were

compared to examine whether the users ontology modelling skills had changed as

a result of the interaction with the tool. Two evaluators with a sound ontology

background worked independently and marked the users answers. The following

scheme was applied to each question: -1 (the understanding has worsened, e.g.

because the user was confused); 0 (no change to the users understanding on the

questions), +1 (correct aspects are added but gaps exist), +2 (the understanding

is improved, and now is correct and complete). The marker compared their results

and the discrepancies were clarified in a discussion. The maximum score, if a user

had not had any ontology modelling knowledge and has become an expert, would

have been 12, while the worst score meaning a user was an expert and became

totally confused would have been -6.

The ROO users scored significantly higher than the ACE-View users — ACE-

View score mean 0.38, STDEV 2.97; ROO score mean 5, STDEV 2.78; U (Mann-

Whitney)=8.5, p≤0.01. This shows that the users understanding in ontology

modelling improves significantly more when using ROO than when using ACE-

View.

Quality of the Resultant Ontologies

The resultant ontologies were analysed following the ontology evaluation frame-

work in [49], considering structural, functional, and usability ontology measures.

Ontology Structural Measures. Since the size of the ontologies is limited,

we have used fairly simple structural metrics based on [133], calculated by hand

based on metrics provided by Protégé 4. We found no significant differences in the

structural characteristics of the ontologies created, with exception to annotations

per entity, as shown in Table 3.8.

The results show that ontologies built with ROO have a significantly better

readability than ontologies built with ACEView. Both systems store the entered

sentences as annotations in the ontology. Since both Rabbit and ACE are quite

readable for humans, these annotations can be used to understand the meaning
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Average Average Average Average Average

Class Object Properties Annotations Subclass

Count Property Relative to per Entity Axioms per

Count number of Class

Classes (Inheritance

Richness)

ROO 21.875 8.250 0.367 2.625 0.634

ACE 28.125 11.875 0.420 0.582 0.877

p (t-test) 0.263 0.000 0.095

U (Mann-Whitney) 19.5 21.5

p (Mann-Whitney) 0.104 0.147

Table 3.8: Summary of ontology structural measures.

of the OWL entities. The main reason why ROO ontologies are more readable is

that ROO encourages users to provide additionally natural language descriptions

for both concepts and relationships. When Rabbit sentences are translated and

new classes and properties are added to the ontology, an appropriate rdf:Label is

added. In contrast, ACEView does not add annotations when classes or properties

are added.

We measured inheritance richness based on OntoQA [133]. ACEView on-

tologies had higher inheritance richness (Table 3.8), i.e. the classes built with

ACEView had more connections to other classes. However, the functional mea-

sures (see Table 4 below) indicate that ACEView ontologies were more tangled

than ROO ontologies. Domain experts seemed slightly more productive using

ACEView than using ROO but the Mann-Whitney U-test does not provide con-

clusive significance.

Ontology Functional Measures. A domain expert who is also a knowledge

engineer1 at Ordnance Survey produced two benchmark ontologies to quantify the

fitness-for-purpose of the participants ontologies. A scoring system was devised:

+1 point per matching axiom for each axiom produced by the participant

ontology that exactly matched2 an axiom from the benchmark ontology;

1We were lucky that such an expert existed, making it possible to examine in depth the

functional dimensions of the ontology.
2 Some interpretation was required owing to variances in terminology.
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Scenario ROO ACEView U (p)

(mean) (mean)

Geography 1.25 -3.5 3.5(p>0.1)

Environment 3.75 -5 0(p≤0.025)

Combined 2.5 -4.25 9 (p≤0.1)

Table 3.9: Summary of the scores from the functional analysis of the resultant

ontologies.

+1 point for additional valid axiom , i.e. axioms that were considered to

be valid even though an equivalent did not exist in the benchmark;

-1 point per absent axiom , i.e. a point was deducted for each axiom in the

benchmark but absent the users ontology;

-1 point per modelling error , i.e. we deducted a point for any axiom con-

taining a modelling error.

The participants did not define axioms for all the concepts they were given.

Where this was the case, we did not count any metrics for that concept for that

participant. We only scored against axioms belonging to the concepts in the

concept list given to the participants. The total score for each ontology was

therefore the sum of the points added or deducted.

Subjectively, the ACEView ontologies appeared to be more complete, whereas

the ROO ontologies appeared to be better structured and with fewer modelling

errors.

The data for each set of ontologies was analysed statistically using the Mann

Whitney U test (Table 3.9). At a 95% confidence level this indicates that there

is no significant difference between the sets of data collected for the geography

ontologies but that ROO out-performs ACEView with respect to the environmen-

tal ontologies and overall (geography and environment combined). The weakest

participant by far was a ROO geographer who despite only recording axioms for

three concepts achieved a negative overall score, but this alone would not have

accounted for the overall differences even given the small sample sizes.
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ACEView users tended to describe more concepts and add more axioms (Table

4). This applied to both the in scope concepts and also those out of scope. Some

of the latter group were secondary concepts necessary to define the core concepts

– for example water body used to super class river and reservoir. But others

were irrelevant clutter, such as Scotland, and it was not clear why they were

added.

ACEView users did better than ROO in getting exact axiom matches with

the benchmark ontologies (with a mean that was 1.5 matches higher per person).

They also had a higher mean for providing additional axioms, with an average of

three more per person. However, ACEView users did very much worse when it

came to the number of errors they made, that is the number of axioms that were

deemed to be incorrect, averaging 8 errors per person more that ROO users. Even

taking into account that ACEView users enter more axioms proportionately they

enter 0.4 errors per axiom, compared to 0.13 errors for ROO users. Erroneous

axioms were not included in the other axiom counts. If included, it would show

that ACEView users are even more prolific - it seems to be a case of quantity over

quality. The following is a summary of the modelling problems that occurred:

Multiple tangled inheritance. Both tools showed this problem, although it

occurred much less frequently in ROO. This was a very common error in

ACE ontologies. In the worst case Drainage had five separate immediate

simple super classes: Artificial Object, Depression, Drainage, Long

Trench and Narrow Trench. An error was scored for each extra entangle-

ment so in the case above a score of 4 would have been recorded. The axioms

would have been included in the overall total of axioms. Although also oc-

curring in ROO ontologies, the rate and degree of multiple inheritance was

much lower.

Definition of an instance instead of a class. Both tools showed this prob-

lem. There were a number of occasions where a class was recorded as an in-

stance. ACEView example: in one ontology Flood-Plain is declared to be

an individual of class sediment-deposition. In examining the ACE log file

the first mention of flood-plain is the sentence: Flood-plain borders

a river. There is no use of every in the sentence so ACE assumes
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Flood-Plain is an individual, and so records the assertion Flood-plain

is an individual of the anonymous class “borders some River”. The next

correct sentence: Flood-plain is a sediment-deposition has the effect

of adding Flood-plain as an individual of the class sediment-deposition.

ROO example: user entered Flood Plain is a Land Area rather than the

correct Every Flood Plain is a kind of Land Area.

Generation of ’random’ individuals Only ACE-View suffered from this prob-

lem. ACEView also appears to generate random individuals. For example

the sentence: Scotland contains a farm and contains a forest and

contains a reservoir. Generates three individuals. It is probable that

what the user meant was that Scotland (also an individual) contains some

farms, forests and reservoirs. What is even less clear is why the user felt it

necessary to add this out of scope information at all.

Repeated Knowledge Both tools showed this problem, although much less

frequently in ROO. In a number of cases ACEView users tended to enter

axioms that were similar to axioms already entered. An example is:

� Every flood-plain experiences flooding and

� Every flood-plain experiences periodic-flooding.

Such repetitiveness also occurred in the ROO ontologies, but much less

frequently.

Ontology Usability. None of the ontologies as produced would have been us-

able without modification. This is unsurprising given the fact that the users were

essentially untrained in the language and knowledge modelling techniques. No

user produced an ontology that provided a complete description of the concepts,

but again this is unsurprising given the experience levels and time available. In

simple terms the ROO ontologies were less complete, containing fewer concepts

and fewer axioms. However, the greater number of modelling errors in the ACE-

View ontologies, combined with the amount of unnecessary clutter in terms of

out-of-scope concepts and axioms would indicate that it would take longer to get

them to a usable state. ROO ontologies were certainly better annotated and this
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helped significantly in terms of evaluating the usability of ontologies for a certain

purpose.

3.4.4 Benefits and Limitations of CNL-based Interaction

for Ontology Authoring

In this section we summarise the main benefits and limitations of CNL-based

interaction for Ontology Authoring that follow from our comparative evaluation

study.

Efficiency

The results from the evaluation study give positive evidence that CNL-based

interaction makes it possible to quickly involve domain experts in on-

tology construction. The time users spent familiarising with CNL interfaces

(both in ROO and in ACE View) was relatively short. This result confirms exist-

ing findings that CNL sentences are intuitive to understand [41, 96]. Furthermore,

CNL provides a unified way for defining all knowledge constructs, such as entering

concepts/relationships, specifying hierarchical links, and formulating axioms.

Our evaluation does not compare CNL versus non-CNL ontology authoring

(e.g. direct editing of OWL statements, using forms, or visual interfaces). Hence,

we have no direct evidence that CNL-based ontology engineering is faster than

non-CNL. Some work in this direction has been done elsewhere, for example [47]

reports that a CNL interface is more efficient for performing simple ontology

construction tasks than traditional tools such as Protégé.

Abstraction

Defining ontological constructs in a CNL requires some level of abstraction, albeit

the CNL reduces the cognitive complexity of this process. Typical sentences for

defining a concept in a natural language tend to be information rich. For instance,

a text definition of Flood Plain given by a participant in our comparative study

is Flood plain is the area of land surrounding a river, which is usually flat, and is

prone to flooding. The domain expert has to learn that this text is not suitable
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for the ontology and has to be broken down into several sentences. In our study,

this was explained at the start of the session when introducing the tool and CNL.

However, participants used help material such as example CNL sentences and

the tool feedback (error messages) to explore the CNL and learn the limitations

of the language. For example, a participant broke the above natural language

definition of Flood Plain into the following Rabbit constructs:

� Every flood plain is a kind of area of land.

� Every flood plain is around a river.

� Every flood plain is prone to flooding.

Our studies showed that the process of breaking down natural language definitions

into CNL sentences is a crucial step when using a CNL for building ontologies.

In most of the cases, the participants performed this breaking correctly after an

initial phase when they learn the restrictions imposed by the CNL and staying

within those limits while describing concepts from the ontology. All ROO users,

as well as the ACE View users in the comparative study, were able to quickly

decide how to rephrase most natural language definitions.

Although the reduced complexity of abstraction from natural language to

ontological constructs is a key advantage of CNL-based ontology authoring, it

also brings a crucial limitation. Making the formulation of ontological

statements fairly easy can be misleading. In our studies, the participants

without knowledge engineering background would focus mainly on the formula-

tion of the CNL constructs. None of them questioned the logical implication of

what they had entered. In contrast, users with previous ontology engineering ex-

perience not only managed to quickly formulate Rabbit sentences but were more

dubious about the exact meaning in OWL terms. These users would often open

the Protégé Class Description View to check the OWL translation of the entered

sentences. This points at the need for offering intuitive ways for presenting

feedback about the logical consequences of added sentences, as discussed

below.
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Ambiguity

In Section 3.3.2 we presented how the Rabbit language and parser allow for re-

stricted ambiguity of entity names. During the user studies with ROO and ACE-

View, we observed both expected and unexpected cases of ambiguity. We discuss

some of the unexpected cases here. Firstly, some users found built-in relationships

in the CNLs ambiguous. For example, commonly confused were is a kind of and

is a in Rabbit. – the former is used to enter subclasses, while the latter is used for

defining instances. Users without knowledge engineering background did not re-

alise the difference, and often mixed instances and classes, see Section 3.4.3. Such

ambiguity problems are not handled by the mechanisms discussed in Section 3.3.2

because they stem from built-in vocabulary as opposed to user-provided entities.

However, they can be anticipated and corresponding prompts added. In the most

recent version of ROO, appropriate error messages are added when a possibility

for mixing is a kind of and is a is detected (e.g. when a partial pattern of class

definition is recognised but an is a relationship is used, the user is reminded that

is a is used for defining instances).

The second ambiguity type observed was caused by inability of the CNL

parser to determine the part-of-speech for some words, most commonly when a

word could be tagged as either a verb (hence, corresponding to a relationship) or

a noun (hence, corresponding to a concept). For example in a Hydrology domain,

a user stated that Flow is a concept. when trying to describe the Water Flow

of Rivers and other bodies of water in terms of their flow of water. However, the

Rabbit parser (at the time of the study) tagged Flow as a verb (e.g. to flow) instead

of a noun, and the sentence was not accepted. ACE View had similar problems

that were solved by enabling a user to extend the glossary of terms. A solution

for this ambiguity type is to make the authoring tool aware of such cases and to

allow the user to override the part-of-speech tagger of the parser at runtime. The

tool should help the user realise that there is a danger of introducing ambiguity,

e.g. the user could always state that flow is a relationship, which results

in an ontology having an object property and a class with potentially the same

name. The latest version of ROO includes corresponding warnings when this

type of ambiguity is recognised.
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While we were able to work around some of these ambiguity problems, these

fixes are performed in an ad-hoc manner by adding extra steps to the Rabbit pars-

ing pipeline. This indicates that there is a need for a principled classifi-

cation of the types of lexical, syntactic and semantic ambiguities that

can occur when analysing ontology authors’ inputs.

Coverage

Learning to use a CNL resembles learning a new language – starting from basic

constructs and gradually adding more complex statements. This was confirmed

in the experimental studies with ROO - most domain experts utilised only a

subset of the full set of Rabbit (and ACE) sentences. The resultant OWL on-

tologies varied from ALE to ALCOI and ALCOQ. That is, the resultant OWL

statements included definition of subclasses, anonymous classes (concept union

and intersections) universal and existential restrictions and qualified cardinality

restrictions. Domain experts rarely used (or did not use at all) CNL sentences

that translated into disjoint, equivalence and negation axioms as well as role hi-

erarchies and role inclusions. The reason for this might be that users tried to

follow natural language descriptions of concepts – one rarely describes a concept

in terms of what it is not (disjoint classes or complex concept negation).

These axioms are crucial for the quality of the resultant ontology as they

are vital when using OWL reasoners for automatic classification. This indicates

that there is a need for helping domain experts use more expressive

sentence types. One way to do this would be to extend the Guide Dog feature

in ROO. However, this functionality has to be invoked by the domain expert and

this can give rise to jumps in the scope of the suggestions. Ideally, the system

should pro-actively elicit specific knowledge from the ontology authors

based on recently added sentences. For instance, by scanning the created

taxonomy for suitable candidates it can generate connecting statements that will

enable the reasoning, and can ask the user to confirm or reject these statements.

Similarly, domain experts can be directed to use a more systematic approach to

combine axioms following ontology design patterns [48], which can be a crucial

feature in ontology authoring tools geared towards domain experts.
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Quality

The evaluation study showed mixed results regarding the quality of ontologies

resulting from domain experts using CNL-based tools. A positive impact that we

found on the quality of ontologies is that, since both Rabbit and ACE are easy to

understand, including the CNL sentence as annotations improves the readability

of the resultant OWL ontologies. Ontologies created with ROO were slightly more

readable because ROO encourages users to provide natural language descriptions

for both concepts and relationships, which are also included as annotations.

A negative finding was that none of the ontologies produced during the com-

parative user study would have been usable without modification. This finding

is not surprising because the users in this study had only a limited amount of

time to build the ontologies, had no knowledge engineering background, and may

have not realised the importance of choosing appropriate knowledge sources. Our

experimental design followed closely real situations when domain experts enter

knowledge constructs. This, however, led to reliance on domain experts’ judge-

ment in choosing the natural language definitions and deciding what statements

should be entered. A more controlled experimental design, e.g. providing the

correct natural language definitions and asking users to formulate corresponding

ontological statements, could be used to further examine the effect of the tools

on the ontology quality.

Even taking into account the evaluation study limitations, it seems clear how-

ever, that in order to improve the quality of the resulting ontologies domain

experts should be made aware of the logical implications of their as-

sertions. In the next chapter we propose a way to do this.

3.5 Practical Experience with ROO

After the comparative evaluation study between ROO and ACE-View, we released

ROO and used it to develop ontologies in practice. This section presents the expe-

rience of developing ontologies in the context of two European projects, ImREAL1

1http://www.imreal-project.eu
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and Dicode1. In both projects, the development of ontologies was performed in

an iterative and modular fashion, involving domain experts and knowledge en-

gineers working together using ROO. These recent practical experience of using

ROO confirmed that the semantic aspect of ontology authoring – overseeing the

logical consequences of adding OWL axioms to an ontology – is still a major bur-

den to domain experts and knowledge engineers. A minor problem in comparison

is that, in some cases, authors also required assistance entering sentences as they

were not valid Rabbit sentences and ROO failed to produce a useful error message

that could be used to produce a valid Rabbit sentence.

Before using ROO, domain experts and knowledge engineers sat together to

discuss the scope and purpose of the ontology. As part of this, domain experts

explained the domain to be modelled to the knowledge engineers, revealing in

the process that certain documentation (e.g. tables and diagrams) is required to

describe the domain. Domain experts then produced the required documentation

before the first joint session using ROO.

In the first sessions using ROO, the domain expert and knowledge engineer

used ROO to add concepts, relations and axioms to an ontology. The focus on

these sessions was to formalise the knowledge encoded in the gathered documents.

The knowledge engineer generally provided a supporting role in these sessions,

guiding the domain expert through the authoring process in the following ways:

� Since the ontology was started from scratch, the knowledge engineer demon-

strated the basic ROO interface to show how to enter concepts, relations and

sentences (when no KE is available, a screencast can be used instead).

� The KE also explained limitations and capabilities of both the CNL language

and OWL when relevant : for example that Rabbit typically accepts both

singular and plural forms of a concept or that a certain inference would be

made based on existing sentences.

� When the KE noticed potential logical issues, the KE intervened to explain

how the current sentence could interact with existing sentences to produce

unintended inferences; this usually triggered a process of refinement of the

1http://www.dicode-project.eu
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input sentence. The result was either a sentence that satisfied both the DE

(it described the domain satisfactorily) and the KE (it did not introduce

any logical problem).

� The KE noticed tacit assumptions and suggested ways to capture them. For

example, DEs tend to use generic relationships between concepts such as

“Every A has a B”, which hides the specific relation between the concepts.

In such cases, the KE prompted the DE to suggest a more specific relation.

� The KE also provided support regarding the general architecture of the on-

tology by advocating the creation of modules and abstractions from the

constructs proposed by the DE. The DE usually accepted such suggestions,

although this was done reluctantly when it involved introducing terminol-

ogy extraneous to the domain.

Besides these joint sessions, DEs also used ROO on their own, without the

support of a KE1. During the development of the ontology, the knowledge engi-

neers spent considerable time rectifying the ontology produced by domain experts,

mainly working on logical implications such as concept satisfiability, consistency,

redundancies and novel concepts with un-intended consequences. Such problems

had either been overlooked by the KE during the joint session, or were introduced

by DEs during a ROO session without support from the KE. The rectification of

such cases is often time consuming, due to the logical dependencies between

ontological constructs and because rectification often needs further interaction

between KE and DE.

We stress that the problem of authors not understanding the logical implica-

tions of their inputs seems to stem from the combination of several CNL sentences

into an ontology, as there is evidence that even novice ontology authors can un-

derstand the logical semantics of most individual CNL-sentences (and thus also

of individual OWL axioms) [41, 95]. Indeed, there is evidence that understanding

the logical consequences of a set of statements – not necessarily in CNL – is a

hard task even for experienced authors [68]. This problem manifests itself when

1The DEs during these experiences seemed to prefer working together with a KE, probably

to enjoy the immediate support that the KE can provide.
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authors using a CNL-based tool produce ontologies that contain logical defects.

Such ontologies require significant refinement – typically performed by knowledge

engineers – before they become useful.

3.6 Conclusion

In this chapter, we presented ROO, a tool that has been designed to cater for the

needs of domain experts with little or no ontology engineering experience. We

presented a description of how NLP, parsing and GUI techniques can be used to

provide an intuitive interface for a controlled natural language and described an

implementation for the Rabbit CNL. In doing so, we gave a detailed description

of the various novel aspects of ROO:

� custom parser enabling the use of a consistent and easy to understand

terminology for error feedback;

� disambiguation techniques to enable, control and detect the use of natural

— but potentially ambiguous — terminology by domain experts;

� a user interface mirroring and providing guidance through an ontology en-

gineering methodology.

This chapter also presented an evaluation study on ROO that provide empiri-

cal evidence in support of using intelligent techniques to assist ontology authors.

Our evaluation showed that CNL-based interaction enabled domain experts to

build ontologies from scratch in a short period of time. This suggests that CNL-

based interaction can reduce the cognitive complexity associated with the move

from natural language sentences to formal ontological statements. CNL shortens

the abstraction path by providing an intermediate level of abstraction which helps

people without formal logical background to formulate knowledge constructs. The

task of converting CNL constructs to OWL, which requires formal knowledge en-

gineering skills, is performed automatically by the CNL parsers.

The evaluation study and further practical experience with ROO presented in

this chapter also showed several open issues that need to be addressed in order

to enable intuitive ontology authoring:
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� the presented disambiguation techniques provide ad-hoc solutions to some

forms of ambiguity that can occur in CNLs. However, a more principled

approach is required for enabling the syntactic analysis of the next

generation of CNL tools. The next chapter proposes such a principled

approach to the syntactic analysis of ontology authoring inputs.

� domain experts without knowledge engineering experience require support

that goes beyond ontology engineering steps and syntactic feedback: they

also require explanations and guidance about the logical implica-

tions of entered facts. The lack of such tool support results in ontologies

with poor coverage and with a variety of modelling and logical defects.

The next chapter proposes a framework that combines the syntactic and

semantic analysis of ontology authoring inputs. In particular, the semantic

analysis consists of an integration analysis of new axioms to the ontology

and can be used to provide relevant feedback.

� domain experts tend to only use a subset of the full spectrum of CNL

sentences which has a negative effect on the coverage and quality of the

resulting ontology. This indicates that the system should pro-actively

elicit specific knowledge from ontology authors. In Chapter 5 we

look at a generic framework for enabling more pro-active ontology authoring

systems based on dialogue systems.
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Chapter 4

Entendre: Understanding

Ontology Authors’ Inputs

The previous chapter showed that a CNL interface could enable domain experts

to enter ontology constructs. However, the user studies pointed out that there is

a need for:

� appropriate feedback when ontology authors enter sentences which are not

recognised by the CNL-parser. In particular, producing error messages

and handling ambiguity cases requires adding rules on top of the natural

language and CNL grammar processing;

� guidance about the logical implications of new facts. This is especially the

case for novice ontology authors, who typically were content when they

managed to write a syntactically correct sentence. As a result, ontology

defects were introduced which had to be fixed by a knowledge engineer.

In this chapter we claim that both of these problems can be mitigated by

providing a formal description of the process of analysing the inputs of ontology

authors (OAs). We propose a framework for performing lexical, syntactic and

semantic analysis of ontology authoring inputs.1 A resultant hypothesis from the

1Note that since this chapter proposes a generic framework, it focuses on “ontology authors”

instead of “domain experts” as in the previous chapter. This is because the framework is useful

to any person who enters knowledge into an ontology authoring system, whether that person
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above is that: in order to be able to provide relevant tool support to ontology

authors during ontology construction, tools need to be able to:

1. provide a robust syntactic understanding of ontology authors’ inputs and

2. interpret authors’ inputs at semantic levels; that is, tools need to be able

to analyse the logical effects of new inputs.

In this chapter, we investigate this hypothesis by introducing a framework,

called Entendre, that can be used to provide robust syntax analysis and to incor-

porate semantic analysis of authors’ inputs. For the syntactic analysis, Enten-

dre provides an abstraction of the analysis performed by CNL tools as presented

in Chapter 3; this abstraction makes it easier to extend existing CNL-parsers in

order to successfully parse inputs that could otherwise not be recognised. For the

semantic analysis, Entendre proposes an algorithm to classify axioms in relation

to a reference ontology. The result of these analyses can be used to generate feed-

back for inputs that would otherwise not be recognised and to include relevant

logical implications in this feedback.

In this chapter we thus investigate:

� whether we can augment CNL-parsers to provide robust syntactic analysis

of OAs’ inputs (while keeping the CNL language unambiguous and the

CNL-parsing efficient)

� whether we can extend CNL-based ontology authoring to take into account

the semantics (i.e. the logical aspects) of the ontology that is being built

and

� whether such an extension can be used to aid ontology authors to under-

stand the logical aspects of ontology languages (without requiring prior

knowledge about formal logics).

This chapter is organised as follows:

is a knowledge engineer or a domain expert. Having said that, the framework is most useful to

novice ontology authors and thus also to most domain experts.
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� Section 4.1 formulates the problem of interpreting the inputs of ontology

authors and argues that a combination of syntactic and semantic analysis

is desirable in order to provide tool support for ontology authors.

� Section 4.2 discusses existing approaches for understanding the inputs of

ontology authors and providing feedback based on this understanding.

� Section 4.3 provides a formal description of Entendre, a framework for

analysing ontology authors’ inputs; this chapter provides definitions of var-

ious syntactic and semantic analyses and how they can be combined to

provide an understanding of ontology authors’ inputs.

� Section 4.4 describes an implementation of Entendre based on several exist-

ing semantic web tools.

� Section 4.5 describes how the Entendre implementation was used to extend

ROO. In particular, we show how Entendre enables the generation of inter-

active semantic feedback during ontology authoring.

� Section 4.6 describes how the feedback provided by Entendre in ROO was

evaluated.

4.1 Analysing Ontology Authors’ Inputs

The user studies and practical experiences with ROO described in the previous

chapter indicate that the support described in Chapter 3 is still insufficient to

allow ontology authors to produce useful ontologies – at least, when ontology au-

thors are not sufficiently aware of the formal semantics and existing services that

can be used to check for inferences and defects. Although ROO supports authors

through the ontology construction process and also helps them to recognise and

resolve some syntactic errors, authors also require support for understanding the

logical implications of their sentences.

The described experiences also suggest that there is a need for enabling the

detection of situations where such syntactic and semantic support is required. In

particular, it would be beneficial to ontology authors if a system could identify
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when authors require feedback that is relevant to the knowledge being entered.

This approach mimics the support provided by the KE.

Although a semantic analysis can be defined separately from the syntactical

analysis, a holistic analysis of the input requires a tighter integration between

these analyses. The reason for this is that a semantic analysis requires the input

to be syntactically unambiguous. Thus syntactic ambiguity should influence our

interpretation of the semantic analysis. Alternatively, logical defects discovered

by a semantic analysis might be an indication that an alternative syntactic analy-

sis may apply for the same input. Thus a robust analysis of an input that captures

the intent of the ontology author may require a combination of the syntactic and

semantic analyses for that input.

It is also important to note that some ontology authors, in particular domain

experts, may not be aware of – or may not care about – the distinction between

syntactic and semantic issues of their inputs. From their perspective, they just

want to add knowledge to the ontology. A step towards intuitive ontology au-

thoring tools is thus to help ontology authors with both syntactic and semantic

issues in a uniform way.

Understanding Ontology Authors’ Inputs In the remainder of this chap-

ter we use the term “understanding ontology authors’ inputs” as a shorthand

for: performing syntactic and/or semantic analyses of the inputs in order to fa-

cilitate the communication of information/knowledge from Ontology Authors into

the system. We clarify that with our use of the term “understanding”, we are not

implying that the system achieves an understanding in the colloquial sense of the

word. However, we think this term is suitable in the sense that such syntactic

and semantic analyses often result in feedback that helps the ontology author to

verify whether the input is being interpreted by the system in the way the author

intended.

To sum up: there is a great opportunity to increase the efficiency and ef-

fectiveness of the ontology authoring process by providing interactive, semantic

feedback that warns ontology authors to consider logical consequences of the en-

tered facts. This requirement becomes even more important now as there is a

growing interest in linked data [64] and a push for iterative, collaborative ontology
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development that favours reusability [8, 53, 65, 103]. In an iterative, collaborative

development style, it is important to be aware of the logical implications while

contributing or expanding existing facts.

4.2 Approaches to Understanding Ontology Au-

thors

To the best of our knowledge, there is no existing work that attempts to combine

an understanding of both syntactic and semantic issues in the area of ontology

authoring, as discussed in the previous section. There are, however, several ap-

proaches that aim to improve the system’s understanding of some syntactic or

semantic aspects of authors’ inputs. In practice, these approaches are often com-

bined in ontology authoring tools in an ad-hoc manner. In this section we review

existing approaches and discuss how they contribute to the system’s understand-

ing of ontology authors’ inputs.

4.2.1 Understanding the input’s syntax

As we discussed in Chapter 2, in this thesis we focus on analysing textual input as

a more flexible interface than GUI interfaces (see Section 2.1.2). In this section

we review the existing approaches for analysing ontology author’s textual inputs.

Using Lexical Information

A common approach to enhance the syntactic understanding of ontology authors’

inputs is to perform lexical analysis on the input. This means that the input is

analysed against a source of lexical information: rdfs:label annotations in the

ontology being built, a set of morphological rules, a word distance metric or an

external lexical ontology such as WordNet. The aim is always to find lexical

variants to OWL entity names that match some input segment. This allows for

greater flexibility in the input language, as authors may, for example:

� use the singular or plural forms of the same word interchangeably,
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� spell an entity name incorrectly,

� use a different tense of the same verb interchangeably or

� use a synonym for the same entity.

The use of lexical analysis greatly increases the flexibility of the system to

map an input onto OWL entities. However, it has the following disadvantages:

� the lexical analysis may be incorrect: e.g. the wrong plural form or synonym

may be assumed,

� it may introduce ambiguity: an input word may match the lexical form of

two or more entities in an ontology: e.g. because two entities have the same

rdfs:label or because the word is the synonym for more than one entity

in the ontology; a input word may be used as both a verb or a noun making

it unclear whether it should map onto a concept, instance or a property.

� the lexical rule may not correspond to the semantic meaning. E.g. if the

lexical analysis allows different tenses for a verb, but the ontology author

wants to capture in the ontology the difference between when a relationship

occurs.

Traditional ontology authoring tools generally perform very limited lexical

analysis: they require authors to enter full or abbreviated URIs. In doing this,

they put the onus on the ontology author, who has to refer to entities by their full

or abbreviated URIs. An exception is the Manchester Syntax parser in Protégé 4,

which uses lexical analysis based on the rdfs:label information attached to en-

tities. However, the current implementation is faulty when two or more different

entities share the same rdfs:label value. In this situation, Protégé randomly

chooses one of the entities which can result in undesired constructs. Some on-

tology authoring tools that perform such analysis for entering axioms into an

ontology are the CNL editors ROO(Chapter 3), ACE View[77] and PENG[122].

Both ROO and ACE keep track of potential ambiguities that can be introduced

due to lexical analysis and they issue error messages when an ambiguous sentence

is entered.
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To sum up, existing ontology authoring tools use a variety of lexical analysis

strategies1 in order to map input segments to entities in the ontology language.

The used strategies vary from requiring full URIs to allowing morphological vari-

ances and using external lexicons to allow synonyms. Current tools use one or

more different strategies for finding these mappings to existing entities. However

these tools rarely communicate the lexical assumptions they make to the user,

even though they often result in an incorrect understanding of the input. Resolv-

ing such an incorrect understanding is very hard to do without further syntactic

and/or semantic analysis.

Using Syntactic Information

The most common source of syntactic information that can be used to analyse in-

puts is the grammar of the input language. All ontology authoring languages that

we are aware of (e.g. RDF/XML, Manchester Syntax, Rabbit) specify a formal

grammar2 of the language. It is good to note that the bulk of the grammar is usu-

ally only of interest to tool developers; most ontology authors remain unaware

of the specific production rules and only need to be made aware of high-level

structures such as “sentences”, “concepts” and “keywords”.

The use of formal grammars to define languages imposes a trade-off between

computability (which impacts ease of developing the language itself and the tools

to support that language) and ease-of-use for the person writing sentences in

that language. Formal grammars are useful for tool and language developers for

specifying an ideal or standard language: unambiguously defining which sentences

belong to the language and how those sentences are composed. For people writing

sentences in the language, the grammar can be an obstacle when they are not

aware of all the rules in the grammar.

Research into context free grammars is relatively mature and tool support

based on these grammars, originally developed to aid software developers, is well

understood. This maturity is reflected by the availability of tools that generate

1Even when not directly tied to ontology authoring, such as automatic annotation of texts.
2By formal we mean a Context Free Grammar or similar formalisms such as Definite Clause

Grammars, Categorial Grammars or Regular Languages.
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a parser and editor with auto-complete and syntax highlighting1 based on an

initial grammar. Most ontology authoring tools provide some tool support based

on syntactic analysis as we saw in Section 2.2.2, this information can be used in

a variety of ways to help the ontology author enter syntactically correct inputs:

1. sentence templates make it easy to learn the different sentence types sup-

ported by the language;

2. predictive input support helps users to enter syntactically correct sentences;

3. syntax highlighting helps users to understand the structure of the sentences;

4. paraphrasing helps users to understand the meaning of sentences by pro-

viding an alternative syntax for sentences that are semantically equivalent.

This type of tool support improves the usability of ontology authoring tools,

but they are not specific to ontology authoring and do not take into account that

ontology authors can be very different from software developers, especially when

using a CNL interface. While software developers can be expected to go through

the process of learning a programming language, some ontology authors – in par-

ticular domain experts –, are not used to such a process. Also, ontology languages

are more accessible than programming languages as they allow authors to write

knowledge statements instead of algorithmic statements. These differences mean

that syntactic tool support for CNL grammars should be even more robust than

typical software development tools.

For example, although context-free grammars can generate syntactically am-

biguous sentences (sentences with more than one derivations), language designers

strive to avoid such ambiguities [10] because such languages are computationally

harder to parse. Tool support is thus focused on detecting ambiguities when

designing the language, rather than providing tool support when authoring sen-

tences.

The use of a formal grammar during ontology authoring imposes limitations

to the expressivity of authors : only sentences that adhere to the grammar are

deemed correct by the system. A recent usability study (in the area of query

1E.g. http://www.eclipse.org/Xtext/
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formulation using natural language interfaces, but the conclusions may be appli-

cable to ontology authoring) suggest that the majority of users prefer languages

that are flexible [85] and do not impose overly strict grammatical restrictions1.

From the tool developer perspective, these limitations are required to (i) keep the

grammar simple (ii) provide an unambiguous mapping to the formal semantics

of the ontology language and (iii) develop efficient parsers.

To counteract the limitations imposed by the grammar, the system should

ideally explain why limitation exists ; it should also suggest a similar sentence

that is valid in the grammar. We are not aware of any system for authoring

ontologies that does this. Most current tools simply issue a syntax error and

rely on the user to fix the problem (in the next section we discuss the strategies

for providing syntax errors). Some tools use heuristic rules to complement the

grammar of the language. These heuristic rules are used to fix common syntactic

errors. For example, ACE and ROO automatically insert a period at the end of

inputs because authors tend to forget to close their sentences. A problem with

such heuristic rules is that they are ad-hoc solutions, their execution is rarely

explained to the ontology authors and they can only be applied when there is no

danger of introducing ambiguity.

Although we have only considered syntactic analysis approaches that rely on

a formal grammar, it is in theory possible to provide an interface that treats the

input as a bag of words and tries to find a way to link the words onto OWL

assertions without relying on a grammar. A similar approach has been used for

providing a flexible language for querying ontologies [84], but in such cases, the

underlying ontology is used to capture commonly asked questions. This limits

the range of interpretations that the system produces. In the case of ontology

authoring, where the vocabulary and the relations between entities is not known

in advance, this approach would probably not be practical.

Other relevant work includes the work on the Computer-Processable Language

(CPL), a controlled natural language from Boeing [26]. The CPL language is an

example of a, so called, “natural” approach to CNLs: it provides robust parsing

at the cost of introducing ambiguity in the language. It does this by relying

1Although a minority of users in the study seemed to prefer tools to impose grammatical

limitations
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heavily on NLP techniques and using a set of hand-crafted heuristic rules to

select the most likely interpretation for an input. Because this approach can

result in wrong selections, and because the heuristics often depend on the domain,

they later added a more restrictive version of CPL called CPL-lite that rules out

several cases of ambiguity at the cost of making the language less robust and

cumbersome. Since they started from the more robust language, it was relatively

easy to specify CPL-Lite and combine the more robust parsing from CPL when a

sentence falls outside CPL-Lite. In their experience authors tend to stay within

the confinements of CPL-Lite, but it is good to have the more robust CPL to fall

back on. The work on CPL and CPL-Lite has not been formalised, Entendre is

an attempt to formalise the relation between the more traditional, less robust

syntaxes and extensions that are more robust at the price of predictability (See

Section 2.2 for more details of CPL and its relation to Rabbit).

In summary, syntactic analysis based on formal grammars of inputs is well

understood and provides several ways to support the ontology author. However,

the use of grammars to perform syntactic analysis can result in overly restrictive

syntaxes. While the use of heuristic rules can make the syntactic analysis more

flexible, their use is limited to avoid introducing ambiguities.

Syntax Error Messages

When the approaches for lexical or syntactic analysis described above fail – i.e.

the syntax of the input is not understood by the system, which means that no

OWL axioms can be mapped to the input – the commonly used approach is

to issue a syntax error message to prompt the ontology authors to revise their

inputs. The content and understandability of the error messages varies widely

depending on the targeted users (type of ontology authors) and the way that the

syntax analysis is implemented.

The most common approach for providing syntax errors is to reuse the stan-

dard syntax errors provided by parser generators such as Antlr1 or Yacc2.

This approach results in very cryptic error messages that assume the ontology

author is acquainted with the language grammar and how this grammar is parsed.

1http://www.antlr.org/
2http://dinosaur.compilertools.net/

81

http://www.antlr.org/
http://dinosaur.compilertools.net/


4.2 Approaches to Understanding Ontology Authors

Typical error messages expose vocabulary that is only relevant for parser devel-

opers: the errors include, besides the line and column number, which production

rule(s) failed, which token types were expected and/or which unexpected token

types were found. Such error messages are not very intuitive as most ontology

authors will not understand these messages due to their terminology1 and will be

unable to rectify any errors(unless they are aware of all the production rules in

the grammar). An example of an ontology authoring tool that uses this approach

is OPPL2.

To avoid exposing parsing terminology on syntax errors, parsers are often

custom built or an extra analysis is performed on the auto-generated

error messages. In both cases, the lexical and syntactic analysis of the parsed

input needs to record information that can be used to generate error messages.

Also, parsing terminology needs to be adapted to the situation at hand: the error

message generator needs to know which parts of the grammar can be exposed to

the ontology author. This choice often depends on the intended audience. For

example, a CNL parsing system may include linguistic terminology in its error

messages (e.g. a noun phrase was expected, but a verb was found), while a differ-

ent parsing system may avoid linguistic terminology and use OWL terminology

instead (e.g. an OWL class was expected, but an object property was found).

ROO, ACE and the Manchester Syntax parser in Protégé 4 all use this approach.

Error messages may also include information about the attempted stra-

tegies to understand the input’s syntax. An error message can, for example,

state that a word in the input was matched to an existing entry in WordNet, but

that none of the words in the synset matched a class in the ontology. Such mes-

sages help the ontology author understand how inputs are interpreted by the

system.

Finally, error messages can also contain suggestions about how the gram-

matically incorrect input can be changed to arrive at a valid input. As

stated before, tools based on context free grammars usually do not provide these

types of errors as any sentence that is not produced by the grammar is assumed

1Assuming the authors have no experience building parsers and no knowledge of the gram-

mar of the syntax being used to author the ontology
2http://oppl2.sourceforge.net/

82

http://oppl2.sourceforge.net/


4.2 Approaches to Understanding Ontology Authors

to be incorrect. In ROO for example, we perform an extra analysis to find nouns

and noun phrases which could be potential concepts that have not been added

to the ontology yet. We are not aware of other tools which perform such extra

analysis to try to repair the syntax of the input.1.

Summary of Approaches for Syntactic Analysis

This section presented an overview of existing approaches that are used to analyse

the syntax of ontology authors’ inputs. We saw that:

At the lexical level , ontology authoring tools use a variety of strategies to map

segments of inputs to entities in the ontology. For the ontology author, it

is more convenient when the system uses more advanced lexical strategies,

because then the ontology author can use more natural language. However,

we saw that implementing such advanced strategies is not trivial and can re-

sult in incorrect mappings. Furthermore, resolving such incorrect mappings

can only be done when taking into account other syntactic and semantic

aspects of the input.

At the syntactic level , most ontology authoring tools rely on formal gram-

mars as a way to provide standard tool support for ontology authors such

as syntax highlighting and auto-completion. However, further tool support

is required for novice ontology authors; which can be achieved through the

use of heuristic extensions to formal grammar parsers. A principled way to

describe and apply such heuristic extensions is necessary.

Syntactic feedback of varying quality is generated by existing ontology au-

thoring tools. Custom-built parsers are often required in order to produce

understandable feedback at the right level of abstraction. Furthermore, the

use of more complex lexical strategies and heuristics for syntax analysis

requires better feedback in order to inform ontology authors about assump-

tions made by the system. The lack of a principled way to accommodate

1At the lexical level, a well known strategy for building robust parsers is the use of the

Levensthein distance. However, we are not aware of any similar approach for the syntactic level

of parsers (for either CNLs or other types of languages).
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such advanced syntax analysis strategies in a unified manner stands in the

way of providing such necessary feedback.

4.2.2 Understanding the input’s logical implications

We will now discuss existing approaches for understanding the logical conse-

quences of ontology authors’ inputs. These approaches generally assume that the

ontology author’s input does not contain syntactical errors and is unambiguous:

thus, that there is a single interpretation of the input as a set of OWL axioms.

Most of the approaches in the state-of-the-art assume that ontology authors

have some knowledge of the semantics of ontology languages. As a consequence,

the approaches are only applicable when the ontology authors know how to use

existing reasoning services to confirm or explore the logical consequences of the

authored ontologies. In other words, these tools are not intuitive and are hard to

use by ontology authors who lack knowledge engineering skills.

While existing approaches for analysing the logical consequences of ontology

authors’ inputs are not intuitive, they are still very valuable to ontology authors

as they make it easier to perform the following tasks: (i) verify whether expected

inferences have been made, (ii) become aware of unintended inferences and (iii)

explore and understand how inferences are made by the reasoners.

The most common approach to understand the semantics of an author’s input

is to provide access to generic reasoning services. This access allows for semi-

automatic analysis of the input. In the following sections we will discuss several of

these reasoning services. At the end we will also discuss a less common approach

to understand the semantic consequences: an automatic approach1.

Basic DL-Reasoner Services

The most basic reasoning services are those provided by DL reasoners: consistency

checking and classification [7]. During ontology authoring, after entering one of

more inputs, the ontology author can use the reasoner to classify the ontology.

This process will fail if the ontology is inconsistent, which is usually shown by

1Because we are focusing on intuitive tool support, we do not consider collaborative au-

thoring as an approach for understanding the logical consequences.
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authoring tools as an error message. When the classification succeeds, authoring

tools present the inferred class graph as a visualisation or as a hierarchy. The

classification will also show any unsatisfiable classes as being equivalent to (or

subclasses of) owl:Nothing.

Another reasoning service provided by DL reasoners is query answering or

entailment checking. An ontology author can use this service by asking the DL

reasoner whether a given axiom is entailed by the ontology or not. Ontology

authoring tools tend to provide access to this service by providing a syntax for

writing queries, such as Sparql-DL [127] and SQWRL [109] or a subset of Manch-

ester Syntax as is done in the query tab in Protégé.

The information provided by a DL reasoner is useful to authors as it warns

them about inconsistency problems, unsatisfiable classes and unexpected sub-

sumption relations. When the author is experienced and the new issues were

introduced recently, the author may be able to figure out which inputs contain

errors. When the author is inexperienced or does not have enough understand-

ing of the OWL semantics the author may need further support to understand

the unexpected inference. Also, when the author discovers the issue after sev-

eral ontology changes it may be difficult to pinpoint a few axioms that cause the

problem. This approach thus suffers from two main drawbacks:

� lack of transparency as any of the issues may be the result of complex

interactions of different OWL constructs. This is also true for answers

to queries: the reasoner determines whether an axiom is entailed by the

ontology, but does not provide any justification as to why this is the case.

� low discoverability of issues : the classification graph can be very large and

unexpected inferences may not be spotted immediately by ontology authors.

This problem is exacerbated when authors do not run the reasoner after each

ontology change, but rather wait until a large number of changes have been

made.

Recently, higher-level reasoning services 1 are becoming available that ad-

dress the problems mentioned above. In particular, justification generators help

1We call them higher-level because they generally are built on top of the basic services

provided by DL reasoners.
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to make inferences more understandable while entailment set extractors help to

discover new entailments that affect a particular entity in the ontology. We dis-

cuss how these services are made available by current ontology authoring tools.

Entailment Set Extractors

Reasoning services that extract entailment sets from an ontology can aid authors

to become aware of unintended inferences that their ontologies may have. They

also help novice authors to get a feeling for the types of inferences that DL

reasoners can make based on asserted axioms. The main drawback of these

services is that even small ontologies can result in an infinite number of inferences;

therefore, a choice has to be made as to which set of entailments are deemed

“interesting” and should be extracted. The potentially large number of entailments

also means that a strategy has to be defined for showing these axioms to the

ontology authors ; this strategy should prevent the author becoming overwhelmed

with too many entailments and further narrowing the selection of entailments to

a subset that is relevant to the task at hand.1

Different ontology authoring tools have made different choices when defin-

ing the set of entailments and when presenting these entailments. For example,

Protégé 4 provides three different sets of entailments. The smallest set is based

on lightweight reasoning support(it does not require a full classification of the

ontology by a DL reasoner) to show inherited restrictions of classes; this type

of entailments is shown in Figure 4.1. Another set of axioms is shown when an

ontology is classified in Protégé 4 (by manually invoking a DL-reasoner); in this

case, some components are updated to show extra restrictions on the selected

entities (these restrictions correspond to an entailment that has been extracted,

e.g. a new subsumption relation determined by the DL reasoner) as shown in

1Note that in the above we are dealing with an issue of trying to avoid cognitive overload of

the ontology authors; a separate issue is the generation of entailments for very large knowledge

bases, which is an issue of computational scalability. In such cases, usually only a subset of the

ontology language is used to guarantee the materialisation of entailments in a reasonable time.

In the context of ontology authoring, we assume that ontology development avoids the use of

very large knowledge bases by using modularisation and alignment techniques, which are out

of the scope of this PhD.
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Figure 4.1: Screenshot of Protégé 4 showing both asserted and inherited axioms

for class StudentBusRoute. The inherited axioms are shown under the heading

of “SubClass of (Anonymous Ancestor)”. In this case, the inherited axioms have

been defined for class TransportRoute. No reasoner is required for Protégé 4 to

show these inferences.

Figure 4.2. The final set of entailments is shown in a special component called

Selected Entailments, see Figure 4.3. This component also requires running a rea-

soner and shows basic inferred relations between named classes such as implicit

subsumptions.

Recent work has proposed a way to unambiguously specify some selections of

entailments [9]. However, the proposed selections remain fairly simple: for exam-

ple, they exclude entailments that involve concept expressions. Thus, there is still

no standard way to determine what constitutes an interesting set of entailments.

Furthermore, there are no empirical studies to compare the impact of providing

entailments sets on ontology authoring.

Entailment Justifiers

Justification of inferences as described in [69] greatly helps authors to gain insights

into how inferences are derived from the ontology and the OWL semantics. When

ontology authors find an unexpected entailment in their ontology (e.g. in a set
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Figure 4.2: Screenshot of Protégé 4 showing asserted, inherited axioms and in-

ferred axioms for class StudentBusRoute. The inferred axioms are shown in

yellow and require the manual running of a reasoner.

Figure 4.3: Screenshot of Protégé 4 showing the Selected Entailments component.

This component only shows entailments after manually running a reasoner.
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extracted by the tool, or after a query), they can use an entailment justifier

to generate one or more justifications: a minimal subset of the ontology that

is sufficient to entail the axiom. The idea is that, by showing only the axioms

that influence the entailment, the authors will be able to understand how the

entailment was made (and possibly discover whether an existing axiom needs to

be altered).

Ontology authoring tools such as Protégé recently added support for justifi-

cations by adding a button to generate a justification for entailed axioms that

have been extracted 1.

Because the algorithms for finding justifications generally depend on DL rea-

soners, they only work for consistent ontologies. This means they can be used to

debug some issues in ontologies such as unsatisfiable classes and redundancies,

but are not directly useful for debugging inconsistent ontologies.

Inconsistency Debuggers

Most DL-Reasoners are not able to classify inconsistent ontologies, nor can they

give meaningful answers to queries because all axioms are entailed by an incon-

sistent ontology. Because of this, other services such as justification generators

and entailment set extractors cannot be used with inconsistent ontologies. In

order to provide reasoning services for such ontologies, a consistent subset of the

ontology must be found first. As there are many such subsets, it is generally very

difficult to provide intuitive services that can accurately pinpoint the source of

the inconsistency [69].

Due to the difficulty in providing reasoning services for inconsistent ontologies,

it is generally better to prevent the ontology from becoming inconsistent in the

first place. When this cannot be prevented, it is better to detect inconsistencies

as soon as possible and to keep a log of ontology changes; this makes it easier to

identify the potential cause(s) of the inconsistency.

1Although, in principle, a justification can be found for all entailed axioms [72], the current

implementation in Protégé, only provides justifications for a certain axiom types.
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Model Generation and Exploration

Another reasoning service that helps to understand the logical implications of

ontologies is the generation and exploration of models for a given ontology. Such

a service is implemented in SuperModel [11], a tool that prompts the user to

fill an initial ABox and then uses an OWL reasoner to generate a model1 that

satisfies both the initial ABox and the ontology. This model is presented as a

graph that can be explored and refined by the ontology author. The idea is that

generated graphs will help the author to discover and understand the implications

and restrictions of classes. Providing the seed ABox to generate the model and

the model exploration itself are activities that have to be initiated by the ontology

author. Furthermore, although the evaluation study presented in [11] indicates

the approach can be beneficial for some specific tasks such as improving the

understanding of property restrictions on classes, it is not clear whether other,

simpler approaches can have the same effect.

Automatic Semantic Feedback

All of the tools described above require the ontology author to be aware of the

OWL semantics in order to be able to understand what the tools do, how to

use them and how to interpret their results. They are semi-automatic in the

sense that the ontology author needs to decide when the tool should be used.

Fully automatic semantic feedback for inputs was initially explored by Liebig

and Noppens using the OntoTrack system [102].

OntoTrack is an ontology authoring system that employs a graphical user in-

terface. The novelty of OntoTrack is that it provides instant reasoning feedback.

When a new axiom is added to (or removed from) the ontology, OntoTrack auto-

matically updates the presented graph to show a selection of logical consequences

provided by an OWL reasoner. This means that the graph presented by Onto-

Track is always an extension of the graph that was stated by the ontology author:

new nodes and links in the graph show inferred classes and relations.

Although the creators of OntoTrack argue that its input analysis, coupled

with instant “feedback obviously will help users to identify faulty or non-intended

1This is a model in the Tarski model-theoretic sense.
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modelling” [102, Section 3.4]. However, there is a lack of evaluation that validates

this claim. Certainly, anybody who has authored an ontology eventually realises

that this feature is very helpful. However, we are not aware of any evaluation

to determine whether providing this functionality automatically is desirable in

practice. For example, the information gathered by this analysis may be viewed

as redundant, distracting or confusing by some ontology authors. In Section 4.6

of this thesis, we improve on this situation by reporting on an evaluation study we

performed to investigate the effect that such semantic feedback has on ontology

authors.

OntroTrack’s main contribution was coupling the interactive semantic feed-

back to the ontology authoring. However, the authors do not provide a formal-

isation of the system: they merely say that some inferences can be extracted

using a reasoner and shown to the user. The authors do not attempt to formalise

which inferences should be extracted in order to aid ontology authoring scenarios.

In Section 4.3.2 of this thesis, we provide a formal description of an algorithm

for performing semantic analysis during ontology authoring; it formally describes

several categories of axioms that are relevant to ontology authoring tasks.

Besides the work on OntoTrack there are no other attempts to automatically

provide semantic feedback when adding new statements to the ontology. Recent

ontology authoring tools, such as the commercial tool FluentEditor1, automati-

cally run a reasoner on user input, but the analysis and the feedback of the tool

are minimal: it only shows unsatisfiable classes.

There is however related work on Ontology Integration. A system called Con-

tentMap treats a set of ontology mappings as a set of new axioms to be added to

the ontology [75]. ContentMap then performs semantic analysis of the axioms in

order to aid the ontology authors to select a subset of mappings to avoid introduc-

ing ontological defects. ContentMap is designed for advanced ontology authors

who already have knowledge engineering skills and focuses on the computabil-

ity of their integration analysis. In this PhD, we propose a similar semantic

analysis, but focus on the feedback that we can generate and present to novice

ontology authors. Another difference is that in this PhD, we are only considering

the integration of new input facts into an existing ontology instead of the more

1http://www.cognitum.eu/products/FluentEditor/
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general problem of integration of ontologies. Furthermore, because of this nar-

rower scope, we will define categories of axioms that have specific effects on the

authored ontology.

4.2.3 Summary

Several reasoning services are available for helping ontology authors to understand

the logical consequences of their ontologies. Unfortunately, most of these tools

require ontology authors to understand the logical underpinnings of the ontology

language, rendering them unsuitable for most domain experts. There has not

been much research on making such reasoning services more intuitive. This is

unfortunate as the reasoning services complement each other very well and could

be combined to provide more intuitive interfaces for ontology authors.

We think it is also important, in order to provide intuitive interfaces for on-

tology authoring, to take into account results from the syntactic analysis when

performing semantic analysis. Although the two types of analysis can be per-

formed independently from each other, it is important for tools to be aware of

how syntactic results may affect semantic analysis results: namely, such tool

awareness should results in improved feedback for ontology authors.

4.3 Formal Description

In the previous sections we saw that in order to provide appropriate tool sup-

port to ontology authors, there is a need for a principled way to (i) integrate

various syntactic and semantic analyses strategies and (ii) produce understand-

able feedback based on the analysis results. In this section we present a generic

framework, called Entendre, which provides a formal description of how an ontol-

ogy authoring system can gain an understanding of an ontology author’s input.

The overall analysis performed by such an OA system can be seen as a gradual

semantic enrichment of the input by analysing that input based on some refer-

ence ontology and a set of analysis strategies. Figure 4.4 shows that the overall
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analysis comprises lexical, syntactic and semantic analysis steps.1 Each step in

the analysis refines the understanding of the system about the input:

� The entity annotation stage or lexical analysis2 results in a lexical reading

of the input. A lexical reading specifies whether the input mentions entities

used in the reference ontology, or whether it uses terms that do not occur

in the reference ontology.

� A syntactic analysis of the input results in a syntactic reading of that input.

A syntactic reading maps the input to zero, one or more assertions expressed

in the ontology language (these assertions may refer to entities defined in

the reference ontology).

� Finally, a semantic analysis of the input results in a semantic reading of

that input. A semantic reading relates the input to logical consequences

that hold for that input based on the reference ontology. For example,

a semantic reading may state that an input contradicts assertions in the

reference ontology.

In this chapter, we assume that the ontology author’s input is a textual input,

which may be analysed by using a variety of syntactic strategies such as those

defined by various CNLs – such as Rabbit, ACE or CPL –, or more traditional

syntaxes such as the Manchester Syntax, or the RDF/XML serialisation syntax

for OWL. We also assume that the reference ontology is represented in OWL,

although most of the presented approach could be used with other ontology lan-

guages.

1Note that this diagram only shows a successful analysis; in practice, each phase of analysis

may be inconclusive: no enrichment could be found or more than one annotation could apply

to the same input. Entendre defines ways to handle these cases as well.
2Note that in this thesis, lexical analysis means mapping segments of the input to names in

the reference ontology. This should not be confused with the processing of lower-level symbols

such as characters in a string, which are not in the scope of this thesis.
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Figure 4.4: Overview of the analyses executed in Entendre and how they enrich

the original textual input by an ontology author.

4.3.1 Syntactic Analysis

Preliminaries

In this thesis we reuse a formal framework for linguistic annotation introduced

by Bird and Liberman in [14]. This formalisation has been shown to be general

enough to capture annotation of a wide variety of linguistic corpora. Besides

providing a solid grounding to represent annotations, this framework ensures that

our formalisation of Entendre – which in this thesis focuses on analysing textual

inputs – can be extended for analysing other types of inputs such as speech or

video.

We use ι to denote an input by an ontology author. Since we focus on CNL-

based interfaces we only consider inputs which are textual inputs; more specifi-

cally we assume that our input is a finite sequence of characters (i.e. a string).

Bird and Liberman define an annotation graph G as a triple 〈N,A, τ〉 over a

label set L and collection of timelines (Ti,≤i), where each timeline is a totally

ordered set. N is the set of nodes (i.e. graph vertices), A is a set of labelled arcs

(i.e. graph edges) and τ is a time function τ : N →
⋃
Ti. The annotation graph

must satisfy two conditions:
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1. 〈N,A〉 is a labelled acyclic digraph (also called directed acyclic graph) that

contains no nodes of degree zero

2. for any path from node n1 to n2 in G, if τ(n1) and τ(n2) are defined, then

there is a timeline i such that τ(n1) ≤i τ(n2).

The conditions mean that an annotation graph always “moves forward” in

terms of some timeline.

In this thesis, we will use a narrower version of annotation graphs:

� Because we are concerned with an ontology authoring task, we assume that

annotation graphs are defined in the context of some ontology O – we call

this the reference ontology – that is written in an ontology language L.

Thus in this thesis, an annotation graph will be a tuple 〈N,A, τ,O〉, where

〈N,A, τ〉 is defined as above and O is an ontology. A formal definition of

an ontology is given in Section 4.3.2.

� Because we only consider textual inputs, annotation graphs will only be

defined over a single timeline. This timeline is given by the indices of the

input string. This restriction means that we can assign a time value to any

node in the annotation graph.1

� For any arc from node n1 to n2, n1 and n2 must be different nodes. That

is: indices in the input string will never be annotated, only segments of the

input can be annotated.

The definition of annotation graph means that one cannot have isolated nodes:

all nodes must have at least one incoming or outgoing arc. It is possible however,

to have a graph that consists of two or more subgraphs which are not intercon-

nected through an arc (see for example Figure 4.5). Also, one can have empty

annotation graphs that have no nodes or arcs; we use ∅ to denote the empty

annotation graph.

Annotation graphs can be presented in a graphical form as shown in Figure 4.5.

Because we are only considering inputs that are sequences in this thesis, we will

1This means we only consider totally-anchored annotation graphs as defined in [14].
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Figure 4.5: Example of an Annotation Graph for an input. From top to bottom

this example shows: the input sentence consisting of a sequence of symbols “s”,

the timeline, the mapping τ , the nodes in AG and the labelled arcs in AG.

use a simpler notation for annotation graphs based on intervals. Figure 4.6 shows

the same graph as Figure 4.5, but uses the interval notation. In the interval

notation, we omit the names for the nodes. Instead, we show only the arcs and

their labels as intervals. Each interval corresponds to one or more arcs in the

annotation graph that have the same start and end nodes. The labels of those

arcs are shown below the interval, as shown in Figure 4.6. Whenever we show

intervals in figures, we will also show the original input in order to “align the

intervals with the input”: the horizontal spatial locations of intervals corresponds

to their time values.

Representing Ambiguity with Annotation Graphs

In the next sections we will often encounter ambiguous and unambiguous variants

of annotation graphs. We introduce a formal definition of ambiguity based on

the structure of the annotation graph.

Definition 1. An Unambiguous Annotation Graph is an annotation graph

G such that:

� every node in G has indegree at most 1 and has outdegree at most 1 (thus

every node has degree at most 2) and

� for any arc from node ni to nj in the graph, the set of nodes {n | n in G
and τ(ni) < τ(n) < τ(nj)} is empty.
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Figure 4.6: The same Annotation Graph as in Figure 4.5 using the interval

notation. From top to bottom this example shows: the input sentence consisting

of a sequence of symbols “s”, the timeline, the annotation graph using the interval

notation. One interval starts at time value 20 and end at time value 22; this

interval has two labels: labels 1 and 3. A second interval, that contains only

label2, starts at time value 27 and ends at time value 36. In this case we have

given the annotation graph a name: gn.

Annotation graphs that are not unambiguous are ambiguous.

Intuitively, this means that for an unambiguous AG, there can be at most one

arc (and thus also at most one label) that applies to any segment of the input.

Using the interval notation, ambiguity is easy to spot as intervals that overlap or

encompass each other. For example in Figure 4.6, the intervals for labels 1 and 3

overlap each other; in the same figure, label4 encompasses label2.

It can be shown that any ambiguous AG can be decomposed into 2 or more

unambiguous AGs. For example, the ambiguous AG shown in Figure 4.6 decom-

poses into 4 unambiguous subgraphs, shown in Figure 4.7. In this thesis, we will

use δ(G) to denote the set of unambiguous sub annotation graphs for G.

Lexical Readings

The first step during the syntactic analysis of an input is to determine the vocab-

ulary that the input uses; in other words, find the entities that the input refers

to. This process results in a lexical reading of the input: this is an annotation

graph that maps segments of the input string to entity names in the ontology

language.
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Figure 4.7: The nine unambiguous subgraphs of the ambiguous Annotation Graph

shown in Figure 4.6. Note that the empty annotation graph (represented as ∅)
is always an unambiguous subgraph of any other non-empty annotation graph.

Note further that the ambiguities that can be represented by Annotation Graphs

depend on the contents of the labels. Thus if label1 and label3 are entity names,

then the annotated string has an ambiguous mapping to entity names. But if the

labels would refer to different axioms in OWL, the ambiguity would be structural

or logical.
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Definition 2. Let ι be an input string, Σ the set of entity names in an ontology

language and ΓΣ the set of strategies for mapping input segments onto entity

names; then a Lexical Reading of ι is an annotation graph over the set of

labels Lentity. A label in Lentity is a triple 〈σ, n, κ〉, where σ ∈ Σ, n is a natural

number and κ ∈ ΓΣ.

In the case of OWL, the entity names are IRIs1. Intuitively, an arc in a

lexical reading means that a segment of the input can be mapped onto an IRI

by using one or more mapping strategies. The numbers in the labels act as

identifiers, this makes it possible to determine whether two (or more) segment

refer to part of the same OWL entity or whether they refer to different entities.

See for example Figure 4.8, where input segment “is not contained within” may

refer to an object property :beContainedWithin2. We will generally omit the

identifier in our figures unless an entity is split across multiple intervals (e.g.

Figure 4.8) or unless an entity is named more than once in the same input.

In this chapter we assume that lexical mapping strategies are black boxes that

are performed during lexical analysis of the input. Thus, applying a mapping

strategy κi to an input creates a lexical reading that only contains labels of the

form 〈σ, n, κ〉 where κ = κi. However, because we envisage provision of robust

syntactic analysis we allow the lexical analysis to use more than a single mapping

strategy, hence the definition of lexical readings over a set ΓΣ.

The labels in lexical readings refer to mapping strategies as a provenance mech-

anism. This allows Entendre to keep track of heuristics (and their assumptions)

that were made during the lexical analysis. The provenance information is nec-

essary for feedback generation and can also be used for disambiguation purposes.

For example, in Figure 4.8 we see that the segment of the input corresponding

to string “Student” was mapped to two different IRIs by two different mapping

strategies. Both strategies first used Part-of-Speech tagging to determine that the

string “Student” is a Noun. One strategy however, mapped the corresponding

1http://www.w3.org/TR/2009/REC-owl2-syntax-20091027/#IRIs
2Here, we are using abbreviated IRIs where the string before the colon is a IRI prefix. For

the examples in this chapter we will use prefix n to stand for http://example.com/ontology/

newEntities. When the prefix is empty in an abbreviated IRI, the IRI uses the default names-

pace of the current ontology.
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input segment to a new, unused IRI n:Student. The second mapping strategy

mapped the noun to an existing entity name from the ontology O that matched

with the rdfs:label (:Student).

The mapping strategies enable robust syntactic analysis of the input. Consider

a case where the ontology author wants to enter the input sentence shown in

Figure 4.8 but due to a typo the user wrote “contrained” instead of “contained”.

In such a case, the default strategy of matching rdfs:labels will not succeed.

However, another mapping strategy using the Levenshtein distance [101] will be

able to correctly map the input to :isContainedWithin.

As Figure 4.8 shows, ambiguity is very common in lexical readings.1 The use

of multiple mapping strategies, of course, causes such ambiguity. But ambiguity

occurs even when using a single mapping strategy: for example, different entities

in the reference ontology can have the same rdfs:label value causing multiple

mappings for the same input segment. In general, allowing such lexical ambiguity

allows ontology authors to be less precise about their inputs, but puts the onus on

the system analysing the input to perform disambiguation and to provide variants

of the input that are unambiguous.

Algorithms for syntactic analysis generally require unambiguous lexical anno-

tations over the input; Entendre thus requires a disambiguation process as part

of the entity annotation stage as shown in figure 4.9. For example, rΣ
0 , the lexical

reading in Figure 4.8, can be decomposed into 320 unambiguous lexical readings2.

1Note that in this thesis, we use the term “reading” as the result of some analysis of an

input string. Readings in this sense represent an intermediate state before attaching a specific

meaning to an input. Using this sense of reading, it is then possible to have an analysis result,

a reading, that is ambiguous in the sense that no single meaning can be attached to the input.

We contemplated using a different term like “interpretation”, but this seems to indicate even

more that a particular interpretation cannot be ambiguous.
2To calculate this number, we first look at intervals that do not encompass other inter-

vals. For example “Student” has two labels and does not encompass any other interval, thus

the number of unambiguous graphs for this interval is its number of labels plus one (for the

empty graph): |δ(Student)| = 3. Similarly |δ(Union)| = 2, |δ(be)| = 2, |δ(contained)| = 3

and |δ(University)| = 4. For intervals containing other intervals, such as “Student Union”,

the number of unambiguous graphs is given by their number of labels in the interval plus

the combination of the unambiguous graphs of the encompassed intervals (that do not in-

tersect each other). Thus, |δ(Student Union)| = 2 + (|δ(Student)| × |δ(Union)|) = 8. Sim-
ilarly, |δ(contained within)| = 1 + |δ(contained)| = 4. Which we can use to calculate that
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Figure 4.9: Input, processing steps and output of the entity annotation stage in

Entendre. Note that this processing is independent of any particular ontology

authoring syntax.

Syntactic Readings

Based on one or more unambiguous lexical readings of an input, the input can be

syntactically analysed. The result of this analysis is a Syntactic Reading of the

input (based on an unambiguous lexical reading). A syntactic reading is similar

to a lexical reading: it is also an annotation graph, but the labels in this case refer

to assertions in the ontology language (axioms, in OWL terminology) instead of

entity names. Accordingly, the labels in syntactic readings usually cover larger

segments of the input than the labels in lexical readings.

Definition 3. Let ι be an input string, rΣ be an unambiguous lexical reading of

ι, L be an ontology language and ΓL be the set of strategies for mapping input

segments onto assertions in L; then a Syntactic Reading of ι based on rΣ is an

annotation graph over ι and a set of labels LL. A label in LL is a triple 〈λ, n, γ〉,
where λ is a set of assertions in L, n is a natural number and γ ∈ ΓL.

It is important to note that this definition of syntactic readings is relative

|δ(is not contained within)| = 2 + (|δ(be)| × |δ(contained within)|) = 10. Thus, the total num-

ber of unambiguous graphs for the whole graph is given by |δ(eg0)| = |δ(Student Union)| ×
|δ(is not contained within)| × |δ(University)| = 10× 8× 4 = 320.
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to an unambiguous lexical reading. As we saw in Section 4.3.1, after the entity

annotation stage, we may have a (possibly large) set of unambiguous lexical

readings of the input; thus performing syntactic analysis on this set of lexical

readings will produce a set of syntactic readings – one syntactic reading for each

unambiguous lexical reading.

Note also that the labels in syntactic readings contain sets of assertions in

the ontology language. Thus, a single input sentence can be mapped to more

than one assertion. For example, an instance declarations in Rabbit(e.g. Leeds

is a Place), is mapped onto two logical axioms in OWL1: a class assertion

ClassAssertion(:Place :Leeds) and an instance declaration Declaration(

NamedIndividual( :Leeds)).23

In order to illustrate the concept of syntactic readings, Figure 4.10 shows a

syntactic reading of the input shown previously in Figure 4.8. Recall that rΣ
0 ,

the lexical reading for this input was ambiguous and could be decomposed into

320 unambiguous lexical readings. In Figure 4.10 we show a syntactic reading

based on one of those unambiguous lexical readings (a subgraph of rΣ
0 ), which

we call rΣ
42. The resulting syntactic reading, rL42, associates six labels to the

whole input (based on 6 strategies: Rbt+NSP, PME+Rbt+NSP, Rbt, PME+Rbt,

ManchesterSyntax and ACE) and one label to part of the input (based on strategy

BOE+DR). The six strategies are based on three different OWL syntaxes: Rabbit,

Manchester Syntax and ACE. None of these syntaxes can parse the input sentence

as it does not conform to the expected syntax. We can extend Rabbit to allow

Negative-Split-Passive verb phrases (Rbt+NSP) in order to successfully parse

the input sentence. We can even include a heuristic rule PME during syntax

analysis to prepend the missing keyword “Every” to the input sentence. In Rabbit,

1We use the OWL functional syntax
2Note that this is partly dependent on the expressiveness and syntax of the ontology lan-

guage. For example, in the abstract DL syntax there is no notion of a declaration axiom, thus

this example would only result in the class assertion :Place(:Leeds).
3Besides the 2 logical axioms, the Rabbit parser will also produce 2 more annotation

axioms. The first one is attaches a lexical form to the new entity using an rdfs:Label

property. The second one records the original input using a custom annotation property

rabbit:RelatedSentence. We omit these two annotation axioms since they are not relevant

for the logical interpretation of the input.
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the sentence without the “Every”-keyword is interpreted as a class assertion; while

the sentence with the keyword is interpreted as a class subsumption. Besides the

three OWL syntaxes used, another strategy was applied that does not extend an

existing OWL syntax and does not rely on a formal grammar: a bag-of-entities.

Such an approach can be useful when the input does not conform to a pre-defined

grammar1. In this case, the bag-of-entities is used in combination with a strategy

to generate domain and range restrictions.

Preferred Input and Rendering Syntax in Ontology Authoring

Lexical and Syntactic readings occur in CNL-based ontology authoring (and also

in authoring using e.g. the Manchester Syntax) when authors enter new asser-

tions and the authoring tools analyse this input. As stated in Section 4.2.1,

current ontology authoring languages define a language grammar to avoid (or

minimise) ambiguity at both the syntactic and lexical levels; in minimising am-

biguity, parsers for these languages become unable to recognise some sentences

that authors want to enter. Our goal is thus to enable the extension of current

parsers to take into account alternative lexical and syntactical analysis strategies

in cases where the standard parser fails to recognise an input.

Thus, we assume that during ontology authoring, there will be a preferred

lexical mapping strategy κpref and a preferred syntactic strategy γpref . In principle,

we allow both of these strategies to produce ambiguous readings although, in

practice, current ontology languages do not allow ambiguous syntactic strategies.

Allowing authors to enter ambiguous inputs means Entendre will need to be

able to disambiguate the input; often Entendre will then need to confirm the

disambiguated sense by consulting with the ontology author. This means we will

need to present entity names, assertions (and sets of assertions) in the ontology

language to the author; in such cases we require a rendering syntax . Thus for an

assertion α, we denote the rendering of that assertion with rend(α). We impose

the following restriction on the rendering syntax: it must produce unambiguous

1Of course, in this example, this approach does not add much value since the NSP extension

to Rabbit provides a better coverage for the input. However, for some inputs we may not have

a suitable extension for Rabbit in which case the BOE strategy can be useful. We include this

approach in this example to show that syntactic readings can be used to capture such strategies.
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renderings in the context of a reference ontology. Thus, for rend(α), there must

be a lexical strategy κrend and syntactic strategy γrend that can be used to analyse

rend(α) and the result of that analysis is an unambiguous syntactic reading with a

single label: 〈{α}, 1, γrend〉. Similarly, we will write rend(σ) for the unambiguous

rendering of an entity name σ and rend(λ) for the unambiguous rendering of a

set of axioms λ.

Note that the rendering syntax can be very different from the preferred input

language. In this thesis, however, we choose for the rendering syntax to be

the same as the preferred input language (e.g. Rabbit). We conjecture that

keeping the rendering and input syntaxes close to each other will make it easier

for ontology authors to understand the Entendre feedback.

Lexical and Syntactic Readings in Ontology Authoring

As stated above, lexical and syntactic readings are created during syntactic analy-

sis of ontology authors’ inputs. Since most ontology languages are unambiguous,

most lexical and syntactic readings based on these languages will also be un-

ambiguous. Allowing for different lexical and syntactic strategies will result in

ambiguous readings and increase the analysis that is required to understand the

input.

A naive solution is thus to analyse all inputs using all the available lexical

and syntactic strategies as this will generate highly ambiguous readings for the

input. The approach that we advocate with Entendre is rather to start from the

preferred input language, given by κpref and γpref , and to allow tool developers

to specify alternative strategies that should be tried. Entendre then makes it

easier to determine when alternative strategies should be applied and allows tool

developers to create heuristics to apply extra strategies depending on the current

readings. To make this possible Entendre proposes a number of categories of

readings which we introduce below.

Categories of Readings and Syntactic Feedback

In this section we introduce categories to help us differentiate between syntactic

(and lexical) readings. These categories help us to:
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4.3 Formal Description

� define how different readings for the same (or a similar) input relate to each

other;

� understand how we can extend (or narrow) the syntactic analysis to find

other possible readings (or to make the current reading more precise);

� build a bridge between the syntax and the semantics of the inputs by iden-

tifying which readings can be further analysed using semantics;1

� identify feedback that can help domain experts to rephrase the input.

The categories of readings will be defined based on features of the annotation

graphs such as ambiguity, input coverage, number of nodes and the number of the

assertions in a label. For each reading category, we will describe which problems

must be solved (if any) in order to use the input during ontology authoring. Also,

for each category we describe how feedback for ontology authors can be generated

for readings in that category.

The first distinction we make between readings is whether they are lexically

ambiguous or not. Let rΣ be a lexical reading of a non-empty ontology author’s

input ι. Then we can categorise rΣ as follows:

1In the next section we will see how we can define categories based on semantics of the

ontology language.
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Ambiguous Lexical Reading
Definition: rΣ is an ambiguous annotation graph (see Definition 1).
Feedback: [Provide feedback based on a set of “viable” lexical readings GΣ

viable

for rΣ. We initialise GΣ
viable as the set of lexical readings rΣ

sub ∈ δ(rΣ) such that
there is a rL that is based on rΣ

sub and that is Understood (as defined below). We
then have the following options:

� If GΣ
viable = ∅:

– try to extend the set of viable lexical readings. First by also allowing
lexical readings that lead to Partially Understood syntactic readings.
If that is also empty, we can try to extend one or more of the syntactic
readings based on rΣ by using an additional syntactic strategy that
has not been used yet. If the set of variable lexical readings is still
empty, we can extend rΣ itself by using an additional lexical strategy
that has not been used yet. After every extension we need to evaluate
GΣ

viable again.

– When GΣ
viable cannot be extended because all available strategies have

been used: notify the user that the input cannot be understood as
an assertion using ΓL. State that the input seems to mention one of
the following entities in the reference ontology: rend(σ) for all σ that
appear in labels of rΣ.

� If |GΣ
viable| = 1, present the feedback for the lexical reading in GΣ

viable.

� If |GΣ
viable| > 1, state that the input is ambiguous and allow user to choose

between the options by showing the feedback for each rΣ
sub in GΣ

viable. This
works best when |GΣ

viable| is small (2 or 3 options). When the set is larger,
presenting the full feedback for each rΣ

sub will result in too much feedback
for the author. In that case we can reduce the amount of information by:

– only showing the unambiguous renderings for the different rΣ
sub.

– using a partial ordering on GΣ
viable to select a subset of GΣ

viable for which
to show feedback. The partial ordering should maximise the use of
κpref and γpref while minimising semantic defects (see Section 4.3.2).

Defect warning: Rewrite input to make clear which terms you are using (note
that the provided feedback will include unambiguous renderings of the input that
are unambiguous).
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Unambiguous Lexical Reading
Definition: rΣ is an unambiguous annotation graph.
Feedback: [Present the feedback for the syntactic reading rL based on rΣ. If rL

does not lead to any Understood readings, rL can be extended by applying an
unused syntactic strategy, or rΣ can be extended by applying an unused lexical
strategy (this will result in a new ambiguous lexical reading rΣ

extended such that
rΣ ∈ δ(rΣ

extended)). Optionally, present a summary of facts known about the
entities referenced in rΣ to presented feedback into context.]
Defect warning: [For each label 〈σ, n, κ〉 in rΣ such that κ 6= κpref , issue the
following warnings:

� if the corresponding input segment is not equal to rend(σ), warn that the
preferred way to write entity σ is rend(σ) as this is unambiguous.

� if σ is not referenced by the reference ontology O, state that rend(σ) has
not been declared in the ontology yet.

Note that an ambiguous lexical reading can be decomposed into a set of 2 or

more unambiguous lexical readings. As explained in the previous section, each

unambiguous lexical reading can produce a syntactic reading through syntactic

analysis. This means that lexically unambiguous readings can be further cate-

gorised based on the resulting syntactic reading. Let ι be an input, rΣ be an

unambiguous lexical reading and rL be a syntactic reading of ι based on rΣ,

then we define the following syntactic reading categories:

Ambiguous Syntactic Reading
Definition: rL is ambiguous (see Definition 1).
Feedback: [Provide feedback based on a set of “viable” syntactic readings GLviable

for rL. We initialise GLviable as the set of syntactic readings rLsub ∈ δ(rL) such that
rLsub is Understood (as defined below). Our options for presenting GLviable are
anaologous to those of Ambiguous Lexical Readings.]
Defect warning: Rewrite input to make clear what you mean (Note that feed-
back will provide an unambiguous ways to rephrase the input using the rendering
syntax).

Syntactically Unambiguous
Definition: rL is unambiguous.
Feedback: [Present coverage-based feedback for rL]
Defect warning: same as feedback.

Syntactically ambiguous inputs can thus be seen as a set of two or more

syntactically unambiguous inputs. We now further categorise syntactically un-

109



4.3 Formal Description

ambiguous inputs by looking at the coverage of the assertion annotation graph

over the input. Let ι be an ontology author’s input, rΣ an unambiguous lexical

reading of ι, rL an unambiguous syntactic reading of ι based on rΣ, then we

define the following coverage-based categories for rL:

Not Understood
Definition: rL is the empty graph (the set of nodes or arcs are empty) or, if rL

is not the empty graph, all labels in rL are of the form 〈∅, n, γ〉, where n is any
number and γ ∈ ΓL (i.e. ι could not be mapped onto an assertion in the ontology
language).
Feedback: This input cannot be understood in terms of O and the following
ontology syntaxes [ΓL]. [Optionally, provide auto-completion feedback if available
in a supported syntax].
Defect warning: same as feedback.

Understood
Definition: rL completely covers ι. This is the case when rL satisfies the follow-
ing conditions:

� rL has at least two nodes

� there is a node n0 in rL, such that τ(n0) = 0 (because rL is unambiguous,
it follows that n0 has indegree 0 and outdegree 1)

� there is a node nm in rL such that τ(nm) = j, where j is the size of ι (because
rL is Unambiguous it follows that nm has indegree 1 and outdegree 0)

� all nodes in rL except n0 and nm have indegree 1 and outdegree 1

� all labels in rL are of the form 〈λ, n, γ〉 such that λ 6= ∅, n is a number and
γ ∈ ΓL

Feedback: The input can be understood in terms of O. [Arc-atomicity-based
feedback for rL]. [ι can only be understood because the following assumptions
{γ | γ ∈ ΓL and γ is used in rL} were made.]
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Partially Understood
Definition: All other cases besides Not Understood or Understood (i.e.
some segment of ι could not be mapped to an assertion in the ontology language;
either because it is not covered by an arc in rL or because rL contains a label
mapping a segment of ι to the empty set).
Feedback: Your input cannot be fully understood in terms of O. The following
parts were not understood: [unannotated segments of ι]. If we ignore those
segments, your input becomes trimmed(ι) which can be interpreted as: [Present
feedback for rewrite(rL), this is a fully Understood rewriting of rL over trimmed(ι).]
Defect warning: Should we remove the segments that were not understood?
(Note that the feedback for the syntactic reading based on rL without the unan-
notated segments will include a rendering of the input without the segments that
were not understood)

Note that syntactic readings that are Not Understood cannot be further anal-

ysed. Partially Understood syntactic readings can be further analysed by “re-

moving” the segments that were not understood from the input; the result is a

unambiguous syntactic reading that is Understood and can be further analysed.

Partially Understood readings can occur for example when the input sentence

contains extra words (e.g. keywords) that are not necessary according to the

grammar of the input language. In this case omitting the extra words results

in a valid sentence. Partially Understood readings can also be the result of in-

puts containing multiple sentences, where one of the sentences is not in the input

language. In such a case we can ignore the “faulty” sentence and focus on the

correct sentences instead (the author can always re-enter the “faulty” sentence

after the other sentences have been added to the ontology).

Once we have a reading that is Understood (or Partially Understood), we also

have determined a set of lexical and syntactic strategies under which an input

can be unambiguously understood as a set of ontological assertions. In principle

we can now perform semantic analysis of this set of assertions using ontology

integration [75] techniques. However, since the usability of ontology integration

has not been explored, we choose in this thesis to focus on the analysis of inte-

grating single assertions into the ontology. The motivation for this choice is that,

if authors cannot understand the logical issues of integrating a single assertion to

an ontology, then understanding the issues of adding a set of assertions will be

even harder.
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The above means we need to decompose the Understood readings in such a

way that we can provide feedback for each individual assertion in that reading.

We do this by further categorising the Understood syntactic readings based on

the number of nodes it has (as an annotation graph). The feedback produced

by this categorisation is the arc-atomicity-based feedback. Let ι be an ontology

author’s input, rL a syntactic reading of ι that is Understood; then we define

the following categories of syntactic readings:

Syntactically Composite
Definition: rL has m nodes, where m > 2.
Feedback: ι consists of m − 1 sentences: [Present feedback for each of the
readings in the sequential decomposition of rL, decomposeseq(rL), which is given
the algorithm below. ].

Syntactically Atomic
Definition: rL has exactly 2 nodes.
Feedback: [L-atomicity feedback for rL]

Algorithm 1 Sequential decomposition of a syntactically composite reading

Input: rL, a syntactically composite reading of the form 〈N,A, τ,O〉, with N =

{n1, n2, . . . , nm} and A = a1, . . . , am−1. For 1 ≤ i ≤ m−1, ai is the arc between

ni and ni+1 and has a label of the form 〈λi, n, κ〉. Also, τi is a function based

on τ so that, for all j, τi(nj) = τ(nj)− τ(ni).

Output: decomposeseq(rL)

Oc ← O
R← ∅
for i = 1→ m− 1 do

rLi ← 〈{ni, ni+1}, {ai}, τi,Oc〉
/** rLi is defined over ιi: the segment of ι between τ(ni) and τ(ni+1). */

R← R ∪ {rLi }
Oc ← Oc ∪ λi

end for

return R

Note that the sequential decomposition of a syntactically composite reading

consists of 2 or more syntactically atomic readings. The atomic readings in the

decomposition are not simply subgraphs as their semantics need to be evaluated
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based on more than just the reference ontology O: the assertions of the previous

sentences in the input also have to be taken into account.

Finally, we further categorise syntactically atomic readings based on the num-

ber of assertions that are in the label of the syntactic reading. Let ι be an ontology

author’s input and rL an syntactic reading of ι that is syntactically atomic; then

we define:

L-Composite
Definition: the arc in rL has a label 〈λ, n, γ〉 such that |λ| > 1.
Feedback: Sentence ι means more than one thing: [Present feedback for each
of the readings of the L-decomposition of rL, decomposeL(rL), which is given by
the algorithm below.]

L-Atomic
Definition: rL has label 〈λ, n, γ〉 such that |λ| = 1.
Feedback: [Semantic feedback for α ∈ λ]

Algorithm 2 L-decomposition of a L-composite reading

Input: rL, a L-composite reading of the form 〈{n1, n2}, {a}, τ,O〉, where a is an

arc between n1 and n2 with a label of the form 〈λ, 1, κ〉 where λ = {α1, . . . , αm},
where m > 1.

Output: decomposeL(rL)

Oc ← O
R← ∅
for i = 1→ m do

rLi ← 〈{n1, n2}, {ai}, τ,Oc〉
/** ai is an arc between n1 and n2 with a label of the form 〈{αi}, 1, κ〉 defined

over ι. */

R← R ∪ {rLi }
Oc ← Oc ∪ {αi}

end for

return R

Note that an L-composite reading rL can be decomposed into a collection of

L-atomic readings through decomposeL(rL). The readings in the L-decomposition

are similar to subgraphs, but they take into account all of the assertions in the

L-composite reading.
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Overview of Reading Categories

The syntactic categories defined above form a network of readings that can be

traversed to provide feedback about the input. By applying syntactic analysis, one

can move from a lexical reading to a syntactic reading. Both lexical and syntactic

readings can be expanded by applying a new lexical or syntactic strategy. By

following relations between readings such as annotation graph disambiguation

δ, sequential decomposition and L-decomposition generally one reaches readings

that use fewer strategies and are more specific. The two categories that cannot

be further simplified are Not Understood and L-atomic.

To illustrate such a syntactic reading network, Figure 4.11 shows part of the

resulting network for our running example. The topmost reading in the figure is

the lexical reading rΣ
0 which we showed in Figure 4.8. Via lexical disambiguation

we get 320 unambiguous lexical readings, which we can use to produce 320 syn-

tactic readings. Most of these syntactic readings, such as rL1 , are Not Understood.

Other syntactic readings, such as rL42 (this graph was shown in Figure 4.10), are

syntactically ambiguous and can be further disambiguated, into rL42a . . . r
L
42h.

The figure shows that Unambiguous Syntactic Readings can be Not Under-

stood, such as rL42a which could be the reading based on the Manchester Syntax.

The reading based on Rabbit+NSP (rL42h) is fully Understood and also L-Atomic.

The Partially Understood reading (rL42f ), is the result of applying the bag-of-

entities syntactic strategy. This reading can be rewritten as a fully understood

syntactic reading, rewrite(rL42f ), that is defined over the trimmed input “Student

Union is contained within University”. This last reading is an L-composite read-

ing (that is further decomposed into two L-atomic readings, one for the domain

and one for the range assertion).

We will now use the running example to illustrate how Entendre can be used to

provide feedback. As we have noted before, the final network of readings produced

by Entendre will depend on the configuration of Entendre – i.e. which lexical and

syntactic strategies are available and how these strategies are triggered. For the

exact network as shown in Figure 4.11, the feedback would be generated based on

rΣ
0 (recall that the input is “Student Union is not contained within a University”):
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Feedback based on reading: rΣ
0 (Ambiguous Lexical Reading)

Syntactic Feedback: This input is ambiguous in the context of the “Leeds Point of Interest” ontology. Which

of the following four options do you mean:

1. No Student Union is contained within a University(Place).

2. No Student Union is contained within a University(Institution).

3. Student Union is not contained within a University(Place).

4. Student Union is not contained within a University(Institution).

Rewrite your input as one of the given options (or as a different sentence) to conform to the Rabbit syntax and

to make clear which terms from the ontology you are referring to.

Feedback explanation: rΣ
0 is highly ambiguous and the set of viable sub readings is also large. The set

of viable readings can be narrowed down by looking at those readings that maximise the use of the preferred

lexical (those readings that match the rdfs:label of entities in the ontology) and syntactic strategies (those

readings based on Rabbit). All readings based on novel entities (e.g. n:StudentUnion) will be hidden as well as

the readings based on Manchester Syntax, ACE and Bag-of-Entities. This remaining four readings are shown

using the default Rabbit rendering. Note that this rendering is quite different from the original input.

Note that we could further improve on this result by including the semantic analysis to rank the alternative

readings, in which case the mapping to concept University(Institution) would lead to an inconsistency (in

option 4) or to an unsatisfiable concept(in option 2). Also, since Student Union is a concept in the ontology

and not an individual, option 3 would introduce a pun. Hence, option 1 would be the top ranked reading and

would be chosen as the one to further explain. Since we have not introduced the semantic analysis yet, we have

not used this analysis for generating the feedback shown here.).

To illustrate other types of feedback based on the running example, we will

add some assumptions in order to get a different network of readings.

Assume for example that the preferred input syntax is the Manchester Syn-

tax and that no other syntactic strategy is available. Assume also that all the

lexical strategies are available, but that the ontology does not have concept

University(Institution)(in order to avoid ambiguity). The feedback would

look as follows:
Feedback based on reading: rL42a (Not Understood)

Syntactic Feedback: Your input cannot be understood in terms of the “Leeds Points of Interest” ontology and

the Manchester Syntax. It looks like you are trying to say something about the following concepts and relations

in the ontology: concept Student Union, relation is contained within and concept University(Place). Revise

the documentation for the Manchester Syntax to learn how to formulate valid sentences

As another example, assume that we do not have the Negative-Split-Passive

extension to Rabbit. Also assume that the reference ontology does not contain

concept University(Institution). In such a case, only the Bag-of-Entities

syntactic strategy will succeed in finding a set of assertions. The lexical feedback

would look as follows:
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Feedback based on reading: rL42f (Partially Understood)

Syntactic Feedback: Your input cannot be fully understood in terms of the “Leeds Points of Interest” ontology

and the supported syntaxes Rabbit, Manchester Syntax or ACE. By looking at the concepts and relations in

your input we make a guess at what you mean. The following parts were not understood: “not”, “a”. If we

ignore these parts your input becomes “Student Union is contained within University”, which possibly means

the following in Rabbit:

� The relationship “is contained within” must have a Student Union as its subject.

� The relationship “is contained within” must have a University(Place) as its object.

Is this interpretation of your input correct?

Summary

This section presented a generic framework for describing the syntactic analysis

of an ontology author’s input. The framework describes the results of lexical and

syntactic analysis in terms of annotation graphs, which keep track of the analysis

strategies that have been used as well as the possible syntactic ambiguities that

can occur. To facilitate the generation of feedback messages regarding syntactic

issues, we defined a categorisation of syntactic analysis results and described the

relations between the categories.

The presented framework provides a principled way to describe the syntactic

analysis of ontology authors’ inputs, a key requirement for providing appropriate

tool support to ontology authors, and in particular to domain experts as discussed

in the previous chapter. As this section showed, the framework provides a sys-

tematic way of describing the types of syntactic ambiguity that have to be taken

into account when analysing inputs, improving on the ad-hoc manner described

in Section 3.3.2. The framework also facilitates the systematic addition of new

lexical and syntactical analysis strategies into existing tools, opening the way to

more robust parsers that provide better feedback about syntactic issues.

4.3.2 Semantic Axiom Integration Analysis

L-atomic syntactic readings can be semantically analysed. The result of such a

semantic analysis is a semantic reading of the input. In this case, it is not directly

apparent what should be the set of semantic analysis strategies to be used. Also,

if we choose to represent a semantic reading as an annotation graph (like the
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lexical and syntactic readings), then it is not clear what the labels (or semantic

consequences) should be.

Since we want to add assertions to the reference ontology, the type of se-

mantic analysis we want to perform is similar to that performed during ontology

integration tasks. We therefore introduce a semantic analysis strategy based on

the SROIQ description logics language, a common and powerful ontology lan-

guage that underpins OWL. Although this strategy is specific to SROIQ, similar

strategies could be defined for other ontology languages. This analysis strategy

will result in a categorisation of logical consequences that we can use to provide

semantic feedback.

Note that this categorisation is based on our assumption that the input being

analysed is meant to be added to an ontology under construction1. Furthermore,

we focus on analysing logical consequences that can uncover potential logical

errors that can be introduced into the ontology; we shortly discuss these ontology

defects. After introducing the categorisation, we provide a formal definition of a

semantic reading.

Preliminaries

We assume that an ontology O is built in a language L that is the SROIQ
description logic(DL)2. An axiom α is an assertion in L which is a well-formed

formula.

O is a finite set of axioms in L. C denotes a concept; R denotes a role,

a denotes an individual, and Θ denotes a set of concepts. > denotes the top

concept, i.e. every individual is a member of >, ⊥ denotes the bottom concept,

i.e. no individual is a member of ⊥, and U denotes the top role. TBox represents

all axioms in O which relate concepts to each other. RBox represents all axioms

1A mirror analysis could be performed when removing assertions from an ontology. However

we do not consider this case explicitly in this thesis, as the user input in such cases would

generally not be a CNL input; rather the user would typically select an existing assertion from

an ontology and decide whether to edit or remove it.
2Although our approach is suitable for other monotonic DL languages, such as ALC or

SHOIN .
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in O which define role hierarchies and characteristics. ABox represents all axioms

which make assertions about individuals.

Λ will be used to denote any set of axioms in L, and a corresponding su-

perscript can be used to assign an additional label to the set. We will use |=
to denote that an axiom can be entailed from an ontology (i.e. O |= α), using

some appropriate derivation mechanism (e.g. a DL reasoner). O∗ is the deductive

closure of O, i.e. the set of axioms in L that can be entailed by the axioms in

O. When an axiom α is entailed from O, we denote with J (α,O) the justifica-

tion comprising the minimum set of axioms in O that is sufficient for α to hold.

Further definitions and examples of justification are given in [69].

Ontology Defects

Adding α to O, certain defects can be introduced. Entendre considers that:

� O is inconsistent when it includes a set of axioms from ABox which

contradict with axioms in TBox or RBox.

� O includes a concept C that is unsatisfiable, i.e. O |= C ≡ ⊥.

� O includes an axiom α that is redundant, i.e. O \ {α} |= α.

� O includes isolated entities, i.e. O can have an isolated concept C that

only occurs in the axiom C v >, or an isolated role R that only occurs

in the axiom R v U , or an isolated individual occurring only in the axiom

>(a).

The above defects can be detected explicitly using DL reasoners. Inconsistency

is considered a defect because it makes further reasoning about the ontology

impossible (an inconsistent ontology entails everything). It is possible to reason

with ontologies that contain unsatisfiable concepts. However, we consider this a

defect, as concepts are usually intended to be satisfiable. Redundant axioms and

isolated entities are not necessarily wrong, but they make the ontology cluttered

and less concise. Hence, axiom redundancy and entity isolation are considered as

bad practice, which should be avoided.
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There can also be subjective defects caused by the ontology author’s limited

understanding of the semantics of the ontology language. Such defects are not

possible to detect using DL reasoners. Only the authors themselves can discover

these defects, e.g. by noticing unintended inferences (i.e. inferences that the

author considers to be false) or missing inferences (i.e. inferences that the

author expects to be inferred). Therefore, such defects may be pointed implicitly

to the ontology author by listing the implications of new axioms.

Axiom Categories and Semantic Feedback

We now define a semantic analysis strategy called DL-axiom-integration that,

given a consistent ontology O and an axiom α in the ontology language L, di-

agnoses the impact of adding α to O taking into account the various ontology

defects presented above. This will allow interpreting the ontology author’s input

and generating corresponding semantic feedback.1

Axioms added to an ontology can be either known or novel: α is known by

O when α ∈ O∗, otherwise α is novel. Known axioms can be split into two

categories – asserted and inferred.

(A) Asserted Axiom
Definition: α ∈ O
Detection: same as definition.
Feedback: α is already in O.
Defect warning: Adding α to the ontology O is not needed.

(R) Inferred Axiom
Definition: α ∈ O∗ \ O
Detection: same as definition.
Feedback: α is redundant as it can be inferred from O. A set of axioms in O
that implies α is the justification Λjustification = J (α,O).
Defect warning: Adding α to O causes redundancy. Check the axioms in
Λjustification.

Adding a novel axiom to an ontology will always lead to an infinite number

of further implications, ∆α. We define a subset of these new inferences ∆Eα to

1The feedback is intended to inform authors about potential issues (it may not provide all

the information necessary to resolve the issues). Because of this, we only show one justification

even if there are multiple justifications for an entailment.
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represent the finite set of new relevant implications brought by adding α to

O, i.e.

∆Eα = EO+α − EO, where EP is the set of “relevant axioms” entailed by an

ontology P . We define relevant axioms as those of the form A v B, > v B,

A v ⊥ and A(a) such that A and B are concept expressions1 that appear in

some axiom in O ∪ {α} and a is a named individual in O ∪ {α}. Note that

∆Eα is finite, because the set of concept expressions and individuals appearing in

O ∪ {α} is finite.

A subset of ∆Eα that is of particular interest is the set of axioms of the form

C v ⊥, where C is a named concept, as this set helps us to identify the set of

new unsatisfiable concepts: ΘnewUnsatisfiable = {C | C v ⊥ ∈ ∆Eα}.
Adding a new axiom can thus also make the ontology inconsistent or create an

unsatisfiable concept. These categories, and the corresponding semantic feedback

are defined below.

1We use concept expressions here instead of only named concepts. Using only named

concepts is more common in the literature and is easier to compute as there are less axioms to

be generated. However, we argue that ontologies often make heavy use of concept expressions

to describe other concepts without introducing names for those concept expressions. This

means that new entailed axioms involving those concept expressions are relevant and should

be reported to the ontology author. This is why choose here for the more expensive option, in

order to maximise our chances of detecting relevant implications.
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(I) Axiom Leading to Inconsistency
Definition: α /∈ O∗ and O ∪ {α} is inconsistent.
Detection: O ∪ {α} is inconsistent.
Feedback: α is novel toO. Adding α toO leads to an inconsistent ontology. The
set of axioms in O that implies ¬α is the justification Λjustification = J (¬α,O).
Defect warning: Check the axioms in Λjustification.

(N) Novel Axiom without new Relevant Implications
Definition: α /∈ O∗, O ∪ {α} is consistent and ∆Eα = ∅
Detection: ∆Eα = ∅
Feedback: α is novel to O. Adding α to O does not bring new relevant impli-
cations.
Defect warning: If any entailments were expected, α should be reviewed or O
may have to be extended.

(N+) Novel Axiom with new Relevant Implications
Definition: α /∈ O∗, O ∪ {α} is consistent, ∆Eα 6= ∅ and ΘnewUnsatisfiable = ∅
Detection: ∆Eα 6= ∅ and ΘnewUnsatisfiable = ∅
Feedback: α is novel to O. Adding α to O brings the set of new relevant
implications Λα.
Defect warning: Check that there are no missing or unexpected implications
in Λα.

(U) Axiom Introducing Unsatisfiable Concept
Definition: α /∈ O∗, O ∪ {α} is consistent and ΘnewUnsatisfiable 6= ∅
Detection: ΘnewUnsatisfiable 6= ∅
Feedback: α is novel to O. Adding α to O makes the concepts ΘnewUnsatisfiable

unsatisfiable. For each concept C ∈ ΘnewUnsatisfiable, the set of axioms that makes
C unsatisfiable is the justification Λjustification = J (C v ⊥,O ∪ {α}).
Defect warning: Check the axioms in Λjustification.

Note that the notation ¬α used in the feedback for axiom category I is not

standard in description logics. We use it to denote:

� the opposite of an assertion: if α is of the form C(a), then ¬α is ¬(C(a))

or

� a counter example of a T-Box (or R-Box) axiom: if α is of the form A v B,

then ¬α is an axiom of the form (¬B u A)(a), where a is an individual in

the signature of the reference ontology. Note that a given ontology may

contain more than one counter example for a given T-Box axiom.

This concludes the definition of axiom categories. Figure 4.12 shows an
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overview of the semantic analysis, including the axiom categories defined above

and how these are used to generate semantic feedback for the ontology author.

Semantic Readings

Now that we have defined the DL-axiom-integration semantic analysis strategy

we can define semantic readings in terms of similar strategies.

Definition 4. Let ι be an ontology author’s input and rL be an L-atomic syntactic

reading of ι over a reference ontology O; then a Semantic Reading of ι is an

annotation graph over a set of labels LC. A label in LC is a triple 〈C, n, ϕ〉, where:

� n is a natural number;

� ϕ ∈ ΓC is a semantic analysis strategy: it classifies an input axiom based

on its logical relation (as defined by the semantics of the ontology language)

to the reference ontology;

� C is a (meta) assertion of the form α ∈ X, where α is the ontological

assertion in rL and X is an axiom category defined by ϕ.

A semantic reading based on the DL-axiom-integration strategy could, for ex-

ample, assert that α ∈ N or that α ∈ U. Alternative semantic analysis strategies

can be defined, for example we could define EL-axiom-integration that restricts

the ontology language to EL instead of SROIQ. Such a strategy would share

many of the same axiom categories, but would also introduce new categories to

state that the reference ontology or the input axiom are more expressive than

EL.

Another analysis strategy is NullReasoner-axiom-integration. This strategy

still accepts SROIQ as the ontology language, but may use only lightweight

reasoning instead of depending on a DL-reasoner. Because of this lightweight

reasoning, it may not be able to correctly detect the axiom category for an input

axiom (the advantage of such a strategy is that it can perform the analysis quicker

than the SROIQ-axiom-integration).

Yet another strategy may be SROIQ-axiom-removal, which analyses the

effect of removing an axiom from an ontology. Although much of the analysis

123



4.3 Formal Description

F
ig

u
re

4.
12

:
W

or
k
fl
ow

d
ep

ic
ti

n
g

th
e
D
L

-a
x
io

m
-i

n
te

gr
at

io
n

se
m

an
ti

c
an

al
y
si

s
st

ra
te

gy
in

E
nt
en
dr
e.

T
h
e

an
al

y
si

s
is

u
se

d
to

ca
te

go
ri

se
th

e
in

p
u
t

ax
io

m
an

d
ge

n
er

at
e

se
m

an
ti

c
fe

ed
b
ac

k
.

124



4.4 Implementation

Figure 4.13: Example semantic reading based on various semantic analysis stra-

tegies. From top to bottom: the input, a L-atomic syntactic reading and rC42h,

a semantic reading of the input. The semantic reading is ambiguous due to the

use of different reasoning strategies. The axiom is found to be novel when the

NullReasoner-axiom-integration strategy is used. By using a DL reasoner, the

SROIQ-axiom-integration strategy determines that the axiom leads to incon-

sistency. The EL-axiom-integration strategy on the other hand states that the

axiom is not a valid EL axiom (because it contains a negated concept).

will resemble the axiom-integration strategy, the feedback will be very different.

For example, the analogous of the R category for axiom-removal would tell the

user that it is safe to remove the axiom, as the axiom can be inferred from the

rest of the reference ontology. Formally defining all of these alternative semantic

analysis strategies is outside the scope of this PhD.

Coming back to our running example, Figure 4.13 shows an example semantic

reading based on some of the semantic strategies discussed.

4.4 Implementation

As part of this thesis we have implemented Entendre in the following ways:

� We defined an API consisting of a set of interfaces and classes in Scala1

that allow us to:

1Scala is a strongly typed language that combines the Object Oriented and Functional

programming paradigms. The syntax of Scala is similar to Java and it also compiles onto
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– represent the various syntactic and semantic readings discussed in the

previous section;

– represent syntactic and semantic analysis strategies;

– execute analysis strategies to generate syntactic and semantic readings

and

– generate user feedback based on templates for the different reading

categories.

� We implemented two syntax analysis strategies by adapting two existing

parsers: the Rabbit parser and the Manchester Syntax parser. These stra-

tegies are used to generate syntactic readings (more details about this is

given in Section 4.4.2).

� We implemented the DL-axiom-integration semantic analysis strategy in

order to generate readings for inputs. And we have initial implementations

for other similar strategies: NullReasoner-axiom-integration and and EL-

axiom-integration.

4.4.1 Entendre API

The first step for implementing Entendre was to define an API that can be

used to describe the different types of readings. The current implementation

defines the EntendreReading abstract class which is used to represent the dif-

ferent types of readings supported by Entendre. This main class has an attribute

interpretedInput, which stores the original input value (in our case always a

String).

An EntendreReading is always bound to an InterpretationContext (given

by the attribute context of an EntendreReading). The interpretation context

keeps track of how this reading was generated. It indicates which reference on-

tology and which EntendreAnalysisStrategy(or strategies) was (were) used to

generate the reading. It also keeps track of which are the preferred analysis

strategies that should be used as well as what is the rendering syntax.

JVM classes, which means it can be easily combined with existing Java programs. For more

information on Scala, see http://www.scala-lang.org/
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The EntendreAnalysisStrategy is a Scala trait1 that is further specialised

into LexStrategy, SynStrategy and SemStrategy for the three types of strate-

gies supported by Entendre. These provide methods to generate readings. For

example, LexStrategy defines method

analyse(input: String, context: InterpretationContext)

that generates a LexReading.

Because existing parsers often have a tight integration between the lexical

and the syntactic analysis, implementing the LexStrategy and SynStrategy is

often difficult or impossible if one wants to reuse these existing parsers. For this

Entendre also includes the trait EntendreInterpreter that defines two methods

interpret(input: String, context: InterpretationContext) and

interpret(input: String, model: LogicalModel)2.

Both methods return an EntendreReading which can be a lexical, syntactic or

semantic reading. Implementations of EntendreInterpreter are meant to co-

ordinate existing strategies in order to produce better readings than a single

strategy would provide. This interface allows implementations to encapsulate

the different analysis that are performed. The following sections contain exam-

ples of EntendreInterpreters.

Figure 4.14 shows how the main classes and interfaces relate to each other

and Figure 4.15 shows an overview of the types of EntendreReadings currently

supported by the Entendre API.

4.4.2 Syntactic Analysis

Although the Entendre API as described above supports the representation of the

various lexical and syntactic reading types, we have only implemented a subset of

the API by reusing two existing parsers. We have focused more on the semantic

analysis rather than on the syntactic analysis. This is because our experiences

show that the need for feedback regarding the logical implications of authors’

inputs is greater than the need for more robust syntactic analysis. That authors

1A trait in Scala is similar to an interface in Java.
2The LogicalModel here is a Scala trait that we define to represent a model in some formal

logic language. In our case this can be an OWL ontology, a set of axioms or a single axiom.
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Figure 4.14: Class diagram showing the main classes and interfaces for the En-

tendre API.

need less support for syntactic issues is due to (i) the ease of learning the CNL

by authors and (ii) an existing ad-hoc implementation for supporting some forms

of ambiguity and heuristics rules in the existing CNL parsers (as described in

Chapter3).

Entendre allowed us to wrap existing parsers. The benefit from wrapping ex-

isting parsers is that authors can then benefit from the semantic analysis and

feedback that is included in Entendre. In the future, Entendre can also be used to

extend existing parsers to, for example, allow and resolve ambiguities during on-

tology authoring. The two existing parsers that we have adapted to Entendre are

the Manchester Syntax parser and the Rabbit parser. We discuss both below.

Manchester Syntax Strategy

The Manchester Syntax parser that we adapted is the implementation that is in-

cluded in the OWLAPI. Wrapping the Manchester Syntax parser in Entendre was

straightforward due to a good decoupling between lexical and syntactic analysis

strategies in the OWLAPI. The resulting wrapper is ManSynOWLAPIInterpreter.

The OWLAPI provides the OWLEntityChecker interface, which provides meth-

ods such as getOWLClass(String name) that map an input string to an OWL

class (similar methods exist for other entity types). An OWLEntityChecker is thus

similar to an entity mapping strategy. For rendering entities the OWLAPI pro-
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vides the ShortFormProvider interface. Some implementations for this interface

are also included in the OWLAPI: e.g. the AnnotationValueShortFormProvider

can be used to render entities based on an rdfs:label value.

The ManchesterOWLSyntaxEditorParser class from the OWLAPI can then

be used to perform the syntactic analysis of inputs. The parser delegates the lexi-

cal analysis to an OWLEntityChecker (thus decoupling the lexical and syntactical

analyses).

Since full IRIs1 (and to a lesser extent abbreviated IRIs) are cumbersome and

unintuitive for novice authors, we have chosen to use the

AnnotationValueShortFormProvider as the preferred lexical strategy. As stated

in Section 4.2.1 this lexical strategy can introduce ambiguity. While the OWLAPI

(and thus also Protégé) does not take this ambiguity into account and simply

chooses one interpretation, our implementation takes ambiguity into account by

producing an ambiguous reading.

Another improvement in our implementation of the Manchester Syntax is

that the default parser fails when no entity can be found (e.g. because there are

no entities with a specific annotation value). By using Entendre’s features, we

were able to extend this default behaviour to include ambiguous readings that

introduce missing entities.

Rabbit Strategy

We have developed a wrapper around the existing Rabbit parser which generates

either a NotUnderstood or an LAtomic syntactic reading that can be used for

further semantic analysis. Since the existing Rabbit parser already provides de-

tailed feedback when a sentence fails to be understood, we can simply forward

the existing error messages.

Adapting the existing parser to produce more detailed readings is part of

future work and should be easy to do. For example, we could analyse the

RbtParsedResult produced by the Rabbit parser to also produce ambiguous read-

ings.

1Internationalized Resource Identifier, defined in https://tools.ietf.org/html/rfc3987

and used as the names for entities in OWL and other semantic web languages.
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4.4.3 Semantic Axiom Integration Analysis

In order to generate semantic readings we have implemented the DL-axiom-

integration strategy that we introduced in Section 4.3.2. The implementation

is fairly straightforward and follows the overall workflow depicted in Figure 4.12.

Here, we will give an overview of how the different components were implemented

and we will discuss some implementation issues that were required.

The main class in our implementation is called AxiomUnderstander which

analyses an input axiom based on a reference ontology. Because we are interested

in analysing the input based on the full OWL 2 semantics we have a special class

ReasoningAxiomUnderstander that has access to a description logics reasoner.

This class implements the workflow shown in Figure 4.12 by using the methods

provided by the other components.

In practice, there are a couple of extra readings that are possible that we did

not include in our discussion in Section 4.3.2 because they are corner cases that

do not tend to occur (or that should be avoided). The extra readings are 1:

� SemNotUnderstood: readings that are neither Known nor Novel as defined

in Section 4.3.2. It contains the following cases:

– KBInconsistent: this occurs when the reference ontology is incon-

sistent because then we cannot use the DL semantics to analyse the

input axiom.

– CannotReasonAboutInput: this occurs when the input axiom is not an

axiom in some subset of description logics. This is not directly usable

in the case of DL-axiom-integration as the ontology language is OWL

2. But we could have a case where the target language is, for example,

the EL sub-language. In such cases, if the input axiom contained, for

example, a negation, we could not analyse it further.

� InputInconsistent: this is a special case of leading to inconsistency where

the input itself is inconsistent (regardless of the reference ontology).

1We also showed these in Figure 4.15.
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Now that we have discussed the extra reading types, we can look at how the

rest of the components in Figure 4.12 have been implemented.

We use the OWLAPI as the main API to manipulate axioms and ontolo-

gies. This API is very close to the OWL2 specifications and already provides

several utility methods and classes that we can reuse. For example, with the

OWLAPI it is straightforward to determine whether the input axiom is already

asserted in the reference ontology. We have however, built a set of utility classes

with functionality we feel is missing from the OWLAPI. These are gathered in

the Leeds owlapiutils library that can be found at http://sf.net/projects/

leedsutils. For example, one limitation of the OWLAPI is that all the on-

tologies are mutable; however because a SemReading depends on the reference

ontology, this reference ontology should not be mutable. The Leeds owlapiutils

library provides a class for creating such immutable ontologies based on existing

ontologies and axioms.

We use Hermit as the OWL reasoner. Note however, that we do not use Her-

mit directly, but rather use the OWLReasoner interface defined by the OWLAPI.

In theory, this allows us to use any other reasoner that provides that interface

(such as Pellet and Fact++).

The Justification Generator was implemented by reusing the BlackBoxExplanation

generator that has been contributed to the OWLAPI by Clark&Parsia. This class

is the implementation of the algorithm for generating justifications described

in [82]. This algorithm (and thus also the BlackBoxExplanation only explains

unsatisfiable concepts or concept expressions), but this is enough in practice be-

cause it has been shown that any axiom in OWL can be rewritten as a concept

unsatisfiability [72]. Unfortunately, the two implementations provided by the

OWLAPI( DebuggerClassExpressionGenerator and SatisfiabilityConverter)

to convert an axiom into its equivalent concept unsatisfiability are only par-

tial: not all of the axioms types can be converted. As part of this thesis,

we created UnsatisfiableCEConverter which improves on the coverage of ax-

ioms that can be converted. By combining the BlackBoxExplanation and the

UnsatisfiableCEConverter we were able to generate a justification for relevant

inferences.
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The Inferred Axiom Generator was again implemented by reusing some

functionality already provided in the OWLAPI. The OWLAPI contains a set

of classes (e.g. InferredSubClassAxiomGenerator) which generate axioms of a

given axiom type (e.g. subClassOf) based on combinations of named entities.

For this thesis, we implemented class InferredAxiomExtractor that combines

the different axiom generators to generate different types of axioms. Also, because

we found that some expected inferences where missing (inferences involving class

expressions that had already been used in the reference ontology), we extended

some of the axiom generators to include such inferences.

To compare the sets of generated inferences we originally used the axiom ex-

tractor with the reference ontology and with the merged ontology to produce two

sets of inferred axioms; these sets could then be compared to each other. However,

we found this to be inefficient because generating these sets is computationally

expensive. The current implementation is more efficient as it only generates the

set for the merged ontology. We then use this set to check whether there are any

axioms that are not entailed by the reasoner for the reference ontology.

Another limitation of the OWLAPI is that it does not provide any method

for generating a counter-axiom. This is necessary when an axiom introduces an

inconsistency: the counter-axiom is used for generating the justification for the

inconsistency. We already indicated how the notion of counter-axiom is defined

in Section 4.3.2. We implemented class CounterAxiomFinder which we only

implemented for some of the axiom types in OWL. It is able to generate counter-

axioms for A-box axioms. It can also find counter examples for T-Box axioms.

At the moment we have not implemented finding counter examples for axioms

involving object properties or data properties.

Besides theDL-axiom-integration strategy which uses full DL reasoning (SROIQ)

and has been thoroughly tested. We also have implemented a NoReasoning-

axiom-integration strategy that simply uses the asserted ontology (hence can only

detect a few of the axiom categories). We also have an initial implementation of

an EL-axiom-integration based on the JCel reasoner1.

All of the implementation is free software and is available on-line at http:

//sf.net/projects/entendre.

1http://jcel.sourceforge.net/
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4.5 Application: Feedback in ROO

In order to evaluate whether Entendre has an impact making ontology author-

ing more intuitive, we integrated Entendre and ROO (see Chapter 3). Before

the Entendre integration, when authors added knowledge in ROO, they wrote

Rabbit sentences using the Rabbit editor, which only provided feedback based on

syntactic analysis of their inputs. Once the sentence was parsed correctly, the au-

thor could accept the sentence, which was converted to OWL axioms and added

to the ontology.

Since ROO is based on the Rabbit syntax. We implemented an Entendre inter-

preter that sets Rabbit as both its preferred input syntax and its rendering syntax.

We considered using other standardised OWL syntaxes (e.g. OWL functional syn-

tax or Manchester syntax with full or abbreviated IRIs) as the rendering syntax,

because (i) they entirely exclude ambiguity, while the current Rabbit parser allows

some degree of ambiguity through the use of heuristic rules and (ii) we did not

have an OWL to Rabbit renderer. However, after an initial session with an on-

tology author we found that the use of different syntaxes for input and rendering

added too much cognitive complexity.

We thus implemented a simple Rabbit renderer. The renderer uses the basic

Rabbit sentence templates to render OWL axioms as Rabbit sentences. This means

that the produced sentences produce correct Rabbitand that the Rabbit parser

should be able to parse these renderings without using any heuristics extensions

(i.e. the renderings are syntactically unambiguous syntax). In order to exclude

lexical ambiguity we require all entities in the ontologies in scope to have a unique

syntactic representation using the disambiguation features provided by the Rab-

bit language 3.3.2.

The integration with Entendre enables the inclusion of semantic feedback to

the Rabbit editor. Before the ontology author accepts an input, the input is

converted to OWL and semantically analysed. Based on the logical consequence

categorisation, ROO now generates appropriate semantic feedback.

The semantic feedback provided by ROO is illustrated below 1.

1Asserted axioms are not included as their feedback is trivial.

134



4.5 Application: Feedback in ROO

Rabbit Input: Every Student Accommodation is a kind of Accommodation.

Input category: Atomic

Axiom category: N [Novel Axiom without new Relevant Implications]

Syntactic Feedback: Your input can be understood in terms of the “Leeds Points of Interest” ontology and

the Rabbit language.

Semantic Feedback: This assertion is novel: it has not been added to the ontology yet. However, no further

implications could be made based on this input. This generally means that the terms you are using have been

loosely defined in the ontology. It is also possible that there are some implications that could not be found.

Advice Add the sentence and maybe add more new definitions if you want the ontology to be able to make

more inferences.

Rabbit Input: Teaching Hospital is a Hospital.

Input category: Ambiguous

Axiom categories: MissingEntity, N+

Semantic Feedback [N+]: This assertion is novel: it has not been added to the ontology yet. This input

implies 6 new things. Have a look at the list of implications to make you agree with the implications. If you

do not agree, it may be that you are using the wrong terminology.

Check the new implications:

� Every Teaching Hospital has footprint a Footprint.

� Organisation and Teaching Hospital are mutually exclusive.

� Training Centre and Teaching Hospital are mutually exclusive.

� Every Teaching Hospital is a kind of Topographic Object.

� Every Teaching Hospital is a kind of Place.

� Teaching Hospital and University (Institution) are mutually exclusive.

Rabbit Input: Every University has part at least one Point of Interest.

Axiom category: R [Inferred Axiom]

ROO Feedback: This statement is redundant. Although the sentence itself is not included in the ontology,

this sentence can be inferred from the following sentences that have been said to be true.

Check the justification: Existing Rabbit statements implying that Every University has part at least one

Point of Interest :

� Every University has part a Building that has purpose Education of University Students.

� Every Building is a kind of POI.

� POI and Point of Interest are equivalent.
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Rabbit Input: Every Student Union is contained within a University(Institution).

Axiom category: U [Axiom Introducing Unsatisfiable Concepts]

ROO Feedback: This sentence makes concept Student Union unsatisfiable! This means that nothing can

be a Student Union anymore. Advice You should not add an unsatisfiable concept to an ontology because

this concept becomes practically unusable. This is especially true if you make a concept unsatisfiable and that

concept was defined by somebody else, as you are probably not using the concept in the way it was intended.

Check the list of contradicting sentences:

� Organisation and POI are mutually exclusive.

� Every Student Union is contained within a University (Institution).

� Every University (Institution) is a kind of Organisation.

� The relationship contains must have subject POI

� The relationship is contained within is the inverse of contains.

Rabbit Input: Edge contains a Swimming Pool.

Axiom category: I [Axiom Leading to Inconsistency]

ROO Feedback: This sentence makes the ontology inconsistent! This means that this sentence contradicts

what has been said in other sentences in the ontology.

Advice: You should never enter a sentence that makes the ontology inconsistent because:

� it is very hard for computers to reason about inconsistent ontologies

� You are likely using a term (concept, relation or instance) in a way that was not intended by the people

who defined the ontology. You should probably find an alternative term that you can use instead. See

also the provided list of sentences that contradict this sentence.

Check the list of contradicting sentences:

� Edge is contained within UoL Campus.

� UoL Campus does not contain a Swimming Pool.

� The relationship contains is transitive.

Hereafter, when we mention ROO, we refer to the new version of ROO that is

extended with Entendre.
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4.6 Evaluation

In order to evaluate the impact of Entendre on ontology authors, we performed an

experimental study. Because the semantic analysis performed in Entendre is novel

and we did not have any indication about how ontology authors would react to

feedback about logical implications, we decided to evaluate only this part. Also,

much of the syntactic feedback that Entendre could provide was already evaluated

in our previous work (see Chapter 3). An advantage of focusing on the semantic

feedback only is that we were able to design a more focused evaluation study.

4.6.1 Experimental Design

An experimental study with ROO was conducted to examine users’ reactions to

semantic feedback and whether this feedback affected users’ ontology authoring

behaviour. The following research questions were addressed:

� Q1: How did users characterise the semantic feedback provided by ROO?

� Q2: Did users find the semantic feedback helpful and for what?

� Q3: Did users understand the logical aspects indicated in the semantic

feedback provided by ROO?

Domain and Ontology (O). The study followed a task-based approach

which involved using ROO to add new axioms to an ontology O. Points of interest

(POI) was chosen as the domain because of its increasing importance, broad

application, and familiarity to people. O1 was created by reusing the W3C POI

data model2 and Ordnance Survey’s Buildings and Places ontology3 using ROO by

entering Rabbit sentences (see [36]). O described main points of interest relevant

to Leeds University, including buildings and places related to accommodation,

eating and drinking, health services, and transport.

Participants. The study involved 10 participants recruited on a volunteer-

ing basis; 6 were from the School of Computing, Leeds University, and 4 were

1Available at http://www.comp.leeds.ac.uk/confluence/Entendre-Study
2http://www.w3.org/2010/POI/
3http://www.ordnancesurvey.co.uk/oswebsite/ontology/
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from outside. All participants had general IT background and used computers as

part of their everyday practice. They were grouped into: Group 1 KE-novices

(5 users who had no logical background and had never been involved in ontol-

ogy construction tasks) and Group 2 KE-experts (5 users who had logical

background or had built ontologies as part of their research).

Procedure and Materials. All evaluation materials and data from the

experimental study are available online.1 Each participant had an individual

session observed by an experimenter (from the first three authors). Each session

comprised of two steps. In Step 1 [5 to 10 minutes ] the participants were given

a list of classes, instances, and relationships from O to examine in ROO. In Step

2 [60–90 minutes ] the participants were asked to enter new facts, formulated as

Rabbit sentences([36]). There were 15 sentences in 3 batches; a batch included

examples from each of the axiom categories : N, N+, R, I, and U (defined in

Section 4.3.2). After entering a sentence in ROO, the participants were asked to

press the Semantic Feedback tab, read the provided feedback, answer a series of

questions about their opinion on the feedback, and indicate whether they would

add or discard the sentence.

Data. The collected data included the participants’ answers related to each

sentence and the observers’ notes. The analysis is presented below.

4.6.2 Participants’ opinions about semantic feedback.

Participants stated their opinion about feedback by selecting characteristics from

a given list: informative, relevant, trustworthy, reassuring, confusing, overwhelm-

ing and misleading. Table 4.1 presents a summary of all sentences, the five axiom

categories are compared in figure 4.16, and the two user groups – in figure 4.17.

Info Relev Trust Reass Conf Over Misl Help NotSure NotHelp

Overall 78% 56% 38% 16% 10% 10% 1% 91% 8% 1%

Table 4.1: Summary of the participants’ opinion on semantic feedback.

Overall, the feedback was found informative and relevant by all participants.

KE-experts found the feedback reassuring mainly because their assumption

1http://www.comp.leeds.ac.uk/confluence/Entendre-Study/
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Figure 4.16: Participants’ opinions on feedback distributed over axiom categories,

together with participants’ ranking of feedback as ’Helpful’, ’Not sure’ or ’Not

helpful’. The values are percentages based on all messages from each axiom

category.

about what impact an axiom would have on the ontology was confirmed. KE-

novices found feedback reassuring in few cases (9%), mainly for novel with new

relevant implications axioms, as the feedback helped them decide to add the

axioms. In more than one third of the cases users found the semantic feedback

trustworthy. KE-novices trusted the feedback more often, and saw it as a crutch

to give support when they were unsure. KE-experts in many cases preferred to

double-check everything themselves, although they did find the feedback very

informative.

There was only one case of misleading feedback indicated by a KE-expert.

The KE-expert pointed out that although it was possible to infer one of the ax-

ioms representing cardinality constraints from the (R) category of the existing

ontology, feedback should not encourage the user to discard it, as it would still

be valuable to state cardinality constraints explicitly. We also analysed the cases

when participants found feedback confusing or overwhelming and notice that

confusion seems to decrease with time: the first batch of 5 sentences includes most

misleading and confusing cases, while the last batch has only one occurrence. The
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Figure 4.17: Summary of the opinions on feedback for the two groups. The

values are percentages based on all messages from each axiom category for the

corresponding group.

analysis indicated that the confusing and misleading feedback was associated with

certain sentences. These sentences could be grouped in: Confusing terminol-

ogy: KE-novices found feedback about axiom category unsatisfiable (U) hard

to follow. They understood that the sentence should not be entered but were

confused about what else to do. We plan to work on the usability aspects of the

semantic feedback and will consider improving the feedback terminology. Too

abstract: This concerned mainly feedback containing justifications (R, N+, I

and U); users from both groups felt that certain abstract concepts (e.g. Foot-

print) made it more difficult to understand the feedback message and suggested

that appropriate filtering should be done. Oversimplified: This was pointed

by KE-experts who felt that advice to not enter sentences which made the on-

tology inconsistent was inappropriate (the sentences were considered valuable,

and should have been entered; instead existing sentences should be edited). In-

sufficient: Two KE-experts pointed out that in the cases when the novel(N)

axioms could make existing axioms redundant (e.g. entering Every student bus

route is a kind of bus route made the existing axiom Every student bus route is
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a kind of transport route redundant but this was not detected) the feedback was

insufficient. ROO can be improved to consider this form of redundancy.

4.6.3 Helpfulness of Semantic Feedback

For every feedback message, participants were asked to indicate whether the

feedback was helpful and to clarify why. The results, summarised in table 4.1, are

very encouraging, as 91% of feedback messages were acknowledged to be helpful.

Further analysing (figure 4.16) results by considering the axiom categories, there

are notable differences between both groups.

Group 1 - KE-novices - considered feedback as: (a) Providing new infor-

mation, which they did not know (e.g. ‘Tells me that a new fact may have impact

on the ontology(category N+)’, ‘Informed me about the ontology and the links be-

tween the concepts (category R)’ ; (b) Preventing ontology defects, e.g. ‘Told

me about inconsistency, I would have not checked otherwise(category I)’, ‘The

feedback explained why the sentence should not be included (category U)’ ); and

(c) Providing hints on what to do next, which was mostly for novel facts

without relevant implication, as feedback pointed out that further connections

should be entered (e.g. ‘I have the hint that something may be missing (category

N)’.

Group 2 -KE-experts - found the feedback helpful for: (a) Developing

ontology awareness, the users found additional information about the ontol-

ogy provided with the contradicting sentences (category I), implications (category

N+), or sentences which make an axiom redundant (category R) useful to gain

awareness of the ontology ‘(getting the right information at the right time)’ ; (b)

Providing warnings, when something may be overlooked, as one participant

commented ‘Helps keeping the ontology foolproof (category I).’ ; (c) Providing

assurance, when the KE-experts knows what may happen, (e.g. ‘Gives me as-

surance that I was right in the first place (category R)’ ); and (d) Facilitating

decision making, when further action is needed, e.g. information about contra-

dicting sentences was considered helpful (e.g. ‘Directed me what to change from

the ontology (category I)’ ).
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Participants were not sure of the helpfulness of feedback when: (a) it was

confusing or misleading (see previous section); (b) did not provide much new

information (which was pointed by KE-experts); (c) did not provide enough in-

formation what to do next. The two occurrences of Not helpful were on novel

axioms category and came from the same KE-expert who commented that, apart

from telling that a sentences was novel, the feedback was not much useful.

4.6.4 Understanding of Logical Aspects and Impact on

User behaviour

For every sentence to be entered, participants were asked three questions to test

their understanding of the logical implications relating to the sentence. To avoid

asking questions that followed trivially from the feedback given, the questions

used rephrasings and slightly different terminology as that used in the feedback.

For example, for category N+, we asked whether “the ontology already knew

the fact that ’X”’, where X was one of the presented new entailments. Some

questions also inverted the information given in the feedback: for category I, we

asked whether the opposite of the input sentence was already known.

We classified the score for each participant’s answers to indicate the level of

awareness about logical implications: confusion, neutral or understanding. Over-

all, both groups showed a high level of understanding: 69% for Group1(KE-

novices) and 86% for Group 2(KE-experts). There are notable differences

between both groups (see Table 4.2). Particularly surprising was that Group

2(KE-experts) showed signs of confusion when answering some of the ques-

tions. We note however that, in the case of axioms leading to inconsistency (I)

this apparent confusion matches with this group’s opinion that the advice was

oversimplified.

We also reviewed participant responses for measuring the impact of semantic

feedback on their behaviour. The experiment study included a question on what

actions the participants would take in response to the semantic feedback. The

possible answers were: they will (a) add the sentence to the ontology, (b) discard

the sentence or try to find an alternative sentence, (c) seek further clarification

and (d) do not know. We analysed the answers (user actions) and compared
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Group1 KE-novices Group2 KE-experts

Confusion Neutral Understanding Confusion Neutral Understanding

N 0% 15% 85% 0% 7% 93%

N+ 0% 15% 85% 7% 0% 93%

R 8% 38% 54% 0% 0% 100%

I 8% 31% 62% 21% 14% 65%

U 15% 8% 77% 7% 14% 79%

Overall 6% 25% 69% 7% 7% 86%

Table 4.2: Participants’ understanding of logical aspects in feedback.

them against the advice from the feedback. The results are very encouraging

as Group 1(KE-novice users) accepted 96% of advice compared to the 92%

for the Group 2(KE-experts), i.e., participants agreed with the advice and

followed the action suggested by the semantic feedback message. In the few cases

that the advice would not be followed, KE-novices often indicated that they

would seek further advice, which indicates that they had been made aware of the

problem at hand, but did not have enough information to resolve the situation.

4.7 Discussion

This chapter presented Entendre , a framework for facilitating (i) the systematic

analysis of ontology author’s inputs and (ii) the generation of understandable

feedback to support ontology authors to formulate new facts to add to the ontol-

ogy. In particular, we formally defined:

1. a framework that combines both syntactic and semantic analyses of an

ontology authoring input;

2. the main syntactic analyses of an input that can be performed and the main

results of such analyses: lexical and syntactic readings.

3. a categorisation of lexical and syntactic readings, including relationships

between these reading categories (e.g. how an L-Composite reading re-

lates to a Syntactically Atomic reading). This categorisation (i) provides

an overview of the types of syntactic ambiguity that can occur and (ii) can
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be used to provide targeted feedback about syntactical issues to ontology

authors.

4. an axiom-integration analysis strategy that categorises input axioms based

on the logical effects it has on the ontology being built. This categorisation

provides an overview of ontology defects that can be introduced and can

be used to provide targeted feedback about semantic issues to ontology

authors.

This chapter discussed an implementation of the Entendre framework that

showed the applicability of the framework. The syntactic analysis part of the

framework was used to build wrappers around the Rabbit CNL and the Manch-

ester Syntax. The semantic analysis part of the framework was used to implement

the axiom analysis strategy; this showed how Entendre facilitates the integration

of various existing ontology reasoning services.

This chapter finally showed an evaluation that focused on the semantic anal-

ysis part of Entendre. The evaluation results presented in this chapter show that

the Entendre framework facilitates the next step to intuitive ontology authoring –

embedding intelligence in the ontology authoring tools to make them active lis-

teners that understand the user’s actions and respond accordingly. In particular,

the evaluation results show that:

Responsive ontology authoring tools benefit ontology authors. The study

strongly indicated support for the philosophy that authoring tools can act

as active listeners that offer immediate, interactive, and intuitive feedback

at the time a new axiom is to be added. It showed: (a) it is possible to

develop such tools (ROO is just an example; by following Entendre, feed-

back features can be embedded in any ontology authoring tool); and (b)

users are enthusiastic about such tools. All KE-experts in the study re-

acted extremely positively to the embedded feedback and commented that

it would potentially save them substantial time and effort to maintain the

ontology (they followed the advice in 92% of the cases). All KE-novices

were also pleased to see immediate response to their actions and followed

advice in 96% of the cases. Some users commented that feedback helped
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them to consider what was required when authoring an ontology, and even

suggested that ROO would be useful to assist people learn about ontology

authoring. This can be addressed in further studies with ROO (e.g. using

it as a learning tool in BSc or MSc courses on knowledge engineering).

Semantic feedback benefits ontology authors. Both KE-novices and KE-

experts found semantic feedback helpful (91%), informative (78%), and

relevant (56%). In 38% of the cases, feedback was seen also as trustwor-

thy. KE-experts considered feedback as providing reminders of actions they

might forget or reassurance that their actions were appropriate. It helped

them develop awareness of the ontology and take decisions what actions

to perform (including what additional changes to the ontology would be

needed). On the other hand, KE-novices saw feedback as a watch-dog stop-

ping them to do wrong actions or an adviser providing relevant information

and hints what to do next (e.g. that further connections should be entered).

Further studies can be conducted to examine whether feedback would affect

ontology quality (e.g. by comparing ontologies developed using ROO with

or without the semantic feedback feature).

More work is needed to produce understandable and actionable feedback.

Entendre provides a systematic way to understand the user’s input and also

facilitates the integration of existing tools for syntactic and semantic analy-

sis. However, the study shows that it is not sufficient only to understand the

users but also to make users understand what is conveyed with the feedback.

During the study we asked participants questions testing their understand-

ing of logical implications. KE-novices understood the logical implications

described in the feedback in 69% of the cases, while KE-experts in 80%.

Although there was noise in few questions, it was clear that feedback could

cause confusion (10% of all cases), might be overwhelming (10%), and, in

one case, was misleading. The analysis of these results points to further

work required to improve the effectiveness of Entendre. The confusing ter-

minology of the feedback messages(e.g. unsatisfiable class) can be improved

and made more intuitive. Furthermore, novice ontology authors seemed to

have trouble following some of the instructions provided by the feedback,

145



4.7 Discussion

such as “adding more related facts” when an input was novel. The static

feedback message generation can make novice ontology authors feel over-

whelmed and do not provide enough guidance as to what to do next. These

issues indicate that there is a need for more flexibility when presenting

feedback to ontology authors.

In conclusion, this chapter has showed that Entendre enables a main require-

ment for active listening – producing an understanding of the speaker (in this case

the user who is an ontology author). In other words, identifying what effect an

axiom added by the user can have on the ontology. This understanding enables

ontology authoring tools to pay more attention to the resultant ontology and be

proactive in offering timely feedback and advice, which is beneficial to ontology

authors. However, our results also show that there is a need for more fine-grained

feedback control and interaction between the system and the ontology author. In

the next chapter, we investigate whether we can use discourse analysis to enhance

the interaction between ontology authors and the system.
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Chapter 5

Perico: Dialogue-based

Interaction for Ontology

Authoring

In previous chapters we have investigated how ontology authoring systems can use

CNLs (and their related lexical and syntax analysis) and logic-based integration

analysis to support ontology authors when adding new statements to the ontology.

Although the combined syntactic and semantic analyses can be used to provide

beneficial feedback to novice ontology authors, we have seen some issues regarding

novice authors finding some feedback overwhelming and not knowing how to

perform suggested tasks. Both of these issues are related to the limited interaction

that ROO uses to communicate with the ontology author: ROO waits for an input

from the ontology author and provides feedback or updates the ontology based

on the input. Such limited interaction means it is up to the ontology author to

correctly follow any instruction or messages to provide an improved input or a

new input that builds on a previous input.

This chapter proposes to extend Entendre with a new layer of input analy-

sis to enable more advanced ontology authoring interactions. In order to make

this extension generic enough to support a wide variety of ontology authoring

interactions, we investigate dialogue-discourse analysis to track the authoring in-

teraction. This allows us to build on an extensive body or research on dialogue

systems.
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The goal of this chapter is thus to formally define a generic dialogue frame-

work, which we will call Perico for describing and executing ontology authoring

interactions. Such a dialogue framework has the following requirements:

� it must model the interaction from the perspective of one of the participants

in the dialogue: the ontology authoring system participant ;

� it must be ontology-driven (i.e. any agreed knowledge should be stored in

an ontology language);

� it should describe ontology authoring interactions based on a standard rep-

resentation, while taking into account ontologies and their reasoning ser-

vices;

� it must enable the description and execution of non-trivial ontology author-

ing interactions;

� it must allow ontology authoring interactions based on a CNL;

� it must extend the Entendre framework for input analysis and feedback;

� it must provide reusable and composable interactions for enabling advanced

ontology authoring interactions;

The contribution of this chapter is Perico, a framework for describing dialogues

for ontology authoring. In order to motivate and define Perico, we first discuss

the relevant work in Section 5.1 and introduce basic terminology about dialogue

systems in Section 5.2. We then present the Perico framework in Section 5.3 and

validate it by formalising an existing ontology authoring interaction in 5.4. Then,

in Sections 5.5 we show how the framework can be used to design, formalise and

implement extensions to existing ontology authoring interactions.

5.1 Relevant Work on Dialogues for Ontology

Authoring

This section presents existing work on dialogues for ontology authoring. Although

much research has been done on tool support for ontology authoring as described
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in Section 2.1, relatively little work has been done on exploring dialogue systems

for ontology authoring. We are not aware of any dialogue-based ontology author-

ing systems, but there are several dialogue systems for tasks that are relevant

to ontology authoring such as knowledge formulation and ontology querying. Be-

cause we are interested in supporting novice ontology authors, we also look at

tutoring dialogue systems.

Knowledge Formulation A number of interactive knowledge acquisition sys-

tems have been studied [5, 22, 25, 28, 89, 140]. These systems have in common

that they have been designed to help novice users formulate their knowledge in

a way that can be captured by the system. In order to facilitate this process,

they encode one or more strategies to (i) elicit new knowledge based on existing

knowledge, (ii) give feedback about how the system has interpreted user inputs

and (iii) give feedback about inconsistency issues for integrating new knowledge

into the existing knowledge base. The proposed interactions vary in complexity.

For example, a simple interaction strategy proposed in [89] consists of the follow-

ing steps: (i) the system generates a number of unknown facts and asks the user

whether they are true, false or non-sensical, (ii) the user provides an answer, (iii)

the system processes the answer and repeats the interaction with new unknown

facts.

Evaluation results for some of these systems have been positive, showing that

the systems successfully capture knowledge from users without the need for much

training [25, 89]. The description of the interaction strategies in these systems

is not formalised, but only illustrated with examples that are dependent on the

choices of user interface, type of knowledge elicited, etc. This makes it difficult

to compare, reuse and adapt the proposed interaction strategies. In this chapter,

we define a framework that can be used to formally describe such interaction

strategies for knowledge formulation in terms of dialogue moves.

Dialogues for Ontology Querying

Natural language interfaces for querying knowledge bases and ontologies have also

been studied. Lexical and syntactic analysis issues discussed before also occur

in querying systems, causing ambiguity or generating overly large answer spaces.
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To resolve such issues, simple dialogue interactions have been used to resolve

ambiguity or to narrow the search space [31, 32, 85, 86]. Although these systems

use similar interaction strategies they are not described in a uniform manner.

This makes it difficult for ontology authoring systems to compare the proposed

strategies to, for example, decide which strategy is best suited in a particular

ontology authoring context. This chapter proposes a framework that will enable

the description of such strategies in terms of dialogue plans.

Tutoring Dialogues

The provision of Entendre semantic feedback can be seen as a form of tutoring in-

formation that is provided during the ontology authoring task. As such, existing

work on intelligent tutoring systems(ITS) is relevant. Although we are not aware

of ITS that deal with ontology authoring in this way, there are ITS that aim to

teach students theory and/or skills in other domains, some of which are related to

“logical systems”. For example, in recent years, Di Eugenio et al. have analysed

various tutoring dialogue strategies (based on pedagogical literature, intuition

and natural dialogue corpora) in order to determine which strategies correlate

to better learning of students. Some of these strategies correspond to factors

we have encountered when studying the Entendre feedback such as (i) feedback

conciseness [37] (ii) expert vs. non-expert tutoring [104] and (iii) evaluating ef-

fective tutoring dialogue move sequences [38]. Most of these strategies have been

formalised in terms of dialogue moves such as direct procedural instructions (sug-

gesting actions to students), positive and negative feedback (confirm correctness

or notify the student about errors). Currently, these tutoring strategies would

have to be manually added to existing ontology authoring systems because do

not support interaction in terms of dialogue moves. This chapter will define a

framework that facilitate the re-use of such strategies for ontology authoring.

This section presented work on various interactive systems that can support

ontology authoring tasks. We saw that for knowledge formulation and ontology

querying, there is a lack of formal and reusable descriptions of such interaction

strategies. The area of Intelligent Tutoring Systems has formalised and analysed

150



5.2 Dialogue Systems Overview

the effectiveness of various tutoring strategies which could be used to provide bet-

ter ontology authoring interactions. However, a framework is needed for (i) for-

malising existing knowledge formulation and ontology querying interaction stra-

tegies to make them available to novice ontology authors and (ii) reusing already

formalised tutoring strategies in the context of ontology authoring. This chapter

will present such a framework for describing and executing ontology authoring

interaction strategies in Section 5.3. In the next section, we give an overview of

the topic of dialogue systems and introduce relevant terminology that we need to

describe dialogues for ontology authoring.

5.2 Dialogue Systems Overview

Our aim in this chapter is to expand the interactive features of ontology authoring

systems by extending Entendre with a dialogue model. This section provides an

overview of dialogue systems and defines the terminology used in the research of

dialogue system development that we use in the rest of the chapter.

5.2.1 Basics of Dialogue Systems

A dialogue system is a system that can interact with other agents (human or

not) in a dialogue. The agents are called dialogue participants and the dialogue

itself is defined as a sequence of dialogue moves : messages produced by said

participants. In this thesis we are interested in dialogues that achieve one or

more specific dialogue tasks, such dialogues are assumed to have specific goals,

e.g. information seeking, information provision and guidance.1

The research on dialogues –in the context of computing and dialogue sys-

tems in particular– has a long history and dates back to work by Austin [6].

Dialogues have been studied in various research streams corresponding to dif-

ferent viewpoints and different goals – philosophy (for dissecting the nature of

dialogues), computational linguistics (for analysing and annotating dialogues),

1Note that this is in contrast to chatbots which are able to interact in dialogues, but the

resulting dialogues do not have a specific goal other than the interaction itself.
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artificial intelligence (creating dialogue agents for various purposes), argumenta-

tion (analysing how dialogues are used to build up arguments), agent computing

(creating agents that can communicate and cooperate with other agents), user

interfaces (providing a dialogue-based interface for various tasks), etc. These dif-

ferent research streams have resulted in a number of different dialogue theories :

ways to model dialogue interactions. Although these theories have some marked

differences, there are some general functional and informational components that

can be identified.

There is a general agreement on the functional components that a dialogue

system must posses. This is captured by the general architecture for dialogue

systems [15, 52], which we present below in Section 5.2.4. However, there is less of

an agreement on a fixed set of informational components for a dialogue (system):

although at each moment in a dialogue, there must be an immutable dialogue

state, different dialogue theories disagree as to which knowledge is relevant to the

dialogue as well as how this knowledge should be represented. Relevant knowledge

consists at least of:

discourse knowledge , which describes the dialogue moves that participants

can perform, as well as the obligations that dialogue moves create and

dependencies that exist between dialogue moves. Discourse knowledge is

domain and task independent.

domain knowledge describing the topics under discussion during the dialogue.

This is thus knowledge which is not about the dialogue itself, which is

covered by the discourse knowledge.

dialogue task knowledge describing the overarching goals (or plans) of one or

more of the participants. Note that discourse knowledge often describes

dialogue moves in terms of goals as well; the difference is that the dialogue

task describes higher-level goals that cannot be achieved by a single dialogue

move.

There is also little agreement between dialogue theories on how to (or even

whether to) specify the move that a participant should perform at any given

moment. To illustrate some of the varying decisions in dialogue theories we give
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a couple of examples. Regarding the modelling of the dialogue state, some di-

alogue theories decide to model the dialogue in terms of beliefs and intentions

while others ignore these issues and only represent the expressed messages [135].

While most dialogue theories agree on representing the dialogue as a game be-

tween different participants, there is no agreement as to what should be the

basic building blocks of such a game (i.e. what constitutes a dialogue move).

Some dialogue theories provide a large taxonomy of domain-independent dialogue

moves [118],1 while others restrict themselves to a relatively small number of

dialogue moves [15]. In Section 5.2.2, we present a recent draft that aims to

standardise dialogue moves. Regarding the specification of the dialogue task,

some dialogue theories choose for a purely rule-based approach [98], while others

argue for a probabilistic approach [66]. For more about the different choices and

dialogue theories, we refer to [135].

The wide variety of dialogue theories that have been proposed means it is

often difficult to compare different dialogue theories and also difficult to develop

dialogue systems based on these theories. To facilitate the formal description of

dialogue theories and systems three complementary views are used:

� a computational view that has become a standard for describing dialogue

systems (Section 5.2.3);

� a functional view based on an agreed architecture of dialogue systems in

terms of their required functional components (Section 5.2.4);

� an informational view based on a draft standard for dialogue annota-

tion; the proposed standard describes one way to decompose dialogues into

informational components (Section 5.2.2);

1Dialogue moves are also called dialogue acts, speech acts, conversational moves etc. Note

that when a dialogue system performs a dialogue act, that act can be interpreted in terms of

some communicative function. See Section 5.2.3 for a definition of dialogue moves.
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Figure 5.1: UML Class diagram showing the data model for describing the struc-

ture of a dialogue. This is a slight adaptation of the dialogue metamodel defined

in [74] and [21].

5.2.2 Informational View: A Standard for Dialogue An-

notation

ISO-DIS-24617-2 [74] is a recent standard, currently in draft status, created by

experts on dialogue moves that takes into account much of the work on dialogue

systems and dialogue annotation from the last decades. It provides a basic model

of a dialogue, shown in Figure 5.1, as a sequence of functional segments which

is the basic functional unit of the dialogue. Functional segments are used as a

way to aggregate one or more dialogue moves.1 At the same time, functional

segments provide a more fine-grained discourse information unit than dialogue

turns, which may consist of large number of sentences.2

Dialogue moves are the main units of discourse information, they contain

1The ISO standard calls them dialogue acts, but in this PhD we will call them dialogue

moves to keep in line with the ISU terminology [98].
2Dialogue turns are not directly part of the dialogue model in the ISO standard, but they

can be inferred from the sequence of functional segments.
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information about:

Participants and their roles, i.e. which participant is the sender, receiver (or

other) of the dialogue move.

Dimension for the main topic of the dialogue move. The ISO standard provides

a set of 9 core dimensions for dialogue moves. Eight of the dimensions

are about the dialogue itself, like feedback, time management or discourse

structuring. The last dimension is the task dimension, which indicates that

the dialogue move states something about the domain (i.e. it is related to

the main dialogue task).

Communicative Function defines the discourse semantics of the dialogue move.

The ISO standard defines a taxonomy of communicative functions – shown

in Figure 5.2 – that includes variants of information-providing functions

(such as inform, answer and correction), information-seeking functions

(such as propositional question and choice question) and action-discussion

functions (e.g. offer, suggest and accept request). The given taxon-

omy is a starting point for describing dialogues and is meant to be extensi-

ble.

Dependency Relations are used to describe relations between dialogue moves

and functional segments. While communicative functions act as a dia-

logue schema stating that there may be a relation between a question

and a subsequent answer, dependencies instantiate these relations. There

are two main types of dependencies: functional dependencies between

two dialogue moves (e.g. a question being answered) and feedback de-

pendencies between a dialogue move and a functional segment(e.g. an

auto-negative-feedback stating that a previous functional segment was

not understood).

The ISO standard also assumes that each dialogue move is associated to some

semantic content, which is defined as some “information, situation, action,

event, or objects that the sender of the dialogue move wants to bring to the

attention of the other dialogue participants” [74, Section 3.17]. The standard
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Figure 5.2: Taxonomy of general-purpose communicative functions as defined

in [74].

does not require any specific representation for the semantic content, which is

why it is not included in Figure 5.1.

In Section 5.3.1 we use this standard as a starting point for representing

the informational components of dialogues for ontology authoring. In order to

formalise dialogue interactions we will need to extend this model, which clearly

focuses on the required discourse knowledge, with a representation for the domain

knowledge and the task knowledge.

5.2.3 Computational View: Information-State-Update

The Information-State-Update (ISU) [98] view of dialogue systems provides a

generic way of describing dialogue theories from a computational point of view.

The idea behind ISU is that, although different dialogue theories have different
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ways of modelling dialogue components, all theories must ultimately represent

the dialogue state in some way. Also, dialogue theories must provide a way to

update the dialogue state as the dialogue advances.

According to ISU, a dialogue theory can be expressed (and thus a dialogue

can be modelled) in terms of:

� Informational Components: a description of what information is taken

into account as being part of the information state of the dialogue.

� Formal Representations: a description on how to represent the chosen

informational components.

� Dialogue Moves: a set of actions that can be performed by the dialogue

system. Execution of these moves causes changes in the (representation of

the) informational components.

� Update Rules: a set of rules that describe legal ways in which the informa-

tional components can change and which dialogue moves can be performed

in the current information state.

� Update Strategy: determines which (or in which order) update rule

should be used when multiple rules are available.

Examples of dialogue theories and systems described using ISU are given in the

original paper on ISU [98]. In the rest of this chapter, we adopt ISU to describe a

dialogue framework for ontology authoring (Section 5.3) and to formalise dialogue

systems for ontology authoring (Sections 5.4 and 5.5).

5.2.4 Functional View: General Dialogue Pipeline

A general architecture for dialogue systems [15, 52] is shown in Figure 5.3; it

describes a pipeline of functional components that any dialogue system must

contain:

� Input Recogniser: receives inputs from other dialogue participants.
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� Input Interpreter: converts the received input into an internal repre-

sentation that the dialogue manager – the next component in the pipeline

– can use. This internal representation captures the relevant meaning of

the input, by relating the input to the domain under discussion (e.g. de-

scribing what the input says in terms of concepts, relations or instances in

the domain) and describing the communicative function of the input (e.g.

whether the input is seeking information, requesting information, agreeing

with a previous statement or clarifying a previous statement).

� Dialogue Manager: updates the dialogue state by monitoring dialogue

events – such as silences or valid internal representations of inputs – and

combines them with the current dialogue state. Two key functions provided

by the dialogue manager are (i) dialogue planning : deciding on whether

there are actions that need to be performed by a dialogue participant and

(ii) knowledge grounding : deciding whether the agreed domain knowledge

between the dialogue participants should be updated.

� Output Generator: translates a semantic output message into a language

that other dialogue participants can understand (usually natural language).

� Output Presenter: transmits the output message to other dialogue par-

ticipants.

In Section 5.3.2 we follow this architecture and terminology to define a frame-

work for describing dialogues for ontology authoring.

5.2.5 Implementation of Dialogue Systems

The research literature describes various ways to develop dialogue systems based

on the architecture shown in Figure 5.3. We discuss the most common choices

for implementing the components of dialogue systems.

Input Recogniser and Output Presenter Since human dialogue is often

spoken, most recent research has focused on developing dialogue systems that

support this mode of interaction. In such a setting, the input recogniser is a
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Figure 5.3: Main functional and informational components of a dialogue system.

speech recogniser and a speech synthesiser plays the role of the output presen-

ter. Recently, there has also been work on multi-modal dialogue systems, where

speech is mixed with a GUI or other visual interface [76]. Other common sys-

tems limit themselves to textual input and output [140]. The choice of input and

output components is important in the sense that speech recognition and syn-

thesis is error-prone, thus the dialogue manager needs to take into account the

possibility of errors at these stages. In this thesis we limit ourselves to textual

input and output as we concentrate on the input interpretation and the dialogue

management components. However, as the interface is in a CNL, some elements

of error correction similar to speech-based dialogue will be considered.

Input Interpreters are usually implemented by using NLP techniques to

find patterns in the input that can be translated into a chosen internal represen-

tation. The internal representation in current dialogue systems can vary from

simple key-value structures to logic assertions in some logical language. Since

NLP techniques for deriving key-value structures are more robust, these types of

internal representation is more common in current dialogue systems. In key-value

structures, the keys are often pre-defined “entities” of the domain1 and the task

1NLP techniques are used for finding various other types of linguistic phenomena besides

named-entity matching in dialogue systems such as anaphora resolution, finding cue-phrases,

dialogue moves, etc.
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of the input interpreter is to determine whether the input contains a values for

some of these entities. Developing input interpreters often requires gathering a

corpus of possible inputs in order to use machine learning techniques or to define

patterns that need to be looked for.1 This means that input interpreters are of-

ten custom built for a specific dialogue situation, since the corpus and the target

“entities” are dependent on the particular dialogue domain and goal.

To avoid having to build custom input interpreters for each dialogue domain,

systems can restrict the interface: requiring users of the system to start their

inputs in a particular way (e.g. “I think that...” or “I disagree with...”) or

requiring them to learn a specific vocabulary to interact with the system. This

makes it easier for the system to recognise the role of the inputs in the dialogue.

Output Generators are usually developed using natural language generation

techniques. These again depend on the internal representation of the domain

and the roles of the output in the dialogue. The simplest and most common

approach is to use template-based generators. This can be done in dialogues that

have a well-defined domain and goal, where dialogue developers know in advance

the types of outputs that the system can produce. In such cases, templates

can be defined in advance that have slots that can be filled with values from

the dialogue domain. When using a more expressive internal representation, the

output generation can be more flexible and does not need to be defined in advance,

since outputs can be generated from logical statements.

Dialogue Managers are developed based on the various different dialogue

theories [98], but are also informed by the type of dialogue that the system needs

to support. Historically, researchers have proposed various dialogue toolkits which

aid the development of dialogue managers. These toolkits already make some

decisions about representing the dialogue state (and thus restrict the number of

dialogue theories that can be used with said toolkit). There are relatively simple

approaches for developing dialogue managers based on execution of finite-state

machines and completion of slots in frames in [97]; these approaches may not be

flexible enough to represent advanced ontology authoring interactions.

1This is especially the case when users of the dialogue system are free to use any normal

language to interact with the system.
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Since we aim to be able to describe and implement complex dialogues for

ontology authoring, we opt for more robust plan-based dialogue managers.1

dialogue managers require that all dialogue moves define pre-conditions in order

to decide which moves can be applied at a certain point in the dialogue. The use of

only rules can be cumbersome for complex dialogues where there is a large number

of dialogue moves. In such cases, it can be difficult for a dialogue developer to

predict the execution of a dialogue and to guarantee the correctness of a dialogue

plan. The user of pre-conditions can also lead to repetition: for example, to

simulate phases in a dialogue, the same conditions have to be specified multiple

times for various dialogue moves that are all meant to be available only at a

certain phase of the dialogue. For this reason some plan-based dialogue managers

provide ways to organise the dialogue plan in the form of task trees or similar

structures. This can limit the options that a user of the system has (e.g. because

the dialogue is not in the right phase of the plan), but makes the dialogue more

predictable and easier to develop. In Section 5.3.1 we adopt a definition of task

trees that we will use to describe ontology authoring dialogues.

Dialogue Engine Toolkits

Since developing dialogue systems from scratch requires considerable effort, there

have been several initiatives to create dialogue engine toolkits which provide ba-

sic implementations of the main dialogue architecture. We have reviewed several

of these toolkits [15, 35, 63, 98, 114, 117]2 to determine whether these toolkits

satisfied the requirements for our framework (see introduction of this chapter).

Some of these toolkits were commercial or not available for reuse, thus we fo-

cused only on those that were open source. Some toolkits only provided an API

for developing ISU dialogue systems, but did not provide any reusable compo-

nents [114]. Other toolkits were not stable enough to be extended [63]. Yet others

were using a custom representation for discourse knowledge [15] or did not allow

easy extensions for input interpretation via Entendre or representing the domain

knowledge using ontologies. In conclusion, none of the evaluated toolkits was

a good fit for describing ontology authoring dialogues without major changes;

1Also called inference-based.
2See also the Ontology-based Dialogue Platform, http://www.semvox.de
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in Section 5.6 we show an implementation of a simple dialogue toolkit that is a

simplified implementation of the RavenClaw dialogue manager [15], one of the

evaluated toolkits.

Conclusion

This section presented basic concepts for describing dialogue systems in general.

We discussed standards for describing dialogue systems that we can reuse to de-

scribe ontology authoring interactions. In particular we identified a standard for

describing discourse information based on ISO-DIS-24617-2. We also identified

the basic functional components for executing dialogues and identified plan-based

dialogue managers as a suitable approach for representing ontology authoring in-

teractions. Finally, we evaluated various dialogue engine toolkits, but found none

that could be reused while meeting our requirements for the dialogue framework.

In the next section we use these decisions to describe a framework for describing

and executing dialogues for ontology authoring.

5.3 Perico: Dialogue Framework for Ontology

Authoring

In this section we present Perico 1, a framework for describing and building dia-

logues for supporting ontology authoring. The definition of the Perico framework

is guided by the requirements the we identified at the beginning of this chapter.

5.3.1 Informational View of Perico

All the dialogue information in Perico is captured in a Dialogue State (S),

which is a triple consisting of the following informational components (IC):

a Reference Ontology, OReference, an Execution Agenda and a Dialogue

History.

1The name “Perico” is Spanish for parakeet.
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S :

 OReference : Set(Axiom)
Agenda : Stack(DialoguePlan)
History : Seq(FunctionalSegment)

 (5.1)

Reference Ontology

The formal representation ofOReference is an ontology as defined in Section 4.3.2.

It represents the current knowledge of the system participant. Perico further as-

sumes that the reference ontology corresponds to the agreed knowledge between

the dialogue participants. Note that, the knowledge in the reference ontology

does not have to be explicitly agreed upon during the dialogue: it may be as-

sumed to be agreed. This assumption means that existing ontologies can be used

as a starting reference ontology as they are assumed to contain agreed knowledge

between the participants. During the course of the dialogue, it may become clear

that some axioms in the reference ontology are not shared between all partici-

pants in the dialogue. In such cases, those axioms must be removed from the

agreed ontology.

The reference ontology may consist of various modules, for example, a refer-

ence ontology will typically be the union of a domain ontology, which contains

knowledge about the domain under discussion, and a discourse ontology, which

contains knowledge about the meaning of dialogue moves.

Execution Agenda

The Execution Agenda contains information about the goals and plans of the

system agent that are driving the current dialogue. In Perico the goals and plans

are represented using a stack of dialogue plans:

Definition 5 (Dialogue Plan). A dialogue plan is a 4-tuple of:

parameters typed slots that can be filled with specific instances during the exe-

cution of the dialogue plan;

pre-conditions describe when the plan can be executed;

effects describe any changes to the dialogue state that occur when this plan is

executed;
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subplans a set of dialogue plans that can be executed to achieve the goal of this

plan. Subplans may consist of alternative strategies to achieve the goal of

this plan, or it may consist of a sequence of plans that need to be executed

in order to achieve the goal of this plan.

This definition without the subplans is widely used in the literature, see for

example [98].1 Note that dialogue plans are parameterised; the execution agenda

can only contain instantiated dialogue plans where the parameters refer to specific

information from the dialogue state.

Types of Dialogue Plans This definition of dialogue plans is flexible and

provides a way to specify the behaviour of dialogue systems. When building

dialogue systems it is useful to discern between the following types of dialogue

plans2:

basic plans describe built-in plans in Perico that correspond to dialogue moves

from ISO-DIS-24617-2. These basic plans are domain independent and serve

as building blocks for more complex plans such as grounding and domain-

task plans. In Section 5.3.3 we discuss the basic plans provided in Perico.

grounding plans describe how and when the reference ontology is updated.

Perico provides a default set of grounding plans for the supported dialogue

moves, since the discourse semantics of dialogue moves pre-determine how

they should be ground. This enables dialogue engineers to focus on speci-

fying the domain-task plans (see below); however, dialogue engineers may

provide alternative grounding plans (for example, by requiring explicit con-

firmation of all grounded knowledge).

domain-task plans describe how dialogue moves should be combined with agreed

domain knowledge to achieve some domain task. These plans are always

provided by dialogue engineers.

1The subplans element is borrowed from [15] in order to make task trees explicit as discussed

below.
2The types of dialogue plans are not relevant to the dialogue state; the execution agenda

can contain any type of dialogue plan.
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Figure 5.4: Generic task tree of a dialogue system in Perico. A dialogue system

consists of one of more domain-task plans and a grounding plan, which schedule

basic plans to achieve their goals.

Task Trees Dialogue plans can be composed into larger structures at design

time (or at runtime) via their subplans; we call these larger structures task trees.

Inversely, all nodes in task trees are dialogue plans. Perico uses task trees as the

main way to describe dialogue systems1. The task tree effectively specifies which

set of dialogue moves are available at any point of the dialogue; in terms of the

information-state-update view of dialogues, the task tree defines the update rules

and strategies. Figure 5.4 presents a generic task tree for a dialogue system in

Perico.

1This notion is based on the RavenClaw style of dialogue task specification based on task

trees. However, where RavenClaw uses an agent-based terminology for the nodes of the task

tree (with dialogue agencies and agents), we use the terminology of dialogue plans.
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Dialogue History

The Dialogue History in Perico contains information about the previous func-

tional segments of the current dialogue. For this, Perico reuses and refines the

definition of functional segments from ISO-DIS-24617-2. The dialogue history is

represented as a sequence of functional segments; as a consequence the dialogue

history provides the discourse structure of the dialogue. Next, we describe how

Perico extends the ISO-DIS-24617-2 (see Section 5.2.2) standard.

First, Perico defines two types of participants: the system participant, which

is a Perico System Agent and other participants, which are Perico User Agents.

In this thesis, we assume that every dialogue occurs between a single system

participant (the dialogue authoring system) and a user participant (the ontology

author).

Second, Perico extends the ISO standard by taking into account the prove-

nance of discourse data. Since Perico can be used to develop dialogue systems,

it prescribes two ways of generating discourse data for a dialogue. For dialogue

moves produced by the system agent, the discourse data must be generated by

some discourse plan (see below for a definition of discourse plans). Data about di-

alogue moves by user participants is generated through a discourse reading which

is the result of some discourse analysis process. A discourse reading is defined as

an extension to the notion of syntactic reading defined in Entendre:

Definition 6 (Discourse Reading). Let ι be an input string, rL be a syntactic

reading of ι over a reference ontology O that is part of a dialogue state S, and

ΓM be the set of strategies for mapping input segments onto dialogue moves. Then

a Discourse Reading of ι is an annotation graph over a set of labels LM. A label

in LM is a tuple 〈M, µ〉, where:

� M is a set of dialogue moves and

� µ ∈ ΓM is a discourse analysis strategy: it assigns one or more dialogue

moves to a syntactic reading based on the dialogue state S.

A third extension to ISO-DIS-24617-2 is that Perico explicitly relates di-

alogue moves to their “semantic content”.1 Perico requires each dialogue

1As discussed in Section 5.2.2, the ISO-DIS-24617-2 standard only gives a general definition
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move to be associated to zero or one semantic content, which encodes domain-

specific information provided by the dialogue move. A dialogue move has no

semantic content when it is purely defined by its communicative function and its

relations to previous moves. For example, an agreement with a previous dialogue

move has no semantic content of its own. A dialogue move has a semantic con-

tent when its communicative function requires some extra domain information:

for example dialogue moves which are questions, must provide some domain-

dependent semantic content defining what is being asked. Another example is an

inform move where the semantic content describes what is being informed. In

Perico the semantic content is represented by an axiom in an ontology language.1

A fourth extension is that ISO-DIS-24617-2 only defines one type of feedback

dependency and one type of functional dependency. Perico introduces typed func-

tional dependencies as binary relations between two dialogue acts. For example,

the ISO standard can only state that a dialogue move dm2 has communicative

function inform and a functional dependency to some previous dialogue move

dm1. Perico allows for a more fine-grained description by referring to the type of

functional dependency that holds between dm1 and dm2, for example: justifies

or rephrases.

Finally, because the domain knowledge is represented using ontologies, Perico is

able to extend and formalise dialogue moves from the ISO standard in terms

of dialogue plans, dialogue readings, ontologies and reasoning services related to

ontologies. These extensions and formalisations are presented in detail in Sec-

tion 5.3.3.

Perico’s extensions to the ISO dialogue metamodel (see Figure 5.1) are sum-

marised in Figure 5.5.

of “semantic content” for a dialogue moves, but does not include it as part of the model for

dialogue moves.
1In practice, this axiom may be accompanied by extra information to clarify whether an

the axiom represents a question or to provide extra information for generating verbalisations

of the axiom.
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Figure 5.5: UML Class diagram showing the data model in Perico for describing

the discourse structure of a dialogue. This datamodel extends the dialogue meta-

model shown in Figure 5.1 by (i) specifying types of Participants, (ii) adding the

Semantic Content, (iii) adding a Segment Source and (iv) modelling functional

and feedback dependencies as classes rather than just relationships.
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Figure 5.6: Functional view of Perico showing the main components, the services

they provide and the functional dependencies between the components.

5.3.2 Functional Components

Perico follows the general architecture of dialogue systems as discussed in Sec-

tion 5.2. Here, we discuss specific design decisions made in Perico to adapt dia-

logue systems for ontology authoring.

Perico uses a hub-like design where the dialogue is mediated by a PericoA-

gent, which communicates with the components of the dialogue pipeline as shown

in Figure 5.6. The rationale for using a hub-like design is that the PericoAgent is

the only component that controls the dialogue state. By using this design instead

of strictly following the general architecture as depicted in Figure 5.3, we allow

decoupling of the 5 generic components in the dialogue pipeline. These compo-

nents can provide services that are independent of the current dialogue state and

the pipeline components are not aware of each other.

Dialogue Pipeline Components

Perico does not impose major restrictions regarding the Input Recogniser and

Output Presenter. However, since Entendre focuses on textual input analysis,

in practice these two components will also be text-based.
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Figure 5.7: UML Activity Diagram showing the workflow for the Input

Interpreter component in Perico. The workflow is used for analysing inputs

from other dialogue participants and converting them into functional segments of

the dialogue.

The Input Interpreter component in Perico reuses the Entendre pipeline of

lexical, syntax and semantic analysers (see Chapter 4). Furthermore, in Perico we

add a new type of analyser called a Discourse Analyser : a component that ex-

tends a syntactic reading and derives a Discourse Reading of the input (i.e. it

attaches dialogue move annotations to the input). The output of the Input

Interpreter is based on the dialogue moves in the discourse reading, which are

aggregated into a Functional Segment.1 2 Figure 5.7 gives an overview of the

input interpretation process in Perico.

The Dialogue Manager component in Perico consists of two subcomponents:

the knowledge grounder and the dialogue plan executer. The knowledge grounder

1This follows the model of dialogues from the ISO-DIS-24617-2 standard discussed in Sec-

tion 5.2.2.
2Note that some discourse readings require more than just a syntax reading; for example, to

determine whether an input is an answer to a set question, Perico needs to perform semantic

analysis of the semantic content associated with the dialogue move.
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may use the semantic analysis from Entendre to decide whether to add or remove

knowledge to the reference ontology. The knowledge grounder also can inject

grounding plans to the execution agenda to provide feedback about how messages

have been interpreted, or to request confirmation. The dialogue plan executer

is responsible for determining Perico’s next dialogue move based on the current

dialogue state, which includes a history of functional segments and the current

execution stack (the set of dialogue plans that are being executed). The output of

the Dialogue Manager is a functional segment (consisting of one or more dialogue

moves) that needs to be performed.

Finally, the Output Generator converts a functional segment proposed by

the dialogue manager and converts it into an output that can be understood

by the other dialogue participants. Since functional segments consist of both

discourse and domain information, the output generator needs to be able to

convert both types of information. For domain information, Perico can reuse the

rendering syntax (e.g. a CNL-generator) discussed in Section 4.3.1 (on page 104).

For discourse information, Perico uses simple text-based templates since we are

not aware of a CNL that we can reuse for this purpose (and developing a CNL

for discourse information is not in the scope of this PhD).

5.3.3 Basic Dialogue Plans in Perico

Perico defines a set of basic dialogue plans which can be composed into more

complex behaviour of a dialogue system. Perico provides basic plans that produce

functional segments for each of the main communicative functions defined by

the ISO standard [74] and depicted in Figure 5.2. Providing a formalisation

for all of these dialogue plans is not in the scope of this PhD since not all of

the communicative functions are necessary for ontology authoring. This section

shows how some basic dialogue plans can be defined in terms of the current

dialogue state (in the precondition of the plan) and a desired dialogue state (in

the effects of the plan). This section also shows how Perico also defines dialogue

plans which extend the basic taxonomy of communicative functions defined by

the ISO standard. These extensions rely on reasoning and input analysis services

described in Chapter 4.
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Basic Knowledge Grounding

The syntactic and semantic analyses from Entendre make it possible to define a

couple of basic knowledge grounding strategies.

Dialogue Plan: GroundSyntacticallyCorrect

Params : fs : FunctionalSegment

Precondition :


fs contains a dialogue move dm

dm has an information providing communicative function

dm provenes from a syntactic reading rL

Effect :


if rL ∈ Understood

OReference := OReference + AxiomsIn(rL)

else Skip

Subplans : ∅

Dialogue Plan: GroundSafeAxioms

Params : fs : FunctionalSegment

Precondition :


fs contains a dialogue move dm

dm has an information providing communicative function

dm provenes from a semantic reading rC

Effect :


if rC ∈ {N,N+}
OReference := OReference + AxiomsIn(rL)

else Skip

Subplans : ∅

Basic Information Providing

The most common dialogue move used in dialogues is to inform a fact to another

dialogue participant. Perico provides plan InformAx, which takes an axiom that

is entailed by the reference ontology (in the current dialogue state) and generates

a functional segment that expresses this axiom. The formal definition of this

dialogue plan is as follows:

Dialogue Plan: InformAx

Params : α : Axiom

Precondition : OReference |= α

Effect :


History := History + fs

fs contains a dialogue move dm

dm matches [sender = me, sc = α, cf = inform, prov = InformAx(α)]

Subplans : ∅
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Note that since InformAx requires an axiom as a parameter, it may not be

available for all types of moves: not all information may be available or may be

expressible in terms of (a module from) the reference ontology. For this reason,

Perico offers a plan that will simply output a given string parameter.

Dialogue Plan: InformString

Params : msg : String

Precondition : ∅

Effect :


History := History + fs

fs contains a dialogue move dm

dm matches [sender = me, cf = inform, prov = InformString(msg)]

Subplans : ∅

Plan InformAx is preferred over InformString because Perico can use rea-

soning services to analyse α and may be able to automatically handle subsequent

functional segments. For example, if a participant disagrees with the output

functional segment, Perico can automatically execute a resolution strategy for de-

termining the validity of α (and whether it should be removed from the reference

ontology); this can only be done if the move is generated via the InformAx.

Information Provision based on Ontology Services

Ontologies and related reasoning services allow for more complex types of inform

moves where the semantic content is not simply an axiom, but rather some anal-

ysis result based on an axiom. We distinguish between a variety of such moves

based on analysis types.

Integration analysis provides information about the classification of axioms

as described in the chapter on Entendre. Perico defines some plans for conveying

some of the information gathered during the Entendre analysis.

First, whenever another participant produces an utterance and Perico pro-

duces a successful syntax analysis of that utterance, Perico can perform integra-

tion analysis on the read axioms from the utterance and inform the participant

about whether the axiom is novel or leads to inconsistency, etc.
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Dialogue Plan: InformEntendreAxiomClassification

Params : α : Axiom

Precondition :



There exist dmi, r
M, rL, rC such that:

dmi is a dialogue move that occurs in History,

dmi matches [cf = inform, sc = α, receiver = me, provenance = rM],

rM is a discourse reading that is based on rL

rL is a syntactic reading that contains α in one of its labels,

rC states that α ∈ N, N+, R, I or U

Effect :


History := History + fs,

fs contains dialogue move dmo,

dmo matches [sender = me, cf = inform, sc = rC ,dim = OntAuth,

fundep = classifiesAxIn(dmi), prov = InformEntendreAxiomClassification(α)]

Subplans : ∅

When the integration analysis for an axiom is N+ (the axiom is novel and

has relevant new implication), Perico can inform other participants about which

new implications were found as well as how many were found.

Dialogue Plan: InformsRelevantImplicationsCount

Params : α : Axiom

Precondition :



There exist dmi, r
M, rL, rC such that:

dmi is a dialogue move that occurs in History,

dmi matches [cf = inform, sc = α, receiver = me,provenance = rM],

rM is a discourse reading that is based on rL

rL is a syntactic reading that contains α in one of its labels,

rC states that α ∈ N or N+ with new relevant implication set ∆E
α

Effect :



History := History + fs,

fs contains dialogue move dmo,

dmo matches [sender = me, cf = inform, sc = {|∆E
α| = x},dim = OntAuth,

fundep = countsRelevantImplications(dmi),

prov = InformsRelevantImplicationsCount(α)]

Subplans : ∅
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Dialogue Plan: InformsRelevantImplications

Params : α : Axiom

Precondition :



There exist dmi, r
M, rL, rC such that:

dmi is a dialogue move that occurs in History,

dmi matches [cf = inform, sc = α, receiver = me, provenance = rM],

rM is a discourse reading that is based on rL

rL is a syntactic reading that contains α in one of its labels,

rC states that α ∈ N+ with new relevant implication set ∆E
α

Effect :



History := History + fs,

fs contains dialogue move dmo,

dmo matches [sender = me, cf = inform, sc = ∆E
α, dim = OntAuth,

fundep = informsRelevantImplications(dmi),

prov = InformsRelevantImplications(α)]

Subplans : ∅

Whenever an axiom is entailed by the reference ontology, that axiom can be

justified. Perico only provides a basic move for informing other participants about

one justification.1

Dialogue Plan: InformsOneJustificationFor

Params : α : Axiom

Precondition :



There exist a dmi such that:

dmi is a dialogue move that occurs in History,

dmi matches [cf = inform, sc = α],

OReference |= α,

α /∈ OReference

Effect :



History := History + fs,

fs contains dialogue move dmo,

dmo matches [sender = me, cf = inform, sc = J (α,OReference),dim = OntAuth,

fundep = informsOneJustificationFor(dmi),

prov = InformsOneJustificationFor(α)]

Subplans : ∅

Finally, another plan provided by Perico is that of rephrasing a previously

made statement. This plan is only possible for dialogue moves that provene from

some input axiom (i.e. generated through an InformAx plan or an L-atomic

syntactic reading). The output axiom is then equivalent to the input axiom

1There are various other ways to provide justifications for an axiom which we leave as

future work since they are refinements of the single justification case: all the justifications for

the axiom can be provided instead of only a single justification. Also, only part of a justification

can be provided, for example, because some axioms in the justification are deemed to be trivial.
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(according to the reference ontology), but has a different signature.

Dialogue Plan: Rephrases

Params : α : Axiom

Precondition :



There exist dmi, β such that:

dmi is a dialogue move that occurs in History,

dmi matches [cf = inform, sc = α],

σ(α) 6= σ(β),

β is equivalent to α through an entity mapping such that

for all entities e ∈ σ(α) there is an entity e′ ∈ σβ such that OReference |= e ≡ e′

Effect :

Subplans : InformAx(αo)

Other Dialogue Plans

Perico follows the ISO-DIS-24617-2 hierarchy of dialogue moves (see Figure 5.2)

and provides other dialogue plans such as information seeking moves. For exam-

ple, in order to produce a propositional question, Perico defines a dialogue

plan PropositionalQuestionAx which takes an axiom α, and produces a dia-

logue move that asks whether α is true or not.

Dialogue Plan: PropositionalQuestionAx

Params : α : Axiom

Precondition : OReference 2 α

Effect :


History := History + fs

fs contains a dialogue move dm

dm matches [sender = me, sc = α, cf = propositionalQuestion,

prov = PropositionalQuestionAx(α)]

Subplans : ∅

The ISO-DIS-24617-2 requires for propositional questions to only be asked

when the producer of the move does not know whether α is true or not. Of-

ten, dialogue systems need to check whether an α that is entailed by the ref-

erence ontology is really true; for such situations ISO-DIS-24617-2 provides the

checkQuestion dialogue move. Perico provides plan CheckQuestionAx for gen-

erating such questions; it is the same as PropositionalQuestionAx, except for

its precondition:
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Dialogue Plan: CheckQuestionAx

Params : α : Axiom

Precondition : OReference |= α

Effect :


History := History + fs

fs contains a dialogue move dm

dm matches [sender = me, sc = α, cf = checkQuestion,prov = CheckQuestionAx(α)]

Subplans : ∅

Finally, Perico offers a basic plan for asking setQuestions, which are ques-

tions where a specific bit of information is being asked. To model this using ax-

ioms as the semantic content of dialogue moves, we define a special set of entities

U which represent variables being asked. The basic plan for asking setQuestions

is:

Dialogue Plan: SetQuestionAx

Params : α : Axiom

Precondition : σ(α)
⋂
U = u

Effect :


History := History + fs

fs contains a dialogue move dm

dm matches [sender = me, sc = α, cf = setQuestion, prov = SetQuestionAx(α)]

Subplans : ∅

Note that by this definition, we restrict setQuestions to have a single un-

known variable.

Although Perico can represent information-seeking moves, implementing a

query answering analysis is not in the scope of this PhD and including query

answering plans such as AnswerAx, ConfirmAx, DisconfirmAx, DeclineAnswer

and AnswerUnknownAx is left as future work.

5.3.4 Conclusion

This section presented the Perico framework for ontology authoring dialogues.

The presented framework fulfils the requirements that we identified at the begin-

ning of the chapter:

� Perico’s informational components are such that:

177



5.4 Validation of Perico with a Basic Ontology Authoring Dialogue

– the information is described from the perspective of one of the partic-

ipants in the dialogue: the system participant ;

– the domain knowledge is represented using ontologies;

– the discourse knowledge is represented by extending ISO-DIS-24617-2,

taking into account ontologies and their reasoning services (see Sec-

tion 5.3.1);

– the task knowledge extends the notion of task trees from RavenClaw

by taking into account the richer set of dialogue moves provided by

the ISO-DIS-24617-2 standard (see Section 5.3.1);

– a standard dialogue state is defined based on the chosen representation

for domain, discourse and task knowledge;

� Perico’s functional components follow the main basic dialogue system

architecture shown in Figure 5.3, but are influenced by the choices for rep-

resenting domain, discourse and task. In particular, Perico reuses and ex-

tends Entendre to describe the standard dialogue system components. A

detailed description is given in Section 5.3.2.

� Perico defines key parts of the information-state-update view:

– basic dialogue moves from ISO-DIS-24617-2 are defined as well as some

specific dialogue moves made possible by the domain knowledge;

– dialogue grounding is defined in terms of changes to the domain on-

tologies.

Perico itself does not include any dialogue systems for ontology authoring. In

the next section we validate the Perico framework by formalising existing ontology

authoring interactions.

5.4 Validation of Perico with a Basic Ontology

Authoring Dialogue

In this section, we validate the generality of the Perico framework by using it to

formalise an existing dialogue authoring interaction. We will use the following
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methodology to formalise the interaction:

� we select and annotate an example dialogue between the system and an

ontology author,

� we discuss which extensions are required to formalise the dialogue interac-

tion and provide a formalisation of this dialogue system.

5.4.1 Annotating Entendre Feedback

This section shows a simulated interaction between a novice ontology author and

ROO. The input sentences and the reference ontology are the same as we used on

the evaluation study on Entendre (see Section 4.6). The feedback is generated by

ROO (see Section 4.5). The selected interaction focuses on syntactically correct

inputs that add new information to the ontology. We intentionally do not show

how an existing axiom can be deleted from the reference ontology. We leave

axiom deletion as future work as we did when defining Entendre feedback. To

avoid repetition, we only show the annotated version of the interaction below.

In order to annotate the discourse structure of the interaction, we first chun-

ked the feedback provided by Entendre. This was done to avoid having one big

functional segment with a big set of dialogue moves. When annotating the inter-

action, we tried to reuse the dialogue plans defined in Perico. In the cases when

no suitable dialogue plan was available, we added new discourse instances such

as functional dependencies or communicative functions. In the next section we

summarise which additions to Perico were required. Note also that during this

annotation, we did not look for a task structure, focusing only on the discourse

structure of individual functional segments. We do provide an annotation about

changes to the ontology that occur.

We present the interaction as a sequence of functional segments, for each

functional segment we show:

� the functional segment name, of the form fsx, where x is the index of the

segment;

� the name of the sender (either OA or Perico);
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� the input or output of the functional segment; this can be textual or a

description of some action (e.g. a button click by the ontology author or

button enablement by the system).

� the dialogue move information of the functional segment and

� if available, the syntactic and integration reading of the textual input.

At the beginning of the dialogue the Perico agent is initialised with some

dialogue plan and the Leeds Point-of-Interest ontology, OLeedsPOI:

S0 =

 OReference = OLeedsPOI

Agenda = [??]
History = Seq()

 (5.2)

Dialogue Segment for Axiom Category N

fs1 OA: Every Student Accommodation is a kind of Accomodation.

[id = dm1-1, sc = α1, dim = LeedsPOI, cf = inform]1

rLfs1 = α1 = StudentAccommodation v Accommodation

rCfs1 = α1 ∈ N

fs2 Perico: This assertion is novel:

[id = dm2-1, sc = rCfs1, dim = autoFeedback, feedep = fs1, cf = autoPositive]

[id = dm2-2, dim = OntologyAuthoring, fundep = classifiesAxIn(dm1-1), cf = inform]

fs3 Perico: it has not been added to the ontology yet.

[id = dm3-1, dim = OntologyAuthoring, fundep = rephrases(dm2-2), cf = inform]

fs4 Perico: However, no further implications could be made based on this input.

[id = dm4-1, dim = autoFeedback, feedep = fs1, cf = autoPositive]

[id = dm4-2, sc = {∆E
α1

= ∅}, dim = OntologyAuthoring,

fundep = {contrasts(dm3-1), countsRelevantImplications(dm1-1)}, cf = inform]

fs5 Perico: This generally means that the terms you are using have been loosely defined in the ontology. It is

also possible that there are some implications that could not be found.

[id = dm5-1, dim = OntologyAuthoring, feedep = fs1, fundep = informsRelevantImplications(dm4-2), cf =

inform]

fs6 Perico: Advice: Add the sentence...

[id = dm6− 1, dim = OntologyAuthoring, fundep = instructAddInput(dm1-2), cf = directProceduralInstruction]

1The legend for the annotations is as follows: id is the unique identifier, sc is the semantic

content, dim is the dimension, cf stands for communicative function, feedep stands for feedback

dependency, fundep stands for functional dependency. For the semantic content, we will be

reusing the notation introduced in Section 4.3.2 and we assume that we have an axiom in an

ontology language representing the same information.
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fs7 Perico: ...and maybe add more new definitions if you want the ontology to be able to make more inferences

[id = dm7− 1,dim = OntologyAuthoring, fundep = instructAddMoreRelated(dm1− 2),

cf = directProceduralInstruction]

fs8 Perico: enables OK-button

[id = dm8− 1, dim = OntologyAuthoring, fundep = offersAcceptOfReading(dm1-1), cf = Offer]

fs9 OA: clicks on OK-button

[id = dm9− 1, dim = OntologyAuthoring, fundep = accepts(dm8-1), cf = acceptOffer]

After this interaction the dialogue state is as follows:

S9 =

 OReference = OLeedsPOI + α1

Agenda = [??]
History = [fs1 . . . fs9]

 (5.3)

Dialogue Segment for Axiom Category N+

fs10 OA: Every Teaching Hospital is a kind of Hospital.

[id = dm10-1, sc = α2, dim = LeedsPOI, cf = inform]

rLfs10 = α2 = TeachingHospital v Hospital

rCfs10 = α2 ∈ N+

fs11 Perico: This assertion is novel:

[id = dm11-1, dim = autoFeedback, feedep = fs10, cf = autoPositive]

[id = dm11-2, sc = rCfs10, dim = OntologyAuthoring, fundep = classifiesAxIn(dm10-1), cf = inform]

fs12 Perico: it has not been added to the ontology yet.

[id = dm12-1, dim = OntologyAuthoring, fundep = rephrases(dm11-2), cf = inform]

fs13 Perico: This input implies 6 new things.

[id = dm13-1, dim = autoFeedback, feedep = fs10, cf = autoPositive]

[id = dm13-1, sc = {|∆E
α2
| = 6}, dim = OntologyAuthoring, fundep = countsRelevantImplications(dm10-1),

cf = inform]

fs14 Perico: Have a look at the list of implications

[id = dm14− 1,dim = OntologyAuthoring, fundep = inspectRelevantImplicationsFor(dm10-1),

cf = directProceduralInstruction]

fs15 Perico: to make sure you agree with the implications.

[id = dm15− 1,dim = OntologyAuthoring, fundep = checkAgreementRelevantImplicationsFor(dm10-1), cf =

directProceduralInstruction]

fs16 Perico: If you do not agree, it may be that you are using the wrong terminology.

[id = dm16− 1,dim = OntologyAuthoring, fundep = informsRelevantImplications(dm15-1), cf =

inform,modality = uncertain]

fs17 Perico: This input implies that:

� Every Teaching Hospital has footprint a Footprint.
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� Organisation and Teaching Hospital are mutually exclusive.

� Training Centre and Teaching Hospital are mutually exclusive.

� Every Teaching Hospital is a kind of Topographic Object.

� Every Teaching Hospital is a kind of Place.

� Teaching Hospital and University (Institution) are mutually exclusive.

[id = dm17-1, dim = autoFeedback, feedep = fs10, cf = autoPositive]

[id = dm17− 2, sc = ∆E
α2
, dim = OntologyAuthoring, fundep = informsRelevantImplications(dm10-1), cf =

inform]

fs18 Perico: enables OK-button

[id = dm18− 1,dim = OntologyAuthoring, fundep = offersAcceptOfReading(dm10− 1), cf = Offer]

fs19 OA: clicks on OK-button

[id = dm19− 1,dim = OntologyAuthoring, fundep = accepts(dm18-1), cf = acceptOffer]

At this point the dialogue state is as follows:

S19 =

 OReference = OLeedsPOI + α1 + α2

Agenda = [??]
History = [fs1 . . . fs19]

 (5.4)

Dialogue Segment for Axiom Category R

fs20 OA: Every University has part at least one Point of Interest.

[id = dm20-1, sc = α3, dim = LeedsPOI, cf = inform]

rLfs20 = α3 = University v≥ 1hasPart.PointOfInterest

rCfs20 = α3 ∈ R

fs21 Perico: This statement is redundant.

[id = dm21-1, dim = autoFeedback, feedep = fs20, cf = autoPositive]

[id = dm21-2, sc = rCfs20, dim = OntologyAuthoring, fundep = classifiesAxIn(dm20-1), cf = inform]

fs22 Perico: Although the sentence itself is not included in the ontology, this sentence can be inferred from the

following sentences that have been said to be true.

[id = dm22-1, dim = OntologyAuthoring, fundep = rephrases(dm21-2), cf = inform]

fs23 Perico: Check the justification:

[id = dm23− 1,dim = OntologyAuthoring, fundep = inspectJustificationFor(dm20-1),

cf = directProceduralInstruction]

fs24 Perico: Existing Rabbit statements implying that Every University has part at least one Point of Interest :

� Every University has part a Building that has purpose Education of University Students.

� Every Building is a kind of POI.

� POI and Point of Interest are equivalent.
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[id = dm24-1,dim = autoFeedback, feedep = fs10, cf = autoPositive]

[id = dm24− 2, sc = J (α3,O),dim = OntologyAuthoring,

fundep = informsOneJustificationFor(dm20-1), cf = inform]

fs25 Perico: enables OK-button

[id = dm25− 1,dim = OntologyAuthoring, fundep = offersAcceptOfReading(dm20− 1), cf = Offer]

At this point the ontology author does not click on the OK-button, but starts

entering the following input sentence. The agreed knowledge stays thus the same

(only the history changes):

S25 =

 OReference = OLeedsPOI + α1 + α2

Agenda = [??]
History = [fs1 . . . fs25]

 (5.5)

Dialogue Segment for Axiom Category U

fs26 OA: Every Student Union is contained within a University(Institution).

[id = dm26-1, sc = α4, dim = LeedsPOI, cf = inform]

rLfs20 = α4 = StudentUnion v isContainedWithin.University Institution

rCfs20 = α4 ∈ U

[id = dm26-2,dim = OntologyAuthoring, fundep = declines(dm25-1), cf = declineOffer]

fs27 Perico: This sentence makes concept Student Union unsatisfiable!

[id = dm27-1, dim = autoFeedback, feedep = fs26, cf = autoPositive]

[id = dm27-2, sc = rCfs20, dim = OntologyAuthoring,

fundep = unsatisfiableConceptIn(dm26-1), cf = inform]

fs28 Perico: This means that nothing can be a Student Union anymore.

[id = dm28-1, dim = OntologyAuthoring, fundep = rephrases(dm27-2), cf = inform]

fs29 Perico: Advice You should not add an unsatisfiable concept to an ontology because this concept becomes

practically unusable.

[id = dm29− 1,dim = OntologyAuthoring, fundep = discourageAddInput(dm27-2),

cf = directProceduralInstruction]

fs30 Perico: This is especially true if you make a concept unsatisfiable and that concept was defined by some-

body else, as you are probably not using the concept in the way it was intended.

fs31 Perico: Check the list of contradicting sentences:

� Organisation and POI are mutually exclusive.

� Every Student Union is contained within a University (Institution).

� Every University (Institution) is a kind of Organisation.

� The relationship contains must have subject POI
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� The relationship is contained within is the inverse of contains.

[id = dm31-1,dim = autoFeedback, feedep = fs26, cf = autoPositive]

[id = dm31− 2, sc = J (StudentUnion v ⊥,O ∪ {α4}),
dim = OntologyAuthoring, fundep = inspectJustificationFor(dm27− 2),

cf = directProceduralInstruction]

[id = dm31− 3,dim = OntologyAuthoring, fundep = informsOneJustificationFor(dm27-2), cf = inform]

fs32 Perico: enables OK-button

[id = dm32− 1,dim = OntologyAuthoring, fundep = offersAcceptOfReading(dm26− 1), cf = Offer]

The dialogue state at the end of the interaction is:

S32 =

 OReference = OLeedsPOI + α1 + α2

Agenda = [??]
History = [fs1 . . . fs32]

 (5.6)

In the next section we analyse which extensions to Perico are required to

describe the presented interaction and we will infer which dialogue strategies are

required to execute such a dialogue.

5.4.2 Perico Extensions and Dialogue Formalisation

Based on the annotated dialogue, we now discuss which extensions to Perico were

required to describe the discourse structure of the interaction. We also analyse

which interaction strategy is used by Entendre. We formalise this dialogue system,

which we will call BOADiS(Basic Ontology Authoring Dialogue System).

Dialogue Components for BOADiS

BOADiS supports interactions between the system and a single external dialogue

participant (an ontology author). BOADiS requires the following variants of the

Perico general components:

� Textual input recogniser: allows the ontology author to enter textual

inputs and click on two GUI-buttons (labelled “OK” and “Cancel”) to com-

municate with the dialogue system. It also allows the user to select an

existing CNL sentence and click on a “Delete” button.
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� Template-based output generator: allows the generation of pre-defined

output messages based on templates. In particular, it uses the Entendre tem-

plates for axiom category feedback.

� Textual output presenter: shows the textual output to the ontology

author.

Dimensions

The annotated dialogue presented above contains dialogue moves with three di-

mensions: (i) autoFeedback (dialogue moves that provide information about how

ontology author’s inputs are interpreted by ROO), (ii) OntologyAuthoring and

(iii) LeedsPOI. The last two dimensions are domain-specific 1. Since BOADiS is

based on the feedback presented in Section 4.5, these dimensions follow directly

from the goals of the Entendre feedback: (i) informing the ontology author about

how ROO is interpreting the input and (ii) tutoring (instructing) ontology authors

about ontology authoring concepts and in particular ontology defects.

Dialogue Moves

The example dialogue shows that the ontology author is limited to inform and

acceptOffer dialogue moves. Although, not shown in the example interaction,

the author also can click on the Cancel -button, which translates to an explicit

declineOffer move. Note however, that an inform move following an offer is

also interpreted as a declineOffer as shown in fs26.

The dialogue moves produced by Perico are autoPositive, inform, offer

and directProceduralInstruction. The first three come directly from the

ISO standard of dialogue moves. The last move is a specialised version of the

instruct move from the ISO standard that we reuse from a schema proposed

in [104]. Direct procedural instructions occur when a tutor (in our case Perico)

instructs a learner about what steps the learner should take next.

Although not shown in the example interaction, the dialogue system could

also produce autoNegative moves, when an input has not been understood.

1I.e. they extend the task dimension as defined by the ISO standard
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Dialogue Plans and Functional Dependencies

The annotated dialogue contains several typed functional dependencies that spec-

ify how dialogue moves relate to each other. BOADiS uses most of the basic

information-providing dialogue plans provided by Perico(see Section 5.3.3), which

result in specific functional dependencies to other moves in the dialogue. However,

BOADiS requires new dialogue plans for producing directProceduralInstruction

moves:

InstructAddInput instructs another participant to add an input to the agreed

ontology;

DiscourageAddInput instructs another participant not to add an input to the

agreed ontology;

InstructAddMoreRelated instructs another participant to add more inputs

that are related to some previous move;

InspectRelevantImplications instructs another participant to inspect a list of

new relevant implications for a previous move;

InspectJustificationFor instructs another participant to inspect a list of ex-

isting assertions (assumed to be shared) that logically imply a statement

made in a previous move;

CheckAgreementRelevantImplications instructs another participant to check

whether there is agreement with a list of new relevant implications. Note

that this is a more specific instruction than inspectRelevantImplications,

which does not explicitly state why the list should be inspected;

These functional dependencies can be produced by adding dialogue plans such

as:
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Dialogue Plan: InstructsAddInput

Params : dmi : DialogueMove

Precondition :
{

dmi ∈ History

Effect :



History := History + fs,

fs contains dialogue move dmo,

dmo matches [sender = me, cf = directProceduralInstruction,dim = OntAuth,

fundep = instructAddInput(dmi),

prov = InstructsAddInput(dmi)]

Subplans : ∅

Dialogue plans for generating the other direct procedural instructions in BOADiS are

similarly straightforward.

Finally BOADiS also adds a dialogue move for producing the offer dialogue

move:

OffersAcceptOfReading offers to agree on the reading of some previous move;

Dialogue Plan: InstructsAddInput

Params : dmi : DialogueMove

Precondition :
{

dmi ∈ History

Effect :



History := History + fs,

fs contains dialogue move dmo,

dmo matches [sender = me, cf = Offer,dim = OntAuth,

fundep = offersAcceptOfReading(dmi),

prov = OffersAcceptOfReading(dmi)]

Subplans : ∅

Dialogue Strategy

Based on the presented discourse annotations of the Entendre feedback, we can

specify dialogue strategies. We distinguish between the domain-task plan – cap-

turing knowledge about points of interest in Leeds – and the grounding strategy1

– providing feedback about the system’s processing of inputs as well as trying to

avoid ontology defects and making the author aware about such defects.

1We introduced these types of dialogue plans on page 164.
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There is no domain-task plan in the analysed dialogue. The ontology

author must take the initiative to provide the system with inputs containing her

knowledge about the domain.1

Regarding the grounding strategy in the dialogue, we consider two separate

substrategies:

Input Feedback The annotated dialogue shows that the system participant uses

a feedback strategy (for unambiguously understood inputs) that is fairly

uniform across all the axiom categories:

1. the system informs the user about how the input relates to the agreed

knowledge (generally through the classifiesAxIn functional depen-

dency, but sometimes a more specific dependency is used such as

informsUnsatisfiableConcept).

2. the system explains the meaning of the reading classification; this is

done either by rephrasing the classification (i.e. the rephrase func-

tional dependency) or by providing some relevant inferences that follow

from the classification.

3. the system provides instruction as to what to do next (e.g. uses one

or more of the applicable directProceduralInstruction moves).

4. if there are relevant inferences or justifications (axiom categories N+,

R, U and I), the system provides these using the available Perico dia-

logue plans.

5. Finally, BOADiS offers the ontology author the option to accept the

reading or not.

This strategy is summarised in Figure 5.8.

Knowledge Grounding BOADiS uses a cautious grounding strategy where no

input is automatically accepted; instead, all inputs trigger a grounding plan

1Note that making the author aware about ontology defects (and terminology) can also be

considered a second domain-task. However, in the given dialogue this topic is not discussed on

its own right, but is rather discussed as part of the feedback to some author input. Therefore

we consider this topic as being part of the grounding strategy and not as a domain-task plan.
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Figure 5.8: UML activity diagram depicting the uniform feedback strategy in

BOADiS for inputs that have an unambiguous syntactical reading. This strategy

is applied to provide feedback for axioms in 5 main Entendre axiom categories.

The diagram also shows the main dialogue plans that are used at each point in

the strategy.

that provides the Entendre feedback about the input as described above.

The ontology author is required to explicitly accept an offer in order to

ground the input. Note that this grounding strategy is unsafe since it

allows users to accept sentences which introduce ontological defects (axiom

categories R, U and I). Authors that accept an axiom in the I-category

will subsequently not be able to get meaningful feedback.

The formalisation of the update rules and update strategy follows directly from

the above and is summarised in Figure 5.9. The strategy for providing the input

feedback is summarised in Figure 5.8. The knowledge grounding plan is defined

as follows:
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Dialogue Plan: GroundAfterOfferAccept

Params : fs : FunctionalSegment

Precondition :



fs contains a dialogue move dm1

dm1 matches [dim = OntologyAuthoring, cf = Offer, fundep = accepts(dm2]

dm2 matches [fundep = offersAcceptOfReading(dm3)]

dm3 has an information providing communicative function

dm3 has semantic content α

Effect : OReference := OReference + α

Subplans : ∅

5.4.3 Summary

We used Perico to describe and formalise an existing ontology authoring interac-

tion, the provision of Entendre semantic feedback. In doing so, we validated the

generality of the Perico framework and showed that it can be easily extended to

simulate existing ontology authoring interactions.

The formalisation of the interaction shows clear dialogue strategies used by

the system to provide feedback and to ground knowledge. We note that both of

these strategies were not explicitly stated during the design and development of

Entendre. This validates the approach of using Perico to describe existing ontology

authoring interactions.

In the next section we further validate Perico by adapting BOADiS to improve

support for novice ontology authors.

5.5 Extending Perico to Support Novice Ontol-

ogy Authors

In the previous section we validated Perico by implementing a basic ontology

authoring dialogue system, BOADiS. In this section we further validate Perico by

using it to guide the improvement of an existing ontology authoring interaction.

We aim to improve the support that BOADiS provides to novice ontology authors

by following the following steps:
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� we analyse known issues of the ontology authoring interaction based on the

discourse structure and interaction strategy of the initial system,

� we design and formalise alternative interaction strategies to address key

issues, resulting in an updated dialogue system.

5.5.1 Explaining Key Issues in BOADiS

During our evaluations of ROO and Entendre, we saw that the used interactions,

while enabling the involvement of novice ontology authors, still showed some

issues. Two key issues affecting novice ontology authors were:

� novice authors find some feedback overwhelming and confusing,

� novice authors are uncertain about what to do after receiving feedback.

Since BOADiS provides a formal description of the Entendre interaction, we

analyse some characteristics of BOADiS and discuss how the dialogue moves and

strategies used in BOADiSrelate to the identified key issues.

Monolithic Feedback : After an ontology author’s input, Perico’s response is a

series of moves containing feedback (about axiom classification, rephrasing

of that classification, instruction on what to do next, etc.). Perico always

presents the full sequence of feedback as one monolithic block that the ontol-

ogy author cannot interrupt. Our findings in Section 4.6 indicate that such

monolithic feedback can be overwhelming to novice authors. This feedback

strategy is closely related to the moves the ontology author can make; in

BOADiS, the author can only make inform and acceptOffer moves. Thus,

since the ontology author cannot request justifications, rephrasings or other

moves from the system, the system has to anticipate these information-

seeking moves and provide the answers by default. This has several disad-

vantages:

1. parts of the feedback are repetitive: an author may ask for advice on

what to do the first time he enters a U-axiom, but may not do so after

that. However, the system will continue to repeat the same advice.
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2. the system participant cannot anticipate all the questions the ontol-

ogy author may have. On the one hand, the system may anticipate

a question that ontology authors will never ask (e.g. explain what it

means that “an input is novel”? between fs11 and fs12 in the anno-

tated interaction in page 181). On the other hand, allowing ontology

authors to ask questions, even if the system cannot answer the ques-

tion, provides data about what kind of information ontology authors

are interested in.

3. some of the information provided by the system is vague or introduces

conditional assumptions. Some of the instructions for next actions

were vague and unclear. For example, for axiom category N, the sug-

gestion is to “add more sentences if the author is expecting inferences”.

It is not clear which type of sentences the author should add next. It

is also not clear whether the author understands what it means to

“expect inferences” from the input at hand. The underlying reason

for such feedback is that the system is trying to anticipate questions

and has to guess conditions that may apply to the current situation.

This introduces uncertainty and clutter to the feedback and may be a

major contributing factor to all three key issues.

No System Initiative The current dialogue for ontology authoring simply waits

until the ontology author informs the system about a new fact and then pro-

vides feedback regarding that input. Furthermore, any new input is treated

the same way regardless of the dialogue history. In particular, we note that

the BOADiS dialogue plan has the following characteristics:

1. It assumes that the ontology author knows what knowledge should be

added to the ontology and that the author knows how to formulate that

knowledge. This assumption is clear in the lack of dialogue moves to

elicit specific knowledge from the ontology author. This lack of explicit

guidance can result in novice authors not knowing what to do next as

we found on our evaluations of ROO and Entendre.
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2. The dialogue system does not follow-up on procedural instructions.

Although the system participant provides procedural instructions to

the ontology author, the system does not control whether the au-

thors follow these instructions. This is related to the limited num-

ber of available moves to the ontology author. For example, after the

checkAgreementRelevantImplications instruction, the ontology au-

thor may not inspect the implications at all. Or, if the author does

inspect the implications and disagrees with some implication, the au-

thor cannot express this disagreement or request an explanation for

the implication. This may directly contribute to authors not being

sure on what to do next, after receiving the feedback.

5.5.2 Strategies for Improving the Interaction

We now propose two high-level strategies for addressing the key issues affecting

the BOADiS interaction.

Simplifying Feedback

In order to avoid novice authors finding the feedback overwhelming and confusing,

we propose to simplify the feedback strategy depicted in Figure 5.8. We propose

the following three substrategies1 to do this:

First, we propose to avoid ontology authoring terminology when informing

about the Entendre classification. Thus, instead of introducing the Entendre axiom

category (e.g. novel, redundant, inconsistent), and then explaining the category,

we now aim to simply explain the integration reading.

Second, replace direct procedural instructions with custom elicitation moves.

For example, instead of instructing to add more related sentences, the system

can be more proactive in suggesting types of sentences to add next. The overall

strategy for eliciting new knowledge is described in the next section.

Finally, we simplify the knowledge grounding by skipping the explicit offer

to accept the reading. Novice authors always followed the suggestions in the

1These strategies follow directly from the analysis presented in Section 5.5.1
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feedback, thus if an input is not immediately problematic (axiom categories N

and N+), Perico can automatically add the axioms to the reference ontology.

Guiding Next Action

In order to make it clearer for novice authors what the next action should be,

we propose to add various dialogue plans that give Perico the initiative in the

ontology authoring dialogue. The proposed changes are:

Introduce elicitation plans. Instead of waiting until the ontology author en-

ters a new fact about the domain, the dialogue system can be proactive and

instruct the ontology author to provide a new fact. Furthermore, elicitation

plans can use the dialogue state to request more specific knowledge about

the domain. For example:

� Perico could use the Entendre axiom integration analysis to directly ask

questions related to a previous input. Thus, instead of using generic

direct procedural instruction moves, we propose to ask questions to the

authors. For example, for axiom categories N and N+, the system

can ask the author for expected inferences. For the U case, the system

can ask the author for agreement with justifying axioms.

� Perico could use the dialogue history to ask for specific relations be-

tween previously mentioned entities. Such elicitation moves can help

the author to discover new ways to formulate knowledge and to main-

tain the focus of the dialogue.

Introduce plans to inform the authors about what they can say next.

Since we are no longer assuming that the ontology author knows what to

say next, Perico needs to take the initiative and tell the author what types

of dialogue moves are available at any point in the dialogue. Thus, after

an elicitation move by Perico, the system can inform the author about how

to respond: by, for example, providing a new fact, declining to respond or

asking for help.
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Introduce plans for providing hints about the CNL. Since novice authors

may not know how to formulate specific knowledge, Perico needs to be able

to inform authors about suitable CNL sentences. For example, if Perico is

eliciting knowledge at the conceptual level, Perico can help the user by

giving examples of CNL sentences that translate to T-Box axioms in the

ontology language.

We presented two strategies for improving key issues in BOADiS. In the next

section, we will use Perico to define an improved dialogue system called BOADiS2.

The target for BOADiS2 is to simplify grounding and feedback strategies while

adding elicitation moves to push the dialogue (and the ontology authoring) for-

ward.

5.5.3 Improved Ontology Authoring Dialogue

In order to apply the changes to BOADiS discussed above, we introduce a number

of dialogue-task plans for eliciting new knowledge, providing hints and providing

options for how to reply to elicitation moves. Although the system has added

complexity to the domain-tasks, the system’s grounding plan is much simpler.

The updated task tree is shown in Figure 5.10.1

The elicitation plans are governed by the ElicitationScheduler, which de-

cides which of the available subplans should be executed next. It has specialised

plans such as ElicitExplicitInference and ElicitScopedTBoxAxiom which

can only be executed in specific situations. If none of the specialised plans can be

executed, it uses a default elicitation plan, which simply elicits a new fact about

the domain.

Dialogue Plan: ElicitationScheduler

Params : ∅
Precondition : ∅
Effect : push subplans into Agenda

Subplans : DefaultElicitation,ElicitExpectedInference, ElicitScopedTBoxAxiom

1Compare to the original task tree from Figure 5.9.
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Dialogue Plan: ElicitNewAxiom

Params : ∅
Precondition : ∅

Effect :


History := History + fs,

fs contains dialogue move dmo,

dmo matches [sender = me, cf = Instruction, dim = OntAuth,

prov = ElicitNewAxiom

Subplans : ∅

Dialogue Plan: ElicitExpectedInference

Params : ∅

Precondition :

{
latest input functional segment in History has dialogue move dmi

dmi has integration analysis N or N+

Effect :



History := History + fs,

fs contains dialogue move dmo,

dmo matches [sender = me, cf = Request,dim = OntAuth,

fundep = requestExpectedInferenceFrom(dmi),

prov = ElicitExpectedInference

Subplans : ∅

Dialogue Plan: ElicitScopedTBoxAxiom

Params : dmi : DialogueMove

Precondition :
{

dmi matches [fundep = isExpectedInferenceFrom(dm2)]

Effect :



History := History + fs,

fs contains dialogue move dmo,

dmo matches [sender = me, cf = Instruct, dim = OntAuth,

fundep = instructsElicitTBoxAxiomFor(dmi)

prov = ElicitScopedTBoxAxiom

The scope σ is the signature of the axioms in dmi and dm2

Subplans : ∅

The HintProvider plan only is scheduled when the author has produced

a dialogue move with communicative function RequestHint.1 Subplans of the

Hint Provider check whether a special type of hint is required. For exam-

ple, HintForTBoxRbtInScope checks whether the hint request comes after an

ElicitScopeTBoxAxiom; if this is the case, the hint provided will only suggest

Rabbit sentences that translate into T-Box axioms in OWL. If none of the sub-

plans detects the need for a special type of hint, the HintForRbtInform provides

a default help for writing Rabbit sentences.

1This is a custom communicative function that inherits from the standard Request.
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The AnswerOptionProvider looks whether the system has information about

the possible answers that an author can return and provides that information. In

our case, the InformElicitationAnswerOptions plan can be executed after any

of the subplans of the ElicitationScheduler have executed and provides options

for telling a new fact, asking for help or skipping the current elicitation plan.

5.5.4 Conclusion

In this section we showed that Perico can be used to guide and formalise changes to

existing ontology authoring interactions to provide better support to novice ontol-

ogy authors. We defined an ontology authoring dialogue system, BOADiS2, with

improved strategies aimed to minimise the key issues described in Section 5.4.2.

This showed that the Perico framework is flexible and easy to extend. To further

validate Perico we next show an implementation of the framework and BOADiS2.

5.6 Implementation

As part of this PhD we implemented the various components of Perico in Scala.

We have created an API that dialogue engineers can use to define task trees that

can be executed by Perico.

The implemented input analyser integrates with the Entendre implementation

described in the previous chapter and is able to generate discourse readings for

inform moves. The implementation provides hooks for dialogue engineers to define

custom discourse readings based on the current dialogue state. These hooks are

used for example to correctly analyse help requests by the user, which are not

valid CNL statements, but which are valid moves in the BOADiS2 dialogue.

The Perico implementation also includes a web-based interface for interacting

with Perico-based dialogue systems. It provides a chat-like interface where authors

can see the history of the dialogue and enter new inputs. We have chosen to

implement a dialogue interface that does not extend the existing ROO interface

in order to be able to study the dialogue interaction in isolation, without the

interference of other GUI components. As we mentioned in a previous chapter,

we want to work on a web-based interface for ROO; this interface can serve as
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a starting point for such an interface. A screenshot of the interface is shown in

Figure 5.11.

5.6.1 Interaction Example

This section shows a representative dialogue between Perico and a simulated on-

tology author. The dialogue was created by using the implemented Perico dia-

logue agent running BOADiS2. The example dialogue is using the Leeds Points

of Interest ontology that we used to evaluated the Entendre feedback. We assume

that the author has browsed through the ontology (and thus is aware of some of

the entities in the ontology) and has seen some example Rabbit sentences. We

further assume that the author has received the task to enter an initial fact (Bus

Line 95 has end point Bodington Hall), and then follow the dialogue.

fs1 Perico: Tell me a new fact to add to the ontology.

fs2 Perico: You can do one of the following:

� Enter a new fact or

� Enter Skip if you do not want to tell a new fact or

� Enter Help to receive a hint.

fs2 OA: Bus Line 95 has end point Bodington Hall.

fs3 Perico: This fact is indeed new.

fs4 Perico: Normally, entering a new fact enables me to make further inferences but I cannot do this in this

case.

fs5 Perico: Can you tell me something that I should be able to infer?

fs6 Perico: You can do one of the following:

� Enter a new fact or

� Enter Skip if you prefer not to answer this question or

� Enter Help to receive a hint.

fs7 OA: Bus Line 95 stops near Bodington Hall.

fs8 Perico: Actually, “Bus Line 95 stops near Bodington Hall” is a new fact.

fs9 Perico: Tell me more general facts about Bus Route or Hall of Residence or has end point or stops

near.

fs10 Perico: You can do one of the following:
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Figure 5.11: Screenshot of the web interface implementation of Perico.
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� Enter a new fact or

� Enter Skip if you prefer not to answer this question or

� Enter Help to receive a hint.

fs11 OA: Help.

fs12 Perico: General facts relate concepts to each other. For example:

� Every Car is a kind of Vehicle.

� Father and Mother are mutually exclusive.

� Every School has a part a Building that has purpose Education.

� Every car has at least three Wheels.

General facts can also define relationships. For example:

� The relationship is directly connected to is a special type of the relationship is connected to.

� The relationship contains is the inverse of is contained by.

� For the relationship eats, nothing eats itself.

fs13 OA: Help.

fs14 Perico: Facts are simple sentences such as:

� Every Car is a kind of Vehicle.

� Car is a concept.

� Every car has at least three Wheels.

See for more information the documentation on Rabbit.1

fs15 OA: Every Student Hall has purpose Accommodation.

fs16 Perico: This general fact is new.

fs17 Perico: I can now infer that Bodington Hall has purpose a Accommodation.

fs18 Perico: Tell me more specific facts about Bodington Hall.

fs19 Perico: You can do one of the following:

� Enter a new fact or

� Enter Skip if you prefer not to answer this question or

� Enter Help to receive a hint.

fs20 OA: Skip.

fs21 Perico: Tell me a general fact about stops near.

fs22 Perico: You can do one of the following:

1Links to on-line documentation about the Rabbit language.
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� Enter a new fact or

� Enter Skip if you prefer not to answer this question or

� Enter Help to receive a hint.

fs23 OA: Help.

fs24 Perico: I know that:

� has end point is a relationship.

� Every Transport Route has end point exactly 1 POI.

You can use general facts to further define the meaning of has end point. For example you could enter

facts similar to:

� The relationship has end point is a special type of the relationship has purpose.

� The relationship has end point is the inverse of stops near.

� For the relationship has end point, nothing has end point itself.

fs25 OA: The relationship has end point is a special type of the relationship stops at.

fs26 Perico: This general fact is new.

Discussion

The example dialogue shows how the BOADiS2 dialogue plan provides support

to novice authors in the following ways:

Various elicitation moves guide the user by narrowing down the type of knowl-

edge that the author should enter. The dialogue starts with a default elicitation

move in fs1. In fs5, the ElicitExpectedInference plan is executed after

after the N axiom from fs2. In fs9 and fs21, the ElicitScopedTBoxAxiom

plan is executed after an expected inference is detected. Finally in fs18, an

ElicitScopedABoxAxiom is executed.

The dialogue show various instances where the InformElicitationAnswerOptions

is executed (fs2, fs6, fs10, fs19 and fs22). This plan is always executed right

after an elicitation move.

The author makes use of the available options by providing new facts, asking

for help (fs11, fs13 and fs23) or skipping an elicitation move (fs20).

The system provides hints to the author in fs12, where the HintForTBoxRbtInScope

plan exploits the knowledge about the expected types of Rabbit sentences to only

suggest T-Box sentences. In fs14, since the author is still asking for help, the
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system falls back to the default plan for helping users formulate facts. In fs24,

the system again provides help based on a HintForTBoxRbtInScope; however,

note that since the scope now is a single relationship (stopsNear), the hint can

be more focused on relationships.

Finally, the new simplified IntegrationFeedbackProvider results in func-

tional segments fs3-4, where feedback is given about the N axiom from fs2. In

fs8, feedback is given for the N-axiom from fs7; Perico provides an even shorter

feedback in this case since it knows that fs7 is an expected inference from fs2.

Functional segments fs16-17 provide feedback about an N+-axiom from fs15.

This section presented an overview of how the Perico framework was imple-

mented, as well as an example interaction based on the BOADiS2 interaction and

a discussion of how the dialogue is executed.

5.7 Conclusion

The chapter presented a framework for describing and executing ontology au-

thoring interactions in terms of dialogue moves. This framework, called Perico,

enables the use of discourse analysis (on top of syntactic and semantic analyses)

to formalise ontology authoring interactions. Perico reuses standards from the

area of dialogue systems and integrates them with ontology engineering concepts.

This chapter provided validation of the Perico framework by (i) using it to

formalise the Entendre semantic feedback interaction; (ii) using it to design and

formalise an improved interaction for ontology authoring and (iii) implementing

the framework and interactions. These validations showed that the framework is

flexible and can be extended to formalise existing ontology authoring interactions.

The validations showed that Perico is a promising approach for improved

adaptability in ontology authoring support. Compared to existing ontology au-

thoring systems, the use of a dialogue framework for describing ontology authoring

interactions allows for the definition of fine-grained support plans. In particular,

the dialogue history subcomponent of the dialogue state can be used as a trigger

to provide fine-grained feedback or to start a specific elicitation plan. A main

advantage of the proposed framework is thus, that it facilitates the specification,

implementation and study of adaptive responses from the system.
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Chapter 6

Conclusion and Future Research

Directions

This thesis presented research on providing tool support to make ontology au-

thoring more intuitive. This research is relevant to enabling domain experts to

actively contribute to the process of ontology authoring. We have focused on

using tool support that enables domain experts to formulate their knowledge us-

ing expressive ontology languages, enabling them to contribute to heavyweight

ontologies. The research followed an explorative and iterative approach to de-

veloping principled tool support approaches. Starting with syntactic support

using a Controlled Natural Language, we explored providing more holistic tool

support by including support for ontology engineering methodologies. We also

added support for becoming aware of logical consequences of new inputs and pro-

viding understandable tool support. Finally, we defined a framework to enable

the analysis of ontology authoring interactions using dialogue systems. The main

contribution of this work is the definition and development of intelligent tool

support for novice ontology authors.

This chapter provides a summary of the outcomes and research contributions

of this research. We also provide a discussion of immediate and long-term research

directions based on this work.
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6.1 Summary

This research work has explored the area of intelligent tool support for enabling

the direct involvement of domain experts in the process of building ontologies. We

have iteratively formalised, implemented and evaluated this tool support in order

to make ontology authoring more accessible. We started from the hypothesis

that holistic intelligent tool support can enable the active involvement of domain

experts in ontology authoring. This hypothesis was shared by existing work

which suggested the application of an ontology authoring methodology that uses

a Controlled Natural Languages in order to involve domain experts in ontology

authoring. This resulted in our first research question:

� How can CNL-based tool support be integrated with support for following an

ontology authoring methodology and how does such combined tool support

affect ontology authoring by domain experts?

We started to addressed this question in Chapter 3 by implementing ROO,

an ontology authoring tool that was designed to cater for the needs of domain

experts with little or no ontology engineering experience. We showed how to use

NLP, parsing and GUI design techniques to provide appropriate tool support.

This chapter presented tool support for formulating knowledge in a way that is

understood by the CNL parser and tool support for adhering to the ontology

authoring methodology.

The second way we addressed this question was by evaluating ROO. We per-

formed a comparative evaluation with another CNL-based ontology authoring

tool as a baseline to focus on how the holistic tool support affected domain ex-

perts. The evaluation provided empirical evidence that the implemented holistic

approach enabled domain experts to build ontologies from scratch in a short pe-

riod of time. Furthermore, we showed that the holistic tool support provided

benefits in terms of ontology quality, ease of use and awareness about the ontol-

ogy authoring process. The evaluation study and other practical experiences with

ROO helped us to identify aspects that could result in improved tool support for

domain experts. One of these aspects was the need for improved disambiguation
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handling and feedback. Another aspect was the need to make domain engineers

more aware about the logical consequences of their ontology authoring actions.

Based on these aspects we formulated a second research question:

� How can the syntactic analysis required for understanding textual inputs

(such as CNL) be formalised and integrated with semantic analysis of the

inputs in order to provide understandable feedback to domain experts?

We addressed this question in Chapter 4 by defining a framework called En-

tendre for facilitating the systematic analysis of ontology author’s textual inputs.

The first part of this framework formally defines the main syntactic analyses of

an input that can be performed by an ontology authoring system and the main

results of such analyses. The framework provides a categorisation of lexical and

syntactic analysis results which provide a guide for performing disambiguation

and for providing effective feedback.

The second part of the Entendre framework addressed the research question

by defining an axiom-integration analysis strategy that categorises input axioms

based on the logical effects it has on the ontology being built. This categorisation

provides an overview of ontology defects that can be introduced and can be used

to provide targeted feedback about semantic issues to ontology authors.

The final way we addressed the research question was by implementing the

Entendre framework and evaluating the semantic feedback. We performed an eval-

uation with 5 novice ontology authors and 5 experienced knowledge engineers to

find out what ontology authors thought of the interactive feedback, whether they

understood it and whether they would know what to do after receiving the feed-

back. We found that both novice and experienced ontology authors liked the

feedback and though it was useful and informative. The evaluation reinforced

earlier results that indicated that effective interaction between the ontology au-

thoring system and domain experts is needed to produce better feedback and to

guide ontology authors actions.

This resulted in our third research question:

� How can dialogue systems be used to formalise and improve ontology au-

thoring interactions for better support of domain experts?
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This question was addressed in Chapter 5, where we reviewed the literature

on dialogue systems for ontology authoring. We then defined Perico, a dialogue

framework for ontology authoring that can be used for describing and execut-

ing ontology authoring interactions in terms of dialogue moves. The presented

framework adds a layer of discourse analysis (on top of Entendre) to formalise

ontology authoring interactions. We reused standards from the area of dialogue

systems and integrate them with ontology engineering concepts in order to define

the Perico framework. We validated Perico by using it to (i) formalise an existing

ontology authoring interaction and (ii) adapt and formalise an existing ontology

authoring interaction to provide better support to novice ontology authors. A fi-

nal validation of the framework consisted of the implementation of the framework

itself (reusing the Entendreframework) and of the formalised dialogue systems.

This thesis resulted in the following software outputs 1:

� a library with a set of tools for the Rabbit controlled natural language

including a parser, a Rabbit to OWL converter, an OWL to Rabbit renderer

and GUI components for editing ontologies using Rabbit.

� an ontology authoring “Guide-dog” library, which analyses an ontology to

suggest actions to perform based on the Kanga methodology and improve

the quality of ontologies.

� the ROO ontology authoring tool which is based on Protégé 4 and integrates

the Rabbit and Guide-dog libraries.

� the Entendre library for analysing textual ontology authoring inputs, which

understands inputs in both Rabbit and Manchester Syntax. This library also

performs input-axiom analysis in order to provide textual feedback about

the logical consequences of adding an input to an existing ontology.

� the Perico dialogue toolkit, which provides an API for defining dialogue

systems where the shared knowledge of the participants results in an ontol-

ogy. The toolkit is integrated with the Entendre library to enable dialogue

interactions based on Rabbit.

1All of these libraries and tools are open source. See Appendix A for the relevant links.
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6.2 Contributions

The work presented in this thesis resulted in a number of original contributions,

which we discuss in this section.

Intelligent Tool Support for Involving Domain Experts in Ontology

Authoring

Various CNL-based tools have been proposed and developed to make ontology

authoring more accessible to domain experts [33, 47, 80, 122, 125]. In this line, we

have contributed by developing tool support for the construction of rich ontologies

that is suited to people without knowledge engineering skills and who have no

access to a knowledge engineer. Novel aspects of this tool support are that:

� it is based on an ontology authoring methodology. To the best of our

knowledge none of the existing CNL-based tools provide guidance to make

up for the lack of experience in ontology authoring of domain experts.

� it is based on an expressive CNL, while some existing CNL-based tools only

provide a small subset in order to define lightweight ontologies [47].

� it provides easy to understand assistance for correcting syntactic mistakes

and to perform ontology authoring steps; this is an improvement on existing

CNL-based ontology authoring tools [80] which provide feedback that is

harder to understand by domain experts.

Although the readability and writeability of various CNLs has been studied in

order to improve the language design [41, 96], such studies are performed without

tool support. Other evaluations of CNL-based tools have used a CNL with limited

expressivity [47] and simple tasks. In this line, we contributed a experimental

study that closely matches a realistic scenario for building an ontology from

scratch.

Currently, the ROO distribution provided at sourceforge has more than 1000

downloads1. The tool is being used in a EU-project2 and has been used by several

1The link to download ROO is available on the project web site http://www.comp.leeds.

ac.uk/confluence/
2http://imreal-project.eu/
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staff members and students at the University of Leeds to build ontologies.

A Holistic Framework for Providing Feedback about Ontology Asser-

tions

Most existing CNL-based and traditional ontology authoring tools only provide

feedback about syntactic errors. They may impose severe restrictions on the input

language syntax in order to avoid dealing with ambiguity [47, 80]. 1 We contribute

to this area by defining a novel formal description of the lexical and syntactic

analysis of textual ontology authoring inputs. This formal description allows for

the controlled integration of various lexical and syntactic analysis strategies.

Various ontology authoring tools have been extended with tools for helping

knowledge engineers debug, explore and understand the logical structure of on-

tologies [9, 69, 82, 99]. However, most of these tools are only available to knowl-

edge engineers and may require a firm understanding of the logical aspects of

ontology languages. Our contribution in this area is the definition of an algo-

rithm for performing axiom-integration analysis that combines existing reasoning

services and result in understandable feedback. To the best of our knowledge we

are the first to provide such interactive feedback to domain experts.

Another novelty of our work is that it defines and implements a holistic frame-

work that is able to analyse a textual input both syntactically and semantically

in order to provide relevant feedback.

Finally, we contributed a novel evaluation of semantic feedback provided to

both novice and expert ontology authors.

A Dialogue Framework for Ontology Authoring

Dialogue-like interfaces have been used in the area of knowledge acquisition to

gather simple common-sense facts [22] or extend existing knowledge bases [25,

140]. Although such dialogues are applicable to ontology authoring, no generally

available system exists for describing and executing ontology authoring interac-

tions. In this area we contribute a generic model for describing ontology author-

1Or allow ambiguity but do not deal correctly with it such as the Manchester Syntax in

Protégé 4.
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ing interactions based on well-established standards for modelling dialogues. The

framework serves as a dialogue toolkit which can be applied to different ontology

authoring interactions and has been validated with existing discourse patterns.

6.3 Future Work

In the previous sections we summarised the main achievements and contributions

of our work. In this section we present immediate applications and extensions of

our work as well as longer-term research directions that can build on our work.

6.3.1 Applications and Research Directions with Current

Outputs

We presented evaluation studies of both ROO and the Entendre semantic feedback

with domain experts. However, both studies were performed in controlled settings

and only allowed for relatively short interactions between domain experts and

ROO. We have also gathered some anecdotal evidence based on experiences from

colleagues and research partners in using the tool; in these cases ROO has been

used to build ontologies, but no data has been gathered.

An immediate research direction is to use ROO as a tool for teaching ontology

authoring. This will allow us to monitor the interaction of novice ontology authors

with the tool in more detail over a longer period of time. Such a practical study

could allow us to gain insights into the development of knowledge engineering

skills.

Another practical study with ROO and Perico is to use a dialogue to elicit

personal conceptual models about a particular domain. Gathering such personal

conceptual models would allow us to investigate whether we can measure and

compare different perspectives on a domain. In particular, we are considering

the sustainability domain, which is a relevant, but complex subject with various

aspects that can affect the participants perspectives.

We showed a validation of Perico based on simulated ontology authoring in-

teractions. We are planning to conduct a controlled study with domain experts

in order to evaluate the two dialogue systems we have defined (BOADiS and
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BOADiS2). The study will evaluate whether the different interaction strategies

has an effect on the quality of the resultant ontology.

ROO will be used in a new research project (NETTUN) for modelling decision

making knowledge. It will serve as the basis for a tool to capture tacit knowledge

and to show the resulting ontology to domain experts for inspection.

Finally, we are also planning to adapt Perico to define dialogues for validating

and expanding user models [1]. In this case we will treat the user model as

our reference ontology and define interactions strategies to validate uncertain

facts about the user. We will use existing semantic web data and ontologies as

background knowledge for the dialogue interactions.

6.3.2 Long-term Research Directions

The combination of ROO, Entendre, Perico and the web enable large-scale in-

volvement of domain experts in ontology authoring. This opens up research into

crowdsourcing of ontology authoring using CNL. Due to the large number of col-

laborators, a framework will be necessary for comparing different perspectives

about the same domain.

In the future we want to use Entendre to further improve on the Rabbit parsing

to report and analyse ambiguities, attempt different strategies for not understood

and partially understood inputs. The improved architecture that Entendre pro-

vides will make it easier to enhance the syntactic analysis of ontology authors’

inputs. For example, Entendre would be a better place to keep track of and re-

solve ambiguity. The current implementation of the Rabbit parser works, but

makes the default Rabbit parsing quite slow. By moving the ambiguity handling

from the parser to Entendre-based extensions, the Rabbit parser could become

much more efficient (useful for batch processing), while tools would still be able

to provide robust parsing based on Entendre during ontology authoring. Other

improvements include exploring how the available semantic analysis can help in

syntactic disambiguation or can inform the need for an alternative syntactic anal-

ysis strategy.

We would like to extend our current work to devise strategies for helping

domain experts reuse existing top ontologies or ontology design patterns when
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defining their ontologies. One of the problems in this case in that top ontologies

often use very abstract and unintuitive terminology (e.g. endurant, perdurant). A

framework for adapting to the level of abstraction of the domain expert is required,

such a framework could use ontology reasoning to try to reformulate assertions

and questions while avoiding overly abstract or overly concrete terminology.
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Appendix A

Relevant Links

This appendix provides a list of supporting information related to this PhD.

Rabbit

� The BNF for Rabbit can be found at https://sourceforge.net/apps/

mediawiki/confluence/index.php?title=Rabbit_BNF

� The Java library defining the Rabbit API is http://confluence.svn.sourceforge.

net/viewvc/confluence/confluence/trunk/rabbitParser

� The Java implementation of the Rabbit parser based on Gate can be viewed

at http://confluence.svn.sourceforge.net/viewvc/confluence/confluence/

trunk/gateRabbitParser

� The JAPE rules for Rabbit can be viewed at http://confluence.svn.

sourceforge.net/viewvc/confluence/confluence/trunk/gateRabbitParser/

src/main/gateapp/jape/

� The Java implementation of the Rabbit to OWL conversion can be found in

http://confluence.svn.sourceforge.net/viewvc/confluence/confluence/

trunk/owlapiConverter
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ROO

� The source code repositofy for ROO can be viewed at http://confluence.

svn.sourceforge.net/viewvc/confluence/confluence. It contains mod-

ules for the main interface, the guidedog, protege 4 extensions and rabbit-gui

components.

� The Drools rules for the guide dog can be viewed at http://confluence.

svn.sourceforge.net/viewvc/confluence/confluence/trunk/guidedog/

src/main/rules/uk/co/ordnancesurvey/kanga/guidedog/NextTaskCalculator.

drl?revision=1571&view=markup

� The evaluation materials are avaliable from http://www.comp.leeds.ac.

uk/confluence/study.html

Entendre

� The source code for Entendre can be found at http://entendre.git.

sourceforge.net/git/gitweb-index.cgi

� The evaluation materials are avaliable from http://www.comp.leeds.ac.

uk/confluence/Entendre-Study/

Perico

� Source code can be viewed at http://perico.git.sourceforge.net/git/

gitweb-index.cgi
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