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Abstract 

This thesis concerns the synthesis of group 9 Cp* and hydroxyl tethered Cp* based 

complexes for their use as both anti-cancer agents and transfer hydrogenation 

catalysts. The successful catalysts were immobilised covalently onto Wang resin for 

their use as recyclable transfer hydrogenation catalysts in the reduction of 

benzaldehyde and acetophenone. 

 

Chapter 1 is a current review of transfer hydrogenation using metal-arene complexes 

and immobilised catalysts. 

 

Chapter 2 describes the synthesis and characterisation of group 9 hydroxyl tethered 

Cp* based dihalide dimers.  

 

Chapter 3 describes the synthesis and characterisation of group 9 Cp* and hydroxyl 

tethered Cp* based pyridine dihalide complexes. 

 

Chapter 4 describes the syntheseis and characterisation of group 9 Cp* and hydroxyl 

tethered Cp* based picolinamide halide complexes. 

 

Chapter 5 describes the synthesis and characterisation of iridium Cp* chloride 

bidentate complexes, where the bidentate ligand is either an XL or 2L ligand. 

 

Chapter 6 describes the catalytic testing of compounds discussed in Chapters 2-5 for 

the reduction of benzaldehyde and acetophenone. 

 

Chapter 7 describes the synthesis and characterisation and catalytic activity of 

immobilised group 9 hydroxyl tethered Cp* based dichloride dimers.  

 

Chapter 8 describes in vitro IC50 results for select compounds described in Chapters 

2-5 against a range of cancer cell lines. 

 

Chapter 9 gives experimental details for processes discussed in Chapters 2-8 and 

characterisation data for the novel compounds discussed in Chapters 2-5.  
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1.1 Introduction 

This Chapter is a review of prior and current research in the field of transfer 

hydrogenation and immobilised catalysis. The transfer hydrogenation section will 

focus on Group 9 Cp* and ruthenium-arene complexes. The immobilisation section 

will focus on methods of immobilisation and current catalysts, paying particular 

attention to those used for transfer hydrogenation reactions. 

1.2 Transfer Hydrogenation 

Transfer hydrogenation is either the addition of H2 to a substrate using a hydrogen 

donor molecule, or the removal of H2 from a substrate using a hydrogen acceptor 

molecule. In the first case the substrate is an unsaturated compound such as an 

aldehyde/ketone, imine or alkene and in the second case, an alcohol or amine. The 

reaction occurs with the use of a metal catalyst which mediates the hydrogen transfer 

step. It is generally accepted that transfer hydrogenation reactions proceed through 

an intermediate metal hydride species (Scheme 1.1). 

 

Scheme 1.1 General mechanism for catalytic transfer hydrogenation 

In hydrogenations the catalyst removes hydrogen from the hydrogen donor, itself 

forming a metal hydride species, and then adds this hydrogen across the substrate’s 

unsaturated bond. In reverse dehydrogenation reactions, the hydrogen donor is the 

substrate and the metal hydride will add hydrogen to a hydrogen acceptor molecule. 

Transfer hydrogenation offers a milder alternative to conventional methods used to 

reduce and oxidise substrates, negating the use of hazardous hydrogen gas coupled 

with milder conditions, safer reagents and no requirement for pressurised vessels. 

Catalytic transfer hydrogenation was first demonstrated using a palladium black 

catalyst to transfer hydrogen from cyclohexene to a variety of organic acceptors.
1
 

The Meerwein-Ponndorf-Verley reaction was discovered in 1925, which is the 
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reduction of ketones using the IPA (iso-propanol) system (discussed in more detail 

below), with aluminium alkoxide catalysts.
2-4

 Transfer hydrogenation using soluble 

transition metal catalysts was first realised by Henbest et al.
5
 who used iridium 

phosphite complexes to reduce cyclohexanones to their corresponding alcohol. iso-

Propanol was used as the solvent and the hydrogen donor, becoming oxidised to 

acetone in the process. 

Iron complexes are becoming increasingly popular alternatives to ruthenium and 

group 9 catalysts, however they will not be discussed in this review.
6,7

 Although this 

review will focus on ketone reductions and alcohol oxidations, examples of other 

transfer hydrogenation transformations will be discussed, as well as relevant 

hydrogenation/dehydrogenation reactions, whereby H2 is used as the hydrogen 

donor/is released respectively. 

1.2.1.1 The IPA System 

iso-Propanol is commonly used as a hydrogen donor for reduction systems, 

whereby it becomes oxidised to acetone (Scheme 1.2).  

 

Scheme 1.2 Reduction using the IPA system 

As iso-propanol is cheap, readily available and fairly safe, it is a desirable reagent. 

Due to the reversible nature of the system, iso-propanol is used in a large excess and 

hence becomes the solvent. Although the reaction is initially controlled by kinetics, 

as it is reversible, over time it comes under thermodynamic control. For this reason, 

yields are not always quantitative and enantiomeric excess (ee) values can be low, 

depending on the redox potentials of the alcohols/ketones. The IPA system is 

suitable for aldehyde/ketone and iminium salt reductions but not imine reductions. 

The reverse oxidation system is often performed in acetone, which behaves as the 

hydrogen acceptor and becomes reduced to iso-propanol. Primary alcohols can be 

used in place of iso-propanol, however the aldehyde by-product can interfere in the 

reaction.
8
 iso-Butanol is less active than iso-propanol, and other alcohol containing 

compounds such as glucose and ascorbic acid also work but have to be used in a 

lower concentration. A base is often required to activate the pre-catalyst. 
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1.2.1.2 The TEAF system 

The combination of formic acid and triethylamine is called TEAF.
9
 Formate 

behaves as the hydrogen donor in this case, itself forming carbon dioxide.  

 

Scheme 1.3 Reduction using the IPA system 

The azeotropic molar mixture of 5:2 of formic acid:triethylamine is often used.
10-

13
 This system is irreversible due to the release of carbon dioxide so the reaction is 

under kinetic control, overcoming the problems associated with the IPA system and 

therefore allowing quantitative yields and high ee values. The TEAF system is used 

to reduce imines along with aldehydes/ketones and iminium salts. Although this 

system can be very effective, it is not always compatible with the catalyst due to the 

acidic conditions. In aqueous systems, sodium formate is often used in preference to 

the TEAF system. 

1.2.1.3 Hydrogen Borrowing 

Hydrogen borrowing uses the same principles as the above mentioned transfer 

hydrogenation systems except that the hydrogen donor and acceptor are incorporated 

into the product, for example in N-alkylations (discussed in section 1.2.7) whereby 

the alcohol is initially oxidised, the resulting aldehyde is a reagent for imine 

formation, then the hydrogen originally removed from the alcohol is used to reduce 

the imine to the resulting amine. As the catalyst removes hydrogen from the alcohol, 

then adds it across the imine bond it is said to have “borrowed” it. A base is 

sometimes required to activate the catalyst, however, due to this mechanism there is 

no requirement for external hydrogen donors or acceptors, making the process atom 

efficient. Borrowing hydrogen methods are also used in C-C bond forming reactions 

(section 1.2.9). 

1.2.2 Aldehyde/Ketone Reduction 

1.2.2.1 The Noyori Catalyst and Its Mechanism 

In 2001, Noyori won the Nobel Prize for his work on asymmetric transfer 

hydrogenation of pro-chiral ketones using ruthenium-arene complexes with chiral 
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diphenylethylamine (DPEN) and amino-alcohol, shown in Figure 1.1.
14-16

 

 

Figure 1.1 Noyori catalysts 

Ru-1 type complexes were initially tested as catalysts for ketone transfer 

hydrogenations using the IPA system (described in section 1.2.1.1) and the 

conditions shown in Scheme 1.4.
15

 The reaction was also performed in the absence 

of any ligand using ([Ru(mesitylene)Cl2]2), resulting in an 8% conversion of 

acetophenone to (S)-1-phenylethanol after 15 hours. 

 

Scheme 1.4 Reduction of acetophenones using a Ru-1 type Noyori catalyst with the 

IPA system 

0.5 mol% of the ruthenium TsDPEN catalyst converted 95% of acetophenone to (S)-

1-phenylethanol with 97% ee in 15 hours. When R = 3-Cl or 4-Cl, the acetophenone 

could also be reduced selectively with a high conversion in a time of  2.5-19 hours, 

whereas for electron donating groups such as methyl or methoxy groups the 

selectivities and sometimes conversions were significantly reduced, due to the 

inherent problems of the IPA system discussed in section 1.2.1.1. 

The same catalyst was later used for the same reaction using the TEAF system 

(described in section 1.2.1.2) with the conditions shown in Scheme 1.5.
14

 

 

Scheme 1.5 Reduction of acetophenones using a Ru-1 type Noyori catalyst with the 

TEAF system 

0.5 mol% of the ruthenium TsDPEN catalyst converted >99% of acetophenone to 

(S)-1-phenylethanol with 98% ee in 20 hours. Unlike with the IPA system, the TEAF 
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system also converted all of the functionalised acetophenones tested, including those 

with electron donating groups, with at least 96% conversion and at least 95% ee. 

Since this initial reaction, Xiao has shown that the ideal formic acid:triethylamine 

ratio for this reaction is 0.2:1, conversely to the azeotropic mixture of 5:2.
17

 

A second generation of catalysts were synthesised by Noyori with the general 

structure of Ru-2 shown in Figure 1.1.
16

 The replacement of diamine with amino-

alcohol ligands increased the catalytic activity for the reduction of acetophenone 

using the IPA system to the extent that the reaction was complete within 1 hour 

compared to the previous 15 hours, however with a slightly lower yield and ee of 94 

and 92% respectively (reaction shown in Scheme 1.6). A similar trend is seen with 

the substituted acetophenones. These catalysts are incompatible with the TEAF 

system, presumably because the acidic nature of the TEAF system protonates the 

alcohol resulting in de-coordination of the ligand.
8
 Although the hexamethylbenzene 

and the amino-alcohol ligand shown in Scheme 1.6 gave the best combination for 

the highest yield and enantioselectivity, increased steric bulk on the η
6
-arene ring 

tends to decrease the conversion, and high enantioselectivity is only obtained when 

an appropriate arene and amino-alcohol ligand are combined. 

 

Scheme 1.6 Reduction of acetophenones using a Ru-1 type Noyori catalyst with the 

TEAF system 

Scheme 1.7 shows the proposed mechanism for a ketone reduction based on 

computational analysis and experimental evidence.
18-21

 Reacting the 18 electron pre-

catalyst A with an equivalent of base leads to the formation of the active 16 electron 

catalyst, B. Addition of iso-propanol to B forms an 18 electron hydride complex C, 

whereby cf. to the starting complex A, a hydride has replaced a chloride. The 

presence of the NH moiety on the bidentate ligand was found to be a crucial factor 

as, when replacing the H with a Me group, the activity was lost. Interestingly, this 

mechanism occurs via the second coordination sphere, where the substrate does not 

directly bind to the ruthenium centre, but instead interacts with the δ
+
 amine H and 

the δ
-
 hydride. Mass spec evidence using similar catalysts reported by Wills supports 
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the mechanism.
22

 

 

Scheme 1.7 The Noyori mechanism for ketone/aldehyde reduction 

Deuterated benzylalcohols can also be prepared selectivity using Noyori catalysts 

to reduce the corresponding benzaldehyde, with the conditions shown in Scheme 

1.8.
23

 The reaction time varied depending on X, from 0.5 to 14 hours, with a 

conversion of 90-100% and ee values of 97-99%. The deuterated alcohols were 

prepared by either reducing the deuterated benzaldehyde using the IPA system 

(described in section 1.2.1.1), or the protic benzaldehyde using the TEAF system 

(described in section 1.2.1.2) containing deuterated formic acid. The advantage with 

the TEAF system is that only a stoichiometric amount of deuterated formate is 

required, whereas in the IPA system a large excess of deuterated iso-propanol is 

essential. 

 

Scheme 1.8 Reduction of benzaldehydes to their deuterated benzylalcohol using a 

Ru-1 type Noyori catalyst 

Noyori’s work revolutionised the field of transfer hydrogenation leading to many 

research groups attempting to optimise the catalytic system, through catalyst design, 

reaction conditions and reaction scope. 
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1.2.2.2 Adaptations of Noyori Catalysts 

In 1996 Knochel reported the use of simple amino(sulfonamido)cyclohexanes 

(TsCYDN) as alternatives to the diphenylethylamine (DPEN) ligands featured in the 

Noyori type Ru-1 catalysts (shown in Figure 1.1)
24

 

 

Scheme 1.9 Reduction of acetophenone using [RuCl2(p-cymene)]2 and 

amino(sulfonamido)cyclohexanes (CYDN) 

These types of ligand form active catalysts with ruthenium, with 1 mol% of the 

catalyst reducing acetophenone with 96-97% conversion and 89-92% ee after 22 

hours using the IPA system (described in section 1.2.1.1), or >99% conversion and 

89-96% ee using the TEAF system at 30 °C. This system is less efficient than the 

Noyori systems however, as twice as much catalyst is used and the catalyst is less 

selective. 

Knochel also prepared substituted ferrocenes, with either alcohol, amino or amino 

and phosphine groups on the Cp ring, as ligands for this reaction.
24-26

 Although the 

amino-phosphine and diols were inactive or showed trace activity, the amino 

functionalised ferrocenes were active ligands for acetophenone reductions, with the 

conditions shown in Scheme 1.10. The most active catalyst is when the ferrocene 

ligand has R = Ph and R
2
 = Me, with 1 mol% of the catalyst reducing 92% of 

acetophenone with an ee of 71% after 3 hours. Although, this is less selective than 

the Noyori system, the reaction time is shorter and at room temperature the % ee 

remains constant throughout the reaction. 

 

Scheme 1.10 Reduction of acetophenone using [RuCl2(p-cymene)]2 and amino 

substituted ferrocene ligands 

Exchanging iron in the ligand to ruthenium did not affect the catalytic activity, 

and replacing R
2
 from a methyl to bulkier groups decreased or inhibited the activity. 

The TEAF system was incompatible with these ligands except when R
2
 is a tosyl 

group. However, this was still inferior to the Noyori system with a conversion and ee 
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value of 42% and 83% respectively. Knochel also showed that lowering the 

temperature from ambient to -30 °C had a positive effect on the selectivity, however 

much longer reaction times were required. 

 After the first reported example
27,28

 both Ikarya and Blacker separately 

researched the group 9 Cp* analogues to the ruthenium Noyori catalysts, named 

CATHy catalysts.
29,30

 They were prepared the same way, by reacting the [MCp*Cl2]2 

dimer with the ligand and base. Ikariya prepared the RhCp*(TsDPEN) complex, 

along with the RhCp*(TsCYDN) and IrCp*(TsCYDN) complexes (Figure 1.2) and 

compared these to the original Ru-1 type catalyst (Figure 1.1) Ru-arene(TsDPEN). 

 

Figure 1.2 MCp* equivalents of the Noyori catalysts, named CATHy catalysts 

 The RhCp*(TsCYDN) complex showed higher activity than its iridium analogue 

after 12 hours with a conversion and enantioselectivity of 85% and 97% compared to 

36% and 96% respectively. The RhCp*(TsDPEN) catalyst, however, only gave a 

conversion of 14% with 90% ee after 12 hours compared to 92% and 94% 

respectively for the ruthenium analogue. The Cp analogues have shown to be less 

soluble and oxidatively stable than the Cp* catalysts.
8
 Bulkier Cp derivatives have 

also been prepared but offer lower optical inductions or reactivity. In attempting to 

optimise the catalyst, Blacker has shown that when enlarging the ring between the 

chelating ligand and the metal from a 5 membered ring, the metal-ligand association 

is weaker and the ee value decreases.
8
 

1.2.2.3 Scale Up of Asymmetric Transfer Hydrogenation of Ketones 

Although the Noyori and CATHy systems are suitable and effective for laboratory 

scale, they required process research and development before scaling up to 

manufacture.
8
 The catalytic loading must be smaller than 0.1 mol% for the catalyst 

contribution cost to be small. In the IPA system (described in section 1.2.1.1), 

laboratory scale reductions require a dilute solution in order to avoid the back 

reaction and a loss of enantiomeric excess, however this is not economically feasible 

at industrial scale. Continuous removal of acetone eliminates the back reaction 

which, fortunately due to the relative boiling points of iso-propanol and acetone, can 
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be achieved through distillation of the acetone.  

In the TEAF system (described in section 1.2.1.2), the decomposition of formic 

acid to hydrogen and carbon dioxide, or worse carbon monoxide and water, is 

problematic. This problem seems to be addressed by bubbling through 1% (v/v) 

oxygen in nitrogen, helping to remove the gases, with the oxygen being shown to 

increase the catalyst’s lifetime. Matching the substrate addition to its reduction rate 

avoids hydrogen formation. An alternative is to feed the hydrogen donor to the 

substrate and catalyst in a solvent, which minimises unwanted side reactions but 

makes the pH harder to control. The pH must be above 3.5 in aqueous systems, since 

formate is the hydrogen donor. By using aqueous biphasic conditions, the pH can be 

controlled leading to a robust system. Water has the added bonus of being a high-

boiling solvent, minimising losses to the atmosphere, as well as absorbing carbon 

dioxide as bicarbonate so avoiding the need for gas sparging. Using a solvent is also 

desirable due to the high viscosity of neat TEAF. 

Iridium and rhodium Cp* complexes with the 1,2-aminoindanol ligand were twice 

as active as the ruthenium para-cymene analogues. However, they were less 

enantioselective and less stable. For example the RhCp*(TsDPEN) catalyst loses 

activity at temperatures above 40 °C. As there is no apparent relationship between 

electron withdrawing or electron donating aryl sulfonamide ligands (DPEN ligands) 

screening has provided the most convenient way to determine the optimal catalyst 

for a particular substrate, in terms of the metal and ligand, usually by a robot. The 

DPEN ligands tend to make the most selective catalysts along with being relatively 

inexpensive and easy to make on a large scale. 

CATHy catalysts have been successfully applied to the large scale syntheses of 

(R)-N-methyl-α-methyl-3’,5’-bis(trifluoromethyl)benzylamines, (R)-styrene oxide, 

diltiazem, duloxetine, (S)-2-(3-nitrophenyl)ethylamine hydrochloride, (R)-1-tetralol 

and (S)-4-fluorophenylethanol.
31

 

1.2.2.4 Further Mechanistic Studies 

The catalytic intermediate 16 electron and IrCp*(TsCYDN) hydride species, 

analogous to the ruthenium intermediates in Scheme 1.7, were isolated and 

characterised by NMR analysis.
32

 NMR and CHN analysis for the IrCp*(TsDPEN) 

intermediates was reported in 1998 along with limited NMR analysis of the rhodium 

analogue.
28

 Some 16 electron intermediates were also isolated by Perutz, however 
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more interestingly, he demonstrated the coordination of formate to a 

RhCp*(TsCYDN) complex, contrasting to the traditional Noyori mechanism 

(Scheme 1.11).
33

 This coordination is reversible with heat, accompanied by the 

production of carbon dioxide and hydrogen. 

  

Scheme 1.11 Reversible coordination of formate to a RhCp* Noyori-type 

intermediate 

The same group later reacted the RhCp*(TsDPEN) precursor with formic acid, 

which resulted in the complete displacement of the chelating ligand and formation of 

the cationic dimer shown in Scheme 1.12.
34

 

 

Scheme 1.12 Coordination of formate and removal of TsDPEN from a RhCp* 

Noyori-complex 

In an NMR investigation of the reduction of d6-acetone by d15-

triethylamine/formic acid, catalysed by the RhCp*(TsDPEN) complex in a CD3CN 

solvent, the research group confirmed that the rhodium formate dimer was observed. 

Although this dimer by itself was a very poor catalyst (for imine reduction), the 

addition of the TsDPEN ligand reformed the same activity and selectivity of the 

RhCp*(TsDPEN) complex, concluding that although the formate dimer may form, 

the catalytic activity is not necessarily blocked as the presence of free chiral ligand 

may allow recovery of activity.
34

 

1.2.2.5 Reductions in Water 

Industrially, the use of water as a solvent is desirable as it is cheap, safe and 

environmentally benign.
35

 Performing reactions in water may also result in pH-

dependence, allowing for fine-tuning of selectivity and limiting side reactions. To 

circumvent the problem of low solubility of most organic substrates in water, 

surfactants are usually used such as sodium dodecyl sulfate. The catalyst in these 
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systems can often be recycled by separating the product containing organic phase 

from the catalyst containing aqueous phase. 

1.2.2.5.1 Achiral Reduction 

In 1999 Ogo, Watanabe and co-workers  reported a transfer hydrogenation system 

using the water soluble IrCp* catalyst shown in Figure 1.3.
36

 

 

Figure 1.3 The first reported water soluble IrCp* catalyst for carbonyl reductions 

The aqua ligands impart water solubility to the metal complex, along with being 

labile in water which provides vacant sites. They also impart pH dependence, 

whereby at high pH, the aqua ligands are deprotonated to form hydroxo ligands. 

The same research group later improved this design by replacing 2 of the water 

ligands with bipyridine (bpy), shown in Figure 1.4.
37,38

 The complex is pH 

dependant, being significantly more active at low pH values with a peak at pH 2.0. 

At higher pH values (>6.6) the aqua ligand is deprotonated to a hydroxyl ligand, 

which is significantly less labile. 

 

Figure 1.4 Water soluble IrCp* bpy complex 

 

Scheme 1.13 Proposed mechanism for ketone reduction using an IrCp* bpy complex 
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Süss-Fink reported the synthesis and catalytic activity of ruthenium-arene 1,10-

phenanthroline complexes using formic acid as the hydrogen donor.
39

 

 

Figure 1.5 Water soluble Ru-arene 1,10-phelanthroline complex 

A related system was later reported by Fischmeister, Renaud and co-workers 

whereby two pyridine ligands are linked by an amine in the ortho positions, shown 

in Figure 1.6.
40

 

 

Figure 1.6 Water soluble Ru-arene amine linked pyrdine complex 

The water soluble complexes discussed thus far have slow reduction rates, 

possibly because the mechanism must be different to that of Noyori catalysts 

(Scheme 1.7) due to the absence of the NH moiety.  

Xiao has focused a lot of attention on Noyori type catalysis in water.
41

 An achiral 

IrCp* Noyori-type catalyst was active for the reduction of benzaldehyde, shown in 

Scheme 1.14, whereby 1 × 10
-4 

mol% of catalyst converted > 99% of benzaldehyde 

to benzyl alcohol in 0.3 hours and 2 × 10
-5 

mol% of catalyst converted 98% of 

benzaldehyde to benzyl alcohol in one hour.
42

 The reduction rate in water is higher 

than the IPA or TEAF system (described in section 1.2.1.1 and section 1.2.1.2 

respectively). 

 

Scheme 1.14 Reduction of benzaldehyde by a water soluble IrCp* Noyori-type 

catalyst 

Interestingly, water soluble substrates were not reduced using this system implying 

that the catalysis takes place ‘on water’. 



Chapter 1 

14 

1.2.2.5.2 Chiral Acetophenone Reduction 

Williams investigated the asymmetric transfer hydrogenation of ketones with 

water soluble Noyori-type catalysts through modification of the TsDPEN and 

TsCYDN ligands, shown in Figure 1.7.
43,44

 

 

Figure 1.7 Water soluble variations of TsDPEN and TsCYDN ligands 

The catalysts were prepared in situ and the reaction was performed in a mixture of 

iso-propanol and water. The system was highly selective, however slow reduction 

rates were seen, with the most active reduction of acetophenone seen when using 1 

mol% of the catalyst prepared from [RhCp*Cl2]2, ligand A (in Figure 1.7) and 

potassium tert-butoxide, in iso-propanol containing 15% water at 22 °C, whereby 

94% of acetophenone was reduced to (R)-1-phenylethanol with 95% ee after 18 

hours. Using the more reactive 3’-fluoroacetophenone, it was surprisingly found that 

increasing the water content to 51%, and therefore decreasing the concentration of 

the reagent iso-propanol, significantly increased reduction rates using a catalyst 

formed from [IrCp*Cl2]2, ligand B (in Figure 1.7) and base, demonstrated in 

Scheme 1.15. These reductions, however, still required the use of an organic co-

solvent. 

 

Scheme 1.15 Reduction of 3’-fluoroacetophenone using water soluble Noyori 

catalysts in the IPA system containing water 

The first example of asymmetric transfer hydrogenation of ketones in water with 

no organic co-solvents was demonstrated by Chung, using a prolinamide ligand with 

the conditions shown in Scheme 1.16.
45,46
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Scheme 1.16 Reduction of acetophenone in water using a Ru-prolinamide catalyst 

2.5 × 10
-3

 mol% of catalyst converted 98.3% of acetophenone to (R)-1-

phenylethanol with 68.6% ee after 18 hours. Variable conversions and ee values of 

44-99% and 54-94% are seen for substituted acetophenones. 

Building on the earlier example by Williams, a more substituted water soluble 

Noyori-type ligand was reported by Deng, shown in Figure 1.8.
47

  

 

Figure 1.8 A further water soluble variation of TsDPEN 

The best activity and selectivity was seen using 1 mol% of the Ru(p-cymene) 

catalyst compared to IrCp* and RhCp*, whereby after 24 hours >99% of 

acetophenone is converted to (R)-1-phenylethanol with 95% ee (Scheme 1.17). 

Unlike the previous prolinamide complexes, when using the Ru(p-cymene) catalyst 

good conversions and ee values are seen for substituted acetophenone substrates of 

88-100% and 81-95% respectively, apart from 2’-methylacetophenone whereby only 

a 19% conversion is seen after 24 hours, with 80% ee. The catalyst could also be 

recycled once without a loss of enantioselectivity. 

 

Scheme 1.17 Reduction of acetophenone using a water soluble Noyori-type catalyst 

in aqueous conditions 

Until 2004, there were no reported examples of the original Noyori catalysts 

being used in aqueous asymmetric transfer hydrogenation systems. This was 

exploited by Xiao who found that aqueous systems using sodium formate 

significantly accelerated ketone reduction systems with full conversion and 95% ee 

after one hour (Scheme 1.18) compared to the original TEAF system, where full 
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conversion required more than 10 hours but had a higher selectivity with 97% ee.
48

 

The in situ formed Ru-TsDPEN catalyst in these conditions is the same as that in the 

IPA system.
18

 

 

Scheme 1.18 Reduction of acetophenone using a Noyori catalyst in aqueous 

conditions 

Like the Ru(p-cymene)TsDPEN complex, Xiao has also shown that a range of 

Noyori-type catalysts are effective in aqueous systems encompassing ruthenium-

arene, and group 9 Cp* complexes with DPEN, TsCYDN and amino-alcohol 

ligands, with the group 9 complexes being more soluble than the ruthenium ones.
41,49

 

1 mol% of the RhCp*(TsCYDN) catalyst converts >99% of acetophenone to (R)-1-

phenylethanol in 95% ee in only 15 minutes, which is more active than its iridium 

and ruthenium-arene analogues, and substantially quicker than the traditional IPA 

and TEAF systems (systems discussed in sections 1.2.1.1 and 1.2.1.2 respectively 

and rates discussed in section 1.2.2.1).
49

 In 2005 Süss-Fink developed the TsCYDN 

systems by preparing a library of Ru-arene complexes with  trans-1,2-

diaminocyclohexane or N-tosylated diamine ligands, and the arene varying in steric 

bulk.
50

 The research group showed that the N-tosylated complexes were more active 

and selective than their simpler diamine analogues and that hexamethylbenzene gave 

a more active Ru-arene complex than simply benzene, which was justified in terms 

of a CH/ π attraction model with the arene and π system of the substrate described by 

Noyori.
51

 

Switching from the original TEAF system to sodium formate allows the use of 

amino-alcohol ligands, although the corresponding catalysts are less active and 

enantioselective than the diamine analogues. Similarly to previous achiral systems 

(section 1.2.2.5.1), as the complexes are more soluble in the organic substrate than 

water, the catalysis is thought to takes place ‘on water’.  

When using 1 mol% of M-arene(CsDPEN) catalysts in water, the RhCp* catalyst 

outperforms the Ru(p-cymene) and IrCp* analogues in terms of activity and 

selectivity, as shown in Scheme 1.19. When a lower catalytic loading of 0.1 mol% is 

introduced, however, the IrCp* catalyst shows much higher activity, with the 

reaction complete in 2.5 hours compared to 20 for both the RhCp* and Ru(p-
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cymene) analogues, although with a slightly lower enantioselectivity of 98% ee 

compared to 99% for RhCp*. 

 

Scheme 1.19 The CsDPEN ligand shows the best selectivity when combined with 

RhCp*Cl against aqueous ketone reductions 

1.2.2.5.3 Proposed Mechanism of Asymmetric Transfer Hydrogenation of 

Ketones in Water 

The Xiao systems with Noyori catalysts discussed in the previous section show 

pH dependence in the reduction of acetophenone.
52

 The higher the pH (controlled 

using triethylamine and formic acid) the more active the catalyst, with trace activity 

below pH 3, a shallow increase in the turnover frequency (TOF) up to ~pH 4, then a 

sharp increase from <10 mol
-1

 h
-1

 to >100 mol
-1

 h
-1

 at pH 5, followed by a more 

shallow increase to ~pH 7 where the TOF is over 140 mol
-1

 h
-1

. This is partially 

attributed to the requirement for HCOO
-
 as the hydrogen donor, but more 

importantly and along with other evidence such as an increase in enantioselectivity 

with increasing pH, Xiao proposes that there are two competing pathways which are 

pH dependant. At neutral pH the cycle follows the conventional Noyori mechanism, 

whereas at low pH it is proposed that the diamine is protonated (presumably the 

secondary amine) and dissociates from the metal to allow coordination of a labile, 

possibly water, ligand. 

An extensive mechanistic study was later published by Xiao, in which the NMR, 

X-ray crystallography, DFT, and kinetic isotope data all lead to the mechanism 

shown in Scheme 1.20.
53
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Scheme 1.20 Proposed mechanism for asymmetric transfer hydrogenation of ketones in aqueous systems for both high and low pH values
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In the case of Ru-arene(TsCYDN) complexes, Süss-Fink proposes that chloro 

ligands may hydrolyse to aqua ligands as the activity of chloro and aqua ligated Ru-

arene diamine compounds are comparable under the conditions used (sodium 

formate, 60 °C, pH 9).
50

 In this system the activity was also pH dependent, however 

enantioselectivity was not, suggesting that the mechanism varies to that in Scheme 

1.20. In a more extensive study, the same research group showed that using rigid 

cyclohexane-bearing diamines as ligands resulted in higher enantioselectivity than 

more flexible pyrollidine-bearing ligands, however the TOF remained the same. All 

of the systems were pH dependent in terms of TOF with the optimal conversions at 

pH 9. The enantioselectivity however, was independent of the pH suggesting one 

reaction mechanism across the pH range. 

One of Wills’ tethered catalysts (discussed in more detail in the next section) 

could also be used in aqueous systems achieving very high ee values of 99.5% with 

the catalyst loadings in line with Xiao’s systems.
54

 

1.2.2.6 Tethered Catalysts 

Noyori-type complexes have been prepared whereby the amino-alcohol/TsDPEN-

type ligand is tethered to the arene/Cp* ligand.
54-67

 The most promising examples of 

these types of catalysts have been reported by Wills, where the most active catalyst, 

shown in Figure 1.9, is a ruthenium-arene tethered TsDPEN complex. 

 

Figure 1.9 Tethered Noyori-type catalyst 

Using the TEAF system (described in section 1.2.1.2), with the conditions shown 

in Scheme 1.21, the reduction of acetophenone was complete using 0.5 mol% of the 

tethered ruthenium catalyst in 3 hours with 96% ee, whereas the untethered system 

requires an overnight reaction.  

 

Scheme 1.21 Reduction of acetophenone using a tethered Noyori-type catalyst 

Increasing the reaction temperature to 40 °C decreased the reaction time further to 

ca. 100 minutes. It is thought that the tether stabilises the catalyst and its 
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conformation. 

Wills later showed that increasing the tether to a 4 carbon linker further increased 

the activity, whereby the reduction of 4’-methylacetophenone using the TEAF 

system at 40 °C was complete in 1.25 hours, compared to 4 or 5 hours with similar 3 

carbon linker complexes.
62

 Ikariya has developed this system further, by introducing 

an ether group into the tether (as shown in Figure 1.9) which was later reported 

using a different method by Wills.
56,67

 Ether linkages to the backbone of the DPEN 

ligands had previously been prepared showing moderate selectivity.
64

 

 

Figure 1.10 Oxo-tethered Noyori-type catalyst 

At an extremely low catalytic loading of 2.5 × 10
-3

 mol%, 75% conversion of 

acetophenone to (R)-1-phenylethanol with 97% ee was seen after 72 hours in the 

TEAF system (described in section 1.2.1.2), compared to 15% conversion and 96% 

ee to (S)-1-phenylethanol using the analogous all carbon tether (with opposite 

chirality of the DPEN ligand). 

1.2.2.7 Summary of Acetophenone Reduction Systems 

A selection of Noyori/CATHy-type catalysts discussed previously have been 

compared in terms of their activity for the reduction of acetophenone, with the data 

summarised in Table 1.1 and Table 1.2 for the IPA (described in section 1.2.1.1) 

and the TEAF (described in section 1.2.1.2) system respectively.
68

 The catalysts 

chosen all show high activity and selectivity towards the reaction and their structures 

are shown in Figure 1.11. 
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Figure 1.11 Summary of active Noyori/CATHy-type catalysts for the reduction of 

acetophenone 
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Catalyst 
Amount of 

catalyst/mol% 
Time/hours Yield/% % ee 

A
14

 0.5 20 >99 98 

B
69

 

sodium formate/water system with no triethylamine. 

Cetyltrimethylammonium bromide was used as a 

phase transfer catalyst 

1.0-0.0007 4-70 >99-93 95 

D
70

 

sodium formate/water system with no triethylamine 

1.0/0.1 2/20 99/95 97/96 

E
70

 

sodium formate/water system with no triethylamine 

1.0/0.1 0.7/20 99/89 99 

F
70

 

sodium formate/water system with no triethylamine 

1.0/0.1 0.7/2.5 98/97 97/98 

L
57

 0.5 10 100 98 

J
59

 0.5/0.1 2/79 100/98 96 

K
58

 0.5/0.1 1/7 96/83 66/67 

N
47

 

 sodium formate/water system with no triethylamine. 

Dodecyl sulfate was used as a phase transfer catalyst 

1 24 >99 95 

O
49

 

sodium formate/water system with no triethylamine. 

1.0 2 99 85 

P
49

 

sodium formate/water system with no triethylamine. 

1.0 0.25 >99 95 

Q
49

 

sodium formate/water system with no triethylamine. 

1.0 1 99 93 

R
56

 0.1/0.0025 3/72 >99/75 97 

S
46

 

sodium formate/water system with no triethylamine. 

Dodecyl sulfate was used as a phase transfer catalyst 

0.0025 18 98 69 

T
47

 

sodium formate/water system with no triethylamine. 

Dodecyl sulfate was used as a phase transfer catalyst 

1/0.5 24/48 >99/95 95/93 

Table 1.1 Summary of acetophenone reductions using the TEAF/sodium formate 

system 
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Catalyst Amount of catalyst/mol% Time/hours Yield/% % ee 

A
15

 0.5   15 95 97 

C
27

 1.0 48 80 90 

G
16

 0.5 1 94 92 

H
71

 0.5   0.7 97 94 

I
72

 1.0 1.5 70 91 

M
43

 1.0 48 96 94 

P
30

 0.5 12 85 97 

Q
30

 0.5 12 36 96 

Table 1.2 Summary of acetophenone reductions using the IPA system 

1.2.2.8 Reduction of Ketones with Additional Functionality 

 

Scheme 1.22 Summary of various alcohols prepared through the reduction of 

ketones using Noyori catalysts 

The range of ketones that can be reduced with Noyori-systems include diaryl, 

dialkyl, aralkyl, α,β-unsaturated, cyclic, heterocyclic and acyclic ketones, as well as 

ketones bearing halide, alcohol, ether, thioether, alkene, amine, acid, ester, nitrile, 

sulfido, sulfone, nitro, and azide substituents, furan, thiophene and quinoline rings.
31

 

A summary of various chiral alcohols with additional functionality that have been 

prepared using the reduction of the corresponding ketones with Noyori catalysts is 
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shown in Scheme 1.22.
73

 Functional groups at the α or β position to the carbonyl do 

not interact with the metal centre due to the coordinatively saturated nature of the 

amine hydrido metal complexes.  

Wills demonstrated the use of the Noyori TsDPEN ligated ruthenium catalyst as 

well as a similar amino-alcohol derivative to be effective for the enantioselective 

reduction of tert-butyloxycarbonyl (t-Boc) protected α-aminoketones, providing a 

pathway for the synthesis of asymmetric β-amino-alcohols and aziridines, 

demonstrated in Figure 1.12.
74

 

 

Figure 1.12 Reduction of tBoc-protected α-aminoketones in the synthesis of 

asymmetric β -amino-alcohols and aziridines 

The same research group demonstrated the use of both the Ru para-cymene and 

the analogous rhodium Cp* TsDPEN complexes shown in Figure 1.13 for the 

transfer hydrogenation of α,β-unsaturated, α-tosyloxy and α-substituted ketones, with 

some examples discussed below.
75

  

 

Figure 1.13 a) Ru-p-cymene(TsDPEN), b) Ru-p-cymene(amino-alcohol) and c) 

RhCp*(TsDPEN) catalysts used for the reduction of α,β-unsaturated, α-

tosyloxy and α-substituted ketones 

Cyclic enones were oxidised to give moderate conversions to the resulting allylic 

alcohols of 62-80%, depending on the catalyst used (either a or b in Figure 1.13) and 

good to excellent ee values of 72 to >99% (reaction shown in Scheme 1.23). No 1,4-

reduction product (saturated ketone) was observed when R = Ph or OCH2Ph, 

however 20% of the 1,4-reduction by-product was observed when R = NHCO2. 
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When R is a tert-butyl group the catalyst is inactive presumably due to sterics. 

 

Scheme 1.23 Reduction of cyclic enones 

Catalysts a and c had opposite selectivities for the reduction of 3-(acetylamino)-

but-3-en-2-one, whereas catalyst b was inactive (Scheme 1.24). In both cases, the 

allylic alcohol was not observed. 

 

Scheme 1.24 Reduction of 3-(acetylamino)-but-3-en-2-one 

1.2.2.9 Hydrogenation Catalysts 

Tethered versions of Noyori-type catalysts have been prepared for use as 

hydrogenation catalysts.
76-78

 Ikariya developed ruthenium-arene and group 9 Cp* 

DPEN complexes whereby the arene/Cp* had a triflylamide tether, with the general 

structures shown in Figure 1.14.
77,78

. 

 

Figure 1.14 Triflylamide tethered Noyori-type catalysts 

Although these catalysts were either inactive or showed trace activity for transfer 

hydrogenation reduction systems, they were highly active hydrogenation catalysts 

(Scheme 1.25), with the most active catalyst being where n = 4 with a yield of 

between 94-100% depending on the metal and 93% ee.  

 

Scheme 1.25 Reduction of acetophenone using triflylamide tethered Noyori-type 

catalysts 

With the smaller chain, where n = 3 the catalytic activity and selectivity 

decreased, most severely with the ruthenium catalyst, where the yield and ee value 
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were 20% and 2% respectively. The group 9 catalysts were still moderately active 

and selective with the shorter chain, where the iridium analogue gave a 53% yield 

and 86% ee and the rhodium analogue gave a 58% yield with 29% ee. The shortest 

chain, where n = 2, showed trace activity in the case of ruthenium with <1% yield. 

The rhodium analogue gave a modest 40% yield and 20% ee, and although the 

iridium analogue showed similar activity with a 37% yield, it was still highly 

selective giving 94% ee. 

1.2.3 Alcohol Oxidations 

The reversibility problem with the IPA system can be used advantageously to 

resolve a racemic mixture of alcohols, through oxidation of the unwanted alcohol.
79

 

Using substituted 1-phenylethanols, which were difficult to prepare selectively using 

the IPA system (see section 1.2.2.1), the (R)-enantiomers could be selectively 

resolved from the racemic mixture, with the base-activated Ru-1 type Noyori catalyst 

in acetone. Acetone acts as the hydrogen acceptor, becoming reduced to iso-

propanol. 0.2-0.5 mol% of the catalyst resolved the substituted acetophenones in 4.5-

40 hours with yields of 43-51% and ee values of 92-99%. 

 

Scheme 1.26 Kinetic resolutions of racemic 1-phenylethanols using a base activated 

Ru-1 type Noyori catalyst in acetone 

Unlike carbonyl reductions, alcohol oxidations result in achiral products, 

eliminating the need for chiral catalysts. Fujita reported the use of [IrCp*Cl2]2 as a 

catalyst at ambient temperature in the oxidation of both primary and secondary 

alcohols to their respective aldehyde/ketone cleanly.
80

 The reaction was performed in 

acetone, whereby acetone also behaves as a hydrogen acceptor, becoming reduced to 

iso-propanol. This is the reverse of aldehyde/ketone oxidations in iso-propanol. 

Fujita found that addition of K2CO3 and a large excess of acetone improved the 

catalytic activity. The system was most effective for aromatic alcohols, especially 

with electron-donating groups at the para-position, e.g. 4’-methoxybenzyl alcohol 

where 99% conversion is seen after 6 hours using 0.5 mol% Ir, however moderate 
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catalytic activity is also observed for non-aromatic alcohols, e.g. octan-1-ol with 

reflux temperature. It is presumed that the reaction occurs through binding of the 

substrate to the iridium centre (shown in Scheme 1.27), unlike the Noyori-

mechanism which occurs in the second coordination sphere. 

 

Scheme 1.27 Proposed mechanism for the oxidation of alcohols using [IrCp*Cl2]2 in 

acetone 

Fujita found that the introduction of an N-heterocyclic carbene (NHC) ligand has 

a significant effect for the Oppenauer-type oxidation of alcohols.
81,82

 The NHC 

ligand behaves as a 2 electron donor breaking up the dimer. Although this resulting 

neutral complex shows negligible activity, addition of silver triflate in acetonitrile to 

form a charged species shown in Figure 1.15, activates the complex. 

 

Figure 1.15 Charged IrCp* NHC catalyst for alcohol oxidation 

The resulting catalyst is initially 18 times more active than [IrCp*Cl2]2 for the 

oxidation of 1-phenylethanol to acetophenone. The catalyst requires a base for 

selective oxidation of alcohols, and oxidation of acid-sensitive alcohols,  for example 

furfuryl alcohol, causes decomposition of starting materials and/or side reactions. 

Fujita later found that the introduction of a functionalised Cp* ligand with a basic 

amino group at the terminus of the tether improved the catalytic activity even further 

without requiring an external base, as well as expanding the scope of the reaction to 

include oxidation of acid-sensitive alcohols which were previously unsuccessful 



Chapter 1 

28 

using the Cp* analogue (complex shown in Figure 1.16).
83

 The charged active 

species was formed in situ with silver triflate. 

 

Figure 1.16 Tethered derivative of IrCp* NHC catalyst 

1.2.3.1 Oxidant-Free Dehydrogenation 

Fujita later developed this transformation to an oxidant-free dehydrogenation 

using the IrCp* 2-hydroxypyridine complex shown in Scheme 1.28, in toluene and 

in the absence of a base.
84

 The mechanism is thought to occur via the 2-

hydroxypyridine ligand switching between binding in a monodentate and a bidentate 

fashion, allowing accommodation and subsequent removal of H2. This is similar to 

the Noyori catalyst discussed in section 1.2.2.1, except that the ligand is switching 

between behaving as an L to an LX ligand, compared with an LX to an X2 ligand. 

0.1 mol% of the iridium catalyst converted 70% of 1-phenylethanol to 

acetophenone under reflux of toluene after 20 hours, compared to 22% for 

[IrCp*Cl2]2 and K2CO3. High conversions were seen for a range of secondary 

alcohols, however primary alcohols were not efficiently oxidised by this system (1 

mol% of catalyst converted 24% of benzyl alcohol to benzaldehyde in 24 hours). The 

proposed catalytic mechanism is shown in Scheme 1.28. 
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Scheme 1.28 Proposed mechanism for the oxidation of alcohols using a IrCp* 2-

hydroxypyridine catalyst in toluene 

Both the presence of dihydrogen with acetophenone (observed in an NMR 

experiment using a sealed NMR tube) and the complex shown in Figure 1.17 having 

comparable activity with the monodentate bound 2-hydroxypyridine complex give 

evidence for the proposed mechanism. 

 

Figure 1.17 Ir Cp* complex with a bidentate bound pyridine ligand 

Fujita later showed that an IrCp* complex containing a similar C,N-chelating 

ligand was an effective catalyst for oxidising both primary and secondary alcohols, 

shown in Scheme 1.29.
85

 Various primary alcohols were converted, using 2 mol% Ir, 

and 5 mol% of sodium methoxide in toluene under reflux/sodium bicarbonate in 

xylene under reflux for 20 hours, into their aldehydes in a 46-100% yield. The 

proposed mechanism is shown in Scheme 1.29, with NMR evidence for the iridium 

hydride species.  
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Scheme 1.29 Proposed mechanism for the oxidation of alcohols using an IrCp* 

complex containing a C,N-chelating ligand 

A similar water soluble complex, shown in Figure 1.18, was used as a catalyst to 

oxidise alcohols in water, making the reaction more sustainable than the previous 

system in toluene.
86

  

 

Figure 1.18 Water soluble dicationic IrCp* complex used to oxidise alcohols in 

water 

Making the system even more sustainable and economical, the catalyst could be 

recycled by adding hexane to the aqueous solution to extract the product, and adding 

more substrate to the aqueous solution containing the catalyst. The yield for the 

oxidation of 4’-methoxyl-1-phenylethanol decreased minimally from 98% in run one 

to 94% after run eight. Also demonstrated, was the reuse of the catalyst for different 

alcohol substrates. 
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1.2.4 Imine Reductions 

There are many examples of imine reductions using transition metal catalysts,
87,88 

and in particular metal arene half sandwich complexes where the metal is iridium, 

rhodium or ruthenium.
89

 A cyclometalated IrCp* catalyst, applicable for imine 

reductions, is discussed in section 1.2.8 for its use in reductive aminations.
90

 

The first example of an imine reduction using a half sandwich complex was 

demonstrated by Noyori, shortly after the same catalysts had been used for ketone 

reduction (section 1.2.2.1). Using the TEAF system (described in section 1.2.1.2), 

Ru-1 type catalysts were tested for imine reduction with the conditions shown in 

Scheme 1.30.
91

 0.01-0.5 mol% of the Ru-1 type catalyst in various solvents 

converted 82-99% of the imine to the corresponding amine with moderate to good ee 

values of 77-96% in 3-36 hours. Experimental evidence showed that the imine is 

over a thousand times more reactive than a similar ketone towards this system. 

 

Scheme 1.30 Reduction of imines using Ru-1 type Noyori catalysts in the TEAF 

system 

More recently, Xiao has demonstrated the use of the RhCp*(TsDPEN) complex 

for quinoline reductions using sodium formate in aqueous solutions, whereby both 

the C=N and C=C bond are reduced.
92

 As with ketone reductions (section 1.2.2.5.2), 

the research group found that the catalytic activity was affected by the pH of the 

system, whereby the optimum was pH 5 for the reduction of 2-methylquinoline. It is 

thought that the imine is reduced in its protonated iminium form, which is consistent 

with these findings as the pKa of the protonated quinoline is 5.4.
31,93-99

 As the pKa of 

formic acid is 3.6, below this pH the concentration of the reductant, formate, 

diminishes. The pH was controlled using a 2 M acetic acid/sodium acetate buffer 

solution. A library of quinolines was then tested using a bulkier DPEN ligand 

(Scheme 1.31). In 6-24 hours the quinolines were reduced to the amines in 80-97% 

conversion with 96-98% ee depending on the R groups. 
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Scheme 1.31 Reduction of imines using Ru-1 type Noyori catalysts in the TEAF 

system 

1.2.5 Amine Oxidations  

1.2.5.1 Oxidant-Free Dehydrogenation 

The Fujita catalyst discussed in section 1.2.3.1 for oxidant-free alcohol 

dehydrogenation has also been used for oxidant-free amine dehydrogenation. The 2-

hydroxypyridine complex and several derivatives have been tested as catalysts for 

amine oxidations and the reverse imine reductions, in a recyclable system, with the 

overall process shown in Scheme 1.32. 
100

 This demonstrated the first homogeneous 

system for catalytic dehydrogenation and hydrogenation of nitrogen heterocycles.  

 

Scheme 1.32 Overall process for the reversible and repetitive catalytic 

dehydrogenation-hydrogenation 

The amine oxidation reaction is performed with 5 mol% Ir in xylene at reflux 

temperature under an argon atmosphere to form the aromatic imine. To reverse the 

reaction, the temperature was reduced to 110 °C and the atmosphere of the closed 

system was replaced with hydrogen. This cycle was repeated 5 times, with a small 

loss of efficiency from 100% to 98% conversion. Under a hydrogen atmosphere, the 

dihydro bridged dimeric species shown in Scheme 1.32 was formed, as determined 
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by NMR studies. [IrCp*Cl2]2 can also be used to hydrogenate quinoline but using 

iso-propanol as the hydrogen donor/solvent and either CF3CO2H or HClO4 as an 

additive.
101

 

Williams, Blacker and Marsden have demonstrated the use of the SCRAM 

catalyst ([IrCp*I2]2) in a one pot synthesis to prepare a benzazole from an aldehyde 

and a hydroxyamino substituted benzene (Scheme 1.33).
102

 Within this 

transformation, an amine oxidation occurs, driven by the aromaticity of the final 

product.  

 

Scheme 1.33 Synthesis of benzazoles using the SCRAM catalyst 

1.2.6 Racemisations 

The conventional method of asymmetric synthesis is diastereomeric 

crystallisation, which only allows an optimum of a 50% yield. For this reason, 

racemisations of optically active centres are attractive transformations as, when 

combined with a chiral catalyst/enzyme, a dynamic kinetic resolution is implemented 

whereby a potential 100% conversion of racemic starting materials to an optically 

pure product can be achieved. Efficient racemisation of optically active alcohols has 

been widely reported,
103-105

 

There have been a few reported examples of catalytic racemisation of amines 

using ruthenium catalysts, however the catalyst turnover is low, and the high 

temperatures required are not compatible with some of the other reagents or 

catalysts.
106-108

 In 2007 Blacker reported the racemisation of amines using [IrCp*I2]2, 

named the SCRAM catalyst, with an example shown in Scheme 1.34.
109

 The 

SCRAM catalyst aids the dehydrogenation of the amine, followed by hydrogenation 

of the resulting imine, losing the initial optical purity. After an hour the % ee was 

less than 5. 

 

Scheme 1.34 Racemisation of optically active amines using the SCRAM catalyst 

The SCRAM catalyst has been combined with a base for methine epimerisation, 

and crystallisation using (R)-mandelic acid in a semi-continuous dynamic kinetic 
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resolution to form optically pure (1S,4S)-sertraline (an anti-depressant) from racemic 

sertralone.
110

 First, the (1S,4S) isomer is selectively crystallised from racemic 

sertraline, the remaining 3 isomers are racemised using base then the SCRAM 

catalyst and the process is repeated. 

 

Scheme 1.35 Resolution of racemic tertralone using the SCRAM catalyst 

1.2.7 N-Alkylations  

1.2.7.1 N-Alkylations of Amines With Alcohols 

Conventional syntheses of amines include N-alkylations with alkyl halides,
111-113

 

and reductive amination with carbonyl compounds.
111,114-116

 These traditional 

methods are undesirable from an environmental standpoint, due to the use of alkyl 

halides/strong reducing agents as well as the generation of equimolar amounts of 

wasteful salts as co-products.  

 

Scheme 1.36 Stepwise N alkylation reaction using a) primary amines and b) 

secondary amines  

N-alkylation reactions comprise of two transfer hydrogenation reactions to form 

either a secondary or tertiary amine from their constituent alcohols and primary or 

secondary amine starting materials respectively, eliminating the need for external 

hydrogen acceptors/donors. The alcohol is a hydrogen donor, becoming oxidised to 

the corresponding aldehyde/ketone, which reacts with the amine in a reductive 

amination reaction to form an imine. The catalyst adds hydrogen across the imine, 
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which is the hydrogen acceptor, to form the resulting amine. The reaction is both 

atom economical and does not generate harmful by-products whereby, excluding the 

solvent and base, the only by-product is water. The reaction also employs readily 

available alcohols, compared to the corresponding halides or carbonyl compounds. 

The stepwise reaction is shown in Scheme 1.36. 

Fujita demonstrated the first use of [IrCp*Cl2]2 as a catalyst for N-alkylation of 

both primary and secondary amines with primary alcohols, and more importantly 

secondary alcohols which were incompatible with similar systems.
117,118

 Secondary 

amines were formed in high yields, between 71-98%, from equal amounts of their 

respective primary amines and primary/secondary alcohols, using 1-3 mol% Ir at 

110-130 °C in toluene in the presence of NaHCO3 or K2CO3, with the absence of any 

dialkylated products. Tertiary amines could also be prepared, however due to 

increased sterics around the starting secondary amine more forcing conditions were 

sometimes required, e.g. higher catalytic loading/temperatures or a lower yield was 

observed. Using tertiary alcohols as starting materials resulted in no reaction.  

Ammonium salts can also be used as a substrate for N-alkylation reactions 

catalysed by [IrCp*Cl2]2, whereby ammonium acetate was the most effective 

substrate for the trialkylation reactions.
119,120

 Interestingly, when ammonium 

tetrafluoroborate was used as the nitrogen source, high selectivity for the dialkylated 

product was observed, and complete selectivity when a secondary alcohol substrate 

was used.  

Similarly to the alcohol oxidation reaction discussed in section 1.2.3, Fujita has 

demonstrated an N-alkylation reaction in water by using a dicationic Ir Cp* ammine 

species (shown in Figure 1.19) used to catalyse the alkylation of aqueous ammonia 

with alcohols.
121

 

 

Figure 1.19 Dicationic Ir Cp* ammine complex used as a catalyst for the alkylation 

of aqueous ammonia 

The tertiary amine, tribenzylamine, can be quantitatively formed using 1 mol% Ir 

at 140 °C for 24 hours. Using less catalyst, shorter reaction times or lower 

temperatures resulted in a minor dibenzylamine by-product. Presumably due to steric 

hindrance, when a secondary alcohol is used as a substrate, only the secondary amine 
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is formed. The catalyst was recycled twice with a slight reduction in yield from 100 

to 95%, by firstly extracting the product with an organic solvent then adding more 

substrate to the aqueous solution. 

Williams has demonstrated the use of the SCRAM catalyst ([IrCp*I2]2) without 

the use of base or any other additives for N-alkylation reactions in water.
122,123

 Along 

with the benefits of using water as a solvent (discussed in section 1.2.2.5), the 

absence of base makes the process even more efficient, with the added bonus of the 

only by-product, water, not contaminating the solvent. The general reactions are 

shown in Scheme 1.37, where the yields for the reaction labelled a and b vary 

between 18- 94% and 68-98% respectively. 

 

Scheme 1.37 N-alkylation with alcohols using the SCRAM catalyst in aqueous 

conditions 

Williams has also demonstrated the use of ruthenium-arene diphosphine 

complexes for the N-alkylation of alcohols.
124-127

 

1.2.7.2 Formation of N-Heterocycles 

By starting with substrates bearing multiple hydroxyl groups cyclic amines can be 

formed, for example the synthesis of quinolizidine using the water soluble IrCp* 

complex discussed previously, shown in Scheme 1.38.
121

 

 

Scheme 1.38 Synthesis of quinolizidine using an N-alkylation reaction with NH3 and 

a triol 

Other N-heterocyclic systems have been synthesised through N-alkylation 

reactions by starting with amino-alcohol substrates, shown in Scheme 1.39.
128

 In the 

case of the indoles, instead of the formation of the imine followed by hydrogenation 

to the amine, after oxidation of the alcohol an intramolecular nucleophilic attack of 

the amino group to the resulting aldehyde would occur, followed by a dehydration. 

The same product is formed when starting with the analogous nitro compounds along 
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with a trace amount of the amine compound, implying that the amine is an 

intermediate in the reaction. 

 

Scheme 1.39 Synthesis of N-heterocycles using aminoalcohol substrates 

Saturated cyclic amines can be prepared through N-alkylations of a primary 

amine with a diol using ruthenium-arene phosphine complexes,
126

 as well as 

[IrCp*Cl2]2 (1-5 mol% Ir) and sodium bicarbonate.
129,130

 This can also be achieved 

by using an ammonia salt as the nitrogen source.
120

 

1.2.7.3 Other N-Alkylations  

[IrCp*Cl2]2 has been shown to be active for N-alkylations of carbamates,
131

 

amides,
126,131

 and sulfonamides
126,127,132,133

 with alcohols. Williams has demonstrated 

the formation of an amide from an alcohol via an N-alkylation reaction.
134

 

1.2.8 Reductive Aminations 

Reductive aminations are similar to N-alkylations but an aldehyde/ketone is used 

instead of an alcohol, avoiding the initial alcohol oxidation step. Similarly to N-

alkylations, if the substrate contains both the amine and the carbonyl group, an 

intramolecular reductive amination occurs resulting in the formation of an N-

heterocycle. Unlike N-alkylation reactions an external hydrogen donor is necessary 

to reduce the imine intermediate. 

 

Scheme 1.40 Formation of N-heterocycles via intramolecular reductive aminations 

This has been demonstrated using several substrate examples by Wills, with one 

demonstrated in Scheme 1.40.
135

 

IrCp* picolinamides have also been used for reductive amination reactions, using 
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ammonium formate as the nitrogen source. Using the conditions shown in Scheme 

1.41, 0.2 mol% of the picolinamide complex converted 97% of acetophenone to the 

resulting amine in 5 hours.
136

 

 

Scheme 1.41 Reductive aminations using an IrCp* picolinamide complex 

In 2010, Xiao and co-workers serendipitously discovered that cyclometalated 

IrCp* complexes bearing ketimine ligands are excellent catalysts for both imine 

reductions and reductive aminations.
90

 During the reduction of ketimines, 

IrCp*Cl(TsDPEN) was tested as a catalyst giving only moderate conversions, 

whereas when the catalyst was prepared in situ from [IrCp*Cl2]2 and TsDPEN-H, a 

much higher conversion was seen, though the resulting product was racemic. 

[IrCp*Cl2]2 was also tested without any additive ligands and the conversion was the 

same as that obtained with the in situ generated catalyst. The research group showed 

that the ketimine substrate binds to iridium to form the active catalyst in the form of 

a cyclometalated complex (shown in Figure 1.20). The catalysts along with their 

hydride analogues were characterised by X-ray crystallography.
137

  

 

Figure 1.20 IrCp* complex with a cyclometalated ketimine ligand 

After a similar catalyst was shown to be effective for aliphatic ketimine 

reductions, the complex shown in Figure 1.20 was tested for the reductive amination 

of aromatic ketones with amines, which show low activity when using boron 

hydrides,
138

 as well as aliphatic ketones with amines and ketones with ammonium 

formate, with the conditions shown in Scheme 1.42. 
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Scheme 1.42 Reductive aminations catalysed by a cyclometalated ketimine IrCp* 

catalyst 

1.2.9 C-C Bond Forming Reactions 

Fujita demonstrated the use of [IrCp*Cl2]2 as a catalyst for the β-alkylation of 

secondary alcohols with primary alcohols, via multiple transfer hydrogenation steps 

(Scheme 1.43).
139

  

 

Scheme 1.43 β-alkylation of secondary alcohols with primary alcohols, catalysed by 

[IrCp*Cl2]2 

Prior to this, the only other example was using a ruthenium catalyst, however 

large amounts of both a sacrificial hydrogen acceptor (1-dodecene) and a hydrogen 

donor (dioxane as a solvent) were required.
140

 Here, there is no need for sacrificial 

additives, making the reaction atom economical and environmentally benign (as for 

the N-alkylation reactions discussed in section 1.2.7), whereby, disregarding the base 

and solvent, the by-product is water. The stepwise reaction is similar to the N-

alkylation reactions discussed in section 1.2.7, whereby there is an initial oxidation 

of the alcohols, followed by a condensation reaction, then a reduction of the double 

bonds in the intermediate. The condensation reaction here is an aldol condensation 

between the resulting aldehyde and ketone to form an α,β-unsaturated ketone and the 

final step consists of two reductions, the C=C and C=O bonds successively to form 

the resulting secondary alcohol product. The reaction was performed at 110 °C in 

toluene (similarly to the N-alkylations) with 1-4 mol% Ir, using either sodium 

hydroxide or sodium tert-butoxide as a base, to yield 58-90% of the resulting alcohol 

after 17 hours, and in some cases a minor product of the corresponding ketone. 

Other C-C bond forming reactions including transfer hydrogenation steps have 
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been reported, for example Williams has combined hydrogen borrowing with a 

Wittig reaction to couple an alcohol with a ylide to form an alkane via the alkene.
141-

143
 

1.2.10  Other Transfer Hydrogenation Reactions 

In the synthesis of N-benzyl-(3-aminomethylglutarimide) derivatives, Wills 

demonstrated the use of a tethered ruthenium Noyori type catalyst to reduce an 

alkene bond (Scheme 1.44), although the reaction time is 5 days.
144

 

 

Scheme 1.44 Reduction of an alkene bond, by a tethered ruthenium catalyst to form 

an N-benzyl-(3-aminomethylglutarimide) derivative 

Similarly to N-alkylation reactions, Williams has demonstrated the use of 

[IrCp*Cl2]2 in the synthesis of amides from their corresponding alcohols and 

hydroxylamine hydrochloride, via the oxime.
145

 

 

Scheme 1.45 Formation of amides from their primary alcohols and hydroxylamine 

hydrochloride 

1.3 Immobilised Catalysts 

Immobilised catalysts or solid supported catalysts aim to bridge the gap between 

homogeneous and heterogeneous systems by offering the moderate conditions, high 

activity and selectivity associated with homogeneous systems with the ease of 

removal and recyclability offered with heterogeneous systems. This is achieved by 

‘immobilising’ a homogeneous catalyst onto a support through either chemical 

(covalent or non-covalent interactions) or physical methods (encapsulation) 

discussed below.
146

 In order to recycle the catalyst, it can be filtered or decanted 

from the solution, or in the case of magnetic supports by using a magnet.
147

 An 

added advantage is that the immobilised catalyst can be used in flow reactions 
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whereby the product is automatically separated from the catalyst avoiding a 

separation process. 

Removal of the catalyst is crucial if the catalyst is used in the synthesis of an 

active pharmaceutical ingredient (API), where the metal contamination limit is 10 

parts per million.
148

 In the case of expensive precious metal catalysts, recycling is 

particularly important for large scale reactions in order to make the procedure 

commercially viable. 

1.3.1 Characterisation of Immobilised Catalysts 

Characterisation of solid supported catalysts is problematic as solid state 

characterisation techniques are less developed than solution phase. Infrared (IR) 

spectroscopy gives an indication of functional groups in the material, Inductively 

Coupled Plasma (ICP) analysis determines the amount of metal, however does not 

provide information on its environment, i.e. if it is in the active form, and solid state 

NMR can help to provide evidence on environment but is not always conclusive and 

the peaks are often broad. Energy-dispersive X-ray (EDX) spectroscopy or X-ray 

photoelectron spectroscopy (XPS) can be used to find the elemental analysis of the 

sample, with XPS also giving information about the chemical and electronic state of 

the elements in the material. The main problems with the performance of current 

immobilised catalysts are reduced activities, inconsistent recyclability, metal 

leaching and in the case of asymmetric reactions reduced/different selectivities.
146,149

 

1.3.2 A Case Study into Factors Affecting the Performance of 

Immobilised Catalysts 

Blümel reported an extensive investigation into covalently immobilised 

Wilkinson-type catalysts onto silica supports (with the general structure shown in 

Figure 1.21), with respect to ligand lengths, immobilisation method, surface 

coverage, pore size and recyclability/lifetime.
150

  

 

Figure 1.21 Immobilised Wilkinson-type catalyst, through covalent attachment of a 

chelating phosphine ligand to silica 
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The research group found that it was necessary to rigorously dry the silica prior to 

use to prevent crosslinking of the ethoxysilane moieties during the immobilisation, 

as the wet silica resulted in a catalyst with lower activity. Each catalytic reaction was 

using 1 mol% Rh (which corresponds to catalytic loading). For three examples of 

one reaction type (dehydrogenation of 1-dodecene, cyclohexen-1-one and 4-

bromostyrene), different catalysts gave the optimum results, and there were no 

general trends regarding bite angle of the phosphines or the tether length. Due to 

known deactivation of these catalysts (in a homogeneous state) through 

dimerisation,
151

 the catalytic activity was improved by diluting the catalysts onto the 

silica surface and keeping the metal centres away from each other. Silica with pores 

of 100 Å gave more active catalysts than those with smaller pores of 60 Å. Larger 

pore sizes compromise the mechanical stability of the silica. Non-porous materials 

have a small surface area, which is disadvantageous for industrial applications as the 

catalytic loading is small. Immobilised chelating ligands were shown to give more 

stable catalysts with a longer lifetime compared to monodentate ligands. This is 

presumably due to reduced metal leaching, although this data was not given. 

1.3.3 Types of Immobilisation 

1.3.3.1 Covalent 

Covalent immobilisation of a catalyst is usually achieved through attachment of a 

functionalised ligand to the support (shown in Figure 1.22). A tether is usually 

present between the coordinating atoms and the terminus attached to the support to 

allow flexibility of the catalyst. 

 

Figure 1.22 General design of a covalently immobilised catalyst 

The strong covalent linkage should be stable enough towards standard catalytic 

conditions that no ligand leaching occurs. To avoid metal leaching, there must be a 

strong bond between the metal and the immobilised ligand. A disadvantage of these 

systems is achieving the chemical modifications of the catalyst in order to covalently 
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attach it to a support, i.e. adding a functionalised tether, which, along with 

potentially being difficult to prepare, may alter its catalytic activity.
146

 The catalysts 

often have a loss of efficacy compared to the corresponding homogeneous catalyst 

due to restricted mobility and therefore an unequally dispersed catalyst throughout 

the mixture. In the case of chiral catalysts, conformational preferences of the 

supported complexes may be different to that of the homogeneous anologue which 

may lead to negative effects on enantioselectivity.
149

 

The case study discussed in section 1.3.2 is an example of an effective 

immobilised catalyst through covalent attachment, with the structure shown in 

Figure 1.21 (x = 1 and y = 2).
150

 One of the most effective systems was with a low 

catalytic loading on silica of 4 molecules per 100 nm
2
 of surface and with a reaction 

catalytic loading of 1 mol% for the hydrogenation of 1-dodecene. For the first run 

the reaction was complete in 30 hours, which is equivalent to its homogeneous 

counterpart. After the second run the catalyst gradually loses activity up to the 13
th

 

run, which is complete in 100 hours. 

1.3.3.2 Non-covalent 

In comparison to covalent methods, in non-covalent immobilisation the catalyst 

often does not require any modification. However, they are often not as robust as the 

attachment is generally weaker.
149

 These methods are usually simple and cheap 

making it attractive for industrial applications. Non-covalent immobilisation may be 

via electrostatic, coordinative or adsorptive methods. 

1.3.3.2.1 Electrostatic Interactions 

If the catalyst is ionic then the counterion can be exchanged with a charged 

support, with the most common examples being a cationic catalyst and an anionic 

support (demonstrated in Figure 1.23). 
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Figure 1.23 General design of an electrostatically immobilised catalyst 

Unlike covalent immobilisation, the catalyst does not need to be modified prior to 

immobilisation, however the catalyst has to be ionic. These systems are prepared 

either through ion exchange, by replacing the counterion with a charged solid, or 

through the formation of the complex on a pre-exchanged metal centre.
149

 In the first 

case, a salt will form of the counterion of the complex and oppositively charged 

counterion of the solid. This salt is either eliminated to the solution or remains on the 

solid, depending on the solvent used in the exchange process. The more commonly 

used direct exchange method allows the catalyst to be characterised prior to 

immobilisation. The choice of exchange solvent is important to achieve the best 

exchange ratios and hence the higher loading immobilised catalyst. The support is 

generally a clay but can be an organic, inorganic or hybrid support. 

A [(QUINAP)Rh(cod)]
+
 complex has been immobilised onto a negatively charged 

clay via salt exchange.
152,153

  

 

Figure 1.24 Immobilised [(QUINAP)Rh(cod)]
+
 on clay through electrostatic 

interactions 

The immobilised complex was an active catalyst for the asymmetric 

hydroboration of styrene, showing comparable activity to the homogeneous system 

(on the second run), with two successful subsequent recycles. 
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1.3.3.2.2 Coordinative Bonding 

If the support has groups with lone pairs then these can be used to form a 

coordinative bond to a metal to form an immobilised catalyst. This is achieved either 

through direct metal-support interaction or with an interposed molecule.
149

 There is 

crossover between coordinative bonding and covalent attachment. 

Blümel recently demonstrated the immobilisation of Wilkinson-type rhodium 

complexes through coordination of an interposed molecule, which itself is attached 

to a silica support through electrostatic interactions (shown in Figure 1.25).
154

 

 

Figure 1.25 Immobilised Wilkinson-type catalyst, through coordinative bonding and 

electrostatic interactions 

The immobilised complex was tested as a catalyst for the hydrogenation of 1-

dodecene, using 1 mol% Rh. The catalyst initially converted 1-dodecene to dodecane 

quantitatively in 24 hours. Prior to the subsequent runs the solution was decanted and 

the catalyst thoroughly washed with toluene. The catalyst remained active however 

the reaction time gradually increased through to the 24th run to over 60 hours. The 

27th run required over 70 hours for completion and the final 30
th

 run required 100 

hours. There were no metal leaching data. The rigid linkers prevent deactivation of 

the catalyst via dimerisation which has been seen when using flexible phosphine 

linkers.
150,155,156

  

1.3.3.2.3 Metal-Organic Frameworks 

Ligands with multiple functional groups can be used to bridge metals together to 

form an extended network. These systems allow a high catalytic loading and more 

accessible catalytic centres, but require chemical modifications to the catalyst.
149

 An 

example of a metal-organic framework (MOF) is illustrated in Figure 1.26, 

comprising of a ruthenium centre coordinating to a bridged BINAP and chiral 

diamine ligand.
157
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Figure 1.26 A ruthenium MOF used for the enantioselective hydrogenation of 

ketones 

The MOF was used successfully for the enantioselective hydrogenation of 

aromatic ketones. The catalyst where Ar = 3,5-(CH3)2C6H3 was active for the 

hydrogenation of a variety of ketones using the conditions shown in Scheme 1.46.  

 

Scheme 1.46 Reduction of acetophenones using a Ru-1 type Noyori catalyst with the 

IPA system 

The catalyst was recyclable for the reduction of acetophenone with the conversion 

and enantioselectivity reducing from >99-97% and 97.4-95.4% respectively from run 

one to run seven. There was no detectable ruthenium leaching into the product (<0.1 

ppm). 

1.3.3.2.4 Adsorption 

Immobilisation whereby there is no specific metal-support coordination is 

considered an adsorption method. Some examples of adsorption are interactions of 

catalysts to the support through van der Waals interactions or hydrogen bonding. 

Although this type of bonding is often considered weak, there have been successful 

recyclable systems, such as an immobilised charged version of an activated rhodium 

CATHy catalyst attached to Me-SBA-16 shown in Figure 1.27.
158

 The triflate 

counterion forms hydrogen bonds to the support, as well as a hydrogen bond to an 

NH of the TsDPEN ligand. 

 

Figure 1.27 Immobilised CATHy-type catalyst onto silica via a coordinated triflate 

counterion 
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0.2 mol% of the catalyst was active against a range of acetophenone reductions 

using sodium formate as the hydrogen donor in water and applying ultrasound. After 

20 minutes, the acetophenones were reduced in a 96-99% conversion and with 91-

97% ee. The catalyst was used 10 times with acetophenone as the substrate, with the 

end conversion decreasing slightly from almost quantitative to 96% and the ee 

remaining at 97%. ICP analysis showed that 3.6% of the rhodium had leached out of 

the supported system after the tenth run.
158

 

1.3.3.3 Encapsulation 

In an encapsulation system the catalyst is physically trapped within the support 

matrix (Figure 1.28), so there are no requirements for the catalyst to be chemically 

attracted or attached to its support. 

  

Figure 1.28 General design of an immobilised catalyst via encapsulation 

This is desirable in terms of the catalyst as it does not have to be chemically 

modified. However, it can be difficult to prepare the encapsulated system. There are 

two methods to synthesise encapsulation systems: building the matrix around the 

catalyst or synthesising the catalyst inside the matrix. In the former instance, the 

catalyst must be sufficiently stable towards the conditions for building the matrix, 

whereas for the latter case, the catalyst synthesis must be high yielding as any side 

products may also become encapsulated and affect the resulting catalytic reaction. 

The main problems with encapsulated systems are diffusion based, as the matrix 

pores must be large enough to allow the substrates to diffuse into the matrix, react 

with the catalyst and allow the products to leave, yet small enough to trap the 

catalyst. Another common problem is a different selectivity due to the restricted 

space. However, this can also be used to its advantage. 

Rhodium phosphine complexes have been encapsulated in both inorganic (silica) 

and hybrid systems and been tested as catalysts for the hydroformylation of 1-

hexene.
159

 The most active system was seen when incorporating [RhCl(CO)2]2 with a 
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phosphine additive (dppf) into a hybrid support (silica with (EtO)3Si-Ph-Si(OEt)3 as 

a co-condensation agent). The catalyst was active for 6 runs with turnover numbers 

(TON) of at least 700 for each run and no leaching was seen by colour, however 

there were no reported leaching values.  

1.3.4 Other Recyclable Systems 

There are examples of other recyclable systems which, although they are not 

strictly immobilised systems, serve the same purpose as the catalyst can easily be 

separated from the product post reaction. Examples of such reactions are: catalysts 

which are soluble under the reaction conditions, for example high temperatures, but 

precipitate upon cooling;
160

 biphasic systems (for example if the catalyst is dissolved 

in an aqueous phase whereas the substrate/product is dissolved in an organic 

phase);
161

 and phase switchable systems where the reaction is performed in a single 

phase and the catalyst can be switched to another phase post reaction.
162

 

1.3.5 Previous Immobilised M-arene Complexes 

Many research groups have immobilised Noyori-type catalysts through the 

diamine/amino-alcohol ligand with varying success.
163-177

 Figure 1.29 shows the 

various immobilised ligands, along with the immobilised rhodium complex J shown 

in Figure 1.27. As these catalysts are immobilised through the Noyori-type ligand, 

they are restricted to those specific reactions. 
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Figure 1.29 Reported immobilised Noyori-type ligands used to complex iridium, 

rhodium or ruthenium 
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Table 1.3 highlights immobilised systems for acetophenone reductions with long reaction times and no recycle data. 

Catalyst Metal & 

ancillary 

ligands 

Support Catalytic conditions Catalyst 

loading/mol% 

No. 

runs 

Time/hours Yield/% % 

ee 

Leaching/% 

A
171

 RuCl(benzene) polystyrene KOH, iso-propanol 5 1 48 20 64 no data 

A
171

 RuCl(benzene) polystyrene/DVB KOH, iso-propanol 5 4 (no 

data 

for 

runs 

2-4) 

48 96 31 no data 

A
171

 RuCl(p-

cymene) 

polystyrene KOH, iso-propanol 5 1 48 72 40 no data 

A
171

 RuCl(p-

cymene) 

polystyrene/DVB KOH, iso-propanol 5 1 48 23 84 no data 

E
170

  

R = H 

IrClCp* SBA-15 
t
BuOK, methanol, 10 

atm H2, 25 °C 

1 1 72 93 90 no data 

Table 1.3 Summary of acetophenone reductions using immobilised Noyori/CATHy type catalysts 

Table 1.4 highlights more successful systems which have shown moderate-excellent activity upon recycle. The most successful system to 

date is using the catalyst J (shown in Figure 1.27 and discussed in section 1.3.3.2.4) which allows 10 runs for acetophenone reduction with over 

95% conversion and 97% ee in only 20 minutes and with minimal leaching of 3.6% rhodium over 10 runs. 
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Catalyst 

Metal & 

ancillary 

ligands 

Support Catalytic conditions 
Catalyst 

loading/mol% 

No. 

runs 
Time/hours Yield/% 

% 

ee 
Leaching/% 

B
164

 
RuCl(p-

cymene) 
polystyrene HCO2H/NEt3, DMF 1 3 18-69 52-80 

98-

95 
no data 

B
164

 
RuCl(p-

cymene) 

PEG linked 

polystyrene 
HCO2H/NEt3N 1 2 28-72 95-96 97 no data 

C
178

 
RuCl(p-

cymene) 
PEG HCO2H/NEt3, 50 °C 1 4 20 99-56 

94-

82 

0.7% (first 

run only) 

A
163

 
RuCl(p-

cymene) 

sulfonated 

polystyrene/DVB 
HCOONa, water, 40 °C 1 2 3 100 

98-

97 
no data 

B
164

 
RuCl(p-

cymene) 
polystyrene 

HCO2H/NEt3, 

dichloromethane 
1 3 18-69 52-71 

>99-

91 
no data 

H
177

 
RuCl(p-

cymene) 

methacrylate 

polymer 

7:3 PEG 

ester:hydroxyethyl ester 

copolymer, KOH, iso-

propanol 

4 3 4-14 95-77 81 no data 
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Catalyst 

Metal & 

ancillary 

ligands 

Support Catalytic conditions 
Catalyst 

loading/mol% 

No. 

runs 
Time/hours Yield/% 

% 

ee 
Leaching/% 

F
172

 
RuCl(p-

cymene) 
silica HCO2H/NEt3 1 5 6-44 >99-94 97 30-40 

F
169,172

 
RuCl(p-

cymene) 
silica 

HCO2H/NEt3, 40 °C 

 
1 5 6-44 99-94 97 30-40 

G
176

 RhClCp* silica HCOONa, water, 40 °C 0.4 12 
1 (time not given 

for the last run) 
>99 

97-

93 
3.4% 

G
174

 RhClCp* 

silica 

coated 

Fe3O4 

HCOONa, Bu4NBr, water, 

40 °C 
0.2 10 1 97-92 

98-

96 
no data 

I
166

 RhClCp* - HCOONa, water, 40◦C 0.5 6 0.66-1.5 >99-97 
96-

95 
no data 

J
158

 RhClCp* SBA-16. 
HCOONa, Bu4NBr, water, 

41°C 
0.2 10 0.33 >99-96 97 3.6% 

C
167

 
RuCl(p-

cymene) 
PEG HCOONa, water, 40 °C 1 14 1-48 99-87 92 

0.4 % (1st 

run only) 

Table 1.4 Summary of recycled acetophenone reductions immobilised Noyori/CATHy type catalysts 
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A hydroxyl tethered version of the SCRAM catalyst has previously been prepared 

and immobilised onto PEG (polyethylene glycol), shown in Scheme 1.47.
110

 The 

patented immobilisation method is unique in comparison to the previous Noyori-type 

ligands as the functionalised Cp* group is immobilised, allowing the use of other 

ancillary ligands rather than being restricted to the Noyori TsDPEN ligand.
179

 

  

Scheme 1.47 SCRAM catalyst immobilised onto PEG 

The PEGylated catalyst was used in a nanoomembrane reactor as part of a semi 

continuous process to resolve racemic sertraline to (1S,4S) sertraline (similarly to the 

homogeneous SCRAM catalyst discussed in section 1.2.6). The initial run was 

successful however the catalyst showed a loss in activity over two reuses. Although 

this initial immobilisation attempt had limited success, the method of immobilising 

through a Cp* based ligand is an attractive one as it allows different ancillary ligands 

around the iridium, enabling flexible use of the system in a variety of different 

reactions. The strong η
5
 coordination between the Cp ring and the iridium should 

also prevent metal leaching through ligand dissociation.  

1.4 Project Aims 

The aims of this project were to: 

 Prepare a range of novel iridium and rhodium Cp* complexes (Chapters 3-5) 

and test them as catalysts against transfer hydrogenation reactions (Chapter 6) 

 Synthesise hydroxyl tethered versions of [MCp*X2]2, where M = Ir, Rh and X 

= Cl, I (Chapter 2) and immobilise the complexes onto a solid support (Chapter 

7), as shown in Figure 1.30. 
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Figure 1.30 Immobilisation strategy of functionalised Cp* Group 9 Complexes onto 

a solid support 

 Test the catalytic activity of the immobilised complexes as transfer 

hydrogenation catalysts (Chapter 7) 

 Test the non-immobilised complexes as anti-cancer agents against a range of 

cell lines (Chapter 8) 
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2.1 Introduction 

This Chapter is concerned with the synthesis and characterisation of hydroxyl 

tethered Cp* based ligands and their complexation to both rhodium and iridium to 

form tethered versions of [MCp*X2]2, where M = Ir, Rh and X = Cl, I. The hydroxyl 

group provides a linker to attach the dimer onto a solid support, which can then be 

used as a recyclable immobilised catalyst (discussed in Chapter 7). The addition of 

these hydroxyl tethers also gives rise to interesting anti-cancer activity of the 

complexes (discussed in Chapter 8).  

Tethered hydroxyl Cp* based ligands were first prepared and complexed onto 

rhodium and iridium by Blacker et al.
1,2

 The iridium iodide dimer 2.13 was 

immobilised onto polyethylene glycol and used as a racemisation catalyst in a semi-

continuous process to resolve racemic sertraline (discussed in more detail in Chapter 

1).
2
 Iridium and rhodium complexes with amine tethered Cp* based ligands have 

been reported.
3,4

 Triflylamide tethered Cp* based ligands have also been reported 

and tested as catalysts for the asymmetric hydrogenation of acetophenone.
5
  

A list of compounds discussed in this Chapter is shown in Figure 2.1, with full 

experimental details described in Chapter 9. Compounds 2.2, 2.6, 2.10 and 2.13 have 

been prepared previously.
1,2

  

  

  M = Rh, X = Cl M = Ir, X = Cl M = Ir, X = I 

2.1 n = 3 2.5 n = 3 2.9 n = 3 2.13 n = 5 

2.2 n = 5 2.6 n = 5 2.10 n = 5   

2.3 n = 9 2.7 n = 9 2.11 n = 9   

2.4 n = 14 2.8 n = 14 2.12 n = 14   

Figure 2.1 List of compounds discussed in Chapter 2 

2.2 Synthesis of Hydroxyl Tethered Cp* Based Ligands 

The ligands 2.1-2.4 were prepared according to Scheme 1.1. 2-Bromo-2-butene 

was reacted with lithium under dry conditions. The lactone with n+1 carbons was 

added to the resulting lithiated alkene, followed by HCl to give the hydroxyl tethered 
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ligand with n carbons in the tether.  

 

Scheme 1.1 General synthesis of hydroxyl tethered ligands 2.1-2.4 

The lactone with n = 9 is not commercially available, so the 9 carbon tethered ligand 

2.3 was prepared according to Scheme 1.2. The alcohol group on methyl 10-

hydroxydecanoate is sensitive to the lithiation step in the ligand synthesis, so was 

initially protected with a TMS group. The resulting ester was used in the place of the 

lactone. The TMS group was removed in the acidification step, eliminating the need 

for an extra step to deprotect the hydroxyl. 

 

Scheme 1.2 Synthesis of 2.3 

2.3 Synthesis of Hydroxyl Tethered Cp* Based Rhodium 

Chloride Dimers 

The rhodium dimers 2.5-2.8 were prepared by refluxing RhCl3.3H2O with ligands 

2.1-2.4 respectively, in methanol overnight.  

 

Scheme 1.3 General synthesis of rhodium dimers 2.5-2.8 

The resulting deep red solution was evaporated to dryness and the crude product 

recrystallised using a dichloromethane/hexane solvent system, to give the dimers as 
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orange/red powders. The dimers were characterised by 
1
H and 

13
C{

1
H} NMR, 

elemental analysis and in the cases of 2.5, 2.6 and 2.7, single crystal X-ray 

crystallography. 

2.3.1 NMR Characterisation of Rhodium Dimers 

Upon complexation of the Cp* based ligands to rhodium, the 
1
H NMR simplifies 

due to a loss of regioisomerism, and loss of the proton on the allylic carbon (~1.0 

ppm), shown in Figure 1.2.   

3.5 3.0 2.5 2.0 1.5 1.0 

Figure 1.2 NMR spectra of starting ligand 2.4 and its resulting rhodium complex 2.8 

The CH2 protons adjacent to the OH appear as either a triplet or a broad singlet 

between 3.63 and 3.66 ppm (depending on the chain length) in the 
1
H NMR 

spectrum. The CH2 protons adjacent to the functionalised Cp* ring appear as a 

multiplet between 2.2 and 2.4 ppm. The peaks for the protons of other CH2 groups in 

the chain vary between 1.2 and 1.8 ppm, and the CH3 protons on the functionalised 

Cp* ring appear between 1.61 and 1.65 ppm. In the 
13

C{
1
H} NMR spectra of the 

rhodium dimers 2.5-2.8, 
1
J

 
coupling is seen between the functionalised Cp* carbons 

and the spin active 
103

Rh, appearing as 3 doublets between 94 and 96 ppm with a 

splitting of 9-10 Hz (shown in Figure 1.3). The CH2 adjacent to the OH appears at 

about 63 ppm. The other CH2 groups appear between 20 and 33 ppm, and the CH3 

groups on the functionalised Cp* ring appear at 9.4 ppm. 

2.4 

2.8 
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90 80 70 60 50 40 30 20 10

96 95 94

 

Figure 1.3 
13

C{
1
H} NMR spectra of rhodium complex 2.8 with an expansion to 

show the functionalised Cp* peaks 

2.3.2 X-ray Crystallography Data for Rhodium Dimers 

The three dimers 2.5, 2.6 and 2.7 all crystallise in a monoclinic cell and contain 

half a molecule in the asymmetric unit. The rhodium centres have a pseudo-

octahedral geometry whereby the functionalised Cp* ring occupies three 

coordination sites and the three chlorides occupy a coordination site each. In all three 

cases there is a hydrogen bond between the hydroxyl tether and a terminal chloride 

ligand, with 2.5 and 2.7 showing the same hydrogen bond arrangement (Figure 1.4) 
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a) 

 

b) 

 

Figure 1.4 Packing diagram of compounds a) 2.5 and b) 2.7 to show intermolecular 

hydrogen bonding between the hydroxyl group and terminal chloride 

2.3.2.1 X-ray Crystallography Data for Compound 2.5 

Red crystals of compound 2.5 suitable for X-ray crystallography were obtained 

via layer diffusion of hexane into a dichloromethane solution. The structural solution 

was performed in the space group P21/n. The molecular structure is shown in Figure 

1.5 and selected bond lengths and angles are shown in Table 1.1. There is a 

hydrogen bond between the OH and Cl(1) of an adjacent molecule with a O(1)..Cl(1) 

distance of 3.234(2) Å, and symmetry operation of 2-x,-y,1-z, shown in Figure 1.4. 

 

Figure 1.5  A crystal structure of compound 2.5, displacement ellipsoids are at the 

50% probability level. Hydrogen atoms are omitted for clarity. 
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Bond Distance (Å) Bond Angle (°) 

Rh(1)-Cl(1) 2.4341(7) Cl(1)-Rh(1)-Cl(2) 89.70(2) 

Rh(1)-Cl(2) 2.4775(6) Cl(1)-Rh(1)-Cl(2)
(a)

 90.51(2) 

Rh(1)-Cl(2’)
(a)

 2.4857(6) Cl(2)-Rh(1)-Cl(2)
(a)

 83.20(2) 

Rh(1)-Cg 1.7739(11) Rh(1)-Cl(2)-Rh(1)
(a)

 96.80(2) 

(a)
 = 1-x,1-y,1-z 

Table 1.1 Selected bond lengths and bond angles for compound 2.5 

2.3.2.2 X-ray Crystallography Data for compound 2.6 

Red crystals of compound 2.6 suitable for X-ray crystallography were obtained 

via vapour diffusion from a dichloromethane/pentane solvent system. The structural 

solution was performed in the space group P21/n. The molecular structure is shown 

in Figure 1.6 and selected bond lengths and angles are shown in Table 1.2.  

 

Figure 1.6  A crystal structure of compound 2.6, displacement ellipsoids are at the 

50% probability level. Hydrogen atoms are omitted for clarity. 
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Bond Distance (Å) Bond Angle (°) 

Rh(1)-Cl(1) 2.445(5) Cl(1)-Rh(1)-Cl(2) 89.4(2) 

Rh(1)-Cl(2) 2.468(6) Cl(1)-Rh(1)-Cl(2)
(a)

 89.56(17) 

Rh(1)-Cl(2’)
(a)

 2.480(4) Cl(2)-Rh(1)-Cl(2)
(a)

 84.20(16) 

Rh(1)-Cg 1.784(8) Rh(1)-Cl(2)-Rh(1)
(a)

 95.80(18) 

(a)
 = -x,-y,1-z 

Table 1.2 Selected bond lengths and bond angles for compound 2.6 

The equivalent iridium iodide analogue, reported by Blacker et al, crystallised in 

a triclinic P1 cell with three molecules in the asymmetric unit and similar bond 

angles.
2
 

2.3.2.3 X-ray Crystallography Data for compound 2.7 

Red crystals of compound 2.7 suitable for X-ray crystallography were obtained 

via vapour diffusion from a dichloromethane/pentane solvent system. The structural 

solution was performed in the space group C2/c. The asymmetric unit contains a 

molecule of dichloromethane with half a molecule of 2.7. The molecular structure is 

shown in Figure 1.7 and selected bond lengths and angles are shown in Table 1.3. 

The chain shows disorder with the atoms C14-C17 split into two parts (A and B), 

both with 50% occupancy.  

 

Figure 1.7  A crystal structure of compound 2.7, displacement ellipsoids are at the 

50% probability level. Hydrogen atoms are omitted for clarity. 
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Bond Distance (Å) Bond Angle (°) 

Rh(1)-Cl(1) 2.4353(8) Cl(1)-Rh(1)-Cl(2) 90.15(2) 

Rh(1)-Cl(2) 2.4693(7) Cl(1)-Rh(1)-Cl(2)
(a)

 89.88(3) 

Rh(1)-Cl(2’)
(a)

 2.4776(9) Cl(2)-Rh(1)-Cl(2)
(a)

 83.48(2) 

Rh(1)-Cg 1.7691(11) Rh(1)-Cl(2)-Rh(1)
(a)

 96.52(3) 

(a)
 = 1/2-x,1/2-y,1-z 

Table 1.3 Selected bond lengths and bond angles for compound 2.7 

Packing diagrams of compound 2.7 are shown in Figure 1.8. As can be seen 

when looking down the b axis, the dimer packs in layers resulting in hydrophobic 

regions of alkyl chains. There is a void between the alkyl tethers which is filled by 

dichloromethane molecules. Figure 1.4 shows the hydrogen bond between the 

hydroxyl group on the functionalised Cp* tether (O14) and a terminal chloride on an 

adjacent molecule (Cl1) with a O(1)..Cl(1) distance of 3.322(3) Å and symmetry 

operation of -x,1-y,-z.  

a) c) 

b)

 

Figure 1.8 Packing diagram of compound 2.7, shown down a) the a axis, b) the b 

axis and c) the c axis. Hydrogen atoms omitted for clarity 
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2.4 Synthesis of Hydroxyl Tethered Cp* Based Iridium 

Chloride Dimers 

The iridium chloride dimers 2.9-2.12 were prepared by applying microwave 

heating to IrCl3.3H2O with NaHCO3 and ligands 2.1-2.4 respectively in methanol for 

10 minutes. The resulting red solution was diluted with dichloromethane and, after 

an aqueous work up, the crude product was dissolved in dichloromethane and 

precipitated with hexane to give the dimers as orange powders. The dimers were 

characterised by 
1
H NMR, 

13
C{

1
H} NMR and CHN analysis. 

 

Scheme 1.4 General synthesis of iridium dimers 2.9-2.12 

2.4.1 NMR Characterisation of Iridium Chloride Dimers 

As expected, the 
1
H NMR spectra of the iridium dimers (Figure 1.9) are similar 

to their rhodium analogues 2.5-2.8, except the chemical shifts appear slightly more 

upfield, for example the methyl protons appear between 1.58-1.62 ppm  cf. 1.61-1.65 

ppm for the rhodium analogues.  

3.5 3.0 2.5 2.0 1.5 1.0  

Figure 1.9 
1
H NMR spectra of ligand 2.4 and its resulting iridium complex 2.12 

2.1

2 

2.4 
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The CH2 protons adjacent to the OH appear as a triplet between 3.64 and 3.66 

ppm. The CH2 protons adjacent to the functionalised Cp* ring shift upfield cf. their 

rhodium analogues appearing between 2.1-2.3 ppm cf. 2.2-2.4 ppm. The peaks for 

the protons of other CH2 groups in the chain vary between 1.2 and 1.8 ppm. As for 

the rhodium analogues, three peaks are seen in the 
13

C{
1
H} NMR spectra for the 

iridium dimers. These appear between 86-88 ppm cf. 94-96 ppm for the rhodium 

analogues. The other carbon peaks seem relatively unaffected compared to their 

rhodium analogues. 

2.5 Synthesis of Hydroxyl Tethered Cp* Based Iridium 

Iodide Dimers 

The iridium iodide dimer 2.13 was prepared by performing a halide exchange 

reaction using sodium iodide and the iridium chloride dimer 2.10 (Scheme 1.5) as 

shown previously by Blacker et al.
2
 The reaction was performed in acetone as the 

insolubility of the NaCl formed drives the reaction to completion. There is a 

noticeable shift of the methyl groups on the functionalised Cp* ring from 1.6 to 1.9 

ppm indicating full conversion. The product formed is a deep red powder cf. the 

starting orange powder. As compound 2.13 has been previously reported, it will not 

be discussed any further here. 

 

Scheme 1.5 Synthesis of the iridium iodide dimer 2.13 

2.6 Conclusion 

Four tethered hydroxyl tethered Cp* based ligands have been prepared and 

complexed onto both rhodium and iridium to form tethered versions of [RhCp*Cl2]2 

and [IrCp*Cl2]2 respectively. The rhodium dimers were prepared in the same manner 

as [RhCp*Cl2]2 by heating the ligand with RhCl3. More forcing conditions, involving 

microwave heating, were required to form the iridium chloride dimers. As for 

[IrCp*Cl2]2, a halide exchange reaction can be performed to transform the iridium 

chloride dimer into its iodide analogue. These tethered dimers can be immobilised 

onto a solid support for use as recyclable catalysts, with the results discussed in 
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Chapter 7. They have been used as starting materials to form monomeric complexes, 

discussed in Chapter 3 and Chapter 4. The tether also has an interesting effect on the 

anti-cancer activity, with preliminary results shown in Chapter 8. 
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3.1 Introduction 

This Chapter is concerned with the synthesis and characterisation of 

iridium/rhodium Cp* and hydroxyl tethered Cp*-based pyridine halide complexes. 

These complexes have been prepared for use as homogeneous catalysts for transfer 

hydrogenation reactions, with their catalytic activity discussed in Chapter 5. It is 

generally thought when using [MCp*X2]2 (where M = Ir or Rh and X = Cl or I) in 

transfer hydrogenation reactions that the dimer is a precatalyst and that the active 

catalyst is a monomeric species.  

Group 9 Cp* pyridine complexes have been previously reported,
1-10

 with some 

used as catalysts.
11-17

 Fujita reported 2-hydroxypyridine iridium Cp* complexes and 

found them to be active catalysts for the dehydrogenation of secondary alcohols to 

their corresponding ketones,
18

 as well as reversible dehydrogenation-hydrogenation 

reactions of nitrogen heterocycles (discussed in more detail in Chapter 1).
19

 

    

3.1 R = H 3.7 n = 3, R = H 3.14 3.15 R = H 

3.2 R = 3’-F 3.8 n = 5, R = H   3.16 R = 3’-Cl 

3.3 R = 3’-Cl 3.9 n = 14, R = H   3.17 R = 3’-Br 

3.4 R = 3’-Br 3.10 n = 5, R = 3’-Cl     

3.5 R = 3’-I 3.11 n = 5, R = 3’-Br     

3.6 R = 4’-NMe2 3.12 n = 5, R = 3’-I     

  3.13 n = 5, R = 4’-Me     

Figure 3.1 List of compounds discussed in Chapter 3 

A list of compounds discussed in this Chapter is shown in Figure 3.1, with full 

experimental details described in Chapter 9. All of the pyridine complexes were 

prepared by reacting the corresponding dimer with the functionalised pyridine. 

Compound 3.1 has been previously reported, so its synthesis and characterisation 

will not be discussed here.
20

 

All complexes were characterised by 
1
H and 

13
C{

1
H}  NMR, elemental analysis  



Chapter 3 

75 

(compound 3.12 and 3.13 are not analytically pure) and in the cases of compounds 

3.2, 3.3, 3.6-3.8, 3.11, and 3.15-3.17 single crystal X-ray crystallography. There is a 

general shift in the 
1
H NMR spectrum of the pyridine proton peaks downfield 

indicating complexation. 

3.2 Synthesis of Iridium Cp* Dichloride Pyridine 

Complexes 

The iridium Cp* pyridine complexes 3.2-3.5 were prepared according to Scheme 

3.1, by stirring [IrCp*Cl2]2 with 2 equivalents of the functionalised pyridine in 

tetrahydrofuran overnight. The resulting yellow suspension was filtered and 

recrystallised using vapour diffusion from a dichloromethane/pentane solvent 

system. Compound 3.6 was prepared by stirring [IrCp*Cl2]2 with 2 equivalents of the 

functionalised pyridine in dichloromethane overnight. 

Scheme 3.1 General synthesis of iridium Cp* dichloride pyridine complexes 

3.2.1 NMR Characterisation of Iridium Cp* Pyridine Monomers 

Upon complexation of the pyridine to [IrCp*Cl2]2, the pyridine peaks shift 

downfield and the CH3 groups on the Cp* ring shift upfield from 1.59 to 1.55 in the 

case of 3.2 and to 1.54 in the cases of 3.3-3.6 (shown in Figure 3.3 for compound 

3.2). The chemical shifts of the pyridine proton f increases, going from 3.5-3.2 

(protons assigned in Figure 3.2).  

 

Figure 3.2 Labelled diagram for iridium Cp* pyridine complexes 

The reverse trend is seen for the chemical shift of the protons at positions c, e and 

g. In comparison to the unsubstituted pyridine complex 3.1, addition of the electron 

donating NMe2 group, results in an upfield shift of the c (equivalent to g) and d 

(equivalent to f) protons in the 
1
H NMR spectrum (demonstrated in Figure 3.4). 
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9 8 7 6 5 4 3 2  

Figure 3.3 Comparison of the 
1
H NMR spectra of compound 3.2 compared to its 

precursors, [IrCp*Cl2]2 and 3-fluoropyridine 

9.0 8.5 8.0 7.5 7.0 6.5 6.0

c, g e d, f

 

Figure 3.4 Comparison of the 
1
H NMR spectrum of the aromatic regions of 3.1, 3.5 

and 3.6 

[IrCp*Cl2]2 

 

3.2 

 

3-fluoropyridine 

 

3.5 

 

3.1 

3.6 
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3.2.2 X-ray Crystallography Data for Iridium Cp* Pyridine 

Monomers 

Single crystals of compounds 3.2, 3.3 and 3.6 were obtained via vapour diffusion 

from a dichloromethane/pentane solvent system giving yellow crystals in the case of 

compound 3.2 and orange crystals of compounds 3.3 and 3.6. In all cases the iridium 

centres have pseudo octahedral geometries whereby the Cp* occupies three 

coordination sites and the two chlorides and pyridine occupy a coordination site 

each. Although compounds 3.2 and 3.3 are in different space groups, they pack 

similarly, most easily seen when viewed from the a axis (Figure 3.5), with the 

molecules packing in anti parallel layers. The molecules have similar bond lengths 

apart from the Ir-Cl bonds which are 2.4267(5) Å for compound 3.2 and 2.4227(6)/ 

2.4111(6) for compound 3.3. Compound 3.3 is more largely distorted away from 

pseudo octahedral geometry than compound 3.2 with the angles between the 

chlorides and nitrogen ranging from 86-88° (compared to 87-91° for compound 3.2), 

presumably due to the extra steric bulk from the chloride on the pyridine ring. 

a) 

 

b) 

 

Figure 3.5 a) Compounds 3.2 and b) 3.3 viewed down the a axis 

3.2.2.1 X-ray Crystallography Data for Compound 3.2 

Compound 3.2 was solved in a monoclinic cell and structural solution was 

performed in the space group P21/m. The molecular structure is shown in Figure 3.6 

and selected bond lengths and angles in Table 3.1. There is half a molecule in the 

asymmetric unit, where the symmetry generated half of the molecule is a reflection 

of the asymmetric unit (with the symmetry operation x, ½-y, z) and the fluoride is 

disordered over two positions. 
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Figure 3.6 A crystal structure of compound 3.2, displacement ellipsoids are at the 

50% probability level. Hydrogen atoms are omitted for clarity 

Bond Distance (Å) Bond Angle (°) 

Ir(1)-Cl(1) 2.4267(5) Cl(1)-Ir(1)-Cl(1)(a) 90.67(2) 

Ir(1)-N(1) 2.1412(16) Cl(1)-Ir(1)-N(1) 87.15(4) 

Ir(1)-Cg 1.7788(8) N(1)-Ir(1)-Cl(1)(a) 87.15(4) 

  Cg-Ir(1)-Cl(1) 126.31 

  Cg-Ir(1)- N(1) 126.69 

x, ½-y, z 

Table 3.1 Selected bond lengths and bond angles for compound 3.2 

3.2.2.2 X-ray Crystallography Data for Compound 3.3 

Compound 3.3 was solved in a triclinic cell and structural solution performed in 

the space group P1. The molecular structure is shown in Figure 3.7 and selected 

bond lengths and angles in Table 3.2. There is one molecule in the asymmetric unit. 

Bond Distance (Å) Bond Angle (°) 

Ir(1)-Cl(1) 2.4227(6) Cl(1)-Ir(1)-Cl(2)
 

87.49(2) 

Ir(1)-Cl(2) 2.4111(6) Cl(1)-Ir(1)-N(1) 87.79(5) 

Ir(1)-N(1) 2.1407(18) Cl(2)-Ir(1)-N(1) 85.97(6) 

Ir(1)-Cg 1.7840(10) Cg-Ir(1)-Cl(1) 127.59(3) 

  Cg-Ir(1)-Cl(2) 127.73(3) 

  Cg-Ir(1)-N(1) 126.56(6) 

Table 3.2 Selected bond lengths and bond angles for compound 3.3 
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Figure 3.7 A crystal structure of compound 3.3, displacement ellipsoids are at the 

50% probability level. Hydrogen atoms are omitted for clarity 

3.2.2.3 X-ray Crystallography Data for Compound 3.6 

Compound 3.6 crystallised in a monoclinic cell and structural solution was 

performed in the space group P21/c. There are two molecules in the asymmetric unit. 

The molecular structure is shown in Figure 3.8 and selected bond lengths and angles 

are shown in Table 3.3.  

Bond Distance (Å) Bond Angle (°) 

Ir(1)-Cl(1) 2.4382(8) Cl(1)-Ir(1)-Cl(2)
 

88.26(3) 

Ir(1)-Cl(2) 2.4302(9) Cl(1)-Ir(1)-N(1) 87.63(6) 

Ir(1)-N(1) 2.144(2) Cl(2)-Ir(1)-N(1) 85.82(7) 

Ir(1)-Cg 1.7991(12) Cg-Ir(1)-Cl(1) 126.33(4) 

  Cg-Ir(1)-Cl(2) 128.39(5) 

  Cg-Ir(1)-N(1) 126.85(7) 

Ir(1A)-Cl(1A) 2.4434(8) Cl(A)-Ir(1A)-Cl(2A)
 

89.24(2) 

Ir(1A)-Cl(2A) 2.4292(8) Cl(1A)-Ir(1A)-N(1A) 86.38(7) 

Ir(1A)-N(1A) 2.142(2) Cl(2A)-Ir(1A)-N(1A) 87.16(6) 

Ir(1A)-CgA 1.7885(12) CgA-Ir(1A)-Cl(1A) 126.19(4) 

  CgA-Ir(1A)-Cl(2A) 127.33(4) 

  CgA-Ir(1A)-N(1A) 127.30(7) 

Where A refers to the second molecule in the asymmetric unit 

Table 3.3 Selected bond lengths and angles for compound 3.6 
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Figure 3.8 A crystal structure of compound 3.6, displacement ellipsoids are at the 

50% probability level. Hydrogen atoms are omitted for clarity 

3.3 Synthesis of Iridium Hydroxyl Tethered Cp* Based 

Dihalide Pyridine Complexes 

Complexes 3.7-3.14 were prepared according to Scheme 3.2 where, for the 

unsubstituted pyridine complexes 3.7-3.9, pyridine was used as the solvent, or, for 

the substituted pyridine complexes 3.10-3.13, two equivalents of the pyridine was 

stirred with [IrCp*Cl2]2 in dichloromethane overnight. 

 

Scheme 3.2 General synthesis of iridium hydroxyl tethered Cp* based dihalide 

pyridine monomers 

3.3.1 NMR Characterisation of Iridium Hydroxyl Tethered Cp* 

Based Pyridine Monomers 

The peaks for the 3’-halopyridine protons of compounds 3.10-3.12 in the 
1
H 

NMR are similar to those of the Cp* analogues discussed in section 3.2.1. The 

chemical shift of proton f decreases upon increasing the tether length from 3 carbons 

(2.11 ppm) to 5 or 14 carbons (both 2.03 ppm). Proton g’s chemical shift also 

decreases upon increasing the tether length, but by a lesser extent, from 3 carbons 
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(3.66 ppm) to 5 or 14 carbons (3.64 ppm) as the protons become less affected by the 

functionalised Cp* ring. These peaks show little change upon addition of 

substituents onto the pyridine ring. The pyridine protons labelled as c in Figure 3.9 

increase slightly from 8.96 ppm for the 3 carbon tethered complex 3.7 to 8.98 for the 

14 carbon tethered complex 3.9. The other two pyridine protons, d and e, show 

reverse trends. The pyridine peaks in the 
13

C{
1
H} NMR show little deviation 

amongst the varied tether lengths. The shift for carbon g (CH2 adjacent to the OH) 

increases from 62.0 ppm for 3.7 (where n = 3), to 62.6 ppm for compound 3.8 

(where n = 5) and 63.1 ppm for compound 3.9 (where n = 14).  

 

Figure 3.9 Labelled diagram for iridium hydroxyl tethered Cp* based dichloride 

pyridine complexes 

9 8 7 6 5 4 3 2

c e d g f

 

Figure 3.10 Comparison of the 
1
H NMR spectra of variable tethered complexes 3.7, 

3.8 and 3.9 

3.9 

3.8 

3.7 



Chapter 3 

82 

3.3.2 X-ray Crystallography Data for Iridium Hydroxyl Tethered 

Cp* Based Pyridine Monomers 

Single crystals of compounds 3.7, 3.8, 3.11 and 3.13 were obtained using vapour 

diffusion systems. The asymmetric unit for all of compounds contained one 

molecule. As with the previous compounds, the iridium centres have pseudo 

octahedral geometries whereby the hydroxyl tethered Cp* based ligand occupies 

three coordination sites and the two chlorides and pyridine occupy a coordination 

site each. The tether groups face the opposite side to the pyridine ligand, presumably 

due to sterics, forming hydrophobic layers where the chains stack. The addition of 

the hydroxyl tethers gives the potential for the terminal hydroxyl group to hydrogen 

bond with chloride ligands of adjacent molecules. This can be seen in Figure 3.11 b) 

for compound 3.11. Compound 3.7 packs similarly to compounds 3.2 and 3.3 

(Figure 3.5), whereby the molecules pack in alternate layers. The longer, 5 carbon 

tethered complexes 3.8 and 3.11, whose structural solutions were both solved in the 

orthorhombic Pbca space group, pack in two parallel followed by two anti-parallel 

layers when viewed down the a axis, as shown in Figure 3.11.  

a) 

 

b) 

 

Figure 3.11 Packing diagrams of a) 3.8 and b) 3.11 viewed down the a axis 

3.3.2.1 X-ray Crystallography Data for Compound 3.7 

Yellow crystals of compound 3.7 suitable for X-ray crystallography were 

obtained via vapour diffusion from a dichloromethane/pentane solvent system. 

Compound 3.7 crystallised in a triclinic cell and structural solution was performed in 
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the space group P1.  The molecular structure is shown in Figure 3.11 and selected 

bond lengths and angles are shown in Table 3.4.  

 

 

Figure 3.12 A crystal structure of compound 3.7, displacement ellipsoids are at the 

50% probability level. Hydrogen atoms are omitted for clarity 

Bond Distance (Å) Bond Angle (°) 

Ir(1)-Cl(1) 2.4431(8) Cl(1)-Ir(1)-Cl(2)
 

89.30(3) 

Ir(1)-Cl(2) 2.4335(8) Cl(1)-Ir(1)-N(1) 86.01(7) 

Ir(1)-N(1) 2.135(2) Cl(2)-Ir(1)-N(1) 87.02(7) 

Ir(1)-Cg 1.7856(14) Cg-Ir(1)-Cl(1) 126.58(4) 

  Cg-Ir(1)-Cl(2) 127.71(4) 

  Cg-Ir(1)-N(1) 126.80(8) 

Table 3.4 Selected bond lengths and angles for compound 3.7 

3.3.2.2 X-ray Crystallography Data for Compound 3.8 

Yellow crystals of compound 3.8 suitable for X-ray crystallography were 

obtained via vapour diffusion from a dichloromethane/diisopropylether solvent 

system. Compound 3.8 crystallised in an orthorhombic cell and structural solution 

was performed in the space group Pbca.  The molecular structure is shown in Figure 

3.13 and selected bond lengths and angles are shown in Table 3.5. The oxygen is 

disordered over two positions with half occupancy each, and the hydrogens attached 

to C(14) are also disordered. 
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Figure 3.13 A crystal structure of compound 3.8, displacement ellipsoids are at the 

50% probability level. Hydrogen atoms are omitted for clarity 

Bond Distance (Å) Bond Angle (°) 

Ir(1)-Cl(1) 2.433(6) Cl(1)-Ir(1)-Cl(2)
 

87.81(19) 

Ir(1)-Cl(2) 2.431(5) Cl(1)-Ir(1)-N(1) 85.04(19) 

Ir(1)-N(1) 2.185(6) Cl(2)-Ir(1)-N(1) 87.41(19) 

Ir(1)-Cg 1.804(3) Cg-Ir(1)-Cl(1) 127.64(18) 

  Cg-Ir(1)-Cl(2) 126.75(17) 

  Cg-Ir(1)-N(1) 128.21(17) 

Table 3.5 Selected bond lengths and angles for compound 3.8 

3.3.2.3 X-ray Crystallography Data for Compound 3.11 

Yellow crystals of compound 3.11 suitable for X-ray crystallography were 

obtained via vapour diffusion from a dichloromethane/pentane solvent system. 

Compound 3.11 crystallised in an orthorhombic cell and structural solution was 

performed in the space group Pbca.  The molecular structure is shown in Figure 

3.14 and selected bond lengths and angles are shown in Table 3.6. The alkyl chain is 

disordered over the atoms assigned as C13, C14 and O1 where positions A and B 

have occupancies of 83% and 17% respectively. 
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Figure 3.14 A crystal structure of compound 3.11, displacement ellipsoids are at the 

50% probability level. Hydrogen atoms are omitted for clarity 

Bond Distance (Å) Bond Angle (°) 

Ir(1)-Cl(1) 2.4049(13) Cl(1)-Ir(1)-Cl(2)
 

95.61(14) 

Ir(1)-Cl(2) 2.4048(12) Cl(1)-Ir(1)-N(1) 86.73(12) 

Ir(1)-N(1) 2.118(4) Cl(2)-Ir(1)-N(1) 86.44(12) 

Ir(1)-Cg 1.769 Cg-Ir(1)-Cl(1) 127.57 

  Cg-Ir(1)-Cl(2) 126.15 

  Cg-Ir(1)-N(1) 128.43 

Table 3.6 Selected bond lengths and angles for compound 3.11 

3.3.2.4 X-ray Crystallography Data for Compound 3.13 

Yellow crystals of compound 3.13 suitable for X-ray crystallography were 

obtained via layer diffusion from a dichloromethane/hexane solvent system. 

Compound 3.13 crystallised in a monoclinic cell and structural solution was 

performed in the space group P21/c.  The molecular structure is shown in Figure 

3.15 and selected bond lengths and angles are shown in Table 3.7. 
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Figure 3.15 A crystal structure of compound 3.13, displacement ellipsoids are at the 

50% probability level. Hydrogen atoms are omitted for clarity 

Bond Distance (Å) Bond Angle (°) 

Ir(1)-Cl(1) 2.4133(5) Cl(1)-Ir(1)-Cl(2)
 

88.00(2) 

Ir(1)-Cl(2) 2.4300(5) Cl(1)-Ir(1)-N(1) 88.22(5) 

Ir(1)-N(1) 2.1292(16) Cl(2)-Ir(1)-N(1) 85.64(4) 

Ir(1)-Cg 1.7768(8) Cg-Ir(1)-Cl(1) 127.40(3) 

  Cg-Ir(1)-Cl(2) 128.49(3) 

  Cg-Ir(1)-N(1) 125.53(5) 

Table 3.7 Selected bond lengths and angles for compound 3.13 

3.4 Synthesis of Rhodium Hydroxyl Tethered Cp* Based 

Dichloride Pyridine Complexes 

Complexes 3.15-3.17 were prepared according to Scheme 3.3, where for the 

unsubstituted pyridine complex 3.15, the rhodium dimer 2.6 prepared in Chapter 2, 

was stirred in pyridine. The substituted pyridine complexes 3.16 and 3.17 were 

prepared by stirring 2.6 with two equivalents of the corresponding pyridine in 

dichloromethane overnight. 
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Scheme 3.3 General synthesis of rhodium hydroxyl tethered Cp* based dihalide 

pyridine monomers 

3.4.1 NMR Characterisation of Rhodium Hydroxyl Tethered Cp* 

Based Pyridine Monomers 

The peaks for the rhodium complexes 3.15, 3.16 and 3.17 are much broader than 

their iridium analogues, with most peaks appearing as broad singlets. The peaks for 

the 3’-halopyridine protons of compounds 3.16 and 3.17 in the 
1
H NMR spectra are 

similar to that of the Cp* iridium analogues discussed in section 3.2.1. In 

comparison to the 
1
H NMR spectrum of its iridium analogue 3.8, most of the protons 

for the rhodium unsubstituted pyridine complex 3.15, shift downfield, demonstrated 

in Figure 3.17. The peak for proton g (assigned in Figure 3.16) remains at 3.64 ppm 

for both complexes, presumably because the protons are too far away from the metal 

to be significantly affected by it. 

 

Figure 3.16 Labelled diagram for rhodium hydroxyl tethered Cp* based dichloride 

pyridine complex 3.15 
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Figure 3.17 Comparison of the 
1
H NMR spectra of iridium and rhodium tethered 

pyridine complexes 3.8 and 3.15 

3.4.2 X-ray Crystallography Data for Rhodium Hydroxyl Tethered 

Cp* Based Pyridine Monomers 

Single crystals of compounds 3.15 and 3.16 were obtained using vapour diffusion 

systems of chloroform/pentane and dichloromethane/pentane respectively. The 
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asymmetric unit for both compounds contained one molecule. As with the iridium 

compounds, the rhodium centres have pseudo octahedral geometries whereby the 

hydroxyl tethered Cp* based ligand occupies three coordination sites and the two 

chlorides and pyridine occupy a coordination site each and the tethers face the 

opposite side to the pyridine ligand. Intermolecular hydrogen bonds are seen 

between the hydroxyl and terminal chloride of compound 3.15 (assigned as O1 and 

Cl1 in Figure 3.21) with an O(1)..Cl(1) distance of 3.2028(18). The intermolecular 

bonding is similar to that seen for compound 3.7, demonstrated in Figure 3.18. 

a) 

 

b) 

 

Figure 3.18 Packing diagram of compounds a) 3.15 and b) 3.7 showing 

intermolecular hydrogen bonding between a terminal chloride and hydroxyl group 

Compound 3.15 packs in alternate layers similarly to compound 3.7 (and 

compounds 3.2 and 3.3, shown in Figure 3.5), whereby the molecules pack in 

alternate layers, as shown viewed down the a axis in Figure 3.19. Their structural 

solutions were both solved in the triclinic P1 space group. 

a) 

 

b) 

 

Figure 3.19 Packing diagrams of compounds a) 3.15 and b) 3.7 viewed down the a 

axis 

Compound 3.16 packs similarly to both compounds 3.8 and 3.11, in two parallel 

followed by two anti-parallel layers when viewed down the a axis, as shown in 

Figure 3.20. Their structural solutions were all solved in the orthorhombic Pbca 

space group. 
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a)  

 

b) 

 

Figure 3.20 Packing diagrams of compounds a) 3.16 and b) 3.8 viewed down the a 

axis 

3.4.2.1 X-ray Crystallography Data for Compound 3.15 

Red crystals of compound 3.15 were grown, with its molecular structure shown in 

Figure 3.21 and selected bond lengths and angles are shown in Table 3.8. 

 

Figure 3.21 A crystal structure of compound 3.15, displacement ellipsoids are at the 

50% probability level. Hydrogen atoms are omitted for clarity 
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Bond Distance (Å) Bond Angle (°) 

Rh(1)-Cl(1) 2.4502(6) Cl(1)-Rh(1)-Cl(2)
 

90.53(2) 

Rh(1)-Cl(2) 2.4393(5) Cl(1)-Rh(1)-N(1) 86.91(4) 

Rh(1)-N(1) 2.1505(15) Cl(2)-Rh(1)-N(1) 89.08(4) 

Rh(1)-Cg 1.7894(8) Cg-Rh(1)-Cl(1) 125.96(3) 

  Cg-Rh(1)-Cl(2) 126.16(3) 

  Cg-Rh(1)-N(1) 126.08(5) 

Table 3.8 Selected bond lengths and angles for compound 3.15 

3.4.2.2 X-ray Crystallography Data for Compound 3.16 

Orange plates of compound 3.16 were grown, with its molecular structure shown 

in Figure 3.22 and selected bond lengths and angles are shown in Table 3.9. 

 

Figure 3.22 A crystal structure of compound 3.16, displacement ellipsoids are at the 

50% probability level. Hydrogen atoms are omitted for clarity 

Bond Distance (Å) Bond Angle (°) 

Rh(1)-Cl(1) 2.4446(7) Cl(1)-Rh(1)-Cl(2)
 

90.07(2) 

Rh(1)-Cl(2) 2.4398(7) Cl(1)-Rh(1)-N(1) 88.28(5) 

Rh(1)-N(1) 2.1567(19) Cl(2)-Rh(1)-N(1) 87.84(5) 

Rh(1)-Cg 1.782 Cg-Rh(1)-Cl(1) 126.23 

  Cg-Rh(1)-Cl(2) 124.76 

  Cg-Rh(1)-N(1) 127.50 

Table 3.9 Selected bond lengths and angles for compound 3.16 



Chapter 3 

92 

3.5 Conclusion 

A series of Group 9 Cp* and functionalised Cp* halide pyridine complexes have 

been synthesised from their corresponding metal halide Cp* or Cp* based dimers 

and pyridines. They were synthesised using various methods depending on the metal 

and the ligands. These complexes have been prepared for use as transfer 

hydrogenation catalysts, discussed in Chapter 6. Some of these complexes have also 

been tested as anti-cancer agents, with the results discussed in Chapter 8. 
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4.1 Introduction 

This Chapter discusses the synthesis and characterisation of novel 18 electron air-

stable piano stool iridium and rhodium Cp* and hydroxyl tethered Cp* based halide 

complexes incorporating picolinamide ligands synthesised previously within the 

McGowan group.
1,2

 Many iridium/rhodium picolinamide compounds have been 

reported previously
3-15

, used in applications such as luminescence
16-21

 and 

catalysis.
22,23

 Iridium Cp* picolinamide complexes have been previously prepared, 

where they were used as reductive amination catalysts, discussed in Chapter 1.
23

 The 

picolinamides bind to the iridium through the two nitrogens as an LX donor, whereas 

for analogous ruthenium-arene compounds the picolinamides bind through the 

pyridyl nitrogen and either the amide nitrogen or oxygen depending on the nature of 

the picolinamide substituents.
1,2

 The complexes discussed in this Chapter are shown 

in Figure 4.1. 

 
  

4.1 R = H 4.14 4.15 

4.2 R = 4’-F 

  

4.3 R = 2’, 4’- diF 

4.4 R = 2’, 5’- diF 

4.5 R = 2’-Cl 

4.6 R = 3’-Cl 

4.7 R = 2’, 4’- diCl 

4.8 R = 2’, 5’- diCl 

4.9 R = 4’-Ac 4.16 R = 3’-Cl 4.18 R = 2’-Cl 

4.10 R = 4’-NO2 4.17 R = 4’-NO2 4.19 R = 3’-Cl 

4.11 R = 2’-OMe     

4.12 R = 2’-OMe, 4’-NO2     

4.13 R = 2’, 4’, 6’-triMe     

Figure 4.1 List of compounds discussed in Chapter 4 
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The products were characterised by 
1
H, and 

13
C{

1
H} NMR spectroscopy, 

elemental analysis and mass spectrometry. In addition single crystals of compounds 

4.6, 4.7, 4.9, 4.10, 4.12-4.15 and 4.19 were obtained. There is a characteristic peak in 

the mass spectra due to the molecular ion minus a halide ligand. The synthetic 

procedures used depended on the identity of the metal and the functionalised Cp* 

ligand, thus are discussed separately for the relevant compounds. 

4.2 General Characteristics of Picolinamide Complexes 

4.2.1 NMR data 

Upon complexation, there is a general shift in the 
1
H NMR spectrum of the 

picolinamide proton peaks downfield and the methyl groups upfield, along with 

removal of the amide proton peak.  

 

Figure 1.2 Labelled diagram for metal Cp* or Cp* based picolinamide complexes 

8.5 8.0 7.5

c f
e d
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Figure 1.3 
1
H NMR of pyridyl protons in 4.1 (unassigned peak corresponds to a 

proton in the aniline ring) 

In the 
1
H NMR spectrum, proton c (defined in Figure 1.2) has the highest 

chemical shift with a d-ddd splitting pattern, depending on the resolution. The peak 

appears at 8.57 ppm in the case of the unsubstituted picolinamide complex 4.1 

(shown in Figure 1.3), between 8.53 and 8.56 ppm when there are electron donating 

substituents, and between 8.58 and 8.64 when there are electron withdrawing 

substituents on the picolinamide. Proton f appears as a ddd (8.10-8.22 ppm). Proton e 

has a vtd splitting pattern (7.81-8.01 ppm) as similar coupling is observed with 

protons d and f. The peak for the d proton appears between 7.41-7.63, with a ddd 

splitting. 

In the 
13

C{
1
H}

 
NMR the highest peak observed is carbon h appearing at 165.8-

170.0 ppm (shown in Figure 1.4 for 4.1). The highest pyridyl peak is the quarternary 

carbon g (154.2-155.8 ppm), followed by c (148.8-151.3 ppm), e (138.3-139.3 ppm), 

d (126.9-128.5 ppm), then f (123.8-127.1 ppm). The quarternary Cp/Cp* peak a is 

observed between 86.5-87.6 where M = Ir, and 94.7-97.3 where M = Rh (as a 

doublet with a 
1
J(

13
C-

103
Rh) coupling of

 
8.0-8.1 Hz). The methyl carbon b appears 

between 8.4 and 9.1 ppm.  

160 140 120 100 80 60 40 20 0

h g

c e

a

b

128.0 127.5 127.0 126.5

d f

 

Figure 1.4 
13

C{
1
H} NMR of pyridyl protons in 4.1 (unassigned peaks correspond to 

carbons in the aniline ring or solvents) 
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4.2.2 X-ray Crystallography Data 

All of the crystallised complexes have a piano stool configuration, with a pseudo 

octahedral geometry around the metal centre, whereby the chloride occupies one site, 

the picolinamide occupies two sites and the Cp* or hydroxyl tethered Cp* based 

ligand occupies three coordination sites. Due to the rigidity of the picolinamide 

ligand, the angle between the two nitrogens is smaller than 90°, between 76.3 and 

77.1°. The angle between the pyridyl nitrogen and the terminal halide is between 

81.5 and 88.5°, and between the amide nitrogen and the terminal halide is between 

85.5 and 89.7°. As the functionalised Cp* lies in the middle of 3 coordination sites, 

the angle between the functionalised Cp* centroid and either of the picolinamide’s 

nitrogens or the halide is between 123 and 135°. The picolinamide ligands adopt 

non-planar configurations, presumably to avoid a steric clash between the ring 

defined as C(37)-C(42) and the functionalised Cp* ring. The torsion angle between 

the picolinamide rings ranges from 37 to 70° with no distinct trend for the varied 

picolinamide substituents. The two tethered complexes 4.15 and 4.19 have the 

smallest torsion angles with 46.27(15) and 37.3(3)° respectively.  Most of the 

compounds crystallised in a monoclinic cell.  

a) 

 

b) 

 

c) 

 

Figure 1.5 Packing diagrams of a) 4.6, b) 4.9, and c) 4.12, viewed down the c axis. 

Hydrogen atoms are omitted for clarity 

There are similarities in the way that some of the compounds pack, for instance 

compounds 4.6, 4.9 and 4.12 (which all crystallised with either a dichloromethane or 
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chloroform solvent molecule), when viewed from the c axis, all display a 

herringbone arrangement (Figure 1.5). Compounds 4.7 and 4.13 (which both 

crystallised with a molecule of water) have similar packing diagrams, most 

noticeably when viewed down the a axis, as shown in Figure 1.6, where the 

molecules pack top to tail in both directions.  

a) 

 

b) 

 

Figure 1.6 Packing diagrams of compounds a) 4.7 and b) 4.13 when viewed down 

the a axis. Hydrogen atoms are omitted for clarity 

a) 

 

b) 

 

c)

 

Figure 1.7 Intermolecular hydrogen bonds in compounds a) 4.7, b) 4.13, and c) 4.10 

A water molecule hydrogen bonds with the chloride of one molecule and the 

carbonyl of an adjacent molecule forming an intermolecular dimer, as demonstrated 

in Figure 1.7. Compound 4.10 crystallises with a molecule of methanol, which 

forms a hydrogen bond with the carbonyl of the picolinamide. In the cases of the 

tethered complexes 4.15 and 4.19, hydrogen bonds are seen between the hydroxyl 

group of the tether and carbonyl group of the amide, demonstrated in Figure 1.8.   
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a) 

 

b) 

 

Figure 1.8 Packing diagrams of compounds a) 4.15, and b) 4.19 showing 

intermolecular hydrogen bonds and π-π stacking. Hydrogen atoms (apart from 

the hydroxyl) are omitted for clarity 

4.3 Synthesis of Iridium Cp* Halide Picolinamide 

Complexes 

A range of iridium Cp* halide picolinamide complexes were synthesised using 

two different methods. For compounds 4.1, 4.3, 4.4, 4.10-4.13, [IrCp*Cl2]2 was 

refluxed in ethanol overnight with two equivalents of the picolinamide and an excess 

of ammonium hexafluorophosphate (method a shown in Scheme 1.1).  

 

Scheme 1.1 Synthesis of iridium Cp* halide picolinamide complexes via method a 

For compounds 4.2, 4.5-4.9 and 4.14, [IrCp*X2]2 was microwaved in methanol at 

150 °C for 10 minutes with two equivalents of both the picolinamide and sodium 

bicarbonate (method b shown in Scheme 1.2). The purification procedures varied, 

depending on the complex. 
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Scheme 1.2 Synthesis of iridium Cp* halide picolinamide complexes via method b 

4.3.1 NMR Characterisation of Iridium Cp* Halide Picolinamide 

Complexes 

Upon complexation, in the 
1
H NMR spectrum,

 
the methyl protons shift from 1.59 

ppm (for [IrCp*Cl2]2 to 1.41-1.48 ppm for the iridium chloride complexes 4.1-4.13, 

and from 1.83 ppm (for [IrCp*I2]2 to 1.52 ppm for the iodide analogue 4.14.  

Figure 1.9 shows a 
1
H NMR spectrum of compound 4.4 with its labelled diagram 

in Figure 1.10. The proton defined as k splits into what appears a triplet of doublets, 

but is actually a ddd splitting where the proton has equal 
3
J(

1
H-

1
H) and 

3
J(

1
H-

19
F) 

coupling values and a smaller 
4
J(

1
H-

19
F) coupling value. 

 

Figure 1.9 
1
H NMR spectrum of compound 4.4 (CDCl3, 300 K, 300 MHz) 
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Figure 1.10 Labelled diagram of compound 4.4 

4.3.2 X-ray Crystallography Data for Iridium Cp* Halide 

Picolinamide Complexes 

The iridium Cp* halide picolinamide complexes were either crystallised by slow 

diffusion from a methanolic solution, vapour diffusion of pentane into a chloroform/ 

dichloromethane solution or layer diffusion from a dichloromethane/hexane solvent 

system. In all cases, the product crystallised with a solvent molecule. 

4.3.2.1 X-ray Crystallography Data for Compound 4.6 

Orange crystals of compound 4.6 suitable for single X-ray crystallography were 

obtained via layer diffusion from a dichloromethane/hexane solvent system. 

Compound 4.6 was solved in a monoclinic cell and structural solution was 

performed in the space group P21/n. The asymmetric unit contains a complex 

molecule with a molecule of dichloromethane. The molecular structure is shown in 

Figure 1.11 and selected bond lengths and angles in Table 1.1. The torsion angle 

between the picolinamide rings N(1)-C(35) and C(37)-C(42) is 70.03(11) °. 
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Figure 1.11 A crystal structure of compound 4.6, displacement ellipsoids are at the 

50% probability level. Dichloromethane and hydrogen atoms are omitted for 

clarity 

Bond Distance (Å) Bond Angle (°) 

Ir(1)-Cl(1) 2.4305(6) N(1)-Ir(1)-Cl(1) 84.63(5) 

Ir(1)-N(1) 2.1061(16) N(1)-Ir(1)-N(2) 76.27(6) 

Ir(1)-N(2) 2.1151(16) N(2)-Ir(1)-Cl(1) 86.25(5) 

Ir(1)-Cg  N(1)-Ir(1)-Cg 132.09(5) 

  N(2)-Ir(1)-Cg 132.75(5) 

  Cl(1)-Ir(1)-Cg 126.74(3) 

Table 1.1 Selected interatomic distances and angles for compound 4.6 with s.u.s 

shown in parenthesis 

4.3.2.2 X-ray Crystallography Data for Compound 4.7 

Yellow plates of compound 4.7 suitable for X-ray crystallography were obtained 

via layer diffusion from a dichloromethane/hexane solvent system. Compound 4.7 

was solved in a monoclinic cell and structural solution was performed in the space 

group P21/n. The asymmetric unit contains a complex molecule with a molecule of 

water. The molecular structure is shown in Figure 1.12 and selected bond lengths 

and angles in Table 1.2. The torsion angle between the picolinamide rings N(1)-

C(35) and C(37)-C(42) is 67.43(13) °. 
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Figure 1.12 A crystal structure of compound 4.7, displacement ellipsoids are at the 

50% probability level. Water and hydrogen atoms are omitted for clarity  

Bond Distance (Å) Bond Angle (°) 

Ir(1)-Cl(1) 2.4475(7) N(1)-Ir(1)-Cl(1) 83.26(6) 

Ir(1)-N(1) 2.115(2) N(1)-Ir(1)-N(2) 76.28(8) 

Ir(1)-N(2) 2.124(2) N(2)-Ir(1)-Cl(1) 85.75(7) 

Ir(1)-Cg 1.8110(12) N(1)-Ir(1)-Cg 132.99(7) 

  N(2)-Ir(1)-Cg 133.95(7) 

Table 1.2 Selected interatomic distances and angles for compound 4.7 with s.u.s 

shown in parenthesis 

4.3.2.3 X-ray Crystallography Data for Compound 4.9 

Yellow plates of compound 4.9 suitable for X-ray crystallography were obtained 

via layer diffusion from a dichloromethane/hexane solvent system. Compound 4.9 

was solved in a monoclinic cell and structural solution was performed in the space 

group P21/n. The asymmetric unit contains a complex molecule with a molecule of 

dichloromethane. The molecular structure is shown in Figure 1.13 and selected bond 

lengths and angles in Table 1.3. The torsion angle between the picolinamide rings 

N(31)-C(35) and C(37)-C(42) is 61.32(19)°. 
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Figure 1.13 A crystal structure of compound 4.9, displacement ellipsoids are at the 

50% probability level. Dichloromethane and hydrogen atoms are omitted for 

clarity  

Bond Distance (Å) Bond Angle (°) 

Ir(1)-Cl(1) 2.4392(9) N(1)-Ir(1)-Cl(1) 84.54(8) 

Ir(1)-N(1) 2.112(3) N(1)-Ir(1)-N(2) 76.72(11) 

Ir(1)-N(2) 2.131(3) N(2)-Ir(1)-Cl(1) 87.24(9) 

Ir(1)-Cg 1.8104(19) N(1)-Ir(1)-Cg 132.06(10) 

  N(2)-Ir(1)-Cg 131.63(10) 

  Cl(1)-Ir(1)-Cg 126.93(7) 

Table 1.3 Selected interatomic distances and angles for compound 4.9 with s.u.s 

shown in parenthesis 

4.3.2.4 X-ray Crystallography Data for Compound 4.10 

Orange crystals of compound 4.10 suitable for X-ray crystallography were 

obtained via slow diffusion from a methanolic solution. Compound 4.10 was solved 

in a triclinic cell and structural solution was performed in the space group P1. The 

asymmetric unit contains one complex molecule with a molecule of methanol. The 

molecular structure is shown in Figure 1.14 and selected bond lengths and angles in 

Table 1.4. The torsion angle between the picolinamide rings N(1)-C(35) and C(37)-

C(42) is 47.48(11)°. 
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Figure 1.14 A crystal structure of compound 4.10, displacement ellipsoids are at the 

50% probability level. Methanol and hydrogen atoms are omitted for clarity  

Bond Distance (Å) Bond Angle (°) 

Ir(1)-Cl(1) 2.4131(5) N(1)-Ir(1)-Cl(1) 85.02(4) 

Ir(1)-N(1) 2.1059(16) N(1)-Ir(1)-N(2) 76.27(7) 

Ir(1)-N(2) 2.1146(17) N(2)-Ir(1)-Cl(1) 88.17(5) 

Ir(1)-Cg 1.7988(9) N(1)-Ir(1)-Cg 131.61(6) 

  N(2)-Ir(1)-Cg 133.13(6) 

  Cl(1)-Ir(1)-Cg 125.27(3) 

Table 1.4 Selected interatomic distances and angles for compound 4.10 with s.u.s 

shown in parenthesis 

4.3.2.5 X-ray Crystallography Data for Compound 4.12 

Yellow crystals of compound 4.12 suitable for X-ray crystallography were 

obtained via vapour diffusion of pentane into a chloroform solution. Compound 4.12 

was solved in a monoclinic cell and structural solution was performed in the space 

group P21/n. The asymmetric unit contains a complex molecule with a molecule of 

chloroform. The molecular structure is shown in Figure 1.15 and selected bond 

lengths and angles in Table 1.5. The torsion angle between the picolinamide rings 

N(1)-C(35) and C(37)-C(42) is 63.6(4) °. 
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Figure 1.15 A crystal structure of compound 4.12, displacement ellipsoids are at the 

50% probability level. Chloroform and hydrogen atoms are omitted for clarity  

Bond Distance (Å) Bond Angle (°) 

Ir(1)-Cl(1) 2.4283(19) N(1)-Ir(1)-Cl(1) 84.43(17) 

Ir(1)-N(1) 2.112(6) N(1)-Ir(1)-N(2) 77.1(2) 

Ir(1)-N(2) 2.107(6) N(2)-Ir(1)-Cl(1) 85.49(19) 

Ir(1)-Cg 1.790(4) N(1)-Ir(1)-Cg 132.9(2) 

  N(2)-Ir(1)-Cg 132.1(2) 

  Cl(1)-Ir(1)-Cg 126.72(14) 

Table 1.5 Selected interatomic distances and angles for compound 4.12 with s.u.s 

shown in parenthesis 

4.3.2.6 X-ray Crystallography Data for Compound 4.13 

Orange crystals of compound 4.13 suitable for X-ray crystallography were 

obtained via slow diffusion from a methanolic solution. Compound 4.13 was solved 

in a monoclinic cell and structural solution was performed in the space group P21/c. 

The asymmetric unit contains one complex molecule with a molecule of water. The 

molecular structure is shown in Figure 1.16 and selected bond lengths and angles in 

Table 1.6. The torsion angle between the picolinamide rings N(1)-C(35) and C(37)-

C(42) is 69.85(9)°. 
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Figure 1.16 A crystal structure of compound 4.13, displacement ellipsoids are at the 

50% probability level. Water and hydrogen atoms are omitted for clarity  

Bond Distance (Å) Bond Angle (°) 

Ir(1)-Cl(1) 2.4733(5) N(1)-Ir(1)-Cl(1) 81.51(4) 

Ir(1)-N(1) 2.1059(15) N(1)-Ir(1)-N(2) 76.97(6) 

Ir(1)-N(2) 2.1284(16) N(2)-Ir(1)-Cl(1) 89.74(4) 

Ir(1)-Cg 1.8067(9) N(1)-Ir(1)-Cg 133.23(5) 

  N(2)-Ir(1)-Cg 134.58(5) 

  Cl(1)-Ir(1)-Cg 122.89(3) 

Table 1.6 Selected interatomic distances and angles for compound 4.13 with s.u.s 

shown in parenthesis 

4.3.2.7 X-ray Crystallography Data for Compound 4.14 

Orange crystals of compound 4.14 suitable for X-ray crystallography were 

obtained via layer diffusion using a dichloromethane/hexane solvent system. 

Compound 4.14 was solved in a triclinic cell and structural solution was performed 

in the space group P1. The asymmetric unit contains a complex molecule with an 

equivalent of sodium iodide, methanol, dichloromethane and water. The molecular 

structure is shown in Figure 1.17 and selected bond lengths and angles in Table 1.7. 

The torsion angle between the picolinamide rings N(1)-C(35) and C(37)-C(42) is 

69.85(9)°. 
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Figure 1.17 A crystal structure of compound 4.14, displacement ellipsoids are at the 

50% probability level. Sodium iodide, methanol, dichloromethane, water and 

hydrogen atoms are omitted for clarity  

Bond Distance (Å) Bond Angle (°) 

Ir(1)-I(1) 2.7263(3) N(1)-Ir(1)-I(1) 83.67(7) 

Ir(1)-N(1) 2.091(2) N(1)-Ir(1)-N(2) 76.80(9) 

Ir(1)-N(2) 2.114(2) N(2)-Ir(1)-I(1) 88.60(7) 

Ir(1)-Cg  N(1)-Ir(1)-Cg  

  N(2)-Ir(1)-Cg  

  I(1)-Ir(1)-Cg  

Table 1.7 Selected interatomic distances and angles for compound 4.14 with s.u.s 

shown in parenthesis 

4.4 Synthesis of Iridium Hydroxyl Tethered Cp* based 

Chloride Picolinamide Complex 

The iridium hydroxyl tethered Cp* based chloride picolinamide complex 4.15 

was synthesised by stirring [Ir{η
5
-C5(CH3)4C5H10OH}Cl2]2  with 2 equivalents of the 

picolinamide and triethylamine  in dichloromethane overnight, shown in Scheme 

1.3. The resulting solution was evaporated to dryness and the residue recrystallised 

using vapour diffusion with a dichloromethane/pentane solvent system, to give the 

product as orange crystals. 
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Scheme 1.3 Synthesis of iridium hydroxyl tethered Cp* based chloride picolinamide 

complex 4.15 

4.4.1.1 X-ray Crystallography Data for 4.15 

Orange single crystals of compound 4.15 suitable for X-ray crystallography were 

obtained via layer diffusion using a dichloromethane/hexane solvent system. 

Compound 4.15 was solved in a monoclinic cell and structural solution was 

performed in the space group P21/c. The asymmetric unit contains two complex 

molecules with two molecules of dichloromethane. The molecular structure is shown 

in Figure 1.18 and selected bond lengths and angles in Table 1.8. The torsion angle 

between the picolinamide rings N(1)-C(35) and C(37)-C(42) is 46.27(15) °. There is 

intermolecular hydrogen bonding between O(1)-H and O(2) with an O…O distance 

of 2.747(4) Å, shown in Figure 1.8 a). 

 

Figure 1.18 A crystal structure of compound 4.15, displacement ellipsoids are at the 

50% probability level. Dichloromethane and hydrogen atoms are omitted for 

clarity  
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Bond Distance (Å) Bond Angle (°) 

Ir(1)-Cl(1) 2.4417(8) N(1)-Ir(1)-Cl(1) 84.56(8) 

Ir(1)-N(1) 2.121(3) N(1)-Ir(1)-N(2) 76.63(10) 

Ir(1)-N(2) 2.114(3) N(2)-Ir(1)-Cl(1) 86.49(8) 

Ir(1)-Cg 1.8094(14) N(1)-Ir(1)-Cg 133.22(9) 

  N(2)-Ir(1)-Cg 132.14(9) 

  Cl(1)-Ir(1)-Cg 125.94(5) 

Table 1.8 Selected interatomic distances and angles for compound 4.15 with s.u.s 

shown in parenthesis 

4.5 Synthesis of a Rhodium Cp* Chloride Picolinamide 

Complex 

The rhodium Cp* halide picolinamide complex 4.16 was synthesised by refluxing 

[RhCp*Cl2]2 with 2 equivalents of the picolinamide and sodium bicarbonate in 

methanol overnight, shown in Scheme 1.4. Compound 4.17 was prepared according 

to method a in Scheme 1.1.  

 

Scheme 1.4 Synthesis of rhodium Cp* chloride picolinamide complexes 4.16 and 

4.17 

4.6 Synthesis of Rhodium Hydroxyl Tethered Cp* based 

Picolinamide Complexes 

The rhodium hydroxyl tethered Cp* based halide picolinamide complexes 4.18 

and 4.19 were synthesised by stirring [Rh η
5
-{C5(CH3)4C5H10OH}Cl2]2 with 2 

equivalents of the picolinamide and sodium bicarbonate in water at 80 °C overnight. 

The resulting orange suspensions were filtered, washed with diethyl ether and dried 

to give analytically pure orange solids. 
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Scheme 1.5 Synthesis of rhodium hydroxyl tethered Cp* based chloride 

picolinamide complexes 4.18 and 4.19 

4.6.1.1 X-ray Crystallography Data for 4.19 

Red crystals of compound 4.19 suitable for X-ray crystallography were obtained 

via slow diffusion from a methanolic solution. Compound 4.19 was solved in an 

orthorhombic cell and structural solution was performed in the space group Pca21. 

The asymmetric unit contains one molecule. The molecular structure is shown in 

Figure 1.19 and selected bond lengths and angles in Table 1.9. The torsion angle 

between the picolinamide rings N(1)-C(35) and C(37)-C(42) is 37.3(3)°. As with its 

iridium analogue (4.15), compound 4.19 exhibits intermolecular hydrogen bonding 

between O(1)-H and O(2) with an O…O distance of  2.789(7) Å, as shown in Figure 

1.8 b). 

 

Figure 1.19 A crystal structure of compound 4.19, displacement ellipsoids are at the 

50% probability level. Hydrogen atoms are omitted for clarity 
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Bond Distance (Å) Bond Angle (°) 

Rh(1)-Cl(1) 2.4506(16) N(1)-Rh(1)-Cl(1) 88.54(14) 

Rh(1)-N(1) 2.136(5) N(1)-Rh(1)-N(2) 77.05(19) 

Rh(1)-N(2) 2.125(5) N(2)-Rh(1)-Cl(1) 88.50(14) 

Rh(1)-Cg 1.824(3) N(1)-Rh(1)-Cg 130.75(19) 

  N(2)-Rh(1)-Cg 130.89(15) 

  Cl(1)-Rh(1)-Cg 125.22(11) 

Table 1.9 Selected interatomic distances and angles for compound 4.19 with s.u.s 

shown in parenthesis 

4.7 Conclusions 

A series of nine group 9 Cp* and hydroxyl tethered Cp* based halide 

picolinamide complexes have been synthesised from their corresponding metal 

halide Cp* or Cp* based dimers and picolinamides. They were synthesised using 

various methods depending on the metal and the ligands. These complexes have 

been prepared for use as transfer hydrogenation catalysts, discussed in Chapter 6. 

Some of these complexes have also been tested as anti-cancer agents, with the results 

discussed in Chapter 8. 
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5.1 Introduction 

This Chapter is concerned with the synthesis and characterisation of iridium Cp* 

chloride complexes with bidentate ligands prepared previously within the McGowan 

group.
1-5

 These complexes have been prepared for either their use as homogeneous 

catalysts for transfer hydrogenation reactions (discussed in Chapter 6) or their use as 

anti-cancer agents (discussed in Chapter 8). Various aliphatic iridium Cp* diketonate 

complexes have been previously reported by Maitlis et al.
6
 Ruthenium-arene 

analogues of compound 5.1 have been previously prepared within the group and 

their anti-cancer activity has been evaluated.
2
  

A list of compounds discussed in this Chapter is shown in Figure 5.1, with full 

experimental details described in Chapter 9. Compound 5.3 has been previously 

prepared,
7-10

 so its synthesis and characterisation will not be discussed here. 

 
 

 

5.1 5.2 5.3 

  

 

5.4 5.5 R = 3’-F  

 5.6 R = 4’-F  

Figure 5.1 List of compounds discussed in Chapter 5 

All complexes were characterised by 
1
H and 

13
C{

1
H} NMR, mass spectrometry, 

elemental analysis and in the cases of compounds 5.1, 5.2, 5.4, 5.5, and 5.6, single 

crystal X-ray crystallography. There is a characteristic peak in the mass spectrum of 

the molecular ion minus the chloride ligand. Compound 5.1 contains an (N,N)-bound 

bidentate ligand, where the pyridyl nitrogen is a two electron donor and the amide 

nitrogen is a one electron donor. Compound 5.2 contains an (N,O)-bound bidentate 
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ligand, where both the nitrogen and oxygen are two electron donors. In order for the 

iridium to maintain its +3 oxidation state, the resulting complex is charged. 

Compound 5.3 contains an (N,O)-bound bidentate ligand, where the nitrogen is a two 

electron donor and the oxygen a one electron donor. In compounds 5.5 and 5.6, the 

ketoiminate ligand is aromatic, so the types of donors of each atom are less clear cut, 

but overall the ligand is a three electron donor. 5.4 has an (O,O)-bound diketonate 

ligand, which, similarly to the ketoiminate ligand, behaves as a three electron donor. 

5.2 X-ray Crystallography Data for Iridium Cp* Chloride 

Bidentate Complexes 

All of the crystallised complexes have a piano stool configuration, with a pseudo 

octahedral geometry around the metal centre, whereby the chloride occupies one site, 

the bidentate ligand occupies two sites, and the Cp* ligand occupies three 

coordination sites. In all of the compounds, the asymmetric unit contained one 

molecule and in the case of compound 5.5 a dichloromethane molecule. Compound 

5.6 crystallised in a triclinic cell, compound 5.1 crystallised in a monoclinic cell and 

compounds 5.2, 5.4, and 5.5 crystallised in an orthorhombic unit cell. 

5.3 Synthesis and Characterisation of Compound 5.1 

The quinaldamide complex, 5.1, is similar to the picolinamide complexes 

discussed in Chapter 4, but with a fused pyridine and benzene ring. It was prepared 

by reaction of [IrCp*Cl2]2 with 2 equivalents of the quinaldamide ligand and 

triethylamine in dichloromethane. The amide of the quinaldimide becomes 

deprotonated and binds to the iridium in an LX bidentate fashion (Scheme 5.1). 

Scheme 5.1 Synthesis of the iridium Cp* chloride quinaldamide complex, 5.1 

Removal of the amide proton at 10.6 ppm in the 
1
H NMR is diagnostic for 

complexation, demonstrated in Figure 5.2. There is also an upfield shift of the 

methyl groups from 1.6 to 1.4 ppm. 
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10 9 8 7 6 5 4 3 2

8.5 8.0 7.5

 

Figure 5.2 
1
H NMR spectrum of compound 5.1 compared to its constituent starting 

materials 

5.3.1 X-ray Crystallography Data for Compound 5.1 

Red crystals of compound 5.1 were grown using vapour diffusion with a 

dichloromethane/diethylether solvent system.  

 

Figure 5.3 A crystal structure of 5.1, displacement ellipsoids are at the 50% 

probability level. Hydrogen atoms are omitted for clarity  

[IrCp*Cl2]

2 

 

5.1 

 

quinaldamide 
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Compound 5.1 was solved in an orthorhombic cell and structural solution was 

performed in the space group Pca21. The molecular structure is shown in Figure 5.3 

and selected bond lengths and angles in Table 5.1. The torsion angle between the 

quinaldamide rings N(1)-C(35) and C(37)-C(42) is 52.26(9)°. 

Bond Distance (Å) Bond Angle (°) 

Ir(1)-Cl(1) 2.4502(5) N(1)-Ir(1)-Cl(1) 85.43(4) 

Ir(1)-N(1) 2.1452(16) N(1)-Ir(1)-N(2) 76.14(6) 

Ir(1)-N(2) 2.1058(15) N(2)-Ir(1)-Cl(1) 89.09(4) 

Ir(1)-Cg 1.8122(9) N(1)-Ir(1)-Cg 133.78(5) 

  N(2)-Ir(1)-Cg 129.44(5) 

  Cl(1)-Ir(1)-Cg 126.01(3) 

Table 5.1 Selected interatomic distances and angles for compound 5.1 with s.u.s 

shown in parenthesis 

5.4 Synthesis and Characterisation of Compound 5.2 

The N-methylpicolinamide complex, 5.2, is prepared using the same method as 

the picolinamide complexes discussed in Chapter 4 (Scheme 5.2). As the amide is 

tertiary, the picolinamide is forced to bind through the amide oxygen along with the 

pyridyl nitrogen. As it behaves as an L2 ligand, the complex is cationic, in order for 

the iridium to retain its +3 oxidation state. The initial chloride counterion is replaced 

with the PF6
-
 group. 

 

Scheme 5.2 Synthesis of the iridium Cp* chloride N-methylpicolinamide 

complex, 5.2 

The 
1
H NMR of compound 5.2, along with its substituent starting materials 

[IrCp*Cl2]2 and N-methylpicolinamide ligand, is shown in Figure 5.4. There is a 

downfield shift of the Cp* and picolinamide methyl groups, and a separation of the 

aromatic peaks. 
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9 8 7 6 5 4 3 2  

Figure 5.4 
1
H NMR spectrum of compound 5.2 compared to its constituent starting 

materials 

In comparison to the 
1
H NMR of the

 
unsubstitued picolinamide complex 4.8, 

discussed in Chapter 4, the aromatic region of compound 5.2 is less well defined, 

shown in Figure 5.5.  

9.0 8.5 8.0 7.5 7.0  

Figure 5.5 
1
H NMR spectrum of 5.2 compared to the analogous unsubstituted 

picolinamide complex 4.8 

[IrCp*Cl2]2 

 

5.2 

N-methylpicolinamide 

 

5.2 
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There are two peaks at 8.6 and 9.0 ppm for the proton attached to the carbon 

adjacent to the pyridyl nitrogen, implying two isomers of compound 5.2. 

5.4.1 X-ray Crystallography Data for Compound 5.2 

Yellow crystals of compound 5.2 were grown using vapour diffusion with a 

dichloromethane/pentane solvent system. Compound 5.2 was solved in an 

orthorhombic cell and structural solution was performed in the space group Pbca. 

The molecular structure is shown in Figure 5.6 and selected bond lengths and angles 

in Table 5.2. 

 

Figure 5.6 A crystal structure of compound 5.2, displacement ellipsoids are at the 

50% probability level. Hydrogen atoms are omitted for clarity  

Bond Distance (Å) Bond Angle (°) 

Ir(1)-Cl(1) 2.4174(6) N(1)-Ir(1)-Cl(1) 82.55(5) 

Ir(1)-N(1) 2.1265(18) N(1)-Ir(1)-O(2) 75.73(6) 

Ir(1)-O(2) 2.1667(15) O(2)-Ir(1)-Cl(1) 87.54(4) 

Ir(1)-Cg 1.784 N(1)-Ir(1)-Cg 136.42 

  O(2)-Ir(1)-Cg 128.06 

  Cl(1)-Ir(1)-Cg 127.98 

Table 5.2 Selected interatomic distances and angles for 5.2 with s.u.s shown in 

parenthesis 

5.5 Synthesis and Characterisation of Compound 5.4 

The diketonate complex, 5.4, was prepared by reaction of [IrCp*Cl2]2 with 2 
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equivalents of the diketonate ligand and triethylamine in dichloromethane. The 

diketonate becomes deprotonated and binds to the iridium in an LX bidentate 

fashion, resulting in a neutral piano stool complex where the diketonate ligand is 

aromatic (Scheme 5.3). Upon complexation, the OH peak at 16.2 ppm disappears, 

the diketonate CH peak and CH3 peaks shift upfield and the Cp* CH3 peak shifts 

downfield. 

 

Scheme 5.3 Synthesis of the iridium Cp* chloride diketonate complex, 5.4 

7 6 5 4 3 216.00

7.9 7.8 7.7 7.6 7.5 7.4 7.3

 

Figure 5.7 
1
H NMR spectrum of compound 5.4 compared to its constituent starting 

materials 

5.5.1 X-ray Crystallography Data for Compound 5.4 

Yellow crystals of compound 5.4 were grown using vapour diffusion with a 

chloroform/pentane solvent system. Compound 5.4 was solved in an orthorhombic 

cell and structural solution was performed in the space group P212121. The molecular 

structure is shown in Figure 5.8 and selected bond lengths and angles in Table 5.3.  

[IrCp*Cl2]

2 

 

5.4 

diketonate 
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Figure 5.8 A crystal structure of compound 5.4, displacement ellipsoids are at the 

50% probability level. Hydrogen atoms are omitted for clarity  

Bond Distance (Å) Bond Angle (°) 

Ir(1)-Cl(1) 2.4324(8) O(1)-Ir(1)-Cl(1) 86.53(6) 

Ir(1)-O(1) 2.111(2) O(1)-Ir(1)-O(2) 85.80(9) 

Ir(1)-O(2) 2.1215(18) O(2)-Ir(1)-Cl(1) 86.64(7) 

Ir(1)-Cg 1.7680(14) O(1)-Ir(1)-Cg 125.42(7) 

  O(2)-Ir(1)-Cg 128.70(10) 

  Cl(1)-Ir(1)-Cg 129.27(5) 

Table 5.3 Selected interatomic distances and angles for compound 5.4 with s.u.s 

shown in parenthesis 

5.6 Synthesis and Characterisation of Compounds 5.5 and 

5.6 

The ketoiminate complexes, 5.5 and 5.6, were prepared by reaction of [IrCp*Cl2]2 

with 2 equivalents of the ketoiminate ligand and triethylamine in dichloromethane. 

The ketoiminate becomes deprotonated and binds to the iridium in an LX bidentate 

fashion, resulting in a neutral piano stool complex where the ketoiminate ligand is 

aromatic (Scheme 5.4). 
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Scheme 5.4 Synthesis of the iridium Cp* chloride ketoiminate complexes 5.5 and 

5.6 

 Removal of the amine proton, at 13.1 ppm in the 
1
H NMR spectrum for 

compound 5.5, is diagnostic for complexation (demonstrated in Figure 5.9). There is 

also an upfield shift of the methyl groups (from 1.6 to 1.3 ppm for compound 5.5), 

and the ketoiminate CH proton (from 5.9 to 5.5 ppm for compound 5.5). 

12 10 8 6 4 2

7.75 7.50 7.25 7.00

 

Figure 5.9 
1
H NMR spectrum of compound 5.5 compared to its constituent starting 

materials 

[IrCp*Cl2]

2 

 

5.5 

ketoiminate 
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5.6.1 X-ray Crystallography Data for Compound 5.5 

Red crystals of compound 5.5 were grown via layer diffusion using a 

dichloromethane/hexane solvent system. Compound 5.5 was solved in an 

orthorhombic cell and structural solution was performed in the space group P212121. 

The molecular structure is shown in Figure 5.10 and selected bond lengths and 

angles in Table 5.4. The torsion angle between the ketoiminate rings C(35)-C(40) 

and C(41)-C(46) is 88.8(2)°. 

 

Figure 5.10 A crystal structure of compound 5.5, displacement ellipsoids are at the 

50% probability level. Dichloromethane and hydrogen atoms are omitted for 

clarity  

Bond Distance (Å) Bond Angle (°) 

Ir(1)-Cl(1) 2.4832(9) N(1)-Ir(1)-Cl(1) 83.55(7) 

Ir(1)-N(1) 2.123(2) N(1)-Ir(1)-O(2) 88.51(9) 

Ir(1)-O(2) 2.101(2) O(2)-Ir(1)-Cl(1) 86.07(7) 

Ir(1)-Cg 1.8049(18) N(1)-Ir(1)-Cg 134.99(9) 

  O(2)-Ir(1)-Cg 122.56(9) 

  Cl(1)-Ir(1)-Cg 126.08(6) 

Table 5.4 Selected interatomic distances and angles for 5.5 with s.u.s shown in 

parenthesis 

5.6.2 X-ray Crystallography Data for Compound 5.6 

Red crystals of compound 5.6 were grown using slow diffusion from a methanolic 

solution. Compound 5.6 was solved in a triclinic cell and structural solution was 

performed in the space group P1. The molecular structure is shown in Figure 5.11 
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and selected bond lengths and angles in Table 5.5. The torsion angle between the 

ketoiminate rings C(35)-C(40) and C(41)-C(46) is 71.34(10)°. 

 

 

Figure 5.11 A crystal structure of compound 5.6, displacement ellipsoids are at the 

50% probability level. Hydrogen atoms are omitted for clarity  

Bond Distance (Å) Bond Angle (°) 

Ir(1)-Cl(1) 2.4697(6) N(1)-Ir(1)-Cl(1) 85.07(5) 

Ir(1)-N(1) 2.1208(17) N(1)-Ir(1)-O(2) 88.82(6) 

Ir(1)-O(2) 2.0930(15) O(2)-Ir(1)-Cl(1) 85.57(5) 

Ir(1)-Cg 1.8018(9) N(1)-Ir(1)-Cg 133.86(6) 

  O(2)-Ir(1)-Cg 122.29(5) 

  Cl(1)-Ir(1)-Cg 126.52(3) 

Table 5.5 Selected interatomic distances and angles for compound 5.6 with s.u.s 

shown in parenthesis 

5.7 Conclusion 

A series of group 9 Cp* chloride complexes incorporating either (N,N), (N,O) or 

(O,O) bidentate ligands have been synthesised from [IrCp*Cl2]2 and their 

corresponding ligands. They were synthesised using various methods depending on 

the ligands. These complexes have been prepared either for their use as transfer 

hydrogenation catalysts, discussed in Chapter 6 or as anti-cancer agents, with the 

results discussed in Chapter 8. 
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Chapter 6 Catalytic Transfer Hydrogenation 

of Benzaldehyde/Acetophenone Using Group 

9 Complexes  
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6.1 Introduction 

The catalytic activities of the compounds prepared in Chapters 2-5 were tested 

using the procedure shown in Scheme 6.1 (known as the IPA system which is 

described in Chapter 1). These conditions were optimised for [IrCp*Cl2]2 by Pfizer.
1
 

This transfer hydrogenation system is common for catalytic reductions, whereby the 

solvent, propan-2-ol, also behaves as the hydrogen donor, itself becoming oxidised 

to acetone in the process. Propan-2-ol is used in excess to prevent the reverse 

reaction. Chapter 1 describes transfer hydrogenation and previous successful 

catalysts. 

 

Scheme 6.1 General scheme for catalytic reduction of benzaldehyde with 

homogeneous complexes 

6.2 Reduction of Benzaldehyde/Acetophenone Using 

Hydroxyl Tethered Cp* based Group 9 Halide Dimers 

The functionalised dimers, prepared in Chapter 2 and shown in Figure 6.1, were 

tested as transfer hydrogenation catalysts using the reaction shown in Scheme 6.1 

along with their unfunctionalised Cp* analogues for comparison. This was to ensure 

that the addition of an alcohol chain to the functionalised Cp* ring did not 

compromise the complex’s catalytic activity, as the functionalised complexes were 

tethered onto a solid support for use as immobilised catalysts (Chapter 7). 
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M = Rh, X = Cl M = Ir, X = Cl M = Ir, X = I 

2.6 n = 5 2.10 n = 5 2.13 n = 5 

2.7 n = 9 2.12 n = 14   

2.8 n = 14     

Figure 6.1 List of hydroxyl tethered Cp* based group 9 halide dimers used as 

homogeneous catalysts in this Chapter 

6.2.1 Reduction of Benzaldehyde Using Hydroxyl Tethered Cp* 

Based Group 9 Halide Dimers 

Chart 6.1 highlights the comparison between the activity of the hydroxyl tethered 

Cp* based iridium chloride dimers 2.10 and 2.12 and their unfunctionalised analogue 

[IrCp*Cl2]2 as catalysts for the reduction of benzaldehyde.  

 

 Chart 6.1 Catalytic reduction of benzaldehyde using hydroxyl tethered Cp* based 

iridium chloride dimers 

The activity of the functionalised complexes is comparable to [IrCp*Cl2]2, all 

with a conversion of ca 90% after four hours, implying that the hydroxyl tether is 

innocent in the catalytic reaction, and consequently that the functionalised 

complexes are appropriate starting catalysts to immobilise onto a solid support. 

Chart 6.2 highlights the comparison between the activity of the hydroxyl tethered 

Cp* based rhodium chloride dimers 2.6, 2.7 and 2.8 and their unfunctionalised 
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analogue [RhCp*Cl2]2 as catalysts for the reduction same reaction. The activity of 

the functionalised complexes is comparable with [RhCp*Cl2]2, all with a conversion 

of 78-86% after four hours, again implying that the hydroxyl tether is innocent in the 

catalytic reaction, and consequently that the functionalised complexes are 

appropriate starting catalysts to immobilise onto a solid support. Compared to the 

iridium analogues discussed above, the rhodium dimers show slightly slower activity 

for the reduction of benzaldehyde, most noticeably seen after 1 hour with 

conversions in the range of 25-30% compared to 37-40% seen for the iridium 

analogues. 

 

Chart 6.2 Catalytic reduction of benzaldehyde using hydroxyl tethered Cp* based 

rhodium chloride dimers 

6.2.2 Reduction of Acetophenone Using Hydroxyl Tethered Cp* 

Based Group 9 Halide Dimers 

The hydroxyl tethered Cp* based iridium chloride dimers were tested as catalysts 

for acetophenone reduction. The hydroxyl tethered Cp* based iridium complexes are 

comparable to their unfunctionalised analogue [IrCp*Cl2]2, although with longer 

reaction times than seen for the benzaldehyde reduction (Chart 6.1), with 

conversions after four hours of 68-79%, as demonstrated in Chart 6.3. 
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Chart 6.3 Catalytic reduction of acetophenone using hydroxyl tethered Cp* based 

iridium chloride dimers  

For acetophenone reduction, the rhodium dimers are much more active catalysts 

than their iridium analogues. After 3 hours, the conversion of acetophenone to 1-

phenylethanol, using the hydroxyl tethered Cp* based rhodium dimers 2.6-2.8, is 79-

89% (Chart 6.4), compared to 57-71% when using the iridium analogues.  

 

Chart 6.4 Catalytic reduction of acetophenone using hydroxyl tethered Cp* based 

rhodium chloride dimers  

Interestingly, the alcohol tether on the catalyst, seems to improve the stability of 

the catalyst, compared to [RhCp*Cl2]2, as the initial rate is maintained for longer 

resulting in a higher final conversion. 
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6.3 Reduction of Benzaldehyde/Acetophenone Using Group 

9 Pyridine Complexes 

The dimers [IrCp*Cl2]2 and [RhCp*Cl2]2 are thought to behave as pre-catalysts in 

transfer hydrogenation reactions, where the active catalyst is a monomeric species. 

In order to remove this initial monomer forming step, pyridine complexes with the 

structures shown in Figure 6.2 were prepared, then used in both benzaldehyde and 

acetophenone reductions (Scheme 6.1). The metal, halide, and substituent on the 

pyridine ring was varied in order to gain structure and catalytic activity relationships. 

   

3.1 R = H 3.8 3.14 

3.2 R = 3’-F 

 

3.3 R = 3’-Cl 

3.4 R = 3’-Br 

3.5 R = 3’-I 

  3.15 

Figure 6.2 List of hydroxyl tethered Cp* based group 9 halide pyridine complexes 

used as homogeneous catalysts in this Chapter 

6.3.1 Reduction of Benzaldehyde Using Group 9 Pyridine 

Complexes 

The iridium Cp* dichloride pyridine complexes 3.1-3.5 were tested as catalysts 

for the reduction of benzaldehyde using the conditions shown in Scheme 6.1, with 

the results shown in Chart 6.5. All of the catalysts showed much lower activity than 

[IrCp*Cl2]2 giving 57-77% compared to 93% conversion after 5 hours. Addition of a 

halide on the meta position of the pyridine ligand can improve activity cf. the 

unsubstituted pyridine complex 3.1. The 3’-F substituted pyridine complex 3.2, 

which was not fully soluble in the reaction mixture, has similar activity to the 

unsubstituted complex 3.1, with a conversion of 60% after 5 hours. There is no trend 

between the other halides and catalytic activity, as the 3’-Cl, 3’-Br and 3’-I 

substituted pyridine complexes all show comparable activity with a conversion of 
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73-77% after 5 hours. 

 

Chart 6.5 Catalytic reduction of benzaldehyde using iridium Cp* dichloride 

pyridine complexes 

 

Chart 6.6 Catalytic reduction of benzaldehyde using hydroxyl tethered Cp* based 

pyridine complexes 3.8, 3.14 and 3.15 

The choice of metal and halide ligand is crucial for an active catalyst for the 

reduction of benzaldehyde, as demonstrated in Chart 6.6. The iridium chloride 

complex, 3.8, shows moderate activity with a conversion after 2 hours of 13%, 

whereas the iridium iodide and rhodium chloride analogues, 3.14 and 3.15, show a 

71 and 83% conversion respectively. 
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6.3.2 Reduction of Acetophenone Using Group 9 Pyridine 

Complexes 

The iridium Cp* dichloride pyridine complexes 3.1-3.5 were tested as catalysts 

for the reduction of acetophenone using the conditions shown in Scheme 6.1, with 

the results shown in Chart 6.7. All of the catalysts show low activity, with final 

conversions, after 24 hours, in the range of 6-22% (compared to 94% for 

[IrCp*Cl2]2). As for benzaldehyde reduction, addition of a halide on the meta 

position of the pyridine ligand slightly improved activity cf. the unsubstituted 

pyridine complex 3.1, with final conversions of 20% for compound 3.2, 22% for 

compound 3.3, 21% for compound 3.4 and 16% for compound 3.5, compared to 7% 

for the unsubstituted complex 3.1. 

 

Chart 6.7 Catalytic reduction of acetophenone using iridium Cp* dichloride 

pyridine complexes 

As for benzaldehyde reduction, the choice of metal and halide ligand in the 

hydroxyl tethered Cp* based pyridine complexes has a large effect on the catalytic 

activity, as demonstrated in Chart 6.8. The iridium chloride and iodide complexes, 

3.8 and 3.14, show poor activity with final conversions of 13% and 6% respectively. 

The rhodium chloride analogue 3.15, however, is a much more active catalyst with a 

final conversion of 87%. 
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Chart 6.8 Catalytic reduction of acetophenone using hydroxyl tethered Cp* based 

pyridine complexes 3.8, 3.14 and 3.15 

6.4 Reduction of Benzaldehyde/Acetophenone Using 

Iridium Cp* Chloride Picolinamide Complexes 

The neutral picolinamide complexes prepared in Chapter 4, along with the 

picolinate complex and charged N-methyl picolinamide complex prepared in 

Chapter 5 (shown in Figure 6.3) were tested as catalysts for the reduction of 

benzaldehyde and acetophenone using the conditions shown in Scheme 1.1. 

Picolinamides were chosen as ligands as they are similar to previous ligands used for 

transfer hydrogenation systems. Similar picolinamide complexes have also been 

reported as active catalysts for reductive aminations using transfer hydrogenation 

conditions (discussed in Chapter 1).
2
 As the picolinamide can bind through the 

amide N or O, there is a potential for the complex to switch during the catalytic cycle 

to accommodate a hydrogen. The N-methylpicolinamide complex 5.2 was tested to 

compare the activity of a charged, (N,O) binding, to a neutral, (N,N) binding, 

picolinamide complex. 
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4.1 R = H 5.2 5.3 

4.3 R = 2’, 4’- diF 

4.4 R = 2’, 5’- diF 

4.8 R = 2’, 5’- diCl 

 

Figure 6.3 List of hydroxyl tethered Cp* based group 9 halide picolinamide 

complexes used as homogeneous catalysts in this Chapter 

The neutral (N,N) binding, iridium picolinamide complexes tested against both 

benzaldehyde and acetophenone reduction were shown to have low activity, 

especially for acetophenone reduction, as demonstrated in Table 6.1.  

Compound 
% Conversion after 24 hours 

Benzaldehyde Reduction Acetophenone Reduction 

4.1 - 6.3 

4.3 - 5.9 

4.4 - 5.6 

4.8 25.5 5.8 

5.2 97.2 40.6 

5.3 27.0 15.8 

Table 6.1 Catalytic activity of picolinamide and picolinate complexes for 

benzaldehyde and acetophenone reduction 

By replacing the hydrogen on the amide of the picolinamide ligand with a methyl 

it is forced to bind as an L2 ligand, through the pyridyl nitrogen and amide oxygen, 

forming a cationic complex. This has a significant effect on the resulting complex’s 

catalytic activity, as demonstrated in Chart 6.9 and Table 6.1. 
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Chart 6.9 Comparison of the neutral N,N bound picolinamide complex 4.8 

compared to the charged (N,O)-bound picolinamide complex 5.2, with the 

picolinate complex 5.3 for comparison 

The charged N-methylpicolinamide complex 5.2 is significantly more active than 

its neutral analogue 4.8, for both benzaldehyde and acetophenone reduction. This is 

the most significant for the acetophenone reduction, whereby compound 5.2 converts 

41% of acetophenone to its alcohol, compared to the neglible conversion of 6% 

when using compound 4.8 as the catalyst. In benzaldehyde reduction the final 

conversions are 97% and 26% using the catalyst 5.2 and 4.8 respectively. The 

picolinate complex 5.3 was also tested for both reactions as it has an intermediate 

structure between the neutral and charged picolinamide complexes, being bound 

through the nitrogen and oxygen (similarly to the N-methyl picolinamide), where the 

oxygen is an X ligand resulting in a neutral complex. It showed an intermediate 

conversion of 16% for acetophenone reduction and similar activity to compound 4.8 

for benzaldehyde reduction of 27%. 

6.5 Conclusion 

Several of the complexes prepared in Chapter 2-5 were tested as catalysts for the 

reduction of benzaldehyde and acetophenone using a transfer hydrogenation system 

with iso-propanol as the hydrogen donor. In most cases, the catalyst is more active 

for the reduction of benzaldeyde than acetophenone. The hydroxyl tethered Cp* 

based dimers prepared in Chapter 2 show comparable activity to their Cp* analogues 

which is an encouraging result as they have been tethered onto a solid support for 
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use as immobilised catalysts (discussed in Chapter 7).  

The pyridine complexes have less catalytic activity than their respective Cp* 

dimers, however addition of a halide on the 3’ position of the pyridine ring slightly 

improves activity. The choice of metal and halide ligand has a dramatic effect on 

catalytic activity, especially for acetophenone reduction where the rhodium chloride 

complex 3.15 converts 87% of acetophenone after 24 hours, compared to the iridium 

chloride and iodide analogues, 3.8 and 3.14, which both convert less than 15% of 

acetophenone after 24 hours. 

The neutral picolinamide complexes show trace activity towards acetophenone 

reduction with a final conversion after 24 hours of less than 10%. The charged N-

methylpicolinamide complex, however, has much more activity with a conversion of 

41% after 24 hours. 

6.6 Future Work 

The complexes discussed could be tested as catalysts for alternative transfer 

hydrogenation systems, particularly the neutral picolinamide complexes which have 

been reported to be active reductive amination catalysts. Due to the initial success of 

the N methyl picolinamide complex as an active catalyst for the reduction of 

acetophenone, a library of similar compounds could be tested to gain a structure 

activity relationship between the groups on the arene ring and the catalytic activity.  

6.7 References 

(1) A. Pettman, unpublished work, 2009 

(2) M. Watanbe; J. Hori; K. Murata, patent number US 2010/0234596 A1, 2010 
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Chapter 7 Immobilisation of Functionalised 

Cp* Group 9 Chloride Complexes for Use as 

Transfer Hydrogenation Catalysts 
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7.1 Introduction 

Since the discovery of the Noyori catalyst,
1-3

 hydrogen transfer reactions using 

ruthenium-arene and iridium/rhodium Cp* catalysts have become a much explored 

topic.
4-14

 Whilst these catalysts offer excellent activity and selectivity across a wide 

range of reactions, they employ precious metals, making large scale processes 

expensive. Moreover, their separation from the product, to acceptable ppm levels, is 

often difficult and tiresome. By immobilising the catalyst onto a solid support, it 

should be easily removed from the reaction mass via decantation /filtration and 

ideally recycled making the reaction commercially viable. Furthermore, a solid phase 

catalyst can be used in continuous flow processes. The main problems associated 

with current immobilised catalysts are metal leaching, loss of activity and selectivity 

and catalyst degradation. Previous immobilisation strategies for these catalysts have 

focused on tethering through a diamine ligand with varied success and most report 

metal leaching (discussed in further detail in Chapter 1).
15-22

 The most promising 

system was reported by Li et al whose poly(ethylene glycol)-supported ruthenium 

complex is active against the reduction of acetophenone over 14 runs, however with 

reduced conversions and increased reaction times.
19

 Tethering through the bidentate 

ligand restricts the catalysts to these reactions, limiting the scope.  

The iridium Cp* iodide dimer, 2.13 (Figure 7.1), was immobilised onto 

polyethylene glycol and used as a racemisation catalyst in the asymmetric 

transformation of racemic into optically active sertraline, though the catalyst showed 

a loss in activity over two reuses possibly due to inactive substrate-catalyst insertion 

complexes formed at higher temperatures (discussed further in Chapter 1).
23

 

 

Figure 7.1 The iridium iodide dimer 2.13, synthesised in Chapter 2 

This immobilisation strategy focuses on covalent attachment of Group 9 Cp* 

catalysts, with the general structure shown in Figure 7.2, via the hydroxyl tethered 

Cp* based ligand. Both the strong η
5
 coordination between the functionalised Cp* 

ring and the metal, and the covalent attachment of the tether to the support should 

prevent any metal leaching throughout the catalytic reaction. Another advantage of 
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immobilising through the functionalised Cp* ligand is the ability to add different 

ancillary ligands to the metal enabling flexible use of the system in a variety of 

different reactions. By including a linker between the ring and the support, this 

should provide enough flexibility that the active centre still behaves homogeneously, 

and therefore retains the selectivity of the analogous homogeneous catalyst. The 

choice of metal, length of the linker, and their effect on catalytic activity was 

investigated. 

 

Figure 7.2 Immobilisation strategy of hydroxyl tethered Cp* based Group 9 

Complexes onto a solid support 

The solid used as a support here is a polystyrene supported Wang resin (with 

particle sizes of 100-200 mesh, 1% cross linking of divinylbenzene and a 1.51 

mmol/g loading). As the resin is cross-linked, it is insoluble in all common solvents. 

The resin swells in aprotic solvents, with the swelling data for common solvents 

listed in Table 7.1.
23

 The degree of swelling in the reaction solvent will affect the 

catalytic activity of the immobilised catalyst. 

Solvent Swelling factor 

(ml/g of resin) 

Solvent Swelling factor 

(ml/g of resin) 

Tetrahydrofuran 5.5 Acetonitrile 4.7 

Toluene 5.3 Dimethylformamide 3.5 

Dichloromethane 5.2 Diethyl ether 3.2 

Ethanol 3.2 Methanol 1.8 

Dioxane 4.9 Water 1.0 (no swelling) 

Table 7.1 Swelling data for 1% crosslinked polystyrene in common solvents 

7.2 Synthesis and Optimisation of Immobilisation Method 

The immobilisation method was adapted from a method originally devised by 

Pfizer.
24

 The hydroxyl tethered Cp* based metal halide dimers 2.6 and 2.8-2.12, 
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prepared in Chapter 2 were immobilised onto a polystyrene supported Wang resin 

via a triflate intermediate, prepared in situ under inert conditions (Scheme 7.1).  

 
 

Scheme 7.1 Immobilisation of hydroxyl tethered Cp* based metal halide complexes 

onto polystyrene supported Wang resin 

2,6-Di-tert-butylpyridine was added to triflic anhydride at -10°C. The hydroxyl 

tethered Cp* based metal halide dimer was added slowly to the mixture at -10°C 

(over 30 minutes for a small scale 200 mg synthesis, or an hour for a 5 g synthesis). 

The solution was then left to stir at room temperature for an hour, where for the 

iridium analogues 2.9, 2.10, 2.11 and 2.12, a dark green/brown solution was obtained 

and for the rhodium analogues 2.6 and 2.8, a red solution was obtained. When 2,6-

di-tert-butylpyridine  was replaced with 2,6-lutidine, there were multiple peaks in the 

3-4 ppm region for the 
1
H NMR of 7.4, along with extra peaks between 5 and 6 ppm. 

As demonstrated in Chapter 3, a less substituted pyridine couldn’t be used as a base 

as it behaves as a ligand and binds to the metal centre and results in a poorer catalyst. 

2.6 M = Rh n = 5 2.10 M = Ir n = 5 

2.8 M = Rh n = 14 2.11 M = Ir n = 9 

2.9 M = Ir n = 3 2.12 M = Ir n = 14 

 

7.7 M = Rh n = 5 7.10 M = Ir n = 5 

7.8 M = Rh n = 14 7.11 M = Ir n = 9 

7.9 M = Ir n = 3 7.12 M = Ir n = 14 

 

7.1 M = Rh n = 5 7.4 M = Ir n = 5 

7.2 M = Rh n = 14 7.5 M = Ir n = 9 

7.3 M = Ir n = 3 7.6 M = Ir n = 14 
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An excess of triflic anhydride, along with slow addition of the metal dimer was 

necessary to avoid the formation of secondary products, which are presumably ethers 

formed by reaction of the starting dimer with a triflate intermediate. Under these 

conditions, the triflate always formed in over 90% conversion. The conversion was 

monitored by 
1
H NMR, by the shift of the CH2 peak adjacent to the oxygen in the 

alkyl chain, as demonstrated in Figure 7.3 for compound 7.4, where the peak at 4.5 

ppm represents the CH2OTf protons and the peaks at 3.5 and 3.4 ppm presumably 

represent CH2OR protons. The peak for the CH2OH for 2.10 has disappeared, 

indicating that the reaction is complete. 

12 10 8 6 4 2

4.5 4.0 3.5

2.233.7794.00

 

Figure 7.3 
1
H NMR spectrum of the in situ triflate intermediate 7.4, showing 94% 

conversion to the triflate cf. secondary products  

After removal of the excess triflic anhydride by vacuum distillation, the triflate 

intermediate was added to the Wang resin and the mixture was agitated overnight. 

The resulting red resin was washed with dichloromethane until the filtrate was 

colourless, and this was followed sequentially by a wash with water, 1M HCl, water 

and methanol. 

7.3 Control Homogeneous Reactions 

In order to determine the true nature of the immobilised complex, a control 

reaction was performed, whereby [IrCp*Cl2] was reacted with triflic anhydride and 
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2,6-di-tert-butylpyridine in dichloromethane. The initial orange solution instantly 

turned yellow upon addition of the triflic anhydride. After evaporation of the 

dichloromethane, yellow single crystals of the product were obtained by vapour 

diffusion from a dichloromethane/pentane solvent system. Although the counterion 

could not be modelled, [IrCp*Cl1.5]2
+

 can be seen, as shown in Figure 7.4. 

 

Figure 7.4 Partially solved crystal structure of the product formed from the reaction 

of [IrCp*Cl2]2 with triflic anhydride and 2,6-di-tert-butylpyridine 

As purification of the material was difficult, the reaction was repeated but adding 

the reagents stepwise. [IrCp*Cl2] was reacted with triflic anhydride in 

dichloromethane (shown in Scheme 7.2) which, as previously, resulted in a yellow 

solution.  

 

Scheme 7.2 Synthesis of compound 7.13 

After purification, CHN analysis matched the formation of C21H30Cl3F3Ir2O3S, 

corresponding to the tri-chloro bridged dimer with a triflate counterion, 

[IrCp*Cl1.5]2
+ 

TfO
-
 7.13. There is a noticeable shift of the methyl protons in the 

1
H 

NMR from 1.6 to 1.7 ppm, along with a single peak for the fluorides of the triflate 

counterion in the 
19

F NMR, and a quarternary peak at 120.9 ppm for the carbon of 

the triflate counterion. Compound 7.13 does not react with 2,6-di-tert-butylpyridine. 

Although compound 7.13 is novel there are similar analogues with the same cation 

but different anions.
25

 The diagnostic methyl peak shift is also observed for the 

triflate intermediates in the immobilisation procedure (from 1.59-1.62 ppm, for the 
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iridium di-chloro bridged dimers 2.9-2.12, to 1.67-1.73 ppm for the triflate 

intermediates 7.3-7.6) implying that the functionalised dimers form analogous tri-

chloro bridged species as well as their hydroxyl group becoming triflated. The same 

trend is also seen for the rhodium analogues, where the methyl peaks shift from 1.61-

1.65 ppm for the dichloride bridged dimers 2.6 and 2.8, to 1.69-1.71 ppm for the 

triflate intermediates 7.1 and 7.2. 

Compound 7.13 was tested as a catalyst for the reduction of benzaldehyde 

according to Figure 7.3 (the same procedure as for the homogeneous catalysts in 

Chapter 6). 

 

Scheme 7.3 General scheme for catalytic reduction of benzaldehyde with 

homogeneous complexes 

The tri-chloro bridged dimer 7.13 has almost identical activity to [IrCp*Cl2]2 for 

the reduction of benzaldehyde, reaching almost quantitative conversion after 5 hours 

(Chart 7.1). The activity of a similar species with a perchlorate counterion was 

shown in 1988.
25

 

 

Chart 7.1 Catalytic activity of the tri chloro bridged dimer 7.13 for the reduction of 

benzaldehyde cf. [IrCp*Cl2]2 
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In the immobilisation procedure, the immobilised complex is washed with 10 ml 

of 1M HCl. When the tri-chloro bridged dimer 7.13 was reacted with 1M HCl, the 

yellow mixture instantly turned orange, and after filtering, the 
1
H NMR of the 

resulting orange powder, along with the disappearance of a fluoride peak in the 
19

F 

NMR, and CF3 in the 
13

C{
1
H} NMR, showed the compound to be [IrCp*Cl2]2. This 

has also been shown with the similar compound [IrCp*Cl1.5]2
+
BF4

-
.
26

 

 

Scheme 7.4 The reaction of compound 7.13 with 1M HCl to form [IrCp*Cl2]2 

This suggests that the HCl wash in the immobilisation procedure, may convert the 

immobilised tri-chloro bridged species back to the di-chloro bridged species. 

7.4 Characterisation of Immobilised Complexes 

The loading of metal on the immobilised complexes has been determined using 

Inductively Coupled Plasma (ICP) analysis. Although this gives a determination of 

the amount of metal attached to the resin, it does not give any information about 

what form the metal species is in, i.e. the oxidation state, geometry, whether it is in 

the form of an active catalyst or not. Due to this uncertaintly, the mol% of catalyst 

stated in the heterogeneous catalytic reactions is assuming that each metal centre is 

part of an active catalyst, so in effect states the maximum catalyst loading possible.  

Immobilised 

Complex 

Washing procedure % of Metal (Ir/Rh) Metal (Ir/Rh) 

loading (mmol/g) 

7.7 60°C 1:1 iso-propanol:dichlorometane, 

room temperature acetone 

7.9 0.77 

7.8 60°C 1:1 iso-propanol:dichlorometane, 

room temperature acetone 

6.6 0.64 

7.10 60°C iso-propanol 12.4 0.65 

7.10 60°C 1:1 iso-propanol:dichlorometane, 

room temperature acetone 

11.7 0.61 

7.12 60°C 1:1 iso-propanol:dichlorometane, 

room temperature acetone 

9.0 0.47 

Table 7.2 ICP Analysis of immobilised complexes 7.7, 7.8, 7.10 and 7.12 

The metal loading of immobilised complexes 7.7, 7.8, 7.10 and 7.12, determined 
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by ICP analysis, are shown in Table 7.2. The solid state NMR of immobilised 

complex 7.10 is shown in Figure 7.5 with peak values, and in Figure 7.7 with 

comparison to the initial dimer 2.10 and the Wang resin. The quarternary 

functionalised Cp* peaks (labelled a in Figure 7.6) cannot be seen (between 60 and 

100 ppm for compound 2.10), due to their low intensity. The peaks at 10.1, 10.5 and 

11.7 ppm correspond to the carbons b, the methyl groups attached to the 

functionalised Cp* ring. The peaks at 25.0, 27.2, 28.2, and 30.3 ppm correspond to 

the CH2 groups on the alkyl chain c, d, e and f respectively. The CH2 group g 

appears at 73.4 ppm compared to 62.5 ppm for the functionalised dimer 2.10. 

There was one peak at -76.8 ppm in the solid state 
19

F NMR of the immobilised 

complex 7.10, in the same region as the triflate peak for 7.13 in its solution state 
19

F 

NMR. This implies that at least some of the immobilised complex could be in the 

form of the cationic tri-chloro bridged complex analogous to 7.13. 
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Figure 7.5 Solid state 
13

C{
1
H}NMR of the immobilised complex 7.10 

 

Figure 7.6 Labelled diagram of compound 7.10 
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120 100 80 60 40 20 0 

Figure 7.7 Solid state 
13

C{
1
H}NMR of the immobilised complex 7.10, along with 

the functionalised dimer 2.10 and polystyrene supported Wang resin for 

reference. The blue boxes highlight the peaks due to the resin 

7.5 Activity of Immobilised Catalysts for Benzaldehyde 

Reduction 

7.5.1 Catalytic Activity and Recyclability of Immobilised Complex 

7.10 

The immobilised iridium complex 7.10 was originally prepared by reacting the 

triflate intermediate 7.4 with 1 equivalent of the Wang resin (Ir:Wang ratio of 2:1) in 

an attempt to saturate the resin with catalyst. Further washing and catalytic testing of 

the catalysts in batch reactions, including homogeneous comparisons, was conducted 

by Ben Crossley at Yorkshire Process Technology Ltd. Compound 7.10 was 

repeatedly heated in 10 ml of iso-propanol at 60°C, until the filtrate was colourless. 

57 mg of compound 7.10 was used to catalyse the reduction of 0.5 mmol of 

benzaldehyde to benzyl alcohol, equating to a catalyst loading of 7.4 mol% iridium 

(by ICP). The general catalytic procedure is shown in Scheme 7.5.  

2.10 

7.10 

Wang resin 
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Scheme 7.5 General scheme for catalytic reduction of benzaldehyde with 

immobilised complexes 

The immobilised complex 7.10 is an active catalyst for the reduction of 

benzaldehyde, reaching quantitative conversion after 24 hours. This is moderate 

activity compared to its homogeneous analogue 2.10 (demonstrated in Chart 7.2) 

with conversion after four hours being 37% compared to 98%. 

 

Chart 7.2 Catalytic activity of the immobilised complex 7.10 compared to the 

homogeneous analogue 2.10 (1 mol% homogeneous catalyst) 

After 48 hours, the immobilised complex 7.10 was recycled by decanting the 

liquor and immediately adding new solvent/base/substrate. The catalyst was used for 

35 runs for benzaldehyde reduction, with the results shown in Table 7.3 and Chart 

7.3. Run three shows the highest initial rate, reaching 49% conversion after four 

hours. The first 15 runs each give high conversion after 48 hours, and at least 87% 

after 24 hours. From run 15 through to run 26, 7.10 becomes progressively less 
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active, presumably due to catalyst decomposition/a loss of resin in the decantation 

steps (vide infra). By the 26th run the conversion after 48 hours had tailed-off to 

80%. Between runs 26 and 27 the solution was decanted from the catalyst, iso-

propanol was added and the mixture was left to stand for 96 hours, compared to the 

standard decantation followed by addition of new reagents/solvent. This had a 

detrimental effect on the catalytic activity, where the initial rate almost halved on run 

27 cf. run 26. This shows that the catalyst is unstable when removed from the 

reaction solution. This could be an indication for the slightly reduced activity after 

the decantation steps.  

 

Chart 7.3 Reuse data for reduction of benzaldehyde by catalyst 7.10 

35 mg of the resin 7.10 was recovered post reaction, cf. the original 57 mg, and 

was washed with iso-propanol and dichloromethane to remove any residues, then 

dried in a vacuum oven overnight. ICP analysis of the recovered resin 7.10 showed 

the iridium content to be 11.5% weight equating to 0.60 mmol Ir/g (cf. the original 

0.65 mmol Ir/g). This 0.05 mmol Ir/g loss can mostly be attributed to the loss of 

unbound material as more intensive washes with hot 1:1 dichloromethane/iso-

propanol, followed by a room temperature acetone wash leave the resin with a 0.61 

mmol Ir/g loading. This shows that, once any unbound material has been removed, 

there is minimal catalyst leaching, making this system a promising candidate for 

industrial reactions. 
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Compound 
% Conversion/h 

0 2 4 24 48 

2.10 5.1 94.2 98.4 98.6 98.7 

7.10 (run 1) 4.3 18.7 36.6 98.0 98.6 

7.10 (run 2) 6.4 22.0 38.7 98.0 98.1 

7.10 (run 3) 6.3 29.5 48.7 98.3 98.5 

7.10 (run 12) 6.1 22.1 35.8 93.2 98.4 

7.10 (run 15) 8.0 19.1 30.2 87.4 98.4 

7.10 (run 16) 5.1 16.5 26.2 83.1 98.2 

7.10 (run 17) 5.7 17.0 25.9 80.0 96.1 

7.10 (run 18) 7.0 16.6 25.2 75.9 95.0 

7.10 (run 19) 8.8 16.8 25.6 74.6 94.7 

7.10 (run 20) 8.6 15.8 27.0 75.1 94.2 

7.10 (run 21) 8.4 15.6 22.7 73.1 93.7 

7.10 (run 22) 7.1 15.4 22.6 67.1 89.8 

7.10 (run 23) 9.9 15.2 20.3 61.7 86.3 

7.10 (run 24) 7.6 11.9 17.4 56.4 82.7 

7.10 (run 25) 10.9 18.1 21.3 58.4 81.9 

7.10 (run 26) 10.7 14.4 22.8 56.2 79.8 

7.10 (run 27) - 8.7 12.1 38.4 60.6 

7.10 (run 28) 0.6 4.2 7.5 36.5 63.1 

7.10 (run 29) 2.3 5.6 9.0 38.3 64.0 

7.10 (run 30) 2.1 5.4 8.8 37.6 61.3 

7.10 (run 31) 2.8 5.3 8.4 34.6 58.1 

7.10 (run 32) 2.0 4.3 6.7 32.4 53.2 

7.10 (run 33) 2.8 5.2 7.9 33.2 56.4 

7.10 (run 34) 2.9 5.2 7.8 31.2 52.3 

7.10 (run 35) 2.2 4.3 7.3 29.0 51.8 

Table 7.3 Reuse data for reduction of benzaldehyde by catalyst 7.10 

A new catalytic run was initiated where 35 mg of Catalyst 7.10 was tested for the 

reduction of benzaldehyde (Scheme 7.5), in order to determine whether the activity 

loss is due to a loss of resin over the decantation steps (Chart 7.4).  The activity of 

35 mg of catalyst 7.10, is higher than the 35th run for 57 mg of catalyst 7.10 (Chart 
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7.3), confirming that the activity loss is mostly due to catalyst deactivation. Its 

activity, however, is similar to that of runs 12-21 for 57 mg of catalyst 7.10, 

indicating that the loss of resin over decantation steps has an effect on the catalyst’s 

performance and can partly be attributed to the activity loss over 35 runs. In a large 

scale reactor, the resin loss would be less significant. In flow systems, the separation 

step of the catalyst from the solution is avoided, eliminating a resin loss over time. 

 

Chart 7.4 35 mg of catalyst 7.10 for the reduction of benzaldehyde via Scheme 7.5 

7.5.2 Catalytic Activity of the Immobilised Complexes After a 

Washing Regime 

It was found, that by repeatedly washing the immobilised complexes firstly in a 

1:1 dichloromethane:iso-propanol solution at 60°C, followed by a room temperature 

acetone wash, firstly leaching of metal is seen, and secondly that the catalyst has a 

higher performance. It is thought that this leaching occurs because the resin is more 

swelled than in the original neat iso-propanol wash, so non-bound material leaches 

into solution. Chart 7.5 highlights the increased activity observed due to this new 

washing regime. The run chosen for each system is the most active run (run three for 

the original hot propan-2-ol wash, and run two for the hot dichloromethane:iso-

propanol followed by a room temperature acetone wash). 
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Chart 7.5 A graph to highlight the improved catalytic activity of catalyst 7.10 for the 

reduction of benzaldehyde via Scheme 7.5, with a new washing regime 

7.5.2.1 The Effect of Metal and Tether Length on Catalytic Activity 

The rhodium and iridium hydroxyl tethered Cp* based dimers were prepared with 

variable tether lengths between the functionalised Cp* ring and the hydroxyl, in 

order to investigate the effect of metal and tether length on catalytic activity of the 

immobilised complexes, for the reduction of benzaldehyde, using the method shown 

in Scheme 7.5. As discussed in Chapter 6, the tethered dimers show similar activity 

to their Cp* analogues under homogeneous conditions, so any variation in activity is 

due to the effect of a variable tether length between the catalyst and support. As 

stated previously, the immobilised iridium complex 7.10 with a 5 carbon linker 

between the functionalised Cp* ring and the hydroxyl group has slightly higher 

activity when pre-washed with hot dichloromethane:iso-propanol, followed by 

acetone. The catalyst shows similar activity for the first ten runs, followed by a small 

loss for each consecutive run up to run 16 (Chart 7.6). 
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Chart 7.6 Reuse data for the reduction of benzaldehyde by catalyst 7.10 via Scheme 

7.5 

The immobilised iridium complex 7.9, with the smaller, 3 carbon, linker between 

the functionalised Cp* ring and hydroxyl group, has a higher initial catalytic activity 

compared to compound 7.10, demonstrated in Chart 7.7. The first two runs are 

consistent, however the third run shows a drop in activity, from quantitative 

conversion to 74% after 24 hours, showing similar activity to run 15 for the longer 

tethered catalyst 7.10. In run four, catalyst 7.9 only converts 24% of benzaldehyde to 

benzyl alcohol after 48 hours. The fifth, sixth and seventh runs show trace activity, 

with conversions of 8, 4 and 4% after 48 hours respectively. 

 

Chart 7.7 Reuse data for the reduction of benzaldehyde by 7.9 via Scheme 7.5 
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The immobilised iridium complex 7.11, with the long, 9 carbon linker between 

the functionalised Cp* ring and hydroxyl group, has initial catalytic activity similar 

to the homogeneous catalyst [IrCp*Cl2]2, demonstrated in Chart 7.8.  

 

Chart 7.8 Reuse data for the reduction of benzaldehyde by catalyst 7.11 via Scheme 

7.5 

The first three runs are consistent, with conversions of 80, 84, and 77% after four 

hours. The fourth and fifth runs show a slower initial rate, but with quantitative 

conversion after 24 hours. Run six shows a drop in activity, from quantitative 

conversion to 74% after 24 hours, showing similar activity to run three for catalyst 

7.9 and run 15 for catalyst 7.10. In run seven, catalyst 7.11 only converts 38% of 

benzaldehyde to benzyl alcohol after 48 hours. The eighth and ninth runs show trace 

activity, with conversions of 10 and 4% after 48 hours. 

The immobilised iridium complex 7.12, with the long, 14 carbon linker between 

the functionalised Cp* ring and hydroxyl group, has initial catalytic activity similar 

to the homogeneous catalyst [IrCp*Cl2]2, demonstrated in Chart 7.9. Runs one and 

three are consistent, with run two being slightly more active and all reaching over 

80% conversion after four hours. As with the 9 carbon tethered catalyst 7.11, the 

fourth and fifth runs show a slower initial rate, but with quantitative conversion after 

24 hours. Run six shows a drop in activity, from quantitative conversion to 91% after 

24 hours. In run seven, catalyst 7.12 converts 81% of benzaldehyde to benzyl alcohol 

after 48 hours. The eighth run show much lower activity, with a 31% conversion 

after 48 hours. 
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Chart 7.9 Reuse data for the reduction of benzaldehyde by catalyst 7.12 via Scheme 

7.5 

The immobilised rhodium complex 7.7, with a 5 carbon linker between the 

functionalised Cp* ring and hydroxyl group, is a poorer catalyst than its iridium 

analogue 7.10 in terms of both the initial rate and its recyclability, Chart 7.10. The 

most active run (run two) only converts 60% of benzaldehyde to benzyl alcohol after 

24 hours, and 89% after 48 hours. The third run is less active, with a 71% conversion 

after 48 hours. The catalyst’s activity declines regularly from run three to ten, where 

the conversion after 48 hours is 43%. 

 

Chart 7.10 Reuse data for the reduction of benzaldehyde by catalyst 7.7 via Scheme 

7.5 
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functionalised Cp* ring and hydroxyl group, is a poorer catalyst than its iridium 

analogue 7.12 in terms of its initial rate, as demonstrated in Chart 7.11.  

 

Chart 7.11 Reuse data for the reduction of benzaldehyde by catalyst 7.8 via Scheme 

7.5 

The initial run has low activity, with a conversion of benzaldehyde to benzyl 

alcohol of 74% after 48 hours. The catalyst deteriorates after the second run, from a 

conversion of 31% after four hours, to 8% on the tenth run. All runs, except the first, 

give a conversion of over 90% after 48 hours. As with the iridium analogues, the 

most active run for the rhodium catalyst 7.8, with the longer 14 carbon chain 

between the catalyst and the support, has a higher initial rate than the smaller 5 

carbon chain linker for the rhodium catalyst 7.7. As the rhodium catalysts show 

poorer activity than their iridium analogues no further derivatives were tested. 

7.5.2.2 Comparison of Immobilised Catalysts 

The conversion at four hours into the catalytic reaction gives a good indication as 

to the activity of the catalyst. As demonstrated in Chart 7.12, the conversion for all 

of the immobilised iridium catalysts at four hours, after a slight increase at the 

beginning, drops over the runs. This is presumably due to catalyst deactivation as 

well as slight losses of resin in the decantation step.  The decay, after the most active 

second or third run appears to be linear in all cases. More interestingly, the rhodium 

and iridium catalysts 7.7 and 7.10 respectively, with the 5 carbon linker between the 

functionalised Cp* ring and hydroxyl group, have distinctly different patterns 

compared to catalysts 7.9, 7.11 and 7.8/7.12 with a 3, 9 and 14 carbon linker 
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respectively. The more initially active catalysts lose activity rapidly, whereas the loss 

of activities for 7.10 and 7.7 are much more gradual.  

 

Chart 7.12 Comparison of the recyclability of the immobilised complexes from the 

conversion of benzaldehyde to benzyl alcohol at four hours 

The activity of the rhodium catalyst 7.8, with the 14 carbon linker, has a 

shallower decline in activity compared to its iridium analogue 7.12, presumably due 

to the lower initial activity. The longer tethered catalysts show a higher initial 

activity compared to the smaller 5 carbon tethered catalysts. This is presumably 

because the more flexible tether allows the catalyst to behave more homogeneously 

and hence have the activity associated with the homogeneous analogue. The different 

washing regimes and immobilisation procedures for 7.10 appear to have little effect 

on its catalytic activity after four hours until run 11 where the fully washed resin’s 

activity decreases more quickly. This could be due to an experimental error, such as 

a slightly longer decantation step for the resin (for 7.10 which has had the washing 

regime) or a bigger loss of resin than usual during this decantation step.  

A summary of the activities of the tested immobilised systems is shown in Table 

7.4. Unfortunately, as ICP analysis of compounds 7.9 and 7.11 was not obtained, 

their TON, TOF or catalytic loading cannot be determined. In terms of the most 

active run, the iridium compound 7.12, with a 14 carbon tether, is the most active 

with a TOF of 4.3 h
-1

, however the most recyclable catalyst is compound 7.10, with 

an overall TON of 403 and a catalytic loading over all runs of 0.2 mol%. 
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Compound Metal Halide 
Chain length 

(of carbons) 

Number of 

runs 

Consistency in 

activity 

Most Active Run All runs 

No. 
TOF/h-

1 
TON TON 

Catalytic 

loading/mol% 

7.7 rhodium chloride 5 10 
gradual decline 

from run 3-10 
2 0.5 10.2 69.2 0.9 

7.8 rhodium chloride 14 10 
moderate decline 

from run 2-10 
2 1.1 13.6 131.8 0.7 

7.9 iridium chloride 3 5 
large decline from 

run 2-5 
2 - - - - 

7.10 (initial wash 

regime) 
iridium chloride 5 35 

gradual decline 

from run 3-10 
3 1.6 13.3 403.4 0.2 

7.10 (wash regime 

including acetone) 
iridium chloride 5 16 

gradual decline 

from run 3-10 
3 1.8 14.2 228.9 0.4 

7.11 iridium chloride 9 8 
large decline from 

run 2-8 
2 - - - - 

7.12 iridium chloride 14 8 
large decline from 

run 2-8 
2 4.3 18.9 134.2 0.7 

Table 7.4 Comparison of immobilised catalysts for the reduction of benzaldehyde. As the catalytic loading of compounds 7.9 and 7.11 were 

unknown, their TON, TOF and catalytic loading could not be determined
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7.5.2.3  Reactivation of Immobilised Catalysts 

As demonstrated in section 7.5.2.1, the immobilised catalyst 7.12, although 

showing high initial activity, quickly becomes deactivated over eight runs. It was 

thought that a HCl wash may reactivate the catalyst, as the deactivated catalyst may 

have lost a chloride/chlorides and resemble a species similar to 7.13. After the eighth 

run, the immobilised complex 7.12 was stirred in 1M HCl in ethanol overnight. The 

resin was filtered and washed with ethanol, followed by water to remove any 

residual HCl. Chart 7.13 shows that there is an increase in activity after the HCl 

wash compared to the last run prior to washing (run eight). The regained activity 

(run nine) is lower than the most active run for the catalyst but is substantially higher 

than the previous run (run eight). The catalyst’s activity increases further for run ten 

with a conversion of 52% after 24 hours, compared to runs nine and ten with a 

conversion of 20 and 37% respectively. 

 

Chart 7.13 Catalytic activity of 7.12 after a HCl incubation 

7.5.2.4 Reduction of Benzaldehyde by Catalyst 7.12 in Flow 

The immobilised catalyst 7.12 was used in a flow system for the reduction of 

benzaldehyde. Although 7.12 is less consistent as a recyclable catalyst than catalyst 

7.10, it has a higher initial rate in the first few runs making it more applicable for 

flow systems where a high initial rate is essential. The flow apparatus used is shown 

in Figure 7.8. A 10 cm HPLC column with a diameter of 0.64 cm was packed with 

0.93 g of pre washed catalyst 7.12. The column was encased inside a metal block 
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which was heated by a stirrer hot plate. This was connected to a pump via PTFE 

tubing. 

 

Figure 7.8 Flow apparatus used for the reduction of benzaldehyde by catalyst 7.12 

To compliment the most active batch conditions, the resin was first washed with 

400 ml of a 1:1 mixture of dichloromethane/iso-propanol at 60°C, where the eluted 

solution was initially yellow, and became less coloured and eventually colourless. 

This was followed by a 150 ml acetone wash at room temperature. 

In the first catalytic run, the substrate amount and concentration was kept similar 

to the batch conditions. A solution of 39 mg of potassium tert-butoxide and 0.89 ml 

of benzaldehyde was dissolved in 100 ml of iso-propanol and pumped through the 

column at 60°C at a flow rate of 1.45 ml/min for 60 minutes. The eluted solution had 

a 19% conversion of benzaldehyde to benzyl alcohol. The eluted solution was 

poured back into the starting material solution and recycled through the column for 

24 hours. This was to allow the resin to be fully activated by the potassium tert-

butoxide. The reaction was complete after 24 hours as indicated in Chart 7.14. The 

resulting solution was yellow implying metal leaching. 
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Chart 7.14 Run one-reduction of benzaldehyde by catalyst 7.12 using recycled flow 

conditions 

In the second catalytic run, there was no base present in the starting solution and 

the concentration of benzaldehyde was decreased by a factor of 5 in an attempt to 

increase the conversion of benzaldehyde eluting through the column. The flow rate 

was initially modified to find an optimum flow rate that gives a high conversion to 

product. After 6 hours the flow rate was left at 0.54 ml/min which gave a 76.6% 

conversion of benzaldehyde to benzyl alcohol. After 24 hours, the flow rate had 

significantly reduced so was increased to 1.30 ml/min. The same was observed after 

48 hours and the flow rate was increased to 1.49 ml/min. After 72 hours the flow rate 

had increased to the extent that all of the reservoir had been pumped through the 

column, leaving the resin exposed to air. The reservoir was refilled, but the eluted 

solution contained no benzyl alcohol. At 79 hours the total eluted solution was 

poured into the reservoir and the solution was recycled through the resin for a week, 

however the catalyst remained inactive. The resulting solution was colourless, 

implying no or little iridium leaching into the solution which is promising as an 

industrial application. Due to the inconsistent flow rates, it is difficult to determine 

whether the catalytic activity of the immobilised complex 7.12 was consistent over 

the first 75 hours (prior to the catalyst being exposed to air). Chart 7.15 shows the % 

conversion with respect to flow rate. The blue markers indicate the data taken before 

6 hours (when the flow rate was being modified to find an optimum) and the red 

markers indicate the data taken between 24 and 75 hours (before the resin was 
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exposed to air). As expected, there is a clear trend, with a negative correlation, 

indicating that the conversion decreases upon increasing the flow rate of the system. 

At the faster flow rates, between 1.2-1.6 ml/min, it appears that the activity of the 

immobilised catalyst 7.12 has remained consistent. At the slower flow rates, 

however, it appears that after 24 hours, the catalyst is less active, for example, at 48 

hours, a flow rate of 0.30 ml/min gives 85% conversion whereas at 0 hours, a faster 

flow rate of 0.49 ml/min gives quantitative conversion, implying that the catalyst is 

becoming less active over time. 

 

Chart 7.15 Run two-Conversion of benzaldehyde to benzyl alcohol against the flow 

rate 

It is encouraging that the immobilised catalyst 7.12 is active in flow systems and 

that it remains active over a period of days. In order to optimise the flow rate and 

conversion, an increased residence time would be required, made possible by using a 

longer resin packed column. The activity of the second run showed that once the 

catalyst has been activated by the base, that extra base is not necessary. Including 

both run one and run two, 0.44 mmol of iridium converted 45.9 mmol benzaldehyde 

into benzyl alcohol resulting in an effective catalytic loading of 0.95 mol%. The flow 

rate was inconsistent throughout run two which may be due to the error of the pump, 

or intrinsically due to the reaction, from either solid formation during the reaction, 

blocking the filters or using a swellable solid catalyst. 
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Time/h 

Time/h 

Flow 

rate/ml/min 

Local 

Conversion/% 

Estimated total 

eluted solution/ml 

Estimated total 

benzaldehyde 

eluted/mmol 

Conversion of total 

eluted solution/% 

0 0.49 98.8 - - - 

1 1.54 22.6 - - - 

5 1.37 40.2 - - - 

6 0.54 76.6 480 8.4 33.9 

24 - 100.0 750 13.1 69.4 

24* 1.30 49.6 - - - 

48 0.30 84.9 1800 31.4 54.5 

50 1.49 37.7 - - - 

75 0.67 0.0 3750 65.4 28.8 

79 - - 4000 69.8 58.4 

262 - - 4000 69.8 53.5 

Table 7.5 Run two-reduction of benzaldehyde by catalyst 7.12 using continuous flow conditions 
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7.6 Activity of Immobilised Catalysts For Acetophenone 

Reduction 

As stated in Chapter 6, [IrCp*Cl2]2 and the functionalised iridium dimers 2.10 and 

2.12, with a 5 carbon and 14 carbon chain linker respectively, are less active 

catalysts for the reduction of acetophenone than benzaldehyde with a conversion of 

82% compared to 91% after four hours. As seen for the reduction of benzaldehyde, 

discussed in section 7.5.2.1, the longer 14 carbon alkyl tethered immobilised catalyst 

7.12 shows higher initial activity but a lower consistency than the shorter 5 carbon 

alkyl tethered analogue 7.10 for the reduction of acetophenone (using the conditions 

stated in Scheme 7.5). 

 

Chart 7.16 Reuse data for the reduction of acetophenone by catalyst 7.10 via 

Scheme 7.5 

Chart 7.16 shows the reduction of acetophenone by the 5 carbon alkyl tethered 

iridium catalyst 7.10, whose most active run (run eight) shows a low conversion of 

55% after 48 hours. The activity, although being slow, is consistent over 25 runs, 

where on the 25th run, the conversion is 32%. 

Chart 7.17 shows the reduction of acetophenone by the 14 carbon alkyl tethered 

iridium catalyst 7.12, where the most active run (run two) shows modest activity 

with a 74% conversion after 24 hours and 93% conversion after 48 hours. The 

activity over consecutive runs declines faster than the smaller tethered analogue 7.10 

where the conversion after 48 hours for run ten is 48%. 
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Chart 7.17 Reuse data for the reduction of acetophenone by catalyst 7.12 via 

Scheme 7.5Scheme 6.1 

7.7 Control Heterogeneous Reactions 

Three control immobilisation reactions were performed to demonstrate whether 

the catalyst on the immobilised resins is covalently bound or attached through 

weaker non covalent interactions. The resulting resins from all three control 

reactions give trace activity compared to the immobilised resin 7.10, confirming 

firstly that the catalyst is covalently bound to the Wang resin and secondly that the 

majority of activity is due to the covalently bound species. 

7.7.1 Control Reaction One 

The first control reaction was to replace the hydroxyl tethered Cp* based iridium 

chloride dimer with [IrCp*Cl2]2 in the immobilisation method (Scheme 7.6). As 

there is no hydroxyl group on the iridium dimer, it cannot covalently attach to the 

Wang resin, so any activity observed will be due to non-covalently bound material. 

This control resin was tested as a catalyst for benzaldehyde reduction using the 

procedure in Scheme 7.5, with the results shown in Chart 7.18. It shows trace 

activity, converting 4.6% of the benzaldehyde to benzyl alcohol after 48 hours.
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Scheme 7.6 Control one-replacing a hydroxyl tethered Cp* based iridium chloride 

dimer with [IrCp*Cl2]2 

 

Chart 7.18 Resin formed from control reaction one as a catalyst for the reduction of 

benzaldehyde via Scheme 7.5 

7.7.2 Control Reaction Two 

The second control reaction was to remove the triflic anhydride from the 

immobilisation procedure (Scheme 7.7). As the hydroxyl group cannot become 

triflated, it cannot covalently bind to the Wang resin. This control resin was tested as 

a catalyst for benzaldehyde reduction using the procedure in Scheme 7.5, with the 

results shown in Chart 7.19. As with control reaction one, the resulting resin shows 

trace activity converting 1.1% of benzaldehyde to benzyl alcohol over 48 hours. 
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Scheme 7.7 Control two – removing triflic anhydride from the immobilisation 

procedure 

 

Chart 7.19 Resin formed from control reaction two as a catalyst for the reduction of 

benzaldehyde via Scheme 7.5 

7.7.3 Control Reaction Three 

The third control reaction was to react the by-product of the triflation step with 

the Wang resin. The by-product was prepared by adding 2 equivalents of triflic 

anhydride slowly onto a mixture of the starting dimer 2.10 and 2,6-di-tert-

butylpyridine over 30 minutes. The product was a brown oil and, using the same 

analysis described in section 7.2, 
1
H NMR showed that the by-product had formed in 

a 74% yield, along with the formation of some of compound 7.4. After 

recrystallising the oil from dichloromethane/hexane layer diffusion, a brown solid 

was obtained which was quantitatively the by-product. 0.91 g of this product was 

agitated with the Wang resin overnight. This control resin was tested as a catalyst for 

benzaldehyde reduction using the procedure in Scheme 7.5, with the results shown 

0.0 

20.0 

40.0 

60.0 

80.0 

100.0 

0 8 16 24 32 40 48 

%
 C

o
n

v
er

si
o
n

 

Time / hours 



Chapter 7 

170 

in Chart 7.20. In comparison to control reactions one and two, the resulting resin 

from control reaction three shows higher activity, converting 11.5% of benzaldehyde 

to benzyl alcohol over 48 hours in run one and 5.2% in run two. In the 

immobilisation method, however, there is always <10% of this by-product formed, 

whereas 0.91 g of material was used here, so any activity given by a non-covalently 

bound by-product will be small. 

 

Chart 7.20 Resin formed from control reaction three as a catalyst for the reduction 

of benzaldehyde via Scheme 7.5 

7.8   Conclusion 

A viable method has been found for immobilising hydroxyl tethered Cp* based 

iridium/rhodium dimers onto a Wang resin using a triflate intermediate. This 

methodology represents a powerful way of attaching organometallic catalysts to 

supports with subsequent reuses of the catalyst. Control immobilisation reactions 

confirm that the majority of activity from the immobilised complexes is due to 

covalently bound material. 

Although the exact structure of the immobilised catalyst is unknown, control 

homogeneous reactions suggest that the original immobilised complex is a tri 

chloride bridged species, which is reactive towards many of the solvents used in the 

washes prior to catalytic testing. Solid state NMR confirms the presence of the 

functionalised Cp* ligand. 

A resulting immobilised Ir Cp* complex 7.10, with a 5 carbon linker between the 
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functionalised Cp* ring and the oxygen, has been shown to be both effective and 

recyclable in the transfer hydrogenation of benzaldehyde over 35 runs, making the 

effective catalyst concentration 0.2 mol% /reaction. 

A rigorous washing regime involving a hot 1:1 dichloromethane:iso-propanol 

wash followed by a room temperature acetone wash was shown to slightly increase 

the activity of the immobilised complexes, as well as removing non-covalently 

bound material from the Wang resin. 

The immobilised complexes are less active for the reduction of acetophenone 

compared to benzaldehyde, as expected due to the activity of homogeneous catalysts. 

The rhodium catalysts are slower than the iridium analogues, and the longer tethered 

immobilised complexes with 9 and 14 carbon linkers show a higher initial rate than 

the 5 carbon linker catalysts, however are less consistent over consecutive runs with 

the activity declining rapidly. 

An immobilised complex was used in a flow system for the reduction of 

benzaldehyde and was active over 5 days, showing promise for future scale up 

reactions. 

7.9 Future Work 

There is an industrial intention to optimise the discussed immobilised system, 

with respect to its synthesis and activity. The synthesis is an air sensitive procedure 

due to the triflate intermediate so alternative leaving groups could be investigated 

along with other bases as 2,6-di-tert-butylpyridine is expensive. There is also wasted 

iridium/rhodium in this preparation which remains unattached to the support, so 

attempts to modify the procedure to limit this or to recover and reuse the metal 

would be worthwhile. Altering the support may improve the activity and stability of 

the resulting catalyst. Further characterisation of the species would be useful to 

identify the exact species bound to the Wang resin, for example using XPS (X-ray 

photoelectron spectroscopy). 

Optimisation of the tether length is crucial to obtain a compromise between 

catalytic activity and recyclability, and the use of more rigid tethers would be worth 

investigating to limit any interaction between both adjacent catalytic centres and the 

catalyst and the support. As ICP analysis has shown for the catalyst 7.10 that, after 

35 runs for benzaldehyde reduction the majority of the iridium is still attached to the 
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support, the catalyst may be able to be reactivated, which requires a knowledge of 

the mechanism of deactivation. Addition of known ligands to the system in attempts 

to improve the activity and/or induce chirality into the catalyst would be desirable, 

for example in the case of acetophenone where the catalyst, although consistent over 

multiple runs, has a poor activity and presumably gives a racemic mixture of the 

resulting alcohol. The catalysts could also be tested on a library of aldehydes/ketones 

along with being used in other transfer hydrogenation systems. Initial attempts at 

benzaldehyde reduction in flow were successful so further study into this would 

determine how long the catalyst is active and allow the option for scale up. 

7.10  References 

(1) S. Hashiguchi; A. Fujii; J. Takehara; T. Ikariya; R. Noyori J. Am. Chem. Soc. 

1995, 117, 7562-7563. 

(2) J. Takehara; S. Hashiguchi; A. Fujii; S. Inoue; T. Ikariya; R. Noyori Chem. 

Commun. 1996, 233-234. 

(3) A. Fujii; S. Hashiguchi; N. Uematsu; T. Ikariya; R. Noyori J. Am. Chem. Soc. 

1996, 118, 2521-2522. 

(4) K. Fujita; Y. Enoki; R. Yamaguchi Tetrahedron 2008, 64, 1943-1954. 

(5) X. Wu; J. Xiao Chem. Commun. 2007, 2449-2466. 

(6) M. Ito; Y. Endo; N. Tejima; T. Ikariya Organometallics, 29, 2397-2399. 

(7) K.-i. Fujita; N. Tanino; R. Yamaguchi Org. Lett. 2006, 9, 109-111. 

(8) A. M. Hayes; D. J. Morris; G. J. Clarkson; M. Wills J. Am. Chem. Soc. 2005, 

127, 7318-7319. 

(9) O. Saidi; A. J. Blacker; M. M. Farah; S. P. Marsden; J. M. J. Williams Chem. 

Commun. 2010, 46, 1541-1543. 

(10) A. J. Blacker; M. M. Farah; M. I. Hall; S. P. Marsden; O. Saidi; J. M. J. 

Williams Org. Lett. 2009, 11, 2039-2042. 

(11) U. Karlsson; G. Z. Wang; J. E. Backvall J. Org. Chem. 1994, 59, 1196-1198. 

(12) G.-Z. Wang; U. Andreasson; J.-E. Backvall J. Chem. Soc., Chem. Commun. 

1994, 1037-1038. 

(13) T. Ikariya; A. J. Blacker Acc. Chem. Res. 2007, 40, 1300-1308. 

(14) S. Bähn; S. Imm; L. Neubert; M. Zhang; H. Neumann; M. Beller 

ChemCatChem 2011, 3, 1853-1864. 

(15) Y. Arakawa; N. Haraguchi; S. Itsuno Tetrahedron Lett. 2006, 47, 3239-3243. 

(16) D. J. Bayston; C. B. Travers; M. E. C. Polywka Tetrahedron: Asymmetry 

1998, 9, 2015-2018. 

(17) Y.-C. Chen; T.-F. Wu; J.-G. Deng; H. Liu; X. Cui; J. Zhu; Y.-Z. Jiang; M. C. 

K. Choi; A. S. C. Chan J. Org. Chem. 2002, 67, 5301-5306. 

(18) L. Jiang; T.-F. Wu; Y.-C. Chen; J. Zhu; J.-G. Deng Org. Biomol. Chem. 

2006, 4, 3319-3324. 

(19) X. Li; X. Wu; W. Chen; F. E. Hancock; F. King; J. Xiao Org. Lett. 2004, 6, 

3321-3324. 

(20) G. Liu; J. Wang; T. Huang; X. Liang; Y. Zhang; H. Li J. Mater. Chem. 2010, 

20, 1970-1975. 



Chapter 7 

173 

(21) P. N. Liu; J. G. Deng; Y. Q. Tu; S. H. Wang Chem. Commun. 2004, 2070-

2071. 

(22) P.-N. Liu; P.-M. Gu; J.-G. Deng; Y.-Q. Tu; Y.-P. Ma Eur. J. Org. Chem. 

2005, 2005, 3221-3227. 

(23) aapptec, "Resins General Information", company website: www.aapptec.com 

(24) A. Pettman; A. D. Vassileiou, unpublished work, 2011 

(25) M. Valderramma; M. Scotti; P. Campos; R. Sariego; K. Peters; H. G. v. 

Schnering; H. Werner New J. Chem. 1988, 12, 633-639. 

(26) M. I. Rybinskaya; A. R. Kudinov; V. S. Kaganovich J. Organomet. Chem. 

1983, 246, 279-285. 

 



Chapter 8 

174 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Chapter 8 Group 9 Complexes as Anti-

Cancer Agents



Chapter 8 

175 

8.1 Introduction 

Since the discovery of cisplatin’s ability as an anti-cancer agent,
1
 much focus has 

been dedicated to the design of coordination/organometallic complexes for this 

application. Although there have been many examples of the isoelectronic 

ruthenium/osmium arene complexes as active drugs, there are relatively few 

examples of the rhodium/iridium Cp* analogues,
2-4

 with the majority reported by 

Sheldrick,
5-9

 Dyson
10-12

 and Sadler.
13-16

 

Sadler et al. have recently shown that increasing the phenyl substitution on 

cyclopentadienyl ligands of iridium complexes (Figure 8.1) increases their 

cytotoxicity towards A2780 human ovarian cancer cells, with IC50 values of >100, 

6.70 ± 0.62 and 0.72 ± 0.01 μM for A,B and C respectively where the IC50 value for 

cisplatin is 1.22 ± 0.12 μM.
13

 

 

Figure 8.1 Monomeric iridium complexes with a increasing phenyl substitution on 

the cyclopentadienyl ligands.  

This trend of increased cytotoxicity with increased phenyl substitution positively 

correlates with increased hydrophobicity, hydrolysis of Ir-Cl bond, cellular 

accumulation, viscosity of Ir-DNA adducts (equating to DNA intercalation) and 

negatively correlates with the rate of hydrolysis of the Ir-Cl bond.   

The aims of this work were to firstly test the hydroxyl tethered Cp* based dimers, 

whose preparation and characterisation were discussed in Chapter 2, as anti-cancer 

agents against a variety of cancer cell lines. Secondly, selected iridium and rhodium 

Cp* and hydroxyl tethered Cp* based monomeric complexes, synthesised in Chapter 

3, Chapter 4 and Chapter 5 were also tested. The IC50 values were obtained by either 

Rianne Lord or Aida Basri at the University of Bradford. The selection of 

compounds and interpretation of the results were made by the author. 
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8.2 Anti-Cancer Activity of Hydroxyl Tethered Cp* Based 

Iridium /Rhodium Halide Dimers 

As mentioned in section 8.1, the functionalisation of Cp* ligands for iridium 

complexes can have a positive effect on the complex’s cytotoxicity. With this is 

mind, the cytotoxicities of the hydroxyl tethered Cp* based iridium/rhodium halide 

dimers (prepared in Chapter 2, and shown in Figure 8.2) were tested on the A2780 

(human ovarian carcinoma) and HT-29 (human colon carcinoma) cell lines. 

 

M = Rh, X = Cl M = Ir, X = Cl M = Ir, X = I 

2.6 n = 5 2.9 n = 3 2.13 n = 5 

2.7 n = 9 2.10 n = 5   

2.8 n = 14 2.12 n = 14   

Figure 8.2 List of hydroxyl tethered Cp* based iridium/rhodium halide complexes 

tested against cancer cell lines in this Chapter 

Apart from the anomalous iridium compound 2.9, there is a clear trend for both 

the iridium and rhodium chloride dimers that increased functionalisation of the 

functionalised Cp* ligand, i.e. a longer alcohol chain increases the complex’s 

cytotoxicity. The iridium iodide dimers show the same trend but with higher IC50 

values for the for HT-29 cells, however the opposite trend for A2780 cells, where the 

tethered complex 2.13 is inactive but the unfunctionalised analogue [IrCp*I2]2 has an 

IC50 value of 6.7 μM, comparable with compound 2.12. 
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Compound 
HT-29 A2780 

IC50/μmol Error/μmol IC50/μmol Error/μmol 

cisplatin 2.4
a
/2.52

b 
0.1

a
/0.09

b 
0.93 0.04 

[RhCp*Cl2]2
b 

141
 

2 95 2 

2.6
b 

123
 

2 85 7 

2.7
b 

13.0
 

0.2 6.2 0.3 

2.8
b
 12.7

 
0.4 3.9 0.1 

[IrCp*Cl2]2
a 

91.9
 

3.5 30.9 0.4 

2.9
b 

118
 

5 8.87 0.07 

2.10
a 

29.7
 

1.4 23.2 0.8 

2.12
a 

10.6
 

0.8 5.2 0.2 

[IrCp*I2]2
b 

159 2 6.7 0.1 

2.13
b 

110
 

3 137 5 

where a and b refer to different cell cultures 

Table 8.1 IC50 values for hydroxyl tethered Cp* based iridium/rhodium dimers for 

HT-29 and A2780 cancer cell lines, with their respective unfunctionalised Cp* 

analogues and cisplatin for reference 

8.3 Anti-Cancer Activity of Hydroxyl Tethered Cp* Based 

Iridium/Rhodium (III) Pyridine Complexes 

Due to the promising activity seen by the hydroxyl tethered Cp* based dimers, the 

pyridine monomeric analogues, 3.8 and 3.15 (whose synthesis and characterisation is 

described in Chapter 3) were tested against HT-29 cells with their IC50 values shown 

in Table 8.2.  

 

3.8 M = Ir 

3.15 M = Rh 

Figure 8.3 List of hydroxyl tethered Cp* based iridium/rhodium halide pyridine 

complexes tested against cancer cell lines in this Chapter 
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Compound 
HT-29 

IC50/μmol Error/μmol 

cisplatin
 

2.4
a
/2.52

b
 0.1

a
/0.09

b 

3.8
a
 92 1 

3.15
a
 132 2 

2.10
a
 29.7 1.4 

2.6
b
 123 2 

where a and b refer to different cell cultures 

Table 8.2 IC50 values for hydroxyl tethered Cp* based iridium/rhodium halide 

pyridine complexes against the HT-29 cell line, with their respective hydroxyl 

tethered Cp* based starting dimers and cisplatin for reference 

Both the iridium and rhodium pyridine complexes show low activity with IC50 

values of 92 and 132 μM respectively. In comparison to its starting dimer 2.10, the 

iridium pyridine complex 3.8 is 3 times less active, and the rhodium pyridine 

complex 3.15, has slightly lower activity than its starting dimer 2.6, both with IC50 

values of over 100 μM for HT-29 cells. This shows that replacing a bridging chloride 

with pyridine is unfavourable for anti-cancer activity. 

8.4 Anti-Cancer Activity of Cp* and Hydroxyl Tethered 

Cp* based Iridium/Rhodium Bidentate Complexes 

Due to the promising anti-cancer activity of both ruthenium-arene 

picolinamide
17,18

 and ketoiminate complexes,
19

 some of their iridium rhodium Cp* 

analogues, prepared in Chapter 4 and Chapter 5 respectively and shown in Figure 

8.4, were tested against HT-29 and MCF-7 cell lines with the IC50 values shown in 

Table 8.3.
4
  

  

4.3 R = 2’, 4’- diF 5.5 R = 3’-F 

4.4 R = 2’, 5’- diF   

Figure 8.4 List of Cp* iridium halide complexes, with picolinamide and ketoiminate 

ligands, tested against cancer lines in this Chapter 
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Compound 
HT-29  MCF-7 IC50/μmol 

IC50/μmol Error/μmol IC50/μmol Error/μmol 

cisplatin 2.4 ± 0.1 0.528
a
/1.09

b 
± 0.003

a
/0.08

b 

[IrCp*Cl2]2
a 

92 ± 4 100 ± 2 

4.3
a 

34.1 ± 0.7 39 ± 2 

4.4
a 

81 ± 1 149 ± 1 

5.5
b 

5.1 ± 0.3 3.4 0.2 

where a and b refer to different cell cultures 

Table 8.3 IC50 values for Cp* iridium halide complexes, with picolinamide and 

ketoiminate ligands, against HT-29 and MCF-7 cell lines, with [IrCp*Cl2]2 and 

cisplatin for reference 

Due to an infection of the MCF-7 cells, the ketoiminate compound, 5.5, was 

tested on a second culture of cells along with its ruthenium analogue for comparison. 

A new value for cisplatin was obtained for the second culture for comparison 

purposes. The picolinamide complexes 4.3 and 4.4 show moderate and low activity 

respectively with IC50 values of 34 and 81 μM against HT-29 cells and 39 and 149 

μM against MC -7 cells. This indicates that the position of the fluorides on the aryl 

ring is crucial for activity. Interestingly, compound 4.4 is less active than the 

[IrCp*Cl2]2 starting dimer against the MCF-7 cell line, but more active against the 

HT-29 cell line. The ketoiminate complex, 5.5, is highly active against both HT-29 

and MCF-7 cell lines with respective IC50 values of 5.1 and 3.4 μM, comparable 

with the cisplatin values of 2.4 and 1.1 μM. Compound 5.5 is slightly less active than 

its ruthenium p-cymene analogue.
1
 

A series of iridium and rhodium Cp* picolinamide complexes with varying 

chloride substituents (shown in Figure 8.5) were also tested on A2780 cells. Due to 

the promising activity seen by the hydroxyl tethered Cp* based dimers 2.6 and 2.10, 

the picolinamide complexes 4.15 and 4.19 (shown in Figure 8.5) which incorporate 

the hydroxyl tethered Cp* based ligand with the 5 carbon alcohol chain were also 

tested with the IC50 results shown in Table 8.4. 
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4.1 R = H 4.16 4.15 

4.5 R = 2’-Cl 

 

  

4.6 R = 3’-Cl   

4.7 R = 2’, 4’- diCl   

4.8 R = 2’, 5’- diCl   

  4.19   

 

Figure 8.5 List of Cp* and hydroxyl tethered Cp* based iridium/rhodium chloride 

complexes, with picolinamide ligands, tested against cancer lines in this 

Chapter 

Compound 
A2780 

IC50/μmol Error/μmol 

cisplatin
 

0.93
a
/0.97

b
/1.42

c 
0.04

a
/0.07

b
/0.34

c 

2.10
a 

23.2 0.8 

2.6
a 

85 7 

4.1
c 

66 2 

4.5
c 

25 3 

4.6
c 

33 1 

4.7
c 

18.6 0.4 

4.8
c
 23 1 

4.15
b 

52.5 0.8 

4.16
c 

28.8 0.5 

4.19
b 

85 4 

where a, b and c refer to different cell cultures 

Table 8.4 IC50 values for Cp* iridium/rhodium halide complexes, with picolinamide  

ligands, against A2780 cell lines, with their functionalised starting materials 

and cisplatin for reference 

The presence and position of the chloride substituents on the picolinamide ligand 

has a significant effect on the complex’s anti-cancer activity for A2780 cells. The 

unsubstituted IrCp* complex 4.1 shows poor activity with an IC50 value of 66 μM, 
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whereas the addition of a chloride group on the ortho and meta position of the arene 

ring of the picolinamide decreases the IC50 value to 25 and 33 μM respectively. The 

dichloro substituted picolinamide complexes show even higher activity with IC50 

values of 19 and 23 μM for 4.7 and 4.8 respectively. As shown in both the mono and 

di chloro substituted picolinamide complexes, a chloride on the ortho position of the 

arene ring gives a more active complex than one on the meta position. The rhodium 

complex 4.16 is slightly more active than its iridium analogue 4.6, with an IC50 value 

of 28 μM compared to 33 μM. Unfortunately, there appears to be no benefit to 

adding a picolinamide ligand to the hydroxyl tethered Cp* based dimers, as the 

iridium picolinamide complex 4.15 is half as active as its starting dimer 2.10, and the 

rhodium picolinamide complex 4.19 has the same activity as its starting dimer 2.6. 

The tethered complexes are also less active than their Cp* analogues. 

8.5 Conclusion 

Iridium and rhodium Cp* complexes have recently attracted interest as anti-

cancer agents. The Cp* functionalised iridium and rhodium dimers prepared in 

Chapter 2 showed promising activity with a clear trend between longer carbon chains 

between the functionalised Cp* ring and hydroxyl, and anti-cancer activity on HT-29 

and A2780 cell lines. The two pyridine complexes 3.8 and 3.15 were practically 

inactive against HT-29 cells. The iridium Cp* picolinamide complexes have 

potential as anti-cancer agents with the complexes 4.3 and 4.4 showing modest 

cytotoxic activity. In relation to A2780 cells, group 9 Cp* picolinamide complexes 

also show moderate activity, with the addition of electron withdrawing chloride 

groups to the arene increasing the anti-cancer activity of the complex significantly. 

The Cp* functionalised picolinamide complexes 4.15 and 4.19, however, show the 

same or lower activity than their respective dimers and unfunctionalised Cp* 

analogues indicating that incorporating a picolinamide and functionalising the Cp* 

ring with a hydroxyl tether, doesn’t lead to an additive effect on anti-cancer activity. 

The most promising iridium Cp* monomer was the ketoiminate complex 5.5 with 

comparable activity to cisplatin on both HT-29 and MCF-7 cell lines. 
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8.6 Future Work 

As the hydroxyl tethered Cp* based dimers with the longest 14 carbon chain show 

the most promise in their series as anti-cancer agents, complexes with longer chains 

could be prepared in attempts to increase the anti-cancer activity. The iridium Cp* 

ketoiminate complex shows activity in the same magnitude as cisplatin, so 

modifications of this structure in attempts to increase the anti-cancer activity would 

be worthwhile. Further picolinamide complexes could be tested on various cell lines, 

particularly any with electron withdrawing groups on the arene ring as the chloride 

substituents show higher activity than the unsubstituted analogue. In order to 

optimise the potency of these drugs, an understanding of the mechanism of action is 

crucial. 
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9.1 General Experimental Considerations 

All experiments requiring dry conditions were conducted using standard Schlenk 

line techniques under an inert dry nitrogen atmosphere using a dual 

vacuum/dinitrogen line or in a Braun Labmaster 100 glove box. Dry dinitrogen was 

obtained by passing gaseous dinitrogen through a double column of self-indicating 

phosphorous pentoxide and activated 4 Ǻ molecular sieves. 

 

Dichloromethane, methanol, tetrahydrofuran and toluene were dried using a Pure 

Solvent MD Solvent Purification System, with solvents purified by copper catalysts 

and activated alumina columns. Acetone was distilled from calcium hydride and 

hexane from sodium. All solvents were subsequently stored in glass ampoules under 

dinitrogen. 

 

All glassware, cannulae and filter papers were stored in an oven at 100-150  C 

prior to use. The majority of crystallisations took place at room temperature. 

 

Chemicals were purchased from Sigma-Aldrich Chemicals Co, Acros Organics 

and Alfa Aeser. These were all used as received. 

 

Deuterated NMR solvents were used as purchased from Goss scientific Ltd and 

Apollo Scientific and dried by reflux with calcium hydride and separated by 

distillation under nitrogen. 

 

9.1.1  Instrumentation 

9.1.1.1 NMR 

Solution-state NMR spectra were recorded by the author on a Bruker DPX 300 

spectrometer or by Simon Barrett using a Bruker DRX 500 spectrometer. Solid-state 

NMR spectra were recorded by David Apperley and Fraser Markwell as follows: 

 

A solid-state 
13

C spectrum of complex 7.4 was recorded at 100.56 MHz using a 

Varian VNMRS spectrometer and a 6 mm (rotor o.d.) magic-angle spinning probe. 



Chapter 9 

186 

The spectrum was obtained using cross-polarisation with a 5 s recycle delay, 3 ms 

contact time, at ambient probe temperature (~25 °C) and at a sample spin-rate of 6.8 

kHz. 136 repetitions were accumulated. Spectral referencing was with respect to an 

external sample of neat tetramethylsilane (carried out by setting the high-frequency 

signal from adamantane to 38.5 ppm). Carbon spectra from 7.10 and Wang resin 

swollen in CDCl3 were obtained using the same instrument but with direct excitation 

(using a 90° pulse of duration 4.4 μs), proton decoupling a 0.5 s recycle and at a spin 

rate of 3 kHz. Spectral referencing is with respect to neat tetramethylsilane in both 

cases. 

A solid-state 
19

F spectrum of complex 7.4 was recorded at 282.09 MHz using a 

Varian Unity Inova spectrometer and a 4 mm (rotor o.d.) magic-angle spinning 

probe. The spectra were obtained using direct excitation (with a 4 µs 90° pulse) with 

a 1 s recycle delay, at ambient probe temperature (~30 °C) and at a sample spin-rate 

of 12-14 kHz. 560 to 2416  repetitions were accumulated. Spectral referencing was 

with respect to an external sample of neat CFCl3. 

9.1.1.2 Elemental Analysis 

Elemental analysis was obtained by Ian Blakeley and Martin C. Huscroft at the 

University of Leeds Microanalytical Service.  

9.1.1.3 Mass Spectrometry 

Mass spectra were recorded by Tanya Marinko-Covell on a Micromass ZMD 

spectrometer using electronspray ionisation at the University of Leeds Mass 

Spectrometry Service. 

9.1.1.4 Gas Chromatography 

Gas chromatography analysis was performed by the author using a Hewlett 

Packard HP 6890 Series GC System. 

9.1.1.5 Inductively Coupled Plasma 

ICP analysis was performed by Matthew Stirling at the University of 

Huddersfield using the following procedure: 

Between 15 – 30 mg of each sample was accurately weighed into a microwave 
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digestion tube. 1.5 ml trace-metal concentrated sulfuric acid was pipetted into each 

tube and the samples digested. 10 ml trace-metal concentrated nitric acid and 3.0 ml 

trace-metal concentrated hydrochloric acid were added to each vessel, any 

effervescence allowed to subside then the samples were digested. The samples were 

allowed to cool to room temperature then transferred to 100 ml plastic volumetric 

flasks and made up to volume with ultra-pure water. 2.0 ml of each sample was then 

pipetted into 100 ml plastic volumetric flasks containing ~10 ml ultra-pure water 2.0 

ml trace-metal concentrated nitric acid, 1.0 ml trace-metal concentrated hydrochloric 

acid and 1.0 ml of the 50 ppm internal standard solution. The samples were made up 

to volume with ultra-pure water, mixed well and transferred to ICP sample tubes for 

analysis. 

9.1.1.6 X-ray Crystallography 

X-ray data was collected by the author. A suitable single crystal was selected and 

immersed in an inert oil. The crystal was then mounted onto a glass capillary and 

attached to a goniometer head on a Bruker X8 Apex diffractor using graphite 

monochromated Mo-Kα radiation (λ= 0.71073 Å) and 1.0º -rotation frames 

 

The crystal was then cooled to 150K by an oxford cryostream low temperature 

device.
1
 The full data set was recorded and the images processed using DENZO and 

SCALEPACK programs.
2
 The structures were solved by the author. 

 

Structure solution by direct methods was achieved through the use of 

SHELXS86
3
, SIR92

4
 or SIR97

5
 programs, and the structural model defined by full 

matrix least squares on F
2
 using SHELX97.

3
 Molecular graphics were plotted using 

POV-Ray
6
 via the XSeed program. Editing of Crystallographic Information files and 

construction of tables of bond lengths and angles was achieved using WC 
7
 and 

PLATON.
8
 Unless otherwise stated, hydrogen atoms were placed using idealised 

geometric positions (with free rotation for methyl groups), allowed to move in a 

“riding model” along with the atoms to which they were attached, and refined 

isotropically. 
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9.1.1.7 Microwave Reactions 

Microwave reactions were performed using a Biotage Initiator Sixty variable 

power microwave.  

9.1.1.8 Flow reaction 

The immobilised catalyst 7.12 (0.93 g) was packed into a 10 cm HPLC column 

with a diameter of 0.64 cm. The column was encased inside a metal block which was 

fitted with a temperature probe and heated by a stirrer hot plate. The column was 

connected to a Buchi B-688 chromatography pump via PTFE tubing, which itself 

was connected to a reservoir containing the reaction reagents. The other end of the 

column was connected to a vessel to store the eluted reacted solution. 

9.1.2 Cell Line Testing 

The in vitro tests were performed by Rianne M. Lord at the Institute of Cancer 

Therapeutics, Bradford, on MCF7 (human breast adenocarcinoma), A2780 (human 

ovarian carcinoma) and HT-29 (human colon adenocarcinoma) cell lines. Cells were 

incubated in 96-well plates at a concentration of 2 × 10
4
cells cells/ml. 200 μL of 

growth media (RPMI 1640 supplemented with 10% foetal calf serum, sodium 

pyruvate (1 mM) and L-glutamine (2 mM)) was added to each well and the plates 

were incubated for 24 hours at 37 °C in an atmosphere of 5% CO2 prior to drug 

exposure. The compounds was dissolved in dimethylsulphoxide at a concentration of 

25 mM and diluted further with medium to obtain drug solutions ranging from 250 

to 0.49 μM. The final dimethylsulphoxide concentration was 0.1% (v/v) which is 

non-toxic to cells. Drug solutions were applied to cells and incubated for 5 days at 37 

°C in an atmosphere of 5% CO2. 20 μL of MTT (5 mgml
−1

) was added to each well 

and incubated for 3 hours at 37 °C in an atmosphere of 5% CO2. The solutions were 

then removed and 150 μL of dimethylsulphoxide was added to each well to dissolve 

the purple formazan crystals. A Thermo Scientific Multiskan EX microplate 

photometer was used to measure the absorbance at 540 nm. Lanes containing 

medium only and cells in medium (no drug) were used as blanks for the 

spectrophotometer and 100% cell survival respectively. Cell survival was determined 

as the absorbance of treated cells divided by the absorbance of controls and 

expressed as a percentage. The IC50 values were determined from plots of % survival 

https://www.google.co.uk/url?sa=t&rct=j&q=&esrc=s&source=web&cd=2&ved=0CFEQFjAB&url=http%3A%2F%2Fwww.americaninstrument.com%2Fequipment%2Fpumps%2F4139-pump.asp&ei=vCDPUMzjAsyp0AX9wYF4&usg=AFQjCNHtmn-clrS6L_G4EA7BY13J1mS6tg&sig2=92zerDq9vfF146Pbn0kHPQ&bvm=bv.1355325884,d.d2k
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against drug concentration. Each experiment was repeated 3 times and a mean value 

obtained. 

9.2 Cp* Based Ligands and their Metal Halide Dimers 

C5(CH3)4C5H10OH
9
 (2.2), [Rh{η

5
-C5(CH3)4C5H10OH}Cl2]2

10
 (2.6), [Ir{η

5
-

C5(CH3)4C5H10OH}Cl2]2
9
 (2.10) and [Ir{η

5
-C5(CH3)4C5H10OH}I2]2

9
 (2.13) were 

prepared according to the literature method. 

9.2.1 Synthesis of C5(CH3)4C3H6OH (2.1) 

Under a nitrogen atmosphere, lithium wire (8 g, 1.15 mol, washed with hexane) 

was added to anhydrous diethyl ether (250 ml) and the lithium suspension was 

vigorously stirred. 2-bromo-2-butene (40 g, 0.30 mol, mixture of cis and trans 

isomers) was added to a dropping funnel and a small portion added to the reaction 

mixture to initiate the reaction. Diethyl ether (70 ml) was also added to the 

remaining 2-bromo-2-butene, which was then added at a rate that maintained a 

gentle reflux. After complete addition of 2-bromo-2-butene the reaction was stirred 

at r.t. for 2 hours. γ-Butyrolactone (22 g, 0.26 mol) in diethyl ether (50 ml) was then 

added dropwise and the mixture stirred for 1 hour. The resulting mixture was poured 

into saturated NH4Cl (aq) (600 ml) and after separating the ether layer, the aqueous 

layer was extracted with tert-butyl methyl ether (3 x 100 ml). The combined ether 

layers were washed with brine, dried over magnesium sulfate and concentrated to ca. 

100 ml. 10% aqueous HCl (300 ml) was added to the resulting concentrate and the 

biphasic mixture was stirred for 3h at r.t. After separating the ether layer, the 

aqueous layer was extracted with tert-butyl methyl ether (3 x 50 ml). The combined 

organic layers were washed with water (2 x 100 ml), dried over Na2SO4, and the 

solvent evaporated to leave a brown oil, which was purified  through a large plug of 

silica (hexane/EtOAc 10:1 as eluent) gave a pale yellow oil containing 3 

regioisomers of 2.1 (19.4 g, 0.11 mmol, 41.4%). 2.1 was used without further 

purification. ES-MS (CH2Cl2, m/z): 181.2 [M+H]. 

1
H NMR (300 MHz, CDCl3, 300 K) 3.63 (t, 

3
J(

1
H-

1
H) = 7.5 Hz, 7.5 Hz, 2H, 

CH2OH), 2.13-2.50 (m, 2H, CH2CH2CH2OH), 1.57-1.66 (m, 2H, CH2CH2OH), 1.55 

(s, 6H, 2 × CH3), 1.51 (s, 3H, CH3), 0.93 (2 × d, 
3
J(

1
H-

1
H) = 7.0 Hz, 3H, CH3).  

13
C{

1
H} NMR (75 MHz, CDCl3, 300 K) 144.1, 139.2, 135.4 and 134.7 (alkene C 



Chapter 9 

190 

of functionalised Cp* ring), 68.7, 51.4 and 49.4 (allyl CH of functionalised Cp* 

ring), 63.1 (CH2OH), 31.8 (CH2CH2OH), 26.9 (CH2CH2CH2OH), 17.4, 15.9, 15.1, 

13.4 and 11.8 (CH3 groups of functionalised Cp* ring). 

9.2.2 Synthesis of C5(CH3)4C9H18OH (2.3) 

Triethylamine (9.4 g, 0.09 mol) was added to methyl 10-hydroxydecanoate (9.0 g, 

0.05 mmol) in dichloromethane (150 ml). Trimethylsilyl chloride (5.3 g, 0.05 mol) 

was added dropwise. The solution was stirred at ambient temperature overnight. The 

resulting solution was washed with saturated ammonium chloride solution (50 ml). 

The water layer was extracted with diethyl ether (2 × 30 ml) and the ether and 

dichloromethane layers were combined, washed with brine (30 ml), dried over 

magnesium sulfate, evaporated to dryness and purified by column chromatography 

(hexane:ethyl acetate 4:1 as eluent) to afford a yellow oil A (8.7 g, 0.03 mmol, 63%) 

Under a nitrogen atmosphere, lithium wire (0.9 g, 0.13 mol, washed with hexane) 

was added to anhydrous diethyl ether (100 ml) and the lithium suspension was 

vigorously stirred. 2-bromo-2-butene (9.4 g, 0.07 mol, mixture of cis and trans 

isomers) was added in small portions. The reaction was initiated through gentle 

heating, then left at ambient temperature for two hours. A (8.7 g, 0.03 mol) in diethyl 

ether (100 ml) was then added dropwise and the mixture stirred for 1 hour. The 

resulting mixture was poured into sat NH4Cl (aq) (100 ml) and after separating the 

ether layer, the aqueous layer was extracted with tert-butyl methyl ether (3 x 50 ml). 

The combined ether layers were washed with brine (50 ml), dried over magnesium 

sulfate and concentrated to ca. 50 ml. 10% aqueous HCl (100 ml) was added to the 

resulting concentrate and the biphasic mixture was stirred for 3h at r.t. After 

separating the ether layer, the aqueous layer was extracted with tert-butyl methyl 

ether (3 x 50 ml). The combined organic layers were washed with water (2 x 100 

ml), dried over magnesium sulfate, and the solvent evaporated to leave a brown oil, 

which was purified  through a large plug of silica (hexane/ethyl acetate 5:1 as eluent) 

to give 2.3 as a pale yellow oil with 3 regioisomers (3.5 g, 0.01 mmol, 42%). 2.3 was 

used without further purification. ES-MS (CH2Cl2, m/z): 285.1 [M-2H+Na]. 

1
H NMR (300 MHz, CDCl3, 300 K) 3.64 (t, 

3
J(

1
H-

1
H) = 6.6 Hz, 2H, CH2OH), 

2.23-2.65 (m, 2H, CH2), 1.81 (br. s, 3H,  CH3), 1.77 (br. s, 6H, 2 × CH3), 1.65-1.75 

(m, 2H, CH2), 1.49-1.65 (m, 3H, CH2 and allyl CH), 1.30 (br. s, 10H, 10 × CH2), 
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1.00 (2 × d, 
3
J(

1
H-

1
H) = 7.6 Hz, 3H, CH3).

 13
C{

1
H} NMR (75 MHz, CDCl3, 300 K) 

142.8, 142.8, 138.8, 138.1, 138.0, 135.5, 135.2, 134.2, 134.0, 133.7 and 130.1 

(alkene C of functionalised Cp* ring), 64.4, 51.4 and 49.3 (allyl CH of 

functionalised Cp* ring), 63.0 (CH2OH), 32.7 (CH2), 29.5 (br. s, CH2), 29.3 (CH2), 

29.3 (CH2), 29.1 (CH2), 29.1 (CH2), 25.7 (CH2), 25.0 (CH2), 23.5, 22.6, 14.0, 11.6 

and 11.0 (CH3 groups of functionalised Cp* ring). 

9.2.3 Synthesis of C5(CH3)4C14H28OH (2.4) 

Under a nitrogen atmosphere, lithium wire (2 g, 0.29 mol, washed with hexane) 

was added to anhydrous diethyl ether (100 ml) and the lithium suspension was 

vigorously stirred. 2-bromo-2-butene (20 g, 0.15 mol, mixture of cis and trans 

isomers) was added to a dropping funnel and a small portion added to the reaction 

mixture to initiate the reaction. Diethyl ether (70 ml) was also added to the 

remaining 2-bromo-2-butene, which was then added at a rate that maintained a 

gentle reflux. After complete addition of 2-bromo-2-butene the reaction was stirred 

at r.t. for 2 hours. Pentadecanolide (16.8 ml, 0.06 mol) in diethyl ether (50 ml) was 

then added dropwise and the mixture stirred for 1 hour. The resulting mixture was 

poured into saturated NH4Cl (aq) (300 ml) and after separating the ether layer, the 

aqueous layer was extracted with tert-butyl methyl ether (3 x 100 ml). The combined 

ether layers were washed with brine, dried over magnesium sulfate and concentrated 

to ca. 100 ml. 10% aqueous HCl (150 ml) was added to the resulting concentrate and 

the biphasic mixture was stirred for 3h at r.t. After separating the ether layer, the 

aqueous layer was extracted with tert-butyl methyl ether (3 x 50 ml). The combined 

organic layers were washed with water (2 x 100 ml), dried over Na2SO4, and the 

solvent evaporated to leave a brown oil, which was purified  through a large plug of 

silica (hexane/EtOAc 3:1 as eluent) to give 2.4 as a pale yellow oil with 3 

regioisomers (15.7 g, 0.05 mol, 83%). 2.4 was used without further purification. ES-

MS (CH2Cl2, m/z): 489.4 [M-4H+3Na+2 formates]. 

1
H NMR (300 MHz, CDCl3, 300 K) 3.62 (t, 

3
J(

1
H-

1
H) = 6.6 Hz, 2H, CH2OH), 

2.13-2.65 (m, 2H, CH2), 1.81 (s, 3H,  CH3), 1.77 (s, 6H, 2 × CH3), 1.66-1.72 (m, 2H, 

CH2), 1.50-1.63 (m, 3H, CH2 and allyl CH), 1.20-1.40 (m, 20H, 10 × CH2), 1.00 (2 × 

d, 
3
J(

1
H-

1
H) = 7.6 Hz, 3H, CH3) 

13
C{

1
H} NMR (75 MHz, CDCl3, 300 K) 142.9, 

138.9, 138.1, 138.0, 137.8, 136.7, 135.5, 135.3, 134.2, 134.1, 133.76 and 130.1 
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(alkene C of functionalised Cp* ring), 67.8, 51.4 and 49.4 (allyl CH of 

functionalised Cp* ring), 63.1 (CH2OH), 32.8 (CH2), 29.7 (CH2), 29.6 (CH2), 29.6 

(CH2), 25.7 (CH2), 23.8, 22.9, 14.1, 11.6 and 11.1 (CH3 groups of functionalised 

Cp* ring). 

9.2.4 Synthesis of [Rh{η
5
-C5(CH3)4C3H6OH}Cl2]2 (2.5) 

Under a nitrogen atmosphere, rhodium trichloride hydrate (0.10 g, 0.38 mmol) 

was added to 1-(3-hydroxypropyl)-2,3,4,5-tetramethylcyclopentadiene (0.14 g, 0.78 

mmol) in MeOH (30 ml) and the mixture was heated under reflux for 15 h. After 

evaporation of the solvent, the powder was dissolved in dichloromethane and the 

product precipitated using hexane, and collected by filtration to yield 2.5 as red 

crystals suitable for X-ray crystallography (0.03 g, 0.04 mmol, 22%).
 
ES-MS 

(CH2Cl2, m/z): 671.0 [M-Cl]. 

Anal. Found: C: 39.2, H: 5.2, Cl: 22.2%. Anal. Calculated (with 0.35 molecules 

of dichloromethane): C: 39.7, H: 5.3, Cl: 22.6% 

1
H NMR (300 MHz, CDCl3, 300 K) 3.66 (br. s, 4H, 2 × CH2OH), 2.37 (t, 

1
J(

1
H-

1
H) = 7.9 Hz, 4H, 2 × CH2Cp), 1.67-1.80 (m, 4H, 2 × CH2CH2OH), 1.65 (s, 12H, 4 × 

CH3), 1.63 (s, 12H, 4 × CH3).
 13

C{
1
H} NMR (125 MHz, CDCl3, 300 K) 94.5 (d, 

1
J(

13
C-

103
Rh) = 7.4 Hz,

 
CCH3), 62.2 (CH2OH), 29.7 (CH2CH2OH), 20.8 (CH2Cp), 

9.4 (s, 2 × CH3), 9.4 (s, 2 × CH3).
 

9.2.5 Synthesis of [Rh{η
5
-C5(CH3)4C9H18OH}Cl2]2 (2.7) 

Under a nitrogen atmosphere, rhodium trichloride hydrate (0.20 g, 0.76 mmol) 

was added to 1-(9-hydroxynonyl)-2,3,4,5-tetramethylcyclopentadiene (2.3) (0.40 g, 

1.51 mmol) in MeOH (30 ml) and the mixture was heated under reflux for 15 h. 

After evaporation of the solvent, the powder was dissolved in a minimum of 

dichloromethane and the product precipitated using hexane, collected by filtration. 

The precipitation step was repeated and the powder dried in vacuo to give the 

product as a red powder (0.34 g, 0.39 mmol, 51%).
 
ES-MS (CH2Cl2, m/z): 837.2 [M-

Cl]. 

Anal. Found: C: 49.7, H: 7.2, Cl: 15.9%. Anal. Calculated: C: 49.4, H: 7.2, Cl: 

16.2%
 

1
H NMR (300 MHz, CDCl3, 300 K) 3.63 (t, 

3
J(

1
H-

1
H) = 6.5 Hz, 4H, 2 × CH2OH), 
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2.25 (m, 
1
J(

1
H-

1
H) = 6.7 Hz, 4H, 2 × CH2Cp), 1.75-2.00 (m, 4H, CH2CH2OH), 1.63 

(s, 12H, 4 × CH3), 1.61 (s, 12H, 4 × CH3), 1.50-1.59 (m, 4H, 2 × CH2), 1.30 (br. s, 

20H, 10 × CH2). 
13

C{
1
H} NMR (75 MHz, CDCl3, 300 K) 96.2 (d, 

1
J (

13
C-

103
Rh) = 

9.4 Hz, CCH3), 94.5 (d, 
1
J (

13
C-

103
Rh) = 9.4 Hz, CCH3), 94.2 (d, 

1
J (

13
C-

103
Rh) = 9.3 

Hz, CCH3), 63.0 (s, CH2OH), 32.7 (s, CH2), 29.6 (s, CH2), 29.3 (s, CH2), 29.1 (s, 

CH2), 27.5 (s, CH2), 25.6 (s, CH2), 24.0 (s, CH2Cp), 9.4 (s, 2 × CH3), 9.4 (s, 2 × 

CH3). 

9.2.6 Synthesis of [Rh{η
5
-C5(CH3)4C14H28OH}Cl2]2 (2.8) 

Under a nitrogen atmosphere, rhodium trichloride hydrate (0.10 g, 0.38 mmol) 

was added to 1-(14-hydroxytetradecyl)-2,3,4,5-tetramethylcyclopentadiene (1b) 

(0.26 g, 0.78 mmol) in MeOH (30 ml) and the mixture was heated under reflux for 

15 h. After evaporation of the solvent, the powder was dissolved in a minimum of 

dichloromethane and the product precipitated using hexane, collected by filtration 

and the dried in vacuo to give the product as a red powder (0.18 g, 0.18 mmol, 47%).
 

ES-MS (CH2Cl2, m/z): 977.4 [M-Cl]. 

Anal. Found: C: 54.0, H: 8.1, Cl: 13.8%. Anal. Calculated: C: 54.5, H: 8.1, Cl: 

14.0% 

1
H NMR (300 MHz, CDCl3, 300 K) 3.64 (t, 

3
J(

1
H-

1
H) = 6.6 Hz, 4H, 2 × CH2OH), 

2.25 (m, 4H, 2 × CH2), 1.63 (s, 12H, 4 × CH3), 1.62 (s, 12H, 4 × CH3), 1.55 (m, 4H, 

2 × CH2), 1.49 (br. s, 4H, 2 × CH2), 1.20-1.40 (m, 40H, 20 × CH2). 
13

C{
1
H} NMR 

(75 MHz, CDCl3, 300 K) 96.3 (d, 
1
J (

13
C-

103
Rh) = 9.8 Hz, CCH3), 94.5 (d, 

1
J (

13
C-

103
Rh) = 9.3 Hz, CCH3), 94.1 (d, 

1
J (

13
C-

103
Rh) = 9.3 Hz, CCH3), 63.1 (s, CH2OH), 

32.8 (s, CH2), 29.7 (s, CH2), 29.6 (s, CH2), 29.5 (s, CH2), 29.4 (s, CH2), 29.4 (s, 

CH2), 29.4 (s, CH2), 29.3 (s, CH2), 27.5 (s, CH2), 25.7 (s, CH2), 9.4 (s, 2 × CH3), 9.4 

(s, 2 × CH3). 

9.2.7 Synthesis of [Ir{η
5
-C5(CH3)4C3H6OH}Cl2]2 (2.9) 

Under a nitrogen atmosphere, iridium trichloride hydrate (0.70 g, 1.99 mmol) and 

sodium bicarbonate (0.18 g, 2.14 mmol) were added to degassed methanol (10 ml) in 

a 30 ml capacity microwave tube and the suspension was purged with nitrogen for 10 

minutes. After adding 1-(3-hydroxypropyl)-2,3,4,5-tetramethylcyclopentadiene (0.70 

g, 3.88 mmol), the suspension was purged for a further 5 minutes. The tube was then 
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sealed and microwave heating was applied at 150 
°
C for 10 minutes. After 

effervescence from the solution had subsided, the tube was opened and the solution 

was diluted with dichloromethane (50 ml), washed with water (20 ml), brine (20 ml), 

dried over Na2SO4 and the solvent evaporated. The resulting oily red residue was 

recrystallised from methanol, filtered and washed with diethyl ether to yield an 

orange powder (0.46 g, 0.52 mmol, 26%). 

Anal. Found: C: 33.5, H: 4.5, Cl: 14.7%. Anal. Calculated (with 2 molecules of 

methanol): C: 32.9, H: 4.9, Cl: 15.0% 

1
H NMR (300 MHz, CDCl3, 300 K) 3.66 (t, 

3
J(

1
H-

1
H) = 6.3 Hz, 4H, 2 × CH2OH), 

2.20-2.27 (m, 4H, 2 × CH2Cp), 1.64-1.75 (m, 4H, 2 × CH2), 1.62 (s, 12H, 4 × CH3), 

1.59 (s, 12H, 4 × CH3). 
13

C{
1
H} NMR (75 MHz, CDCl3, 300 K) 87.3 (CCH3), 86.8 

(CCH3), 86.4 (CCH3), 62.3 (CH2OH), 30.5 (CH2), 20.9 (CH2Cp), 9.4 (s, CH3), 9.3 (s, 

CH3). 

9.2.8 Synthesis of [Ir{η
5
-C5(CH3)4C9H18OH}Cl2]2 (2.11) 

Under a nitrogen atmosphere, iridium trichloride hydrate (0.70 g, 1.99 mmol) and 

sodium bicarbonate (0.18 g, 2.14 mmol) were added to degassed methanol (10 ml) in 

a 30 ml capacity microwave tube and the suspension was purged with nitrogen for 10 

minutes. After adding 1-(9-hydroxynonyl)-2,3,4,5-tetramethylcyclopentadiene (1.05 

g, 3.97 mmol), the suspension was purged for a further 5 minutes. The tube was then 

sealed and microwave heating was applied at 150 
°
C for 10 minutes. After 

effervescence from the solution had subsided, the tube was opened and the solution 

was diluted with dichloromethane (50 ml), washed with water (20 ml), brine (20 ml), 

dried over Na2SO4 and the solvent evaporated. The resulting oily red residue was 

dissolved in dichloromethane, precipitated with hexane, and the process repeated to 

yield an orange powder (0.30 g, 0.28 mmol, 14%). ES-MS (CH2Cl2, m/z): 1017.3 

[M-Cl]. 

Anal. Found: C: 42.2, H: 6.1%. Anal. Calculated: C: 41.1, H: 5.9% 

1
H NMR (300 MHz, CDCl3, 300 K) 3.64 (t, 

3
J(

1
H-

1
H) = 6.6 Hz, 4H, 2 × CH2OH), 

2.09-2.16 (m, 4H, 2 × CH2Cp), 1.61 (s, 12H, 4 × CH3), 1.59 (s, 12H, 4 × CH3), 1.50-

1.58 (m, 4H, 2 × CH2), 1.25-1.45 (br. s, 20H, 10 × CH2). 
13

C{
1
H} NMR (75 MHz, 

CDCl3, 300 K) 88.2 (CCH3), 86.5 (CCH3), 86.4 (CCH3), 63.0 (CH2OH), 32.7 (CH2), 

29.6 (CH2), 29.3 (CH2), 29.3 (CH2), 29.1 (CH2), 27.6 (CH2), 25.7 (CH2), 24.1 
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(CH2Cp), 9.4 (CH3), 9.4 (CH3). 

9.2.9 Synthesis of [Ir{η
5
-C5(CH3)4C14H28OH}Cl2]2 (2.12) 

Under a nitrogen atmosphere, iridium trichloride hydrate (0.10 g, 0.28 mmol) and 

sodium bicarbonate (0.02 g, 0.24 mmol) were added to degassed methanol (3 ml) in 

a 10 ml capacity microwave tube and the suspension was purged with nitrogen for 10 

minutes. After adding 1-(14-hydroxytetradecyl)-2,3,4,5-tetramethylcyclopentadiene 

(0.19 g, 0.57 mmol), the suspension was purged for a further 5 minutes. The tube 

was then sealed and microwave heating was applied at 150 
°
C for 10 minutes. After 

effervescence from the solution had subsided, the tube was opened and the solution 

was diluted with dichloromethane (20 ml), washed with water (10 ml), brine (10 ml), 

dried over Na2SO4 and the solvent evaporated. The resulting oily red residue was 

dissolved in dichloromethane, precipitated with hexane and left overnight to yield an 

orange powder (0.14 g, 0.12 mmol, 42%). ES-MS (CH2Cl2, m/z): 1158.5 [M-Cl]. 

Anal. Found: C: 46.7, H: 7.0, Cl: 10.9%. Anal. Calculated: C: 46.3, H: 6.9, Cl: 

11.9% 

 1
H NMR (300 MHz, CDCl3, 300 K) 3.64 (t, 

3
J(

1
H-

1
H) = 6.6 Hz, 4H, 2 × 

CH2OH), 2.12 (t, 
3
J(

1
H-

1
H) = 7.6 Hz, 4H, 2 × CH2), 1.80-2.04 (m, 4H, 2 × CH2), 

1.61 (s, 12H, 4 × CH3), 1.59 (s, 12H, 4 × CH3), 1.50-1.58 (m, 4H, 2 × CH2), 1.20-

1.45 (m, 40H, 10 × CH2).
 13

C{
1
H} NMR (75 MHz, CDCl3, 300 K) 88.2 (CCH3), 

86.5 (CCH3), 86.4 (CCH3), 63.1 (CH2OH), 32.8 (CH2), 29.7 (CH2), 29.6 (CH2), 29.5 

(CH2), 29.4 (CH2), 29.3 (CH2), 27.7 (CH2), 25.7 (CH2), 24.1 (CH2) 9.4 (CH3), 9.4 

(CH3). 

9.3 Pyridine Complexes 

9.3.1 Synthesis of Ir(η
5
-C5(CH3)5){C5H5N}Cl2 (3.1)  

[IrCp*Cl2]2 (0.50 g, 0.63 mmol) was dissolved in pyridine (25 ml) and the 

solution was stirred for 25 hours. The resulting yellow solution was evaporated to 

dryness and the crude product recrystallised using layer diffusion from a 

dichloromethane/hexane solvent system to give 3.1 as a yellow powder (0.54 g, 1.13 

mmol, 90%)  

Anal. Found: C:37.5, H: 4.1, N: 2.9, Cl 14.3%. Anal. Calculated: C: 37.7, H: 
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4.2, N: 2.9, Cl: 14.9% 

1
H NMR (300 MHz, CDCl3, 300 K) 8.99 (br. d, 

3
J(

1
H-

1
H) = 6.1 Hz, 2H, 2 × CH 

ortho to N of pyridine), 7.74 (br. t, 
3
J(

1
H-

1
H) = 7.6 Hz, 1H, CH para to N of 

pyridine), 7.35 (vt (dd), 
3
J(

1
H-

1
H) = 6.8 Hz, 

3
J(

1
H-

1
H) = 6.8 Hz, 2H, 2 × CH meta to 

N of pyridine), 1.54 (s, 15H, 5 × CH3).
 13

C{
1
H} NMR (75 MHz, CDCl3, 300 K) 

153.5 (2 × C ortho to N on pyridine ring), 137.7 (C para to N on pyridine ring), 

125.4 (2 × C meta to N on pyridine ring), 85.7 (5 × CCH3), 8.5 (5 × CCH3). 

9.3.2 Synthesis of Ir(η
5
-C5(CH3)5){C5H4NF}Cl2 (3.2) 

3-Fluoropyridine (0.04 ml, 0.49 mmol) was added to [IrCp*Cl2]2 (0.10 g, 0.13 

mmol) in tetrahydrofuran (10 ml). The mixture was stirred overnight, then filtered. 

The resulting yellow powder was recrystallised using vapour diffusion 

(dichloromethane/pentane solvent system) to give the 3.2 as orange crystals (0.10 g, 

0.20 mmol, 78%) 

Anal. Found: C: 36.4, H: 3.9, N: 2.8, Cl: 14.2%. Anal. Calculated: C: 36.4, H: 

3.9, N: 2.8, Cl: 14.3% 

1
H NMR (300 MHz, CDCl3, 300 K) 8.96 (br. s, 1H, CH on pyridyl ring ortho to F 

and N), 8.84 (br. d, 
3
J(

1
H-

1
H) = 5.4 Hz, 1H, CH on pyridyl ring para to F), 7.51 

(dddd, 
3
J(

1
H-

19
F) = 7.9 Hz, 

3
J(

1
H-

1
H) = 7.9 Hz, 

4
J(

1
H-

1
H) = 2.7 Hz,

 4
J(

1
H-

1
H) = 1.2 

Hz, 1H, CH on pyridyl ring para to N), 7.36 (vdt (ddd), 
3
J(

1
H-

1
H) = 8.6 Hz,

 3
J(

1
H-

1
H) = 5.5 Hz,

 4
J(

1
H-

19
F) = 5.5 Hz, 1H, CH on pyridyl ring meta to N), 1.55 (s, 15H, 5 

× CH3).
 13

C{
1
H}

 
NMR (75 MHz, CDCl3, 300 K) 159.6 (d, 

1
J(

13
C-

19
F) = 255.0 Hz, 

CF), 149.8 (br. s, CH on pyridyl ring para to F), 142.4 (d, 
2
J(

13
C-

19
F) = 32.4 Hz, CH 

on pyridyl ring ortho to F and N), 125.9 (d, 
3
J(

13
C-

19
F) =5.6 Hz, CH on pyridyl ring 

meta to N), 125.1 (d, 
2
J(

13
C-

19
F) = 17.4 Hz, CH on pyridyl ring para to N), 85.9 

(CCH3), 8.5 (CCH3) 

9.3.3 Synthesis of Ir(η
5
-C5(CH3)5){C5H4NCl}Cl2 (3.3) 

3-Chloropyridine (0.10 ml, 1.05 mmol) was added to [IrCp*Cl2]2 (0.10 g, 0.13 

mmol) in tetrahydrofuran (10 ml). The mixture was stirred overnight, then filtered. 

The resulting yellow powder was recrystallised using vapour diffusion 

(dichloromethane/pentane solvent system) to give 3.3 as orange crystals (0.09 g, 0.18 

mmol, 71%) 
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Anal. Found: C: 35.6, H: 3.8, N: 2.6, Cl: 20.2%. Anal. Calculated: C: 35.2, H: 

3.7, N: 2.7, Cl: 20.8% 

1
H NMR (300 MHz, CDCl3, 300 K) 9.00 (br. d, 

4
J(

1
H-

1
H) = 2.2 Hz, 1H, CH on 

pyridyl ring ortho to Cl and N), 8.90 (br. dd, 
3
J(

1
H-

1
H) = 5.6, 

4
J(

1
H-

1
H) = 1.0 Hz, 

1H, CH on pyridyl ring para to Cl), 7.75 (ddd, 
3
J(

1
H-

1
H) = 8.3 Hz, 

4
J(

1
H-

1
H) = 2.0 

Hz, 
4
J(

1
H-

1
H) = 1.2 Hz, 1H, CH on pyridyl ring para to N), 7.32 (dd, 

3
J(

1
H-

1
H) = 8.2 

Hz, 
3
J(

1
H-

1
H) = 5.6 Hz 1H, CH on pyridyl ring meta to N), 1.54 (s, 15H, 5 × CH3).

 

13
C{

1
H}

 
NMR (75 MHz, CDCl3, 300 K) 152.6 (CH on pyridyl ring ortho to N and 

Cl), 151.5 (CH on pyridyl ring para to Cl), 137.9 (CH on pyridyl ring para to N), 

133.4 (CCl), 125.7 (CH on pyridyl ring meta to N), 86.0 (CCH3), 8.6 (CCH3). 

9.3.4 Synthesis of Ir(η
5
-C5(CH3)5){C5H4NBr}Cl2 (3.4) 

3-Bromopyridine (0.04 ml, 0.42 mmol) was added to [IrCp*Cl2]2 (0.10 g, 0.13 

mmol) in tetrahydrofuran (10 ml). The mixture was stirred overnight, then filtered. 

The resulting yellow powder was recrystallised using vapour diffusion 

(dichloromethane/pentane solvent system) to give 3.4 as orange crystals (0.10 g, 0.18 

mmol, 72%) 

Anal. Found: C: 32.5, H: 3.5, N: 2.4%. Anal. Calculated: C: 32.4, H: 3.4, N: 

2.5% 

1
H NMR (300 MHz, CDCl3, 300 K) 9.08 (br. d, 

4
J(

1
H-

1
H) = 2.0 Hz, 1H, CH on 

pyridyl ring ortho to Br and N), 8.93 (dd, 
3
J(

1
H-

1
H) = 5.5 Hz,

 4
J(

1
H-

1
H) = 1.0 Hz, 

1H, CH on pyridyl ring para to Br), 7.89 (ddd, 
3
J(

1
H-

1
H) = 8.2 Hz, 

3
J(

1
H-

1
H) = 2.1 

Hz,
 4

J(
1
H-

1
H) = 1.3 Hz, 1H , CH on pyridyl ring para to Br), 7.26 (masked vt (dd), 

3
J(

1
H-

1
H) = 6.0 Hz, 1H , CH on pyridyl ring meta to N), 1.54 (s, 15H, 5 × CH3). 

13
C{

1
H}

 
NMR (75 MHz, CDCl3, 300 K) 154.2 (CH on pyridyl ring ortho to N and 

Br), 151.9 (CH on pyridyl ring para to Br), 140.7 (CH on pyridyl ring para to N), 

126.1 (CCl), 121.3 (CH on pyridyl ring meta to N), 86.0 (CCH3), 8.6 (CCH3). 

9.3.5 Synthesis of Ir(η
5
-C5(CH3)5){C5H4IN}Cl2 (3.5) 

3-Iodopyridine (0.10 g, 0.82 mmol) was added to [IrCp*Cl2]2 (0.10 g, 0.13 mmol) 

in tetrahydrofuran (10 ml). The mixture was stirred overnight, then filtered. The 

resulting yellow powder was recrystallised using vapour diffusion 

(dichloromethane/pentane solvent system) to give 3.5 as an orange/yellow powder 
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(0.07 g, 0.12 mmol, 46%). 

Anal. Found: C: 29.9, H: 3.2, N: 2.2% Anal. Calculated: C: 29.9, H: 3.2, N: 

2.3% 

1
H NMR (300 MHz, CDCl3, 300 K) 9.20 (br. d, 

4
J(

1
H-

1
H) = 1.6 Hz, 1H, CH on 

pyridyl ring ortho to I and N), 8.96 (br. d, 
3
J(

1
H-

1
H) = 5.5 Hz,

 
1H, CH on pyridyl 

ring para to I), 8.05 (vtd, 
3
J(

1
H-

1
H) = 8.0 Hz, 

3
J(

1
H-

1
H) = 1.6 Hz,

 4
J(

1
H-

1
H) = 1.6 

Hz, 1H , CH on pyridyl ring para N), 7.13 (dd, 
3
J(

1
H-

1
H) = 8.0 Hz, 

3
J(

1
H-

1
H) = 5.6 

Hz, 1H , CH on pyridyl ring meta to N), 1.54 (s, 15H, 5 × CH3). 
13

C{
1
H}

 
NMR (75 

MHz, CDCl3, 300 K) 159.0 (CH on pyridyl ring ortho to N and I), 152.2 (CH on 

pyridyl ring para to I), 146.2 (CH on pyridyl ring para to N), 126.3 (CH on pyridyl 

ring meta to N), 92.8 (C-I), 85.9 (CCH3), 8.6 (CCH3). 

9.3.6 Synthesis of Ir(η
5
-C5(CH3)5){C7H12N2}Cl2 (3.6) 

4-Dimethylaminopyridine (0.03 g, 0.26 mmol) was added to [IrCp*Cl2]2 (0.1g, 

0.13 mmol) in tetrahydrofuran (10 ml) and the solution was stirred for 25 hours. The 

suspension was filtered and the crude product washed with ether, then recrystallised 

using vapour diffusion (dichloromethane/pentane solvent system) to give 3.6 as 

orange crystals (0.09 g, 0.18 mmol, 70%) 

Anal. Found: C: 39.4, H: 4.8, N: 5.2% Anal. Calculated: C: 39.2, H: 4.8, N: 

5.4% 

1
H NMR (300 MHz, CDCl3, 300 K) 8.39 (br. dd, 

3
J(

1
H-

1
H) = 5.7 Hz,

 4
J(

1
H-

1
H) = 

1.4 Hz, 1H, CH on pyridyl ring meta to NMe2), 6.43 (br. dd, 
3
J(

1
H-

1
H) = 5.6 Hz,

 

4
J(

1
H-

1
H) = 1.4 Hz, 1H, CH on pyridyl ring ortho to NMe2), 3.05 (s, 6H, N(CH3)2, 

1.54 (s, 15H, 5 × CH3). 
13

C{
1
H}

 
NMR (75 MHz, CDCl3, 300 K) 154.2 (CNMe2), 

151.7 (CH on pyridyl ring meta to NMe2), 107.9 (CH on pyridyl ring ortho to 

NMe2), 85.1 (CCH3 on Cp*), 39.2 (N(CH3)2) 8.6 (CCH3 on Cp*). 

9.3.7 Synthesis of Ir(η
5
-C5(CH3)4C3H6OH){C5H5N}Cl2 (3.7) 

[Ir{η
5
-C5(CH3)4C3H6OH}Cl2]2 (0.05 g, 0.06 mmol) was dissolved in an excess of 

pyridine (25 ml) and the solution was stirred for 16 hours. After evaporation of the 

solvent, the residue was dissolved in a minimum of dichloromethane and the product 

precipitated using hexane, then collected by filtration and dried in vacuo to give 3.7 

as a yellow powder (0.04 g, 0.07 mmol, 68%).  
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Anal. Found: C: 39.3, H: 4.6, N 2.5% Anal. Calculated: C 39.2, H 4.6, N 2.7%  

1
H NMR (300 MHz, CDCl3, 300 K) 8.98 (br. d, 

3
J(

1
H-

1
H) = 5.2 Hz, 2H, 2 × CH 

ortho to N of pyridine), 7.74 (tt, 
3
J(

1
H-

1
H) = 7.8 Hz, 

4
J(

1
H-

1
H) = 1.4 Hz, 1H, CH 

para to N of pyridine), 7.35 (vt (dd), 
3
J(

1
H-

1
H) = 6.9 Hz, 

3
J(

1
H-

1
H) = 6.9 Hz, 2H, 2 

× CH meta to N of pyridine), 3.67 (t, 
3
J(

1
H-

1
H) = 6.3 Hz, 2H, CH2OH ), 2.12 (t, 

3
J(

1
H-

1
H) = 7.9 Hz, 2H, CH2(CH2)2OH), 1.66-1.78 (m, 2H, CH2CH2OH), 1.56 (s, 

6H, 2 × CH3 meta to alkyl chain on aryl ring), 1.55 (s, 6H, 2 × CH3 ortho to alkyl 

chain on aryl ring). 
13

C{
1
H} NMR (75 MHz, CDCl3, 300 K) 153.5 (2 × C ortho to N 

on pyridine ring), 137.8 (C para to N on pyridine ring), 125.4 (2 × C meta to N on 

pyridine ring), 87.2 (quaternary C of functionalised Cp* ring), 86.6 (quaternary C of 

functionalised Cp* ring), 85.8 (quarternary C of functionalised Cp* ring), 62.0 

(CH2OH), 30.7 (CH2CH2OH), 20.1 (CH2CH2CH2OH), 8.6 (2 × CH3), 8.5 (2 × CH3). 

9.3.8 Synthesis of Ir(η
5
-C5(CH3)4C5H10OH){C5H5N}Cl2 (3.8) 

[Ir{η
5
-C5(CH3)4C5H10OH}Cl2]2 (0.50 g, 0.66 mmol) was dissolved in an excess of 

pyridine (25 ml) and the solution was stirred for 20 hours. After evaporation of the 

solvent, the residue was dissolved in a minimum of dichloromethane and the product 

precipitated using hexane, then collected by filtration and dried in vacuo to give 3.8 

as a yellow powder (0.57 g, 1.13 mmol, 86%). Yellow crystals suitable for single 

crystal X-ray diffraction were obtained via vapour diffusion 

(chloroform/diisopropylether). 

Anal. Found: C: 41.8, H: 5.2, N: 2.4, Cl: 12.5% Anal. Calculated: C: 41.5, H: 

5.1, N: 2.6, Cl: 12.9%  

1
H NMR (300 MHz, CDCl3, 300 K) 8.97 (br. dd, 

3
J(

1
H-

1
H) = 6.9 Hz, 

4
J(

1
H-

1
H) = 

1.4 Hz, 2H, 2 × CH ortho to N of pyridine), 7.74 (tt, 
3
J(

1
H-

1
H) = 7.6 Hz, 

4
J(

1
H-

1
H) = 

1.4 Hz, 1H, CH para to N of pyridine), 7.35 (ddd, 
3
J(

1
H-

1
H) = 7.6 Hz, 

3
J(

1
H-

1
H) = 

6.7 Hz,
 4
J(

1
H-

1
H) = 1.4 Hz, 2H, 2 × CH meta to N of pyridine), 3.64 (m, 2H, CH2OH 

), 2.03 (m, 2H, CH2(CH2)4OH), 1.58 (m, 2H, CH2CH2OH), 1.56 (s, 6H, 2 × CH3 

meta to alkyl chain on aryl ring), 1.55 (s, 6H, 2 × CH3 ortho to alkyl chain on aryl 

ring), 1.34-1.50 (m, 4H, CH2CH2CH2OH).
 13

C{
1
H} NMR (75 MHz, CDCl3, 300 K) 

153.5 (2 × C ortho to N on pyridine ring), 137.7 (C para to N on pyridine ring), 

125.4 (2 × C meta to N on pyridine ring), 87.2 (quaternary C of functionalised Cp* 

ring), 86.2 (quaternary C of functionalised Cp* ring), 85.9 (quarternary C of 
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functionalised Cp* ring), 62.6 (CH2OH), 32.4 (CH2CH2OH), 27.8 

(CH2CH2CH2OH), 26.0 (CH2CH2CH2CH2OH), 23.6 (CH2CH2CH2CH2CH2OH), 8.6 

(2 × CH3), 8.5 (2 × CH3). 

9.3.9 Synthesis of Ir(η
5
-C5(CH3)4C14H28OH){C5H5N}Cl2 (3.9) 

[Ir{η
5
-C5(CH3)4C14H28OH}Cl2]2 (0.10 g, 0.84 mmol) was dissolved in an excess 

of pyridine (25 ml) and the solution was stirred for 20 hours. After evaporation of the 

solvent, the residue was dissolved in a minimum of dichloromethane and the product 

precipitated using hexane, then collected by filtration and dried in vacuo to give 3.9 

as a yellow powder (0.91 g, 1.35 mmol, 80%).  

Anal. Found: C: 50.0, H: 6.9, N: 1.8, Cl: 10.1% Anal. Calculated: C: 49.8, H 

6.9, N: 2.1, Cl: 10.5%  

1
H NMR (300 MHz, CDCl3, 300 K) 8.98 (br. d, 

3
J(

1
H-

1
H) = 5.2 Hz, 2H, 2 × CH 

ortho to N of pyridine), 7.73 (t, 
3
J(

1
H-

1
H) = 7.7 Hz, 1H, CH para to N of pyridine), 

7.34 (vbr. t (dd), 
3
J(

1
H-

1
H) = 6.9 Hz, 

3
J(

1
H-

1
H) = 6.9 Hz,

 
2H, 2 × CH meta to N of 

pyridine), 3.64 (t, 
3
J(

1
H-

1
H) = 6.6 Hz, 2H, CH2OH), 1.94-2.01 (m, 2H, 

CH2(CH2)13OH), 1.58-1.70 (m, 2H, CH2CH2OH), 1.56 (s, 6H, 2 × CH3 meta to alkyl 

chain on aryl ring), 1.54 (s, 6H, 2 × CH3 ortho to alkyl chain on aryl ring), 1.20-1.45 

(m, 22H, 11 × CH2). 
13

C{
1
H} NMR (75 MHz, CDCl3, 300 K) 153.5 (2 × C ortho to 

N on pyridine ring), 137.7 (C para to N on pyridine ring), 125.4 (2 × C meta to N on 

pyridine ring), 87.7 (quaternary C of functionalised Cp* ring), 86.0 (quaternary C of 

functionalised Cp* ring), 85.9 (quarternary C of functionalised Cp* ring), 63.1 

(CH2OH), 32.8 (CH2CH2OH), 29.7 (s, CH2), 29.6 (s, CH2), 29.6 (s, CH2), 29.5 (s, 

CH2), 29.5 (s, CH2), 29.4 (s, CH2), 29.4 (s, CH2), 28.0 (s, CH2), 25.7 (s, CH2), 23.5 

(s, CH2) 8.6 (s, CH3), 8.6 (s, CH3). 

9.3.10 Synthesis of Ir(η
5
-C5(CH3)4C5H10OH)(C5H4NCl)Cl2 (3.10) 

3-Chloropyridine (0.02 ml, 0.22 mmol) was added to [Ir{η
5
-

C5(CH3)4C5H10OH}Cl2]2 (0.10 g, 0.11 mmol) in dichloromethane (25 ml) and left to 

stir for 30 minutes. After evaporation of the solvent, the residue was dissolved in a 

minimum of dichloromethane and the product precipitated using hexane, then 

collected by filtration and recrystallised using vapour diffusion 

(dichloromethane/pentane solvent system) to give 3.10 as yellow crystals (0.07 g, 
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0.12 mmol, 56%). 

Anal. Found: C: 39.3, H: 4.7, N: 2.2% Anal. Calculated: C: 39.1, H 4.7, N 2.4% 

1
H NMR (300 MHz, CDCl3, 300 K) 9.00 (br. d, 

4
J(

1
H-

1
H) = 2.2 Hz, 1H, CH of 

pyridyl ortho to N and Cl), 8.90 (br. d, 
3
J(

1
H-

1
H) = 5.6 Hz, 1H, CH of pyridyl para 

to Cl), 7.76 (br. d, 
3
J(

1
H-

1
H) = 7.9 Hz, 1H, CH of pyridyl para to N), 7.32 (br. t, 

3
J(

1
H-

1
H) = 6.6 Hz, 1H, CH meta to N), 3.64 (t, 

3
J(

1
H-

1
H) = 6.3 Hz, 2H, CH2OH), 

2.02 (t, 
3
J(

1
H-

1
H) = 7.7 Hz, 2H, CH2(CH2)4OH), 1.59-1.75 (m, 2H, CH2CH2OH), 

1.57 (s, 6H, 2 × CH3 meta to alkyl chain on aryl ring), 1.56 (s, 6H, 2 × CH3 ortho to 

alkyl chain on aryl ring), 1.40-1.52 (m, 4H, CH2CH2CH2CH2OH).
 13

C{
1
H} NMR 

(125 MHz, CDCl3, 300 K) 152.3 (CH on pyridyl ring ortho to N and Cl), 151.7 (CH 

on pyridyl ring para to Cl), 137.9 (CH on pyridyl ring para to N), 133.4 (CCl), 

125.7 (CH on pyridyl ring meta to N), 87.5 (quarternary C of functionalised Cp* 

ring), 86.4 (quarternary C of functionalised Cp* ring), 86.1 (quarternary of 

functionalised Cp* ring), 62.6 (CH2OH), 32.4 (CH2CH2OH), 27.8 

(CH2CH2CH2OH), 26.0 (CH2CH2CH2CH2OH), 23.6 (CH2CH2CH2CH2CH2OH), 8.7 

(CH3), 8.6 (CH3). 

9.3.11 Synthesis of Ir(η
5
-C5(CH3)4C5H10OH)(C5H4NBr)Cl2 (3.11) 

3-Bromopyridine (0.02 ml, 0.22 mmol) was added to [Ir{η
5
-

C5(CH3)4C5H10OH}Cl2]2 (0.10 g, 0.11 mmol) in dichloromethane (25 ml) and left to 

stir for 40 minutes. After evaporation of the solvent, the residue was dissolved in a 

minimum of dichloromethane and the product precipitated using hexane, to give 

yellow crystals suitable for single crystal X-ray diffraction. The crude product was 

recrystallised using vapour diffusion (dichloromethane/pentane solvent system) to 

give 3.11 as yellow crystals (0.09 g, 0.14 mmol, 64%). 

Anal. Found: C: 36.4, H: 4.3, N: 2.1% Anal. Calculated: C: 36.3, H: 4.3, N: 

2.2% 

1
H NMR (300 MHz, CDCl3, 300 K) 9.09 (br. d, 

4
J(

1
H-

1
H) = 1.9 Hz, 1H, CH of 

pyridyl ring ortho to N and Br), 8.94 (br. dd, 
3
J (

1
H-

1
H)  = 5.7 Hz, 

4
J(

1
H-

1
H)  = 1.2 

Hz, 1H, CH of pyridyl ring para to Br), 7.90 (vdq (ddd), 
3
J (

1
H-

1
H)  = 8.1 Hz, 

4
J(

1
H-

1
H)  =  2.4 Hz, 

4
J(

1
H-

1
H)  =  1.4 Hz  1H, CH of pyridyl ring para to N), 7.26 

(masked dd, 
3
J (

1
H-

1
H)  = 8.3 Hz, 

3
J(

1
H-

1
H)  =  5.7 Hz, 

1
H, CH of pyridyl ring meta 

to N), 3.65 (t, 
3
J (

1
H-

1
H)  = 6.2 Hz, 2H, CH2OH), 2.02 (m, 2H, CH2(CH2)4OH), 1.89 
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(m, 2H, CH2CH2OH), 1.56 (s, 6H, 2 × CH3 meta to alkyl chain on aryl ring) , 1.56 (s, 

6H, 2 × CH3 ortho to alkyl chain on aryl ring), 1.40-1.45 (m, 4H, 

CH2CH2CH2CH2OH).
 13

C{
1
H} NMR (75 MHz, CDCl3, 300 K) 154.3 (CH on 

pyridyl ring ortho to N and Br), 151.9 (CH on pyridyl ring para to Br), 138.8 (CH on 

pyridyl ring para to N), 126.0 (CH on pyridyl ring meta to N), 121.3 (CBr), 87.5 

(quarternary C of functionalised Cp* ring), 86.4 (quarternary C of functionalised 

Cp* ring), 86.1 (quarternary of functionalised Cp* ring), 62.5 (CH2OH), 32.4 

(CH2CH2OH), 27.8 (CH2CH2CH2OH), 26.0 (CH2CH2CH2CH2OH), 23.6 

(CH2CH2CH2CH2CH2OH), 8.7 (CH3), 8.6 (CH3). 

9.3.12 Synthesis of Ir(η
5
-C5(CH3)4C5H10OH)(C5H4NI)Cl2 (3.12) 

3-Iodopyridine (0.13 g, 1.11 mmol) was added to [Ir{η
5
-C5(CH3)4C5H10OH}Cl2]2 

(0.10 g, 0.11 mmol) in dichloromethane (25 ml) and left to stir for 20 hours. After 

evaporation of the solvent, the residue was dissolved in a minimum of 

dichloromethane and the product precipitated using hexane, then collected by 

filtration and dried in vacuo to give 3.12 as a yellow powder (0.12 g, 0.18 mmol, 

81%) 

Anal. Found: C: 38.1, H: 4.6, N: 1.9% Anal. Calculated: C: 35.8, H: 4.0, N: 

2.1% 

1
H NMR (300 MHz, CDCl3, 300 K) 9.19 (br. d, 

4
J(

1
H-

1
H) = 1.8 Hz, 1H, CH of 

pyridyl ortho to N and I), 8.95 (br. d, 
3
J (

1
H-

1
H)  = 5.7 Hz, 1H, CH of pyridyl ring 

para to I), 8.07 (br. d, 
3
J (

1
H-

1
H)  = 6.7 Hz, 1H, CH of pyridyl ring para to N), 7.14 

(vt (dd), 
3
J (

1
H-

1
H)  = 7.9 Hz, 

3
J (

1
H-

1
H)  = 7.9 Hz, 1H, CH pyridyl ring meta to N), 

3.64 (t, 
3
J (

1
H-

1
H)  = 6.3 Hz, 2H, CH2OH), 2.01 (t, 2H, 

3
J(

1
H-

1
H) = 7.6 Hz, 

CH2(CH2)4OH), 1.56-1.62 (m, 2H, CH2CH2OH), 1.56 (s, 12H, 4 × CH3) 1.40-1.51 

(m, 4H, CH2CH2CH2OH). 
13

C{
1
H} NMR (75 MHz, CDCl3, 300 K) 159.0 (CH ortho 

to N and I), 152.4 (CH para to I), 146.3 (CH para to N), 126.4 (CH meta to N), 92.7 

(CI), 87.5 (quarternary C of functionalised Cp* ring ), 86.4 (quarternary C of 

functionalised Cp* ring), 86.1 (quarternary C of functionalised Cp* ring), 62.5 

(CH2OH), 32.4 (CH2CH2OH), 27.8 (CH2CH2CH2OH), 26.0 (CH2CH2CH2CH2OH), 

23.6 (CH2CH2CH2CH2CH2OH), 8.7 (2 × CH3), 8.6 (2 × CH3). 
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9.3.13 Synthesis of Ir(η
5
-C5(CH3)4C5H10OH)(C6H9N)Cl2 (3.13) 

4-Methylpyridine (0.02 ml, 0.22 mmol) was added to [Ir{η
5
-

C5(CH3)4C5H10OH}Cl2]2 (0.10 g, 0.11 mmol) in dichloromethane (25 ml) and left to 

stir for 20 hours. After evaporation of the solvent, the residue was dissolved in a 

minimum of dichloromethane and the product precipitated using hexane, to obtain a 

mixture of a yellow oil and yellow needles suitable for X-ray crystallography. The 

product was recrystallised using vapour diffusion (dichloromethane/pentane solvent 

system) to give 3.13 as a yellow solid (0.09 g, 1.6 mmol, 75%) 

Anal. Found: C: 44.2, H: 5.6, N: 2.6, Cl: 11.2% Anal. Calculated: C: 42.6, H: 

5.4, N: 2.5, Cl: 12.6% 

1
H NMR (300 MHz, CDCl3, 300 K) 8.74 (br. d, 

3
J(

1
H-

1
H) = 6.4 Hz, 2H, 2 × CH 

ortho to N of pyridine), 7.13 (br. d, 
3
J(

1
H-

1
H) = 6.0 Hz, 2H, 2 × CH meta to N of 

pyridine), 3.60 (t, 
3
J(

1
H-

1
H) = 6.4 Hz, 2H, CH2OH), 2.42 (br. s, 3H, CH3 on pyridyl 

ring), 1.94-2.01 (m, 2H, CH2(CH2)4OH), 1.50-1.60 (masked m, 2H, CH2CH2OH), 

1.53 (s, 6H, 2 × CH3 meta to alkyl chain on aryl ring), 1.51 (s, 6H, 2 × CH3 ortho to 

alkyl chain on aryl ring), 1.34-1.50 (m, 4H, CH2CH2CH2OH).
 13

C{
1
H} NMR (75 

MHz, CDCl3, 300 K) 152.6 (2 × C ortho to N on pyridyl ring), 149.8 (C para to N 

on pyridyl ring), 126.3 (2 × C meta to N on pyridyl ring), 87.1 (quaternary C of 

functionalised Cp* ring), 86.0 (quaternary C of functionalised Cp* ring), 85.7 

(quarternary C of functionalised Cp* ring), 62.4 (CH2OH), 32.4 (CH2CH2OH), 27.8 

(CH2CH2CH2OH), 26.0 (CH2CH2CH2CH2OH), 23.5 (CH2CH2CH2CH2CH2OH), 

20.8 (CH3 on pyridyl ring), 8.6 (CH3 on functionalised Cp* ring), 8.5 (CH3 on 

functionalised Cp* ring). 

9.3.14 Synthesis of Ir(η
5
-C5(CH3)4C5H10OH){C5H4N}I2 (3.14) 

 [Ir{η
5
-C5(CH3)4C5H10OH}I2]2 (0.30 g, 0.23 mmol) was dissolved in an excess of 

pyridine (25 ml) and the solution was stirred for 20 hours. After evaporation of the 

solvent, the resulting powder was dissolved in a minimum of dichloromethane and 

the product precipitated using hexane, then collected by filtration. The precipitation 

process was repeated to give orange crystals of 3.14 suitable for single crystal X-ray 

diffusion (0.28 g, 0.38 mmol, 83%).  

Anal. Found: C: 29.9, H: 3.7, N: 1.7% Anal. Calculated (with 0.5 molecules of 

dichloromethane): C: 30.2, H: 3.8, N: 1.8%  
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1
H NMR (300 MHz, CDCl3, 300 K) 9.38 (br. s, 2H, 2 × CH ortho to N of 

pyridine), 7.72 (br. t, 1H, CH para to N of pyridine), 7.23 (m, 2H, 2 × CH meta to N 

of pyridine), 3.64 (t, 
3
J (

1
H-

1
H) = 6.4 Hz, 2H, CH2OH), 2.12 (br. t, 

3
J (

1
H-

1
H) = 7.15 

Hz, 2H, CH2(CH2)4OH), 1.90 (m, 2H, CH2CH2OH), 1.70 (s, 12H, 4 × CH3 of aryl 

ring), 1.41-1.64 (m, 4H, CH2CH2CH2OH). 
13

C{
1
H} NMR (75 MHz, CDCl3, 300 K) 

158.6 (2 × C ortho to N on pyridine ring), 137.5 (C para to N on pyridine ring), 

125.5 (2 × C meta to N on pyridine ring), 89.5 (quaternary C of functionalised Cp* 

ring), 8.7 (quaternary C of functionalised Cp* ring), 87.6 (quarternary C of 

functionalised Cp* ring), 62.6 (CH2OH), 32.4 (CH2CH2OH), 28.1 

(CH2CH2CH2OH), 26.0 (CH2CH2CH2CH2OH), 25.0 (CH2CH2CH2CH2CH2OH), 

10.2 (2 × CH3), 10.1 (2 × CH3). 

9.3.15 Synthesis of Rh(η
5
-C5(CH3)4C5H10OH){C5H4N}Cl2 (3.15) 

[Rh{η
5
-C5(CH3)4C5H10OH}Cl2]2 (0.30 g, 0.39 mmol) was dissolved in an excess 

of pyridine (25 ml) and the solution was stirred for 20 hours. After evaporation of the 

solvent, the red powder was dissolved in a minimum of dichloromethane and the 

product precipitated using hexane, then collected by filtration. The precipitation 

process was repeated and the product was dried in vacuo to give 3.15 as a red 

powder (0.32 g, 0.70 mmol, 88%). Red crystals suitable for single crystal X-ray 

diffraction were obtained using vapour diffusion (chloroform/pentane).  

Anal. Found: C: 49.9, H: 6.4, N: 2.8, Cl: 15.8% Anal. Calculated: C 49.6, H 

6.1, N: 3.0, Cl: 15.4%  

1
H NMR (300 MHz, CDCl3, 300 K) 8.99 (br. s, 2H, 2 × CH ortho to N of 

pyridine), 7.78 (br. s, 1H, CH para to N of pyridine), 7.38 (br. s, 2H, 2 × CH meta to 

N of pyridine), 3.64 (br. s, 2H, CH2OH), 2.14 (br. s, 2H, CH2(CH2)4OH), 1.67 (br. s, 

2H, CH2CH2OH), 1.61 (s, 6H, 2 × CH3 meta to alkyl chain on aryl ring), 1.60 (s, 6H, 

2 × CH3 ortho to alkyl chain on aryl ring), 1.44 (br. s, 4H, CH2CH2CH2OH).
 13

C{
1
H} 

NMR (75 MHz, CDCl3, 300 K) 153.6 (2 × C ortho to N on pyridine ring), 137.8 (C 

para to N on pyridine ring), 125.3 (2 × C meta to N on pyridine ring), 96.0 (d, 

1
J(

13
C-

103
Rh) = 9.0 Hz,

 
quaternary C of functionalised Cp* ring), 94.4 (d, 

1
J (

13
C-

103
Rh) = 8.3 Hz, 2C, quaternary C of functionalised Cp* ring), 94.1 (d, 

1
J (

13
C-

103
Rh) 

= 8.7 Hz, 4 C, quaternary C of functionalised Cp* ring), 62.4 (CH2OH), 32.3 

(CH2CH2OH), 27.9 (CH2CH2CH2OH), 26.0 (CH2CH2CH2CH2OH), 23.7 
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(CH2CH2CH2CH2CH2OH), 9.0 (2 × CH3), 8.9 (2 × CH3). 

9.3.16 Synthesis of Rh(η
5
-C5(CH3)4C5H10OH)(C5H4NCl)Cl2 (3.16) 

3-Chloropyridine (0.03 ml, 0.26 mmol) was added to [Rh{η
5
-

C5(CH3)4C5H10OH}Cl2]2 (0.10 g, 0.13 mmol) in dichloromethane (25 ml) and left to 

stir for 25 hours. After evaporation of the solvent, the residue was dissolved in a 

minimum of dichloromethane and the product precipitated using hexane, then 

collected by filtration and recrystallised using vapour diffusion 

(dichloromethane/pentane solvent system) to give 3.16 as red crystals (0.07 g, 0.14 

mmol, 54%).  

Anal. Found: C: 46.3, H: 5.7, N: 2.4, Cl: 21.5% Anal. Calculated: C: 46.1, H: 

5.5, N: 2.8, Cl: 21.5% 

1
H NMR (300 MHz, CDCl3, 300 K) 8.96 (br. s, 1H, CH of pyridyl ortho to N and 

Cl), 8.88 (br.s, 1H, CH of pyridyl ortho to N), 7.78 (br. d, 
3
J (

1
H-

1
H)  = 8.1 Hz, 1H, 

CH of pyridyl para to N), 7.35 (br. dd, 
3
J (

1
H-

1
H)  = 7.7 Hz, 

3
J(

1
H-

1
H)  =  5.6 Hz, 

1H, CH meta to N), 3.63 (t, 
3
J (

1
H-

1
H)  = 6.1 Hz, 2H, CH2OH), 2.14 (t, 

3
J (

1
H-

1
H) = 

6.8 Hz, 2H, CH2(CH2)4OH), 1.61 (s, 12H, 4 × CH3) , 1.51-1.57 (m, 2H, 

CH2CH2OH), 1.35-1.50 (m, 4H, CH2CH2CH2CH2OH). 
13

C{
1
H}

 
NMR (75 MHz, 

CDCl3, 300 K) 151.7 (CH on pyridyl ring ortho to N and Cl), 151.1 (CH on pyridyl 

para to Cl), 137.6 (CH on pyridyl ring para to N), 133.0 (CCl), 125.3 (CH on 

pyridyl ring meta to N), 96.2 (d, 
1
J(

13
C-

103
Rh) = 9.3 Hz, quarternary C of 

functionalised Cp* ring), 94.6 (d, 
1
J(

13
C-

103
Rh) = 8.1 Hz, quarternary C of 

functionalised Cp* ring), 94.3 (d, 
1
J(

13
C-

103
Rh) = 8.7 Hz, quarternary of 

functionalised Cp* ring), 62.4 (CH2OH), 32.3 (CH2CH2OH), 27.7 

(CH2CH2CH2OH), 25.9 (CH2CH2CH2CH2OH), 23.7 (CH2CH2CH2CH2CH2OH), 8.9 

(CH3 on Cp), 8.9 (CH3 on Cp). 

9.3.17 Synthesis of Rh(η
5
-C5(CH3)4C5H10OH)(C5H4NBr)Cl2 (3.17) 

3-Bromopyridine (0.21 ml, 0.26 mmol) was added to [Rh{η
5
-

C5(CH3)4C5H10OH}Cl2]2 (0.10 g, 0.13 mmol) in dichloromethane (25 ml) and left to 

stir for 19 hours. After evaporation of the solvent, the residue was recrystallised 

using vapour diffusion (dichloromethane/pentane solvent system) to give 3.17 as a 

red powder (0.09 g, 0.17 mmol, 64%).  
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Anal. Found: C: 42.7, H: 5.1, N 2.4% Anal. Calculated: C 42.3, H 5.1, N 2.6% 

1
H NMR (300 MHz, CDCl3, 300 K) 9.06 (br. s, 1H, CH of pyridyl ortho to N and 

Br), 8.93 (br.s, 1H, CH para to Br), 7.95 (br.s, 1H, CH of pyridyl para to N), 7.32 

(br. s, CH of pyridyl meta to N), 3.65 (br. s, 2H, CH2OH), 2.15 (br. s, 2H, 

CH2(CH2)4OH), 1.62 (s, 12H, 4 × CH3) , 1.52-1.66 (br. s, 2H, CH2CH2OH), 1.44 (br. 

s, 4H, CH2CH2CH2CH2OH). 
13

C{
1
H} NMR (75 MHz, CDCl3, 300 K) 153.8 (br. s, 

CH on pyridyl ring ortho to N and Br), 151.5 (br. s, CH on pyridyl ring para to Br), 

140.4 (CH on pyridyl ring para to N), 125.6 (CH on pyridyl ring meta to N), 121.2 

(CBr), 96.0 (br. d, 
1
J(

13
C-

103
Rh) =  24.6 Hz,

 
CCH2), 94.4 (br. d, 

1
J(

13
C-

103
Rh) =  18.6 

Hz,
 
4 × CCH3), 62.5 (CH2OH), 32.3 (CH2CH2OH), 27.7 (CH2CH2CH2OH), 26.0 

(CH2CH2CH2CH2OH), 23.8 (CH2CH2CH2CH2CH2OH), 8.9 (4 × CH3). 

9.4 Picolinamide Complexes 

9.4.1 Synthesis of Ir(η
5
-C5(CH3)5)Cl(C12H11N2O) (4.1) 

Pyridine-2-carboxylic acid phenylamide (0.05 g, 0.26 mmol) was added to a 

stirred suspension of [Ir{η
5
-C5(CH3)5}Cl2]2 (0.10 g, 0.13 mmol) in ethanol (30 ml) at 

80 °C. After 15 minutes Ammonium hexafluorophosphate (0.10 g, 0.61 mmol) was 

added and the mixture was stirred at 80 °C for 20 hours. The solvent was evaporated 

and the residue dissolved in dichloromethane (50 ml), washed with water (2 × 20 

ml), brine (20 ml), dried over sodium sulfate and evaporated to form an orange solid. 

The crude product was recrystallised using vapour diffusion 

(dichloromethane/pentane solvent system) to give 4.1 as orange crystals (0.06 g, 0.11 

mmol, 46 %). ES-MS (CH2Cl2, m/z): 525.2 [M-Cl]. 

Anal. Found: C: 46.5, H: 4.5, N: 4.8, Cl: 6.7% Anal. Calculated (with 0.05 

molecules of dichloromethane): C: 46.9, H: 4.3, N: 5.0, Cl: 6.9% 

1
H NMR (300 MHz, CDCl3, 300 K) 8.57 (br. d, 

3
J (

1
H-

1
H) = 5.4 Hz, 1H, pyridyl 

CH ortho to N), 8.17 (br. d, 
3
J (

1
H-

1
H) = 8.0 Hz, 1H, pyridyl CH meta to N, ortho to 

amide), 7.92 (vtd (ddd),  
3
J (

1
H-

1
H) = 7.7 Hz, 

3
J (

1
H-

1
H) = 7.7 Hz, 

4
J (

1
H-

1
H) = 1.4 

Hz, 1H, pyridyl CH para to N), 7.65 (br. dd, 
3
J (

1
H-

1
H) = 8.3 Hz, 

4
J (

1
H-

1
H) = 1.1 

Hz, 2H, 2 × phenyl CH ortho to amide), 7.49 (ddd, 
3
J (

1
H-

1
H) = 7.5 Hz, 

3
J (

1
H-

1
H) = 

5.6 Hz,
 4

J (
1
H-

1
H) = 1.7 Hz, 1H, pyridyl CH para to amide), 7.32 (m, 2H, 2 × phenyl 

CH meta to amide), 7.09 (t, 
3
J (

1
H-

1
H) = 7.3 Hz,) 1H, phenyl CH para to amide), 
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1.41 (s, 15H, 5 × CH3). 
13

C{
1
H} NMR (75 MHz, CD2Cl3, 300 K) 168.4 (NCO), 

155.8 (CCON) 149.5 (CH ortho to N on pyridyl ring), 148.1 (CNCO), 138.5 (CH 

para to N on pyridyl ring), 128.1 (CH meta to NCOR), 127.3 (CH para to CO on 

pyridyl ring) 126.9 (CH ortho to NCOR), 126.5 (CH ortho to CON on pyridyl ring), 

124.3 (CH para to NCO), 86.5 (CCH3), 8.4 (CCH3). 

9.4.2 Synthesis of Ir(η
5
-C5(CH3)5)Cl(C12H10FN2O) (4.2) 

Pyridine-2-carboxylic acid (4-fluoro-phenyl) amide (0.05 g, 0.26 mmol) was 

added to a stirred suspension of [Ir{η
5
-C5(CH3)5}Cl2]2 (0.10 g, 0.13 mmol) and 

sodium bicarbonate (0.02 g, 0.26 mmol) in methanol (3 ml) in a 10 ml capacity 

microwave tube. The tube was then sealed and microwave heating was applied at 

150 °C for 10 minutes. After effervescence from the solution had subsided, the tube 

was opened and left to cool. The resulting suspension was filtered, washed with 

diethylether and dried in vacuo to yield orange crystals of 4.2 (0.10 g, 0.17 mmol, 69 

%). ES-MS (CH2Cl2, m/z): 543.1 [M-Cl]. 

Anal. Found: C: 41.4, H: 3.6, N: 4.3, Cl: 11.2% Anal. Calculated (with 1 

molecule of NaCl): C: 41.5, H: 3.6, N: 4.4, Cl: 11.1% 

1
H NMR (300 MHz, CDCl3, 300 K) 8.64 (br. d, 

3
J (

1
H-

1
H) = 5.2 Hz, 1H, pyridyl 

CH ortho to N), 8.10 (br. d, 
3
J (

1
H-

1
H) = 8.0 Hz, 1H, pyridyl CH meta to N, ortho to 

amide), 8.01 (vtd (ddd),  
3
J (

1
H-

1
H) = 7.7 Hz, 

3
J (

1
H-

1
H) = 7.7 Hz, 

4
J (

1
H-

1
H) = 1.3 

Hz, 1H, pyridyl CH para to N), 7.63 (ddd, 
3
J (

1
H-

1
H) = 7.4 Hz, 

3
J (

1
H-

1
H) = 5.7 Hz, 

4
J (

1
H-

1
H) = 1.6 Hz, 1H, pyridyl CH para to amide) 7.44 (dd, 

3
J (

1
H-

1
H) = 8.9 Hz, 

4
J 

(
1
H-

19
F) = 5.1 Hz,

 
2H, phenyl CH meta to amide), 6.97 (vt (dd), 

3
J (

1
H-

1
H) = 8.6 Hz, 

3
J (

1
H-

19
F) = 8.6 Hz,

 
2H, phenyl CH meta to amide), 1.41 (s, 15H, 5 × CH3). 

13
C{

1
H} NMR (125 MHz, CD2Cl3, 300K) 168.4 (NCO), 160.2 (d, 

1
J(

13
C-

19
F) = 

243.8 Hz, CF), 153.3 (CCON), 150.0 (CH ortho to N on pyridyl ring), 139.1 (CH 

para to N on pyridyl ring), 128.2 (d, 
4
J(

13
C-

19
F) = 3.4 Hz, CNCO), 127.6 (d, 

3
J(

13
C-

19
F) = 7.9 Hz, 2 × CH ortho to NCO) 127.0 (CH ortho to CO and meta to N on 

pyridyl ring), 126.6 (CH ortho to CON on pyridyl ring), 115.1 (d, 
2
J(

13
C-

19
F) = 22.5 

Hz, 2 × CH meta to NCO) 87.2 (CCH3), 8.4 (CCH3). 

9.4.3 Synthesis of Ir(η
5
-C5(CH3)5)Cl(C12H9F2N2O) (4.3) 

Pyridine-2-carboxylic acid (2,4-difluoro-phenyl) amide (0.07 g, 0.30 mmol) and 
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[IrCp*Cl2]2 (0.10 g, 0.13 mmol) were dissolved in ethanol (30 ml) and the solution 

was refluxed for 30 minutes. Ammonium hexafluorophosphate (0.10g, 0.61 mmol) 

was added and the mixture was refluxed overnight. The resulting yellow solution 

was evaporated to dryness, redissolved in dichloromethane (50 ml) and washed with 

water (2 × 10 ml) & brine (10 ml), dried using sodium sulfate and filtered. 4.3 was 

recrystallised by dichloromethane/hexane layer diffusion (0.06 g, 0.10 mmol, 40%). 

ES-MS (CH2Cl2, m/z): 561.1 [M-Cl]. 

Anal. Found: C: 43.8, H: 3.8, N: 4.4% Anal. Calculated: C: 44.3, H: 3.7, N: 

4.7% 

1
H NMR (300 MHz, CDCl3, 300 K) 8.58 (br. d,  

3
J (

1
H-

1
H) = 5.6 Hz,

 
1H, pyridyl 

CH ortho to N), 8.18 (br. d,  
3
J (

1
H-

1
H) = 7.5 Hz,

 
1H, pyridyl CH meta to N, ortho to 

amide), 7.94 (vdt (ddd), 
3
J (

1
H-

1
H) = 7.8 Hz, 

3
J (

1
H-

1
H) = 7.5 Hz,

 4
J (

1
H-

1
H) = 1.4 

Hz,
  
1H, pyridyl CH para to N), 7.75 (vbr. q (ddd), 

3
J (

1
H-

1
H) =  8.6 Hz, 

3
J (

1
H-

1
H) =  

8.6 Hz, 
4
J (

1
H-

19
F) =  8.6 Hz, 1H, phenyl CH ortho to NCO and F), 7.51 (ddd, 

3
J 

(
1
H-

1
H) = 7.3 Hz, 

3
J (

1
H-

1
H) = 5.8 Hz, 

4
J (

1
H-

1
H) = 1.7 Hz, 1H, pyridyl CH para to 

amide), 6.86 (m, 2H, CH ortho to F groups and CH ortho and para to F), 1.45 (s, 

15H, 5 × CH3). 
13

C{
1
H} NMR (125 MHz, CDCl3, 300 K) 168.4 (NCO), 159.9 (dd, 

1
J (

13
C-

19
F) = 245.1 Hz , 

4
J (

13
C-

19
F) = 11.1 Hz,

 
CF), 157.6 (dd, 

1
J (

13
C-

19
F) = 294.4 

Hz , 
4
J (

13
C-

19
F) = 11.8 Hz, CF), 154.4 (CCON), 149.6 (CH ortho to N on pyridyl 

ring), 138.6 (CH para to N on pyridyl ring), 132.2 (dd, 
2
J (

13
C-

19
F) =13.2 Hz , 

4
J 

(
13

C-
19

F) = 3.9 Hz, CNCO), 128.8 (dd, 
3
J (

13
C-

19
F) = 9.3 Hz , 

3
J (

13
C-

19
F) =  4.1 Hz, 

CH ortho to NCO), 127.5 (CH para to CONR), 126.7 (CH ortho to CO and meta to 

N on pyridyl ring), 111.0 (dd, 
2
J (

13
C-

19
F) =21.5 Hz , 

4
J (

13
C-

19
F) = 3.5 Hz, CH meta 

to NCO and para to F), 103.4 (vt (dd),
 2

J (
13

C-
19

F) =25.5 Hz , 
2
J (

13
C-

19
F) =25.5 Hz, 

CH ortho to F groups), 86.6 (5 × CCH3), 8.4 (5 × CCH3). 

 

9.4.4 Synthesis of Ir(η
5
-C5(CH3)5)Cl(C12H9F2N2O) (4.4) 

Pyridine-2-carboxylic acid (2,5-difluoro-phenyl) amide (0.07 g, 0.30 mmol) and 

[IrCp*Cl2]2 (0.10 g, 0.13 mmol) were dissolved in ethanol (30 ml) and the solution 

was refluxed for 30 mins. Ammonium hexafluorophosphate (0.10 g, 0.61 mmol) was 

added and the mixture was refluxed overnight. The resulting yellow solution was 

evaporated to dryness, redissolved in dichloromethane (50 ml) and washed with 

water (2 × 10 ml) & brine (10 ml), dried using sodium sulfate and filtered. 4.4 was 
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recrystallised by dichloromethane/hexane layer diffusion (0.07 g, 0.12 mmol, 47%). 

ES-MS (CH2Cl2, m/z): 561.1 [M-Cl]. 

Anal. Found: C: 44.5, H: 3.7, N: 4.6% Anal. Calculated: C: 44.3, H: 3.7, N: 

4.7% 

1
H NMR (300 MHz, CDCl3, 300 K) 8.59 (ddd,  

3
J (

1
H-

1
H) = 5.5 Hz,

 3
J (

1
H-

1
H) = 

1.4 Hz,
 3

J (
1
H-

1
H) = 0.7 Hz,

 
1H, pyridyl CH ortho to N), 8.19 (ddd,  

3
J (

1
H-

1
H) = 7.8 

Hz,
 4

J (
1
H-

1
H) = 1.6 Hz,

 5
J (

1
H-

1
H) = 0.7 Hz,

 
1H, pyridyl CH meta to N, ortho to 

amide), 7.95 (vdt (ddd), 
3
J (

1
H-

1
H) = 7.7 Hz, 

3
J (

1
H-

1
H) = 7.7 Hz,

 4
J (

1
H-

1
H) = 1.4 

Hz,
  
1H, pyridyl CH para to N), 7.48-7.58 (m, 2H, pyridyl CH para to amide and 

phenyl CH ortho to NCO and F), 7.07 (vtd (ddd), 
3
J (

1
H-

1
H) = 5.1 Hz, 

3
J (

1
H-

1
H) = 

9.2 Hz, 
4
J (

1
H-

1
H) = 9.2 Hz, 1H, phenyl CH meta to amide), 6.77 – 6.85 (m, 1H, 

phenyl CH para to NCO) 1.46 (s, 15H, 5 × CH3). 
13

C{
1
H} NMR (125 MHz, CDCl3, 

300 K) 168.2 (NCO), 159.8 (dd, 
1
J(

13
C-

19
F) = 242.5 Hz, 

4
J(

13
C-

19
F) = 2.3 Hz, CF 

meta to NCO), 153.4 (dd, 
1
J(

13
C-

19
F) = 242.4 Hz, 

4
J(

13
C-

19
F) = 2.9 Hz, CF ortho to 

NCO), 154.4 (CCON), 149.6 (CH ortho to N on pyridyl ring), 138.7 (CH para to N 

on pyridyl ring), 137.1 (dd, 
2
J(

13
C-

19
F) = 15.7 Hz, 

3
J(

13
C-

19
F) = 11.3 Hz, CNCO), 

127.6 (CH para to CONR), 126.8 (CH ortho to CO and meta to N on pyridyl ring), 

115.7 (dd, 
2
J (

19
F-

13
C) =  23.9 Hz,

 3
J (

19
F-

13
C) = 9.7 Hz,  CH meta to NCO), 114.9 

(dd, 
2
J (

19
F-

13
C) =  24.7 Hz,

 3
J (

19
F-

13
C) = 2.9 Hz, CH ortho to NCO) 112.1(dd, 

2
J 

(
19

F-
13

C) =  24.3 Hz,
 3
J (

19
F-

13
C) = 7.9 Hz, CH para to NCO), 86.7 (5 × CCH3), 8.4 

(5 × CCH3). 

 

9.4.5 Synthesis of Ir(η
5
-C5(CH3)5)Cl(C12H8ClN2O) (4.5) 

Pyridine-2-carboxylic acid (2-chloro-phenyl) amide (0.06 g, 0.26 mmol) was 

added to a stirred suspension of [Ir{η
5
-C5(CH3)5}Cl2]2 (0.10 g, 0.13 mmol) and 

sodium bicarbonate (0.02 g, 0.26 mmol) in methanol (3 ml) in a 10 ml capacity 

microwave tube. The tube was then sealed and microwave heating was applied at 

150 °C for 10 minutes. After effervescence from the solution had subsided, the tube 

was opened and left to cool. The resulting suspension was filtered, washed with 

diethyl ether and dried in vacuo to yield orange crystals of 4.5 (0.10 g, 0.17 mmol, 

65 %). ES-MS (CH2Cl2, m/z): 559.1 [M-Cl]. 

Anal. Found: C: 44.2, H: 4.1, N: 4.6, Cl: 11.5% Anal. Calculated: C: 44.4, H: 
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3.9, N: 4.7, Cl 11.9%.  

1
H NMR (300 MHz, CDCl3, 300 K) 8.58 (ddd, 

3
J (

1
H-

1
H) = 5.5 Hz, 

4
J (

1
H-

1
H) = 

1.4 Hz, 
5
J (

1
H-

1
H) = 0.7 Hz, 1H, pyridyl CH ortho to N), 8.21 (ddd, 

3
J (

1
H-

1
H) = 7.9 

Hz, 
4
J (

1
H-

1
H) = 1.7 Hz, 

5
J (

1
H-

1
H) = 0.7 Hz, 1H, pyridyl CH meta to N, ortho to 

amide), 7.93 (vtd (ddd),  
3
J (

1
H-

1
H) = 8.1 Hz, 

3
J (

1
H-

1
H) = 7.8 Hz, 

4
J (

1
H-

1
H) = 1.4 

Hz, 1H, pyridyl CH para to N), 7.84 (dd, 
3
J (

1
H-

1
H) = 7.9 Hz, 

4
J (

1
H-

1
H) = 1.7 Hz, 

1H, phenyl CH ortho to amide), 7.49 (vt (dd), 
3
J (

1
H-

1
H) = 6.6 Hz, 

3
J (

1
H-

1
H) = 5.6 

Hz,
 4

J (
1
H-

1
H) = 1.4 Hz, 1H, pyridyl CH para to amide), 7.40 (dd, 

3
J (

1
H-

1
H) = 7.9 

Hz, 
4
J (

1
H-

1
H) = 1.6 Hz, 1H, phenyl CH ortho to Cl), 7.23 (masked vtd (ddd), 

3
J 

(
1
H-

1
H) = 8.1 Hz, 

3
J (

1
H-

1
H) = 7.6 Hz, 

4
J (

1
H-

1
H) = 1.4 Hz, 1H, phenyl CH para to 

Cl), 7.09 (ddd, 
3
J (

1
H-

1
H) = 8.1 Hz, 

3
J (

1
H-

1
H) = 7.8 Hz, 

4
J (

1
H-

1
H) = 1.7 Hz,, 1H, 

phenyl CH para to amide), 1.47 (s, 15H, 5 × CH3). 
13

C{
1
H} NMR (125 MHz, 

CD2Cl2, 300 K) 168.5 (NCO), 155.2 (CCON), 150.4 (CH ortho to N on pyridyl 

ring), 147.2 (CNCO), 139.2 (C para to N on pyridyl ring), 132.8 (CCl), 129.5 (CH 

ortho to Cl and meta to NCO), 128.7 (CH ortho to NCO and meta to Cl), 128.0 (CH 

para to CO and meta to N on pyridyl ring), 127.9 (CH para to Cl), 126.9 (CH ortho 

to CO and meta to N on pyridyl ring), 126.3 (CH para to NCO), 87.5 (CCH3), 9.0 

(CCH3). 

9.4.6 Synthesis of Ir(η
5
-C5(CH3)5)Cl(C12H8ClN2O) (4.6) 

Pyridine-2-carboxylic acid (3-chloro-phenyl) amide (0.06 g, 0.26 mmol) was 

added to a stirred suspension of [Ir{η
5
-C5(CH3)5}Cl2]2 (0.10 g, 0.13 mmol) and 

sodium bicarbonate (0.02 g, 0.26 mmol) in methanol (3 ml) in a 10 ml capacity 

microwave tube. The tube was then sealed and microwave heating was applied at 

150 
°
C for 10 minutes. After effervescence from the solution had subsided, the tube 

was opened and left to cool. The resulting suspension was filtered, washed with 

hexane and dried in vacuo to yield orange crystals of 4.6 (0.11 g, 0.19 mmol, 71 %). 

ES-MS (CH2Cl2, m/z): 559.1 [M-Cl]. 

Anal. Found: C: 44.1, H: 4.3, N: 4.3, Cl: 11.5% Anal. Calculated: C: 44.4, H: 

3.9, N: 4.7, Cl: 11.9% 

1
H NMR (300 MHz, CDCl3, 300 K) 8.58 (ddd, J = Hz, 1H, CH of pyridyl ortho 

to N), 8.16 (ddd, 1H, CH of pyridyl meta to N, ortho to CON), 7.94 (vtd (ddd), 1H, 

CH of pyridyl para to N), 7.73 (vt (dd), 1H, CH ortho to NCO and Cl), 7.61 (ddd, 
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1H, CH of phenyl para to NCO), 7.50 (ddd, 1H, CH of pyridyl meta to N, para to 

CON), 7.24 (vt (dd), 1H, CH of phenyl meta to NCO and Cl), 7.08 (ddd, 1H, CH 

para to Cl), 1.43 (s, 15H, 5 × CH3).
 13

C{
1
H} NMR (75 MHz, CDCl2, 300 K) 168.4 

(NCO), 155.4 (CCON), 149.6 (CH ortho to N on pyridyl ring), 149.4 (CNCO), 138.7 

(C para to N on pyridyl ring), 133.5 (CCl), 129.0 (CH meta to Cl and NCO), 127.5 

(CH para to CO and meta to N on pyridyl ring), 127.3 (CH ortho to NCO and Cl), 

126.6 (CH ortho to CO and meta to N on pyridyl ring), 125.3 (CH ortho to Cl and 

meta to NCO), 124.3 (CH para to Cl), 86.7 (CCH3), 8.5 (CCH3). 

9.4.7 Synthesis of Ir(η
5
-C5(CH3)5)Cl(C12H7Cl2N2O) (4.7) 

Pyridine-2-carboxylic acid (2,4-dichloro-phenyl) amide (0.07 g, 0.26 mmol) was 

added to a stirred suspension of [Ir{η
5
-C5(CH3)5}Cl2]2 (0.10 g, 0.13 mmol) and 

sodium bicarbonate (0.02 g, 0.26 mmol) in methanol (3 ml) in a 10 ml capacity 

microwave tube. The tube was then sealed and microwave heating was applied at 

150 °C for 10 minutes. After effervescence from the solution had subsided, the tube 

was opened and left to cool. The resulting suspension was filtered, washed with ether 

and dried in vacuo to yield orange crystals of 4.7 (0.11 g, 0.17 mmol, 67 %). ES-MS 

(CH2Cl2, m/z): 593.1 [M-Cl]. 

Anal. Found: C: 41.6, H 3.9, N: 4.1, Cl: 16.0% Anal. Calculated (with 0.8 

molecules of water): C: 41.1, H: 3.7, N: 4.4, Cl: 16.5%.  

1
H NMR (300 MHz, CDCl3, 300 K) 8.61 (br. d, 

3
J (

1
H-

1
H) = 5.7 Hz, 1H, pyridyl 

CH ortho to N), 8.24 (br. d, 
3
J (

1
H-

1
H) = 8.1 Hz, pyridyl CH meta to N, ortho to 

amide), 7.98 (vtd, 
3
J (

1
H-

1
H) = 7.6 Hz, 

4
J (

1
H-

1
H) = 1.4 Hz, 1H, pyridyl CH para to 

N), 7.86 (br. d, 
3
J (

1
H-

1
H) = 8.6 Hz,

 
1H, phenyl CH ortho to amide, meta to both Cl), 

7.54 (ddd, 
3
J (

1
H-

1
H) = 7.5 Hz, 

3
J (

1
H-

1
H) = 5.7 Hz, 

4
J (

1
H-

1
H) = 1.4 Hz,, 1H, 

pyridyl CH para to amide), 7.47 (d,  
4
J (

1
H-

1
H) = 2.4 Hz, 1H, phenyl CH ortho to 

both Cl), 7.25 (dd, 
3
J (

1
H-

1
H) = 8.6 Hz, 

4
J (

1
H-

1
H) = 2.4 Hz, 1H, phenyl CH meta to 

amide, ortho and para to Cl), 1.49 (s, 15H, 5 × CH3).
 13

C{
1
H} NMR (125 MHz, 

CD2Cl2, 300 K) 168.6 (NCO), 154.9 (CCON), 150.5 (CH ortho to N on pyridyl 

ring), 146.1 (CNCO), 139.3 (C para to N on pyridyl ring), 133.6 (CCl ortho to 

NCO), 130.7 (CCl para to NCO) 129.7 (CH ortho to NCO and meta to both Cl), 

129.2 (CH meta to NCO and ortho to both Cls), 128.2 (CH para to CO and meta to 

N on pyridyl ring), 127.0 (CH ortho to CO and meta to N on pyridyl ring), 87.6 (5 × 
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CCH3), 9.1 (5 × CCH3). 

9.4.8 Synthesis of Ir(η
5
-C5(CH3)5)Cl(C12H7Cl2N2O) (4.8) 

Pyridine-2-carboxylic acid (2,5-dichloro-phenyl) amide (0.07 g, 0.26 mmol) was 

added to a stirred suspension of [Ir{η
5
-C5(CH3)5}Cl2]2 (0.10 g, 0.13 mmol) and 

sodium bicarbonate (0.02 g, 0.26 mmol) in methanol (3 ml) in a 10 ml capacity 

microwave tube. The tube was then sealed and microwave heating was applied at 

150 °C for 10 minutes. After effervescence from the solution had subsided, the tube 

was opened and left to cool. The resulting suspension was filtered, washed with ether 

and dried in vacuo to yield 4.8 as a yellow powder (0.13 g, 0.21 mmol, 82 %). ES-

MS (CH2Cl2, m/z): 593.1 [M-Cl]. 

Anal. Found: C: 41.5, H: 3.4, N: 4.2, Cl: 16.6% Anal. Calculated: C: 42.0, H: 

3.5, N, 4.5, Cl: 16.9%.  

1
H NMR (300 MHz, CDCl3, 300 K) 8.58 (ddd, 

3
J (

1
H-

1
H) = 5.6 Hz, 

4
J (

1
H-

1
H) = 

1.4 Hz,
 5
J (

1
H-

1
H) = 0.6 Hz, 1H, pyridyl CH ortho to N), 8.22 (ddd, 

3
J (

1
H-

1
H) = 7.8 

Hz, 
4
J (

1
H-

1
H) = 1.6 Hz, 

5
J (

1
H-

1
H) = 0.6 Hz, 1H, pyridyl CH meta to N, ortho to 

amide), 7.95 (vtd, 
3
J (

1
H-

1
H) = 7.7 Hz, 

3
J (

1
H-

1
H) = 7.7 Hz, 

4
J (

1
H-

1
H) = 1.4 Hz, 1H, 

pyridyl CH para to N), 7.89 (br. d, 
4
J(

1
H-

1
H) = 2.6 Hz, 1H, CH ortho to Cl and 

NCOR), 7.50 (ddd, 
3
J (

1
H-

1
H) = 6.5 Hz, 

3
J (

1
H-

1
H) = 5.6 Hz, 

4
J (

1
H-

1
H) = 1.7 Hz, 

1H, pyridyl CH para to amide), 7.33 (br. d, 
3
J (

1
H-

1
H) = 8.5 Hz, 1H, CH meta to 

NCOR) 7.07 (dd, 
3
J (

1
H-

1
H) = 8.6 Hz, 

4
J (

1
H-

1
H) = 2.6 Hz, 1H, CH para to NCOR), 

1.49 (s, 15H, CCH3).
 13

C{
1
H} NMR (75 MHz, CDCl3, 300 K) 167.8 (NCO), 154.5 

(CCON), 149.5 (CH ortho to N on pyridyl ring), 147.3 (CNCO), 138.7 (C para to N 

on pyridyl ring), 132.6 (CCl meta to NCO), 130.8 (CCl ortho to NCO) 129.8 (CH 

meta to NCOR), 128.5 (CH ortho to NCOR), 127.5 (CH para to CO and meta to N 

on pyridyl ring), 127.0 (CH ortho to CONR), 125.8 (CH para to NCOR), 87.0 (5 × 

CCH3), 8.7 (5 × CCH3) 

9.4.9 Synthesis of Ir(η
5
-C5(CH3)5)Cl(C14H11ClN2O2) (4.9) 

Pyridine-2-carboxylic acid (4-acetyl-phenyl) amide (0.06 g, 0.26 mmol) was 

added to a stirred suspension of [Ir{η
5
-C5(CH3)5}Cl2]2 (0.10 g, 0.13 mmol) and 

sodium bicarbonate (0.02 g, 0.26 mmol) in methanol (3 ml) in a 10 ml capacity 

microwave tube. The tube was then sealed and microwave heating was applied at 
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150 °C for 10 minutes. After effervescence from the solution had subsided, the tube 

was opened and left to cool. The resulting suspension was filtered, washed with 

hexane and dried in vacuo to yield orange crystals of 4.9 (0.11 g, 0.18 mmol, 70 %). 

ES-MS (CH2Cl2, m/z): 567.2 [M-Cl]. 

Anal. Found: C: 47.5, H: 4.4, N: 4.4, Cl: 5.9% Anal. Calculated: C: 47.9, H: 

4.4, N: 4.7, Cl: 5.9%  

1
H NMR (300 MHz, CDCl3, 300 K) 8.59 (ddd, 

3
J (

1
H-

1
H) = 5.5 Hz, 

4
J (

1
H-

1
H) = 

1.5 Hz, 
5
J (

1
H-

1
H) = 0.7 Hz, 1H, pyridyl CH ortho to N), 8.17 (ddd,  

3
J (

1
H-

1
H) = 7.9 

Hz,
 4

J (
1
H-

1
H) = 1.7 Hz, 

5
J (

1
H-

1
H) = 0.7 Hz, 1H, pyridyl CH meta to N, ortho to 

amide), 7.95 (m, 3H, pyridyl CH ortho to N and 2 × phenyl CH meta to amide), 7.81 

(br. d (ddd), 
3
J (

1
H-

1
H) = 8.6 Hz, 2H, 2 × phenyl CH ortho to amide), 7.52 (ddd, 

3
J 

(
1
H-

1
H) = 7.4 Hz, 

3
J (

1
H-

1
H) = 5.5 Hz, 

4
J (

1
H-

1
H) = 1.2 Hz, 1H, pyridyl CH para to 

amide), 2.61 (s, 3H, CH3CO), 1.42 (s, 15H, 5 × CH3).
 13

C{
1
H} NMR (75 MHz, 

CDCl3, 300 K) 197.6 (COCH3), 168.4 (NCO), 155.0 (CCON), 153.2 (CNCO), 149.7 

(CH ortho to N on pyridyl ring), 138.7 (C para to N on pyridyl ring), 132.9 

(CCOCH3), 128.5 (2 × CH ortho to COCH3) 127.6 (CH para to CO and meta to N 

on pyridyl ring), 127.0 (2 × CH meta to COCH3), 126.4 (CH ortho to CO and meta 

to N on pyridyl ring), 86.6 (5 × CCH3), 8.4 (5 × CCH3). 

9.4.10  Synthesis of Ir(η
5
-C5(CH3)5)Cl(C12H10N3O3) (4.10)  

Pyridine-2-carboxylic acid (4-nitro-phenyl) amide (0.03g, 0.12 mmol) was added 

to a stirred suspension of [Ir{η
5
-C5(CH3)5}Cl2]2 (0.05 g, 0.06 mmol) in ethanol (30 

ml) at 60 °C. After 15 minutes. Ammonium hexafluorophosphate (0.04 g, 0.25 

mmol) was added and the mixture was stirred at 80 °C for 15 hours. The resulting 

mixture was refluxed for 17 hours and filtered. The solvent was removed from the 

filtrate and the resulting residue recrystallised from hot methanol to give 4.10 as 

orange crystals suitable for X-ray crystallography (0.05 g, 0.08 mmol, 66 %). ES-MS 

(CH2Cl2, m/z): 570.1 [M-Cl]. 

Anal. Found: C: 43.3, H: 4.2, N: 6.5, Cl: 5.1% Anal. Calculated (with 1 

molecule of methanol): C: 43.4, H: 4.3, N: 6.6, Cl: 5.6%.  

1
H NMR (300 MHz, CDCl3, 300 K) 8.61 (br. d, 

3
J (

1
H-

1
H) = 5.3 Hz, 1H, pyridyl 

CH ortho to N), 8.21 (d, 
3
J (

1
H-

1
H) = 8.9 Hz, 1H, pyridyl CH meta to N, ortho to 

amide), 8.16 – 8.24 (m, 2H, 2 × CH ortho to NO2), 7.90 – 8.01 (m, 1H, pyridyl CH 
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para to N), 7.93 (d, 
3
J (

1
H-

1
H) = 9.0 Hz, 2H, 2 × CH meta to NO2), 7.56 (vbr. t (dd) 

1H, pyridyl CH para to amide), 1.41 (s, 15H, 5 × CH3). 
13

C{
1
H} NMR (75 MHz, 

CDCl3, 300 K) 168.5 (NCO), 155.0 (CCON or CNCO), 154.7 (CCON or CNCO), 

149.9 (CH ortho to N on pyridyl ring), 143.7 (CNO2), 138.9 (CH para to N on 

pyridyl ring), 127.9 (2 × CH meta to NO2), 127.5 (2 × CH meta to NO2) 126.7 (2 × 

CH ortho to NO2), 123.9 (CH ortho to CON on pyridyl ring), 86.8 (5 × CCH3), 8.5 

(5 × CCH3). 

9.4.11  Synthesis of Ir(η
5
-C5(CH3)5)Cl(C13H13N2O2) (4.11) 

Pyridine-2-carboxylic acid (2-methoxy-phenyl) amide (0.06 g, 0.26 mmol) was 

added to a stirred suspension of [Ir{η
5
-C5(CH3)5}Cl2]2 (0.10 g, 0.13 mmol) in 

ethanol (30 ml) at 80 °C. After 15 minutes. Ammonium hexafluorophosphate (0.10 

g, 0.61 mmol) was added and the mixture was stirred at 80 °C for 20 hours. The 

suspension was filtered and the powder dissolved in dichloromethane (50 ml), 

washed with water (2 × 20 ml), brine (20 ml), dried over sodium sulfate and 

evaporated to form an orange solid. The crude product was recrystallised using 

vapour diffusion (dichloromethane/pentane solvent system) to give 4.11 as orange 

crystals (0.71 g, 0.12 mmol, 48 %). ES-MS (CH2Cl2, m/z): 555.2 [M-Cl]. 

Anal. Found: C: 45.5, H: 4.6, N: 4.4, Cl: 6.1% Anal. Calculated (with 1 

molecule of H2O): C: 45.4, H: 4.6, N: 4.6, Cl: 5.8% 

1
H NMR (300 MHz, CDCl3, 300 K) 8.56(ddd, 

3
J(

1
H-

1
H) = 5.5 Hz, 

4
J(

1
H-

1
H) = 

1.5 Hz, 
5
J(

1
H-

1
H) = 0.8 Hz, 1H, pyridyl CH ortho to N), 8.17 (ddd, 

3
J (

1
H-

1
H = 7.8 

Hz, 
4
J (

1
H-

1
H) = 1.5 Hz, 

5
J (

1
H-

1
H) = 0.8 Hz, 1H, pyridyl CH meta to N, ortho to 

amide), 7.90 (vtd (ddd), 
3
J (

1
H-

1
H) = 7.7 Hz, 

4
J (

1
H-

1
H) = 1.5 Hz, 1H, pyridyl CH 

para to N), 7.66 (dd, 
3
J (

1
H-

1
H) = 7.6 Hz, 

3
J (

1
H-

1
H) = 1.7 Hz, 1H, phenyl CH ortho 

to amide), 7.46 (ddd, 
3
J (

1
H-

1
H) = 7.4 Hz, 

3
J (

1
H-

1
H) = 5.6 Hz, 

4
J (

1
H-

1
H) = 1.7 Hz, 

1H, pyridyl CH para to amide), 7.11 (ddd, 
3
J (

1
H-

1
H) = 8.1 Hz, 

3
J (

1
H-

1
H) = 7.4 Hz,

 

4
J (

1
H-

1
H) = 1.8 Hz, 1H, phenyl CH para to amide), 6.94 (dd, 

3
J (

1
H-

1
H) = 8.3 Hz, 

4
J 

(
1
H-

1
H) = 1.3 Hz, 1H, phenyl CH ortho to OMe and para to NCO), 6.92 (vtd (ddd), 

3
J (

1
H-

1
H) = 7.4 Hz, 

3
J (

1
H-

1
H) = 7.4 Hz, 

4
J (

1
H-

1
H) = 1.5 Hz, 1H, phenyl CH para 

to OMe), 3.87 (s, 3H, OCH3), 1.42 (s, 15H, 5 × CH3). 
13

C{
1
H} NMR (75 MHz, 

CD2Cl2, 300 K) 168.0 (NCO), 155.6 (CCON or COMe), 154.9 (CCON or COMe), 

149.5 (CH ortho to N on pyridyl ring), 138.3 (CH para to N on pyridyl ring), 137.6 
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(CNCO), 127.4 (CH ortho to NCO), 127.0 (CH para to CO on pyridyl ring), 126.8 

(CH ortho to CON on pyridyl ring), 125.8 (CH para to NCO), 120.9 (CH para to 

OMe), 110.8 (CH ortho to OMe), 86.6 (CCH3), 55.5 (OCH3), 8.4 (CCH3). 

9.4.12  Synthesis of Ir(η
5
-C5(CH3)5)Cl(C12H10N3O3) (4.12) 

Pyridine-2-carboxylic acid (2-methoxy-4-nitro-phenyl) amide (0.07g, 0.26 mmol) 

was added to a stirred suspension of [Ir{η
5
-C5(CH3)5}Cl2]2 (0.10 g, 0.13 mmol) in 

ethanol (30 ml) at 80 °C. After 15 minutes. Ammonium hexafluorophosphate (0.10 

g, 0.61 mmol) was added and the mixture was stirred at 80 °C for 73 hours. The 

solvent was evaporated and the residue dissolved in dichloromethane (50 ml), 

washed with water (2 × 20 ml), brine (20 ml), dried over sodium sulfate and 

evaporated to form an orange solid. The crude product was recrystallised from hot 

methanol and washed with hexane to give major and minor isomers of 4.12 as 

yellow crystals (0.09 g, 0.15 mmol, 56 %). ES-MS (CH2Cl2, m/z): 600.1 [M-Cl]. 

Anal. Found: C: 44.2, H: 4.3, N: 6.7% Anal. Calculated (with 1 molecule of 

methanol and 0.1 molecules of hexane): C: 43.7, H: 4.5, N: 6.2%.  

Major 
1
H NMR (300 MHz, CDCl3, 300 K) 8.58 (br. d, 

3
J (

1
H-

1
H) = 5.5 Hz, 1H, 

pyridyl CH ortho to N), 8.16 (br. d, 
3
J (

1
H-

1
H) = 7.9 Hz, 1H, pyridyl CH meta to N, 

ortho to amide), 7.94 (vtd (ddd),  
3
J (

1
H-

1
H) = 7.7 Hz, 

3
J (

1
H-

1
H) = 7.6 Hz, 

4
J (

1
H-

1
H) = 1.4 Hz, 1H, pyridyl CH para to N), 7.83-7.89 (m, 3H, 3 × CH on phenyl ring), 

7.51 (ddd, 
3
J (

1
H-

1
H = 7.3 Hz, 

3
J (

1
H-

1
H) = 5.7 Hz, 

4
J (

1
H-

1
H) = 1.6 Hz, 1H pyridyl 

CH para to amide), 3.96 (s, 3H, OCH3), 1.43 (s, 15H, 5 × CH3). 
13

C{
1
H} NMR (75 

MHz, CDCl3) 168.0 (NCO), 155.6 (CCON or COMe), 154.9 (CCON or COMe), 

149.7 (CH ortho to N on pyridyl ring), 138.7 (CH para to N on pyridyl ring), 137.6 

(CNCO), 127.4 (CH ortho to NCO),  127.0 (CH para to CO on pyridyl ring) , 126.8 

(CH ortho to CON on pyridyl ring), 125.8 (CNO2), 120.9 (CH para to OMe), 116.8 

(CH ortho to OMe and NO2), 86.7 (CCH3), 8.5 (CCH3). 

Minor 
1
H NMR (300 MHz, CDCl3, 300 K) 8.58 (br. d, 

3
J (

1
H-

1
H) = 5.5 Hz, 1H, 

pyridyl CH ortho to N), 8.20 (br. d, 
3
J (

1
H-

1
H = 7.9 Hz, 1H, pyridyl CH meta to N, 

ortho to amide), 7.94 (vtd (ddd), 
3
J (

1
H-

1
H) = 7.7 Hz, 

3
J (

1
H-

1
H) = 7.6 Hz, 

4
J (

1
H-

1
H) 

= 1.4 Hz, 1H, pyridyl CH para to N), 7.86 (vtd (ddd), 
3
J (

1
H-

1
H) = 7.7 Hz, 

3
J (

1
H-

1
H) = 6.4 Hz, 

4
J (

1
H-

1
H) = 1.5 Hz, 1H, CH on phenyl para to OMe and NO2), 7.49 

(ddd, 
3
J (

1
H-

1
H) = 5.8 Hz, 

3
J (

1
H-

1
H) = 4.3 Hz, 

4
J (

1
H-

1
H) = 1.5 Hz, 1H, pyridyl CH 
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para to amide), 7.33 (d, 
3
J (

1
H-

1
H) = 8.6 Hz, 1H, CH on phenyl ortho to NCO), 7.06 

(dd, 
3
J (

1
H-

1
H) = 8.5 Hz, 

4
J (

1
H-

1
H) = 2.5Hz, 1H, CH on phenyl opposite OMe 

group), 3.96 (s, 3H, OCH3), 1.48 (s, 15H, 5 × CH3). 
13

C{
1
H} NMR (75 MHz, 

CDCl3) 168.0 (NCO), 155.6 (CCON or COMe), 154.9 (CCON or COMe), 149.5 

(CH ortho to N on pyridyl ring), 138.7 (CH para to N on pyridyl ring), 137.6 

(CNCO), 129.8 (CH ortho to NCO), 127.0 (CH para to CO on pyridyl ring) , 127.0 

(CH ortho to CON on pyridyl ring), 125.8 (CNO2), 120.9 (CH para to OMe), 106.3 

(CH ortho to OMe and NO2), 87.0 (CCH3), 56.1 (OCH3), 8.5 (CCH3). 

 

9.4.13  Synthesis of Ir(η
5
-C5(CH3)5)Cl(C12H10N3O3) (4.13) 

Pyridine-2-carboxylic acid (2,4,6-trimethyl-phenyl) amide (0.06 g, 0.26 mmol) 

was added to a stirred suspension of [Ir{η
5
-C5(CH3)5}Cl2]2 (0.10 g, 0.13 mmol) in 

ethanol (30 ml) at 80 °C. After 15 minutes. Ammonium hexafluorophosphate (0.10 

g, 0.61 mmol) was added and the mixture was stirred at 80 °C for 20 hours. The 

solvent was evaporated and the residue dissolved in dichloromethane (50 ml), 

washed with water (2 × 20 ml), brine (20 ml), dried over sodium sulfate and 

evaporated to form an orange solid. The crude product was recrystallised using 

vapour diffusion (dichloromethane/pentane solvent system) to give 4.13 as orange 

crystals (0.05 g, 0.83 mmol, 33 %). ES-MS (CH2Cl2, m/z): 567.2 [M-Cl]. 

Anal. Found: C: 47.4, H: 5.1, N: 4.2, Cl: 6.5% Anal. Calculated (with 1 

molecule of water and 0.12 molecules of dichloromethane): C: 47.9, H: 5.2, N: 4.5, 

Cl: 7.0%.  

1
H NMR (300 MHz, CDCl3, 300 K) 8.53 (br. d, 

3
J (

1
H-

1
H) = 5.5 Hz, 1H, pyridyl 

CH ortho to N), 8.17 (br. d, 
3
J (

1
H-

1
H) = 7.8 Hz, 1H, pyridyl CH meta to N, ortho to 

amide), 7.91 (vtd (ddd), 
3
J (

1
H-

1
H) = 7.7 Hz, 

3
J (

1
H-

1
H) = 7.7 Hz, 

4
J (

1
H-

1
H) = 1.4 

Hz, 1H, pyridyl CH para to N), 7.47 (ddd, 
3
J (

1
H-

1
H) = 7.5 Hz, 

3
J (

1
H-

1
H) = 5.7 Hz, 

4
J (

1
H-

1
H) = 1.4 Hz, 1H, pyridyl CH para to amide), 6.89 (br. s, 2H, 2 × CH on 

phenyl ring), 2.30 (s, 3H, CH3 on phenyl ring), 2.28 (s, 3H, CH3 on phenyl ring), 

2.05 (s, 3H, CH3 on phenyl ring), 1.42 (s, 15H, 5 × CH3). 
13

C{
1
H} NMR (125 MHz, 

CDCl3) 170.0 (NCO), 155.6 (CCON) 148.8 (CH ortho to N on pyridyl ring), 143.0 

(CNCO), 138.4 (CH para to N on pyridyl ring), 137.5 (CCH3 on phenyl ring), 134.0 

(CCH3 on phenyl ring), 133.9 (CCH3 on phenyl ring), 129.3 (CH meta to CONR), 
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128.1 (CH meta to CONR), 127.0 (CH para to CO on pyridyl ring) 126.7 (CH ortho 

to CON on pyridyl ring), 86.5 (5 × CCH3 on Cp* ring), 20.9 (CCH3 on phenyl ring), 

20.5 (br. s, CCH3 on phenyl ring), 19.0 (br. s, CCH3 on phenyl ring), 8.4 (CCH3 on 

Cp* ring). 

9.4.14  Synthesis of Ir(η
5
-C5(CH3)5)I(C13H11N2O2) (4.14) 

Pyridine-2-carboxylic acid (2-methoxy-phenyl) amide (0.06 g, 0.26 mmol) was 

added to a stirred suspension of [Ir{η
5
-C5(CH3)5}I2]2 (0.10 g, 0.09 mmol) and 

sodium bicarbonate (0.02 g, 0.26 mmol) in methanol (3 ml) in a 10 ml capacity 

microwave tube. The tube was then sealed and microwave heating was applied at 

150 
°
C for 10 minutes. After effervescence from the solution had subsided, the tube 

was opened and left to cool. The resulting suspension was filtered and recrystallised 

using vapour diffusion (dichloromethane/pentane solvent system) to give 4.14 as 

orange crystals (0.08 g, 0.12 mmol, 68 %). ES-MS (CH2Cl2, m/z): 683.1 [M-I]. 

Anal. Found: C: 31.5, H: 3.4, N: 3.0% Anal. Calculated (with 1 equivalent of 

methanol, water, dichloromethane and NaI): C: 31.1, H: 3.6, N: 2.9%.  

1
H NMR (300 MHz, CDCl3, 300 K) 8.56 (br. d, 

3
J (

1
H-

1
H) = 5.6 Hz, 1H, pyridyl 

CH ortho to N), 8.10 (br. d, 
3
J (

1
H-

1
H) = 7.9 Hz, 1H, pyridyl CH meta to N and 

ortho to amide), 7.81-7.88 (m, 1H, pyridyl CH para to N), 7.84 (d, 
3
J (

1
H-

1
H) = 7.2 

Hz, 1H, phenyl CH ortho to amide), 7.41 (ddd, 
3
J (

1
H-

1
H) = 7.4 Hz, 

3
J (

1
H-

1
H) = 5.7 

Hz, 
4
J (

1
H-

1
H) = 1.6 Hz, 1H, pyridyl CH para to amide), 7.10 (vtd (ddd), 

3
J (

1
H-

1
H) 

= 7.7 Hz, 
3
J (

1
H-

1
H) = 7.7 Hz,

 4
J (

1
H-

1
H) = 1.7 Hz,1H, phenyl CH para to amide), 

6.89-6.97 (m, 2H, 2 × phenyl CH meta to NCO), 3.85 (s, 3H, OCH3), 1.52 (s, 15H, 5 

× CH3). 
13

C{
1
H} NMR (75 MHz, CDCl3) 168.7 (NCO), 154.7 (CCON or COMe), 

154.2 (CCON or COMe), 151.3 (CH ortho to N on pyridyl ring), 138.3 (CH para to 

N on pyridyl ring or CNCO), 138.2 (CH para to N on pyridyl ring or CNCO), 127.6 

(CH ortho to NCO), 126.9 (CH para to CO on pyridyl ring), 126.7 (CH ortho to 

CON on pyridyl ring), 125.8 (CH para to NCO), 120.8 (CH para to OMe), 110.9 

(CH ortho to OMe), 87.5 (5 × CCH3), 55.5 (OCH3), 9.2 (5 × CCH3). 

9.4.15  Synthesis of Ir(η
5
-C5(CH3)4C5H10OH)Cl(C12H10ClN2O) (4.15) 

Triethylamine (0.04 ml, 0.28 mmol) was added.to a solution of [Ir{η
5
-

C5(CH3)4C5H10OH}Cl2]2 (0.10 g, 0.11 mmol) and Pyridine-2-carboxylic acid (3-



Chapter 9 

218 

chloro-phenyl) amide (0.05 g, 0.22 mmol) in dichloromethane (25 ml). After 19 

hours, the resulting yellow solution was washed with water (2 × 10 ml) and brine (10 

ml), dried using sodium sulfate, filtered and the solvent evaporated. 4.15 was 

recrystallised using vapour diffusion (dichloromethane/pentane solvent system) (0.07 

g, 0.10 mmol, 49%). Single crystals suitable for X-ray crystallography were obtained 

from hot methanol. ES-MS (CH2Cl2, m/z): 631.2 [M-Cl]. 

Anal. Found: C: 44.4, H: 4.6, N: 3.8% Anal. Calculated (with 0.66 molecules of 

dichloromethane): C: 44.3, H: 4.5, N: 3.9% 

1
H NMR (300 MHz, CDCl3, 300 K) 8.57 (br. d, 

3
J (

1
H-

1
H) = 5.5 Hz, 1H, CH of 

pyridyl ortho to N), 8.14 (br. dd, 
3
J(

1
H-

1
H) = 8.0 Hz, 

4
J (

1
H-

1
H) = 1.5 Hz, 1H, CH of 

pyridyl meta to N and ortho to CON), 7.93 (vtd (ddd), 
3
J (

1
H-

1
H) = 7.7 Hz, 

4
J (

1
H-

1
H) = 1.4 Hz, 1H, CH of pyridyl para to N), 7.72 (vt (dd), 

4
J (

1
H-

1
H) = 2.0 Hz, 1H, 

CH ortho to NCO and Cl), 7.61 (ddd, 
3
J (

1
H-

1
H) = 8.0 Hz, 

4
J (

1
H-

1
H) = 1.9 Hz, 

4
J 

(
1
H-

1
H) = 1.1 Hz, 1H, CH of phenyl para to NCO), 7.50 (ddd, 

3
J (

1
H-

1
H) = 6.6 Hz, 

3
J (

1
H-

1
H) = 5.6 Hz, 

4
J (

1
H-

1
H) = 1.7 Hz, 1H, CH of pyridyl meta to N and para to 

CON), 7.23 (masked vt (dd), 
3
J (

1
H-

1
H) = 8.0 Hz, 1H, CH of phenyl meta to NCO 

and Cl), 7.07 (ddd, 
3
J (

1
H-

1
H) = 8.0 Hz, 

4
J (

1
H-

1
H) = 2.1 Hz, 

4
J (

1
H-

1
H) = 1.0 Hz, 

1H, CH para to Cl), 3.62 (t, 
3
J (

1
H-

1
H) = 6.3 Hz, 2H, CH2OH ), 1.75-1.85 (m, 2H, 

CH2(CH2)4OH), 1.47-1.62 (m, 2H, CH2CH2OH), 1.47 (s, 3H, CH3), 1.45 (s, 3H, 

CH3), 1.43 (s, 3H, CH3), 1.40 (s, 3H, CH3), 1.32-1.39 (m, 4H, CH2CH2CH2OH).
 

13
C{

1
H} NMR (75 MHz, CDCl3, 300 K) 168.4 (NCO), 155.4 (CCON), 149.7 (CH 

ortho to N on pyridyl ring), 149.5 (CNCO), 138.7 (C para to N on pyridyl ring), 

133.5 (CCl), 129.0 (CH meta to Cl and NCO), 127.5 (CH para to CO and meta to N 

on pyridyl ring), 127.3 (CH ortho to NCO and Cl), 126.6 (CH ortho to CO and meta 

to N on pyridyl ring), 125.3 (CH ortho to Cl and meta to NCO), 124.3 (CH para to 

Cl), 88.1 (quarternary C of functionalised Cp* ring), 87.5 (quarternary C of 

functionalised Cp* ring), 87.2 (quarternary C of functionalised Cp* ring), 86.8 

(quarternary C of functionalised Cp* ring), 86.6 (quarternary C of functionalised 

Cp* ring), 62.5 (CH2OH), 32.3 (CH2CH2OH), 27.9 (CH2CH2CH2OH), 26.0 

(CH2CH2CH2CH2OH), 23.5 (CH2CH2CH2CH2CH2OH), 8.6 (CH3), 8.5  (CH3), 8.5 

(CH3), 8.5 (CH3).  



Chapter 9 

219 

9.4.16  Synthesis of Rh(η
5
-C5(CH3)5)Cl(C12H8ClN2O) (4.16) 

Pyridine-2-carboxylic acid (3-chloro-phenyl) amide (0.06 g, 0.26 mmol) and 

sodium bicarbonate (0.02 g, 0.26 mmol) was added to a stirred suspension of 

[RhCp*Cl2]2 (0.12 g, 0.13 mmol) in methanol (25 ml). The mixture was heated to 

reflux for 18 hours. The resulting solution was evaporated to dryness and the crude 

product recrystallised from hot methanol to give red crystals of 4.16 suitable for X-

ray crystallography. The bulk sample was purified using layer diffusion with a 

dichloromethane/hexane solvent system (0.15 g, 0.30 mmol, 76 %). ES-MS (CH2Cl2, 

m/z): 469.1 [M-Cl]. 

Anal. Found: C: 50.8, H: 4.9, N: 4.9% Anal. Calculated (with 0.33 molecules of 

dichloromethane): C: 50.3, H: 4.5, N: 5.3%.  

1
H NMR (300 MHz, CDCl3, 300 K) 8.63 (br. d, J (

1
H-

1
H) = 5.4 Hz, 1H, CH of 

pyridyl ortho to N), 8.16 (br. d, J (
1
H-

1
H) = 7.8 Hz, 1H, CH of pyridyl meta to N, 

ortho to CON), 7.95 (vtd (ddd), 
3
J (

1
H-

1
H) = 7.7 Hz, 

3
J (

1
H-

1
H) = 7.7 Hz, 

4
J (

1
H-

1
H) 

= 1.4 Hz, 1H, CH of pyridyl para to N), 7.83 (vt (dd), 
4
J (

1
H-

1
H) = 2.0 Hz, 1H, CH 

ortho to NCO and Cl), 7.72 (ddd, 
3
J (

1
H-

1
H) = 8.0 Hz, 

4
J (

1
H-

1
H) = 1.8 Hz, 

4
J (

1
H-

1
H) = 1.0 Hz, 1H, CH of phenyl para to NCO), 7.54 (ddd, 

3
J (

1
H-

1
H) = 6.5 Hz, 

3
J 

(
1
H-

1
H) = 5.6 Hz, 

4
J (

1
H-

1
H) = 1.6 Hz, 1H, CH of pyridyl meta to N, para to CON), 

7.24 (masked  vt (dd), 
3
J (

1
H-

1
H) = 8.0 Hz, 1H, CH of phenyl meta to NCO and Cl), 

7.06 (ddd, 
1
H, 

3
J (

1
H-

1
H) = 8.0 Hz, 

4
J (

1
H-

1
H) = 2.1 Hz, 

4
J (

1
H-

1
H) = 1.1 Hz, CH 

para to Cl), 1.43 (s, 15H, 5 × CH3).
 13

C{
1
H} NMR (75 MHz, CDCl3, 300 K) 168.6 

(NCO), 156.3 (CCON), 149.7 (CH ortho to N on pyridyl ring), 149.6 (CNCO), 138.9 

(C para to N on pyridyl ring), 133.5 (CCl), 128.9 (CH meta to Cl and NCO), 127.4 

(CH para to CO and meta to N on pyridyl ring), 127.1 (CH ortho to NCO and Cl), 

126.1 (CH ortho to CO and meta to N on pyridyl ring), 125.5 (CH ortho to Cl and 

meta to NCO), 124.0 (CH para to Cl), 94.7 (d, 
1
J(

13
C-

103
Rh) = 8.0 Hz, CCH3), 8.6 

(CCH3). 

9.4.17  Synthesis of Rh(η
5
-C5(CH3)5)Cl(C12H10N3O3) (4.17) 

Pyridine-2-carboxylic acid (4-nitro-phenyl) amide (0.04 g, 0.16 mmol) was added 

to a stirred suspension of [RhCp*Cl2]2 (0.05 g, 0.08 mmol) in ethanol (25 ml) at 60 

°C. After 15 minutes . Ammonium hexafluorophosphate (0.04 g, 0.24 mmol) was 

added and the mixture was heated to reflux for 15 hours. The solvent was removed 
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from the filtrate and the resulting residue recrystallised from hot methanol to give 

4.17 as red crystals suitable for X-ray crystallography (0.05 g, 0.10 mmol, 60 %). 

ES-MS (CH2Cl2, m/z): 480.1 [M-Cl]. 

Anal. Found: C: 47.8, H: 4.3, N: 7.4% Anal. Calculated: C: 47.6, H: 4.3, N: 

7.4%.  

1
H NMR (300 MHz, CDCl3, 300 K) 8.61 (d, 

3
J (

1
H-

1
H) = 5.2 Hz, 1H, pyridyl CH 

ortho to N), 8.22 (d,  
3
J (

1
H-

1
H) = 9.1 Hz, 1H, pyridyl CH meta to N, ortho to 

amide), 8.15-8.34 (m, 1H, 2 × CH ortho to NO2), 8.04 (d, 
3
J (

1
H-

1
H) = 9.0 Hz, 2H, 2 

× CH meta to NO2), 7.95 – 8.06 (m, 1H, pyridyl CH para to N), 7.59 (ddd,  , 
3
J (

1
H-

1
H) = 7.5 Hz, 

3
J (

1
H-

1
H) = 5.5 Hz, 

4
J (

1
H-

1
H) = 1.4 Hz, 1H, pyridyl CH para to 

amide), 1.44 (s, 15H, 5 × CH3). 
13

C{
1
H} NMR (75 MHz, CDCl3, 300 K) 168.7 

(NCO), 155.7 (CCON or CNCO), 155.3 (CCON or CNCO), 149.9 (CH ortho to N 

on pyridyl ring), 143.3 (CNO2), 139.2 (CH para to N on pyridyl ring), 127.6 (2 × 

CH meta to NO2), 127.5 (2 × CH meta to NO2) 126.3 (2 × CH ortho to NO2), 123.8 

(CH ortho to CON on pyridyl ring), 94.83 (d, 
1
J (

13
C-

103
Rh) = 8.1 Hz, CCH3), 8.7 

(CCH3). 

9.4.18  Synthesis of Rh(η
5
-C5(CH3)4C5H10OH)Cl(C12H8ClN2O) (4.18) 

Pyridine-2-carboxylic acid (2-chloro-phenyl) amide (0.06g, 0.26 mmol) and 

sodium bicarbonate (0.02 g, 0.26 mmol) were added to a stirred suspension of 

[Rh{η
5
-C5(CH3)4C5H10OH}Cl2]2 (0.10 g, 0.13 mmol) in water (25 ml). The mixture 

was stirred at 70 °C for 17 hours. The resulting suspension was filtered and the 

orange powder dried in vacuo to give 4.18 (0.13 g, 0.23 mmol, 86 %). ES-MS 

(CH2Cl2, m/z): 541.1 [M-Cl]. 

Anal. Found: C: 54.3, H: 5.3, N: 5.0, Cl: 12.4% Anal. Calculated: C: 54.1, H: 

5.4, N: 4.9, Cl: 12.3% 

1
H NMR (300 MHz, CDCl3, 300 K) 8.62 (br. d, 

3
J (

1
H-

1
H) = 5.5 Hz, 1H, pyridyl 

CH ortho to N), 8.19 (br. d, 
3
J (

1
H-

1
H) = 7.9 Hz, 1H, pyridyl CH meta to N, ortho to 

amide), 7.87-7.97 (m, 2H, pyridyl CH para to N and phenyl CH ortho to amide), 

7.52(ddd, 
3
J (

1
H-

1
H) = 7.3 Hz, 

3
J (

1
H-

1
H) = 5.6 Hz, 

4
J (

1
H-

1
H) = 1.6 Hz, 1H, pyridyl 

CH para to amide), 7.41 (dd, 
3
J (

1
H-

1
H) = 7.9 Hz, 

4
J (

1
H-

1
H) = 1.4 Hz, 1H, phenyl 

CH ortho to Cl), 7.24 (masked vtd (ddd), 
3
J (

1
H-

1
H) = 7.8 Hz, 

4
J (

1
H-

1
H) = 1.4 Hz, 

1H, phenyl CH para to Cl), 7.08 (vtd (ddd), 
3
J (

1
H-

1
H) = 7.6 Hz, 

3
J (

1
H-

1
H) = 7.6 
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Hz, 
4
J (

1
H-

1
H) = 1.5 Hz, 1H, phenyl CH para to amide), 3.60 (m, 2H, CH2OH), 

1.85-2.05 (m, 2H, CH2(CH2)4OH), 1.45-1.58 (masked  m, 2H, CH2CH2OH), 1.51 (s, 

3H, CH3 meta to alkyl chain on aryl ring), 1.49 (s, 3H, CH3 meta to alkyl chain on 

aryl ring), 1.48 (s, 3H, CH3 ortho to alkyl chain on aryl ring), 1.45 (s, 3H, CH3 ortho 

to alkyl chain on aryl ring), 1.32-1.39 (m, 4H, CH2CH2CH2OH).
 13

C{
1
H} NMR (75 

MHz, CDCl3, 300 K) 165.8 (NCO), 155.6 (CCON), 149.5 (CH ortho to N on pyridyl 

ring), 146.6 (CNCO), 138.7 (C para to N on pyridyl ring), 132.8 (CCl), 129.2 (CH 

ortho to Cl and meta to NCO), 128.3 (CH ortho to NCO and meta to Cl), 127.4 (CH 

para to Cl), 126.9 (CH para to CO and meta to N on pyridyl ring), 126.5 (CH ortho 

to CO and meta to N on pyridyl ring), 125.6 (CH para to NCO), 
 
97.3 (d, 

1
J

 
(
13

C-

103
Rh) = 8.1 Hz,

 
quaternary C of functionalised Cp* ring), 95.4 (d, 

1
J

 
(
13

C-
103

Rh) = 

8.1 Hz, quaternary C of functionalised Cp* ring), 95.1 (d, 
1
J

 
(
13

C-
103

Rh) = 8.1 Hz, 

quaternary C of functionalised Cp* ring), 95.0 (d, 
1
J

 
(
13

C-
103

Rh) = 8.1 Hz,
 
quaternary 

C of functionalised Cp* ring), 94.7 (d, 
1
J

 
(
13

C-
103

Rh) = 8.0 Hz,
 
quaternary C of 

functionalised Cp* ring),  62.5 (CH2OH), 32.2 (2C, 2 × CH2CH2OH), 27.9 

(CH2CH2CH2OH), 26.0 (CH2CH2CH2CH2OH), 23.5 (CH2CH2CH2CH2CH2OH), 8.9 

(CH3), 8.8 (CH3), 8.8 (CH3), 8.7 (CH3). 

9.4.19 Synthesis of Rh(η
5
-C5(CH3)4C5H10OH)Cl(C12H8ClN2O) (4.19) 

Pyridine-2-carboxylic acid (3-chloro-phenyl) amide (0.06 g, 0.26 mmol) and 

sodium bicarbonate (0.02 g, 0.26 mmol) were added to a stirred suspension of 

[Rh{η
5
-C5(CH3)4C5H10OH}Cl2]2 (0.10 g, 0.13 mmol) in water (25 ml). The mixture 

was stirred at 80 °C for 18 hours. The resulting suspension was filtered and the 

orange powder dried in vacuo to give 4.19 (0.12 g, 0.21 mmol, 79 %). ES-MS 

(CH2Cl2, m/z): 541.1 [M-Cl]. 

Anal. Found: C: 53.3, H: 5.5, N: 4.8, Cl: 12.1% Anal. Calculated (with 0.5 

molecules of H2O): C: 53.7, H: 5.4, N: 4.6, Cl: 11.8% 

1
H NMR (300 MHz, CDCl3, 300 K) 8.63 (br. d, 

3
J (

1
H-

1
H) = 5.7 Hz, 1H, CH of 

pyridyl ortho to N), 8.16 (br. d, 
3
J (

1
H-

1
H) = 8.0 Hz, 1H, CH of pyridyl meta to N 

and ortho to CON), 7.96 (vtd (ddd),  
3
J (

1
H-

1
H) = 7.7 Hz, 

3
J (

1
H-

1
H) = 7.7 Hz, 

4
J 

(
1
H-

1
H) = 1.4 Hz, 1H, CH of pyridyl para to N), 7.84 (vt (dd),  

4
J (

1
H-

1
H) = 1.9 Hz, 

4
J (

1
H-

1
H) = 1.9 Hz, 1H, CH ortho to NCO and Cl), 7.72 (br. d, 

3
J (

1
H-

1
H) = 8.1 Hz, 

1H, CH of phenyl para to NCO), 7.53 (ddd, 
3
J (

1
H-

1
H) = 9.5 Hz,

 3
J (

1
H-

1
H) = 5.7 
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Hz,
 4

J (
1
H-

1
H) = 1.4 Hz, 1H, CH of pyridyl meta to N, para to CON), 7.21 (m, 1H, 

CH of phenyl meta to NCO and Cl), 7.07 (br. d, 
3
J (

1
H-

1
H) = 7.9 Hz, 1H, CH para to 

Cl), 3.62 (br. s, 2H, CH2OH), 1.88 (t, 
3
J (

1
H-

1
H) = 7.0 Hz, 1H, CH2(CH2)4OH), 1.50-

1.60 (br. m, 2H, CH2CH2OH), 1.46 (s, 3H, CH3 meta to alkyl chain on aryl ring), 

1.46 (s, 3H, CH3 meta to alkyl chain on aryl ring), 1.45 (s, 3H, CH3 ortho to alkyl 

chain on aryl ring), 1.41 (s, 3H, CH3 ortho to alkyl chain on aryl ring), 1.33-1.39 (m, 

4H, CH2CH2CH2OH). 
13

C{
1
H} NMR (125 MHz, CD2Cl2, 300 K) 167.0 (NCO), 

156.2 (CCON), 150.6 (CNCO), 150.5 (CH ortho to N on pyridyl ring), 139.4 (C 

para to N on pyridyl ring), 133.6 (CCl), 129.4 (CH meta to Cl and NCO), 127.7 (CH 

para to CO and meta to N on pyridyl ring and CH ortho to NCO and Cl), 126.2 (CH 

ortho to CO and meta to N on pyridyl ring), 126.2 (CH para to NCO), 124.1 (CH 

para to Cl), 97.0 (d, 
1
J

 
(
13

C-
103

Rh) = 8.4 Hz,
 
quaternary C of functionalised Cp* 

ring), 95.2-95.7 (m, quarternary C of functionalised Cp* ring),  62.8 (CH2OH), 32.8 

(2C, 2 × CH2CH2OH), 28.2 (CH2CH2CH2OH), 26.3 (CH2CH2CH2CH2OH), 23.9 

(CH2CH2CH2CH2CH2OH), 9.1 (CH3), 9.0 (2 × CH3), 9.0 (CH3). 

9.5 Iridium Cp* Chloride Bidentate Complexes 

9.5.1 Synthesis of Ir(η
5
-C5(CH3)5)Cl (C16H10FN2O) (5.1) 

Triethylamine (0.04 ml, 0.26 mmol) was added.to a solution of [IrCp*Cl2]2 (0.10 

g, 0.13 mmol) and quinoline-2-carboxylic acid (2-fluoro-phenyl) amide (0.07 g, 0.26 

mmol) in dichloromethane (25 ml). After 74 hours the solution was reduced and 

layered with hexane. The resulting solid was filtered and recrystallised using vapour 

diffusion from a dichloromethane/pentane solvent, to give 5.1 as red crystals suitable 

for X-ray crystallography (0.09 g, 1.4 mmol, 57%) ES-MS (CH2Cl2, m/z): 593.2 [M-

Cl]. 

Anal. Found: C: 49.3, H: 4.0, N: 4.3% Anal. Calculated: C: 49.7, H: 4.0, N: 

4.5% 

1
H NMR (300 MHz, CDCl3, 300 K) 8.60 (br. d, 

3
J (

1
H-

1
H) = 8.6 Hz, 1H, phenyl 

CH peri to N), 8.30-8.41 (m, 2H, 2 × CH of pyridyl ring), 7.93-8.02 (m, 2H, CH 

ortho to NCOR and meta to F, and phenyl CH ortho to CH peri to N), 7.84-7.90 

(m,1H, phenyl CH para to CH peri to N), 7.71 (ddd), 
3
J (

1
H-

1
H) = 7.5 Hz, 

3
J (

1
H-

1
H) 

= 6.9 Hz,
 4

J (
1
H-

1
H) = 1.1 Hz, 1H, phenyl CH meta to CH peri to N), 7.07-7.17 (m, 
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3H, 2 × CH meta, and 1 × CH para, to NCO), 1.35 (s, 15H, 5 × CH3). 
13

C{
1
H} NMR 

(125 MHz, CDCl3, 300 K) 168.5 (NCO), 158.4 (d, 
1
J(

13
C-

19
F) = 247.3 Hz, CF), 

156.2 (CN of pyridyl ring) 145.1 (CCON), 139.4 (CH of pyridyl ring), 135.7 (d, 

2
J(

1
H-

1
H) = 12.6 Hz, CNCO), 130.7 (C=CN), 130.6 (CH para to CH peri to N), 

130.0 (CH peri to N), 128.6 (CH meta to CH peri to N), 128.6 (CH ortho to CH peri 

to N), 128.2 (d, 
3
J(

13
C-

19
F) =  3.1 Hz (CH ortho to NCOR), 125.9 (d, 

3
J(

13
C-

19
F) = 

8.2 Hz, CH meta to F) 124.4 (d, 
4
J(

13
C-

19
F) = 3.4 Hz, CH para to F) 122.8 (CH of 

pyridyl ring), 115.2 (d, 
2
J(

13
C-

19
F) = 21.1 Hz, CH ortho to F), 87.1 (5 × CCH3), 8.6 

(5 × CCH3). 

9.5.2 Synthesis of [Ir(η
5
-C5(CH3)5){C13H12Cl2N2O}Cl] PF6 (5.2) 

Pyridine-2-carboxylic acid (2,5-dichloro-phenyl)-methyl amide (0.04 g, 0.13 

mmol) was added to a solution of [IrCp*Cl2]2 (0.05 g, 0.07 mmol) in ethanol (25ml) 

and left to reflux for 15 minutes. Ammonium hexafluorophosphate (0.04 g, 0.26 

mmol) was added and the suspension was left to reflux overnight. The resulting 

suspension was filtered, washed with ether and dried in vacuo to give 5.2 as a yellow 

powder (0.06 g, 0.08 mmol, 60%). Yellow crystals suitable for single crystal X-ray 

diffraction were obtained using vapour diffusion (dichloromethane/pentane). ES-MS 

(CH2Cl2, m/z): 643.1 [M-PF6]. 

Anal. Found: C: 34.8, H: 3.2, N: 3.5% Anal. Calculated: C: 35.0, H: 3.2, N: 

3.6%  

Major product: 
1
H NMR (500 MHz, CD2Cl2, 300 K) 8.89-8.92 (m, 1H, pyridyl 

CH ortho to N), 7.84-7.90 (m, 2H, pyridyl CH para to N and pyridyl CH para to 

CONR), 7.61 (br. d, 
3
J(

1
H-

1
H) = 8.7 Hz, 1H, phenyl CH meta to NMeR), 7.53-7.58 

(m, 1H, pyridyl CH ortho to CONR), 7.51 (d, 
4
J(

1
H-

1
H) = 2.4 Hz, 1H, phenyl CH 

ortho to NMeR), 
 
6.89-6.94 (m, 1H, phenyl CH para to NMeR), 3.62 (br. s, 3H, 

NCH3), 1.76 (br. s, 15H, CCH3).
 13

C{
1
H} NMR (125 MHz, CD2Cl2) 174.8 (NCO), 

153.0 (CH ortho to N on pyridyl ring), 148.1 (CCON), 140.6 (CH para to N on 

pyridyl ring), 140.5 (CCl), 136.0 (CNCO on phenyl ring), 133.4 (CH ortho to CONR 

on pyridyl ring or CH meta to NMeR), 132.9 (CH ortho to CONR on pyridyl ring or 

CH meta to NMeR), 131.9 (CH meta to N on pyridyl ring), 130.2 (CCl), 129.6 (CH 

ortho to NMeR), 128.6 (phenyl CH para to NMeR), 88.2 (5 × CCH3), 41.7 (NCH3), 

9.5 (5 × CCH3). 
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Minor product: 
1
H NMR (500 MHz, CD2Cl2, 300 K) 8.85 (br. d, 

3
J(

1
H-

1
H) = 5.3 

Hz, 1H, pyridyl CH ortho to N), 7.82 (vtd (ddd), 
3
J (

1
H-

1
H) = 8.0 Hz, 

3
J (

1
H-

1
H) = 

8.0 Hz,
 4

J (
1
H-

1
H) = 1.6 Hz, 1H, pyridyl CH para to N), 7.77 (ddd, 

3
J (

1
H-

1
H) = 6.8 

Hz, 
3
J (

1
H-

1
H) = 5.4 Hz,

 4
J (

1
H-

1
H) = 1.4 Hz, 1H, pyridyl CH para to CONR), 7.75 

(br. d, 
4
J (

1
H-

1
H) = 2.0 Hz, 1H, phenyl CH ortho to NMeR), 7.53-7.58 (m, 2H, 

phenyl CH para to NMeR, and pyridyl CH ortho to CONR), 6.83 (br. d, 
3
J (

1
H-

1
H) = 

8.1 Hz, 1H, phenyl CH meta to NMeR), 3.65 (br. s, 3H, NCH3), 1.75 (br. s, 15H, 

CCH3). 
13

C{
1
H} NMR (125 MHz, CD2Cl2) 173.3 (NCO), 152.7 (CH ortho to N on 

pyridyl ring), 147.7 (CCON), 140.5 (CH para to N on pyridyl ring), 140.2 (CCl), 

135.9 (CNCO), 133.0 (CH ortho to CONR on pyridyl ring or CH meta to NMeR), 

132.8 (CH ortho to CONR on pyridyl ring or CH meta to NMeR), 131.5 (CH meta to 

N on pyridyl ring), 131.0 (CCl), 129.8 (CH ortho to NMeR), 128.7 (phenyl CH para 

to NMeR), 88.1 (5 × CCH3), 42.3 (NCH3), 9.3 (5 × CCH3). 

9.5.3 Synthesis of Ir(η
5
-C5(CH3)5){C6H6NO2}Cl (5.3) 

Potassium pyridine-2-carboxylate (0.04 g, 0.26 mmol) was added to [IrCp*Cl2]2 

(0.1 g, 0.13 mmol) in ethanol (30 ml) and the resulting suspension was stirred at 60 

°C for 18 hours. The mixture was filtered and the solid washed with diethyl ether to 

give 5.3 as a yellow powder (0.08 g, 0.16 mmol, 66%). ES-MS (CH2Cl2, m/z): 450.1 

[M-Cl]. 

Anal. Found: C: 39.5, H: 4.0, N: 2.8, Cl: 7.5% Anal. Calculated: C: 39.6, H: 

4.0, N: 2.9, Cl: 7.3% 

1
H NMR (300 MHz, CDCl3, 300 K) 8.57 (ddd, 

3
J (

1
H-

1
H) = 5.5Hz, 1H, 

4
J (

1
H-

1
H) = 1.4 Hz, 1H, 

5
J (

1
H-

1
H) = 0.8 Hz, 1H, CH on pyridyl ring ortho to N), 8.15 

(ddd, 
3
J (

1
H-

1
H) = 7.8 Hz, 

4
J (

1
H-

1
H) = 1.5 Hz, 

5
J(

1
H-

1
H) = 0.7 Hz, 1H, CH on 

pyridyl ring ortho to COO), 7.96 (vtd (ddd), 
3
J (

1
H-

1
H) = 7.7 Hz,

 3
J (

1
H-

1
H) = 7.7 

Hz,
 4

J (
1
H-

1
H) = 1.4 Hz, 1H, CH on pyridyl ring para to N), 7.56 (ddd, 

3
J (

1
H-

1
H) = 

6.8 Hz,
 3

J (
1
H-

1
H) = 4.7 Hz,

 4
J (

1
H-

1
H) = 1.6 Hz,1H, CH  on pyridyl ring para to 

COO), 1.72 (s, 15H, 5 × CH3)
 13

C{
1
H} NMR (75 MHz, CDCl3, 300 K) 172.7 

(NCO), 151.4 (CCON), 149.1 (CH ortho to N on pyridyl ring), 139.1 (C para to N 

on pyridyl ring), 128.5 (CH para to CO and meta to N on pyridyl ring), 127.7 (CH 

ortho to CO and meta to N on pyridyl ring), 85.4 (CCH3), 9.0 (CCH3). 
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9.5.4 Synthesis of Ir(η
5
-C5(CH3)5)Cl(C10H9O2) (5.4) 

Triethylamine (0.04 ml, 0.26 mmol)) was added to a stirred solution of 

[IrCp*Cl2]2 (0.10 g, 0.13 mmol) and 1-phenyl-butane-1,3-dione (0.04 g, 0.26 mmol) 

in dichloromethane (25 ml) and left to stir for 17 hours. The resulting solution was 

washed with water (2 × 10 ml), brine (10 ml) dried over magnesium sulfate and 

dried in vacuo to give 5.4 as a yellow powder (0.10 g, 0.19 mmol, 76%) Yellow 

crystals suitable for single crystal X-ray diffraction were obtained using vapour 

diffusion (dichloromethane/pentane). ES-MS (CH2Cl2, m/z): 489.1 [M-Cl]. 

Anal. Found: C: 45.7, H: 4.6, Cl: 5.8% Anal. Calculated: C: 45.9, H: 4.6, Cl: 

6.7% 

1
H NMR (300 MHz, CDCl3, 300 K) 7.87 (br. d, 

3
J (

1
H-

1
H) = 7.5 Hz, 1H, 2 × 

phenyl CH ortho to CO), 7.44 (br. t, 
3
J (

1
H-

1
H) =7.3 Hz, 1H, phenyl CH para to 

CO), 7.34 (vbr. t, 
3
J (

1
H-

1
H) = 7.5 Hz, 2H, 2 × phenyl CH meta to CO), 5.89 (s, 1H, 

CHCOCH3), 2.08 (s, 3H, CH3CO), 1.66 (s, 15H, 5 × CH3). 
13

C{
1
H} NMR (75 MHz, 

CDCl3, 300 K) 186.5 (CO), 177.3 (CO), 138.8 (CCO on phenyl ring), 130.7 (CH on 

phenyl ring para to CO), 128.1 (CH on phenyl ring meta to CO), 127.1 (2 × CH on 

phenyl ring ortho to CO), 97.1 (COCHCO), 83.5 (CCH3 on Cp*), 28.8 (CH3CO), 8.7 

(CH3 on Cp*). 

9.5.5 Synthesis of Ir(η
5
-C5(CH3)5)Cl(C16H13FNO) (5.5) 

Triethylamine (0.04 ml, 0.29 mmol) was added to a solution of [IrCp*Cl2]2 (0.10 

g, 0.13 mmol) and 1-(3-fluoro-phenyl)-3-phenylamino-but-2-en-1-one (0.07 g, 0.27 

mmol) in dichloromethane (25 ml). After 72 hours the solvent was removed and the 

crude product recrystallised by dichloromethane/hexane layer diffusion to yield large 

red crystals suitable for X-ray crystallography (0.06 g, 0.10 mmol, 39%). ES-MS 

(CH2Cl2, m/z): 582.2 [M-Cl]. 

Anal. Found: C: 47.3, H: 4.4, N: 2.1% Anal. Calculated (with 0.75 molecules of 

dichloromethane): C: 47.2, H: 4.4, N: 2.1%. 

1
H NMR (300 MHz, CDCl3, 300 K) 7.67 (ddd, 

3
J (

1
H-

1
H) = 7.8 Hz, 1.5 Hz 1.1 

Hz 1H, CH para to F), 7.59 (ddd, 
3
J (

1
H-

19
F) = 10.5 Hz, 

4
J (

1
H-

1
H) = 2.7 Hz, 1.6 Hz, 

1H, CH ortho to F and CO), 7.50 (td (ddd), 
3
J (

1
H-

1
H) = 7.4 Hz, 

4
J (

1
H-

1
H) = 1.2 Hz, 

2H, 2 × CH meta to N), 7.32-7.42 (m, 3H, CH meta to CO and 2 × CH ortho to N), 

7.09-7.16 (m, 2H, CH ortho to CO and CH para to N), 5.51 (br. s, 1H, COCHCN), 
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1.70 (br. s, 3H, CH3CN), 1.26 (br. s, 15H, 5 × CH3Cp).
 13

C{
1
H} NMR (125 MHz, 

CDCl3, 300 K) 174.3 (CO), 163.6 (CN on phenyl ring), 163.5 (d, 
1
J (

13
C-

19
F) = 244.6 

Hz, CF), 154.5 (CH3CN), 142.8 (d, 
3
J (

13
C-

19
F) = 7.3 Hz, CCO on phenyl ring), 

130.2 (d, 
3
J (

13
C-

19
F) = 8.1 Hz, CH meta to F), 129.8 (2 × CH on phenyl ring meta to 

N), 128.7 (2 ×CH on phenyl ring ortho to N), 126.1 (CH on phenyl ring para to N), 

122.6 (
4
J (

13
C-

19
F) = 2.8 Hz, CH para to F), 116.5 (

2
J (

13
C-

19
F) = 21.7 Hz, CH para 

to CO), 113.9 (
2
J (

13
C-

19
F) = 22.7 Hz, CH ortho to F and CO), 97.2 (COCHCN), 

86.3 (CCH3 on Cp*), 25.5 (CH3CN), 8.7 (CH3 on Cp*) 

9.5.6 Synthesis of Ir(η
5
-C5(CH3)5)Cl(C16H13FNO)  (5.6) 

Triethylamine (0.04 ml, 0.29 mmol) was added.to a solution of [IrCp*Cl2]2 (0.10 

g, 0.13 mmol) and 1-(4-Fluoro-phenyl)-3-phenylamino-but-2-en-1-one (0.07 g, 0.27 

mmol) in dichloromethane (25 ml). After 72 hours the solvent was removed and the 

crude product recrystallised using vapour diffusion (dichloromethane/pentane 

solvent system) to give 5.6 as orange crystals (0.12 g, 0.19 mmol, 77%). ES-MS 

(CH2Cl2, m/z): 582.2 [M-Cl]. 

Anal. Found: C: 49.1, H: 4.5, N: 2.0%.Anal. Calculated (with 0.33 molecules of 

dichloromethane): C: 49.0, H: 4.5, N: 2.2% 

1
H NMR (500 MHz, CDCl3, 213 K) 7.89 (br. dd, 

3
J (

1
H-

1
H) = 8.7 Hz, 

4
J (

1
H-

19
F) 

= 5.6 Hz, 2H, 2 × CH meta to F), 7.68 (br. d, 
3
J (

1
H-

1
H) = 7.0 Hz, 1H, CH ortho to 

N), 7.35-7.41 (m, 1H, CH meta to N), 7.31 (br. t, 
3
J (

1
H-

1
H) = 6.9 Hz, 1H, CH meta 

to N), 7.09-7.16 (m, 1H, CH para to N), 7.02 (t, 
3
J (

1
H-

1
H) = 8.5 Hz, 

3
J (

1
H-

19
F) = 

8.5 Hz, 2H, CH ortho to F), 6.86 (br. d, 
3
J (

1
H-

1
H) = 6.9 Hz, 1H, CH ortho to N), 

5.52 (br. s, 1H, COCHCN), 1.71 (br. s, 3H, CH3CN), 1.26 (s, 15H, 5 × CH3Cp).
 

13
C{

1
H} NMR (125 MHz, CDCl3, 213 K) 168.1 (CO), 163.0 (d, 

1
J (

13
C-

19
F) = 250.8 

Hz, CF), 162.0 (CN), 153.4 (CN), 134.9 (d, 
4
J (

13
C-

19
F) = 2.4 Hz, CCO on phenyl 

ring), 129.0 (br. s, CH on phenyl ring meta to N), 128.6 (d, 
3
J (

13
C-

19
F) = 8.5 Hz, 2 × 

CH meta to F), 126.8 (CH on phenyl ring meta to N), 126.7 (CH on phenyl ring 

ortho to N), 125.3 (CH on phenyl ring para to N), 124.1 (br. s, CH on phenyl ring 

ortho to N)114.7 (d,  
2
J (

13
C-

19
F) = 20.9 Hz, 2 × CH ortho to F), 95.6 (COCHCN), 

85.4 (CCH3 on Cp*), 25.9 (CH3CN), 8.4 (CH3 on Cp*) 
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9.6 Homogeneous Catalysis 

9.6.1 General Benzaldehyde Reduction 

To the selected complex (0.01 mmol Ir/Rh) in a carousel tube was added 

potassium tert-butoxide (1.00 mg, 0.01 mmol) and propan-2-ol (10 ml). The mixture 

was stirred at 60°C for one hour, and then benzaldehyde (0.10 ml, 1.0 mmol) was 

added. The mixture was stirred at 60°C and the reaction was monitored by GC at 

intervals of 0, 2, 4, and 24h. 

9.6.2 General Acetophenone Reduction 

To the selected complex (0.01 mmol Ir/Rh) in a carousel tube was added 

potassium tert-butoxide (1.00 mg, 0.01 mmol) and propan-2-ol (10 ml). The mixture 

was stirred at 60°C for one hour, and then acetophenone (0.12 ml, 1.0 mmol) was 

added. The mixture was stirred at 60°C and the reaction was monitored by GC at 

intervals of 0, 2, 4, and 24h. 

9.7 Immobilisation 

9.7.1 Synthesis of 7.7 (Immobilised 2.6) 

Under an anhydrous nitrogen atmosphere, a solution of 2,6-di-tert-butylpyridine 

(0.39 ml, 1.80 mmol) in dichloromethane (0.83 ml) was added to 

trifluoromethanesulfonic anhydride (0.15 ml, 0.89 mmol) in dichloromethane (0.91 

ml) at -10 °C. A solution of 2.6 (0.17 g, 0.22 mmol) in dichloromethane (1 ml) was 

slowly added over an hour. After stirring for an hour, the solution was evaporated to 

dryness to remove excess trifluoromethanesulfonic anhydride, leaving a brown 

residue containing 7.1. The residue was redissolved in 1.06 ml dichloromethane and 

0.06 ml was transferred to an ampoule and evaporated  for an NMR sample to 

confirm triflation. 

1
H NMR (300 MHz, CDCl3, 300 K) 4.56 (t, 

3
J (

1
H-

1
H) = 6.1 Hz, 4H, 2 × 

CH2OTf), 2.25 (t, 
3
J (

1
H-

1
H) = 7.0 Hz, 4H, 2 × CH2), 1.90-1.75 (m, 4H, 2 × CH2), 

1.71 (br. s, 24H, 8 × CH3), 1.40-1.60 (m, 8H, 4 × CH2). 

The resulting solution containing 7.1 was transferred to Wang resin (0.28 g, 0.42 

mmol) and agitated. After 22 hours the suspension was filtered and washed with 
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dichloromethane until the filtrate was colourless. The residue was added to water (10 

ml) and the slurry filtered. This was repeated with 1M hydrochloric acid, water and 

methanol respectively. The resulting dark red resin was repeatedly washed with 

dichloromethane/propan-2-ol (1:1, 10 ml) at 60°C for 1 hour until no colour was 

seen in solution, followed by acetone (3 × 10 ml) for 1 hour, filtered and dried 

overnight in a vacuum oven (0.28 g, 0.77 mmol Rh/g, 0.21 mmol Rh) 

9.7.2 Synthesis of 7.8 (Immobilised 2.8) 

Under an anhydrous nitrogen atmosphere, a solution of 2,6-di-tert-butylpyridine 

(0.39 ml, 1.80 mmol) in dichloromethane (0.84 ml) was added to 

trifluoromethanesulfonic anhydride (0.15 ml, 0.89 mmol) in dichloromethane (0.92 

ml) at -10 °C. A solution of 2.8 (0.23 g, 0.23 mmol) in dichloromethane (1 ml) was 

slowly added over an hour. After stirring for an hour, the solution was evaporated to 

dryness to remove excess trifluoromethanesulfonic anhydride, leaving a brown 

residue containing 7.2. The residue was redissolved in 1.07 ml dichloromethane and 

0.07 ml was transferred to an ampoule and re-evaporated  for an NMR sample to 

confirm triflation.
 

1
H NMR (300 MHz, CDCl3, 300 K) 4.54 (t, 

3
J (

1
H-

1
H) = 6.5 Hz, 4H, 2 × 

CH2OTf), 2.20 (t, 
3
J (

1
H-

1
H) = 7.6 Hz, 4H, 2 × CH2), 1.89-1.75 (m, 4H, 2 × CH2), 

1.71 (br. s, 12H, 4 × CH3), 1.69 (br. s, 12H, 4 × CH3), 1.35-1.60 (m, 8H, 4 × CH2), 

1.20-1.40 (m, 36H, 18 × CH2). 

The resulting solution containing 7.2 was transferred to Wang resin (0.14 g, 0.21 

mmol) and agitated. After 22 hours the suspension was filtered and washed with 

dichloromethane until the filtrate was colourless. The residue was added to water (10 

ml) and the slurry filtered. This was repeated with 1M hydrochloric acid, water and 

methanol. The resulting dark red resin was repeatedly washed with 

dichloromethane/propan-2-ol (1:1, 10 ml) at 60 °C for 1 hour until no colour was 

seen in solution, followed by acetone (3 × 10 ml) for 1 hour, filtered and dried 

overnight in a vacuum oven (0.19 g, 0.64 mmol Rh/g, 0.12 mmol Rh) 

9.7.3 Synthesis of 7.9 (Immobilised 2.9) 

Under an anhydrous nitrogen atmosphere, a solution of 2,6-di-tert-butylpyridine 

(0.14 ml, 0.07 mmol) in dichloromethane (0.30 ml) was added to 



Chapter 9 

229 

trifluoromethanesulfonic anhydride (0.05 ml, 0.34 mmol) in dichloromethane (0.34 

ml) at -10 °C. A solution of 2.10 (0.07 g, 0.08 mmol) in dichloromethane (0.39 ml) 

was slowly added 30 minutes. After stirring for 1 hour, a small portion was 

transferred to an ampoule and the solvent was removed to leave a brown residue 

containing 7.3. 

1
H NMR (300 MHz, CDCl3, 300 K) 4.64 (t, 

3
J (

1
H-

1
H) = 5.2 Hz, 4H, 2 × 

CH2OTf), 2.29 (t, 
3
J (

1
H-

1
H) = 7.3 Hz, 4H, 2 × CH2), 1.85-2.24 (m, 4H, 2 × CH2), 

1.73 (br. s, 12H, 4 × CH3), 1.69 (br. s, 12H, 4 × CH3). 

The resulting solution of 7.3 was evaporated to dryness to remove excess 

trifluoromethanesulfonic anhydride, The residue was dissolved in dichloromethane 

(0.39 ml) and transferred to Wang resin, pre-swelled in dichloromethane (0.10 g, 

0.15 mmol) and agitated. After 22 hours the suspension was filtered and washed with 

dichloromethane until the filtrate was colourless. The residue was added to water (10 

ml) and the slurry filtered. This was repeated with 1M hydrochloric acid, water 

methanol, and the resulting dark red resin was repeatedly washed with propan-2-ol 

(10 ml) at 60°C for 1 hour until no colour was seen in solution, filtered and dried 

overnight in a vacuum oven (0.08 g). 

9.7.4 Synthesis of 7.10 (Immobilised 2.10 – propan-2-ol wash) 

Under an anhydrous nitrogen atmosphere, a solution of 2,6-di-tert-butylpyridine 

(0.37 ml, 0.17 mmol) in dichloromethane (0.78 ml) was added to 

trifluoromethanesulfonic anhydride (0.14 ml, 0.86 mmol) in dichloromethane (0.86 

ml) at -10 °C. A solution of 2.10 (0.20 g, 0.21 mmol) in dichloromethane (1.0 ml) 

was slowly added over 30 minutes. After stirring for 1 hour, a small portion was 

transferred to an ampoule and the solvent was removed to leave a brown residue 

containing 7.4. 

1
H NMR (300 MHz, CDCl3, 300 K) 4.57 (t,

3
J (

1
H-

1
H) = 6.1 Hz, 4H, 2 × 

CH2OTf), 2.15 (t, 
3
J (

1
H-

1
H) = 7.2 Hz, 4H, 2 × CH2), 1.80-1.96 (m, 4H, 2 × CH2), 

1.70 (s, 12H, 4 × CH3), 1.70 (s, 12H, 4 × CH3), 1.45-1.48 (m, 8H, 2 × CH2). 

The resulting solution of 7.4 was evaporated to dryness to remove excess 

trifluoromethanesulfonic anhydride, The residue was dissolved in dichloromethane 

(1.0 ml) and transferred to Wang resin, pre-swelled in dichloromethane (0.14 g, 0.21 

mmol) and agitated. After 22 hours the suspension was filtered and washed with 
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dichloromethane until the filtrate was colourless. The residue was added to water (10 

ml) and the slurry filtered. This was repeated with 1M hydrochloric acid, water 

methanol, and the resulting dark red resin was repeatedly washed with propan-2-ol 

(10 ml) at 60°C for 1 hour until no colour was seen in solution, filtered and dried 

overnight in a vacuum oven (0.19 g, 0.65 mmol Ir/g, 0.12 mmol Ir) 

9.7.5 Synthesis of 7.10 (Immobilised 2.10 – 1:1 dichloromethane: 

propan-2-ol and acetone wash) 

Under an anhydrous nitrogen atmosphere, a solution of 2,6-di-tert-butylpyridine 

(5.28 ml, 24.8 mmol) in dichloromethane (11.22 ml) was added to 

trifluoromethanesulfonic anhydride (2.07 ml, 12.3 mmol) in dichloromethane (12.25 

ml) at -10 °C. A solution of 2.10 (2.90 g, 3.08 mmol) in dichloromethane (14.50 ml) 

was slowly added over an hour. After stirring for 2 hours, 0.69 ml of the solution 

was transferred to an ampoule and the solvent was removed to leave a brown residue 

containing 7.4 (see above for NMR) 

The resulting solution of 7.4 was evaporated to dryness to remove excess 

trifluoromethanesulfonic anhydride, The residue was dissolved in dichloromethane 

(15 ml) and transferred to Wang resin (4.0 g, 6.0 mmol) and agitated. After 22 hours 

the suspension was filtered and washed with dichloromethane until the filtrate was 

colourless. The residue was added to water (200 ml) and the slurry filtered. This was 

repeated with 1M hydrochloric acid, water and methanol. The resulting dark red 

resin was repeatedly washed with propan-2-ol (200 ml) at 60 °C for 1 hour until no 

colour was seen in solution, filtered and dried overnight in a vacuum oven (5.9 g). 

100 mg of the resulting dark red resin was repeatedly washed with 

dichloromethane/propan-2-ol (1:1, 10 ml) at 60 °C for 1 hour until no colour was 

seen in solution, followed by acetone (3 × 10 ml) for 1 hour, filtered and dried 

overnight in a vacuum oven (0.61 mmol Ir/g). 

9.7.6 Synthesis of 7.11 (Immobilised 2.11) 

Under an anhydrous nitrogen atmosphere, a solution of 2,6-di-tert-butylpyridine 

(0.16 ml, 0.07 mmol) in dichloromethane (0.34 ml) was added to 

trifluoromethanesulfonic anhydride (0.06 ml, 0.37 mmol) in dichloromethane (0.37 

ml) at -10 °C. A solution of 2.10 (0.10 g, 0.09 mmol) in dichloromethane (0.43 ml) 
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was slowly added over an hour. After stirring for 1 hour, a small portion was 

transferred to an ampoule and the solvent was removed to leave a brown residue 

containing 7.5. 

1
H NMR (300 MHz, CDCl3, 300 K) 4.54 (t, 

3
J (

1
H-

1
H) = 6.2 Hz, 4H, 2 × 

CH2OTf), 2.11 (t, 
3
J (

1
H-

1
H) = 7.5 Hz, 4H, 2 × CH2), 1.89-1.76 (m, 4H, 2 × CH2), 

1.72 (br. s, 12H, 4 × CH3), 1.71 (br. s, 12H, 4 × CH3) 1.35-1.50 (m, 8H, 4 × CH2), 

1.30 (br. s, 16H, 8 × CH2). 

The resulting solution of 7.5 was evaporated to dryness to remove excess 

trifluoromethanesulfonic anhydride, The residue was dissolved in dichloromethane 

(1.0 ml) and transferred to Wang resin, pre-swelled in dichloromethane (0.06 g, 0.09 

mmol) and agitated. After 22 hours the suspension was filtered and washed with 

dichloromethane until the filtrate was colourless. The residue was added to water (10 

ml) and the slurry filtered. This was repeated with 1M hydrochloric acid, water 

methanol, and the resulting dark red resin was repeatedly washed with propan-2-ol 

(10 ml) at 60 °C for 1 hour until no colour was seen in solution, filtered and dried 

overnight in a vacuum oven (0.07 g). 

9.7.7 Synthesis of 7.12 (Immobilised 2.12) 

Under an anhydrous nitrogen atmosphere, a solution of ditertiarybutylpyridine 

(5.28 ml, 24.8 mmol) in dichloromethane (11.22 ml) was added to 

trifluoromethanesulfonic anhydride (2.07 ml, 12.3 mmol) in dichloromethane (12.25 

ml) at -10 °C. A solution of 2.12 (3.81 g, 3.19 mmol) in dichloromethane (14.5 ml) 

was slowly added over an hour. After stirring for an hour, the solution was 

evaporated to dryness to remove excess trifluoromethanesulfonic anhydride, leaving 

a brown residue containing 7.6. The residue was redissolved in 14.5 ml 

dichloromethane and 0.24 ml was transferred to an ampoule and re-evaporated  for 

an NMR sample to confirm triflation.
 

1
H NMR (300 MHz, CDCl3, 300 K) 4.52 (t,

3
J (

1
H-

1
H) = 6.4 Hz, 4H, 2 × 

CH2OTf), 2.26 (t, 
3
J (

1
H-

1
H) = 7.5 Hz, 4H, 2 × CH2), 1.86-1.75 (m, 4H, 2 × CH2), 

1.69 (s, 12H, 4 × CH3), 1.68 (s, 12H, 4 × CH3)1.35-1.50 (m, 8H, 4 × CH2), 1.24 (br. 

s, 36H, 18 × CH2). 

The resulting solution containing 7.6 was transferred to Wang resin (4.0 g, 6.0 

mmol) and agitated. After 22 hours the suspension was filtered and washed with 
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dichloromethane until the filtrate was colourless. The residue was added to water 

(200 ml) and the slurry filtered. This was repeated with 1M hydrochloric acid, water 

and methanol. The resulting dark red resin was repeatedly washed with propan-2-ol 

(200 ml) at 60 °C for 1 hour until no colour was seen in solution, filtered and dried 

overnight in a vacuum oven (5.6 g, 0.48 mmol Ir/g, 2.7 mmol Ir). A small portion of 

the resulting dark red resin was repeatedly washed with dichloromethane/propan-2-

ol (1:1, 10 ml) at 60 °C for 1 hour until no colour was seen in solution, followed by 

acetone (3 × 10 ml) for 1 hour, filtered and dried overnight in a vacuum oven (0.47 

mmol Ir/g) 

9.7.8 Synthesis of [IrCp*2Cl3]OSO2CF3 (7.13) 

AgOTf (0.14 g, 0.55 mmol) was added to [IrCp*Cl2]2 (0.44 g, 0.55 mmol) in 

dichloromethane (25 ml) and the solution was stirred for 24 hours. The resulting 

mixture was filtered and the filtrate evaporated to dryness. The crude product was 

recrystallised by vapour diffusion with a dichloromethane/pentane solvent system to 

give 7.13 as yellow crystals (0.43 g, 0.47 mmol, 86%) 

Anal. Found: C: 27.8, H: 3.3, Cl: 11.5% Anal. Calculated: C: 27.7, H: 3.3, Cl: 

11.7% 

1
H NMR (300 MHz, CDCl3, 300 K) 1.70 (CCH3). 

13
C{

1
H} NMR (75 MHz, 

CDCl3, 300 K) 120.9 (q, 
1
J (

13
C-

19
F) = 321.0 Hz,, 88.2 (CCH3), 9.6 (CCH3). 

19
F NMR (300 MHz, CDCl3, 282 MHz, -78.3 (CF3) 

9.7.9 Reaction of 7.13 with 1M HCl 

[IrCp*2Cl3]OTf (0.05 g, 0.05 mmol) was added to 1M HCl (10 ml) and stirred 

overnight. The resulting suspension was filtered, washed with water, dissolved in 

dichloromethane (50 ml), dried over sodium sulfate, filtered and the solvent 

evaporated to give [IrCp*Cl2]2 as an orange powder (0.02 g, 0.03 mmol, 46%). 

9.7.10  General catalytic reduction of benzaldehyde/acetophenone 

with immobilised complexes 

To the selected immobilised resin (57.0 mg) in a carousel tube was added 

potassium tert-butoxide (0.50 mg, 0.004 mmol) and propan-2-ol (5 ml). The mixture 

was stirred at 60 °C for one hour, then the substrate (0.5 mmol) was added. The 
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mixture was stirred at 60 °C and the reaction was monitored by GC at intervals of 0, 

2, 4, 24 and 48h. Further runs were conducted by decanting the solution, and 

recharging the resin with  potassium tert-butoxide (0.5 mg, 0.004 mmol), propan-2-

ol (5 ml) and benzaldehyde (0.05 ml, 0.5 mmol) immediately.  

After 35 runs resin 7.10 was recovered by filtering, washing with 

dichloromethane and dried using a vacuum oven (35.0 mg, 0.034 mmol Ir). 

After eight runs resin 7.12 was filtered from the reaction solution, stirred in 1M 

HCl/ethanol (10 ml) overnight, and washed with water (10 ml), acetone (10 ml), 

dichloromethane (10 ml) and dried overnight in the vacuum oven before its ninth 

run.  

9.7.11  Reduction of benzaldehyde by 7.12 in flow 

The immobilised complex 7.12 (0.93 g, 0.44 mmol Ir), encased in a HPLC 

column, was washed with a 1:1 mixture of dichloromethane/propan-2-ol (400 ml) at 

60 °C, followed by an acetone wash (150 ml) at room temperature.  

Run one 

A solution of potassium tert-butoxide (39 mg, 0.35 mmol) and benzaldehyde 

(0.89 ml, 8.70 mmol) was dissolved in propan-2-ol (100 ml) and pumped through the 

column at 60 °C at a flow rate of 1.45 ml/min for 60 minutes. The eluted solution 

was poured back into the starting material solution and recycled through the column 

for 24 hours (98% conversion of benzaldehyde to benzyl alcohol). 

Run two 

Benzaldehyde (3.56 ml, 34.9 mmol) in propan-2-ol (4.00 L) was pumped through 

the column over 79 hours, with variable flow rates in the range of 0.49-1.54 ml/min 

(58% conversion of benzaldehyde to benzyl alcohol). Due to an inconsistent flow 

rate, all of the reservoir was pumped through the column leaving the catalyst 

exposed to air. The solution was recycled through the column for a week, but the 

catalyst was inactive. 

9.7.12  Control Reaction One 

Under an anhydrous nitrogen atmosphere, a solution of 2,6-di-tert-butylpyridine 

(0.39 ml, 1.80 mmol) in dichloromethane (0.83 ml) was added to 

trifluoromethanesulfonic anhydride (0.15 ml, 0.89 mmol) in dichloromethane (0.91 
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ml) at -10 °C. A solution of [IrCp*Cl2]2 (0.17 g, 0.22 mmol) in dichloromethane 

(1.00 ml) was slowly added over 30 minutes. After stirring for an hour, the solution 

was evaporated to dryness to remove excess trifluoromethanesulfonic anhydride. The 

residue was dissolved in dichloromethane (1.00 ml), and transferred to Wang resin 

(0.28 g, 0.42 mmol) and agitated. After 22 hours the suspension was filtered and 

washed with dichloromethane until the filtrate was colourless. The residue was 

added to water (10 ml) and the slurry filtered. This was repeated with 1M 

hydrochloric acid, water and methanol respectively. The resulting resin was 

repeatedly washed with dichloromethane/propan-2-ol (1:1, 10 ml) at 60 °C for 1 

hour until no colour was seen in solution, followed by acetone (3 × 10 ml) for 1 

hour, filtered and dried overnight in a vacuum oven (0.25g). 

9.7.13  Control Reaction Two 

Under an anhydrous nitrogen atmosphere, a solution of 2.10 (0.20 g, 0.21 mmol) 

in dichloromethane (1.0 ml) was slowly added to of 2,6-di-tert-butylpyridine (0.37 

ml, 0.17 mmol) in dichloromethane (0.78 ml) at -10 °C. over 30 minutes. After 

stirring for 1 hour the resulting solution was evaporated to dryness. The residue was 

dissolved in dichloromethane (1.0 ml) and transferred to Wang resin, pre-swelled in 

dichloromethane (0.28 g, 0.42 mmol) and agitated. After 22 hours the suspension 

was filtered and washed with dichloromethane until the filtrate was colourless. The 

residue was added to water (10 ml) and the slurry filtered. This was repeated with 

1M hydrochloric acid, water and methanol respectively. The resulting resin was 

repeatedly washed with dichloromethane/propan-2-ol (1:1, 10 ml) at 60 °C for 1 

hour until no colour was seen in solution, followed by acetone (3 × 10 ml) for 1 

hour, filtered and dried overnight in a vacuum oven (0.26 g). 

9.7.14  Control Reaction Three 

Under an anhydrous nitrogen atmosphere, a solution of 2,6-di-tert-butylpyridine 

(0.37 ml, 0.17 mmol) in dichloromethane (0.78 ml) was added to 2.10 (0.20 g, 0.21 

mmol) in dichloromethane (1.0 ml). The solution was cooled to -10 °C, and 

trifluoromethanesulfonic anhydride (0.14 ml, 0.86 mmol) in dichloromethane (0.86 

ml) was slowly added over 30 minutes. After stirring for 1 hour, the solvent was 

evaporated and the crude product recrystallised using layer diffusion with a 
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dichloromethane/hexane solvent system. The resulting brown oily solid was stirred 

in hexane, and filtered to leave a brown solid (0.19 g).
 1

H NMR (300 MHz, CDCl3, 

300 K) 3.54 (t, 
3
J (

1
H-

1
H) = 6.4 Hz, 4H, 2 × CH2OR), 2.08-2.17 (m, 4H, 2 × CH2), 

1.75-1.96 (m, 4H, 2 × CH2), 1.71 (s, 24H, 8 × CH3), 1.45-1.56 (m, 8H, 2 × CH2). 

The solid was dissolved in dichloromethane (1 ml) and added to Wang resin (0.28 

g, 0.42 mmol) and agitated. After 22 hours the suspension was filtered and washed 

with dichloromethane until the filtrate was colourless. The residue was added to 

water (10 ml) and the slurry filtered. This was repeated with 1M hydrochloric acid, 

water and methanol. The resulting yellow resin was repeatedly washed with 

dichloromethane/propan-2-ol (1:1, 10 ml) at 60 °C for 1 hour until no colour was 

seen in solution, followed by acetone (3 × 10 ml) for 1 hour, filtered and dried 

overnight in a vacuum oven (0.24 g). 
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