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Abstract 

 This thesis reports the optical and structural properties of GaAs1-xBix alloys 

grown on GaAs by Molecular Beam Epitaxy (MBE). The photoluminescence (PL) of 

a GaAs0.97Bi0.03 alloy was measured over a wide range of temperatures and excitation 

powers. The temperature dependence of the PL peak energy indicated significant 

exciton localization at low temperatures and the band gap varies more weakly with 

temperature than in GaAs. An analysis of dominant carrier recombination 

mechanism(s) was also carried out indicating that radiative recombination is 

dominant at low temperature.  

The PL results indicate that dilute fractions of bismuth (Bi) with x < 0.025 

improve the material quality of these low temperature growth alloys by reducing the 

density of gallium (Ga) and/or arsenic related defects. The crystal quality starts to 

degrade at higher Bi concentration probably due to a significant amount of Bi-related 

defects, i.e BiGa. However, the room temperature PL intensity continues to increase 

with Bi content for x up to 0.06 due to the greater band-gap offset between GaAs and 

GaAs1-xBix.  

To improve the quality of GaAs1-xBix alloys, annealing and growth studies 

were carried out. At room temperature, the annealed GaAs1-xBix showed a modest 

improvement (~ 3 times) in PL while the PL peak wavelength remained relatively 

unchanged. Also, the optimum annealing temperature is Bi composition dependent; 

for samples with x < 0.048, the optimum annealing temperature is 700 
o
C but it 

reduces to 600 
o
C for higher compositions.  

Two growth parameters were investigated which are growth rate and As4/Bi 

beam equivalent pressure (BEP) ratio. It was found that growth rate significantly 

affects Bi incorporation and the accumulation of surface Bi. Decreasing the As4/Bi 

BEP ratio has been shown to increase Bi concentration but is limited by the 

formation of Bi double PL peaks. 
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Chapter 1 

Introduction 
 

1.1 Motivation 

Over the past decade, internet traffic has increased tremendously as a result of 

an increasing number of people being connected and the growing amount of 

information on the internet. The internet also has evolved from text based to picture 

to video and recently, high definition videos. Therefore, higher bandwidth and an 

increase in data transmission speed are required in order to meet the increasing 

demand. 

The internet traffic data is sent over long distances through high speed optical 

fibre telecommunication networks. These networks use laser diodes to transmit data 

in light pulses which pass through fibre cables. The information is then sent to home 

users through series of lower bandwidth and shorter distance networks called metro 

and local area networks (MANs and LANs). Since optical fibre networks are 

expensive, most of the LANs or the ‘last mile’ connections do not use optical fibres, 

relying on copper cables instead. This creates a bottleneck as the bandwidth and data 

transmission speed to the home users are limited. Therefore, the realization of high 

speed, reliable and low cost optoelectronic devices is important in order to expand 

the optical fibre coverage to home users.  

The optical fibre networks require laser diodes to operate at specific 

wavelengths. This is because the properties of optical fibres are wavelength 

dependent. The two important properties of optical fibres that need to be considered 

are dispersion and attenuation. Dispersion occurs because the speed of light is a 

function of wavelength. The laser pulse (which has some degree of spectral 

linewidth) will start to disperse as it travels in a dispersive material (the optical fibre) 

leading to pulses that are broader in time. Thus, adjacent pulses begin to overlap after 
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some distance, making it difficult to decode the original transmitted data. Dispersion 

thus limits the bandwidth as significant pulse overlapping must be avoided. 

 

Figure 1.1 The wavelength dependent signal attenuation in optical fibre. The dashed, dotted 

and solid lines represent the level of attenuation in fibre developed at different times [1]. 

Figure 1.1 shows the attenuation in optical fibre as a function of wavelength. 

The advances of fibre technology lead to lower levels of attenuation, thus allowing 

the signal to travel a longer distance before being attenuated to an unacceptably low 

magnitude. Optical fibres have three main operating windows which are at 

wavelengths of 0.85, 1.31 and 1.55 µm. Each of these operating windows has its own 

advantages. In modern fibres, the first operating window, 0.85 µm, has a relatively 

high optical loss of 1.8 dB/km. However, cheap GaAs lasers and Si detectors operate 

at this window. The 1.31 µm window is attractive due to zero dispersion in the fibres 

and it has a lower optical loss of 0.5 dB/km. The third operating window, 1.55 µm, 

has the lowest optical loss of 0.2 dB/km, making it the preferred choice for long haul 

optical fibre networks. Based on these reasons, it is important to have a light emitter 

and detector which operate at wavelengths of 1.31 and 1.55 µm. 
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1.2 A rainbow of choices 

 

Figure 1.2 Band gap versus lattice constant for various III-V alloys. 

A semiconductor material with light emission between 1.31 and 1.55 µm 

wavelength requires a band gap between 0.95 to 0.8 eV. The choices of materials 

operating in this region are shown in Figure 1.2. The semiconductor material must 

also be closely lattice matched to readily available substrates which are GaAs and 

InP. For decades, InGaAsP laser diodes grown on InP substrates have been used for 

the long haul optical fibre backbone.  

InGaAsP based lasers operating at 1.3 and 1.55 µm wavelengths have a 

superior threshold current density, Jth of ~ 90 to 100 A/cm
2 

[2]. However, the 

threshold current density, Jth exhibits an exponential increase with temperature 

(~exp(T/To) where To is the characteristic temperature) [3]. This loss has been 

attributed to; (i) carrier confinement leakage, (ii) Auger recombination loss, (iii) 

intervalence band absorption and (iv) non-radiative recombination at defects and 

interface states [3]. The use of strained InGaAs-InGaAsP QW (instead of unstrained 

QW or bulk devices) has been shown to improve Jth by reducing the magnitude of 

intervalence band absorption loss [4]. However, InGaAsP based lasers operating at 

1.55 µm still suffer from carrier confinement leakage and significant Auger 

recombination loss which account for 80 – 90% of Jth at room temperature [5, 6].  
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However, InP based devices are too expensive to be implemented for the high 

volume of MANs and LANs. InP substrates are significantly more expensive and 

normally come in a smaller size compared to GaAs substrates. This is because it is 

difficult to manufacture large diameter InP wafers reliably. The use of small 

substrates will increase the production costs. A 6-inch InP substrate (only available 

from Sumitomo) costs ~ £1800 while the same size GaAs substrate only costs ~ 

£350. Therefore, an attractive approach to reduce cost is by changing from InP 

substrates to GaAs substrates.  

Various GaAs based semiconductor alloys have been studied with a view to 

developing emitters for the second and third operating windows. For InxGa1-

xAs/GaAsP quantum wells, the emission wavelength is limited to < 1.24 µm with 

maximum indium content of 0.4 [7]. Extending the emission wavelength by using a 

higher indium content will result in the formation of dislocations, thus degrading the 

device performance. This is because the compressive strain introduced by the 

incorporation of indium in GaAs becomes extremely high even after strain 

compensation by the quantum well barriers. Therefore, 1.3 and 1.55 µm emission 

cannot be achieved by InxGa1-xAs on GaAs. Nonetheless, high performance InGaAs 

lasers have been reported with Jth as low as 45 and 90 A/cm
2 

for 0.98 and 1.23 µm 

wavelengths, respectively [7, 8].   

1.2.1 Dilute nitride 

One of the most widely studied material systems for GaAs-based 1.3 µm 

emitters for the past 17 years is dilute nitrides. Dilute nitrides extend the emission 

wavelength of GaAs-based devices to 1.3 µm (and beyond) which cannot be 

achieved by InGaAs quantum wells. The GaInNAs alloy was first proposed by 

Kondow et al in 1996 [9]. The incorporation of nitrogen (N) in GaAs reduces the 

band gap as well as introducing tensile strain. Therefore, a lattice matching with 

GaAs can be achieved by strain compensation between nitrogen and indium. 

GaInNAs alloy will be lattice matched to GaAs provided that the In:N ratio is ~ 3:1 

[10].  
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The incorporation of N in GaAs introduces a large band gap reduction which 

is  125 meV/% N [11]. The band gap reduction is mainly attributed to the decrease of 

the conduction band minima as a result of a band anti-crossing interaction between 

the conduction band edge of GaAs and the N resonant level [12]. The large 

conduction band reduction also provides a better electron confinement in 

GaInNAs/GaAs quantum wells compared to InGaAsP quantum wells, resulting in an 

improved temperature dependence for dilute nitride lasers. For 1.3 µm emission, the 

conduction band offset between a Ga0.7In0.3N0.01As0.99 well and a GaAs barrier is 350 

meV, deep enough to prevent electron overflow at room temperature [13]. However, 

the conduction band offset between a In0.3Ga0.7As0.6P0.4 well and a In0.1Ga0.9As0.2P0.8 

barrier is only 100 meV for a similar emission wavelength [13].  

However, the growth of the GaInNAs alloy is more complicated compared to 

other conventional alloys (i.e InGaAs, AlGaAs). GaInNAs is a metastable alloy due 

to the large difference in covalent radius between N and arsenic (As). Therefore, this 

semiconductor alloy has to be grown at relatively low temperatures (typically ~ 430 

o
C) to incorporate even a small amount of nitrogen. If the growth temperature is 

increased beyond the miscibility gap of the GaInNAs alloy, phase separation will 

occur which results to the formation of microscopic regions of InGaAs and InGaN 

[14].  

It is generally observed that the incorporation of N leads to a degradation of 

optical quality. The reasons put forward to explain this include high density of 

nitrogen interstitials, ion damage (due to high RF power) and low growth 

temperatures [15-17]. Thermal annealing has been shown to significantly improve 

the photoluminescence (PL) intensity (by a factor of ~10) but at the expense of a 

blue-shift in the emission wavelength after annealing [16, 18]. As wafer quality 

degrades with N content, most of the long wavelength GaInNAs devices are designed 

to have a maximal indium concentration and a minimal N content, leading to high 

strain. The compressive strain is typically mitigated by utilising GaNAs barriers 

(tensile strained) instead of GaAs barriers, which allows more quantum wells to be 

grown before strain relaxation occurs. For instance, up to three periods of 7 nm-

GaInNAs/GaAs quantum wells with In > 0.3 can be grown without strain relaxation 
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[14]. However, by utilising GaNAs barriers, up to nine periods of 7 nm-GaInNAs 

quantum wells can be grown without structural deterioration [14].  

A review by Harris on the progress of GaInNAs lasers shows that the 

threshold current density increases exponentially with wavelength and the trend can 

be fitted empirically with Jth = 500exp{8(λ – 1.2)} A/cm
2 

[14]. Thus a 1.55 µm 

GaInNAs laser will have a threshold current density of 8.2 kA/cm
2 

(almost 100 times 

higher than InGaAsP lasers). This empirical fitting uses actual data from various 

reports with laser emission wavelengths from 1.2 to 1.45 µm. Later, it was found that 

the use of an antimony surfactant during GaInNAs growth greatly improves the 

wafer quality. Antimony (Sb) reduces the segregation of indium during growth and 

delays the transition of the growth mode from 2D to 3D [14, 19]. Depending on the 

type of Sb flux and growth conditions, 1 – 10% of Sb may be incorporated to form 

the quinary alloy, GaInNAsSb. Harris also reported that the mean surface roughness 

of a Ga0.61In0.39N0.016As0.964Sb0.02 sample measured by AFM is half of that of a 

similar sample grown without an Sb surfactant [14]. The Sb-containing sample 

shows single atomic layer steps which indicate 2D and layer by layer growth [19]. 

However, compositional control becomes increasingly complicated as it involves 

three group V elements which are all interdependent. To date, a high performance 

1.54 µm GaInNAsSb laser has been reported with Jth = 373 A/cm
2
 [20]. Despite 

various improvements, the threshold current density is still ~ 4 times higher than InP 

based lasers.  

1.2.2 InAs quantum dots  

Another approach which was pursed by researchers is quantum dots (QDs). 

In a QD structure, the free electron motion is restricted in all directions (3D). 

According to a theoretical work carried out by Arakawa and Sakaki in 1982, QD 

lasers are expected to have an infinite To (i.e Jth independent of temperature) as 

thermal spreading can be suppressed due to a delta function-like density of states 

(DOS) [21]. Asada et al also predicted that lower threshold current densities and 

higher material gain should be obtained by QD lasers compared to quantum well and 

bulk devices [22]. InAs QDs have very low Jth which is between 26 – 40 A/cm
2 

for 
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lasers emitting at ~ 1.2 µm [23]. These values are lower than any quantum well based 

lasers. For 1.3 µm emission, Jth = 70 A/cm
2 

has been demonstrated [24]. Despite the 

superior threshold current density, some of the theoretical predictions are yet to be 

achieved in practice, mainly due to growth issues.  

The main challenge for growing QD lasers is to achieve a homogeneous and 

sufficiently high dot density while maintaining a low density of defects. The typical 

QD density, 3.0 × 10
10

 cm
-2

,
 
is insufficient to achieve high modal gain. This is 

because the dots do not occupy the whole area of the active layer. Recently, Fujitsu 

Laboratories reported a successful attempt to increase the dot density of QD lasers to 

5.9 ×10
10

 cm
-2 

(almost twice the typical dot density) [25]. However, increasing the 

QD density beyond 10
11

 cm
-2

 could result in the formation of defect clusters and 

consequently deteriorate the device performance [26].  

Another technique that was adopted to increase the overall QD density is 

introducing multiple stacks of QD layers, separated by spacer layers. Ideally, the 

spacer layers should be smooth in order to obtain similar QD characteristics in the 

following layers. However, this is difficult to achieve in practice especially for large 

numbers of QD stacks. Furthermore, the overall strain will also increase with an 

increasing number of QD stacks. This limits the number of QD layers as excessive 

strain will cause the formation of dislocations. To date, the highest net modal gain of 

QD lasers reported in the literature is 7 cm
-1 

per QD layer (typical values are between 

4 – 5 cm
-1 

per QD layer) [25]. For comparison, a typical modal gain for a quantum 

well devices is above 15 cm
-1 

per QW layer [26].  

The Jth of QD lasers is also dependent on temperature, contrary to the earlier 

theoretical work in Ref. [21]. For example, Bimberg et al showed that Jth is initially 

constant with temperature but increases exponentially above 100 K [27]. This is 

because at higher temperatures the injected carriers possess sufficient thermal energy 

to escape from QD confinement and start to populate the barrier states. Hence, higher 

injection current is required to maintain the threshold gain of the laser. Despite these 

problems, commercial InAs QD lasers became available in 2000. However, InAs QD 

lasers with emission wavelengths up to 1.55 µm remain elusive. 
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1.3 Dilute bismide materials 

Recently, increasing interest has been shown towards another semiconductor 

alloy called dilute bismide. The introduction of bismuth (Bi) in GaAs introduces 

many interesting properties which make the alloy a promising material system for 

light emitters and detectors for optical fibre systems.  

1.3.1 Brief history of GaAsBi and related alloys   

Band gap engineering based on the introduction of Bi to III-V 

semiconductors started as early as 1971. The initial works targeted mid and long 

wavelength infrared photo-detectors. Joukoff et al proposed that the semi-metallic 

character of InBi could reduce the band gap of InSb when Bi sits on antimony sites 

[28]. Various methods have been used to grow InSbBi and related alloys (InAsBi, 

InAsSbBi) including Czochralski [28], metal-organic vapour phase epitaxy 

(MOVPE) [29] and molecular beam epitaxy (MBE) [30]. It was reported that the 

band gaps of InAsBi and InAsSbBi reduce at the rates of 55 meV/%Bi and 46 

meV/%Bi, respectively [31]. However, there has been a lack of progress in this 

material system due to growth difficulties and the limited solubility of Bi [29, 30].   

The incorporation of Bi into GaAs was first reported by Oe et al in 1998 [32]. 

The work was motivated by realisation of semiconductor lasers with improved 

temperature characteristics (compared to InP based devices) whose emission 

wavelengths remained nearly constant with ambient temperature variations. Oe et al 

proposed that the GaAs1-xBix alloy, consisting of a semiconductor (GaAs) and a 

semi-metal (GaBi) will have a temperature insensitive band gap [32]. GaAs1-xBix is 

also a metastable alloy, similar to the dilute nitrides. In this case, it is due to the large 

difference in covalent radii between As and Bi which are 0.118 nm and 0.145 nm, 

respectively. Oe’s growth was carried out using MOVPE and a Bi content of 0.024 

was achieved [32]. The temperature dependent PL showed that the PL peak energy 

of GaAs0.976Bi0.024 changes by only 0.1 meV/K compared to 0.56 meV/K for GaAs 

[32, 33]. The only drawback they reported was the presence of small clumps of 

whiskers on the sample surface whose density increased with growth time.  
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In 2001, researchers at the National Renewable Energy Laboratory (NREL), 

USA, reported a piece of theoretical work exploring the idea of isoelectronic co-

doping in order to improve the properties of dilute nitrides [34]. The isoelectronic co-

doping of GaAs with N and Bi (GaNAsBi) is expected to yield several advantages. 

Firstly, it allows lattice matching to GaAs substrates as the compressive strain 

induced by the large Bi atoms can be compensated by the tensile strain introduced by 

the small N atoms. Secondly, this material system offers a wider scope of band 

structure design as N mainly influences the conduction band whilst Bi influences the 

valence band. In addition, the composition of N and Bi could be adjusted to achieve a 

particular band gap with minimal N. 

 Finally, the electron mobility of the GaNAsBi alloy is expected to be higher 

compared to the dilute nitrides [34]. In dilute nitrides, the difference in 

electronegativity, size and pseudopotential between N and As results in the formation 

of trap states below the conduction band minima which degrade the electron 

mobility. For example, the electron mobility of GaNxAs1-x reduces by 5 times 

compared to GaAs for x up to 0.005 [35]. However, isoelectronic co-doping with N 

and Bi (in GaNAsBi) is expected to enhance electron mobility as the oppositely 

charged long range Coulomb scatterers (N and Bi) combine to form single short 

range dipole scatterers [34]. This strategy was motivated by the success of charged 

co-doping between Be and O in GaN in which the electron mobility increases by one 

to two orders of magnitude [36].    

In the meantime, The University of British Columbia (UBC) had been 

actively involved in the growth of dilute nitrides using a Bi surfactant. They found 

that the use of a Bi surfactant reduced the surface roughness of GaNAs by an order 

of magnitude and enhanced the N incorporation [37]. Furthermore, the PL intensity 

increases by more than two times compared to the surfactant-free samples [37]. In 

2003, they started the growth of GaAs1-xBix alloys. During early developments, Bi 

concentration was often determined by Rutherford Backscattering Spectroscopy 

(RBS). This is because the lattice constant of cubic GaBi is unknown experimentally 

even though it has been predicted to be 6.324 Ǻ [38]. Later, Tixier et al reported the 

lattice parameter of free standing GaBi as 6.33 ± 0.06 Ǻ [11], consistent with the 
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predicted value. This was done by linear extrapolation of their experimental values of 

the GaAs1-xBix lattice constant (measured by high resolution X-ray diffraction (HR-

XRD)) versus Bi concentration measured by RBS.  

Yoshimoto et al were the first to report a systematic study investigating the 

growth conditions required to incorporate Bi into GaAs [39]. The first conclusion 

that was made is that the growth temperature must be reduced to less than 400 
o
C. 

Due to the metastable nature of the growth process, decreasing the growth 

temperature increases the miscibility of Bi into GaAs. Secondly, the As flux has to 

be reduced until the As:Ga flux ratio is close to the stoichiometric value. For As flux 

values which are much larger than the Ga flux, Bi atoms cannot be incorporated as 

they are out-competed by As atoms for lattice sites. However, if the As flux was 

reduced lower than the stoichiometric value, the surface of the grown epilayer started 

to become rough.  

Finally, Yoshimoto et al also found that increasing the Bi flux initially 

increased Bi incorporation, followed by saturation at high flux [39]. The saturation 

region was attributed to low miscibility of Bi into GaAs. Ref. [40] also reported 

similar observations and proposed that growth inside the saturation region should be 

avoided as it may result in the formation of Bi droplets. The results reported by 

Yoshimoto et al suggest that the GaAs1-xBix alloy has a narrow growth window and 

efforts to increase Bi concentration without significantly degrading the wafer quality 

will be challenging [39]. Besides, MBE may be a better choice for GaAs1-xBix growth 

compared to MOVPE due to the low growth temperature requirement. The growth 

temperature which is less than 400 
o
C is not ideal for MOVPE as it will lead to a 

high contamination of carbon due to insufficient decomposition of the precursors 

[39].  

To date, the highest Bi concentration in GaAs reported in the literature is 0.22 

[41]. This was achieved by lowering the growth temperature as low as 200 
o
C [41]. 

Ref. [41] reports HR-XRD data used to verify the Bi concentration but did not show 

any optical quality data. The HR-XRD spectra show a broad and diffuse GaAs1-xBix 

peak with no fringes which indicates rough and incoherent interfaces. Even though 
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no optical data was reported, it is expected that the optical quality will be severely 

degraded due to a high defect density. For GaAs grown at 200 
o
C, the density of 

arsenic anti-sites, AsGa is typically ~ 10
20

 cm
-3 

[42]. If other types of defects are also 

taken into consideration (e.g. Ga related defects, Bi related defects, dislocations), the 

quality of GaAs1-xBix layers grown at such low temperatures is expected to be poor 

and may not be suitable for practical devices. The longest room temperature PL 

wavelength reported in the literature is 1.44 µm with x = 0.11[43]. This indicates that 

a Bi concentration of ~ 0.11 may be the limit for reasonable optical quality and 

practical devices. If a further band gap reduction is required, N alloying may be 

considered to form GaNAsBi.  

Recently, electroluminescence (EL) from GaAs1-xBix light emitting diodes 

has been reported [44-46]. Ref. [44] reported room temperature EL with an injection 

current of 50 Acm
-2

 for a sample with x = 0.018. However, Ref. [46] reported a much 

lower injection current of 8 Acm
-2 

for x = 0.06. This significantly lower injection 

current was probably due to a higher growth temperature being used for the GaAs1-

xBix layer (400 
o
C compared to 300 

o
C for the former) and also the positive effect of 

introducing a growth interrupt. For every 50 nm of bismide layer, the growth was 

interrupted and a thin GaAs layer was grown without the presence of a Bi flux in 

order to reduce the accumulation of excess Bi [46]. Furthermore, lasing oscillation 

from 390 nm thick GaAs0.975Bi0.025 by photo-pumping was also reported [47]. In this 

work, a room temperature lasing wavelength of 983 nm was observed with threshold 

pumping density of 2.5 mJ/cm
2
. The high pumping density was attributed to the lack 

of carrier confinement in the active layer.  

The absorption properties of GaAs1-xBix p-i-n diodes also have been reported 

with a view to developing solar cells and photodetectors [48]. In these applications, a 

thick (compared to quantum well thickness) absorber layer and low unintentional 

doping concentration are required to ensure efficient absorption of light (and hence 

high efficiency and responsivity) and full depletion at zero or low voltage [49]. 

According to Hunter et al, the responsivity of 0.35 µm thick GaAs0.94Bi0.06 at 1200 

nm is 0.09 A/W, which corresponds to an absorption coefficient of 4 × 10
3
 cm

-1
[48]. 

This absorption coefficient is comparable to Ga0.92In0.08N0.03As0.97 (5 × 10
3
 cm

-1
)
 
but 
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is lower than In0.53Ga0.47As (~2 × 10
4
 cm

-1
), measured at a similar wavelength [49, 

50]. A lower absorption coefficient was obtained for GaAs0.94Bi0.06 (compared to 

In0.53Ga0.47As) because it was measured close to the band gap (E – Eg = 33 meV) 

where absorption begins to roll-off. If the absorption coefficient of In0.53Ga0.47As is 

also measured at E – Eg = 33 meV, a value which is comparable  to GaAs0.94Bi0.06 (~5 

× 10
3
 cm

-1
) will be obtained [50]. The responsivity should be improved by increasing 

the layer thickness. However, this is only possible with strain compensation by 

alloying N into GaAs1-xBix. The unintentional doping concentration in GaAs1-xBix 

was reported to be sufficiently low and vary between ~1 × 10
14 

to ~1 × 10
16

 cm
-3

[51, 

52]. This should enable photodetectors and solar cells to operate at zero or low 

reverse voltage.  

State-of-the-art multi-junction solar cells consist of InGaP/GaAs/Ge [53]. It 

was proposed that the introduction of an additional junction with a band gap of 1 eV 

on top of the Ge junction will increase the efficiency of the solar cells to > 40 % [53]. 

GaNAsBi lattice matched to GaAs (or Ge) with a band gap of 1 eV can be achieved 

with Bi and N concentrations of 0.022 and 0.013, respectively [54]. The 

concentrations of both Bi and N are relatively low and can be easily achieved in 

practice. Therefore, the GaNAsBi alloy has the potential to be applied in quadruple-

junction solar cells.  

1.3.2 Benefits of bismuth for optoelectronic devices 

Bismuth containing semiconductors have attracted increasing interest in 

recent years due to the large band gap reduction possible with small concentrations 

of Bi, thus promising for long wavelength devices [11, 55, 56]. Introducing Bi into 

GaAs reduces the semiconductor band gap by 88 meV/%Bi, which is much larger 

than the 16 and 21 meV/% of In and Sb, respectively, and only lower than the 125 

meV/%N alloying [11]. It was suggested that incorporation of Bi increases the 

valence band maximum due to an anti-crossing interaction between the GaAs 

valence band and the Bi resonant level (further explanation in Section 1.3.3) [57, 58]. 

This is analogous to the conduction band anti-crossing interaction in dilute nitrides 

between the conduction band edge and the nitrogen resonant states.  
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In order to reduce the cost of optical-fibre networks, laser diodes with 

temperature insensitive wavelength emission are desirable. Despite the importance of 

the InGaAsP material system for laser diodes, its emission wavelength and threshold 

current density are very sensitive to temperature. This is due to the small conduction 

band offset between the quantum wells and the barriers. As the device temperature 

increases during operation, carriers become more mobile and tend to escape from the 

wells. Hence, the device efficiency and output power will be reduced. To compensate 

for this, a higher injection current is needed, leading to a further increase in 

temperature. In order to avoid thermal run-away and maintain a stable operation, 

InGaAsP lasers need to be equipped with external thermoelectric coolers which 

increase cost and power consumption. It was reported that the temperature 

coefficient of the GaAs1-xBix band gap (obtained by temperature dependent PL) is as 

small as 0.1 meV/K compared to ~ 0.4 meV/K for InGaAsP [59-61]. Such 

temperature insensitivity is useful in the active regions of laser diodes and could 

potentially eliminate the need for cooling packages for lasers.     

Furthermore, Bi containing alloys offer the possibility to suppress Auger 

recombination loss in near- to mid-infrared laser diodes [54]. Auger recombination is 

a non-radiative process in which an electron and a hole recombine in a band-to-band 

transition but the energy released is used to excite another carrier into the conduction 

or valence band. As a result, three carriers become unavailable for lasing and hence, 

increase the threshold current density. The threshold current density is then given by 

Jth ≈ Cnth
3
, where C is the Auger recombination coefficient and nth is the threshold 

carrier density [62]. There are four types of Auger processes called CHCC, CHSH, 

CHLH and CHHH which correspond to the excitation of a third carrier within the 

conduction band (CB), spin-split off (S-O) to heavy hole band (HH), light hole (LH) 

to HH band and within HH, respectively. However, the most dominant processes are 

CHSH and CHCC as shown in Figure 1.3 (a) and (b). It was reported that the CHLH 

Auger current is ~ 100 times weaker compared to CHSH and CHCC while CHHH 

transition is very weak due to heavy mass and often neglected [63]. In addition, 

phonon-assisted Auger recombination may also occur for each type of processes. 

Figure 1.3 (c) shows an example of a phonon-assisted CHSH process. In this process, 
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the excited carrier passes through to an intermediate state I before reaching the final 

state by the emission or absorption of a phonon.  

 

Figure 1.3 Schematic diagram showing (a) CHCC (b) CHSH and (c) phonon-assisted CHSH 

Auger recombination processes.  

At room temperature, Auger loss accounts for 50 % and 80 % of the threshold 

current density for 1.3 and 1.55 µm InGaAsP lasers, respectively [6]. However, for 

mid-infrared lasers operating at 2 and 3 µm wavelengths, i.e GaInAsSb/GaSb, the 

threshold current density is significantly lower. This effect is illustrated in Figure 1.4. 

It was proposed that this is due to the spin-orbit splitting energy (∆SO) being larger 

than the band gap, which inhibits Auger recombination and inter-valence band 

absorption transitions involving the S-O band since energy and momentum can no 

longer be conserved [54, 64]. This is expected to improve laser performance and has 

been reported in InGaAsSbP/InAs mid-infrared LEDs [65]. However, the CHCC and 

CHLH processes may still occur. 
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Figure 1.4 Normalised threshold current versus lasing energy for near and mid infrared lasers 

[64]. 

Being the largest element in group V, Bi is attractive because ∆SO increases 

super linearly with the atomic number of the group V element [64]. It was 

theoretically predicted that GaBi has an extremely large ∆SO which is ~ 2.2 eV 

compared to 0.8 eV and 0.35 eV for GaSb and GaAs, respectively [58]. It was 

calculated that ∆SO will be larger than the band gap of GaAs1-xBix when x ~ 0.10 to 

0.11 [54, 66]. By incorporating N into GaAs1-xBix, strain compensation can be 

achieved and a further band gap reduction will be obtained. Figure 1.5 shows the 

predicted variation of band gap and ∆SO for GaAsBiN with varying Bi and N 

concentrations. The condition for Eg < ∆SO to supress Auger recombination loss may 

be achieved in GaAsBiN laser diodes operating in the near- to mid-infrared (>1.55 

µm) regions. A good understanding of the growth and properties of the ternary 

GaAsBi alloy is essential in order to realize high performance GaAsBiN devices.  



Chapter 1 Introduction 

 

16 

 

 

Figure 1.5 The variation of band gap and ∆SO for the GaAsBiN alloy as predicted by Ref. 

[54]. The grey region represents the area for which ∆SO > Eg. The inset shows the variation of 

strain with varying Bi and N concentrations.  

1.3.3 The Valence Band Anti-Crossing model 

The band anti-crossing model was first proposed by Shan et al to explain the 

large band gap reduction in the dilute nitride system [12]. Dilute nitrides contain two 

anion species that are highly mismatched in atomic radius, which are N and As. 

Alberi et al proposed that the same principles can be adopted to explain the large 

band gap reduction in GaAs1-xBix, as the atomic radii of As and Bi are highly 

mismatched too [57]. This extended model is called the valence band anti-crossing 

(VBAC) model.  

The incorporation of Bi into GaAs introduces Bi defect states which interact 

with the extended states of the host (GaAs). Since Bi has a lower electronegativity 

than As, the defect level is located close to the valence band edge of GaAs. The 

interaction between these states results in a splitting of the valence band into two 

sub-bands, called E+ and E- bands. The former is located at a higher energy than the 

Bi level while the latter is located at a lower energy. Based on the VBAC model, the 

energies of the E+ and E-  levels are given by  
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where Ev(GaAs) is the energy of the valence band maximum (VBM) of GaAs, EBi is 

the energy of the Bi level, x is the Bi composition and CBi is the coupling between 

the Bi level and the GaAs VBM. The values of E+, E- and EBi are referenced to the 

VBM of GaAs, which is in turn referenced to zero. The value of CBi is 1.6 eV while 

the value of EBi is 0.4 eV below the VBM of GaAs [57]. Assuming a parabolic band 

for GaAs, 

																												�
	������ = −	ħ� �2!∗ 	,																																																										�1.2� 
 

where ħ is the Planck constant, k is the momentum and m
*
 is the hole’s effective 

mass. Figure 1.6 shows the calculated dispersion relations of the valence band of 

GaAs0.98Bi0.02. The anti-crossing interaction between the VBM of GaAs and Bi level 

causes the valence band maximum of GaAs1-xBix to increase, consequently reducing 

the band gap.  

 

Figure 1.6 The calculated valence band structure of GaAs0.98Bi0.02 using the VBAC model. 

The solid black and dashed lines refer to the Bi level and the valence band edge of GaAs, 

respectively. 

If the conduction band is assumed to be unaffected, since the Bi level is located at 

much lower energy than the conduction band, the band gap of GaAs1-xBix is given by,  
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																	�#�����$%� = �&������ −	�'�����$%�		,																							�1.3� 
 

which can be simplified to  

 																				�#�����$%� = �#������ −	∆�*�+, 		,																																		�1.4�				 
 

where ∆EVBAC  refers to the band gap reduction due to Bi incorporation, which is, 

											∆�*�+, =	∆�*�-.��2 /01 + 4� 1 ���∆�*�-.��2
� − 13														�1.5� 

 

The full derivation for Equation 1.4 and 1.5 are shown in Appendix A. 

1.4 Thesis overview 

The motivation and benefits of the GaAs1-xBix alloy have been outlined 

earlier in this chapter. Since GaAs1-xBix is a relatively new alloy, this thesis will be 

dedicated to the growth and characterization of this material system. Three main 

areas have been identified for investigation, which are:  

• The effects of Bi incorporation on the optical properties of GaAs1-xBix 

• Annealing study and the origin of optical quality improvement 

• The effects of growth parameters on GaAs1-xBix grown by MBE 

Chapter 2 explains the growth and characterisation techniques used in this 

work. The basics of MBE growth and its in-situ monitoring system will be discussed. 

The principles of high resolution X-ray diffraction (HR-XRD) and PL will be 

explained.  

Chapter 3 focuses on the PL investigation of GaAs1-xBix with a wide range of 

Bi compositions. Particular attention is given to band gap temperature dependence, 

localization effects, PL full-width-at-half-maximum (FWHM), dominant 

recombination mechanism(s) at different temperatures and excitation powers and 

mechanisms of enhanced room temperature PL.   
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Chapter 4 examines the influence of rapid thermal annealing on the optical 

and structural properties of GaAs1-xBix alloys. Samples were annealed at various 

annealing temperatures and annealing times. The origin of the PL improvement 

induced by thermal annealing also will be discussed.  

Results in Chapter 3 and 4 showed that growth optimizations are needed to 

improve wafer quality. Thus, a study on the effects of growth parameters on the 

optical and structural quality of GaAs1-xBix was carried out and reported in Chapter 5. 

Two growth parameters were investigated which are growth rate and As4/Bi beam 

equivalent pressure ratio.  

Chapter 6 summarizes all the results and provides suggestions for future 

work.  
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Chapter 2 

MBE Growth and Characterisation 

Techniques  

Epitaxial growth can be done by several techniques such as liquid phase 

epitaxy (LPE), molecular beam epitaxy (MBE) and metal-organic vapour phase 

epitaxy (MOVPE). In the early development of semiconductor devices, LPE was the 

preferred choice. More recently, MBE has become commonly used in research 

environments while MOVPE is widely used in industry. The growth of GaAs1-xBix 

has been demonstrated by both MBE and MOVPE [1, 2]. This chapter introduces the 

basics of MBE growth and the characterisation tools used to analyse the GaAs1-xBix 

alloy.   

2.1 Molecular beam epitaxy 

2.1.1 Molecular beam epitaxy system 

MBE is an epitaxial growth process involving the reaction of atomic or 

molecular beams with a crystalline surface under ultra-high vacuum (UHV) 

environment [3]. This technique was developed by A. Y. Cho at Bell Laboratories in 

the late 1960s and growth of GaAs by MBE was demonstrated in 1971 [4, 5]. The 

technique was initially used to study the semiconductor surfaces and thin films but 

later employed for the growth of practical devices such as optoelectronic devices. 

MBE is the preferred technique for research due to its ability to produce atomically 
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abrupt interfaces, achieve precise control of growth thickness (down to monolayer 

accuracy) and produce precise compositions and high quality semiconductor layers. 

 

Figure 2.1 Schematic diagram of the growth chamber of the MBE-STM machine. 

In this work, an Omicron MBE – scanning tunnelling microscopy (STM) 

system with gate-valve isolated MBE and the STM chambers was used. The MBE 

side has two main chambers which are the Fast Entry Lock (FEL) and the growth 

chamber. The chambers are isolated from each other by a gate-valve. A schematic 

diagram of the growth chamber of the MBE-STM system is shown in Figure 2.1. 

Wafers enter and leave the system through the FEL (not shown). The FEL is pumped 

down from atmospheric pressure to 10
-9 

mBar in approximately 30 minutes by a 

turbo pump. The substrate is then transferred to the growth chamber.  

The growth chamber has an ion pump which reduces the pressure further to 

10
-10

 mBar. Maintaining a good UHV environment in the growth chamber is 

important as it will affect the purity of the grown sample. At a background pressure 

of ~10
-10

 mBar the mean free path of particles is of the order of a few kilometres. 

When pressure increases up to 10
-5

 mBar during growth (mainly due to arsenic flux) 
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the mean free path reduces, but it remains much longer than the distance between the 

source and the substrate (~ 30 cm). Therefore, the travelling source fluxes are 

unlikely to encounter collisions with other particles before reaching the sample. 

A cryoshroud (a vessel inside the system which is filled with liquid nitrogen) 

located on top of the growth chamber also acts as a pump. Most of the impurity 

gaseous will condense on the cold cryoshroud surface, reducing the background 

pressure. All source fluxes which did not hit the sample during growth (the source 

beam is larger than the sample) will also condense on the cryoshroud surface, 

preventing them from bouncing around and eventually condensing elsewhere.  

The sources are at an angle pointing towards the substrates to allow source 

fluxes to reach the sample. An individual mechanical shutter or valve is used to 

switch fluxes in and out as needed. This mechanism is sufficient to obtain an epilayer 

with atomically abrupt interfaces since the time it takes to grow a monolayer is much 

longer than the shuttering time.  

 An ion gauge is used to measure and calibrate the group III and V source 

fluxes. The ion gauge measures the beam equivalent pressure (BEP) which is a 

relative measure of the beam flux. Measurement is generally carried out before every 

deposition run. For dopant sources, the flux is too small to be measured by the ion 

gauge, therefore, an ex-situ calibration is required such as Secondary Ion Mass 

Spectroscopy (SIMS).  

2.1.2 Group III and V sources 

Knudsen effusion cells are used to create the molecular beams. The Omicron 

MBE-STM system has six cells; gallium, indium, aluminium (installed in June 

2012), bismuth, arsenic (cracker installed in August 2011) and a dual-dopant source 

(silicon and beryllium). However, this work uses only gallium, bismuth and arsenic 

sources. Highly purity 6N5 materials (99.99995 % pure) are used for sources and are 

placed inside crucibles made from pyrolytic boron nitride (PBN).  
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The gallium source is a simple Knudsen cell. The cell has a resistive heater 

coil which provides the thermal energy to melt and evaporate the gallium. The cell is 

also integrated with a shutter and a water-cooling shroud to maintain a stable cell 

temperature. For the bismuth source, a dual-filament cell is used. This cell has two 

heating filaments which are located at the base and the tip of the crucible. The 

temperature of the top filament is ~ 150 
o
C hotter than the bottom filament. For a 

single filament cell, the lip of the crucible may be colder than the base. Therefore, 

material re-condensation at the lip of the crucible may occur, leading to the 

formation of small metal beads. The metal beads can drop back into the source melt 

and then be sprayed onto the substrate during growth, creating oval defects [6]. The 

presence of the top heating filament in a dual-filament cell ensures the lip of the 

crucible remains hot and prevents bismuth re-condensation at the lip, reducing the 

possibility of oval defects. 

 The arsenic source consists of two zones which are a sublimator and a 

cracker. The temperature of the sublimator is typically set between 350 – 450 
o
C in 

order to sublime the arsenic to As4. The cracker zone will then thermally ‘crack’ the 

As4 to As2 at temperature between 800 to 1000 
o
C. The two zones are separated by a 

needle valve. Since the sublimator zone is quite big, its large thermal mass does not 

allow rapid variation of the arsenic flux by varying the cell temperature. Therefore, 

the needle valve opening is adjusted to control the arsenic flux while the temperature 

of the sublimator is kept constant. If the cracker temperature is set lower than 800 
o
C, 

the arsenic cracking efficiency will drop, causing the arsenic flux to be dominated by 

As4. It has been shown that growth utilizing As2 will have better quality and higher 

PL intensity compared to growth utilising As4 [7]. As2 is also more reactive and 

requires lower growth temperature compared to As4 [7].  
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2.1.3 Substrate cleaning and buffer growth 

The samples were grown on pieces cleaved from semi-insulating GaAs (100) 

substrates. The substrates were cleaved in two different sizes, 11.0 × 3.5 mm
2 

or 11.4 

× 11.8 mm
2 

depending on the substrate holder. The former was used for most of the 

samples grown before June 2011. A new substrate holder was then designed by F. 

Bastiman in order to accommodate a bigger substrate size. The cleaved substrate was 

degreased and cleaned thoroughly to remove dust which was produced during the 

cleaving process. The substrate piece was cleaned using cotton buds dipped in n-

butyl acetate. The substrate surface was wiped gently from the centre to the edges 

and then dried by blowing with nitrogen gas. Finally, the substrate was placed under 

a microscope to check the cleanliness. The cleaning procedures may be repeated if 

necessary.  

After the substrate has been loaded into the growth chamber it was outgassed 

at ~ 400 
o
C for 30 minutes to desorb water vapour and other volatile contaminants. 

The surface of the epi-ready substrate is coated with a layer of protective oxide 

which must be removed before growth. Therefore, the substrate was heated to 580 – 

620 
o
C under arsenic flux in order to remove the oxide. The reflection high-energy 

electron diffraction (RHEED) pattern was used to monitor the oxide removal 

process. After oxide removal, the substrate surface is relatively smooth with 

deformation heights of 5 – 20 nm [8].  

Then, a GaAs buffer of 0.3 - 0.5 µm thickness was grown at 580 – 620 
o
C to 

bury any defects and provide an atomically flat surface for epilayer growth. The 

GaAs was grown with an As2 BEP of ~ 15 times larger than the gallium BEP. The 

growth rate of GaAs (and other III-V semiconductors) is controlled by the group III 

element(s) due to their unity sticking coefficient. Higher flux (thus higher growth 

rate) is achieved by increasing the gallium cell temperature. For the MBE-STM 

system, changing the gallium cell temperature from 900 to 1030 
o
C typically leads to 

an increase of GaAs growth rate from 0.1 to 1 µm/h.  
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A smoother surface will be obtained if the oxide is removed via the gallium-

assisted oxide desorption technique to allow a thinner buffer layer (~ 80 nm) [9]. 

However, it requires prior native oxide thinning by HCl and a precise amount of 

gallium during oxide removal. This technique was used in many of the early samples. 

Later, the conventional method became the preferred choice due to its simplicity. For 

more details on the gallium-assisted oxide removal technique the readers are referred 

to Ref. [9].    

 Rotating the substrate during growth is important in order to ensure the 

uniformity of thickness and composition across the grown layer. However, the MBE-

STM system used in this work does not have a substrate rotation mechanism. Since 

this work uses relatively small substrates, composition uniformity across the sample 

(checked by PL) was achieved without rotation.  

 

Figure 2.2 Room temperature PL comparisons for samples grown by Omicron MBE and 

standard V90 MBE.  

Since the Omicron MBE is not a standard machine and requires additional steps 

prior to growth a control sample was grown and the optical quality is compared to a 

sample grown by a standard V90 MBE. Figure 2.2 shows the room temperature PL 

spectra of the control samples (GaAs/Al0.4Ga0.6As 10-period quantum wells) grown 

by both machines. The thickness of the GaAs wells and Al0.4Ga0.6As barriers are ~ 6 
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and 10 nm, respectively. However, the Omicron’s control sample uses an S.I 

substrate while the V90’s control sample uses an n+ substrate. The PL intensity of 

the sample grown by the Omicron is ~ 9 times lower compared to the sample grown 

by the V90. This is due to higher background pressure inside the growth chamber as 

a result of substrate outgassing. The substrate outgassing was also carried out for a 

short period of time which is 30 minutes. However, for the V90 MBE, substrate 

outgassing was carried out inside a dedicated area called the ‘preparation chamber’ 

which preserves a good background pressure inside the growth chamber. This is 

typically carried out simultaneously while another sample is being grown inside the 

growth chamber and for a longer period of time (2 hours). Besides, the cleaving 

process and extra cleaning steps may also contribute to a higher density of defects in 

the Omicron control sample. 

2.1.4 Growth of GaAsBi 

After the GaAs buffer layer was completed and annealed for 20 minutes, 

growth was interrupted to prepare for GaAsBi growth. The substrate temperature was 

reduced from ~ 600 
o
C to the growth temperature of the bismide layer which is ≤ 

400 
o
C. The temperature of the gallium cell was also changed to obtain the required 

growth rate and the arsenic valve opening was varied to achieve the intended Ga:As 

BEP ratio. In order to grow GaAsBi using As4 the temperature of the arsenic cracker 

was reduced from 1000 to 650 
o
C. The use of As4 allows GaAsBi to be grown at 

higher growth temperature and higher arsenic overpressure compared to As2 [10]. 

The incorporation of As2 is a simple first-order reaction while the incorporation of 

As4 is a second-order reaction which requires the interaction with another tetramer 

[7]. The Bi flux consists of monomers and dimers [10-12]. The Bi monomers are 

highly mobile while the dimers can be assumed to incorporate in a similar manner to 

the As2 [10]. Therefore, an unstable Bi dimer can easily be dislodged by As2 while 

competing for gallium sites. However, for As4 to occupy the lattice sites, 

simultaneous dislodging of two adjacent Bi dimers is required [10]. This condition 

favours the incorporation of Bi in GaAs with the use of As4. 
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Prior to GaAsBi growth, the sample’s surface was pre-deposited with Bi for 

10 seconds and then left for 30 seconds. During this process, the RHEED pattern 

from the [�	�	�]	azimuth changed from c4 to 3× which is from an As terminated 

surface to Bi terminated surface (further explanation about RHEED in Section 2.2). 

This step was carried out to supress the segregation of Bi to the surface during 

GaAsBi growth. This in turn will reduce the formation of a Bi concentration gradient 

at the GaAs/GaAsBi interface. Next, the gallium and Bi shutters were opened 

simultaneously to start the GaAsBi growth (the arsenic valve was open all the time). 

For the growth of a multiple quantum well structure, Bi pre-deposition was carried 

out once before the growth of the first quantum well. The RHEED pattern stays 3× 

(from [�	�	�]	azimuth) throughout the growth of GaAs barriers showing that the 

surface stays Bi terminated.  

After the GaAsBi growth finished, a GaAs capping layer was grown using 

As4 at similar growth temperature and growth rate as the GaAsBi layer. The same 

temperature was used to grow the GaAsBi and the capping layer to avoid 

unintentional annealing which may lead to the diffusion of Bi atoms to the capping 

layer. The details of all samples studied in this thesis are summarised in Appendix B. 

2.2 Reflection high-energy electron diffraction 

Reflection high-energy electron diffraction (RHEED) is a useful in-situ 

monitoring tool in MBE which provides information on surface structure, surface 

quality, growth rate and temperature. The system consists of an electron gun and a 

phosphor screen. An electron beam with energy of 15 – 20 keV strikes the sample 

surface at an angle of 1 - 3
o
,
 
before being diffracted by the crystal surface and 

forming visible diffraction patterns on the phosphor screen. Due to the glancing 

angle the electrons only penetrate the first few monolayers, so the diffraction patterns 

are highly sensitive to the surface. RHEED must be performed in a UHV 

environment to minimise electron scattering.   
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The RHEED pattern is a series of streaks or spots which correspond to the 

surface reconstruction of the sample. Reconstruction happens when the surface atoms 

move and/or re-bond with other atoms in order to minimise the surface energy [13]. 

A reconstruction pattern is classified by the number of secondary streaks that appear 

in addition to the primary streak. The pattern which shows the primary streak only is 

called 1× (one-by) while the pattern with n additional streaks in between the primary 

streaks is called (n+1)×. The RHEED pattern is normally denoted as (a × b), where a 

and b is the surface reconstruction from the [1	1	0] and [1	1	0] azimuths, 

respectively. For example, high quality GaAs is grown with a (2 × 4) surface 

reconstruction.  

The RHEED pattern can be streaky, spotty, hazy or rings. If the RHEED 

pattern appears spotty (instead of streaky), it indicates that the sample surface is 

rough. An amorphous surface such as native oxide layer will show a haze while a 

polycrystalline surface will show rings. Even though the RHEED pattern only 

provides qualitative information, it offers a quick and useful check on the surface 

condition.  

2.2.1 Temperature Calibration 

 
(a) 

 
(b) 

 
(c) 

Figure 2.3 (a) Static phase diagram of GaAs versus arsenic BEP and substrate temperature, 

taken from Ref. [13], (b) and (c) show the RHEED patterns taken from the [1	1	0] azimuth, 

showing 4× and c4 patterns, respectively.   
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RHEED  

transition 

Temperature  

(
o
C) 

As BEP  

(µTorr) 

Comment 

Hazy to c(4 × 4) ~ 290 0 arsenic-cap desorption 

c(4 × 4) to (2 × 4) ~ 400 0 Low temperature ref. 

c(4 × 4) to (2 × 4) ~ 505 5 Intermediate temperature ref. 

Hazy to streaks 580 5 Oxide desorption and clean-up 

 (2 × 4) to (2 × 1) ~ 605 5 High temperature ref. 

Table 2.1 Summary of temperature reference points for temperature calibrations. 

In this work, the RHEED patterns of GaAs surface reconstructions were used 

to calibrate the growth temperatures. The GaAs surface reconstruction is dependent 

on the substrate temperature and the arsenic overpressure. Therefore, by fixing the 

arsenic BEP and then varying the substrate heater current, temperature of the 

substrate can be estimated based on surface reconstruction changes. Figure 2.3 (a) 

shows the static surface reconstruction map of GaAs against arsenic BEP and 

substrate temperature taken from Ref. [13]. For an arsenic BEP of 5 µTorr, substrate 

temperatures of ~ 505 and ~ 605 
o
C can be estimated based on surface reconstruction 

changes from c(4 × 4) to (2 × 4) and (2 × 4) to (2 × 1), respectively. Three other 

temperature calibration points are 290, 400 [14] and 580 
o
C. Table 2.1 summarises 

the temperature calibration points used in this work. Other temperatures were 

extrapolated based on these temperature calibration points.    
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2.2.2 Growth rate calibration 

 

(a) 

 
 

(b) 

Figure 2.4 (a) Illustration of the RHEED intensity oscillation during a monolayer growth, 

taken from Ref. [13], (b) is an example of RHEED oscillations observed during GaAs 

growth in this work.  

The RHEED intensity oscillation provides a quick and accurate measurement 

of the growth rate. The intensity varies as the surface roughness changes during 

growth and a complete oscillation corresponds to the growth of a monolayer [13]. 

When growth initially starts the surface is smooth and the RHEED intensity is high. 

As islands start to form during growth the RHEED intensity starts to decrease due to 

the increase of surface roughness. The oscillation intensity is lowest when half of a 

monolayer is grown. The RHEED intensity starts to recover again when the islands 

coalesce into a flat layer. This process is illustrated in Figure 2.4. 
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2.3 High resolution X-ray diffraction 

 

Figure 2.5 Diagram illustrating the diffraction of an X-ray beam on crystal planes.  

High resolution X-ray diffraction (HR-XRD) is a powerful non-destructive 

method to characterise the structural properties of epitaxially grown semiconductor 

materials. X-rays are suitable for this purpose as their wavelength (1.54 Ǻ for X-rays 

radiated from copper target) is comparable to the inter-atomic distance in a crystal. 

X-rays can penetrate deep into the sample and provide information on crystalline 

quality, layer thickness, alloy composition, mismatch and interface roughness. The 

most common HR-XRD scan on semiconductor samples is the rocking curve ɷ-2θ 

scan diffracted off the (004) plane.  

A beam of X-rays incident on a crystal lattice will be diffracted and interfere 

with each other to form constructive and destructive interference. This phenomenon 

is shown in Figure 2.5 and can be described by Bragg’s law, 

  n λ = 2dsin θB  ,                                                        (2.1) 

where n is an integer, λ is the wavelength of the X-ray, d is the distance between 

adjacent parallel atomic planes and θB is Bragg’s angle. Bragg’s law states that in 

order for constructive interference to take place the difference in distance travelled 

by the incident waves must be an integer multiple of the wavelength of the wave so 
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that the diffracted waves are in phase. Diffractions occurring away from the Bragg’s 

angle will have a much reduced intensity, resulting in the formation of a diffraction 

peak with a finite linewidth. The higher the number of diffraction planes the higher 

the diffraction intensity and the narrower the peak. The peak linewidth will 

eventually approach the bulk crystal limit. The presence of structural defects such as 

dislocations will broaden the linewidth. 

For a strained epilayer grown on a substrate, the rocking curve will show two 

peaks which correspond to the lattice parameter of the substrate and the epilayer. 

This is because the lattice cell of the strained epilayer will deform in the vertical 

direction, resulting in changes to the lattice parameter with respect to the substrate. 

Different lattice parameters will diffract X-rays at different angles leading to two 

separate peaks. A large lattice parameter will diffract at a smaller angle leading to 

negative peak splitting (with respect to the substrate) and vice versa for a smaller 

lattice parameter. Therefore, a HR-XRD scan in combination with Vegard’s law (for 

the relationship between lattice parameter and alloy composition) is useful to 

estimate the alloy composition of an epilayer grown on a substrate. The estimation of 

alloy composition for a ternary compound is straightforward, but becomes 

increasingly complicated for quarternary and quinary alloys.  

In this work, a Bede D1 HR-XRD system was used and is illustrated in 

Figure 2.6. The X-ray beam was generated in a sealed tube where electrons were 

accelerated by 50 kV of potential difference before hitting a copper target. The 

collision results in the radiation of X-ray spectrum consisting of several lines called 

Kα1, Kα2 and Kβ, which each correspond to different electronic transitions. The X-ray 

beam is non-monochromatic and has large angular divergence (typically 0.1
o
 after 

passing through a mechanical collimator) which limits the resolution and makes 

diffraction analysis more complicated [15]. Hence, beam conditioning is required to 

obtain a monochromatic and highly collimated X-ray beam.  
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Figure 2.6 Schematic of an HR-XRD experimental setup. 

X-ray beam conditioning was achieved by using silicon Channel Crystal Cut 

(CCC) where the beam undergoes multiple diffractions (2 to 4). This technique 

produces a high intensity and highly collimated X-ray beam with an angular 

divergence of 12 arc sec [15]. The Bede D1 system also has a second CCC to further 

reduce the angular divergence to 5 arc sec but results in the reduction of the X-ray 

intensity [15]. In this work the single CCC, high intensity configuration is sufficient 

to obtain the required information. A slit was positioned after the CCC to remove the 

Kα2 component. The Kα1 component is normally used for XRD measurements due to 

its higher intensity compared to the Kα2 component. 

 The sample stage and the detector are mounted on the same rotating arm. 

During HR-XRD measurements, the position of the X-ray source is fixed while the 

sample stage and the detector are rotated. The rotational movement of the detector is 

always double that of the sample in order to satisfy the Bragg condition.  
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2.4 Photoluminescence 

 

Figure 2.7 Possible carrier recombination processes showing (a) band to band radiative 

recombination and non-radiative recombination via (b) defect states and (c) Auger processes. 

Ec and Ev refer to the conduction band and the valence band, respectively.  

 Photoluminescence spectroscopy is a very sensitive technique for 

investigating intrinsic electronic transitions and electronic transitions at defects [16]. 

This technique is also simple, non-destructive and does not require sample 

preparation. Photoluminescence refers to luminescence excited by incident photons. 

A typical photon source is a laser. If the energy of a photon is similar to or larger 

than the band gap of the semiconductor material under test, the photon will be 

absorbed. An electron will then be promoted from the valence band to the conduction 

band, creating an electron-hole pair. The electron-hole pair will then undergo 

scattering events and eventually recombine and emit a photon (or 

photoluminescence) with an energy which corresponds to the band gap of the 

material. This process is called band-to-band radiative recombination and is 

illustrated in Figure 2.7 (a).   
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Figure 2.8 Schematic diagram of photoluminescence setup. 

The electron-hole pair can also recombine non-radiatively via defect states in 

the band gap, as shown in Figure 2.7 (b). The presence of defect states could be due 

to impurities (i.e carbon, oxygen etc) or growth defects (dislocations, point defects 

etc). For carriers recombined via defect states the energy released will be converted 

to lattice vibrations and heat which is known as phonons. Therefore, a sample with a 

high density of defects will have weaker PL intensity.  

In the case of Auger recombination, the electron and hole recombine in a 

band-to-band transition but the energy released is given away to another electron or 

hole. The high energy (or hot) electron or hole will be promoted higher in the 

conduction band or deeper in the valence band. The hot carrier will consequently 

relax to the edge of the conduction band or the valence band when the energy is lost 

to phonons. Auger recombination becomes more likely at high excitation when more 

carriers are generated.   

 Figure 2.8 shows the experimental setup of PL measurements. For 

measurements at room temperature, the sample was mounted on an XYZ stage for 

precise positioning and focusing. The excitation source is a 532 nm diode pumped 

solid state (DPSS) laser with maximum excitation power of 1 Watt. The laser’s 

incident power was measured by a power meter. It was found that the incident power 
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is approximately one-third of the initial laser power. Two-thirds of the laser power is 

lost due to mirror reflections before reaching the sample. Besides, the output laser 

power is not accurately set by the control software for the laser power < 100 mW. 

Therefore, excitation powers of < 100 mW were obtained by setting the laser at high 

power and then attenuating it by a neutral density (ND) filter whose attenuation 

factor is known. For example, 30 mW of excitation was obtained by setting the laser 

at 300 mW and attenuating it by an ND filter with attenuation factor of 10.  

   

Figure 2.9 The PL system’s spectral response. 

The laser beam was chopped at 180 Hz which was chosen to avoid the signal 

being affected by the voltage mains supply (multiples of 50 Hz). The laser’s 2
nd

 order 

excitation (1064 nm) was attenuated by a KG3 filter. The emitted PL was collected 

by a cassegrain lens and then focused onto the entrance slit of the monochromator. 

Various slit widths (0.5 to 2 mm) and ND filters were used to enhance weak signals 

and attenuate strong PL signals. The PL was then detected by a liquid nitrogen 

cooled germanium detector. The detector was operated at 77 K to reduce its dark 

current and to increase its detection characteristics. In order to eliminate the 

contribution from the background light to the measured PL, a phase-sensitive lock-in 

detection technique was used.  
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The monochromator has three grating selections: 1200 grooves/mm, 900 

grooves/mm and 600 grooves/mm which correspond to blazed wavelength (optimal 

wavelength) of 330, 850 and 1500 nm, respectively. All PL measurements were 

carried out using the 900 grooves/mm grating because it gives good efficiency for 

wavelengths from 850 to 1400 nm. For accurate analysis, the measured PL data were 

corrected based on the system’s spectral response measured using a white light 

source, as shown in Figure 2.9. The PL system’s spectral response depends on the 

responses of the germanium detector, monochromator grating and the associated 

optics.  

For low temperature measurements, the sample was mounted inside a closed-

cycle helium cryostat system which consists of a gas compressor, a temperature 

controller, a vacuum pump and the cryostat itself. The compressor provides a high 

pressure gas whose expansion creates a refrigeration effect down to 10 K. The 

temperature inside the cryostat is controlled by the temperature controller as well as a 

heater and a temperature sensor in the cryostat.  

2.5 Error Analysis 

This section will explain the calibration processes and steps taken to estimate 

and minimise errors during experimental works. For PL setup, the system was 

calibrated using the laser line (532 nm) with typical error of ± 0.5 nm. This value is 

small and can be neglected. A reference sample was also used to calibrate the PL 

intensity which typically varies within ± 5%. For critical measurements, the extra 

precaution was taken by measuring the samples next to each other. The temperature 

dependent PL was carried out with temperature variations of ± 0.5 
o
C.  

 For HR-XRD, the positions of ɷ, 2θ and tilt were optimised before every 

measurement in order to get the maximum intensity. The measurement step was set 

between 5 and 8 arc seconds. The measurement step and difficulty in determining the 

position of the peak (due to the broadness of the spectra) may result in uncertainty in 

the value of Bi concentration. This uncertainty is estimated to be around ± 0.002 (i.e 
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0.06 ± 0.002 for a sample with 6% Bi). For very thin GaAsBi layers in which the 

bismide peak was not obvious, RADS simulation was carried out to verify the Bi 

composition.   

 The rapid thermal annealing (RTA) runs were carried out using a standard 

recipe. This means that all annealing processes use an identical purging procedure, 

similar durations for temperature ramping up and ramping down and cooling 

procedure. The wafer should also experience uniform heating as the furnace is a 

series of heating lamps located on the top and bottom of the quartz chamber. The 

heating lamps are also monitored and any lamp failures will be flagged by the RTA 

software. During annealing, the N flow was reduced to 2 litre/min to ensure laminar 

flow across the wafer to avoid the formation of hot spots. For precaution purposes, 

the samples were placed more or less in a similar position which is at the centre of 

the carrier wafer for every annealing run. The temperature variation for the RTA 

system is estimated to be < 7 
o
C. This value is much smaller than the annealing 

temperature used in this work which is > 600 
o
C.  

 Important parameters for MBE growth include the determination of material 

fluxes and growth rate. For every flux measurement, the flux gauge was fully 

inserted and set at similar sensitivity. The flux of each element was measured in the 

order of Ga, Bi and As. Arsenic was measured last because it will increase the 

background pressure of the growth chamber. The fluxes reported in this work were 

determined with an uncertainty of ± 0.1 mBar. The growth rate was determined by 

averaging the values measured from at least three sets of RHEED oscillations with 

typical error of ± 0.005 µm/h. 
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Chapter 3 

Photoluminescence Investigation of 

GaAsBi Alloys 
 

3.1 Motivation 

The advantages of Bi for optoelectronic devices have been explained in 

Chapter 1. Despite these advantages, the optical properties of GaAs1-xBix alloys have 

not been extensively studied compared to GaNAs. The PL data reported to date have 

significantly larger full-width-half-maxima (FWHM) than the more established 

InGaAs, suggesting significant alloy composition fluctuations in the GaAs1-xBix 

samples [1-3]. It was also suggested that radiative recombination at room 

temperature is dominated by localised excitons. By comparing the PL emission and 

linear absorption for sample with x = 0.04 – 0.05 at low temperatures, a large Stokes 

shift was obtained and this value remained at 45 meV from 120 K to room 

temperature [4]. This is also in agreement with Lu et al who observed the shift of the 

PL peak to higher energies with increasing excitation powers at room temperature 

[3]. However, these observations are in contradiction with Ref. [5-7] which reported 

a band-to-band or free exciton recombination at room temperature.  

Another peculiar trend is the PL intensity improvement with increasing Bi 

content up to  x = 0.045 [3]. Enhanced PL in GaAs1-xBix is highly desirable as it may 

lead to reduced threshold current densities for laser diodes. It was also suggested that 

the composition dependent PL enhancement is due to localization effects induced by 

Bi incorporation, similar to the role of indium in wide-gap InGaN and InAlGaN 

alloys [3, 8]. This is in contrast to N alloying in GaAs which degrades the optical 

quality. However, this result is in contrast with Ref. [9] which observed a decreasing 
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PL intensity with Bi content for x up to 0.026, in MOVPE grown samples. To date, 

the composition dependent PL of GaAs1-xBix has not been verified and the origin of 

PL intensity enhancement is still not well understood.  

In this chapter, a detailed study of PL measured from GaAs1-xBix samples will 

be reported. The study focuses on localization effects, PL FWHM, band gap 

temperature dependence and dominant carrier recombination mechanism(s) at 

different temperatures and excitation powers. The reason for PL intensity 

enhancement also will be addressed.  

3.2 Localization effects in GaAsBi 

3.2.1 Description of samples 

The semi-insulating GaAs (100) substrate used was cleaved into 

11.0 × 3.5 mm
2
 pieces (to fit into the substrate holder). After degassing at 400 

o
C, 

oxide on the substrate was removed via Ga-assisted oxide desorption, providing a flat 

growth surface and eliminating the requirement for thick buffer layers [10]. An 80 

nm GaAs buffer layer was grown at 585 °C. The active region, a 160 nm GaAs1-xBix 

layer was grown at 400 °C at a rate of 160 nm per hour. This was followed by an 80 

nm GaAs capping layer also grown at 400 °C. The same temperature was used to 

grow the GaAs1-xBix layer and the GaAs cap to avoid unintentional annealing which 

may lead to the diffusion of Bi atoms to the GaAs cap. Figure 3.1 shows the structure 

of the GaAs1-xBix samples. The GaAs1-xBix growth temperature used in this work is 

higher than those reported in the literature (270 – 380 °C) [1, 2, 11, 12].  

Material Thickness (nm) 

GaAs cap 80 

GaAs1-xBix layer 160 

GaAs buffer 80 

S.I (100) GaAs substrate 

Figure 3.1 Sample structure. 
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This section uses three GaAs1-xBix samples with Bi compositions of 0.014, 

0.021 and 0.03. However, particular attention is given to the GaAs0.97Bi0.03 sample. 

Two samples were also used for reference which are 3 µm thick GaAs (grown at the 

optimal temperature of 580 
o
C) and 160 nm thick GaAs (grown at 400 

o
C).   

Figure 3.2 shows the HR-XRD spectra of the GaAs0.97Bi0.03 sample. The 

sharp peak located at 0 arcsec corresponds to diffraction from the GaAs buffer layer 

and the substrate while the peak located at -915 arcsec originated from the bismide 

layer. The GaAs1-xBix layer is under compressive strain due to its larger lattice 

constant compared to GaAs. According to Bragg’s law, a large lattice constant 

diffracts at a smaller angle leading to negative peak splitting. The spectra also shows 

well-defined fringes which indicates a smooth and coherent interface [1]. The Bi 

content was determined by fitting the HR-XRD scan using RADS mercury software, 

as shown in Figure 3.2. The GaBi lattice constant was assumed to be 6.324 Å [13].  

 

Figure 3.2 HR-XRD data (black) and RADS simulation (red) for the GaAsBi sample 

with a Bi content of 0.03. 
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3.2.2 Room temperature results 

Figure 3.3 (a) Normalised RT PL spectra for the 3 µm thick GaAs reference and a GaAsBi 

sample with x = 0.03 (b) comparison of PL FWHM of this work and reports in the literature.  

Figure 3.3(a) shows the normalized PL data of the GaAs reference and 

GaAs0.97Bi0.03 sample measured at room temperature (RT). The PL peak wavelength 

of the GaAs0.97Bi0.03 sample is red-shifted to 1035 nm compared to 874 nm for GaAs. 

However, the FWHM increases significantly with Bi incorporation. Figure 3.3 (b) 

shows that the introduction of a small amount of Bi in GaAs causes a sudden 

linewidth broadening from 28 meV for GaAs to 69 meV for GaAs0.986Bi0.014. 

However, the FWHM only increases slightly with further increases in Bi content for 

compositions up to 0.03. This suggests that the crystal quality was mainly affected by 

the incorporation of Bi (which induced significant alloy fluctuations) rather than the 

amount of Bi in the sample. Despite the large FWHM, the values reported in this 

work are still small compared to reports in the literature.  
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3.2.3 Temperature dependent results 

 

Figure 3.4 (a) Temperature dependence data (symbols) of PL peak energy with different Pe. 

The data are fitted using the standard and modified Varshni expression (dashed and solid 

lines). The inset shows the PL spectra at various temperatures for Pe = 34 Wcm
-2

. These PL 

spectra are vertically shifted for clarity (b) FWHM versus temperature for different Pe.  

PL was measured at temperatures ranging from 10 K to RT as a function of 

excitation power density, Pe for the GaAs0.97Bi0.03 sample. Temperature dependent 

data of the PL peak energy obtained using Pe = 34 and 340 Wcm
-2

 are compared in 

Figure 3.4 (a). Both sets of data displayed S-shape behavior, particularly at the lower 
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pump intensity, indicating exciton localization at low temperatures. Similar 

observations were also reported in Ref. [4]. 

Figure 3.5 The hopping of excitons between localized states due to temperature. 

The S-shape behavior consists of three main processes; (I) first red-shift from 

10 to ~80 K, (II) blue-shift between 80 to ~150 K and (III) second red-shift for 

temperatures above 160 K. These processes are illustrated in Figure 3.5. For process 

(I), as temperature increases from 10 K to ~80 K, the PL peak energy decreases as 

excitons transfer to lower energy states nearby. For process (II), the PL peak energy 

increases as the increasing thermal energy increasingly mobilizes previously 

localized excitons. Above 160 K (process III), the excitons become delocalized and 

the more usual red-shift of the PL peak is observed. The second PL peak energy red-

shift mainly depends on the temperature dependence of the band gap, since PL at 

these temperatures originates from the band edges.  

The temperature dependence of the band gap in unperturbed semiconductors 

is often described by the Varshni equation [14],  
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where Eo is the band gap at 0 K and α and β are fitting parameters. For perturbed 
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where Ed is the energy difference between the centre of the electron and hole density 

of states (assuming a Gaussian distribution). The value of Ed varies with temperature 

in a similar manner to Eg and hence, follows the Varshni equation, i.e Ed  = Ed (0) – 

αT
2
/(T + β) [15]. The σ

2
/kT term is the Stokes-type red-shift where σ is the 

localization parameter which indicates the degree of localization (a large value of σ 

indicates strong localization effects) and k is Boltzmann’s constant. The value of red-

shift becomes significant at low temperatures and large values of σ. However, 

Equation (3.2) is only valid for T > 70 K where the assumption of non-degenerate 

occupation is satisfied (carrier occupation degenerates easily at low temperatures) 

[15].  

Fitting the data in Figure 3.4 (a) using Equation (3.1) yielded α = 0.42 meV/K 

and Eo = 1.275 eV (using β = 204 K from GaAs [16]). The localization energy for a 

particular temperature is defined as [17],  

   Eloc (T) = Eg(T) – EPL(T)               (3.3) 

The maximum localization energy, Emaxloc, for the GaAs0.97Bi0.03 sample is 33 meV 

(obtained at T = 80 K). For Equation (3.2), the values obtained are, α = 0.49 meV/K, 

Ed = 1.325 eV, β = 120 K and σ = 22.5 meV. The α values are similar, which is 

expected because exciton localization due to band-tail states is not pronounced at 

high temperatures. While these values are larger than the reported values of 0.4 and 

0.27 meV/K in Ref. [18] (x = 0.012) and Ref. [4] (x = 0.04 - 0.05), respectively, they 

are still smaller than the temperature coefficient from a control GaAs sample which 

is 0.56 meV/K
 
(not shown in Figure 3.4 (a)). Hence GaAs0.97Bi0.03 does have a 

weaker temperature dependence of band gap than GaAs.  
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FWHMs of the PL data are plotted against temperature in Figure 3.4 (b). The 

Pe = 34 Wcm
-2

 data exhibited a strong maximum at ~100 K, while the peak for the Pe 

= 340 Wcm
-2

 data was much less pronounced. This difference is expected from the 

more pronounced S-shape for the Pe = 34Wcm
-2

 data in Figure 3.4 (a). This is 

because at higher pump intensities, the higher photo-generated carrier density blurs 

out carrier localization effects. The abrupt increase of the FWHM with temperature is 

explained by the increase in exciton mobility with temperature [19]. As the 

temperature increases, the excitons become more mobile, thus recombining from 

(and producing PL with) a broader (non-equilibrium) energy distribution. The 

FWHM then drops when excitons come into thermal equilibrium. The subsequent 

FWHM increase for T  > 160 K is due to increasing thermal distribution. 

3.2.4 Arrhenius analysis 

 

Figure 3.6 Arrhenius plot of (a) the 160 nm thick GaAs reference and (b) the GaAs0.97Bi0.03 

sample. The inset in (a) shows the PL spectra of the GaAs reference sample measured at 10 

K. The grey and black lines refer to the fittings using equations 3.4 and 3.5, respectively. 
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Figure 3.6 (a) shows the integrated PL (IPL) intensity for the 160 nm GaAs 

reference sample (grown at 400 
o
C) against the inverse of temperature, known as an 

Arrhenius plot. The PL FWHM measured at 10 K is 12 meV as shown in the inset of 

Figure 3.6 (a). At low temperatures (10 – 40 K) the IPL intensity is approximately 

unchanged. However, the IPL intensity started to decrease slowly at intermediate 

temperatures. At high temperatures, the IPL intensity decreases exponentially with 

temperature. The IPL intensity of the GaAs reference reduced by almost an order of 

magnitude when the temperature was changed from 10 K to room temperature. The 

thermal quenching of the IPL intensity can be described by, 

���� = 	 ��	
1 + �� exp �−� ��� !

			,																																																																�3.4� 

where I(T) is the IPL intensity at temperature T, Io is the IPL intensity at 10 K, A1 is a 

fitting parameter and Ea1 is the activation energy. The best fit using Equation (3.4) 

yielded A1 = 23 and Ea1 = 25 meV as shown in Figure 3.6 (a). The Ea1 may be 

attributed to the activation energy of As and Ga related defects due to the low growth 

temperature.  

 For the GaAs0.97Bi0.03 sample, the IPL intensity is significantly larger 

compared to the GaAs sample as shown in Figure 3.6 (b). However, the IPL intensity 

reduced by almost four orders of magnitude when the temperature was changed from 

10 K to room temperature. Fitting using Equation (3.4) yielded A1 = 3 x 10
5
 and Ea1 

= 93 meV. However, the experimental data for intermediate temperatures are not 

well fitted. This suggests that a second activation energy could exist for the bismide 

sample. Thus, Equation (3.4) can be extended to [20], 

���� = 	 ��	
1 + �� exp �−� ��� ! +	�� exp �−� ��� !

																																					�3.5� 

Fitting the data using Equation (3.5) yielded A2 = 200 and Ea2 = 32 meV 

while A1 and Ea1 remains the same. Equation (3.5) gives a better fit to experimental 

data at all temperatures.  
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The values of A1 and A2 for the GaAs0.97Bi0.03 sample are significantly larger 

than the value of A1 for GaAs as the IPL intensity of the bismide sample reduces 

more rapidly with temperature. Both of the activation energies of the GaAs0.97Bi0.03 

sample are also larger than the activation energy of the GaAs reference. The 

activation energy of 32 meV is bismuth-related and consistent with the 33 meV of 

maximum localization energy, Emaxloc, obtained in Figure 3.4 (a). However, the origin 

of the 93 meV activation energy is not clear. One possible reason is the 

delocalization of carriers from deep localised states. Based on the VBAC model, the 

valence band offset between GaAs and GaAs0.97Bi0.03 is 230 meV. Therefore, the 

escape of carriers from the valence band confinement is unlikely as it is much larger 

than the activation energy. Usman et al proposed that the incorporation of Bi in 

GaAs also reduces the conduction band minima linearly by 28 meV/%Bi [21]. For a 

sample with x = 0.03, the conduction band and valence band offsets with respect to 

GaAs band edges are 84 and 135 meV, respectively. Therefore, a more likely origin 

for the 93 meV activation energy is carrier escape from the conduction band 

confinement. The comparison between VBAC and Usman et al models with 

experimental data in this work will be discussed further in Section 3.4.   

3.2.5 Power dependent results 

 

Figure 3.7 Power dependent PL of GaAs0.97Bi0.03 measured at (a) 10 K and (b) room 

temperature. The dashed line refers to the band gap estimated by the Varshni equation. 
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 Figure 3.7 shows power dependent PL of the GaAs0.97Bi0.03 sample measured 

at 10 K and RT. At 10 K, the PL peak energy was blue-shifted by 77 meV when Pe 

was increased from 0.11 to 1140 Wcm
-2

. The PL FWHM also reduced from 119 to 

67 meV when Pe was increased by the same amount. At the highest Pe, the PL peak 

energy is close to 1.28 eV, the theoretical band gap estimated by the Varshni 

expression (Equation 3.1). This is because high excitation saturates the localized 

states and the PL emission will be increasingly dominated by band-to-band 

recombination. The saturation of localized states is also evidenced by the large blue-

shift at the low energy tail compared to the high energy tail. These observations are 

consistent with the temperature dependent results in Section 3.2.3. However, the PL 

spectra becomes independent of the excitation power when measured at RT, as 

shown in Figure 3.7 (b). The result suggests that the carriers are delocalized at room 

temperature and that the PL emission can be attributed to the band gap.  

 

Figure 3.8 Integrated PL intensity versus excitation power density at different temperatures 

for x = 0.03. The dashed and solid lines refer to fittings with gradients of 1 and greater than 

1, respectively. 
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The relationship between IPL intensity and excitation power density, Pe can 

be described by the rate equation, 

�$
�% = & −	 $'() − *+, ,       (3.6) 

where G is the carrier generation rate, τnr is the non-radiative recombination lifetime, 

B is the radiative recombination coefficient and n and p are electron and hole 

concentrations, respectively. The generation of carriers is proportional to the level of 

excitation, G α Pe and at steady state, dn/dt = 0 .  

 When radiative recombination is dominant, the radiative recombination term, 

Bnp ≫ n/τnr.	Therefore, Equation (3.6) can be simplified to G = Bnp and hence, Pe α 

Bnp. In this case, Bnp changes linearly with Pe. When the non-radiative 

recombination is dominant, the non-radiative recombination term, n/τnr ≫	 Bnp. 

Hence, Equation (3.6) can be simplified to G = n/τnr or n = Gτnr. However, Pe needs 

to be expressed in terms of Bnp as PL only measures radiative recombination. 

Therefore, Bnp = B(Gτnr)(Gτnr)=BG
2
τnr

2
 assuming n = p. In this case, Bnp α Pe

2
 or 

IPL intensity is a square function of Pe.  

Analyzing the dependence of IPL versus excitation power density can 

provide information about the dominant carrier recombination mechanism(s) [22]. 

Since dominance of non-radiative recombination is closely related to defect density 

in the bismide layer, such analysis will also be valuable in comparative PL studies of 

future bismide samples. Using data for the GaAs0.97Bi0.03 sample, IPL versus Pe data 

are shown as a log-log plot in Figure 3.8. The Pe was varied for almost five orders of 

magnitude ranging from 0.01 to 1000 Wcm
-2

. Most of the photons were absorbed by 

the substrates (~ 73%) as the epilayers are relatively thin compared to the substrates. 

However, most of the carriers are expected to diffuse and recombine in the GaAs1-

xBix layer as the electron diffusion length is estimated to be ~ 10 µm (assuming a 

diffusion coefficient of 200 cm
2
s

-1
 and carrier lifetime of 5 ns for high quality GaAs) 

[23]. The density of photo-generated carriers is estimated to be 4.3 × 10
16

 to 4.3 × 

10
21

 cm
-3 

for Pe = 0.01 to 1000 Wcm
-2

, respectively. This estimation has taken into 
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account the 30 % of power loss due to reflections at the semiconductor/air interface. 

For the whole range of Pe, the concentration of the photo-generated carriers is larger 

than the background doping. An intrinsic GaAs0.97Bi0.03 layer is typically p-type and 

has background doping which varies between ~1 × 10
14 

to ~1 × 10
16

 cm
-3  

[24, 25].  

Based on their gradients, m, the data in Figure 3.8 can be grouped into three 

categories, namely m ~ 1, 1 < m < 2, and m ~ 2. They correspond to the conditions 

where the dominant carrier recombination mechanism is, radiative (m ~ 1), a mixture 

of radiative and monomolecular non-radiative (associated with defects) (1 < m < 2), 

or monomolecular non-radiative (m ~2) [22]. At 10 K, m = 1 was observed at all Pe, 

indicating that radiative recombination is dominant over the entire excitation range 

investigated. At 77 K, all Pe above 2Wcm
-2

 had m = 1, but low Pe data showed m = 

1.7. As the temperature increases, more of the IPL dependence on Pe tended towards 

m ~ 2 for all data points. By 220 K, all the data have a gradient of 2 suggesting that 

with increasing temperature the more mobile carriers increasingly recombine via 

defect states.  

3.3 Mechanism of enhanced room temperature PL 

3.3.1 Description of samples 

This section uses three sets of GaAs1-xBix samples, called A, B and C which 

consist of 10 samples in total. The maximum Bi concentration was 0.06. The samples 

consist of an 80 nm GaAs buffer, a GaAs1-xBix layer grown at a rate of 160 nm per 

hour and  a 50 nm GaAs cap. Table 3.1 summarizes the GaAs1-xBix samples studied 

in this section. 

Sample set Number of 

samples 

GaAsBi thickness 

(nm) 

GaAsBi growth 

temperature (
o
C) 

A 3 100 420 

B 3 50 400 

C 4 25 400 

Table 3.1 Summary of samples studied in this section. 
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3.3.2 Room temperature results 

 

Figure 3.9 (a) Normalised room temperature PL spectra for Set C samples (b) PL intensity 

versus Bi content at room temperature with Pe = 320 Wcm
-2

. 
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PL intensity of LT is approximately 100 times greater than the thicker 

GaAs0.995Bi0.005 sample in Set A. Interestingly, the PL intensity of LT is also twice 

compared to the PL intensity of a high quality 3 µm thick GaAs reference sample 

grown at 580 
o
C. Even though the GaAs sample has a different structure, the 

comparison still gives useful information about the crystal quality of the GaAs1-xBix 

samples. The PL intensity increases rapidly at low Bi content but starts to saturate at 

high Bi composition. The composition dependent PL intensity enhancement may be 

due to (i) higher Bi content reduces the defect density, (ii) greater carrier 

confinement due to the larger GaAs/GaAsBi band offset for high Bi content samples 

or (iii) higher Bi content increases the localisation effects near the valence band 

maximum, efficiently trapping holes and making excitons less sensitive to non-

radiative recombination centres.  

 

Figure 3.10 Integrated PL intensity against excitation power density measured at room 

temperature. The solid lines are linear fittings with slope, m.  
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more significant (m = 1.6 and 1.4 for LV and LT, respectively). The PL intensity also 

started to saturate for high Bi fraction samples, even though m continues to decrease 

to 1.4.  

3.3.3 Temperature dependent results 

 

Figure 3.11 (a) Temperature dependence of PL peak energy for Set C samples and (b) 

FWHM measured at 10 K when excited with Pe = 53 Wcm
-2

. The dashed lines are fittings 

using the Varshni equation. 
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(a). All samples showed the S-shape behavior as observed earlier. However, the 

localization energy varies from sample to sample.  

 

Sample Bi content Emaxloc (meV) Eo (eV) α (meV/K) β (K) 

LR 0.022 51 1.333 0.45 250 

LS 0.033 90 1.244 0.37 280 

LV 0.048 46 1.165 0.37 280 

LT 0.060 36 1.097 0.39 260 

Table 3.2 Varshni fitting parameters and Emaxloc for the Set C samples. 

The data were fitted using the Varshni expression (Equation 3.1) and the 

fitting parameters are summarized in Table 3.2. The value of Emaxloc is also included 

in Table 3.2. As x increases from 0.022 to 0.033, Emaxloc initially increases from 51 to 

90 meV and then decreases to 46 and 36 meV for x = 0.048 and 0.06, respectively. 

From Figure 3.11 (b), the 10 K FWHMs of the Set C samples also shows a maximum 

at x = 0.033, consistent with the trend observed for Emaxloc. This observation is 

expected as the 10 K linewidth is mainly affected by alloy fluctuations, thus 

indicative of the relative localization strength. However, for Set A and B samples, 

the linewidth is approximately constant with an average value of 77 meV. This 

means that the localization energy is unchanged for both sets of samples. Data in 

Figure 3.11 do not show an increase in localization energy and FWHM with 

increasing x for the range studied. Hence, localization effects are unlikely to be the 

main mechanism for the increased PL shown in Figure 3.9 (b).  

Figure 3.12 (a) shows 10 K PL intensity plotted as a function of Bi 

concentration. For Set A samples, the PL intensity increases with increasing Bi 

content but decreases for Set B and C. The results are in contrast with the room 

temperature PL intensity trend observed in Figure 3.9 (b). The results suggest that the 

incorporation of Bi in GaAs of up to ~ 0.025 improves the material quality. It is well 

known that growing GaAs at significantly lower than the optimal growth temperature 
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(580 
o
C) induces many defects such as As-related defects (As-interstitial [26] and 

As-antisite, AsGa [27]) and Ga vacancies [28]. Incorporating Bi during low 

temperature growth enhances surface migration, thus reducing the density of Ga 

and/or As-related defects [29]. Based on a deep level transient spectroscopy (DLTS) 

study reported recently, the trap concentration in GaAs0.988Bi0.012 is ~ 10 times lower 

than GaAs, when both are grown at 370 
o
C [29]. However, Bi incorporation also 

introduces Bi-related defects such as the Bi-antisite, BiGa [30]. For x > 0.025, the Bi-

related defects started to become significant, thus degrading the optical quality of the 

GaAs1-xBix. This explains the PL intensity reduction for set B and C measured at 10 

K. 

 

Figure 3.12 (a) PL intensity measured at 10 K and (b) temperature dependence IPL with Pe = 

53 Wcm
-2

. The inset shows the IPL difference between 10 K and RT as a function of Bi 

content. 
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Figure 3.12 (b) shows IPL intensity plotted as a function of temperature for 

the Set C samples. At 10 K, samples with higher Bi compositions have lower IPL 

intensity. However, the IPL intensity of LR and LS quenches rapidly over the whole 

temperature range. For LV and LT, the IPL intensity also quenches but at a smaller 

rate above 120 K and eventually overtakes the IPL intensity of LR and LS. The PL 

intensity decreases with temperature due to carrier confinement loss and the capture 

of carriers through defects. Between 10 and 300 K, the differences in IPL are 45000, 

9000, 800 and 100 times (all arbitrary units) for LR, LS, LV and LT respectively, as 

shown in the inset of Figure 3.12 (b). The IPL difference reduces by approximately 

an order of magnitude for every 0.01 increase of Bi content.  

Since the defect density increases with Bi content (for x > 0.025), the main 

reason which contributes to the lower PL quenching for high Bi content samples is 

lower carrier confinement loss. This means that the enhanced room temperature PL 

observed in Figure 3.9 (b) is the result of more efficient carrier confinement due to 

larger a band gap offset between GaAs1-xBix and GaAs. The PL enhancement slowly 

saturates when the valence band offset becomes large enough to avoid carrier escape. 

This also implies that the power dependent PL measurements with m tending to 1 for 

increasing Bi content shown in Figure 3.10 were affected by different carrier 

confinement between samples.  

It is expected that the room temperature PL intensity will start to decrease for 

x > 0.06 due to material quality degradation. In Ref. [3], the room temperature PL 

intensity increases only up to 0.045 (in this work up to 0.06), probably due to a 

higher density of Bi-related defects as a result of lower growth temperatures (270 – 

300 
o
C). It is important to note that even though the crystal quality gradually 

degrades for x > 0.025, the PL intensity of GaAs0.94Bi0.06 (at RT and 10 K) is still 

comparable to the PL intensity of the high quality GaAs reference sample.  
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3.4 Band gap of GaAsBi 

 

Figure 3.13 (a) Band gap of GaAsBi versus Bi concentration for samples grown by Sheffield 

and reports in the literature. The grey and black dashed lines refer to the band gap estimated 

by the VBAC and modified VBAC models, respectively. The inset shows the HR-XRD 

spectra of the GaAsBi sample with x = 0.108 (b) PL spectra for sample LT and x = 0.108 

measured at room temperature. 

Earlier results show that carriers are delocalised at room temperature. 

Therefore, the room temperature PL peak wavelength can be used to estimate the 

band gap of GaAs1-xBix. Figure 3.13 (a) shows band gap against Bi concentration for 

Bi content

0.00 0.02 0.04 0.06 0.08 0.10 0.12

E
n
e

rg
y 

(e
V

)

0.8

1.0

1.2

1.4

This work

Lu et al 

Alberi et al 

Yoshida et al  

VBAC model

modified VBAC 
Linear regression

(a)

Wavelength (nm)

900 1000 1100 1200 1300 1400 1500 1600

P
L

 I
n
te

n
s
ity

 (
a
.u

)

x = 0.108
x = 0.06

15x

(b)

ω - 2θ (arcsec)
-4000 -2000 0 2000

D
if
fr

a
c
ti
o
n
 i
n

te
n
s
it
y 

(a
.u

)

100

101

102

103

104

105

106

experimental

simulation



Chapter 3 Photoluminescence investigation of GaAsBi alloys 

 

64 

 

x up to 0.108. The experimental data obtained from this work are consistent with data 

in the literature. Data from Lu et al [3] was obtained by photoluminescence 

measurements while Yoshida et al [31] and Alberi et al [32] used photo-reflectance 

spectroscopy. Initially, the band gap of GaAs1-xBix reduces linearly for x < 0.04 at a 

rate of 78 meV/%Bi. For higher Bi concentration, the band gap reduction becomes 

less pronounced. The experimental data were then fitted using the VBAC model as 

described in Chapter 1. The fitting was obtained with coupling parameter, CBi = 2.2. 

However, only data for x up to 0.05 are consistent with the model. The measured 

band gap for x > 0.05 is lower than the band gap predicted by the VBAC model.  

Recently, Usman et al reported a tight-binding analysis to investigate the 

electronic structure of GaAs1-xBix [21]. This method is an atomistic approach which 

allows for quantitative investigation of the effect of isolated impurity atoms (in this 

case replacing an As atom with a Bi atom) on the electronic structure of the host 

material [21, 33]. Usman et al reported the evolution of Bi resonant states in ordered 

GaAs1-xBix supercells (4096 atoms) which contained a single Bi atom, a single Bi 

pair and a small Bi clusters [21]. Similar calculations were then extended to calculate 

the electronic properties of randomly disordered GaAs1-xBix supercells (4096 atoms) 

in which the number of Bi pairs and n-atom clusters increased by x
2
 and x

n
 [21]. The 

results confirm that the evolution of the valence band edge of GaAs1-xBix can be 

described by the VBAC model. However, the VBAC model only partially explains 

the band gap reduction of GaAs1-xBix.  

Usman et al found that the conduction band minima also reduces linearly with 

Bi incorporation at a rate of 28 meV/%Bi [21]. The conduction band of GaAs1-xBix (x 

≤ 0.05) retains the Γ character of the GaAs conduction band for ≥ 97 % [21]. The 

dominant GaAs character and linear energy reduction suggest that the evolution of 

the conduction band with Bi concentration can be best described by the conventional 

alloy model [21]. As the evolution of the valence band maxima becomes less 

pronounced at high Bi concentrations, the contribution from the conduction band 

becomes increasingly significant. For example, the conduction band offset and the 
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valence band offset of the 0.8 eV band gap GaAs1-xBix are 280 and 340 meV, 

respectively. This could explain the divergence between the experimental data and 

theoretical values predicted by the VBAC model at high Bi concentrations. 

The VBAC model was then modified to include the reduction of the 

conduction band minima. The values calculated using the modified VBAC model are 

in agreement with the experimental data for the whole Bi concentration range, as 

shown in Figure 3.13 (a). The data fitting was obtained with CBi = 1.55. The fitting 

also shows that the Bi concentration needed to achieve 1.3 and 1.55 µm emission in 

bulk material is 0.072 and 0.102, respectively. For quantum well structures, higher Bi 

concentration is required to achieve similar wavelength emission due to quantum 

effects.  

The inset in Figure 13.3 (a) shows the HR-XRD spectra of the GaAs1-xBix 

sample with x = 0.108 (the highest Bi concentration). The HR-XRD data show well-

defined fringes suggesting smooth GaAs1-xBix/GaAs interfaces and are in agreement 

with the simulation without relaxation. The peak splitting between GaAs1-xBix and 

GaAs is -3160 arcsecs which corresponds to 1.27 % of strain. The result shows that 

the thickness of the GaAs1-xBix layer (30 nm) is still below the critical thickness. For 

comparison, the critical thickness of an InGaAs layer with similar strain is 9 nm [34]. 

Even though the samples were grown under non-optimized growth conditions, 

reasonably good PL spectra were obtained at room temperature, as shown in Figure 

3.13 (b).  The GaAs0.892Bi0.108 sample has a PL FWHM of 90 meV while the PL 

intensity is ~15 times lower than LT. This result shows that both 1.3 and 1.55 µm 

emission can be achieved by GaAs1-xBix on GaAs without strain compensation. 
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3.5 Summary 

Temperature dependent and power dependent PL measurements were carried 

out on a series of GaAs1-xBix samples. The temperature dependence data indicated 

exciton localization at low temperatures and that the band gap of the GaAs0.97Bi0.03 

alloy varies more weakly with temperature than that of GaAs. At 75meV, the room 

temperature FWHM for this sample was significantly smaller than others reported in 

the literature.  

Furthermore, the optical quality of GaAs1-xBix is highly dependent on the Bi 

concentration. The incorporation of Bi in GaAs reduces the density of Ga and/or As-

related defects as well as introducing Bi-related defects. For dilute amounts of Bi (x 

< 0.025), the crystal quality improves but a further increase of Bi causes degradation 

to the material quality due to a significant amount of Bi-related defects. However, the 

room temperature PL continues to increase up to x = 0.06 due to greater band-gap 

offset between the GaAs and GaAs1-xBix layers. No clear correlation was found that 

relates the localization effect to the room temperature PL intensity enhancement.  

The band gap of GaAs1-xBix reduces rapidly with Bi composition. This can be 

described by modified VBAC model which considers both; the reduction of the 

conduction band minima and the increase of the valence band maxima with Bi 

incorporation. A highly-strained 30 nm thick GaAs0.892Bi0.108 sample with a room 

temperature PL wavelength of 1.52 µm was reported. This initial work shows the 

potential of GaAs1-xBix for long wavelength optoelectronic devices on GaAs.  
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Chapter 4 

Effects of Rapid Thermal Annealing 

on GaAsBi Alloys 

 

4.1. Motivation 

Since GaAs1-xBix samples are grown at relatively low temperatures, wafer 

quality might be expected to improve with thermal annealing as in the case for 

GaNAs samples
 
[1]. However, Feng et al reported that annealing GaAs1-xBix (x = 

0.032) grown by MBE at up to 800 
o
C did not improve its room temperature PL

 
[2]. 

The PL peak wavelength also blue-shifted by 8 meV which was attributed to micro-

scale changes inside the epilayer rather than Bi out diffusion
 
[2]. However, for 

MOVPE grown GaAs1-xBix, PL intensity improvements of more than 10 times and 

FWHM reductions of 23 meV were observed at 10 K
 
[3]. Despite the significant 

improvements in Ref. [3], no PL emission could be detected above 100 K. Recently, 

a photo-reflectance measurement performed by Chine et al shows that the band gap 

of GaAs1-xBix was red-shifted by 60 meV after annealing at 600 
o
C

 
[4].   

The mixed results in the literature show that the effects of annealing on 

GaAs1-xBix alloys are not well understood. In this chapter, a systematic study on the 

effects of annealing on the optical and structural properties of MBE grown GaAs1-

xBix alloys will be discussed. The origin of the optical quality improvement also will 

be addressed.  
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4.2. Description of samples 

The GaAs1-xBix samples were grown on pieces cleaved from semi-insulating 

GaAs (100) substrates. Each sample consists of a GaAs buffer, 10 - 50 nm GaAs1-

xBix epilayer and a GaAs cap.  This study uses samples with Bi contents between 

0.022 and 0.065. The summary of samples used in this chapter is shown in Table 4.1. 

All samples were grown at 400 
o
C (including the GaAs reference) except for the 

samples with x = 0.04, 0.042 and 0.065 which were grown at 420, 370 and 380 
o
C, 

respectively. The sample size is either 11.0 × 3.5 mm
2
 or 11.4 × 11.8 mm

2
 depending 

on the substrate holder used during growth. Each sample was then cleaved into 

pieces with an average size of 5.6 × 4.7 mm
2
, large enough to avoid edge effects in 

subsequent PL measurements. Post-growth annealing was carried out in a rapid 

thermal annealing (RTA) system in nitrogen ambient. For Section 4.3 and 4.5, 

samples were annealed at 600, 700 and 800 
o
C for 30 seconds. For Section 4.4, the 

annealing temperature was fixed while the annealing time was varied for 3, 30 and 

60 seconds.    

Section Sample name Bi content 

4.3 GaAs ref. - 

LR 0.022 

LS 0.033 

STB0DT 0.040 

LV 0.048 

LT 0.060 

STB02G 0.065 

4.4 STB0GW 0.042 

STC01B 0.058 

4.5  STB02C 0.037 

STB02H 0.050 

Table 4.1 Summary of samples used in this chapter 
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4.3. Varying annealing temperatures 

4.3.1. AFM results 

 

Figure 4.1 AFM 3D plots and cross-sectional scans of sample LR before (a) and after (b) 

annealing. The sample was annealed at 700 
o
C for 30 seconds in a nitrogen ambient.  

Figure 4.1 shows the Atomic Force Microscopy (AFM) 3D plots and cross-

sectional scans of as-grown and annealed GaAs1-xBix pieces with x = 0.022 (sample 

LR). The as-grown sample has rms roughness of 0.64 nm which is approximately 

twice the rms roughness of typical high quality GaAs [5]. This is mainly due to the 

presence of undulations on the surface which are elongated along the	[1	1	0]. Similar 

AFM surface topography was also reported by Lu et al [6]. Based on high-resolution 

Scanning Tunnelling Microscopy (STM) images taken by F. Bastiman on uncapped 

GaAs0.967Bi0.033, it was found that the undulations are not a 3D feature but rather 

densely ordered monolayer islands which were formed during the GaAs1-xBix layer 

growth [7]. The average period and peak-to-peak amplitude of the undulations are 93 

nm and 1.6 nm, respectively. After annealing at 700 
o
C for 30 seconds, the rms 

(b)(a)
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roughness reduces to 0.55 nm. The surface undulations also become broader with an 

average period of 136 nm.  

4.3.2. Photoluminescence and HR-XRD results 

 

Figure 4.2 PL data of as-grown and annealed GaAsBi with Bi content of 0.04 measured at 

room temperature. 

Figure 4.2 shows the room temperature PL data of as-grown and annealed 

GaAs1-xBix with x = 0.04 (STB0DT). For annealing temperatures of 600 and 700 
o
C, 

the PL intensity increases (compared to the as-grown) while the PL peak wavelength 

remained relatively unchanged. This result is encouraging as optical quality 

improvement could be obtained without compromising the PL peak wavelength. 

However, the optical quality degraded significantly and the PL peak wavelength 

blue-shifted by 4 meV when annealed at 800 
o
C. Hence, 700 

o
C is the optimum 

annealing temperature with ~ 3 times of PL intensity improvement.  

The PL improvement factor is relatively small compared to the effect of 

annealing on other semiconductor alloys (i.e GaAs and GaNAs). The integrated PL 

intensity of the GaAs reference sample (grown at 400 
o
C) increases by ~ 6 times 

when annealed at 700 
o
C. This shows that the arsenic and gallium related defects 

generated by low growth temperature are easily removed by thermal annealing. In 
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the case of GaNAs, annealing typically leads to significant PL improvement (~ 10 

times) but at the expense of PL peak wavelength blue-shift. The significant PL 

improvement is mainly attributed to the removal of the high density of nitrogen 

interstitials [1].  

The optimum annealing temperature (700 
o
C) shown in Figure 4.2 was then 

used to anneal other GaAs1-xBix samples. Room temperature PL measurements of the 

as-grown and annealed samples were then carried out. For a given Bi content, the 

integrated PL improvement ratio between the annealed and as-grown samples was 

obtained. The PL improvement ratio versus Bi content is shown in Figure 4.3 (a). For 

samples with x < 0.048, PL improvement of ~ 3 times was observed. However, the 

level of PL improvement reduced for higher Bi content samples and in fact, degraded 

the luminescence of the sample with x = 0.065.    

In order to investigate the diminishing improvement in PL intensity for high 

Bi content samples in Figure 4.3 (a), pieces from the GaAs1-xBix sample with x = 

0.065 were annealed at different temperatures and the integrated PL improvement 

ratios are shown in Figure 4.3 (b). It is found that the optimum annealing temperature 

for GaAs0.935Bi0.065 sample is 600 
o
C, (100 

o
C lower than that of the GaAs0.96Bi0.04 

sample), suggesting that the optimum annealing temperature is dependent on Bi 

composition. Hence, using a fixed annealing temperature of 700 
o
C for all samples (x 

= 0.022 to 0.065) will give rise to different PL improvement ratios, resulting in the 

trend in Figure 4.3 (a). Composition dependence of optimum annealing temperatures 

has been observed in other material systems. It was reported that the optimum 

annealing temperature of GaNAs reduces from 1000 to 700 
o
C when the N content 

increases from 0.06 to 6 %
 
[8, 9].   
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Figure 4.3 (a) The PL improvement ratios of annealed samples with different Bi contents. 

The samples were annealed at 700 
o
C for 30 seconds, (b) PL improvement ratios against 

annealing temperatures for GaAsBi pieces with x = 0.04 and 0.065.  

The HR-XRD data for the GaAs0.935Bi0.065 sample are compared in Figure 4.4 

(a). Annealing at 600 
o
C causes no noticeable structural change compared to the as-

grown piece and the average Bi content remained the same. However, the peak-to-

valley contrast of the Pendellösung fringes degrades for the 700 
o
C piece, suggesting 

a poorer GaAs1-xBix/GaAs interface. This may explain the lower PL intensity in 

Figure 4.3 (b). For the 800 
o
C piece, only a weak shoulder is observed with no well-

defined GaAs1-xBix/GaAs interface. As expected, the PL peak energy measured at 10 

K shows a blue-shift of 120 meV (Figure 4.4 (b)), consistent with significant Bi out-

diffusion as observed in the HR-XRD spectra. 

Annealing Temperature (oC)
400 500 600 700 800

P
L
 i
m

p
ro

ve
m

e
n
t 

ra
tio

0

1

2

3 x = 0.04
x = 0.065

Bi content

0.02 0.03 0.04 0.05 0.06 0.07

P
L

 i
m

p
ro

v
e

m
e
n

t 
ra

ti
o

0

1

2

3

(a)

(b)

as-grown



Chapter 4 Effects of rapid thermal annealing on GaAsBi alloys 

  

76 

 

 

Figure 4.4 (a) The HR-XRD curves of the GaAsBi sample (x = 0.065) at different annealing 

temperatures. (b) The normalized PL spectra for pieces in (a) measured at 10 K. The spectra 

were vertically shifted for clarity. 

 

Localization effects in GaAs1-xBix alloys have been shown earlier using 

temperature dependent PL studies. The temperature dependent PL of as-grown and 

annealed GaAs1-xBix pieces was measured to assess the effects of annealing on 

localization and the results are shown in Figure 4.5 (a). For the sample with x = 

0.048, the annealed piece shows a less pronounced S-shape behavior compared to the 

as-grown piece. The 10 K PL peak energy blue-shifts by 6 meV and the PL FWHM 

reduces from 75 to 68 meV. For the GaAs0.96Bi0.04 pieces, the temperature dependent 

PL data are similar for the as-grown and the annealed pieces, with only a 4 meV 
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reduction in FWHM of the 10 K PL. For temperatures above 150 K, the PL peak 

energies of the as-grown and annealed pieces for both compositions (x = 0.04 and 

0.048) are similar, showing that the band gap is not affected by annealing. 

 

Figure 4.5 (a) Temperature dependence of PL peak energy of as-grown and annealed (700 
o
C 

for 30 seconds) GaAsBi samples with Bi contents 0.04 and 0.048. (b) Normalized IPL 

intensity versus temperature for x = 0.04. The inset shows the room temperature PL spectra 

before and after annealing for both compositions. 

The growth conditions of the GaAs0.96Bi0.04 sample were altered compared to 

GaAs0.952Bi0.048 sample in order to reduce the localization effects and significantly 

weaker localization was obtained, as shown in Figure 4.5 (a). The GaAs0.96Bi0.04 

sample was grown at 420 
o
C at a rate of 1 µm per hour while the GaAs0.952Bi0.048 

sample was grown at 400 
o
C at a rate of 0.16 µm per hour. The room temperature PL 

Temperature (K)
50 100 150 200 250 300

P
L

 p
e

a
k
 e

n
e

rg
y 

(e
V

)

1.10

1.12

1.14

1.16

1.18

1.20

1.22

as-grown
annealed

x = 0.048

x = 0.04

(a)

Temperature (K)
0 50 100 150 200 250 300

N
o
rm

a
lis

e
d
 I

P
L

 I
n

te
n

s
it
y 

(a
.u

)

10-3

10-2

10-1

100

101

annealed 
as-grown

Wavelength (nm)

900 1000 1100 1200 1300 1400

P
L

 I
n
te

n
s
ity

 (
a

.u
)

as-grown, x = 0.04

annealed, x = 0.04

as-grown, x = 0.048

annealed, x = 0.048

6x

(b)



Chapter 4 Effects of rapid thermal annealing on GaAsBi alloys 

  

78 

 

intensity of the GaAs0.96Bi0.04 sample is ~ 6 times higher than the GaAs0.952Bi0.048 

sample, as shown in the inset of Figure 4.5 (b). Figure 4.5 (b) shows that the IPL 

intensity of the annealed piece reduces at a slower rate with temperature compared to 

the as-grown piece for temperatures above 100 K. This indicates that the density of 

defects in the sample reduces with thermal annealing.   

Since similar room temperature PL improvement ratio was achieved (~3 

times) in samples with x = 0.04 and 0.048 through thermal annealing, whilst 

reductions in localization effects in both differs, we may conclude that the PL 

improvement obtained does not necessarily originate from the reduction of Bi 

inhomogeneity. The small reduction of the 10 K PL FWHM for both samples 

indicates that alloy fluctuations in GaAs1-xBix are not easily removed by thermal 

annealing. Hence, the PL intensity improvement could be dominated by the reduction 

of other types of defects including arsenic and gallium related defects.  

4.4. Varying annealing duration 

Further optimization was carried out by varying the annealing time at a fixed 

annealing temperature. This section uses two additional GaAs1-xBix samples with x = 

0.042 and 0.058. The optimum annealing temperatures shown in Figure 4.3 were 

used; 700 
o
C for GaAs0.958Bi0.042 and 600 

o
C for GaAs0.942Bi0.058. PL measurements 

which were carried out before the annealing process show that the wavelength varies 

with position for this set of samples. The wavelength varies between 1102 – 1108 nm 

and 1206 – 1214 nm for GaAs0.958Bi0.042 and GaAs0.942Bi0.058, respectively.   

Figure 4.6 (a) shows that for the GaAs0.958Bi0.042 sample, the PL intensity of 

the annealed pieces increases by 2.6 to 3 times compared to the as-grown piece. The 

PL improvement ratio is almost independent of the annealing time. For the 

GaAs0.942Bi0.058 sample, the PL intensity of the annealed pieces increases with 

annealing time by factors of 1.1, 2 and 2.4 for annealing times of 3, 30 and 60 
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seconds, respectively. It is expected that the PL improvement ratio will increase to ~ 

3 with longer annealing time.  

 

Figure 4.6 The room temperature PL spectra of as-grown and annealed GaAsBi with Bi 

contents of (a) 0.042 and (b) 0.058.  
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4.5. Effects of thermal annealing on rough samples  

 

Figure 4.7 Integrated PL intensity versus annealing temperatures for GaAsBi samples with 

rough surfaces. The inset shows the 5 × 5 µm AFM image of the sample with x = 0.037.  

In this section, the effect of annealing on GaAs1-xBix samples with rough 

surfaces is presented. The rms roughness of these samples is ~10 nm as generated by 

5 x 5 µm AFM scans. The typical rms roughness for a mirror-like sample is between 

0.5 and 0.75 nm. Figure 4.7 shows the IPL intensity against annealing temperature 

for two GaAs1-xBix samples, whose Bi contents are 0.037 and 0.05. Even though the 

samples’ surfaces are not mirror-like, their room temperature PL intensities are still 

within an order of magnitude of those of the mirror-like samples. However, the PL 

FWHMs are much larger, at ~ 115 meV. Interestingly, annealing these samples 

causes no PL improvement or PL degradation, suggesting that the effects of 

annealing for GaAs1-xBix are also dependent on the sample surface roughness.   
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4.6. Summary 

The effects of rapid thermal annealing on the optical and structural properties 

of GaAs1-xBix alloys for x ranging from 0.022 to 0.065 were investigated. At room 

temperature, the annealed GaAs1-xBix showed a modest improvement (~ 3 times) in 

photoluminescence while the PL peak wavelength remained relatively unchanged. It 

was found that bismuth related defects are not easily removed by annealing and the 

PL improvement may be dominated by the reduction of other types of defects 

including arsenic and gallium related defects. Also, the optimum annealing 

temperature is Bi composition dependent. For samples with x < 0.048, the optimum 

annealing temperature is 700 
o
C but reduces to 600 

o
C for higher compositions.  
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Chapter 5 

Effects of Growth Parameters on 

GaAsBi Alloys 

5.1. Motivation 

The results in Chapter 4 show that ex-situ thermal annealing does not provide 

a significant PL improvement compared to the as-grown samples (~ 3 times 

improvement). Therefore, understanding the effect of each of the growth parameters 

is important in improving wafer quality. MBE growth optimization normally 

involves three main parameters, which are growth temperature, V/III flux ratio and 

growth rate. The effects of growth temperature and V/III ratio on the incorporation of 

Bi into GaAs have been discussed earlier in Chapter 1.  

However, the effect of growth rate is not widely reported. Recently, Ptak et al 

reported the presence of two growth regimes for the growth of GaAs1-xBix which 

depend on the growth rate [1]. However, the cause of the different growth regimes is 

not known. In this chapter, two growth parameters are investigated which are growth 

rate and As4/Bi BEP ratio. The GaAs1-xBix/GaAs interface abruptness also will be 

discussed.  
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5.2. Description of samples 

Material Thickness (nm) Growth temperature (
o
C) 

GaAs cap 100 370 

GaAs1-xBix layer 25 370 

GaAs buffer 500 580 

S.I (100) GaAs substrate 

Figure 5.1 Sample structure.  

 Figure 5.1 shows the structure of the GaAs1-xBix samples discussed in 

Sections 5.3 to 5.5. For Section 5.4, the growth rate was varied between 0.09 to 1 

µm/h while the As4/Ga BEP ratio was fixed at 22. For Section 5.5, the growth rate 

was fixed at 0.6 µm/h while the As4/Bi BEP ratio was varied between 130 to 75. The 

ratio was varied by changing the Bi flux while other growth parameters were fixed. 

5.3. RHEED observations 

 
(a) 

 
(b) 

Figure 5.2 The RHEED diffraction patterns observed from the [1�	1	0] azimuth during the 

growth of (a) the GaAsBi layer and (b) the GaAs capping layer.  

 Figure 5.2 (a) shows a 1× RHEED diffraction pattern observed from the 

[1�	1	0] azimuth during the growth of a GaAs1-xBix layer. For the [1 1 0] azimuth, a 

2× pattern was observed (RHEED not shown), forming a (2 × 1) Bi stabilized surface 

reconstruction during the GaAs1-xBix growth [2-4]. Ref. [4] observed two major 

surface reconstructions during GaAs1-xBix growth which are (2 × 1) and (1 × 3).  The 
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former is obtained when the As/Ga flux ratio is near stoichiometric while the latter is 

achieved at high As/Ga flux ratios. It was reported that samples grown on the (2 × 1) 

reconstructed surface have higher PL intensity and higher Bi content (more than 

double at a growth temperature of 300 
o
C) compared to samples grown on (1 × 3) 

reconstructed surfaces [4].  

 When growing the GaAs capping layer, the surface reconstruction changes 

from (2 × 1) to (1 × 3). The typical surface reconstruction for GaAs is (2 × 4). This 

observation suggests that the GaAs capping layer is grown with a Bi stabilized 

surface. The unincorporated Bi which accumulates on the surface during GaAs1-xBix 

growth continues to surface segregate during the GaAs capping layer growth. It is 

also possible that a dilute amount of Bi impurities is incorporated into the GaAs 

capping layer.  

5.4. Growth rate 

5.4.1. Photoluminescence and HR-XRD results 

Figure 5.3 (a) shows the room temperature PL peak wavelength as a function 

of GaAs1-xBix growth rate. For Bi BEP of 5.2 × 10
-8 

mBar, the PL peak wavelength 

increases from 980 to 1155 nm as the growth rate is increased from 0.09 to 0.23 

µm/h. However, the PL peak wavelength decreases to 1067 nm when the growth rate 

is further increased to 0.5 µm/h. Therefore, a maximum PL peak wavelength of 1155 

nm is achieved at the growth rate of 0.23 µm/h. For Bi BEP of 1.1× 10
-7 

mBar, a 

similar trend was observed. However, the maximum PL wavelength is red-shifted to 

1287 nm at the growth rate of 0.5 µm/h. The HR-XRD spectra in the inset of Figure 

5.3 (a) show that, for a given Bi BEP, higher Bi concentrations are achieved at higher 

growth rates. Hence, the change in PL peak wavelength with growth rate can be 

attributed to the increase of Bi concentration.  
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Figure 5.3 The effect of GaAsBi growth rate on (a) PL peak wavelength and (b) room 

temperature PL intensity. The inset shows the HR-XRD spectra for samples grown with Bi 

BEP of 5.2 × 10
-8 

mBar. 

It is well-known that Bi has a strong tendency to surface segregate and form a 

Bi floating layer. Therefore, Bi atoms which reach the growing surface will be either 

i) incorporated into the lattice ii) segregated to the surface and form the Bi floating 

layer or iii) get desorbed. The accumulation of Bi on the surface is highly dependent 

on the growth rate [1]. At high growth rates, higher fractions of Bi adatoms are being 

incorporated and less are being segregated to the surface. This is because high 

growth rates effectively bury Bi adatoms into the lattice by reducing the amount of 

time for the Bi to surface segregate [1]. Hence, Bi concentration increases with 
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growth rate. Conversely, low growth rates provide a sufficient time for Bi adatoms to 

surface segregate and, consequently, avoidbeing incorporated.  

Since high growth rates reduce the segregation of Bi atoms, the creation of a 

Bi-rich surface and the onset of the formation of Bi droplets will be delayed. All 

samples shown in Figure 5.3 did not show any presence of Bi droplets. However, this 

finding contradicts that of Lu et al, which proposed that the density of Bi droplets 

could be reduced by utilizing a low growth rate as it maximizes the chance of excess 

Bi evaporating [5].  

In order to maintain a constant As4/Ga BEP ratio, the increase of growth rate 

is also accompanied by an increase of arsenic flux. The supply of a high arsenic flux 

increases the competition between arsenic and Bi for gallium sites. For Bi BEP of 5.2 

× 10
-8 

mBar, the As4/Bi BEP ratios are 85 and 212 for the samples grown at 0.23 and 

0.5 µm/h, respectively. Therefore, increasing the growth rate beyond the optimum 

value while maintaining a constant Bi flux will eventually lead to the reduction of Bi 

concentration as observed in Figure 5.3 (a).   

Figure 5.3 (b) shows PL intensity versus growth rate for the samples 

discussed in Figure 5.3 (a). The PL intensity initially increases with growth rate due 

to higher Bi composition (discussed earlier in Chapter 3). However, the PL intensity 

reduces at high growth rates. In order to make a fair comparison, samples with 

similar PL peak wavelength are compared. For Bi BEP of 5.2 × 10
-8 

mBar data, the 

sample grown at 0.16 µm/h has a PL intensity of almost 3 times higher than that of 

the sample grown at 0.5 µm/h, even though both samples have similar PL peak 

wavelengths (1067 nm). This is due to the shortage of surface Bi (less surfactant 

effect) as a result of relatively low Bi flux with respect to the growth rate. The use of 

high growth rate requires the supply of high Bi flux in order to maintain a sufficient 

Bi surfactant. The shortage of Bi surfactant will result in a rougher sample surface 

and degradation of the optical quality. This is similar to the case of surfactant-free 

GaAs grown at low temperatures [6, 7]. Similarly, growing GaAs1-xBix at slow 

growth rates requires relatively low Bi flux. This is because the creation of a Bi-rich 
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surface can easily be achieved as higher fractions of Bi atoms are being segregated at 

slow growth rates. Over-supplying the Bi flux with respect to the growth rate will 

eventually lead to the formation of Bi droplets.   

5.4.2. SIMS and TEM results 

 

Figure 5.4 The Bi concentration profile obtained by SIMS for a 200 nm thick GaAsBi 

sample grown at 0.18 µm/h. 

In order to investigate the effect of growth rate on the structural properties of 

GaAs1-xBix, Secondary Ion Mass Spectrometry (SIMS) and Transmission Electron 

Microscopy (TEM) analyses were carried out. All SIMS measurements reported in 

this work were carried out by Dr. D. E. Sykes from Loughborough Surface Analysis 

Ltd. This sub-section uses additional samples to the one described in Section 5.2. 

Figure 5.4 shows the Bi concentration profile obtained by SIMS for a 200 nm thick 

GaAs1-xBix sample grown at 0.18 µm/h (slow growth rate). The SIMS measurement 

was carried out using caesium ion bombardment with an impact energy of 14.5 keV.   

The SIMS profile shows two important features, i) a plateau Bi concentration 

across the GaAs1-xBix layer and ii) Bi concentration grading at both of the GaAs1-

xBix/GaAs interfaces. The plateau Bi profile across the active region is expected. 
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However, Bi concentration reaches a plateau at thickness ~ 67 nm from the intended 

bottom interface and reaches a minimum after ~ 54 nm from the intended top 

interface. The interface non-abruptness can be attributed to the gradual build-up or 

decay of the Bi floating layer. The transient build-up of the Bi floating layer at the 

onset of GaAs1-xBix growth results in a reduced number of Bi adatoms available for 

incorporation. Hence, a region of graded and Bi-deficient GaAs1-xBix layer will be 

formed at the interface. When the GaAs capping layer is grown, the Bi floating layer 

will be depopulated and result in another GaAs1-xBix graded layer at the top interface. 

Similar interface broadening has been observed in InGaAs/GaAs and GaAsSb/GaAs 

material systems due to the formation of indium and  antimony floating layers, 

respectively [8-10] 

 

Figure 5.5 PL spectra of GaAsBi samples with various thicknesses grown at a rate of 0.18 

µm/h.  

The SIMS profile in Figure 5.4 shows that Bi concentration reaches a plateau 

at thickness ~ 67 nm from the intended interface. However, this value does not 

represent the real nominal thickness as it also includes the broadening effects induce 

by SIMS measurements. In order to estimate the nominal layer thickness (thickness 

required to achieve the nominal Bi concentration), a set of GaAs1-xBix wafers with 
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varying thicknesses were studied. The samples were grown under identical growth 

conditions at a rate of 0.18 µm/h. The PL data for samples with thicknesses of 5, 12, 

30 and 160 nm are shown in Figure 5.5. The PL peak wavelength initially shows a 

trend of red-shift with increasing thickness. The samples with thicknesses of 5, 12 

and 30 nm have PL peak wavelengths of 1017, 1073 and 1143 nm, respectively. 

However, the PL peak wavelength is similar for the 30 and 160 nm thick samples.  

The emission wavelength for the 5 nm thick sample is expected to be blue-

shifted with respect to bulk GaAs1-xBix due to quantum well effects. The amount of 

blue-shift is predicted to be 30 nm for a 5 nm thick GaAs1-xBix (x = 0.037) quantum 

well and becomes negligible for well thickness of more than 10 nm [11]. However, 

the blue-shift between the 5 and 12 nm thick GaAs1-xBix is 53 nm, which is larger 

than the predicted blue-shift induced by the quantum effects. This suggests that the 

Bi concentration varies between the samples. The increase of Bi concentration with 

thickness (5 to 30 nm) verifies the presence of a GaAs1-xBix grading layer at the 

interface. For 30 and 160 nm thick samples, the PL wavelength is similar because the 

GaAs1-xBix layer for both samples is thick enough to reach the nominal Bi 

concentration or the plateau region. This result suggests that the nominal layer 

thickness for this growth condition is between 12 and 30 nm from the interface.  

For an accurate assessment on the quality of GaAsBi/GaAs interfaces, a TEM 

image (measured by T. Walther) for a sample grown at 0.18 µm/h is shown in Figure 

5.6. The sample has a 20 nm GaAsBi layer and a 50 nm GaAs cap. The cross-section 

TEM image verifies the presence of a Bi concentration grading at both of the 

GaAsBi/GaAs interfaces. The Bi concentration reaches its nominal value after ~ 8 

nm from the intended bottom interface and reaches a minimum after ~ 9 nm from the 

intended top interface. The nominal thickness obtained by TEM is much smaller than 

the range estimated by PL in Figure 5.5 (12 – 30 nm). At the moment it is not clear 

what causes the difference in the estimated nominal thickness. One possible 

explanation is over-estimation of the bismide layer thickness (for samples in Figure 

5.5) due to growth rate miscalibration. This problem is not an issue for TEM analysis 



Chapter 5 Effects of Growth Parameters on GaAsBi Alloys 

 

91 

 

as the layer thickness was determined by analyzing the sample’s cross section. In the 

case of GaAs0.8Sb0.2, the nominal layer thickness was reported to be ~ 8 nm [10]. 

This value is similar to the estimated nominal thickness obtained by TEM.  

 

Figure 5.6 The TEM annular dark field (ADF) image for sample LE2 grown at a rate 

of 0.18 µm/h. The growth direction is towards the right. 

Next, the structural quality of GaAs1-xBix samples grown at high growth rate 

is investigated. Figure 5.7 shows the TEM images acquired in (002) dark field for 

samples grown at 1 µm/h with GaAs1-xBix thicknesses of 25 and 80 nm. The TEM 

images were taken by D. F. Reyes from University of Cadiz, Spain (research 

collaborator). The GaAs1-xBix layer can be clearly identified as the image brightness 

varies with Bi concentration. Both samples show similar Bi distributions for the first 

20 nm. The area close to the bottom interface shows a higher Bi concentration. 

However, the Bi content progressively decays beyond 5nm. The decay is unexpected 
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as the growth conditions remain the same. For the 80 nm thick sample, the Bi 

concentration is almost constant for the last 60 nm at approximately half of the 

maximum Bi content. These results are in contrast with the distribution of Bi in the 

samples grown at slow growth rate shown in Figure 5.6. 

  

 
(a) 

 
(b) 

Figure 5.7 The TEM (002) dark field image colour map (sensitive to composition) of 

GaAsBi layer with thickness of (a) 25 nm and (b) 80 nm. The samples were grown at 1 

µm/h. 

The reason which causes the decay of Bi concentration for thickness > 5 nm 

is unclear. However, one possible explanation is the reduction to the amount of 

gallium available for Bi bonding. When the GaAs1-xBix growth starts, the layer is 

initially grown on a surface with a very low coverage of surface Bi. The high growth 

rate effectively burys Bi adatoms into the lattice while the unincorporated Bi forms a 

floating layer. The population of the floating layer will eventually change the surface 
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to become Bi-rich. The decay of Bi composition may occur when this surface 

transition happens. This is because the presence of a high density of Bi floating layer 

on the surface may reduce the access between Bi and gallium. The reduction of the 

amount of gallium available for Bi bonding results in the reduction of Bi 

concentration. Conversely, for GaAs1-xBix grown at slow growth rates, the formation 

of Bi concentration overshoot is avoided as Bi is being incorporated at much lower 

rate during the build-up of the floating layer. Hence, the effect of the surface 

transition is not so pronounced. Figure 5.8 illustrates the effect of the surface 

transition during GaAs1-xBix growth on Bi concentration for samples grown at high 

growth rates. The second possible explanation is that the incorporation of a high 

fraction of Bi in the first few nm increases the overall system strain. This in turn 

reduces the solubility of the incoming Bi atoms and results in the reduction of Bi 

concentration.  

 

Figure 5.8 Illustration of the effect of the surface transition on Bi incorporation for samples 

grown at high growth rates.   

5.5. As4/Bi BEP ratio 

Sample name Bi BEP  

(×10
-7

 mBar) 

As4 BEP  

(×10
-5

 mBar) 

As4/Bi BEP ratio 

STC1B 1.1 1.43 130 

STC1C 1.5 1.43 95 

STC1E 1.9 1.43 75 

Table 5.1 Summary of samples with growth parameters. 
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Figure 5.9 PL spectra of GaAsBi samples grown with different As4/Bi BEP ratios. 

Three GaAs1-xBix samples grown with different As4/Bi BEP ratios are 

compared. The samples were grown at a rate of 0.6 µm/h and the growth conditions 

are summarised in Table 5.1. Figure 5.9 shows the room temperature PL data of 

GaAs1-xBix samples grown with As4/Bi BEP ratios of 130, 95 and 75. Initially, 

decreasing the As4/Bi BEP ratio from 130 to 95 causes the PL peak wavelength to 

red-shift from 1208 to 1240 nm. The shape of the PL spectra remains relatively 

unchanged with FWHM of ~ 70 meV. However, the PL spectra changes drastically 

for the As4/Bi BEP ratio of 75, showing the presence of two main peaks at 1070 and 

1380 nm. The PL intensity also reduces by at least an order of magnitude compared 

to sample STC1C. The origin of the double PL peaks is unclear. However, 

possibilities include the onset of the formation of Bi droplets or emission from the 

capping layer due to the large incorporation of Bi impurities. This result suggests that 

decreasing the As4/Bi BEP ratio or increasing the Bi flux to enhance Bi incorporation 

is limited by the formation of double PL peaks.  

 SIMS analysis was used to evaluate the structural quality of the best sample, 

STC1C. The Bi concentration profile for sample STC1C is shown in Figure 5.10. The 

SIMS measurement was carried out using oxygen ion bombardment with an impact 

energy of 3 keV. The relatively low impact energy was used in order to reduce SIMS 

broadening effects.  
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Figure 5.10 Bi concentration profiles obtained by SIMS for sample STC1C grown with an 

As4/Bi BEP ratio of 95. 

The SIMS profile shows that both the GaAs1-xBix/GaAs interfaces are not 

abrupt due to the gradual build-up and decay of the Bi floating layer. The Bi 

concentration reaches a maximum 13 nm from the intended bottom interface and 

reaches a minimum 8 nm after the intended top interface. The Bi concentration 

across the GaAs1-xBix layer also shows a progressive decay after reaching a 

maximum, similar to that observed in Figure 5.7. For the GaAs capping layer, Bi 

concentration is low but remains slightly higher than the noise floor. This suggests 

that a dilute amount of Bi impurities are incorporated into the capping layer. A sharp 

spike near to the sample’s surface is an artefact from SIMS and can be neglected. 
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5.6. GaAsBi quantum wells 

 

Figure 5.11 PL spectra of GaAsBi QWs grown with different periods. The reference sample 

is an InGaAs 3-QWs.  

In this section, the properties of GaAs1-xBix quantum well (QW) samples are 

evaluated. The thicknesses of the GaAs1-xBix wells and the GaAs barriers are 7 and 

20 nm, respectively. The active region is sandwiched between 500 nm of GaAs 

buffer and 120 nm of GaAs capping layer. The GaAs1-xBix layer was grown at 370 

o
C at a rate of 0.6 µm/h.  

Figure 5.11 shows the room temperature PL data of GaAs1-xBix QWs with 

periods of one, three and six. Interestingly, the PL intensity of the GaAs1-xBix 

multiple QWs is ~ 4.5 times higher compared to the PL intensity of an In0.15Ga0.85As 

reference sample (grown at 540 
o
C using a standard V90 MBE). The reference 

sample is a 3-period QW with a well thickness of 10 nm. The three and six-period 

QW samples have a similar PL wavelength of 1075 nm while the single QW sample 

has a significantly longer wavelength of 1205 nm. For typical III-V alloys (i.e 

InGaAs), varying the QW periods should not affect the emission wavelength.   
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 Since the quantum well samples were grown at relatively high growth rate, a 

pronounced effect due to surface transition is expected. The PL data in Figure 5.11 

suggest that the Bi concentration in the first QW is significantly higher compared to 

other QWs. A weak shoulder observed at long wavelength for the multiple QW 

samples may be attributed to emission from the first QW while the peak at 1075 nm 

originates from the (n + 1) QWs (where n is an integer). The significantly lower Bi 

concentration in (n + 1) QWs suggests that they were grown on Bi-rich surfaces 

while the first QW with high Bi content was grown on a lowly populated surface Bi. 

This result is consistent with the Bi concentration decay observed by TEM and SIMS 

in Figure 5.6 and Figure 5.9, respectively. It also suggests that the population of the 

Bi floating layer is not significantly affected after the GaAs barrier growths.  

5.7. Summary 

Two growth parameters were investigated which are growth rate and As4/Bi 

BEP ratio. It was found that growth rate significantly affects Bi incorporation and the 

accumulation of surface Bi. High growth rates efficiently bury Bi adatoms and 

consequently incorporate a higher fraction of Bi in GaAs. Hence, the accumulation 

of surface Bi is reduced compared to low growth rates. High growth rates also 

require relatively high Bi fluxes in order to avoid the shortage of Bi surfactant which 

will lead to the degradation of the optical quality.  

The presence of Bi concentration overshoots near to the GaAs/GaAs1-xBix 

interface was observed by TEM and SIMS for samples grown at relatively high 

growth rates (> 0.6 µm/h). Bi concentration started to decay after 5 nm of GaAs1-xBix 

growth, probably due to the reduction to the amount of gallium available for Bi 

bonding when the surface becomes Bi-rich. However, this effect was not observed 

for samples grown at low growth rates due to the slow incorporation of Bi during the 

population of the floating layer.  
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In addition, decreasing the As4/Bi BEP ratio has been shown to increase Bi 

concentration. However, this is limited by the formation of double PL peaks which is 

also accompanied by PL intensity degradation. 
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Chapter 6 

Conclusion 

6.1  Conclusion 

A detailed and systematic study of the optical and structural properties of 

GaAs1-xBix alloys on GaAs has been carried out. The temperature dependent PL 

shows that excitons are localized at low temperatures. The band gap was found to 

vary more weakly with temperature than in GaAs. Furthermore, the band gap of 

GaAs1-xBix can be described by a modified VBAC model which considers the 

increase of valence band maxima as well as the reduction of conduction band minima 

with Bi concentration.  

The optical quality of GaAs1-xBix is highly dependent on the Bi 

concentration. The incorporation of Bi in GaAs reduces the density of gallium and/or 

arsenic-related defects as well as introducing Bi-related defects. For dilute amounts 

of Bi (x < 0.025), the crystal quality improves due to Bi surfactant effects. However, 

a further increase of Bi causes degradation to the material quality due to a significant 

amount of Bi-related defects.  

In order to improve the optical quality of GaAs1-xBix, a rapid thermal 

annealing study has been carried out. At room temperature, the annealed GaAs1-xBix 

showed a modest improvement (~ 3 times) in PL while the PL peak wavelength 

remained relatively unchanged. It was found that the PL improvement may be 

dominated by the reduction of non-Bi related defects. The optimum annealing 

temperature is also Bi composition dependent. For samples with x < 0.048, the 

optimum annealing temperature is 700 
o
C but it reduces to 600 

o
C for higher 

compositions.  
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The effects of growth parameters to the properties of GaAs1-xBix have been 

evaluated. It was found that growth rate significantly affects Bi incorporation and the 

accumulation of surface Bi. Higher Bi concentrations and lower populations of 

surface Bi can be achieved at high growth rates due to the efficient burying of Bi 

adatoms into the lattice. However, for samples grown at relatively high growth rates 

(> 0.6 µm/h), Bi concentration overshoot near to the GaAs/GaAs1-xBix interface was 

observed. This effect was not observed for samples grown at low growth rates due to 

slow incorporation of Bi during the population of the Bi floating layer. Decreasing 

the As4/Bi BEP ratio has been shown to increase Bi concentration but is limited by 

the formation of Bi double PL peaks. 

6.2  Suggestions for future work 

1. The growth of a superlattice requires an abrupt interface between the layers. 

However, this work found that GaAs1-xBix/GaAs interfaces are not abrupt due 

to Bi compositional grading. Therefore, a study to improve the GaAs1-

xBix/GaAs interface abruptness is suggested. Kaspi et al proposed that the 

interface abruptness between GaAs/GaAsSb can be improved by soaking the 

GaAs surface with antimony prior to GaAsSb growth [1]. The antimony 

population also must be optimized so that it is equivalent to the amount 

expected on the GaAsSb surface during growth at steady state [1]. For a 

GaAsSb/GaAs interface, compositional abruptness can be enhanced by 

‘flashing off’ the antimony floating layer with arsenic flux before the GaAs 

growth [1]. However, Wu et al found that soaking the GaAs surface with 

antimony prior to GaAsSbN growth lead to lower PL intensity and larger 

FWHM compared to simultaneous shutter opening [2].   

 

2. The high temperature performance of GaAs1-xBix QW based devices might be 

poor due to lack of electron confinement. This is because Bi composition 

mainly affects the valence band offset. Therefore, the use of AlGaAs cladding 

layers is important to improve the electron confinement. However, the top 
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AlGaAs cladding might have to be grown at ~ 300 to 400 
o
C, similar to the 

growth temperature of the GaAs1-xBix layer. The growth of AlGaAs at low 

temperatures (optimum growth temperature ~ 600 
o
C) might increase defect 

densities and carrier trapping at the cladding layer. The effect of a Bi 

surfactant on low temperature growth of AlGaAs is also unknown. Once high 

quality GaAs1-xBix QWs with AlGaAs cladding can be achieved, a full laser 

structure can be grown. To date, only an optically pumped GaAs1-xBix laser 

has been reported in the literature [3].  

 

3. Recently, Norman et al have carried out a TEM study and observed the 

presence of CuPtB-(111) ordering in GaAs1-xBix for x up to 0.1 [4]. The 

atomic ordering was attributed to the (2 × 1) surface reconstruction during 

GaAs1-xBix growth. Atomic ordering also has been observed in other mixed 

anion III-V semiconductors such as InAsSb and GaAsSb [5, 6]. The presence 

of atomic ordering may affect the optical properties of semiconductor alloys 

such as PL FWHM broadening and band gap blue-shift [7]. Therefore, a 

systematic study to investigate the effect of atomic ordering on the optical 

and electrical properties of GaAs1-xBix would be useful.  
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Appendix A:     The Valence Band Anti-Crossing Model 

The valence band of GaAs1-xBix is described by, 

							�±�GaAsBi� = �
������ + ��� ± ���
������ − ����� + 4�����
2 													�A. 1� 

Assuming that the conduction band is constant, the band gap of GaAs1-xBix is 

																												�������� � = �!������ −	�"������ �	,																																					(A.2) 

where Ec is the conduction band minimum of GaAs. Since,  

 																												��� =	�
������ −	∆�%�&'��																																                         (A.3) 

and 																												�������� = 	�!������ −	�
������	,																																													(A.4) 

 

where ∆EVBM-Bi is the energy difference between the VBM of GaAs and the Bi level. 

Using Equation (A.1) to (A.4), the band gap of GaAs1-xBix can be simplified to  

 

			�������� � = �!������ −	�
������ + ��� + ���
������ − ����� + 4�����
2  

																								= �!������ −	2�
������ −	∆�%�&'�� + ��∆�%�&'���� + 4�����
2  

		= �������� − 12 ���∆�%�&'���� + 4����� − ∆�%�&'��� 

				= �������� − ∆�%�&'��2 �(�∆�%�&'���� + 4������∆�%�&'���� 		 − 1� 

																											= �������� − ∆�%�&'��2 �(1 + 4������∆�%�&'����		 − 1� 
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�������� � 	= �������� −	∆�%�)* 	,																																																																				��. 5� 

 

Here, ∆EVBAC  refers to the band gap reduction due to bismuth incorporation, which is 

given by, 

 

∆�%�)* = ∆�%�&'��2 ,(1 + 4������∆�%�&'����		 − 1-																																																 ��. 6� 
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Appendix B:  Sample details 

NR = Not recorded 

 

Sample 

name 

 

Section(s) 

 

Bi content 

(*estimated 

by PL) 

GaAsBi growth  

GaAsBi 

structure 

Growth  

temp. (
o
C) 

Growth rate 

 (µm/h) 

As4 sublimator  

temp. (
o
C),  

BEP (x10
-6

 mBar) 

As  

cracker 

Ga cell temp. (
o
C), 

BEP (×10
-7

 mBar)  

Bi cell temp. (
o
C),  

BEP (×10
-7

 mBar) 

GC 3.2.2 0.014 400 0.16 320, NR � 880, NR 500, NR 50 nm 

G4 3.2.2 0.021 400 0.16 320, NR � 880, NR 525, NR 160 nm 

BA 3.2 0.03 400 0.16 320, NR � 885, NR 520, NR 160 nm 

X   3.3 0.005 420 0.16 318, NR � 930, NR 510, NR 100 nm 

Y 3.3 0.009 420 0.16 318, NR � 930, NR 520, NR 100 nm 

Z 3.3 0.025 420 0.16 318, NR � 930, NR 530, NR 100 nm 

GB 3.3 0.027 400 0.16 320, NR � 880, NR 520, NR 50 nm 

GP 3.3 0.036 400 0.16 320, NR � 880, NR 545, NR 50 nm 

GR 3.3 0.045 400 0.16 320, NR � 880, NR 550, NR 50 nm 

LR 3.3, 4.3 0.022 400 0.16 322, NR � 880, NR 500, NR 25 nm 

LS 3.3, 4.3 0.033 400 0.16 322, NR � 880, NR 510, NR 25 nm 

LV 3.3, 4.3 0.048 400 0.16 322, NR � 880, NR 520, NR 25 nm 
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Sample 

name 

 

Section(s) 

 

Bi content 

(*estimated 

by PL) 

GaAsBi growth  

GaAsBi 

structure 

Growth  

temp. (
o
C) 

Growth rate 

 (µm/h) 

As4 sublimator  

temp. (
o
C),  

BEP (x10
-6

 mBar) 

As  

cracker 

Ga cell temp. (
o
C), 

BEP (×10
-7

 mBar)  

Bi cell temp. (
o
C),  

BEP (×10
-7

 mBar) 

LT 3.3, 4.3 0.06 400 0.16 322, NR � 880, NR 530, NR 25 nm 

STB0DT 4.3 0.04 420 1.0 380, 17 � 1022, 8.2 550, 1.3 10 nm 

STB02G 4.3 0.065 380 0.18 315, 4.5 � 924, 2.4 530, NR 50 nm 

STB0GW 4.4, 5.4.1 0.042 370 0.36 380, 6.8  � 980, 3.0 520, NR 25 nm 

STC01B 4.4 0.058 400 0.6 380, 14 � 1030, NR 543, 1.1 25 nm 

STB02C 4.5 0.037 400 0.18 324, NR � 896, NR 550, NR 44 nm 

STB02H 4.5 0.05 400 0.18 315, NR � 924, NR 530, NR 50 nm 

STB0GU 5.4.1 0.02* 370 0.09 380, 1.6 � 900, 0.72 520, 0.53 25 nm 

STB0GV 5.4.1 0.036* 370 0.16 380, 2.9 � 935, 1.4 520, 0.52 25 nm 

STB0GS 5.4.1 0.051* 370 0.23 380, 4.6 � 950, 2.0 520, 0.53 25 nm 

STB0GT 5.4.1 0.036* 370 0.50 380, 11.5 � 997, 5.0 520, 0.52 25 nm 

STC13 5.4.1 0.027* 370 0.09 380, 1.8 � 902, 0.74 540, 1.1 25 nm 

STC19 5.4.1 0.048* 370 0.36 380, 7.8 � 989, 3.4 543, 1.1 25 nm 

STC15 5.4.1 0.071* 370 0.50 380, 11.5 � 1004, 5.0 540, 1.0 25 nm 

STC1B 5.4.1, 5.5 0.059* 370 0.61 380, 14.3 � 1030, 6.2 543, 1.1 25 nm 

STC1C 5.4.1, 5.5 0.064* 370 0.61 380, 14.3 � 1031, 6.2 550, 1.5 25 nm 
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Sample 

name 

 

Section(s) 

 

Bi content 

(*estimated 

by PL) 

GaAsBi growth  

GaAsBi 

structure 

Growth  

temp. (
o
C) 

Growth rate 

 (µm/h) 

As4 sublimator  

temp. (
o
C),  

BEP (x10
-6

 mBar) 

As  

cracker 

Ga cell temp. (
o
C), 

BEP (×10
-7

 mBar)  

Bi cell temp. (
o
C),  

BEP (×10
-7

 mBar) 

STB064 5.4.2 0.051 370 0.18 324, 6.6 � 923, 2.2 530, 0.5 200 nm 

H6 5.4.2 0.027* 400 0.18 320, NR � 885, NR 550, NR 5 nm 

H8 5.4.2 0.037* 400 0.18 320, NR � 885, NR 550, NR 12 nm 

H9 5.4.2 0.049* 400 0.18 320, NR � 885, NR 550, NR 30 nm 

H5 5.4.2 0.049* 400 0.18 320, NR � 885, NR 550, NR 160 nm 

LE2 5.4.2 0.056 400 0.18 322, NR � 880, NR 540, NR 20 nm 

STB0DP 5.4.2 0.035 370 1.0 380, 17 � 1022, 8.3 550, 1.4 25 nm 

STB0DI 5.4.2 0.033 370 1.0 380, 17 � 1022, 8.5 550, 1.4 80 nm 

STC1E 5.5 0.036*, 

0.083* 

370 0.6 380, 14.3 � 1031, 6.2 562, 1.9 25 nm 

New flux monitor installed 

STC2B 5.6 0.059* 370 0.6 395, 14.7 � 1010, 1.1 540, 2.7  7 nm SQW 

STC29 5.6 0.037* 370 0.6 395, 14.7 � 1010, 1.1 540, 2.6 7 nm 3QW 

STC2F 5.6 0.038* 370 0.6 395, 14.7 � 1010, 1.1 540, 2.8 7 nm 6QW 
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