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Abstract

A signi�cant number of RNA viruses assemble their protein containers and

genomic material simultaneously. Here the implications of this protein-RNA

co-assembly are investigated using an extended version of a model �rst pro-

posed by Adam Zlotnick in 1994 (Zlotnick, 1994). The inspirations for this ex-

tended model are the cases of bacteriophage MS2 and the STMV virus, viruses

that have been well characterised experimentally. Example pathways of RNA

virus assembly have been enumerated and kinetic simulations have been run on

these networks. The results show the most likely pathways of virus assembly

and the concentrations of the intermediates. This work will also demonstrate

how kinetic traps may be avoided when proteins are able to bind RNA during

assembly. Additionally modelled are DNA cages, which are three-dimensional

shapes made from double-helical DNA molecules. Such cages have been seen

within viruses but may also be constructed arti�cially. This model has been

used to produce energetically optimised designs for icosidodecahedron-shaped

DNA cages.
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Chapter 1

Introduction

Understanding the assembly of the bacteriophage MS2 has been the main

inspiration for the construction of models that take the co-operative roles of

the genomic RNA and viral protein into account. The bacteriophage MS2 is

a well studied model organism in the �eld of virus research. It is also the

subject of an ongoing and productive collaboration with Prof. Peter Stockley

and colleagues at The Astbury Centre for Structural Molecular Biology in

Leeds, whose research has greatly in�uenced this thesis. After introducing

the known assembly and structural aspects of the MS2 bacteriophage, it is

shown how the constraints imposed by the RNA during capsid assembly can

be modelled via Hamiltonian paths, a mathematical concept from graph theory.

This Hamiltonian path model has consequences for the ensemble of assembly

intermediates and the kinetics of the virus assembly

A further virus, Satellite tobacco mosaic virus (STMV), will also be in-

troduced to demonstrate how the Hamiltonian path model applies to di�erent

assembly scenarios. Finally the possible virus modelling methods in the liter-

ature will be discussed.

1.1 Introduction To Bacteriophage MS2

MS2 is a bacteriophage that infects E. coli (see �gure 1.1). In 1976 the RNA

of this virus became the �rst genome ever to be sequenced (Fiers et al., 1976).

Since this time many more extensive biochemical and structural studies have

become available on MS2. This makes MS2 an ideal test system on which to

base a model of RNA virus formation and it is the inspiration for the resulting

model.

11
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Figure 1.1: MS2 virus particles infecting an E. coli bacterium (Ackermann,
2006), the black bar represents 100 nm.

The MS2 virus has the same symmetry as an icosahedron, allowing its

capsid proteins to �t into quasi-equivalent positions around the three-fold and

�ve-fold axes of symmetry. In the Caspar-Klug classi�cation of viral capsids,

the MS2 virus is a T=3 virus (Casper and Klug, 1962) i.e. it has 180 capsid

proteins. T=3 viruses are relatively simple; for example MS2 contains only 4

genes. The wild-type MS2 virion consists of a single-stranded RNA genome

of 3,569 nucleotides surrounded by a protein capsid of coat protein and a

single maturation protein that is important for infection. The coat protein

�rst forms dimers of which there are two main conformations, an A/B and a

C/C conformation as shown in �gure 1.2. The crystal structure of the virus

is shown in �gure 1.3(a), in comparison with the tiling representing its surface

structure in �gure 1.3(b). The B monomer of the A/B dimer conformation has

(a) (b)

Figure 1.2: (a) A dimer in the symmetric C/C conformation and (b) in the
asymmetric A/B conformation. Note the �ipped FG loop in the asymmetric
A/B monomer is the main source of asymmetry. This more compact FG loops
allows the dimers to bind together around a �ve-fold axes. (Reproduced from
(Toropova et al., 2008)).

a �ipped FG-loop allowing �ve copies of the dimers to meet around the �ve-

fold axes without steric clashes. As a result, A/B dimers form pentamers of

dimers around the �ve-fold axes of the MS2 capsid, whilst the C/C conformers
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only form part of the hexamers around the three-fold axes of the virus capsid.

In the �nal capsid there are 60 dimers in the A/B conformation and 30 in the

C/C conformation.

(a) (b) (c)

Figure 1.3: Crystal structure showing the relative positions of the coat protein
dimers (reproduced from (Toropova et al., 2008)). Red C/C dimers sit on the
two-fold axes of the virus and blue/green A/B dimers form clusters around
�ve-fold axes and, interspersed with C/C dimers, in clusters of six around
three-fold axes. (b) A schematic representation of the layout of the capsid. (c)
An icosahedron that has the same symmetry as the capsid.

The coat protein dimer switches from a C/C into an A/B conformer by the

binding of an RNA stem-loop via an allosteric e�ect (Stockley et al., 2007),

(Dykeman and Twarock, 2010), (Morton et al., 2010). In the biological ex-

periments described in (Stockley et al., 2007) RNA �lled capsids are observed

within 10 minutes, in comparison to days without RNA being present, which

indicates the high e�ciency of assembly in the presence of RNA.

The coat protein dimer shows di�erent binding energies to di�erent RNA

stem-loops (Lago et al., 2001). In particular there is a high-a�nity 19 nu-

cleotide stem-loop at almost the exact centre of the MS2 genomic RNA, re-

ferred to as the translational repressor or TR sequence. This TR coat protein

binding site is located at the ribosome binding site of the replicase MS2 gene.

The binding of coat protein to this site is important in regulating the replicase

translation. It is also thought that the TR site is the �rst in the genome to

bind a coat protein dimer and therefore act as a nucleation site on which to

grow the rest of the capsid (Stockley et al., 2007).

First experiments probing the cooperative roles of genomic RNA during

capsid assembly only use multiple copies of the TR RNA sequence, instead of

the full-length genome (Dykeman and Twarock, 2010) (Knapman et al., 2010).

This allowed for the conduction of experiments that would not be possible with

the full length genome such as detailed mass spectrometry of intermediates
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(Knapman et al., 2010). Interestingly, assembly of the MS2 capsid in the

presence of the full length genome progresses more slowly than that based on

copies of TR alone (Rolfsson et al., 2008). This suggests that it takes longer

to pack the greater amount of RNA present in the full genome. As there are

60 A/B dimers in the capsid, there must be 60 stem-loops of RNA binding

to them to impart the correct conformation change. Since there are only a

few RNA stem loops that bind the A/B dimers with high a�nity (Lago et al.,

2001), it may be concluded that most stem-loops bind only weakly with the

dimers.

1.2 Visualisations of the MS2 RNA

It is possible to visualise the location of the MS2 RNA using cryo-electron

microscopy (cryo-EM) (Toropova et al., 2008) (Van Den Worm et al., 2006),

a technique that involves imaging the capsid using an electron microscope

after freezing to 22 K. These low-resolution images can then be combined

computationally and a 3D image of resolution typically around 9 Å produced

(Toropova et al., 2008), see �gure 1.4 for an example of the raw images used.

The resulting RNA images show long and short segments of RNA density

beneath the protein capsid, organised in a polyhedral shell arrangement, and

further density within the virus making up a second shell of RNA. Two views

of the reconstructions are shown in �gure 1.5 (Toropova et al., 2008), (Koning

et al., 2003). From these images the possible places where the RNA is located

can be mapped onto the virus tiling in �gure 1.3(b). Figure 1.6 shows the

RNA locations in the outer shell of RNA on an icosahedral net of the virus.

Figure 1.4: Cryo-electron microscopy images of MS2 (Van Den Worm et al.,
2006).

The cryo-EM reconstructions shown in �gure 1.5 from (Toropova et al.,

2008) and (Koning et al., 2003) are icosahedrally averaged. This is because the

only reference to align the virus images are the symmetry axes and di�erent



1.3. HAMILTONIAN PATH MODEL FOR RNA VIRUS FORMATION 15

(a) (b)

Figure 1.5: Cryo-electron microscopy reconstructions of bacteriophage MS2.
(a) showing a slab viewed along a three-fold axis (Toropova et al., 2008) and
(b) the outer shell of RNA viewed along a �ve-fold axis (Koning et al., 2003).

(a) (b)

Figure 1.6: Planar representations of the MS2 capsid with locations of RNA
density shown in red. (a) The virus represented as a net with dimeric building
blocks shown as rhombs. (b) A view along a two-fold axis of symmetry.

symmetry axes cannot be distinguished. This results in the information on

the actual organisation of the RNA in a single particle being lost. The RNA

layout in any particular virus is also likely to be di�erent, which will add to the

averaging e�ect. It is estimated that 90 % of the virus RNA has corresponding

density in the cryo-EM reconstructions and that the RNA paths in the outer

shell of the virus are likely to be single-stranded (Toropova et al., 2008).

1.3 Hamiltonian path model for RNA virus for-

mation

The biological data for the MS2 virus contains many constraints for a model

of RNA virus formation to take into account. The major constraint is that

a stem-loop from the RNA is required in each A/B dimer location, in order
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to trigger the required allosteric conformer switch in the dimer. An average

of the possible pathways between these A/B dimers, that the single-stranded

RNA may take, has also been shown by experiments and corresponds to the

red polyhedral cage shown in �gure 1.6(b), which is a diagrammatic repre-

sentation of the data in �gure 1.5. Further to this, the genomic RNA must

be packaged within the MS2 virus such that there are no knots formed. This

is because any knot formation would likely impact on the disassembly of the

virion and certainly any transcription of the RNA. An RNA path that meets

these constraints would be one that reaches every vertex, and therefore A/B

dimer, of the red cage shown in �gure 1.6(b) and 1.7(a). This 3D polyhe-

dron of RNA may also be shown as the �attened Schlegel diagram in �gure

1.7(b). This Schlegel diagram in mathematical terms may be thought of as

an undirected graph. It is possible to �nd connected paths on this graph that

reach every vertex precisely once. These correspond to �RNA paths� that reach

each A/B dimer and are single-stranded along the edges. Such paths on this

graph are called Hamiltonian paths. This Hamiltonian path requirement is

here termed the �dimer switching model of capsid assembly� (Dykeman and

Twarock, 2010) (Grayson et al., 2007). This is due to the allosteric switching

of the RNA, which is required for the A/B dimers to bind the RNA. The

later kinetic modelling depends on this assumption that A/B dimers have to

bind the RNA in order to acquire the correct conformation to bind within the

growing capsid.

(a) (b) (c)

Figure 1.7: (a) A 3D polygon representing the possible RNA pathways from
the cryo-EM data of the MS2 virus. (b) The Schlegel representation of the 3D
polygon. (c) A Hamiltonian path on the graph of the possible RNA pathways.

Hamiltonian paths have also been used to model the RNA cryo-EM density

of pariacoto virus (Rudnick and Bruinsma, 2005), shown in �gure 1.8 (Tang

et al., 2001). Reconstructions of pariacoto virus show a dodecahedral layout of

double stranded RNA density. To replicate this structure Rudnick suggested
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(a) (b) (c)

Figure 1.8: (a) Three Dimensional reconstruction of pariacoto virus from (Tang
et al., 2001). (b) The inner double stranded RNA layout also from (Tang et al.,
2001). (c) The data shows that the outer shell of the RNA density has the
shape of a dodecahedron.

Figure 1.9: The assembly of a dodecahedral shell of RNA following the Hamil-
tonian path idea that would result, when icosahedrally averaged, in similar
density to pariacoto (Rudnick and Bruinsma, 2005).

that assembly pathways follow Hamiltonian paths such as the one shown in

�gure 1.9. It has also been shown that encapsidation of RNA by pariacoto

virus is not dependant on the RNA sequence (Johnson et al., 2004). However,

the cognate genome might result in more e�cient and faster assembly. For the

MS2 virus it has been shown that the assembly depends closely on the RNA
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sequence. In a paper by Horn et al. (Horn et al., 2006) it was shown that the

MS2 virus is able to discriminate between its own RNA and the genetically

very similarQβ bacteriophage RNA. This indicates the importance of the RNA

in the assembly of the MS2 virus. This reason, and because so much is known

about MS2 assembly, is why the MS2 virus is the basis for the subsequent

RNA virus assembly model.

1.3.1 RNA connectivity

There is a slight complication in the Hamiltonian path model in that the

Hamiltonian path must be contiguous on the outer shell of the cryo-EM RNA

density. However from the density we can see that there are double stranded

transitions between this outer shell and the inner shell at the 5-fold axes (see

�gure 1.10) (Toropova et al., 2008). The �gures 1.10(b) and (c), reproduced

from (Toropova et al., 2008), o�er two possible explanations for the density.

The �rst explanation is that the single stranded RNA dips to the inner shell

and returns back to the same 5-fold axis. Alternatively, (see 1.10(c)) the RNA

may return to the outer shell at a di�erent 5-fold axis, base-pairing as it does

so. An e�ciency argument due to the speed of capsid assembly suggests that

the RNA returns back to the same �ve-fold axis, because otherwise �nding

the correct axis to return at would be a slow process (Toropova et al., 2008).

Assuming continuity in the Hamiltonian path is therefore a good representation

of the process.

(a) (b) (c)

Figure 1.10: (a) A close up of the MS2 cryo-EM density shown in �gure 1.5.
This shows the double stranded RNA transitions that occur between the two
shells of RNA. (b) and (c) show two possible explanations for this RNA density,
(a) shows the RNA transitioning to the inner shell and returning at the same
axis, (b) shows the RNA returning at a di�erent �ve-fold axis.
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1.4 Introduction to STMV

Satellite tobacco mosaic virus (STMV) exhibits similar assembly properties to

the MS2 virus, such as having dimers that must bind the RNA in order to

assemble (Larson and McPherson, 2001). STMV is also a very well known

model virus and its crystal structure has the highest resolution of any virus

(Larson et al., 1998). The reason for introducing STMV is that it is a much

smaller T=1 (Casper and Klug, 1962) virus, consisting of only 30 dimeric

building blocks. This smaller system is later much easier to model than the

full MS2 capsid of 90 dimers. A possible layout of the STMV RNA on a net

of the virus is shown in �gure 1.11 (Larson and McPherson, 2001).

(a) (b)

Figure 1.11: (a)A possible RNA path shown superimposed on an icosahedral
surface representing STMV (from (Larson and McPherson, 2001)). (b) The 3D
tiling to show the location of the building blocks. The STMV virus capsomeres
must bind the RNA in order for the virus to assemble.

1.5 Modelling the self-assembly of viral capsids

Viruses spontaneously self-assemble within their host cells and do so with high

�delity. Molecular self-assembly processes are usually described as nano-scale

components coming together to form larger structures with a higher degree of

order. To form these higher order structures, the process is usually required

to be reversible, in order to correct mistakes by removing building blocks. To

achieve this reversibility the interactions between individual building blocks

are required to be weak, this usually means non-covalent interactions. When

large amounts of backward reactions are possible, the self-assembling system

is normally at or near equilibrium. The assembly process would then be driven

by only a relatively small reduction in the free energy of the �nal structure.
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Many varying models of virus assembly have been proposed and developed

to answer both viral and nano-technology assembly questions. The basis for

these models may be broadly separated into models that use more statistical

approaches and models that use coarse-grained molecular dynamics (MD). The

prominent examples for both approaches are now introduced and discussed.

The comparisons will show the reasons for using the Zlotnick model of virus

assembly (Zlotnick, 1994) in the later chapters.

1.5.1 Molecular dynamics approaches

In molecular dynamics approaches, building blocks are simulated dynamically

in 3D space. The rules placed on how these building blocks may bind to

each other determines the intermediates formed and the assembly pathways.

There is also a built-in spatial and time dependence in any simulation due

to the simple rules describing the building blocks and environment. However,

the computation of large numbers of viral proteins moving and colliding in

3D space is very computationally intensive. This problem requires signi�cant

amounts of coarse graining to simplify the amount of calculations that have to

be performed.

Figure 1.12: The building blocks and resultant capsids that assemble using the
local rules approach. Reproduced from Kumar et al.(Kumar and Schwartz,
2010).

Early viral MD simulations were conducted in 1998 by (Schwartz et al.,

1998) and continued with (Zhang and Schwartz, 2006) and (Kumar and

Schwartz, 2010). These MD simulations are based on local rules. These lo-

cal rules de�ne speci�c distances and relative angles that the building blocks

require before the are able to bind one another. The building blocks and re-

sulting structure from (Kumar and Schwartz, 2010) are shown in �gure 1.12.

The building blocks may be thought of as spheres with sticky arms, which are

able to bind other spheres if the correct arms match up. From these very local

interactions large capsid-like structures assemble readily. However, due to the
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rules in place, there is little option for any imperfect assembly. The advantage

of using the local rules to govern the interactions between building blocks is

that they greatly reduce the computational requirements. This also allows for

more computation to be used to simulate the movement of the building blocks,

in the case of (Schwartz et al., 1998) relatively complex Brownian motion was

simulated.

(a)

(b)

Figure 1.13: (a) A building block that forms a T=1 capsid from (Rapaport,
2012). (b) Three time points of a simulation from (Rapaport, 2004), �rst there
is only free capsomere, then partial intermediates and �nally complete capsid.

An interesting progression of MD simulations that have less restrictive

rules governing subunit interactions are by Rapaport, these include (Rapaport,

2012) and (Rapaport, 2004). In these papers various trapezoidal shaped build-

ing blocks assemble into their respective capsids. An example of a building

block that forms a T=1 capsid is shown in �gure 1.13(a) (Rapaport, 2004). Fig-

ure 1.13(b) shows a simulation from (Rapaport, 2004) at 3 time points, where

�rst there is only free capsomere, then partial intermediates and �nally com-

plete capsid. Typically, these simulations contain about 1000 building blocks

at the start of the simulation. This is due to the computational limitations

of the MD approach. Further coarse-graining was also required for compu-

tational tractability. An example of the level of coarse graining required in

Rapaport's 2004 paper (Rapaport, 2004) is that the viruses were modelled in

a vacuum with random ballistic movements. This more simplistic motion com-

pared to (Schwartz et al., 1998) is to compensate for the more complex subunit

interactions. A further simpli�cation was to model the binding reactions as

irreversible. To counter this irreversibility, the partially built and malformed

capsids were arbitrarily broken up after a certain time period.

Rapaport's later paper (Rapaport, 2012) included a solvent in the sim-
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ulation and larger building blocks that undergo reversible reactions. These

additions resulted in improved sigmoidal kinetics but came at a large cost in

computational tractability, requiring 20 times more computational power than

the (Rapaport, 2004) paper and the use of more powerful computers with co-

processors. Even using this larger computing capability each simulation only

formed on the order of 36 viral capsids (Rapaport, 2012).

Di�erent coarse-graining techniques have also been applied to the move-

ments of more complex building blocks. This includes the use of determining

the movements stochastically such as in (Johnston et al., 2010) and the use

of Newtonian dynamics such as in (Hagan and Chandler, 2006). However

these techniques, like all the MD approaches, are also limited to similarly low

numbers of viral particles.

So far, only assembly models that consider self-assembling virus protein

capsomeres have been discussed. There have also been attempts to model to

model RNA using molecular dynamics. Initially the RNA mediated assembly

was modelled as protein capsomeres assembling around a charged sphere (Elrad

and Hagan, 2008). However, to model MS2 assembly more details regarding

the RNA structure need to be taken into account. This is in order to allow

the a�ects of the RNA path to impact on the assembly in accordance with

the Hamiltonian path model. Such a model should allow for the genome to

spontaneously form a Hamiltonian path as a result of the assembly rules. Two

MD papers that model �exible polymer encapsidation are by Michael Hagan's

group; (Kivenson and Hagan, 2010) and (Elrad and Hagan, 2010). These

papers are primarily concerned with e�ects of polymer length. The �rst paper

models the assembly of cube shaped capsids around a theoretical polymer

and discusses the e�ects of nucleation rates and polymer length. A typical

assembly pathway is shown in �gure 1.14 (Kivenson and Hagan, 2010). The

cube capsids formed in this paper have no limits imposed on their size, unlike

the icosahedral geometry of an actual virus. The second paper, (Elrad and

Hagan, 2010), models a much more realistic situation and that has also been

inspired by the MS2 virus. The building blocks of this simulation are shown

in �gure 1.15. The design of these building blocks allows them to bind to each

other as well as to an RNA polymer. In a fully assembled capsid, 20 of the

building blocks will form an icosahedral shape. However, again, this paper

is more concerned with polymer length and interaction energy, considering

virus formation, or lack of formation, as more of a binary condition. This

limitation is again due to only being able to simulate low numbers of building
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blocks. A phase diagram of capsomere-polymer a�nity against polymer length

reproduced from (Elrad and Hagan, 2010) is shown in �gure 1.16. This diagram

shows the range of values in which successful capsid formation occurs within

the observed time.

Figure 1.14: Six time points of polymer encapsidation by building blocks that
are able to form cube shaped capsids, reproduced from (Kivenson and Hagan,
2010).

(a) (b) (c)

Figure 1.15: (a) shows a trimer of MS2 dimer proteins that inspired the build-
ing block design shown in (b) (Elrad and Hagan, 2010). This trimer of dimers
con�guration is from a crystal structure in (Valegård et al., 1997) that shows
the C/C dimer binding a TR stem-loop. Later results have shown that these
C/C dimers do not bind TR stem loops during e�cient assembly (Morton
et al., 2010), (Knapman et al., 2010). (c) A view of a complete capsid with
half the capsomeres removed to show the internal RNA (Elrad and Hagan,
2010).
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Figure 1.16: A phase diagram showing the typical assembly product as a conse-
quence of polymer length and polymer-capsomere contact energy. Reproduced
from (Elrad and Hagan, 2010).

1.5.2 Statistics based approaches

Molecular dynamics attempts to directly replicate the real world physics during

virus assembly computationally. An alternative are more statistical approaches

that represent the viral components more abstractly. The advantage of this

is that the following statistical techniques are able to capture much more of

the parameter space of viral assembly. This is achieved by taking into account

many more viral capsids and building blocks than would be possible in an

MD calculation. However in achieving this the statistical models tend to have

much simpler representations of the building blocks and physics.

A popular statistical technique is the use of potential energy surfaces pio-

neered by (Wales, 2005). In (Wales, 2005) and (Fejer et al., 2009), Wales in-

vestigates all the possible capsomere orientations for virus models constructed

from pentagonal subunits. The energies of these capsid con�gurations were

then measured to create potential energy surfaces in parameter space. An ex-

ample of a potential energy surface is shown in �gure 1.17(a). This shows a

funnel of local minimum energies to the minimum energy at the bottom. Figure

1.17(b) shows the same potential energy surface represented as a disconnectiv-

ity graph (Becker and Karplus, 1997), where transition points between minimal

energies are shown as branches in the graph. The virus capsid potential en-

ergy surface investigated by Wales follows this funnel pattern and is shown in
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1.17(c). This funnel energy surface is similar to those seen in models of pro-

tein folding (Chiti and Dobson, 2009). The use of the largely thermodynamic

considerations in creating the potential energy surfaces results in convincing

virus assembly pathways that follow intermediates with high numbers of bonds.

However kinetic e�ects such as competition for building blocks between di�er-

ent pathways are ignored. The introduction of RNA into this model would also

be very complicated and would require a large number of extra parameters to

model the RNA polymer shape.

(a)

(b) (c)

Figure 1.17: (a) A one dimensional potential energy surface and (b) its corre-
sponding disconnectivity graph. (c) The disconnectivity graph corresponding
to a T=1 capsid, the global minimum energy is at the bottom of the graph.
Reproduced from (Wales, 2005) and (Fejer et al., 2009).

Further statistical approaches to virus assembly are able to take advantage

of the fact that self-assembly is usually at or close to equilibrium. At thermo-

dynamic equilibrium, the concentrations of any intermediates in the building

process will be related to their Gibbs free energy. The Gibbs free energy is

made up of the enthalpy contribution from the bonds formed and the entropy

term. By counting the number of bonds in an intermediate and the number of

ways to form an intermediate it is possible to model the Gibbs free energy using

Boltzman statistics (Endres et al., 2005). Once the possible assembly interme-

diates and the reactions between them have been determined, the Boltzman
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statistics result in a probability of formation for each intermediate. Master

equations are one way of using the Gibbs free energy to share out the initial

concentration of the building block into the equilibrium concentrations of the

other intermediates (Keef et al., 2005), (Keef et al., 2006). In the case of (Keef

et al., 2006), equations describing the Gibbs free energy of each intermediate

were recursively combined to determine each intermediate's probability and

therefore equilibrium concentration. An example pathway of viral assembly

from (Keef et al., 2006) is shown in �gure 1.18(a).The construction of a master

equation will be demonstrated in the next chapter for a 12-step pathway of

virus formation. The advantages of master equations is that they are rela-

tively easy to compute for small systems. However, as the number of possible

intermediates increases, master equations are not solvable explicitly (Hemberg

et al., 2006). Like the potential energy surface technique, it is also not possi-

ble to model the kinetics of assembly (outside of thermodynamic equilibrium)

using master equations.

(a) (b)

Figure 1.18: (a) An example of a viral assembly pathway reproduced from
Keef et al.(Keef et al., 2006). (b) The beginning of the network representing
a T=1 capsid reproduced from Hemberg et al.(Hemberg et al., 2006)

A similar statistical technique is to use a Gillespie algorithm (Gillespie,

1977) to investigate virus assembly. To use a Gillespie algorithm for virus

assembly, �rst a network of the possible reactions between the intermediates

is constructed, similar to the master equation approach (Keef et al., 2006).

Then on this network, the reactions between the intermediates are modelled

as discrete steps. The probability of a reaction happening depends on the

bonds formed and the network topology. An extended Gillespie algorithm

was used in (Hemberg et al., 2006) to model the assembly network shown in
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�gure 1.18(b). This Gillespie algorithm (Hemberg et al., 2006) started with

1000 monomers and modelled the movement of each monomer through the

network individually. If Gillespie algorithms use the same probabilities as

the master equation approach, the two techniques should achieve the same

distribution of material. However, Gillespie algorithms have advantages over

master equations in that they are able to approximate the master equation

using far less computation, albeit at a cost of accuracy.

Zlotnick's model of virus assembly uses the same equilibrium considerations

as the master equation approach, but in addition is able to gain kinetic insights

(Zlotnick, 1994). Again, the �rst step in this model is to construct a network

of intermediates. Rate equations are then created for each reaction between

intermediates in this network. These rate equations use putative forward rates

for di�usion-limited protein binding and backward rates based on the Boltzman

statistics. Since this model system was eventually chosen to simulate the MS2

assembly, a full account of Zlotnick's model is presented in the next chapter.

The most interesting feature of these variety of molecular dynamics and

statistics based simulations is how much they have in common. For instance,

several quite di�erent simulations (Hagan and Chandler, 2006) (Johnston et al.,

2010) (Kumar and Schwartz, 2010) (Rapaport, 2012) (Endres et al., 2005)

(Hemberg et al., 2006) all show sigmoidal assembly kinetics. A further com-

mon theme across the self-assembly simulations is that the concentrations of

partially built capsid intermediates are very low (Kumar and Schwartz, 2010),

(Hemberg et al., 2006), (Rapaport, 2012), (Endres et al., 2005). Hysteresis

is also a theme observed in the reactions building up to capsid (Kumar and

Schwartz, 2010) (Rapaport, 2012). Finally, many of the simulations show

kinetic trapping occurs when the building block concentration is diminished

(Kumar and Schwartz, 2010), (Rapaport, 2012), (Endres et al., 2005). The

reasons for these assembly behaviours will be discussed in the next chapter as

Zlotnick's model is able to capture all these behaviours.

1.5.3 Choosing an assembly model

As we have seen, there are a number of choices of model frameworks that could

be chosen to model MS2 virus assembly. The more advanced model frame-

works exhibit the sigmoidal kinetics, paucity of intermediates, kinetic traps and

hysteresis, seen during in vivo experiments. This still leaves a choice of whether

to use a statistics based or molecular dynamics approach. The most obvious

di�erence between these two approaches is that the statistics approaches use
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a precomputed network of assembly intermediates. This limits the building

blocks to the positions they would be within the fully assembled capsid. This

is because the computation of networks with other than the perfect geometry

of the capsid would create unfeasibly large assembly networks.

In reality, the interactions in the surfaces of the virus proteins are quite

large and complex. This complexity in the binding interfaces of the proteins

helps ensure they bind in the correct orientation (ElSawy et al., 2010). Using

small simple building blocks such as in early MD papers e.g. (Rapaport, 2004)

and (Wales, 2005), see lots of malformed capsids. Increasing the size and

complexity of the building blocks in both the later Rapaport (Rapaport, 2012)

and Wales (Fejer et al., 2009) approaches had the e�ect of greatly reducing

the malformed capsids. This result suggests that having the constraint that

the geometry of the capsid proteins limits the assembly intermediates to those

considered in the assembly networks is a valid assumption biologically. Since

the triangular building blocks in Hagan's RNA model (Elrad and Hagan, 2010)

are relatively small with simple interfaces, this could explain the large numbers

of malformed capsids observed in the results.

The main disadvantage of using MD techniques is the computational power

required. This practical constraint requires lots of assumptions in order to

model the systems in a reasonable amount of time.

In general, by only modelling a small number of building blocks and assem-

bling small numbers of virus particles all the molecular dynamic simulations

have a problem in covering the parameter space of virus assembly. As a result

of this many possible virus intermediates never occur over the time frame of

the simulation. Zlotnick's approach is able to cover the full parameter space

in that every intermediate in the network of assembly intermediates will have

a concentration.

Using a precomputed network also has the further advantage that is very

easy to characterise the intermediates, because they have de�ned con�gura-

tions. The reactions in Zlotnick's approach are modelled continuously so that

the conversion of smaller sized intermediates to larger ones is a continuous

process. This exchange of material may also be easily characterised quantita-

tively and tracked, which is much harder to do in MD simulations given their

discrete events.

A continuing debate (McPherson, 2005) in the RNA virus assembly �eld

is whether all the capsomeres bind to positions on the RNA, and then the

RNA folds and condenses to form capsid, or whether capsomeres bind one at a
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time to the RNA and growing capsid edge (see �gure 1.19(a) and (b)). These

two possibilities are likely to be protein concentration dependant, with high

protein concentrations favouring the saturation of the RNA and low protein

concentrations favouring cooperative single capsomere additions. Looking at

single capsids assembling in the RNA polymer model (Kumar and Schwartz,

2010) based on a �xed protein concentration, subunit-polymer association en-

ergy and association rate were found to distinguish between the two assembly

pathways (see �gure 1.19(d) and (e)). The largest ranges of parameters in this

RNA MD model favoured the sequential addition of capsomeres, while only a

narrow range of parameters made the en masse association of capsomeres to the

RNA more e�cient. It has been suggested that the STMV virus starts binding

capsomeres to its RNA genome as soon as the RNA is transcribed by the RNA

replicase (Larson and McPherson, 2001) (see �gure 1.19(c)). This immediate

binding to the genome of STMV favours the sequential addition scenario. For

these reasons the later assembly models of both the MS2 and STMV pathways

are assumed to be through single, sequential capsomere additions.

1.6 Conclusions

In conclusion we have seen that there is a large amount of evidence for a

Hamiltonian path model of MS2 virus assembly. This main evidence is that

each A/B dimer must bind the RNA in accordance with the dimer switching

model (Dykeman and Twarock, 2010) and that there are de�ned paths of RNA

between these dimers on the inner surface of the capsid proteins (Toropova

et al., 2008) (Van Den Worm et al., 2006). This is su�cient information from

which to create a model of virus formation for the small single stranded RNA

viruses. Further biological knowledge of MS2 and data on which to validate

the model for this particular virus will be introduced in chapter 6.

Various model frameworks that could be used to simulate MS2 assembly

have been discussed. Models that only investigate the thermodynamic equi-

librium have been discounted in favour of models that show realistic kinetic

behaviour. One set of the remaining models are the molecular dynamics simu-

lations. These models, although very interesting, are computationally limited

in the size and number of virus particles that can be simulated. The large

90-mer of the MS2 capsid, along with its RNA genome means that no current

MD simulation could hope to characterise the full parameter space. The model

chosen, pioneered by Zlotnick, has been shown to exhibit complex kinetic be-
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(a)

(b)

(c)

(d)

(e)

Figure 1.19: (a) An assembly pathway where all the capsomeres bind to the
RNA, which then folds into the capsid shape. (b) The alternative scenario
where capsomeres bind sequentially to the RNA and the previous capsomeres.
(c) The proposed STMV assembly scenario where capsomeres bind to the RNA
as it is transcribed from the replicase of the TMV virus. (Larson and McPher-
son, 2001). (d) and (e) are pathways from the RNA MD model by Hagan et
al. that correspond to scenarios (a) and (b) respectively (Elrad and Hagan,
2010).

haviours for protein capsomeres in the absence of RNA (Endres et al., 2005).

Additionally Zlotnick's model can consider all the assembly intermediates in

a network and assign each one a particular concentration. Zlotnick's model is

also able to consider virus assembly over large periods of time and at a very

large range of parameters e�ciently. Being able to investigate a large range

of parameters, such as bond strength, is necessary to show all the possible

assembly behaviour, not only in vivo but also at the more extreme conditions

often used in vitro.

Zlotnick's model has also successfully been used to replicate the assembly

behaviour with multiple copies of the 19 nucleotide TR RNA sequence (Morton

et al., 2010). Finally Rudnick and Bruinsma, who used Hamiltonian paths to
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describe the RNA cryo-EM density of pariacoto virus (Rudnick and Bruinsma,

2005), suggest that limiting the assembly of the pentagonal building blocks

using the Hamiltonian path would be, �A natural extension of the Zlotnick

model�. A full account of Zlotnick's model and its progression in complexity is

given in the next chapter. Chapter 3 will show how this model is extended to

follow the constraints imposed by the Hamiltonian path model of RNA virus

assembly.



Chapter 2

The Zlotnick Virus Assembly

Model

2.1 Original Zlotnick Equilibrium Model

The �rst description of Zlotnick's assembly model was in a 1994 paper entitled

�To Build a Virus Capsid� (Zlotnick, 1994). It is a protein only model using

a simple assembly scenario to illustrate equilibrium assembly behaviour. The

assembly scenario used is that of a single pathway through 12 capsomeres to

form a dodecahedron. Here a capsomere refers to a protein subunit that is

the building block of the virus capsid. The 12 capsomere pathway is shown

in �gure 2.1. This network contains only the most energetically favourable

intermediate for each size, i.e. the one with the most inter-capsomere contacts.

With this sequence of assembly intermediates we have 11 forward reactions

and 11 backward reactions. The forward reactions are second order, since they

depend on the concentration of the previous intermediate and also that of the

free capsomere (intermediate 1), while the backward reactions are �rst order as

it is simply a large intermediate breaking apart. Zlotnick's equilibrium model

assigns rates to the equations in this linear reaction scheme.

For the reaction to form a particular intermediate, denoted as (n), Zlotnick

considers its growth from the previous intermediate (n−1) and free capsomere

(1) as shown in equation (2.1). To determine the concentration change for a

particular intermediate, (n), equation (2.2) must be constructed, here the con-

centration of intermediate (n) is denoted by [n]. The �rst part of this equation

(kf [n − 1][1]) is the forward reaction of the previous intermediate reacting

with the free capsomere to increase the concentration of (n). The second part

(kb[n+ 1]) is increase in concentration of (n) due to the backward reaction of

32
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Figure 2.1: A single assembly pathway for assembly of a dodecahedral shape
adapted from Zlotnick et al. (Zlotnick, 1994). This pathway contains the most
energetically favourable intermediates, i.e. those with the largest numbers of
capsomere-capsomere contacts at every step of capsomere addition. Each do-
decahedron is represented as a Schlegel diagram to show the face connectivity
and the pentagon at the back has also been expanded to show its presence.
The numbers in orange are the �build up� symmetry factors and the green
numbers �build down�.

the lager intermediate breaking apart to give (n) and free capsomere. Thirdly,

(kf [n][1]) is the forward rate of (n) gaining a free capsomere and becoming

(n+1). Finally, there is the backward rate of (n) itself breaking apart (Kb[n]).

(n− 1) + (1) 
 (n) (2.1)

d[n]

dt
= kf [n− 1][1] + kb[n+ 1] − kf [n][1] − kb[n] (2.2)

In order to model the reaction kinetics, it is necessary to assign numbers to

the forward (kf ) and backward rates (kb) of equation 2.2. To do this, Zlotnick

has based the model around the Arrhenius equation shown in equation (2.3).

This formula describes the temperature dependence of the rate constant k in

a reaction.

k = Ae(
−Ea
RT

) (2.3)

In the Arrhenius equation A is the attempt frequency factor, −Ea is the ac-

tivation energy of the reaction, R is the gas constant (8.314 JK−1mol−1) and

T is the temperature at which the reaction takes place (set to 298 K). (−Ea

RT
)

gives the percentage of reactants that have the required energy to complete a

reaction, and the attempt frequency encodes how many of the reactions are

attempted. Multiplied together, these give the number of reactions that actu-

ally occur per second. The Arrhenius equation is used to model both the 2nd

order forward reaction and the 1st order backward reactions.

The activation energy in the Arrhenius equation is di�cult to estimate, but

the bond strengths in a particular intermediate can be estimated relatively
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easily. By using two combined Arrhenius equations, it is possible to derive

an equation relating the di�erence in bond strength to the reaction rate. By

ignoring the activation energies at this point we are left with an equilibrium

model. To derive the corresponding equation using the di�erence in bond

strengths, �rst the Arrhenius equations for the forward reaction rate kf and

backward reaction rate kb are established:

kf = A1e
(−Fa

RT
) (2.4)

kb = A2e
(−Ba

RT
) (2.5)

Now let Fa be the activation energy of the forward reaction and Ba the

activation energy for the backward reaction. Then the Arrhenius equations

can be combined to give the quotient kf
kb
, and then be rearranged, as follows:

kf
kb

=
A1e

(−Fa
RT

)

A2e
(−Ba

RT
)

kf
kb

=
A1

A2

e(
−Fa
RT

)e(
Ba
RT

)

A2

A1

kf = kbe
(−Fa+Ba

RT
)

A2

A1
kf

e(
−Fa+Ba

RT
)

= kb

This yields the following expression for the backward rate:

kb =
A2

A1

kfe
(Fa−Ba

RT
) (2.6)

With reference to the energy diagram for this reaction in �gure 2.2, Fa−Ba

in (2.6) corresponds to the di�erence in contact energy Ce (bond energies) of

the two intermediates: −Ce := Fa − Ba. The forward and backward attempt

frequencies (A2 and A1) are assumed to be the same and therefore cancel out.

This leaves only the multipliers to the attempt frequencies (S2 and S1) that

come from the symmetry of the intermediates and are described next.
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Figure 2.2: Energy diagram for intermediate capsomere addition.

2.1.1 Symmetry factors

The symmetry factors in this model arise from the symmetry of the intermedi-

ate and, for forward reactions, the symmetry of the incoming capsomere. Since

the incoming capsomere for the dodecahedron is the shape of a pentagon, its

symmetry is always 5. The symmetry of the intermediate for a particular re-

action may be more easily thought of as the number of ways a capsomere can

bind or break o� to give the product intermediate. For example, in �gure 2.1

between intermediates 2 and 3 there are two ways to add a capsomere to form

intermediate 3, and three ways to remove a capsomere to form intermediate 2,

hence S1 = 2 and S2 = 3. These symmetry factors may also be thought of as

adding to the entropy term of the Gibbs free energy of an intermediate.

The �nal form of the equation is:

kb =
S2

S1

kfe
(−Ce

RT
) (2.7)

This equation relates Ce to kf and kb. Therefore, it permits to choose

a forward rate and have the appropriate backward rate determined by the

number of capsomere contacts. Zlotnick follows this procedure and chooses a

kf of 108 M−1s−1 for a single protein binding event because it is, �a value that

is close to the di�usion limited association of two proteins� (Zlotnick, 1994).

Choosing a forward rate that is di�usion limited is convenient in that it applies

to every possible forward reaction equally (modulo the symmetry factors). It

is justi�ed by the assumption that the coming together of an intermediate and

free capsomere is likely to be the rate-limiting step in their binding. When the
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symmetry factor is 1, e.g. the reaction of 5 to 6 in �gure 2.1, there is only one

place an incoming capsomere may bind. This single symmetry factor, along

with the symmetry factor of 5 for the incoming capsomere, and the kf of 1 ×108

M−1s−1, results in a forward rate of 50 ×108 M−1s−1. When the intermediate

has a symmetry factor of �ve the rate is as high as 250 ×108 M−1s−1. Although

this is an extremely high rate it comes from the multiplicity in the number of

possible capsomere reactions rather than one particularly quick protein binding

event.

Following is a worked example to �nd the backward rates between in-

termediates 2 and 3 using a bond strength (∆Gc) of -11.4 kJmol−1. Since

there are two capsomere contacts formed, Ce follows from the equation; -11.4

kJmol−1 × 2 × 1000, where the ×1000 is to convert to Joules. The forward

rate of this equation is de�ned to be 1 ×108 M−1s−1. Inserting these values

into equation 2.7 with the numbers for this reaction is shown in equation 2.8.

Using equation 2.8 the backward rate for this reaction is 3025 M−1s−1.

kb =
3

2 × 5
1 × 108M−1s−1e(

−11.4kJmol−1×2×1000
8.314×298

) = 3025M−1s−1 (2.8)

2.1.2 Master Equation method

At equilibrium the concentration of the initial capsomere concentration is

spread across all intermediates in the reaction scheme, i.e. across the network

of assembly intermediates, proportionally to the number of inter-capsomere

bonds in each intermediate and the symmetry factors. To work out the in-

termediate concentration of intermediate 2 in �gure, 2.1 equation 2.9 may be

used. This equation uses the fact that the equilibrium constant (kequ.) is simply

the ratio of kf and kb. With a set value of 0.88 × 10−6 M for the free cap-

somere concentration, the concentration for intermediate 2, [2] may be worked

out using equation 2.10. This concentration for intermediate 2 may then be

substituted into equation 2.9 to �nd a concentration for intermediate 3. With

iterative substitution the concentration of capsid can be determined. The full

table of substitutions, reproduced from (Zlotnick, 1994), is shown in table 2.1.

The equation resulting from the series of substitutions is a master equation.

Master equations such as this are useful where the �nal concentrations are

dependant on the probability of occurrence of the intermediates and not time

i.e. they give information on thermodynamic equilibrium, but cannot be used

to compute assembly kinetics. Master equations have been used to determine

the statistically dominant pathways through the reaction networks (Keef et al.,
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2005), (Keef et al., 2008).

The series of substitution equations relating the capsid concentration to the

concentration of free capsomere may be solved to �nd a capsomere and capsid

concentration that are equal in thermodynamic equilibrium. The initial free

capsomere value of 0.88×10−6 M, in �gure 2.1 is the determined concentration

using this method. For the value of 0.88 × 10−6 M the equilibrium concentra-

tions show that anything other than the free capsomere or capsid has a very

small concentration. This is because it is only the capsid that has su�cient

bonds to be stabilised. At an initial capsomere concentration of 0.44×10−6 M

the capsid concentration is dramatically reduced. This is due to the fact that

the forward reactions pushing the equilibrium towards capsid are reduced, be-

cause there are only limiting amounts of capsomere present to react. Equally,

at higher concentrations such as 1.8×10−6 M free capsomere, there is far more

capsid present at equilibrium. The initial capsomere concentration that results

in capsid having the same concentration at equilibrium has been used later in

the results chapters as an interesting starting point.

kequ. =
kf
kb

=
[n]

[n− 1][1]
(2.9)

kf
kb

=
[2]

[1][1]
(2.10)

2.2 Zlotnick's Initial Kinetic Simulations

Zlotnick's �rst kinetic simulations based on this model also formed part of

his seminal 1994 paper (Zlotnick, 1994). These kinetic simulations used the

forward and backward reaction equations for the 11 assembly reactions in �g-

ure 2.1, totalling 22 (2 × 11) simultaneous equations. These simultaneous

equations were then numerically integrated with respect to time to give the

assembly kinetics of the linear dodecahedral pathway. Using the same bond

strength of -11.4 kJmol−1 these simulations were conducted for initial cap-

somere concentrations of 13 µM, 50 µM and 500 µM. Zlotnick found that at

the concentrations of 13 µM and 50 µM capsid formed swiftly with 90 % of

the capsid equilibrium value being reached after 10 milliseconds. However, at

concentrations of 500 µM it took 40 milliseconds to reach 90 % of the equi-

librium value. This increase in the required time is due to the scarcity of the

free capsomere building block, which stems from the fact that much of the
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Intermediate Concentration (M)

1 0.44 ×106 0.88 ×106 1.8 ×106

2 2 ×1010 1 ×109 5 ×109

3 4 ×1012 3 ×1011 2 ×1010

4 1 ×1013 2 ×1012 3 ×1011

5 5 ×1015 2 ×1013 5 ×1012

6 2 ×1015 1 ×1013 1 ×1011

7 2 ×1016 3 ×1014 4 ×1012

8 2 ×1016 7 ×1014 2 ×1011

9 6 ×1016 2 ×1013 1 ×1010

10 1 ×1015 1 ×1012 1 ×109

11 1 ×1013 2 ×1010 5 ×107

12 2 ×1010 0.88 ×106 3.6 ×103

Table 2.1: Reproduced from (Zlotnick, 1994), this table shows the intermediate
equilibrium concentrations for three di�erent initial capsomere concentrations
at a ∆Gc of -11.4 kJmol−1.

free capsomere assembles into smaller intermediates. With no free capsomere

available to grow these intermediates to capsid, any further capsid formation

is dependant on intermediates breaking apart, which is a slow process. This

kinetic trapping of free capsomere in smaller intermediates is a recurring theme

in this thesis, later discussed are its e�ects on virus assembly e�ciency. We

will see later how this kinetic trapping becomes more important when larger

and longer networks of viral assembly are modelled, and how kinetic traps are

related to the bond strength. Since Zlotnick's protein only models are later

recreated in order to compare these to assembly in the presence of the genomic

RNA, the �ne details of the assembly kinetics will be discussed later.

2.3 Model Assumptions

The assumptions underlying Zlotnick's model are as follows: Firstly, it is an

equilibrium model and therefore is more appropriate when concentrations are

close to equilibrium. This is because the actual forward and backward activa-

tion energies and attempt frequencies of reactions are not taken into account.

However, the resulting kinetic model does give the equilibrium concentrations

expected from the Boltzman statistics. A related assumption is that there is a

free choice of basic on-rate, which is taken to be the same for each reaction and
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is di�usion limited. This is unlikely to be the case, but it is a suitable simpli-

�cation for certain regions of concentrations of free capsomere concentrations.

Note that the assumption of being di�usion limited results in the maximum

reaction rate possible. Moreover the forward reaction rates are likely to be

much larger than the backward rates, and this ratio is maintained for a large

range of basic on rates. This means that the kinetics is mostly driven by the

forward rates which have been found in biological experiments.

Finally, only reactions that are described in the assembly network are per-

mitted. This excludes the possibility of aggregates forming, misshapen capsids

and rearrangements of intermediates to more favourable layouts, but com-

prises of only the reactions corresponding to the perfect geometry of the virus

shape. Each reaction in the described network only involves addition of one

free capsomere to the previous intermediate. This leaves out the possibility

of intermediates being constructed of multiple capsomeres binding together.

Certainly for larger viruses, this reaction may be less likely as it would rely

on the associating intermediates having the correct geometry in order to �t

together and it is therefore a good assumption. Likewise intermediates may

only break up one capsomere at a time.

With these assumptions Zlotnick �nds congruence with biological experi-

ments, which further corroborates the validity of these choices. Zlotnick �nds

qualitative agreement with brome mosaic virus assembly (Cuillel et al., 1983)

and also trypsin treated virus particles (Cuillel et al., 1981). Later, Zlotnick is

also able to �nd strong correlation to experiments conducted in his own lab,

see the papers titled; �A Theoretical Model Successfully Identi�es Features

of Hepatitis B Virus Capsid Assembly� (Zlotnick et al., 1999) and �Observed

hysteresis of virus capsid disassembly is implicit in kinetic models of assembly�

(Singh and Zlotnick, 2003).

2.4 Extensions Of The Model

The �rst signi�cant expansion of the equilibrium model was in 2002 (Endres

and Zlotnick, 2002). Here, to model the putative nucleated assembly of the

viruses CCMV and HBV a nucleation step was added to the model. The nucle-

ation step was introduced by using a rate of either 100 M−1s−1, 1000 M−1s−1

or 10000 M−1s−1 for the initial reaction in the linear assembly network, while

the elongation rate was chosen to be 1×106 M−1s−1. There were four reaction

networks used in this paper, the �rst two relate to a dodecahedron with a
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12 intermediate linear pathway as shown in �gure 2.1, corresponding to the

most stable intermediates, and a further 12 intermediate linear pathway of

intermediates that have an average number of inter-capsomere contacts. The

remaining two reaction networks are similar, but contain a 30 intermediate

pathway relating to the assembly of a 30-mer T=1 capsid, (see �gure 2.3),

in 2005 (Endres et al., 2005) Zlotnick used the model to investigate the �rst

complete network of interactions for the dodecahedron; this network is shown

in �gure 2.4. This full dodecahedral network shows all 73 geometrically di�er-

ent intermediates and the 263 links between them. Also in this paper the full

network for the 20 faced icosahedron was constructed. In this network there

are 2649 intermediates and 17,241 reactions between them. These interme-

diates correspond to all the combinatorial ways of combining the proteins as

�rst introduced by Wales (Wales, 1987). Not included in this 2005 paper was

the nucleation step introduced in 2002 (Endres and Zlotnick, 2002). Instead,

a factor µ was introduced that acts to reduce the probability of intermediates

that only form one capsomere contact. This is in addition to the relatively

high backward rate such an intermediate would have. The e�ect of this is

similar to the nucleation step in that the number of intermediates during the

kinetic simulation has been reduced, although arguably using the µ factor is

more arti�cial.

The current complexity of Zlotnick's model was published in 2011 in

(Moisant et al., 2010), where the complete network for the more computa-

tionally intensive 30 monomer polygon (�gure 2.3) has been determined. This

network consists of 2,423,212 intermediates and 26,823,095∗ bi-directional re-

actions between them. Interestingly, Zlotnick �nds only 97,741 of these inter-

mediates have a continuous surface of capsomeres i.e. a surface without holes.

However, due to the computational cost of numerical integration only networks

of up to 1124 were used. The selection of these intermediates was based on

their stability and probability. The kinetics was modelled over these networks

with µ and also a nucleation reaction. In order to signi�cantly avoid kinetic

traps, the nucleation reaction was set to be as low as 80 M−1s−1, although this

was still not enough to completely avoid the kinetic traps.

∗This �gure was determined using algorithms described in the next chapter.
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Figure 2.3: The 30 monomer polygon described in Moisant et al. (Moisant
et al., 2010) originally taken from Keef et al. (Keef et al., 2005).

All of Zlotnick et al.'s virus assembly papers follow broadly the following

similar steps:

1. Determining the combinatorially possible virus capsid assembly interme-

diates.

2. Placing these intermediates into a network with the edges representing

the chemical reactions between them.

3. Running a kinetic simulation on this network to determine the kinetics

of assembly and the concentrations of assembly intermediates.

In the next chapter the same steps will be followed to generate a co-assembly

networks, i.e. networks of assembly intermediates that interact with genomic

RNA.

2.5 Assembly kinetics versus thermodynamics

The concentration of any particular intermediate at any given point in time

during the simulation will be a combination of the kinetics leading to the

intermediate and the intermediate's equilibrium concentration. Zlotnick was

the �rst to note this in the full dodecahedral network in 2005 (Endres et al.,

2005). The extreme example of this interplay would be the free capsomere

which, with strong capsomere contacts, may have an initial concentration of

8 µM and an equilibrium concentration of e�ectively zero. With the forward

reaction rates �xed, using less negative contact energies leads to relatively

quick backward reactions, and at more negative bond contact energies the

backward reactions are relatively slow. For choices of contact energies close to

zero, any larger intermediates formed immediately break apart and only the
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Figure 2.4: The full dodecahedral assembly network of 73 intermediates and
263 reactions between them, modelled according to Endres, Zlotnicket al. (En-
dres et al., 2005).
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Figure 2.5: An example of path branching (a) and recombination (b).

free capsomere will have a signi�cant concentration. At very negative contact

energies, the backward reaction rates are so small that there e�ectively will be

no backward reactions taking place. With e�ectively no backward reactions,

the pathways that protein material takes through the network depend only on

the branching within the network. Eventually, even with very small backward

reactions, the model system would equilibrate to thermodynamic equilibrium.

However, the simulated time period required may be on the order of years.

The kinetic factors that a�ect the concentration of intermediates are not

only the reaction rates, but also factors coming from properties of the network

of assembly intermediates. To emphasise how network branching a�ects the

intermediate concentrations, two example networks are described. The �rst

network (a) in �gure 2.5 shows how the path to intermediates 5 and 6 branches

twice, while only branching once to intermediate 4. If, in the kinetic simulation

of this network, we set a large negative bond strength and choose a short time

period, where the backward rate would be insigni�cant, intermediate 4 would

have a higher concentration than 5 and 6. The concentrations between 4, 5

and 6 would be split 1
2
, 1
4
, 1
4
, respectively. In Network (b) of �gure 2.5, showing

paths recombining, intermediate 4 would have 3
4
of the total concentration and

intermediate 5 would have 1
4
in the case of a large negative bond strength.

2.6 Conclusion

Zlotnick's assembly model has been used in several papers ((Zlotnick, 1994),

(Zlotnick et al., 1999), (Endres and Zlotnick, 2002), (Zlotnick and Stray, 2003),

(Singh and Zlotnick, 2003), (Zlotnick, 2003), (Endres et al., 2005), (Zlot-

nick, 2005a), (Zlotnick, 2005b), (Zlotnick, 2007),(Katen and Zlotnick, 2009),

(Moisant et al., 2010), (Zlotnick and Mukhopadhyay, 2011)) and found to be

a useful and interesting model of viral assembly. Even the early more simple

versions of the model have been found to describe the assembly kinetics of

DNA viruses such as Hepatitis B (Zlotnick et al., 1999).
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The model is certainly a lot quicker than any molecular dynamics simula-

tion due to the limited number of di�erential equations in comparison. How-

ever, as larger viruses are considered the number of intermediates grows to

vast numbers, corresponding to all the possible combinatorial states the virus

capsomeres may be in. The scale of the numbers is similar to the number

of possible states in protein folding. Protein folding is a well known problem

and Lenvinthal's paradox (Levinthal, 1969) tells us that in the protein can not

sample all possible states and yet proteins fold correctly. By analogy, not all

the possible virus intermediates need to be sampled for virus formation to oc-

cur. As Zlotnick has shown (Moisant et al., 2010), only subsets of the network

are necessary to capture most of the overall assembly behaviour.

The model shows a great deal of interesting behaviour. For example as-

sembly at equilibrium may be a very quick process where intermediates would

be almost undetectable in biological experiments. The model also produces

complex emergent behaviour such as the formation of kinetic traps. It is the

need for removing these kinetic traps that lead to later modi�cations to the

model. The �rst modi�cation was to introduce the µ factor when considering

larger networks. This µ factor, which down-weights less stable intermediates,

acts to reduce the amount of capsomere in partially built capsids. This in-

creases the amount of free capsomere available to allow kinetically trapped

intermediates to build up to capsid. A criticism of the model would be that

the instability of the intermediates over time was not enough to reduce their

concentration su�ciently without the µ factor. However, the µ factor may

be justi�ed because in an in-vitro experiment there would likely be a cumu-

lative disadvantage for binding additional capsomeres with only single bonds.

Forming single bonds in this way would create long, thin, more �exible inter-

mediates that are more likely to break apart. There would also likely be a

cumulative favouring of particularly compact and stable intermediates due to

longer-range stabilisation across the capsid.

The introduced nucleation rate also acts to reduce the concentrations of the

intermediates to leave more free capsomere. Each reduction of the nucleation

rate below the standard 1×108 M−1s−1 would reduce the kinetic trapping,

allowing the optimal capsid concentration to be reached more quickly. Further

reduction of the nucleation rate from the optimal one would increase the time

to form capsid due to the slow rate. A nucleation rate would also decrease the

equilibrium capsid concentration amount, although for most values this would

be insigni�cant.
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In this thesis it has been possible to reproduce the graphs in the 1994 paper

(Zlotnick, 1994) and also the reaction networks, as well as all 73 intermedi-

ates and the 263 edges between them (for the dodecahedral network) and the

2,423,212 for the 30-mer intermediates†. In the next chapter it will be shown

how this model may be extended to include the Hamiltonian path model con-

straints in order to model the cooperative roles of genomic RNA during capsid

assembly.

†Note that the numbers for the 30-mer given in (Moisant et al., 2010) are slightly di�erent
at 2,423,313 and 2,423,323. Since other numbers in the paper do match up to subsets of the
intermediates calculated here, the di�erence of the �nal number is presumed to be due to
typographical errors.



Chapter 3

Incorporating RNA into the

protein assembly model

3.1 Introduction

Building on the work by Zlotnick et al. it will be shown how the RNA may

be incorporated into the assembly model. Following the steps of the model,

this chapter is concerned with analysing the intermediates of assembly and

placing these intermediates into reaction networks. These networks will show

the orders in which successive building-blocks may be attached to form cap-

sid. In later chapters we will see the kinetic simulation of these networks.

To demonstrate the procedure, a simple cube shape will be �rst used as an

example. Using such a small shape it is possible to show entire assembly net-

works. These networks are used to illustrate the assumptions made in the

RNA assembly model. Kinetics of the RNA model will also be shown for the

dodecahedron, which is the polyhedral shape discussed in Zlotnick's earlier pa-

pers. The larger viruses of STMV and MS2 will be discussed later in chapter

6.

3.2 Theoretical �Cube Virus� Assembly

To model RNA virus formation for a hypothetical cube virus, each face may

be thought of as representing a capsomere subunit. As there are only 6 cap-

someres/faces in the cube the model of assembly is easily computable. First, we

can look at the assembly network of the cube without RNA as shown in �gure

3.1, henceforth referred to as the �protein-only� scenario. This protein-only

model has been formulated in the same manner as Zlotnick's dodecahedron

46
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(Endres et al., 2005). Here we can see eight intermediates and all possible

assembly pathways between them. The �rst intermediate is the �free� cap-

somere which will then bind a further �free� capsomere to become the second

intermediate. Assembly then proceeds through intermediates with three, four

and �ve capsomeres to the complete cube capsid.

The STMV virus has been used as the inspiration for the �rst network of

RNA assembly intermediates. Since STMV is thought to assemble by binding

capsomeres along its RNA starting at the 5 prime end (Larson and McPherson,

2001), the model has been limited to this assumption. Following the Hamilto-

nian path theory of virus assembly, a complete cube capsid must correspond

to a Hamiltonian path on the graph shown in �gure 3.2 (b). There are 40

such paths that sequentially connect each face of the cube starting at face

1. Removing the initial four-fold symmetry gives the ten shown in table 3.1.

In addition to these ten Hamiltonian paths, dead-end paths that do not lead

to capsid and an initial RNA binding step are used to create the �rst RNA

assembly network, shown in �gure 3.3. The resultant network contains 36 in-

termediates including the free capsomere (35), free RNA (36) and the ten �nal

capsids. The central cube in each of the cube Schlegel diagrams of the network

in 3.3 is always face 1 of the cube shown in �gure 3.2(a).

The �rst di�erence in the assembly network of the RNA to the protein

assembly network (compare �gure 3.1 and �gure 3.3) is the greater number

of intermediates. This is because the additional RNA structure breaks the

symmetry of the intermediates, resulting in multiple di�erent RNA layouts

for a single protein capsomere con�guration. As an example of the assembly

behaviour we can look at the growth of the two capsomere intermediate labelled

2 in �gure 3.3. Intermediate 2, like all other intermediates, has the 5' end of

the RNA bound to face one of the cube. This leaves the trailing end of the

RNA then bound to face two. Since (using the numbering convention for cube

faces given in �gure 3.2) the adjacent faces are three, �ve and six, the next

assembly intermediates numbered 3, 4 and 5 respectively correspond to each

possible capsomere binding event to the 3' end of the RNA. Disassembly of

an intermediate may equally only occur through capsomeres at the 3' end of

the RNA. This is based on the assumption that disassembly is not allowed to

occur where there is a special high a�nity binding site on the RNA such as

the 5' end of the RNA for the STMV model or later for the TR position in

MS2. This is due to the high a�nity of such sites which makes dissociation

unlikely.
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From a protein layout perspective we can see that the intermediate 5 in the

RNA network (�gure 3.3) has the same protein layout as intermediate 4 in the

protein-only network 3.1. However, in order to create intermediate 4 in the

protein-only network there are two capsomeres that may bind to intermediate

2, whereas in the RNA network there is only one possibility of capsomere

binding. This illustrates an important feature of the RNA model, which is

that, like the protein-only model, it is protein di�usion driven. In the protein-

only model capsomeres may di�use to any position adjacent to an already

present capsomere and bind. However, in the RNA model the capsomere will

only bind if the end of the RNA is also adjacent. The RNA is required to

allow the capsomere to form the correct conformation in order to bind. The

justi�cation for the protein di�usion limited reactions is the same as in the

protein-only model, in that the rate-limiting step in the reaction will be due to

the protein capsomeres' di�usion rather than any subsequent binding events.

No RNA contact energies are present in this RNA model. Only the number

of capsomere contacts are used to work out the energy of the intermediate for

the kinetic analysis. The reason for this simpli�cation comes from the fact

that in many viruses only a few high a�nity RNA binding sites are known,

while the vast majority of stem loops bind relatively weakly compared to cap-

somere association energies. Omitting this RNA binding energy reduces the

number of parameters in the model and therefore provides a simple and trans-

parent testing ground to investigate how the change in the network of assembly

pathways in the presence of RNA impacts on the assembly kinetics. However,

there is an initial RNA-capsomere binding event in each RNA network. To

account for this, because the initial RNA binding sites are assumed to have

high a�nities, resulting in a di�usion-limited forward reaction with no back-

ward reaction. This therefore never allows a capsomere bound to the single

high-a�nity position to dissociate.

Another interesting feature of the RNA assembly network is the existence

of dead-end species such as intermediates 22 and 23, that have no direct path

to the completed capsid. These intermediates are termed dead-ends as the

only pathway to capsid is for, in this case, two capsomeres to fall o�, creating

intermediate 5, which in turn does have a possible pathway to capsid. As

will become clear, it is dead-ends such as these that have a major in�uence

in the later kinetic simulations. It is possible to reduce the complexity of the

network by factoring out mirror symmetry. The procedure is illustrated in

�gure 3.4 which has been obtained by removing all intermediates with mirror
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symmetry. By way of example the intermediates 3 and 4 in the original �gure

3.3 are mirror images and are therefore combined, resulting in intermediate 3

in the new network (�gure 3.4). To correct for this combination the symmetry

factors are modi�ed. In this example the symmetry factors from intermediate

2 to intermediates 3 and 4 were both 1 in the original network, therefore the

symmetry factor in the new network is the sum, which is 2.

This new network is henceforth referred to as the UniRNA network of the

cube because assembly precedes in a single direction along the RNA. With the

correct symmetry factors, removing the mirror image intermediates in any of

the investigated networks does not a�ect the later kinetic simulations. Except

that for each intermediate that has had a mirror image removed the actual

concentration would need to be divided equally in order to yield that of each

individual in the original pair of intermediates.

Figure 3.1: Assembly of a cube without RNA, showing the 8 possible interme-
diates as �attened Schlegel diagrams with an extended back square. Positions
occupied by capsomeres are shaded in blue, and intermediates are numbered
1-8 in the upper left corner.
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Figure 3.2: (a) The Schlegel diagram of the cube and (b) the corresponding
RNA connectivity graph. This connectivity graph is called an octahedral graph
as it corresponds to the vertices and edges of an octahedron (c).

The MS2 capsid has the TR position in the centre of the genome which

is believed to be the �rst position to bind a capsomere and hence initiate
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Table 3.1: The Hamiltonian paths corresponding to the capsids in the cube
UniRNA network. There are 40 Hamiltonian paths for the octahedral graph
that start at a single point, which is labelled 1 in �gure3.2(c). The path
number may be divided by 4 to give only those that then proceed to point
2, this gives the 10 shown. Eight of the Hamiltonian paths have the same
geometry forwards and backwards, shown by the blue links. The remaining
four paths are each other backwards. When this directionality is not required
the Hamiltonian paths may be described by only 8 of the 10 shown.
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Figure 3.3: Assembly of a cube with RNA where assembly proceeds from
the 5' end, showing the 36 intermediates including the 10 �nal capsids with
their RNA con�gurations as �attened Schlegel diagrams. Intermediates are
numbered 1-36 in the upper left of each intermediate. The RNA binding to
the back face, number 6, has been shown by drawing a line to the center of
one of its edges. To show the RNA connectivity proceeding from the back
face, edge center points have been connected when appropriate. The red line
numbered 36 represents the free �oating RNA. The 10 �nal capsids shown each
correspond to a distinct Hamiltonian path.

assembly. To model this scenario using the cube, a reaction network with

the �rst capsomere binding in the middle of the RNA has been constructed

(see �gure 3.5). The network has been simpli�ed by making no distinction

between whether the second capsomere is bound by the 5' or 3' prime end
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Figure 3.4: The UniRNA network, this network is the same as �gure 3.3 but
with the mirror images removed and the symmetry factors updated.

of the RNA. This leaves 30 �nal capsids rather than the 60 which would be

the case if the direction was distinct. This number of 60 is consistent with

the fact that there are 6 possible distinct TR positions for each of the 10

Hamiltonian paths detailed for the cube above. Again this assumption is

justi�ed as the rate-limiting step in the reaction is assumed to be due to the

protein capsomeres' di�usion. This means that having two ends of the RNA

available to bind a single capsomere would not a�ect the speed of the reaction.

In the kinetic simulations each �nal capsid may be thought of as arising form

either a pathway on which the second capsomere binds at the 5' or at the 3' end,

and therefore its concentration should be halved into these two possibilities.

An implicit assumption in this network is that the 5' and 3' strands of the

RNA, from the TR position, are individually long enough to complete the

capsid. In future work changing this assumption and limiting the number of

capsomeres able to bind to each side will be investigated.

Since the assumptions of the model do not presume signi�cant RNA binding

energies there is no consequence to combining the 5' and 3' directions in this

way. If RNA binding energies were introduced, in order to not separately

model the 5' and 3' binding the RNA would have to be assumed or designed

to be palindromic around the TR position. A future potential model could

take di�erent RNA binding energies into account, at which point the 5' and 3'

RNA directions will be modelled separately.
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In comparison to the �rst RNA cube assembly network there are again

many more intermediates. This is because intermediates are now distinguished

by the TR position. Thus, even if the RNA and the protein layouts look the

same a con�guration can represent di�erent assembly scenarios. An example

of this is shown in �gure 3.6. Another di�erence to the �rst cube network

is that, when starting in the middle of the RNA, both ends are available to

bind capsomeres. The result of this is that there are no longer any dead-end

intermediates. This is likely to be an advantage kinetically as no material will

become trapped in these dead-ends.

To further illustrate the protein driven nature of these networks, the sym-

metry factors relating to the addition of the third capsomere will be explained.

A larger view of this portion of the network from �gure 3.5 is shown in �g-

ure 3.7. There are four places a protein may di�use to bind intermediate 2

and therefore the forward symmetry factors (shown in orange) add up to four.

This is the same number as the protein-only network, indicating that binding

along both directions of RNA allows all the forward capsomere reactions. If a

capsomere were to di�use to face four of the cube (see �gure 3.2) only one end

of the RNA is adjacent and may bind to form intermediate 7. This therefore

has a symmetry factor of 1, because only one intermediate may be formed.

Likewise, only one end of the RNA may bind a capsomere di�using into the

position of face six of the cube. This reaction is also therefore given a forward

symmetry factor of 1.

For capsomeres di�using to the positions corresponding to faces three and

�ve of the cube, either end of the RNA may bind. For a single capsomere being

at face three half the time the RNA will bind and form intermediate 3, and

the other half of the time intermediate 6 will form. Each forward symmetry

factor is therefore 0.5, because the two future intermediates formed must share

the single protein addition. However, the next intermediate 6 may also be

formed with a 0.5 symmetry factor if a capsomere di�uses to cube face �ve

and has a combined symmetry factor of 1. There are two capsomere additions

that result in intermediate 6, because the direction is not taken into account.

The backward symmetry factors depend on the number of single capsomere

disassembly reactions that would recreate the previous intermediate.

To simplify the network, again, the mirror image intermediates have been

removed to create the network that will be used in the kinetics. This network,

shown in �gure 3.8, is termed the cube TrRNA network due to the TR position

in the network being unique.
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Protein Only UniRNA TrRNA BiRNA
Intermediate Size No. No. Dead-Ends On D.E. Path No. No.

Free Capsomere/RNA 1 2 2 2
1 NA 1 1 1
2 1 1 1 1
3 1 2 4 2
4 2 4 1 8 3
5 2 6 1 16 4
6 1 5 15 4

Total 8 21 1 1 47 17

Table 3.2: The intermediate numbers for the 4 di�erent cube scenarios. Also
shown separately are the number of dead-ends and the number of intermediates
that are only on dead-end pathways, relevant for the UniRNA network.

In addition to the previous two RNA networks (UniRNA and TrRNA) a

third, termed the BiRNA network, has been created. The BiRNA network

may be thought of as representing capsomeres binding to a uniform circular

strand of RNA with no unique positions. This results in the much smaller

and simpler network shown in �gure 3.9. The network pictured in �gure 3.9

does not discriminate between 5' and 3' RNA directions and the mirror images

have already been removed. There are only four �nal capsids in this BiRNA

network, rather than the �ve in the UniRNA network, because two of the �nal

capsids in the UniRNA network actually have the same Hamiltonian path

layout, as one forwards corresponds to is the other one backwards. This is

shown in table 3.1.

For simplicity, once a capsomere has bound to the RNA, there must always

remain a capsomere bound to the RNA, although the original capsomere is

allowed to fall o�. This removes the need for a reaction back to free RNA, which

would require an RNA binding energy. Although there are many fewer RNA

layouts in this BiRNA network due to the TR position not being distinguished,

in terms of the protein assembly this network is very similar to the TrRNA

network. The only di�erence, is that there are a few additional backward

reactions. These backward reactions are those that would otherwise require

the TrRNA bound capsomere in the TrRNA network to dissociate.

The di�erent RNA binding network assumptions are summarised in �gure

3.10, showing the assembly and disassembly reactions on the RNA. A summery

of the intermediate numbers is given in table 3.2.
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Figure 3.5: The network with the initial RNA-capsomere binding in the middle
of the RNA. It should also be noted that the orientations of the Schlegel
diagrams may not be maintained through the binding steps. This is due to
drawing the minimal binding pattern for each intermediate which is explained
later.
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Figure 3.6: Two intermediates showing the same protein and RNA layouts,
however the unique TR position labelled 1 is in geometrically di�erent posi-
tions.

Figure 3.7: The start of the network shown in �gure 3.5 to emphasise the
symmetry factors.
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Figure 3.8: The TrRNA network, this network is the same as �gure 3.5 but
with the mirror images removed.
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Figure 3.9: The BiRNA network.

(a)

(b) (c)

Figure 3.10: A summery of the di�erent UniRNA, TrRNA and BiRNA RNA
binding scenarios. The orange and green arrows show assembly and disassem-
bly directions, respectively. The UniRNA network may only build up from
one end of the RNA while the TrRNA network may build up from the middle
TR point. The BiRNA network is not restricted to keeping a TR capsomere
bound, and disassembly may happen across the original binding site.
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3.3 Dodecahedral Reaction Networks

Reaction networks for the dodecahedron have also been created for the

UniRNA, TrRNA and BiRNA scenarios. The start of each network is shown

respectively in �gures 3.12, 3.13 and 3.14, and the corresponding intermediate

numbers are shown in table 3.3. There are 1264 Hamiltonian paths for the

corresponding icosahedral graph shown in �gure 3.11. Removing the mirror

images halves this number and gives 632 �nal capsids in the dodecahedral

UniRNA network. For the BiRNA network the �nal number of 3792 is 632×12
2

because there are now 12 positions for TR, given that direction is not taken

into account. The BiRNA network only has 340 �nal capsids after mirror

removal. Before mirror removal, there are 680 consisting of 96 paths that

are the same forwards and backwards and 584 paths that are not. From this

the 1264 Hamiltonian paths used in the UniRNA network are obtained as

(584 × 2) + 96. This demonstrates how the Hamiltonian paths may be com-

bined to reduce the complexity of the network. There are a great many more

paths for the dodecahedral networks because the intermediate number grows

almost combinatorially with the capsid size.
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Figure 3.11: (a) The Schlegel diagram of the dodecahedron and (b) the corre-
sponding RNA connectivity graph. This connectivity graph is an icosahedral
graph and in three dimensions is shaped like the icosahedron (c).
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Figure 3.12: Beginning of the dodecahedral UniRNA network.
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Figure 3.13: Beginning of the dodecahedral TrRNA network.
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Figure 3.14: Beginning of the dodecahedral BiRNA network.
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Figure 3.15: Protein only network for the dodecahedron. The red starred
intermediates are those which would be kinetically trapped in the UniRNA
network and the green stared intermediate is the only protein con�guration
not realisable in any of the RNA networks.
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Protein Only UniRNA TrRNA BiRNA
Intermediate Size No. No. Dead-Ends On D.E. Path No. Dead-Ends On D.E. Path No. Dead-Ends On D.E. Path

Free Capsomere/RNA 1 2 2 2
1 NA 1 1 1
2 1 1 1 1
3 1 2 4 2
4 2 7 14 5
5 5 23 1 60 14
6 9 71 1 12 213 40
7 20 198 6 75 697 11 103 2
8 13 474 29 242 1896 8 164 249 1 22
9 12 916 112 492 4125 54 762 461 6 86
10 5 1336 340 555 6680 355 1390 691 38 139
11 3 1300 668 7150 1606 650 146
12 1 632 3792 340 0

Total 73 4963 1156 1377 24635 2023 2327 2559 191 249

Table 3.3: The intermediate numbers for the 4 di�erent dodecahedral scenarios. With the dead-end numbers and the number of
intermediates that are only on dead-end pathways.
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With the dodecahedron it is now possible for both ends of the RNA to

be trapped in a dead-end. Although the percentage of dead-ends to capsid

is still much less in the TrRNA and BiRNA networks than in the UniRNA

dodecahedral network. The lengths of these dead-end pathways are listed in

table 3.4. The length of a dead-end pathway is de�ned to be the number of

backward reactions required until an intermediate on a pathway to capsid is

reached. This table shows that the length of the dead-end pathways decreases

as more reactions are allowed in the TrRNA and then BiRNA networks. Four

examples of dead-end intermediates are shown in �gure 3.16. Intermediate

number 4120 in 3.16 is in the UniRNA network. This is the extreme example

where seven capsomeres would need to dissociate from the RNA to obtain an

on-pathway intermediate. This would then allow the RNA to bind face six,

from which point the resulting intermediate is on pathway to capsid. The

length of this dead-end pathway is due to capsomere 1 being bound to the end

of the RNA, so there is no RNA available to bind face six. When there is RNA

available to bind capsomeres either side of the TR position, the maximum

length of the dead-end pathway is 5. An example of an intermediate in the

TrRNA reaction requiring �ve backward reactions is number 14402 in �gure

3.16. This intermediate requires the capsomeres on faces 11, 10, 4, 5 and 6 to

fall o� one end of the RNA. These are then bound by the other side of the RNA,

while capsomere 8 is bound by the RNA that was bound to face 6. It is using

both sides of the RNA like this that reduces the dead-end pathway length.

In the TrRNA network we assume that capsomere 1 is always bound to the

RNA because of the packaging signal. Therefore, the shorter way of correcting

the dead-end, removing intermediates 1 and 2, is not possible hence making it

more di�cult to resolve the dead-end. Two examples of shorter pathways for

the BiRNA network, where any capsomere may fall o�, are intermediates 1025

and 2039 in �gure 3.16. The shortest path to an intermediate that could lead

to capsid would require removing capsomeres 6, 1 and 2 for intermediate 1025

and 1, 2 and 3 for intermediate 2039.
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Dead End Path Length UniRNA TrRNA BiRNA

1 0 885 90
2 434 831 85
3 271 232 16
4 215 60
5 151 15
6 57
7 28

Table 3.4: The lengths of the o�-pathway portions that
only lead to dead-ends for the three dodecahedral RNA
reaction networks. The path length includes the dead-
end intermediate and is the same number as the number
of backward reactions that are required to arrive at an
on-pathway intermediate.
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Figure 3.16: Examples of dead-end intermediates. 4120 is in the UniRNA
network, 14402 in the TrRNA network and, 1025 and 2039 are in the BiRNA
network.
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3.4 Methods

3.4.1 Computation of Hamiltonian paths

The algorithms used for generating the assembly networks shown in this chap-

ter have gone through several iterations. The improvements allow the genera-

tion of large reaction networks e�ciently. Generating all the Hamiltonian paths

for a mathematical graph is a well known NP-complete problem in computer

science and is similar to the travelling salesman problem. The NP-complete

nature of this problem is that although it is simple to test whether a partic-

ular path is a Hamiltonian path or not, determining a Hamiltonian path in

the �rst place can only be done by combinatorially trying all the possibilities.

The usual algorithm for �nding Hamiltonian paths is to us a simple recursive

algorithm that visits each edge in turn until either a Hamiltonian path or a

dead-end is reached. The algorithm would then back-track and try all the

other combinations of edges, saving the result as it proceeds. For the cube

and dodecahedral networks which are relatively small and have low connectiv-

ity, the paths may be determined within minutes. However, for the MS2 virus

�nding all the Hamiltonian paths in its corresponding graph takes three weeks.

This is simply due to the higher number of possible edge combinations.

The algorithm used for generating protein-only networks is very similar

to the Hamiltonian path recursive algorithm, in that every combinatorially

possible addition of a protein to a previous intermediate must be constructed

to �nd all the intermediates. Constructing the intermediates is a relatively

quick process. It is removing the duplicates that takes orders of magnitude

more time.
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Figure 3.17: The net of the 30-mer with labelled face numbers showing 3 of
the possible 60 dimer encodings.
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3.4.2 Duplicate intermediate removal

The problem of the duplicate problem is illustrated for the 30-mer in �gure

3.17, which shows three possible ways to encode two capsomers into pairs of

face numbers. The encodings shown are, [1,2], [19, 18] and [14, 27], in fact there

are 60 di�erent ways of representing this protein layout due to the icosahedral

symmetry of the capsid. As an example of the scale of the duplicate problem

consider all intermediates of size 18 on the pathway to the STMV 30-mer.

There are 4,403,010 intermediates generated of which only 455,307 are unique.

Naively, to compare the �rst intermediate of size 18 generated to each of the

60 representations of the remaining 4403009 would require over a quarter of a

billion comparisons. In total, up to 6 × 1014 comparisons would be required

which would clearly take a disproportionate amount of time.

Previously in (Moisant et al., 2010) the intermediates to be deduplicated

are �rst sorted by size, then number of capsomere contacts, perimeter path,

and �nally by the number of holes in the intermediate. This separation into

groups to be compared is in order to reduce the overall number of compar-

isons. Zlotnick's use of the perimeter path is a clever way of avoiding the 60

separate symmetric encodings of a particular set of proteins. This is because

the perimeter is the same, whether two capsomere intermediate is described

by proteins 2 and 3 or 4 and 5. A perimeter path in (Moisant et al., 2010)

is shown in �gure 3.18. However, since the starting point of the perimeter is

unde�ned the perimeter from every possible starting position must be com-

pared. This increases the number of comparisons again, especially when larger

intermediates are present. In his 2010 paper, Zlotnick was able to generate the

unique set of STMV protein intermediates in 150 days of CPU core time.

3.4.3 New Algorithms

The sorting algorithm

To avoid the disproportionately large amounts of time required for the dedu-

plication of generated intermediates a new algorithm has been developed. The

key to this algorithm is to use a di�erent way of representing the intermediates,

to make the deduplication much faster. Using this new algorithm all of the

2,423,212 intermediates for STMV may be generated with forward symmetry

factors in only 4 hours. This is a great improvement on the state of the art,

especially considering this run was conducted on an average desktop computer

using a single 2.4 GHz processor core. The inspiration for this algorithm are
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the similar hash algorithms often used for duplicating data. A hash algorithm

is able to convert a large amount of data down to a much smaller and unique

identi�er that may easily be compared.

The problem then becomes how to generate a small and unique identi�er

for each intermediate. As we have seen there are 60 possible representations

for each particular layout of building blocks in the STMV capsid. It is possible

to pick a single representation from the list of 60 to act as the unique identi�er

and this representation is termed the �minimal binding pattern�.

To determine the minimal binding pattern for a particular intermediate in

the protein-only scenario �rst all 60 symmetry operations are applied. This

creates a list of all the identical protein layouts with each one using di�erent

protein building-block numbers. Each set of protein numbers in this list of 60

is then individually sorted. The sorting may be conducted because the order

of the proteins in the protein-only assembly does not matter. The list of 60

encodings is then itself sorted. Now the �rst item in the list of 60 is de�ned to

be the unique identi�er required. Crucially, which ever proteins were used to

represent the intermediate originally the sorting conducted will always yield

the representative encoding. The generation of this unique identi�er scales

linearly with the number of intermediates.

To demonstrate the generation of the unique identi�er for an intermediate

the cube will again be used as a simple example. Consider intermediate 3 in

�gure 3.1, which consists of three capsomeres that share a corner. The unique

identifying representation of this intermediate is 1,2,3 corresponding to the

faces pictured in the diagram. In the construction of the network the inter-

mediate 3 was generated from intermediate 2 which has the binding pattern

of 1,2. There was also another intermediate generated from intermediate 2

which had the representation 1,2,5. The duplicate �nding algorithm was used

as follows to correctly determine that these two generated intermediates are

identical.

To convert this 1,2,5 representation to its unique identi�er �rst all 24 pos-

sible symmetry operations for the cube (48 with mirror symmetries) must be

found. Then each symmetry operation must be applied to create a list of,

identical by shape, encodings. This �rst list of length 48 is summarised thus:

[[1,2,5],[5,2,1],[1,3,2], ... ,[1,2,3], ... ,[2,5,6]]. The next steps are to sort each

list of three and then the whole list. This brings the unique identi�er/minimal

binding pattern, of 1,2,3 to the front.

Slightly di�erent processes are required to determine the minimal binding
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patterns for each of the RNA networks. For the UniRNA and TrRNA cube

network only the eight symmetry operations (including mirrors) around face 1

need to be used, because this unique position has to stay in place, hence break-

ing the overall symmetry. There is also no need for sorting of each encoding

in any of the RNA networks because this order represents the binding to the

RNA which may be di�erent even for the same protein layout. For the BiRNA

network all 48 possible symmetry operations are used for the cube. Applying

all the relevant symmetry operations in the TrRNA and BiRNA scenarios gen-

erates a list from which the minimal binding pattern may be chosen. However

since the direction of the RNA is not being considered each encoding within

this list must be copied, reversed and appended to the list. This ensures that

when the list is sorted the minimal binding pattern is at the front, independent

of the direction the proteins were bound in.

Computation of intermediate networks and symmetry factors

In generating the intermediates a �breadth-�rst� rather than recursive approach

has been used, which makes storage of the network connectivity and calculation

of the forward symmetry factors easier. To generate the next intermediates in

the network for a protein-only intermediate, a new intermediate is generated

for each of the adjacent unoccupied capsomere positions. A note is kept of

which proteins were added to create which next intermediates. This is used to

then compute the forward symmetry factors (build-up factors). For instance,

suppose that two proteins may be added, and addition of each results in the

same intermediate being formed. Then the symmetry factor would be two,

provided that adding these same proteins did not form any other intermedi-

ates as can happen. When RNA is present there is the possibility that only

one protein may be added, but due to di�erential RNA binding two di�erent

intermediates may be formed. Each intermediate would then have a build-up

symmetry factor of 0.5. It is important to distinguish the RNA binding loca-

tions, because this determines where later incoming proteins are able to bind.

The RNA intermediates are generated by adding protein adjacent to the ends

of the RNA. It is also common for both ends of the RNA to be able to bind the

same protein which must be taken into account when calculating the forward

symmetry factors. The backward symmetry factors may be worked out by

examining any intermediate and its connected edges. However, it is easier to

use the forward algorithm but work backwards from the �nal capsids in each

of the networks.
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Further algorithms have been written to manage the geometry and sym-

metry of the virus shapes involved. These allow for automatically drawing an

intermediate in two or three dimensions. These intermediate diagrams have

then been laid out into the networks using an interface to the graphviz package

(Gansner et al., 1993). These visualisations have proved invaluable in correctly

determining the network layouts and in their explanation.

All the programs used to generated the intermediates, networks, visualisa-

tions and other data in this thesis may be found on the accompanying CD.

The structure of the programs, instructions and dependencies are detailed in

the read me �le located in the root directory of the CD.

Figure 3.18: Intermediate representation reproduced from Moisant, Zlotnick
et al.(Moisant et al., 2010). The above dimer is represented by the perimeter
pathway:

3.4.4 Numeric Integration

To numerically integrate the assembly reaction equations the livermore solver

for ordinary di�erential equations(LSODE) was used (Hindmarsh, 1983). The

interface to this solver was via the python-scipy scienti�c programming soft-

ware (Peterson, 2009). This solver is capable of solving sti� and non-sti� di�er-

ential equations. Sti� equations are more numerically unstable than non-sti�

equations in that very small errors build up more rapidly, i.e. exponentially

rather than linearly. In the sti� case, backward di�erentiation formula meth-

ods are used and the non-sti� case uses Adams predictor-corrector methods

to determine appropriate time steps. The solver was allowed to automatically

determine the sti�ness of the equations and the Jacobian matrix. Testing for
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conservation of mass established that the accuracy of the LSODE solver was

signi�cantly greater than Runge-Kutta 4th order solvers and that this increase

in accuracy was necessary when integrating the larger reaction networks dis-

cussed. The correctness of the numerical integration is especially necessary

when integrating at stronger, i.e. more negative, bond strengths, because the

backward rates are very low compared to the forward rates. The time taken to

integrate the cube networks is of the order of a few seconds. The dodecahedral

networks take longer: the BiRNA dodecahedral network takes about half an

hour, the UniRNA network about a day, and the TrRNA (due to the much

larger number of intermediates) takes about a week. The main measure of the

accuracy in the integration has been the conservation of mass of both the pro-

tein and RNA. Note that this conservation was not set as a constraint of the

integration. This conservation of mass in all the kinetic simulations is accurate

to at least seven signi�cant �gures. However, to achieve this at some of the

longer times and at more negative capsomere contact energies a modi�cation

of the kinetic equations was required.

To compute the kinetics the (very small) 8 × 10−6M protein concentration

and the (very large) 1×108 which are many orders of magnitude apart because

these are the values derived from experiments. As a result, errors build up.

In order to cope with this a protein concentration of 8M is used instead and

a modi�ed on-rate, after the calculation of koff , to 1 × 102. This produces no

change to the concentrations of the simulation other than that they are now

all 1×106 higher, which is compensated for by multiplying each concentration

by 10 × 10−6. In this setting the conservation of mass was found to be more

accurate. In using the modi�ed kinetic equations a ten-fold increase in the

number of time steps were required to maintain the accuracy. This slowed down

the kinetic runs, with the previously half-hour running BiRNA dodecahedral

network now taking a day to complete on average. Running the unmodi�ed

kinetic equations with the greater number of time steps did not signi�cantly

increase the numerical accuracy.

3.5 Discussion

Based on Zlotnick's protein-only assembly model, models for capsid assembly

in the presence of genomic RNA have been designed. These allow investiga-

tion into the pathways of RNA virus assembly. It has been shown that by

determining the networks of RNA virus intermediates, new information can
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be found concerning the number of intermediates and pathways and also how

these pathways are likely to a�ect the kinetics. Factors a�ecting the kinetics in-

clude the number of capsomere contacts formed in the pathways, and the path

splitting to capsid as well as the occurrence of dead-end intermediates. The

three di�erent scenarios discussed above demonstrate the likely advantages, in

terms of dead-end intermediates, of a scenario starting assembly in the middle

of the RNA genome. As discussed for �gure 3.16 �xing the TR position at the

start makes self corrections close to the TR position more di�cult.

In one simulated protein-only network for the 30-mer Zlotnick (Moisant

et al., 2010) included only the lowest energy intermediates. By removing all

other intermediates from the network this created dead-end pathways, where

some of the lowest energy intermediates had no further forward path to capsid.

In the kinetic simulations these intermediates formed a signi�cant kinetic trap.

It is easy to predict that the dead-ends due in the RNA network assump-

tions will act as a similar kinetic trap. Due to the large number of dead-ends

in the dodecahedral network and the length of the dead-end pathways it is

likely that the dead-ends will severely inhibit the RNA virus formation. Even

without the dead-ends the RNA networks are likely to assembly capsid more

slowly as not all the protein assembly pathways are available. However, a

potential kinetic advantage of the RNA networks is that the RNA e�ectively

acts as a nucleating point for the protein following principles of heterogeneous

nucleation. This limits the number of intermediates in a similar way to the nu-

cleation step introduced for the STMV networks (Moisant et al., 2010). The

nucleation step, introduced by Zlotnick, reduced the kinetic traps, avoiding

the situation where much of the protein is stuck in smaller intermediates. This

increased the formation rate of capsid and the RNA nucleation is likely to

have a similar e�ect. The interplay of these various factors will be shown in

the next chapter, using numeric integration to solve the rate equations for the

cube to predict the assembly kinetics. Later the dodecahedral networks will

be kinetically modelled to show the e�ects of the increase in scale.

In the generation of these networks there are a number of implicit and ex-

plicit assumptions. It is these assumptions that are to be carefully investigated

and understood before moving onto larger viruses requiring further assump-

tions. Many of the assumptions correspond to those in the protein-only model

of Zlotnick. Such as only reactions allowed in the network are able to occur

and that it is an equilibrium based model.

An additional assumption in the presence of RNA is that the proteins may
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only bind to each other when RNA is available. Additionally the proteins may

only bind and fall o� at the ends of the RNA. It has also been assumed that the

proteins in the RNA simulations di�use to their binding sites similarly to the

protein-only network. With the di�usion-limited protein binding step being the

rate-limiting step, there has been no additional symmetry factors created for

RNA binding, such as when both ends of the RNA are able to bind the same

capsomere. Similar to this assumption, the di�erent directions of the RNA

have not been taken into account in the generation of these networks, because

no RNA binding steps are present even though this does leave the �rst reaction

of the RNA networks without a dissociation rate at all. In future work the �rst

change to the assumptions would likely be to put in RNA binding energies.

The multiple assumptions emphasise the importance of having a simple model

for investigation of the qualitative features of the assembly process.

Finally, the algorithms developed for this project are demonstrably an im-

provement on what is already present in the literature. The increases in speed

of the algorithms achieved here are essential when later calculating the much

larger RNA networks for STMV, which contain hundreds of millions of dif-

ferent intermediates. The main duplicate intermediate �nding algorithm is

also trivially parallelisable, which results in a further speed increase. Useful

improvements have also been found that increase the accuracy of the kinetic

simulations. In future work it would be possible to investigate alternative

models of virus formation using very similar networks and algorithms. The

�rst alternative model could assume that proteins bind to the RNA �rst. A

further model, potentially more relevant at high protein concentrations or high

RNA binding energies, could have all the proteins bind to the RNA and then

trigger refolding of the RNA for better packaging into capsid.



Chapter 4

Cube Results

4.1 Introduction

In this chapter the rate equations for all the cube assembly networks have

been numerically integrated to determine the kinetics of assembly. The �rst

simulations are conducted on the protein-only network of cube assembly in

order to later contrast this with the RNA networks. It will be shown that

the cube protein-only simulation has very similar kinetic behaviour to the

dodecahedron in Zlotnick's 2005 paper (Endres et al., 2005). For simplicity

the protein-only network has been modelled with no µ factor, which Zlotnick

used to down weight unlikely intermediates. There is also no modelling of

a nucleation step for the protein-only network. The UniRNA, TrRNA and

BiRNA networks each have their own kinetic behaviour and these di�erences

will be described for a full, range of capsomere contact values and time lengths.

The interconnectedness of these time frame to capsomere contact energies will

also be understood in terms of the viral capsid concentration. Finally an

investigation in to the parameters of the kinetic simulations has been conducted

using the easily understood cube model.

4.2 Protein-Only Simulations

The �rst experiment conducted was to determine an appropriate ∆Gc bond

value at which to run the kinetic simulations. An interesting starting point is

the bond contact energy that results in the free capsomere, also termed free

monomer, having the same concentration as the �nal capsid. This has been

shown previously with the dodecahedron in (Zlotnick, 1994). To �nd this value

75
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Figure 4.1: Protein-only simulation kinetics at ∆Gc values of -13, -20, and
-26 kJmol−1. Capsid concentration is shown in (a) and the corresponding free
monomer concentration in (b).
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Simulation

Equilibrium bond
contact energy
kJmol−1

Equilibrium
FM/Capsid amount

(M)

Protein -13.07 1.141 ×10−6

UniRNA -12.30 1.111 ×10−6

BiRNA -12.74 1.111 ×10−6

TrRNA -12.51 1.111 ×10−6

Table 4.1: Bond strengths required for an equilibrium where the free monomer
has the same concentration as the �nal capsid.

for the cube the di�erential equations for each simulation were numerically

solved using iteratively chosen ∆Gc values. The �nal ∆Gc values were such to

achieve accurate and equal concentrations for the free monomer and capsid.

The results are summarised in table 4.1. The most negative ∆Gc value of

-13.07 kJmol−1 is the protein-only experiment. This is a result of the protein-

only network having the highest number of ways of disassembling the capsid

across the network. Consistent with this, the least negative ∆Gc is required

to stabilise the UniRNA capsid as there are relatively few ways the capsids

can fall apart. The reasoning follows that the BiRNA experiment has a more

negative value than the TrRNA experiment. This is because the pathways of

the TrRNA network exclude the possibility of the TR bound dimer detaching

from the RNA. This again leads to fewer disassembly pathways and acts to

stabilise the capsid. This e�ect accounts for some of the subtleties in the later

comparative graphs. Representative ∆Gc energies of -13, -20 and -26 kJmol−1

were chosen, relating to 1x, 1.5x and 2x the ∆Gc of free monomer/capsid

equilibrium in the cube protein simulation.

A graph of the capsid concentration over time for the protein-only exper-

iment at these representative ∆Gc values is shown in �gure 4.1(a). The time

scales here are relative and do not necessarily correspond to a real biologi-

cal experiment. At the free monomer / capsid equilibrium ∆Gc energy the

capsid builds up smoothly reaching 99 % of the equilibrium amount after 1.5

seconds. With the bond contact energy of -20 kJmol−1, which would result

in more energetically stable intermediates, faster virus formation takes place.

The equilibrium is now in a position where (practically) all the protein is in

complete capsids. However, against this pattern, increasing the ∆Gc further

to -26 kJmol−1 slows the progression to capsid and produces plateaus along

the way.
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Figure 4.2: The protein-only cube network.

Since e�ciently growing capsids need a ready supply of free monomer build-

ing blocks a corresponding graph showing the free monomer concentrations was

produced for �gure 4.1(b). Here we can see at -26 kJmol−1 there is no appre-

ciable free monomer concentration after 0.001 seconds. This is the point at

which the initially rapid capsid growth stops. There is still a signi�cant ratio

of free monomer to capsid at the -20 kJmol−1 bond value until all the protein

is in capsid. Finally, by de�nition, the �nal concentration of free monomer at

-13 kJmol−1 is 1.14 ×10−6 M, the same as the capsid.

Taking a closer look at what is going on in these initial simulations of -13

kJmol−1, -20 kJmol−1, -26 kJmol−1 we can look at the individual intermedi-

ate concentrations, �gures 4.3, 4.4, 4.5 respectively. A reminder of the cube

protein-only network layout is shown in �gure 4.2.

At the free monomer / capsid equilibrium ∆Gc value of -13 kJmol−1 we

see very low concentrations of the intermediate species due to their relatively

low stability and likelihood to break apart. This was found also in the original

Zlotnick paper (Zlotnick, 1994), where it was suggested that this graph could

be mistaken for a reaction mechanism only between the free monomer and

�nal capsid, without any stable intermediates. With the increase in ∆Gc to

-20 kJmol−1 the intermediates have more signi�cant concentrations and we see

a quick succession from one size to the next. Notably the assembly is via the

relatively stable intermediates 3 and 5 as opposed to 4 and 6.

At -26 kJmol−1, like -20 kJmol−1 initially we see a quick build up of in-

termediates and to even higher levels as they are even more stable. Once the

free monomer becomes scarce the forward reactions are reduced massively and

with the backward reactions being slow due to the high bond strength this

results in very little �ux. Since there are so few reactions taking place the

protein remains in the intermediates it was in when the free monomer became

scarce.
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The protein in these intermediates is said to be kinetically trapped. It is

these kinetic traps that then a�ect the assembly as previously discussed and

�rst described for the dodecahedron by Zlotnick (Zlotnick, 1994). It is not

until the time scale is increased by orders of magnitude that we start to see

these stable intermediates break apart, providing the free monomer for capsid

formation. At even higher bond strengths it is possible to have more plateaus

and even have the protein kinetically trapped in a two dimer intermediate.

Notably at -26 kJmol−1, it is still the relatively stable intermediates 3, 5,

and 7 that in turn contain the kinetically trapped protein. In contrast, the less-

stable intermediates (4 and 6) have a much higher relative concentration than

when using -20 kJmol−1. This is because at the more negative ∆Gc value all

the intermediates are reasonably stable, despite few numbers of bonds and it

comes more down to the branching of the network. Due to the model setup the

intermediates 3 and 4 both gain the same amount of material from intermediate

2 over the course of the simulation.

The steady states that appear in the -26 kJmol−1 simulation (e.g. between

0.001 seconds and 0.1) could be mistaken as the �nal equilibrium being reached.

Therefore care has been taken to ensure equilibrium is always fully reached.

The cube networks although very small sometimes take a whole simulated

day to equilibrate. It is clear from this that larger and longer networks of

interactions may never reach the true thermodynamic equilibrium, certainly

over a time frame that could be numerically solved.

The assembly behaviour of the protein-only simulation over the full range

of relevant ∆Gc energies is shown in �gure 4.6. This graph shows the trade o�

between the ∆Gc value and the capsid assembly time. At the least negative

∆Gc values the reaction proceeds slowly due to the high dissociation rates.

It therefore requires a long time for the stable capsid to form. For times

longer that 1 second we can see that the �nal capsid concentration is able

to equilibrate to its maximum value until -20 kJmol−1. After this point, due

to the more negative ∆Gc, the capsid concentration starts to require much

longer to equilibrate. Although with longer time periods the capsid is able to

equilibrate to its maximal value. To achieve the most capsid in the shortest

amount of time, looking at the graph, a time of 0.1 seconds and a ∆Gc of -20

kJmol−1 would be a good choice. To achieve the optimal amount of capsid on a

shorter time scale the ∆Gc energy should be less negative to coincide with the

peak capsid amount. This reduction is to optimise against the kinetic traps

that still take a little time to resolve.
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Figure 4.3: Intermediate concentrations in the protein-only cube capsid simu-
lation at a ∆Gc of -13 kJmol−1.
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Figure 4.4: Intermediate concentrations in the protein-only cube capsid simu-
lation at a ∆Gc of -20 kJmol−1.
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Figure 4.5: Intermediate concentrations in the protein-only cube capsid simu-
lation at a ∆Gc of -26 kJmol−1.
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The e�ciency of capsid assembly over time is an interesting point to con-

sider when simulating the networks. This is especially true when considering

that even in the cube simulations it can still take several (simulated) hours

to form large amounts of capsid. The absolute maximum possible capsid con-

centration is simply the initial protein monomer concentration divided by the

number of proteins in the capsid. For the cube this capsid concentration works

out to be a value of 1.33× 10−6 M when using the initial monomer concentra-

tion of 8 × 10−6 M. To demonstrate the e�ciency of capsid assembly a graph

showing the time to 90 % of this maximum capsid value,1.33 × 10−6 M, was

produced for �gure 4.7. For the protein-only simulation there is quite a range

of ∆Gc energies between -15.5 and -21 kJmol−1 where the time is less than 0.1

seconds. At more negative ∆Gc energies however the kinetic traps again come

into play and dramatically increase the time taken.

4.3 RNA Simulations

The RNA simulations have been initially compared to the protein-only simu-

lation in the following graphs; 4.8, 4.9 and 4.10. These graphs compare the

capsid concentration over time at the three chosen representative ∆Gc values.
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Figure 4.8: Formation of capsid over time in the four cube scenarios at a ∆Gc

of -13 kJmol−1

At the ∆Gc of -13 kJmol−1 the protein-only capsid appears the quickest.

This is because there are more possible forward reactions and because the re-

action network is slightly shorter. Later the �nal capsids of the four scenarios

equilibrate in order of the number of ways to disassemble in their respective

networks. This shows the RNA scenarios having a grater capsid concentra-

tion at equilibrium, as would be expected from the free monomer / capsid

equilibrium ∆Gc values. For instance the UniRNA simulation has the least

negative ∆Gc value at this free monomer / capsid equilibrium. This means

that at any chosen ∆Gc value the equilibrium will be pushed more towards

the capsid relative to the other simulations. A ∆Gc of -20 kJmol−1 pushes

all the equilibriums further towards the now more stable capsid. The speed

of assembly of the protein-only to RNA simulations is also now more similar.

Finally we see the dead-end intermediate acts to reduce the UniRNA capsid

concentration until this trap starts to disappear at the end of the time period.

With the ∆Gc of -26 kJmol−1 we see the presence of the kinetic traps on the

protein-only simulation take e�ect. This is in addition to a more pronounced

kinetic trap in the UniRNA simulation.

A breakdown of the ∆Gc of -13 kJmol−1 for the three RNA scenarios are

shown in; 4.11, 4.12, 4.13. In the graph of the UniRNA (4.11) we see that the
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Figure 4.9: Formation of capsid over time in the four cube scenarios at a ∆Gc

of -20 kJmol−1
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Figure 4.10: Formation of capsid over time in the four cube scenarios at a ∆Gc

of -26 kJmol−1
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Figure 4.11: Intermediate concentrations in the UniRNA cube capsid simula-
tion at a ∆Gc of -13 kJmol−1.
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Figure 4.12: Intermediate concentrations in the TrRNA cube capsid simulation
at a ∆Gc of -13 kJmol−1.
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Figure 4.13: Intermediate concentrations in the BiRNA cube capsid simulation
at a ∆Gc of -13 kJmol−1.

�nal capsid intermediate 19 initially has a low concentration due to intermedi-

ate 4 on its pathway being relatively unstable. Eventually all �ve of the �nal

capsids in the UniRNA network equilibrate to the same thermodynamic equi-

librium concentration. This is because all the capsids have the same number

of bonds and, in the UniRNA case, the symmetry factors to capsid are the

same. As previously described this thermodynamic equality does not hold for

the TrRNA or BiRNA simulations and these equilibrate to a few di�erent pos-

sible capsid concentrations. For an example of kinetic versus thermodynamic

properties we can consider the �nal capsid concentrations of the BiRNA at

-13 kJmol−1. Capsid 13 has the highest concentration. This is because its

pathway contains relatively stable intermediates and also because it has two

directly previous intermediates unlike the other capsids. The capsid with the

lowest concentration initially is number 12, because intermediates 4 and 7 have

relatively low numbers of bonds. Additional factors in capsid 12's concentra-

tion though is the symmetry between intermediates 7 and 8 and the additional

pathway joining to intermediate 5. As the network equilibrates these extra

factors push the capsid concentration of 12 from the lowest to the 2nd highest.

The corresponding breakdown for the ∆Gc of -20 kJmol−1 are shown in;

4.14, 4.15, 4.16. While the corresponding breakdown for the ∆Gc of -26
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Figure 4.14: Intermediate concentrations in the UniRNA cube capsid simula-
tion at a ∆Gc of -20 kJmol−1.

kJmol−1 are shown in; 4.17, 4.18, 4.19.

At these more negative ∆Gc energies there is little equilibration in the

networks due to all the material being in the �nal capsids. There is in fact very

little disassembling of intermediates at all and the backward rate is e�ectively

zero. Especially considering the number of backward reactions that would

need to happen in a row for an RNA strand to form into a di�erent capsid.

When there is no e�ective backward rate it is only the symmetry factors that

distinguish between the pathways in the network. Interestingly we still end up

following the most energetically stable pathways. This is because these tend to

be the more compact structures and have more symmetry in terms of adding

proteins early on.

At the more negative ∆Gc of -26 kJmol−1 we can see a signi�cant con-

centration of the dead-end in the UniRNA network 4.17. To investigate this

further, graph 4.20 (similar to the protein-only simulation graph in �gure 4.6)

was produced. In �gure 4.20 we see the kinetic trap having a larger e�ect

after ∆Gc of -20 kJmol−1. This level is similar for the kinetic traps in the

protein-only simulation. Unlike the protein-only simulation this trap is not

resolved in time. The reasons for this are as follows, if a protein was to detach

from intermediate 14 (the kinetic trap) the only RNA it is likely to bind to
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Figure 4.15: Intermediate concentrations in the TrRNA cube capsid simulation
at a ∆Gc of -20 kJmol−1.
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Figure 4.16: Intermediate concentrations in the BiRNA cube capsid simulation
at a ∆Gc of -20 kJmol−1.
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Figure 4.17: Intermediate concentrations in the UniRNA cube capsid simula-
tion at a ∆Gc of -26 kJmol−1.
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Figure 4.18: Intermediate concentrations in the TrRNA cube capsid simulation
at a ∆Gc of -26 kJmol−1.
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Figure 4.19: Intermediate concentrations in the BiRNA cube capsid simulation
at a ∆Gc of -26 kJmol−1.

is then available in intermediate 8. This recreates intermediate 14. In fact at

least two proteins would need to fall o� intermediate 14 to allow for a choice

in pathway to a �nal capsid. Due to the small backward rates at the higher

∆Gc values, this is again extremely unlikely. The maximum time in this graph

(4.20) of 100000s is brie�y �at at the top, indicating this length of time al-

lows the system to equilibrate to the maximum capsid concentration over a

larger range of ∆Gc values. Increasing the time still further would increase

the range of ∆Gc values the maximum capsid concentration is achieved. To

complete the comparison �gure 4.21 has been included to show the time lines

for the TrRNA simulation. Since there are no dead-ends in this network the

capsid concentration does not increase due to equilibration or decrease due to

material being trapped in the dead-end. The corresponding BiRNA graph is

practically identical to the shown TrRNA graph and has been omitted for this

reason.

Finally to show the e�ciency of assembly we add the RNA simulations to

the graph showing the time until 90 % of the protein is in capsid, see �gure

4.22. At ∆Gc values between about -15 kJmol−1 and -21 kJmol−1 the time

taken is below one second across all the di�erent networks with the protein-

only experiment being the quickest. However once the kinetic traps form in
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Figure 4.20: The capsid concentration after di�erent time periods and a range
of ∆Gc values in the UniRNA cube simulation.

−10 −15 −20 −25 −30

0.0e+00

2.0e−07

4.0e−07

6.0e−07

8.0e−07

1.0e−06

1.2e−06

1.4e−06

C
ap

si
d 

C
on

ce
nt

ra
tio

n 
(M

)

   Gc (kJmol−1)

● ●

●

●

● ●

●

●
● ● ● 1.33 x 10−6

●

●

●

Capsid Conc. After:
0.001s
0.01s
0.1s
1s
10s
100s
1000s
10000s
100000s

Figure 4.21: The capsid concentration after di�erent time periods and a range
of ∆Gc values in the TrRNA cube simulation.
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Figure 4.22: Time taken to reach 90 % of the maximum possible capsid con-
centration across a range of ∆Gc values comparing all the cube simulations.

the protein simulation the e�ciency is dramatically reduced relative to the

RNA simulations. The kinetic trap in the UniRNA network can also be seen

manifesting as the time line tending upwards in the UniRNA simulation. The

abrupt end of this UniRNA lane is the point at which 90 % capsid is just

no longer reached. As can be seen in �gure 4.20 increasing the time makes

no di�erence. There is very little di�erence between the TrRNA and BiRNA,

suggesting that the smaller BiRNA network would be a good model substitute

for the more complicated TrRNA network.

4.4 Parameter Investigation

Using the cube assembly model we can take the opportunity to investigate

some of the other parameters in the model. Changing the forward reaction

rate just acts to speed up or slow down all the reactions proportionally. So

all the graphs look exactly the same, however appear spread out in time.

Theoretically predicting the on-rate for proteins of MS2 dimer size is almost

impossibly complicated. For this reason on-rates in laboratory experiments are

determined empirically due to the myriad of complex factors involved. One of

the complex factors would be the possible change of shape in the proteins as
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Figure 4.23: The free monomer concentration e�ects on the �nal capsid con-
centration. The protein-only network was simulated at a ∆Gc of -13 kJmol−1

and a time su�cient to reach thermodynamic equilibrium. The ratio shows
the quickly diminishing free monomer up to the 8µM mark.

they begin to bind, another would be how the charges on the respective proteins

interact over distance. Due to these factors the on-rate for two proteins binding

in a particular experiment is likely to be di�erent from the canonical value of

1× 108 chosen. For instance in (Morton et al., 2010) a Kon rate of 1× 105 was

found to be more appropriate for this model in order to more closely match

the biological reactions.

The protein concentration in the protein-only simulation has a major im-

pact on the results, however increasing the protein concentration is very similar

to having a more negative ∆Gc value and so in that regard the consequences

are known. This is because the on-rate would be increased while the backward

rate would be relatively smaller. A graph demonstrating the e�ects of protein

concentration is shown in �gure 4.23. In this graph we can see the change in

gradient of the concentrations of capsid and free monomer around the initial

protein concentration of 8µM. This change, of course, is from choosing the

∆Gc of -13 kJmol−1. However this graph does explicitly show the change as

the free monomer to capsid ratio is reduced.

The ratio of the protein to RNA in the RNA networks is also something

we can investigate. So far we have only used the stoichiometric ratio of 6:1
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chosen to represent the is e�ect because it takes longer to reach equilibrium
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protein to RNA, respectively. Di�erent ratios and their e�ects on the BiRNA

network are shown in �gure 4.24. Here we see that the best ratio to use at

equilibrium is the stoichiometric ratio of 6:1, protein to RNA. Ratios with

less RNA form correspondingly less capsid. While ratios with more RNA

see continued reduction in the amount of capsid formed. This is until the

extreme case of a ratio of 6:6 where the network equilibrates to each protein

being bound to each RNA molecule and no concentration for capsid. Although

since there is no o� rate for a monomer leaving the RNA, this result is entirely

predictable from the model assumptions. Although since we know from SELEX

experiments (Shtatland et al., 2000) that the TR bound dimer is bound very

tightly this may not be an unreasonable biological result. The equilibrium

concentrations may be worked out mathematically; in the case of the 6:0.4

ratio the amount of capsid will be 0.4 x its maximum value of 1.33 × 10−6 M,

giving 0.533× 10−6 M. With a ratio of 6 : 4, the capsid concentration may be

worked out by 8×10−6−(1.33×10−6×4.0)
5

to give 0.533 × 10−6 again.
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4.5 Conclusions

The cube model investigations have shown a large amount of interesting and

complex behaviour is able to occur even with such a small model system.

When investigating the protein-only simulations we see all of the same pat-

terns of behaviour described in the literature for the larger dodecahedron. The

main result from this chapter is that at the higher bond strengths the pres-

ence of RNA greatly increases the �nal capsid concentration. This is due to

the expected kinetic traps when only protein is present. The kinetic traps

in the protein-only simulation have very much the same result, in that they

collectively reduce the concentration of free monomer. Throughout all the sim-

ulations it is this existence of free building blocks that really determines the

rate of capsid formation. To maintain the free monomer concentration and

thus prevent the kinetic traps Zlotnick later introduced the nucleation step

(Zlotnick et al., 1999) and elongation factors citeEndres2002. In the RNA

simulations the proteins nucleate around the RNA and it is this that is the

main cause of the increase in free monomer concentration. Unlike the protein

nucleation step described in (Zlotnick et al., 1999), nucleation onto the RNA

is not a slow step and therefore would reduce the time to form capsid. For

the stoichiometric ratio of RNA to protein monomer, at no point in the virus

assembly is the number of intermediates greater than the number of possi-

ble capsids. This maintains the highest possible free monomer concentration

throughout the reaction. Although with very �ne tuning of a protein-only

nucleation step it is possible that the same result could be achieved, but at a

likely cost of assembly speed.

The UniRNA simulation has a di�erent type of kinetic trap and this single

dead-end can have a large in�uence on the kinetics. The protein and RNA in

this dead-end kinetic trap also takes a great deal of time to reach the ther-

modynamically favourable �nal capsids. The presence of free dimer still being

available has no a�ect in this case. The �nal capsids in the RNA simulations,

which are di�erentiated by their RNA layouts, can have large concentration

di�erences. At thermodynamic equilibrium these di�erences reduce but up to

this point the RNA capsids are strongly kinetically trapped. In laboratory ex-

periments, as we have seen with MS2, it may be possible to detect these RNA

layouts. From knowing the RNA layouts of the complete capsid, or at least

the averaged RNA layout, it is then possible to infer the assembly pathways

through the networks to those capsids.

The best RNA to protein monomer ratio at equilibrium is the stoichiometric
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one, however an increase in RNA concentration would speed up the �rst RNA-

monomer binding reaction in the network. This slight speed increase can be

seen in �gure 4.24, where the ratios with more than the stoichiometric amount

of RNA such as 6 : 1.2 are very marginally quicker. If a ratio signi�cantly

di�erent from this ideal stoichiometric ratio was discovered in a laboratory

experiment, this model suggested that it would be an interesting phenomenon

to investigate.

Being able to test all parameters in the model quickly and easily using

the cube system has been a great advantage. It has been con�rmed that in

using the more compact reaction networks, that exclude mirror images or RNA

direction, the �nal capsid concentration remains unchanged. Where pairs of

intermediates and capsids have been combined, due to having a mirror image,

the concentrations through the simulation have simply become double as a

result. Equally every intermediate and capsid represents both possible RNA

directions. For instance, an intermediate concentration in one of the RNA

networks, that has a mirror image, should therefore be quadrupled to �nd the

concentration of one of the four intermediates it represents. In choosing which

graphs to show it has also become clear that the di�erent parameters can not

be considered in isolation and there is always a time or ∆Gc scale to consider.

The cube is still a small shape and not all of the conclusions drawn are

likely to hold perfectly for larger viruses. This scale factor will be investigated

in the next chapter with a dodecahedral shape.



Chapter 5

Dodecahedron Results

Following the same steps as in the cube chapter, the �rst simulations were

conducted to �nd the ∆Gc energies required for the free monomer and total

capsid to have the same concentration at equilibrium. These results, obtained

via numeric integration of the network of reactions, are shown in table 5.1. The

equilibrium concentrations of the �nal capsid and free monomer are 6.15×10−7

M. This concentration is one thirteenth of the starting 8µ M protein concen-

tration used throughout these simulations. The reason for this is because at

equilibrium only the free monomer or complete capsid/s have high concen-

trations. This leaves one thirteenth of the total protein in the free monomer

and twelve thirteenths therefore must be in the �nal capsid/s for the equal

concentrations.

5.1 Protein-Only Simulations

Using 1, 1.5 and 2 times the ∆Gc value of -11.74 kJmol−1 gives us an indication

of the protein-only simulation over time, see �gure 5.1. Here we can see the

Simulation

Equilibrium bond
contact energy

kJmol−1

Equilibrium
FM/Capsid amount

(M)

Protein -11.74 6.15 ×10−7

UniRNA -11.1 6 ×10−7

BiRNA -11.2 6 ×10−7

TrRNA -11.3 6 ×10−7

Table 5.1: Bond strengths required for an equilibrium where the free monomer
has the same concentration as the �nal capsid. Also shown are the concentra-
tions that this occurs at.
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plateaus indicative of the kinetic traps happening at the 1.5(-18 kJmol−1) and

2(-23 kJmol−1) ∆Gc bond energies. This is di�erent from the cube, for which

there were no similar plateaus at the more negative bond energies (∆Gc of -20

kJmol−1). The reasons why these kinetic traps occur at less negative bond

strengths for the dodecahedron are due to the structure of the network of

intermediates. Firstly, the network is longer in the case of the dodecahedron,

which increases the time required for the free monomer to react to form capsid.

If the free monomer then becomes scarce in a su�ciently short time period

there will be more protein kinetically trapped within intermediates. Secondly

the free monomer concentration is reduced more rapidly in the dodecahedron

simulations than the cube simulations. This is because there are more possible

reactions in the dodecahedron network, due to the increased connectivity of the

network and the larger numbers of intermediates. This second reason acts to

reduce the time to reach capsid, but this does not compensate for the increase

in length of the network of interactions.

A breakdown of the concentrations by size in the protein-only simulation

for the dodecahedron is shown in �gure 5.2 for a bond strength of -18 kJmol−1.

This graph shows the quick succession of intermediates and which intermedi-

ates dominate when the free monomer becomes scarce.

5.2 RNA Simulations

For the dodecahedron, as for the cube before, �rst the RNA simulations are

compared at each of the three ∆Gc values (�gures; 5.3, 5.4 and 5.5). The re-

sults for a ∆Gc of -12 kJmol−1 are very similar to those for the cube. Again, we

see the same ordering both in speed of formation and, as expected from the free

monomer / capsid equilibrium values, the same relative equilibrium concentra-

tions for fully assembled capsids. It is not until the higher ∆Gc of -18 kJmol−1

that large di�erences occur. At this ∆Gc we see e�ects of the dead-ends in

the RNA networks in absorbing some of the protein. For example, the �nal

capsid concentration for the UniRNA simulation has been reduced to about

two thirds of the maximum possible value of 6.6×10−7 M. This concentration

should not be confused with the thermodynamic equilibrium concentration, it

is simply that material that will eventually form capsid (given enough time)

is kinetically trapped for a signi�cant amount of time in the dead-ends. The

actual equilibrium capsid concentration for the UniRNA simulation would be

the maximum of 6.6 ×10−7 M, like the protein-only simulation at this value of
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Figure 5.1: Protein-only simulation of assembly kinetics at ∆Gc values of
-12, -18, and -23 kJmol−1. Capsid concentration is shown in (a) and the
corresponding free monomer concentration in (b).
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Figure 5.2: Intermediate concentrations in the protein-only cube capsid simu-
lation at a ∆Gc of -18 kJmol−1.

∆Gc. The dead-end kinetic traps also manifest themselves in the TrRNA and

BiRNA simulations, where they again act to reduce the capsid concentration.

The reduction in �nal capsid concentration for the RNA simulations is even

more pronounced at bond energies of -23 kJmol−1. This implies that even

with the low backward rates expected for a ∆Gc or -18 kJmol−1, the backward

reactions are still signi�cant enough to avoid dead-end pathways and get out

of dead-end traps.

The RNA kinetic trap dependence on the value of ∆Gc and time can be

more easily seen in �gures 5.6, 5.7 and 5.8. In �gure 5.6 we can see that

with a ∆Gc value of about -12 kJmol−1, and given enough time, the capsid

concentration is able to equilibrate to almost the full 6.6 ×10−7 M. This is

because all the dead-end traps are able to disassemble to then allow for a path

through the network to capsid to be taken. Note that this may require several

successive backward reactions. At -21 kJmol−1 increasing the time period

further than 0.1 seconds does not change the concentration pro�le of capsid.

For an indication of how quickly kinetic traps may be resolved and avoided,

observe the green line at 0.01 seconds reaching a peak and then decreasing as

∆Gc becomes more negative. At the peak level, signi�cant backward reactions

are occurring, favouring the formation of capsid. The pathways leading to
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Figure 5.3: Time versus capsid concentration in all the dodecahedral scenarios
at a ∆Gc of -12 kJmol−1.
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Figure 5.4: Time versus capsid concentration in all the dodecahedral scenarios
at a ∆Gc of -18 kJmol−1.
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Figure 5.5: Time versus capsid concentration in all the dodecahedral scenarios
at a ∆Gc of -23 kJmol−1.

dead-ends are more likely to contain relatively unstable intermediates. This

factor allows for quick corrections of dead-end pathways taken as intermediates

on dead-end pathways break up readily, especially at the less negative ∆Gc

values.

At -30 kJmol−1, for times of 0.1 seconds or more, the capsid concentration

reaches a level of 2.68 ×10−7 M and appears to be levelling out. At this ∆Gc

level, there occur close to zero backward reactions. The result of this is that

all the material that reaches a dead-end stays in that dead-end and likewise

for material reaching the capsid. It is not necessary to numerically integrate

the reactions to arrive at the correct capsid concentration when there are

no e�ective backward rates because in this case capsid concentration can be

determined as follows: First set a concentration of 8 ×10−6 M for the RNA-

bound dimer at the start of the network. Then split up this concentration

proportionally according to the symmetry factors to the next intermediates.

Carrying this through to the �nal capsids gives them a combined concentration

of 2.67 ×10−7 M. This procedure is a very quick way to �nd the minimum

bound for capsid concentration. This method does presume that there has

been enough time to allow all the protein to reach an endpoint in the network.

The graphs for the TrRNA and BiRNA simulations (5.7, 5.8) show similar
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Figure 5.6: The capsid concentration after di�erent time periods and a range
of ∆Gc values in the UniRNA cube simulation.

behaviour to the UniRNA simulation and especially to each other, with �nal

capsid concentrations of 5.02 ×10−7 M for the TrRNA simulation and of 5.00

×10−7 M for the BiRNA simulation. Running the above mentioned splitting

procedure on these networks gives exactly the same concentration value of 4.94

×10−7 M for capsid in both networks. These �gures show that it is only in the

backward reactions that the BiRNA and TrRNA networks vary.

In order to investigate the e�ciency of assembly, the time to reach 90 %

capsid has been plotted (see �gure 5.9). Like in the cube graph, we can see

the BiRNA and TrRNA simulations become more e�cient at producing capsid

when the ∆Gc exceeds a critical value. In the dodecahedral case this happens

after about -15.7 kJmol−1, which is less negative than the -21 kJmol−1 for

the cube BiRNA and TrRNA simulations. Note however the time taken to

produce the 90 % capsid amount for the BiRNA and TrRNA simulations is

not much less than a second at any ∆Gc. For the protein-only simulation it is

clear from the graph that assembly e�ciency is strongly dependant on the ∆Gc

value, with -15 kJmol−1 being the optimum in quite a steep well. The UniRNA

simulation barely reaches 90 % of the maximum possible capsid amount and

it is not until we look at the e�ciency to 66 % capsid that we see the UniRNA

simulation become signi�cantly more e�cient than the protein-only simulation
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Figure 5.9: Time taken to reach 90 % of the maximum possible capsid con-
centration across a range of ∆Gc values comparing all the dodecahedron sim-
ulations.

(see �gure 5.11). Note that again this is only for bond strengths of -15.7

kJmol−1 or more negative. Likewise the BiRNA and TrRNA also become

more e�cient at this ∆Gc. Additionally, the BiRNA and TrRNA simulations

are much quicker in reaching the 66 % capsid level with a time close to 0.01

seconds, comparable to the protein-only simulation. To indicate the trend, the

time taken to reach 75 % is shown in �gure 5.10.

5.3 Conclusions

Overall, the behaviour of dodecahedron assembly and the conclusions drawn

are very similar to those for the cube. It has been found that the increased

scale of the network a�ects both the protein-only and the RNA simulations.

Firstly, the protein-only simulation has signi�cant kinetic traps at less negative

∆Gc values. This is due to the increased size of the network and additional

possible reactions, i.e. it is very much scale related. As a result of the ki-

netic traps in the protein-only case the RNA simulations for the BiRNA and

TrRNA simulations become more e�cient for assembly at less negative ∆Gc

values. The RNA simulations are dominated by the in�uence of the dead-ends,

However the e�ect is not as large as might be expected from just looking at the

network. The in�uence of kinetic traps is greatest in the UniRNA simulation.
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Figure 5.10: Time taken to reach 75 % of the maximum possible capsid con-
centration across a range of ∆Gc values comparing all the dodecahedron sim-
ulations.
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This network has the highest number of dead-ends and also the dead-ends that

are the most di�cult to equilibrate out of, due to the length of the dead end

pathways. However, considering that there are almost twice as many dead-ends

in the UniRNA network as there are �nal capsids, the e�ect is not as large as

might be expected. This is because the dead-ends tend to occur along path-

ways that are characterised by formation of relatively few bonds and smaller

symmetry factors.

We have seen that these simple models can be very useful to illustrate the

characteristics of the assembly kinetics resulting from speci�c sets of biological

assumptions. In the next chapter, models for the STMV and MS2 viruses will

be investigated to determine what may be learned regarding assembly in these

large-scale assembly scenarios that are far less computationally tractable.



Chapter 6

STMV and MS2 Assembly

6.1 Introduction

In this chapter the larger viral capsids of the STMV 30-mer and the MS2 90-

mer are considered. Previously we have seen how the number of intermediates

grows combinatorially with the size of the capsid. This makes these much larger

systems harder to model due to the computational intractability of analysing

and simulating so many intermediates. However, simply by investigating the

computed assembly networks it is possible to gain insights into the problem.

Later in this chapter possible coarse-graining approaches are discussed and a

successful published method is described.

6.2 STMV Reaction networks

The STMV virus is constructed from 30 dimers that take the shape of a rhom-

bic triacontahedron. Joining the centres of the faces in this rhombic triaconta-

hedron creates its dual polyhedron, the icosidodecahedron (see �gure 6.1(a)).

The planar Schlegel diagram of the icosidodecahedron gives us the graph on

which we can construct the Hamiltonian paths taken by the RNA. The Hamil-

tonian paths corresponding to the protein-only, UniRNA, TrRNA and BiRNA

are shown in table 6.1. It is easy to see how large the numbers of intermediates

becomes with the increased size of the 30-mer. Even using the new algorithms

described in chapter three, 82,000,000 intermediates of a single size is about the

limit of what can practically be computed. This means that the TrRNA sce-

nario is not able to be fully calculated. However, the BiRNA scenario may be

fully computed, which as we have seen for the dodecahedron behaves similarly.

The the kinetic integrations of the previous chapter at most consider 24,635

108
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(a) (b)

Figure 6.1: (a) The icosidodecahedron and (b) the corresponding planar
Schlegel diagram.

intermediates, this was in the dodecahedral BiRNA scenario. Between these

intermediates there are 44,284 edges. This leads to 88,567 equations that

require integrating, because each edge has both a forwards and backwards

reaction (except the very �rst reaction with the RNA). Since the integration

of these 88,567 equations takes at least a week clearly the integration on the

whole STMV network is unfeasible. Later, possible coarse-graining of the

kinetics is discussed but �rst, what can be learnt from the network itself will

be investigated.

6.2.1 Network Analysis

It is possible to gain a large amount of insight into what will happen in a

kinetic simulation just by analysing the intermediate network of STMV. We

have leaned from previous chapters that at lower bond values, the pathways to

�nal capsid assembly will favour the more stable intermediates. While at more

negative bond strengths the concentrations are determined by the network

topology, i.e. the splitting. We have also seen the large in�uence of the dead-

end intermediates in the RNA scenarios, especially at more negative bond

strengths. The 12-mer, dodecahedron UniRNA scenario has 632 full capsids

and, in total 1,156 dead-ends, which is almost twice as many. The 30-mer has

141,680 complete capsids and a total of 24,543,622 dead-ends, now 173 times

as many. There is a similar story for the BiRNA scenario where the dead-end

ratio to full capsid grows from 0.5:1 in the 12-mer to 71:1 in the 30-mer. It

is presumed that these greater number of dead-ends in the STMV scenarios

will have a very large e�ect on the virus assembly kinetics. This presumption

is based on the dodecahedral model, where the dead-ends trapped material
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Protein Only UniRNA TrRNA BiRNA
Intermediate Size No. No. Dead-Ends No. Dead-Ends No. Dead-Ends

Free Capsomere/RNA 1 2 0 2 0 2 0
1 NA 1 0 1 0 1 0
2 1 1 0 1 0 1 0
3 4 3 0 6 0 3 0
4 6 8 0 16 0 5 0
5 19 22 0 59 0 15 0
6 43 59 0 177 0 32 0
7 119 153 1 545 0 86 0
8 300 389 5 1 556 0 200 0
9 818 987 16 4 464 0 516 0
10 2 083 2 469 53 12 345 10 1 247 1
11 5 357 6 024 166 33 186 67 3 066 7
12 13 078 14 375 468 86 250 168 7 211 14
13 30 674 33 487 1 313 217 781 380 16 859 32
14 66 723 75 342 3 715 527 394 1 477 37 708 106
15 133 347 162 385 10 042 1 218 110 5 249 81 415 356
16 236 182 334 409 25 499 2 675 272 15 152 167 253 949
17 360 834 656 323 61 216 5 579 144 44 937 328 560 2 665
18 455 307 1 220 872 138 554 10 987 848 137 061 610 493 7 618
19 452 799 2 137 824 292 660 20 309 991 378 482 1 069 575 19 985
20 338 011 3 500 796 573 466 35 007 960 922 250 1 750 462 46 118
21 193 929 5 322 484 1 040 001 55 887 071 2 064 117 2 662 231 98 437
22 88 217 7 440 417 1 735 449 81 844 587 3 720 268 195 445
23 32 545 9 436 052 2 632 686 4 719 264 354 236
24 9 834 10 660 764 3 567 440 5 330 417 570 135
25 2 408 10 466 498 4 213 948 5 234 440 805 386
26 482 8 628 298 4 189 569 4 314 158 970 302
27 78 5 690 471 3 332 691 2 846 005 945 473
28 11 2 792 376 1 966 900 1 396 188 681 914
29 1 899 444 757 764 449 967 317 995
30 1 141 680 70 840

Total 2 423 212 69 624 413 24 543 622 214 393 764 3 569 350 34 818 486 5 017 174

Table 6.1: The intermediate numbers for the 4 di�erent 30-mer scenarios, With
the dead-end numbers for each size. The original protein-only numbers were
�rst determined in (Moisant et al., 2010).

and slowed the formation of capsid. Of course at less negative bond strengths

and longer times these kinetic traps were resolved in the dodecahedron kinetic

simulations.

The use of less negative bond strengths favours the formation of stable

intermediates that have a large number of bonds between their intermediates.

As a consequence of the larger number of bonds formed these intermediates also

tend to be the most compact structures. The UniRNA networks are relatively

easy to analyse because the topology of the network is only to branch and there

is no recombination of pathways. As a consequence of this there is only one

pathway to each of the �nal capsids, excluding any forward and then backward

reactions on side branches.

Bond Formation and Branching Analysis

Every pathway to capsid forms the same number of bonds on capsid completion

but the number of bonds formed at each point on the way can di�er. One of

the capsid pathways that forms the most number of bonds early on is shown in

�gure 6.2(a), a pathway that forms the least number of bonds early on is shown

in �gure 6.2(b). The bonds formed at each step in the assembly of these two
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paths are shown in table 6.2. From this table we see that the path that forms

the most bonds early on in assembly does so at the earliest possibility and has

more, or the same number of bonds, at all points. The largest di�erences in

the bond number are at the start, this would favour paths that form the most

bonds early on.

As well as the number of bonds that are formed we know from the kinetic

simulations that the branching in the networks will also a�ect the pathways

taken. To investigate this branching, the pathways to capsid in the UniRNA

STMV network have been sorted and a pathway with the most splitting and

least splitting are shown in �gure 6.3. At a very negative bond strength there

would e�ectively be no backward rates and the concentration of each capsid

(and dead-end) in the network will only depend on this splitting in the net-

work. In the previous chapter simply dividing the protein concentration at

each branch point was successfully used to predict the capsid concentration,

at such negative bond strengths. The same technique can be used for the two

pathways to capsid with the most and least splitting. The result is that the

pathway with the least splitting has 0.077 % of the initial protein concentra-

tion and the pathway with the most splitting has orders of magnitude less with

only 0.0000037 %.

If we look at the number of bonds formed at early times for the path with

the most splitting we �nd comparatively low numbers, see table 6.2. Similarly

there is a relatively high amount of branching in the path that forms the

most bonds (see �gure 6.4), the opposite is also true. The reason for this is

that compact structures form the most bonds, but also have the most branch

points because there are many options to move away from compact structures.

Forming a non-compact intermediate, with low numbers of bonds, constrains

the Hamiltonian path because the ways to reach the remaining unbound dimers

is reduced. E�ectively this means that the branching of the network and the

bonds formed on the paths favour opposite intermediate shapes and pathways.

The detailed interplay of these factors could only be solved by some form of

kinetic model. However, this does provide insight into the likely assembly

pathways. This is because, not only are the pathways that continuously form

the most bonds the most favourable due to the stability of the intermediates,

they also avoid branching as much as possible. The branching is not avoided

due to the lack of possible choices to branch but by forming the next most

stable intermediate. Avoiding most of the branching in general will avoid the

branches that lead to dead-ends. These dead-ends have already been associated
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(a)

(b)

Figure 6.2: The halfway points and �nal capsids for the most number of bonds
formed early on (a) and least number of bonds (b). These halfway points
clearly show the di�erence in capsomere contacts formed.

Path Capsomere Contacts Formed Along The Path

Most early bonds 1 3 4 6 7 9 11 13 14 16 18 20 22 24 26 28 29 32 35 37 38 41 43 46 48 51 53 56 60
Least early bonds 1 2 3 4 5 6 7 8 9 10 12 15 17 20 22 25 28 30 33 35 38 40 43 45 48 50 53 56 60
Most branching 1 3 4 6 7 9 10 12 13 15 16 19 22 24 25 28 30 32 34 35 38 41 43 45 48 51 53 56 60
Least branching 1 2 3 4 5 7 9 11 12 14 15 16 19 21 24 26 28 30 33 35 37 40 42 45 47 50 53 56 60

Table 6.2: How the capsomere contacts grow depending on the capsomere
binding order of speci�c paths.

kinetically with intermediates that have relatively few bonds in the previous

two chapters.

6.3 MS2 assembly pathways

The paths for the MS2 90-mer have also been calculated as far as the computa-

tional tractability allows (see table 6.4). The �nal UniRNA Hamiltonian path

number of 40678 was �rst calculated by Simone Severini using the program

�Gap� (GAP) (Grayson et al., 2007). This number was later con�rmed using

a simple backtracking algorithm, that was not able to save the intermediate

steps, as discussed in chapter three. The protein-only intermediate numbers

for the MS2 virus grow rapidly and combinatorially, this suggests that Zlot-

nick's estimation (Moisant et al., 2010) that there may be as many as 1018 in

total could easily be correct. In the MS2 virus these numbers could be reduced

Path Path Splits Percentage

Most early bonds 1 3 2 3 2 3 2 2 2 3 2 2 2 2 2 2 2 2 1 1 2 2 1 1 1 1 1 2 1 0.000019
Least early bonds 1 3 3 3 3 3 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0.026
Most splitting 1 3 2 3 2 3 2 3 2 3 2 3 1 1 2 3 1 2 2 2 3 1 1 2 2 1 1 2 1 0.0000037
Least splitting 1 3 3 3 3 2 2 1 2 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0.077

Table 6.3: STMV paths that show the variability in the number of branches
along the path.
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by removing mirror image intermediates. Previously any mirror symmetries of

the smaller capsids, such as in STMV, could be achieved by rotations.

To reduce the time for the computation of the intermediates in table 6.4, for

the RNA scenarios, the intermediates are only constructed from A/B dimers,

because these are de�ned by the Hamiltonian path. The maximum size of an

intermediate is therefore 60, corresponding to the 60 A/B dimers. The C/C

dimers may be added later. Interestingly at this size of virus, the number of

RNA intermediates is less than the number of protein-only intermediates for

the �rst time. This is due to the RNA path limiting the combinatorial posi-

tions that dimers may be placed or removed. Also the MS2 RNA intermediate

numbers initially grow slower than for STMV, this is because the MS2 Hamil-

tonian paths are 3 coordinated at the junctions while the STMV Hamiltonian

path possibilities are 4 coordinated. This higher connectivity of the faces in

STMV allows for more choices in path and the resulting higher number of

intermediates early on. For larger sizes of intermediate the increased size and

length of Hamiltonian path results in larger intermediate numbers for MS2.

The layout and helicity of the RNA connectivity in the MS2 virus is presumed

to be due to di�erences in the bond strengths between di�erent contact faces

of the A/B and C/C dimers. This suggests the possibility that the virus has

evolved to reduce the connectivity of the possible Hamiltonian paths, limiting

the complexity.

The Hamiltonian paths on the MS2 capsid contain short steps, between

A/B dimers on the same 5-fold axis and long steps between di�erent 5-fold

axes (see �gure 6.5). These long steps pass underneath the C/C dimers. Since

the C/C dimers do not bind the RNA in the same way as the A/B dimers,

when to add C/C dimers to the growing capsid is currently unde�ned. If

we assume there is any bonding interaction between the RNA and the C/C

dimers that are above the RNA, however minimal, placing the C/C dimers

when the RNA passes below them would be justi�able. This would also place

the C/C dimer between the A/B dimer previously placed and the one about

to be placed. Any Hamiltonian path on the RNA density can not actually

use all the long or short edges on the graph of possibilities. This leaves some

C/C dimers that do not have RNA underneath them. These remaining C/C

dimers may be placed combinatorially with the rest of the dimers, at the cost

of increasing the intermediate number by further orders of magnitude, or more

simply these C/C dimers may be added when they form 2 or 3 contacts with

the already present capsomeres.
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A breakdown of the 40,678 MS2 Hamiltonian paths by long and short steps

is shown in table 6.5. Even if only a very minimal amount of binding occurs

between the C/C dimers and the RNA, this would result in the 212 with the

most long paths having the highest thermodynamic equilibrium concentration.

The likelihood of this equilibrium being reached in viral assembly though is

low due to the large amounts of backward reactions that it would take to equi-

librate between capsids, especially when the di�erence would be a very small

free energy amount. We have already seen for the short cube network that

equilibration between �nal capsids can take a long time even at less negative

bond strengths. There are also paths in table 6.5 with lots of short steps, this

corresponds to Hamiltonian paths that travel around the 5-fold axis as much

as possible.

There are in-fact a multitude of interesting geometries in the Hamiltonian

paths for the MS2 virus. Two further examples include what have been termed

the spiral path, 6.6(a), and double spiral path, 6.6(b). Assembling along the

spiral path, starting at one end of the RNA genome such as the UniRNA

scenario, forms a relatively very high number of bonds early in the assembly.

Whereas the assembly of the double path starting at one end forms a minimal

amount of bonds at any point. However, if the assembly was allowed to proceed

in both directions along the RNA, such as the TrRNA or BiRNA scenarios,

this double spiral has the possibility of forming relatively large numbers of

bonds early on by using both ends of the RNA. This emphasises the necessity

to investigate assembly starting in the middle so that such interesting assembly

possibilities are not arti�cially discounted.

(a) (b)

Figure 6.5: Planar representations of the MS2 capsid with locations of RNA
density shown in red. (a) The virus represented as a net with dimeric building
blocks shown as rhombs. (b) A view along a two-fold axis of symmetry.
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Protein Only UniRNA TrRNA BiRNA
Intermediate Size No. No. Dead-Ends No. Dead-Ends No. Dead-Ends

Free Capsomere/RNA 1 2 0 2 0 2 0
1 NA 1 0 1 0 1 0
2 2 1 0 6 0 2 0
3 8 2 0 18 0 3 0
4 18 4 0 48 0 7 0
5 52 8 0 120 0 12 0
6 136 15 0 276 0 25 0
7 391 29 0 602 0 43 0
8 1 108 54 0 1 312 0 86 0
9 3 252 104 2 2 808 0 156 0
10 9 486 190 1 5 740 0 295 0
11 28 087 355 4 11 748 0 534 0
12 83 174 655 10 23 688 24 1 001 1
13 247 749 1 197 17 46 930 26 1 805 1
14 738 582 2 190 36 92 316 28 3 325 1
15 2 207 153 3 967 64 179 490 90 5 983 3
16 6 597 819 7 173 141 345 696 448 10 853 14
17 19 733 747 12 847 237 658 410 204 19 365 6
18 22 940 473 1 244 700 828 34 670 25
19 40 631 911 2 326 740 2 926 61 230 77
20 71 276 1 627 4 297 360 3 200 107 606 82
21 123 923 3 090 7 843 836 7 686 186 758 183
22 212 860 5 720 14 118 808 16 104 321 185 371
23 361 610 10 703 25 072 806 545 061 766
24 606 514 19 478 914 881 1 300
25 1 004 525 35 429 1 514 667 2 558
26 1 641 549 63 928 2 476 174 5 236
27 2 643 280 112 499 3 986 421 9 217
28 4 194 076 196 233 6 327 571 17 783
29 6 550 577 336 824 9 882 321 32 141
30 10 064 833 570 413 15 188 304 58 505
31 15 199 432 947 658 22 936 394 103 239
32 22 545 648 1 545 753 34 033 030
33 32 822 588
...
90 40 678

Table 6.4: The intermediate numbers for the 4 di�erent MS2 scenarios. With
the dead-end numbers for each size.

(a) (b)

Figure 6.6: (a) A Hamiltonian path forming a spiral from center of a Schlegel
representation of the MS2 capsid, (b) A �double� spiral Hamiltonian path, the
qualitative layouts of the paths are highlighted in blue and yellow.

6.4 Reducing the complexity

To be able to further model the assembly of the MS2 virus it is necessary

to reduce the large number of intermediates that need to be considered. In

(Moisant et al., 2010) and (Endres et al., 2005) Zlotnick found that not all

the protein-only intermediates were required in order to capture much of the

assembly behaviour, in fact, as previously discussed only, 1,124 intermediates
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Number of Paths Short Steps Long Steps
212 34 25
1132 35 24
2690 36 23
4116 37 22
5300 38 21
6204 39 20
6902 40 19
5868 41 18
4126 42 17
2684 43 16
1132 44 15
272 45 14
40 46 13

Table 6.5: The distribution of long and short steps in the 40,678 Hamiltonian
paths of MS2.

were required of the 2,423,212 for STMV. However the kinetic traps that ap-

pear in the protein-only simulations are due to large numbers of partially built

capsids forming. This could be the case no matter how many pathways are

chosen. For instance a linear pathway with only 3 intermediates and 2 assem-

bly steps to capsid could have large amounts of material trapped in the second

intermediate at a negative enough bond strength.

The signi�cant kinetic traps of the RNA scenarios depend on the network

topology so reducing the size of the network will likely have more of an e�ect

than in protein-only scenarios. For the MS2 UniRNA scenario there are 40,678

Hamiltonian paths, these paths have a further 40,677 branch points between

them. Additionally many more branch points leading to dead-ends are present.

The dead-end pathways could be reduced to a single dead-end with a slower

backward rate, which would model the multiple backward steps required to

equilibrate material out of the dead-end. More simply the forward rate to

capsid intermediates, that have branches to dead-ends, could be reduced to

model the time dependence of dead-end equilibration. This would lead to

kinetically modelling about 80,000 intermediates which is closer to the 25,000

already successfully simulated. The network for this model could be created

from the 40,678 Hamiltonian paths without the need to calculate all the other

intermediates. This is because the �nal capsid pathways are already known

and any other branching possibility for an intermediate must therefore lead to

a dead-end.

It would also be possible to only consider intermediates that form large
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number of capsomere contacts in a coarse grained model. This is similar to

how the smaller networks were constructed in (Moisant et al., 2010). With

their large numbers of intermediates and dead-ends, the dodecahedral net-

works are expected to be a su�ciently complex system on which to test future

coarse-grained kinetic implementations. It is likely that both the previous

constructions of the cube and dodecahedral models will become invaluable in

predicting the e�ects of coarse-graining on the larger viruses.

To coarse-grain the kinetic modelling itself, changing the way in which the

free capsomere concentration is considered may help. This is because every

forward and backward reaction updates the concentration of free dimer. As a

result of this ensuring an accurate concentration of free capsomere requires very

small time steps. Alternatively the free capsomere concentration could be set to

a constant low amount. This scenario would reduce the integration complexity

and perhaps also, be a more appropriate assumption for in vivo modelling

where capsomeres are being produced concurrently with virus formation.

6.4.1 Further MS2 Biology

Maturation Protein

An alternative approach to simplifying the model is to use more assumptions

based on the biological knowledge of the MS2 virus. It has long been known

that the MS2 virus has both ends of its RNA bound to its single maturation

protein (Shiba and Suzuki, 1981), which is important for infection. The mat-

uration protein is situated at a 5-fold axis of the MS2 virus (Toropova et al.,

2011). The implications of these biological results suggest that the ends of

the RNA, in a Hamiltonian path, should start and �nish at the same 5-fold

axis. This leads to the two possibilities shown in �gure 6.7, 6.7(a) is termed

a cycle, 6.7(b) is termed a pseudo-cycle. The cycle possibility corresponds to

a Hamiltonian path (Hamiltonian cycle) that starts and �nishes on adjacent

dimers, whereas the pseudo-cycle would start and �nish on opposite dimers

around the 5-fold axis. These cyclic constraints are assumed to limit the valid

Hamiltonian paths, for instance only 1,456 of the original 44,678 Hamiltonian

paths start and �nish on adjacent A/B dimers. Completing the �nal link be-

tween these two dimers creates a Hamiltonian cycle, which reduces the 1,456

paths to 42 that are unique. This reduction occurs due to each Hamiltonian

cycle having up to 60 starting points for a particular Hamiltonian path. The

reason why this cycle number is not simply 1,456 divided by 60, is because
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some of the paths contain two or three repeated sequences of directions. The

number of 42 cycles may be further reduced by not considering the direction

of the path, similar to the BiRNA scenario, which leaves only 32 remaining

unique paths.

(a) (b)

Figure 6.7: RNA Hamiltonian paths starting and �nishing at the same 5-
fold axis, (a) shows a Hamiltonian cycle possibility, (b) shows a pseudo-cycle
Hamiltonian path

5-Fold Averaged Cryo-EM

A cryo-EM reconstruction of the MS2 bacteriophage bound to the F-pilus

of bacteria has recently provided new insights into the internal RNA layout

(Toropova et al., 2011). Binding the virus to F-pili determines a particular

5-fold axis of the 6 possibilities, therefore the resulting reconstructed image

is only 5-fold averaged rather than icosahedrally averaged. The selection of

particular virus particles in the cryo-EM micrograph images used only those

in which the attachment site was visible, see �gure 6.8. The reconstructed is

shown in �gure 6.9. The data from this 5-fold reconstruction shows di�erent

amounts of RNA density in the outer shell for di�erent distances from the
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maturation protein. This information is later used to validate the selection of

possible Hamiltonian paths.

(a) (b)
Bacterium

F. Pilus

MS2 Virus Particles

Figure 6.8: (a) A cryo-EM micrograph of MS2 particles bound to F-pili
(Toropova et al., 2011). (b) A diagrammatic representation of example virus
positions, where the attachment sites would be observable, are shown in green
and example locations which are unsuitable for use in the reconstructions are
shown in black.

(a)

Figure 6.9: The left image shows the outer surface of the reconstruction and
the image on the right shows only the back half (Toropova et al., 2011).

Mass Spectrometry Data

Mass spectrometry has been used to analyse the assembly of MS2 particles

using only the TR stem loops (Knapman et al., 2010) (Morton et al., 2010).

The results show that the assembly of hexamers, around a 3-fold axis and

decamers around a 5-fold axis are most likely intermediates. These highly

bonded intermediates were also predicted in a model of the mass spectrome-

try results (Dykeman and Twarock, 2010). It would make sense therefore to
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model the assembly pro�les of MS2 that form the most hexamer and decamer

con�gurations.

6.5 Simple Rules for E�cient Assembly

In the paper �Simple Rules for E�cient Assembly Predict the Layout of a

Packaged Viral RNA� (Dykeman et al., 2011), a co-author, Dr. Eric Dykeman

continued the analysis of the MS2 Hamiltonian paths, described above, to �nd

only 66 that are consistent with binding the maturation protein at the 5-fold

axis. Dr. Dykeman was then able to �nd 3 of these paths that are consistent

with mass spectrometry data (Morton et al., 2010) and remarkably, validate

this result against the 5-fold averaged cryo-EM data. The initial 66 paths are

cycles and pseudo-cycles that have been reduced from the larger set of cycles

and pseudo-cycles through removing symmetric and inversely identical paths.

The paths were also �ltered to remove those paths with only slight di�erences in

the endings of the con�gurations. The paths were again reduced by considering

only paths that lead to capsid assembly, following the Hamiltonian path model,

through forming hexamers and decamers. The initial assembly of these paths

was constructed such that the maximum number of capsomere contacts were

formed at each step (see �gure 6.10).

It was found that the RNA density of these three paths was indeed con-

sistent with that of the 5-fold averaged cryo-EM data (Toropova et al., 2011).

In order to align the Hamiltonian paths to the 5-fold averaged cryo-EM data

�rst the Hamiltonian path was converted to an RNA density. The method

used to do this was to measure the distances between the MS2 dimers in the

crystal structure from (Valegård et al., 1997) and convert these numbers into

the amount of RNA density expected for the long and short steps within the

Hamiltonian paths. Secondly both the cryo-EM data in the outer shell and the

Hamiltonian path densities were converted to 1D projections, these projections

are compared in �gure 6.11. Figure 6.11(a) shows the average of converting

the 40,678 paths, 66 �ltered paths and �nal 3 paths to an RNA density. Cer-

tainly the three �nal paths compare very favourably to the 1D projection of the

outer shell of the 5-fold averaged cryo-EM data, also shown in �gure 6.11(a).

Interestingly paths with slightly less energetically favourable bonding did not

match with the cryo-EM RNA density.
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(a)

Figure 6.10: The three pathways that form the highest number of bonds at
this early stage of assembly. The left most pathway has the highest number
of bonds at each step whilst the centre and right pathways have the second
highest number of bonds at each step. Reproduced from (Dykeman et al.,
2011).

6.6 Conclusions

In this chapter we have seen how large the combinatorial possibilities of virus

assembly become. Again this can be compared to the protein folding problem

where there are also very large numbers of possible states (Levinthal, 1969).

However proteins and viruses do successfully reach their �nal con�gurations

quickly and accurately. In lieu of actually running kinetic simulations on the

STMV and MS2 assembly networks it has been shown how the networks them-

selves may be analysed to gain insights to the likely assembly behaviour. This

analysis has emphasised the interplay of the network branching and the bonds

formed within intermediates. This network investigation shows that by forming

energetically favourable intermediates the bulk of the pathways to kinetically

trapped dead-end intermediates may be avoided.

The network analysis also shows the interesting geometry of the MS2 and
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(a)

Figure 6.11: (a) shows the average of converting the 40,678 paths, 66 �ltered
paths and �nal 3 paths to an RNA density along with the 1D projection of
the outer shell of the 5-fold averaged cryo-EM data. (b) The individual RNA
densities of the 3 predicted paths and (c) a table of relative densities for the
three distinct levels of RNA density found. Reproduced from (Dykeman et al.,
2011).

STMV intermediates. Particularly interesting are the short and long steps of

the walk in the MS2 capsid. These short and long steps correspond to changes

in the length of the RNA between A/B dimers. This allows for the validation

of paths with the cryo-EM data. The short and long steps will also determine

where along the genome RNA stem loops are required to be in order to bind

the A/B dimers. Since these distances along the RNA vary, it is possible to

analyse the genome for stem-loops that match up to particular long and short
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steps. This is topic of soon to be submitted work in (Dykeman et al., 2012).

Di�erent coarse-grainings of the kinetic model have been discussed in terms

of �nding a solution to the computational intractability of the large assembly

networks. Coarse-grained models would be relatively easy to implement, es-

pecially using the existing computer program code base. These models could

then be run on the STMV networks for which the UniRNA and BiRNA net-

works have already been fully computed. Running a coarse-grained model is

relatively easy, it is understanding the e�ects, if any, that the coarse-graining

produces on the results that is hard to determine. This is where the cube

and dodecahedral kinetic simulations will become very informative, since any

coarse-grained model could be �rst run on these networks and the e�ects on

the results compared. The particular choice of coarse-graining is left to future

work. In a break from the Zlotnick based model (Zlotnick, 1994), there is also

the possibility of using Gillespie algorithms to analyse the networks already

determined (Gillespie, 1977) (Hemberg et al., 2006). For larger, computation-

ally intractable networks, a Gillespie algorithm could be implemented such

that only a small number of intermediates was required at any point. These

intermediates could be generated on the �y, removing the need to calculate

the whole of the network in advance.

Additional biological information has also been considered in order to re-

duce the complexity of the analysis speci�c to the the MS2 bacteriophage. This

has lead to �nding three Hamiltonian paths that are constrained to binding the

maturation protein, follow the energetically favourable pathways determined

in mass spectrometry results and also happen to conform with the RNA den-

sity found in (Toropova et al., 2011). This is a remarkable result that, like the

network analysis, suggests that the assembly pathways likely follow only the

most stable intermediates.

The most stable intermediates would naturally occur at less negative bond

strengths, where any intermediate forming only a few bonds would readily

break apart. The high number of backward reactions required for this process

favours a reaction system close to equilibrium. This is one of the hallmarks of

a self-assembly. In the next chapter this theme of self-assembly continues with

the topic of DNA cages.



Chapter 7

Designing an icosidodecahedral

DNA cage

7.1 Introduction

A DNA cage is a three-dimensional shape made from double-helical DNA

molecules. DNA and RNA cages have been seen in nature and may also be

constructed arti�cially. A good example of an RNA cage in nature is the dodec-

ahedral arrangement of the viral genome in pariacoto virus (�gure 7.1) (Tang

et al., 2001). This is the same virus that inspired the Hamiltonian path model

of assembly in earlier chapters (Rudnick and Bruinsma, 2005). In this chapter

we will look at constructing DNA cages using nanotechnology process as op-

posed to the self-assembly approaches used by viruses. Designed DNA cages

may be constructed that are stable in solution without any further bonding

from proteins or other molecules. In 1991 (Chen and Seeman, 1991) created a

DNA cage structure in the shape of a cube. Further examples of DNA cages

include a truncated octahedron (Zhang and Seeman, 1994), octahedron (Shih

et al., 2004), tetrahedron (Goodman et al., 2005), dodecahedron (He et al.,

2008) and buckyball (He et al., 2008). These example DNA cages are shown

in �gure 7.2. DNA is generally used to make these nanoscale structures be-

cause it is more stable than RNA. There is also no wobble base pairing in DNA

which makes the sequences easier to design. Finally what makes DNA such a

great nanoscale material is that many of the previously developed techniques

and enzymes from Biology may be employed in its manipulation. DNA cages

show promise in a wide variety of nanoscale applications. In medicine there

are possibilities for drug delivery (Destito et al., 2007) and diagnostic purposes

(Chhabra et al., 2010). There is also potential in molecular nanofabrication,

126
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(a) (b)

Figure 7.1: (a) The three dimensional reconstruction of pariacoto virus from
(Tang et al., 2001). (b) The double-stranded RNA layout of the dodecahedral
cage with additional internal density shown in the pentagonal faces. (Tang
et al., 2001).

environmental sensing (Chhabra et al., 2010) and DNA computing (Sa-Ardyen

et al., 2004).

7.1.1 Constructing DNA cages

To construct a DNA cage, a double stranded DNA molecule must run along

each edge of the shape in question only once. The individual strands must

therefore run in opposite 5' to 3' directions to ensure the correct hybridisation

of the DNA double helix. Mathematically these cages are related to topological

graph theory and such a DNA cage is termed an orientable thickened graph

(Jonoska and Saito, 2002). Ideally the DNA cage would also be made out of a

minimum number of individual DNA strands to increase the stability. A DNA

cage using the minimal number of strands is also important in certain DNA

computing applications (Sa-Ardyen et al., 2004).

7.2 Bead model

Previously, a systematic approach to designing DNA cages was proposed by

Jonoska and Twarock (Jonoska and Twarock, 2008). This systematic approach

is termed the bead model and was demonstrated for a dodecahedron of DNA.

This dodecahedron of DNA was partly inspired by the dodecahedral cage of

RNA found in pariacoto virus (Tang et al., 2001). The results of this chapter

describe how, using the bead rule, a DNA cage may be designed in the shape

of the icosidodecahedron, shown in �gure 7.3. A DNA cage of the shape of an

icosidodecahedron has a few advantages over previously constructed shapes.

Firstly it has a greater volume to surface area ratio than the dodecahedron
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(a) (b) (c)

(d) (e) (f)

Figure 7.2: A DNA tetrahedron (a) (Goodman et al., 2005), cube (b) (Chen
and Seeman, 1991), octahedron (c) (Shih et al., 2004), truncated octahedron
(d) (Zhang and Seeman, 1994), (e) dodecahedron (He et al., 2008) and buck-
yball (f) (He et al., 2008). All images here have been reproduced from their
respective papers.

(a) (b)

Figure 7.3: (a) The icosidodecahedron and (b) the corresponding planar
Schlegel diagram with the pentagonal back face expanded.
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(a) (b) (c)

Figure 7.4: (a) DNA Holliday junction crystallised in (Gopaul et al., 1998),
(b) the corresponding DNA four junction, (c) a DNA four junction with an
extra half-turn. (b) and (c) have been reproduced from (Grayson et al., 2009).

and therefore may be more useful as a container for drug delivery purposes.

Secondly, it is some-what simpler than the buckyball in �gure 7.2(f). This sim-

plicity is expected to lead to a greater yield upon manufacture when compared

to the buckyball (He et al., 2008).

The icosidodecahedron has 20 triangular and 12 pentagonal faces along

with 60 edges that are all of the same length. The edge length of the icosido-

decahedron determines the size of the DNA cage and also the number of DNA

helical turns along each edge. A full turn of the DNA helix has 10.4 base pairs

and has a length of about 3.4nm. The edge length of the icosidodecahedral

cage may be set such that an integer number of full DNA helix turns is possible

on each edge. The junctions of this cage at the four coordinated vertices of the

icosidodecahedron would then take on the structure of the well known Holliday

junction (Gopaul et al., 1998). The Holliday junction is shown in �gure 7.4(a)

with its schematic layout shown in �gure 7.4(b). This Holliday junction creates

a correctly oriented DNA cage with 32 separate strands - one for each face of

the icosidodecahedron. It is also possible to construct the icosidodecahedral

DNA cage with an extra half-turn of the DNA helix on each edge. This allows

for a greater choice of sizes for the cage. Introducing this extra half-turn on

each edge creates a DNA cage of 12 separate strands. However, the individual

strands are no longer correctly orientated such that base-pairing between them

occurs. A cage that exhibits such an extra half-turn is shown in �gure 7.5.

In order to correctly orientate the DNA strands when an extra half-turn is

present on the edges, the bead rule has been introduced (Jonoska and Twarock,

2008). The bead rule describes where an extra half-turn must be introduced

on the DNA cage to result in a correct orientation of the strands. A change in

junction type resulting from the application of the bead rule is shown in �gure
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Figure 7.5: The planer icosidodecahedron with an extra half helix turn on each
edge. This leads to 12 separate DNA strands that are not correctly orientated.
Reproduced from (Grayson et al., 2009).

cross bead

cross−over cross−overType A
junction junction junction junction

Type A Type A Type B

Figure 7.6: Demonstration of the bead rule: The change in DNA junction type
resulting from placement of a cross (or a bead) on an edge of the icosidodeca-
hedron. Reproduced from (Grayson et al., 2009).

7.6. Due to the extra mechanical stress on a junction where beads are present

the number of bead placements is kept to a minimum.

Every face of the icosidodecahedron must have an even number of cross-

overs to have the correct 5' to 3' orientations of the DNA. Therefore, each

triangle must have a bead placed on one of its edges. Since there are 20

triangles the minimum number of beads is 20. Of course by placing a bead

on the edge of a triangular face it is also placed on the edge of a pentagonal

face that shares this edge. Following the rule that the pentagonal faces must

have an even number of cross-overs, and therefore an odd number of beads,

each pentagonal face must have either 1, 3 or 5 beads. From these constraints

two equations have been produced, as shown in (7.1). In these equations, α
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is the number of pentagonal faces that have one bead, β is the number with

three beads and γ is the number with �ve beads. The number of beads must

add up to 20 as shown, and the number of pentagons must add up to the 12

the icosidodecahedron contains. There are three solutions to these equations,

termed cases I, II and III, which are shown in (7.2).

α + 3β + 5γ = 20

α + β + γ = 12 (7.1)

Case I α = 8, β = 4, γ = 0

Case II α = 9, β = 2, γ = 1

Case III α = 10, β = 0, γ = 2. (7.2)

In Case I there are four pentagons that have 3 beads. It has been deter-

mined that there are nine di�erent ways these four pentagons may be located

on the icosidodecahedron. These nine layouts are shown in �gure 7.7. The lay-

outs A1, A2 and A3 in �gure 7.7 correspond to all possible ways to arrange the

four pentagon positions when three are adjacent to each other. Layouts B1,

B2, B3 and B4 are all the possible positions when three of the four pentagons

are arranged in a line. Finally layouts C1 and C2 are the possible positions

when only two of the pentagons are adjacent. Also shown in �gure 7.7 are the

lines of symmetry and points of rotational symmetry that correctly rotate or

re�ect the four pentagons on to each other. These symmetries are later used

to remove duplicate bead layouts.

For Case II there are seven possible layouts: D2, D4, D5, and D6 have the

single pentagon with 5 beads adjacent to a pentagon with 3 beads. This is

not the case for the further E1, E2, and E3 con�gurations. In the last possible

case, Case III there are only two possible layouts, F2 and F6.
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Figure 7.7: The layouts for Case I where four pentagons, shown in blue, have three beads. Mirror symmetry lines are shown in green
and orange, while one end of each axis of rotational symmetry is shown by a red circle.
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D2

E2 E3E1

D4 D5 D6

F6F2 F6

Figure 7.8: The layouts for Case II are labelled; D2, D4, D5, D6, E1, E2 and E3. Case III layouts are labelled F2 and F6. Mirror
symmetry lines are shown in green and orange, while one end of each axis of rotational symmetry is shown by a red circle.
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7.3 Computer Implementation

Now that the unique location of the pentagons has been determined, it is pos-

sible to start looking for bead con�gurations that ful�l the requirement that

every face has an even number of crosses. This is not a simple constraint to

satisfy, because each placement of a bead a�ects two faces. The only way to

�nd all possible bead layouts is to check every combinatorial way of placing

beads. For DNA cages in the shape of a dodecahedron this process was carried

out manually (Jonoska and Twarock, 2008), however for the larger icosidodec-

ahedron a computer program is required, because there are far more possible

combinations. To store each con�guration, the three edges of each of the 20

triangles are numbered 1, 2 or 3. Then a vector of length 20, corresponding to

the 20 triangles, may be used to record which of the edges of each triangle has

a bead placed upon it. Each possible position in this vector may contain the

edge number 1, 2, or 3. With these three possibilities, for each position in the

vector there are 320 combinations which is, 3,486,784,401. To check whether

this many bead layouts correspond to each face having an even number of

beads would take far too long.

To increase the e�ciency of the algorithm, admissible bead layouts are

checked locally as the vector is �lled. The �rst 5 triangles of the bead vector

surround a single pentagon, this pentagon may then be checked at this early

point to ensure it has the correct number of beads. Further pentagons are

checked sequentially as their edges are assigned beads. This early checking,

and likely rejection, avoids the need to construct every possible vector. With

this algorithm, the computation is able to �nish in only a few days. The

associated programs may all be found on the accompanying CD, please refer

to the read me �le in the root directory.

Once all the possible bead locations have been determined, the mirror and

rotational symmetries are removed in order to obtain a unique number of

di�erent layouts. The bead con�gurations are then converted into the number

of DNA strands required to construct each layout. These DNA strands form

loops. For a particular bead layout this process starts on an arbitrary edge

of the icosidodecahedron and follows the beads or crosses until the starting

edge is reached again. Then a new edge is picked and the walking along the

edges repeated until all the edges have two DNA strands. Again a computer

program has been written to convert the bead layouts to the DNA strands and

produce a visualisation of the output. A re-drawing of one of these outputs is

shown in �gure 7.12.
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Case Con�guration Loop Number

10 12 14 16

Case I

A1 70 9
A2 325 13
A3 1025 65
B1 1743 39
B2 2248 47
B3 695 18
B4 1012 22
C1 2066 59 1
C2 2343 71 2

Case I Sum: 11527 343 3

Case II

D2 13
D4 90
D5 100
D6 90
E1 274 6
E2 364 2
E3 20

Case II Sum: 951 8

Case III
F2 9
F6 64 1

Case III Sum: 73 1

Table 7.1: The loop numbers for each correctly orientable pentagon con�gura-
tion.
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7.4 Results

The numbers of correctly orientated DNA strand layouts are shown in table

7.1. The numbers of loops formed between the di�erent con�gurations and

bead layouts di�er. The largest number of strands/loops was found to be 16,

while the smallest is 10. There is also a large range in the numbers of loops,

from 11527 with 10 loops to only 1 with 16 loops.

In the simple case where there are no beads or crosses on the edges each

junction has four separate DNA loops. When there are beads present and

the DNA cage forms 10 loops, notably every junction only has three or fewer

di�erent loops. When there are 12 loops present, there are either zero or

between 3 and 17 junctions with four loops. For 14 loop cages there are also

either zero, or between 10 and 18 four loop junctions. In the single 16 loop case

there are 19 junctions with four strands and 11 junctions with three strands.

To create DNA cages with a lower number of total DNA strands it is pos-

sible to replace the junctions at the vertices of the icosidodecahedron with two

energetically favourable alternatives (Condon et al., 2009), shown in �gure 7.9.

In the simpler case, where each edge of the icosidodecahedron does not have

a cross-over or bead, it is possible to use either of the replacement junctions

shown in �gure 7.9. This reduces the number of loops to two. It is not possible

to reduce the original 32 loops to a single loop, because either of the possi-

ble replacement junctions reduces the loop count by two on each application.

Therefore, after 15 replacements, there still remain two loops that may not be

combined. There are, however, many options of where to make these minimal

15 replacements which leaves a choice in the relative lengths of the remaining

loops. If only one strand of DNA was required, a hairpin structure on one of

the edges would create a single strand. The energetic considerations of placing

a hairpin are discussed in (Jonoska and Twarock, 2008) and is demonstrated

for a dodecahedral cage in �gure 7.10. The stability of this hairpin would likely

be low and require additional considerations to counter this. In viruses such a

hairpin structure could easily be stabilised by the capsid proteins.

As an example, the 16 loop result is used (see �gure 7.11). Due to there

being 16 loops, 14 replacements are required to result in the �nal two. The

�rst combinations create a single strand from 7 of the original loops, with the

remaining 9 loops forming the second loop in the end con�guration. Figure

7.11 shows the sequence of junction replacements that results in the �nal two

loops. In �gure 7.11(a) the numbered circles indicated the order of the junction

replacements. Figure 7.11(b) shows the resulting red strand that comes from
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(a) (b)

Figure 7.9: Two energetically favourable replacement junctions for the case
that three di�erent DNA strands meet at a junction. Di�erent loops are
colourd individually and blue lines represent base pairing between the loops.
This �gure has been reproduced from (Condon et al., 2009).

(a) (b)

Figure 7.10: A demonstration of using a hairpin loop to combine two DNA
strands in (a) to the single strand in (b). This �gure has been reproduced from
(Jonoska and Twarock, 2008).
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the �rst four junction replacements. The remaining three replacements create

the second (blue) strand shown in �gure 7.11(c). This �nal structure is shown

in 3D in �gure 7.11(d). A further example is shown in �gure 7.12 where, by

using six junction replacements a 14 loop con�guration may be reduced to two

strands.

(a)

1

2

45

3

6

7 (b)

5

7

6

(c) (d)

Figure 7.11: (a) The 7 possible locations of replacement junctions. (b) The
DNA cage after the �rst 4 replacements, which create the DNA loop shown
in red. (c) The �nal icosidodecahedral DNA cage constructed from two DNA
strands, (d) is this same cage design in 3D, with the original seperate loops
shown in their �nal colours. Parts (a), (b) and (c) have been reproduced from
(Grayson et al., 2009).

By placing beads on some edges mechanical stress is introduced. To reduce

this stress it may be possible to design the junctions such that there are extra

base pairs in the unbound center, although this could make the junction less

stable. Alternatively changing the length of the edge away from the icosido-

decahedral ideal could also act to reduce the stress. The experimental set-up

will determine which is the better option for a given application.
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1

2

3
6

4

5

Figure 7.12: The example 14 loop layout reduced through six replacements to
two DNA strands. Reproduced from (Grayson et al., 2009).

7.5 Conclusion

The systematic approach of using beads, developed by Jonoska and Twarock

(Jonoska and Twarock, 2008) for the dodecahedron, has successfully been ap-

plied to the icosidodecahedron. This has lead to the design of many di�erent

possible DNA cages with the large volume to surface area of the icosidodec-

ahedron. It has also been found that the minimal number of DNA strands

required to construct an icosidodecahedral cage is two. In the design process

attention has been paid to constructing DNA cages with minimum mechanical

stress. This had lead to using the minimum number of beads and a minimal

number of junction replacements. It is hoped these considerations will aid the

manufacture of energetically favourable icosidodecahedral DNA cages similar

to those in (Sa-Ardyen et al., 2004). DNA cages have a great deal of potential

in various applications such as nanotechnology and medicine and it is hoped

that the icosidodecahedron with its large volume and relative simplicity will

be useful in these areas.



Chapter 8

Conclusion

In this thesis two models that are capable of molecular self-assembly have been

described. Both models have a wide range potential in nanotechnology, such

as containers for drug deliver (Ma et al., 2012) (Destito et al., 2007) and in

nanofabrication (Chhabra et al., 2010) (Gerasopoulos et al., 2010).

The design processes developed for the construction of energetically

favourable icosidodecahedral DNA cages will hopefully aid and inform their

future construction. The designs modelled allow for many variations in the

architecture, which should give more options in any future application. Ener-

getic stability considerations used in the modelling of these DNA cages have

also been taken into account, this should help ensure that their self-assembly

is driven by the change in free energy.

The cage like structures of nucleic acid that form inside RNA viruses are

an emergent property of the assembly process. It is the understanding of this

process that is the subject of the majority of this thesis. In chapter 1 the well

characterised viruses of the MS2 bacteriophage and STMV were described and

their suitability for use as model systems shown. The consequences of the

dimer switching model (Stockley et al., 2007) (Dykeman and Twarock, 2010)

and cryo-EM density density (Van Den Worm et al., 2006) (Toropova et al.,

2008) lead directly to a new way of modelling RNA virus assembly (Grayson

et al., 2007). This new idea is that of using Hamiltonian paths to describe the

assembly and �nal structure of the RNA.

Following a discussion of virus and polymer assembly models in the litera-

ture it was concluded that Zlotnick's model (Zlotnick, 1994) would be the most

suitable to use as a basis to model the kinetics of Hamiltonian path based as-

sembly. The subsequent extension of Zlotnick's kinetic model to include RNA

e�ects proved to be very interesting and successful. This extended model has

140
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been shown to reproduce well known assembly behaviour, such as sigmoidal ki-

netics, hysteresis and also the kinetic e�ects of the RNA pathway constraints.

Furthermore the results from this model show complex emergent behaviour,

which is more than just a result of the assumptions used in creating the model.

In the previously simulated protein-only scenarios, kinetic trapping of ma-

terial within smaller intermediates has been shown to signi�cantly impact the

assembly, to the detriment of capsid production (Endres et al., 2005). With

the introduction of RNA this kinetic trap is resolved, certainly at RNA to

protein amounts near the stoichiometric ratio. Although the introduction of

assembly along an RNA Hamiltonian path allows for the possibility of forming

dead-end intermediates, swapping one form of kinetic trap for another. How-

ever, this dead-end kinetic trap has been shown to be less detrimental to virus

formation, over a range of bond values, in chapter 5.

The RNA assembly model introduced considers three main scenarios, that

of assembly beginning at the end of the RNA and from the middle, with and

without a constantly bound dimer on the TR position. There are also four

sizes of virus particle modelled beginning with the cube and dodecahedron

and leading up to the STMV 30-mer and 90-mer of MS2. The use and combi-

nations of these di�erent schemes has demonstrated the important features of

the RNA assembly model and how the e�ects scale with virus size. The main

consequence to assembly of using the Hamiltonian path model, especially in the

larger model systems of STMV and MS2 is the number of dead-end pathways.

For e�cient virus assembly, using the Hamiltonian path model assumptions,

it would be necessary for assembling intermediates to avoid these dead-end

pathways. One such way of avoiding many of the dead-end pathways is simply

to form well bonded, compact intermediates. Energetically favourable inter-

mediate types have also been predicted, via an analysis of the Hamiltonian

paths and further biological constraints in (Dykeman et al., 2011). The pre-

dominance of energetically favourable intermediates is one of the principles of

a self-assembly process. With this also being the case for RNA viral assembly

the result helps explain why it is such a robust process. It has also been shown

that nucleating dimer addition in the centre of the RNA is more e�cient than

assembling from a single end, again as a result of dead-end pathways. This

suggests that it may not be a coincidence that the TR stem-loop of MS2 is

positioned within 2 % of the centre of the genome. This e�ciency argument

may even explain why the smaller STMV virus is able to assemble from one

end of the RNA where as the larger MS2 virus must start in the middle.
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Just by calculating the networks of intermediates required for this model,

using the new algorithms developed, we have seen in chapters 3 and 6 that

insights can be found into the putative assembly pathways. Coarse-graining

of the kinetic model would be required for any future modelling of the larger

STMV or MS2 capsids. These coarse grained models would have the advan-

tage of being able to be tested on the smaller cube and dodecahedral systems.

However these small systems in themselves have shown all the qualitative be-

haviour that might be expected of larger systems. The increase in scale from

the cube to the dodecahedron shapes has also suggested a pattern of what

would happen in larger kinetic networks. Rapaport suggests, �the robustness

of self-assembly makes understanding the process in simpli�ed environments

a worthwhile endeavour� (Rapaport, 2012), which is probably why the small

models work so well.

Virus growth and replication is, of course, a very important subject of re-

search both medically and economically. One of the main reasons for studying

virus assembly is to inform approaches to stop virus production. Indeed the

results presented here suggest some possible therapeutic routes to preventing

viral assembly. Firstly, it has been shown that in all the simulation scenarios

the assembly is highly dependant on the availability of free building blocks.

Any drug that acted to reduce the availability of the building blocks even

slightly could have a signi�cant impact on the number of viral particles pro-

duced. A promising area of current research focuses on using RNA aptamers

to change the cell genetics and to act as alternatives to antibodies and small

molecule drugs (Shigdar et al., 2011). Such aptamers have advantages in that

they have low immunogenicity and can di�use into cells. Aptamers already

exist, such as the TR RNA sequence, that are capable of binding the MS2

coat protein. If the binding of such an aptamer was achieved in vivo the likely

hood would be that the building block would not be incorporated into a capsid

due to electrostatic repulsion and steric clashes.

It may also be possible to bind therapeutics such as antibodies to speci�c

viral intermediates. This would block some of the pathways to full viral capsid.

However as shown in chapter 6 there many be very many pathways to forming

capsid. The kinetic analysis for the dodecahedron in chapter 5 also suggests

that viral assembly would make use of these multiple pathways. However,

for the MS2 virus it appears that certain individual pathways could be very

much preferred when taking into account additional biological data. Therefore

blocking this pathway could have a signi�cant impact. For maximum e�ect in
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the more general case drugs could be designed to target intermediates early

in assembly with relatively high stabilities for maximal e�ect. The quanti-

tative analysis of removing intermediates and modelling possible therapeutic

interventions is a question left for future work.

Finally, it is hoped that the productive nature of interdisciplinary research

has been demonstrated throughout this thesis, and that the research presented

here will be an inspiration for future self-assembly modelling and collabora-

tions.



Abbreviations

BiRNA Virus assembly initiating in the middle of the

RNA that does not maintain a bound dimer to

a speci�c location.

Cryo-EM Cryo-Electron Microscopy

FM Free Monomer

MD Molecular Dynamics

STMV Satellite Tobacco Mosaic Virus.

TR Transcriptional Repressor, a stem loop in the

MS2 RNA that binds a coat protein dimer and

inhibits replicase production.

TrRNA Virus assembly initiating in the middle of the

RNA that maintains a bound dimer to a speci�c

TR location.

UniRNA Virus assembly initiating at the end of the RNA.
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