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Abstract 

The management of mineral scale is a challenge in many industrial fields and 

environmental issues relating to eutrophication are leading industry to develop 

environmentally-friendly solutions to scale control. The determination of the strategy of 

inhibition is a real challenge as many factors influence the formation of calcium carbonate 

formation and affect the performance of scale inhibitors. 

The processes of CaC03 formation on a surface have been studied. The mechanisms of 

inhibition of three green (Carboxymethyl Inulin, CMI, Polymaleic acid, PMA and 

Polyaspartic acid, PA) and one conventional (Polyphosphinocarboxylic acid, PPCA) scale 

inhibitors of calcium carbonate nucleation and growth have been investigated. The 

interactions between the chemicals and the surface have been studied by chronoamperometry. 

The use of surface analysis enabled these interactions to be characterised. The in-situ 

electrochemical flow cell permitted the characterisation of the crystals formed (size, number 

and surface coverage of the electrode) and the affinity of the chemicals to inhibit the 

nucleation and/or the growth to be determined. Important information on the different effects 

of scale inhibitors on CaC03 polymorphs has been found by use of Synchrotron X-Ray 

Diffraction (SXRD) as an in-situ method for crystal characterisation. 

The inhibitors partly inhibit the deposition of CaC03 by forming a film on the 

deposition surface. The interactions between the inhibitors and the metal surface occur via the 

cations Ca2+ and/or Mg2+. The adsorption of the chemicals on the crystals ofCaC03 has been 

investigated and it appears that the PPCA, PMA and PA act by blocking the growth sites of 

the crystals. Each inhibitor exhibits an affinity to the surface of deposition and with the 

CaC03 crystals but to a different extent resulting in different inhibition efficiencies. The 

PPCA affected greatly the deposition of CaC03 and PA and PMA exhibited similar effects. 

Nevertheless the PA is more efficient when it is present during the nucleation step or early 

crystallisation whereas PMA acts more during the growth process. The SXRD permitted three 

steps of growth to be detected in the non-inhibited case and PMA, PA, CMI act by reducing 

the growth of the different planes whereas the PPCA totally inhibited two main crystal planes 

(the aragonite (032) and the vaterite (300» and an acceleration of the growth of the calcite 

C(006) and of the aragonite A( Ill) was observed. 
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n: Number of electrons involved in the reaction 
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r: equivalent radius of the crystal 

rc: Critical radius 

Ra: Surface roughness 

S: Supersaturation ratio 

S: Surface area of a crystal 

Set): Surface coverage (%) 
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tind: Induction time 
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Chapter 1 
Introduction 

1.1 Oil and gas: the major energetic source 

The emergence of new technology and the changes in living habits have lead to high 

and increasing energy consumption. Figure 1.1 illustrates the increase of energy consumption 

according to the energetic source from 1990 and this increasing requirement for energy will 

keep increasing until 2030 according to prediction models. The energy based on oil and gas is 

the major energetic source. 
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Liquid fue ls and other petroleum include petro leum-derived 
fuels and non-petro leum-derived fuels, such as ethanol and 
biodiese l, coal-to-liquids, and gas-to-liquids. Petro leum coke, 
which is a solid, is included. Also included are natural gas 
liquids, crude oil consumed as a fuel, and liquid hydrogen. 

Figure 1.1: World marketed energy use by fuel type, 1990-2030 [1] 

The greatest oil consumers are Saudi Arabia with 27.4 barrels per year per inhabitant, 

Canada with 25 .9, the United States with 25.4, Belgium with 22.5 and the Netherlands with 

21.2. The United Kingdom, France, Italy and Germany consume between 11 and 12 barrels 

per year per inhabitant. Brazil and China only used 4.2 and 1.8 barrels per year per inhabitant 

respectively but their consumptions increased by 28 and 102% respectively during the last ten 

years. 



- 2 -

The production of oil and gas needs to follow the trend of their consumption. Saudi 

Arabia, Russia, the United States, Iran, Mexico, China, Norway, and Canada produced more 

than 3,000,000 barrels per day in 2004 with production of 10411, 9261, 7228,4106,3825, 

3485, 3189 and 3056 103 barrels a day respectively. It is important to note that some countries 

like Brazil, Kazakhstan and Qatar increased their oil production by 220%, 280% and 87% in 

10 years. 

The oil and gas reserves have been estimated and calculations were realised based on 

the consumption in 2005 and the needs in oil are covered for the next 40 years and the gas 

reserves are greater and should provide an energetic source for the next 60 years. 

1.2 Formation and extraction of oil and gas 

1.2.1 Oil and gas formation 

Crude oil and gas are the products of compression and heating organic matter over 

geological time scale. The organic matter (zooplankton or algae) settled to a sea or lake 

bottom and the organic matter is chemically modified due to the heat and pressure conditions. 

These extreme conditions are created by the different heavy layers of sediment accumulated 

above the organic matter. 

Uren defined a reservoir as a body of porous and impermeable rock containing oil and 

gas, through which fluids may move toward recovery opening under the pressures existing or 

that may be applied [2]. An oil reservoir is composed of the hydrocarbon material, a porous 

and permeable reservoir rock in which the crude oil and the gas accumulates and an 

impermeable seal to block the oil and gas to reach the surface. The oil and gas can migrate 

with the underground water flows for hundred of kilometres horizontally until the liquid is 

trapped in a reservoir. The water is heavier than oil and the gas is lighter than oil thus the 

three component liquid when trapped in a reservoir is organised according to a three layer 

model: water at the bottom, oil and then gas on the top. 
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1.2.2 Process of extraction 

Wells are drilled in the reservoir for the extraction phase. The primary recovery occurs 

if the pressure in the reservoir is sufficient to force the oil to the surface. Usually 20% of the 

oil can be extracted by primary recovery. 

The second recovery is used when the underground pressure drops stopping the primary 

recovery. In that case pumps can be used to extract the remaining oil. Techniques which 

increase the reservoir pressure are also used in the secondary recovery. The injection of water 

in the wells leads to an increase of the pressure and the water displace the oil from the 

reservoir to a production well. 35% of the oil of a reservoir can be extracted by primary and 

secondary extraction. 

The tertiary recovery improves the oil extraction by gas injection, chemical injection 

and thermal recovery. 30 to 60% of the oil can be recovered by tertiary recovery. The 

viscosity of the oil is decreased during this process of extraction to improve the flow rate of 

the oil. The techniques aiming to heat the oil to reduce its viscosity are called Thermally 

Enhanced Oil Recovery method (TEOR) (steam can be injected). 5 to 15% of the oil present 

in the reservoir can be recovered by this technique. 

1.3 Scale formation: problems and remedies 

1.3.1 Problems encountered 

Salts precipitation occurs when a system is not at the ionic equilibrium. This can be 

promoted by the changes of temperature and pressure or by introducing a brine which is not at 

equilibrium with the system. The formation of scale can occur in the reservoir which can lead 

to the blocking of the pores of the porous media. Thus oil can be trapped in the substrate and 

its extraction becomes impossible. During the extraction process the extreme conditions of 

temperatures and pressures lead to scale formation on the installation surfaces. The formation 

of scale in the pipes can lead to a large reduction of the flow as shown in Figure 1.2. The 

damage of safety valves can also be a consequence of the presence of scale on the installation. 

These blockages can lead to unscheduled shutdown and deferred oil production [3]. 
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Figure 1.2: Fouling material (calcium carbonate) that has been cleared from a pipe [4] 

1.3.2 Current remedies 

The addition of chemicals is the common method to reduce scale formation. The 

additives are injected during a squeeze treatment. The principles of the squeeze treatment are 

summarised in Figure 1.3. The scale inhibitors are injected in the production well (opposed to 

the injection wells). The well is then shut in during the treatment. 

Figure 1.3: Principle of the squeeze treatment [5] 
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First a dilute aqueous solution is preflushed in the well to cool the formation in the near 

wellbore area and to change its wettability. Then the inhibitors are irtiected and retained 

within the rock. Two different reactions occur: 

• Adsorption on the reservoir rock and they are released by desorption, 

• Precipitation in the formation as solid or liquid and they are released by 

re-dissolution 

Their release in the produced water provides protection against scaling. After the shut 

in the well is placed back on production and the concentration of inhibitors in the produced 

water is assessed and when this concentration is below the threshold level for effective 

inhibition (Minimum Inhibition Concentration), the treatment is repeated [3, 6]. 

The scale inhibitors used are then released in the environment. The discharge of these 

chemicals has an impact on the environment. Green chemistry has come to be the focus of 

some industry, primarily due to introduction of legislation to control the discharge of 

chemicals which are likely to have an effect on the biological cycle. 

1.4 Objectives of the thesis 

The scaling tendency of a solution is generally determined by assessing the scale 

formation in the bulk solution. This method has lead to large discrepancies between the 

prediction models realised from static beaker tests and what is occurring in the field. The 

deposition of scale on the surfaces has not generally been taken into account in prediction 

models. The consequences of the presence of scale on the surface are more problematic than 

precipitation in the bulk solution. 

This study is focused on the deposition of calcium carbonate onto a metal surface and 

its inhibition by different chemicals. The mechanisms of inhibition have been investigated for 

four different scale inhibitors: the phosphinopolycarboxylic acid (PPCA), the polymaleic acid 

(PMA) , the polyaspartic acid (PA) and the carboxymethyl inulin (CMI). The PPCA is a 

commercial inhibitor widely used in the oil and gas field and it has been taken as a reference 

in this study. The PMA, the PA and the CMI are environmental friendly (green) and are 

seriously considered as alternatives to current non-green technol9gies. 
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The main aim of the thesis is to provide a new understanding of CaC03 formation and 

inhibition at a surface. The specific objectives of the thesis are described below: 

• To quantify the efficiency of selected chemicals to inhibit CaC03. Four 

chemicals have been tested and their ability to reduce CaC03 deposition 

has been studied. The aim is to compare in which extent different 

molecules slow down the deposition of calcium carbonate. 

• To determine the mechanisms of inhibition. CaC03 deposition occurs 

under different steps and the inhibitors can act on one or several steps. 

The aim is to assess the different mechanisms of inhibition and to link it 

with the efficiency in order to determine the most efficient strategy of 

inhibition. 

• To use an innovative in-situ SXRD technique to probe the mechanisms of 

growth and inhibition. The laboratory conditions are often very different 

from the field conditions therefore this project (SXRD study) is focused 

on the study of CaC03 deposition and inhibition in realistic conditions in 

terms of nature of the substrate, temperature and pressure. An important 

objective of this study was to determine the mechanism of inhibition at 

the crystal plane level to point out any affinity between the chemicals 

and some specific crystals. 

1.5 Thesis layout 

A brief introduction of the oil and gas extraction and the problems generated by scale 

formation during the extraction process is presented in Chapter 1 as well as the objectives of 

this thesis. 

Chapter 2 gives background on the different types of scale encountered in the oil and 

gas field and on the formation of calcium carbonate. The literature review is presented. A 

review of the different methodologies to study CaC03 formation and the different parameters 

influencing this process is given. Then the mechanisms of inhibition and the different 

inhibitors used in the industry are reported. This chapter ends with a presentation of different 

principles of green chemistry and its application in the oil and gas industry. 
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The principles of the methodology (Electrodeposition and Synchrotron X-Ray 

Diffraction, SXRD) used in this study are explained in Chapter 3. The set-up used with these 

different methods are described as well as the mathematical model used to extract the data 

from the electrochemical in-situ study. The analysis techniques (contact angle measurement 

and Fourier Transform Infra-Red spectroscopy) are also described. 

Chapters 4,5 and 6 present the results obtained in this study. 

The electrodeposition tests conducted in static conditions under non-inhibited and 

inhibited conditions are presented in Chapter 4. The surface of deposition has been 

characterised by contact angle measurements and infra-red spectroscopy. 

Chapter 5 gives the results obtained with the in-situ electrochemical cell. The 

morphology of the crystals ofCaC03 has been investigated. 

The effects of the scale inhibitors on the different crystal planes during the nucleation 

and growth process of CaC03 are described with the SXRD study. 

In Chapter 7 the results are discussed. The contribution made by the thesis is presented 

through reference to the current work in the field. 

Chapter 8 presents the conclusions raised from this thesis and Chapter 9 introduces 

some recommendations for future work. 
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Chapter 2 
Background on calcium carbonate formation and literature review 

2.1 Introduction 

In the oil and gas sector, mineral scale formation is a major flow assurance problem. 

The scale tendency and the type of scale depends on the water chemistries and the mineralogy 

of the environment. 

Table 2.1 presents a summary of the common carbonate and sulphate scales 

encountered in the oil and gas field and their relative solubilities. It is interesting to note the 

large range of solubility concerning the SUlphate scales. The sulphate scales are harder to 

remove as they are not acid soluble scales [7]. 

Table 2.1: Common scale mineral, their composition, their relative solubility and physical 
conditions that cause their formation [8]. 

Mineral type Composition Relative solubility Causes of solubility change 

(mgIL) 

Calcite CaC03 196 pC02, Total pressure, TDS, 

Temperature 

Siderite FeC03 100 pC02, Total pressure, TDS, 

Temperature 

Barite BaS04 44 Pressure, TDS, Temperature 

Celestite SrS04 520 Pressure, TDS, Temperature 

Anhydrite CaS04 3270 Pressure, Temperature 

Gypsum CaS04.H20 6300 Pressure, Temperature -Conditions 1 aacc, solution 1m of NaC!, pH7, Anhydrite present at over 1 aacc, Gypsum 
present at less than 1 aace. TDS: Total Dissolved Salts 
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The two main encountered mineral scales in the oil and gas field are calcium carbonate 

(CaC03) and barium sulphate (BaS04)' The calcium ions and the bicarbonate ions present in 

the produced water are responsible for the formation of calcium carbonate. When the water 

passes through the carbon dioxide bubble point (due to the decrease of the pressure), CO2 is 

lost into the gas phase and as seen with the equilibrium presented in Equation 2.1 for the case 

of calcium carbonate, the precipitation of carbonate scale occurs. 

Equation 2.1 

Moreover a consequence of the loss of carbon dioxide is the increase of the pH (as 

illustrated in the Equation 2.2) resulting in a reduction of the solubility of calcium carbonate 

[9]. 

Equation 2.2 

The sulphate scales can form when the injection water containing sulphate ions is 

mixed with the formation water containing barium ions. Thus according to Equation 2.3 

precipitation of barium sulphate occurs. It is likely to find barium sulphate scale when barium 

ions are present in the formation water and sulphate in the injection as the solubility of this 

scale is vey low (Table 2.1). 

Equation 2.3 

This study was focused only on one scale: calcium carbonate. The aim of this chapter is 

to present a theoretical background on calcium carbonate formation. Firstly the basic 

principles of crystallography as well as the characteristics of calcium carbonate are presented. 

A review of all the different methods used to generate and to study CaC03 in the bulk solution 

and on the surface is given. Then the focus is on the different chemical and physical 

parameters influencing the formation of calcium carbonate. The mechanisms of inhibition are 

described in the fourth part as well as the four chemicals used in this study as scale inhibitors. 

Finally a complete definition of the green chemistry and of the legislation related to the 

release of chemicals in the marine environment ends this chapter. 
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2.2 Background on CaC03 formation 

The precipitation of CaC03 occurs if the system has reached some degree of 

supersaturation. The degree of supersaturation (the deviation from the equilibrium saturated 

conditions) is the essential factor to permit the deposition to occur. 

The general scheme of a crystallization process is as follow: 

• Achievement of supersaturation, 

• Formation of crystal nuclei, 

• Growth of the crystals. 

2.2.1 Driving force 

Calcium carbonate formation is governed by the following equilibria [10]: 

Equation 2.4 

Equation 2.5 

Equation 2.6 

Equation 2.7 

The reaction occurs when the thermodynamic conditions are favourable [11]. Water can 

be characterized by the supersaturation ratio, S. S is defined as follow: 

Equation 2.8 

where aca2+ and aHC0
3
• are the activity of calcium ions and bicarbonate ions and K's is 

the solubility product depending on the temperature and the pressure. According to the value 

of S, the water has different properties: 

S<1 (undersaturated), the solution is aggressive, 

S== 1, the solution is in thermodynamic equilibrium, 

S> 1, (supersaturated), the solution is calcifying and calcium carbonate precipitation 

Occurs. 
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In an undersaturated solution and a solution at the equilibrium, homogenous 

spontaneous nucleation cannot occur and if a crystal is added it will dissolve in a 

undersaturated solution. The saturated conditions do not allow the nucleation or the growth of 

a crystal but a seeding crystal added would not be dissolve. The supersaturated domain can be 

divided in three parts. The metastable zone does not permit a homogenous spontaneous 

nucleation but crystals added will grow. The labile zone is the region in which spontaneous 

homogenous nucleation occurs . The third zone is the precipitation zone. This zone is many 

times supersaturated and an amorphous precipitate is formed (Figure 2.1)[12]. In the CaC03 

case, the crystallizing agents are the calcium and carbonate ions and the crystals of CaC03 are 

the macromolecules. 

@I 
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o ,,,' ", ... , .,"'" 
Figure 2.1: A two-dimensional representation of the three major saturation zones: 

undersaturation, saturated and supersaturated [12] 
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When 1 < S < 40, the solution is metastable and the precipitation is possible when S is 

close to 40. The solution is completely unstable when S is above 40; spontaneous 

precipitation occurs [II]. 

During the process of precipitation the driving force are changing. The driving force for 

calcium carbonate formation is the change in Gibbs free energy for going from the 

supersaturated solution to equilibrium [13]. The Equation 2.9 illustrates the variations in the 

Gibbs free energy during a nucleation process: 

1 IP 
t1G =--R Tln(-) 2 g KO 

s 

Equation 2.9 

with Rg as the gas constant, T the absolute temperature, IP the activity product of 

CaC03 in the solution and K~ at equilibrium. 

When the supersaturation is created, the crystal formation occurs. The time elapses 

between the creation of the supersaturation and the nucleation start is called induction time. 

2.2.2 Induction time 

Sohnel and Mullin called induction time the time which elapses between the creation of 

the supersaturation and the first observable change in some physical property of the 

precipitating system (ie. the appearance of crystals or turbidity change of solution 

conductivity change in solution composition etc.) [14]. The determination of the exact 

induction time is a challenge as the detection of the nuclei depends on the accuracy of the 

method used: a nuclei must grow to a detectable size therefore the induction time (tind) is 

composed of the nucleation time (tn) and the time needed for a nucleus to grow until a 

detectable size (tg) as shown in Equation 2.1 0 [15]. 

Equation 2.10 
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The induction period can be defined as described by Equation 2.11 when homogeneous 

nucleation is followed by a diffusional growth [14]: 

Equation 2.11 

where find is the induction time, C is a constant, Ut is the slope of log find versus (log Sr2 

function and Sa the supersaturation of the solution. 

Gill ef al. showed the relation between the induction time and the supersaturation [16]. 

Equation 2.12 

where K is a constant, T Ca is the molar concentration of ions, p the apparent number of 

ions in the critical nucleus, f the induction time. 

2.2.3 Nucleation process 

A stable nucleus is composed of several molecules and the number of molecules varies 

according to the nature of the crystals: from 10 to several thousands (water ice for example 

contains 80 to 100 molecules). The formation of a nucleus is a complex process and depends 

on several conditions. The constituents molecules have to coagulate, to be stable (to avoid 

being dissolved) and to be orientated into a fixed lattice. The collision of two molecules 

usually starts the process of nucleation and then a third molecules participates to the 

formation of the nucleus and so on [17]. Ion pairing and clusters are formed by electrostatic 

interactions between dissolved anions and cations (Figure 2.2). Then the clusters grow step by 

step by the addition of ions until a critical size [18]. 
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Figure 2.2: Schematic representations of processes involved in initial stages of scale 
formation: (a) ion pairing, (b) prenucleation aggregate growth, (c) and (d) particle 
nucleation and growth [19] 

The nucleation process occurs in very high supersaturated region and very rapidly [17]. 
In case of the formation of calcium carbonate the electrostatic interactions between the 

calcium cations and the bicarbonate anions lead to the formation of the nucleus ofCaC03• 

Three kinds of nucleation are observed according to the characteristics of the 

environment where the nucleation takes place [20]: 

Primary homogeneous nucleation: it occurs in the absence of solid phase (foreign 

particles, crystals already formed). The number of crystals formed during the homogeneous 

nucleation following by diffusional growth can be determined by [14] 

a 
logN=D- N 

(log Sa)2 

Equation 2.13 

where N is the number of crystals, D a constant, aN the slope of log N versus (log Sy2 

function and Sa the supersaturation. 
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Primary heterogeneous nucleation: it takes place when a solid interface of a foreign 

seed (like ions or impurities) is present in the solution. Most of the primary nucleation are 

heterogeneous induces by other surface. The homogeneous and heterogeneous nucleation do 

not take place at the same time so the nucleation rate is the sum of these two nucleation rates. 

Secondary nucleation: it is initiated by the presence of the crystalline suspension itself. 

An homogeneous nucleation occurs when the local supersaturation is about 40 whereas 

a much lower supersaturation is enough to observe an heterogeneous nucleation [21] 

Primary and secondary nucleation take place at different time during the crystallization 

process as shown in Figure 2.3. 

Creation of 
supers aturation 

• Secondary ~ 
Nucle~at_i __ 

Secondary changes 
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Aggregation. 

Growth 

TIme 

Figure 2.3: Kinetic processes involved in precipitation [22] 

The excess of the free energy variation during a homogenous nucleation process is 

described as shown in Equation 2.14. The surface excess free energy (dGs) is the free energy 

between the surface of the particle and the bulk of the particle and the volume free energy 

(dGv) is the excess free energy between a very large particle and the solute solution [17]. 

Equation 2.14 
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The surface excess free energy is a positive quantity proportional to r2 and the volume 

free energy is a negative quantity proportional to r3 in a supersaturated solution, r being the 

radius of the particle. Figure 2.4 shows the existence of a critical size, re, when DoG reaches a 

maximum, DoGerit . Equation 2.15 presents the relationship between DoGerit and the critical size 

where cr is the surface energy of droplet per unit area. 
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<.9 
<1 llGcrit ~ 
O'l .... 
Q) 0 
C 
Q) 

Q) 

~ 
LL 

-ve 

o 

4 2 
DoGcril = - ;rare 

3 

~ llGs 

Equation 2.15 
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Figure 2.4: Free energy diagram for nucleation explaining the existence of a 'critical ' nucleus 
[ 17] 

The behaviour of a nucleus in a supersaturated solution depends on its size. In any case, 

the system would go for a decrease of the free energy of the particle. Therefore a particle with 

a smaller radius than re will dissolve in the solution and a particle with a size exceeded re will 

grow. Thus re is the minimum size of a stable nucleus. Packter showed that the critical radius 

for a crystal of calcium carbonate was loA in his experimental conditions [23]. DoGerit is 

necessary to form stable nuclei. The energy of a solution at constant temperature and pressure 

is constant but the distribution is not homogenous. There is statistical distribution of the 

energy in the solution in the molecules constituting the system and then nucleation occurs in 

the supersaturated regions where DoGerit has been reached. In case of heterogeneous the free 

energy required to form a stable nuclei is smaller than for the homogeneous nucleation, the 

surface or foreign particle present in the supersaturated solution jnducing the nucleation [17] . 
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This last point illustrates the significance of studying the process of crystallisation on a 

surface as less energy is required to form a precipitate thus the industrial systems containing 

surfaces (potential nucleation sites) will encountered problems due to the formation of a 

precipitate much more easily . 

The rate of nucleation, N, is the number of nuclei formed per unit time per unit volume 

and can be described by Equation 2.16. 

6.C 
(-lIT ) 

N =A.exp g 
Equation 2.16 

where A is a constant of proportionality, ~G the overall excess free energy of the 

particle, Rg the gas constant and T the absolute temperature. 

Mullin described the relationship between ~G (the overall excess free energy of the 

particle) and the degree of supersaturation of the system [17] (Equation 2.17) 

~G = 167r(},3 M 2 

3(RTplnS)2 
Equation 2.17 

where M is the molecular weight of the particle, p the density of the particle and S the 

supersaturation degree. 

Combining Equation 2.16 with Equation 2.17, the nucleation rate is governed by three 

main variables the supersaturation degree, the interfacial tension and the temperature 

(Equation 2.18). 

Equation 2.18 

Many factors (like the pH, the dissolved CaC03 [10], the nature of the substrate [24] 

etc.) influence the nucleation rate thus the nucleation process. These different factors will be 

reviewed and studied in the section 2.4 of this chapter. 
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2.2.4 Growth process 

Once the nuclei are stable (when they are larger than the critical size), the growth 

process occurs to lead to the formation of a crystal of visible size. The growth is controlled by 

three general headings: the surface energy, the adsorption-layer and the dislocation theories. 

2.2.4.1 Surface energy 

The surface energies theory is based on the fact that a crystal is more stable when its 

surface free energy is low and hence its area is minimum. If a crystal grows in a solution, the 

growth of the different faces will grow with respect that the whole crystal has a minimum 

total surface free energy for a given volume [17]. It has been suggested that the growth of the 

faces is proportional to the surface energy and that it is inversely proportional of the reticular 

density (number of lattice points per unit area) of the lattice plane meaning that the growth of 

the face with a low reticular density is greater than the other faces and that it can disappear as 

il1ustrated in Figure 2.5. A crystal which grows and keeps its geometry during the growth 

process is called " invariant". The growth of the crystal leading to a modified geometry is 

cal1ed "overlapping". 

" 
A 
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Figure 2.5: Velocities of crystal growth faces: (a) invariant crystal : (b) overlapping [17] 
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2.2.4.2 Adsorption layer theory 

The adsorption theory is known as well as the Kossel, Stranski, Volmer theory (KSV) 

[25]. They pointed out that the crystal surface is not homogenous in terms of growth sites. 

The surface of a crystal is composed of smooth surfaces, steps and kink sites (I, 2 and 3 in 

Figure 2.6). The growth occurs first in the kink site as with three faces in contact with the 

crystal surface, the binding energy is the highest compared to the step site and the flat surface 

[26] . 

Figure 2.6: Representation of a crystal surface showing the development of an emerging 
growth step [26] . 

The atoms tend to bind the crystal where the binding force are the greatest; when the 

atoms are in the vicinity of the crystal, they migrate towards position the attractive force are 

the greatest meaning that no new layer can be built until the creation of the previous has 

finished. However this last suggestion was not verified by experimental work [26]. If the 

degree of supersaturation is high enough to allow the nucleation of a 2-D nucleus, a 

crystallization site onto the surface can be created before the previous layer has been 

completely built (as mention ned by the fourth step in Figure 2.6). 

2.2.4.3 Dislocation 

A dislocation is an irregularity in the crystal lattice. It is likely for a crystal to grow with 

Some imperfections due to the presence in the solution of impurities or foreign atoms or ions. 

The screw dislocation has been characterized by the Burton, Cabrera, Franck (BCF) theory 

[17,25] . During the growth process, sometimes a step may develop on the surface leading to 

an excessive development of one part of the crystal. 
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Figure 2.7 shows the spiral growth generated onto the surface of a crystal by the 

emergence of a step. As no 2-D nucleation is needed for the growth of the following layer 

(because of the spiral growth), the crystal growth occur at very low supersaturation degree. 

Figure 2.7: Development of growth spiral starting from a screw dislocation [17]. 

2.2.4.4 Growth mechanism 

The crystal growth occurs in successive reaction steps [27]: 

• The transport of solute to the crystal solution interface, 

• The adsorption of solute at the surface, 

• The incorporation of the crystal constituents into the lattice. 

The presence of a laminar film of liquid in contact with the growing face, through 

which the solutes need to diffuse to reach the surface of the crystal is assumed. The thickness 

of this film varies according to the agitation of the system: it decreases with the increase of 

the agitation. There are two main steps in the growth process. First the molecules of solutes 

are transported from the bulk solution to the crystal face by diffusion and then they are 

incorporated in the crystal lattice. Figure 2.8 illustrates the driving forces in crystallization. It 

is important to note that the driving forces will rarely be equal and the variation of the 

concentration in the laminar film is not necessarily linear [17]. 
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Figure 2.8: Concentration driving forces in crystallization from solution [17] 

Nancollas et al. showed that the growth rate could be expressed as a decrease of the 

molar concentration of the constituents of the crystals (m) with time (Equation 2.19) 

dm 2 
--=ks(m-ma) 

dt 
Equation 2.19 

where k is the rate constant for growth, rna the solubility and s is some function of the 

number of growth sites available for deposition [28]. 

From Equation 2.19, Nancollas described the crystallization rate of sparingly soluble 

electrolyte and in the case of calcium carbonate it gives (Equation 2.20) [14,29], 

Equation 2.20 

where kc is the crystal growth constant, A(t) the surface area of the crystals, g is the 

kinetic order of growth, rCa] the molar concentration of calcium, [Ca]eq the molar 

concentration of calcium at the equilibrium. 
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An important factor in the determination of the growth rate is that the surface area of 

the crystals in contact with the solution increases with time. Thus Sohnel and Mullin proposed 

a way to include this fact in Equation 2.20 [14] (considering that the number of crystals is 

constant and that the crystals are the same shape). 

Wet) = NV(t)p = Npkvr (t)3 Equation 2.21 

where Wet) is the total mass of crystals in 1 litre of solution at time t, N the number of 

crystals, Vet) the volume of the crystal at time t, p the density of the crystal, kv the volume 

shape factor, r the equivalent radius of the crystal. The surface area of the crystal is 

Equation 2.22 

where ka is the area shape factor. 

Combining Equation 2.21 and Equation 2.22 gives 

Equation 2.23 

The total mass of crystals in 1 litre of solution can be described with 

Wet) = ([Ca]; - [Ca])M Equation 2.24 

where M is the molecular weight of CaC03• 

By combining Equation 2.20, Equation 2.21 and Equation 2.24 the variation of the 

calcium concentration can be expressed by 

Equation 2.25 

Equation 2.26 gives the crystal growth rate, 

dr 
-=K ([Ca]-[Ca] )g dt g eq 

Equation 2.26 
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The relationship between Kg in Equation 2.26 and Kc in Equation 2.25 is given by 

Equation 2.27, 

Equation 2.27 

Where B is the intercept of the 10g(d[Ca]) versus log([Cal-[Ca])2/\[Ca] -[Ca] ec )g . 
~ 7 

2.2.5 Crystallography of CaCOJ 

According to Barrett, "a crystal consists of atoms arranged in a pattern that repeats 

periodically in three dimensions" [30]. The important feature of a crystal is the regularity of 

the arrangements of the elements constituting the crystals. A crystal is composed of the 

repetition of identical templates. A single template is the unit cell and Figure 2.9 illustrates 

the three vectors and the three angles characterising the size and the shape of a unit cell. 

z , 

AJ_a-----b~---- - ---------- - -------:_ __ y ~ 
.. X • ~ 

Figure 2.9: Characteristics of a unit cell 

A unit cell is defined by the length of the axes (x, y and z» and the angle between the 

axes x and y (y), the axes y and z (a) and the axes x and z (~) . According to these 

characteristics, Mullin defined the 7 crystal systems presented in Table 2.2 [17]. 
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Table 2.2: The seven crystal systems [17] 

System Other names 
Angles between 

Length of axes Examples 
axes 

Cubic, Octahedral, 

Regular Isometric, a = fJ = r =90
0 

x=y=z Sodium chloride 

Tesseral 

Tetragonal 
Pyramidal, 

a = fJ=r =90
0 

x=y:t:z Nickel sulphate 
Quadratic 

Rhombic, 

Orthorhombic 
Prismatic, 

a = fJ=r =90
0 x:t:y:t:z Silver nitrate 

Isoclinic, 

Trimetric 

Monosyrnmetric, 

Monoclinic Clinorhombic, a = fJ=90°:t: r x:t:y:t:z Sucrose 

Oblique 

Triclinic 
Anorthic, 

a:t: fJ:t: r:t: 90
0 x:t:y:t:z Copper sulphate 

Asymmetric 

Trigonal Rhombohedral a = fJ= r :t:90° x=y=z Calcium carbonate 

z axis is 
Hexagonal 

perpendicular to the 
(described with 
a 4-axes system, None x, y and u axes x=y=u:t:z Water (ice) 

the additional 
axe is named u) 

which are inclined 

at 60° to each other 
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The crystal planes can be described by their axial intercept, the axes being chosen 

according to the parametral plane (reference plane), face ABC in Figure 2.10. The axial 

intercepts of the para metra I plane are AO=a, BO=b and CO=c. The intercepts of the face 

considered are named X, Y and Z on the respective axes x, y and z. Miller determined a way 

to represent each face of the crystal according to the indices h, k and I defined by 

h = .!!.... 
X 

+x 

k=~· l=~ Y , Z 

+z 

o 

-z 

F 

Figure 2.10: Intercepts of planes on the crystallographic axes [17] 

Equation 2.28 

-x 

In the example presented in Figure 2.10, the Miller indices of the face DEF are 

Equation 2.29 

By convention, the value of b is unity therefore the Miller indices of the face DEF are 

h:k:I=3:2:2. The Miller indices are inversely proportional to its axial intercepts [17]. 
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Calcium carbonate exhibits a polymorphism. It can crystallize into different forms but 

these forms are chemically identical. The properties of the calcium carbonate crystalline 

forms are summarized in Table 2.3. 

Table 2.3: Properties of calcium carbonate crystalline forms 

Calcite Aragonite Vaterite 

Crystal system Trigonal [31] Orthorombic [32] Hexagonal [33] 

Cubical or 
Crystal morphology Needlelike Spherical or disclike 

Rhombohedral 

Density (g/cm3) 2.71 2.93 2.66 

Stability 
Thermodynamically 

Metastable Unstable 
stable 

Figure 2.11 , Figure 2.12 and Figure 2.13 give an illustration of a schematic 

representation of the molecules of calcite, aragonite and vaterite respectively. These 

molecules differs from the organization of their constituting elements not from the nature of 

these elements. 

...----!-Ca 

c 

o 

Figure 2.11: Schematic representation of a molecule of calcite [31 , 34] 
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o 

Ca 

Figure 2.12: Schematic representation of a molecule of aragonite [32, 34] 

~t--+- C 

o 

Ca 

Figure 2.13: Schematic representation of a molecule ofvaterite [33 , 34] 

The calcite is the most stable form of calcium carbonate and Peric et al. determined the 

energy of activation of the phase transformation. The phase transformation, in the specific 

experimental conditions, from aragonite to calcite is an endothermal process and the energy of 

activation was 234.5±5.6kJ/mol. The activation energy necessary to transform vaterite into 

calcite was 252.8±48.7kJ/mol and this transformation is favored by the presence of calcite 

and slightly inhibited by aragonite [35] . 

The different polymorphs of CaC03 can be formed by changing the experimental 

conditions like the stirring speed, the concentration of Ca2
+, the temperature, the pH and the 

flow rate. The crystals defects influence the phase transformation as well [36-40]. 
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It has been reported in the literature that the molar ratio Mg2+:Ca2+ influences greatly 

the morphology of calcium carbonate. Calcite is preferentially formed when the magnesium is 

at low level and the increase of the ratio leads to the formation of aragonite while the content 

of calcite decreases [41, 42]. The morphology of the crystals of calcium carbonate can be 

controlled by the presence of divalent cations [43]. Mg2+ and Fe2+ do not influence the growth 

of aragonite and Cu2+ and Zn2+ have a stronger inhibitory effect on calcite, while Sr2+ and 

Ba2+ showed better properties to inhibit aragonite. 

Organic additives can affect the morphology of the crystals of calcium carbonate and a 

wide range of morphology can be formed by adding organic additives [41,42,44]. This point 

is developed later in this chapter. 

An electrochemical study showed that the morphology of the calcium carbonate crystals 

depends on the initial stage of the substrate of deposition (clean or damaged) and on the 

concentration ofCaC03 present in the system [45]. 

The action of anti-scalants can be different according to the nature of the calcium 

carbonate deposit (aragonite, calcite or vaterite). The use of calcium complexing substances 

retards growth of aragonite and calcite but they have a much stronger effect on aragonite than 

on calcite [46]. 

Calcite is the most thermodynamically stable form of calcium carbonate but the 

presence of certain impurities or a high temperature, above 60°C, leads to the formation of 

aragonite [10, 14]. For a fast nucleation rate calcite is mainly deposited on the surface 

whereas for a slower rate vaterite in generally formed [21, 47]. 

The adherence of the calcareous layer on the surface depends on the polymorph of the 

crystals [47]. Wang et al. showed that the deposit formed on a surface at 20°C was harder to 

remove than a deposit formed at 90°C. SEM investigations demonstrated that the deposit was 

composed of calcite at 20°C whereas it was aragonite at 90°C. The authors pointed out the 

role of the polymorph on the adhesion of the deposit. The build-up of a top-layer of aragonite 

onto aragonite does not provide strong adhesion (because of their needle morphology) so it is 

easier to remove than when the layers of CaC03 are composed of calcite [48]. 
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The role of suspended minerals in a scaling solution has been investigated and it has 

been found that the nature of the mineral influences the morphology of the crystals formed. 

The addition of montmorillonite ((Na, Ca)(Al, Mg)6 (Si40 IO)J(OH)6 - nH20) leads to the 

formation of calcite whereas in absence of this mineral and under the same conditions vaterite 

was formed. Quartz had no influence on the precipitation whereas kaolinite (AhSi20s(OH)4) 

inhibited the precipitation process to some extent [49]. 

2.3 Review of the methodologies to study CaC03 

The different methodologies to study the scale formation in the bulk solution and onto a 

surface are reviewed and a particular focus is on the methods used in this thesis. It is essential 

to study the mechanisms of scale formation and inhibition both in the bulk and on the surface 

as it has been seen- that the mechanisms of scale formation are different according to the 

nature of the nucleation. Moreover the mechanisms of scale inhibition can be different 

according to where the inhibition occurs (in the bulk solution or on a surface) [50]. 

2.3.1 Scale precipitation in the bulk solution 

Bulk precipitation is usually studied with a beaker test with a supersaturated scaling 

solution. The measurements made to determine the kinetics of scale precipitation are various. 

The assessment of the pH variations has been often used to study the kinetics of CaC03 

precipitation. According to Equation 2.2, the formation of CaC03 generates a drop of the pH. 

The decrease of the pH can be measured and the kinetics of calcium carbonate determined 

[51] or the pH can be kept constant and the kinetics of scale formation are determined from 

the volume of the titration solution added [52-54]. The last method is referred as the pH-stat 

method. 

As calcium carbonate is formed the concentrations of calcium and bicarbonate are 

depleted from the solution. Ross et al. determined the effects of polyaspartic acids by 

quantifying the concentration of calcium left in the solution by atomic absorption 

spectroscopy [55]. NancoIIas has studied the growth of calcium carbonate crystals which were 

already characterized (length and surface area known) by adding them in a stable 

supersaturated solution. The inoculated solution has been filtrated during the growth step and 

the filtrate has been analyzed by Atomic Absorption Spectroscopy [29]. 
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In order to generate secondary nucleation, calcium carbonate seeds crystals can be 

added in the bulk solution in order to provide nucleation sites [53, 54, 56, 57]. The use of a 

calcium-selective electrode has been used as well to assess the drop of the Ca2
+ concentration 

[51,56,58]. 

Tantayakom et al. studied the barium sulphate scale inhibition by assessing the changes 

of the turbidity of the bulk solution. They determined the critical supersaturation ratio for 

which barium sulphate precipitates for different experimental conditions [59]. He et al. 

studied the induction period of calcium carbonate formation at 25 and 90°C by turbidity 

measurements [60]. Sohnel et al. measured the turbidity of the solution to study the effects of 

magnesium, manganese, chromium and fluorine on the kinetics of scale precipitation [14]. 

Euvrard et al .. developed a test based on the evaluation of the number of crystals present 

in a supersaturated solution. The solution has been evaporated and filtrated and a chemical 

analyses has been carried out to determine the mass of the precipitate and a morphometric 

analysis has permitted to define the mean characteristics of the crystals [61]. 

2.3.2 Scale deposition on a surface 

The review of the methods specific to the study of scale deposition on a solid surface 

study is divided in to two categories: non-electrochemical and electrochemical methods. 

2.3.2.1 Non-electrochemical methods 

The Quartz Crystal Microbalance (QCM) is a very accurate set-up allowing the 

detection of a very small quantity of deposit. Changes of 0.5ng can be determined according 

to the model of the QCM [62]. Deposition of a thin film on the surface of a quartz crystal disc 

oscillator plated with gold decreases the frequency in proportion to the mass of the film. The 

thickness of the crystals determines the resonant frequency so the mass sensitivity. The 

Sauerbrey equation gives the relationship of the mass of solid adhered (madh) on the quartz 

crystal with the changes in oscillating frequencies (M (Equation 2.30). Ks is the 

proportionality constant determined by calibration. 

Equation 2.30 
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The adhesion mechanism of calcium carbonate has been studied by using the quartz 

microbalance technique (QCM). Calcium carbonate precipitates firstly as an amorphous 

compound and then as a stable crystalline form. They found that at high supersaturation ratio 

calcite was the predominant crystal observed whereas at low supersaturation ratio leaf-like 

vaterite is obtained. They also showed that the contribution of the indirect adhesion of crystals 

precipitated in the bulk is less important than the direct adhesion. The significant role of the 

stirring rate and the inclination of the surface on the rate and the amount of scale formed has 

been demonstrated [63, 64]. 

A calcium carbonate cooling water scaling system permits the deposition of scale layers 

under well-known conditions on heat transfer surfaces. The measurement of the temperature 

before and after the' test section enables the calculation of the scaling resistance (Rt) which is 

proportional to the thickness of the scale deposit. It is assumed that the thermal conductivity 

of the scale remains constant [65]. 

Hasson et al. examined the effects of anti-sealants using a falling film system. The 

system simulates the operation of a water-cooling tower. A hot aqueous solution of 

Ca(HC03)2 flow down the outer surface of a vertical pipe and the falling film released CO2 

due to the evaporative air-cooling of the film creating the supersaturation regarding CaC03 

[66]. 

The tube blocking test is the most common method to study scale deposition. The 

scaling flow is going through a thin tube and the building up of scale on the surface of the 

tube generates changes in the pressure between the inlet and outlet of the tube. The increase 

of the differential pressure illustrates the building-up of scale in the thin tube. This method 

has been used by Dyer and Graham to study the effects of the temperature and the pressure on 

barium sulphate and calcium carbonate precipitation. They pointed out the greater effects of 

the temperature on the scaling tendency [67]. 
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Some comparative studies of green [68] and non-green [69] inhibitors have been 

realised by dynamic tube blocking tests. Bazin et al. compared the effects of different CMI on 

CaC03 and BaS04 inhibition on the time at which the blockage of the tube occurs. The MIC 

(Minimum Inhibiting Concentration) of various inhibitors have been determined in different 

conditions (inhibited, addition of iron, calcium and barium free brines) [70]. 

Tube blocking tests have been used by Zhang et al. to build a kinetic model to predict 

the scale formation. The results obtained are in a good agreement with the measurements 

realised downhole. They also found that the most probable crystals in an oilfield reservoir is 

calcite [71]. 

Hennessy et al. developed an in-situ flow cell allowing the application of high pressure 

and high temperature. They studied the formation of BaS04 under non ambient conditions 

with a Synchrotron X-Ray Diffraction [72]. The substrate of deposition used was silicon for 

its good X-Ray diffraction properties. This cell permits the effects of the brines compositions, 

the effects of scale inhibitors, temperature, pressure, flow rate to be determined. Chen et al. 

used this cell to study the influence of the magnesium ions of CaC03 formation and the 

effects of scale inhibitors. For this work, the substrate of scale deposition was silicon and 

PMMA (polymethylmetacrylate). It has been found that the scale formation can be divided in 

two steps. The first one is unstable: various vaterite and aragonite polymorphs emerge from 

the solution and then disappear. This unstable phase is followed by a stable phase in which 

the crystals adhere on the surface and then grow [73]. 

In this thesis the in-situ flow cell has been used with Synchrotron X-Ray Diffraction as 

the means of analysing the scale. Full details of the cell and of the conditions of the 

experiments are described in Chapter 3. 

Synchrotron X-Ray diffraction have been already used to study BaS04 formation and 

inhibition by a carboxylic acid and a phosphonate [74]. They revealed the formation ofBaS04 

on an electrode surface despite the small mass of the deposit. The SXRD spectra showed the 

trend of the crystals size and the authors pointed out the corrosion inhibition properties of the 

phosphonate inhibitor with the absence of iron sulphate. 
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2.3.2.2 Electrochemical methods 

Ledion et al. proposed the first electrochemical method (chronoamperometry) in 1985. 

It is based on promoting the oxygen-reduction reaction by polarising a metallic electrode at a 

negative potential. The reduction of the oxygen leads to a local increase of the pH resulting in 

CaC03 formation onto the metal surface [75]. Full details of the principles of the 

electrochemical method are presented in Chapter 3. A review of the various electrochemical 

based approaches which have been used to study calcium carbonate formation and inhibition 

is presented. 

~ Chronoamperometry 

The current is proportional to the flow of oxygen moving towards the electrode and 

decreases when the active surface decreases, blocked by the scale formation. The current iL 

reaches a final value close to zero when the surface is completely covered and isolated by 

scale. The morphology of the scale deposit is related to the residual current: the more compact 

and isolating, the lower the residual current. Ledion defined the scaling time ts as the 

intersection between the tangent at the inflexion point of the chronoamperometric curve and 

the time axis (it is a rough approximation of the scaling potentiality of water) [11]. 

The effects of the sulphates, the calcium concentration and the potential on the nature 

of the deposit has been studied by chronoamperometry [76, 77]. Calcium carbonate was found 

for a potential between -0.9 and -1.1 V whereas brucite (Mg(OH)2) was the only forming for a 

potential up to -1.3V. At potential -1.2V brucite and calcium carbonate are found, only 

aragonite crystals have been detected by XRD analyses or ex-situ SEM. But the impedance 

technique shown the presence of a porous film on the surface. This film may be the precursor 

of the brucite 

Chronoamperometry is very often combined with the impedance technique and the 

electrogravimetry especially when scale inhibitors are used as the residual current often 

increases when the quantity of additives increases [10,21,47, 76-82]. 
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~ Impedance 

The impedance technique permits to determine two quantities CHF and RHF obtained 

from its high frequency behaviour. CHF, the capacitance (measure of the amount of electric 

charge stored (or separated) for a given electric potential), depends on the surface coverage 

and RHF, the resistance (measure of the degree to which an object opposes an electric current 

through it), on the morphology of the deposit [80]. Gabrielli et al. showed when non-scaling 

conditions (e.g potential too low to enable oxygen reduction) are applied on a surface already 

covered by scale that CHF do not vary whereas RHF increased with time. 

Therefore with this technique they shown that the thickness of the deposit do not 

change and the porosity change with time (the pores narrow with time) [83]. 

Devos et al. developed a novel technique combining EIS (Eletrochemical Impedance 

Spectroscopy) with microscope to allow in-situ observations [79]. Deslouis et al. combined 

the impedance technique with the EHD (Electro hydrodynamic Impedance, based on flow 

modulation technique) to study the formation of Mg(OH)2 without CaC03 [81]. 

~ EQCMB 

The electrochemical method can be coupled with a QCM. This technique is called 

chronoelectrogravimetry and has been used by Gabrielli et at. to determine the effects of the 

degree of hardness, a surface pre-treatment and oxygen concentration. This method enables 

the determination of the nucleation time and the total mass deposited on the surface as a 

function of time [21]. 

The EQCM has been inserted in a flow cell to study the effects of the hydrodynamic 

conditions on the scale formation and inhibition [84]. The authors demonstrated that the 

scaling rate increased with the flow rate in the laminar regime and a higher inhibition 

efficiency was found at the turbulent regime when inhibitors were added. 
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The nucleation process has been studied with an EQCM by Devos et al. and they 

showed that the nucleation rate increases with the dissolved CaC03 and the pH and not the 

growth process. Moreover they pointed out that the convection does not influence the 

nucleation rate only the growth process [10, 82]. 

Neville et al. developed an electrochemical-based method, the Rotating Disc Electrode 

(RDE) to study the extent of surface coverage on scaled electrode [85, 86]. This technique 

permits to obtain precisely the coverage by having uniform controlled hydrodynamic 

conditions over the ,surface of the electrode. 

A relation between the limiting current (iL) and the rotational speed enables the 

determination of the percentage of surface coverage in accordance of the Levich equation 

(Equation 2.31). 

Equation 2.31 

where iL is the limiting current (rnA), co the angular velocity of the RDE (rad s·'), Cb the 

bUlk concentration of electroactive species (mol dm\ v the kinematic viscosity (cm2 s·'), F 

the Faraday's constant (96487 C equiv·'), A the electrode area (cm2), n the number of 

electrons involved in the reaction, and D the diffusion coefficient of the electroactive species 

(cm2 s·'). 

By plotting iL against co ll2
, the percentage of the coverage can be determined. 

Equation 2.32 

where m, and m2 are the gradient of the iL against C0
1l2 plot for the unscaled (initial) and 

scaled (final) respectively. 
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A good correlation is observed between results obtained with electrochemical 

monitoring and image analysis [85]. Morizot et af. showed by using RDE the role ofCa2
+ and 

Mi+ in the inhibitor film formation mechanism [87] and Neville et al. studied the film 

promoted by magnesium and found that there is no calcium in this thin layer even if calcium 

is present in the solution [88]. 

Chen et af. studied the calcium carbonate precipitation in the bulk solution by assessing 

the concentration of Ca2
+ by ICP (Induced Coupled Plasma) and the deposition on a surface 

by RDE and illustrated the need of studying both surface and bulk scale formation as the 

mechanisms differ [50]. 

~ Other applications 

Gabrielli et af. developed an electrode which allows the use of isolating materials. They 

successfully determined the scaling susceptibility of a material. They tested various material 

and they pointed out the lower scaling susceptibility of the PTFE (Polytetrafluoroethylene) 

compared to the Plexiglas® and PVC (polyvinyl chloride) [89]. 

In-situ observations and in real-time have been done by Euvrard et af. by using a 

transparent electrode connected to a video set-up. The analyses of the images of the electrode 

covered by scale allow them to study nucleation and growth of electrodeposited calcium 

carbonate and to determine the morphometric characteristics (diameter, surface, shape) of the 

crystals of CaC03 [90]. A full description of this set-up is presented in Chapter 3 as it has 

been used in this study to determine the effects of the scale inhibitors. Devos et al. used a 

microscope coupled with a EQCMB. The whole thickness of the EQCMB have been made 

optically transparent by spraying a thin layer of a transparent and conductive semi-conductor 

[10]. 
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Analyses were done with a laser beam reflected on a surface covered where 

crystallization of calcium carbonate takes place. Three substrates were studied; stainless steel, 

copper and soft steel (XC38 (98.7% of Fe, 0.4% of C, 0.6% of Mn, 0.3% of Si» and it has 

been found that the nature of the substrate has an impact on the nucleation and growth process 

and they do not act on the nature of the crystals [24, 91]. The nature of the substrate has a 

significant effect on the scaling process both by acting on the number of nucleation sites and 

by acting on the nucleation rate. 

Electrochemical methods have not only been used in the study of scale deposition. 

These technique can be applied in water treatment to recover phosphonates, magnesium and 

azote by electrodepositing a mineral named struvite (MgN~P04.6H20) and to decrease the 

degree of hardness of a hard water [92]. 

2.4 Parameters influencing CaC03 formation 

2.4.1 Effects of the supersaturation 

Chen et al. studied the effects of the degree of supersaturation on the induction time and 

the growth of the crystals in the bulk solution and on the surface. They found that the 

supersaturation degree has an important impact on the induction, growth, morphology of the 

crystals and rate of scale formation: at high supersaturation, the induction time is short and the 

growth of CaC03 is rapid for both crystals nucleated in the bulk or on the surface whereas the 

decrease of the supersaturation leads to the increase of the induction time and to a slow down 

of the growth only for the crystals nucleated in the bulk solution [50]. 

The effects of the degree of supersaturation on the induction time was confirmed by 

Ben Armor et al .. The study focused on the heterogeneous nucleation and the influence of 

different parameters pointed out that the type of nucleation (heterogeneous or homogeneous) 

is highly dependent on the supersaturation state of the solution as heterogeneous nucleation 

occurs at low supersaturation and both heterogeneous and homogeneous occurs at higher 

supersaturation [93]. This finding illustrates the need of higher driving forces for 

homogeneous nucleation to occur [17]. Tend et al. showed that increasing the supersaturation 

resulted in a faster nucleation rates and in a development of 2-D nuclei [94]. 
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Moreover Pina et al. worked on the effects of the supersaturation on the growth of 

BaS04 and SrS04 and determined that the supersaturation influences the model of growth: 2-

D nucleation occurs at high supersaturation and spiral growth at low supersaturation [95]. 

Moreover the supersaturation not only influences the kinetics of CaC03 formation but 

also the morphology of the crystals. The decrease of the supersaturation leads to an increase 

of the aragonite fraction and to some extent to the disappearance of the calcite crystals in the 

deposit formed [96, 97]. 

2.4.2 Effects of the pH 

As seen previously the formation of calcium carbonate is controlled by the calco­

carbonic equilibrium presented in Equation 2.4-Equation 2.7. These equilibria are highly 

dependent on the pH as shown on the repartition diagram of the C-species (Figure 2.14). 
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Figure 2.14: Distribution of carbonic ions as a function of pH 
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The formation of CaC03 is favoured at high pH due to the hydrocarbonate/carbonate 

buffer equilibrium. 
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The pH affects the morphology of the crystal as determined by Cheng et al. [98]. The 

influence of the pH was strong at high pH. The particle size seems to be in correlation with 

the pH: a high pH means a small average size of the particles [99, 100] . At high pH the 

nucleation rate is increased as the supersaturation increases leading to a change in the 

morphology of the crystals. Moreover, the induction time decreases with the increase of the 

pH as seen with the increase of the supersaturation [50, 101]. 

2.4.3 Effects of the temperature 

The temperature is one of the most important factors to consider for a study of calcium 

carbonate formation and especially in oil and gas field as the temperature varies strongly 

during all the oil extraction process and can reach some extreme values. 

The temperature has different effects on the supersaturation of a solution according to 

the elements taking into account; the temperature increases the supersaturation relative to 

calcium carbonate resulting in a higher scale tendency at high temperature whereas the 

temperature decreases the supersaturation with respect of BaS04 leading to a decrease of 

BaS04 precipitation [67]. 

The higher scale tendency for calcium carbonate at high temperature have been checked 

as well by chronoamperometry study for a potential applied of -1 V /SCE (Saturated Calomel 

Electrode) [77] . Barchiche et al. have found by using electrochemical tests that the 

temperature can be in favour in aragonite when a moderate potential (-I.OV/SCE) is applied 

whereas brucite (Mg(OH)2) is observed at higher potential (-1.2V /SCE) (Figure 2.15)[77]. 

Figure 2.15: SEM pictures of (a) aragonite and (b) brucite (Mg(OH)2) formed at 30°C at a 
potential of -I.OV/SCE and -1 .2V/SCE respectively 
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The influence of the substrate of deposition on the kinetics of precipitation is lost with 

the increase of the temperature showing the increase of the homogeneous nucleation with the 

temperature [93]. 

The morphology of the crystals of calcium carbonate can be modified according to the 

temperature as the increase of the temperature leads to the decrease of the solubility of the 

aragonite and the calcite but in a different extent [102, 103]. It has been determined that 

calcite is the most stable crystals at 30°C whereas aragonite is observed at higher temperature 

(-35°C) [104, lOS). Lin and Dexter explained this difference of solubility with the 

incorporation of Mg2+ into calcite [106, 107]. 

2.4.4 Effects of calcium concentration 

Devos et al. and Barchiche et al. studied by electrodeposition the effects of calcium 

concentration on the process of scale formation. The chronoamperometric curves show the 

decrease of the scaling power with the decrease of the calcium concentration [10, 77]. 

Moreover the calcareous deposit is thinner but more compact at high calcium concentration. 

The nucleation rate increases with calcium concentration (for concentrations ranged from 

120mg/L to 200mgIL) whereas the growth rate does not vary [10). It has been shown by 

assessing the drop of the concentration of calcium in a pure calco-carbonically water that the 

rate of nucleation and the crystalline growth rate decrease with the water hardness [93]. 

Euvrard et al. pointed that at low degree of hardness (10°F) the nucleation was 

progressive and vaterite was formed whereas it was instantaneous for a higher degree of 

hardness (30°F and 50°F) and calcite was observed. This show a strong correlation between 

nucleation and crystalline form [90]. 

The general trend of calcium carbonate formation with the increase of [Ca2+] is the 

increase of the number of crystals and the average size of each crystal [108]. 
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2.4.5 Effects of Magnesium 

The influence of Mg2+ on calcium carbonate formation has been widely studied as 

strong effects on calcite have been pointed out. 

Magnesium is adsorbed onto the surface of calcite and incorporated in the crystal 

lattice. The magnesian calcite is more soluble than pure calcite, resulting in an inhibition of 

calcite whereas Mg2+ is not incorporated in aragonite crystal. That is why magnesium inhibits 

nucleation and growth of calcite. 

The magnesium ions does not affect the nucleation and the growth of the aragonite 

[107, 109]. The inhibition of the calcite growth is greater when the growth occurs according 

to the 2-D growth model [109]. As the calcite is preferentially formed at low temperature, the 

inhibition of effects of Mg2+ on calcium carbonate are greater [106]. 

The amount of Mg2+ incorporated in the calcite lattice increases with the initial 

concentration of Mg2+ in the solution. Moreover the nature of the magnesium salt as a source 

of Mi+ influences its incorporation into the crystal lattice [110]. 

With the non uniformly incorporation of magnesium in the crystal lattice of calcite, the 

properties of the new calcite formed have changed: the growth rate is lower than the one 

observed with the original calcite due to the developing new crystal faces with a high Mg2+ 

density and lower growth rate [111]. 

Chen et al. has studied the effects of magnesium on the early stages of calcium 

carbonate formation by electrochemical method (RDE). It has been found that magnesium is 

incorporated in CaC03 nuclei and a thin layer of Mg-CaC03 is formed and adsorbed on the 

metal surface at the initial stage of scale formation. This layer is the main contribution of the 

coverage of the surface [112]. The percentage of the Mg/Ca ratio in the deposit is proportional 

to the Mg concentration in the scaling solution. The inhibiting effects of magnesium are 

greater in the bulk precipitation than on the surface deposition [113]. 
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Magnesium affects the morphology of the crystals of calcite: Mg2+ leads to distorted 

crystals and increases the roughness of the surface [114]. 

2.4.6 Effects of foreign ions 

The presence of foreign ions or impurities influences the crystallisation mechanism and 

the nature of the precipitate. These compounds act by adsorbing the surface of the crystals or 

by inserting the crystal lattice as seen with the magnesium ions. 

Roques demonstrated that the effects of foreign ions on CaC03 formation depend on the 

size of the ions (the ionic radius) and on the hydration energy (as dehydration is necessary to 

integrate the crystal structure) [115]. Table 2.4 summarises the required conditions for a 

foreign ion to integrate the crystal lattice of CaC03• Ions smaller than Ca2+ (to be able to 

insert themselves into the crystal lattice) and with a much higher hydration energy tend to 

lead to the formation of aragonite under conditions where calcite would be preferentially 

formed. 

The size of the ion is not the only conditions required as a smaller ion than Ca2+ with 

similar hydration energy would not lead to any change of the morphology of the crystals. An 

ion bigger than Ca2+ is not able to integrate the crystal lattice and generally the hydration 

energy of these ions is lower than Ca2+ [115]. 

Table 2.4: Necessary conditions for a foreign ion to incorporate into the crystal lattice of 
CaC03 

Ionic radius Hydration energy Variation of the morphology 

Rx<Rca2+ Calcite to Aragonite 

Calcite 

Calcite 
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The sorption behaviours of the ions on CaC03 crystals is a determining factor in the 

effects of these ions on the properties of the precipitate. Cadmium (Cd) is preferentially 

incorporated into the step structures of the crystals whereas lead (Pb) forms a precipitate onto 

the surface of the crystals. Hausner et al. studied the effects of Pb and Cd in similar 

experimental conditions on the dissolution of CaC03 and the authors showed the dissolution 

inhibiting effects of Cd on calcite whereas Pb does not inhibit the dissolution of calcite [116]. 

The inhibiting effects of the zinc (Zn2+) and the copper (Cu2+) have been pointed out by 

Meyer et al. and confirmed by Guizellaoui and Lopez [117-119]. The addition of Zn2+ leads 

to a decrease of the size of the crystals of CaC03 with a more significant number of crystals. 

The use of the allotropic cell device demonstrated the CaC03 inhibiting effects of Cu2+ and 

Zn2+ by changing the morphology of the crystals from calcite to aragonite suspensions which 

act as nuclear centres of crystalline growth in solution; the presence of Zn2+ and Cu2+ leads to 

the formation of crystals in the bulk rather than onto the surface [118]. 

It was found that the iron (Fe) reduces the scaling risks. Fe2+ acts on the crystallization 

process and leads to an increase of the formation of fine particles in the bulk solution. Iron 

could precipitate in the form of ferric hydroxides which could act as nucleation sites. A 

comparative study of the effects of Fe2+ and Mn2+ and the effects generated by Mn2+ on 

CaC03 formation are less significant [120]. 

The kinetics of formation are only slowed down at the initial step of CaC03 but after 

this step, Mn2+ does not affect the crystallisation ofCaC03 in a significant way [120]. 

Sulphate ions have been studied by an electrochemical method and it has been found 

that S042- seem to hinder the aragonite formation by acting directly on the crystallization or 

by promoting the gel-like Mg-containing layer that forms usually in the experimental 

conditions used [77]. 
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2.4.7 Effects of dissolved oxygen 

Gabrielli et al. have studied the effects of oxygen concentration on calcium carbonate 

deposition by electrochemical method. The scaling rate and the amount of calcium carbonate 

increase with oxygen concentration. Observations with a SEM permit to determine that the 

nucleation rate is very fast at high concentration whereas it is slow at low concentration. 

Moreover the microscopic observations confirmed that the crystal morphology is dependent 

on oxygen concentration [21]. 

2.4.8 Effects of the nature of the substrate of deposition 

Calcium carbonate formation occurs onto different substrates and its mechanism of 

formation may vary according to the surface of deposition. 

Dalas et al. studied the effects of the nature of the material added into a scaling solution 

as substrate of CaC03 formation. Calcite may nucleate and grow onto chitin and cellulose 

[121, 122]. Vaterite is preferentially formed onto cholesterol and calcium carbonate 

monohydrate onto polymeric substrates [123, 124]. It has been seen that the vaterite and the 

CaC03 monohydrate were transforming into calcite. These studied have been realised under 

the same temperature and pH conditions so the formation of calcite might be due to the 

experimental conditions and not specific to the substrate. 

Nevertheless the formation of vaterite and CaC03 monohydrate show the different 

mechanisms of CaC03 deposition regarding to the substrate. Sabbides and Koutsoukos 

demonstrated that the addition of calcite, aragonite or vaterite seeds in a scaling solution 

leaded only to aragonite overgrowth pointing out that the substrate is not the key factor 

controlling the nature of the overgrowth [125]. 

The nature of the substrate has an important effect on the nucleation process and the 

scaling rate of CaC03• Electrochemical tests have been realised with different type of working 

electrode (differing by the nature of the material) and it has been found that gold surface 

permits a quick scale deposition compared to bronze and stainless steel surfaces which allow 

a slower scale deposition [47]. The first steps of the nucleation are influenced by the nature of 

the substrate but not the lateral growth [24]. 
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A difference of the amount of CaC03 formed onto metal substrates has been pointed 

out, copper permitting a greater deposition than stainless steel [126] and struvite 

(MgN~P04.6H20) precipitates in a greater extent onto a stainless steel surface compared to a 

teflon surface [127]. 

The morphology of the precipitate does not seem to depend on the nature of the metallic 

substrate used. The morphology of the calcium carbonate formed onto stainless steel 316L, 

teflon and copper was similar regardless the substrate of deposition [105]. A comparative 

study of the metallic and the plastic substrates pointed out that the nature of the substrate 

influences the kinetics of precipitation [93]. 

2.4.9 Effects of the surface roughness 

Mantel et al. did not show any influence of the surface roughness on CaC03 deposition 

by studying the current density variations by electrodeposition [128] but it is well known that 

the surface finish plays a great role in scale precipitation. Gunn showed that the rate of 

crystallisation of CaS04 is highly affected by the surface conditions. The greatest deposition 

of CaS04 was obtained with rougher surfaces [129]. This has been verified with CaC03 

precipitation by MacAdam and Parsons: the scaling rate increases with the degree of 

roughness. A high rough surface provides favourable nucleation sites [126]. This is also 

supported by Doyle et al. who studied the effects of the surface roughness on struvite 

precipitation [127]. 

The roughness of a surface influences the adhesion of a calcite precipitate onto the 

surface: the dis bonding stress of a deposit adhering to a smooth surface (Ra=O.lllm) is 30 

times smaller than that required for a deposit adhering to a rough surface (Ra= 18-24Ilm) 

[130]. 

This is probably due to the increase of surface of deposition area in the case of a rough 

surface and a rough surface offers more hooking sites promoting a mechanical interlocking 

effect [130]. 
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2.4.10 Effects of the hydrodynamic conditions 

Recent works on the influence of the hydrodynamic conditions on the deposition of 

CaS04 scale on aluminium and stainless steel showed the increase of the deposition rate with 

the Reynolds number. This is due to the higher supply of scaling elements onto the surface 

and it also provides the necessary activation energy needed for the nucleation or epitaxial 

growth of the crystals. Moreover these works demonstrated that the mass transport was 

diffusion controlled [131, 132]. Similar studies have been realised on BaS04 and the same 

conclusions have been raised [133]. These results are in a good agreement with previous 

studies done on CaC03 . The scale growth rate is dependent on the flow velocity containing 

the scaling elements. Hasson et al. assessed the growth of CaC03 onto a surface (grams of 

CaC03 per hour p'er square meter) as a function of the Reynolds number and the authors 

found that the amount of CaC03 formed is a linear function of the Reynolds number. This is 

due to the dependence of the mass transfer on the Reynolds number [134]. 

The flow rate affects the morphology of the deposit: for low flow rate, bigger crystals 

of CaC03 are formed and the layer are more compact [103]. 

The flow system can affect the scale deposition in different extent according to the flow 

system considered. Hasson et al. studied the effects of scale inhibitors in two different 

flowing system: a flow pipe system and a falling film system [135]. The main difference 

between these two systems comes from the fact that the solution is not in contact with a 

gaseous phase in a flow pipe system. It is a closed system whereas the falling film system is 

an opened system. The main consequence of this difference is the supersaturation: it is almost 

constant inside the pipe whereas the supersaturation is much higher at the liquid/air interface 

in the opened system (due to CO2 desorption from the liquid to the gas phase). Hasson 

determined the higher scale tendency in the falling system compared to the flow pipe system 

and different inhibition properties for scale inhibitors according to the system considered. 

2.4.11 Effects of the pressure 

During the oil and gas extraction process, the pressure varies extremely and can reach 

100MPa. The pressure decreases with the increase of the supersaturation for carbonates and 

sUlphates scaling solutions. The effects of the pressure is more significant at high temperature 

[67]. 
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2.5 Mechanisms of inhibition 

According to Freedman, three empirical processes are involved in scale inhibition: 

threshold effects, crystal distortion and dispersancy [136]. The different mechanisms of 

inhibition are summarised in Figure 2.16. Inhibitors act according to their own mechanisms. 

They can act on the nucleation step, the crystal growth, on the agglomeration of the fine scale 

particles. The effectiveness of an inhibitor is its ability to maintain scaling ions in solution. 

The MIC (Minimum Inhibitor Concentration) is a measurement of the efficiency. It is the 

concentration which prevents scale formation over the test period [l3 7]. 
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Figure 2.16: Main mechanisms of scale formation and inhibition: (a) ion pairing formation, 
(b) prenucleation cluster, (c) homogeneous nucleation and crystal growth, (d) 
heterogeneous nucleation, (e) crystal adsorption, (f) particles agglomeration, I: Site of 
possible inhibitor action [138]. 
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2.5.1 Threshold effect 

It is in the 1930's the principle of threshold was discovered when it has been noticed 

that a large quantity of insoluble material can be held in solution by a small quantity of 

inhibitors (a few ppm) [139]. The threshold effect refers to the ability of organic chemicals at 

sub-stoichiometric levels to prevent or delay scale formation [136]. Threshold level of 

chemicals are often used to avoid scale formation [18]. 

The adsorption behaviour of polyelectrolytes on BaS04 crystals has been study and it 

has been pointed out the relationship between the inhibitor effect, the maximal coverage of 

the inhibitor on the crystal and the molecular weight but only for structurally identical 

compounds. A copolymer of maleic acid and vinyl sulfonic acid (PMA-PVS) showed better 

inhibition properties of the growth of the crystals than two polyphosphinoacrylates whereas a 

lower surface coverage was needed to block totally the growth. For the two 

polyphosphinoacrylates, the better the adsorption, the better the inhibition [140]. Benton et al. 

showed the phosphonates act as threshold inhibitor by bonding the crystals and blocking the 

growth sites and by promoting nucleation leading to a decrease of the supersaturation of the 

solution and the generation of small nuclei [141]. 

The phosphorus containing inhibitor adsorb onto the crystal preferentially at growth 

sites such as steps and kinks. Growth may then occur through a less favoured and slower way 

[19]. 

The type and thus the strength of the formed bond determine the final attachment of the 

inhibitor to the crystal [140]. 
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2.5.2 Crystal distortion 

When minerals precipitate from a solution containing scale inhibitors, the crystals are 

often distorted which can be less adherent on a surface and have less tendency to agglomerate 

[136]. Davis et al. shown the use of an inorganic phosphonate inhibitors generates calcium 

carbonate crystals completely distorted [19]. 

Benton et al. demonstrated that organic additives can generate large modifications of 

the crystal habit. Phosphonate compounds have been studied on BaS04 formation and the 

crystals formed appeared to be spheroid and 15-20 times smaller than the crystals obtained 

with no additive [141]. This was in good agreement with Van der Leeden et al. who 

illustrated the variations of the morphology of BaS04 with the addition of a copolymer 

(PMA-PVS) [140]. Davis et al. showed the drastic changes of the morphology of CaC03 by 

addition of organic phosphate inhibitor [19]. 

Polymers act on the morphology of the crystals and can lead to the distortion of the 

crystals especially the polymers with carboxylate functional groups as they interact with Ca2
+ 

of the crystals stabilizing the suspension and so preventing the crystalline formation [142]. 

2.5.3 Dispersancy 

It is the ability to minimize agglomeration and settling of suspended solids. It is a 

charge repulsion process. The negative charge density is increased on the surface of the 

particle by the attachment of active chemicals so that the particles repel each other [136]. The 

polymers with sulfonate functional groups are excellent at enhancing the negative charge of 

crystal formations thus repulsion occurs. This inhibition mechanism is based on a 

adsorption/desorption equilibrium of the polymer [142]. 

Schwamborn studied the effects of the chemical synthesis of polyaspartic acid on their 

ability to inhibit calcium carbonate. Their inhibition properties has been determined by their 

calcium carbonate dispersing capacity. The four aspartic acids studied showed good 

dispersion properties (more than 130mg CaC03/g) [143]. 
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2.6 Scale inhibitors 

The type of scale inhibitors used in the oil and gas sector is various: phosphonates [18, 

19, 60, 139] ,polyphosphates [18, 51, 52, 57], polyelectrolytes and carboxylic acids. 

2.6.1 Phosphonates 

The efficiency of phosphonates (Figure 2.17) to inhibit calcium carbonate formation 

has been widely demonstrated and their stability at high temperature is a significant advantage 

for the industry [144]. The DETPMP for example is widely used in the oil and gas sector. 
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Figure 2.17: Schematic representation of phospho nates used as scale inhibitors 

The mechanism of inhibition of CaC03 of the phosphonates involves blockage of 

crystal growth sites [144]. They act on the morphology of BaS04 and the presence of 

phosphonates in a scaling brines leads to distorted crystals. It has been shown that the 

phosphonates interact with Mg, Ca, Sr and Ba (following the ionic radius of the ions). Benton 

et al. showed the greater efficiency of the phosphonates when calcium is present in the scaling 

solution. 
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The calcium phosphonate complexes inhibit the growth of the crystals of BaS04 by 

being involved in the crystallisation process [141]. It has been proposed that calcium 

phosphonates inhibit BaS04 according to two mechanisms; by inducing the nucleation and by 

blocking the growth sites. 

The number of phosphonates functional groups improves the inhibition property of a 

molecule but it is not the most important conditions. The molecular structure plays a crucial 

role in the inhibition efficiency of the phosphonates has demonstrated by Davis et al. [19]. 

HEDP (Hydroxyethylidenediphosphonic acid) (Figure 2.17) affects CaC03 formation 

with two different mechanisms according to the temperature; at low temperature, HEDP acts 

at a threshold level and at higher temperature HEDP by reducing the rate of CO2 evolution 

indirectly increasing the pH [139]. Its efficiency to inhibit BaS04 has been illustrated by He et 

al. [60]. 

DETPMP is a common scale inhibitor and it has been widely study. It acts mainly as a 

crystal growth retardation by blocking the growth site of the crystals [145]. Its efficiency is 

not enhanced by addition of EDT A and citric acid [69] but it is increased with the presence of 

Ca2
+ in a low barium sulphate scaling brine [145]. Moreover it has been proved that 

phosphonates (in particular EDTMP, ethylenediaminetetrakis(methylenephosphonic acid) 

inhibit strongly CaC03 formation onto a surface by adsorbing on this surface and EDTMP 

inhibits growth of CaC03 in the bulk solution by bonding the kink and step sites growth of the 

crystals [58]. 

2.6.2 Polyphosphates 

In the RO (Reverse Osmosis) desalination plants, SHMP (sodium hexametaphosphate, 

Figure 2.18) was used to control sulphate-based scales and to prevent any residual alkalinity 

from depositing CaC03• Its use was combined with acid to control alkaline scale. Major 

problems where due to the use of this combination of products like acid-induced corrosion 

and reversion of SHMP to the sludge-forming orthosphosphate. 
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Butt et al. showed that a replacement by a commercial phosphonate was possible as it 

exhibited better inhibition properties (regarding CaC03, SrS04 and CaS04) than the SHMP 

[57]. 

Figure 2.18: Sodium hexametaphosphate 

A comparative study showed the relative efficiency of different polyphosphates. The 

tripolyphosphate is seen to inhibit CaC03 in a greater extent than pyrophosphate and 

hexametaphosphate (Figure 2.18 and Figure 2.19). The Langmuirian adsorption of the 

polyphosphates on the crystals of calcium carbonate has been pointed out as their mechanism 

of inhibition [52]. Hasson et al. studied by freely falling film method a ring structured 

hexametaphosphate and a linear chained polyphosphate and did not find any difference in the 

CaC03 inhibition: both inhibitors increased the induction time and the scale growth reached 

an asymptotic limiting thickness [66]. 
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Figure 2.19: General molecular structure of (a) pyrophosphates and (b) tripolyphosphates 
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The morphology of the crystals present in the solution could influence the adsorption 

properties of the phosphonates but Grases and March by adding different types of crystal 

seeds (with different morphology) did not show any difference of the inhibition of CaC03 

[51]. 

2.6.3 Poly electrolytes 

Figure 2.20 shows various types of polymers used as scale inhibitors in the industry. 

Polyphosphinocarboxylic acid (PPCA) 

COOH 

Phosphonocarboxylic acid (POCA) 

* 

COOH 

Polyvinyl sulfonate and Polyacrylic 
acid copolymer (PVS) 

HOOC~~ 
- I ~ -coe 

COOH 

2-phosphono-butane-l,2,4-
tricarboxylic acid (PBTC) 

Figure 2.20: Schematic representation of polyelectrolytes used as scale inhibitors 
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2.6.3.1 Phosphinopolycarhoxylic acid (PPCA) 

The PPCA acts as a nucleation inhibitor and it has a great affinity with calcium ions. 

Graham et al. showed that contrary to what was seen with the DETPMP, Mg2+ do not poison 

the efficiency of PPCA. As observed with the DETPMP, the Ca2+ enhances the efficiency of 

the PPCA in a low barium sulphate scaling brine but in a medium scaling solution the 

efficiency of the PPCA decline with the addition of Ca2+. This last remark is due to the 

incompatibility between the concentration of Ca2+ used (between 657 and 2257ppm) and the 

PPCA. The precipitation of PPCA with Ca2+ (or Mg2+) limits the amount of PPCA available 

to inhibit BaS04 [145]. 

The effects of 5 and 10ppm of different types of scale inhibitors (DETPMP, 

Phosphonates and phosphate ester) have been showed to be the strongest at 5ppm for the 

PPCA by tube blocking tests. At 10ppm all the inhibitors presented similar inhibition 

properties [70]. 

2.6.3.2 Polymers 

Yuan et al. studied two different polymers: a sulphonated carboxylic acid copolymer 

(S-PCA) and a sulphonated phosphinocarboxylic acid copolymer (S-PPCA) [69]. Both 

inhibitors inhibit BaS04 crystallisation partially by a dispersion mechanism. A main finding 

from this study was the different evolution of their inhibition properties: after 10 minutes of 

tests the inhibition of these two chemicals were similar whereas after 3 hours a large 

difference was observed (S-PPCA lost completely its inhibition whereas S-PCA still has 50% 

of efficiency). 

The effects of a copolymer of maleic acid and vinyl sulfonic (PMA-PVS) [140] or 

acrylamide [141] on the growth inhibition of BaS04 has been demonstrated. These polymers 

interact with the crystals resulting in a change of the morphology. 
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2.6.4 Carboxylic acids 

2.6.4.1 Polyacrylic acids 

Polyacrylic acids (Figure 2.21) affect strongly the morphology of the crystals ofCaC03 

and leads to the formation of distorted calcite [100]. 

Polyacrylic acid can be found under polymers forms like phosphinopolyacrylic acid 

[146] (widely used in the oil and gas sector) or under acrylic polymer used in RO (reverse 

osmosis) desalination process [66]. The efficiency of two acrylic polyelectrolytes to prevent 

the formation of CaC03 has been compared with polyphosphate and polyphosphonates has 

been studied and sjmilar efficiency has been seen for a range of concentration 0.2 to 0.5ppm 

[66]. 

A significant difference of efficiency between the polyacrylic acid and a phosphonate 

based polymer (2-phosphonobutane-1,2,4-tricarboxylic acid, PBTCA) has been found in 

favour of the PBTCA (it is important to note that the concentration (5ppm) and the methods 

used were different) [65]. 

* 

COOH 

Figure 2.21: Schematic representation of Poly acrylic acid (PAA) 

2.6.4.2 Polymaleic acid 

Some characteristics of polymaleic acid (Figure 2.22) are similar to aquatic fulvic acids 

(size, elemental composition, FT-IR spectra). Physical and chemical properties of the 

polymaleic acid are similar to aquatic and terrestrial fulvic acids but contrary to these acids 

the polymaleic acid exhibits a low molecular absorptivity (measurement of how strongly a 

chemical absorbs the light at a given wavelength) [147]. 
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The anti-scaling properties of the fulvic acid has been studied. A complete inhibition of 

nucleation of CaC03 has been observed by the authors when the fulvic acid was present in the 

system at the beginning of the test and when vaterite was present in the system first, a 

concentration between 1.5 and 4ppm of fulvic acid generated a large decrease of the 

supersaturation of the solution. They pointed out that the fulvic acid adsorbs on the vaterite 

surface to block the growth sites and that the high affinity between the calcium carbonate and 

the fulvic acid is due to electrostatic interactions [148]. 

COOH 

* 

COOH 

Figure 2.22: Schematic representation of Poly maleic acid (PMA) 

PMA has been studied as a surface treatment to protect calcite from acid attack. It has 

been found that a protective film is formed on the surface which appears to be stable and non 

porous [149] but a comparison between the polymaleic acid and the phosphoric acid shown 

that phosphoric acid is more suitable to protect calcite stone material [150]. 

2.6.4.3 Polyaspartic acid 

The mechanism of polyaspartic acid (Figure 2.23) scale inhibition has been studied by 

electrochemical method [151]. It appears that they act on both nucleation and growth of 

calcium carbonate. All polyaspartates act as threshold inhibitors i.e. the concentration at 

which they are efficient is below the stoechiometric value with calcium carbonate. The study 

of the changes in the crystal morphology allowed the authors to understand how 

polyaspartates act. It is a combined model of complexation, adsorption and dispersion. 
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The morphology of calcium carbonate deposit formed in presence of polyaspartic acid 

is vaterite dominant leading to a more porous and less adherent deposit onto a metal surface 

[151]. Their adsorption on a metallic surface depend on their molecular weight but not on 

their level of ramification. The amount of adsorbed polyaspartate decreases with the increase 

of the molecular weight [151]. The optimum molecular weight for polyaspartate inhibition on 

calcium carbonate and barium sulphate is in the range of3000-4000Mw [55]. 

Different pathways exist to produce polyaspartates. The choice of the production way is 

important because it has an effect on the structure of the molecule (molecular weight, 

molecular geometry) and so on its properties like biodegradability, sequestring and dispersing 

activities [143, 152]. The initial molecule used to synthetise polyaspartic acid influences 

greatly the properties of the final molecule. Estievenart et al. studied four polyaspartic acids 

all synthesized from aspartic acid according to different pathway. The polyaspartic acids 

obtained presented specific calcium carbonate inhibition efficiency and biodegradability. 

Schwamborn et al. used maleic acid anhydre as initial molecule and they showed that the 

polyaspartic acid is a biodegradable alternative to currently homo and copolymers with the 

same efficiency. 

Moreover maleic acid anhydre is available in large quantity without additional new 

investment. As the reactants, the reaction conditions, the reaction techniques and the reaction 

equipment during the synthesis playa role in the properties of the final molecule, there is not 

only one specific polyaspartic acid produced from one pathway but the combinations of all 

the parameters leads to a wide range of molecules with different properties [143]. 
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The efficiency to inhibit calcium and magnesium containing scale of a polyaspartic acid 

produced from maleic acid anhydre has been tested [153]. The authors showed the influence 

of the pH on the ability of the polyaspartic acid to inhibit scale. Under their specific 

experimental conditions 100% efficiency was reached with 3ppm of inhibitor at pH 3 whereas 

a concentration of9ppm at pH 9 was needed to reach 97.24% and 98.63% for the calcium and 

magnesium containing scale respectively. 

Likewise having interesting inhibition properties on calcium carbonate, polyaspartic 

acids present a high biodegradability and they could be an alternative to existing chemistry as 

the inhibition efficiency of polyaspartic acids regarding CaC03 and BaS04 is comparable or 

even better as the efficiency measured under similar experimental conditions of polyacrylic 

acids [3, 55]. 

2.6.4.4 Carboxymethyl inulin 

Carboxymethyl inulin (Figure 2.24) is formed by carboxylation of a natural 

carbohydrate obtained from the chicory plant. A study on the toxicological profile of this 

inhibitor shown that CMI does not present significant toxicological and genotoxical 

characteristics. The biopolymer backbone is a polysaccharide composed of D-fructose units 

linked at the 1 and 2 position and end-capped with aD-glucose [154]. 

Static and dynamic adorptionldesorption tests have been done with CMI 

(Carboxymethyl inulin) on limestone core material. Its behaviour is similar to polyacrylic 

acids and CMI presents superior adsorbing properties [68]. 

The degree of substitution has a significant role in the inhibition properties of CM!. 

When the degree of substitution and the polymerization degree are high, inhibitory activity is 

optimum [56, 155]. Others carboxymethyled polysaccharides (dextrine, cellulose) show good 

inhibition properties whereas a carboxymethyled disaccharide has no influence on the calcium 

carbonate crystallization [56]. 
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Figure 2.24: Schematic representation of carboxymethyl inulin 

Moreover, CM! was used as a dissolver of silica and calcium carbonate scale deposits 

and it is a good cations sequestrants [154]. It is capable to inhibit a variety of scale deposit 

(calcium sulphate, barium sulphate) [155]. CMI prolongs the induction time of CaC03 

formation. Demadis et al. showed that the addition of 300ppm of CMI delay the precipitation 

by 50 minutes and by 20 minutes for an addition of 100ppm. 

The addition of 10,000ppm of CMI has a dramatically cleaning effect and very rapid 

(within 6 minutes) on CaC03 already formed [156] illustrating the dissolvent effects 

mentioning previously. 

The polymaleic acid, the polyaspartic acid and the carboxymethyl inulin present not 

only scale inhibition properties but good ecotoxicological characteristics as well. 
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2.7 Green chemistry and legislation 

2.7.1 Principles of Green Chemistry 

Green chemistry is the utilization of a set of principles that reduces or eliminates the use 

or generation of hazardous substances to human health or environment in the design, 

manufacture and application of chemical products [157]. 

Pioneering scientists have defined twelve principles of green chemistry [157]: 

1. It is better-to prevent waste than to treat or clean up waste after it is formed. 

2. Synthetic methods should be designed to maximise the incorporation of all materials 

used in the process into the final product. 

3. Wherever practicable, synthetic methodologies should be designed to use and 

generate substances that possess little or no toxicity to human health and the environment. 

4. Chemical products should be designed to preserve efficacy of function while 

reducing toxicity. 

5. The use of auxiliary substances (e.g. solvents, separation agents, etc.) should be made 

unnecessary wherever possible and, innocuous when used. 

6. Energy requirements should be recognized for their environmental and economic 

impacts and should be minimized. Synthetic methods should be conducted at ambient 

temperature and pressure. 

7. A raw of material of feedstock should be renewable rather than depleting wherever 

technically and economically practicable. 



- 61 -

8. Unnecessary derivization (blocking group, protectionldeprotection, temporary 

modification ofphysicaVchemical processes) should be avoided whenever possible. 

9. Catalytic reagents (as selective as possible) are superior to stoichiometric reagents. 

10. Chemical products should be designed so that at the end of their function they do 

not persist in the environment and break down into innocuous degradation products. 

11. Analytical methodologies need to be further developed to allow for real-time, in­

process monitoring and control prior to the formation of hazardous substances. 

12. Substances and the form of a substance used in a chemical process should be chosen 

so as to minimize the potential for chemical accidents, including releases, explosions, and 

fires. 

Green chemistry has come to the focus of governments and industries and development 

efforts are conducted with the goal being to reduce emissions and waste with zero emissions, 

to develop safer products and process, to conduct life-cycle assessments of the processes and 

increase efficiency in use of materials, energy and water [158]. 

The oilfield industry worked in agreement with green chemistry principles in order to 

find green chemicals, especially green inhibitors, to reply to the demand of the legislation. 
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2.7.2 Strategy to protect marine environment 

The OSPAR Commission is the international body responsible for the harmonisation of 

strategies and legislation in the North-East Atlantic region. One of the objectives of this 

committee with regard to hazardous substances is to prevent pollution of the maritime area by 

continuously reducing discharges, emissions and losses of hazardous substances, with the 

ultimate aim of achieving concentrations in the marine environment near background values 

for naturally occurring substances and close to zero for man-made synthetic substances [159]. 

The eutrophication is the accumulation of chemical nutrients, generally nitrogen and 

phosphorous compounds in an ecosystem. The main consequence of this accumulation of 

nutrients is the massive development of primary productivity (excessive growth of plant like 

algae, called algal bloom) resulting to a decrease of oxygen level and severe reductions of the 

water quality leading to the death of the animals from the ecosystem. 

Regarding eutrophication, OSPAR's objective is to achieve, by the year 2010, and 

maintain a healthy marine environment where eutrophication does not occur [159]. 

2.7.3 Legislation 

A Harmonised Mandatory Control System (HMCS), implemented of OSPAR Decision 

2000/2 defines the parameters chosen for the North-East Atlantic area [160, 161]. 

The aim of HMCS is to protect the marine environment by identifying chemicals used 

in offshore oil and gas operations. A legislation drives the development and selection of 

chemicals which have the lowest impact on the marine environment 

The HMCS system has four aspects Figure 2.25: 

• Environmental data of the chemical, 

• HOCNF (Harmonised Offshore Chemical Notification Form), 

• Pre-screening scheme, 

• Chemical Hazard Assessment and Risk Management. ~ 
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Figure 2.25: Different element of the HMCS system [160] 

2.7.3.1 Environmental data 

Information on the volume discharged, discharge patterns, environmental fate and 

ecotoxycological data are required in this step. The ecotoxycological data concern three 

characteristics [162] : 

• Toxicity 

The toxicity is the degree to which a chemical can harm humans or animals. It is 

determined by the Effect Concentration (EC) and the Lethal Concentration (LC) which will 

affect 50% of the population tested. 

g 50 01' LC 0> I mg/L tor inorganic substance. 

ECso or LCso> 1 Omg/L fo r organic substances 

• Biodegradation 

The biodegradation is the breakdown of organic contaminants by microbial organisms 

into smaller compounds. The microbial organisms transform the contaminants through 

metabolic or enzymatic processes. Biodegradation processes vary greatly, but frequently the 

final product of the degradation is carbon dioxide or methane. Biodegradation is a key process 

in the natural attenuation of contaminants at hazardous waste sites [163] . 

>60% in 28 days 

If <20% the chemical is candidate for substitution 
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• Bioaccumulation 

The accumulation process involves the biological sequestering of substances that enter 

the organism through respiration, food intake, epidermal (skin) contact with the substance, 

and/or other means. The rate of bioaccumulation depends on the rate and the mode of uptake 

and how quickly the substance is eliminated from the organism. It is characterized by the 

octanoVwater partitioning coefficient (Pow). The Pow characterises the affinity of the 

chemicals with the organic solvent (octanol) [164]. 

LogPow<3 

To enter the PLONOR List (Pose Little Or NO Risk), a chemical must pass two of these 

three criteria with a biodegradability at least up to 20%. The details of the tests required are 

given Table 2.5. 

Table 2.5: Environmental Tests required under HMCS [165] 

Test Required Test Protocol 

72hr ECso: Skeletonema costatum 
Algae 

ISOIDIS 10253 

Crustacean 
48hr LCso : Acartia tonsa 

ISO TC 147 ISC5/WG2 

Toxicity 

Fish 
96hr LCso: Schophthalamus maximus, juvenile 

OECD 203 modified for marine species 

Crustacean-Sediment reworker 
10 day LCso: Corophium valutator 

PARCOM 

Water soluble substances 
28 day aerobic, marine 

OECD 306 

Biodegradation 

Water insoluble substances 
28 day aerobic, marine 

BODIS (BOD for Insoluble Substances) 

Bioaccumulation potential 
Octanol/~ater partition co-efficient (log Pow) 

Bioaccumulation 
OECD 117 or 107 
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2.7.3.2 HOCNF 

The data are reported to the respective authority governing the waters in which the 

activities will take place, using a Harmonised Offshore Chemical Notification Form 

document. This document aims to summarise some characteristics of the chemical in terms of 

compositions, use, discharge in the environment and details of the supplier [166] . 

2.7.3.3 Pre-screening scheme 

The scheme presented in Figure 2.26 IS used to analyse the HOCNF. There are five 

outcomes: 

• Permiss ion, . 

• Refusal of permission, 

• Substitution, 

• Temporary permission with the aim of seeking hazardous alternatives, 

• Ranking (according to CHARM) . 

., 
II start Develop new 

.,., 
J A. Pennission II Is substance on the n H Expert judgement 

lno PLONOR list? positive? • J D. Refusal or Perminioo "1 ., .... 
Is substance on Annex 2 of the ,.. r--
OSP AR Strategy with regard to 
Hazardous Substances or considered 
by authon tles to be of equivalent -
concern for the marine envirooment A C. T~PmnisIim 

~ ., 
., 

A or 
~ 

Is LC", or EC", I ,.. " D. Rdusal or Permission II Is the substance 
,.. ,. 

Inorganic? < lmlifl? A 
(CHARM may be used as a 

~ deci si on suppon ing tool + .. -. expert judgem ent) 
~ 

~ ~ lJ " ~ 
';:0 , 

B. Substitution :I1 · (CHARM may be used as a 

II Is biodegradation of I ,.. < ~! decision supportmgtool + · expert judgem ent) substance <20010 in 28 I -. 
days? -· III ,. 

-
Does the substance meet 2 of the 3 folloWlng , 
criteria. ~ . l:iodegradation 

,.. 
<70 % m28 days (OECD 3011\ 301E) CI' 

<60 % in 28 d'Y'(OECD 3018. 301C. 301F. 306) . boaccumulalJ.onlogPow ~3 Or !5 BCF> IOO and '---
cOflSl<ienng molecular welgl't 

,, "" -
I Ranking I Management deciSIon based on the outcome I 

of the ranking 

Figure 2.26: HSMC Harmonised pre-screening scheme [167] 
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2.7.3.4 CHARM 

It is a tool to characterize the degree of harm that a chemical can generate. PEC 

(Predicted Environmental Concentration), related to chemical properties such as 

bioaccumulation, biodegradation, concentration, and PNEC (Predicted No Effect 

Concentration), related to the toxicity of a product, are calculated and HQ (Hazard Quotient) 

is determined (PECIPNEC). If HQ> 1, the chemical has a great potential to harm the 

environment (Table 2.6) [160]. 

CHARM is a model and some offshore activities do not enable easily the use of this 

model like for example the scale inhibitor squeeze treatment [165]. 

Table 2.6: The Offshore Chemical Notification Scheme HQ range and colour banding (lower 
values represent least potentially hazardous) [168]. 

Minimum value Maximum value Category 

>0 <1 Gold 

~1 <30 Silver 

~30 <100 White 

~100 <300 Blue 

~300 <1000 Orange 

~1000 Purple 

2.7.4 The Oil companies and the Green chemistry 

The Norwegian Pollution Controlled Authority (SFT) defined a colour label to 

characterise the chemicals: black, red, yellow and green (Table 2.7). 
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The black chemicals are the substances with a biodegradability less than 20% after 28 

days and a bioaccumulation potential of log Pow more than 5 or a high toxicity (LC-50 or EC-

50 more than 10mg/J). The red substances are inorganic substances with a toxicity level of 

EC50 or LC50 < 1 mg/I, organic substances with a biodegradability less than 20 % or a 

substance with two ofthe following characterisitics: 

-biodegradability BOD28 < 60 % 

-bioaccumulation potential log Pow> 3 

-acute toxicity LC50 or EC50 < 10 mg/1. 

The yellow substances are the substances not classified in the black and red list and that 

are not on the PLONOR list. The green substances are on the PLONOR list and they are not 

harmful for the environment. 

Table 2.7: Substitution criteria SFT (Norwegian Pollution Controlled Authority) [169] 

PLONOR list 

BOD~60% If toxic--+ Red 

BOD<60% 

BOD<20% 

LogPow>5 Log Pow>3 Log Pow::::;) 

Black: Disposal to sea not allowed 

Yellow: Acceptable 

"If toxic" : Measured toxicity in an EC-50 or LC-50 test is less than 

10mg/1 

BOD;Biodegradability 
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The legislation became more strict with the nature and the quantity of the chemicals 

discharged in the environment and a goal of zero discharge was aimed for 2005 in Norway 

and the Government's environmental policy and environmental state of the nation (2006-

2007) says: "the zero discharge target for added chemicals is considered to be achieved" [170] 

and Figure 2.27 and Figure 2.28 illustrate the decrease of the quantity of black and red 

substances released in the sea since 1998. 

Green Chemicals Yellow Chemicals 

200 000 15 000 

150 000 
10 000 

50 000 

a I I I I 5 000 

100 000 

a 
2001 2002 2003 2004 2005 2006 2007 2001 2002 2003 2004 2005 2006 2007 

Red Chemicals Black Chemicals 

1 500 50 

40 

1000 
30 

20 
500 

I . _ 10 

a 
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a • - • • 
2001 2002 2003 2004 2005 2006 2007 

Figure 2.27: Discharge of Green, Yellow, Red and Black chemicals in tonnes from the 
Norwegian Oil lndustry [170] 

/ Yellow: 9.7% 

Black: 0.0008% 

GrHn: 80.7% J 

Figure 2.28: Distribution of the total chemicals discharged in 2007 [170] 
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The environment concerns lead the research to develop new environmental friendly 

chemicals, currently named "Green" as scale inhibitors. The challenge is to determine the 

mechanisms of action of these chemicals against scale deposition to optimise their use 

(environmental conditions i.e pH, temperature, brines composition etc., nature of the scale 

they inhibit, bulk or surface active). An understanding of their mechanisms of inhibition could 

lead to the syntheses of more efficient green scale inhibitors. 

2.8 Summary of the literature and state-of-the-art 

The mechanism of calcium carbonate formation is a complex process affected by 

various parameters (physical and chemical). The effects of the external factors have been 

studied by using different techniques but they are mostly focused on the scale formed in the 

bulk solution. The inhibited properties of a chemical on calcium carbonate deposition have 

been investigated by tube blocking tests, RDE and QCM and different strategies of inhibition 

have been pointed (focus on the nucleation, on the growth or on both). In-situ methods give 

full information of the mechanisms studied but the use of such methods is not common in the 

scale area. 

The determination of the inhibition mechanism is a challenge as the scaling conditions 

influence not only the crystallization but the effects of the inhibitors on the crystallization. 

Therefore identical conditions are required for the comparative study of the inhibition 

mechanisms. One of the advantages of electrocrystallization is to provide specific and 

constant scaling conditions at the vicinity of the electrode. The chronoamperometry has been 

widely used to determined the scaling potential of a solution but not to study the interactions 

occurring at the surface/solution interface. The electrocrystallization combined with a video 

set-up has been used to study the effects of the substrate and of the water composition but not 

the mechanisms of inhibition. 

The study of the effects of inhibitors is often determined according to the reduction of 

the mass of the deposit generated by the addition of the chemicals, the surface coverage of an 

electrode or the variations of the pressure through a tube. These parameters are direct 

consequences of the inhibitors on the whole deposition but the study of the inhibition 

mechanism occurring at the crystal planes level has not receiv.ed much attention. 
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The use of environmental friendly inhibitors in the industry becomes more and more a 

necessity. Comparative study of the mechanisms of one conventional inhibitor and different 

green inhibitors has not been realised with calcium carbonate. Some sparse information is 

found in the literature on the polymaleic acid, the carboxymethylin inulin and especially the 

polyaspartic acid but a comparison of their mechanisms and efficiency on calcium carbonate 

deposition on a metal surface has not been investigated yet. 
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Chapter 3 
Methodology 

This thesis is focused on several objectives reported in Chapter 1 and therefore different 

methods have been used to study the formation of calcium carbonate and the mechanisms of 

inhibition of scale inhibitors. 

Static tests .under polarization conditions (electrodeposition) (Chapter 4) have been 

conducted with a 3-electrode cell to study the current density variations as a function of time 

as scale deposits. The effects of some scale inhibitors on the properties of the calcareous 

deposit and on the interactions between the inhibitors and a metal surface are assessed. 

The physical characteristics of the crystals of calcium carbonate (shape, size and 

number) have been studied with an in-situ flow cell under polarization conditions (Chapter 5). 

The set-up used made possible in-situ and real time measurements of parameters like the 

mean diameter of the crystals of calcium carbonate and the surface coverage of the electrode. 

The crystallography of the calcium carbonate crystals formed was studied by 

Synchrotron X-Ray Diffraction with an in-situ cell (Chapter 6). The determination of the 

effects of the inhibitors on the different crystal planes were studied as well as the kinetics of 

formation of specific crystal planes. 

These methods are described in this chapter in addition to some general information 

which is important for all aspects of the study. 
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3.2 Brine preparation 

The composition of the brines was different according to the method used to create a 

supersaturation environment. The details of the composition of the brines are presented in the 

experimental part of each results chapter. All the brines were prepared from the chemicals 

listed in Table 3.1: (Prolabo, BDH®). 

Table 3.1: Details of the salts used for the preparation of the brines 

Brine 1 NaCI; KCI; SrCb; MgCb, 6H20; CaCb, 6H20 

Brine 2 NaCl; NaHC03 

Brine 1 (containing calcium ions) and Brine 2 (containing bicarbonate ions) were 

prepared separately. The appropriate quantity of the specific salts were weighed and mixed 

with distilled water. The brines used for electrodeposition tests (Chapter 4 and 5) were not 

buffered as the pH was largely increased due the appliance of a potential therefore creating 

the supersaturated environment. 

3.3 Scale inhibitors properties 

The details of the four scale inhibitors studied are presented in Table 3.2 and the 

molecular structures can be found in Chapter 2. One commercial non green scale inhibitor 

(PPCA, polyphosphinocarboxylic acid) has been taken as a reference to compare its inhibition 

mechanism to three green inhibitors. The ecotoxicological properties of the green inhibitors 

are summarized in Table 3.3. 
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Table 3.2: Description of the scale inhibitors studied 

Inhibitor description/ 
Details Supplier 

Active content Molecular 
Reference (%) weight 

Non-green PPCAI Phosphino 
polycarboxyJic BWA 42 ~3600 

Bellasol S40 acid 

CMII Sodium Champion 
Carboxymethyl 17.5 >2000 

Dequest 11625 inulin 
Technologies 

PMAI 
Polymaleic acid BWA 47 n.a 

DP5006 

PAl Poly-(l-~-D,L- Champion 
39 Low 

Til 120 aspartic acid Technologies 

Table 3.3: Ecotoxicological properties of the inhibitors used in this study 

Inhibitors Toxicity Bioaccumulation Biodegradability 

Log Pow«3 
Not readily 

PPCA low 
biodegradable 

ECso 48hrs Daphnia: 2000mg/L 
CMI Not known 25% 

LCso 96hrs zebra fish> 10000mg/L 

ECso 12hrs Algae: 380mg/L 

PMA LCso 96hrs Fish> 1000mg/L Log Pow<O 29% 

LCso Brown Shrimp> 2160mg/L 

ECS048hrs Daphnia: 1798mg/L 
PA LogPow<O 41% 

LCso 96hrs Fish: 2117mg/L 

3.4 Substrate for deposition 

For the electrodeposition tests (Chapter 4 and 5), the substrate was stainless steel, UNS 

S31603. The composition of the metals used as a substrate for calcium carbonate deposition is 

presented in Table 3.4. The active surface was polished to 1200grit and then the surface 

finished of 6~m was achieved with a diamond polishing compound. 
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Two different capillary cells were used with the synchrotron X-ray diffraction: stainless 

steel (UNS 31603) and hastelloy C-276 (UNS NI0276). The diameter was 2mm bore and the 

surface finish was less than 1.6/lm Ra. 

Table 3.4: Composition of the metals used as substrate of scale deposition [171]. 

Composition Hastelloy UNS NI0276 Stainless steel UNS 31603 

Ni 55% 8.0-12.0 % 

Mo 16 - 18% 2.0-3.0% 

Cr 15.5 - 17.5% 17.0-21.0% 

Fe 4.5 -7.0% BAL. 

Mn 1% <1.5% 

Si 1% <2.0% 

C 0.12% <0.03% 

3.5 Static tests 

The static tests have been conducted under polarization conditions with a simple 3-

electrode cell. Electrodeposition is a method to promote specific electrochemical reactions at 

the active surface and the solution at the surface, as a result of these reactions, becomes 

supersaturated. Deposition onto the surface then occurs. The conditions at the interface are 

well controlled and the scale deposition occurring at the surface is reproducible. 

3.5.1 Background on electrochemistry associated with scale formation 

Calcium carbonate formation by electrodeposition occurs by a sequence of chemical 

reactions at the interface. By imposing a cathodic potential in the oxygen-reduction regime 

(Figure 3.1) the reaction as in Equation 3.33 occurs. 

Equation 3.33 
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Figure 3.1: Polarization diagram showing the contribution of oxygen and hydrogen 
evolutions on the total cathodic current (in dotted line), semi logarithmic scale [138] 

The diagram (Figure 3.1) shows the assessment of the total current with the variation of 

the electrode potential. Two cathodic reactions can occur at the surface of the electrode: the 

oxygen-reduction (Equation 3.33) and the hydrogen evolution (Equation 3.34). The black line 

represents the variations of the total current and the dot lines shows the current variations due 

to the oxygen-reduction and the hydrogen evolution. 

Equation 3.34 

At the free corrosIOn potential (Ecorr) the cathodic reaction rate balances the anodic 

reaction rate as the rates are equal but with the opposite sign (i.e all the electrons produced 

during the anodic reaction are consumed during the cathodic reaction). The variation of the 

total current when the potential is displaced from Ecorr is a measure of the reaction rate. Three 

steps control the total current variations: 

• The first step is characterised by an increase of the current. The total current is 

only composed of the current generated by the oxygen-reduction reaction. This 

step is controlled by the oxygen-reduction rate. 

• The second step is characterised by a constant current with the variations of the 

potential. This step is controlled by the oxygen mass transfer (the transfer of the 

oxygen from the bulk solution to the surface). 

• The third step is controlled by the hydrogen evolution reaction rate. 
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In both first steps, only oxygen-reduction occurs. The current is governed by the rates 

of the different processes involved in the reduction-reaction such as [172]: 

• the level of dissolved oxygen in the solution (low in neutral and alkaline 

solution) 

• the mass transfer: the transfer of the oxygen from the bulk solution to the 

surface of the electrode) 

• the electron transfer at the surface. 

The two last processes are illustrated in Figure 3.2. Chemical reactions might occur 

before or after the electron transfer but this not the case with the reduction of the oxygen. 

lulk IDlution 

Ellctrodt 

Figure 3.2: Pathway of a general electrode reaction [172] 

During the first step, the interface is characterised by low potentials and low currents. 

The rate of the electron-transfer is smaller than the rate of the oxygen mass transfer. This step 

is controlled by the rate of the oxygen-reduction as the limiting factor is not the availability of 

oxygen at the interface. Higher currents are involved in the second step and the electron­

transfer rate becomes higher than the mass transfer rate. In this step the limiting factor is the 

availability of oxygen as the oxygen consumption (by reduction) is high and the stock of 

oxygen at the interface can not be replenished quickly enough (by mass transfer). The slowest 

process in the reduction-reaction is the transfer of oxygen from the bulk to the surface. This 

step is controlled by mass transfer. 
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Three different modes of mass transfer (movement of material from one location in a 

solution to another) can occur in a solution [172]: 

• Migration: movement of a charged body under the influence of an electric field 

(a gradient of electrical potential) 

• Diffusion: movement of a species under the influence of a gradient of chemical 

potential (i.e concentration gradient). 

• Convection: stirring or hydrodynamic transport. 

In this study, only the diffusion mass transfer is relevant. 

3.5.2 Chronoamperometry 

The production of Off at the interface shifts the pH and hence the equilibria of the 

CO2-H20 system (Figure 2.14). As a result the interface becomes supersaturated with respect 

to CaC03 and the deposition ofCaC03 can occur as in Equation 3.35. 

Equation 3.35 

Magnesium hydroxide can be formed (Equation 3.36) on the surface as a gel-like film 

at a minimum pH value 9.3 [81] 

Equation 3.36 

The current density is proportional to the consumption of oxygen at the electrode 

surface and decreases when the active surface area decreases (due to the reduction access on 

the surface); when it is blocked by the scale formation. The residual current density reaches a 

final value close to zero when the surface is completely covered by scale. The morphology of 

the scale deposit (and in particular the porosity) is related to the residual current [11]. 
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The formation of calcium carbonate by electrodeposition was summarised by Ledion et 

al. in 1985 [75] and the different parts of a typical chronoamperometric curve was explained 

(Figure 3.3): 

• 10 to 1M: the increase of the current is due to the increase of the pH at the 

interface. At the beginning, the current variations are under reaction rate control 

and not mass transfer control. After the establishment of the oxygen diffusion 

layer, the pH maintains a uniform value at the electrode surface [173]. During 

this step the first crystals of calcium carbonate are formed. 

• 1M to IR: this step is characteristic of the progressive coverage of the electrode 

surface by the calcareous deposit. 

• Aftyr IR is reached: the ftlling-up of the discontinuities occurs during this last 

step. 

Figure 3.3: Typical chronoamperometric curve, I=f(t) [75] 
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3.5.3 Electrochemical set-up 

3.5.3.1 3-electrode cell 

A 3-electrode cell was used in these electrodeposition tests. The potential was applied 

with a EG&G VersaStatTM II® (Figure 3.4). 

c 
POTENTlOSTAT w 

R 

R Reference electrode 

W Worki ng electrode 

C Counter electrode 

Figure 3.4: 3-electrode cell used for the potentiostatic tests. Applied potential -O.8V 
(Ag/AgCl) 

The potential -O.8V (Ag/Ag/Cl) was applied as it corresponds to the Oz-diffusion 

plateau as shown on Figure 3.5. 
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Figure 3.5: Cathodic polarization: determination of the 0 2-diffusion plateau [174] 
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Three electrodes are necessary to apply a potential and to record the current density 

variations: the working electrode (WE), the counter electrode (CE) and the reference 

electrode (RE). 

3.5.3.2 The working electrode (WE) 

The working electrode is an electronic conductor in contact with an electrolyte solution. 

In this study the working electrode was a cylinder of stainless steel UNS 31603 and the active 

surface in contact with the bulk was 1 cm2 (the rest of the electrode was covered with isolation 

tape). As the reduction of oxygen took place at the surface of the working electrode it was 

considered as a cathode. 

3.5.3.3 The counter electrode (CE) 

The counter electrode is used to close the current circuit. The opposite reaction of the 

one occurring on the working electrode takes place on the counter electrode. In this study an 

oxidation takes place on the counter electrode (made of an inert metal, platinum). 

3.5.3.4 The reference electrode (RE) 

The absolute value of the difference of the potential at the metal-solution interface can 

not be measured, only its changes. The reference electrode is the electrode against which the 

difference of potential is measured. The potential of the surface-solution of the reference 

electrode has to be constant and independent of the potential of the interface surface-solution 

of the working electrode [175]. The electrode used as a reference electrode in this study was 

Ag/AgCI. 

3.6 Dynamic tests 

3.6.1 In-situ flow cell coupled with electrodeposition 

3.6.1.1 Nucleation-Growth model 

The data in this part of the study have been analysed using the nucleation and growth 

model proposed by Beaunier et al. [173] and modified by Euvrard et al. [91] which assumes 

that crystallization is controlled by diffusion. 
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It is assumed that the unit area of the substrate has a finite number of active nucleation 

sites No (Ilm-2) and that all nucleation events are independent to each other. So, at a time t, the 

probability of nucleation depends only on the number of free sites. For non-growing crystals, 

the number density of nuclei follows the Poisson law: 

N(t) =No [l-exp(-At)] Equation 3.37 

Where A (S-I) is the nucleation rate constant (conversion of a site into a nucleus); in our 

approach the density of active sites No is the detected number of crystals. Two different cases 

exist according to the nucleation rate constant value: 

• When At »1, N(t) is close to No, it means that all active sites have generated nuclei in 

the very early stage (first seconds) of the process; this is instantaneous nucleation. 

• When At«I, it indicates progressive nucleation; N(t) is close to NoAt, the number of 

converted sites increases linearly with time. 

A difficulty in the analysis of the data is that the coalescence (or overlap) of crystals 

may occur and the actual covered surface area Set) is different from the extended surface area 

Sextet) that would be covered by all the nuclei at time t without effects of overlap. The 

relationship between Set) and Sextet) is given by Equation 3.38 and Equation 3.39. 

Set) = l-exp (-Sext(t» Equation 3.38 

Sextet) = (M kJ No/ p).[t-lIA + exp (-At)/A] Equation 3.39 

A is the nucleation rate, kJ the lateral growth rate (mol/Ilmls), M is the molar mass of 

CaC03 (lOOg/mol) andp is the density of the crystals (p = 2.71 10-12 g/llm3 for calcite). 

From Equation 3.38 and Equation 3.39, the surface coverage Set) is: 

Set) = 1- exp [- (M kJ No / p).[t- lIA + exp (-At)/A]] Equation 3.40 

For an extended time, Set) is simplified as follows: 

Set) = 1- exp [- (M kJ No/ p).[t- lIA]] Equation 3.41 
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In case of instantaneous nucleation, if At» 1, i.e. for sufficiently long observation 

times, e.g. t> Is, Equation 3.39 is simplified as follow: 

Sextet) = - Ln( 1- S(t) = M kJ No t / p Equation 3.42 

kJ = - Ln( 1- S(t)) p / M No t Equation 3.43 

In case of progressive nucleation, the value ofSext is quantified as follows: 

Sextet) = - Ln( 1- Set»~ = M kJ NoA r / p Equation 3.44 

Using the model above, the experimental data allows the determination of: 

• the type of nucleation: if Sextet) is a linear function of t, nucleation is instantaneous, 

whereas if it is a linear function of r, the nucleation is progressive, 

• the mean lateral growth rate of crystals kJ• 

In using this electrochemical cell the objectives are the characterisation of the crystals 

of calcium carbonate generated by electrodeposition in presence of scale inhibitors and to 

determine either the inhibitor action by inhibiting the growth (lateral growth kJ constant) 

and/or the nucleation of the crystallization. 

3.6.1.2 Parameters studied and definition 

The number of particles, the shape factor (f) and the diameter of the particles and the 

surface coverage were determined by image analysis. The image of the surface and the 

crystals was analysed at different times. For each image, the crystals have been selected on 

the screen with a specific image analysis software (ARIES, software ESILAB). 



- 83 -

The surface and the diameter of the single crystals, the surface coverage and the shape 

factor were calculated directly by the software. The shape factor (j) is defined as follows: 

!=PI4nS Equation 3.45 

where P is the perimeter and S is the surface area of the crystal. The value of the shape 

factor range from 0 to 1. A circle crystal is characterised by a shape factor close to 1 and a 

rod-shape crystal is characterised by a shape factor close to o. 

The extended surface area and the lateral growth were calculated according to Equation 

3.42 and Equation 3.43. 

3.6.1.3 Experimental set-up 

• Electrochemical cell 

The electrochemical cell integrated 3 electrodes in 2 parallel PMMA (poly(methyl 

methacrylate) plates (Figure 3.6). One plate contains a removable plug comprising a circular 

stainless steel electrode. The opposite plate contains a window that was made 

electrochemically conducting by deposition of tin oxide. The electrode was connected to a 

power supply. The electrical potential of the working electrode was measured relative to a 

silver wire inserted through the plug and immersed in the solution which flows by gravity 

(40mVmin) in a rectangular channel. The silver wire was pre-treated with diluted solution of 

hydrochloric acid so it worked as Ag/AgCI electrode. The potential applied was -0.8V 

Ag/AgCI And each test was run for 60 minutes. 
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Figure 3.6: In-situ electrochemical flow cell 

• Optical and measurement set up 
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The video assembly contained a 20x long working distance objective, a video tube, a 

lighting system, a camera (SONY SSC-DC38P) and an image monitor (SONY PYM 1450). 

The magnification power (lOOOx) monitored the particles (crystals and inhibitor) on the 

working electrode as soon as their size reached 1 flm. The crystals smaller than 1 flm were not 

detected. A Scanning Electron Microscope (SEM) has been used to analyse some surfaces in 

order to have a better accuracy in the detection of crystals. 

Objective x20 --+ 

Video tube --+ light 

Figure 3.7: Experimental set-up of the in-situ polarization tests 
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Micrometric screws provided the movement for the video assembly to be able to 

observe the total surface area of the electrode. The observation of the crystals was done on the 

centre of the metal samples to avoid edge effects. A video camera filmed and a recorder 

(SONY SL-UE 710B) recorded the surface area during the experiment. Thus, by using an 

image analysis (ARIES, software ESILAB), the crystals were quantified after different 

periods of time. This system provided the following data: number of particles, surface and 

diameter of the particles, shape factor and surface coverage. 

3.6.2 In-situ Synchrotron X-Ray Diffraction (SXRD) 

The use of X-ray diffraction to study crystallography of compounds is widely used. The 

use of synchrotron radiations allows the study of very small amounts of scattering matter. 

Moreover the wavelengths available are much shorter and therefore the accuracy of the 

determination of the characteristics of a compound increases. In principle a very good time 

resolution can be achieved allowing a quick data collection [176]. The charged particles are 

accelerated in a curve path device (synchrotron) to a vey high speed through magnetic fields. 

The synchrotron radiations thus produced, hit a metal target and X-ray are generated. 

3.6.2.1 Powder X-ray diffraction 

The general principles of X-ray diffraction have been demonstrated with the irradiation 

of single crystals. The X-ray diffraction pattern is the fingerprint of a crystal as each 

diffraction ring is specific to a crystal plane. 

When an atom is irradiated by a wave, a part of the wave is reflected by the first layer 

and the rest is diffused through the second layer. If the shift phase of the reflected beam is on 

phase (constructive interferences), if the Bragg's conditions are respected, the beam is 

diffracted. If the shift phase is not on phase (destructive interferences), diffraction does not 

occur (Figure 3.8). 
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Constructive interferences Destructive interferences 

Figure 3.8: Illustration of the Bragg's conditions 

In other term the beam is diffracted if the difference of the pathway of the different 

waves (corresponding to the distance AB+BC in Figure 3.9) is equal to an integer multip le of 

the wavelength. 

nA=2dsin9 

B ...... \ 

Figure 3.9: Determination ofthe Bragg's law 

The study of a polycrystalline sample increases the chance to detect crystals as the 

chance to find a crystal in the Bragg's conditions increases with the increase of the number of 

crystals. For the study of a single crystal , the sample can be rotated in order to increase the 

chance to detect the crystal; at some point the correct Bragg angle will be reached and thus a 

diffracted beam will be generated. 

When a powder sample is irradiated by a X-ray and if the crystals are orientated 

randomly, the diffraction beams resulting are lying on the surface as diffraction cones. These 

Cones can be diffracted in all directions (forwards and backwards). The intersection between 

the diffracted cones and the detector gives a line of diffraction specific to the 2-theta angle. 
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Figure 3.10: Debye-Scherrer and Hull diagram [177] 

3.6.2.2 Experimental set up 

I . 
.' 

The experiments have been carried out in Brookhaven National Laboratory in the 

National Synchrotron Light Source departement (US) in collaboration with Dr Zhong Zhong. 

The beam XI7Bl has been used. Monochromatic beams with energies tunable from 55 to 80 

keY are provided with a Si(3I!) sagitally bent Laue crystal, at typical flux rate of lOll 

photons/s [178]. In this study a wavelength of 0.17712A (70ke Y) was used. A 2-dimensionnal 

Siemens CCD detector has been used. The calibration has been done with NIST standard 

Ah0 3. 

An in-situ flow cell was used to study calcium carbonate formation and inhibition. High 

pressure (34MPa) and high temperature (up to 250°C) can be applied to the cell in order to 

reproduce realistic conditions. The calcium ions and the carbonate ions are kept separated and 

pumped into the system. The two different brines are heat up with an oven and then mixed in 

the mixing chamber. Calcium carbonate formation occurs in a 2mm bore capillary cell and the 

X-ray beam passes through this cell (Figure 3.11). 

F 

A G 

A 

A: Pumps containing brines C Mixing chamber E: Hastelloy cell G: Relief valves 

B: Pressure transducers D stainless steel cell F: Bolts H: Waste 

Figure 3.11: In-situ flow cell used with the synchrotron X-Ray Diffraction 
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In this study the substrate of the capillary cell used is a standard 316L austenitic 

stainless steel. Previously silicon and PMMA (polymethylmetacrylate) were used as 

substrates for deposition. Both materials were relatively transparent to X-rays, even with the 

thickness required to sustain the high pressure applied in the system. Moreover the 

background due to these two materials was weak. The effects of the substrate are an important 

factor in scale formation so a stainless steel cell has been used in order to have experimental 

conditions closer to the field conditions. The X-ray pattern due to the stainless steel is strong 

(Figure 3.12). The peaks due to the nature of the substrate (y-Fe) were situated between 4.6° 

and 4.8° and between 5.2° and 5.7°. It has been decided to ignore these two regions. 

Nevertheless the results obtained give important information on calcium carbonate formation 

and inhibition and the effects of the substrate. 

Stainless steel was chosen as substrate for deposition of CaC03 for the SXRD as it is a 

relevant material. Most of the equipments in the oil and gas extraction process are steel. 

Therefore despite the inconvenience of the significant diffraction background, stainless steel 

was chosen. The results obtained gives information on CaC03 formation and inhibition 

mechanisms closer to what is occurring in real conditions. 

+ . 

+ 

(a) PMMA cell (b) Stainless steel cell (c) silicon cell 

Figure 3.12: The X-ray diffraction rings of calcium carbonate scale formed in PMMA, 
stainless steel and silicon cell 

The data have been processed by Dr Zhong Zhong with an in-house program at XI 7B 1 

in Brookhaven National Laboratory and they have been converted to the appropriate format. 

The FullProf [179] suite has been used for the initial data analysis like the determination of 

the peaks, of the intensity ofthe peak, etc. 



- 89 -

The Inorganic Crystals Structure Database (lCSD) [180] has been used to identify the 

XRD peaks and assign them to crystal planes of the three polymorphs corresponding to the d­

space values obtained after analysis with FullProf suite. 

3.7 Adsorption of scale inhibitors 

3.7.1 Adsorption on a metal surface 

3.7.1.1 Contact Angle measurements 

The chemical affinity that a liquid has with a solid has been determined by measuring 

the contact angle between two of the interfaces at the three-phase line in contact (in this case 

the metal surface and a droplet of water) (Figure 3.13). This has been used to assess the 

adsorption of the inhibitors and their effects on the metal surface. 

Angle = 79.14 
Angle Left = 77.57 
Angle Right = 80.71 
Base Width = 0.9385 

Metal surface covered by a 
calcareous layer 

Nozzle 

r Distilled water drop 

Figure 3.13: Contact angle measurement with the static sessile drop 

Young's equation (Equation 3.46) relates the contact angle taking into account the free 

energies of the surface, the liquid and the solid/liquid interfacial free energy: 

Ysv - YSL - y. cos e = 0 Equation 3.46 

where Ysv , YSL and yare the free surface energies of the solid/vapour interface, of the 

solid/liquid interface and of the interface liquid/vapour respectively and e the contact angle 

(Figure 3.14). 
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VSG 

Figure 3.14: Representation of a contact angle and of the three components of the Young' s 
equation 

The changes in the surface properties (due to the changes of the calcareous layer 

present onto the surface) can be underlined by the changes in the value of the contact angle. A 

flat drop indicates a high affinity with the surface and on the contrary a more rounded drop 

indicates lower affinity. The contact angle measurement have been done to look the effects of 

the inhibitor film potentially formed onto the metal surface. A concentration of inhibitor 

sufficient to inhibit CaC03 formation (to avoid any effects of the roughness of the calcareous 

deposit on the contact angle value) was added in the scaling brine and some contact angle 

measurements were done. The absence of crystals of CaC03 was confirmed with microscopic 

observations . 

The measurements have been done with a video drop shape analysis, FT A4000 (by first 

ten Angstroms, USA). The liquid dispensing is controlled by a piezo-electric pump (Figure 

3.15). 

High intensity LED 
backlight 

High resolution 
analytical camera and 

zoom microscope 

Figure 3.15: Details of the apparatus used to realise the contact angle measurements 
(FTA4000) 
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3.7.1.2 FT-IR spectroscopy 

The infra-red spectroscopy measured the infra-red intensity adsorbed versus the 

wavelength of the light. When a molecule is exposed to infra-red the different chemical bonds 

constituting the molecule, stretch and bend at specific wavelength resulting in the absorbance 

of the infra-red. The spectrum of the absorbance versus the wavelengths gives the fingerprint 

of the molecule. In this study the Fourier Transform Infra Red (FT-IR) was used to determine 

this spectrum. 

A light from the IR source travels to the beam splitter. The beam is divided into two 

beams: one reflected on a fixed mirror and the other one is reflected on a translating mirror. 

Both lights travels back on the beam splitter before passing through the sample and then to 

the detector. 

The consequence of the movement of the translating mirror is the reflection of different 

frequencies in different way which creates an interferogram. A spectrum is deduced from this 

interferogram with a Fourier transform (Figure 3.16). 

spJmer + 
Figure 3.16: Basic principle of a Fourier Transform Infra Red spectroscopy (FT-IR) 

A Perkin-Elmer® Spectrum SpotLight™ was used to obtain the IR absorbance spectra. 

50 scans at 8cm-' resolution, from 4000-700cm-1 were undertaken to collect the spectra. The 

diffraction limit is 101-lm. 

The Spectrum SpotLight™ is coupled with an imaging system which permits optical 

images ofthe surface to be collected. 
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3.7.2 Adsorption isotherms 

The interactions between the chemicals and the crystals of calcium carbonate have been 

studied. Smg/L of crystals of calcium carbonate with a specific surface area of 70m2/g 

(Solvay, France) was mixed in water until stabilisation of the pH (48 hours) . Then different 

concentrations of scale inhibitors were added and then the solution was centrifuged after 24 

hours. The supernatant was kept and the CO/ present in the supernatant has been removed 

by Nr bubbling. Then the Total Organic Carbon (TOC analyzer, Schimadzu) was measured to 

estimate the quantity of additive still present in the solution, not fixed to the CaC03 [181]. 

Finally, the amount of organic carbonate that had been lost through adsorption on the 

separated calcium carbonate was calculated from the difference between the initial and final 

concentrations. 

The adsorption isotherm of Langmuir equation allowed the determination of the 

constant of affinity (K) between the inhibitors and CaC03: 

1Ir = (1 +KCe)/f.naxKCe Equation 3.47 

The maximum amount (f.nax) of inhibitors adsorbed on CaC03 is determined and the 

constant of affinity is deduced from f.nax and the slope of the linear regression of the graph 

1Ir as a function of liCe (with Ce, the solution equilibrium concentration of the scale 

inhibitors, r the amount of inhibitors retained on CaC03). 

,.-... 
N 

E --C> 
E 
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r max 
L 

1/Ce 

Figure 3.17: Illustration of the determination of the constant of affinity between calcium 
carbonate and the scale inhibitors in case of Langmuir adsorption. 
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Chapter 4 
Effects of the scale inhibitors on CaC03 formed by electrodeposition 
and determination of the interactions between the metal surface and 

the scale inhibitors 

In this chapter calcium carbonate was generated by electrodeposition and the effects of 

scale inhibitors were studied by chronoamperometry. The variations of the current were 

recorded on 4 and 24 hour duration tests for the four inhibitors studied (Phosphinocarboxylic 

acid, PPCA, Polymaleic acid, PMA, Polyaspartic acid, PA and Carboxymethyl inulin, CMI) 

at three different concentrations (l, 4 and 10ppm or lSppm for the CM!) to determine the 

effects of these inhibitors on calcium carbonate formation. A high concentration of inhibitor 

(30ppm) was tested and contact angle measurements and Fourier Transform Infra Red 

spectroscopy (FT-IR) have been made in order to assess the changes in the surface properties 

and to detect the presence of inhibitors, as an adsorbed layer, on the metal surface. In order to 

determine the efficiency of the different scale inhibitors the weight of the calcareous deposit 

has been determined for various concentrations of inhibitors. 

4.1 Experimental details 

4.1.1 CaC03 deposition 

In this chapter calcium carbonate has been electrodeposited on a metal surface using a 

3-electrode cell in static conditions. The cell comprised the following: 

Working electrode: stainless steel (316L), 1 cm2 

Reference electrode: Ag/ AgCI 

Counter electrode: platinum 

Potential: -0.8V / Ag/AgCI 

Temperature: 23°C 

The mixing of the brines reproduces the composition of North Sea Formation Water 

(Banff reservoir). The composition of the brines used is summarized in Table 4.1. 200ml of 

brine 2 is added to 200ml of brine 1 at t=0 min. The brine is just saturated as the 

supersaturation index of the final brine is 1.02 and it has been determined with 

ScaleSoftPitzerTM version 4. 
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Table 4.1: Composition of the different brines used in this study (NSB=Non Scaling Brine) 

NaCI KCI SrCI MgCh CaCh NaHC03 

Brine 1 64.10gIL·1 2.25g1L-l 0.80gIL-1 5.75g1L-l 28.45g/L-1 0 

Brine 2 63.00gIL-1 0 0 0 0 1. 55g1L-l 

Brine 2 63.00gIL-1 0 0 0 0 0 

NSB 

A non scaling brine (mix of brine 1 and brine 2 NSB) has been used in order to study 

the current variation at the interface metal surface/solution when no calcium carbonate layer 

was formed. 

Each test (for each inhibitor at all concentrations) has been run for 14400 seconds (4 

hours) and 86400 seconds (24 hours). These are the baseline data to compare inhibition 

efficiencies and mechanisms. 

The residual current was determined for each experiment. It is a good indicator of the 

nature of the deposit (thickness and porosity). A low current means the oxygen access on the 

surface is partially blocked and the oxygen reduction is limited. The higher the residual 

current, the thinner and more porous the deposit [11, 75,182]. 

4.1.2 Scale inhibitors 

Four inhibitors (presented in Chapter 3) have been tested in this study: one non green 

(Phosphinopolycarboxylic acid, PPCA) and three green (Carboxymethyl Inulin, Polymaleic 

acid and Polyaspartic acid). The inhibitors are added in brine 1 prior to mixing with Brine 2. 
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4.1.3 Weight measurement 

The weight of the sample has been measured before and after the experiment with a 

balance (OHAUS Analytical+) with a precision ofO.Olmg. 

At the end of a test the sample is rinsed with distilled water and dry with compressed 

air (the tip of the compressed air equipment is far enough not to remove the calcareous layer 

on the surface). The weight of the calcareous deposit has been determined for the tests run 

with a scaling brine uninhibited and for each inhibitors at the concentration 1 and 4ppm as for 

the concentrations 10ppm and 15ppm, the weight was reduced by such an extent that weight 

measurement was no longer accurate. 

4.1.4 Microscopic observations 

The surface of the sample have been observed with a light microscope and/or with a 

SEM (Philips® x130 ESEM). 

4.1.5 Experimental overview 

The experimental overview is presented in Table 4.2. 

Table 4.2: Experimental overview of the static electrodeposition tests 

CA for 24 hours 
CA for 4 hours 

Contact angle and FT-IR analyses 

PPCA 1,4,10ppm 10,30ppm 30ppm* 

CMI 1,4, 15, 30ppm 15,30ppm 30ppm* 

PMA 1,4,10ppm 10,30ppm -

PA 1,4,10ppm 10,30ppm -

CA: Chronoamperometry; *Mt+ or Ca2
+ free brines 



- 96-

4.2 Effects of 4 scale inhibitors on electrode posited calcium 
carbonate on a metal surface 

5 different chronoamperometric curves are presented on each graph: 

• 3 concentrations of each inhibitor were tested, 1, 4 and lOppm and 4 for CMI (l, 4, 

15 and 30ppm). 

• 2 reference solutions were used in this study: a scaling brine (SB) with no inhibitor 

and a non scaling brine (NSB) with no inhibitor (free from carbonate ions). 

The current density variation has been assessed over a 24 hour period. The 

chronoamperometric curve obtained in absence of inhibitors is presented in Figure 4.1. A 

large increase of the current was observed in the early stages for the scaling brine with no 

inhibitor (Figure 4.1). The initial increase of the current was due to the formation of the 

diffusion layer [173] as mentioned in Chapter 3. 

4.2.1 Polyphosphinocarboxylic acid 

Chronoamperometric curves are presented in Figure 4.1 for 5 different solutions. Two 

different categories of behaviour were observed. For 1ppm of PPCA and the non inhibited 

scaling brine their curves were comparable. With 4 and lOppm of PPCA the curves were 

comparable to the non scaling brine trend. The extent of the increase of the magnitude of the 

current observed at the beginning of the curve was less with 1 ppm of PPCA and a small and 

short increase was observed with 4ppm but with lOppm there was no increase. 

The decrease of the current density observed after the initial increase was due to the 

progressive coverage of the active surface by crystals of CaC03• The crystals blocked the 

access of O2 to the surface resulting in a slow down of the rate of the oxygen-reduction 

reaction leading to the decrease of the kinetics of CaC03 formation. It is clear that 1 ppm of 

PPCA did not affect the oxygen-reduction rate so the mechanism of calcium carbonate 

formation occurred with 1 ppm was probably similar to the non-inhibited case. 

The residual current density (value of the current density reached in the final steady 

stage) is characteristic of the scale deposit formed on the surface in terms of porosity and 

thickness. 
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The residual current was much higher with 4 and 10ppm of PPCA with values of 0.023 , 

0.018mA/cm2 respectively compared to 0.0082mA/cm2 at Ippm. The calcareous deposit 

obtained with 1 ppm of PPCA and no inhibitor were similar (Figure 4.2 and Figure 4.3). The 

deposit present on the surface at 4ppm did not generate a decrease of the residual current 

compared to that seen in the non scaling brine but the absence of the progressive decrease 

showed that the mechanisms of CaC03 formation has been strongly modified . The same was 

observed with 10ppm but this time a difference in the baseline current was recorded with the 

non-scaling case indicating that greater interactions between the inhibitors and the surface 

were occurring. 

At 1 ppm the principal mechanism occurring on the surface was calcium carbonate 

deposition and at 10ppm there was no scale on the surface so the variation of the current was 

due to the interactions between the inhibitors and the surface. At 4ppm there was sti ll calcium 

carbonate formation and the film of inhibitors on the surface was probably more extensive 

than for I ppm. Nevertheless the residual current is higher for 4ppm. The interactions 

occurring for this concentration on the surface have less effect on the oxygen access than 

calcareous layer formation (observed at I ppm) and the fi lm formation (observed at 10ppm). 
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Figure 4.1: Assessment of the variation of the current density for a 24 hour duration In 

presence of PPCA during calcium carbonate electrocrystallization. 
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The oscillations of the current signal are due to the adherence of the deposit on the 

surface: the less adherent, the more the signal oscillates [75]. The oscillations were greater for 

the non-scaling brine compared to the non-inhibited scaling brine. 

It has been found previously that the addition of PPCA leads to the formation of 

vaterite [73] and the crystals in this current work were more rounded than the ones observed 

with no inhibitor. No significant difference was observed in the crystal morphology when 

1 ppm of PPCA was added (Figure 4.2 and Figure 4.3). The crystals were probably distorted 

with no inhibitor as they grew in close contact with each other but the crystals were generally 

well defined and rounded. The distortions appeared from 4ppm of PPCA : 4ppm of PPCA 

generated a large decrease in the size and the number of crystals as expected from the 

chronoamperometric curve (Figure 4.1). No deposit was observed with 10ppm of PPCA but 

the residual current was slightly different from that observed with a non-inhibited brine. This 

was probably due to the presence of an inhibitor film on the surface. This last remark will be 

examined in the discussion chapter (Chapter 7). 

Figure 4.2: Calcium carbonate deposit obtained by electrocrystallization after 24 hours with 
no scale inhibitor. 

.. 

(a) (b) (c) 

Figure 4.3: Calcium carbonate deposit obtained by electrocrystallization after 24 hours with 
Ippm (a), 4ppm (b) and 10ppm (c) ofPPCA 
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4.2.2 Polymaleic acid 

The chronoamperometric curves obtained with Polymaleic acid were modified even at 

low concentration (Figure 4.4). None of the concentrations tested gave a curve similar to the 

one obtained with no inhibitor. The progressive drop of the current was reduced with Ippm of 

Polymaleic acid whereas with the same concentration of PPCA no difference was observed. 

Polymaleic acid decreased the kinetics of calcium carbonate deposition. The residual current 

was modified from 1 ppm of Polymaleic ac id (0.005 1 and 0.01 32 mA/cm2 for the scaling brine 

with no inhibitor and 1 ppm of Polymaleic acid respectively). The first values of the current 

density (between 0 and O.015mA/cm2) were artefact (they were not present in similar tests) . 
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Figure 4.4: Assessment of the variation of the current density for a 24 hour duration in 
presence of polymaleic acid during calcium carbonate electrocrystallization. 

The characteristics of the deposit formed in presence of 1 ppm of Polymaleic acid were 

modified: it was more porous. The changes in the morphology of the crystals were visually 

detectable (Figure 4.5) from the concentration 1 ppm contrary to what was observed with the 

PPCA. The crystals formed with 4ppm were strongly distorted but the deposit still generated 

the decrease of the current density. The interactions occurring on the surface with IOppm of 

PMA generated a difference in the baseline current compared to the non-scaling brine but not 

constant as the differences were not significant during the 24 hour test. 
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• 

(a) (b) (c) 

Figure 4.5: Calcium carbonate deposit obtained by electrocrystallization after 24 hours with 
Ippm (a), 4ppm (b), 15ppm (c) of poly maleic acid 

Figure 4.5 shows some modifications in the shape of the crystals and the presence of 

big crystals of vaterite after 24 hours in presence of 1 ppm of polymaleic acid. With 1 ppm of 

PMA the crystals were less individualised and the calcareous deposit seems to be dominated 

by the vaterite polymorph. The crystals formed in presence of 4ppm of polymaleic acid were 

completely distorted. They were longer and thinner than the crystals formed with no inhibitor 

(Figure 4.2). The increase of the concentration of PMA leads to a completely different shape 

of crystals. Free surface was observed with 4ppm of PMA as observed with the PPCA and 

with 10ppm of PMA. Crystals of CaC03 were not detected but some very small nuclei on the 

surface (not detected by light microscopy) were evident. 

4.2.3 Polyaspartic acid 

The trends of the curves were split in 2 types: scaling brine and non-scaling brine trend 

(Figure 4.6). In the early stage of the test, I ppm of polyaspartic acid affected the current 

density; the initial increase observed with no inhibitor was reduced . From 20000s the current 

density changes were similar with or without I ppm of PA. The curve representing 4ppm of 

polyaspartic acid was similar to the one observed for the non-scaling brine whereas the curve 

representing 10ppm had the same trend but the values of the current were lower. The 

modifications of the characteristics of the deposit appeared in the presence of 4ppm of 

Polyaspartic acid. The residual current at I ppm was similar to that of the non-inhibited brine 

(0.0050 and 0.0051 mA/cm2 respectively) but at 4ppm the residual current increased 

significantly (0 .0180mA/cm2
). 
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Figure 4.6: Assessment of the variatIOn of the current density for a 24 hour duration In 

presence of polyaspartic acid during calcium carbonate electrocrystallization 

The thick calcareous layer observed with I ppm of polyaspartic acid after 24 hours had 

the same characteristics as the layer observed with no inhibitor and 1 ppm of PPCA: the 

morphology of the crystals was similar (no changes have been detected with the light 

microscope) and a comparable residual current was measured for these 2 inhibitors (Figure 

4.7). 

Some important modifications were observed with 4ppm of polyaspartic acid and a lot 

of crystals of vaterite were observed (Figure 4.7). The number of crystals largely decreased 

with the addition of 4ppm of polyaspartic acid as free surface was observed between the big 

crystals of vaterite. Almost no crystals were observed with IOppm of polyaspartic acid but the 

residual current observed at this concentration was the same as for 4ppm and different to the 

uninhibited case. Interactions on the surface were occurring at IOppm but it was not calcium 

carbonate formation (Figure 4.7). Polyaspartic acid was surface active and generated changes 

in the crystal morphology from 4ppm. Vaterite was formed at this concentration. These 

observations are relevant to a previous study in which the authors found that one of the ways 

by which polyaspartic acid affect the formation of calcium carbonate is by adsorbing onto the 

calcium carbonate crystals promoting the vaterite form of CaC03 [54, 151]. A full 

explanation of the mechanism of inhibition is presented in c~apter 7. 
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Figure 4.7: Calcium carbonate deposit obtained by electrocrystallization after 24 hours with 
lppm (a), 4ppm (b) andl0ppm (c) of poly aspartic acid 

4.2.4 Carboxymethyl Inulin 

Four concentrations have been tested with the CMI: 1, 4, IS and 30ppm. ISppm did not 

block calcium carbonate formation therefore a much higher concentration (30ppm) has been 

tested in order to compare the chronoamperometric curves obtained with the four scale 

inhibitors when the concentration used effectively inhibited calcium carbonate deposition. 

Two generic behaviours were observed when CMI was added as shown in Figure 7: for 

1 and 4ppm the trend followed was the trend of the uninhibited scaling brine and for ISppm 

and 30ppm the curve was similar to the non scaling brine. A difference of efficiency between 

the CMI and the PPCA was observed for the concentration of 4ppm. Nevertheless, an increase 

of the residual current at this concentration (O.OOSlmA/cm2 and O.0138mA/cm2 for 1 and 

4ppm respectively) showed a modification in the properties of the deposit. The trend of the 

curve and the baseline current for 30ppm of CMI (when no crystals were observed) were 

similar to what was observed when no carbonate was added to the brine whereas differences 

in magnitude of current were recorded with 10ppm of the PPCA, the PMA and the PA as 

previously shown. 
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Figure 4.8: Assessment of the variation of the current density for a 24 hour duration In 

presence of Carboxymethyl Inulin during calcium carbonate electrocrystallization. 

For CMI the baseline current was the same as the non scaling brine (at 30ppm). No 

interactions between the CMI and the metal surface were detected through current variations. 

Nevertheless the increase of the current in the early stages changed when 1 and 4ppm of CMI 

were present compared to the uninhibited case. But these changes were only seen at the early 

stages of the electrodeposition; both concentrations affected the mechanisms of calcium 

carbonate formation at the early stages. 

The study of the chronoamperometric curves (Figure 4.8) has shown a variation of the 

residual current for 4ppm. The characteristics of the deposit have changed. It was more 

porous at 4ppm but these changes were not visually detectable with a light microscope 

(Figure 4.9). Some distorted crystals of calcium carbonate were still observed with JSppm of 

CMI but the small amount of crystals did not generate any significant variations of the current 

density. 
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(b) 

(d) 

Figure 4.9: Calcium carbonate deposit obtained by electrocrystallization after 24 hours with 
Ippm (a), 4ppm (b), 15ppm (c) and 30ppm (d) ofCMI 

4.3 Modifications of the surface properties 

In order to better understand the different mechanisms by which the scale inhibitors 

studied act on calcium carbonate formation, the changes in the surface properties have been 

studied. Contact angle measurements have been made to determine the effects of the 

inhibitors on the wettability of the surface. It has been found that the scaling tendency of a 

surface is closely related to the surface energy of the surface [183 , 184]. As the 

chronoamperometry study showed some interactions between the inhibitors and the metal 

surface, the contact angle measurements will show if the inhibitors act by changing the 

surface energy in order to decrease the scaling tendency. The interactions between the surface 

and the inhibitors could result in a film formation onto the metal surface [185] and this point 

will be discussed in Chapter 7. The presence of a such film has been studied by Fourier 

Transformed Infra Red spectroscopy (FT-IR). 
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The metal surface has been in contact for 4 hours with the brines (scaling and non­

scaling) under polarization conditions (with the same characteristics as previously). The 

surface has been observed with a light microscope, studied by FT-IR and then contact angle 

measurements have been done. 

High concentrations of inhibitor have been used in order to totally inhibit CaC03 to 

study only the effects of the film on the surface. Two concentrations (10 and 30ppm) have 

been tested to understand the effects of the concentration of scale inhibitor on the film 

formation. 

The reference case was the scaling brine with no inhibitor added. The presence of 

calcite has been revealed by light microscope observations as presented in Figure 4.10. 

Figure 4.10: Calcium carbonate deposit obtained by electrocrystallization after 4 hours with 
no inhibitor 

4.3.1 PPCA 

The variation of the current density and the baseline current were similar when IOppm 

and 30ppm of PPCA were added to a scaling brine (Figure 4.11). For this range of 

concentrations, the concentration of PPCA did not affect the current density. If a film of 

PPCA was present on the surface it had the same properties with regard to the blockage of the 

oxygen diffusion . Nevertheless the contact angle measurements showed a significant 

difference between 10 and 30ppm (Figure 4.12). The contact angle increased with the 

increase of the inhibitor concentration. 
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The absence of carbonate ions influenced the variation of the current density in the 

presence of 30ppm of PPCA. The trend of the curve (NSB PPCA 30ppm Figure 4.11) was 

linear but the baseline current was lower than that observed in the presence of carbonate ions. 

0.05 -Ht"---------;-----------, - SB with no inlubitor 

-- NSB with no inlubitor 

-- SB PPCA 10 ppm 

-+- SB PPCA 30 ppm 

o +---.--.---,--,---,--.---,~ - NSB PPCA 30 ppm 

o 2000 4000 6000 8000 10000 12000 14000 

Time (sec) 

Figure 4.11: Effects of different concentrations of PPCA on the current density for 4 hours 
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Figure 4.12: Influence of the concentration ofPPCA on the contact angle 

Figure 4.13 shows the surface after 4 hours under polarization. It has been seen 

previously that 10ppm of PPCA completely blocked calcium carbonate formation under the 

same experimental conditions (after 24 hours) and an inhibitor film was detected on the 

surface (with the variations of the current density, Figure 4.1). At 30ppm in a scaling brine the 

pattern obtained was really heterogeneous; some areas we~e fully covered and some parts of 

the sample seems free offilm. 
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In the absence of carbonate ions with 30ppm of PPCA, heterogeneous patterns were 

present on the surface of the electrode (Figure 4.13c). This could be the film formed by 

PPCA. This film had an effect on the current density. The film formation occurred quickly as 

the baseline current value was reached at 6000 seconds. 

(a) (b) (c) 

Figure 4.13: Surface of the metal electrode after 4 hours under polarization conditions with 
10ppm (a) and 30ppm (b) of PPCA in a scaling brine and with 30ppm in a non scaling 
brine (carbonate free) (c). 

Infra-red absorbance spectra have been studied in order to determine the presence ofthe 

inhibitor on the metallic surface (Figure 4.14). By comparing the spectra obtained with a 

clean metallic surface and a surface which has been under polarization conditions in presence 

of inhibitor, the presence of new peaks (specific to chemical bonds) on the spectra can reveal 

the formation of a film. 

However the spectra obtained with 10 and 30ppm of PPCA were similar to the one 

obtained with a clean surface (the peak at 2350 cm-) is an artefact); only the microscopic 

observations (Figure 4.13) seems to reveal the presence of a film . This point will be discussed 

Chapter 7. 
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Figure 4.14: Absorbance FT-IR spectra of a clean stainless steel surface (background) and of 
the layer present on the metallic surface after 4 hours of electrodeposition with PPCA 

4.3.2 PMA 

The variation of the current density was the same with 10 and 30ppm of PMA (Figure 

4.15). However the measurements of the contact angle showed the same variations as with 

PPCA (ie. increase of the contact angle with the increase of the concentration) (Figure 4.16). 
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Figure 4.15: Effects of different concentrations of PMA on the current density for 4 hours 
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The difference of the current density values between the scaling brine with 30ppm and 

the non scaling brine with 30ppm of PMA was very small contrary to what was observed with 

PPCA. The variations of the current density observed with 10ppm and 30ppm of PMA were 

similar. The presence of a film was not detected by the current density variations. 
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Figure 4.16: Influence ofthe concentration of PMA on the contact angle 

The microscopic observations (Figure 4.17) show the absence of calcium carbonate 

with 10 and 30ppm of PMA added to a scaling brine and the presence of the inhibitor film in 

a carbonate-free brine with 30ppm of PMA. The pattern of the film was similar to the one 

observed with PPCA. Nevertheless contrary to PPCA, the presence of the film was not 

obvious by microscopic observations in a scaling brine . 

• 
• 

(a) (b) (c) 

Figure 4.17: Surface of the metal electrode after 4hours under polarization conditions with 
IOppm (a) and 30ppm (b) of PM A in a scaling brine and with 30ppm in a non scaling 
brine (carbonate free) (c). 
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A weak peak was detected by FT-IR at the wavelength of 3215.8 cm·' , for the 

concentration 30ppm, which is specific to the carboxyl function (Figure 4.18) and PMA is a 

polycarboxylic acid. 
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Figure 4.18: Absorbance FT-IR spectra of a clean stainless steel surface (background) and of 
the layer present on the metallic surface after 4hours of electrodeposition with PMA 

4.3.3 PA 

10 and 30ppm of PA had the same effects on the current density (same trend and 

same baseline current) (Figure 4.19). But there was a difference in the contact angle: as seen 

with the PPCA and the PMA, the increase of the concentration of P A generated an increase in 

the contact angle (Figure 4.20). The modification promoted by the increase of the 

concentration was not detected by the variation of the current density. 
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Figure 4.19: Effects of different concentrations of PA on the current density for 4 hours 
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Figure 4.20: Influence of the concentration of PA on the contact angle 

A large decrease in the current density values was observed with 30ppm of PA in 

absence of carbonate ions (Figure 4.19) probably due to the presence of the inhibitor film. 

Figure 4.21 shows the presence of a film when 30ppm of PA was present in the scaling and 

non scaling brines. 
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(a) (b) 

(c) (d) 

Figure 4.21 : Surface of the metal electrode after 4hours under polarization conditions with 
lOppm (a) and 30ppm (b and c) of PA in a scaling brine and with 30ppm in a non 
scaling brine (carbonate free) (d). 

The infra red spectra is presented in Figure 4.22. Two peaks appeared with 30ppm of 

PA at 1399.4 cm- 1 and 875 cm- 1
, specific to the carboxylic and amide functions respectively. 

Both of these functions are characteristic of the molecule of PA. The pattern seen on the metal 

surface was specific to the polyaspartic acid (it was different as the ones observed with the 

PPCA and the PMA) The film was heterogeneous (Figure 4.21) and it was not detected with 

only 10ppm of PA. However the contact angle increased when 10ppm of PA was added 

compared to the non inhibited case. 
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Figure 4.22: Absorbance FT-lR spectra of a clean stainless steel surface (background) and of 
the layer present on the metallic surface after 4hours of electrodeposition with PA 

4.3.4 eMI 

IS and 30ppm of CMI generated the same changes in the variation of the current 

density (as seen with PPCA) except at the beginning of the tests (until 4000 seconds) (Figure 

4.23). lSppm of CMI generated a slight increase and then a decrease of the current density. 

From 4000 seconds the two curves had the same trend and the same baseline current. In the 

inhibited brines in absence of carbonate ions, the trend of the curve was almost linear and the 

values of the current density were lower than in the inhibited scaling brine. The microscopic 

observations show the presence of a film when carbonate ions were removed from the 

solution (Figure 4.24) and the pattern of the film was similar to the film obtained with PPCA. 

A great difference in the pattern between the scaling brine and non scaling brine both 

containing 30ppm were revealed. 

As observed with PPCA, the inhibitor film was heterogeneous (Figure 4.24b and 7c). 

Some areas of the samples seemed free of films and some others were fully covered by the 

film. 



- 114 -

0.05 

--- ~ SB with no inhIbitor ME 0.04 
~ 
--( 
E -- NSB with no inhIbitor 
'-' 0.03 .c 
.(ji 
c 
~ -- SB CMll5 ppm 
Q 0.02 .... 
c 
~ 
l. 

-+- SB CM! 30 ppm l. 

= 0.01 
U 

o +----,----,-----,----,----,----,----,-~ -+- NSB CMl 30 ppm 

o 2000 4000 6000 8000 10000 12000 14000 

Time (sec) 

Figure 4.23: Effects of different concentrations of CM! on the current density for 4 hours 

The contact angle increased with the increase of the concentration (Figure 4.25). The 

increase of the concentration generated changes on the surface (shown by the variation of the 

contact angles values) but these changes were not detected by the variation of the current 

density. 
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Figure 4.24: Surface of the metal electrode after 4hours under polarization conditions with 
lSppm (a) and 30ppm (b and c) of CM! in a scaling brine and with 30ppm in a non 
scaling brine (carbonate free) (d) . 
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Figure 4.25: Influence of the concentration of eMI on the contact angle 

The IR spectra obtained with 30ppm of eMI presents three more peaks than the one 

obtained with a clean stainless steel surface (Figure 4.26) at the wavelengths 3225 .8, 1347.5 

and 873cm-1 specific to the chemical bonds of the alcohol function, aromatic alcohols and 

oxygen bond respectively. The molecular structure shows that eMI is composed of these 

three chemical structures. eMI was bound onto the metal surface when present at 30ppm. 
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Figure 4.26: Absorbance FT-IR spectra of a clean stainless steel surface (background) and of 
the layer present on the metallic surface after 4hours of electrodeposition with eMI 
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4.3.5 Effects of the calcium and magnesium ions on film formation 

(PPCA and CMI) 

A complementary study has been run on the PPCA and the CMI to understand the role 

ofthe magnesium and calcium ions in the film formation. 

4.3.5.1 PPCA 

Figure 4.27 present the chronoamperometric curves obtained in absence of magnesium 

and/or calcium ions in presence of30ppm ofPPCA. 

The chronoamperometric curves obtained with a calcium-free and magnesium-free 

brine generated the same variations of the current density (Figure 4.27). The layer formed on 

the surface seemed to be less adherent for the magnesium-free brine as the oscillations of the 

signal are greater [75] . 
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Figure 4.27: Influence of magnesium and calcium ions on the current density in presence of 

30ppm ofPPCA 

No inhibitor film nor calcium carbonate crystals were observed on the surface of the 

electrode (Figure 4.28) in absence of Ca2+ or Mg2+. Magnesium and/or calcium seem to have 

an important role in the film formation as no pattern was observed in the absence of these 

cations. 
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Figure 4.28: Surface of the metal electrode after 4hours under polarization conditions with no 
calcium ion (a) and no magnesium ion (b) in a scaling brine and in presence of30ppm 
ofPPCA. 

An increase of the contact angle was generated by the absence of magnesium in the 

brines and the increase was greater for the calcium-free brines. The influence of carbonate 

ions was important as a decrease of the contact angle was promoted. The calcium ions have a 

greater effect on the contact angle than the magnesium ions (Figure 4.29). 
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Figure 4.29: Influence of the magnesium and calcium ions in the presence of 30ppm of 
PPCA on the contact angle 

No changes in the IR spectra were observed for the calcium-free and magnesium-free 

brines (Figure 4.30) . The film was still not detected as observed when the cations were 

present in the brines. 
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Figure 4.30: Absorbance FT-IR spectra of a clean stainless steel surface (background) and of 
the layer present on the metallic surface after 4hours of electrodeposition with 30ppm 
of PPCA in the absence of magnesium and calcium ions 

4.3.5.2 eMI 

The absence of both magnesium and calcium generated a slight increase of the baseline 

current values (Figure 4.31). In the calcium-free brine there was no film formation observed 

with a light microscope and there were some crystals of calcium carbonate formed when 

magnesium was not present in the brine (Figure 4.33). This last remark illustrated the 

inhibition role of magnesium [112]. However this phenomenon was not observed with PPCA; 

the action of the inhibitor itself permitted the inhibition of calcium carbonate formation. The 

variations of the contact angle were similar as the variations occurring in the presence of 

PPCA (Figure 4.29). 
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Figure 4.31: Influence of magnesium and calcium ions on the current density in the presence 
of30ppm ofCMI 
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Figure 4.32: Influence of the magnesium and calcium ions in presence of 30ppm of CMl on 
the contact angle 
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Figure 4.33:Surface of the metal electrode after 4hours under polarization conditions with no 
calcium ion (a) and no magnesium ion (b) in a scaling brine and in presence of30ppm of 
CM!. 

No film was detected on the lR spectra (Figure 4.34). The peaks observed previously in 

a scaling brine (with calcium and carbonate) were not promoted this time. Both calcium and 

magnesium ions are needed to establish the inhibitor film on the surface. Maybe the film was 

still formed but not detected by IR spectroscopy. 
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Figure 4.34: Absorbance FT-IR spectra of a clean stainless steel surface (background) and of 
the layer present on the metallic surface after 4hours of electrodeposition with 30ppm of 
CMI in the absence of magnesium and calcium ions 

4.4 Efficiency of scale inhibitors on calcium carbonate weight gain 

Figure 4.35 shows the variation of the weight of the calcareous deposit with different 

additives at different concentrations. There was no significant variation in the weight of the 

deposit when 1 ppm of inhibitor was added. A large decrease of the weight gain was observed 

for 4ppm of PPCA and Polymaleic acid. For the concentrations 10ppm and 15ppm, the 

weight was reduced by such an extent that weight measurement was no longer accurate. It is 

interesting to note that PPCA significantly affected the weight of the deposit after 4 hours 

compared to the other inhibitors. Only an increase of 0.19mg was observed with 4ppm of 

PMA (between 4 and 24 hours) whereas for the PA and the CMI the weight of the calcareous 

layer had considerably increased (0.67 and 1.3mg for the PA and the CMI respectively). 
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Figure 4.35: Variation of the weight of the calcareou~ deposit after 4 and 24 hours In 

presence of scale inhibitors at different concentrations 
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4.5 Comparison of the inhibitors 

4.5.1 Morphology of the crystals 

The morphology of the crystals of CaC03 formed after 4 hours under polarization 

conditions in inhibited and non-inhibited conditions are presented in Figure 4.36. The aim of 

the microscopic observations was to compare the morphology of the crystals formed in 

different inhibited conditions. 

Cubical calcite and leaf-like vaterite are formed in the non-inhibited brine. The addition 

of inhibitors modified clearly the morphology of the crystals. 4ppm of PPCA leaded to the 

formation of rounded and small crystals, the crystals formed with 4ppm of PMA were 

elongated and distorted crystals of CaC03 were formed with 4ppm of PA and CMI (Figure 

4.36). 1 ppm of PPCA and PMA modified the morphology of the crystals whereas for PA and 

CMI 4ppm is needed to see some changes of the morphology. Crystals of vaterite are 

observed with 1 ppm of CM!. 

(a) 

(b) (c) 
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(d) (e) 

(f) (g) 

(h) (i) 

Figure 4.36: SEM observations of crystals of CaC03 formed on a metal surface in (a) a non­
inhibited brine, with (b) I and (c) 4ppm of PPCA, with (d) 1 and ( e) 4ppm of PMA, 
with (f) 1 and (g) 4ppm of PA, with (h) I and (i) 4ppm of CMI after 4 hours under 
polarization and static conditions. 
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4.5.2 Interactions with the surface 

The different characteristics of the inhibitor film on the variations of the current density 

and the contact angle and the ability to be detected by IR are summarised Table 4.3. 

Table 4.3: Difference characteristics of the film formed by PPCA, CMI, PMA and PA. 

Difference in Difference in Variation of the Detection of a 
the CD between the CD between contact angle film with 
SB 10 and SB NSB 30ppm and between 10 and 

30ppm SB 30ppm 30ppm FT-IR 

PPCA No Yes Yes No 

CMI No Yes Yes Yes 

PMA No No Yes Yes 

PA No Yes Yes Yes 

(CD: Current Density) 

For the 4 inhibitors, there was no effect of the increase of the concentration (10 to 

30ppm) on the current density whereas a difference in the contact angle was detected; an 

increase of the concentration of the inhibitor leaded to an increase of the contact angle. 

The absence of the carbonate ions seems to be important in the film formation with the 

PPCA and the PA as the baseline current was lower in a carbonate-free brine (NSB) with 

30ppm of PPCA or PA. The chronoamperometry showed two different characteristics in the 

mechanism of the inhibitor film. It is appreciated that the carbonate ions could have an effect 

on the establishment of the inhibitor film with the CMI and the PMA but this was not detected 

by chronoamperometry. 

The film formed with the P A and the CMI were detected by infra red spectroscopy 

whereas only the film formed with the PA was detected by chronoamperometry. It is 

interesting to note that the film obtained with the PPCA Was well detected by the study of the 

current density variation whereas it was not by Fourier Transform Infra Red. Only one 

additional small peak was observed in presence of PMA. 
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The baseline current observed with 4ppm was lower than the one observed with 10ppm 

of PMA. At 4ppm, the surface was covered by the inhibitor and by some crystals of calcium 

carbonate whereas at 10ppm there were no crystals observed. The same remark can be made 

for the CMI: the baseline current at 15ppm was lower than the baseline current with 30ppm 

whereas for PPCA and P A, the baseline current at 10ppm was lower than at 4ppm. CaC03 

was still formed with 4ppm of PMA and 15ppm of CM!. The current density was mostly due 

to the calcareous layer present on the surface (and not due to the presence of a film of 

inhibitor) as at higher concentration (when no crystals were formed) the baseline current was 

similar to that seen for the non scaling brine. The inhibitor had a smaller effect on the oxygen 

diffusion than PPCA and PA. For these two inhibitors, a high concentration of inhibitor 

(blocking calcium carbonate formation) had a greater effect on the oxygen diffusion. 

The oscillations of the chronoamperometric curves obtained at high concentrations 

make the interpretation of the curves more difficult. It has been shown that the oscillations of 

a chronoamperometric curve is a function of the adherence of the material present on the 

surface [75]. It is clear that a homogeneous thick and non-porous calcium carbonate layer will 

generate a smoother curve than a curve obtained from a surface covered by a thin and 

heterogeneous film. 

It is interesting to note that the effect of PPCA on scaling was efficient inhibition even 

if a film was not detected by IR spectroscopy. The percentage of inhibition efficiency based 

on weight measurements at 4ppm showed that PPCA was the most efficient after 4 hours 

under polarization (CMI, PA and PMA had almost the same efficiency, between 42 and 55%) 

and after 24 hours PPCA had still the greatest effects on calcium carbonate inhibition but the 

efficiency of the PMA was largely increased when studied for 24 hours (55% to 75% after 4 

and 24 hours respectively). However the IR spectra did not detect as well as with PA and CMI 

the presence of the film on the surface. It seems that even if different inhibitors act with the 

same mechanism, their effects on calcium carbonate inhibition can be still quite different. The 

detection of a film did not show a greater inhibition property. 

These different remarks lead to the fact that the film formed on a metal surface have 

different characteristics according to the inhibitor used. The characterisation of the film and 

the mechanism of its formation will be discussed in Chapter 7. 
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Chapter 5 
Characterisation of CaC03 deposit with an in-situ flow cell and its 

interactions with the additives 

5.1 Introduction 

As seen in the previous chapter, the scale inhibitors studied in this thesis have a large 

effect on the morphology of the crystals of calcium carbonate. The use of an in-situ flow cell 

coupled with a video assembly and a microscope permits the determination of morphometric 

characteristics (in real time) of the crystals such as the diameter and the shape factor of the 

crystals. The number of crystals has been determined and the surface coverage of the 

calcareous deposit on the metal surface. This technique permitted the detection of crystals of 

calcium carbonate bigger than 1!lill. When no crystals (or a few) were detected, electronic 

microscopic observations (with a Scanning Electron Microscope, SEM) were done in order to 

see if some crystals were present but were too small to be seen with the light microscope used 

in this set-up. 

In order to study the effects of the scale inhibitors on the nucleation and growth of 

calcium carbonate, they were added into the brine before the start of the experiments for a 

large part of the study. The inhibitors were therefore present in the brines during the 

nucleation process. A complementary study has been carried out to study the effects of 

inhibitors on a calcareous layer already formed on the metal surface so on the growth of the 

crystals present on the surface (nucleated in a non inhibited brine). In this case the inhibitors 

were added after 10 minutes of crystallization. 

The nature of the nucleation (instantaneous or progressive) has been determined. The 

determination of the morphometric characteristics allows the calculation of the lateral growth 

rate. 

This chapter presents the results obtained with the same four additives as in Chapter 4 

(PPCA, PMA, PA and CMI). The characteristics of the crystals formed in the inhibited brines 

were compared with the crystals formed in a non inhibited brine. The structure of this chapter 

follows the same model for each inhibitor. Firstly, the effects of the inhibitors were studied 

When the inhibitors were added before the start of the test and secondly when they were added 

after 10 minutes of polarization. 
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For both cases, the calcareous deposit was characterised and then the crystals of 

calcium carbonate were studied (morphometric characteristics of individual crystals). When 

the inhibitors were added 10 minutes after the creation of the supersaturation, some crystals of 

CaC03 were formed during the 10 minutes and grew on the metal surface. A complementary 

study has been realised for the PPCA, the PMA and the P A to determine the interactions 

between the surface of the calcium carbonate and the inhibitors and is reported at the end of 

the part characterising the inhibitors. The CMI has not been tested as Demadis et ai. already 

showed the interactions of the CMI and CaC03 [155] and a summary of the findings are given 

instead. 

5.2 Experimental details 

The experiments were carried out in University of Franche-Comte (Besanyon, France) 

in the UTINAM Institute in the team "Materials and Structured Surfaces". 

5.2.1 Experimental set-up 

The electrochemical cell integrated 3 electrodes in 2 parallel PMMA (poly(methyl 

methacrylate) plates as presented in (Figure 3.6). The potential applied was -0.8V/AglAgCI 

and each test was run for 60 minutes. The flow rate of the solution is 40ml.min'l and the 

Reynolds number is nil suggesting that the system is in laminar conditions. The 

electrochemical cell was combined with an optical and measurement set-up (Figure 3.7). This 

system provided the following data: number of particles and diameter of the particles, shape 

factor and surface coverage. 
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5.2.2 Brines composition 

The composition of the brines used in this study are summarized in Table 5.1 and Table 

5.2. 

Table 5.1: Composition of the brines used in the study with the in-situ flow cell 

NaCI KCI MgCh CaCh NaHC03 

Brine 1 64.10g.r l 2.25g.r l 5.75g.r l 28.45g.r l 0 

Brine 2 63.00g.r l 0 0 0 1.55g.r1 

Table 5.2: Final ionic concentrations of the different elements containing in the brine used for 
the study with the in-situ flow cell 

Ions Concentration (mgll) 

Na+ 25188 

K+ 590 

Sr2+ 221 

Mg2+ 345 

Ca2+ 2614 

cr 44248 

HC03- 556 

5.2.3 Experiment overview 

The inhibitors have been added in the brine at different time: 

• Before the start of the experiment (t=O) 

• After 10 minutes from the start of the eXEeriment (t=10). In order to have a 

correct observation at the lOth minute (with no perturbation of the system due to the addition 

of the inhibitors), the inhibitors were added at the exact time 9'30sec. 
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The experiment overview is presented Table 5.3. 

Table 5.3: Experiments overview with the in-situ flow cell. 

Inhibitors Added at t=O Added at t=10minutes 

PPCA 1&4ppm 4ppm 

PA 1&4ppm 4ppm 

PMA 1&4ppm 4ppm 

CMI 1&4ppm 4ppm 

5.3 Characterisation of crystals of calcium carbonate formed in an 
uninhibited brine 

5.3.1 Morphometric characteristics of the crystals of CaC03 

Two parameters have been determined to characterise the crystals of calcium carbonate: 

their diameter and their shape factor. The mean values are summarized in Table 5.4. After 40 

minutes, the agglomeration of crystals meant that the characterisation of the single crystals 

was no longer possible. The diameter of the crystals increased as a function of time which 

demonstrates that the crystals were growing during the entire duration of the experiment. The 

shape of the crystals was constant as indicated by the constant shape factor. The deposit 

seems to be composed of leaf-like vaterite and especially cubic calcite as shown in Figure 5.1 

(d). 

The nucleation occurs quickly after the start of the polarization as crystals were 

observed after only 2 minutes (Figure 5.1 (a». It was found some black dots present before 

the start of the polarization therefore it could not be some calcium carbonate crystals but 

impurities on the surface of the lens of the microscope. They were not taking into account in 

the calculations of the surface coverage. 

Table 5.4: Morphometric characteristics of crystals of calcium carbonate formed in absence 
of inhibitors 

Time (minutes) 
Shape factor 

Diameter (/lm) 

5 
0.5 

4.1 

10 
0.4 
5.3 

20 
0.4 
7.5 

40 
0.4 
11.6 

60 
Formation of 

aggregates 
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(a) (b) 

(c) (d) 

Figure 5.1: Microscopic observations of crystals of calcium carbonate (realised with a light 
microscope (a), (b) and (c) and with a SEM (d)) formed under polarization conditions 
and in a non-inhibited brine after (a) 5, (b) 20 and (c) and (d) 60 minute experiment 

5.3.2 Surface coverage of the calcareous deposit 

The nucleation was instantaneous as the extended surface coverage is a linear function 

ofthe time (Figure 5.2). 
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Figure 5.2: Extended surface area as a function of (a) time2 and (b) time (with no inhibitor) 

The extended surface coverage (surface coverage with no overlapping effects) was 

determined (Table 5.5) using the mathematical expression developed in Chapter 3 (Equation 

3.13). After 60 minutes 39.7% of the surface was covered with calcium carbonate scale. The 

rate of covering the surface was constant for the entire duration of the test as shown in Figure 

5.3 

Table 5.5: Extended surface area covered by the calcareous deposit in absence of inhibitor 

Time (minutes) 5 10 20 40 60 
Sex! (%) 4.5 8.6 15.4 24.6 39.7 

4S 
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J5 
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(a) (b) 

Figure 5.3: Assessment of (a) the surface coverage by crystals of CaC03 observed and (b) on 
the extended surface area for 60 minute in absence of inhibitor 

12 

70 
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These characteristics of the crystals of calcium carbonate formed in absence of scale 

inhibitor were used as a reference to study the extent and the mechanism of inhibition of the 

different chemicals studied. 

5.4 Effects of PPCA on the crystallization of CaC03 

The effects of PPCA on calcium carbonate formation were investigated. The inhibitors 

have been added into the brine at t=O (at the start of the experiment) in order to study the 

impact on the nucleation and growth process and at t= I 0 minutes to determine the effects of 

the inhibitors on the growth of crystals of calcium carbonate already formed. 

5.4.1 Effects of 1 and 4ppm of PPCA on the nucleation and growth of 

CaC03 

5.4.1.1 Surface coverage of the calcareous deposit 

The number of crystals formed onto the metal surface (the observed surface area is 

600/-lm2) has been determined for each time studied (2, 5, 10, 20, 40 and 60 minutes). It was 

maintained constant during the 60 minute experiment. The number of crystals formed on the 

surface largely decreased (46%) with the addition of Jppm of PPCA. No crystals were 

observed when 4ppm of PPCA was added (Figure 5.4). 
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Figure 5.4: Effects of I ppm of PPCA on the number of crystals of calcium carbonate formed 
onto a metal surface (600/-lm2) after 60 minutes 

The decrease in the number of crystals resulted in a decrease in the surface coverage 

(Figure 5.6). 
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The surface coverage is a linear function of time when no inhibitor was added . In the 

inhibited brine (1 ppm of PPCA) a decrease was observed even in the early stage of calcium 

carbonate deposition and it was slowed down after the 5th minute. In both cases, the 

nucleation was instantaneous as the extended surface is a linear function of the time during 

the first minutes of the experiment (Figure 5.5). Two linear portions are defined in the 

inhibited case as it seems that the growth occurs according to two regimes (Figure 5.6). 
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Figure 5.5: Extended surface area as a function of (a) time2 and (b) time (lppm ofPPCA) 

The comparison of the surface coverage with (Figure 5.6a) and without overlapping 

effects (Figure 5.6b) in the uninhibited case shows that a difference in the surface coverage 

was observed from the 20U1 minute. The difference due to the overlapping effect was seen 

from the 40th minute with 1 ppm of PPCA illustrating the reduction of the growth of the 

crystals (Figure 5.6). 
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Figure 5.6: Effects of (a) lppm of PPCA on the surface coverage observed and (b) on the 
extended surface area 
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5.4.1.2 Morphometric characteristics of the crystals of CaC03 

The surface and the diameter of the crystals increased as a function of time during the 

60 minute experiment (Table 5.6). The growth of the crystals occurred with 1 ppm of PPCA 

for 1 hour (Figure 5.7). The metal surface was kept free of crystals with 4ppm of PPCA 

during the entire experiment: no crystals of CaC03 were detected on the surface. As the limit 

of the observation of the crystals is 1 ~m it is possible that some crystals form that are less 

than 1 ~m in size and therefore not detectable (Figure 5.8). A large particle is seen on the 

Figure 5.8. It could be a crystal of CaC03 as the observation realised with the SEM was not 

done on the same part of the surface (no crystals were observed with 4ppm of PPCA with the 

light microscope). It is clear from theses observations that 4ppm ofPPCA largely reduced the 

growth of the crystals. 

Table 5.6: Morphometric characteristics of crystals of calcium carbonate formed with 1 ppm of 
PPCA 

Time (minutes) 

Shape factor 

Diameter (/.lm) 

5 
0.5 

3.5 

10 

0.4 

5.1 

20 
0.4 

6.8 

40 
0.4 

11.4 

60 
Formation of 

aggregates 

Figure 5.7: Microscopic observations of crystals of calcium carbonate (done with a light 
microscope formed under polarization conditions and with 1 ppm of PPCA after a 60 
minute experiment 
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Figure 5.8: SEM observations of crystals of calcium carbonate formed under polarization 
conditions with 4ppm of PPCA after a 60 minute experiment 

The diameter of the crystals was not significantly affected by I ppm of PPCA (Figure 

5.9). The growth of the diameter (Figure 5.9) of the crystals can be split into 2 parts: 0-5 

minutes and 5-40 minutes. During the first 5 minutes, the mean diameter of the crystals 

increased rapidly and slowed after the 5th minute. 
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Figure 5.9: Effects of 1 ppm of PPCA on the mean diameter of the crystals of CaC03 

According to these results, the growth of the crystals does not seem to be influenced by 

1 ppm of PPCA. It was confirmed by the calculations of the lateral growth rate; the values 

were similar as calculated in the non-inhibited case (Table. 5.7). 
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Table 5.7: Lateral growth rate (mollllmls) of the crystals ofCaC03 with 1ppm ofPPCA in 
function of time 

Time (seconds) No inhibitor PPCA Ippm 

120 1.4xlO- 1.7xlO-

300 1.6xlO-15 1_9xI0-15 

600 1.6xlO-15 1.9xlO-15 

1200 IAx10-15 1.6xlO-15 

2400 l.lxlO- 15 1.3xlO-15 

5.4.2 Effects of 4ppm of PPCA on crystals of CaC03 already formed 

The crystals of CaC03 were formed in a non-inhibited brine and then 4ppm of PPCA 

was added to study the effect on the crystals already formed. 

5.4.2.1 Morphometric characteristics of the crystals of CaC03 

The shape factor was maintained constant (0.4). The increase of the diameter of the 

crystals was considerably changed after the addition of 4ppm of PPCA (Table 5.8 and Figure 

5.1 0). 

Table 5.8: Morphometric characteristics of crystals of calcium carbonate formed with no 
inhibitor for the first 10 minutes and with 4ppm of PPCA after this time 

Time (minutes) 

Shape factor 

Diameter (J.1m) 

10 
004 
4.0 

20 
004 
4.3 

40 
004 
4.3 

60 
004 
404 

The inhibitor acted to only affect the diameter of the crystals. After the addition of 

4ppm of PPCA the increase seen in the non-inhibited case was almost stopped and the values 

of the diameter were kept almost constant. The addition of PPCA greatly affected the growth 

of the calcium carbonate crystals formed onto the metal surface (Figure 5.11). 
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Figure 5.10: Effects of 4ppm of PPCA on the mean diameter of the crystals of CaC03 

nucleated and grown for 10 minutes in absence of inhibitor 

The surface coverage has not been determined as the number of crystals formed in these 

conditions were not similar enough from one test to another. A small difference in the growth 

of the crystals was observed between 0 and 10 minutes. One important point is that the 

inhibitors were added at the time 9.5 minutes (in order to have a correct measurement at 10 

minutes). The difference could be due to complementary effects of the standard error of the 

tests, the error occurring during the image analyses and the early effects of the inhibitors. 
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(a) (b) 

(c) 

Figure 5.11: Microscopic observations of crystals of calcium carbonate (done with a light 
microscope) formed under polarization conditions and with 4ppm of PPCA (added 
after 10minutes from the start of the experiment) after (a) 10, (b) 20 and (c) 60 minute 
experiment 

5.4.3 Interactions between the PPCA and the crystals of CaC03 -

Adsorption measurements 

In order to determine if there were some interactions between the additives and the 

calcium carbonate formed on the surface, some adsorption tests were conducted. The scale 

inhibitors were placed in a solution containing a known quantity of calcium carbonate crystals 

and the affinity of the additives to the crystals of CaC03 has been studied. It is clear from 

Figure 5.12 that the PPCA interacts with the surface of the crystals of calcium carbonate. Ce 

is the solution equilibrium concentration of the PPCA (not adsorbed on CaC03). 
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Figure 5.12 and Figure 5.13 present the results obtained from the adsorption study. The 

maximum amount of PPCA adsorbed on the crystal of calcium carbonate was more than 

0.12mg/m2
• None of the concentrations tested saturated the crystals of CaC03 present in the 

solution therefore the plateau has not been reached which shows the great affinity between the 

inhibitor and the calcium carbonate. The affinity K of the PPCA with CaC03 was deduced 

from the slope of the adsorption isotherm (as explained in Chapter 3). The constant of affinity 

for the PPCA was more than 1.27E-04L.mg-l
. Some inhibitors has been characterized in the 

literature and a difference of the order I.E-02 is found. The constant of affinity of PPCA is 

only an estimated value as the plateau has not been reached (Figure 5.12) [46]. 
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Figure 5.12: Quantity ofPPCA adhered on the crystals of calcium carbonate as a function of 
the solution equilibrium concentration of PPCA. 
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Figure 5.13: Adsorption isotherm of the PPCA 
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5.5 Effects of the PMA on the crystallization of CaC03 

II 

0.03 

5.5.1 Effects of 1 and 4ppm of PMA on the nucleation and growth of 
CaC03 

5.5.1.1 Surface coverage of the calcareous deposit 

The number of crystals slightly decreased (20%) with the addition of 1 ppm of PMA 

compared to the 46% decrease observed when 1 ppm of PPCA were present in the solution 

(Figure 5.4 and Figure 5. 14). A decrease of 87% was observed when 4ppm of PMA was 

added. The nucleation was strongly reduced. 
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Figure 5.14: Effects of 1 and 4ppm of PMA on the number of crystals of calcium carbonate 
fo rmed onto a metal surface (600/J.m2) after 60 minutes 
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The small decrease of the number of crystals generated a small decrease of the surface 

coverage for the concentration of 1 ppm (Figure S.16). The surface coverage was a linear 

function of time with 1 ppm of PMA during the first S minutes as it was the case for an 

uninhibited brine; the nucleation was instantaneous (Figure S.IS). The large decrease of the 

diameter of the crystals and of the number of crystals lead to a great decrease of the surface 

coverage with 4ppm. Less than 1 % of the electrode was covered by crystals of calcium 

carbonate. 
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Figure 5.15: Extended surface area as a function of (a) time2 and (b) time (1 and 4ppm of 
PMA) 

By comparing the surface coverage measured with the overlapping effects (Figure 

S.16a) and without (Figure S.16b), a difference in the surface coverage values appears after 

the 20th minute with 1 ppm of PMA (as observed in the uninhibited brine). The crystals 

overlapped from the same time as seen with no inhibitor showing a similar growth process 

with 1 ppm of PMA. 
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Figure 5.16: Effects of 1 and 4ppm of PMA on the surface coverage observed (a) and on the 
extended surface area (b) 
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5.5.1.2 Morphometric characteristics of the crystals of CaC03 

The surface and the diameter of the crystals of CaC03 formed in the presence of 1 ppm 

of PMA kept increasing during the 60 minute test whereas they were strongly affected by the 

addition of 4ppm of PMA (Table 5.9 and Table 5.10). The formation of aggregates did not 

permit the determination of the morphometric characteristics of the crystals at 60 minutes 

with 1 ppm. The shape factor was kept constant for both concentrations and it was similar to 

the shape factor obtained with a non-inhibited brine; it seems the shape was not affected by 

the presence of the additives in this study. 

Table 5.9: Morphometric characteristics of crystals of calcium carbonate formed with 1 ppm 
of PM A 

Time (minutes) 
Shape factor 

Diameter (11m) 

5 
0.4 
3.7 

10 
0.5 

5.3 

20 
0.5 

7.3 

40 
0.5 

11.2 

60 
Formation of 

aggregates 

Table 5.10: Morphometric characteristics of crystals of calcium carbonate formed with 4ppm 
of PM A 

Time (minutes) 
Shape factor 

Diameter (11m) 

5 
0.4 

2.2 

10 
0.4 
2.6 

20 
0.4 
2.9 

40 
0.5 

2.8 

60 
0.5 

2.7 

The crystals formed with 1 ppm of PMA were mostly calcite and vaterite (Figure 5.17). 

No significant variation of the number of crystals was observed over time. The crystals were 

not distorted. Their shape was well defined. They were comparable to the crystals observed in 

the non-inhibited brine as indicated by the similar shape factor between these two cases and 

the morphologic observations (Figure 5.1). Figure 5.18 shows the large decrease in the size 

and of the numbers of crystals of CaC03 formed due to the presence of 4ppm of PMA in the 

solution. 
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(a) (b) 

(c) 

Figure 5.17: Microscopic observations of crystals of calcium carbonate (made with a light 
microscope) formed under polarization conditions and with I ppm of PMA, after (a) 5, 
(b) 20 and ( c) 60 minute experiment 

Figure 5.18: SEM microscopic observations of crystals of calcium carbonate formed under 
polarization conditions with 4ppm of PMA after a 60 minute experiment 
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The changes of the diameter of the crystals formed with 1 ppm of PMA were 

comparable to the ones observed with no inhibitor. From the 5th minute the mean diameter is a 

linear function of time (Figure 5.19). The addition of 4ppm of PMA did not totally inhibit the 

nucleation of crystals of CaC03 as seen previously with 4ppm of PPCA but the diameter was 

largely affected by 4ppm of PMA. It was kept constant from the 5th minute to the end of the 

test. 
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Figure 5.19: Effects of I and 4ppm of PMA on the mean diameter ofthe crystals of CaC03 

The lateral growth rate was constant over time. 1 ppm of PMA did not affect the rate. 

The lateral growth was similar with and without 1 ppm of PMA but the addition of 4ppm lead 

to blockage of the crystal growth thus the lateral growth rate was nil (Table 5.11). 

Table 5.11: Lateral growth rate (mol!!J.m/s) of the crystals of CaC03 with 1 and 4ppm of 
PMA in function of time 

Time (seconds) No inhibitor PMA Ippm 

120 IAxIO· IAxIO· 

300 1.6x I 0-15 1.2xlO-15 

600 1.6x 10.15 lAx 10-15 

1200 IAx10·15 lAx I 0. 15 

2400 1.1 x 10-15 1.4x10·15 

A large difference between I and 4ppm of PMA were recorded in the morphometric 

characteristics of the crystals of calcium carbonate and -the difference occurred at the early 

stage of the growth process (from the 2nd minute). 
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5.5.2 Effects of 4ppm of PMA on crystals of CaC03 already formed 

The inhibitor was added 10 minutes after the start of the polarization. 

5.5.2.1 Morphology of the crystals of CaC03 

The observation of the crystals on the surface was problematic as they were covered by 

a thin film making the determination of the number of crystals challenging and therefore a 

significant difference in the results was obtained (Figure 5.20). The nucleation and the growth 

occurred before the addition of PMA (Figure 5.20a and b) and the effects of 4ppm of PMA 

were perceptible from the minute 20 (Figure 5.20c and d). 

(a) (b) 

(c) (d) 

Figure 5.20: Microscopic observations of crystals of calcium carbonate (done with a light 
microscope) formed under polarization conditions with 4ppm of PMA (added after 10 
minutes from the start of the experiment) after (a) 5, (b) 10, (c) 40 and (d) 60 minute 
experiment 
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PMA seems to cover the metal surface and the coverage was greater at the 60th minute 

than the 20th as the detection of the crystals were harder at the minute 60. The outline of the 

crystals was less apparent over time. The size of the crystals did not vary significantly from 

the 20th minute but some single crystals grew extensively round-shaped. 

5.5.2.2 Morphometric characteristics of the crystals of CaC03 

The morphometric characteristics presented in Table 5.12 shows that the growth 

process was still occurring after the addition of 4ppm of PMA. The shape factor was constant 

during all the test. 

Table 5.12: Morphometric characteristics of crystals of calcium carbonate formed with no 
inhibitor for the first 10 minutes and with 4ppm of PMA after this time 

Time (minutes) 

Shape factor 

Diameter (""m) 

5 
0.5 

3.9 

10 
0.5 
4.6 

20 
0.5 
5.1 

40 
0.5 
6.2 

60 
0.5 
6.0 

The addition of 4ppm of PMA generated a slow down of the increase of the mean 

diameter of the crystals (Figure 5.21). The diameter kept increasing until the 40th minute but 

the rate of the raise decreased compared to the non-inhibited brine. 

After this time in the inhibited case, the diameter was constant. The study of the mean 

diameter showed a first slow down of the kinetics after the addition of 4ppm of PMA and 

from the 40th minute another slow down of the kinetics was observed. At t= 1 Ominutes, a small 

difference in the mean diameter values between the non inhibited brine and the inhibited brine 

with 4ppm of PM A (added after 10 minutes) was observed. A bigger difference was observed 

with the PPCA added after 10 minutes. The inhibitors were added after 9.5 minutes and the 

first effects were probably seen during the measurement being made at the 10th minute. 
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Figure 5.21: Effects of 4ppm of PMA on the mean diameter of the crystals of CaC03 

nucleated and grown for 10 minutes in absence of inhibitor 

5.5.3 Interactions between the PMA and the crystals of CaC03 -

Adsorption measurements 

As observed with PPCA, none of the concentrations tested saturated the adsorption sites 

of the crystals of calcium carbonate added in the solution (Figure 5.22). The maximum 

amount of poly maleic acid has therefore not been determined but estimated. More than 6.85E-

02mglm2 can adhere on the CaC03 crystals present in the solution. 
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Figure 5.22: Quantity of PMA adhered on the crystals of calcium carbonate as a function of 
the solution equilibrium concentration of PMA. 
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From the estimated maximum amount of PMA adsorbed and the isotherm of the PMA 

(Figure 5.23), the constant of affinity K of the PMA with the CaC03 has been calculated. For 

the PMA, K is more than 6.3 1 E-05L. mg-' . The concentrations used fo r the tests of the PMA 

were much higher than the ones used fo r the PPCA (Figure 5. 12). Nevertheless the affini ty for 

the CaC03 was smaller fo r the PMA than fo r the PPCA. 
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Figure 5.23: Adsorption isotherm of the PMA 

5.6 Effects of the P A on the crystallization of CaC03 

5.6.1 Effects of 1 and 4ppm of PA on the nucleation and growth of CaC03 

5.6.1.1 Surface coverage of the calcareous deposit 

The number of crystals fo rmed with 1 ppm of PA was determined and a decrease of 

33% has been observed (a reduction of 46% and 20% were observed previously with 1 ppm of 

PPCA and PMA respective ly). 4ppm of PA strongly reduced the nucleation of calcium 

carbonate as no crystals were observed (F igure 5.24). 
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Figure 5.24: Effects of 1 ppm of PA on the number of crystals of calcium carbonate formed 
onto a metal surface (600/lm2) after 60 minutes 

The extended surface area covered by CaC03 is a linear function of the time during the 

first minutes (as observed with no inhibitor and I ppm of PPCA and PMA) which shows the 

nucleation was instantaneous (Figure 5.25). 
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Figure 5.25: Extended surface area as a function of (a) time2 and (b) time (1 and 4ppm of 
PMA) 

The difference between the surface coverage observed and the extended surface area 

was observed from the 40th minute (Figure 5.26). The extended surface area was a linear 

function of time during the entire duration of the test (as observed with no inhibitor and 1ppm 

of PMA) and a slight decrease of the rate was observed. A reduction of 12% of the extended 

surface coverage was observed when I ppm of PA was added in the solution. As no crystals 

were detected with 4ppm of PA, the surface coverage was nil. 
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Figure 5.26: Effects of 1 ppm of P A on the surface coverage observed (a) and on the extended 
surface area (b) 

(a) (b) 

(c) (d) 

Figure 5.27: Microscopic observations of crystals of calcium carbonate (realised with a light 
microscope (a), (b) and (c) and with a SEM (d» formed under polarization conditions 
and with Ippm ofPA after (a) 5, (b) 20 and (c) and (d) 60 minute experiment 
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The number of crystals was constant during the 60 minutes of experiments. The crystals 

seemed to be a bit distorted (more rounded). An increase of the size of the crystals over time 

was obvious with the morphological observations (Figure 5.27). With 4ppm of PA in the 

solution, no crystals were observed but the surface of the crystals could not be probably 

resolved as observed when the PMA was added after 10 minutes. A film ofPA (as detected in 

Chapter 4 by infra-red) seems to cover the surface (Figure 5.28). 

(a) (b) 

Figure 5.28: Microscopic observations of crystals of calcium carbonate formed under 
polarization conditions with 4ppm of P A after a 60 minute experiment (a) with a light 
microscope and (b) with a SEM. Imp; Impurities 

5.6.1.2 Morphometric characteristics of the crystals of CaC03 

The morphometric characteristics increased for the entire duration of the test (Table 

5.13). The shape factor slightly decreased (0.3 and 0.5 for 1 ppm of PA and no inhibitor 

respectively) which indicates that they were a bit more elongated but a difference of the shape 

factor of 0.2 (difference between the shape factor calculated for the non-inhibited brine and 

1 ppm of PA) was not visually detectable. No crystals were observed when 4ppm of PA was in 

the solution (the detection limit is 1 !lm). 

Table 5.13: Morphometric characteristics of crystals of calcium carbonate formed with 1 ppm 
ofPA 

Time (minutes) 

Shape factor 

Diameter (11m) 

5 
0.3 
3.7 

10 
0.3 
5.1 

20 
0.3 
7.2 

40 
0.3 
lOA 

60 
0.3 
12.2 
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4ppm of PA affected the morphology of the crystals to a great extent. Two sizes of 

crystals ofcaIcium carbonate were observed; less than 15!lm and more than 15!-1.m. A strong 

heterogeneity in the crystal sizes is observed; the largest can reach 40!lm and the smallest 

only 5 !lm. It appears that the crystals less than 15!lm are more numerous than the crystals 

larger than 15!lm (Figure 5.30). 

Both sizes of crystals were distorted. The larger crystals had a really specific shape: the 

base of the crystals (in contact with the metal surface) seemed to be larger than the top of the 

crystal like a hat-shape (Figure 5.30c). No inhibitor film seems to cover the surface when 

4ppm of PA was added after 10 minutes (contrary to what has been observed with 4ppm of 

P A added at t';"O and 4ppm of PMA added at t= 10) . 

• 

(a) (b) 

(c) 

Figure 5.30: Microscopic observations of crystals of calcium carbonate (realised with a light 
microscope) formed under polarization conditions and with 4ppm of PA (added after 
10minutes from the start of the experiment) after (a) 5, (b) 20 and (c) 60 minute 
experiment 
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5.6.2.2 Morphometric characteristics of the crystals of CaCOJ 

The addition of 4ppm of PA in the solution when the nucleation and growth process has 

started for 10 minutes lead to an increase of 0.2 of the shape factor which indicated that the 

crystals formed were more circle-like (Table 5.15). The surface and the diameter of the 

crystals kept increasing after the addition of the inhibitor. 

Table 5.15: Morphometric characteristics of crystals of calcium carbonate formed with no 
inhibitor for the first 10 minutes and with 4ppm of PA after this time 

Time (minutes) 

Shape factor 

Diameter (11m) 

5 
0.5 

3.6 

10 
0.6 
5.1 

20 
0.6 
7.1 

40 
0.6 
7.8 

60 
0.6 
9.7 

The effects of PA were seen 10 minutes after the addition of the inhibitor (20th minute) 

whereas with 4ppm of PPCA and of PMA the first effects were observed at the 10u1 minute. A 

slow down of the kinetics were observed after this time: the increase of the diameter (Figure 

5.31) of the crystals was reduced compared to the non-inhibited case. The slow down of the 

kinetics was greater with the addition after 10 minutes of 4ppm of PMA (a blockage of the 

growth was observed after 40 minutes) and especially with 4ppm of PPCA (the growth of the 

crystals were blocked after 10 minutes). In the case of the PA no complete stop of the growth 

was observed. 
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Figure 5.31: Effects of 4ppm of PA on the mean diameter of the crystals of CaC03 nucleated 
and grown for 10 minutes in absence of inhibitor 
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P A affected the growth of the crystals of calcium carbonate formed and grown in a non­

inhibited solution but the effects of 4ppm PA occurred later than the effects seen with 4ppm 

of PMA and PPCA. 

5.6.3 Interactions between the polyaspartic acid and the crystals of 
CaC03 - Adsorption measurements 

Contrary to what was observed for the PPCA and the PMA, the amount of P A adsorbed 

is not linear from 40mg/L. The concentrations tested almost saturated the adsorption sites of 

the crystals of CaC03. (Figure 5.32). The maximum amount of polyaspartic acid which can 

adsorb on the crystals of calcium carbonate was 5.81E-02mg.m·2
• 
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Figure 5.32: Quantity of P A adhered on the crystals of calcium carbonate as a function of the 
sol ution equilibrium concentration of P A. 

The slope of the linear regression of the adsorption isotherm presented in Figure 5.33 

permitted the constant of affinity of the polyaspartic acid and calcium carbonate to be 

determined. The constant is equal to 6.63E-05L.mg-1 which is slightly smaller than the 

constant calculated for the PMA. But in the case of the PMA the value of K is a minimum 

value so the difference of affinity between these two additives cannot be exactly determined. 
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y = 797.88x + 12.117 
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Figure 5.33: Adsorption isotherm of the PA 
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5.7 Effects of the CMI on the crystallization of CaC03 

0.04 

5.7.1 Effects of 1 and 4ppm of CMI on the nucleation and growth of 

CaC03 

5.7.1.1 Surface coverage of the calcareous deposit 

The number of crystals could not be determined as the number detected in the 

repeatability tests were too different. The surface coverage was therefore non-reproducible 

except for the late part of the test. The mean surface coverage directly estimated from the 

image analysis (with the overlap effects) was of about 19.5% at 60 minute. Nevertheless the 

morphometric characteristics were reproducible. 
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(a) (b) 

(c) (d) 

Figure 5.34: Microscopic observations of crystals of calcium carbonate (realised with a light 
microscope (a), (b) and (c) and with a SEM (d)) formed under polarization conditions 
and with Ippm ofCMI after (a) 5, (b) 20 and (c) and (d) 60 minute experiment 
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(a) (b) 

(c) (d) 

Figure 5.35: Microscopic observations of crystals of calcium carbonate (realised with a light 
microscope (a), (b) and (c) and with a SEM (d» formed under polarization conditions 
and with 4ppm of CMI after (a) 5, (b) 20 and (c) and (d) 60 minute experiment 

5.7.1.2 Morphometric characteristics of the crystals ofCaCOJ 

CMI has been tested at 1 and 4ppm and the morphometric characteristics are 

summarised in Table 5.16 and Table 5.17. The shape factor was similar for both 

concentrations indicated that the shape of the crystals were not different as the shape of the 

crystals formed in the non-inhibited brine (Table 5.4). The diameter of the crystals kept 

increasing over time for 1 and 4ppm. 

Table 5.16: Morphometric characteristics of crystals of calcium carbonate formed with 1 ppm 
ofCMI 

Time (minutes) 

Shape factor 

Diameter (/-lm) 

5 
0.4 
3.8 

10 
0.4 
5.4 

20 
0.4 
1.6 

40 

0.4 
10.5 

60 
0.4 
12.1 
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Table 5.17: Morphometric characteristics of crystals of calcium carbonate formed with 4ppm 
ofCMI 

Time (minutes) 

Shape factor 

Diameter (/lm) 

5 
0.4 

3.4 

10 

0.5 
4.6 

20 
0.5 
7.1 

40 
0.4 

10.7 

60 
0.4 

12.4 

The diameter of the crystals followed the same variations as in the non-inhibited case 

with 1 and 4ppm of CMI (Figure 5.36). With the PPCA, the PMA and the PA the increase of 

the diameter were similar to the non-inhibited case but only for the concentration 1 ppm. With 

4ppm no crystal was observed with the PPCA (Figure 5.8) and the PA (Figure 5.6a) and 

4ppm of PMA (Figure 5.18) had large effects on the number and the size of the crystals. 
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Figure 5.36: Effects of 1 and 4ppm of CMI on the mean diameter of the crystals of CaC03 

5.7.2 Effects of 4ppm of CMI on crystals of CaC03 already formed 

The addition of 4ppm of CMI did not stop the growth of the crystals as the increase of 

the morphometric characteristics increased during the 60 minute test (Table 5.18). Adding the 

inhibitor after 10 minutes did not affect the shape factor (0.4 and 0.5 for the non-inhibited 

case and for 4ppm added at t=O respectively). 

Table 5.18: Morphometric characteristics of crystals of calcium carbonate formed with no 
inhibitor for the first 10 minutes and with 4ppm of CMI after this time 

Time (minutes) 

Shape factor 

Diameter (/lm) 

5 
0.5 
3.6 

10 

0.5 
5.3 

20 
0.5 
7.1 

40 
0.5 
10.5 

60 
Formation of 
aggregates 
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The assessment of the mean diameter of the crystals when the CM! was added after 10 

minutes did not lead to any difference compared to the case where no inhibitor was added and 

when CMI was added at t=0 (Figure 5.37). The increase rate of the diameter was similar in 

these 3 different conditions. 
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Figure 5.37: Effects of 4ppm of CMI on the mean diameter of the crystals of CaC03 

nucleated and grown for 10 minutes in absence of inhibitor 

The growth of the crystals formed in the absence of CMI still occurred when 4ppm of 

CMI were added after 10 minutes to the solution and no significant difference of the growth 

of the crystals was observed with the addition of the CM!. CMl did not affect the growth of 

the crystals; this is in contrast to what was seen with the PPCA, the PMA and the PA. 

Nevertheless the morphology of the crystals was affected by the addition of the CM! as 

shown in Figure 5.38. 
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• 

• 

• 

(a) (b) 

(c) 

Figure 5.38: Microscopic observations of crystals of calcium carbonate formed under 
polarization conditions with 4ppm ofCMI (added after 10 minutes from the start of the 
experiment) after 5, 20, and 60 minute experiment ((a), (b) and (c) respectively) 

5.8 Concluding remarks 

The study with the in-situ electrochemical cell enabled some significant findings 

relating to CaC03 deposition and inhibition to be determined: 

• The nucleation was instantaneous (realised in a really short time) in all the 

different conditions tested; 

• This method permitted the effects on the nucleation and the growth processes 

of the scale inhibitors to be assessed separately (with a detection limit of 1 f.lm 

for the number of nuclei); 
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• The mechanism of inhibition was different for a specific inhibitor whether it 

was present or not during the nucleation process; 

• The set-up allowed the determination of the kinetics of calcium carbonate 

formation and inhibition and they will be studied and discussed in Chapter 7. 

• The adsorption of PPCA, PMA and P A on CaC03 crystals was demonstrated 

in this chapter. It appeared that the PA has less affinity with CaC03 than PPCA 

andPMA. 

• This study shown a difference between the PMA and the PA: At 4ppm PA 

presents better inhibition properties than PMA on a clean metal surface 

whereas PMA is more efficient than P A when crystals of CaC03 are already 

formed on the surface. 
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Chapter 6 
Synchrotron X-Ray Diffraction: in-situ study of CaC03 formation 

and inhibition 

6.1 Introduction 

In this chapter calcium carbonate was generated by mixing two supersaturated brines 

with respect of CaC03 and as such the driving force for the deposition of scale is not assessed 

with electrochemical potential as in Chapter 4 and 5. The main objective of this chapter is to 

determine the crystal characteristics of the CaC03 formed in an uninhibited brine and to 

assess the effects of scale inhibitors (PPCA, PMA, P A and CMI) on the relative dominance of 

certain crystal planes of calcium carbonate. Synchrotron X-Ray diffraction has been used to 

study the mechanisms of calcium carbonate formation and inhibition [7] but this thesis 

presents the first results focussing on the mechanisms of green inhibitors. An in-situ flow cell 

allows the application of realistic conditions in term of temperature and pressure. These two 

parameters can reach 250°C and 34MPa respectively. 

Chen et al. used a silicon and PMMA cell in a similar set-up. These two substrates were 

chosen for their weak X-Ray diffraction pattern [7, 73,186]. In this study a stainless steel cell 

was used in order to have a surface which is more realistic in terms of completion materials 

used in the oil and gas sector. 

The intensity of the peaks, characteristic of CaC03, has been assessed over time in 

order to understand the mechanism of inhibition of PPCA, PMA, P A and CM!. The total 

intensity of the three different polymorphs has been assessed to see the effects of the scale 

inhibitors tested on the general morphology of the crystals. Scale inhibitors were added at the 

beginning of each experiment when scale deposition occurred on a clean metal surface. A 

complementary study has been carried out with two inhibitors (PPCA and PMA) in order to 

determine the mechanism of inhibition when a calcareous layer was already formed on the 

substrate. 



- 163 -

The aim of this study was not to determine the lattice parameters of the crystal cell. The 

initial objective was to characterise the scale formed in terms of polymorphs and to compare 

the effects of different scale inhibitors on the composition of the deposit (calcite, aragonite 

and vaterite). The challenge was to identify the crystal planes despite the strong background 

due to the substrate of deposition (stainless steel). The main objectives were to characterise 

the effects of the scale inhibitors on the different polymorphs and specific crystal planes in 

terms of inhibition of the nucleation, inhibition of the growth, the kinetics of inhibition, the 

nature of the deposit and to point out any significant differences of the mechanisms of 

inhibition of the different scale inhibitors studied. 

This technique is the only way reported in the literature to permit the in-depth 

characterisation in depth of the crystals of CaC03 formed (at the crystal planes level) to be 

determined. The study of a relevant substrate for industry and of green inhibitors are novel 

features of this study. 

6.2 Experimental details 

6.2.1 Experimental set up 

The experiments with Synchrotron X-Ray Diffraction have been carried out in the 

Brookhaven National Laboratory (US) in the NSLS department with the collaboration of Dr 

Zhong Zhong. A monochromatic beam is needed in this study as the sample studied is 

polycrystalline (the use of a white radiation would not lead to the determination of specific 

planes as the different radiations would be reflected by all the different planes). The most 

important characteristic of the beam is its high energy as the beam has to penetrate into the 

substrate and into the polycrystalline sample. The energy of the beam decreases when it 

penetrates some materials and to be detected, the diffracted beam needs to have a sufficient 

energy. Thus the initial energy of the beam has to be high enough to go through the substrate 

and the CaC03 crystals and to be detected. The beam used is the X 17B 1 with a wavelength of 

0.1 7712A (70keV). 

Calcium carbonate has been formed by mixing 2 brines in the in-situ cell (Figure 3.11). 

The supersaturation index (which corresponds to the decimal logarithm of the supersaturation 

ratio, S) of the brine resulting from the mixing is 1.91 at 80°C (calculated with 

ScaleSoftPitzer™, version 4.0). The tests have been performed at 80°C and at Iatm. 
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A flow rate of 10mllmin (5mllmin for brine 1 and 5mllmin for brine 2) has been set up 

for the brines to go through the system. The flow regime is laminar (Re=291). 500ml of each 

brine were prepared for each test. The temperature has been maintained at 80°C with an oven 

placed before the in-situ cell. The pH of brine 2 was buffered to 6.8 by adding acetic acid. 

The brine composition is presented Table 6.1. 

Table 6.1: Composition (ppm) of the brine used to study calcium carbonate formation by 
SXRD 

CaL+ HC03• Na+ cr 

1440 2196 6873 11871 

The mixing of the two brines occured in the mixing chamber (Figure 3.11) and calcium 

carbonate was formed in the capillary (2mm bore) cell. The beam penetrated the cell and was 

diffracted giving structural information on the crystals present in the cell when the 

measurement was realised. The tests were set up for 60 minutes with a data collection every 2 

minutes (30 frames). The tests were stopped when the pressure in the system reached 400psi 

as the calcium carbonate deposit were blocking the cell. 

6.2.2 Experiment overview 

The experiment overview is presented Table 6.2. For the four scale inhibitors tested 

they were added at the start of the experiments to study their effects on CaC03 deposition on a 

metal surface. In order to determine their effects on a calcareous layer already formed PPCA 

and PMA were added after 5 minutes; during the first 5 minutes a layer of calcium carbonate 

was built on the metal surface and then the inhibitors were added. 

Table 6.2: Experiment overview; t=O means inhibitor added at the start of the experiment, t=5 
minutes means the inhibitor added after 5 minutes 

Inhibitors 
Concentration tested Concentration tested 

t=0 t=5minutes 

PPCA 1-4ppm 4ppm 

PA 4ppm -

PMA 1-4ppm . 4ppm 

CMI 4ppm -
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6.3 Calcium carbonate formation in a non-inhibited brine 

The cell was blocked after 44 minutes when no inhibitor was present. The scale formed 

In absence of inhibitor was dominated by the aragonite polymorph; 6 crystal faces of 

aragonite were observed for a total intensity of 544a.u (Figure 6.1). The total intensity of the 

vaterite crystal planes was much higher than for the calcite (460 and 154 a.u respectively). 

The main peaks were mostly vaterite (planes (110) and (300» and aragonite (planes (032), 

(Ill), (031), (200». In the main peaks only one was characteristic of calcite (the calcite (006) 

plane). 

Most of the crystal planes were observed after 8 minutes. V(300) was the last plane to 

emerge (after 20 minutes). After emergence of a crystal plane, the intensity increased with 

time except for the aragonite plane A(O 12). For this plane, the intensity was maintained 

constant after the emergence (at 2 minutes). This point will be discussed in chapter 7. 

For the d-spacing of 2.58A a peak was observed. According to the database there is no 

crystal plane characteristic of CaC03. This peak could be due to the overlapping of two 

diffraction peaks of different known crystal planes resulting in an unknown characteristic d­

space value. This plane was called "X". 
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Figure 6.1: Assessment of the intensity of the diffracted beam reflecting the growth of the 
main crystal planes formed on a metallic surface with no inhibitor at 80°C 
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6.4 Effects of the PPCA on calcium carbonate formation 

6.4.1 Effects of the PPCA on CaC03 deposition on a clean metal surface 

PPCA was added in the brine at the beginning of the tests in order to determine the 

characteristic of the crystals of calcium carbonate formed under the experimental conditions 

chosen. This part presents the results obtained with 1 and 4ppm of PPCA on the crystals of 

CaC03 formed onto the clean stainless steel capillary. 

6.4.1.1 Ef(ects of Ippm ofPPCA 

With 1 ppm of PPCA the cell was not blocked after 60 minutes and so there was clearly 

some inhibition at 1ppm. The crystal planes A(311), C(214), C(211) and A(012) observed 

with no inhibitor were not observed anymore (Figure 6.2). Nevertheless the main peaks 

present in the non inhibited case were still present but with a smaller intensity. 

There was the emergence of the aragonite plane A(221) with a weak intensity and a 

second unknown crystal plane was present corresponding to the 2-theta value 3.15°. This 

plane was called "Y". The induction time was generally the same as in the uninhibited case 

except for the aragonite plane A(200) and the vaterite plane V(300): 

• A(200) was observed after 2 minutes (whereas it appeared after 14 minutes with no 

inhibitor) 

• V(300) was observed after 16 minutes (whereas it appeared after 22 minutes with no 

inhibitor) 

The growth rate of the different crystal planes was slowed down compared to the non 

inhibited case as shown later. 
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Figure 6.2: Assessment of the intensity of the diffracted beam reflecting the growth of the 
main crystal planes formed on a metallic surface with lppm ofPPCA at 80°C 

6.4.1.2 Effects of 4ppm of PPCA 

The dominant vaterite plane V(300) was not observed with 4ppm of PPCA. There 

was a total inhibition for this plane. The aragonite plane A(032) was totally inhibited as well. 

The plane "Y" was present with a higher intensity and a smaller induction time (26 and 2 

minutes for 1 and 4ppm respectively) and a new plane corresponding to the d-space value 

3.71A was observed after 14 minutes . This plane was called "Z". 

The aragonite plane A(200) appeared after 2 minutes. It is interesting to note that its 

intensity was greater than the other crystal plane formed and that the intensity value at 2 

minutes was almost the same at the end ofthe test. 

For all the crystal planes the induction time was greater with 4ppm of PPCA except 

for the aragonite A( 111) and the plane "Y". 
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The evolution of the crystal planes can be split into two groups according to the plot 

representing the intensity over time (Figure 6.3) : 

• Some crystal planes grow and then reach rapidly a constant growth rate. This is the 

case for the planes "X", "Y", for the vaterite plane V(ll 0), for the aragonite planes 

A(03 1), A(ll 0) and A(200). 

• Some crystal planes grow and then after the 34th minute, there is a large increase of 

the growth rate. This is the case for the crystal planes C(006), A(lll) and "Z". 
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Figure 6.3: Assessment of the intensity of the diffracted beam reflecting the growth of the 
main crystal planes formed on a metallic surface with 4ppm ofPPCA at 80°C 

The evolution of the total intensity for the specific polymorph has been assessed 

(Figure 6.4). The aragonite, vaterite and calcite forms were reduced with 1 ppm of inhibitor 

and the reduction was greater with 4ppm; the intensity of the aragonite and of the calcite was 

not kept constant in the second part of the test (an increase of the intensity is observed from 

the 34th minute) compared to the intensity of the vaterite (due to the increase of the intensity 

of the calcite (006) and the aragonite (032)) . 
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Figure 6.4: Effects of 1 and 4ppm of PPCA on the growth of the 3 different polymorphs of 
calcium of carbonate (aragonite, vaterite and calcite) 

The ratio between the total intensity of a specific polymorph observed in the inhibited 

case at the end of the test and the total intensity of the same polymorph observed in the non 

inhibited case at the end of the test has been calculated and the results are presented (Table 

6.3). 1 ppm of PPCA seemed to have the same effect on the 3 polymorphs of calcium 

carbonate in terms of inhibition. With 4ppm, the vaterite forms were more inhibited than the 

aragonite forms. The calcite was least inhibited by 4ppm of PPCA (due to the increase of the 

growth rate of the plane C(006» . 

Table 6.3: Inhibition ratio (Total intensity of a specific polymorph/Total intensity of the same 
polymorph in the non inhibited case) calculated for the inhibited brines with PPCA. 

Polymorph Ippm PPCA 4ppm PPCA t=O 

Calcite 0.36 0.48 

Vaterite 0.34 0.02 

Aragonite 0.39 0.22 

The number of aragonite crystal planes was always greater than the vaterite and 

calcite even with the increase of the concentration ofPPCA (Figure 6.2 and Figure 6.3). 
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The scale form with PPCA was still aragonite dominant in terms of the variety of 

crystal planes and total intensity but the dominant plane had changed: vaterite V(300) ~nd 

V(110) were dominant in the non inhibited case but calcite C(006) and aragonite A(111) were 

dominant with 4ppm of PPCA. The effects of the changes in the morphology of the crystals 

on the adhesion ofthe deposit on the surface will be discussed in Chapter 7. 

6.4.2 Effects of the PPCA on CaC03 deposition on a metal surface in 
presence of crystals of CaC03 pre-formed onto the surface 

In order to study the effects of the PPCA on a calcareous layer already formed, the 

same tests as previously have been run but instead of adding the inhibitors at the start of the 

experiment (with a clean stainless steel cell), they have been added after 5 minutes (to build 

up a calcium carbonate layer on the surface of the cell). The time t=0 of the graph 

corresponds to the time at which the inhibitors have been added. No measurement has been 

done during the first 5 minutes, during the building up of the calcareous layer, as it is 

impossible to reach the system once the beam is on. The calcareous layer was probably thin as 

the intensity at 5 minutes was small when no inhibitor was added (Figure 6.1) nevertheless it 

modified the mechanism of inhibition as shown the different variations of the intensity 

depending on when the inhibitors were added (Figure 6.5). 
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Figure 6.5: Assessment of the intensity of the diffracted beam reflecting the growth of the 
main crystal planes formed on a metallic surface with 4ppm of PPCA added after 5 
minutes after the start of the scale formation at 80°C 
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The scale formed was still aragonite dominant in terms of intensity and variety of 

crystal planes (153a.u and 5 crystal planes) (Figure 6.5). The intensity of the peaks was 

generally smaller than the intensity of the non inhibited case. The inhibition was the greatest 

on the vaterite forms (Table 6.3). 

Table 6.4: Inhibition ratio (Total intensity of a specific polymorph/Total intensity of the same 
polymorph in the non inhibited case) calculated for the inhibited brines with PPCA 
added 5minutes after the creation of the supersaturation. 

Polymorph 4ppm PPCA t=5 

Calcite 0.34 

Vaterite 0.13 

Aragonite 0.28 

Some crystal planes with a weak intensity were missing (as observed when PPCA 

was added at the start ofa test) like the plane A(321)N(308)/C(125) (the same d-space value 

characterises these 3 different planes). A new aragonite plane A(31 0) appeared. 

The planes V(300) and A(032) were totally inhibited with 4ppm of PPCA when 

added at the start but when they were added after 5 minutes, there was a large decrease in the 

intensity but the crystals were present. The plane "Z" was observed (as seen with 4ppm of 

PPCA at t=0). 

PPCA seems to act to a different extent on the different crystal planes: 

• The growth of some crystal planes was blocked by the PPCA. The planes V(110) and 

V(300) were the two dominant planes in the non inhibited brine and in this case, the 

growth of the planes were blocked after 12minutes. The same phenomenon was 

observed with the aragonite A(31 0), A(311), A(031) and A(200) . 

• Some other planes kept growing but the growth rate was largely decreased compared to 

the non inhibited case. The growth of the planes A(032), C(214) and "X" was 

drastically slowed down but the intensity kept increasing. 



- 172 -

The growth rate of the calcite C(006), the aragonite A(lll) and the plane "Z" was 

first slowed down and almost constant and at the 34th minute was largely increased (as 

observed when the PPCA was added at t=0). The plane "Y" was fo llowing the same trend as 

these ones but the growth was always increasing, there was no stab le stage before the great 

tncrease. 

6.5 Effects of the PMA on calcium carbonate formation 

6.5.1 Effects of the PMA on CaC03 deposition on a clean metal surface 

6.5.1.1 Effects of 1ppm of PMA 

The ce ll was not blocked after 60 minutes as observed with 1 ppm of PPCA. The 

crystal planes A(32l)N(308)/C(12S), A(2l3), A(31l) and A(O 12) were totally inhibited. 

There was no emergence of new crystal planes at th is concentration (Figure 6.6). The crystal 

growth was slowed down for all the crystal planes. 
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Figure 6.6: Assessment of the intensity of the diffracted beam reflecting the growth of the 
main crystal planes formed on a metallic surface with lppm of PM A at 80°C 
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The effects of 1 ppm of PMA on the induction time differs according to the crystal 

planes considered: the emergence of the crystal plane A(200) occurs earlier than in the non 

inhibited case whereas it is delayed for the aragonite A(031) and A(032). The early 

emergence of the aragonite A(200) will be discussed in Chapter 7. The induction time of the 

other crystal planes was not affected by the inhibitor. 

6.5.1.2 Effects of 4ppm of PMA 

At this concentration there was no more disappearance of crystal planes present in the 

non inhibited case but the plane "Y" found with 1 ppm of PPCA was formed as well with 

4ppm of PMA (Figure 6.7). Its presence was not detected in all the frames and the intensity of 

the peak was small so it has not been reported . 
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Figure 6.7: Assessment of the intensity of the diffracted beam reflecting the growth of the 
main crystal planes formed on a metallic surface with 4ppm of PMA at 80°C 

4ppm had a greater effect (more planes were affected) on the induction time and as 

observed with the PPCA and I ppm of PMA they were different according to the crystal 

planes: 

• It was increased for the aragonite A(032) and A(31 0) and the vaterite V(300). 

• The calcite C(006) were formed earlier than in the·non inhibited case. 
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The growth was largely decreased with the use of 4ppm of PMA. Nevertheless 4ppm 

of PMA only totally blocked the growth of two crystal planes, the calcite C(214) and 

aragonite A(310). The retardation of the growth occurred just after the emergence of the 

planes. For the other crystal planes the growth was strongly reduced but there were still 

growth of the crystal planes. 

The scale formed in the presence of 4ppm of PMA was aragonite dominant in terms 

of intensity and crystalline variety. The vaterite form V(300) was not the dominant crystal 

plane as observed in the non inhibited case but the aragonite A(200) was. 

Figure 6.8 presents the effects of the PMA on the different polymorphs of calcium 

carbonate. A large reduction in the intensity was observed with 1 ppm and especially with 

4ppm of PMA. Contrary to what was seen with the PPCA, the total intensity of the aragonite 

and calcite was almost steady. 
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Figure 6.8: Effects of 1 and 4ppm of PMA on the growth of the 3 different polymorphs of 
calcium of carbonate (aragonite, vaterite and calcite) 

PMA affected more the vaterite forms than the aragonite or calcite forms but the 

difference in the inhibition was not as great as the _difference seen with the PPCA. It is 

interesting to note that the efficiency of PMA on the calcite and the aragonite was similar 

(Table 6.5). 
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Table 6.5: Inhibition ratio (Total intensity of a specific polymorph/Total intensity of the same 
polymorph in the non inhibited case) calculated for the inhibited brines with PMA. 

Polymorph Ippm PMA 4ppmPMA t=O 

Calcite 0.42 0.18 

Vaterite 0.35 0.11 

Aragonite 0.40 0.18 

6.5.2 Effects of the PMA on CaC03 deposition on a metal surface lD 

presence of crystals of CaC03 pre-formed onto the surface 

Like previously for the PPCA, the effects of 4ppm of PMA on a calcareous layer 

already formed have been studied. The time t=O of the graph corresponds to the time at which 

the inhibitors have been added (5 minutes after the start of a run). 

The crystal planes disappeared with 4ppm of PMA added at t=O were still absent 

when the inhibitor were added at t=5 except the aragonite A(311) (Figure 6.9). The same 

plane "Z" as seen with PPCA and the aragonite A(31 0) were observed in this case and the 

phase "Y" was found in each frame. 
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Figure 6.9: Assessment of the intensity of the diffracted beam reflecting the growth of the 
main crystal planes formed on a metallic surfa,ce with 4ppm of PMA added after 5 
minutes after the start of the scale formation at 80°C 
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The majority of the crystal planes seem to follow the same growth trend: after the 

emergence of the planes the growth rate slowed down. Three different crystal planes did not 

follow this trend: at the 28th minute the growth rate of the calcite C(006), the aragonite A(111) 

and the plane "z" increased as observed with the PPCA. 

The plane A(311), A(310), C(214) and "Y" had a more linear growth compared to the 

other planes but the intensity of these planes was small (the final intensity was around 5). 

The scale formed was still aragonite dominant in term of intensity and crystalline 

variety and even on a calcareous layer already formed the PMA was more efficient on the 

vaterite forms (Table 6.6). 

Table 6.6: Inhibition ratio (Total intensity of a specific polymorph/Total intensity of the same 
polymorph in the non inhibited case) calculated for the inhibited brines with 4ppm of 
PMA added 5minutes after the creation of the supersaturation. 

Polymorph 4ppmPMA t=5 

Calcite 0.35 

Vaterite 0.19 

Aragonite 0.31 
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6.6 Effects of the PA on calcium carbonate formation 

As observed with the other inhibitor, the crystal planes A(321)N(308)/C(12S) and 

A(O 12) were absent with 4ppm of PA (Figure 6.10). But contrary to what was seen with the 

PPCA and the PMA there was no emergence of new crystal planes (The plane "Y" and the 

aragonite (310)). The induction time was increased for the aragonite A(311). 
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Figure 6.10: Assessment of the intensity of the diffracted beam reflecting the growth of the 
main crystal planes formed on a metallic surface with 4ppm of PA at 80°C 

The growth of the crystal planes with low intensity (C(214), C(21 1), A(311)) was 

blocked rapidly (less than 1 0 minutes after the emergence of the plane). For the other planes 

they all grew until the 24th minute and then: 

• There was a drastic slowing down of the growth for vaterite V(300) and V(ll 0), the 

calcite C(006), the aragonite A( I I I) and the crystal plane "X" . 

• Or the growth was totally blocked; A(031), A(032) and A(200). 

The inhibition effects of 4ppm of PA were stronger on the vaterite form of calcium 

carbonate (Table 6.7) and the total intensity of the aragonite, the vaterite and the calcite was 

almost constant (Figure 6.11). 
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Figure 6.11: Effects of 4ppm of PA on the growth of the 3 different polymorphs of calcium 
of carbonate (aragonite, vaterite and calcite) 

Table 6.7: Inhibition ratio (Total intensity of a specific polymorph/Total intensity of the same 
polymorph in the non inhibited case) calculated for the inhibited brines with P A. 

Polymorph 4ppm PA t=0 

Calcite 0.22 

Vaterite 0.12 

Aragonite 0.19 
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6.7 Effects of the eM! on calcium carbonate formation 

The cell was blocked after 44minutes when 4ppm of CMI was added. The crystal 

planes A(321)N(308)/C(12S) and A(012) were not present anymore but there was the 

emergence of two new crystal planes "Y" and "z" (the same as observed previously) (Figure 

6.12). CMI had different effects on the induction time: 

• It increased for the aragonite plane A(311) 

• It decreased for the vaterite V(300) and aragonite A(200) (as observed with the other 

inhibitors) 

• For the other crystal planes 4ppm of CMI had no significant effect on the induction 

time 
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Figure 6.12: Assessment of the intensity of the diffracted beam reflecting the growth of the 
main crystal planes formed on a metallic surface with 4ppm ofCMI at 80°C 

A decrease in the intensity of the peaks was observed for all the crystal planes and 

except for the plane "Z", the growth of the planes increase; there was no total blockage of the 

growth . 

It is interesting to note that the growth rate was significantly slowed down from the 

28th minute for almost all the crystal planes (except A(200». 
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CMI seems to act more on the vaterite form but the difference in the ratio between the 

3 polymorphs was not as great as observed with PPCA (Table 6.8) and Figure 6.13 shows that 

the total intensity of the three polymorphs of calcium carbonate was still increasing during the 

test. 

~ ,-----------------------------------------------------, 

500 

400 

= 
~ 
.... 

. ~ 300 
~ 

.B 

200 

-- Aragonite No SI 

--+- Aragonite 4ppm 

100 -- Vaterite No SI 

-- Vateme 4ppm 

---- Calc ite No SI 
____ Calcite 4ppm 

2 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 

Time (min) 

Figure 6.13: Effects of 4ppm of CMI on the growth of the 3 different polymorphs of calcium 
of carbonate (aragonite, vaterite and calcite) 

Table 6.8: Inhibition ratio (Total intensity of a specific polymorph/Total intensity of the same 
polymorph in the non inhibited case) calculated for the inhibited brines with CMI. 

Polymorph 4ppm eMI t=O 

Calcite 0.35 

Vaterite 0.26 

Aragonite 0.35 
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6.8 Concluding remarks 

The main concluding remarks arising from this chapter are: 

• The intensity of the peaks decreased when any scale inhibitor tested were 

present in the solution (at the concentration of 1 and 4ppm). 

• The vaterite form was always the most inhibited by the scale inhibitors studied 

and except for the PPCA, calcite and aragonite were inhibited to the same 

extent. 

• The aragonite was the polymorph preferentially formed under these specific 

experimental conditions (calcium carbonate deposition onto 316 stainless steel, 

at 80°C and at lSpsi). 

• Each crystal planes formed in the non inhibited brine were affected by the 

scale inhibitors tested in this study but to different extents according to the 

nature and the concentration of the inhibitor. 

• PMA and PA at 4ppm showed similar behaviour. 

• Different effects were observed on the induction time according to the inhibitor 
and the crystal planes considered. 
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Chapter 7 
Discussion 

The objectives of the work presented in this thesis were to provide a new understanding 

of calcium carbonate formation and inhibition directly onto a surface by combining different 

methodologies. To improve the use of these inhibitors or to design better ones, it is important 

to understand the mechanisms of calcium carbonate formation and then the mechanisms of 

inhibition of the additives studied. The use of different methodologies meant that several 

aspects of their mechanisms could be probed. Each methodology had its own specificity and 

some important conclusions were raised from these results. In this chapter, four key points are 

discussed and these four points were determined in a way to present the main aspects of the 

inhibitor mechanisms. The main contribution of this work to the scaling community is 

therefore able to be extracted from the following discussion. 

First of all, the inhibition properties of the different additives studied are discussed. The 

results pointed out that each chemical used acted to a different extent on calcium carbonate 

formation. The second part is focused on the interactions between the inhibitors and the metal 

surface and the inhibitors and the calcium carbonate crystals. The effects of the inhibitors on 

the morphology and on the crystallography of the crystals are discussed in the third part of 

this chapter. The inhibitors have different effects on the different polymorphs and on the 

different crystal planes. Then, the kinetics of calcium carbonate formation and inhibition were 

investigated. A comparative study was made between two different methods (in-situ flow cell 

combined with electrodeposition and in-situ SXRD measurements) to determine the kinetics 

of formation and the effects of the four scale inhibitors on the kinetics of the different 

polymorphs ofCaC03.The findings provided by these four parts of the discussion were arisen 

from the data obtained when the inhibitors were present during all the different steps of 

calcium carbonate formation (the inhibitors were added before the supersaturation was 

created). The last part of the discussion relates to one part of the study which has not received 

any attention in the literature this far; the determination of the effects of the scale inhibitors on 

crystals of calcium carbonate already formed on a surface. 
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7.2 Inhibition properties of the different chemicals studied 

The efficiency of scale inhibitors has already been widely studied but most of the works 

were based on the inhibition of scale in the bulk solution by titration of Ca2
+ [153, 187], rcp 

(Inductively Coupled Plasma spectroscopy) measurements of selective elements [57, 145, 

188], ion chromatography [57], conductivity [189] and turbidity measurements [59]. Most of 

the studies conducted on the inhibition properties of the scale inhibitors on the scale 

deposition on a surface were conducted on the variations of the mass of the deposit [78, 84, 

152, 190-192] or of the pressure of during tube blocking tests [67, 188]. 

In this study, the efficiency of the additives to inhibit calcium carbonate formation on a 

surface was determined from two different parameters: 

• the mass of the deposit formed in presence of different concentrations of 

inhibitors after 4 and 24 hours under polarizations in static tests (Chapter 

4) 

• the surface coverage by the crystals of calcium carbonate determined with 

the in-situ flow cell after 1 hour under polarization conditions (Chapter 5). 

This two techniques give complementary information on the mechanisms of inhibition: 

the measurements after 4 and 24 hours show the effects of the inhibition on the late steps of 

crystal formation whereas the value of the surface coverage after 1 hour of electrodeposition 

indicates how the inhibitors affect the scale formation during the early stages of calcium 

carbonate formation. 

7.2.1 Effects of the scale inhibitors on the mass of calcium carbonate 
deposited 

A potential has been applied to create the supersaturation at the vicinity of the electrode 

and the weight of the deposit has been measured after 4 and 24 hours (Figure 4.35). Table 7.1 

presents the percentage of efficiency calculated from the weight measurements. The PPCA 

was the inhibitor presenting the best ability to decrease the weight of the deposit with 93% 

efficiency with 4ppm. The PMA was the most efficient green inhibitor tested in these 

experimental conditions (74% with 4ppm after 24 hours). The CMr showed the poorest 

inhibition properties with only 19% of efficiency. 
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The time is an important factor for the study of the inhibition efficiency of chemicals. 

The weight measurements have been made after 4 and 24 hours under polarization conditions 

and the conclusions raised can be different according to the duration of electrodeposition 

considered. 1 ppm of PMA had the same effect on the weight of the deposit as PPCA and CMI 

(21%,20% and 18% of efficiency respectively) but the PA did not generate any significant 

decrease after 4 hours whereas the contrary was observed after 24 hours, the PMA had no 

more effect and the efficiency ofthe PA reached 21 %. 

The PA interacts more with the metal surface than with the crystals of CaC03 (Table 

7.1) contrary to the PMA. The reduction of scale deposition due to the formation of an 

inhibitor film increased with time whereas the efficiency of the PMA which interacts with the 

crystals of CaC03 decreases over time at low concentration. At high concentration the 

inhibitor presenting a higher affinity with CaC03 has the greater inhibition efficiency. The 

blockage of the growth sites of the crystals of CaC03 seems to be a better strategy to reduce 

scale deposition. The slower kinetics of adsorption of P A on the metal surface than PMA on 

CaC03 crystals could explain the different efficiency at different times. 

Table 7.1: Correlation between the adsorption (on the metal surface and on CaC03) and the 
efficiency of the inhibitors. The efficiency was calculated from the weight 
measurements ((WNo SI-WS1)/WNo sl)*100) of the inhibitors studied at Ippm and 4ppm 
and after 4 and 24 hours. 

PMA 

PA 

18% 

0% 

55% 

42% 

0% 

21% 

74% 

46% 

+ 
+++ 

+++ 
+ 

The different efficiency of the inhibitor according to the duration of electrodeposition 

lead to some hypothesis. The kinetic and the strength of adsorption is likely to be specific to 

the chemical considered. The concentration of carboxylate groups contained by the different 

chemicals tested is unknown. It has been proved that this function plays a key role in the 

adsorption properties of a chemical [193] which partly explained the different inhibiting 

behaviour observed of the inhibitors. A rapid adsorption but with weak strength would 

provide an early inhibition but not constant in time. A slow and strong adsorption would 

result in a progressive but constant inhibition. 
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The effects of 4ppm of PMA were more constant over time than what was observed 

with the PA and the CMI (Figure 4.35). This statement does not take into account the 

efficiency of the inhibitors. It is based only on the variations of mass between 4 and 24 hours. 

The greatest difference was observed with 4ppm of CMI whereas at 4 hours the efficiency 

was similar as the efficiency calculated for the PA and the PMA (Table 7.1) illustrating the 

effects of the time on the inhibition properties; the CMI lost its ability to inhibit CaC03• 

7.2.2 Effects of the scale inhibitors on the surface coverage detected in in­

situ cell 

Contrary to the observations from the weight measurements, the study of the surface 

coverage (without overlapping effects) showed inhibiting effects of PPCA, PMA and PA 

from the concentration 1 ppm. The results were summarised in Table 7.2. A strong inhibition 

was observed with 4ppm of PPCA, PA and PMA. This is consistent with the study of the 

mass of the deposit as the best results were obtained with these three inhibitors. Even though 

the techniques differ, the trend of the inhibition efficiency are the same. 

Table 7.2: Extended surface coverage of the electrode after 60 minutes under polarization in 
the in-situ flow cell in presence with 1 and 4ppm of inhibitors 

Time 1 hour 
No SI 39.7% 

Concentration Ippm 4ppm 

PPCA 20.7% No crystals 

CMI n.d 19.5% 

PMA 27.2% 0.3% 

PA 27.1% No crystals 

The weight measurements and the surface coverage were determined with different set­

up and the main difference was the test run for 4 and 24 hours were in static conditions 

whereas the tests run for 1 hour have been run with the in-situ flow cell. Nevertheless it is 

interesting to note that for both PPCA and P A no crystals were detected with 4ppm after 1 

hour but after 4 hours in the static tests there were some crystals of calcium carbonate on the 

surface (Figure 4.3 and Figure 4.7). The efficiency of the PPCA was much greater than the 

efficiency of the PA (91 % and 42% respectively) (Table 7.1). 
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It seems that the time factor is very important for the study of the inhibition properties 

of an additive: it can show very good inhibition properties in the early beginning of calcium 

carbonate formation (like the PA) and then the same inhibitor can reach only 50% of 

efficiency after 24 hours of test. A ranking of the efficiency of the inhibitors studied is 

presented in Table 7.3. The ranking is realised for the three different measurements done: 

• After J hour, in-situ electrochemical flow cell (surface coverage) 

• After 4 hours, static electrodeposition (weight measurement) 

• After 24 hours, static electrodeposition (weight measurement). 

Table 7.3: Ranking of the efficiency of the scale inhibitors studied at 4ppm (the efficiency at 
J hour was obtained with a different set-up than the efficiency at 4 and 24 hours) 

Duration of the scaling conditions PPCA PMA PA CMI 

I hour 2 1 4 

4 hours 2 2 2 

24 hours 2 3 4 

PPCA and PA seems to be efficient to inhibit the nucleation process and early growth 

as they are efficient at the beginning of the scaling process. The ranking of the efficiency of 

the PMA to inhibit CaC03 is constant and PMA seems to interact more with growth process 

of CaC03 formation. The ability of PPCA to inhibit the nucleation step has already been 

pointed out [145]. The decrease of the number of crystals results in a decrease of the weight 

of the deposit. The extent of the growth inhibition cannot be determined by assessing the 

mass of the deposit. It has been reported that the green inhibitors mechanisms operate 

principally as nucleation inhibitors on BaS04 [194]. It seems to be the same trend for the 

CaC03 except for the CM!. 

7.3 Different level of interactions with scale inhibitors 

To inhibit the scale deposition on a surface, the inhibitors can act either on the crystals 

of CaC03 or on the substrate or both. As has been seen in the previous part, the inhibitors 

have a different affinity with the crystals of CaC03 resulting in different inhibition properties. 

The inhibitors can also interact with the substrate leading to the modifications of the surface 

properties. 
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7.3.1 Interactions between scale inhibitors and the substrate of deposition 

The electrochemical tests conducted in static mode for 24 hours pointed out some 

interactions between the inhibitors and the metal surface. No quantification can be realised 

from chronoamperometry studies as the variations of the current density depend on the free 

access of the surface and not on the quantity of scale present onto the metal surface: a thick 

and porous calcareous layer can lead to the same current density variations as a thin but 

compact layer. Some further analyses was carried out (infra-red spectroscopy and contact 

angle measurements) to characterise these interactions. The contact angle measurements 

pointed out for the four inhibitors the presence of a film of inhibitor at 10 and 30ppm. 

The discussion is focused on the methodology used to detect the inhibitor film in order 

to characterise the film according to the nature of the inhibitor. 

7.3.1.1 Behaviour of the inhibitor film regarding 02 diffusion 

A large increase of the current density was observed in the early stages for the scaling 

brine with no inhibitor (Figure 4.1). This increase has been observed in previous studies. As 

soon as a potential was applied, the system needed a few seconds to reach the dynamic 

equilibrium to permit the diffusion layer of O2 to be established [173]. This increase was not 

observed with the non scaling brine for the following reason. The formation of calcium 

carbonate (with the scaling brine) generated a local decrease of the pH at the surfacelbrine 

interface [18, 195] which leaded to the rise of the kinetics of the oxygen reduction as OH- ions 

were produced to increase the pH again. The amount of electrons (the current) was therefore 

increased. In the absence of carbonate ions (for NSB), the local drop of pH was not taking 

place since no scale occurred and, as such, the reaction was slowed as the OH- concentration 

at the metal/solution interface reached a steady value. The current density was therefore 

steady. 

The scale inhibitors affected to a different extent (according to the concentration used) 

the establishment of the diffusion layer. Two phenomena could explain the trend of the curve 

at the early stages (both could occur simultaneously) : 

• The presence of the scale inhibitor film limits the oxygen access on the surface 

at low concentrations and at high concentrations the surface is blocked (for the 

the PPCA for example) as no increase was observed by forming a film on the 

surface of the electrode as previously shown for carboxylic acids [185] and 

phosphonates [196]. 
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• The presence of scale inhibitor in the solution decreases the kinetics of calcium 

carbonate formation and the local pH drop resulting in the reduction of CaC03 

formation and thus causing a decrease in the kinetics of oxygen reduction. 

An inhibitor film onto the metal surface were detected by the current density variations 

for the concentrations 10 and 30ppm with the PPCA and the PA. Magnesium and calcium 

ions play an important role in the formation of the film as when they were removed from the 

solution (especially the magnesium), the baseline of the current density increased (showing 

less interactions between the metal surface and the inhibitors) (Figure 4.27). 

The n0n detection of the film of PMA by the study of the variations of the current 

density shows that its property to isolate a metal surface from the oxygen diffusion is weaker 

than the film of P A. This could come from its porosity and its compactness explaining as well 

the weak detection by infra-red spectroscopy of the film of PMA as seen with the PPCA. 

Moreover Nagayasu et al. showed that carboxylic acids with plural carboxyl groups had much 

higher affinity with the surface [197]. Another important factor is the immersion time in the 

brine. Compere et al. studied the kinetics of formation of an organic layer formed after 

immersion in sea water [198]. The presence of the film of PMA was revealed by light 

microscopy and by the changes of the contact angle of the surface. It has been found that the 

deposit is extremely heterogeneous and that the overall coverage increases with immersion 

time. 4 hours of immersion might not be sufficient enough to form a detectable film of PMA 

by chronoamperometry. 

The presence of a film of CMI on the surface was not as well detected as the film 

present with the PPCA as the current density variations were the same for the scaling brine 

with 30ppm ofCMI and the non-scaling brine from 4000s. The baseline of the current density 

observed for the carbonate-free solution containing 30ppm of CMI strongly decreased 

showing a blockage of the diffusion of the oxygen to the surface. A film was deposited on the 

surface but as mentioned for the PMA the heterogeneity of the film [198] or its porosity and 

compactness [75] allowed the oxygen to diffuse to the surface. Moreover the film of CMI 

formation was probably disturbed by the high affinity of the CMI with Ca2
+ and small nuclei 

of calcium carbonate most likely present at the vicinity of the surface [154, 155]. 
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7.3.1.2 Thickness of the film 

The film of PPCA has not been detected on the IR spectra. The limit of detection of the 

thickness of a film is l/lm. Kellner et al. shown that the absorbance is a function of the layer 

thickness [199]. Moreover when a beam impinges on the film, a reflected beam is generated 

and also a transmitted beam; a first diffracted beam is generated when the beam impinges the 

surface of the film (in contact with the air) and a second when the transmitted beam reached 

the metal surface [200]. If the film of inhibitor is too thin the diffracted beam from the metal 

surface interfere with the diffracted beam from the film itself. The film of PPCA might be too 

thin to be detected by FT -IR. 

.... d-.j r--------

Figure 7.1: A schematic representation of the paths which a beam of light takes when 
impinging on a thin film sample. 

The film formed by the polyaspartic acid has been visualised with the in-situ 

electrochemical cell (Figure 5.28). The presence of the film has been easily detected with the 

different methodology used in this study. Estievenart et al. showed by reflectometry that 

polyaspartic acid adsorbs on metallic surfaces [151]. An inhibitor film is present on the 

surface and limits the oxygen access. It has been shown that the molecular weight of 

polyaspartic acid had an effect on its ability to be adsorbed on a metallic surface: the higher 

the molecular weight, the less molecules are adsorbed. The polymer used in this study had a 

low molecular weight, so its adsorption on the surface was favoured [151]. 

The infra red spectra showed the presence of the CMI onto the surface for the 

concentration 30ppm with the detection of 3 peaks characteristic of the CM!. Moreover the 

observation of the surface showed some small and rounded particles which are probably the 

inhibitor film as no peak characteristic of CaC03 [201] \\las revealed. 
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7.3.1.3 Characterisation of the film and efficiency 

Table 704 summarises the properties of the inhibitor film and a correlation with the 

efficiency is presented. The film on the surface was detected for the PA and the CMI with the 

three techniques whereas they present the lower effic iency after 4 and 24 hours of scale 

deposition. This shows that the formation of a film on the surface explains only partly the 

reduction of scale depos ition . 

Table 7.4: Ranking (best being the PPCA) of the efficiency of the scale inhibitors studied at 
4ppm according to the detection of the inhibitor fi lm by chronoamperometry, FT-IR 
spectroscopy and contact angle measurements 

Chronoamperometry FT-IR Contact angle Efficiency 

I hour 4 hours 24 hours 

PPCA - PPCA PPCA PPCA PPCA 

PA PA PA PA PMA PMA 

CM! CMI CM! PMA CM! PA 

- PMA PMA CM! PA CM! 

7.3.1.4 General scheme of the inhibitor film formation 

Imamura et al. have shown the good adsorption properties of aspartic ac id on stainless 

steel surface at low pH [202]. This was explained by electrostatic interactions between the 

ionized groups of the aspartic ac id (- COO) and the ionized groups on the stainless steel 

surface (-OH/ ). Every inhibitor studied are negatively charged at high pH and behaved as 

negative particles. The pH at the vicinity of the electrode in this study is likely to be between 

lOA and 10.7 [203] and the surface charge at high pH is negative due to the presence of -0-

groups [202]. Direct interactions between the negatively charged inhibitors and the metal 

surface does not seem possible and the hypothesis that the inh ibitors interact with a positive 

charge like calcium and magnesium ions which interact with the negative charges of the 

surface is presented (Figure 7.2) . 

In general, the scale tendency is favoured for a substrate with a high surface energy 

[183]. The contact angle increases with the decrease of the surface energy. The changes in the 

contact angle followed the same trend for the four inh ibitors and the variations were to the 

same extent from one inhibitor to another (Figures 4.12, 4.16, 4.20 and 4.24). The decrease of 

the contact angle observed for 10ppm of inhibitors means according to [183] the scale 

tendency should increase but it was not the case as no cr.ystal of CaC03 were observed. 
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This last point shows that the changes of the surface energy are a consequence of the 

action of the inhibitors on the surface and not the reason of the absence of scale deposition. 

Moreover Forster et al. and Cheong et al. showed that the changes of the surface energy were 

not enough to explain the inhibition properties of a surface but parameters like surface 

roughness and chern ical properties were essential as well to take into account [184, 204]. At 

higher concentration of inhibitors, the contact angle increased leading to less favourable 

scaling conditions. At 30ppm the inhibition of CaC03 was not only due to the changes of the 

contact angle onto the surface as a good inhibition efficiency were already observed at 10ppm 

(no weight gain were measured). Nevertheless it could be an alternative way to inhibit CaC03 

deposition on a surface; the inhibitor strategy could be not to interact with the ions but to 

interact with the substrate directly leading to less favourable scaling conditions. 

_ CaC0
3 

Metallic surface 

Q Negative charge 

{.j:\ Positive charge 
\...J (Ca2+/Mg2+) 

~ Scale inhibitors 

Figure 7.2: Scheme of the interactions between the scale inhibitors and the metal surface 
occurring under polarization conditions 

In the absence of the carbonate ions, the film had greater properties regarding the 

oxygen diffusion (Figures 4.27 and 4.31). This point has been confirmed with the great 

decrease of the contact angle for the four inhibitors and the current density for the PPCA, PA 

and CM!. The light microscopy limits the detection of the small nuclei which could be present 

on the metal surface. Calcium ions can either binds the surface or the carbonate ions. The 

large decrease of the baseline of the current density in the carbonate-free solution suggests 

that the affinity of the calcium ions is greater for the carbonate ions than for the metal surface. 

It is well known that in the initial stage of CaC03 formation onto a surface, a Mg-containing 

film is deposited on the surface and this layer has a poisoning effects on CaC03 deposition 

[88]. In the absence of magnesium, the calcium carbonate formation occurs directly on the 

metal surface. 
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The increase of the baseline of the current density illustrated the absence of this thin 

layer. The availability of the calcium and magnesium ions was greater in the absence of 

carbonates thus the film formation was favoured in the absence of this anion. Moreover the 

calcium ions affected more the film formation than the magnesium ions as shown by the 

difference of the contact angle values in the absence of Ca2+ and Mg2+ (Figures 4.29 and 

4.32). 

The results showed that the mechanism of the inhibitor film formation for the four 

inhibitors was similar. Nevertheless there is no doubt that they all have different properties as 

different results were obtained with the current density study and the IR spectra (Table 4.3). 

7.3.2 Interactions between the scale inhibitors and crystals of calcium 
carbonate 

Wilkins et al. showed that by pretreating calcite with polymaleic acid, the calcareous 

layer was protected against acid attack [149] leading to the point that the PMA has great 

affinities with calcium carbonate. The difference in the current density values observed 

(compared to the non inhibited case) can be explained by the presence of a film on the metal 

surface at high concentration and on the calcareous deposit at low concentration. The 

presence of a film formed with PMA could explain the slight decrease in the residual current 

compared to the non inhibited case (Figure 4.4). 

The microscopic observations realised in-situ (Figure 5.20) with 4ppm of PMA added 

10 minutes after the creation of the supersaturation showed the presence of a film onto the 

crystals. This was not observed when the inhibitor was added before the mixing of the two 

brines. This indicates that PMA strongly interacts with CaC03• 

In the absence of crystals on the surface, the film of PMA was not easily detected 

whereas when crystals of CaC03 were already formed onto the metal surface, the film was 

observed in a more obvious way. 
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The polyaspartic acid showed better affinities with the metal surface than with CaC03• 

The Langmuir isotherm illustrated the smaller affinity of the PA to the CaC03 compared to 

the PMA and the PPCA (Figure 7.3). It was seen previously that the PA had better inhibiting 

effects when it was added before the mixing of the brines and the PMA showed better growth 

inhibition than the PA when it was added 10 minutes after the supersaturation was created. 

These facts are explained with the different affinities of the PMA and the PA with metal 

surface and CaC03; the film of PA formed on the metal surface without CaC03 largely 

disturbed the nucleation and growth process whereas when CaC03 is already present the film 

on the metal surface, the crystals disturbed the film formation and therefore the inhibition of 

CaC03. The contrary occurred with the PMA. The PMA has strong affinity with CaC03 so 

when some crystals are present on the surface, the adsorption of the PMA is favoured and the 

inhibition properties are strong (as seen with the total blockage of the growth rate in Figure 

5.21). 

Wada et at. showed the high affinity of the carboxylic acids for CaC03 [193] leading to 

a inhibition of the growth of the crystals. Two carboxylates of the inhibitors interact with the 

adsorption site - Ca(H20 t by a mechanism of complexation. The strength of the binding 

depends on the geometry of the adsorbing molecules (distance between the two carboxylates) 

and on their substitution [181] which would explain the different affinities of the inhibitors 

with CaC03. 
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Figure 7.3: Constant of affinity of the inhibitors (K)"with CaC03. The values determined for 
the PPCA and the PMA are estimated meaning that the values presented are the minimum 
value ofK. 
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The carboxylic acids did not influence the nucleation stage, only the growth process 

showing a better affinity for the adsorption on CaC03 than for complexation for the free 

calcium ions in the solution [193]. Wada and co-workers were focused on the inhibition 

occurring in the bulk solution. In this study, the focus is the processes occurring on the 

surface. The formation of a film onto the metal surface probably disturbed more the 

nucleation process. The ability of the inhibitors to adsorb on the crystals of CaC03 is 

responsible of the variations of the growth. It is likely to think that a molecule act more 

specifically on one process ofCaC03 formation but all the different stages of the mechanism 

are affected. 

From this study, specific affinities have been pointed out: 

• PPCA interacts with both the metal surface and the crystals of CaC03• 

• PMA acts mainly by blocking the growth sites of the crystals ofCaC03• 

• PA affects greatly the surface of deposition resulting in a reduction of 

scaling. 

7.4 Effects of SI on the morphology and on the crystallography of 
calcium carbonate 

A first approach of the study of the morphology was realised with the static tests and 

the in-situ flow cell both under polarization conditions. The SXRD permitted to study in 

details the mechanism of calcium carbonate formation and to examine the effects of the 

inhibitors on CaC03 deposition on the crystallography of CaC03• In this part the kinetics of 

formation of the different polymorphs was not reported as they are in the section 7.5 of this 

chapter. 
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7.4.1 Morphology of the crystals in the presence of scale inhibitors 

It has been largely reported that the presence of additives in the scaling solution affects 

the morphology of the crystals [44, 100,205-213]. 

The average diameter of a single crystal of CaC03 formed under polarization conditions 

with the in-situ cell flow after 60 minutes was 11.6!lm. The addition of 4ppm of PPCA, PMA 

and PA was needed to observe a significant decrease of the diameter of the crystals. Some 

crystals were probably affected by 1 ppm of inhibitor but they were too small to be detected. 

The concentrations of CMI tested in this study did not lead to any significant change of the 

size of the crystals. A large decrease of the size of the crystals was observed with the PPCA, 

the PA and the PMA with a respective diameter of less than 0.5!lm for PPCA and PA and of 

2.7!lm for the PMA. 

Table 7.5: Summary of the changes of the morphology of the crystals ofCaC03 formed after 
60minutes with the in-situ flow cell under polarization conditions. 

Ippm 4ppm 

No Inhibitor Cubical calcite and leaf-like vaterite 

PPCA Distorted calcite ++ Distorted calcite +++ 

PMA Distorted calcite+ Distorted calcite +++ 

PA Cubical calcite Distorted calcite +++ 

CMI Cubical calcite and Vaterite Cubical calcite and Vaterite 

+, ++, +++: from a bit to strongly 

The PPCA has strongly affected the morphology of the crystals from 1 ppm and the 

CMI did not change the morphology but an increase of the vaterite forms of CaC03 was 

observed. It seems that the changes of the morphology of the crystals are related to the 

inhibition properties discussed in the first part of this chapter; the greater the changes of the 

morphology, the better the inhibition properties (both studies have been realised under 

polarization conditions leading to a better comparison). It is difficult to conclude about the PA 

and the PMA regarding the link between the morphology of the crystals and the inhibition 

efficiency as their effects on these parameters were hot as distinguished as the effects of the 

PPCA (greatest effects) and the CMI (poorest effects). 
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It is clear the addition of the inhibitors influenced the general shape of the crystals of 

calcium carbonate. The morphology changes could be promoted by the adsorption of the 

inhibitors on specific crystal planes leading to a complete modified general shape or they 

could act non-specifically and alter all the crystal planes. The use of the SXRD with the in­

situ flow cell was an efficient tool in the determination of the effects of the additives on the 

crystallography of CaC03• 

7.4.2 Effects of SI on the crystallography of CaC03 

Kjellin studied the effects of two different organic compounds and pointed out that they 

affected differently the growth of CaC03: one was inhibited the vaterite growth and the 

second one affected the growth of the crystals of calcite [190]. It has been previously seen 

that the different inhibitors studied, affected differently the kinetics of formation of the three 

polymorphs thus this part is not treated of the kinetics but only of the morphology of the 

crystals of CaC03 formed. 

The morphology of the deposit formed in the non-scaling brine was especially 

dominated by the aragonite, then the vaterite and at last the crystals of calcite were the least 

present in the cell. This order has not been modified with the addition of inhibitors except for 

the PPCA and the PMA at the concentration 4ppm. For these two cases, the deposit was still 

mostly composed of aragonite but the quantity of the vaterite forms decreased such as the 

calcite forms dominated the vaterite crystals in terms of quantity. These conclusions have 

been raised from the study of the total intensity for each polymorph as the intensity is 

proportional of the amount of crystals deposited on the substrate [214]. For the four inhibitors 

studied, the vaterite forms were the most inhibited. The PMA affected to the same extent the 

aragonite and the calcite crystals as well as the PA and the CM!. Nevertheless the inhibition 

of the vaterite was greater with the two carboxylic acids than the CM!. The PPCA affected the 

aragonite crystals to a greater extent than the calcite crystals. It appears that the PMA, the PA 

and the CMI act according to one selective inhibition (vaterite) and the PPCA according to 

two (first the vaterite and then the calcite). 

Table 7.6 summarizes the main crystal planes of calcium carbonate formed in inhibited 

and non-inhibited conditions. The mechanisms of inhibition seems common to the four 

inhibitors. First of all, each crystal planes have been affected by the inhibitors present to 

different extent. 



- 197 -

Secondly, they act by decreasing the volume quantity of the different crystal planes; 

either the size or the number of the crystals (most probably both). There was no emergence of 

new crystalline planes formed as it has been seen by SXRD in-situ measurement but on 

different substrate (PMMA and silicon, [73, 186]). Only the PPCA at the concentration 4ppm 

inhibited completely two main planes: the aragonite (032) and the vaterite (300). The 

inhibition of these two planes was probably linked to the sudden increase of the growth rate 

(as seen in the above kinetics study) of the calcite (006) and of the aragonite (111): the 

absence of two main crystal planes allowed the growth of the other two crystal planes. The 

system was in a sensitive zone as 4ppm was close to the MIC of the PPCA; the inhibition was 

strong as shown by the absence of the aragonite (032) and the vaterite (300) but not enough to 

maintain the inhibition on all the crystal planes. 

Table 7.6: Review of the main crystal planes of calcium carbonate formed in the uninhibited 
brines and in presence of scale inhibitors and comparison of the total intensity (ltota! in 
a.u). 

Calcite I tota! Aragonite Itota! Vaterite Itota! 

Uninhibited 006 032,111 

brines 
154 555 300,110 459 

214,211 031,200 

006 200,111 
1 ppm 55 207 110,300 159 

032,031 
PPCA 

006 111,200 
4ppm 74 121 110,J-OO 11 

031,~ 

006 200,032 
1 ppm 59 216 110,300 165 

214 111,031 
PMA 

006 200,032 
4ppm 28 103 110,300 51 

214 111,031 

006 200,032, 
PA 4ppm 28 103 110,300 58 

214,211 111,031 

006 200,111 
CMI 4ppm 54 204 110,300 123 

214 032,031 

(006: crystal plane formed with a low intensity; 006: dominant crystal plane; 006: take off of the 

crystal plane intensity after reduction; ~: suppression of the crystal plane.) 
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Some differences of behaviour of the inhibitors regarding the calcite forms with a low 

intensity (calcite (214) and (111)) were seen: the PPCA acts as a nucleation inhibitor both, the 

P A acts as a growth inhibitor on both and the PMA and the CMI as a growth inhibitor on the 

calcite (214) and as a nucleation inhibitor on the calcite (111). The aragonite (310) emerged 

with 4ppm of PMA. The 2-theta values of the aragonite (310) and the calcite (111) are very 

close (1.61 0 and 1.620 respectively). Therefore it is hard to conclude about the effects of the 

scale inhibitors on these two crystal planes. 

Table 7.7: Summary of the effects of 4ppm ofPPCA, PMA, PA and CMI on the growth rate 
of the different crystal planes formed. 

Crystal Planes Totally Inhibited Growth rate Growth rate Growth rate 
blocked strongly reduced reduced 

C(211)1 A(310) PPCA PMAIPA - CMI 

C(006) - - PMAIPA CMIIPPCA* 

C(214) PPCA PMA/PA CMI -

V(300) PPCA - PMAIPA CMI 

V(110) - PPCA PMAIPA CMI 

X - PPCA PMAIPA CMI 

A(032) PPCA PMAIPA - CMI 

A(031) - PPCA/PMAIPA - CMI 

A(111) - - PMAIPAICMI PPCA* 

A(200) - PPCAIPMA - -
PAICMI 

A(311) PMA PPCAIPA CMI -

(PPCA *: first a reduction o/the growth rate is observed and then a great increase) 
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The inhibitors affected more the growth of the crystals than the nucleation process as 

most of the crystal planes formed in the non-inhibited case were found in the inhibited case 

(Table 7.7). They act by reducing or blocking the growth of the crystals. The PPCA showed 

in this entire study the best inhibition properties and only the PPCA inhibited the nucleation 

of two main planes. The inhibition of these planes results in a significant reduction of scale 

deposition as it was seen with the electrodeposition study. It seems that some specific crystal 

planes play an important role in the extent of inhibition of CaC03 deposition. The 

determination of the characteristics of these specific crystal planes could lead to a strategy of 

inhibition which would consist to design molecules to inhibit the growth of these key planes 

resulting in a reduction of the scale deposition. Nevertheless the PMA and the PA presented 

interesting effects on the calcium carbonate deposition too but none of the main crystal planes 

were totally inhibited showing that a chemical does not have to totally inhibit the crystal plane 

to show good inhibition properties but the blockage of the growth is one good alternative. 

The changes of the growth of some different crystal planes can lead to the formation of 

a complete different crystal. The inhibitors affected all the crystal planes but to a different 

extent resulting in a different morphology of the deposit as it has been observed in the 

electrodeposition study. The effects of the chemicals on one specific crystal plane can be 

either due to the direct interactions between the inhibitor and the plane or it can be the 

consequence of the interactions with another crystal plane disturbing the growth of the 

considered plane. 

The study of the effects of the inhibitors on the different polymorphs showed a selective 

inhibition of the vaterite forms of CaC03 but it did not appear any selective inhibition at the 

crystal plane level. 
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Table 7.8 summarises the crystal planes formed in different conditions and the length of 

the cell is proportional to the final intensity measured: comparing the size of the cell returns to 

compare the extent of the growth of the crystal planes. It is clear that 4ppm of PMA and PA 

have very similar effects on CaC03 growth. In both cases the same crystal planes are formed 

with a close final intensity. It is interesting to note that the crystal planes formed with 4ppm 

of PPCA are different from the planes formed with 4ppm of PMA but these two inhibitors 

seem to affect the CaC03 deposition to the same extent with 1 ppm. A general trend can be 

draw. Under low inhibition conditions (PPCA 1 ppm, PMA I ppm, CMI 4ppm), the same 

crystal planes as in the non-inhibited case are formed with a reduced intensity. Under great 

inhibition conditions, two mechanisms are observed: 

• Total inhibition of some main crystal planes and increase of the growth 

of other crystal planes (PPCA 4ppm), 

• The same crystal planes formed in the non-inhibited case are formed 

with a smaller intensity (PMA and PA 4ppm). This mechanism is similar 

as the inhibition process occurring at low inhibition conditions 

mentioned above. 



- 201 -

Table 7.8: Summary of the crystal planes detected by SXRD formed under non-inhibited and 
inhibited conditions in flowing conditions (laminar flow). The length of the cells are 
proportional to the final intensity measured. 

PPCA PMA PA CMI 
Uninhibited t-----r---+-~-___r---_t_--___1I__--_i 

4ppm 4ppm 

AlII 

A031 

A200 

x 
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7.5 Kinetics of formation and inhibition of CaC03 

The in-situ measurements permitted the characteristics of calcium carbonate deposition 

as a function of time to be assessed. The in-situ flow cell combined with the electrodeposition 

set-up (Chapter 5) allowed the determination of the size of the crystals of calcium carbonate 

over time and the diffracted intensity due to the crystals of CaC03 was assessed from the 

study realised in-situ with the synchrotron X-Ray diffraction (Chapter 6). The growth 

mechanisms of calcium carbonate were determined from these two studies under non­

inhibited and inhibited conditions. Firstly the kinetics deduced from the electrochemical cell 

are discussed. Then the focus is to point out the different kinetics of growth with and without 

inhibitors by studying the overall growth of CaC03 and then of the growth of the three main 

polymorphs of calcium carbonate (calcite, vaterite and aragonite) and to assess the effects of 

the scale inhibitors on the different polymorphs. A discussion focused on the comparison of 

the different effects of the inhibitors used in this study ends the study of the kinetics. 

7.5.1 Kinetics of calcium carbonate formation determined with an in-situ 
electrochemical cell 

Two methods were used to follow in-situ the kinetics offormation of CaC03 (Chapter 5 

and 6). It is important to note that some parameters applied to both set-up were different like 

the temperature. The main difference comes from the way the supersaturation was created. In 

chapter 5, the calcium carbonate was generated by applying a potential which leads to a large 

increase of the pH but only at the vicinity of the electrode and in chapter 6 the solution was 

supersaturated in terms of calcium carbonate. Table 7.9 presents the differences of the set-up 

used to study the kinetics of formation ofCaC03. 

Table 7.9: Differences of the parameters applied and of the characteristics of the two set-up 
used to determine the kinetics of CaC03 formation 

Parameters 
Supersaturation creation 

Temperature 

Brine compositions 
Flow rate 

Surface area of deposition 

Shape of the surface of deposition 

In-situ electrode position 
Applied potential 

Room temperature 

Complex 

40ml/min 

lcm2 

Flat 

In-situ SXRD 
Supersaturated brines 

80°C 

Simple 

IOml/min 

O.56cm2 

Capillary tube 
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The estimation of the rate of the linear part of the curve assessing the changes of the 

size of the crystals as a function of time was considering as the growth rate of calcium 

carbonate as shown in Figure 7.4. 

14 ,----------------------------------------------------------, 

o 5 10 15 20 25 30 35 40 45 

Time (min) 

Figure 7.4: Illustration of the calculation of the growth rate measured with the in-situ 
electrochemical cell 

The results are summarised in Table 7.10. 

Table 7.10: Growth rate determined from the variations of the size of the diameter (j.!m.min- I
) 

of calcium carbonate (5 minutes after the creation of the supersaturation) determined 
with the in-situ flow cell combined with electrodeposition 

Concentration lppm 4ppm 
No Inhibitor 0.21 

PPCA 0.22 

PMA 0.21 nil 

PA 0.19 

CMI 0.20 0.25 

As the growth rate was a linear function oftime from the 5th minute (similar for the non 

inhibited and inhibited case), Table 7.10 gives a summary of the growth rate measured from 

the 5th minute with the in-situ electrochemical flow cell. During the first 5 minutes the growth 

rates in the non-inhibited and inhibited case were similar (for the concentration 1 ppm) 

(0.82j.!m.min-1 for the non-inhibited case). The difference observed with 1 ppm of inhibitor 

came only from the surface coverage and the number of crystals not from the growth rate. At 

this concentration the inhibitors only inhibit the growth of some crystals (in such an extent 

that they were not observed) but the crystals detected grew as in the non-inhibited case. 
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4ppm of inhibitors affect the overall of the deposition of CaC03 (except the CMI). 

Dawe et al. assessed the size of the crystals of calcium carbonate and established that the size 

was a linear function of the time. The first linear portion was not pointed out as the first 

measurements were done after 5 minutes [215]. 

7.5.2 Growth mechanisms of CaC03 in a non-inhibited case determined 

bySXRD 

7.5.2.1 Overall growth of CaC03 

Three steps of growth have been determined in Figure 7.5 with the in-situ SXRD 

measurements: 

• From 0 to the 8th minute: the intensity is almost constant. This step corresponds 

to the induction time. The formation of the nuclei cannot be detected as it is a 

challenge to determine the limit of the end of the nucleation and the beginning 

of the growth process. It is likely to think that the growth of a nucleus occurs 

before the end of the nucleation process. Therefore only the growth steps are 

studied (the start of the nucleation probably occurs before the first 

measurement). The presence of the aragonite A(OI2) since the first 

measurement explains the value (not nil) of the intensity during the induction 

time. This point will be discussed later. 

• From the 8th to the 26th minute: the total intensity largely increased and the 

increase is linear. This step is characterized by the emergence and the growth 

of new crystals planes. Nancollas and Reddy showed that a high growth rate 

may reflect a high surface area for growth produced by the nucleation process 

[29]. In our case, the slow down of the growth could be due to the saturation of 

the growth site of calcium carbonate. 

• From the 26th minute to the 44th: the growth increases slowly and then rapidly 

The growth of calcium carbonate (leading to a decrease of calcium ions 

concentrations in the bulk) did not generate any decrease of the supersaturation 

in the capillary tube as 11 of brines were prepared for each test and only 600ml 

were pumped into the system. Therefore the stock of calcium and carbonate 

ions was always regenerated. 
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Figure 7.5: Different steps of growth of calcium carbonate determined from the Synchrotron 
X-Ray Diffraction study, in absence of inhibitors 

The general growth trend (not linear) has already been reported in the literature as 

shown in [216]. The late increase of the growth has not been observed in this particular 

example. The growth of the crystals formed in a non-inhibited brine is characterized by (as 

shown in Figure 7.6): 

• An induction time: intensity constant and nil (I) 

• A 151 step of growth: linear (II) 

• A 2nd step of growth: parabolic (III) 
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Figure 7.6: Example of a similar general trend of the kinetics of CaC03 precipitation [216] 
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A different trend was observed between the growth rate calculated from the in-situ 

electrochemical cell study and the SXRD study: the growth was a linear function of time in 

the first case and not in the second. Table 7.9 illustrates the difference of the parameters 

between the two techniques. The interpretation of the data obtained with the in-situ 

electrochemical cell has been realised with according to a 2-dimension model whereas the 

SXRD measurements assess the 3-dimension crystal structures. The complementarity of these 

two techniques will be discussed in the part 7.5.6. 

7.5.2.2 Growth of the different polymorphs of CaC03 in a non-inhibited brine 

During all the entire duration of the experiment, the growth of the crystals was 

dominated. by the growth of the aragonite and the growth of the three polymorphs occurred 

under the same three regimes (I, II, III) (Figure 7.7). The main difference is observed during 

the second step: the growth of the dominant polymorphs (aragonite and vaterite) is not linear 

whereas the overall growth was. The emergence of the aragonite A(111) and A(031) first and 

then of the aragonite A(032) and A(200) lead to an increase of the total intensity of aragonite. 

Each emergence is followed by a great increase of the intensity illustrating an increase of the 

growth (Figure 7.7). The last step of growth is characterised by an increase of the growth 

according two different regimes. The growth first slows down and then rapidly increases. 

The limit between the second and third step for the calcite growth trend is not as clear 

as for the aragonite and the vaterite as the calcite C(006) is the main calcite plane and the 

contribution of the two other calcite crystal planes (C(2lI) and C(214» of the total intensity 

is small. 
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Figure 7.7: Different steps of growth of aragonite, vaterite and calcite determined from the 
Synchrotron X-Ray Diffraction study, in absence of inhibitors 

The vaterite crystal planes growth is similar to the aragonite growth. Three steps 

characterised the growth mechanism. The induction time (until the 6th minute), the growth of 

the existing and the emergence of new planes (until the 24u1 minute) and the growth of all 

existing planes with the same two regimes as observed with aragonite. 

A comparIson of the different growth steps with and without inhibitors will be 

discussed after the review of the results obtained for the different inhibited cases. 

Every crystal plane followed the same growth trend (Figure 6.1) with different 

characteristics (emergence time, growth rate, final intensity) except for the aragonite crystal 

plane (012). The diffraction ring corresponding to the d-space value (2.70A) characteristic of 

the aragonite plane (012) was maintained constant during the entire duration of the 

experiment. The cell (stainless steel) used for the tests without inhibitors have been changed 

(for maintenance reason) and a new cell (hastelloy) was used when the inhibitors have been 

tested. This fact explains why this peak was only found for the non-inhibited case. 



- 208-

The trend of the curve (constant intensity during the entire test) leaded to the point that 

this diffraction ring was due to the background and not to the calcium carbonate. In fact one 

crystal plane of the iron oxide is characterised with the same d-space value as the aragonite 

crystal plane (012). The diffraction ring obtained for a d-space value of 2.70A was 

characteristic to the presence of Fe-OH (310). Its presence in the cell might be the product of 

degradation of the wall of the cell due to the high salinity ofthe brines used. 

7.5.3 Effects of PPCA 

7.5.3.1 Effects of PPCA on the overall growth of CaC03 

Figure 7.8 presents the variations of the different steps of growth of calcium carbonate 

formed with different concentrations of PPCA. The large reduction of the growth with 1 ppm 

but especially with 4ppm of PPCA illustrated the ability of the PPCA to block the growth of 

the crystals (Figure 7.8): 
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• The growth with 1 ppm of PPCA occurred under the three steps 

determined with the non-inhibited case. The difference between step II 

and step III is the decrease of the growth rate (there is no parabolic 

growth) 

• The growth with 4ppm is more regular over time. The three steps are not 

observed. 
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Figure 7.8: Diffe rent steps of growth of calcium carbonate determined from the Synchrotron 
X-Ray Diffraction study, in presence of PPCA 
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4ppm of PPCA delayed the growth of calcium carbonate. The nucleation might have 

been affected by the presence of PPCA but it is a real challenge to separate the nucleation step 

to the growth step. As soon as the nuclei are formed, the growth process starts leading to the 

fact that the limit of these two processes is hard to be determined and it is not possible with 

this technique. 

7.5.3.2 Effects of PPCA on aragonite, vaterite and calcite growth 

The growth of aragonite, vaterite and calcite follow the same trend (steps I, II and III) 

as seen with the overall growth of calcium carbonate with the non-inhibited case (Figure 7.9): 

• Step J: induction time 

• Step II: emergence and growth of new crystal planes 

• Step III: Growth of existing crystal planes. 
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Figure 7.9: Different steps of growth of aragonite, vaterite and calcite determined from the 
Synchrotron X-Ray Diffraction study, in presence of lppm ofPPCA 
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Only the crystals of aragonite and calcite were responsible of the late increase of the 

growth of the deposit. PPCA had stronger effects on the crystals of vaterite (blockage of the 

growth from the 17th minute) (Figure 7.J 0). This finding was confirmed by the ratio of the 

final intensity calculated in Table 6.3 . According to these ratios, the PPCA was the least 

efficient on the calcite crystals although the large effects on the growth of the crystals were 

obvious (Table 7.8). The crystals of calcite were the least dominating of the deposit of 

calcium carbonate so even with a reduced growth the effects were not as great as the ones 

observed on the crystals of aragonite (which was the dominated polymorph). 
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Figure 7.10: Different steps of growth of aragonite, vaterite and calcite determined from the 
Synchrotron X-Ray Diffraction study, in presence of 4ppm of PPCA 

The three growth steps were not obvious with the study of the overall growth ofCaC03. 

Nevertheless aragonite and calcite growth occurred under the same trend than in the non­

inhibited case and with same duration of each step: 

• Step I: Induction time 

• Step II: 1 SI growth step 

• Step III: 2nd growth step (parabolic), due to the calcite (006), the 

aragonite (111) crystal planes and the two unknown Y and Z plane 
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For 4ppm of PPCA, two major crystal planes (the vaterite (300) and the aragonite 

(032)) were totally suppressed and the intensity of the calcite (006) and the aragonite (111) 

crystal planes largely increased after the 34th minute. The concentration (4ppm) is probably 

really close to the MIC (Minimum Inhibitor Concentration) of the PPCA that is why there is 

no total inhibition of calcium carbonate formation; the suppression of some main crystal 

planes could enable the calcite (006) and the aragonite (111) to grow or because of the growth 

of these two crystal planes the vaterite (300) and the aragonite (032) are suppressed. One 

hypothesis is that PPCA does not favour the formation of specific crystal planes but the 

inhibition of some main planes leads to the growth of others. The increase of the growth could 

be a consequence of the inhibition of some main crystal planes. 

This acceleration of growth has already been observed in the literature by studying the 

effects of PPCA on CaC03 crystallization by dynamic tube blocking tests. Several inhibitors 

were tested and the late acceleration (after 40 minutes) was only observed with the PPCA 

[70]. 

It appears that PPCA inhibits first the main crystal planes. The system might be in a 

sensitive zone, just before the complete inhibition of calcium carbonate. To check this 

hypothesis, higher concentrations of scale inhibitors should be tested. 

In this set of experiments (and in the following set) a new capillary cell (hastelloy) was 

used as mentioned above and the iron oxide (310) plane has not been detected. Nevertheless 

the initial intensity of the aragonite (200) crystal plane was unexpectedly high compared to 

the other crystal planes. Contrary to what was observed with the Fe-OH (310) crystal plane, 

the growth rate of the aragonite (200) increased as a function of time for the concentration 

1 ppm. However for the concentration 4ppm, the growth rate was almost nil during the entire 

duration of the test. 

The intensity of the aragonite (200) was in fact the combination of the diffracted beam 

due to the aragonite (200) and to another Fe-OH plane ((222) crystal plane) as the d-space 

value of these two planes are the same. At 4ppm of PPCA the intensity was high and constant 

therefore the diffracted beam was due to the cell itself; it was part of the background. 
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The pressure of the cell reached 2.8.106 Pa (400psi) with 4ppm ofPPCA after the 48th 

minute. The scale deposition in the capillary cell blocked the cell leading to an increase of the 

pressure. The total intensity of the diffracted beams due to CaC03 strongly decreased with the 

addition of 4ppm therefore the blockage of the cell was probably due to a big single crystal or 

an agglomerate formed, blocking off the cell. 

Previously the results on the inhibition properties of the PPCA showed that no crystals 

were observed with 4ppm whereas in this study crystals of calcium carbonate were detected 

by SXRD. The divergence of the two techniques is discussed in the section 7.5.6. 

PPCA (4ppm) leads to a large reduction of the growth of the vaterite, calcite and 

especially of the aragonite (Figure 7.10). The effects of the PPCA were observed since the 

early l?eginning of the process of calcium carbonate especially the vaterite and calcite crystals 

planes. The growth of the vaterite was almost blocked for the 45 minute test whereas the 

crystals of calcite and aragonite started growing after the 32nd minute. The growth of the 

vaterite crystals was small and rapidly kept constant. 

PPCA enabled the blockage of the growth of the three polymorphs at the early stage of 

calcium carbonate formation. After 30 minutes, 4ppm of PPCA did not block the growth of 

the crystals of calcite and aragonite anymore even though the growth seems to become 

constant. The effects were time limited. 

7.5.4 Effects of green carboxylic acids 

7.5.4.1 Effects of PMA and PA on the overall growth of CaC03 

Two different carboxylic acids were studied: the polymaleic acid and the polyaspartic 

acid. Both inhibitors had similar effects on the growth rate of calcium carbonate (Figure 7.11 

and Figure 7.12). In both cases the growth occurs according to the three steps previously seen 

(Figure 7.5): 

• Step I: induction time, the growth of the crystals is not detected 

• Step II: emergence and growth of the new crystal planes 

• Step III: 2nd step of growth (cfiange of the growth rate, from linear to 

parabolic) 
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Figure 7.11: Different steps of growth of calcium carbonate determined from the Synchrotron 
X-Ray Diffraction study, in presence of PM A 
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Figure 7.12: Different steps of growth of calcium carbonate determined from the Synchrotron 
X-Ray Diffraction study, in presence ofPA 

It seems that PMA had affected the induction time of some crystal planes to a greater 

extent than the P A. The induction time of the aragonite A(032) and the vaterite V(300) were 

increased with the addition of 4ppm of PMA resulting probably in the decrease of the 

induction time of the calcite (006). The delay of the emergence of two main crystal planes 

(A(032) and V(300)) was in favour ofthe early emergence of the calcite C(006). 
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The addition of PMA and PA seem to shift to the left the growth trend : 

• The induction time is shorter (this point will be discussed in the part 

7.5.7). 

• The duration of the step during which the emergence of new planes 

occur is reduced. 

The crystals formed with 4ppm of PMA directly follow a parabolic trend. The linear 

characterised by the emergence of new crystal planes is not observed as most of the crystal 

planes emerged during the first 6 minutes (short induction). 

7.5.4.2 Effects of PMA and PA on the growth of aragonite, vaterite and calcite 

The growth of the crystals of CaC03 with 1 and 4ppm of PMA and 4ppm of P A occurs 

according to the 3 growth step observed with no inhibitor and 1 ppm of PPCA (Figure 7.13, 

Figure 7.14 and Figure 7.15). The steps have the same characteristics (step I: induction time; 

step II: growth due to the emergence and the growth of the different crystal planes; step III: 

growth of the crystal planes already present, parabolic trend). 
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Figure 7.13: Different steps of growth of aragonite, vaterite and calcite determined from the 
Synchrotron X-Ray Diffraction study, in presence of 1 ppm of PMA 



- 215 -

120 ,-~----+-----------------------------------------

100 +-~--------

80 

40 ~ 

• • • • 
---+--- Aragonite 

---- Vaterite 

o ~~~--~------~------~------~------~------~ ..... - Calcite 

12 22 32 42 52 62 

Time (min) 

Figure 7.14: Different steps of growth of aragonite, vaterite and calcite determined from the 
Synchrotron X-Ray Diffraction study, in presence of 4ppm of PMA 

4ppm of PMA and PA inhibited the growth of the three polymorphs of calcium 

carbonate. Both inhibitors strongly inhibited the growth of the aragonite, vaterite and calcite 

from the 30th minute as shown by the almost constant intensity (Figure 7.14 and Figure 7.15). 

The late increase observed with the PPCA was not seen with these two inhibitors. Once the 

crystal growth has been stopped, the blockage was maintained and this for the three 

polymorphs of calcium carbonate. 
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Figure 7.15: Different steps of growth of aragonite; vaterite and calcite determined from the 
Synchrotron X-Ray Diffraction study, in presence of 4ppm ofPA 
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The sudden increase of the growth of the aragonite and vaterite crystals formed with 

PMA were due to the late emergence of the aragonite A(032) and vaterite V(300) (Figure 

7.14). As well as the aragonite A(032) late appearance leaded to a surge of the growth rate at 

Ith minute with the PA (Figure 7.15). 

Both PMA and PA inhibit the growth of the three calcium carbonate forms. Moreover 

the ratio of the final intensity (Table 6.5 and Table 6.7) were similar between these two 

inhibitors meaning that the amount of vaterite, aragonite and calcite was comparable in the 

two cases. 

The shift observed for the overall growth of CaC03 is seen with the polymorphs with 

both PA and PMA. These two inhibitors decrease the induction time and the time of 

emergence of the new crystal planes. 

7.5.5 Effects of eMI 

7.5.5.1 Effects of CMI on the overall growth of CaC03 

The induction time (step I) is too short to be determined with 4ppm of CMI therefore 

only two growth steps are determined. The first step is therefore step II compared to the other 

inhibitors. The emergence of the new crystal planes occurs during step II (Figure 7.16). 
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Figure 7.16: Different steps of growth of calcium carbonate determined from the Synchrotron 
X-Ray Diffraction study, in presence of CM] 
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7.5.5.2 Effects of the eMI on the growth of aragonite, vaterite and calcite 

CMI affected the kinetics of growth of the three polymorphs to a different extent 

(Figure 7.17). The growth of the aragonite and the vaterite forms were less reduced than seen 

for the other inhibitors. The growth of the three polymorphs followed the same trend as 

observed in the non inhibited case but in a smaller extent. The early emergence of the 

aragonite A(200) explains why the induction time is not detected with the study of the total 

intensity: the aragonite A(200) was present in the cell during the first measurements (at 2 

minutes). The growth of the vaterite and the calcite crystal planes occurs according to the 

three step model described previously. As observed with the PMA and the PA, the growth 

was strongly reduced from the 36th minute (slow increase ofthe intensity). 
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Figure 7.17: Different steps of growth of aragonite, vaterite and calcite determined from the 
Synchrotron X-Ray Diffraction study, in presence of 4ppm ofCMI 

7.5.6 Comparison of the kinetics determined in-situ with an 

electrochemical technique and with the SXRD 

The use of the electrochemical cell did not point out apparent differences in the 

inhibition of crystal growth for the concentration 1 ppm between the non-inhibited case and 

the four inhibitors whereas for the PPCA and the PMA (the two inhibitors studied at 1 ppm 

with the SXRD) a slow down of the growth of the crystals was obvious. 
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1 ppm is too low to affect all the crystals formed in the electrochemical cell thus it is 

likely to think that 1 ppm of PPCA and PMA affected the growth of some crystals and their 

detection was not possible because of their resulting small size. 

The main difference came from the tests conducted at 4ppm. No crystals of CaC03 

were observed with the addition of PPCA and of PA with the electrochemical cell whereas a 

deposit of calcium carbonate was detected by SXRD. It is likely to find some crystals but too 

small to be detected on the SEM pictures. Both techniques illustrated the ability of the PMA 

to block the growth of the crystals. A large difference was observed with the CMI: in one case 

no growth inhibition property was noticed whereas the study by SXRD pointed out a 

reduction of the growth rate (but smaller to that observed with the other inhibitors). 

Five major points could justify the difference in the mechanisms observed with both 

methods: 

• The analyses realised with the in-situ electrochemical cell allowed the 

detection of crystals of at least 1 J.lm which makes the small variations of 

the size hard to detect. 

• One major advantage with using the SXRD is the high frequency of 

measurements (every 2 minutes) giving really accurate results and 

allowing the determination of small variation of the growth rate. 

• The supersaturation of the brines used for the electrocrystallization and 

SXRD studied are different. 

• Some experimental conditions (temperature, pressure, flow rate) are 

different (Table 7.9). 

• A 2-dimension model is applied to extract the data from the 

electrochemical cell technique whereas 3-dimension information are 

obtained from the SXRD measurements. The use of a 2-dimension model 

can lead to the simplification of the mechanisms. 

This shows the merits of using different techniques to quantify the amount of scale 

(electrochemical cell) and to get to the bottom of the mechanisms of the inhibition (SXRD). 
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7.5.7 Mechanisms of the growth inhibition of the scale inhibitors 

Table 7.11 summarises the effects of the inhibitors on the induction time of the main 

crystal planes. It is difficult to classify the inhibitors according to their effects on the 

induction time as they act differently on the crystal planes. The induction time of the vaterite 

V(l10) is almost unaffected by the presence of 4ppm of the scale inhibitors tested. The 

inhibitors decrease the induction time of the aragonite A(lll) whereas they increase the 

induction time of the aragonite A(032) (except the PPCA which completely inhibit this 

plane). The effects of the inhibitors are not specific to the polymorph considering but to the 

crystal planes. 

It has been seen during this study that the PMA and the P A have similar effects but it is 

interesting to note that they affect in an opposite manner the induction time of the vaterite 

V(300). 

It is surprising to observe a decrease of the induction time of some main crystals 

whereas a delay of the growth is often combined with an increase of the induction time. Drach 

et al. showed that organic polymers can significantly inhibit the crystallization of calcium 

oxalate dehydrate by paradoxically enhancing the nucleation [217]. The hypothesis presented 

is that the inhibitors act as nucleation substrates. Once the nuclei are formed on the polymers 

their growth is then delayed. The PMA seems to act by delaying the growth for the vaterite 

V(300) and the aragonite A(032) but it seems to enhance the growth (and maybe the 

nucleation) of the aragonite A( 111) and A(031) and of the calcite C(006). 

The P A generates a decrease of the induction time for most of the main crystal planes. 

PA seems to act by enhancing the nucleation and then the growth rate is retarded (Table 7.11). 

The CMI generally decreases the induction time whereas Demadis et al. pointed out the 

prolongation of the induction time with the addition of CMI [156]. Two main reasons could 

explain this contradiction. First of all, the crystallization of CaC03 has been assessed by 

absorbance measurements and maybe the presence of small nuclei could not be detected. 

Secondly, the range of concentrations used was much higher: 100 to 300ppm of CMI was 

used (whereas 4ppm was studied with the SXRD). 
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The PPCA presents various behaviour according to the crystal planes considered: 

• Total inhibition of the vaterite V(300) and the aragonite A(032), 

• No effect on the induction time for the vaterite V(ll 0), 

• Delay of the growth of the calcite C(006) and the aragonite A(031), 

• Enhancement of the nucleation for the aragonite A(lll). 

Table 7.11: Summary of the effects of 4ppm of the scale inhibitors studied on the induction 
time of the main crystal planes formed. (Green and orange: decrease and increase of 
the induction time respectively) 

No inhibitor PPCA PMA PA CM! 

V(300) 20 28 14 14 

V(l10) 4 4 4 2 4 

A(032) 12 24 14 14 

A(l11) 8 2 4 4 4 

C(006) 6 8 2 4 4 

A(031) 8 16 6 6 8 

For the three green inhibitors, the third step of growth is characterised by a constant 

growth. A small and constant growth of the crystals occurred whereas the growth measured 

for the non-inhibited case strongly increased. The effects ofthese inhibitors were the same but 

to a different extent. The growth sites of the crystals were blocked probably by the adsorption 

of the scale inhibitors on the CaC03 formed in the cell thus the creation of free growth sites 

did not occur as seen in the non-inhibited case [29]. 

The four inhibitors showed some growth inhibition properties, different according to 

the inhibitors used. Both carboxylic acid studied (PM A and PA) had similar effects on the 

inhibition of CaC03• Four different kinds of molecules were studied and they showed some 

difference in the inhibition of calcium carbonate. Each inhibitor has a specific affinity with 

calcium carbonate depending on many factors (like the molecular structure, the molecular 

weight, the conformation etc.) resulting in different inhibition properties. 
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7.6 Effects of SI on a calcareous layer already formed 

This last part treats about the effects of the scale inhibitors when they have been added 

5 or 10 minutes (according to the set-up and the method) after the creation of the 

supersaturation. Thus the nucleation process and the early growth occurred in a non-inhibited 

solution. This aims to understand how the inhibitors affect the crystals of CaC03 already 

formed and in a growing process and to point out any difference of the mechanisms of 

inhibition according to the presence or not of a calcareous layer to optimise their use. 

7.6.1 Kinetics of inhibition 

7.6.1.1 Effects of the PPCA 

The study with the in-situ electrochemical cell illustrated the growth inhibition of the 

PPCA, the PMA and the PA on calcareous layer already formed (Table 7.12). The effects 

with P A were delayed of 10 minutes whereas the PPCA and the PMA affected the growth of 

the crystals as soon as they have been added. 

Table 7.12: Growth rate (J.UIl.min·') of calcium carbonate with and without inhibitors added at 
t= 0 and t= 1 Ominutes after the creation of the supersaturation determined with the in­
situ flow cell combined with electrodeposition 

Concentration 4ppm t=O 4ppm t=10min 
No Inhibitor 0.21 

PPCA no crystals nil 
PMA nil 0.06 

PA no crystals 0.065 

CMI 0.21 0.25 

No SXRD measurement have been done during the 5minutes of the building-up of the 

calcareous layer as it was impossible to reach the system (to add the inhibitors) once the beam 

was on. The same experimental conditions as before were applied thus a measurement every 2 

minutes was taken meaning that the first measurement was realised at the 7th minute 

compared to the non-inhibited brine. The values of the intensity were not comparable as the 

inhibitors were already in the solution when the first measurement was done. Nevertheless a 

similar or lower value for a same crystal plane was expected when the inhibitor was added 

after 5 minutes than the intensity measured in the non-inhibited brine. 
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Figure 7.18: Different steps of growth of calcium carbonate determined from the Synchrotron 
X-Ray Diffraction study, in presence of 4ppm of PPCA added before and 5minutes 
after the creation of the supersaturation 

The step I previously characterised the induction time when the inhibitors were added 

before the creation of the supersaturation. In this part, the induction time could not be 

measured for the reasons mentioned above. Step I in this case is characterised by a large 

increase of the growth of the crystals of CaC03. There is a delay in the ability of the PPCA to 

inhibit the growth of the crystals when they are added after 5 minutes (Figure 7.18). This 

shows that the PPCA interfere at the beginning of the crystallisation process which is in a 

good accordance with the fact that PPCA is a nucleation inhibitor [145]. 

Then the growth is slowed down and kept constant during the second step (step II). The 

same late acceleration of the growth is observed after 40 minutes as observed previously (step 

III). 

The intensity depends on the volume quantity of crystals [177]. A chemical can either 

act on the size or the number of crystals. The nucleation process is likely to be finish after 5 

minutes (as seen in Chapter 5) so the PPCA can only act on the growth process in the 

experimental conditions. 
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The slow down of the growth of the vaterite and the calcite occurs more rapidly than 

the growth of the aragonite (12 and 16 minutes respectively) (Figure 7.19). The acceleration 

of the growth (step III) is seen only with the aragonite and the calcite. The three polymorphs 

have a similar behaviour as when they were added before the creation of the supersaturation 

probably to due to the fact that at this time of the test the cell is covered with CaC03. The high 

affinity of the PPCA with the vaterite forms of CaC03 was maintained with the later addition 

of the PPCA (Table 6.3). These results were expected as a high affinity between the PPCA 

and the crystals of CaC03 have been reported in Chapter 5. 
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Figure 7.19: Different steps of growth of aragonite, vaterite and calcite determined from the 
Synchrotron X-Ray Diffraction study, in presence of 4ppm of PPCA added 5minutes 
after the creation of the supersaturation 

7.6.1.2 Effects of PMA 

It was previously found that PMA acted more as a growth inhibitor thus the difference 

between added the inhibitor after or before the creation of the supersaturation had fewer 

effects than for the PPCA (Figure 7.20). This illustrates the higher affinity of the PMA with 

the crystals of CaC03 than with the metal surface (as seen in Chapter 5). 
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Figure 7.20: Different steps of growth of calcium carbonate determined from the Synchrotron 
X-Ray Diffraction study, in presence of 4ppm of PMA added before and 5minutes 
after the creation of the supersaturation 

The growth of the crystals occurred under two similar linear regimes . The first step of 

growth (step I) is very similar in both cases (PMA added before or after the creation of the 

supersaturation) (Figure 7.20). From the 12th minute, the time of addition of the inhibitor 

affects the growth of the crystals: the growth is slowed down in a greater extent when the 

PMA is present during the beginning of the crystallization process. 

The PMA added after the creation of the supersaturation affects the different forms of 

calcium carbonate (Figure 7.21). The three polymorphs follow the same two-step model 

previously seen whereas the growth trend of the vaterite formed with PPCA was different as 

the aragonite and calcite growth trend. An acceleration of the growth of the aragonite A(111) 

and the calcite C(006) is observed at the 26th minute as seen with the PPCA but not with the 

PMA when it was added before the creation of the supersaturation. These two planes seem to 

be very sensitive at the concentration (close to the MIC) of the inhibitors added . The change 

of the growth rate at the 14th minute is due to the emergence of the aragonite (032) and the 

vaterite (300). 
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Figure 7.21: Different steps of growth of aragonite, vaterite and calcite determined from the 
Synchrotron X-Ray Diffraction study, in presence of 4ppm of PMA added 5minutes 
after the creation of the supersaturation 

A complete different mechanism of inhibition is observed between PPCA and PMA 

added after the creation of the supersaturation: 

• PPCA blocks temporarily the growth of the crystals and then the growth 

occurs again (the second point has not been revealed with the in-situ 

electrochemical cell). 

• PMA reduced the growth (without blocking) of the crystals first (a 

blockage of the growth was observed with the in-situ electrochemical 

cell). 

7.6.2 Inhibition of the different crystal planes 

The late addition of the PMA affected the growth of the crystals of CaC03 by strongly 

reducing the growth for all the crystal planes (Table 7.13). They were not different behaviour 

as observed when the PMA was added before the creation of the supersaturation. It exists a 

correlation between the inhibition behaviour with the addition of the PPCA regarding the time 

of addition; the PPCA acted by blocking the growth rate of some crystal planes when it was 

added before and after the mixing of the two brines (V( 11 0), X, A(031), A(200) and A(311 ». 
The crystals had the same behaviour whether the PPCA was added before or after the creation 

of the supersaturation. The PPCA acted as a nucleation inhibitor for the calcite (211) and 

(214), for the vaterite (300) and for the aragonite (03?). 
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When the nucleation process of these crystal planes were not affected by the PPCA, the 

behaviour of growth was different for the different planes: the growth of the calcite (2 11 ) and 

the vaterite (300) was blocked, the growth of the aragonite (032) and the calcite (2 14) was 

reduced. The PPCA can act as a nucleation inhibition (when it is present during the process) 

or as an efficient growth inhibition . 

Table 7.13: Summary of the effects of 4ppm of PPCA and PMA on the growth rate of the 
different crystal planes formed. 

Crystal Planes PPCA t=O PPCA t=5 PMA t=O PMA t=5 

C(211)/A(3 10) Totally Inhibited Growth rate Growth rate Growth rate 
blocked blocked strongly reduced 

C(006) Growth rate Growth rate Growth rate Growth rate 
reduced* reduced* strongly reduced reduced* 

C(2 14) Totally Inhibited Growth rate Growth rate Growth rate 
strongly reduced blocked strongly reduced 

V(300) Totally Inhibited Growth rate Growth rate Growth rate 
blocked strongly reduced strongly reduced 

V(110) Growth rate Growth rate Growth rate Growth rate 
blocked blocked strongly reduced strongly reduced 

X Growth rate Growth rate Growth rate Growth rate 
blocked strongly reduced strongly reduced strongly reduced 

A(032) Totally Inhibited Growth rate Growth rate Growth rate 
strongly reduced blocked strongly reduced 

A(031) Growth rate Growth rate Growth rate Growth rate 
blocked blocked blocked strongly reduced 

A( 111) Growth rate Growth rate Growth rate Growth rate 
reduced* reduced* strongly reduced reduced* 

A(200) Growth rate Growth rate Growth rate Growth rate 
blocked blocked blocked strongly reduced 

A(31 1) Growth rate Growth rate Totally Inhibited Growth rate 
blocked blocked strongly reduced 

(Growth rate reduced*: first a reduction o/the growth rate is observed and then a great 

increase) 
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It is interesting to note that the intensity of the calcite (006) and aragonite (111) largely 

increased from the 34th minute with 4ppm ofPPCA added before and after the creation of the 

supersaturation. This phenomenon was only observed when the PMA was added when a 

calcareous layer was pre-formed but in a smaller extent. The growth of the calcite (006) and 

of the aragonite (111) was blocked with the PPCA and then enhanced whereas the PMA 

reduced only the growth of the crystal planes. These two planes had similar growth as the 

other planes in the non-inhibited solution. The inhibition of both crystal planes was limited in 

time. 

7.7 Implications for industry 

In this part the contributions of this thesis to the industry associated with scale control 

and scale management is presented. 

It has been reported in this thesis that different mechanisms of inhibition exist according 

to the affinity of the chemicals with either the metal surface or the crystals of CaC03• The 

environment where the scaling deposition occurs can lead to the choice of the inhibitor to use. 

Some inhibitors like the PPCA and the PMA interact strongly with the crystals of CaC03• 

Some surfaces are difficult to reach and the removal of scale can be cost effective (like in the 

pipes for example). In that case, the PPCA and the PMA are two potential inhibitors to use as 

they interact with the calcareous layer already formed onto the surfaces resulting in a 

reduction of the deposition. On the contrary, the PA can be used preferentially on clean 

equipment to prevent any scale deposition as the film of inhibitor formed reduced more 

efficiently the scaling deposition. 

In the SXRD study the deposit was aragonite dominant with and without the addition of 

inhibitors. The inhibitors did not block completely the growth of the crystals of aragonite and 

often a late increase of the growth was observed. It seems that reducing only the aragonite 

crystals or specific crystal planes of aragonite would result in a general reduction of the 

deposition. The target of the inhibitors could be the aragonite in order to block the growth of 

the dominant polymorph therefore the growth of the deposit would be reduced. 
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The two different in-situ techniques used in this thesis revealed new features to 

understand the mechanisms of inhibition. For the field applications, the electrochemical cell 

gives interesting data about the kinetics of CaC03 and a quick estimation of the potential 

scaling risks could be determined. The disadvantage is the difficulty to reproduce realistic 

conditions. The in-situ cell used with the SXRD is easily applicable to realistic conditions (ie. 

substrate, high temperature and pressure, composition of the water) and the accuracy of the 

results provides reliable data. The process of the data and the complex use of this tool make it 

difficult to apply it directly to the field. 

For industry the suggestion in this thesis that the inhibitors have selective preference to 

inhibit certain planes more strongly is important and could help to lead ultimately to the 

molecular design of new inhibitor molecules. 
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Chapter 8 
Conclusions 

This section gives a summary of the different conclusions raised from this thesis. 

Different approaches have been used to study the formation and the inhibition by green 

chemicals of CaC03 deposition on a metal surface. The conclusions are given according to 

five key points of this study. First the conclusions about the interactions of the inhibitors and 

the metal surface are summarised. Then, the findings related to the adsorption of the 

chemicals on the CaC03 are given. The mechanisms of inhibition and the effects on the 

morphology of the crystals are then proposed for the different inhibitors. The contribution of 

the in-situ methodologies are reviewed. Finally, the Synchrotron X-Ray Diffraction as a tool 

to study scale formation is considered. 

8.2 Interactions between the inhibitors and the metal surface 

It was known that some inhibitors interact with the surface to inhibit CaC03• This study 

permitted the detection of an inhibitor film on a metal surface . The principal conclusions 

related to the interactions between the inhibitors and the metal surface are raised below. 

• The presence of an inhibitor film on a metal surface has been detected by 

chronoamperometry and/or by Fourier Transform Infra-Red 

spectroscopy. PPCA, PMA, P A and CM! inhibit partly calcium 

carbonate formation by forming a film on the surface. 

• The inhibitors interact with the surface via cations (Ca2+ /Mg2+). The 

properties of the film formed onto the surface is specific to the inhibitor 

as different techniques (showing different characteristics of the film) 

were needed to point out the presence of the film. 
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• The changes of the contact angle of the surface is a consequence of the 

presence of the inhibitors and not the strategy to inhibit calcium 

carbonate formation. Nevertheless both approaches (chemical treatment 

and physical modification of the surface) are potential strategies to 

inhibit CaC03 deposition. 

8.3 Adsorption of the inhibitors on CaC03 

The inhibitors not only interact with the substrate of deposition but with crystals of 

CaC03• The different adsorption properties on CaC03 of the inhibitors results in different 

abilities to inhibit CaC03 when a calcareous layer is already formed on the surface. This 

illustrates the significance of characterising the scale inhibitors in order to optimize their 

conditions of use. The scale inhibitor used in the industry in a system already affected by 

scale can be different than the inhibitor used in a clean system, for a prevention treatment for 

example. PMA and PPCA present a great affinity with CaC03 and an inhibitor film was 

detected with the addition of 4ppm of PMA added 10 minutes after the beginning of the 

crystallization process. PA interact more with the surface metal. 

8.4 Mechanisms of inhibition 

The mechanisms of CaC03 formation and inhibition was investigated by 

chronoamperometry, in-situ electrochemical flow cell and in-situ SXRD. 

• CaC03 formation occurs under three steps of growth. First there is an 

induction time, then the total growth largely increases due to the 

emergence of new crystal planes. In the last step, the growth slows down 

and then an acceleration of the growth occurs. 
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• The growth of most of the crystal planes in a inhibited system depends 

on the moment the inhibitors are added. The aragonite A(032) is 

completely inhibited when PPCA is added before the creation of the 

supersaturation whereas it is only reduced when the PPCA is added 5 

minutes after the start of the crystallization. The PPCA can act as a 

nucleation inhibitor when it is present at the early stage of CaC03 

formation. 

• PPCA presented the greatest inhibition efficiency of CaC03 deposition 

during the different studies. PMA and PA affect the CaC03 formation in 

a very similar way. A common trend of calcium carbonate inhibition was 

observed for both carboxylic acids. The effects of CMI were less 

significant than for the other inhibitors. 

• PPCA and P A seems to affect the nucleation and the growth of the 

crystals whereas the effects of PMA are predominant during the growth 

process. 

8.5 Effects on the morphology 

The morphology was studied with the in-situ electrochemical cell and the Synchrotron 

X-Ray Diffraction. 

• The electrochemical flow cell showed that 1 ppm PPCA, PMA and PA 

affected the morphology of the crystals ofCaC03. 

• The SXRD showed that the aragonite is the dominant form of CaC03 

crystallized under the specific experimental conditions (SXRD study). 

Vaterite and calcite were formed as well in the cell. 

• The same crystal planes formed in the non-inhibited case were formed in 

the inhibited cases and the growth of all the crystal planes were affected 

by the presence of the scale inhibitors. 
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• The PMA, PA and CMI inhibit CaC03 formation by reducing the growth 

of all the crystal planes whereas the PPCA totally inhibits two main 

crystal planes (aragonite (032) and vaterite (300». 

• The acceleration of the growth of the calcite C(006) and of the aragonite 

A( 111) was only observed with the PPCA. 

• The 4 inhibitors seem to inhibit preferentially the vaterite forms. 

8.6 In-situ methodologies 

The in-situ methodologies provided important information in the mechanism of CaC03• 

The inhibitors usually affect both the nucleation and the growth processes but one mechanism 

of inhibition often predominates. 

• The ability of PPCA and P A to affect the CaC03 formation during the 

early stage has been pointed out with the in-situ electrochemical cell. 

• The inhibitor film has been detected by in-situ visualization for the PMA 

added 10 minutes after the start of the crystallization. 

• The assessment of the size of the crystals over time permitted to point 

out different inhibition mechanisms. 

8.7 Synchrotron X-Ray Diffraction 

The Synchrotron X-Ray Diffraction is a very accurate tool to study scale formation 

under different conditions (temperature, pressure, flow rate, water composition, nature of the 

substrate etc.). Its use is a novelty in the scale area and it brought in the past new findings 

about CaC03 formation. The study of the effects of green inhibitors with the SXRD 

determined the different steps of growth and the difference of the mechanisms of inhibition of 

the different chemicals used. 
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This technique provided information on the growth of the different polymorphs and on 

the preferentially formed crystal planes. A deep study is necessary to understand the 

mechanisms of inhibition as the four inhibitors tested exhibit different behaviour according to 

the crystal planes considered. 
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Chapter 9 
Future work 

This thesis was focused on the mechanisms of inhibition of green and non-green 

chemicals and some new conclusions have been raised from this work. Nevertheless some 

aspects need to be given some attention to fully understand the mechanism of calcium 

carbonate formation and inhibition. This chapter aims to introduce some studies which could 

be conducted to improve the solutions brought to the industry to reduce calcium carbonate 

formation., 

9.2 Calcareous surfaces 

It has been shown in this thesis that the behaviour of a chemical can vary according to 

the presence of crystals of calcium carbonate on the surface. This aspects of this study is 

important as the industrial surfaces can be very hard to clear from any calcareous layer 

already present before applying an anti-scaling treatment. The scale inhibitors studied showed 

great interactions with calcium carbonate. The formation of film of inhibitor onto a surface 

covered of a calcareous deposit could be a strategy to reduce the scaling problems especially 

when the risk of scale deposition occurs in a natural environment. 

9.3 Combination of different inhibitors 

Calcium carbonate occurs according to two main steps: nucleation and growth of the 

crystals. This study confirmed that the scale inhibitors act generally during both steps but it 

appears that PMA acts more on the growth of the crystals rather than the P A which showed 

interesting nucleation inhibition properties. The combination of inhibitors with different 

strategies (either nucleation inhibitor or growth inhibitor) could offer a better inhibition and it 

might exist a concentration for which the scale inhibition is optimum. The study of the 

synergic effects of different chemicals could bring new inhibition properties from additives 

which are already used in the field. 
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9.4 Kinetics model 

The SXRD is a great tool to study the kinetics of scale formation and inhibition. Some 

ex-situ analyses could help to build a kinetic model. Some parameters like the weight of the 

deposit formed could give important data to link to the increase of the diffracted intensity 

with the amount of scale. Microscopic observations of the scale produced could provide 

important information on the changes of morphology and disposition of the crystals. The set­

up used allows the variations of some key parameters in the calcium carbonate formation like 

the temperature, the flow rate and the pressure. This would lead to conditions closer to the 

field. 

A kinetics model taking into account more realistic conditions would provide a great 

tool to the industry to predict the scale formation and therefore more adapted treatment could 

be planned. 

9.5 Anti-scaling surfaces 

The significant role of the interactions between the surface of deposition and the scale 

inhibitors has been pointed out in this study. Inhibition of CaC03 formation results from the 

coverage of the substrate by an inhibitor film. The modifications of the surface properties 

either physical or chemical could be an efficient strategy to inhibit scale formation even 

though the design of anti-scaling surfaces remains a major challenge. The changes of the 

surface properties could lead to a variation of the adhesion of the crystals on the surface and 

therefore the flow rate applied in the pipes for example could be sufficient to reduce the 

problems of flow assurance. The addition of a chemical treatment to these anti-scaling surface 

could be an efficient and environmental friendly (if combined with a green chemical) way to 

inhibit scale. The anti-scaling surfaces would be very interesting to study with the SXRD as a 

full mechanism of calcium carbonate formation could be obtained. 
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