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Abstract 

Distributed systems are gradually being accepted as the dominant computing paradigm 
of the future. However, due to the diversity and multiplicity of resources, and the need for 
transparency to users, global resource management raises many questions. On the 
performance level the potential benefits of the load balancing in resolving the occasional 
congestion experienced by some nodes while others are idle or lightly loaded are commonly 
accepted. It is also acknowledged that no single load balancing algorithm deals satisfactorily 
with the changing system characteristics and dynamic workload environment. 

In modelling distributed systems for load balancing, optimistic assumptions of system 
characteristics are commonly made, with no evaluation of alternative system design options 
such as communications protocols. When realistic assumptions are made on system 
attributes such as communication bandwidth, load balancing overheads, and workload 
model, doubts are cast on the capability of load balancing to improve the performance of 
distributed systems significantly. 

A taxonomy is developed for the components as well as the attributes aspects of load 
balancing algorithms to provide a common terminology and a comprehensive view to load 
balancing in distributed systems. For adaptive algorithms the taxonomy is extended to 
identify the issues involved and the ways of adding adaptability along different dimensions. 
A design methodology is also outlined. A review of related work is used to identify the most 
promising load balancing strategies and the modelling assumptions made in previous load 
balancing studies. Subsequently the research problems addressed in this thesis and the 
design of new algorithms are detailed. 

A simulated system developed to allow an experimentation with various load balancing 
algorithms under different workload models and system attributes is described. Based on 
the nature of the file system structure and the classes of nodes processing speed involved, 
different models of loosely-coupled distributed systems can be defined. Four models are 
developed: disk-based homogeneous nodes, diskless homogeneous nodes, diskless 
heterogeneous nodes, and disk-based heterogeneous nodes. The nodes are connected through 
a broadcast transfer device. 

A set of representative load balancing algorithms covering a range of strategies are 
evaluated and compared for the four models of distributed systems. The algorithms 
developed include a new algorithm called Diffuse based on explicit adaptability for the 
homogeneous systems. In the case of heterogeneous systems, novel modifications are made 
to a number of algorithms to take into account the heterogeneity of nodes speed. The 
evaluation on homogeneous systems is two-fold: an assessment of the effect of system 
attributes on the performance of the distributed system subject to these algorithms, and a 
~omparison of the relative merits of the algorithms using different performance metrics, and 
III particular a classification of the performance of the Diffuse algorithm with regard to 
others in the literature. For the heterogeneous systems the performance of the adapted 
algorithms is compared to that of the standard versions and to the no load balancing case. 

As a result of this evaluation, for a set of combinations of performance objectives, 
distributed system attributes, and workload environment, we identify the most . appropriate 
load balancing algorithm and optimal values for adjustable parameters of the algorithm. 
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CHAPTER 1 

Introduction 

1.1. Motivation 

With the advent of distributed systems, it is becoming possible to get the 

maximum out of a set of computing nodes through a dynamic workload redistribution 

to avoid the situation where some hosts are idle while others have multiple jobs queued 

up [Livny84]. The drive behind this load balancing is two-fold: efficiency and 

extensibility. The current advances in computer and communication technology make a 

multi-computer approach cheaper than a mainframe solution, of the same performance, 

provided all the computing resources are used efficiently. The extensibility aspect of a 

distributed system should provide for the addition of new processors as the user needs 

arise. A well designed load balancing scheme aims at accommodating both of these 

aspects. The goal of the design of such systems is to redistribute the global service 

demands generated at different workstations over the dynamically available computing 

resources. 

The potential benefits of dynamic load redistribution to resolve the occasional 

congestion experienced by some nodes to improve the overall system performance, are 

commonly accepted [Zhou87] for distributed computer systems. However, no single 

load balancing algorithm deals satisfactorily with the various and rapidly changing 

system conditions, and the lack of up-to-date system state information. A load 

balancing algorithm consists of two elements: information and control. The information 

element exchanges and maintains information about the state of the distributed system. 

Different approaches as to what information, how much information is to be 

maintained, how often it is to be updated, and how large is the balancing region 
1 
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involved, have been proposed. The load index and its measuring mechanism have also 

been the subject of many investigations. The control element uses this information to 

decide when it is advantageous to redistribute the load, who makes this decision, which 

process to transfer or migrate, and where to transfer a process to reduce congestion and 

improve performance. 

A number of algorithms have been reported in the literature. They differ in the 

performance objectives sought, the nature of their information and control elements, the 

attributes of the system model used as a test bed, and the simplifying assumptions made 

to aid the analysis or the implementation of the simulation model. Under these models 

and assumptions substantial job mean response time improvements at acceptable costs 

are reported [Zhou88]. 

On the modelling for performance study, the distributed system is commonly 

assumed to include homogeneous computing nodes and to be based on either a shared 

file server or each node having its own local file system. An optimistic view is often 

taken on some essential system characteristics such as job transfer delays as pointed out 

in [Mirchandan89], load balancing overheads, and workload environment. No 

evaluation of system design alternatives (e.g. communication protocols) has been 

reported. 

To gain accurate insights into the performance of load balancing in distributed 

systems, more realistic system characteristics need to be taken into account in terms of 

both load balancing overheads and system model attributes. We set out to examine the 

validity of the assumptions made on distributed system attributes in previous load 

balancing studies, and to assess the relative performance order of some common load 

balancing algorithms when more realistic models are assumed. 
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1.2. The Problem 

In previous load balancing studies, a common approach is to use a simple model of 

the distributed system with assumptions such as large communication bandwidth, 

negligible load balancing overheads, homogeneous workload, and to search for 

complex load balancing algorithms whose viability is questionable [Eager86] and 

which might provide only little or no gain when evaluated on realistic systems. The 

general approach taken in this project is to evaluate the effect of distributed system 

attributes and workload model on the performance of representative load balancing 

strategies. 

The model extensions are added to represent features that were assumed negligible 

or require a greater level of details. Other extensions not covered in common system 

models are added to model actual systems more accurately and reflect the different 

distributed system architectures. The variations involve the evaluation of the effects on 

load balancing performance of different system characteristics design options, such as 

communication protocols. 

To determine the interdependence of system attributes and load balancing 

algorithm performance, we examine distributed systems along three paths 1) modelling 

of distributed system attributes including: file system structure, nodes configuration, 

communication network, 2) workload nature including: homogeneous users with 

homogeneous jobs, heterogeneous users with homogeneous jobs, and homogeneous 

users with heterogeneous jobs, and 3) the design and evaluation of load balancing 

algorithms that take into account realistic system attributes and non-negligible load 

balancing overheads introduced by load balancing activities. 

The actual system being modelled consists of a network of workstations 

interconnected by local area networks with individual, independent, sequential jobs 
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arriving at each autonomous processor. For a realistic distributed system model, the 

analytical approach is not suitable due to model complexity, whilst prototyping requires 

costly equipment/environment. A more appropriate approach for the study of load 

balancing performance on distributed computer systems is simulation. We carry out 

various performance studies of a set of representative load balancing algorithms on four 

simulated models of loosely-coupled distributed systems: diskless homogeneous nodes, 

disk-based homogeneous nodes, diskless heterogeneous nodes, and disk-based 

heterogeneous nodes. The objectives of this performance study are: 

• To measure the effect of system attributes on the performance of load balancing 

and in particular to classify the performance of a novel algorithm called Diffuse 

with regard to others in the literature. These attributes include the file system 

structure and the communication bandwidth. 

• To evaluate the effect of the workload model on the performance of load 

balancing algorithms. 

• To measure the effect of the heterogeneity of nodes speed on the performance of 

standard load balancing algorithms and to assess the performance improvements 

made when adapted versions of these algorithms are used. 

As a result of this evaluation, for a set of combinations of performance objectives, 

distributed system attributes, and workload environment, we identify the most 

appropriate load balancing algorithm and the optimal values for the adjustable 

parameters of the algorithm. 
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1.3. Thesis Organisation 

In Chapter 2, a literature review on the issue of load balancing in distributed 

systems is presented. This is addressed at two levels: the modelling of distributed 

systems and the design of load balancing strategies for such environments. The results 

of the review are organised under a taxonomic structure for the algorithms components 

and attributes. A closer look at the adaptability attribute has been taken. A framework 

and design methodology for adaptive scheduling are developed for the case of a rapidly 

changing environment. 

In Chapter 3, as the result of the review of previous performance studies, the 

research problems addressed in this thesis are defined. This includes the design of the 

Diffuse algorithm and the algorithm versions adapted to a heterogeneous system. 

Chapter 4 describes the experimental system. First the purpose of the system 

design is defined and the experimental models and factors identified. Four models are 

considered: systems with homogeneous diskless nodes, systems with homogeneous 

disk-based nodes, systems with heterogeneous diskless nodes, and systems with 

heterogeneous disk-based nodes. Then the performance studies undertaken are outlined. 

The distributed systems on which this evaluation is targeted are modelled and a 

simulated implementation is described. This is followed by an overview of the 

simulation package and the simulation model calibration and validation. 

In Chapter 5, the results of various performance studies undertaken on the four 

models to evaluate the effect of different system attributes and workload models are 

presented and compared to related work. 

In Chapter 6, we summarise the results obtained and offer our conclusions. We 

then discuss future work related to this research. 



CHAPTER 2 

Survey of Load Balancing Algorithms in Distributed Systems 

2.1. Introduction 

In this chapter we review the literature that has been published in the area of 

interest to this thesis. This can be divided into five main areas. 

(i) A motivation for dynamic load balancing in distributed systems is given. Then 

the previous work on the modelling of distributed systems and the design of load 

balancing strategies for such systems are surveyed. 

(ii) The load balancing strategies reported in the literature are organised under a 

taxonomic structure to show how different researchers addressed the same load 

balancing issues. The algorithm attributes are also considered. 

(iii) Special attention is given to a distributed system characterised by a rapidly 

changing environment. For such an environment adaptive scheduling is the way 

forward to maintain a consistent level of performance. The fundamentals of adaptive 

scheduling are described and a methodology for the design of adaptive load balancing 

algorithms is outlined. 

(iv) A selection of load balancing algorithms is detailed. The criteria used is to 

select load balancing policies which include different algorithms components/attributes 

identified in the taxonomy and with most promising performance gain. Various 

algorithms included in the previous comparative studies are also described. 

(v) Comparative studies of load balancing anq load balancers implementation are 

reviewed. The results of this survey are summarised in Section 2.7. 

6 
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2.2. Load Balancing in Distributed Systems 

In a distributed system characterised by a resource multiplicity combined with a 

stochastic nature of the workload [Kleinrock85, Ezzat86, Cheriton88], there is a high 

probability for the occurrence of the 'wait while idle' state whereby some hosts in the 

pool are idle while other hosts have multiple jobs queued up [Livny84, Theimer85]. In 

his profiling ofa network of workstations, Mutka has shown that processors are idle 

70% of the time [Mutka87] while Livny showed that this probability depends on the 

system load and the size of the pool, and that load balancing can improve performance 

even in the case of homogeneous process arrival rates [Livny84]. This environment is 

characterised by changing and uneven loads on the hosts and a lack of up-to-date 

system state information. For an effective use of the resource multiplicity inherent in 

such systems, and to satisfy the diverse and sometimes conflicting users' performance 

expectations, the design of efficient distributed scheduling algorithms and mechanisms 

for processor allocation has been a research challenge for over a decade 

[Wang85, Casavant88, Goscinski90]. These algorithms deal with the global scheduling 

of system workload through local and remote job placement, while allocation of local 

resources is left to the local scheduling component. 

Although the common objective of load balancing is to improve the performance 

of the computer system, the nature of the performance objective differs with the 

computing environment involved: 

• For a general purpose distributed computer system based on a local area network, 

it is to reduce the average system response time with a minimum degradation of 

the performance for individual users. An, alternative objective is greedy 

scheduling where each job is allocated to the node where it has the best response 

time regardless of the effect on other jobs [Bryant81, S tankovic84]. 
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• For a real time distributed system, it is to provide a guaranteed response time. 

• For a parallel computer system, it is to reduce the total execution time of a 

program composed of several modules. 

In this review load balancing is addressed at two levels. On the distributed system 

level different architectural models and perspectives are surveyed. The communication 

model assumed is based on the broadcast device. On the algorithm level, first previous 

work on dynamic algorithms is reviewed then the approaches to the adaptability 

problem are considered. 

2.2.1. Distributed Systems Modelling 

The common approach adopted in computer science is modelling then building 

[Power89]. Three architectural models of distributed systems have been identified 

[Tanenbaum85, Coulouris88]: workstation/server model [Ezzat86], processor pool 

model [Needham82, Mullender86], and integrated model [Walker83]. In a 

workstation/server model single-user computers or workstations are provided. Most 

user needs are handled by his workstation, however expensive services such as file 

servers, high quality printers are shared. In the processor pool model application 

programs are executed within a set of computers managed by a processor service. The 

user needs only a terminal connected to the network to use the system. A hybrid model 

which combines features of both previous models has emerged to overcome the 

disadvantages in each. In the integrated model each computer can perform the role of 

server and application processor. The software at each computer is similar to that of a 

centralised multi-user system. 

The communication network can be designed along two models 

[Livny84, Theimer88]: broadcast with the multicast as a variant, and point-to-point or 

store-and-forward. The store-and-forward model was first used in the wide area type of 
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networks and recently in mesh-connected parallel systems such as hypercubes and a 

pool of transputers. It is also popular as a general purpose model in the simulation of a 

pool of processors (e.g. Manhattan networks), and for analytical studies. The broadcast 

model is used for multicomputer systems and networks of workstations. 

In this study we concentrate on loosely-coupled general purpose distributed 

systems. These systems consist of a collection of homogeneous or heterogeneous, 

autonomous processors connected by a local area network and operating in a 

cooperative fashion. This network of processors can be shared in two ways; either to 

improve system performance by relieving overloaded nodes through remote execution 

of part of their load on less loaded nodes, or by using a set of nodes for cooperative 

work on a single distributed computation. The nodes can be assumed to be public ally 

or privately owned. In the case of a privately owned node, a priority for local processes 

is required if the local user is not to be penalised. Each processor in the distributed 

system is managed by a replicated copy of the system kernel with associated 

communication protocols and load distributing software (Le. a distributed scheduler). 

Distributed systems have been studied from several perspectives; based on the 

intended objective, different modelling approaches are appropriate. Mathematical 

modelling techniques have been used for formal specifications and verification 

[Hoare85, Broy87], and analysis based on queuing theory [Krueger87, Mitrani87]. 

When the objective is standardisation, a documentation such as ANSA standards 

[ANSA87] is used. In an approach similar to the PMS notation [Siewiorek82] 

(computer architecture context), a model based on the concept of BP processes 

[Jesty88] has been developed. It is a graphical representation used for an abstraction of 

the services offered by a distributed system to give a precise view of these services to 

the user and allow a comparison of different systems using a common terminology. 

Textbooks and system survey papers provide an informal description of distributed 



10 

systems [Coulouris88, Tanenbaum85]. The approach most favoured for performance 

evaluation purposes is simulation. Using simulation techniques the essential system 

features are abstracted and a model built to evaluate the system performance and 

behaviour, and test different solutions [Zhou88, Johnson88, Stankovic84a]. 

2.2.2. Load Balancing Strategies 

There are so many aspects in the study of processor allocation schemes that it is of 

paramount importance to limit the class of algorithms and issues to be addressed, and 

make a precise description of the system to which they apply and the environment in 

which they will be tested. In this review, we concentrate on the policy aspects that deal 

with the collection of load information, process transfer, negotiation for an adaptive 

allocation of processes at the global level, based on the remote execution mechanisms 

described in the literature [Smith88]. 

Three approaches to workload scheduling on a computer system composed of 

multiple processors have been investigated: co-scheduling, clustering, and load 

balancing [Tanenbaum85]. In the clustering approach several communicating 

processes are assembled on the same node to reduce the communication overhead 

[Stankovic84]. In co-scheduling the opposite approach is taken [Ousterhout82]. The 

concept of distributed group is used. The members of the same group are spread over 

the network to exploit the concurrency among the nodes. These two approaches apply 

to task structure allocation. In the case of independent jobs scheduling, the favoured 

approach is to dynamically transfer jobs from heavily loaded hosts to lightly loaded 

hosts in order to improve the overall performance. The resulting form of computing is 

called load distributing [Eager86, Wang85, AlonsQ,86]. It refers to both load sharing 

Whose goal is to keep all computing nodes busy, and load balancing which attempts to 

have an equal load on all the nodes. The design of a load redistributing algorithm 
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depends on the performance objectives sought and the appropriate redistribution 

approach. The ultimate goal of these strategies is to minimise the system average and 

standard deviation of the response time with minimum adverse effect on individual 

users. The contributions to the design of load balancing algorithms can be organised 

into three categories: 

1) Static Algorithms 

These algorithms aim at finding an optimal assignment of tasks by clustering or 

co-scheduling, and is achieved by balancing the system loads periodically. They assume 

that the process behaviour is known and use graph theory models to attempt a fair 

distribution of the load [Efe82, L084]. The allocation decisions of the system 

components are based on pre-determined parameters. Early work on load balancing has 

been carried out along this approach but due to inherent drawbacks such as 1) the static 

nature of the algorithm does not allow these strategies to respond to short-term 

fluctuations in workload, 2) they require too much information such as arrival time and 

execution cost of each job or module to be implementable, and 3) they involve intensive 

computation to obtain the optimal schedule [Zhou87a]; the research effort has recently 

concentrated on the two other heuristic approaches which are implementable and 

achieve promising results. Quasi-static algorithms are a variant of this category. These 

algorithms ignore the current state of the system, but they tune their decision variables 

by adapting to slowly changing system characteristics such as the arrival rates of 

jobs[Green88] . 

2) Dynamic Algorithms 

Here scheduling is seen as a job routing problem. These algorithms balance the 

loads upon the arrival of each job. This is achieved by a continuous assessment of the 

system load which is dynamic and unpredictable. The allocation of the job is done in 

real time following a fixed policy based on the recent system state information and 
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currently perceived system load imbalance [Zhou88] or base their decisions on 

statistical averages. Extensive research work has been done in this category [Zhou88]. 

3) Adaptive Algorithms 

Scheduling in this approach can be interpreted as an adaptive control problem. 

These algorithms, like dynamic algorithms, balance loads upon the arrival of each job, 

but also balance loads whenever anomalies appear in the workload of the system or 

individual nodes. They exhibit more flexibility by adjusting their policy to match the 

dynamic system characteristics. In the literature some algorithms with different degrees 

and approaches of adaptability have been reported [Barak85, Shamir87, Krueger88]. To 

support adaptability, most of these algorithms use preemptive scheduling. 

Although the term dynamic scheduling and adaptive scheduling have often been 

used interchangeably in the literature by grouping any policy that is not static under the 

heading of dynamic, there is a clear distinction between the two. A dynamic algorithm 

has a fixed policy in dealing with its dynamic environmental inputs, whereas an 

adaptive algorithm uses the environmental stimuli to modify the scheduling policy itself 

[Casavant88]. 

2.3. Taxonomy of Load Balancing Algorithms 

Given the many dimensions involved in global scheduling of a distributed system, 

Casavant et al. [Casavant88] have addressed the needs for a taxonomy of the 

distributed scheduling algorithms reported. In the taxonomy, distributed scbeduling is 

addressed as a resource management problem. Using this taxonomy the algorithms of 

interest in this study can be classified as global, dynamic, distributed, cooperative, sub­

optimal, heuristic, adaptive, and have load balancing as a global objective. They may 

involve one-time assignment (non-preemptive) or dynamic reassignment (preemptive) 

of processes. They may also include some probabilistic components 
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[Bryant81, Hsu86, Chow86]. These algorithms are an example of distributed 

computation and involve the concepts of optimisation, adaptability and distributed 

decision-making. The load balancing approach was not fully investigated. 

Three subclasses of these algorithms can be identified based on the communication 

model they assume: broadcast with various random and polling techniques which 

reduce the cost of indiscriminate broadcasting, point-to-point with various nearest 

neighbours techniques, and a third category of algorithms which are communication 

model independent (Le. topology independent [Ni85]). 

In this review we focus on the load balancing approach to resource management. 

A study of the load balancing literature reveals that a large number of design 

dimensions are involved in a load balancing algorithm and that there is no agreed upon 

terminology. In a previous work, Wang and Morris [Wang85] used mathematical 

techniques to categorise ten representative algorithms. The algorithms are categorised 

as source-initiative or server-initiative. A range of several information dependency 

levels involved are used to further classify the algorithms. Using a Q-factor (quality of 

load sharing) the performance of these algorithms is ranked. For negligible 

communication costs they show that at the same information level server-initiative 

algorithms outperform source-initiative algorithms. 

In this work we take a broader view and cover several aspects of a load balancing 

scheme. A taxonomy can be made based on the approach taken to implement each 

component (Le. load balancing activities) of the algorithm, or it can be based on the 

attributes of the algorithm which can apply to more than one component of the 

algorithm, and represent some general properties of the load balancing algorithm such 

as decentralisation, transparency, autonomy, scalability, and adaptability. 
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2.3.1. Components of a Load Balancing Algorithm 

The performance of a load balancing system depends on four factors: the load 

index, the load balancing algorithm, the workload environment, and the underlying 

distributed system attributes. In this review we concentrate on the first two factors. 

A load balancing algorithm consists of a number of components which interact in 

various ways to redistribute the users' submitted jobs among the nodes of a distributed 

system. The objective is to improve the system performance by sharing the whole 

computing power available. Three main components can be identified: information 

gathering policy, transfer control policy, and location/negotiation control policy. The 

policies within the components are inter-related, fixing one would limit the options 

within the others. It is to be noted that Johnson [Johnson88] surveyed similar 

components but with more restricted dimensions for each. 

1) Local Load Measure 

At each node a mechanism must be provided to give a good estimation of the 

current local load. There are two important aspects to be considered here: a load metric 

which has a close correlation with the performance objective pursued, and the 

measuring mechanism that must give a quick and efficient evaluation of the local load 

state. 

The local load measure alternatives described in the literature include: "load 

average" metric provided by the UNIX BSD 4.2 uptime(l) command, a specialised idle 

process for load estimation based on CPU utilisation [Ni85, Stumm88], virtual load 

value which is the sum of actual load and the number of processes currently in transit 

averaged over a period of time longer than the time necessary to migrate an average 

process [Krueger84], evaluation of remaining service time using probability functions 

[Bryant8l], using a linear combination of all main resource queues [Ferrari85, Zhou87] 
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(e.g. CPU, paging/swapping, and file I/O queues averaged over 4 seconds period), 

number of ready processes on a processor during a time interval [Barak85]. Zhou has 

shown that the CPU queue length is a good load index and has a close correlation to the 

mean response time [Zhou86,Zhou87a]. This is supported by the work of Kunz 

[Kunz91]. Although it is the favoured load metric, the CPU queue length is not an 

adequate load indicator when the processing node possesses a multiplicity of resources 

which affect the performance. This requires a combined queues length index. When the 

processors of the system have different processing speeds, a scaled CPU queue length is 

more appropriate because for the same arrival rate, the CPU utilisation level depends on 

the processor speed. 

2) Information Policy 

This component is responsible for the exchange and maintenance of the 

information about other individual or groups of nodes such as load level, nature of 

workload or the average load over the entire system. It is also responsible for the 

frequency of the state information update, the ways to exchange this information among 

the various nodes, the numbers of nodes involved in the exchange, and the amount of 

information made available to the decision makers. It must maintain consistent 

information about the global state at the distributed points of control [Casavant87]. 

Load balancing strategies can be categorised based on the amount of global 

information used, and the global information update technique. Three levels of global 

information can be used: local indicators only with no global state information for 

random policies, information about subset of nodes or partial system state information 

for polling policies, and information about all the nodes or system-wide state 

information for broadcast policies. 
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Two broad categories of global infonnation update technique can be assumed: 

periodic update of tables of infonnation using broadcast mechanism or on demand 

update of infonnation based on bidding or polling techniques. An example of the latter 

technique is the interrogation of neighbours or random set of nodes only when the node 

becomes idle. 

The type of the infonnation moved between the nodes depends on the nature of the 

exchange. For a system state update the load index is used (e.g. CPU queue length, 

nature of workload, node characteristics) while for job transfer it depends on the file 

system structure. For a diskless node system all that is exchanged is the job name, path, 

input and output files names. For a disk-based node system the complete job file as well 

as the input files needed are transferred. At the end of the remote execution the results 

files are returned to the originating node. 

A large and diverse number of infonnation policies are reported in the literature. 

Each policy is usually reported as having a better perfonnance than the no load 

balancing case or when compared under some restrictive system assumptions (e.g. 

negligible load balancing overheads) to other policies. It is not possible to cover them 

all in this review, however a sample of the most common approaches is described 

below. 

i) Broadcast Approach 

A systematic load exchange is done whenever the load of a node changes. This 

assumes a broadcast communication medium is available [Livny84]. 

ii) Load Distribution Vector 

A load vector of a specific size is periodically updated and sent to randomly 

chosen nodes where a mapping of vectors is done [Barak85] . This results in a 

propagation of jobs similar to a "gas diffusion" process. An alternative to the 
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periodic broadcast is a restricted update where the information is exchanged with 

neighbours only when the load crosses the low or high water-mark [Ni85]. 

iii) Global System Load 

When a node does not receive a reply from a node in a complementary state, it 

assumes that all nodes are overloaded, updates its perception of global load and 

broadcasts it to all nodes [Krueger84]. This is more adaptive to system extreme 

load conditions. An alternative global load view can be represented by a 

collection of distances of each processor from lightly loaded processors [Lin87]. 

This is applicable to point-to-point network topologies. 

iv) Polling Approach 

The information is requested from neighbours or randomly polled nodes only 

when the node becomes overloaded or idle [Eager86, Theimer88]. 

3) Transfer Policy 

This component decides when it is beneficial to transfer a process from the local 

workload and selects which process to transfer/migrate. The overloaded node chooses 

heuristically an advantageous process (for example; long lived process, availability of 

specific resources at specific nodes) to transfer, based on the local information, the 

remote information maintained locally, or acquired during the negotiation with other 

nodes. The transfer policy is also responsible for requesting the transfer of work from 

other nodes when the local node is about to become idle. The transfer policy is the 

minimum component needed to implement a load balancing strategy (e.g. Random 

algorithm [Eager86]). Several aspects of the transfer policy can be explored: 

a) Node initiating the load balancing process? 

There are three ways to specify the condition of the node that initiates the load 

redistribution process: sender node (overloaded) attempting to push jobs, receiver node 
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(underloaded) attempting to pull jobs, or a dynamic switching between the two pushing 

or pulling jobs whenever appropriate. The latter case is called symmetrically-initiated 

load balancing. 

b) When is it advantageous to transfer or to receive processes? 

i) Load balancing triggering events: 

The event that triggers the load redistribution can be a newly arriving job 

(exogenous event) or a process completion/resumption or a periodic invocation 

based on system clock to correct imbalances through process migration 

[Ezzat86, Johnson88] (endogenous event). 

ii) Load imbalance indication: 

Several types of indicators of the load imbalance have been used. They correspond 

to a threshold level or an imbalance gap crossing. A one level static local load 

threshold [Eager86] or two levels (low and high water-mark values) 

[Alons088, Ni85] are the most commonly assumed. A load difference bias relative 

to peer nodes [S tankovic 84a] or a dynamic global average load value 

[Krueger84] are alternative indicators. Barak [Barak85] used an implicit load 

difference through a periodic examination of estimated response time on another 

node. An alternative global load view is the inter-node load distance within 

gradient surface [Lin87] where the imbalance is represented by a set of distances 

between the nodes. 
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c) Type of transfer? 

A job can be allocated to a remote node before it starts execution (non-preemptive 

transfer or initial placement). When the job is transferred to a remote node after it has 

started execution, it is said to have been migrated (preemptive transfer). 

d) Which process to transfer? 

Different approaches to the selection of the process to transfer have been reported. 

For non-preemptive transfers the newly arriving job is chosen. When an executing job 

can be migrated, a long-lived process is worth transferring. Krueger [Krueger84] has 

devised a scheme where many factors are taken into account in the selection of the 

process to migrate: least often transferred process, a process that has executed for a 

minimum amount of time, or a process with a small migration size (e.g. < 100 Kbytes). 

In a workload with several classes of jobs the restriction to transfer only from the class 

of long jobs can be made. 

e) Number of successive transfers of a process? 

When a job is not guaranteed execution after a transfer, different categories of 

queues are used to maintain process information: locally generated, remote transfer and 

number of moves, migrated and number of moves. 

4) Negotiation Policy 

Once a node has decided that it is a suitable transfer client (overloaded i.e. that is 

wishing to get rid of some of its load) or it is a potential transfer server (lightly loaded 

or idle i.e. that is looking for work), it engages in a pairing process. This process 

consists of a search for a transfer partner, a node in a complementary state. There are 

two aspects to the negotiation policy: among which set of nodes is the partner to be 

looked for (balancing region), how to search the load balancing region and which rule 

to use in selecting that partner (partner selection rule). When a system load vector is 
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Among the alternative balancing region sizes are the neighbours for a point-to­

point model, the collection of idle nodes, a cluster of nodes for a multi-domain network, 

and the entire system for a single domain network. 

b) Partner selection rule? 

The load imbalance indicator is used by the partner selection rule to pick-up the 

the complementary partner. The rule used can vary from the simple random probability 

distribution to an inspection of a load vector. The load vector inspection involves the 

selection of the node with the minimum value among a set of values or using a rule 

based on the blackboard concept [Kara89], where each node periodically checks the 

load vector and if it finds itself having the heaviest load it transfers a job to the node 

with the lightest load, and updates the vector. This process is repeated until the system 

is balanced (i.e. the load difference falls within the interval 8). 

For sender-initiated algorithms some of the rules used are: strictly random 

selection [Eager86], polling based on fixed load threshold level or load difference, 

shortest queue length, or finding an idle node. An alternative to the random polling is a 

cyclic probing of neighbours [Bryant81, Stumm88]. For the bidding algorithm 

[Stankovic84], the node with the winning bid (i.e. the shortest load) is selected. 

Below are specified the rules used for two receiver-initiated algorithms. Zhou 

[Zhou8?]. describes an algorithm where the underloaded node registers reservations for 

work at the others. These reservations are stored in a LIFO stack. The rule used here is 

to send the newly arrived job to the node which made the most recent reservation (i.e. 

on top of the stack). Ni et al. propose an algorithm where the rule used is to select the 

node with the highest draft-age which represents a node that needs most help [Ni85]. 
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2.3.2. Attributes of a Load Balancing Algorithm 

In addition to the basic components that constitutes a load balancing algorithm, the 

latter can be synthesised through the identification of some high level attributes that 

characterise these components. The attributes include the load redistribution objective, 

the decision-making structure, the transparency, the autonomy, the scalability, and the 

adaptability. Each of these attributes is described below. 

1) Load Redistribution Objective 

Different objectives can be pursued when performing a load redistribution within a 

distributed system. The term load sharing is used when the objective is to keep all the 

nodes busy; load balancing is used when the objective is not only to keep the nodes 

busy but also to attempt an equalisation of the load over all the nodes. When the nodes 

are privately owned and their sharing is allowed only with the approval of the owner we 

use the term restricted sharing. The computing power is sharable only during a specific 

period of time based on the discretion of the node owners [Alons088]. 

A finer objective is the type of load imbalance that the algorithm attempts to 

resolve. For a steady state imbalance the jobs are transferred between the nodes so that 

the arrival rates approach the mean arrival rate. Transient imbalance is resolved by 

assigning each new job to the node with the least number of jobs. 

2) Decision-making Structure 

The load balancing algorithms can be distinguished based on the decision-making 

Structure used to implement the different components. This structure can be centralised, 

hierarchical, decentralised, or a hybrid form. The centrally based algorithms such as 

Central [Zhou87] suffer from the reliability problem due to a potential central point of 

failure and the potential bottleneck of the central node. Some of these problems have 

been addressed by the hierarchical structure proposed by Van Tilborg [Tilborg84]. But 



22 

to deal with the autonomous nature of the nodes in a distributed system, fully 

decentralised properties are needed [Stankovic82]. Most of the algorithms considered 

in this review fall under the decentralised category. 

3) Transparency 

The implementation of the load balancing scheme can be made transparent to 

users. The can be achieved by assuming non-selective transfer of jobs or by providing a 

system interface that identify automatically the jobs eligible for transfer. In this case, 

submission of the users jobs need not be accompanied with specific information about 

the nature of the jobs to be used in the load balancing algorithm. The users interaction 

with the system is not affected by the presence of the load balancing scheme. 

4) Autonomy 

A load balancing algorithm that has an autonomy attribute does not infringe the 

control of the job allocation at individual nodes. The Random and Shortest algorithms 

described in Section 2.5.1 override the autonomy property of the computing nodes 

because once a node is selected either randomly or based on the shortest queue rule it 

cannot refuse a transferred job. This can result in severe overloading. 

5) Scalability 

As the number of nodes in the distributed system grows and the range of workload 

fluctuations increases, scalability problems can arise. In order to cope with the 

communication and scheduling overhead resulting from the increased load distribution 

effort, a number of principles are to be observed during the design of these algorithms 

to make them more scalable [Barak87]: 

Symmetry: 

All nodes in the system should be allowed to play an equal role. 

Customer-server protocols: 

Each customer-server interaction should involve at most two nodes (one-to-one). 

Partiality: 
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Every decision should be based on infonnation from a bounded subset of 

the other nodes. 

Use o/randomness: 

The set of nodes with which a node interacts is chosen at random. 

6) Adaptability 

Dynamic factors such as system load, network traffic, and the availability of 

computing nodes which characterise a distributed system, have a direct effect on the 

system perfonnance. To maintain the global scheduling scheme tuned to the variations 

in the environment, even when the system conditions change drastically, the scheme 

must include an adaptability feature. It is a mechanism built into the algorithm that 

uses the environmental parameters for a dynamic selection of the components of the 

global scheduling strategy: 

-degree of sharing to aim for 

-type of process transfer to invoke 

-load conditions of the node initiating the load distribution process [Hong88] 

-dynamic adjustment of algorithm scheduling parameters 

(Le. relaxation of parameters for the infonnation, transfer, or negotiation component). 

It also provides a decision-making procedure to control these modifications, for 

example to increase the load distribution effort in the case of a wide load imbalance or 

to reduce it when the load of all nodes is so heavy or so light that no improvement can 

be achieved by such effort [Ramamritha87]. The reported approaches to adaptability 

can be classified into two categories. 

In the first category the adaptability is included within the basic structure of the 

algorithm (infonnation, transfer, and negotiation). This aims at taking into account the 

various system parameters and the history of the system's behaviour, in perfonning 

process scheduling [Stankovic84] or to allow migration (preemptive transfer) of process 
.' 

whenever anomalies in the load distribution occur [Barak85]. The load balancing 
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process is activated only when necessary [Stankovic84a, Shamir87] (i.e. when the 

system load is below a particular minimum threshold) by turning off all parts of the 

load balancing algorithm except for the monitoring of the load. The algorithm 

described in [Krueger84] is based on the average load of the entire system, with each 

node aiming at keeping its load within an acceptable range from the system average. 

When the communication device becomes overloaded, the load balancing negotiations 

are slowed down. Other algorithms use dynamic mechanisms to estimate their most 

sensitive parameters [Ezzat86, Pulidas88]. We describe this type of adaptability as 

being inherent to the basic load balancing algorithm. 

The second approach to making a scheduling algorithm adaptive to the system 

dynamic characteristics and workload conditions, is to dynamically assess the system 

environment and adjust the global scheduling strategy accordingly. Ramamritham et al. 

[Ramamritha87] propose a meta-level controller for a distributed real-time system, 

which is a more predictable environment. Based on the current system conditions, it 

selects the algorithm(s) used for task scheduling on a node, the algorithm(s) for 

cooperation among the nodes, and the values of the scheduling parameters used in the 

chosen algorithm(s). The load distributing algorithm PollGen [Krueger87a] includes 

the possibility of dynamically switching from a load sharing to a load balancing 

objective, and having the load distribution process initiated either by the overloaded 

node or the idle node. We describe this category of algorithms as having an explicit 

adaptability mechanism. 

An extended review of the adaptability attribute is given in the following section. 

This includes an outline of the issues involved, the concept of tolerance of a scheduling 

algorithm, and the adaptability dimensions. 
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2.4. Adaptive Load Balancing 

In this section, a computing environment which is rapidly changing is described 

and the motivation for adaptive load balancing given. The tuning of scheduling in a 

distributed system can be implemented manually or automatically. 

• Manual: It is performed by the system manager to adjust the system parameters to 

long term fluctuations of the environment. 

• Automatic: It is performed by an on-line scheduling scheme. Depending on the 

magnitude of the fluctuations involved a dynamic or an adaptive strategy is 

appropriate. To deal with short term fluctuations in a rapidly changing 

environment, an algorithm that can dynamically switch its policy is required. The 

resulting scheme can be identified as an adaptive distributed scheduler. 

In computing environments where the system characteristics do not fluctuate too 

much (e.g. homogeneous workload), and resource consumptions can be estimated (i.e. 

transaction processing or real time systems), the dynamic approach using initial job 

placement alone can provide significant improvement at a lower cost [Zhou87a], and 

thus does not justify the design of more complex load balancing algorithms [Eager86]. 

The computing environment of interest in this section is characterised by rapidly 

changing and unpredictable system state characteristics and workload (e.g. 

workstation-based distributed system [Ezzat86, Mutka87]). In these environments the 

load distribution is not homogeneous in nature and its magnitude can vary significantly 

over time. This makes it impossible to devise one single load balancing policy that 

performs well in all the circumstances. A new class of algorithms that adapt to changes 

in the system environment and are robust across a wide range of conditions is 

recognised as the most promising [Krueger87]. Among the changes that might occur 

and for which the scheduling strategy must adapt are the number of nodes available, the 
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variations in jobs arrival rates (e.g. bursty jobs), the distribution of process size and 

service demands, and the utilisation level of the communication network 

[Ramamritha87] . 

Each of these parameters affects the choice of the appropriate level of load sharing 

to aim for, and the suitable scheduling strategy. The scheduling scheme for such an 

environment must adjust automatically the tunable parameters specific to each 

algorithm and/or switch to a more appropriate policy as the situation changes. These 

types of schemes are truly adaptive as they react immediately to anomalies, allowing 

the system to be always operating close to its optimal point. However, there is a 

potential price to pay in performance degradation due to the scheduling overhead, 

unless the adaptive strategy includes a mechanism by which ineffective load balancing 

activities are minimised. The adaptive algorithm must take into account the changing 

parameters to 1) provide for dynamic modifications to the components of the scheme, 

and 2) contain an adequate decision-making procedure to control these modifications. 

Apart from algorithmic adjustments, simple adjustments to the variable parameters 

specific to each policy (e.g. dynamic threshold calculation [Hac87]) can improve the 

performance significantly when the system load fluctuates [Zhou87a]. 

The essential static characteristics of the system for which adaptive scheduling 

algorithms are to be developed, have been outlined in Section 2.2. Here we concentrate 

on the rapidly changing aspects of the system the workload patterns and intensities as 

well as the dynamic characteristics of the system itself (number of active nodes, 

extreme node load, global system load nature and level, characterisation of scheduling 

algorithm overhead and communication delays), how they affect the algorithm 

performance, and the need for adaptability. These random and dynamic changes make 

a fixed load balancing policy which improves performance at some time, whilst at other 

times is inefficient but can even degrade the performance and cause system instability. 
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To address this problem both dynamic parameter adjustments or policy changes are 

required. 

The adaptive load balancing algorithms are potentially more complex than their 

dynamic counterparts because to adapt the scheduling strategy to dynamic system 

conditions involves more system conditions monitoring, and CPU overhead for the 

dynamic adjustment of parameters and policies. It also involves more process transfer 

cost for the preemptive migrations made necessary in some adaptability cases. These 

activities put more strain on both the CPU through overhead computation costs, and the 

communication medium through extra message traffic leading to extra CPU queue 

delays for the transferred jobs. For a suboptimal performance a compromise between 

potential improvement of load balancing actions and the performance degradation 

incurred by the overhead costs must be reached. In the comparison of the merits of 

different algorithms both the computation costs and the communication costs must be 

evaluated and included in the performance assessment. The CPU overhead which 

includes the handling of message traffic during negotiation between nodes, the 

algorithm execution costs added to both sending and receiving nodes, and the excess 

delay (Le. wait time) caused to other local processes must be calculated. The 

communication costs (Le. packing, transmission and unpacking of data) are caused by 

an increase in message traffic over the communication medium due to the information 

exchange/negotiation messages, and the transfer rates increase. 

In subsequent sections first the adaptability issues and approaches involved are 

identified. Then a framework for the design of an adaptive scheduling algorithm is 

described. This involves the tolerance concept [Krueger88], the adaptability 

dimensions, and some implementation considerations. The contribution of this review 

consists of a global view to the adaptability problem in load balancing algorithms and 

an outline of a design methodology. 
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2.4.1. Adaptability Issues 

In the reported research on load balancing algorithms, no systematic view to the 

design of adaptive algorithms was taken with the exception of the work of Krueger 

[Krueger88]. Most algorithms have not been designed with adaptability to a widely 

changing environment as a specific goal. The approach usually taken is to include some 

flexibility into one of the algorithm components through a dynamic evaluation of some 

scheduling parameters. The resulting algorithms adapt only to limited type and 

magnitude of system changes. 

There are two types of adaptability which can be included within a load balancing 

scheme: inherent, which is built within the basic components of the algorithm, and 

explicit, which involves global parameters and policy switching. The adaptability can 

be detailed further by identifying the type of actions taken. Among these actions are: 

- dynamic process placement based on local information and probabilistic functions 

- parameters dynamically estimated [Pulidas88] to reflect new system conditions 

- parameters dynamically adjusted or ignored 

- dynamic policy switching 

Each of these type of actions corresponds to a level of adaptability and involves 

different overhead costs and algorithm complexity. The choice of the appropriate level 

depends on the magnitude and duration of the system and workload fluctuations. 

a) Algorithms with inherent adaptability 

Based on the choices made (i.e. algorithm components and attributes) in building 

the load balancing algorithm, different levels of adaptability and steadiness of the 

performance rate can be maintained. 

b) Algorithms with explicit adaptability 

The fundamental approach for this category of algorithms is to add adaptability 

mechanisms to dynamic algorithms, based on the concepts of tolerance of algorithm, 
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adaptability dimensions, and adaptive scheduling strategy. The relevance of the 

approach of adding explicit adaptability to load balancing algorithms was demonstrated 

through the PollGen algorithm example [Krueger88], which includes some adaptability 

mechanisms. As shown in Section 2.3, there is a multi-dimensional parameter and 

policy space in a load balancing algorithm. This is addressed further in Section 2.7.3. 

These are some of the issues related to the adaptability of an algorithm that need to 

be investigated: 

1) Definition of a stable and balanced system 

2) To which algorithm dimension(s) and/or component(s) is adaptability to be added? 

3) Trade-offs in the design of an adaptive scheme: 

-complexity of algorithm and range of adaptability 

-responsiveness and accuracy of adaptability 

-extent of variability in distributed systems and performance gain 

4) How to quantify adaptability? 

e.g. improvement in response time, quality of host selection 

2.4.2. Tolerance of a Scheduling Algorithm 

Given the fact that processors in a distributed system are autonomous and 

communicate only through message-passing mechanisms [Chandras90], the best load 

balancing algorithm cannot escape overhead costs (Le. load redistribution actions cost), 

both in terms of computation costs and communication delays, and uneven periods of 

load distribution (i.e. periods of unbalanced states). Adaptive scheduling can be 

expressed as finding the right balance between two conflicting issues. The first issue is 

the minimisation of the overhead cost by using the estimate costs established for the 

system environment (encouraging only the cost-effective actions). The second issue is 

the reduction of the duration and magnitude of these undesirable states. The concept of 

algorithm tolerance is suggested by Krueger JKrueger88] for adding an explicit 

adaptability to a load balancing algorithm. One way to reach this balance is to 
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distribute the load in degrees [Krueger87a]. Based on the system conditions a load 

sharing objective with or without anticipatory transfers, load balancing objective is 

activated or no load redistribution at all. To give more flexibility for the scheduling 

algorithm to adapt to the changing environment, it must also be allowed to deviate from 

its main strategy by varying within a range for each scheduling parameter and policy 

option. The magnitude and duration of these deviations can be specified as the tolerance 

of the algorithm. The adaptability mechanism is used by the algorithm to tune its 

strategy (Le. taken corrective actions) within the algorithm tolerance according to 

variations in the environment and maintain an acceptable level of performance. Three 

types of tolerance can be identified: 

a) Minimum tolerance: 

This corresponds to the ideal case where no periods of unbalanced states occur. A 

balanced load on all the machines at all times is maintained. Unfortunately this would 

be achieved with excessive costs and may even result in performance degradation as in 

the situation where processes are transferred from nodes with few processes to an idle 

node. The costs of the transfers can far outweigh the gain in load balancing. 

b) Heuristic values: 

These values are obtained though experimentation and can achieve adequate 

results. For example instead of using the strictest load difference of one between two 

nodes in order to perform a transfer, it is more sensible to use the higher difference of 

three, which gives more gain to outweigh the load distribution overhead cost. However, 

these results are not acceptable when we are dealing with a widely changing 

environment. 
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c) Adaptive values: 

Here not all the parameters or policies are fixed. The sensitive features are varied 

to allow, based on the system state, a dynamic adjustment of the tolerance of the 

algorithm to be carried out to optimise the performance. The design of adaptive load 

balancing algorithms, in addition to the classical components of the dynamic load 

balancing algorithms, involves the provision of an adaptability mechanism which can 

be implemented by: 

1) On-line estimation of parameter changes that require adaptability of strategy 

(Le. current system state) 

2) Including mechanisms for modification of the values within the tolerance of the 

algorithm (i.e. dynamic manipulation of algorithm parameters and policies) 

3) Establishing the rules of the adaptive scheduling strategy 

(Le. when to adjust, what, and how) 

4) Providing appropriate decision-making procedure to control these modifications 

2.4.3. Adaptability Dimensions 

Instead of striving for the minimum tolerance, we examine how the algorithm 

components can be adjusted and the scheduling strategy tuned to maintain performance 

and stability. The adaptability of a load balancing algorithm can be explored along two 

paths parametric tuning with three types of parameters involved: scalar, timing, and 

threshold, and policy switching with four types of policies involved: condition of the 

node initiating the load redistribution process, type of process transfer, load 

redistribution objective, and basic algorithm component options. 

1) Parametric Tuning 

The parameters of a load balancing algorithm that can be tuned can be classified 

into three types: threshold, timing, and scalar. This adjustment can occur within any of 

the components of the load balancing scheme: load measure, information policy, 
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These parameters put limits on the level of usage of a resource being managed. To 

identify a suitable partner, a node uses the load difference level to justify the 

performance gain of a remote execution. Other threshold parameters include local 

load threshold, difference between local load and global average load value, limit 

on the number of successive process transfers, size of the subset of nodes that 

exchange information or negotiate process transfer with a given node. Instead of 

being fixed to an average value an adaptive threshold is evaluated dynamically 

(wherever necessary or periodically). Different relationships have been used to 

evaluate the threshold value. Hac et at. [Hac87] used the formula T=f(Nrl P -1) 

where Nr is the number of active processes and P the processor capacity. Lee 

[Lee86] linked the threshold to the job arrival rate, while Pulidas [Pulidas88] 

linked it to the flow of jobs on the network, the incremental delay information, and 

the minimum incremental delay. Others used the job transfer cost or transfer 

device utilisation level. 

Timing 

These parameters determine how often the load redistribution actions will be 

performed, for example slowing down the scheduler activity for periodic policies 

[Stankovic85] or the tuning of the amount of idle time [Hac87]. They depend on 

the static and dynamic loading of the system. This involves the specification of 

temporal relationships between negotiation sessions, process transfer or the 

exchange of information etc. 

Scalar 

The scheduling parameters of an algorithm can be assigned a weight (e.g. node 
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speed processing factor [Castagnoli86] ) to emphasise their static or dynamic 

importance in a decision function or to modify the weight of a decision based on 

static or dynamic local conditions (e.g. bidding approach [Stankovic84]). For 

example negotiation, transfer, or remote information policies may include 

probabilistic values. 

2) Policy Switching 

To cope with a changing environment, the scheduling algorithm involves many 

policies. These policies can be classified further according to their nature and the 

options available. They are invoked dynamically for example the initiation of transfer 

can be performed by either the overloaded or the underloaded node. The choice can be 

based on the system load. Other policies include the degree of sharing, the type of 

transfer, the algorithm specific policies: information, transfer, negotiation. All these 

parameters can be fixed or tuned dynamically to provide an adaptive scheduling 

environment. 

a) Node initiating the load redistribution process 

The node that initiates the load distribution process can be an overloaded node 

seeking to reduce its load by migrating some of its local processes to a lightly 

loaded or idle node. It may also desire to transfer newly arriving processes to a 

complementary node. The algorithms based on this approach are called sender­

initiated and are commonly used for dynamic load balancing. They do not require 

preemptive scheduling. The initiation of the load distribution process by the idle 

or lightly loaded node is the second alternative. In this case the node is searching 

for an overloaded node for the purpose of relieving it of part of its load. These 

algorithms are called receiver-initiated and~n most cases assume the availability 

of preemptive migration of processes, because there is a small probability that at 

the time the idle node interrogates the overloaded node, a new external job arrives. 
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It must be a resident or running process that has to be migrated. In a study by 

Eager et al. [Eager85], it is shown that under low system loads the sender­

initiated algorithms perform better than the receiver-initiated algorithms, the latter 

performs better under heavy system loads. A third alternative is to have either the 

sender or the receiver node initiate the load distribution process. These types of 

algorithms are called symmetrically-initiated [Krueger87a] and have more 

potential for adaptability. 

b) Type of process transfer 

The transfer of a process for remote execution can be done before it begins 

execution on the local node (i.e. non-preemptive scheduling) or even while it is 

running on the local node. In this case it is interrupted and sent, along with its 

image including the changes which occurred due to execution [Smith88] to 

another node for remote execution. In both types of transfer, the results of 

execution are sent back to the originating node if no shared file system is used. 

There is a substantial cost involved in migrating a running process. However , 

preemptive algorithms have more potential to adapt to dynamic changes in system 

conditions (e.g. process completions or resumptions) than the non-preemptive 

algorithms because the latter cannot transfer processes after they have begun their 

execution. They deal only with newly arriving processes. Before a new process 

arrives no load anomalies can be corrected. 

c) Load redistribution objective 

Based on the system conditions and the performance objectives sought, different 

degrees of load distribution can be implemented [Krueger87]. When all the nodes 

in the pool are idle or lightly loaded, or all heavily loaded; there is no performance 

gain in trying to distribute the load. If the load distribution goal is to maximise the 

rate at which work is performed by the system by making sure no node is idle 
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while processes are waiting for service at other nodes (i.e. work conservation 

scheduling), then load sharing is the solution. This assumes that keeping all the 

nodes busy results in a better mean job response time. Load balancing extends the 

load sharing objective by aiming at allocating a near equal number of jobs to each 

node in the system. In addition to mean response time, the mean and standard 

deviation of the wait ratio (i.e. wait time per unit of service) are to be minimised. 

Load balancing reduces both wait time and wait ratio [Krueger87]. This implies a 

fairness of scheduling, but may degrade performance in some cases as in a system 

with heterogeneous node capacities. By allowing the load balancing algorithm to 

select the degree of distribution to aim for, adaptability to wide ranging system 

conditions can be achieved. 

2.4.4. Implementation Considerations 

The general purpose of the adaptability attribute is to get around the lack of global 

state information or out of date information which characterises distributed systems, 

and the cost of its maintenance. This can be achieved by using approximate 

information, and successive dynamic adjustments of the scheduling strategy to the 

system environment. To implement an adaptive strategy and control the adaptive 

components for a load balancing algorithm, the rules which link the current system 

conditions to the appropriate scheduling parameters and policies must be identified. 

Then a decision-making procedure to dynamically apply those rules must be 

established. 

Although the centralised approach presents the advantage of scalability in 

implementing an adaptive multiple-options scheme [Zhou88], it is rejected for the 

classical disadvantages of centralised systems, namely the central controller may 

become a bottleneck and have an adverse effect on the complete system. Another 
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reason for choosing decentralised scheduling is that it is less complex to implement, 

compared to its centralised counterpart [Theimer88]. It involves the following steps: 

Step 1: On-line evaluation of dynamic changes in conditions which drive the 

decision-making process (e.g. current system load). 

Step 2: Use built-in rules (heuristics) and current system state for the selection of 

scheduling strategy components: the algorithm dimension(s) to be affected, the 

policies and parameters to be affected (information, transfer, negotiation), and the 

choice of appropriate level of adaptability. 

Step 3: Perform on-line modifications of scheduling strategy using the 

mechanisms for manipulation of values of parameters within their tolerance or 

switching to an appropriate algorithm option. 

Step 4: Perform the load balancing actions. 

Some of the choices to be made during the development of this scheme include periodic 

invocation or on-demand adjustments, whether to memorise and use past decisions or to 

base the decision on the currently perceived system state only, how to control the 

algorithm modifications in a decentralised environment and to what extent are these 

decisions affected by the accuracy of the local view of the global state. Since the 

adaptive decision-making procedure will be implemented for several basic load 

balancing policies, it has to be decided which parts are to be embedded in the 

scheduling algorithm itself and which parts are to be embedded in the distributed 

kernel. 

2.4.5. Design Methodology for Adaptive Scheduling Algorithms 

For a dynamic system tuning, made necessary by the wide and unpredictable 

fluctuations in the distributed system, algorithms with adaptability feature are to be 

developed. The design of such algorithms can be pursued along two approaches. One 
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approach is to design new algorithms based on novel adaptive models or policies with 

inherent adaptability. The alternative approach is to add explicit adaptability to 

dynamic algorithms based on representative strategies and deriving adaptive algorithms 

(e.g. symmetrical OLOBAL_A VO [Johnson88] and PollOen [ Krueger88]) by 

combining the best policies of existing dynamic algorithms and allowing a dynamic 

switching of these policies based on the system conditions. 

A methodology for adding adaptability to a load balancing algorithm involves the 

following steps: 

1) Performance objectives specifications 

(response time, balance factor, stability, minimum cost) 

2) Changing environment characteristics specification 

(extent of variability for system and workload) 

3) Identify structure of load balancing strategy and communication model assumed 

4) Identify load balancing algorithm components involved 

(Information, Transfer, Location/Negotiation) 

5) Establish basic load balancing activities cost (computation and communication) 

6) Identify dimension(s) of algorithm to which adaptability is to be added 

7) Identify adaptable features for each component: 

-dynamically estimated parameters 

-tunable parameters 

-adjustable policies 

8) Derive algorithm structure based on added dimensions 

(i.e. combined policies) 

9) Establish relationships between current system state and scheduling strategy 

(Le. which policy(ies) and parameter(s) to adjust and when) taking into account: 

-performance objectives 

-load balancing activities costs 

-current system state and extent of variability 

-adaptable features of algorithm 

(Provide a decision-making procedure to tune parameters and policies) 

10) Construct full adaptive algorithm structure 

11) Test algorithm performance against no load balancing case or other algorithms 

lfEDS UNIVERSITY UBRARY 
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This design methodology could be used for the design of adaptive load balancing 

strategies. It consists of adding an explicit adaptability feature to a load balancing 

algorithm through a combination of different policies or by adding a mechanism for an 

automatic tuning of the algorithm parameters. 

2.5. Description of a Selection of Algorithms 

In this section, the algorithms selection criteria are outlined, then a set of load 

balancing algorithms where most components and attributes defined in previous 

sections are represented, is described. Last other algorithms included in reported load 

balancing studies and referred to in Section 2.6, are detailed. 

A dynamic algorithm uses fixed algorithm parameters and the same policy (e.g. 

when a new job arrives and finds the node overloaded, the current system load vector is 

checked and the job is sent to the node with the shortest queue). The job placement 

decision is based on the current system state (e.g. threshold-type information, inter­

nodes load imbalance information). When the load balancing algorithm places the users 

jobs using the current perception of system load distribution, and also adjusts its 

policies to reflect the needs of load redistribution, it becomes an adaptive algorithm. 

Both aperiodic algorithms where the arrival of a job (process creation) or a job 

departure (process completion) trigger the load balancing process, and periodic 

algorithms which are timer-driven, are considered in this study. The algorithms 

developed below include both categories of load sharing and load balancing objectives, 

however we use the more general load balancing denomination. The choice of these 

algorithms has been motivated by the need to cover a range of information and control 

policies identified in Section 2.3. 

For a consistent description of the load balancing strategies a common 

terminology is defined. The load level at a sending node is indicated by load.i, and by 
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load.j at the receiving node. The algorithms considered are threshold driven according 

to the queue length of processes. Four threshold parameters are used and whose 

crossing corresponds to: 

Tsi the load balancing strategy is activated by the sending node 

Tsa an acceptance of a transfer is indicated by the sending node 

Tri the load balancing strategy is activated by the receiving node 

Tra an acceptance of a transfer is indicated by the receiving node 

All the strategies considered are based on non-preemptive transfer policies. Below 

is detailed a set of load balancing algorithms covering different information and control 

policies. The load level at a node represents the number of jobs waiting plus the 

currently executing task. The term load.i is used at the node which activates the load 

balancing process while load.j is used at the node being polled. 

2.5.1. Representative Load Balancing Algorithms 

1) Random Algorithm 

This is the simplest algorithm. When a node load level crosses the threshold Tsi 

(load.i > Tsi ), it sends the newly arrived job to a randomly selected node. Only the local 

information is used. A variant to this algorithm is to consider a transfer _limit greater 

than one by allowing a transferred job to be transferred again if its destination is found 

overloaded too. 

2) Sender Algorithm 

This algorithm is based on the Sender policy [Eager85] and THRHLD policy 

[Zhou87]. When a node becomes overloaded (loadj > Tsi used for load balancing 

initiation), it sequentially polls a set of (Lp) rand?m nodes looking for one whose load 

is below the threshold (load.j < Tsa used for remote job acceptance). If so an ACCEPT 

message is sent back, otherwise it replies with a REJECT message. Then if the 
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requesting node is still overloaded when the ACCEPT reply arrives, the newly arrived 

job is transferred, otherwise the job is processed locally. The job is also processed 

locally when the probing limit is reached or if the node is no longer overloaded before 

the probing is exhausted or when a polling session is already in progress when the job 

arrives. The probing is sequential, no simultaneous negotiations are allowed. 

To avoid the situation where a node is the sending and receiving states 

simultaneously the choice of Tsi and Tsa must be such that Tsa$.Tsi. 

A variant of this algorithm called LOWEST in [Zhou87] transfers the job to the 

host with the lowest load among those randomly polled. Probing stops when the first 

empty host is found. However, no significant improvement is reported. Another 

potential variant to this algorithm (SendecDf) is to search for a partner whose load 

difference is less than that of the requesting node by a constant (e.g. load.i - load.j > 

Of). 

3) Receiver Algorithm 

This algorithm is based on the Receiver policy [Eager85]. If the completion of a 

job brings the load of a node below the threshold (load.i < Tri ), this node polls a random 

set of nodes up to a probe limit looking for an overloaded node (load.j > Tra ), in which 

case a non-preemptive "migration" of a job from the ready queue of the overloaded 

node is done. The transfers are receiver-initiated. The triggering of load balancing is 

done when the completion of a job bring the load level of the node below a threshold 

value. A special case is the idle node state (load.i = 0). 

A variant of this receiver-initiated algorithm is to use a timer-driven load 

balancing activation instead of using departing jobs. Periodically (i.e. timer -'period), the 

load of a node is checked to identify if the node is idle (load.i= 0) or if its load is below 

the threshold (load.i < Tri)' If so a polling session is initiated for up to the probe limit. 
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This strategy has an advantage over the Receiver algorithm in that the situation where a 

polling session has failed and no new job arrives leaving the node idle forever, will not 

occur because the algorithm is periodically awakened. 

To avoid the situation where a node is the sending and receiving states 

simultaneously the choice of Tri and Tra must be such that Tra~Tri' 

4) Shortest Algorithm 

This algorithm is based on the DISTED algorithm in [Zhou87]. It allocates a new 

job that brings load.i above Tsi , to the node with the shortest queue (node.j = min (L I, 

L 2 , ... , Ln». It maintains a load vector at each node. This vector is periodically (i.e. 

exchange yeriod) updated using a broadcast mechanism. To reduce the number of 

information exchanges, the nodes broadcast their state only when the load changes (a 

new job arrives, a job is transferred in, a job is transferred out, or a process departs). 

5) Symetric Algorithm 

This algorithm is a combination of the Sender and Receiver algorithms. It involves 

a symmetric initiation of load balancing [Krueger88a], depending on the value of the 

load relative to the thresholds (Tsi' and Tri ), with Tri=l for whom the idle node initiates 

the load balancing negotiation. The load balancing strategy is dynamically adjusted 

based on the node load level by allowing the algorithm to switch automatically between 

a sender-initiated (SI) or a receiver-initiated (RI) policy. 

To avoid the situation where a node is the sending and receiving states 

simultaneously, which corresponds to a node sending its new local jobs to remote nodes 

while accepting remote jobs to be executed locally, or having both sender-initiated and 

receiver-initiated negotiations engaged at the same time, the choice of the thresholds 

must be such that Tri <= Tsi and Tra ~ Tsi' 
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It is to be noted that all the algorithms described so far are Tsi or Tri threshold 

driven or both. Random and Shortest algorithms have no Tsa acceptance condition at all 

(Le. overriding the remote node autonomy), while Sender and Symetric can have D
f 

the 

inter-node load difference as an acceptance condition instead of Tsa or T ra threshold. 

2.5.4. Other Load Balancing Algorithms 

The load balancing algorithms commonly reported in comparative studies include: 

centralised, distributed, preemptive, non-preemptive, adaptive and non-adaptive 

examples. A sample of the algorithms is described below. They all work on a 

broadcast communication model, however most of them could be implemented on a 

point-to-point model. Except for PollGen which dynamically adjusts its degree of 

redistribution, all these algorithms have load balancing as a global objective. The next 

three algorithms have been evaluated by Zhou [Zhou87a]. 

GLOBAL (centralised control) 

One host, designated as the LIC (load information centre), assembles the load of 

all the hosts in a LV (load vector) and broadcasts the L V to all the hosts every P 

seconds. The placement policy is as follows: send new job to the host with lowest 

load (Le. load ~ local load - 0, where 0 is a constant), if there is more than one host 

with the lowest value, select one arbitrarily. 

CENTRAL (centralised control) 

The LIC acts both as the load information centre and the central scheduler for all 

the hosts (e.g. Process Server [Hagmann86]). Such a distinguished agent requires 

less overheads making the algorithm more scalable. 

RESERVE 

It is a receiver-initiated algorithm based on job reservation. If the load gets below 

T/, the host probes the other hosts to register R reservations at R hosts with load 
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above T1• At the overloaded host, outstanding reservations are stored in a stack. 

When a job arrives, it is sent to the node that made the most recent reservation. If 

the load falls below T1, all reservations are cancelled. An improvement of this 

algorithm is made if before sending the job the host makes sure the server host is 

still lightly loaded. This is the only non-preemptive receiver-initiated algorithm 

evaluated in Zhou's work [Zhou87a]. Most receiver-initiated algorithms are 

preemptive. 

GLOBAL_AVG 

This is a preemptive algorithm developed by Krueger [Krueger84]. Each node 

maintains a value for the network average load (Av) and strives to keep its own 

load to within a pre-defined acceptable range (A) from it. If the load is not within 

the acceptable range then it attempts to find a transfer partner by broadcasting its 

conditions and waiting for a reply within a reasonable time (Tr). If no 

complementary partner can be found, it updates the global average load by (U) 

amount and broadcasts the new average value to the other nodes otherwise it 

migrates an advantageous process to a complementary partner. A symmetrically­

initiated version of the algorithm has been developed by Johnson [Johnson88]. 

DRAFfING 

This is a receiver-initiated preemptive algorithm based on a drafting strategy 

[Ni85]. Each node maintains a load table of candidate processors from among its 

neighbours, but instead of using numerical values to describe the load of a node, 

three states are used: Low state when the node can accept remote processes, 

Normal state when no transfer in either direction is desirable, and Heavy state 

when the node needs help from other nodes. The negotiation engaged is as 

follows. A message (draft request) is sent by L-Ioad node to those H-Ioad 

identified from local table. A response message from H-Ioad sent indicating how 
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much help they need (draft age). This value is zero if the node is no longer in the 

H-Ioad state. After a timeout period all the draft ages must be received. At this 

point a draft-standard is calculated based on all the received draft-ages. The node 

with the highest draft age (i.e. the one that needs help most) is selected. If all draft 

ages are zero then suspend the drafting process. The drafted node sends a new 

task or responds with a "too late" message. 

Bidding 

This is a sender-initiated non-preemptive algorithm [Stankovic84]. The loaded 

node (based on threshold crossing) requests bids from neighbours or all nodes (i.e. 

through broadcast). The bids (i.e. current load) are sent by underloaded nodes. 

The node with the winning bid (i.e. shortest load) is selected and will receive a 

transferred job. If no appropriate bids arrive within a time window, then extend 

the request for further bids in the network or process locally. 

PollGen 

This is a preemptive algorithm with an adaptive feature [Krueger88]. It is based on 

the PID algorithm [Livny84] and Threshold received-initiated version [Eager86]. 

It has also a sender-initiated aspect and can be symmetrically-initiated. Several 

parameters can be manipulated to tune the algorithm to the changing system 

conditions. 

TRmax : The maximum load of a suitable receiver which indicates appropriate 

degree of sharing or load redistribution objective. Three objectives are possible: 

LS(O) for load sharing, LS(l) for load sharing with an anticipatory migration, and 

LB( 00) for load balancing. 

TSfU!g : The negotiation is initiated when the load is above this threshold. 
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T Tdiff: The minimum load difference between transfer partners when the load 

difference is used in the negotiation policy (load balancing objective). 

SendProb: A sending node initiates negotiation with a probability SendProb when 

arrival of a process causes the load to be at least TSneg. 

RecvProb: A receiving node initiates negotiation with a probability RecvProb 

when the completion of a process causes a node to become idle. 

Pol/Limit: The maximum number of nodes polled before giving up. 

2.6. Load Balancing Studies and Implementations 

In this section, the comparative studies of different algorithms, taking into account 

the model assumptions made, are analysed. The approach used (i.e. analytical, 

simulation, measurement) is also indicated. Last the implementation of a few load 

balancers is reviewed. 

2.6.1. Load Balancing Comparative Studies 

The performance study of load balancing algorithms can be carried out along two 

dimensions: system characteristics and algorithm nature. The first involves the model 

assumptions made and experimental factors while the second is concerned with the load 

balancing strategy used. 

Eager et al. [Eager86] investigated the trade-offs in the level of complexity of the 

load sharing policies and the level of performance gain. Three types of decentralised, 

threshold-based. algorithms (Random, Threshold, Shortest) with various amount of 

information are evaluated (no information, threshold-type information, complete 

information). The load balancing overhead is added to the CPU and corresponds to an 

increased load. Other assumptions made are no delay in transferring jobs and perfect 

global state information. The main conclusion of their work is that collecting little 
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infonnation is more advantageous in tenns of perfonnance improvement and 

communication cost trade-offs. Parametric tuning investigations were also carried out 

on threshold, probe limit, and transfer limit. In [Eager85] sender-initiated and 

receiver-initiated policies (Sender, Receiver, Reservation) were compared. It was 

shown that sender-initiated are preferable to receiver-initiated at light to moderate load 

levels while receiver-initiated policies perfonn better at higher load levels. In both 

references simulation results are used to validate the use of simple analytic models. 

Zhou has carried out a thorough comparative performance study of seven non­

preemptive dynamic load balancing algorithms among the most commonly described in 

the literature [Zhou87a]. A homogeneous distributed system based on the broadcast 

model and a trace-driven simulation of independent sequential jobs are assumed. This 

implementation is aimed at minimum changes to the system kernel. A 

foreground!background round-robin local scheduling discipline with 100 milliseconds 

time slice for the CPU is used. 

These algorithms are non-preemptive and, except for the RESERVE algorithm, are 

all sender-initiated. Most algorithms are decentralised, except for the GLOBAL and 

CENTRAL, which include some centrally controlled components. The other algorithms 

are DISTED, RANDOM, THRill.D and LOWEST. All these algorithms use the same 

load index (Le. CPU queue length) and the same transfer policy (i.e. based on the 

command name of the job and local load threshold) but they differ in their infonnation 

and corresponding negotiation (called placement for non-preemptive algorithms) 

policies. Within the assumed constraints the most promising algorithms are GLOBAL, 

CENTRAL, THRlll.,D, and LOWEST. One conclusion that might be drawn is that 

centralised algorithms perfonn well and that a small amount of state information used 

is sufficient to gain most improvements for decentralised algorithms. These schemes, 

which use current system load in determining job placements, have been shown to 
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improve significantly the average response time of jobs, especially under heavy and/or 

unbalanced workload and make response time more predictable, even with the transfer 

of a small number of jobs. The trace-driven simulation results have been confirmed 

through measurement studies. The simulation work has been repeated on data from 

three computing environments (Berkeley, Bell Labs, and Lawrence Labs). 

In a similar effort Johnson [Johnson88] has compared the performance of fewer 

algorithms but included both preemptive (actually jobs are migrated from ready queue, 

not while executing or blocked), and non-preemptive dynamic algorithms. The 

algorithms called RANDOM, lliRHLD are non-preemptive algorithms while 

GLOBAL_AVG and P _THRIll...D are preemptive algorithms. P _THRHLD is the same 

as lliRHLD except that it is triggered periodically to allow anomalies that occur before 

a new process arrival to be corrected through process migration. He used probability 

distribution generated artificial workloads to drive a simulated distributed system 

composed of a Manhattan connection of virtual processors (i.e. a point-to-point 

communication structure). The local scheduling is based on round-robin discipline with 

50 milliseconds time slice and the CPU queue length used (i.e. no. of resident 

processes) as a load index. The performance of the algorithms was tested using both 

independent processes and cooperating process groups. He also modified the 

GLOBAL_A VG based preemptive algorithm to make it adapt its policy to changes in 

the system load for a simple case of a group of cooperating processes. Based on the 

current system load the algorithm switches between the sender-initiated policy which 

performs best for light system load, and the receiver-initiated policy which performs 

best under heavy system load. The experiment on this Sender_Receiver version of the 

GLOBAL_A VG showed that, using the instantaneous value of the global system load 

as the indicator to switch between sender and receiver initiated negotiation, the best 

results are obtained under both light and heavy system load. 
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The load balancing cost is equated to the communication cost and is evaluated 

only in tenns of the number of the messages exchanged. A modification is made to the 

GLOBAL_A VG algorithm to limit the simulated broadcast to immediate neighbours 

only, with the aim of reducing the number of messages exchanged. 

However, a more elaborate work on adaptive load balancing was done by Krueger. 

In [Krueger84] the GLOBAL_A VG algorithm is described. This algorithm is adaptive 

in the sense that each node attempts to keep its load within a close range of a 

dynamically updated global average load. It also adapts to communication medium 

utilisation (i.e. a broadcast token ring) by allowing only the most advantageous transfers 

to occur. Using a system wide negotiation for transfer partner and the update of the 

global average, this algorithm has perfonnance limitations due to indiscriminate 

broadcast overhead costs. In [Krueger87, Krueger87a, Krueger88a], analytical studies 

of load balancing strategies were carried out. An analytical justification for adaptive 

scheduling is given. The PollGen algorithm was designed and using simulation, it was 

shown that good perfonnance and stability can be maintained over a broad range of 

system environment changes for independent processes, through adaptability. 

In [Concepcion88] a testbed, based on the Simscript 11.5 simulation language, for 

the comparative perfonnance study of dynamic load balancing algorithms is described. 

It addresses particularly the effect of the network topology (Le. ring, bus, and mesh) on 

the perfonnance of three algorithms (drafting [Ni85], bidding [Stankovic84], and 

probabilistic [Hsu86]) which are not adaptive according to the definition in Section 

2.2.2 despite the title of the paper. Various algorithmic parameters are experimented 

with to identify heuristic values for the best perfonnance under fixed workload 

conditions. A variety of perfonnance criteria (CPU queue length, CPU utilisation, 

mean response time, balance factor, and communication overhead) are used. 
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In [Mirchandan89] the authors provide an analysis of the effects of jobs and 

messages transfer delays on the performance of three load balancing algorithms 

(Forward, Reverse, and Symmetric). The model is based on the disk-based structure 

and consists of homogeneous nodes with Poisson job arrivals and exponentially 

distributed service times and job transfer times. The delays incurred by the probes are 

assumed negligible. Simulation is used to validate the analytic results. The 

performance of the three algorithms have been evaluated at O.IS and 2S delay levels 

where S is the mean service time. The performance difference is significant at low 

network delays with the best results obtained by the Symmetric algorithm. At high 

delays the performance of the algorithms are identical except at high load levels (p~O.9) 

Where the performance of the algorithms is more spread out. The relative performance 

order of the algorithms is: Symmetric, Reverse, and Forward. Forward performs better 

than Reverse at low to moderate load with the break-even obtained at a system load 

P=O.75. The network delays have no effect on the relative performance order of the 

algorithms. 

2.6.2. Load Balancers Implementations 

Although most work on load balancing in distributed systems has been based on 

analytic or simulation techniques there have been some measurement studies on 

prototype systems usually with a small number of processors [Dikshit89], and a 

simplified workload model [Barak85]. 

Most implementations of load balancing in distributed systems have been done in 

an ad hoc manner [Bershad86, Hagmann86, Ezzat86] and have been added on the top 

of already existing operating systems. This involves a special syntax for command 

submission and a modification of the operating system to provide for remOte execution 

mechanisms. Zhou and Ferrari [Zhou87] implemented an automatic load balancing 
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scheme with minor modifications to the operating system. Through an evaluation of a 

several load balancing algorithms they showed that load balancing can have beneficial 

effects on the system performance. If prototype measurement results based on the 

insights of the simulation results increase the confidence in the performance through 

load balancing, it is still a step away from a real product. Commonly missing are 

remote process management and control, and the user interface facilities. 

Over the last decade many analytical, simulation, and prototyping studies of load 

balancing on distributed systems have been carried out. Despite the beneficial effect of 

load balancing shown through experimental systems, no commercial products are 

reponed. However, in the case of parallel system there are some implementations such 

as Helios 1 which do effect load balancing on transputers systems. The potential reasons 

are: 

Technical 

Few distributed system built from scratch are successful. Even their developers do 

not use such systems because they are too slow [Renesse88]. This is due to the 

inherent complexity of distributed software. There is also a lack of distributed 

applications which justify the load balancing approach. 

Economical 

The workstations and communication hardware keep getting faster and cheaper. 

In most computing environments there is no real incentive to use resources 

efficiently. However, when the physical limit of single processor speed is reached, 

there would be a drive for more efficient use of the existing resources. Most of the 

software engineering experience is in a centralised environment where a vast 

amount of software packages exist. These products are not compatible to a 

1 Perihelion Software limited 
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distributed system environment [Beck90]. The problem is therefore with the 

distributed systems rather than with the load balancing scheme. 

We conjecture that the lack of commercial products that include load balancing 

schemes has more to do with the need for further maturing of distributed systems rather 

than the viability of load balancing schemes. More general investigations are needed 

for a better understanding of the behaviour of distributed systems subject to load 

balancing strategies, together with a clearer picture on the level of performance 

improvement achievable to justify the implementation costs. This could make load 

balancing services a reality in future distributed systems, thus achieving a near optimal 

utilisation of global computing resources without an adverse effect on the users' 

expectations. 

2.7. Summary 

In this chapter, we have surveyed research on load balancing algorithms according 

to the algorithm components and attributes, and the modelling of distributed systems for 

performance studies. An algorithm taxonomy was developed with an extented review of 

the adaptability attribute. A methodology for the design of adaptive load balancing 

algorithms was outlined. Based on this approach the design of some adaptive load 

balancing algorithms is considered in Chapter 3. A review of previous performance 

studies of load balancing algorithms revealed some over-simplifications in the system 

model assumptions made in both analytical and simulation work. This point is 

expanded in next chapter. 



CHAPTER 3 

Performance Study of Load Balancing Algorithms 

3.1. Introduction 

After many years of research into load balancing for distributed systems, there still 

remains many open questions that require further research. One of the most important is 

to understand the performance of load balancing algorithms on realistic systems and 

under more realistic operating conditions. Earlier studies have used very simple models 

of distributed systems and it is difficult to assess these load balancing algorithms on real 

distributed systems. The common approach followed is to propose new ideas on a load 

balancing algorithm component, and using simulation or mathematical techniques for a 

simple system model, it is shown that the proposed strategy performs better than the no 

load balancing case or some other algorithms. 

In this research a much more complex system model is simulated and a thorough 

empirical investigation is carried out. Based on this model we evaluate a selected set of 

load balancing algorithms. We also propose an adaptive algorithm called Diffuse and 

modify the Random, Sender, Receiver, Symetric algorithms described in Section 2.5.1, 

as well as for the Diffuse algorithm to take into account the case of heterogeneous hosts 

processing speed in a distributed system. 

3.2. System Modelling Issues 

Below are described the system modelling issues that have a potential effect on the 

performance of a distributed system and the assumptions commonly made in related 

work. In a distributed system the essential performance factors are: file system 

structure, hosts speed configuration, communication bandwidth and protocols, load 
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balancing overheads, and the workload model. 

File System Structure 

In most reported studies a single file system structure is assumed (e.g. diskless 

with a shared file server, disk-based, or diskless with shared file server and a small local 

disk attached to each node). The disk-based file system structure is commonly assumed 

in analytical models. An exception is the work by Krueger [Krueger88a] where non­

preemptive and preemptive transfers are compared under both diskless and disk-based 

Structures. A Place factor is used to indicate the size of the task transferred which 

characterises each file structure. It is shown that non-preemptive transfers are preferred 

on diskless systems because they rely on a shared file server and only involve the 

transfer of the job command name. This contrast with a preemptive transfer where the 

complete process file and current state are transferred. This leads to improvement under 

disk-based model because a preemptive transfer is not more expensive than a non­

preemptive one. The process state added to the transfer does not increase its size or 

complexity. Comparative studies of the effect of the file system Structure on the 

performance of load balancing strategies are needed. 

For the case of diskless workstation based distributed systems, Lazowska et al. 

[Lazowska86] point out that the file server's CPU tends to be the first resource in the 

system that gets saturated. Zhou[Zhou87] reached the same conclusion in the context of 

load balancing and reduced the number of clients from six to five to cope with a slow 

file server. What is the effect of the file server speed on the performance of different 

load balancing strategies? 

Hosts Speed Configuration 

In previous studies all the processors are assumed to have the same computing 

power as well as functionality (homogeneous processors). With the proliferation of 
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personal computer/workstations and the constant increase of their processing speed, it is 

very common to have a computer network with nodes of different computing speeds but 

which are compatible at the operating system and binary code levels. The case of 

heterogeneous processor speeds have been mainly considered in the context of 

centralised control systems [Tantawi85, Bonomi88]. Optimal probabilistic schemes are 

used where a weighting factor is given to the processor speed. In the simulation work 

of distributed systems by Stankovic [Stankovic84] heterogeneous processor speeds (i.e. 

different average service time for each host) were considered but no attempt has been 

made to adapt the algorithms to the heterogeneous environment. 

Castagnoli states that heterogeneous environments are where many load balancing 

algorithms break down [Castagnoli86]. He suggests that a weighting factor be assigned 

for the particular CPU in the formula used to identify the node with the shortest queue 

of jobs (Le. the best destination B). 

B= min (w I *(ll +d d, ..... , Wn * (In+dn)) 

where: 

Wi : CPU speed weighting factor 

Ii : CPU load average 
dj : total no. of jobs queued on that machine 

Banawan [Banawan87] developed a heuristic algorithm based on the idea of scaled 

load index for an algorithm similar to Shortest algorithm described in Section 2.5, with 

scaled arrival rates. He concludes that the adapted version does improve the 

performance over the standard version. When only one fast node is used, the standard 

version degrades the performance at low utilisation levels. At heavy load level for all 

the speeds configurations the standard and adapted algorithms performance converges. 

The scaled load index is applicable only to algorithms with load . vector based 

information policies. There is a need to develop adaptation mechanisms for random 
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polling negotiation based algorithms to take into account the heterogeneity of nodes 

speeds and job arrival rates in a distributed system. 

Communication Network 

In most reported work it is assumed that the communication device has a 

bandwidth large enough for there to be no contention or significant communication 

delays. The communication protocols commonly assumed in simulation work are "first 

come first serve", and "CSMA/CD" or "Token Passing" for prototyping based studies, 

but no comparative analysis has been undertaken in the context of load balancing. The 

work in [Mirchandan89] addresses the effect of job transfer delays on load sharing in a 

disk-based distributed system. It is concluded that the delays have no effect on the 

relative order of algorithms (Forward, Reverse, Symmetric). However, under long 

delays the algorithms have an identical performance except for heavy load levels. There 

is also a global degradation of the level of response time for all the algorithms under 

short delays with a spreading out of the curves. Further investigations of the 

interdependence of the communication device attributes (communication bandwidth 

and protocols) and the load balancing activities under both file system structures are 

needed. 

Workload Environment 

In previous studies it is commonly assumed that the workload consists of 

homogeneous users and jobs. For this type of workload non-selective job transfers are 

acceptable. When the workload involves two or more classes of jobs which reflects 

more accurately actual computing environments [Cabrera86], selective transfers where 

only long jobs are transferred to overcome the overhead of a remote execution, seem 

more appropriate. However, selective transfers involve a non-negligible job separation 

cost that must be taken into account. Heterogeneous jobs have been used in 
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[Krueger88a] for non-selective transfers, but no comparison to homogeneous jobs is 

reponed. 

Load Balancing Overheads 

The overhead of a load balancing algorithm includes a communication cost and an 

execution cost. It affects the sending node, the receiving node as well as the transfer 

device. The communication cost is due to the exchange of status messages and the 

transfer of jobs across the network (CPU cost and communication delay). For a 

practical system the execution of communication protocols for packing of messages far 

outweighs the communication delay [Lazowska86] , and must be taken into account. 

The other costs associated with the algorithm are due to the execution of the 

infonnation, transfer, and the negotiation policies of the algorithm. This is referred to 

as the execution cost and its level depends on the complexity of the load balancing 

algorithm. 

The cost of handling the load balancing messages (probing/infonnation, job 

transfer) and the increased traffic on the transfer device are usually assumed negligible. 

In [Zhou87a] the effect of non-negligible message overheads (5 to 40 msecs) and job 

transfer cost (50 to 400 msecs) for a diskless model are evaluated. It is concluded that 

under this wide range of overhead assumptions load balancing does still reduce the job 

mean response time. Further experiments are needed to evaluate the impact of non­

negligible message overheads on both diskless and disk-based models. 
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3.3. Design of Load Balancing Algorithms 

The following algorithms have been designed to address some disadvantages of 

the Symetric algorithm described in Section 2.5.1, and to provide load balancing 

algorithms adapted to a distributed system with heterogeneous hosts speed. 

1) Diffuse Algorithm 

This algorithm is inspired from the infonnation exchange policy in [Barak85]. It 

emulates a "gas diffusion" process in its negotiation policy as opposed to the 

infonnation policy in Barak's algorithm. It is symmetrically initiated and uses periodic 

polling of a single remote node. The load level at a node represents the number of jobs 

waiting plus the currently executing task. The tenn load.i is used at the node which 

activates the load balancing process while load} is used at the node being polled (see 

Section 2.5). For every timer yeriod (using different start times to make the initiation 

of load balancing globally asynchronous), the node load is checked against the 

threshold: 

1) if exceeding the threshold (load.i > Tsi ) , a request is sent to a random node (Lp= 

1), this node replies with an ACCEPT message if it is underloaded (load.j < Tsa ), 

otherwise it ignores the request. The requesting node transfers a job from its 

transferable jobs queue as a response to an ACCEPT message, or ignores the request if 

it is no longer overloaded (or overloaded but with an empty transferable jobs queue in 

the case of selective transfers). 

2) if below the threshold (loadj < Tri ), a request to receive a job is made to a 

random node, the chosen node will respond by sending a job from its transferable jobs 

queue, or just ignores the message if it is also underloaded (load.j < Tra). However, in 

the case of selective transfers, if the node is overloaded but the transferable jobs queue 

is empty, the node is considered as if underloaded and the message is also ignored. 
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3) if the load is normal (loadj = Tsi ), no load balancing is attempted. 

To avoid the situation where a node is the sending and receiving states 

simultaneously the choice of the thresholds must be such that T'i ~ Tsi and (Tra ~ TsJ 

The node load regions and load balancing states for the Diffuse algorithm are depicted 

in Figure 3.1. This algorithm is adaptive in the sense that based on the current load 

level, it activates either is sender-initiated (SI) component or its receiver-initiated (RI) 

component. It is to be noted that this algorithm can be used for homogeneous as well as 

heterogeneous types of workload. 

2) Strategies Adapted to Heterogeneous Hosts 

When the processing speeds of the nodes in a distributed system are different, the 

instantaneous CPU queue length is not a good load metric. The load index, among other 

system and algorithm parameters, needs to be adjusted to maintain the performance of 

the system through load balancing. As has been shown in previous studies, the most 

influential parameters are: the threshold level above or below which the load balancing 

is triggered, the remote location selection (e.g. a random destination, one with the 

shortest queue or the first one whose load is below a given threshold), and the timer 

period for periodic algorithms. 

n 

sending state (SI or RI) 

no load balancing 

receiving state (SI or RI) 

1 

o 

OVERLOADED 

UNDERLOADED 

loadj > Tsi· (SI) or Tra (RI) 

threshold (loadj = Tsi (SI) or Tri(RI)) 

load.i < Tri (RI) or Tsa (SI) 

Figure 3.1 Node Load Regions and Load Balancing States 
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The scaled load index has been suggested as a way to deal with the heterogeneity 

of processing speeds [Castagnoli86]. The Shortest algorithm, modified to have a load 

vector where load values are scaled by a factor proportional to the node speed, lends 

itself to the scaled index mechanism. The newly arrived job is transferred to the node 

with the smallest value of d. 

d = (l+I)ls= K*l +K for K = lis where 

d destination node scaled queue length 

1+ 1 CPU queue length including the new job 

s node processing speed factor 

However, Zhou [Zhou87] has shown that this algorithm called DISTED in his work, 

when evaluated on homogeneous nodes, performs better than the Random algorithm 

only. This is due to the out of date global state information collection and the 

overriding of the nodes autonomy it involves. This approach is not considered further. 

There are two ways to specify the workload for a heterogeneous system. These are 

known as scaled arrival rates and identical arrival rates: 

• Scaled arrival rates 

The objective of scaled arrival rates is to maintain the same CPU utilisation level 

at the different nodes. The inter-arrival time used to generate the jobs is chosen to 

get the same utilisation level on all the nodes regardless of the processing speed. 

• Identical arrival rates 

The above assumption about the jobs arrival rates is not justified in a workstation-

based computing environment with similar users. It is the job arrival rates (not the 

CPU utilisation level) that are to be kept the same (i.e. identical inter-arrival times) 

for all the nodes regardless of their processing speed. 

Two adaptation mechanisms have been developed to make some random polling 

based load balancing algorithms take into account the processing speed of the nodes in 
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the network: weighted destination and scaled timer period. The random destination is 

not chosen based on a uniform probability function as in the Random algorithm, but 

each node destination is given a weight proportional to the processor speed (i.e. 

weighted destination). This also applies to the choice of node to be polled for the 

algorithms based sender-initiated as well as receiver-initiated probing. For the Diffuse 

algorithm, the timer period is scaled to the node service rate (i.e. scaled timer). 

Based on a the weighted destination and the scaled timer mechanisms, the 

following adapted algorithm versions have been developed: Random_a, Sendeca, 

Receiveca, Symetric_a, and Diffuse_a. The algorithms versions without these 

mechanisms are referred to as standard algorithms. 

3.4. Summary 

This review of performance studies of load balancing algorithms revealed that 

some over-simplifying assumptions are made in the modeling of distributed systems, 

and that there is a need for load balancing strategies that adapt their policies to 

heterogeneous and rapidly changing workload, or include mechanisms to take into 

account the heterogeneity of nodes processing speeds. We set out to evaluate the load 

balancing algorithms on different models of distributed systems with more realistic 

assumptions and system design alternatives. Then it would become possible to identify 

the most appropriate algorithm for a distributed system knowing its attributes and 

workload environment. The research questions to be addressed are: 

i) What is the effect of system attributes on the performance of load balancing and 

how does the Diffuse algorithm compare to others in the literature (i.e. Sender, 

Receiver, Symetric)? 
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ii) What is the effect of the workload model on the perfonnance of load balancing 

algorithms? 

iii) What is the effect of the heterogeneity of nodes speed on the perfonnance on the 

the standard algorithms and what is the level of performance improvement when 

adapted versions of these algorithms are used? 

In Chapter 4, the design as well as the implementation of the system built to 

examine the research questions identified above, are described. 



CHAPTER 4 

A System to Measure the Performance of Load Balancing Algorithms 

4.1. Introduction 

In this Chapter, the experimental system design and implementation, how to use 

the simulation package developed, and the simulated system validation are described. 

This description is divided into four sections: 

(i) The design of the experimental system is outlined. This involves a description 

of experimental method, the distributed system models considered, the experimental 

objectives and factors, and the nature of the investigations to be carried out. 

(ii) The essential components of the system under investigation are modelled. the 

default parameters values indicated have been arrived at through modelling decisions or 

experimental tuning for optimal performance, and correspond to the baseline system. 

(iii) The simulated system implementation is described. This includes the 

simulation environment, the distributed system components, and an overview of the 

simulation package. 

(iv) The calibration and validation of the simulated system is described. 

Section 4.6 concludes this Chapter by providing a summary of the system features 

and its validation. 
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4.2. Experimental System Design 

The goal of this study is to evaluate the performance of load balancing algorithms 

against particular distributed system attributes and workload models. For this purpose a 

system is to be built to allow experimentation with distributed system attributes, load 

balancing algorithms, and workload models. 

Three methods have been used to study the performance of load balancing 

algorithms: analytical modelling (using queuing theory), simulation modelling, and 

prototyping. The first approach is often based on simplified model assumptions (e.g. 

instantaneous job transfers and at no cost), leading to results useful only to set 

performance bounds [Krueger87]. Also as shown in a survey by Wang et al. [Wang85] 

even simple load balancing schemes can lead to unsolved problems in queuing theory. 

This is particularly true for systems with nonhomogeneous process initiation rates, 

hyperexponentially distributed service demands, and a variable number of nodes 

participating in the system [Krueger88a]. We also reject the prototype based 

measurement method for the specific equipment required, the excessive development 

time needed, and the restricted control of the system parameters. We chose the 

simulation method of analysis for the advantages it provides: much less time to set up a 

model with realistic assumptions, makes it possible to have a complete control over all 

parameters and events of the system under study, and experimentation in virtual time 

[Jard88]. 

The objective of this work is to use modelling for load balancing not to present a 

comprehensive measurement study of a prototype system. This experimental 

methodology is justifiable since no specific real environment is targeted, and the aim of 

the experimentation being a demonstration of the effects different system characteristics 

on load balancing strategies, and an exhibition of the system behaviour to its full extent. 
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4.2.1. Experimental Models and Factors 

Since the approach used for this research is to study the interdependence of 

various distributed system attributes and workload parameters, and the load balancing 

algorithms performance based on simulation experiments, the simulation model input 

involves many factors. Some have different quantitative levels and some have different 

qualitative nature. In order to have a manageable experimental environment, the 

maximum number of parameters are to be kept fixed based on modelling decisions or 

through experimental identification of optimal values. Given the large number of factor 

and level combinations that can be manipulated in the simulated distributed system, 

three categories of parameters can be identified. The structural assumptions which 

represent the system components that are fixed across a set of experiments (e.g. file 

system structure, workload model), while a second category of parameters are changed 

one at a time and constitute the experiment options or decision variables (e.g. 

communication bandwidth). The third category which includes the system load level 

and the load balancing algorithm option are used as experiment variables in the 

evaluation of the distributed system performance. 

The description of an experiment involves the specification of the experiment 

attributes: the objectives sought, the input factors, and the performance metrics along 

with the format of the results presentation (tables, graphs, etc:). As the analysis of the 

results progresses, more model factors will be discovered as not having an impact on 

the performance and therefore their values should be fixed or the number of their levels 

reduced (e.g. load balancing strategies). It is also to be noted that changing the level of 

one factor might require the adjustment of other parameters to get an optimal operation. 

As shown in Chapter two, a load balancing system modelling involves a 

representation of the load index, the load balancing algorithm, the workload, and the 
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distributed system attributes. Based on the distributed system attributes assumed four 

distributed system models are identified: 

• system with disk-based homogeneous nodes. 

• system with diskless homogeneous nodes. 

• system with diskless heterogeneous nodes. 

• system with disk-based heterogeneous nodes. 

The baseline version for each model corresponds to the default parameter values and 

serves as a reference to the models with more realistic assumptions. The default system 

components have been arrived at through a combination of modelling decisions and 

experimental parametric tuning for optimal performance. 

The essential system attributes considered are: the file system structure, the system 

nodes configuration and host modelling, and the communication device. The fixed 

parameters and default values of the simulated system have been presented under the 

default tables in the following sections. After many preliminary tests only the 

parameters for which the system response time is potentially sensitive are considered. 

The load index is defined as the node CPU queue length. Homogeneous as well as 

heterogeneous workload models are considered. Table 4.1 depicts the experimental 

factors to be investigated for each system component along with their options and 

levels. 

The algorithms implemented are random polling based around the following 

strategies: Sender, Receiver, Symetric, Random, and Diffuse. A textual form 

description is given in Sections 2.5.1 and 3.3. They cover different information and 

control policies. This includes the following features: dynamic, adaptive, sender­

initiated, receiver-initiated, symmetrically-initiated, periodic and aperiodic activation, 

and versions adapted to heterogeneous nodes. 
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Periodic algorithm (a timer-driven version of the Receiver algorithm), Shortest 

(system-wide load information vector based algorithm), Sender_Df variant of Sender, 

Symetric_Df variant of Symetric algorithm have also been investigated. These variants 

use the inter-node load difference in the negotiation policy instead of the threshold 

level. In order to keep the number of algorithms under evaluation small, they have been 

eliminated from further investigations either because they do not improve the 

performance significantly or because they behave with no significant difference to other 

selected algorithms or do not have the autonomy or scalability attributes. 

4.2.2. Performance Studies 

Previous studies of the performance of load balancing strategies were based on 

simplified distributed system models and with no consideration of the effect of some 

essential system design options such as communication model, heterogeneity of node 

speed, and file system structure. To address the research questions stated in Chapter 3, a 

series of simulation runs are carried out. The experimental factors are varied one at a 

time and their influence studied. 

1) System Calibration and Validation Experiments 

The aim of this first experimental phase is the calibration and validation of the 

simulation model of our system. Based on the model used in Eager et al. [Eager86] and 

Michandaney et al. [Mirchandan89] the following issues are addressed. 

• calibration of workload model, local and global schedulers, load balancing 

algorithms, and transfer device model. 

• reproduction of literature results for Sender, Receiver, and Symetric algorithms. 

• validity of results checking. 
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A. Distributed System Attributes 

1) System size and hosts configuration 
a) Network size: 5, 10, 20 nodes 
b) Speeds configuration 

-Homogeneous nodes with single speed configuration: 1 job/time unit 
-Heterogeneous nodes with two classes of nodes speed: 1 and 2 jobs/time unit 

c) Local scheduling discipline: FCFS, Round Robin, preemptive priority FCFS 
2) File system structure 

-Diskless nodes with shared file server 
-Disk-based nodes with no shared file server 

3) Communication device attributes 
-topology: bus, ring 
-protocol type: FCFS, CSMNCD, TOKEN PASSING 
-data transfer rate: 5 to 100 Mbits/sec 

B. Workload Models 

a) nature of jobs and service demands 
-homogeneous jobs (single class of jobs) 
-heterogeneous jobs (two-classes jobs with short/long proportions: 95/5, 70/30) 

.non-selective transfers 

.selective transfers 
b) job initiation rates or load levels 

-homogeneous users load levels: 
(0.1), S (0.2), (0.3), L (0.4), (0.5), M (0.6), (0.7), H (0.8), V (0.9) 
-combination of heterogeneous users: 4S, 2M, 4V for homogeneous nodes 
-arrival rates for heterogeneous nodes: scaled, identical 

C. Load Balancing Algorithms 

a) homogeneous nodes 
-Algorithm: Sender, Receiver, Symetric, Diffuse, Random, Shortest 
-Algorithm adjustable parameters: 

threshold (T), number of probes (Lp), timer period (Pt) 
-Load balancing overheads: 

.Message packaging/unpackaging cost (Msend/Mrecv) 

.Transferable jobs separation cost for selective transfers (Job_sep) 
b) heterogeneous nodes 

-Standard algorithms: Sender, Receiver, Symetric, Diffuse, Random 
-Algorithm adjustable parameters: 

threshold (T), number of probes (Lp), timer period (Pt) 
-Adapted algorithms: Sendeca, Receiveca, Symetric_a, Diffuse_a, Random_a 

Table 4.1 Experimental Factors and their Levels 
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2) Experiments on Homogeneous Systems 

The objective of the experiments below is to measure the effect of system 

attributes on the performance of load balancing and in particular to classify the 

performance of the Diffuse algorithm with regard to others in the literature: Sender, 

Receiver, Symetric, and NOLB case. The effect of the following system attributes and 

workload models is to be evaluated. 

• File System Structure 

How do the algorithms implemented behave under the shared file structure and 

local file system structure and which algorithm is most appropriate for each 

structure? Are the diskless and disk-based systems affected differently by the 

other experimental factors? 

• Communication Attributes 

In most reported work, the broadcast device is assumed to have a large bandwidth 

(Le. network subsystem not heavily loaded), there is no contention for 

communication device and therefore no communication delays. Is this assumption 

valid for realistic conditions? In this experiment we investigate the effects of the 

communication device attributes (device speed, communication protocols) which 

determine the level of communication delay and its effect on the performance of 

load balancing strategies . 

• Load Balancing Overheads 

The impact of non-negligible load balancing overhead (message and job 

separation costs) on the distributed system performance is assessed . 

• File Server Speed in Diskless Model 
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Does the file server speed have an effect on the distributed system performance in 

the presence of a load balancing scheme? 

• Workload Model 

Three workload models are considered: homogeneous users with homogeneous 

jobs, heterogeneous users with homogeneous jobs, and homogeneous users with 

heterogeneous jobs. For heterogeneous jobs the transfers can be non-selective or 

selective. This involves the identification of the level of performance 

improvement under different workload models as well as the relative order of the 

load balancing algorithms. For each workload model, the most appropriate local 

scheduling discipline is used. 

3) Experiments on Heterogeneous Systems 

The objective of the experiments below IS to measure the effect of the 

heterogeneity of network nodes speed on the performance of standard load balancing 

algorithms, and to assess the performance improvements made when adapted versions 

of these algorithms are used. The following algorithms are evaluated: Random, Sender, 

Receiver, Symetric, and Diffuse. This evaluation is done on a ten nodes network: five 

nodes with service rate fll and five nodes with service rate fl2, where fll = jobs/time unit 

and fl2 = I job/time unit. Two types of workload are considered: identical arrival rates 

for all nodes, and identical node utilisation level on all nodes or scaled arrival rates. 
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4.3. Distributed System Model 

The model of the system under investigation is divided into the following parts: 

file system structure, hosts configuration, communication network, workload model, 

and performance metrics. Each aspect is detailed below with a table of default and 

variable parameters given where appropriate. The notation used to describe the 

parameters of the workload model is depicted in Table 4.2. 

n Number of nodes 

E[T] Mean job inter-arrival time to a node 

Aj Arrival rate at node i (Aj = llE[T]) 

M Exponential distribution describing jobs arrival process 

/li Processor service rate at node i 

Pi Utilisation of node i = AJ /lj 
i=n 

P System load = LPi In 

H 

p,l-p 

E[S] 

i=O 

Hyper-exponential distribution describing jobs service demands 

Probability mix for the hyper-exponential distribution 

CPU expected service time for a job 

Standard deviation of job service time 

Coefficient of variation of job service time = as I E[S] 

Table 4.2 Workload Model Notation 

4.3.1. Overview of the Model 

The loosely-coupled distributed systems modelled in this study consists of a set of 

autonomous computers connected by a local area network, exchanging information 

through a message passing mechanism [Chandras90], and operating in a cooperative 

fashion. In this environment the resulting pool of processors can be shared to improve 

the system performance by relieving overloaded nodes through remote execution of pan 

of their load on less loaded nodes. The load balancing strategies to be investigated 

apply to a general-pUIpose distributed computing system composed of a cluster of 

workstations!compute servers [Ezzat86]. The nodes are assumed to be public ally 
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owned, therefore there is no priority for local jobs over remote jobs of the same 

category. 

Figure 4.1 shows a distributed-queue representation of the system inspired from 

the models in [Livny84, Ezzat86]. It consists of n identical nodes subject to external as 

well as transferred jobs arrivals. No prior knowledge of the jobs arrival time and service 

demands is assumed. This system can best be approximated by the n*(M!HI1) queuing 

theory model [Krueger88a]. The communication network is based on a broadcast bus 

device. 
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Figure 4.1 n*(MIHI1) distributed system queuing network 

The file system structure of a distributed system is a major component whose 

impact on the perfonnance of a load balancing scheme needs to be assessed. At one 

end of the spectrum are systems with no local secondary storage relying solely on a 

shared disk server (i.e. diskless nodes); at the other end are systems with local disk 
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storage at each node and no files replication (i.e. disk-based nodes). Between the two 

are hybrid architectures for example a common structure is one with shared file server 

and small local disk attached to each node used for swapping or holding of temporary 

files. We are interested in upper and lower bound performance, therefore we deal only 

with the two extreme cases: diskless and disk-based system structures. 

In a diskless system, the communication device is used for remote file access, and 

other shared servers access (e.g. printer) as well as for load balancing activities. A 

remote job placement requires only the sending of a message (e.g. 1 Kbytes of data for 

program name, input and output files path description), and the saving of the results 

onto the shared server. A local job execution involves fetching the job image from the 

shared disk through the transfer device and saving the results back through the same 

channel onto the shared disk or their display to the screen for interactive jobs. The 

shared disk I/O operation demands are assumed evenly distributed and requiring 60,000 

machine cycles. This structure is represented in Figures 4.2 and 4.3. 

For a disk-based system, since each node has its own local disk, no file access is 

done through the transfer device. In this case a remote job placement entails 

transferring the full job along with its input to the new node. When the job completes 

the output is returned back through the communication device to the originating node. 

A local job execution involves fetching the job image from the local disk and saving 

back the output or their display to the screen for interactive jobs. The transfer device is 

used mainly for the load balancing activities. This structure is represented in Figures 

4.4 and 4.5. 

The choice of the parameters for shared and local file system structures have been 

made through realistic system abstraction to achieve a comparable utilisation level and 

service time when the nodes are subject to the same workload with no load balancing 



File 

Server 

Computer 

Nodel 

Userl 

(1 Kbytes) 

73 

File 

Server 

Communication Network 

Computer 

Noden 

Usern 

Figure 4.2 Diskless Distributed System Architecture 

Disk read 

Shared 

File 
SelVer 

Save results 
(25 Kbytes) 

0 trans er messagf J b fi 
(1 Kbytes) 

~ 

Client i Negotiation messag< s Clientj 

oE 
(100 Bytes) 

)00 

Figure 4.3 Data Flow in Diskless Model 



Computer 

Node I 

User! 

74 

Communication Network 

Computer 

Noden 

Usern 

Figure 4.4 Disk-based Distributed System Architecture 

Returned results 

(25 Kbytes) 

Job transfer 
(50 Kbytes) 

Station i negotiation messages 
(100 Bytes) 

Save local results ~ 
(20 msecs) I Fetch local image for local execution 

(20msecs) 
Save returned resul Fetch local image for remote execution 
(20 msecs) ----- (20 msecs) 

Figure 4.5 Data Flow in Disk-based Model 

activated. 

Station j 

1 ---

Each host is managed by a separate copy of kernel [Cheriton88] with associated 

communication protocols and the load redistributing software referred to in this study as 

a global scheduler. It is implemented based on the message passing paradigm, and is 
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replicated at every node to provide an interface to the users jobs, the load balancing 

strategy, identical global schedulers at other nodes, and to its own local scheduler. It is 

also in charge of the maintenance of the system state, resource queues, and the handling 

of other special provisions such as an ageing mechanism to solve the potential "queued 

forever" situation inherent to the preemptive local scheduling discipline. 

4.3.2. Host Modelling 

Although the network is made up of functionally identical processors, the 

processing speed of the nodes can be identical (homogeneous hosts) or the nodes come 

in different classes of processing speeds or service rates (heterogeneous hosts). Both 

configurations are briefly described below. 

The first-come-first-serve (FCFS) local scheduling discipline [Ferrari85] for the 

execution of jobs is assumed. A first alternative discipline to FCFS is the preemptive 

priority FCFS (PFCFS) which gives a priority to short jobs [Eager88], taking into 

account the characteristics of the jobs by filtering out jobs with small demands which do 

not justify a remote execution [Ezzat86]. This also results in a better ratio of response 

time to service demands. The second alternative local discipline is the round robin 

(RR) strategy. Both the FCFS and the RR disciplines schedule the jobs independently 

of their actual service time. 

Zhou points out that the CPU is the main contention resource in a computer 

system [Zhou86]. The memory is assumed large enough or a local hard disk is 

provided for swapping. The secondary storage devices are modelled as infinite servers 

with 40,000 cycles processing delays for each I/O operation as a rough approximation. 

This corresponds to about 20 milliseconds on common workstation processors with a 

processing speed (Le. service rate Ili) of one job/second for a 0.5 Ilsecs machine cycle 

time. Further host parameters are depicted in Table 4.5 (Section 4.4.2). 
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With the proliferation of personal computer/workstations and the constant increase 

of their processing speed, it is very common to have a computer network with nodes of 

different computing speeds but which are compatible at the operating system and binary 

code levels. The execution time of a job depends on speed of the node where it is 

executed. There is an intuitive advantage of dynamic load balancing in such an 

environment. While some substantial related work has been done for centralised 

system, very few works have been reported on load balancing for distributed 

heterogeneous systems. Models with homogeneous hosts are evaluated in Sections 5.2 

and 5.3, while heterogeneous hosts are considered in Section 5.4. 

4.3.3. Communication Network Model 

The broadcast communication device which is widely used for the interconnection 

of multicomputer systems and networks of workstations is assumed in this work. The 

jobs are executed independently at individual computers, with no inter-communication. 

The communication device is used for remote file access, job transfer, nodes status 

exchange, negotiation messages, and the interaction with other shared servers. The 

information delivered across the network can be classified into two categories: 

messages (i.e. status information, negotiation, job descriptor), and files (Le. remote job 

image from shared file server or originating host, returned results, other files). The 

default communication device assumed is a 10 Mbits/second broadcast device with a 

FCFS protocol. However, in Sections 5.2.1 and 5.3.1, a simulation study of the 

performance of other protocols [Mitrani87] (i.e. CSMA/CD, TOKEN PASSING ), as 

well as the transfer speed, is undertaken. It is to be noted that the practical transmission 

speed of a communication device is only a fraction (20 to 40 %) of the theoretical speed 

limit given [Johnson89]. This is due to contention delays and packets overheads. Table 

4.3 depicts the communication device default parameters. 
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bus, ring 

5 to 100 Mbits/sec 

32 bits 

1 Kbytes 

FCFS (options: CSMAICD, TOKEN PASSING) 

12.8 j..lsecs 

Table 4.3 Communication Device Parameters 

The transmission time of a job depends on device data transfer rate, job size, and file 

system structure. However, the actual job transfer time is unpredictable and depends on: 

message packing time (Msend: fixed value), transmission time (based on job size, 

packet structure), unpredictable network delay (device speed, traffic level, and 

communication protocols used), message unpacking time (Mrecv: fixed value). 

In a typical general purpose computing environment the individual nodes would be 

presenting a range of input/output to the network because the hosts operate with 

differing performance characteristics (e.g. file server, line printer, nodes with 

heterogeneous speeds, heterogeneous users). As a consequence the load on the network 

would most likely be asymmetrical both in arrival rate and transfers size. 

4.3.4. Workload Model 

To stress the importance of the workload model for load balancing we use a 

quotation from Zhou "Load balancing is based on exploiting the dynamics of 

workload" [Zhou87]. The users' environment being modelled consists of independent 

jobs arriving at individual computer nodes based on Poisson distributions. Both 

homogeneous as well as heterogeneous users are considered. 

The workload nature can be assessed along the arrival patterns and i.ntensities (i.e. 

arrival rate Ai ), and the job characteristics: type, mix, size, service time [Krueger88]. 

The models used in this study are based on the results in [Cabrera86, Lee86, Zhou86]. 
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The exponential distribution is frequently used to represent job arrivals at each 

node. This is referred to as the Poisson process [Lavenberg83]. This model fits 

homogeneous random job arrivals well, but to represent bursty job arrivals to the 

system each node is subjected to a different load level. These are called heterogeneous 

initiation rates and correspond to heterogeneous users. 

The other aspect of the workload model is the job size and the service demand. 

Zhou [Zhou88] and Leland et al. [Leland86] have shown that exponential distributions 

approximate poorly to process service demands, instead hyperexponential distributions 

are to be used [Leland86]. A hyper-exponential distribution H is a mixture of two or 

more exponentials [Krueger88]. In our model two-classes of jobs are assumed and are 

simulated by two exponentials distributions one for short/immobile jobs and the other 

for long/transferable jobs. The combined service time S is given by [Kobayashi78]:: 

(4.1) 

where p is the probability of a job being from the short class such as 0 < p < 1. The 

service time E{S] is defined by 

E[S] == 1/1l=pl lll + (1-p)11l2' (4.2) 

The coefficient of variation Cs for a 2-stage hyper-exponential job service demands is 

defined by [Lavenberg83]: 

Cs = [[2(PIS;+(1-p)/St)l(pISs+(1-p)/S/f]-1]1I2 (4.3) 

where Ss and S/ are mean service time for short and long jobs respectively. 

In addition to the service time length, jobs can be categorised based on the nature 

of their service demands: CPU-bound jobs, and I/O bound jobs also called interactive 

jobs. In this simulation study only CPU-bound jobs are eligible for remote execution, 

all interactive jobs are processed locally. Also processed locally are immobile jobs 

which include jobs requiring short service time, and local node dependent jobs whether 

short or long. 
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It is difficult to estimate the execution time of a job as opposed to transfer time 

which can be assumed proportional to the program length. However, the separation of 

short jobs from long jobs can be based on the job initiation command. The choice is 

made by the user or by an enhanced command interpreter. For the latter case a 

configuration file containing the names of jobs eligible for remote execution is 

provided. If the expected processing time of a job is less than T cpu , a threshold value, 

then it is not worth executing remotely. An empirical value of Tcpu is 2*C where Cis 

the minimum wall clock transmission time of a job [Castagnoli86]. The service time of 

a job depends on its service demands, the file system structure, the load level, and the 

processor speed. 

As further defined in Section 4.4.5, the system workload is generated artificially 

using probability distributions. Although these functions may not represent any specific 

real environment, they give a good approximation of the fluctuations of workload under 

small (S), light (L), moderate (M), heavy (H), and very heavy (V) load levels, and the 

service demands that the load balancing strategies must handle. To evaluate the 

performance at different load levels, the system load is varied by shortening or 

lengthening the mean inter-arrival time for users jobs at each node. Table 4 .• depicts 

the workload parameters with one job/second service rate hosts assumed. 

4.3.5. Load and Performance Metrics 

For load balancing algorithms the local processor load level is the prime factor 

used to decide whether to allocate a process locally or to transfer it to a remote node for 

execution. Many alternatives for its evaluation are outlined in Section 2.3.1. Among 

these alternatives, the CPU queue length is the most favoured load index [Zhou86], for 

its correlation to the response time and the instantaneous CPU utilisation, and for its 

quick and efficient evaluation. The CPU queue length is considered as the main 
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Job size 

Jobs arrival 

exponential with mean= 50 Kbytes 

Poisson process with different system load levels: 

(0.1), S (0.2), (0.3), L (0.4), (0.5), M (0.6), (0.7), H (0.8), V (0.9) 

a) Homogeneous jobs service demands exponential 

E[S] = 1.0 secs 

b) Heterogeneous jobs service demands hyper-exponential 

combined job E[S]= 1.0 secs, (P*short + (l-p)*long) 

short job Ss = 0.8 secs, p = 0.95 

long job Sf = 4.8 secs, 1-p = 0.05 

Cs 1.04 

c) Heterogeneous jobs service demands hyper-exponential 

combined job E[S]= 1.0 secs, (p*short + (1-p )*long) 

short job 

long job 

Cs 

Ss = 0.4 secs, p = 0.70 

Sf = 2.4 secs, 1-p = 0.30 

1.23 

Table 4.4 Workload Parameters 

resource of contention and used as the load indicator throughout this work. 

The main objectives of the scheduling strategies for an autonomous computer 

system are to minimise the job (process) response time or the average time spent by a 

job in the system, to maximise the CPU utilisation, to maximise the system throughput, 

and to ensure fairness. The latter represents the quality of service from the user's point 

of view and can be represented by the response ratio of the wait time over the service 

demands. 

When dealing with a distributed system, the notions of system balance and 

stability are to be introduced. The goal of a load balancing scheme is to 1) minimise 

the job mean response time with a minimum job movement, 2) to balance the load over 

the nodes in the network, and 3) to minimise the load balancing costs. The performance 

of a load balancing algorithm is a trade-off between its benefits (overall system 

response time, balance factor, node utilisation) and its costs (job movements, 
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communication and control overhead). The balance factor represents the queue length 

difference between the least loaded and the most loaded nodes in the network 

[Livny84]. 

There are two types of system instability [Zhou87a] that appear in a distributed 

system: the host overloading or flooding, and the job thrashing. Job thrashing 

corresponds to a successive transfer of a job from one node to the other due to bad 

decisions. Job thrashing is not considered since jobs are allowed a single move in the 

load balancing strategies under investigation. Host overloading occurs when a number 

of nodes detect that a node is underloaded and each simultaneously transfers a job to it. 

This can be evaluated by the level of job movement introduced by the load balancing 

algorithm and the resulting bad decisions rate. 

In this study the system performance is evaluated in terms of: 

a) Overall job response time (R) 

-mean value 

-standard deviation to measure the response time variability 

(i.e. response time predictability) 

b) System stability 

-percentage of jobs moved across the network 

-percentage of bad decisions which indicate the level of host overloading 

c) Load balancing cost 

-number of negotiation/information messages exchanged per host per second 

-percentage of CPU utilisation increase due to load balancing activities 

d) Transfer device performance indices [Hayter88] 

-percentage of network utilisation 

-mean request delay (level of networklhost devices interactions) 

The relation between the response time R and the system load is given by the Little 

formula L= A R [Lavenberg83] ; where L is the load, A the arrival rate, and R the 

response time. This formula states that the average number of customers in the system 

is equal to the product of the arrival rate and the average system response time. When 
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applied to a system of n subsystems, it becomes: 

i=n 
R = 'LA.iRJA. (4.4) 

i=l 

4.4. Simulated System Implementation 

The testbed environment for this study is composed of artificial workloads 

generated using probability distributions to drive a simulator that implements a number 

of load balancing algorithms in a loosely-coupled distributed system environment. Four 

system options are simulated: homogeneous diskless workstations with file servers, 

homogeneous disk-based workstations with no shared file server, heterogeneous 

diskless workstations with shared file servers, and heterogeneous disk-based 

workstations with no shared file server. A graphical representation of the components 

of the simulated system is shown in Figure 4.6. In this section, the implementation of 

this simulated system is described. 

4.4.1. Simulation Environment 

Simulation is an important stage in the development of new load balancing 

algorithms. It is based on an abstract model of the real system, which is usually 

specified by mathematical or logical relationships. The model is described in terms of 

its state, entities and their attributes, sets, events, activities and delays [Banks84]. It is 

by simulating an algorithm that we increase the confidence in its superior performance, 

demonstrate the existence of errors or gain new insights into its behaviour under more 

realistic model assumptions. The intended study requires the simulation of the 

following distributed system components: 

1) Distributed system structure 

a) computing node 

-CPU, processor speed 

-user process creation, execution, destruction functions 
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I 
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Workload Generation 

Simulation Model Specification 

i 
Experimental factors 

Figure 4.6 Simulated System Components 

-local process scheduling discipline 

b) communication device 

-communication protocols, communication bandwidth 

-network data packet structure 

c) distributed kernel mechanisms for 

-interprocess message-passing 

-process placement (non-preemptive) 

-global state information exchange 

d) maintenance of a global time source 

2) Decentralised load balancing algorithms 

-algorithm structure 

-adjustable parameters and policies 
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3) Workload generation 

-probability distributions type and mean value 

for job arrivals, job size and service demands 

-system load specification 

4) Statistics information generation (both at node and network levels) 

-length of virtual time over which the experiment is carried out 

-period at which evaluation is invoked 

-nature and volume of information generated 

-computation/presentation of relevant results in tables, graphs etc:. 

This tool must also place the simulation model under the control of the user 

[Casavant87a]. The performance objectives and metrics specification, the distributed 

system components parameters, the workload specification, and the load balancing 

algorithms options and parameters should be accessible to the user. 

The simulation of a system is not a goal in itself. It is a means to learn more about 

the behaviour of the system under study and to make specific decisions based on the 

simulation results obtained. The main purpose of this simulated system is to implement 

the essential features needed to study the behaviour of various models of distributed 

computer systems, and to provide an environment in which experiments on load 

balancing algorithms can be carried out. 

We have chosen Network 11.5 [CACI89] as a software design aid for the building 

blocks it provides for the simulation of computer systems, and the computer 

communication structure which is included. It is to be noted that Network 11.5 provides 

a more realistic simulation of communication device, and powerful probability 

distributions to simulate the workload. On top of this structure we designed and 

implemented our models of distributed computer systems, and the load balancing 

algorithms to be evaluated as specified in Section 4.2.1. This simulator has been 
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developed within a Simscript II.S 1 language environment. It is a general purpose 

simulation language based on the process interaction simulation strategy and is of a 

declarative type. The simulation model obtained on such an environment lends itself to 

a diagrammatic representation (two-dimensional picture) [Evans88], which is preferred 

to a textural representation (sequential program text or flow chart). The software 

module bubble chart representation is used to describe the simulator logic. It is based on 

modules entities, modules precedence, semaphore dependency, and message 

dependency. 

In the following sections, the designed and implemented entities are documented 

at a high level and their representation justified in accordance with the system model 

specified in Section 4.3. The choice of the features of the distributed computer system 

to be implemented is to be tailored to the experimental needs and system model 

requirements. Some aspects of these entities are assumed negligible, while others are 

actually simulated using abstract models which capture the essential features, and may 

be considered as a good approximation of reality. The main system hardware and 

software entities simulated are: autonomous hosts, communication network, file system 

structure, global scheduler, local scheduler, load balancing algorithms, workload 

generation, performance metrics monitoring, and other simulation control 

considerations. Below is a summarised description of each entity. The scheduling 

component of the distributed system is split into a local scheduler which manages the 

access to the processor for the jobs that are to be processed locally, and a global 

scheduler which redistributes the system workload among the nodes through job 

transfer. The local scheduler is described under the next section. 

1 CACI Products Company 
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4.4.2. Autonomous Hosts 

The processing nodes are simulated as autonomous entities with the instruction 

repertoire (processing, message, assignment, read/write) needed to implement the 

system model software components. The relevant parameters are made tunable to test 

the effect of different values. Since the autonomous nodes communicate only through 

message passing, the message passing primitives implementation is fairly sophisticated 

and includes all the needed global inter-process communication mechanisms for 

buffering, packing, routing/broadcast, and interactions with the transfer device. 

Messages are sent to other nodes in a non-blocking manner. To reduce the processing 

capacity taken by the load balancing messages from the main processor, an input 

controller is provided. This allows the processor to receive input messages while 

executing other modules. The received messages are put in a received messages list and 

can be consumed when appropriate provided there are modules to consume them. In 

the absence of the input controller, the processor must work the entire amount of time it 

takes to receive the message from the communication device. If the processor is busy, it 

will block both the sending processor and the connecting transfer device. 

The local scheduler or kernel provides the necessary mechanisms for the process 

creation, execution, interruption, destruction of user as well as supervisory processes. 

The local discipline options implemented are: PCPS, preemptive priority PCPS, and 

Round Robin. An optimal time quantum of 50 msecs for the Round Robin discipline 

was identified experimentally. The access to the local scheduler is regulated through a 

maximum value of the local queue (LQ) based on the local discipline. Except for the 

transferred jobs which are fed to the local scheduler upon arrival at the remote node, 

both local short and long jobs are queued in their respective wait queues before their 

submission. Since we are not dealing with preemptive load balancing policies, once a 

job is handed to the local scheduler, it becQmes a process out of the control of the 
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global scheduler, its process image is already fetched or currently being fetched for 

local execution. A graphical representation of the local scheduler is included in Figure 

4.7 (Section 4.4.4). The relationships between the different queues is as follows. The 

CPU queue length includes the short wait queue, the long wait queue, and the local 

queue (LQ). The local queue (LQ) represents the local ready queue, the interrupt 

queue, and the resident process. The main characteristics of the local scheduler are 

depicted in Table 4.5. 

To get an accurate model abstraction, the file system structure is to be represented. 

Basically the file system structure specifies where the files are held and where the 

computing results are to be saved. In this study the case where all files reside at a shared 

file server (i.e. diskless model), and the case where each computing station has its own 

file system (Le. disk-based model) are both simulated. The default network size 

experimented with is ten clients and one server for the diskless model and ten 

autonomous hosts for the disk-based model. Network sizes of five and twenty nodes 

have also been considered to measure the sensitivity of the results on the choice of the 

network size. 

4.4.3. Communication Network Attributes 

The simulated transfer device models the communication layers up to the transport 

layer, and allows the user specification of the transfer device speed, the data packet 

structure, and the medium access control protocols with their relevant parameters. The 

nodes connected to the broadcast bus are: FILE_SERVER, NaDEl, .... , NODEn where n 

Number of hosts 

Host service rate (Ili) 

Local discipline 

10 hosts (options: 5, 20 nodes) 

1 job/time unit (option: 2 jobs/time unitfor fast hosts) 

FCFS (options: pFCFS, RR100) 

Table 4.5 Local Hosts Parameters 
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represents the network size. The common characteristics of the transfer device are 

chosen as specified in Table 4.2 (Section 4.3.3). The protocols options implemented 

are: FCPS, Collision, and Token Passing. They are detailed below. 

FCFS protocol 

For this protocol a simple rule is used. The request to the transfer device are 

serviced in the order they are made. The node keeps the device until its transfer 

instruction is completed, regardless of how long it takes. A central controller is used to 

arbitrate among contending communication device users. 

COUlSION protocol 

This corresponds to the IEEE 802.3 carrier sense multiple access protocol with 

collision detection (CSMNCD). A broadcast transfer device can be in one of the 

states: idle, unsettled or busy. It is unsettled during the collision window. When still in 

use after the collision window period is over, its state is busy. 

A collision occurs if two or more nodes "see" the transfer device as idle and both 

try to use it (Le. execute a message instruction or transmit a set of packets). The 

collision is detected when the packet received during the collision window is different 

from the packet transmitted. The collision window is the period of time during which 

the transfer device is vulnerable to collision after a new user takes it. This is due to 1) 

propagation delays due to physical separation of devices, and 2) delays between 

checking a transfer device status and actually beginning to transmit. It is estimated as 

the time required by light to travel between the two most widely separated stations 

[Cheung88, Coulouris88]. For a distance of 20 meters, the collision window is 

20/3* 108= 0.066 J.lsecs. It should be less than 5 J.lsecs for a one kilometer distance cable. 

When a collision occurs, a jamming signal is sent to all stations. It ensures that all 

stations know of the collision and back off when they should. It is a collision consensus 



89 

enforcement strategy, though it is not an essential feature of CSMAlCD protocols 

[Hammond86] . 

The contention interval is the additional amount of time a node has to wait before 

attempting to access a transfer device, once the requested device becomes idle taking 

into account the assumed inter-packet interval time. Since CSMNCD does not include 

such a feature, it can be assumed with a value zero. 

After a collision the period of time to wait before trying again is called (Le. retry 

interval). It can be chosen as an arbitrary multiple of the collision window. The IEEE 

backoff algorithm based statistic distribution is commonly assumed for the retry interval 

[Hammond86] . 

The jam time is the time length of the jamming signal sent by both users when a 

collision is detected, then wait for retry interval. Since the jamming signal is not an 

essential feature of CSMA/CD, the jam time can be assumed with a value zero. 

The main parameters of the collision protocol are depicted in Table 4.6. 

Collision window 

Retry interval 

Jam time 

Contention interval 

0.066 J.lSecs 

standard backoff distribution 

O.Ollsecs 

O.Ollsecs 

Table 4.6 Collision Protocol Parameters 

TOKEN PASSING protocol 

For this protocol the requests to the communication device are ordered in a 

dynamic manner. The nodes are arranged into a logical ring; with the access granted in 

a sequential manner. Once holding the device, the node can use it for a continuous 

series of transfer instructions. The size of the series is specified by the key attribute of 

the node. A node key is used to indicate the number of consecutive transfer device 

accesses (Le. message instructions). The toke'1 passing time is the time it takes to pass 
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the token from one node to the next (i.e. delay to add realism to the model). When a 

token passing time value is specified the transfer device will always be 100% busy. For 

this protocol, a key value is specified for each node connected to the ring 

communication device. In this study the key value is one for all the nodes including the 

file server. 

4.4.4. Global Scheduler 

The global scheduler is implemented on top of the local scheduler and has a 

network-wide scope. It is the scheduling component of the distributed system that is 

replicated on every node, and provides an interface to user jobs, the load balancing 

algorithm, identical global schedulers at other nodes, and to its own local scheduler. 

The functions of the global scheduler include: 

• Job Separation 

This function involves the identification of long jobs from shon jobs. It is an 

important function, in the case of heterogeneous jobs, because only long jobs are 

worth executing remotely on lightly loaded nodes despite the communication 

overheads for a service time E[S] > Tcpu. There are two ways to implement it, by 

putting the burden on the user to identify transferable jobs and submitting them 

with a specific command identifier, or by enhancing the command interpreter for 

example adding a software routine that uses a database containing the name of 

possible commands to separate the two categories of jobs. In this simulation 

model, this function is assumed to be a black box which generates the job category 

based on the uniform distribution (P) which is also used to generate the hyper­

exponential service time distribution. However, a job separation parameter is 

provided to evaluate the effect of this overhead on the load balancing algorithms 

performance. 
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• System Information Gathering and Maintenance 

This module continuously updates the instantaneous local load value, periodically 

updates the system load vector for the load balancing requiring full system state 

information. It also periodically updates the estimated job arrival rate for the 

adaptive load balancing strategies. 

• Maintenance of Resources Queues 

Once the decision to place a job in the local node is made, this routine requests a 

job image from the file system and puts the job into the queue of the local node. 

The local node queue is regulated by this routine to keep the number of 

jobs/processes allowed into the local scheduler below a fixed maximum value. 

This value depends on the local scheduling discipline, and the file system 

structure. It includes the process currently running, the interrupted processes, and 

the jobs in the local ready queue. Other resources queues to be maintained are: 

transferable jobs queue, immobile jobs queue. Jobs are guaranteed execution after 

one transfer, they are fed to the local scheduler upon their arrival at the remote 

node. 

• Load Balancing Algorithm Activation 

Whenever the conditions of a need for load redistribution are met, the load 

balancing algorithm is activated. The transferring of jobs is given a preemptive 

priority over the processing of users jobs. 

• Remote Nodes Interface 

An inter-processor messages handler is implemented to manage the negotiation, 

information, and jobs messages exchanged between the different nodes of the 

distributed system. It also transfers jobs for remote execution, and handles the jobs 

transferred from other nodes. 
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The implementation of the simulation model involves supervisory software and user 

processes. The supervisory software includes the global scheduler functions, the jobs 

generation modules, the load balancing algorithm modules, and is executed at a priority 

higher than the user job processing modules. Two graphical representations of the 

global scheduler can be made depending on the nature of the activation of the load 

balancing algorithm: aperiodic Gob arrival or departure initiated) and periodic initiation 

for the Diffuse algorithm. The distributed scheduler structure which include both local 

and global schedulers is shown in Figures 4.1 and 4. S for the case of heterogeneous 

jobs with selective transfers. In the case of homogeneous jobs and heterogeneous jobs 

with non-selective transfers, the "Jobs Separation" and "Immobile Jobs" boxes can be 

removed. This means that the external jobs are fed directly to the "Loadj" box (in the 

case of an aperiodic scheduler) and to the "Transferable Jobs" queue (in the case of a 

periodic scheduler). 

4.4.5. Models Generation and Performance Monitoring 

After the description of the system to be simulated and the specification of the 

structure of the system model, now we discuss the generation of the simulation model. 

The simulation model generator, developed using a set of Unix shell scripts, takes the 

experimental factors as input and uses a library of model components to generate the 

appropriate simulation model. The options for each component of the distributed 

system, the workload model, the load balancing algorithm including the values for its 

parameters are selected. Next the simulator is invoked with the proper control 

parameters. At the end of the run length period the results are dumped into the output 

file. Not all the data in this file is useful for each experiment. To get only the needed 

results an output filter has been developed. It collects the essential metrics and generate 

the results tables and graphs input files. It also computes and produces other 
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miscellaneous results. These simulation stages are sketched in Figure 4.9. 

An important aspect of the simulation model is the workload generation. Each 

autonomous host has an exponential statistical distribution source of user jobs which 

has the inter-arrival time E[T], and the start time of the arrival as variables. The service 

time of the jobs are taken from a hyper-exponential distribution source with p, E[Ss], 

E[SI], as variables, for which the combined E[S] is fixed to one second for a one 

job/second host service rate. The service demands pattern are kept fixed except in the 

experiment on long jobs proportion where the probability (P) is changed. To get 

different levels of CPU utilisation, different levels of arrival rate are used. 

In addition to the statistics automatically generated by Network 11.5 which include 

node utilisation, node queues, transfer device utilisation, transfer device queues, module 

execution times, others statistics generation mechanisms have been added to account 

for system-wide performance considerations as well as at individual nodes such as job 

response time, jobs movement, bad decisions, load balancing costs, wait time in queues 

before access to the processor, and job throughput. 

Model 

Components 

Library 

J 
Output 

Experimental -Factors 

Model Simulation Simulation Filtering Results til 
JOoo 

Simulator and Graphs 
Generator Model Output 

Processing Tables 

Misc 

Figure 4.9 Simulation Stages 

es: 
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4.5. Simulated System Calibration and Validation 

The first experimental phase is devoted to the validation of the simulated system. 

To this end a simulation model based on the work by Eager et. al [Eager86] and 

Mirchandaney et. al [Mirchandan89] was built. This corresponds to the following 

characteristics: 

• network size: ten homogeneous nodes with one job/sec service rate 

• disk-based file structure 

• local discipline: FCFS 

• homogeneous jobs with mean service time S= 1.0 sec 

• average job transfer delay: 
0.1 S for short communication delay 
2S for long communication delay 

• transfer device access protocol: FCFS 

• algorithms: Sender, Receiver, Symetric 

On this baseline model the experiments on calibration of the simulation model, the 

reproduction of literature results for Sender, Receiver, and Symetric algorithms (see 

Figures 4.11 and 4.12), and the checking of the validity of results, were carried out. As 

a result of these tuning experiments the optimal parameters values identified are in 

accordance with the reported results. Based on the definition of the threshold 

parameters introduced in Section 2.5, the following convention on the threshold level is 

used: Tsi = Tsa = Tri = T ra = T + 1, where T + 1 represents the waiting jobs at a node plus 

the executing job. In Table 4:7 these default experimental values of the tunable 

parameters of the load balancing algorithms are given. The default values for other 

system components are depicted in the tables in Sections 4.3 and 4.4. 

These results confirm that sender-initiated algorithms perform best for light to 

moderate load levels while receiver-initiated algorithms do better at moderate to heavy 

load levels. The symmetrically-initiated version has the best performance for the whole 

range of load levels. Under long transfer delays, the performance of all three algorithms 



Threshold (T + 1) 

Poll_limit (Lp) 

Fixed message overhead 

Jobs separation overhead 
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1 job (for short communication delay) 

3 jobs (for long communication delay) 

2 nodes 

5.0 msecs 

0.0 msecs for homogeneous jobs 

Table 4.7 Load Balancing Algorithms Default Parameters 

is nearly identical. The optimal threshold value varies with the level of job transfer 

delay or communication bandwidth. 

For a simulation run length of 4000 seconds, the percentage of error on the job 

mean response time is less 3% for a load level pSO.8, and less than 5% for a load level 

p==O.9. Further details on the simulation run length required for a steady state simulation 

output and the confidence levels for the numerical results obtained can be found in 

Section 5.5.2. 

4.6. Summary 

A simulated system was built to allow the evaluation of different load balancing 

algorithms taking into account the effect of various system attributes and workload 

models. Through a reproduction of the literature results, the validation of the 

simulation model was undertaken. In Chapter five, the simulation results obtained on 

this system for the experiments designed in Section 4.2, are presented and analyzed. 
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CHAPfER 5 

Simulation Results 

5.1. Overview 

In this chapter the results of a performance study of several load balancing 

algorithms on four models of distributed systems are reported. As explained in Section 

4.2, these models are broadly distinguished by the file system structure and the 

homogeneity of the processing speed of the nodes. For each model the performance of 

the load balancing algorithms is compared for a range of the distributed system 

attributes, including: the communication bandwidth and protocols, the load balancing 

overheads, the file server speed (for the diskless model). The workload models 

considered are homogeneous users with homogeneous jobs, heterogeneous users with 

homogeneous jobs, and homogeneous users with heterogeneous jobs. This work will 

contribute to answering the research questions posed in Section 3.4. 

The purpose of load balancing is to reduce the job response time of a distributed 

system by increasing the utilisations of the processors. Care is needed to minimise the 

overheads of moving jobs around the system. The main measure of the performance of 

the load balancing algorithms is the metric: job mean response time. This measures the 

average time a job spends in the system. Also, to gain further insights into the 

performance of the load balancing algorithms, the following metrics are obtained: the 

response time predictability (standard deviation of job response time), the mean CPU 

queue length, the system instability (level of job movement), the quality of remote 

allocation (bad decisions rate), the level of negotiation message traffic per node per 

second on the network, the total load balancing overhead added to the computing nodes 

(i.e. increased CPU utilisation), and the final metric is the communication device 
98 
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utilisation (e.g. percent of busy time, mean request delay). 

A pictorial representation of the experimental investigations undertaken in this 

chapter is depicted in Figure 5.1. The details of the simulation and system validation 

have been described in Chapter 4. The experiments are grouped as follows: 

i) Experiments on Homogeneous Diskless Systems 

ii) Experiments on Homogeneous Disk-based Systems 

iii) Experiments on Heterogeneous Systems 

In Section 5.2, the performance of the load balancing algorithms is compared on a 

simulated system using homogeneous diskless nodes and a shared file structure. The 

system comprises a fixed set of system attributes and workload parameters. It is referred 

to as the baseline system. Following this, the performance characteristics of the more 

promising algorithms are investigated using different system attributes and workload 

parameters. The trade-offs involved between creating a stable, balanced system and the 

overheads incurred in bringing this about, are also discussed. With the exception of the 

file server related experiment, an almost identical set of investigations are carried out in 

Section 5.3, for a system comprising disk-based homogeneous nodes. 

Load balancing in heterogeneous systems with various processors speed is 

investigated in Section 5.4. Strategies adapted for such configurations are developed 

and evaluated using arrival rates scaled to the nodes speed to have the same utilisation 

level on all the nodes, and identical job arrival rates on all the nodes regardless of their 

speed. 

Finally the scalability and confidence levels issues are addressed in Section 5.5. 

The tables containing the detailed simulation results are presented in the appendix. 
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5.2. Load Balancing in Systems with Diskless Homogeneous Nodes 

The objectives of this perfonnance study are: 

• To evaluate the load balancing algorithms on a baseline system using the job mean 

response time and other perfonnance metrics. This also involves an assessment of 

the interdependence of the algorithms properties and the perfonnance obtained. 

• To determine the relative perfonnance ordering for the algorithms and the 

sensitivity of this ordering to changes in the system attributes and workload 

parameters. 

• To identify the system attributes which have a significant effect on the algorithms 

perfonnance. 

• To detennine which algorithms perfonn well under a wide range of system 

behaviours. 

The simulated system comprises identical diskless workstations connected through 

a broadcast communication device. A shared file server to support a distributed file 

system is connected to the same communication device and used to hold all the files and 

other infonnation needed by the diskless nodes. Further details on the system design 

assumptions can be found in Section 4.3. The essential characteristics of the baseline 

system which are based on the assumptions commonly made in the literature, are 

summarised below. The communication bandwidth is expressed relative to the system 

job service rate. A ratio R= compute rate Icommunicate rate is used. The nodes service 

rate is kept fixed while the communication data transfer rate is varied. 

The baseline system attributes are: 

• File system structure: diskless 

• System size: 10 homogeneous hosts 
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• System service rate: 10 jobs/sec (Host service rate: 1 job/sec) 

• Compute/Communicate ratio: R= 0.13 

• Communication protocol: token passing 

• File server I/O overhead time: 

related to file size 

fixed 3.75 msecs + communication delay 

• Workload model: homogeneous users, homogeneous jobs with E[S]= 1.0 sees 

• Local scheduling discipline: FCFS 

• Fixed load balancing message overhead: 5.0 msecs 

The essential algorithm parameters to be tuned are the probe limit (Lp), the threshold 

(T), and the timer period (Pt). Experimentally the following values have been found 

optimal for the baseline system: Lp = 2, T= 1 (for R= 0.13), Pt = 0.4 msecs. Based on 

this baseline model, the relative performance of Sender, Receiver, Symetric, Diffuse, 

and Random algorithms is computed. These algorithms use different information and 

control policies. The effect of the various system factors on the performance of these 

algorithms is assessed. The system factors considered are communication bandwidth 

and protocols; the load balancing messages cost; the file server speed; and the workload 

model. 

5.2.1. Algorithms Performance on the Baseline System 

The performance factors considered in this section are the load balancing 

algorithm, the load level, and the load pattern. The selected set of algorithms is 

evaluated for homogeneous users at different load levels, and for heterogeneous users 

combination (4S, 2M, 4V) (see details in Table 4.7). 
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The results for the baseline system are shown in Figure 5.2, and Table 5.1. It is to 

be noted that the tables are in the appendix. The following remarks can be made: 

• While Sender performs better than Receiver at low to moderate load levels, it is 

outperformed by the latter at heavy load levels. As all the nodes become heavily 

loaded, it gets more difficult to find an idle or underloaded node through a sender­

initiated load balancing. 

• The Symetric algorithm, which is a combination of Sender and Receiver, does 

well over all the range of load levels. However it involves a higher number of load 

balancing messages and job movements. This tends to increase the percentage of 

CPU utilisation significantly. 

• The Diffuse algorithm (Le. periodic version of Symetric) produces the best mean 

job response time, though it involves a larger number of wrong job movements. 

This algorithm results in fewer number of messages and job movements than the 

Symetric one. 

• The Random algorithm which has the lowest overhead, since no system 

information collection is needed, has the poorest performance due to large job 

movements and high wrong decision rate. 

• A reduction of the job mean response time of up to 80% is possible for the 

baseline system. For a load level between 0.65 to 0.9, the performance ordering 

for the algorithms is: Diffuse, Symetric, Receiver, Sender, Random. 
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5.2.2. Effect of Communication Bandwidth and Protocols 

In earlier studies on the performance of load balancing algorithms, it has been 

commonly assumed that a large communication bandwidth is available, so there is no 

contention on the communication device. However, this is not realistic since in present 

day technology the processor speed is increasing at a faster rate than the bandwidth of 

the communication network. Therefore it is worthwhile to investigate the performance 

of the load balancing algorithms under a large compute!communicate ratio. The 

experiments carried out on the baseline system, were repeated using a 

compute/communicate ratio R= 0.4. This makes it possible to compare the effect of the 

compute/communicate ratio on the algorithms performance. 

1) Performance under Large Compute/Communicate Ratio (R= 0.4) 

A larger value of the threshold was found more appropriate when a large 

compute/communicate ratio is used (T= 2 for R= 0.4). The results of using slower 

communication device are shown in Figure 5.3, and Table 5.2. It is possible to draw the 

following conclusions. 

• The relative performance order of the algorithms is unchanged. The only 

exception is the Symetric algorithm for which the job mean response time tends to 

saturate at very heavy load level. This can be explained by the large number of 

load balancing messages inherent to this algorithm. 

• Due to the longer communication delay, the level of improvement of all the 

algorithms drops by up to 10%. Even under the NOLB case, the job mean 

response time degrades because it takes longer to access the file server. 

• The performance of all the algorithms is nearly identical, except for the Diffuse 

algorithm which maintains a more significant improvement of the mean response 

time. 
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2) Performance under Heterogeneous Users 

In previous experiments, the generation of workload was based on identical users 

on all the nodes. The results shown in Tables 5.3, and 5.4, are for a heterogeneous 

combination of users (4S, 2M, 4V). The following remarks can be made: 

• The Random algorithm does well in terms of reduction of job mean response time, 

while the Receiver performs poorly due to the low negotiation success rate. It is 

difficult to find an overloaded node when most nodes are barely used. 

• The performance of Symetric, Random, and Sender are very similar, though at a 

lower cost for the latter. Only the Diffuse algorithm has a significant mean 

response time reduction. 

• The compute/communicate ratio has no effect on the relative performance order of 

the algorithms. However for long communication delays, the level of improvement 

is smaller and at a higher cost. 

Benefit Cost 
Algorithm response(A VO) response(STD) job mov. 

messages %LB_exec time(s) Impr(%) time(s) Impr(%) %jobmov %baddcs 
NOLB 5.47 0.00 2.46 0.00 0.00 0.00 0.00 0.00 
RANDOM 1.63 70.18 0.56 77.43 29.77 28.40 0.00 0.31 
RECEIVR 2.07 62.10 0.76 69.08 17.25 0.63 1.42 1.20 
SENDER 1.55 71.67 0.52 79.05 24.14 0.49 0.39 0.54 
SYMTRIC 1.54 71.90 0.51 79.38 25.59 0.55 2.50 1.50 
DIFFUSE 1.30 76.16 0.54 77.86 23.83 7.25 2.22 2.22 

Load Pattern= 4S, 2M,4V 

Table 5.3 Performance under Small Compute/Communicate Ratio (R= 0.13) 
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Benefit Cost 
Algorithm response(A VG) response(STD) jobmov. 

messages %LB_exec 
time(s) Impr(%) time(s) Impr(%) %jobmov %baddcs 

NOLB 6.40 0.00 2.87 0.00 0.00 0.00 0.00 0.00 
RANDOM 2.01 68.54 0.62 78.32 19.44 16.79 0.00 0.42 
RECEIVR 2.48 61.32 0.81 71.69 14.01 0.72 1.60 2.14 
SENDER 1.98 69.00 0.61 78.87 16.53 0.58 0.23 0.75 
SYMTRIC 2.03 68.25 0.61 78.87 18.30 0.55 2.35 2.81 
DIFFUSE 1.69 73.53 0.66 77.09 17.18 4.26 2.32 3.73 

Load Pattern= 4S, 2M, 4V 

Table 5.4 Performance under Large Compute/Communicate Ratio (R= 0.4) 

3) Load Balancing Overheads 

A load balancing scheme consumes CPU cycles for the execution of its policies 

and adds message traffic onto the communication device. Three types of overhead can 

be identified : the eligible job separation for selective transfers; the load balancing 

messages; and the job transfer overheads. Global load balancing overheads depend on 

the structure of the algorithm, the level of load balancing activity assumed, and the job 

arrival rates. To assess the average CPU utilisation due to the load balancing activities, 

the percentage of processor busy time of individual nodes is monitored for each 

algorithm and compared with the NOLB case. The percentage average increase is then 

computed. From the results shown in Figures 5.4 and 5.5, it can be concluded: 

• The algorithms that perform best have higher overheads. The level of overhead 

increases with the load level. However, under long communication delays, the 

Symetric algorithm cost is more than that of Diffuse at very heavy load level, 

though its reduction of the mean response time is less. The load balancing 

overhead is nearly twice as big as for the baseline system. 

• As the load balancing overhead is mainly due the handling of load balancing 

messages and job transfers, the increase in CPU utilisation is affected by the 
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number of .load balancing messages induced by the load balancing algorithm and 

the level of job movement. 

The increase in the percentage of communication device utilisation is less than 2% 

under both compute/communicate ratios, for all load balancing algorithms and at all 

load levels. From this we conclude that on a diskless model of distributed systems, the 

load balancing overhead is mainly on the CPU utilisation. 

4) Effect of Communication Protocols 

In the baseline system a token passing communication protocol was assumed. To 

assess the effect of the choice of the communication protocol, the performance of the 

two more promising algorithms (i.e. Diffuse and Symetric) is evaluated under First­

Come First-Serve and CSMNCD communication protocols. This evaluation was 

carried out under both large (R= 0.4) and small (R= 0.13) compute/communicate ratios. 

The results for the Symetric algorithm are shown in Figures (Figures 5.6, and 5.7). No 

significant effect on the mean response time was noticed. This can be explained by the 

low device utilisation level which was « 20%) for slow device and « 50%) for fast 

device, and the similar load put by all the nodes on communication device. 
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5.2.3. Impact of Load Balancing Messages Cost 

To get a better understanding of how well the results obtained for the baseline 

system apply to environments with important message costs, two experiments were 

conducted. 

The first evaluates the effect of a range of message cost (2 to 30 msecs) on the 

Symetric and Diffuse algorithms at a heavy load level and shon communication delays. 

From this it is reasonable to conclude that the performance improvement is consistent 

over a wide range of load balancing messages cost (Figures 5.8, and 5.9), provided they 

are not too high, as shown in [Zhou88]. The advantage of the Diffuse algorithm over 

Symetric algorithm is clearly maintained. 

The second experiment compares the performance of all algorithms for a message 

cost of 20 msecs. Diffuse and Receiver algorithms are less sensitive to message cost 

and maintain a good performance over the whole range of workload. Symetric and 

Sender algorithms degrade sharply at very heavy load level. 



112 

M 
7 NOLB 

e --
a ---
n 6 

-------------------
R -----------e 5 
s 
p 
0 4 Symetrie 
n 
s 
e 3 

T 
i 2 

m 

Diffuse 

------------------ -----------==------
e 1 

(Sees) 
0 5 10 15 20 25 30 

Load Balancing Messages Cost (msecs) 

Figure 5.8 Effect o/LoadBalancing Messages Cost/or Baseline System (R= 0.13) 

M 12 
e 
a 11 
n 

10 

R 9 
e 
s 8 

p 7 
0 

n 6 
s 5 
e 

4 
T 3 
1 

I 

) 

I 
I 

I 
I 

I 
I 

I 
I 

NOLB 

Sender 

~ymetrie 
Random 

--__ - - __ - Receiver 
m 2 

e 1 
(Sees) ~~===;::~~~~~-~-~~~~~~~;;;;~~==~----~ 

---
.... = = = = = = = ::: : - - - Diffuse 

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 
System Load 

Figure 5.9 Performance/or Message Cost 0/20 msecs (R= 0.13) 



113 

5.2.4. Effect of File Server Speed 

The effect of the file server speed on the mean response time is evaluated for the 

Diffuse and Symetric algorithms(see Figure 5.10). The file server speed attribute used 

is the fixed overhead time it takes to service an I/O operation. To remove any side 

effects due to the contention on the communication device, short communication delays 

are assumed. As would be expected, there is a range of server speeds which has little 

effect on the the job mean response time. However, when the file server takes over 30 

msecs to service an I/O operation, a sharp increase of the mean response time occurs. 

The same behaviour can be observed when a large compute!communicate ratio is used. 

This supports the conclusion drawn by Zhou [Zhou87], that the file server is the first 

resource to saturate. The performance order of the algorithms is not affected. 
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5.2.5. Performance under Heterogeneous Workload 

The Poisson arrival- exponential service demands workload is commonly assumed 

as the default model. In this experiment a workload model with hyper-exponential 

service demands is investigated. Furthermore two types of job transfer for load 

balancing purposes are considered: (i) non-selective transfers where all jobs are eligible 

for transfer whether it is a long or a short job, and (ii) a selective transfer which is 

restricted to long jobs. To accommodate heterogeneous jobs the following changes 

have been made to the system model. The FCFS local scheduling discipline is replaced 

by a Round Robin local scheduling discipline because the FCFS is not suitable for 

heterogeneous jobs [Mitrani87]. A parameter to assess the job separation cost is 

introduced. Its default value is fixed to 10 msecs. The tuning of the timer period for 

Diffuse algorithm had also to be repeated. A new value of 1.6 msecs was found 

optimal. The effect of three issues is investigated: 

i) Proportion of short/long jobs: 95/05, 70/30 

ii) Type of job transfer 

-non-selective transfers of jobs 

-selective transfers of jobs 

iii) job separation cost: 10 to 200 msecs 

The results for a 95/05 proportion of short/long jobs with non-selective transfers 

are shown in Figure 5.12, and Table 5.5. It can be concluded that the Receiver 

algorithm performance degrades, even at very heavy load level it does not catch up with 

the Sender algorithm. Due to the long running jobs the state of near idleness takes 

place less often. This causes the Receiver algorithm to be activated less often. In fact 

the latter algorithm has the lowest job movement level (i.e. < 50%) than the other 

algorithms. The other algorithms performance ordering is similar to the ordering under 

homogeneous jobs. 
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The results for selective transfers are shown in Figure 5.13, and Table 5.6. It can 

be seen that the level of improvement is reduced significantly (i.e. over 20%) because at 

most 5% of the jobs can be transferred, while the relative performance order of the 

algorithms is similar to previous experiment. 

When the proportion of long jobs is changed to 70/30 (see Figure 5.14, and Table 

5.7), the following conclusions can be drawn: 

• The performance order remains the same as under 95/05 proportions. A similar 

level of performance improvement is obtained for non-selective transfers. 

• For selective transfers (Figure 5.15, and Table 5.8), the level mean response time 

improvement is higher because a larger number of jobs are eligible for transfer. 

Due to a significant number of wrong movement of jobs at very heavy load level, 

the performance of Diffuse degrades. This can be overcome by slowing down the 

algorithm at very heavy load levels, a situation which should be rare, otherwise a 

significant upgrade of the system is necessary. 
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For a job separation cost of up to 200 msecs (see Figure 5.16), selective transfer 

based load balancing improve the job mean response time. However, for more than 100 

msecs the level of improvement is not worthwhile. The degradation of the job mean 

re!!l0nse time is sharper for the Diffuse algorithm. 
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5.2.6. Conclusion 

The main conclusions to be drawn on relative performance of different load 

balancing algorithms evaluated on the diskless system model are as follows: 

• All the algorithms evaluated improve the job mean response time of the system 

particularly for a load level greater than 0.4. The amount of improvement 

increases with the load level. Improvements of up to 80% were found at very 

heavy system loads. 

• The Diffuse algorithm produces the lowest mean response time. This is due to its 

symmetric and periodic structure. Although it has a high level of wrong job 

movements. 
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• Random algorithm has the lowest communication overhead since no system state 

information is gathered but it produces a large number of bad decisions and the 

highest system instability, leading to a poor penormance. These results confirm 

the findings of Eager et al. [Eager85]. That is sender-initiated policies are good at 

light load while receiver-initiated policies perform better only at heavy load. The 

symmetrically-initiated version performs well over the whole range of load levels. 

Below are summarised the effects of the distributed system attributes and workload. 

The communication device speed has an impact on the performance of the load 

balancing algorithms. When the device is slow the mean system response time 

degrades even for the NOLB case. Another significant effect is a reduced level of job 

movement and a slight increase of wrong decisions rate. The performance of all the 

algorithms is nearly identical making the choice of the algorithm less relevant. For 

heterogeneous users an increased predictability of the mean response time is observed. 

For a communication device utilisation level of up to 50%, the load balancing 

algorithms perform similarly with all the three communication protocols evaluated. 

The algorithms performance is robust over a wide range of load balancing cost. 

Symetric algorithm is the most sensitive to this cost at very high load levels. This 

suggests that this algorithm should be used when there is a large communication 

bandwidth is available. As far as the global load balancing cost (i.e. message cost, job 

transfer cost) is concerned a general pattern emerges. The algorithms with the best 

improvement tend to have the worst overheads associated with them. This cost is 

increased when the communication delay and load level are higher. However, a general 

conclusion is that the load balancing is still effective for a wide range of load balancing 

overheads. Provided a minimum file server speed is available, load balancing 

performance is not affected. 
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When heterogeneous workloads are used, the relative performance order of the 

algorithms is unchanged. Selective transfers are worthwhile only when a large number 

of long jobs are generated and the job separation cost is not too high. 

The results show clearly that the Diffuse algorithm is the most promising one in 

reducing the job mean response time. It is robust in the sense that it performs well over 

a wider range of system attributes and workload. However, some care is needed in 

interpreting the results because the algorithm parameters have been tuned for optimal 

performance on the systems considered. 

5.3. Load Balancing in Systems with Disk-based Homogeneous Nodes 

The distributed system considered in this section consists of a set of identical 

autonomous nodes. Each node has its own local file system and is connected to a 

broadcast communication device. In this environment load balancing involves the 

actual transfer of the complete job information (i.e. programs, files) to the remote host, 

and the return of the results data and files to the job originating host. Except for the file 

server related experiment, which does not apply to the disk-based system, all the 

experiments of the previous section were repeated on this disk-based system model. A 

structure similar to that of Section 5.2 has been adopted for this section. 

5.3.1. Algorithms Performance on the Baseline System 

Except for the file system structure which is changed to a disk-based model, all the 

characteristics of the system under study are the same as those used in the baseline 

system described in Section 5.2. Since no file server is used, all I/O operations are 

handled by a local disk. The time to service an I/O operation is assumed evenly 

distributed and fixed to 20 msecs. 

The results obtained under the baseline system conditions are shown in Figure 5.17, and 
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Table 5.9. The following conclusions can be drawn: 

• The algorithms perfonnance order for moderate to heavy load level is: Diffuse, 

Symetric, Receiver, Sender, Random. The cross-over of SenderlReceiver 

algorithm takes place at 0.75 load level. For light to moderate load level, all the 

algorithms perfonn similarly with a slight degradation for Receiver. For such load 

levels the probability of finding an overloaded node is small. 

• The level of perfonnance improvement of up to 80% is possible. The standard 

deviation of the response time obtained is similar for all the algorithms. 

• The poor perfonnance of Random algorithm is due to its high level of job 

movement (nearly twice that of other algorithms at heavy load level) and wrong 

job movements. 

• The most promising algorithms are Diffuse and Symetric, which are both 

symmetrically-initiated. Diffuse algorithm produces the best mean response time, 

but involves a higher level of wrong job movement. 

It is interesting to observe that there is no significant difference between the 

perfonnance ordering of the algorithms for the diskless and disk-based models of the 

baseline system. 

5.3.2. Effect of Communication Bandwidth and Protocols 

The perfonnance of the load balancing algorithms is compared under a large 

compute/communicate ratio, heterogeneous users, and different communication 

protocols. The level of load balancing overhead is also assessed. 

1) Performance under Large Compute/Communicate Ratio (R= 0.4) 

The results obtained when a large Compute/Communicate ratio is used are shown 

in Figure 5.18, and Table 5.10. The following, remarks can be made on the perfonnance 
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of the load balancing algorithms: 

• The relative performance ordering of the algorithms remains unchanged. 

Surprisingly the level of performance improvement is significant (Le. up to 75%) 

even for long communication delays, though the algorithms CUlVes tend to cluster 

making the choice of the load balancing algorithm less relevant. 

• The Receiver/Sender cross-over takes place at a much higher load level. This 

indicate that the probability of finding an overloaded node is reduced (Le. the 

threshold level was raised to 2 to make the probing of remote nodes cost-effective 

under long communication delays). 

• The only significant performance difference obselVed between diskless and disk-

based models, is the poorer performance of Random at heavy load levels on disk­

based model. This can be explained by the nature of transfers on the disk-based 

model where the actual job is moved and the very level of job movement inherent 

to the Random algorithm. 

The main conclusions to be drawn from this experiment IS that the 

compute/communicate ratio does not affect the relative performance order of the 

algorithms. For a large ratio a lower level of improvement is obtained and performance 

of the algorithms is almost identical. However, the Diffuse algorithm still produces the 

highest reduction of the job mean response time. 

2) Performance under Heterogeneous Users 

In previous experiments, the generation of workload was based on identical users 

on all the nodes. The results shown in Tables 5.11 and 5.12 are obtained for a 

heterogeneous combination of users (4S, 2M, 4V). The following remarks can be 

made. Diffuse, Symetric, and Random algorithms perform similarly for both shon and 

long communication delays. This unexpected performance of Random can be 
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explained by the large number of lightly loaded nodes. For the same reason Receiver 

algorithm does rather poorly (i.e. reduced probability of finding an overloaded node). 

No significant difference in the performance ordering of the algorithms with the 

diskless model is observed. 

Benefit Cost 
Algorithm response(A VO) response(STD) jobmov. 

messages %LB_exec time(s) Impr(%) time(s) Impr(%) %jobmov %bad des 
NOLB 6.10 0.00 2.66 0.00 0.00 0.00 0.00 0.00 
RANDOM 1.69 72.33 0.61 77.07 32.49 29.56 0.00 0.45 
RECEIVR 2.11 65.39 0.78 70.77 18.38 1.75 1.40 1.28 
SENDER 1.59 73.93 0.52 80.33 25.24 1.72 0.41 0.84 
SYMTRIC 1.52 75.15 0.51 80.66 27.45 2.08 2.51 1.66 
DIFFUSE 1.48 75.82 0.53 79.93 24.51 8.77 2.22 1.87 

Load Pattern= 4S, 2M, 4V 

Table 5.11 Performance under Small Compute/Communicate Ratio (R= 0.13) 

Benefit Cost 
Algorithm response(A VO) response(STD) job mov. 

messages %LB_exec time(s) Impr(%) time(s) Impr(%) %jobmov %baddes 
NOLB 6.10 0.00 2.66 0.00 0.00 0.00 0.00 0.00 
RANDOM 2.01 67.03 0.66 75.32 20.20 17.53 0.00 0.64 
RECEIVR 2.45 59.87 0.82 69.32 14.62 1.55 1.64 1.62 
SENDER 1.95 68.11 0.62 76.71 17.68 1.26 0.24 0.97 
SYMTRIC 1.95 68.00 0.62 76.82 18.43 1.45 2.39 2.00 
DIFFUSE 2.00 67.28 0.64 75.96 17.16 4.16 2.35 2.15 

Load Pattern= 4S, 2M, 4V 

Table 5.12 Performance under Large Compute/Communicate Ratio (R= 0.4) 

3) Load Balancing Overheads 

The results shown in Figures 5.19, and 5.20, represent the load balancing overhead 

on a disk-based model. It can be concluded that: 
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• The load balancing overheads increase with the increase of the perfonnance gain. 

However, under long communication delays, the overheads for the Random 

algorithm increases sharply due the large number of jobs transferred (up to 22% 

utilisation of a slow communication device). 

• The overhead level is slightly affected by the communication delay for low to 

moderate load levels, because the utilisation of the communication device is 

relatively low « 14% for large ratio and < 5% for small ratio). This is the main 

difference with the diskless model where the communication device utilisation is 

higher because it is used for both load balancing activities and shared file server 

accesses. 

• The communication device utilisation for the disk-based model, being mainly due 

to the load balancing activities, the increase in CPU utilisation gives an indication 

on the load balancing overhead put on the communication device. 

4) Effect of Communication Protocols 

The increase in the traffic imposed on the communication device by the load 

balancing algorithm also depends on the file system structure. On a disk-based system 

a transfer of a job requires the transfer of the full program and associated files as well as 

the return of results. On this basis one would expect a more important overhead 

imposed on the communication device for the disk -based model. This is not the case, it 

is on the diskless model that, the accesses to the files on the shared device puts a much 

bigger burden on the communication device. 

The effect of the communication protocol was evaluated for both Diffuse and 

Symetric algorithms. The results for the Symetric algorithm are shown in Figure 5.2I. 

All the communication protocols perform similarly. This can be explained by the low 

device utilisation level which was « 5%) for: slow device and « 14%) for fast device, 
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and the unifonn network traffic. 

5.3.3. Impact of Load Balancing Messages Cost 

The perfonnance of the two most promising algorithms Diffuse and Symetric at 

heavy load level is slightly affected by load balancing messages fixed overhead. The 

mean response time is shown for a range of 2 to 30 msecs (see Figure 5.22). 

The same conclusion is reached when all the algorithms are evaluated with a load 

balancing message overhead fixed at 20 msecs (see Figure 5.23). As shown is Section 

5.2, Sender and Symetric algorithms degrades sharply at very heavy load level under a 

diskless model. This is not observed for a disk-based model and can be explained by 

the higher communication device mean request delay which was up to five times higher 

than for a disk-based model. 
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5.3.4. Performance under Heterogeneous Workload 

In this experiment the performance of the load balancing algorithms using a 

workload model based on Poisson arrival but with hyper-exponential service demands 

is investigated. The service demands used have the following characteristics: 

a) 95/05 proportion of short/long jobs 

-short jobs mean service time: 0.80 secs 

-long jobs mean service time: 4.80 secs 

-coefficient of variation: 1.04 

b) 70/30 proportion of short/long jobs 

-short jobs mean service time: 0040 secs 

-long jobs mean service time: 2.40 secs 

-coefficient of variation: 1.23 

To accommodate this type of workload, some adjustments to the system model were 

necessary. These adjustments involve the local scheduling discipline and the tuning of 

the Diffuse algorithm (see details in Section 5.2.5). 

When a 95/05 proportion with non-selective transfers is used (see Figure 5.24, and 

Table 5.13), the same relative performance order of the algorithms as for the diskless 

model is observed, though the level of reduction of the mean response time is slightly 

higher for the disk-based model. 

For selective transfers (see Figure 5.25, and Table 5.14), the level of performance 

improvement is much less. The relative performance order of the algorithms is basically 

unchanged. This is due to the very low number of transferable jobs. 

The effect of changing the proportion of long jobs to 70/30 is shown in Figure 

5.26, and Table 5.15. Although the performance order of the algorithms is similar to 

that under 95/05 proportion, the level of improvement is higher. For selective transfers 

(see Figure 5.27, and Table 5.16), a degradation in the performance of Diffuse 

algorithm is observed. It is marginally outperformed by the Symetric algorithm. 



130 

A general conclusion to be drawn is the similarity of the performance under both 

diskless and disk-based models. Also for non-selective transfers the level of mean 

response time reduction is higher than that under homogeneous jobs. For a job 

separation cost higher than 100 msecs, load balancing with selective transfers is not 

worthwhile. 

5.3.5. Conclusion 

The main conclusions that can be drawn from the results in this section on the 

relative performance of different load balancing algorithms are as follows: 

• All the algorithms evaluated improve the mean response time of the system at all 

levels of utilisation. The level of improvement increases with the load level. It 

reaches 80% at very heavy system loads for the Diffuse algorithm. 

• The performance of the algorithms obtained supports the results by Mirchandaney 

et. al [Mirchandan89], in terms of both the relative ordering of the algorithms and 

the level of performance improvement obtained. 

• The main conclusion is that Diffuse is the most promising algorithm. The Symetric 

algorithm does well but generates more load balancing messages which put more 

load on the communication device. 

Below are summarised the effects of the system attributes for a distributed system 

based on the disk-based model. As under the diskless model the compute/communicate 

ratio does affect the level of performance improvement but not the relative order of the 

algorithms. Even under large compute/communicate ratio the utilisation of the 

communication device due to load balancing activities is less than 14%. For this level 

it can be justified to assume that there is no contention on the communication device 

and that the communication protocols perform similarly. 
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Load balancing is still effective for a wide range of load balancing overheads. For 

a load balancing message fixed overhead of up to 30 msecs there is no significant 

degradation of the mean response time. Even Sender and Symetric algorithms are not 

affected when a 20 msecs fixed message overhead is used, which was not the case under 

the diskless model. The total load balancing overhead is less than 4%. 

When a heterogeneous workload is used, the same performance ordering of the 

algorithms is maintained. 

5.4. Load Balancing in Systems with Heterogeneous Nodes 

In previous experiments the nodes were assumed homogeneous. In the system 

studied in this section the nodes are assumed to have the same functionality and are 

subjected to the same job arrival rate or to the same utilisation level but have different 

computing speeds. A job can run on any node, but its service time depends on the speed 

of the node where it is executed. Consequently, the load index (Le. CPU queue length), 

and remote node selection weight when polling is used, will not have the same system 

wide weight. To take this into account, adapted versions of the algorithms with 

information about the nodes computing speed built-into are considered. 

There are two ways to specify the workload for a heterogeneous system, namely: 

scaled arrival rates (in Section 5.4.1) and identical arrival rates (in Section 5.4.2). The 

parameters that need to be adjusted to the node speed are the polling probability weight 

and the timer period for the Diffuse algorithm. In the following sections the adapted 

algorithms are evaluated against the NOLB case as well as the standard versions which 

ignore the nodes speed. Further details on standard/adapted algorithms, and 

scaled/identical arrival rates can be found in Section 3.3. 



134 

The system model used is based on the baseline system described in previous 

Sections with the following modifications made to accommodate heterogeneous hosts: 

• System size: 10 heterogeneous hosts with 15 jobs/sec total service rate 

-5 fast hosts: J.Ll = 2 jobs/sec 
-5 slow hosts: J..l2 = 1 job/sec 

• Compute/Communicate ratio: R= 0.6 

• File server I/O time: 3.75 msecs + communication delay (diskless model) 

• Local I/O time: fast hosts: 10 msecs, slow hosts: 20 msecs (disk-based model) 

• Workload model: homogeneous users, homogeneous jobs with E[S]= 0.75 sees 

-service time on fast hosts: S 1 = 0.5 sec 
-service time on slow hosts: S2= 1.0 sec 

The experimental factors in this section are three-fold: diskless and disk-based file 

system structures, standard and adapted algorithm versions, and scaled as well as 

identical job arrival rates. 

5.4.1. Evaluation of Algorithms under Scaled Arrival Rates 

In this section the system load is specified by scaled arrival rates (jobs/sec). This 

corresponds to a same level of processor utilisation on all the nodes. 

5.4.1.1. Diskless Model 

Based on the results represented in Figure 5.28 and Table 5.18, the following 

assessment can be made: 

• At very heavy load level all the algorithms, except the Receiver, a sharp increase 

of the mean response time takes place. The Receiver maintains its level of 

response time as the load level increases. This is due to an activation of the 

algorithm mainly on fast nodes which clear their queue of jobs more often. 
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• Given the large number of fast nodes, standard algorithms are good enough so that 

no further improvement can be made by the adapted versions. 

• When the Diffuse algorithm is used with a scaled timer, the slow nodes get 

saturated leading to a sharp degradation of the mean response time. 

• A degradation of Sender and Symetric algorithms performance is observed at very 

heavy load levels. This is due to a higher failure of the sender-initiated 

negotiations of these algorithms. 

• Performance order for standard algorithms at heavy load level IS: Receiver, 

Diffuse, Symetric, Sender, Random. 

• Performance order for adapted algorithms at heavy load level is: Receiver , 

Diffuse, Random, Sender, Symetric. 

The advantage of weighted destination is to focus receiver-initiated transfers from 

slow to fast nodes and sender-initiated transfers from slow to fast nodes. For scaled and 

identical arrival rates used, this property of adapted algorithms is is barely used. A 

third arrival pattern where adapted algorithms would be more advantageous is when fast 

nodes are lightly loaded and while slow nodes are over-used. This case needs to be 

investigated. 
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5.4.1.2. Disk-based Model 

Based on the results represented in Figure 5.30 and Table 5.20, the following 

assessment can be made: 

• There is a slight improvement of adapted version of the algorithms over standard 

ones. 

• All the algorithms perform similarly. When an important number of nodes in the 

network are fast, any random polling based algorithm will do. 

• The Random algorithm results in the saturation of the slow nodes, particularly in 

its standard version, leading to a sharp degradation of the mean response time at 

heavy load levels. 

• Due to the higher number of jobs generated at the fast nodes, a significant 

difference between diskless and disk-based is the saturation of the nodes for 

diskless model even at 0.8 load level, which means there is a need for a faster file 

server or a more appropriate local scheduling discipline. 

• No clear superiority of Diffuse is observed under either of the two file system 

structures. 
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5.4.2. Evaluation of Algorithms under Identical Arrival Rates 

In this section, the system load is specified by identical arrival rates Gobs/sec). 

This corresponds to a normal load on slow nodes and a light load on fast nodes. 

5.4.2.1. Diskless Model 

Several observations can be made on the results represented in Figures 5.32 and 

5.33: 

• Both standard and adapted versions of all the algorithms improve the mean 

response time and its standard deviation by up to 80%, when compared to the 

NOLB case. 

• The level of mean response time is kept nearly constant as the load level is 

increased. Receiver has the poorest performance. Keeping all the nodes busy may 

not be appropriate in the context of heterogeneous speeds because keeping a slow 

node busy while a fast node has only few jobs in its queue can be counter­

productive. 

• The relative performance order is the same for standard and adapted versions: 

Diffuse, Symetric, Sender, Random, Receiver. One advantage of adapted version 

is a lower overhead. 

• When the load level is increased to 0.95, the mean response time becomes lower 

than that under moderate load levels. As the load increase more jobs are 

transferred from slow nodes to fast nodes where it takes them less time to execute, 

the mean system response time is reduced. 

• For a heterogeneous system the average system percent utilisation can be lower 

than the NOLB case (e.g. Sender and Random). If a job is generated at a slow 

node but remotely executed at a fast node, its service time is shorter and the 
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utilisation level of the slow node is smaller. 
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5.4.2.2. Disk-based Model 

Several observations can be made on the results represented in Figures 5.34 and 

5.35: 

• The performance order observed for both standard and adapted versions is: 

Syrnetric, Diffuse, Sender, Receiver, Random. However, the mean response time 

they produce is nearly identical. 

• Under identical arrival rates even a 0.95 load level does not does not degrade the 

mean response time. 

• When compared to homogeneous systems the level of wrong movement of jobs is 

reduced for Diffuse algorithm. 

• The performance of Receiver under identical arrival rates is rather poor. 

Under identical arrival rates only minor performance differences are observed 

between diskless and disk-based file system structures. 

5.4.3. Conclusions 

The main conclusions that can be drawn from the results in this section are: 

• For the workload models used (i.e. scaled and identical arrival rates) and five fast 

five slow nodes configuration, there was no significant advantage in the adapted 

version of algorithms. 

• Under scaled arrival rates all the algorithms perform similarly, with the exception 

of the Sender and Symetric algorithms which degrade the response time for the 

diskless model at heavy load levels. Also the Random algorithm performs rather 

poorly. 

• Under identical arrival rates, there is a marginal difference in the response time for 

all the algorithms. However, the perf<?rmance of Receiver algorithm is slightly 
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worse than that of Random algorithm. This is because it is harder to find 

overloaded nodes as the fast nodes complete their jobs in less time. The mean 

response time is kept nearly steady over the range of load levels. 

• The average system busy time can be lower under load balancing than under 

NOLB. As in the case where jobs generated at a slow nodes are remotely 

executed at a fast node where they take less time to run. 

These conclusions basically hold for both the diskless and disk-based file 

structures. One exception is the saturation of nodes observed at a load level higher than 

0.8, and the sharp degradation of Sender and Symetric algorithms at a load level of 0.8 

and higher for the diskless model. The Receiver algorithm maintains its level of 

improvement over the range of load levels. The advantage of adapted version of the 

algorithms could be more important when a workload model with high arrival rate on 

the slow nodes and light arrival rate on the fast nodes is used. Finally this study has 

shown that heterogeneous systems can be accommodated after minor modifications to 

the random polling based class of load balancing algorithms. 

5.5. Further Discussion on the Results 

The study given in this chapter has shown that the Diffuse algorithm leads to the 

smallest job mean response time of the load balancing algorithms studied for a range of 

system attributes and workload models. Two other issues are explored in this section: 

• Scalability 

• Confidence Levels for the Results 

5.5.1. Scalability 

An important feature of any load balancing algorithm is that performance 

improvements are maintained as the number of processors in the system increases. This 
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is referred to as scalability and some scalability principles have been reviewed in 

Section 2.3.2. In this thesis we have looked at three broad types of algorithms based on 

their information policy: 

i) no system information 

ii) system wide information 

iii) information about subset of nodes 

For scalability it is important to avoid algorithms that use system wide information. 

Instead it is better to use algorithms that make their decisions based on a small subset of 

the nodes. 

A study by Zhou [Zhou88] on the effect of varying the system size on the mean 

job response time, for systems comprising up to 49 nodes connected through an 

Ethernet network, has shown that for THRHLD (an algorithm from type iii) the best 

that can be achieved is the performance improvements obtained for systems with 28 

nodes. For larger number of nodes no further improvement is obtained. This result can 

be explained by the fact that the potential gain from having a larger system is consumed 

by the processing of a larger number of messages and a high number of wrong job 

transfers. In the case of DISTED (an algorithm from type ii), it is shown that the best 

results are obtained for a 14 nodes system while a performance deterioration was 

observed for larger systems. The latter is due to the periodic broadcast nature of the 

algorithm information policy, which leads to an excessive exchange of information, 

heavy contention on the communication device, and load balancing decisions based on 

out of date information. The overhead is higher for each node and grows linearly with 

the system size. 

All the algorithms investigated in this study adhere to the scalability principles 

established in [Barak87] (see Section 2,3.2). For example the load balancing decision is 

based on information from a subset of the other nodes (on demand information 
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gathering policy). A medium size distributed system comprising ten hosts was assumed 

in this work. To assess the scalability of the results obtained, some further experiments 

were conducted. The performance of the load balancing algorithms under a heavy load 

level for 5, 10, 20 nodes (with 0.06, 0.13, and 0.26 computelcommunicate ratio 

respectively) is shown in Figures 5.36 and 5.37. From these results it can be seen that 

the relative performance ordering of the algorithms holds for different system sizes and 

that the level of performance improvement increases with the system size. This agrees 

with the conclusions drawn by Zhou [Zhou88]. In Figures 5.38 and 5.39, the effect of 

the system size is shown for the Diffuse and Symetric algorithms over the range of load 

levels. The best results are obtained for a 20 nodes system. We conjecture that these 

results remain valid for system size of few tens of nodes larger, but as shown in the 

work in [Livny84] and [Zhou88], even for scalable algorithms, the performance 

becomes insensitive to the number of nodes as the number of nodes increases. When a 

larger number of nodes is available in an organization, the way forward is clustering. 

The nodes can be divided into clusters of few tens to hundred nodes (based on present 

day communication technology), and should reflect the physical proximity, the 

administrative boundaries, or other groupings. In a study of load balancing for two­

level hierarchical distributed systems Banawan [Banawan87] suggests that most 

expected gains can be obtained through intra-cluster load balancing, and that no 

significant further performance improvement can be achieved through inter-cluster load 

balancing particularly if the job transfer cost between clusters is higher. 

5.5.2. Confidence Levels for the Results 

The need for statistical output analysis is based on the observation that the output 

data from a simulation exhibits rando!ll variability when random numbers generators 

are used to produce the values of the input variables [Banks84]. Consequently two 
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different streams of random numbers will produce two sets Qf output which would 

highly likely be different. Two other sources of error are the arbitrary or artificial 

nature of the initial conditions (e.g. starting with an "empty or idle" system) and the 

lack of accounting of the jobs "leftover" when the simulation is terminated. A solution 
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to the effect of initial conditions is to reset the statistics after some initial phase. 

However, a common way of dealing with these sources of error is to increase the 

experiment run length for a long enough interval to make the effect of any error 

introduced negligible. The choice of the simulation run length is crucial to the validity 

of the results. There are two ways to deal with this issue: (i) the batch means method 

and (ii) the replication method. The objective of the batch means method (or one long 

run) is to monitor the performance measure for a large time interval until the steady 

state is reached (i.e. the successive performance metric values remain within an 

acceptable range). In the replication method the same experiment is repeated for a 

given run length but with different seeds and making sure the results fall within an 

acceptable confidence interval. Both methods have been used in the analysis of our 

results. 

The minimum simulation run length has been experimentally determined for one 

seed. This is achieved by recording the mean response time as a function of the run 

length for a large time interval at different load levels. From the results for a disk-based 

baseline system shown in Figures 5.40, 5.41, 5.42, and 5.43, it can be seen that a 4000 

secs run length is long enough to ensure the effect of initial conditions and "left over" 

jobs can be ignored, and a reliable ranking of the algorithms is obtained. Also from the 

results it is apparent that as the load level increases so does the variability of the output. 

Similar results were obtained for a diskless baseline system. The minimum run length 

of 4000 seconds corresponds to a generation of about 3,600 jobs population on each 

host at a very heavy arrival rate for our workload model. To increase the confidence in 

the results further, the same experiments are repeated at p=O.8 and p=O.9 for a 4000 secs 

simulation run length but for 9 different random number seeds. This is to smooth out 

the perturbations caused by the statistical nature of the random number generator. On 
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these replications the 95% confidence interval has been evaluated using the Minitab 1 

data analysis software, from which the percentage of error was computed. It has been 

found that on the average for this run length the mean response time stabilises and the 

percentage of error is less than 3% for a system load p~O.8, and less than 5% for a 

system load p=O.9. For subsequent experiments one seed is chosen. The confidence 

levels in the job response time numerical results are shown below: 

Diskless baseline system 

Load level Percentage of error 

p~O.8 3% 

1.69% 

p=O.9 5% 

3.65% 

Disk-based baseline system 

Load level Percentage of error 

p~O.8 3% 

p=O.9 

2.18% 

5% 

4.12% 

95% Confidence Interval 

±O.077 (algorithms average) 

±O.024 (Diffuse) 

±O.176 (algorithms average) 

±O.065 (Diffuse) 

95% Confidence Interval 

±O.085 (algorithms average) 

±O.052 (Diffuse) 

±O.222 (algorithms average) 

±O.096 (Diffuse) 

The curves representing the load balancing algorithms ranking on the diskless base-

line system and including the confidence intervals are shown in Figure 5.44. 

Although at the lower load levels the confidence interval is smaller no significant 

ranking is obtainable. For load levels p<O.5 the performance of the algorithms is 

nearly identical because the need for load balancing activation is reduced. 

This statistical analysis of the simulation results shows that the estimates of 

the performance are sufficiently accurate to make the use of the simulation model 

and the conclusions drawn on the performance ranking of the Diffuse and other al-

gorithms, reliable. 

1 Minitab Inc. 
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CHAPTER 6 

Summary and Future Work 

In this chapter, we reVIew the research work described in previous chapters, 

summarise the main results and draw some conclusions. We then discuss future work 

related to this research. 

6.1. Survey of Load Balancing Algorithms 

As a result of a survey of the literature on load balancing in distributed systems a 

taxonomy on load balancing algorithms has been developed. This extends previous 

taxonomies by considering the algorithm attributes as well as the algorithm components 

(e.g. information policy, transfer policy, and location/negotiation policy). The attributes 

include: the load redistribution objective, the decision-making structure, the 

transparency, the autonomy, the scalability, and the adaptability of the load balancing 

scheme. For the case of a rapidly changing distributed system environment, the 

motivation for adaptive scheduling is given and the concept of tolerance of an algorithm 

is used in the review of the different adaptability approaches. The adaptive load 

balancing strategies are then structured according to adaptability issues and the 

dimensions involved. Based on this framework for adaptive scheduling, a design 

methodology for adaptive load balancing algorithms has been outlined. 

A new algorithm called Diffuse has been proposed. It is symmetrically initiated 

and uses periodic polling of a single random node. It produces the best mean response 

time among the algorithms evaluated. 

153 
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6.2. Performance of Load Balancing Algorithms 

The assessment of this perfonnance study of load balancing algorithms is made at 

three levels: the relative ordering of the algorithms within the simulated systems, the 

effect of the system attributes and workload on the perfonnance of the algorithms, and 

the wider implications of these results. 

6.2.1. Algorithms Performance within Simulated Systems 

A simulated system was used to evaluate a set of load balancing algorithms. To 

assess the effect of distributed system attributes three system versions were built. The 

relative perfonnance ordering of these algorithms across all three versions is deduced 

from the results of the simulation given in the last chapter. 

In the case of heterogeneous systems modifications to the Sender, Random, 

Receiver, Symetric, and Diffuse algorithms have been made to take into account the 

processing speed of the hosts. When choosing a random node to transfer a job to, or a 

node to engage a polling negotiation with, a weighting factor proportional to the node 

speed is used in the probability distribution (i.e. weighted destination). For the Diffuse 

algorithm a scaled timer mechanism is used. 

The summary of the performance of the algorithms is: 

Random 

This simple algorithm does not require the knowledge of the system state 

infonnation. Hence no load balancing overheads will be incurred with the 

exception of the overhead associated with transferring a job. Although it has the 

lowest overhead, its performance is the poorest due to the high level of wrong job 

movement. Also it does not preserve the autonomy of the nodes. It is not 

recommended. 
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Receiver 

Under this algorithm load balancing is initiated when the load at a node drops 

below a pre-specified threshold. It has a good performance for moderate to heavy 

load levels. In the case of heterogeneous systems with scaled arrival rates, this is 

the only algorithm that maintains the reduction of the response time even for 

heavy to very heavy load levels. 

Sender 

In this algorithm the load balancing is initiated by the overloaded node. It 

performs well for light to moderate load levels. Its advantage over Receiver 

algorithm is maintained even at heavy load levels under a heterogeneous 

workload. However, a sharp degradation of the mean response time is observed 

under scaled arrival rates on diskless heterogeneous systems at heavy load levels. 

Symetric 

This algorithm is a combination of Sender and Receiver algorithms. It has a good 

performance over the whole range of load levels. However, this algorithm tends to 

generate more load balancing messages which results in more overheads on the 

nodes. This makes it more sensitive to the communication bandwidth. 

Diffuse 

This is a novel periodic version of the Symetric algorithm. To reduce the number 

of load balancing messages only single probes are allowed and periodically the 

load at a node is checked. The algorithm is a hybrid of the above ones and selects 

between one of three possible cases: i) the receiver-initiated component of the 

algorithm is activated if the load is below the threshold, ii) the sender-initiated 

component of the algorithm is activated if the load is above the threshold, and iii) 

no load balancing i s activated if the load equals the threshold value. The Diffuse 
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algorithm is the most promising one and on the simulated system produces the 

lowest job mean response time. This advantage is maintained practically under all 

three system versions, and over the range of system attributes and workload. 

However, this algorithm does involve a high level of wrong job movements. Also 

some care is needed in interpreting these results because the timer period of this 

algorithm has been tuned for optimal performance for the simulated system. 

Adapted Algorithms Versions (case of heterogeneous systems) 

These versions attempt to focus sender-initiated probes from slow nodes to fast 

nodes and receiver-initiated probes from fast nodes to slow nodes. For the speeds 

configuration (Le. large number of fast nodes) and job arrival patterns considered, 

no significant advantage of adapted versions was observed when compared the 

standard versions where no focusing is attempted. Further work is needed on these 

systems by considering other nodes speed configurations and heterogeneous users. 

6.2.2. Effect of System Attributes and Workload Models 

An important aspect of this study was the assessment of the effect of system 

attributes and workload model on the load balancing algorithm performance. This effect 

can be on three performance aspects: the job mean response time, the level of job mean 

response time reduction relative to the NOLB case, and the relative ordering of the 

algorithms. 

File System Structure 

The file system structure has no significant effect on the relative ordering of the 

load balancing algorithms. However, the results might not generalise to all practical 

systems because only non-preemptive transfers were considered. It is to be noted that a 

sharp degradation of the job mean response time is observed under diskless model at 
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heavy load level with scaled arrivals for heterogeneous systems. 

Communication Bandwidth 

Although the relative ordering of the algorithms is not affected, the 

communication bandwidth does affect the level of perfonnance improvement. As the 

communication delays get longer an increase of the threshold level becomes necessary. 

Also the curves of the algorithms tend to cluster, making the choice of the load 

balancing algorithm less relevant. 

Communication Protocols 

The perfonnance of algorithms under "First Come First Serve", "CSMA/CD", 

"Token Passing" protocols is nearly identical. However, some care is needed in 

interpreting this results because under the operating conditions used (Le. system size, 

job size, homogeneous users), the network traffic was such that a less 50% utilisation of 

the communication device was induced, with similar medium access demands from all 

nodes. 

Load Balancing Overheads 

Provided it is not too high (e.g. < 20 msecs), the fixed message cost has no 

significant effect on the algorithm perfonnance ordering. The job separation cost for 

selective transfers can significantly affect the level of algorithms perfonnance. Load 

balancing is not worthwhile if this cost exceeds a minimum value (e.g. 50 msecs). 

File Server Speed 

Provided a minimum service rate is available, the file server speed does not affect 

the job mean response time substantially. It is to be noted that the file server saturates 

while the communication device and computing node are still providing nonnal service. 
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Workload Model 

When a heterogeneous workload is used, the relative ordering of the algorithms is 

basically unchanged. However, the cross-over Sender/Receiver does not take place even 

at a 0.9 load level. Non-selective transfers are more advantageous than selective 

transfers. 

6.2.3. Wider Implications 

The wider implications of this study on the development of load balancing 

schemes for distributed systems are two-fold: 

1) Design of Distributed Systems 

The performance level provided by the Diffuse algorithm and its consistency over 

a range of system attributes and workload makes it a very promising algorithm. It is 

recommended that this algorithm be evaluated using a real distributed system. 

2) Simulation 

This thesis has demonstrated the value of simulation in the design of load 

balancing algorithms. It has enabled a range of algorithms to be evaluated and a new 

algorithm (Diffuse) has been proposed. It has been shown that it is important to 

consider more complex systems than that can be studied using theoretical tools. For 

example this has enabled us to study more realistic file system structure. Our 

investigations suggest that in future experiments it is not necessary to consider the 

communication protocols and the heterogeneous workload model. The same 

conclusions can be drawn from a homogeneous model if only the ordering of the 

algorithms is sought. However, the modelling of other system attributes can affect the 

quality of the results significantly. The correct representation of the communication 

bandwidth and the algorithm parameters tuning (i.e. T, Pt) is important to get an 
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accurate ordering of the algorithms. Assuming non-preemptive transfers, any file 

system structure is sufficient for load balancing algorithms ordering purposes. 

However, to get a clearer idea on the level of performance improvement the modelling 

of the specific file system structure is necessary. For the diskless file system structure, 

to realise the potential benefits of load balancing a minimum file server speed is needed 

to avoid a major I/O bottleneck (i.e. incorrectly configured system). A reasonable value 

of the load balancing message overhead is needed to obtain a realistic level of 

performance improvement. 

6.3. Future Work 

This work has demonstrated the utility of simulation in identifying the most 

promising load balancing algorithms. However, it is important to test these simulation 

results, particularly for Diffuse and Symetric algorithms, on a real distributed systems 

to confirm the conclusions drawn based on simulation. With simulation only load 

balancing policies can be investigated with confidence. The load balancing mechanisms 

such as remote process management and user interface facilities are much more difficult 

to simulate. Load balancing can become a reality only when its performance and cost 

effectiveness is proven on actual distributed systems. 

Another investigation worthwhile to undertake is the issue of adaptive load 

balancing based on dynamic parameter tuning and multi-options algorithms, which are 

more suitable to a changing environment (i.e. in this study a fixed size system with 

mainly homogeneous users were assumed). This aims for the development of load 

balancing algorithms where explicit adaptability is added to maintain the performance 

of a distributed system with a rapidly changing environment. This involves an 

automatic switching of the load balancing algorithm policies and the dynamic 

adjustment of the algorithm parameters to take into account the fluctuating system 
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attributes and workload environment. A preliminary work on this approach to adaptive 

load balancing is described in Section 2.4. This could increase the confidence in the 

Diffuse algorithm further. 

In this study the jobs were assumed independent sequential units. In parallel 

computation, which is becoming more popular due to advances in the related hardware, 

a program consists of several modules which need to be dispatched to different hosts for 

execution. Since these modules are not independent because they need to interact with 

each other to carry out their tasks, load balancing in this context involves different 

objectives and requirements. It is worthwhile to investigate the applicability of the load 

balancing concepts considered in this work to parallel systems. 



161 

REFERENCES 

ANSA87. 

ANSA, ANSA Reference Manual Release 00.03, ANSA Project, Cambridge 

(1987). 

Alonso86. 

R. Alonso, "The Design of Load Balancing Strategies for Distributed Systems," 

Proc. of Workshop on Future Directions in Computer Architecture & Software, 

pp. 202-207 (May 1986). 

Alonso88. 

R. Alonso and L. L. Cova, "Sharing Jobs Among Independently Owned 

Processors," IEEE Proc. 8th International Conference on Distributed Computing 

Systems, pp. 282-288 (June 1988). 

Banawan87. 

S. A. Banawan, "An Evaluation of Load Sharing in Locally Distributed 

Systems," PhD Thesis, University of Washington (1987). 

Banks84. 

J. Banks and J. S. Carson, Discrete-Event System Simulation, Prentice-Hall 

International (1984). 

Barak85. 

A. Barak and A. Shiloh, "A Distributed Load-balancing Policy for a 

Multicomputer," Software- Practice and Experience 15 (9) pp. 901-913 

(September 1985). 

Barak87. 

A. Barak and Y. Kornatzky, "Design Principles of Operating Systems for Large 

Scale Multicomputers," pp. 104-123 in International Workshop on Experiences 



162 

with Distributed Systems, ed. J. Nehmer ,Springer Verlag (September 1987). 

Beck90. 

B. Beck, "AAMP: A Multiprocessor Approach for Operating System and 

Application Migration," ACM Operating Systems Review 24 (2) pp. 41-55 (April 

1990). 

Bershad86. 

B. Bershad, "Load Balancing with Maitre d' ," ;login: 11(1) pp. 32-43 (Jan/Feb. 

1986). 

Bonomi88. 

F. Bonomi and A. Kumar, "Adaptive Optimal Load Balancing in a 

Hetereogeneous Multiserver System with a Central Job Scheduler," IEEE Proc. 

8th International Conference on Distributed Computing Systems, pp. 500-508 

(June 1988). 

Broy87. 

M. Broy and T. Streicher, "Views of Distributed Systems," pp. 114-143 in 

Lecture Notes in Computer Science on Mathematical Models for the Semantics of 

Parallelism, ed. M. V. Zilli,Springer-Verlag (1987). 

Bryant81. 

R. M. Bryant and R. A. Finkel, "A Stable Distributed Scheduling Algorithm," 

IEEE Proc. 2nd Intern. Conj. on Distributed Computer Control Systems, pp. 

314-323 (April 1981). 

CACI89. 

CACI, NETWORK //.5 User's Manual Version 5.0, CACI Products Company 

(August, 1989). 



163 

Cabrera86. 

L. F. Cabrera, "The Influence of Workload on Load Balancing Strategies," Proc. 

of the 1986 Summer USENIX Conference, pp. 446-458 (June 1986). 

Casavant87. 

T. L. Casavant and 1. G. Kuhl, "Analysis of Three Dynamic Distributed Load­

Balancing Strategies with Varying Global Infonnation Requirements," IEEE 

Proc. 7th I nternat. Conf. on Distributed Computing Systems, (September 1987). 

Casavant87a. 

T. L. Casavant, "DSSAP - An Automated Design Aid for Algorithms and 

Software Development in Distributed Computing Systems," 2nd International 

Conf. on Supercomputing, pp. 123-132 (May 1987). 

Casavant88. 

T. L. Casavant and 1. G. Kuhl, "A Taxonomy of Scheduling in General-Purpose 

Distributed Computing Systems," IEEE Transactions on Software Engineering 14 

(2) pp. 141-153 (February 1988). 

Castagnoli86. 

C. Castagnoli, ' 'Load Balancing Computational Servers in a UNIX 

Environment," EUUG Autumn 1986, pp. 267-272 (1986). 

Chandras90. 

R. G. Chandras, "Distributed Message Passing Operating Systems," ACM 

Operating Systems Review 24(1) pp. 7-17 (January 1990). 

Cheriton88. 

D. R. Cheriton, "The V Distributed System," Communications of the ACM 

31(3) pp. 314-333 (March 1988). " 



164 

Cheung88. 

S. Cheung, S. Dimitriadis, and W. 1. Karplus, Introduction to Simulation using 

NETWORK II.5, CACI Products Company (September, 1988). 

Chow86. 

T. C. K. Chow, "Distributed Control of Computer Systems," IEEE Transactions 

on Software Engineering C-35(June 1986). 

Concepcion88. 

A. I. Concepcion and W. M. Eleazar, "A Testbed for Comparative Studies of 

Adaptive Load Balancing Algorithms," Proc. of the SCS Multiconference on 

Distributed Simulation, pp. 131-135 (February 1988). 

Coulouris88. 

O. F. Coulouris and J. Dollimore, Distributed Systems: Concepts and Design, 

Addison Wesley (1988). 

Dikshit89. 

P. Dikshit, S. K. Tripathi, and P. Jalote, "SAHAYOG: A Test Bed for Evaluating 

Dynamic Load-sharing Policies," Software- Practice and Experience 19 (5) pp. 

411-435 (May 1989). 

Eager85. 

D. L. Eager, E. D. Lazowska, and J. ZahOIjan, "A Comparison of Receiver­

Initiated and Sender-Initiated Adaptive Load Sharing," Proc. of the 1985 ACM 

SIGMETRICS Conference on Measurement and Modelling of Computer Systems, 

pp. 1-3 (August 1985). 

Eager86. 

D. L. Eager, E. D. Lazowska, and J. Zahorjan, "Adaptive Load Sharing in 

Homogeneous Distributed Systems," IEEE Transactions on Software Engineering 



165 

SE·12 (5) pp. 662-675 (May 1986). 

Eager88. 

D. L. Eager, E. D. Lazowska, and J. Zahorjan, "The Limited Perfonnance 

Benefits of Migrating Active Processes for Load Sharing," ACM SIGMETRICS 

Conference on Measurement and Modeling of Computer Systems, pp. 63-72 (May 

1988). 

Efe82. 

K. Efe, "Heuristic Models of Task Assignment Scheduling in Distributed 

Systems," IEEE Computer, (June 1982). 

Evans88. 

J. B. Evans, Structures of Discrete Event Simulation: An Introduction to the 

Engagement Strategy, Ellis Horwood Series in Artificial Intelligence (1988). 

Ezzat86. 

A. K. Ezzat, "Load Balancing in NEST: A Network of Workstations," Proc. Fall 

Joint Computer Conference, pp. 1138-1149 (November 1986). 

Ferrari85. 

D. Ferrari, "A Study of Load Indices for Load Balancing Schemes," Report No. 

UCB/CSD 86/262, Computer Science Division (EECS), University of California, 

Berkeley, California 94720 (October 1985). 

Goscinski90. 

A. Goscinski and M. Beannan, "Resource Management in Large Distributed 

Systems," ACM Operating Systems Review 24 (4) pp. 7-25 (October 1990). 

Green88. 

J. J. Green, "Load Balancipg Algorithms in a Distributed Processing 

Environment," PhD Thesis, University of California at Los Angeles (1988). 



166 

Hac87. 

A. Hac and X. Jin, "Dynamic Load Balancing in a Distributed System Using a 

Decentralized Algorithm," IEEE Proc. 7th Internat. Conf. on Distributed 

Computing Systems, (September 1987). 

Hagmann86. 

R. Hagmann, "Process Server: Sharing Processing Power in a Workstation 

Environment," IEEE Proc. 6th Inter. Con! on Distributed Computer Systems, pp. 

260-267 (May 1986). 

Hammond86. 

J. L. Hammond and J. P. O'Reilly, Performance Analysis of Local Computer 

Networks, Addison-Wesley (1986). 

Hayter88. 

T. Hayter and G. R. Brookes, "Simulation of some Local Area Network 

Topologies," Report no. 88/5, Department of Computer Science - University of 

Hull (1988). 

Hoare85. 

C.A.R. Hoare, Communicating Sequential Processes, Prentice Hall (1985). 

Hong88. 

1. Hong, X. Tan, and M. Chen, "From Local to Global: An Analysis of Nearest 

Neighbor Balancing on Hypercube," Proc. ACM SIGMETRICS Conference on 

Measurement and Modeling of Computer Systems, pp. 73-82 (May 1988). 

Hsu86. 

C. Y. H. Hsu and J. W. S. Liu, "Dynamic Load Balancing Algorithms in 

Homogeneous Distributed Systen:ts," IEEE Proc. 6th International Conference on 

Distributed Computing Systems, pp. 216-223 (May 1986). 



167 

Jard88. 

C. Jard, J. F. Monin, and R. Groz, "Development of Veda, a Prototyping Tool for 

Distributed Algorithms," IEEE Transactions on Software Engineering 

14(3)(March 1988). 

Jesty88. 

P. H. Jesty and K. Benmohammed-Mahieddine, "Modelling Distributed Systems 

Services," Report 88.16, School of Computer Studies, University of Leeds (July 

1988). 

Johnson88. 

I. D. Johnson, "A Study of Adaptive Load Balancing Algorithms for Distributed 

Systems," PhD Thesis, Aston University, U.K. (January 1988). 

Johnson89. 

M. Johnson, "Network Protocol Performance," Proc. ACM SIGMETRICS 

Conference on Measurement and Modeling of Computer Systems, (May 1989). 

Kara89. 

M. Kara, P. H. Jesty, and T. G. Gough, "A Distributed Scheduling Algorithm 

Based on a Decentralised Global Plan Strategy," Report 89.29, School of 

Computer Studies, University of Leeds (December 1989). 

Kleinrock85. 

L. Kleinrock, "Distributed Systems," Communications of the ACM 

28(11)(November 1985). 

Kobayashi78. 

H. Kobayashi, Modelling and Analysis: An Introduction to System Performance 

Evaluation Methodology, Addiso~-Wesley (1978). 



168 

Krueger84. 

P. Krueger and R. Finkel, "An Adaptive Load Balancing Algorithm for a 

Multicomputer," Computer Sciences Technical Report #539, University of 

Wisconsin- Madison (April 1984). 

Krueger87. 

P. Krueger and M. Livny, "The Diverse Objectives of Distributed Scheduling 

Policies," IEEE Proc. 7th Internat. Conf. on Distributed Computing Systems, 

(September 1987). 

Krueger87a. 

P. Krueger and M. Livny, "When is the Best Load Sharing Algorithm a Load 

Balancing Algorithm?," Computer Sciences Technical Report #694, University 

of Wisconsin - Madison (Apri11987). 

Krueger88. 

P. Krueger, "Distributed Scheduling for a Changing Environment," Computer 

Sciences Technical Report #780, University of Wisconsin- Madison (June 1988). 

Krueger88a. 

P. Krueger and M. Livny, "A Comparison of Preemptive and Non-Preemptive 

Load Distributing," IEEE Proc. 8th International Conference on Distributed 

Computing Systems, pp. 123-130 (June 1988). 

Kunz91. 

T. Kunz, "The Influence of Different Workload Descriptions on a Heuristic Load 

Balancing Scheme," IEEE Transactions on Software' Engineering 17 (7) pp. 

725-730 (July 1991). 

Lavenberg83. 

S. S. Lavenberg, Computer Performance Modeling Handbook, Academic Press 



169 

(1983). 

Lazowska86. 

E. D. Lazowska, J. ZahOljan, D. R. Cheriton, and W. Zwaenepoel, "File Access 

Performance of Diskless Workstations," ACM Transactions on Computer Systems 

4(3)(August 1986). 

Lee86. 

K. J. Lee and D. Towsley, "A Comparison of Priority-Based Decentralized Load 

Balancing Policies," Proc. of Performance '86 andACM SIGMETRICS 1986, pp. 

70-77 (May 1986). 

Leland86. 

W. E. Leland and T. J. Ott, "Load-balancing Heuristics and Process Behavior," 

Proc. of the ACM SIGMETRICS Conference, pp. 54-69 (May 1986). 

Lin87. 

F. C. H. Lin and R. M. Keller, "The Gradient Model Load Balancing Method," 

IEEE Transactions on Software Engineering 13(1)(January 1987). 

Livny84. 

M. Livny, "The Study of Load Balancing Algorithms for Decentralized 

Distributed Processing Systems," Computer Sciences Technical Report #570, 

University of Wisconson- Madison (December 1984). 

Lo84. 

V. M. Lo, "Heuristic Algorithms for Task Assignment in Distributed Systems," 

IEEE Proc. 4th Inter. Conf. on Distributed Computing Systems, (1984). 

Mirchandan89. 

R. Mirchandaney, D. Towsley, !p1d J. A. Stankovic, "Analysis of the Effects of 

Delays on Load Sharing," IEEE Transactions on Computers 38 (11) pp. 



170 

1513-1525 (November 1989). 

Mitrani87. 

I. Mitrani, Modelling of Computer and Communication Systems, Cambridge 

University Press (1987). 

Mullender86. 

S. J. Mullender and A. S. Tanenbaum, "The Design of a Capability-based 

Distributed Operating System," The Computer 10urnal29 (4) pp. 289-299 (1986). 

Mutka87. 

M. W. Mutka and M. Livny, "Profiling Workstations' Available Capacity for 

Remote Execution," Computer Sciences Technical Report #697, University of 

Wisconsin- Madison, (April 1987). 

Needham82. 

R. M. Needham and A. 1. Herbert, The Cambridge Distributed System, Addison 

Wesley (1982). 

Ni85. 

L. M. Ni, C. W. Xu, and T. B. Gendreau, "A Distributed Drafting Algorithm for 

Load Balancing," IEEE Transactions on Software Engineering 11 (10) pp. 

1153-1161 (1985). 

Ousterhout82. 

J. K. Ousterhout, "Scheduling Techniques for Concurrent Systems," IEEE Proc. 

3rd Internat. Con/. on Distributed Computer Systems, pp. 22-30 (1982). 

Power89. 

J. Power, "Distributed System Evolution - Some Observations," ACM Operating 

Systems Review 23 (2) pp. 31-32 (1989). 



171 

Pulidas88. 

S. Pulidas, D. Towsley, and J. A. Stankovic, "Imbedding Gradient Estimators in 

Load Balancing Algorithms," IEEE Proc. 8th International Conference on 

Distributed Computing Systems, (June 1988). 

Ramamritha87. 

K. Ramamritham and W. Zhao, "Meta-Level Control In Distributed Real-Time 

Systems," IEEE Proc. 7th Internat. Conj. on Distributed Computing Systems, 

(September 1987). 

Renesse88. 

R. Renesse, H. Staveren, and A. S. Tanenbaum, "Performance of the World's 

Fastest Distributed Operating System," ACM Operating Systems Review 22 

(4) pp. 25-34 (October 1988). 

Shamir87. 

E. Shamir and E. Upfal, "A Probabilistic Approach to the Load-Sharing Problem 

in Distributed Systems," Journal of Parallel and Distributed Computing 4 pp. 

521-530 Academic Press, (1987). 

Siewiorek82. 

D. P. Siewiorek, C. G. Bell, and A. Newell, Computer Structures: Principles and 

Examples, McGraw Hill (1982). 

Smith88. 

J. M. Smith, "A Survey of Process Migration Mechanisms," ACM Operating 

Systems Review 22(3) pp. 28-40 (July 1988). 

Stankovic82. 

J. A. Stankovic, N. Chowdhury, ~. Mirchandaney, and I. Sidhu, "An Evaluation 

of the Applicability of Different Mathematical Approaches to the Analysis of 



172 

Decentralized Control Algorithms," Proc. IEEE COMPSAC, pp. 62-69 

(November 1982). 

Stankovic84a. 

J. A. Stankovic, "Simulations of three Adaptive, Decentralized Controlled, Job 

Scheduling Algorithms," Computer Networks 8 pp. 199-217 Elsevier Science, 

(1984). 

Stankovic85. 

J. A. Stankovic, "An Application of Bayesian Decision Theory to Decentralized 

Control of Job Scheduling," IEEE Transactions on Computers C34(2) pp. 

117 -130 (February 1985). 

Stankovic84. 

J. H. Stankovic and I. S. Sidhu, "An Adaptive Bidding Algorithm for Processes, 

Clusters and Distributed Groups," IEEE Proc. 4th Internat. Conj. on Distributed 

Computing Systems, pp. 49-58 (1984). 

Stumm88. 

M. Stumm, "The Design and Implementation of a Decentralized Scheduling 

Facility for a Workstation Cluster," IEEE Proc. 2nd Conference on Computer 

Workstations, pp. 12-21 (March 1988). 

Tanenbaum85. 

A. S. Tanenbaum and R. Van Renesse, "Distributed Operating Systems," ACM 

Computing Surveys 17 pp. 419-470 (December 1985). 

Tantawi85. 

A. Tantawi and D. Towsley, "Optimal Static Load Balancing in Distributed 

Computer Systems," Journal AC~ 32(2)(ApriI1985). 



173 

Theimer85. 

M. M. Theimer, K. A. Lantz, and D. R. Cheriton, "Preemptable Remote 

Execution Facilities for the V-System," ACM 10th Symposium on Operating 

Systems Principles, (1985). 

Theimer88. 

M. M. Theimer and K. A. Lantz, "Finding Idle Machines in a Workstation-based 

Distributed System," IEEE Proc. 8th International Conference on Distributed 

Computing Systems, pp. 112-122 (June 1988). 

Tilborg84. 

A. M. Van Tilborg and L. D. Wittie, "Wave Scheduling- Decentralized 

Scheduling of Task Forces in Multicomputers," IEEE Transactions on Computers 

C-33 (9) pp. 835-844 (September 1984). 

Walker83. 

B. J. Walker, G. J. Popek, R. Kline, and G. Thiel, "The LOCUS Distributed 

Operating System," Proc. 9th ACM Symposium in Operating System Principles, 

pp. 49-70 (Oct 1983). 

Wang85. 

Y. T. Wang and R. J. T. Morris, "Load Sharing in Distributed Systems," IEEE 

Transactions on Computers C-34 (3) pp. 204-217 (March 1985). 

Zhou86. 

S. Zhou, "An Experimental Assessement of Resource Queue Lengths as Load 

Indices," Report No. UCB/CSD 86/298, Computer Science Division (EECS), 

University of California, Berkeley, California 94720 (June 1986). 

Zhou87. 

S. Zhou, "Performance Studies of Dynamic Load Balancing in Distributed 



174 

Systems," Report No. UCB/CSD 87/376, Computer Science Division (EECS), 

University of California, Berkeley, California 94720 (October 1987). 

Zhou87a. 

S. Zhou and D. Ferrari, "A Measurement Study of Load Balancing Performance," 

IEEE Proc. 7th Internat. Con! on Distributed Computing Systems, (September 

1987). 

Zhou88. 

S. Zhou, "A Trace-Driven Simulation Study of Dynamic Load Balancing," IEEE 

Transactions on Software Engineering 14 (9) pp. 1327-1341 (September 1988). 



175 

Appendix 

Detailed Simulation Results 

The detailed simulation results included in this appendix are divided according to the 

three groups of experiments identified in Chapter 5: 

i) Homogeneous Diskless Systems (Tables 1-9) 

ii) Homogeneous Disk-based Systems (Tables 10-18) 

iii) Heterogeneous Systems (Tables 19-26) 

These tables indicate the benefit brought by the load balancing algorithms and the 

cost incurred. The benefit is expressed in terms of job mean response time and its 

predictability shown by the standard deviation. The cost is expressed in terms of the 

percentage of job movement (out of the total number of jobs processed), the percentage 

of wrong job movements, the number of load balancing messages per node per second, 

and the average percentage increase in processor utilisation. The load pattern indicates 

the average external load level present at each node in the system (LLLLL: Pi=: 0.4, 

MMMMM: Pi= 0.6, HHHHH: pi=0.8, and VVVVV: Pi=: 0.9). 
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Benefit Cost 
Algorithm response(A VO) response(STD) jobmov. 

messages %LB_exec time(s) Impr(%) time(s) Impr(%) %jobmov %baddcs 
NOLB 1.71 0.00 0.71 0.00 0.00 0.00 0.00 0.00 
RANDOM 1.39 18.64 0.54 24.45 13.74 16.68 0.00 0.05 
RECEIVR 1.50 12.07 0.60 15.99 6.15 0.00 1.41 0.62 
SENDER 1.36 20.65 0.54 24.50 12.50 025 0.12 0.06 
SYMTRIC 1.36 20.31 0.53 25.66 13.00 0.29 1.71 0.77 
DIFFUSE 1.36 20.38 0.54 24.02 10.47 3.80 2.31 1.70 

Load Pattern= LLLLL 

Benefit Cost 
Algorithm response(A VO) response(STD) jobmov. 

messages %LB_exec 
time(s) Impr(%) time(s) Impr(%) %jobmov %baddcs 

NOLB 2.53 0.00 0.86 0.00 0.00 0.00 0.00 0.00 
RANDOM 1.66 34.30 0.56 35.23 30.46 33.83 0.00 0.00 
RECEIVR 1.64 35.19 0.58 33.08 15.18 0.39 1.79 0.72 
SENDER 1.58 37.35 0.52 39.46 24.89 0.72 0.47 0.12 
SYM1RIC 1.56 38.31 0.49 42.56 27.00 0.80 2.75 1.22 
DIFFUSE 1.27 49.93 0.56 35.28 24.50 9.69 2.20 2.02 

Load Pattern= MMMMM 

Benefit Cost 
Algorithm response(A VO) response(STD) job mov. 

messages %LB_exec time(s) Impr(%) time(s) Impr(%) %jobmov %baddcs 
NOLB 5.22 0.00 1.64 0.00 0.00 0.00 0.00 0.00 
RANDOM 2.45 52.98 0.88 46.47 57.56 60.45 0.00 0.17 
RECEIVR 2.06 60.50 0.78 52.69 26.32 0.82 1.70 0.81 
SENDER 2.23 57.22 0.84 48.80 31.58 1.59 1.44 0.80 
SYMTRIC 1.74 66.70 0.67 59.10 43.00 1.95 3.92 2.08 
DIFFUSE 1.41 72.97 0.74 54.64 37.93 19.05 2.10 2.48 

Load Pattern= HHHHH 

Benefit Cost 
Algorithm response(A VO) response{STD) job mov. 

messages %LB_exec time(s) Impr(%) time(s) Impr(%) %jobmov %baddcs 
NOLB 8.48 0.00 2.36 0.00 0.00 0.00 0.00 0.00 
RANDOM 3.42 59.66 1.31 44.54 71.07 73.14 0.00 0.81 
RECEIVR 2.49 70.58 1.07 54.76 28.87 1.05 1.43 0.79 
SENDER 2.89 65.94 1.18 50.12 29.06 1.81 2.06 1.10 
SYMTRIC 2.02 76.12 0.95 59.82 44.72 3.03 4.22 2.27 
DIFFUSE 1.65 80.49 1.01 57.31 41.54 26.44 2.10 2.69 

Load Pattern= VVVVV 

Table 5.1 Performance under Small Compute/Communicate Ratio (R= 0.13) 
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Benefit Cost 
Algorithm response(A VO) response(STD) jobmov. 

messages %LB_exec time(s) Impr(%) time(s) Impr(%) %jobmov %baddcs 
NOLB 1.79 0.00 0.72 0.00 0.00 0.00 0.00 0.00 
RANDOM 1.58 11.46 0.61 15.79 4.66 5.23 0.00 0.02 
RECEIVR 1.70 4.94 0.66 8.83 2.58 0.24 1.51 1.22 
SENDER 1.58 11.71 0.61 15.91 4.57 0.27 0.04 0.06 
SYMTRIC 1.61 10.11 0.60 16.91 5.26 0.24 1.63 1.30 
DIFFUSE 1.61 9.90 0.62 13.77 4.26 1.90 2.38 2.71 

Load Pattern= LLLLL 

Benefit Cost 
Algorithm response(A VO) response(STD) jobmov. 

messages %LB_exec time(s) Impr(%) time(s) Impr(%) %jobmov %baddcs 
NOLB 2.71 0.00 0.89 0.00 0.00 0.00 0.00 0.00 
RANDOM 1.98 27.06 0.63 29.48 16.19 19.27 0.00 0.07 
RECEIVR 2.13 21.23 0.67 24.53 9.73 0.43 2.02 2.00 
SENDER 1.95 27.98 0.61 31.93 14.25 0.44 0.23 0.12 
SYMTRIC 2.02 25.61 0.61 31.60 16.06 0.96 2.54 2.56 
DIFFUSE 1.72 36.43 0.64 28.54 14.41 4.94 2.30 3.30 

Load Pattern= MMMMM 

Benefit Cost 
Algorithm response(A VO) response(STD) job mov. 

messages %LB_exec time(s) Impr(%) time(s) Impr(%) %jobmov %baddcs 
NOLB 6.25 0.00 1.92 0.00 0.00 0.00 0.00 0.00 
RANDOM 2.90 53.54 0.93 51.66 44.32 50.30 0.00 0.33 
RECEIVR 2.73 56.26 0.89 53.44 23.18 1.71 1.93 2.76 
SENDER 2.75 55.99 0.90 52.97 28.42 2.12 1.01 1.30 
SYMTRIC 2.24 64.11 0.95 50.55 37.80 3.98 3.67 4.77 
DIFFUSE 2.03 67.46 1.08 43.92 34.20 16.58 2.19 4.31 

Load Pattern= HHHHH 

Benefit Cost 
Algorithm response(A VO) response(STD) jobmov. 

messages %LB_exec time(s) Impr(%) time(s) Impr(%) %jobmov %baddcs 
NOLB 12.92 0.00 3.52 0.00 0.00 0.00 0.00 0.00 
RANDOM 4.25 67.09 1.58 55.01 64.84 68.99 0.00 1.24 
RECEIVR 3.38 73.83 1.25 64.37 27.56 2.63 1.49 2.47 
SENDER 4.16 67.78 1.71 51.45 26.69 3.40 1.92 2.60 
SYMTRIC 3.59 72.20 1.85 47.35 37.07 8.37 3.83 5.40 
DIFFUSE 3.14 75.72 1.98 43.89 36.18 27.37 2.17 4.71 

Load Pattern= VVVVV 

Table 5.2 Performance under Large Compute/Communicate Ratio (R= 0.4) 
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Benefit Cost 
Algorithm response(A VG) response(STD) jobmov. 

messages %LB_exec 
time(s) Impr(%) time(s) Impr(%) %jobmov %baddes 

NOLB 5.47 0.00 2.46 0.00 0.00 0.00 0.00 0.00 
RANDOM 1.63 70.18 0.56 77.43 29.77 28.40 0.00 0.31 
RECEIVR 2.07 62.10 0.76 69.08 17.25 0.63 1.42 1.20 
SENDER 1.55 71.67 0.52 79.05 24.14 0.49 0.39 0.54 
SYMlRIC 1.54 71.90 0.51 79.38 25.59 0.55 2.50 1.50 
DIFFUSE 1.30 76.16 0.54 77.86 23.83 7.25 2.22 2.22 

Load Pattern= 4S, 2M, 4V 

Table 5.3 Performance under Small Compute/Communicate Ratio (R= 0.13) 

Benefit Cost 
Algorithm response(A VG) response(STD) jobmov. 

messages %LB_exec 
time(s) Impr(%) time(s) Impr(%) %jobmov %bad des 

NOLB 6.40 0.00 2.87 0.00 0.00 0.00 0.00 0.00 
RANDOM 2.01 68.54 0.62 78.32 19.44 16.79 0.00 0.42 
RECEIVR 2.48 61.32 0.81 71.69 14.01 0.72 1.60 2.14 
SENDER 1.98 69.00 0.61 78.87 16.53 0.58 0.23 0.75 
SYMlRIC 2.03 68.25 0.61 78.87 18.30 0.55 2.35 2.81 
DIFFUSE 1.69 73.53 0.66 77.09 17.18 4.26 2.32 3.73 

Load Pattern= 4S, 2M, 4V 

Table 5.4 Performance under Large Compute/Communicate Ratio (R= 0.4) 
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Benefit Cost 
Algorithm response(A VO) response(STD) jobmov. 

messages %LB_exec 
time(s) Impr(%) time(s) Impr(%) %jobmov %baddcs 

NOLB 1.74 0.00 0.77 0.00 0.00 0.00 0.00 0.00 
RANDOM 1.41 18.75 0.60 22.34 13.95 16.84 0.00 0.33 
RECEIVR 1.64 5.49 0.71 7.57 0.77 0.00 1.34 0.12 
SENDER 1.34 22.83 0.55 28.03 12.18 0.36 0.12 -0.40 
SYM1RIC 1.36 21.75 0.57 26.46 12.74 0.20 1.70 0.32 
DIFFUSE 1.20 31.01 0.76 1.53 7.78 12.69 0.64 2.36 

Load Pattern= LLLLL 

Benefit Cost 
Algorithm response(A VO) response(STD) jobmov. 

messages %LB_exec 
time(s) Impr(%) time(s) Impr(%) %jobmov %baddcs 

NOLB 2.69 0.00 0.94 0.00 0.00 0.00 0.00 0.00 
RANDOM 1.70 36.71 0.59 36.88 31.35 34.47 0.00 0.45 
RECEIVR 2.03 24.50 0.73 22.10 4.25 0.39 1.56 -0.21 
SENDER 1.59 41.06 0.56 40.63 24.18 0.73 0.47 -0.62 
SYM1RIC 1.61 40.31 0.57 39.08 24.80 0.64 2.72 0.40 
DIFFUSE 1.10 58.99 0.72 23.49 15.18 18.03 0.68 3.49 

Load Pattern= MMMMM 

Benefit Cost 
Algorithm response(A VO) response(STD) jobmov. 

messages %LB_exec time(s) Impr(%) time(s) Impr(%) %jobmov %baddcs 
NOLB 7.32 0.00 2.74 0.00 0.00 0.00 0.00 0.00 
RANDOM 2.66 63.66 1.09 60.27 59.27 62.91 0.00 0.14 
RECEIVR 2.67 63.55 0.92 66.49 10.36 0.51 1.36 -0.38 
SENDER 2.22 69.73 0.83 69.61 31.67 1.66 1.43 -0.28 
SYM1RIC 2.09 71.44 0.78 71.71 33.16 1.63 3.79 0.86 
DIFFUSE 1.52 79.28 1.32 51.70 19.71 26.10 0.70 2.93 

Load Pattern= HHHHH 

Benefit Cost 
Algorithm response(A VO) response(STD) jobmov. 

messages %LB_exec time(s) Impr(%) time(s) Impr(%) %jobmov %baddcs 
NOLB 13.27 0.00 4.08 0.00 0.00 0.00 0.00 0.00 
RANDOM 4.07 69.31 2.00 51.06 73.29 75.79 0.00 0.40 
RECEIVR 3.60 72.90 1.40 65.71 12.65 0.93 1.07 -0.03 
SENDER 3.34 74.82 1.82 55.42 27.55 2.12 2.10 0.52 
SYM1RIC 2.81 78.79 1.48 63.67 30.73 2.15 4.04 1.52 
DIFFUSE 2.40 81.93 2.22 45.70 18.15 29.73 0.69 1.99 

Load Pattern= VVVVV 

Table 5595105 Jobs Proportion with Non-selective Transfer 
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Benefit Cost 
Algorithm response{A VO) response{STD) jobmov. 

messages %LB_exec 
time(s) Impr(%) time(s) Impr(%) %jobmov %baddcs 

NOLB 1.74 0.00 0.77 0.00 0.00 0.00 0.00 0.00 
RANDOM 1.74 0.16 0.78 -1.80 0.83 20.30 0.00 0.83 
RECEIVR 1.74 0.10 0.76 0.94 0.08 0.00 1.33 0.62 
SENDER 1.70 2.41 0.74 4.42 0.77 0.81 0.01 -0.02 
SYMlRIC 1.69 2.79 0.72 6.82 0.80 0.00 1.35 0.57 
DIFFUSE 1.57 10.00 0.74 3.25 0.70 19.47 0.50 1.43 

Load Pattern= LLLLL 

Benefit Cost 
Algorithm response{A VO) response{STD) jobmov. 

messages %LB_exec 
time(s) Impr(%) time(s) Impr(%) %jobmov %baddcs 

NOLB 2.69 0.00 0.94 0.00 0.00 0.00 0.00 0.00 
RANDOM 2.60 3.22 0.98 4.54 1.89 36.78 0.00 0.78 
RECEIVR 2.65 1.33 0.97 -3.45 0.34 l.23 1.48 0.74 
SENDER 2.37 12.02 0.83 11.82 1.48 0.00 0.03 0.07 
SYMlRIC 2.45 9.06 0.89 5.49 l.61 l.04 1.55 0.88 
DIFFUSE 1.77 34.15 1.17 -24.37 3.34 42.64 0.38 7.71 

Load Pattern= MMMMM 

Benefit Cost 
Algorithm response(AVO) response{STD) jobmov. 

messages %LB_exec time(s) Impr(%) time(s) Impr(%) %jobmov %baddcs 
NOLB 7.32 0.00 2.74 0.00 0.00 0.00 0.00 0.00 
RANDOM 5.89 19.58 2.73 0.43 3.27 66.16 0.00 0.85 
RECEIVR 5.65 22.82 1.99 27.50 0.76 0.41 l.03 1.60 
SENDER 4.87 33.44 1.90 30.52 l.78 0.70 0.08 0.78 
SYMlRIC 4.75 35.14 1.67 38.99 1.95 0.64 l.21 1.62 
DIFFUSE 3.46 52.78 2.79 -1.76 4.70 70.41 0.16 13.05 

Load Pattern= HHHHH 

Benefit Cost 
Algorithm response{A VO) response(STD) jobmov. 

messages %LB_exec time(s) Impr(%) time(s) Impr(%) %jobmov %baddcs 
NOLB 13.27 0.00 4.08 0.00 0.00 0.00 0.00 0.00 
RANDOM 10.42 2l.50 5.09 -24.70 3.93 80.28 0.00 0.87 
RECEIVR 9.22 30.51 3.70 9.34 0.81 0.71 0.70 1.72 
SENDER 8.29 37.50 3.55 12.91 1.43 0.60 0.12 l.20 
SYMlRIC 7.07 46.72 2.45 40.01 l.88 0.92 0.90 l.65 
DIFFUSE 6.13 53.80 4.85 -18.95 4.36 75.36 0.12 9.34 

Load Pattern= VVVVV 

Table 5.695105 Proportion of Jobs with Selective Transfer 
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Benefit Cost 
Algorithm response(A VO) response(STD) jobmov. 

messages %LB_exec time(s) Impr(%) time(s) Impr(%) %jobmov %baddcs 
NOLB 1.84 0.00 0.93 0.00 0.00 0.00 0.00 0.00 
RANDOM 1.41 23.20 0.63 31.75 14.24 17.37 0.00 -0.15 
RECEIVR 1.65 10.14 0.73 22.03 0.71 0.00 1.34 -0.11 
SENDER 1.36 26.31 0.59 36.84 12.29 0.15 0.12 -0.59 
SYMTRIC 1.37 25.32 0.60 35.09 12.36 0.45 1.70 0.16 
DIFFUSE 1.18 36.13 0.78 15.84 9.92 11.27 0.63 1.99 

Load Pattern= LLLLL 

Benefit Cost 
Algorithm response(A VO) response(STD) jobmov. 

messages %LB_exec time(s) Impr(%) time(s) Impr(%) %jobmov %baddcs 
NOLB 2.95 0.00 1.30 0.00 0.00 0.00 0.00 0.00 
RANDOM 1.73 41.36 0.67 48.45 32.00 35.98 0.00 -0.04 
RECEIVR 2.14 27.38 0.76 41.47 4.10 0.20 1.57 -0.50 
SENDER 1.56 47.03 0.57 56.41 24.37 0.67 0.46 -0.91 
SYMTRIC 1.60 45.82 0.58 55.41 25.47 0.80 2.73 0.20 
DIFFUSE 1.14 61.47 0.83 36.41 17.50 18.97 0.67 3.19 

Load Pattern= MMMMM 

Benefit Cost 
Algorithm response(A VO) response(STD) job mov. 

messages %LB_exec time(s) Impr(%) time(s) Impr(%) %jobmov %baddcs 
NOLB 6.98 0.00 2.72 0.00 0.00 0.00 0.00 0.00 
RANDOM 2.77 60.31 1.14 58.04 60.85 62.66 0.00 0.38 
RECEIVR 2.95 57.73 0.99 63.56 11.03 0.57 1.36 -0.42 
SENDER 2.25 67.73 0.91 66.61 32.09 1.51 1.44 -0.29 
SYMTRIC 2.06 70.43 0.75 72.49 34.20 1.68 3.82 0.87 
DIFFUSE 1.72 75.38 1.29 52.46 21.52 26.60 0.69 2.23 

Load Pattern= IllIHHH 

Benefit Cost 
Algorithm response(AVO) response(STD) job mov. 

messages %LB_exec time(s) Impr(%) time(s) Impr(%) %jobmov %baddcs 
NOLB 11.94 0.00 4.18 0.00 0.00 0.00 0.00 0.00 
RANDOM 4.19 64.88 1.87 55.26 74.14 75.50 0.00 0.51 
RECEIVR 3.60 69.83 1.28 69.49 13.65 0.78 1.09 -0.32 
SENDER 3.24 72.84 1.59 61.93 28.65 1.74 2.11 0.30 
SYMTRIC 2.65 77.80 1.21 70.96 31.79 2.41 4.07 1.26 
DIFFUSE 2.59 78.34 1.96 53.01 18.77 29.16 0.68 1.33 

Load Pattern= VVVVV 

Table 5.7 70130 Proportion of Jobs with Non-selective Transfer 
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Benefit Cost 
Algorithm response(A VO) response(STD) jobmov. 

messages %LB_exec time(s) Impr(%) time(s) Impr(%) %jobmov %baddcs 
NOLB 1.84 0.00 0.93 0.00 0.00 0.00 0.00 0.00 
RANDOM 1.55 15.91 0.70 24.74 4.71 18.15 0.00 0.47 
RECEIVR 1.73 5.82 0.81 13.26 0.32 0.00 1.34 1.00 
SENDER 1.52 17.26 0.69 26.34 4.48 0.28 0.04 0.42 
SYMTRIC 1.52 17.40 0.66 28.55 4.31 0.14 1.47 1.04 
DIFFUSE 1.32 28.06 0.75 19.73 2.22 16.85 0.58 1.83 

Load Pattern= LLLLL 

Benefit Cost 
Algorithm response(A VO) response(STD) jobmov. 

messages %LB_exec time(s) Impr(%) time(s) Impr(%) %jobmov %baddcs 
NOLB 2.95 0.00 1.30 0.00 0.00 0.00 0.00 0.00 
RANDOM 2.05 30.41 0.79 39.12 10.67 37.44 0.00 0.83 
RECEIVR 2.32 21.46 0.90 30.85 1.38 0.00 1.53 0.20 
SENDER 1.87 36.61 0.68 47.62 8.45 0.30 0.16 0.25 
SYMTRIC 1.90 35.54 0.70 45.81 8.49 0.49 1.95 1.13 
DIFFUSE 1.18 59.87 0.80 38.81 6.89 27.70 0.53 6.39 

Load Pattern= MMMMM 

Benefit Cost 
Algorithm response(A VO) response(STD) jobmov. 

messages %LB_exec time(s) Impr(%) time(s) Impr(%) %jobmov %baddcs 
NOLB 6.98 0.00 2.72 0.00 0.00 0.00 0.00 0.00 
RANDOM 4.08 41.57 1.81 33.27 19.56 65.12 0.00 1.09 
RECEIVR 3.45 50.59 1.40 48.68 3.83 0.33 1.20 0.04 
SENDER 3.16 54.78 1.47 45.79 9.91 0.95 0.47 0.01 
SYMTRIC 2.70 61.32 1.06 60.91 10.86 1.04 2.04 0.88 
DIFFUSE 1.74 75.01 1.69 37.74 11.47 42.06 0.45 7.88 

Load Pattern= HHHHH 

Benefit Cost 
Algorithm response(A VO) response(STD) job mov. 

messages %LB_exec time(s) Impr(%) time(s) Impr(%) %jobmov %baddcs 
NOLB 11.94 0.00 4.18 0.00 0.00 0.00 0.00 0.00 
RANDOM 7.29 38.96 3.31 20.71 23.60 77.80 0.00 1.40 
RECEIVR 5.05 57.74 2.28 45.56 4.76 0.60 0.92 -0.20 
SENDER 4.98 58.30 3.09 26.07 8.75 1.22 0.67 0.21 
SYMTRIC 3.57 70.14 1.98 52.74 10.27 1.43 1.89 0.84 
DIFFUSE 4.00 66.53 3.92 6.27 10.13 47.11 0.42 6.03 

Load Pattern= VVVVV 

Table 5.870130 Proportion of Jobs with selective Transfer 
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Benefit Cost 
Algorithm response{A VO) response{STD) jobmov. 

messages %LB_exec time(s) Impr(%) time(s) Impr(%) %jobmov %baddcs 
NOLB 1.73 0.00 0.73 0.00 0.00 0.00 0.00 0.00 
RANDOM 1.42 18.12 0.56 23.19 14.09 16.91 0.00 0.31 
RECEIVR 1.52 12.42 0.60 17.66 6.31 0.79 1.42 0.59 
SENDER 1.37 20.83 0.53 27.27 12.32 0.81 0.12 0.09 
SYM1RIC 1.37 20.64 0.54 26.69 13.04 0.96 1.71 0.74 
DIFFUSE 1.41 18.56 0.54 26.09 11.14 4.20 2.31 1.28 

Load Pattern= LLLLL 

Benefit Cost 
Algorithm response(A YO) response(STD) jobmov. 

messages %LB3xec time(s) Impr(%) time(s) Impr(%) %jobmov %baddcs 
NOLB 2.64 0.00 0.92 0.00 0.00 0.00 0.00 0.00 
RANDOM 1.71 35.26 0.60 35.23 31.09 35.32 0.00 0.33 
RECEIVR 1.81 31.41 0.61 34.05 16.20 1.47 1.77 0.70 
SENDER 1.62 38.65 0.53 42.59 24.51 1.92 0.48 0.27 
SYMTRIC 1.58 40.28 0.51 44.45 28.32 2.10 2.75 1.29 
DIFFUSE 1.48 43.88 0.55 40.00 24.56 10.63 2.20 1.60 

Load Pattern= MMMMM 

Benefit Cost 
Algorithm response{A YO) response{STD) jobmov. 

messages %LB_exec time(s) Impr(%) time(s) Impr(%) %jobmov %baddcs 
NOLB 5.69 0.00 1.75 0.00 0.00 0.00 0.00 0.00 
RANDOM 2.75 51.68 1.02 41.75 60.96 64.28 0.00 1.12 
RECEIVR 2.27 60.12 0.77 55.87 27.60 2.77 1.62 0.89 
SENDER 2.37 58.34 0.96 45.19 31.18 4.08 1.50 0.99 
SYMTRIC 1.88 66.97 0.82 53.21 44.18 5.18 3.85 2.18 
DIFFUSE 1.61 71.70 0.84 51.79 40.22 21.89 2.14 2.27 

Load Pattern= HHHHH 

Benefit Cost 
Algorithm response(A YO) response(STD) job mov. 

messages %LB_exec time(s) Impr(%) time(s) Impr(%) %jobmov %baddcs 
NOLB 10.72 0.00 3.26 0.00 0.00 0.00 0.00 0.00 
RANDOM 4.39 59.09 1.85 43.35 76.67 78.55 0.00 1.69 
RECEIVR 2.91 72.88 1.14 64.91 28.98 3.81 1.30 1.08 
SENDER 3.49 67.43 1.55 52.58 26.01 5.12 2.23 1.34 
SYMTRIC 2.50 76.72 1.23 62.19 42.82 7.42 4.08 2.46 
DIFFUSE 2.15 79.95 1.21 62.82 41.03 29.43 2.16 2.43 

Load Pattern= VVVVV 

Table 5.9 Performance under Small Compute/Communicate Ratio (R= 0.13) 
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Benefit Cost 
Algorithm response(A VO) response(STD) jobmov. 

messages %LB_exec time(s) Impr(%) time(s) Impr(%) %jobmov %baddcs 
NOLB 1.73 0.00 0.73 0.00 0.00 0.00 0.00 0.00 
RANDOM 1.57 9.38 0.61 16.01 4.99 5.12 0.00 0.33 
RECEIVR 1.61 6.98 0.62 14.63 2.51 0.25 1.53 0.64 
SENDER 1.53 1l.45 0.60 17.80 4.57 0.55 0.04 0.06 
SYMTRIC 1.55 10.58 0.61 16.98 4.86 0.90 1.64 0.75 
DIFFUSE 1.59 7.89 0.60 17.93 3.97 0.94 2.41 1.34 

Load Pattern= LLLLL 

Benefit Cost 
Algorithm response(A VO) response(STD) job mov. 

messages %LB_exec time(s) Impr(%) time(s) Impr(%) %jobmov %baddcs 
NOLB 2.64 0.00 0.92 0.00 0.00 0.00 0.00 0.00 
RANDOM 1.93 26.71 0.63 31.76 15.47 19.85 0.00 0.45 
RECEIVR 2.10 20.52 0.68 25.61 9.59 1.17 2.05 0.98 
SENDER 1.90 28.11 0.62 32.88 14.31 1.43 0.22 0.31 
SYMTRIC 1.91 27.49 0.62 32.72 15.53 2.07 2.57 1.37 
DIFFUSE 1.89 28.49 0.64 30.70 14.17 5.73 2.34 1.84 

Load Pattern= MMMMM 

Benefit Cost 
Algorithm response(A VO) response(STD) job mov. 

messages %LB_exec time(s) Impr(%) time(s) Impr(%) %jobmov %baddcs 
NOLB 5.69 0.00 l.75 0.00 0.00 0.00 0.00 0.00 
RANDOM 2.94 48.37 l.06 39.65 44.37 50.79 0.00 1.84 
RECEIVR 2.85 49.96 0.88 49.93 22.91 2.72 2.03 l.60 
SENDER 2.61 54.15 0.89 48.99 27.28 3.76 0.94 1.27 
SYMTRIC 2.35 58.78 0.93 46.72 36.55 6.00 3.55 3.14 
DIFFUSE 2.07 63.56 0.89 49.20 32.93 16.72 2.24 3.01 

Load Pattern= HHHHH 

Benefit Cost 
Algorithm response(A VO) response(STD) job mov. 

messages %LB_exec time(s) Impr(%) time(s) Impr(%) %jobmov %baddcs 
NOLB 10.72 0.00 3.26 0.00 0.00 0.00 0.00 0.00 
RANDOM 4.84 54.82 2.09 36.01 68.26 72.13 0.00 3.38 
RECEIVR 3.52 67.16 l.27 60.90 27.27 3.88 1.66 l.90 
SENDER 3.48 67.58 1.43 56.23 29.07 5.03 l.67 1.96 
SYMTRIC 3.04 71.67 1.46 55.25 41.08 8.82 3.99 3.84 
DIFFUSE 2.68 74.95 1.41 56.74 39.28 26.82 2.25 3.74 

Load Pattern= VVVVV 

Table 5.10 Performance under Large Compute/Communicate Ratio (R= 0.4) 
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Benefit Cost 
Algorithm response(A VG) response(STD) jobmov. 

messages %LB_exec time(s) Impr(%) time(s) Impr(%) %jobmov %bad des 
NOLB 6.10 0.00 2.66 0.00 0.00 0.00 0.00 0.00 
RANDOM 1.69 72.33 0.61 77.07 32.49 29.56 0.00 0.45 
RECEIVR 2.11 65.39 0.78 70.77 18.38 1.75 1.40 1.28 
SENDER 1.59 73.93 0.52 80.33 25.24 1.72 0.41 0.84 
SYMlRIC 1.52 75.15 0.51 80.66 27.45 2.08 2.51 1.66 
DIFFUSE 1.48 75.82 0.53 79.93 24.51 8.77 2.22 1.87 

Load Pattern= 4S, 2M, 4 V 

Table 5.11 Performance under Small Compute/Communicate Ratio (R= 0.13) 

Benefit Cost 
Algorithm response(A VG) response(STD) jobmov. 

messages %LB_exec time(s) Impr(%) time(s) Impr(%) %jobmov %baddes 
NOLB 6.10 0.00 2.66 0.00 0.00 0.00 0.00 0.00 
RANDOM 2.01 67.03 0.66 75.32 20.20 17.53 0.00 0.64 
RECEIVR 2.45 59.87 0.82 69.32 14.62 1.55 1.64 1.62 
SENDER 1.95 68.11 0.62 76.71 17.68 1.26 0.24 0.97 
SYMTRIC 1.95 68.00 0.62 76.82 18.43 1.45 2.39 2.00 
DIFFUSE 2.00 67.28 0.64 75.96 17.16 4.16 2.35 2.15 

Load Pattern= 4S, 2M, 4V 

Table 5.12 Performance under Large Compute/Communicate Ratio (R= 0.4) 
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Benefit Cost 
Algorithm response(A VO) response(STD) jobmov. 

messages %LB_exec time(s) Impr(%) time(s) Impr(%) %jobmov %baddcs 
NOLB 1.77 0.00 0.80 0.00 0.00 0.00 0.00 0.00 
RANDOM 1.42 19.66 0.58 27.11 14.04 16.39 0.00 0.28 
RECEIVR 1.65 6.93 0.75 6.64 0.90 0.69 1.35 -0.16 
SENDER 1.36 23.43 0.55 30.97 12.27 1.07 0.12 -0.63 
SYM1RIC 1.37 22.61 0.56 29.83 12.43 1.15 1.70 0.00 
DIFFUSE 1.22 31.32 0.77 4.19 7.83 13.23 0.64 1.43 

Load Pattern= LLLLL 

Benefit Cost 
Algorithm response(A VO) response(STD) jobmov. 

messages %LB_exec time(s) Impr(%) time(s) Impr(%) %jobmov %baddcs 
NOLB 2.95 0.00 1.21 0.00 0.00 0.00 0.00 0.00 
RANDOM 1.76 40.39 0.65 46.63 32.86 36.38 0.00 0.29 
RECEIVR 2.12 27.99 0.74 38.59 4.32 1.25 1.58 -0.79 
SENDER 1.60 45.62 0.56 53.57 25.15 2.12 0.48 -0.84 
SYM1RIC 1.62 45.12 0.57 53.23 24.89 1.84 2.73 0.08 
DIFFUSE 1.15 61.06 0.77 36.53 14.21 18.74 0.68 2.28 

Load Pattern= MMMMM 

Benefit Cost 
Algorithm response(AVO) response(STD) job mov. 

messages %LB_exec time(s) Impr(%) time(s) Impr(%) %jobmov %baddcs 
NOLB 8.18 0.00 2.65 0.00 0.00 0.00 0.00 0.00 
RANDOM 2.92 64.34 1.24 53.09 61.88 65.60 0.00 1.01 
RECEIVR 3.05 62.75 1.21 54.52 10.76 2.09 1.32 -0.62 
SENDER 2.39 70.79 1.03 61.01 31.40 4.05 1.48 -0.05 
SYM1RIC 2.16 73.63 1.00 62.34 32.86 4.07 3.77 0.93 
DIFFUSE 1.59 80.56 1.22 53.88 19.78 27.62 0.70 2.17 

Load Pattern= HHHHH 

Benefit Cost 
Algorithm response(A VO) response(STD) job mov. 

messages %LB_exec time(s) Impr(%) time(s) Impr(%) %jobmov %baddcs 
NOLB 17.52 0.00 4.54 0.00 0.00 0.00 0.00 0.00 
RANDOM 4.98 71.57 2.49 45.12 77.63 79.56 0.00 2.09 
RECEIVR 3.64 79.23 1.45 68.04 13.43 2.82 1.04 0.21 
SENDER 3.60 79.42 1.88 58.68 26.85 4.95 2.21 1.04 
SYM1RIC 2.83 83.83 1.25 72.54 31.48 5.69 4.04 1.94 
DIFFUSE 2.74 84.38 2.12 53.36 18.38 31.29 0.69 2.04 

Load Pattern= VVVVV 

Table 5.1395/05 Jobs Proportion with Non-selective Transfer 
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Benefit Cost 
Algorithm response(A VO) response(STD) jobmov. 

messages %LB_exec time(s) Impr(%) time(s) Impr(%) %jobmov %baddcs 
NOLB 1.77 0.00 0.80 0.00 0.00 0.00 0.00 0.00 
RANDOM 1.77 0.17 0.77 3.22 0.98 18.47 0.00 0.63 
RECEIVR 1.84 -3.88 0.78 2.93 0.04 0.00 1.31 1.54 
SENDER 1.73 2.23 0.73 8.57 0.70 0.88 0.01 0.84 
SYM1RIC 1.74 1.60 0.75 6.57 0.72 0.86 1.34 1.44 
DIFFUSE 1.62 8.35 0.77 4.16 0.54 17.24 0.50 1.62 

Load Pattern= LLLLL 

Benefit Cost 
Algorithm response(A VO) response(STD) jobmov. 

messages %LB3xec time(s) Impr(%) time(s) Impr(%) %jobmov %baddcs 
NOLB 2.95 0.00 1.21 0.00 0.00 0.00 0.00 0.00 
RANDOM 2.68 9.02 1.19 1.35 1.97 38.56 0.00 0.59 
RECEIVR 2.78 5.85 1.08 10.54 0.29 1.45 1.44 0.99 
SENDER 2.53 14.20 0.96 20.72 1.47 0.85 0.03 0.49 
SYMlRIC 2.60 11.99 1.03 14.69 1.55 0.00 1.53 1.10 
DIFFUSE 1.77 39.91 1.24 -2.11 4.21 49.56 0.36 9.53 

Load Pattern= MMMMM 

Benefit Cost 
Algorithm response(AVO) response(STD) jobmov. 

messages %LB_exec time(s) Impr(%) time(s) Impr(%) %jobmov %baddcs 
NOLB 8.18 0.00 2.65 0.00 0.00 0.00 0.00 0.00 
RANDOM 6.46 21.06 2.73 -3.11 3.44 71.03 0.00 0.89 
RECEIVR 6.30 22.97 2.50 5.83 0.67 1.87 0.99 1.19 
SENDER 6.06 25.86 3.40 -28.15 1.67 1.69 0.09 0.72 
SYMTRIC 5.12 37.39 2.35 11.32 1.96 2.23 1.16 1.11 
DIFFUSE 4.07 50.21 3.45 -30.14 4.67 72.72 0.14 13.39 

Load Pattern= HHHHH 

Benefit Cost 
Algorithm response(A VO) response(STD) job mov. 

messages %LB_exec time(s) Impr(%) time(s) Impr(%) %jobmov %baddcs 
NOLB 17.52 0.00 4.54 0.00 0.00 0.00 0.00 0.00 
RANDOM 11.76 32.86 4.90 -7.83 4.07 81.94 0.00 1.47 
RECEIVR 10.93 37.60 5.31 -16.92 0.75 2.68 0.64 1.69 
SENDER 9.74 44.40 5.07 -11.68 1.29 1.56 0.12 1.15 
SYMlRIC 8.19 53.24 4.14 8.82 1.72 1.84 0.87 1.61 
DIFFUSE 7.54 56.98 6.50 -43.16 3.98 75.61 0.11 9.09 

Load Pattern= VVVVV 

Table 5.1495/05 Proportion of Jobs with Selective Transfer 
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Benefit Cost 
Algorithm response(A VO) response(SlD) jobmov. 

messages %LB3xec time(s) Impr(%) time(s) Impr(%) %jobmov %baddcs 
NOLB 1.86 0.00 0.90 0.00 0.00 0.00 0.00 0.00 
RANDOM 1.41 24.32 0.62 31.15 14.75 14.25 0.00 -0.46 
RECEIVR 1.64 12.07 0.75 16.33 1.15 1.08 1.34 -0.65 
SENDER 1.36 26.89 0.61 32.69 13.05 0.76 0.13 -1.00 
SYMTRIC 1.37 26.38 0.62 31.15 12.68 0.88 1.70 -0.36 
DIFFUSE 1.17 37.20 0.79 12.70 10.31 11.19 0.63 1.98 

Load Pattern= LLLLL 

Benefit Cost 
Algorithm response(A VO) response(SlD) jobmov. 

messages %LB_exec time(s) Impr(%) time(s) Impr(%) %jobmov %baddcs 
NOLB 3.00 0.00 1.22 0.00 0.00 0.00 0.00 0.00 
RANDOM 1.75 41.71 0.66 45.82 32.30 35.37 0.00 0.61 
RECEIVR 2.22 25.98 0.80 34.61 4.58 1.36 1.57 -0.10 
SENDER 1.62 46.15 0.62 49.02 24.86 1.88 0.49 -0.20 
SYMTRIC 1.64 45.45 0.61 50.35 24.89 1.96 2.72 0.75 
DIFFUSE 1.19 60.42 0.84 31.16 18.19 19.95 0.67 3.56 

Load Pattern= MMMMM 

Benefit Cost 
Algorithm response(A VO) response(SlD) job mov. 

messages %LB_exec time(s) Impr(%) time(s) Impr(%) %jobmov %baddcs 
NOLB 8.53 0.00 3.06 0.00 0.00 0.00 0.00 0.00 
RANDOM 3.27 61.72 1.47 51.97 64.63 67.65 0.00 1.21 
RECEIVR 2.76 67.60 1.10 64.06 11.35 2.09 1.31 -0.43 
SENDER 2.40 71.87 0.99 67.49 31.72 3.93 1.51 0.12 
SYMTRIC 2.05 75.92 0.84 72.45 33.24 4.36 3.78 1.06 
DIFFUSE 2.03 76.18 1.48 51.58 21.69 26.60 0.69 1.99 

Load Pattern= HHHHH 

Benefit Cost 
Algorithm response(A VO) response(SlD) job mov. 

messages %LB3xec time(s) Impr(%) time(s) Impr(%) %jobmov %baddcs 
NOLB 15.13 0.00 5.30 0.00 0.00 0.00 0.00 0.00 
RANDOM 5.33 64.74 2.67 49.58 78.56 80.32 0.00 1.55 
RECEIVR 3.47 77.09 1.42 73.18 13.83 2.59 1.01 -0.02 
SENDER 3.74 75.30 1.90 64.10 26.48 5.10 2.24 0.68 
SYMTRIC 3.14 79.25 1.45 72.63 31.03 5.87 4.03 1.66 
DIFFUSE 3.16 79.10 2.22 58.11 18.16 29.46 0.68 1.17 

Load Pattern= VVVVV 

Table 5.1570/30 Proportion of Jobs with Non-selective Transfer 
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Benefit Cost 
Algorithm response(A VG) response(STD) jobmov. 

messages %LB_exec time(s) Impr(%) time(s) Impr(%) %jobmov %baddcs 
NOLB 1.86 0.00 0.90 0.00 0.00 0.00 0.00 0.00 
RANDOM 1.55 16.59 0.69 23.53 4.65 16.38 0.00 0.25 
RECEIVR 1.75 5.73 0.78 13.22 0.35 0.00 1.33 0.56 
SENDER 1.55 16.87 0.71 21.56 4.53 0.96 0.04 0.13 
SYMTRIC 1.54 17.46 0.68 24.67 4.46 0.56 1.47 0.69 
DIFFUSE 1.35 27.45 0.74 18.09 2.19 12.22 0.53 1.95 

Load Pattern= LLLLL 

Benefit Cost 
Algorithm response(A VG) response(STD) jobmov. 

messages %LB_exec time(s) Impr(%) time(s) Impr(%) %jobmov %baddcs 
NOLB 3.00 0.00 1.22 0.00 0.00 0.00 0.00 0.00 
RANDOM 2.08 30.77 0.80 34.56 10.76 36.61 0.00 1.21 
RECEIVR 2.37 21.15 0.95 22.19 1.90 1.10 1.51 0.77 
SENDER 1.99 33.74 0.77 36.92 8.60 1.31 0.17 0.76 
SYMTRIC 2.13 29.12 0.76 37.99 9.10 1.70 1.89 1.46 
DIFFUSE 1.29 56.99 0.82 33.09 6.09 26.57 0.49 5.85 

Load Pattern= MMMMM 

Benefit Cost 
Algorithm response(A VG) response(STD) job mov. 

messages %LB_exec time(s) Impr(%) time(s) Impr(%) %jobmov %baddcs 
NOLB 8.53 0.00 3.06 0.00 0.00 0.00 0.00 0.00 
RANDOM 4.83 43.33 2.57 16.07 20.32 68.46 0.00 1.46 
RECEIVR 3.53 58.60 1.56 49.01 4.26 1.91 1.15 0.27 
SENDER 3.37 60.52 1.44 53.04 10.14 2.87 0.49 0.37 
SYMTRIC 2.60 69.47 1.29 57.89 10.94 2.72 1.99 0.87 
DIFFUSE 1.94 77.24 1.53 49.97 11.16 41.91 0.41 7.83 

Load Pattern= HHHHH 

Benefit Cost 
Algorithm response(A VG) response(STD) job mov. 

messages %LB_exec time(s) Impr(%) time(s) Impr(%) %jobmov %baddcs 
NOLB 15.13 0.00 5.30 0.00 0.00 0.00 0.00 0.00 
RANDOM 10.92 27.83 5.37 -1.33 24.70 82.08 0.00 1.88 
RECEIVR 5.42 64.18 2.98 43.80 4.86 2.96 0.81 0.42 
SENDER 5.78 61.77 2.84 46.32 8.03 3.12 0.71 0.99 
SYMTRIC 4.07 73.07 1.95 63.15 10.23 3.43 1.80 1.57 
DIFFUSE 4.29 71.65 3.41 35.72 9.44 49.29 0.38 5.88 

Load Pattern= VVVVV 

Table 5.1670/30 Proportion of Jobs with selective Transfer 



190 

Benefit Cost 
Algorithm response{A VO) response{STD) jobmov. 

messages %LB_exee time(s) Impr(%) time(s) Impr(%) %jobmov %bad des 
NOLB 1.26 0.00 0.49 0.00 0.00 0.00 0.00 0.00 
RANDOM 1.14 9.91 0.42 13.76 5.40 6.47 0.00 0.39 
RECEIVR 1.18 6.46 0.43 11.35 2.51 0.33 2.23 1.66 
SENDER 1.12 11.09 0.41 17.13 4.99 0.17 0.07 -0.08 
SYMTRIC 1.15 8.34 0.42 14.29 5.37 0.47 2.40 2.17 
DIFFUSE 1.17 6.81 0.43 11.81 4.80 2.95 2.39 3.22 

Load Pattern= LLLLL 

Benefit Cost 
Algorithm response{A VO) response{STD) jobmov. 

messages %LB_exee time(s) Impr(%) time(s) Impr(%) %jobmov %baddes 
NOLB 2.04 0.00 0.68 0.00 0.00 0.00 0.00 0.00 
RANDOM 1.47 27.74 0.43 36.30 18.15 23.24 0.00 1.14 
RECEIVR 1.53 25.15 0.48 28.84 11.07 1.63 2.50 4.07 
SENDER 1.47 27.89 0.45 33.94 16.04 1.31 0.41 1.47 
SYMTRIC 1.38 32.43 0.48 29.18 19.49 2.24 2.95 6.41 
DIFFUSE 1.30 36.51 0.50 27.08 15.61 8.72 2.34 5.18 

Load Pattern= MMMMM 

Benefit Cost 
Algorithm response{A VO) response{STD) jobmov. 

messages %LB3xec time(s) Impr(%) time(s) Impr(%) %jobmov %baddes 
NOLB 8.06 0.00 2.63 0.00 0.00 0.00 0.00 0.00 
RANDOM 5.00 38.01 2.79 -6.18 62.27 69.54 0.00 3.55 
RECEIVR 2.28 71.69 0.88 66.64 25.49 4.62 1.88 5.15 
SENDER 4.10 49.14 1.89 28.08 21.84 7.32 2.50 7.21 
SYMTRIC 3.88 51.91 2.14 18.80 29.02 16.69 3.59 10.48 
DIFFUSE 2.54 68.43 1.63 37.87 31.48 30.99 2.28 7.58 

Load Pattern= HHHHH 

Benefit Cost 
Algorithm response{A VO) response(STD) jobmov. 

%LB_exec time(s) Impr(%) time(s) Impr(%) %jobmov %bad des 
messages 

NOLB 42.85 0.00 16.81 0.00 0.00 0.00 0.00 0.00 
RANDOM 99.78 -132.85 60.27 -258.55 82.47 83.94 0.00 0.35 
RECEIVR 11.66 72.79 6.54 61.10 10.96 7.49 0.28 3.43 
SENDER 131.50 -206.88 77.77 -362.67 1.25 12.36 2.50 4.04 
SYMTRIC 132.30 -208.75 77.74 -362.44 1.36 22.04 2.52 4.09 
DIFFUSE 83.43 -94.71 43.73 -160.12 2.30 49.65 2.35 3.81 

Load Pattern= VVVVV 

Table 5.17 Performance of Standard Algorithms under Scaled Arrivals 
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Benefit Cost 
Algorithm response{A VO) response{STD) jobmov. 

messages %LB_exee time(s) Impr(%) time(s) Impr(%) %jobmov %baddes 
NOLB 1.26 0.00 0.49 0.00 0.00 0.00 0.00 0.00 
RANDOM 1.13 9.96 0.42 14.11 5.39 5.79 0.00 0.22 
RECEIVR 1.20 5.15 0.45 8.86 2.28 0.37 2.21 1.56 
SENDER 1.12 11.34 0.41 15.84 4.94 0.17 0.07 -0.36 
SYMTRIC 1.14 9.33 0.41 15.46 5.37 0.39 2.41 1.97 
DIFFUSE 1.16 7.78 0.44 10.17 4.64 2.15 2.39 3.18 

Load Pattern= LLLLL 

Benefit Cost 
Algorithm response{A VO) response{STD) job mov. 

messages %LB_exee time(s) Impr(%) time(s) Impr(%) %jobmov %bad des 
NOLB 2.04 0.00 0.68 0.00 0.00 0.00 0.00 0.00 
RANDOM 1.45 29.11 0.43 37.07 18.58 22.32 0.00 0.29 
RECEIVR 1.61 21.18 0.48 29.25 9.67 1.38 2.50 3.93 
SENDER 1.45 29.15 0.43 36.60 15.74 1.46 0.41 0.90 
SYMTRIC 1.42 30.41 0.47 31.37 18.92 2.11 2.95 5.56 
DIFFUSE 1.28 37.30 0.48 29.46 15.70 8.24 2.35 5.03 

Load Pattern= MMMMM 

Benefit Cost 
Algorithm response{A VO) response{STD) jobmov. 

messages %LB_exec time(s) Impr(%) time(s) Impr(%) %jobmov %baddes 
NOLB 8.06 0.00 2.63 0.00 0.00 0.00 0.00 0.00 
RANDOM 2.92 63.77 1.14 56.79 62.18 66.93 0.00 2.29 
RECEIVR 2.26 72.00 0.85 67.57 23.24 4.77 1.91 4.87 
SENDER 4.29 46.82 1.93 26.52 20.89 7.33 2.50 7.03 
SYMTRIC 4.68 41.95 2.43 7.73 26.49 14.69 3.52 10.40 
DIFFUSE 2.52 68.68 1.66 36.77 30.38 29.45 2.27 7.49 

Load Pattern= HHHHH 

Benefit Cost 
Algorithm response{A VO) response{STD) job mov. 

messages %LB_exec time(s) Impr(%) time(s) Impr(%) %jobmov %bad des 
NOLB 42.85 0.00 16.81 0.00 0.00 0.00 0.00 0.00 
RANDOM 29.29 31.64 14.42 14.22 98.00 97.03 0.00 3.57 
RECEIVR 12.32 71.26 6.52 61.22 11.05 6.04 0.32 3.34 
SENDER 138.60 -223.45 81.55 -385.11 1.60 8.69 2.50 4.00 
SYMTRIC 138.60 -223.45 80.51 -378.96 2.12 17.37 2.53 4.11 
DIFFUSE 82.85 -93.35 44.65 -165.63 2.65 47.40 2.34 3.84 

Load Pattern= VVVVV 

Table 5.18 Performance of Adapted Algorithms under Scaled Arrivals 
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Benefit Cost 
Algorithm response(A YO) response(STD) jobmov. 

messages %LB_exec time(s) Impr(%) time(s) Impr(%) %jobmov %baddes 
NOLB l.15 0.00 0.48 0.00 0.00 0.00 0.00 0.00 
RANDOM 1.05 8.46 0.42 11.84 5.12 6.97 0.00 0.49 
RECEIVR 1.09 5.24 0.45 6.93 2.41 0.69 2.27 0.56 
SENDER 1.03 10.01 0.43 11.02 4.60 0.55 0.06 0.05 
SYMTRIC 1.05 9.06 0.41 13.92 4.88 1.20 2.43 1.10 
DIFFUSE 1.06 7.52 0.41 13.81 3.75 2.11 2.44 1.22 

Load Pattern= LLLLL 

Benefit Cost 
Algorithm response(A YO) response(STD) job mov. 

messages %LB3xec time(s) Impr(%) time(s) Impr(%) %jobmov %baddes 
NOLB 1.76 0.00 0.63 0.00 0.00 0.00 0.00 0.00 
RANDOM 1.34 23.88 0.43 31.18 16.11 21.37 0.00 1.49 
RECEIVR 1.41 20.05 0.45 28.85 9.39 1.80 2.50 1.72 
SENDER 1.31 25.48 0.42 32.70 14.48 2.08 0.34 1.58 
SYMTRIC 1.29 26.47 0.44 30.87 16.06 2.35 2.85 3.24 
DIFFUSE 1.29 26.78 0.46 27.50 13.00 6.80 2.42 2.64 

Load Pattern= MMMMM 

Benefit Cost 
Algorithm response(A YO) response{STD) job mov. 

messages %LB_exec time(s) Impr(%) time(s) Impr(%) %jobmov %baddes 
NOLB 3.84 0.00 1.28 0.00 0.00 0.00 0.00 0.00 
RANDOM 2.96 23.04 1.56 -21.57 50.49 60.27 0.00 5.07 
RECEIVR 1.98 48.40 0.60 52.80 22.55 4.14 2.50 2.81 
SENDER 1.93 49.85 0.65 49.48 28.00 5.27 1.56 3.55 
SYMTRIC 1.69 56.11 0.72 43.45 38.65 8.68 4.36 6.56 
DIFFUSE 1.59 58.71 0.72 43.76 30.33 20.59 2.42 4.57 

Load Pattern= HHHHH 

Benefit Cost 
Algorithm response(A YO) response(STD) job mov. 

messages %LB_exee time(s) Impr(%) time(s) Impr(%) %jobmov %bad des 
NOLB 6.91 0.00 2.21 0.00 0.00 0.00 0.00 0.00 
RANDOM 35.63 -415.63 20.71 -837.31 73.24 79.55 0.00 5.23 
RECEIVR 2.47 64.29 0.79 64.31 27.02 5.99 2.18 3.00 
SENDER 2.91 57.95 1.22 44.76 26.23 7.68 2.50 4.18 
SYMTRIC 2.35 66.02 1.04 52.73 40.67 13.13 4.75 6.77 
DIFFUSE 2.21 68.00 1.19 46.14 32.98 28.99 2.42 4.65 

Load Pattern= YYYYY 

Table 5.19 Performance of Standard Algorithms under Scaled Arrivals 
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Benefit Cost 
Algorithm response(A VG) response(STD) jobmov. 

messages %LB_exec time(s) Impr(%) time(s) Impr(%) %jobmov %baddcs 
NOLB 1.15 0.00 0.48 0.00 0.00 0.00 0.00 0.00 
RANDOM 1.05 8.86 0.41 13.72 5.17 6.35 0.00 0.25 
RECEIVR 1.08 5.91 0.44 8.83 2.10 0.20 2.27 0.55 
SENDER 1.03 10.44 0.42 12.90 4.40 0.48 0.06 -0.21 
SYMlRIC 1.04 9.90 0.41 13.89 4.93 1.02 2.43 0.85 
DIFFUSE 1.07 6.94 0.42 12.17 3.68 0.90 2.44 1.13 

Load Pattern= LLLLL 

Benefit Cost 
Algorithm response(A VG) response(STD) jobmov. 

messages %LB_exec time(s) Impr(%) time(s) Impr(%) %jobmov %baddcs 
NOLB 1.76 0.00 0.63 0.00 0.00 0.00 0.00 0.00 
RANDOM 1.31 25.80 0.43 32.12 16.15 19.45 0.00 0.91 
RECEIVR 1.41 20.13 0.46 26.90 8.27 1.37 2.50 1.58 
SENDER 1.28 27.10 0.42 33.70 14.34 1.82 0.34 1.03 
SYMlRIC 1.32 25.25 0.42 32.65 16.19 2.34 2.85 2.70 
DIFFUSE 1.33 24.56 0.44 29.45 12.55 5.66 2.42 2.40 

Load Pattern= MMMMM 

Benefit Cost 
Algorithm response(A VG) response(STD) jobmov. 

messages %LB_exec time(s) Impr(%) time(s) Impr(%) %jobmov %baddcs 
NOLB 3.84 0.00 1.28 0.00 0.00 0.00 0.00 0.00 
RANDOM 2.25 41.48 0.92 27.88 49.35 55.59 0.00 3.63 
RECEIVR 2.00 47.93 0.60 52.77 20.06 3.58 2.50 2.42 
SENDER 2.07 46.09 0.67 47.33 29.49 6.25 1.77 3.24 
SYMlRIC 1.59 58.54 0.65 48.88 37.34 7.87 4.23 5.76 
DIFFUSE 1.70 55.76 0.72 43.45 28.64 18.86 2.42 3.89 

Load Pattern= HHHHH 

Benefit Cost 
Algorithm response(A VG) response(STD) job mov. 

messages %LB_exec time(s) Impr(%) time(s) Impr(%) %jobmov %baddcs 
NOLB 6.91 0.00 2.21 0.00 0.00 0.00 0.00 0.00 
RANDOM 7.22 -4.54 4.33 -96.02 82.74 85.56 0.00 6.69 
RECEIVR 2.55 63.11 0.85 61.61 24.15 5.44 2.19 2.52 
SENDER 2.70 60.96 1.04 53.00 27.59 7.52 2.50 3.63 
SYMlRIC 2.44 64.67 0.99 55.11 39.31 12.73 4.90 6.33 
DIFFUSE 2.22 67.86 1.18 46.58 31.31 26.91 2.42 4.20 

Load Pattern= VVVVV 

Table 5.20 Performance of Adapted Algorithms under Scaled Arrivals 
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Benefit Cost 
Algorithm response(A VO) response(STD) jobmov. messages %LB_exec time(s) Impr(%) time(s) Impr(%) %jobmov %baddcs 
NOLB 1.26 0.00 0.59 0.00 0.00 0.00 0.00 0.00 
RANDOM 1.16 7.96 0.51 13.59 2.89 3.90 0.00 -0.08 
RECEIVR 1.19 5.42 0.53 9.79 1.35 0.00 1.55 0.85 
SENDER 1.12 11.01 0.50 15.69 2.57 0.24 0.02 -0.42 
SYMTRIC 1.14 9.23 0.49 17.23 2.46 0.00 1.61 0.81 
DIFFUSE 1.17 7.01 0.51 14.06 2.14 0.58 2.41 2.23 

Node Arrival Rate: 0.4 jobs/sec 

Benefit Cost 
Algorithm response(A VG) response(STD) jobmov. 

messages %LB_exec time(s) Impr(%) time(s) Impr(%) %jobmov %baddcs 
NOLB 1.79 0.00 0.71 0.00 0.00 0.00 0.00 0.00 
RANDOM 1.32 26.40 0.46 35.55 8.12 8.52 0.00 -0.92 
RECEIVR 1.45 19.18 0.52 26.36 5.02 0.25 2.17 1.27 
SENDER 1.31 26.76 0.46 34.89 7.67 0.27 0.11 -1.00 
SYMTRIC 1.35 24.65 0.47 33.45 7.98 0.37 2.44 1.31 
DIFFUSE 1.33 25.68 0.49 30.37 7.07 1.88 2.36 2.10 

Node Arrival Rate: 0.6 jobs/sec 

Benefit Cost 
Algorithm response(A VO) response(STD) jobmov. 

messages %LB_exec time(s) Impr(%) time(s) Impr(%) %jobmov %baddcs 
NOLB 3.48 0.00 1.40 0.00 0.00 0.00 0.00 0.00 
RANDOM 1.55 55.57 0.46 67.13 17.04 20.80 0.00 -1.67 
RECEIVR 1.63 53.26 0.52 62.83 10.86 0.84 2.50 1.37 
SENDER 1.51 56.47 0.45 67.85 14.70 0.85 0.32 -1.74 
SYMTRIC 1.43 58.89 0.46 67.24 16.35 1.28 2.82 1.92 
DIFFUSE 1.34 61.40 0.48 65.91 14.94 6.02 2.32 1.95 

Node Arrival Rate: 0.8 jobs/sec 

Benefit Cost 
Algorithm response(A VO) response(STD) job mov. 

messages %LB_exec time(s) Impr(%) time(s) Impr(%) %jobmov %baddcs 
NOLB 5.79 0.00 2.35 0.00 0.00 0.00 0.00 0.00 
RANDOM 1.66 71.35 0.46 80.31 22.05 26.99 0.00 -2.05 
RECEIVR 1.73 70.06 0.50 78.92 13.80 1.50 2.50 1.25 
SENDER 1.61 72.22 0.45 80.70 17.59 1.47 0.44 -2.02 
SYMTRIC 1.38 76.25 0.46 80.42 20.22 1.92 2.96 2.14 
DIFFUSE 1.28 77.85 0.47 80.05 17.39 7.42 2.30 1.67 

Node Arrival Rate: 0.9 jobs/sec 

Table 5.21 Performance of Standard Algorithms under Identical Arrivals 
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Benefit Cost 
Algorithm response(A YO) response(STD) jobmov. messages %LB_exec 

time(s) Impr(%) time(s) Impr(%) %jobmov %baddcs 
NOLB 1.26 0.00 0.59 0.00 0.00 0.00 0.00 0.00 
RANDOM 1.14 9.64 0.48 17.95 2.62 0.72 0.00 -0.15 
RECEIVR 1.19 5.60 0.53 10.50 1.47 0.00 1.55 0.84 
SENDER 1.12 11.38 0.49 16.48 2.29 0.00 0.02 -0.44 
SYM1RIC 1.13 10.22 0.50 15.77 2.51 0.00 1.61 0.73 
DIFFUSE 1.16 7.59 0.50 14.59 2.26 0.55 2.41 2.30 

Node Arrival Rate: 0.4 jobs/sec 

Benefit Cost 
Algorithm response(A YO) response(STD) jobmov. messages %LB_exec 

time(s) Impr(%) time(s) Impr(%) %jobmov %bad des 
NOLB 1.79 0.00 0.71 0.00 0.00 0.00 0.00 0.00 
RANDOM 1.31 27.06 0.45 36.76 7.93 8.04 0.00 -1.17 
RECEIVR 1.43 20.04 0.51 28.44 5.16 0.40 2.18 1.29 
SENDER 1.29 27.82 0.46 35.83 7.04 0.18 0.10 -1.27 
SYMTRIC 1.32 26.21 0.46 34.95 7.70 0.27 2.44 1.00 
DIFFUSE 1.27 29.23 0.47 33.90 7.36 2.48 2.37 2.04 

Node Arrival Rate: 0.6 jobs/sec 

Benefit Cost 
Algorithm response(A YO) response(STD) jobmov. 

messages %LB_exec 
time(s) Impr(%) time(s) Impr(%) %jobmov %baddcs 

NOLB 3.48 0.00 1.40 0.00 0.00 0.00 0.00 0.00 
RANDOM 1.49 57.07 0.43 69.13 15.83 15.51 0.00 -2.11 
RECEIVR 1.68 51.61 0.47 66.26 11.22 1.03 2.50 1.26 
SENDER 1.48 57.53 0.43 69.36 13.63 0.50 0.27 -2.16 
SYMTRIC 1.28 63.09 0.44 68.32 15.52 1.05 2.79 1.55 
DIFFUSE 1.25 64.20 0.46 66.90 14.22 7.15 2.32 1.80 

Node Arrival Rate: 0.8 jobs/sec 

Benefit Cost 
Algorithm response(A YO) response(STD) job mov. 

messages %LB_exec 
time(s) Impr(%) time(s) Impr(%) %jobmov %baddcs 

NOLB 5.79 0.00 2.35 0.00 0.00 0.00 0.00 0.00 
RANDOM 1.59 72.52 0.45 81.03 19.84 22.92 0.00 -2.75 
RECEIVR 1.72 70.29 0.50 78.58 14.09 1.37 2.50 1.25 
SENDER 1.56 73.00 0.43 81.70 16.39 1.23 0.39 -2.53 
SYMTRIC 1.39 76.03 0.46 80.45 21.33 1.67 2.96 1.39 
DIFFUSE 1.23 78.78 0.48 79.51 17.28 8.56 2.30 1.58 

Node Arrival Rate: 0.9 jobs/sec 

Table 5.22 Performance of Adapted Algorithms under Identical Arrivals 
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Benefit Cost 
Algorithm response(A VO) response(STD) jobmov. 

mes~ges %LB_exec time(s) Impr(%) time(s) Impr(%) %jobmov %baddcs 
NOLB 1.19 0.00 0.59 0.00 0.00 0.00 0.00 0.00 
RANDOM 1.09 8.58 0.51 13.72 2.53 2.96 0.00 -0.03 
RECEIVR 1.11 7.06 0.53 10.68 1.18 0.00 1.57 0.44 
SENDER 1.07 10.49 0.50 15.55 2.19 0.00 0.02 -0.24 
SYMTRIC 1.07 10.13 0.50 15.56 2.34 1.06 1.62 0.39 
DIFFUSE 1.10 7.63 0.50 15.81 2.00 0.93 2.44 0.86 

Node Arrival Rate: 0.4 jobs/sec 

Benefit Cost 
Algorithm response(A VO) response(STD) jobmov. 

messages %LB3xec time(s) Impr(%) time(s) Impr(%) %jobmov %baddcs 
NOLB 1.68 0.00 0.73 0.00 0.00 0.00 0.00 0.00 
RANDOM 1.24 25.92 0.46 37.19 7.58 8.66 0.00 -0.57 
RECEIVR 1.35 19.78 0.52 29.31 4.65 0.63 2.22 0.30 
SENDER 1.24 26.44 0.47 35.01 7.38 0.96 0.10 -0.81 
SYMTRIC 1.24 26.00 0.47 35.88 7.65 0.65 2.48 0.18 
DIFFUSE 1.28 23.60 0.49 32.89 6.45 2.19 2.41 0.53 

Node Arrival Rate: 0.6 jobs/sec 

Benefit Cost 
Algorithm response(A VO) response(STD) jobmov. 

messages %LB_exec time(s) Impr(%) time(s) Impr(%) %jobmov %baddcs 
NOLB 3.11 0.00 1.28 0.00 0.00 0.00 0.00 0.00 
RANDOM 1.44 53.61 0.45 65.19 15.94 18.01 0.00 -1.28 
RECEIVR 1.56 49.68 0.51 59.87 9.97 1.41 2.50 -0.48 
SENDER 1.40 54.90 0.44 65.33 13.92 1.57 0.28 -1.57 
SYMTRIC 1.39 55.17 0.44 65.62 15.02 2.06 2.77 -0.21 
DIFFUSE 1.45 53.30 0.46 63.69 13.06 5.69 2.38 -0.33 

Node Arrival Rate: 0.8 jobs/sec 

Benefit Cost 
Algorithm response(A VO) response(STD) jobmov. 

messages %LB_exec time(s) Impr(%) time(s) Impr(%) %jobmov %baddcs 
NOLB 4.86 0.00 2.11 0.00 0.00 0.00 0.00 0.00 
RANDOM 1.54 68.40 0.48 77.47 20.39 23.28 0.00 -1.83 
RECEIVR 1.65 65.95 0.50 76.49 12.93 1.73 2.50 -0.79 
SENDER 1.47 69.66 0.44 79.15 16.81 2.01 0.40 -1.95 
SYMTRIC 1.45 70.12 0.44 79.22 18.70 2.51 2.89 -0.38 
DIFFUSE 1.51 68.95 0.46 78.21 15.77 8.12 2.37 -0.76 

Node Arrival Rate: 0.9 jobs/sec 

Table 5.23 Performance of Standard Algorithms under Identical Arrivals 
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Benefit Cost 
Algorithm response(A VG) response(SID} jobmov. messages %LB_exec 

time(s) Impr(%) time(s) Impr(%) %jobmov %baddcs 
NOLB 1.19 0.00 0.59 0.00 0.00 0.00 0.00 0.00 
RANDOM 1.07 10.36 0.49 16.70 2.45 3.05 0.00 -0.11 
RECEIVR 1.12 6.24 0.52 11.49 1.32 0.00 1.57 0.42 
SENDER 1.06 10.77 0.50 16.05 2.26 0.00 0.02 -0.32 
SYMIRIC 1.06 10.77 0.49 17.04 2.28 0.00 1.62 0.31 
DIFFUSE 1.10 7.74 0.51 13.39 2.23 0.84 2.44 0.87 

Node Arrival Rate: 0.4 jobs/sec 

Benefit Cost 
Algorithm response(A VG) response(STD} jobmov. messages %LB_exec 

time(s) Impr(%) time(s) Impr(%) %jobmov %baddcs 
NOLB 1.68 0.00 0.73 0.00 0.00 0.00 0.00 0.00 
RANDOM 1.23 26.83 0.45 38.04 7.49 6.77 0.00 -0.90 
RECEIVR 1.33 20.70 0.51 30.23 4.88 0.68 2.23 0.30 
SENDER 1.22 27.28 0.46 36.71 7.05 0.41 0.09 -0.99 
SYMIRIC 1.24 26.13 0.45 38.16 7.47 0.56 2.48 0.02 
DIFFUSE 1.29 23.50 0.48 34.64 6.90 2.59 2.41 0.42 

Node Arrival Rate: 0.6 jobs/sec 

Benefit Cost 
Algorithm response(A VG) response(SID) jobmov. 

messages %LB3xec 
time(s) Impr(%) time(s) Impr(%) %jobmov %baddcs 

NOLB 3.11 0.00 1.28 0.00 0.00 0.00 0.00 0.00 
RANDOM 1.39 55.16 0.44 65.86 14.45 15.37 0.00 -1.74 
RECEIVR 1.54 50.51 0.49 61.99 10.74 1.34 2.50 -0.52 
SENDER 1.37 56.00 0.43 66.60 13.14 1.69 0.25 -2.06 
SYMIRIC 1.37 55.83 0.42 67.49 14.36 1.70 2.75 -0.73 
DIFFUSE 1.38 55.64 0.46 63.77 12.86 5.78 2.38 -0.41 

Node Arrival Rate: 0.8 jobs/sec 

Benefit Cost 
Algorithm response(A VG) response(SID) jobmov. 

messages %LB_exec 
time(s) Impr(%) time(s) Impr(%) %jobmov %baddcs 

NOLB 4.86 0.00 2.11 0.00 0.00 0.00 0.00 0.00 
RANDOM 1.46 69.94 0.43 79.43 17.19 17.97 0.00 -2.52 
RECEIVR 1.62 66.66 0.49 76.83 13.08 1.82 2.50 -0.84 
SENDER 1.44 70.46 0.43 79.84 15.76 1.62 0.35 -2.41 
SYMIRIC 1.34 72.42 0.42 80.18 17.38 2.24 2.84 -0.83 
DIFFUSE 1.43 70.63 0.45 78.46 15.27 6.98 2.37 -1.02 

Node Arrival Rate: 0.9 jobs/sec 

Table 5.24 Performance of Adapted Algorithms under Identical Arrivals 
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