
An Evaluation of Load Balancing Algorithms

for Distributed Systems

by

Kouider Benmohammed-Mahieddine
~.

Submitted in accordance with the requirements for the degree of

Doctor of Philosophy

The University of Leeds

School of Computer Studies

October, 1991

The candidate confirms that the work submitted is his own and that appropriate credit

has been given where reference has been made to the work of others.

Abstract

Distributed systems are gradually being accepted as the dominant computing paradigm
of the future. However, due to the diversity and multiplicity of resources, and the need for
transparency to users, global resource management raises many questions. On the
performance level the potential benefits of the load balancing in resolving the occasional
congestion experienced by some nodes while others are idle or lightly loaded are commonly
accepted. It is also acknowledged that no single load balancing algorithm deals satisfactorily
with the changing system characteristics and dynamic workload environment.

In modelling distributed systems for load balancing, optimistic assumptions of system
characteristics are commonly made, with no evaluation of alternative system design options
such as communications protocols. When realistic assumptions are made on system
attributes such as communication bandwidth, load balancing overheads, and workload
model, doubts are cast on the capability of load balancing to improve the performance of
distributed systems significantly.

A taxonomy is developed for the components as well as the attributes aspects of load
balancing algorithms to provide a common terminology and a comprehensive view to load
balancing in distributed systems. For adaptive algorithms the taxonomy is extended to
identify the issues involved and the ways of adding adaptability along different dimensions.
A design methodology is also outlined. A review of related work is used to identify the most
promising load balancing strategies and the modelling assumptions made in previous load
balancing studies. Subsequently the research problems addressed in this thesis and the
design of new algorithms are detailed.

A simulated system developed to allow an experimentation with various load balancing
algorithms under different workload models and system attributes is described. Based on
the nature of the file system structure and the classes of nodes processing speed involved,
different models of loosely-coupled distributed systems can be defined. Four models are
developed: disk-based homogeneous nodes, diskless homogeneous nodes, diskless
heterogeneous nodes, and disk-based heterogeneous nodes. The nodes are connected through
a broadcast transfer device.

A set of representative load balancing algorithms covering a range of strategies are
evaluated and compared for the four models of distributed systems. The algorithms
developed include a new algorithm called Diffuse based on explicit adaptability for the
homogeneous systems. In the case of heterogeneous systems, novel modifications are made
to a number of algorithms to take into account the heterogeneity of nodes speed. The
evaluation on homogeneous systems is two-fold: an assessment of the effect of system
attributes on the performance of the distributed system subject to these algorithms, and a
~omparison of the relative merits of the algorithms using different performance metrics, and
III particular a classification of the performance of the Diffuse algorithm with regard to
others in the literature. For the heterogeneous systems the performance of the adapted
algorithms is compared to that of the standard versions and to the no load balancing case.

As a result of this evaluation, for a set of combinations of performance objectives,
distributed system attributes, and workload environment, we identify the most . appropriate
load balancing algorithm and optimal values for adjustable parameters of the algorithm.

ii

Acknowledgements

I wish to express my deepest gratitude to Professor Peter Dew, Head of School, for his

sound advice and constant encouragement. His patience will always be remembered.

Many colleagues in the School of Computer Studies helped me in this project. I would

like to thank especially David Mallon, for proofreading many sections of this report,

Mourad Kara, for his comments on the models investigated, and Neil Bowers, for his

practical help on the UNIX environment.

I acknowledge the financial support of the National Institute of Electricity and

Electronics (INELEC), Boumerdes, Algeria.

Finally, I dedicate this thesis to my wife Lalia, my daughter Souhila, and my sons Adel

and Tarik. They were a constant reminder of the joy of living during the darkest

moments of the PhD journey.

iii

Table of Contents

Abstract ... i

Acknowledgements ii

Table of Contents iii

Chapter 1: Introduction .. 1

1.1 Motivation .. 1

1.2 The Problem 3

1.3 Thesis Organisation 5

Chapter 2: Survey of Load Balancing Algorithms in Distributed Systems

2.1 Introduction

2.2 Load Balancing in Distributed Systems

2.2.1 Modelling of Distributed Systems

2.2.2 Load Balancing Strategies

2.3 Taxonomy of Load Balancing Algorithms

2.3.1 Components of a Load Balancing Algorithm

2.3.2 Attributes of a Load Balancing Algorithm

2.4 Adaptive Load Balancing

2.4.1 Adaptability Issues

2.4.2 Tolerance of a Scheduling Algorithm :

2.4.3 Adaptability Dimensions

2.4.4 Implementation Considerations•..

6

6

7

8

10

12

14

21

25

28

29

31

35

iv

2.4.5 Design Methodology for Adaptive Scheduling Algorithms 36

2.5 Description of a Selection of Algorithms 38

2.5.1 Representative Load Balancing Algorithms 39

2.5.2 Other Load Balancing Algorithms .. 42

2.6 Load Balancing Studies and Implementations 45

2.6.1 Load Balancing Comparative Studies 45

2.6.2 Load Balancers Implementation 49

2.7 Summary .. 51

Chapter 3: Performance Study of Load Balancing Algorithms 52

3.1 Introduction .. 52

3.2 System Modelling Issues ... 52

3.3 Design of Load Balancing Algorithms 57

3.4 Summary 60

Chapter 4: A System to Measure the Performance of Load Balancing Al-

gorithms 62

4.1 Introduction 62

4.2 Experimental System Design 63

4.2.1 Experimental Models and Factors 64

4.2.2 Performance Studies 66

4.3 Distributed System Model 70

4.3.1 Overview of the Model 70

4.3.2 Host Modelling ... 75

4.3.3 Communication Network Model.. 76

4.3.4 Workload Model ... 77

v

4.3.5 Load and Perfonnance Metrics 79

4.4 Simulated System Implementation 82

4.4.1 Simulation Environment 86

4.4.2 Autonomous Hosts 86

4.4.3 Communication Network Attributes ... 87

4.4.4 Global Scheduler 90

4.4.5 Models Generation and Perfonnance Monitoring 92

4.5 Simulated System Calibration and Validation 95

4.6 Summary 96

Chapter 5: Simulation Results 98

5.1 Overview... 98

5.2 Load Balancing in Systems with Diskless Homogeneous Nodes 101

5.2.1 Algorithms Perfonnance on the Baseline System 102

5.2.2 Effect of Communication Bandwidth and Protocols 104

5.2.3 Impact of Load Balancing Messages Cost .. 111

5.2.4 Effect of File Server Speed ... 113

5.2.5 Perfonnance under Heterogeneous Workload 114

5.2.6 Conclusion .. 118

5.3 Load Balancing in Systems with Disk-based Homogeneous Nodes 120

5.3.1 Algorithms Perfonnance on the Baseline System 120

5.3.2 Effect of Communication Bandwidth and Protocols :...... 121

5.3.3 Impact of Load Balancing Messages Cost .. 127

5.3.4 Perfonnance under Heterogeneous Workload 129

5.3.5 Conclusion 130

vi

5.4 Load Balancing in Systems with Heterogeneous Nodes 133

5.4.1 Evaluation of Algorithms under Scaled Arrival Rates 134

5.4.1.1 Diskless Model .. 134

5.4.1.2 Disk-based Model .. 137

5.4.2 Evaluation of Algorithms under Identical Arrival Rates 139

5.4.2.1 Diskless Model .. 139

5.4.2.2 Disk-based Model .. 141

5.4.3 Conclusion .. 141

5.5 Further Discussion on the Results ... 143

5.5.1 Scalability ... 143

5.5.2 Confidence Levels for the Results .. 145

Chapter 6: Summary and Future Work .. 153

6.1 Survey of Load Balancing Algorithms 153

6.2 Performance of Load Balancing Algorithms ... 154

6.2.1 Algorithms Performance within Simulated Systems 154

6.2.2 Effect of System Attributes and Workload Models 156

6.2.3 Wider Implications ... 158

6.3 Future Work ... 159

References ... 161

Appendix: Detailed Simulation Results .. 175

CHAPTER 1

Introduction

1.1. Motivation

With the advent of distributed systems, it is becoming possible to get the

maximum out of a set of computing nodes through a dynamic workload redistribution

to avoid the situation where some hosts are idle while others have multiple jobs queued

up [Livny84]. The drive behind this load balancing is two-fold: efficiency and

extensibility. The current advances in computer and communication technology make a

multi-computer approach cheaper than a mainframe solution, of the same performance,

provided all the computing resources are used efficiently. The extensibility aspect of a

distributed system should provide for the addition of new processors as the user needs

arise. A well designed load balancing scheme aims at accommodating both of these

aspects. The goal of the design of such systems is to redistribute the global service

demands generated at different workstations over the dynamically available computing

resources.

The potential benefits of dynamic load redistribution to resolve the occasional

congestion experienced by some nodes to improve the overall system performance, are

commonly accepted [Zhou87] for distributed computer systems. However, no single

load balancing algorithm deals satisfactorily with the various and rapidly changing

system conditions, and the lack of up-to-date system state information. A load

balancing algorithm consists of two elements: information and control. The information

element exchanges and maintains information about the state of the distributed system.

Different approaches as to what information, how much information is to be

maintained, how often it is to be updated, and how large is the balancing region
1

2

involved, have been proposed. The load index and its measuring mechanism have also

been the subject of many investigations. The control element uses this information to

decide when it is advantageous to redistribute the load, who makes this decision, which

process to transfer or migrate, and where to transfer a process to reduce congestion and

improve performance.

A number of algorithms have been reported in the literature. They differ in the

performance objectives sought, the nature of their information and control elements, the

attributes of the system model used as a test bed, and the simplifying assumptions made

to aid the analysis or the implementation of the simulation model. Under these models

and assumptions substantial job mean response time improvements at acceptable costs

are reported [Zhou88].

On the modelling for performance study, the distributed system is commonly

assumed to include homogeneous computing nodes and to be based on either a shared

file server or each node having its own local file system. An optimistic view is often

taken on some essential system characteristics such as job transfer delays as pointed out

in [Mirchandan89], load balancing overheads, and workload environment. No

evaluation of system design alternatives (e.g. communication protocols) has been

reported.

To gain accurate insights into the performance of load balancing in distributed

systems, more realistic system characteristics need to be taken into account in terms of

both load balancing overheads and system model attributes. We set out to examine the

validity of the assumptions made on distributed system attributes in previous load

balancing studies, and to assess the relative performance order of some common load

balancing algorithms when more realistic models are assumed.

3

1.2. The Problem

In previous load balancing studies, a common approach is to use a simple model of

the distributed system with assumptions such as large communication bandwidth,

negligible load balancing overheads, homogeneous workload, and to search for

complex load balancing algorithms whose viability is questionable [Eager86] and

which might provide only little or no gain when evaluated on realistic systems. The

general approach taken in this project is to evaluate the effect of distributed system

attributes and workload model on the performance of representative load balancing

strategies.

The model extensions are added to represent features that were assumed negligible

or require a greater level of details. Other extensions not covered in common system

models are added to model actual systems more accurately and reflect the different

distributed system architectures. The variations involve the evaluation of the effects on

load balancing performance of different system characteristics design options, such as

communication protocols.

To determine the interdependence of system attributes and load balancing

algorithm performance, we examine distributed systems along three paths 1) modelling

of distributed system attributes including: file system structure, nodes configuration,

communication network, 2) workload nature including: homogeneous users with

homogeneous jobs, heterogeneous users with homogeneous jobs, and homogeneous

users with heterogeneous jobs, and 3) the design and evaluation of load balancing

algorithms that take into account realistic system attributes and non-negligible load

balancing overheads introduced by load balancing activities.

The actual system being modelled consists of a network of workstations

interconnected by local area networks with individual, independent, sequential jobs

4

arriving at each autonomous processor. For a realistic distributed system model, the

analytical approach is not suitable due to model complexity, whilst prototyping requires

costly equipment/environment. A more appropriate approach for the study of load

balancing performance on distributed computer systems is simulation. We carry out

various performance studies of a set of representative load balancing algorithms on four

simulated models of loosely-coupled distributed systems: diskless homogeneous nodes,

disk-based homogeneous nodes, diskless heterogeneous nodes, and disk-based

heterogeneous nodes. The objectives of this performance study are:

• To measure the effect of system attributes on the performance of load balancing

and in particular to classify the performance of a novel algorithm called Diffuse

with regard to others in the literature. These attributes include the file system

structure and the communication bandwidth.

• To evaluate the effect of the workload model on the performance of load

balancing algorithms.

• To measure the effect of the heterogeneity of nodes speed on the performance of

standard load balancing algorithms and to assess the performance improvements

made when adapted versions of these algorithms are used.

As a result of this evaluation, for a set of combinations of performance objectives,

distributed system attributes, and workload environment, we identify the most

appropriate load balancing algorithm and the optimal values for the adjustable

parameters of the algorithm.

5

1.3. Thesis Organisation

In Chapter 2, a literature review on the issue of load balancing in distributed

systems is presented. This is addressed at two levels: the modelling of distributed

systems and the design of load balancing strategies for such environments. The results

of the review are organised under a taxonomic structure for the algorithms components

and attributes. A closer look at the adaptability attribute has been taken. A framework

and design methodology for adaptive scheduling are developed for the case of a rapidly

changing environment.

In Chapter 3, as the result of the review of previous performance studies, the

research problems addressed in this thesis are defined. This includes the design of the

Diffuse algorithm and the algorithm versions adapted to a heterogeneous system.

Chapter 4 describes the experimental system. First the purpose of the system

design is defined and the experimental models and factors identified. Four models are

considered: systems with homogeneous diskless nodes, systems with homogeneous

disk-based nodes, systems with heterogeneous diskless nodes, and systems with

heterogeneous disk-based nodes. Then the performance studies undertaken are outlined.

The distributed systems on which this evaluation is targeted are modelled and a

simulated implementation is described. This is followed by an overview of the

simulation package and the simulation model calibration and validation.

In Chapter 5, the results of various performance studies undertaken on the four

models to evaluate the effect of different system attributes and workload models are

presented and compared to related work.

In Chapter 6, we summarise the results obtained and offer our conclusions. We

then discuss future work related to this research.

CHAPTER 2

Survey of Load Balancing Algorithms in Distributed Systems

2.1. Introduction

In this chapter we review the literature that has been published in the area of

interest to this thesis. This can be divided into five main areas.

(i) A motivation for dynamic load balancing in distributed systems is given. Then

the previous work on the modelling of distributed systems and the design of load

balancing strategies for such systems are surveyed.

(ii) The load balancing strategies reported in the literature are organised under a

taxonomic structure to show how different researchers addressed the same load

balancing issues. The algorithm attributes are also considered.

(iii) Special attention is given to a distributed system characterised by a rapidly

changing environment. For such an environment adaptive scheduling is the way

forward to maintain a consistent level of performance. The fundamentals of adaptive

scheduling are described and a methodology for the design of adaptive load balancing

algorithms is outlined.

(iv) A selection of load balancing algorithms is detailed. The criteria used is to

select load balancing policies which include different algorithms components/attributes

identified in the taxonomy and with most promising performance gain. Various

algorithms included in the previous comparative studies are also described.

(v) Comparative studies of load balancing anq load balancers implementation are

reviewed. The results of this survey are summarised in Section 2.7.

6

7

2.2. Load Balancing in Distributed Systems

In a distributed system characterised by a resource multiplicity combined with a

stochastic nature of the workload [Kleinrock85, Ezzat86, Cheriton88], there is a high

probability for the occurrence of the 'wait while idle' state whereby some hosts in the

pool are idle while other hosts have multiple jobs queued up [Livny84, Theimer85]. In

his profiling ofa network of workstations, Mutka has shown that processors are idle

70% of the time [Mutka87] while Livny showed that this probability depends on the

system load and the size of the pool, and that load balancing can improve performance

even in the case of homogeneous process arrival rates [Livny84]. This environment is

characterised by changing and uneven loads on the hosts and a lack of up-to-date

system state information. For an effective use of the resource multiplicity inherent in

such systems, and to satisfy the diverse and sometimes conflicting users' performance

expectations, the design of efficient distributed scheduling algorithms and mechanisms

for processor allocation has been a research challenge for over a decade

[Wang85, Casavant88, Goscinski90]. These algorithms deal with the global scheduling

of system workload through local and remote job placement, while allocation of local

resources is left to the local scheduling component.

Although the common objective of load balancing is to improve the performance

of the computer system, the nature of the performance objective differs with the

computing environment involved:

• For a general purpose distributed computer system based on a local area network,

it is to reduce the average system response time with a minimum degradation of

the performance for individual users. An, alternative objective is greedy

scheduling where each job is allocated to the node where it has the best response

time regardless of the effect on other jobs [Bryant81, S tankovic84].

8

• For a real time distributed system, it is to provide a guaranteed response time.

• For a parallel computer system, it is to reduce the total execution time of a

program composed of several modules.

In this review load balancing is addressed at two levels. On the distributed system

level different architectural models and perspectives are surveyed. The communication

model assumed is based on the broadcast device. On the algorithm level, first previous

work on dynamic algorithms is reviewed then the approaches to the adaptability

problem are considered.

2.2.1. Distributed Systems Modelling

The common approach adopted in computer science is modelling then building

[Power89]. Three architectural models of distributed systems have been identified

[Tanenbaum85, Coulouris88]: workstation/server model [Ezzat86], processor pool

model [Needham82, Mullender86], and integrated model [Walker83]. In a

workstation/server model single-user computers or workstations are provided. Most

user needs are handled by his workstation, however expensive services such as file

servers, high quality printers are shared. In the processor pool model application

programs are executed within a set of computers managed by a processor service. The

user needs only a terminal connected to the network to use the system. A hybrid model

which combines features of both previous models has emerged to overcome the

disadvantages in each. In the integrated model each computer can perform the role of

server and application processor. The software at each computer is similar to that of a

centralised multi-user system.

The communication network can be designed along two models

[Livny84, Theimer88]: broadcast with the multicast as a variant, and point-to-point or

store-and-forward. The store-and-forward model was first used in the wide area type of

9

networks and recently in mesh-connected parallel systems such as hypercubes and a

pool of transputers. It is also popular as a general purpose model in the simulation of a

pool of processors (e.g. Manhattan networks), and for analytical studies. The broadcast

model is used for multicomputer systems and networks of workstations.

In this study we concentrate on loosely-coupled general purpose distributed

systems. These systems consist of a collection of homogeneous or heterogeneous,

autonomous processors connected by a local area network and operating in a

cooperative fashion. This network of processors can be shared in two ways; either to

improve system performance by relieving overloaded nodes through remote execution

of part of their load on less loaded nodes, or by using a set of nodes for cooperative

work on a single distributed computation. The nodes can be assumed to be public ally

or privately owned. In the case of a privately owned node, a priority for local processes

is required if the local user is not to be penalised. Each processor in the distributed

system is managed by a replicated copy of the system kernel with associated

communication protocols and load distributing software (Le. a distributed scheduler).

Distributed systems have been studied from several perspectives; based on the

intended objective, different modelling approaches are appropriate. Mathematical

modelling techniques have been used for formal specifications and verification

[Hoare85, Broy87], and analysis based on queuing theory [Krueger87, Mitrani87].

When the objective is standardisation, a documentation such as ANSA standards

[ANSA87] is used. In an approach similar to the PMS notation [Siewiorek82]

(computer architecture context), a model based on the concept of BP processes

[Jesty88] has been developed. It is a graphical representation used for an abstraction of

the services offered by a distributed system to give a precise view of these services to

the user and allow a comparison of different systems using a common terminology.

Textbooks and system survey papers provide an informal description of distributed

10

systems [Coulouris88, Tanenbaum85]. The approach most favoured for performance

evaluation purposes is simulation. Using simulation techniques the essential system

features are abstracted and a model built to evaluate the system performance and

behaviour, and test different solutions [Zhou88, Johnson88, Stankovic84a].

2.2.2. Load Balancing Strategies

There are so many aspects in the study of processor allocation schemes that it is of

paramount importance to limit the class of algorithms and issues to be addressed, and

make a precise description of the system to which they apply and the environment in

which they will be tested. In this review, we concentrate on the policy aspects that deal

with the collection of load information, process transfer, negotiation for an adaptive

allocation of processes at the global level, based on the remote execution mechanisms

described in the literature [Smith88].

Three approaches to workload scheduling on a computer system composed of

multiple processors have been investigated: co-scheduling, clustering, and load

balancing [Tanenbaum85]. In the clustering approach several communicating

processes are assembled on the same node to reduce the communication overhead

[Stankovic84]. In co-scheduling the opposite approach is taken [Ousterhout82]. The

concept of distributed group is used. The members of the same group are spread over

the network to exploit the concurrency among the nodes. These two approaches apply

to task structure allocation. In the case of independent jobs scheduling, the favoured

approach is to dynamically transfer jobs from heavily loaded hosts to lightly loaded

hosts in order to improve the overall performance. The resulting form of computing is

called load distributing [Eager86, Wang85, AlonsQ,86]. It refers to both load sharing

Whose goal is to keep all computing nodes busy, and load balancing which attempts to

have an equal load on all the nodes. The design of a load redistributing algorithm

11

depends on the performance objectives sought and the appropriate redistribution

approach. The ultimate goal of these strategies is to minimise the system average and

standard deviation of the response time with minimum adverse effect on individual

users. The contributions to the design of load balancing algorithms can be organised

into three categories:

1) Static Algorithms

These algorithms aim at finding an optimal assignment of tasks by clustering or

co-scheduling, and is achieved by balancing the system loads periodically. They assume

that the process behaviour is known and use graph theory models to attempt a fair

distribution of the load [Efe82, L084]. The allocation decisions of the system

components are based on pre-determined parameters. Early work on load balancing has

been carried out along this approach but due to inherent drawbacks such as 1) the static

nature of the algorithm does not allow these strategies to respond to short-term

fluctuations in workload, 2) they require too much information such as arrival time and

execution cost of each job or module to be implementable, and 3) they involve intensive

computation to obtain the optimal schedule [Zhou87a]; the research effort has recently

concentrated on the two other heuristic approaches which are implementable and

achieve promising results. Quasi-static algorithms are a variant of this category. These

algorithms ignore the current state of the system, but they tune their decision variables

by adapting to slowly changing system characteristics such as the arrival rates of

jobs[Green88] .

2) Dynamic Algorithms

Here scheduling is seen as a job routing problem. These algorithms balance the

loads upon the arrival of each job. This is achieved by a continuous assessment of the

system load which is dynamic and unpredictable. The allocation of the job is done in

real time following a fixed policy based on the recent system state information and

12

currently perceived system load imbalance [Zhou88] or base their decisions on

statistical averages. Extensive research work has been done in this category [Zhou88].

3) Adaptive Algorithms

Scheduling in this approach can be interpreted as an adaptive control problem.

These algorithms, like dynamic algorithms, balance loads upon the arrival of each job,

but also balance loads whenever anomalies appear in the workload of the system or

individual nodes. They exhibit more flexibility by adjusting their policy to match the

dynamic system characteristics. In the literature some algorithms with different degrees

and approaches of adaptability have been reported [Barak85, Shamir87, Krueger88]. To

support adaptability, most of these algorithms use preemptive scheduling.

Although the term dynamic scheduling and adaptive scheduling have often been

used interchangeably in the literature by grouping any policy that is not static under the

heading of dynamic, there is a clear distinction between the two. A dynamic algorithm

has a fixed policy in dealing with its dynamic environmental inputs, whereas an

adaptive algorithm uses the environmental stimuli to modify the scheduling policy itself

[Casavant88].

2.3. Taxonomy of Load Balancing Algorithms

Given the many dimensions involved in global scheduling of a distributed system,

Casavant et al. [Casavant88] have addressed the needs for a taxonomy of the

distributed scheduling algorithms reported. In the taxonomy, distributed scbeduling is

addressed as a resource management problem. Using this taxonomy the algorithms of

interest in this study can be classified as global, dynamic, distributed, cooperative, sub­

optimal, heuristic, adaptive, and have load balancing as a global objective. They may

involve one-time assignment (non-preemptive) or dynamic reassignment (preemptive)

of processes. They may also include some probabilistic components

13

[Bryant81, Hsu86, Chow86]. These algorithms are an example of distributed

computation and involve the concepts of optimisation, adaptability and distributed

decision-making. The load balancing approach was not fully investigated.

Three subclasses of these algorithms can be identified based on the communication

model they assume: broadcast with various random and polling techniques which

reduce the cost of indiscriminate broadcasting, point-to-point with various nearest

neighbours techniques, and a third category of algorithms which are communication

model independent (Le. topology independent [Ni85]).

In this review we focus on the load balancing approach to resource management.

A study of the load balancing literature reveals that a large number of design

dimensions are involved in a load balancing algorithm and that there is no agreed upon

terminology. In a previous work, Wang and Morris [Wang85] used mathematical

techniques to categorise ten representative algorithms. The algorithms are categorised

as source-initiative or server-initiative. A range of several information dependency

levels involved are used to further classify the algorithms. Using a Q-factor (quality of

load sharing) the performance of these algorithms is ranked. For negligible

communication costs they show that at the same information level server-initiative

algorithms outperform source-initiative algorithms.

In this work we take a broader view and cover several aspects of a load balancing

scheme. A taxonomy can be made based on the approach taken to implement each

component (Le. load balancing activities) of the algorithm, or it can be based on the

attributes of the algorithm which can apply to more than one component of the

algorithm, and represent some general properties of the load balancing algorithm such

as decentralisation, transparency, autonomy, scalability, and adaptability.

14

2.3.1. Components of a Load Balancing Algorithm

The performance of a load balancing system depends on four factors: the load

index, the load balancing algorithm, the workload environment, and the underlying

distributed system attributes. In this review we concentrate on the first two factors.

A load balancing algorithm consists of a number of components which interact in

various ways to redistribute the users' submitted jobs among the nodes of a distributed

system. The objective is to improve the system performance by sharing the whole

computing power available. Three main components can be identified: information

gathering policy, transfer control policy, and location/negotiation control policy. The

policies within the components are inter-related, fixing one would limit the options

within the others. It is to be noted that Johnson [Johnson88] surveyed similar

components but with more restricted dimensions for each.

1) Local Load Measure

At each node a mechanism must be provided to give a good estimation of the

current local load. There are two important aspects to be considered here: a load metric

which has a close correlation with the performance objective pursued, and the

measuring mechanism that must give a quick and efficient evaluation of the local load

state.

The local load measure alternatives described in the literature include: "load

average" metric provided by the UNIX BSD 4.2 uptime(l) command, a specialised idle

process for load estimation based on CPU utilisation [Ni85, Stumm88], virtual load

value which is the sum of actual load and the number of processes currently in transit

averaged over a period of time longer than the time necessary to migrate an average

process [Krueger84], evaluation of remaining service time using probability functions

[Bryant8l], using a linear combination of all main resource queues [Ferrari85, Zhou87]

15

(e.g. CPU, paging/swapping, and file I/O queues averaged over 4 seconds period),

number of ready processes on a processor during a time interval [Barak85]. Zhou has

shown that the CPU queue length is a good load index and has a close correlation to the

mean response time [Zhou86,Zhou87a]. This is supported by the work of Kunz

[Kunz91]. Although it is the favoured load metric, the CPU queue length is not an

adequate load indicator when the processing node possesses a multiplicity of resources

which affect the performance. This requires a combined queues length index. When the

processors of the system have different processing speeds, a scaled CPU queue length is

more appropriate because for the same arrival rate, the CPU utilisation level depends on

the processor speed.

2) Information Policy

This component is responsible for the exchange and maintenance of the

information about other individual or groups of nodes such as load level, nature of

workload or the average load over the entire system. It is also responsible for the

frequency of the state information update, the ways to exchange this information among

the various nodes, the numbers of nodes involved in the exchange, and the amount of

information made available to the decision makers. It must maintain consistent

information about the global state at the distributed points of control [Casavant87].

Load balancing strategies can be categorised based on the amount of global

information used, and the global information update technique. Three levels of global

information can be used: local indicators only with no global state information for

random policies, information about subset of nodes or partial system state information

for polling policies, and information about all the nodes or system-wide state

information for broadcast policies.

16

Two broad categories of global infonnation update technique can be assumed:

periodic update of tables of infonnation using broadcast mechanism or on demand

update of infonnation based on bidding or polling techniques. An example of the latter

technique is the interrogation of neighbours or random set of nodes only when the node

becomes idle.

The type of the infonnation moved between the nodes depends on the nature of the

exchange. For a system state update the load index is used (e.g. CPU queue length,

nature of workload, node characteristics) while for job transfer it depends on the file

system structure. For a diskless node system all that is exchanged is the job name, path,

input and output files names. For a disk-based node system the complete job file as well

as the input files needed are transferred. At the end of the remote execution the results

files are returned to the originating node.

A large and diverse number of infonnation policies are reported in the literature.

Each policy is usually reported as having a better perfonnance than the no load

balancing case or when compared under some restrictive system assumptions (e.g.

negligible load balancing overheads) to other policies. It is not possible to cover them

all in this review, however a sample of the most common approaches is described

below.

i) Broadcast Approach

A systematic load exchange is done whenever the load of a node changes. This

assumes a broadcast communication medium is available [Livny84].

ii) Load Distribution Vector

A load vector of a specific size is periodically updated and sent to randomly

chosen nodes where a mapping of vectors is done [Barak85] . This results in a

propagation of jobs similar to a "gas diffusion" process. An alternative to the

17

periodic broadcast is a restricted update where the information is exchanged with

neighbours only when the load crosses the low or high water-mark [Ni85].

iii) Global System Load

When a node does not receive a reply from a node in a complementary state, it

assumes that all nodes are overloaded, updates its perception of global load and

broadcasts it to all nodes [Krueger84]. This is more adaptive to system extreme

load conditions. An alternative global load view can be represented by a

collection of distances of each processor from lightly loaded processors [Lin87].

This is applicable to point-to-point network topologies.

iv) Polling Approach

The information is requested from neighbours or randomly polled nodes only

when the node becomes overloaded or idle [Eager86, Theimer88].

3) Transfer Policy

This component decides when it is beneficial to transfer a process from the local

workload and selects which process to transfer/migrate. The overloaded node chooses

heuristically an advantageous process (for example; long lived process, availability of

specific resources at specific nodes) to transfer, based on the local information, the

remote information maintained locally, or acquired during the negotiation with other

nodes. The transfer policy is also responsible for requesting the transfer of work from

other nodes when the local node is about to become idle. The transfer policy is the

minimum component needed to implement a load balancing strategy (e.g. Random

algorithm [Eager86]). Several aspects of the transfer policy can be explored:

a) Node initiating the load balancing process?

There are three ways to specify the condition of the node that initiates the load

redistribution process: sender node (overloaded) attempting to push jobs, receiver node

18

(underloaded) attempting to pull jobs, or a dynamic switching between the two pushing

or pulling jobs whenever appropriate. The latter case is called symmetrically-initiated

load balancing.

b) When is it advantageous to transfer or to receive processes?

i) Load balancing triggering events:

The event that triggers the load redistribution can be a newly arriving job

(exogenous event) or a process completion/resumption or a periodic invocation

based on system clock to correct imbalances through process migration

[Ezzat86, Johnson88] (endogenous event).

ii) Load imbalance indication:

Several types of indicators of the load imbalance have been used. They correspond

to a threshold level or an imbalance gap crossing. A one level static local load

threshold [Eager86] or two levels (low and high water-mark values)

[Alons088, Ni85] are the most commonly assumed. A load difference bias relative

to peer nodes [S tankovic 84a] or a dynamic global average load value

[Krueger84] are alternative indicators. Barak [Barak85] used an implicit load

difference through a periodic examination of estimated response time on another

node. An alternative global load view is the inter-node load distance within

gradient surface [Lin87] where the imbalance is represented by a set of distances

between the nodes.

19

c) Type of transfer?

A job can be allocated to a remote node before it starts execution (non-preemptive

transfer or initial placement). When the job is transferred to a remote node after it has

started execution, it is said to have been migrated (preemptive transfer).

d) Which process to transfer?

Different approaches to the selection of the process to transfer have been reported.

For non-preemptive transfers the newly arriving job is chosen. When an executing job

can be migrated, a long-lived process is worth transferring. Krueger [Krueger84] has

devised a scheme where many factors are taken into account in the selection of the

process to migrate: least often transferred process, a process that has executed for a

minimum amount of time, or a process with a small migration size (e.g. < 100 Kbytes).

In a workload with several classes of jobs the restriction to transfer only from the class

of long jobs can be made.

e) Number of successive transfers of a process?

When a job is not guaranteed execution after a transfer, different categories of

queues are used to maintain process information: locally generated, remote transfer and

number of moves, migrated and number of moves.

4) Negotiation Policy

Once a node has decided that it is a suitable transfer client (overloaded i.e. that is

wishing to get rid of some of its load) or it is a potential transfer server (lightly loaded

or idle i.e. that is looking for work), it engages in a pairing process. This process

consists of a search for a transfer partner, a node in a complementary state. There are

two aspects to the negotiation policy: among which set of nodes is the partner to be

looked for (balancing region), how to search the load balancing region and which rule

to use in selecting that partner (partner selection rule). When a system load vector is

used this policy is called location policy.

a) Balancing region of a node?

20

Among the alternative balancing region sizes are the neighbours for a point-to­

point model, the collection of idle nodes, a cluster of nodes for a multi-domain network,

and the entire system for a single domain network.

b) Partner selection rule?

The load imbalance indicator is used by the partner selection rule to pick-up the

the complementary partner. The rule used can vary from the simple random probability

distribution to an inspection of a load vector. The load vector inspection involves the

selection of the node with the minimum value among a set of values or using a rule

based on the blackboard concept [Kara89], where each node periodically checks the

load vector and if it finds itself having the heaviest load it transfers a job to the node

with the lightest load, and updates the vector. This process is repeated until the system

is balanced (i.e. the load difference falls within the interval 8).

For sender-initiated algorithms some of the rules used are: strictly random

selection [Eager86], polling based on fixed load threshold level or load difference,

shortest queue length, or finding an idle node. An alternative to the random polling is a

cyclic probing of neighbours [Bryant81, Stumm88]. For the bidding algorithm

[Stankovic84], the node with the winning bid (i.e. the shortest load) is selected.

Below are specified the rules used for two receiver-initiated algorithms. Zhou

[Zhou8?]. describes an algorithm where the underloaded node registers reservations for

work at the others. These reservations are stored in a LIFO stack. The rule used here is

to send the newly arrived job to the node which made the most recent reservation (i.e.

on top of the stack). Ni et al. propose an algorithm where the rule used is to select the

node with the highest draft-age which represents a node that needs most help [Ni85].

21

2.3.2. Attributes of a Load Balancing Algorithm

In addition to the basic components that constitutes a load balancing algorithm, the

latter can be synthesised through the identification of some high level attributes that

characterise these components. The attributes include the load redistribution objective,

the decision-making structure, the transparency, the autonomy, the scalability, and the

adaptability. Each of these attributes is described below.

1) Load Redistribution Objective

Different objectives can be pursued when performing a load redistribution within a

distributed system. The term load sharing is used when the objective is to keep all the

nodes busy; load balancing is used when the objective is not only to keep the nodes

busy but also to attempt an equalisation of the load over all the nodes. When the nodes

are privately owned and their sharing is allowed only with the approval of the owner we

use the term restricted sharing. The computing power is sharable only during a specific

period of time based on the discretion of the node owners [Alons088].

A finer objective is the type of load imbalance that the algorithm attempts to

resolve. For a steady state imbalance the jobs are transferred between the nodes so that

the arrival rates approach the mean arrival rate. Transient imbalance is resolved by

assigning each new job to the node with the least number of jobs.

2) Decision-making Structure

The load balancing algorithms can be distinguished based on the decision-making

Structure used to implement the different components. This structure can be centralised,

hierarchical, decentralised, or a hybrid form. The centrally based algorithms such as

Central [Zhou87] suffer from the reliability problem due to a potential central point of

failure and the potential bottleneck of the central node. Some of these problems have

been addressed by the hierarchical structure proposed by Van Tilborg [Tilborg84]. But

22

to deal with the autonomous nature of the nodes in a distributed system, fully

decentralised properties are needed [Stankovic82]. Most of the algorithms considered

in this review fall under the decentralised category.

3) Transparency

The implementation of the load balancing scheme can be made transparent to

users. The can be achieved by assuming non-selective transfer of jobs or by providing a

system interface that identify automatically the jobs eligible for transfer. In this case,

submission of the users jobs need not be accompanied with specific information about

the nature of the jobs to be used in the load balancing algorithm. The users interaction

with the system is not affected by the presence of the load balancing scheme.

4) Autonomy

A load balancing algorithm that has an autonomy attribute does not infringe the

control of the job allocation at individual nodes. The Random and Shortest algorithms

described in Section 2.5.1 override the autonomy property of the computing nodes

because once a node is selected either randomly or based on the shortest queue rule it

cannot refuse a transferred job. This can result in severe overloading.

5) Scalability

As the number of nodes in the distributed system grows and the range of workload

fluctuations increases, scalability problems can arise. In order to cope with the

communication and scheduling overhead resulting from the increased load distribution

effort, a number of principles are to be observed during the design of these algorithms

to make them more scalable [Barak87]:

Symmetry:

All nodes in the system should be allowed to play an equal role.

Customer-server protocols:

Each customer-server interaction should involve at most two nodes (one-to-one).

Partiality:

23

Every decision should be based on infonnation from a bounded subset of

the other nodes.

Use o/randomness:

The set of nodes with which a node interacts is chosen at random.

6) Adaptability

Dynamic factors such as system load, network traffic, and the availability of

computing nodes which characterise a distributed system, have a direct effect on the

system perfonnance. To maintain the global scheduling scheme tuned to the variations

in the environment, even when the system conditions change drastically, the scheme

must include an adaptability feature. It is a mechanism built into the algorithm that

uses the environmental parameters for a dynamic selection of the components of the

global scheduling strategy:

-degree of sharing to aim for

-type of process transfer to invoke

-load conditions of the node initiating the load distribution process [Hong88]

-dynamic adjustment of algorithm scheduling parameters

(Le. relaxation of parameters for the infonnation, transfer, or negotiation component).

It also provides a decision-making procedure to control these modifications, for

example to increase the load distribution effort in the case of a wide load imbalance or

to reduce it when the load of all nodes is so heavy or so light that no improvement can

be achieved by such effort [Ramamritha87]. The reported approaches to adaptability

can be classified into two categories.

In the first category the adaptability is included within the basic structure of the

algorithm (infonnation, transfer, and negotiation). This aims at taking into account the

various system parameters and the history of the system's behaviour, in perfonning

process scheduling [Stankovic84] or to allow migration (preemptive transfer) of process
.'

whenever anomalies in the load distribution occur [Barak85]. The load balancing

24

process is activated only when necessary [Stankovic84a, Shamir87] (i.e. when the

system load is below a particular minimum threshold) by turning off all parts of the

load balancing algorithm except for the monitoring of the load. The algorithm

described in [Krueger84] is based on the average load of the entire system, with each

node aiming at keeping its load within an acceptable range from the system average.

When the communication device becomes overloaded, the load balancing negotiations

are slowed down. Other algorithms use dynamic mechanisms to estimate their most

sensitive parameters [Ezzat86, Pulidas88]. We describe this type of adaptability as

being inherent to the basic load balancing algorithm.

The second approach to making a scheduling algorithm adaptive to the system

dynamic characteristics and workload conditions, is to dynamically assess the system

environment and adjust the global scheduling strategy accordingly. Ramamritham et al.

[Ramamritha87] propose a meta-level controller for a distributed real-time system,

which is a more predictable environment. Based on the current system conditions, it

selects the algorithm(s) used for task scheduling on a node, the algorithm(s) for

cooperation among the nodes, and the values of the scheduling parameters used in the

chosen algorithm(s). The load distributing algorithm PollGen [Krueger87a] includes

the possibility of dynamically switching from a load sharing to a load balancing

objective, and having the load distribution process initiated either by the overloaded

node or the idle node. We describe this category of algorithms as having an explicit

adaptability mechanism.

An extended review of the adaptability attribute is given in the following section.

This includes an outline of the issues involved, the concept of tolerance of a scheduling

algorithm, and the adaptability dimensions.

2S

2.4. Adaptive Load Balancing

In this section, a computing environment which is rapidly changing is described

and the motivation for adaptive load balancing given. The tuning of scheduling in a

distributed system can be implemented manually or automatically.

• Manual: It is performed by the system manager to adjust the system parameters to

long term fluctuations of the environment.

• Automatic: It is performed by an on-line scheduling scheme. Depending on the

magnitude of the fluctuations involved a dynamic or an adaptive strategy is

appropriate. To deal with short term fluctuations in a rapidly changing

environment, an algorithm that can dynamically switch its policy is required. The

resulting scheme can be identified as an adaptive distributed scheduler.

In computing environments where the system characteristics do not fluctuate too

much (e.g. homogeneous workload), and resource consumptions can be estimated (i.e.

transaction processing or real time systems), the dynamic approach using initial job

placement alone can provide significant improvement at a lower cost [Zhou87a], and

thus does not justify the design of more complex load balancing algorithms [Eager86].

The computing environment of interest in this section is characterised by rapidly

changing and unpredictable system state characteristics and workload (e.g.

workstation-based distributed system [Ezzat86, Mutka87]). In these environments the

load distribution is not homogeneous in nature and its magnitude can vary significantly

over time. This makes it impossible to devise one single load balancing policy that

performs well in all the circumstances. A new class of algorithms that adapt to changes

in the system environment and are robust across a wide range of conditions is

recognised as the most promising [Krueger87]. Among the changes that might occur

and for which the scheduling strategy must adapt are the number of nodes available, the

26

variations in jobs arrival rates (e.g. bursty jobs), the distribution of process size and

service demands, and the utilisation level of the communication network

[Ramamritha87] .

Each of these parameters affects the choice of the appropriate level of load sharing

to aim for, and the suitable scheduling strategy. The scheduling scheme for such an

environment must adjust automatically the tunable parameters specific to each

algorithm and/or switch to a more appropriate policy as the situation changes. These

types of schemes are truly adaptive as they react immediately to anomalies, allowing

the system to be always operating close to its optimal point. However, there is a

potential price to pay in performance degradation due to the scheduling overhead,

unless the adaptive strategy includes a mechanism by which ineffective load balancing

activities are minimised. The adaptive algorithm must take into account the changing

parameters to 1) provide for dynamic modifications to the components of the scheme,

and 2) contain an adequate decision-making procedure to control these modifications.

Apart from algorithmic adjustments, simple adjustments to the variable parameters

specific to each policy (e.g. dynamic threshold calculation [Hac87]) can improve the

performance significantly when the system load fluctuates [Zhou87a].

The essential static characteristics of the system for which adaptive scheduling

algorithms are to be developed, have been outlined in Section 2.2. Here we concentrate

on the rapidly changing aspects of the system the workload patterns and intensities as

well as the dynamic characteristics of the system itself (number of active nodes,

extreme node load, global system load nature and level, characterisation of scheduling

algorithm overhead and communication delays), how they affect the algorithm

performance, and the need for adaptability. These random and dynamic changes make

a fixed load balancing policy which improves performance at some time, whilst at other

times is inefficient but can even degrade the performance and cause system instability.

27

To address this problem both dynamic parameter adjustments or policy changes are

required.

The adaptive load balancing algorithms are potentially more complex than their

dynamic counterparts because to adapt the scheduling strategy to dynamic system

conditions involves more system conditions monitoring, and CPU overhead for the

dynamic adjustment of parameters and policies. It also involves more process transfer

cost for the preemptive migrations made necessary in some adaptability cases. These

activities put more strain on both the CPU through overhead computation costs, and the

communication medium through extra message traffic leading to extra CPU queue

delays for the transferred jobs. For a suboptimal performance a compromise between

potential improvement of load balancing actions and the performance degradation

incurred by the overhead costs must be reached. In the comparison of the merits of

different algorithms both the computation costs and the communication costs must be

evaluated and included in the performance assessment. The CPU overhead which

includes the handling of message traffic during negotiation between nodes, the

algorithm execution costs added to both sending and receiving nodes, and the excess

delay (Le. wait time) caused to other local processes must be calculated. The

communication costs (Le. packing, transmission and unpacking of data) are caused by

an increase in message traffic over the communication medium due to the information

exchange/negotiation messages, and the transfer rates increase.

In subsequent sections first the adaptability issues and approaches involved are

identified. Then a framework for the design of an adaptive scheduling algorithm is

described. This involves the tolerance concept [Krueger88], the adaptability

dimensions, and some implementation considerations. The contribution of this review

consists of a global view to the adaptability problem in load balancing algorithms and

an outline of a design methodology.

28

2.4.1. Adaptability Issues

In the reported research on load balancing algorithms, no systematic view to the

design of adaptive algorithms was taken with the exception of the work of Krueger

[Krueger88]. Most algorithms have not been designed with adaptability to a widely

changing environment as a specific goal. The approach usually taken is to include some

flexibility into one of the algorithm components through a dynamic evaluation of some

scheduling parameters. The resulting algorithms adapt only to limited type and

magnitude of system changes.

There are two types of adaptability which can be included within a load balancing

scheme: inherent, which is built within the basic components of the algorithm, and

explicit, which involves global parameters and policy switching. The adaptability can

be detailed further by identifying the type of actions taken. Among these actions are:

- dynamic process placement based on local information and probabilistic functions

- parameters dynamically estimated [Pulidas88] to reflect new system conditions

- parameters dynamically adjusted or ignored

- dynamic policy switching

Each of these type of actions corresponds to a level of adaptability and involves

different overhead costs and algorithm complexity. The choice of the appropriate level

depends on the magnitude and duration of the system and workload fluctuations.

a) Algorithms with inherent adaptability

Based on the choices made (i.e. algorithm components and attributes) in building

the load balancing algorithm, different levels of adaptability and steadiness of the

performance rate can be maintained.

b) Algorithms with explicit adaptability

The fundamental approach for this category of algorithms is to add adaptability

mechanisms to dynamic algorithms, based on the concepts of tolerance of algorithm,

29

adaptability dimensions, and adaptive scheduling strategy. The relevance of the

approach of adding explicit adaptability to load balancing algorithms was demonstrated

through the PollGen algorithm example [Krueger88], which includes some adaptability

mechanisms. As shown in Section 2.3, there is a multi-dimensional parameter and

policy space in a load balancing algorithm. This is addressed further in Section 2.7.3.

These are some of the issues related to the adaptability of an algorithm that need to

be investigated:

1) Definition of a stable and balanced system

2) To which algorithm dimension(s) and/or component(s) is adaptability to be added?

3) Trade-offs in the design of an adaptive scheme:

-complexity of algorithm and range of adaptability

-responsiveness and accuracy of adaptability

-extent of variability in distributed systems and performance gain

4) How to quantify adaptability?

e.g. improvement in response time, quality of host selection

2.4.2. Tolerance of a Scheduling Algorithm

Given the fact that processors in a distributed system are autonomous and

communicate only through message-passing mechanisms [Chandras90], the best load

balancing algorithm cannot escape overhead costs (Le. load redistribution actions cost),

both in terms of computation costs and communication delays, and uneven periods of

load distribution (i.e. periods of unbalanced states). Adaptive scheduling can be

expressed as finding the right balance between two conflicting issues. The first issue is

the minimisation of the overhead cost by using the estimate costs established for the

system environment (encouraging only the cost-effective actions). The second issue is

the reduction of the duration and magnitude of these undesirable states. The concept of

algorithm tolerance is suggested by Krueger JKrueger88] for adding an explicit

adaptability to a load balancing algorithm. One way to reach this balance is to

30

distribute the load in degrees [Krueger87a]. Based on the system conditions a load

sharing objective with or without anticipatory transfers, load balancing objective is

activated or no load redistribution at all. To give more flexibility for the scheduling

algorithm to adapt to the changing environment, it must also be allowed to deviate from

its main strategy by varying within a range for each scheduling parameter and policy

option. The magnitude and duration of these deviations can be specified as the tolerance

of the algorithm. The adaptability mechanism is used by the algorithm to tune its

strategy (Le. taken corrective actions) within the algorithm tolerance according to

variations in the environment and maintain an acceptable level of performance. Three

types of tolerance can be identified:

a) Minimum tolerance:

This corresponds to the ideal case where no periods of unbalanced states occur. A

balanced load on all the machines at all times is maintained. Unfortunately this would

be achieved with excessive costs and may even result in performance degradation as in

the situation where processes are transferred from nodes with few processes to an idle

node. The costs of the transfers can far outweigh the gain in load balancing.

b) Heuristic values:

These values are obtained though experimentation and can achieve adequate

results. For example instead of using the strictest load difference of one between two

nodes in order to perform a transfer, it is more sensible to use the higher difference of

three, which gives more gain to outweigh the load distribution overhead cost. However,

these results are not acceptable when we are dealing with a widely changing

environment.

31

c) Adaptive values:

Here not all the parameters or policies are fixed. The sensitive features are varied

to allow, based on the system state, a dynamic adjustment of the tolerance of the

algorithm to be carried out to optimise the performance. The design of adaptive load

balancing algorithms, in addition to the classical components of the dynamic load

balancing algorithms, involves the provision of an adaptability mechanism which can

be implemented by:

1) On-line estimation of parameter changes that require adaptability of strategy

(Le. current system state)

2) Including mechanisms for modification of the values within the tolerance of the

algorithm (i.e. dynamic manipulation of algorithm parameters and policies)

3) Establishing the rules of the adaptive scheduling strategy

(Le. when to adjust, what, and how)

4) Providing appropriate decision-making procedure to control these modifications

2.4.3. Adaptability Dimensions

Instead of striving for the minimum tolerance, we examine how the algorithm

components can be adjusted and the scheduling strategy tuned to maintain performance

and stability. The adaptability of a load balancing algorithm can be explored along two

paths parametric tuning with three types of parameters involved: scalar, timing, and

threshold, and policy switching with four types of policies involved: condition of the

node initiating the load redistribution process, type of process transfer, load

redistribution objective, and basic algorithm component options.

1) Parametric Tuning

The parameters of a load balancing algorithm that can be tuned can be classified

into three types: threshold, timing, and scalar. This adjustment can occur within any of

the components of the load balancing scheme: load measure, information policy,

transfer policy, and negotiation policy.

Threshold

32

These parameters put limits on the level of usage of a resource being managed. To

identify a suitable partner, a node uses the load difference level to justify the

performance gain of a remote execution. Other threshold parameters include local

load threshold, difference between local load and global average load value, limit

on the number of successive process transfers, size of the subset of nodes that

exchange information or negotiate process transfer with a given node. Instead of

being fixed to an average value an adaptive threshold is evaluated dynamically

(wherever necessary or periodically). Different relationships have been used to

evaluate the threshold value. Hac et at. [Hac87] used the formula T=f(Nrl P -1)

where Nr is the number of active processes and P the processor capacity. Lee

[Lee86] linked the threshold to the job arrival rate, while Pulidas [Pulidas88]

linked it to the flow of jobs on the network, the incremental delay information, and

the minimum incremental delay. Others used the job transfer cost or transfer

device utilisation level.

Timing

These parameters determine how often the load redistribution actions will be

performed, for example slowing down the scheduler activity for periodic policies

[Stankovic85] or the tuning of the amount of idle time [Hac87]. They depend on

the static and dynamic loading of the system. This involves the specification of

temporal relationships between negotiation sessions, process transfer or the

exchange of information etc.

Scalar

The scheduling parameters of an algorithm can be assigned a weight (e.g. node

33

speed processing factor [Castagnoli86]) to emphasise their static or dynamic

importance in a decision function or to modify the weight of a decision based on

static or dynamic local conditions (e.g. bidding approach [Stankovic84]). For

example negotiation, transfer, or remote information policies may include

probabilistic values.

2) Policy Switching

To cope with a changing environment, the scheduling algorithm involves many

policies. These policies can be classified further according to their nature and the

options available. They are invoked dynamically for example the initiation of transfer

can be performed by either the overloaded or the underloaded node. The choice can be

based on the system load. Other policies include the degree of sharing, the type of

transfer, the algorithm specific policies: information, transfer, negotiation. All these

parameters can be fixed or tuned dynamically to provide an adaptive scheduling

environment.

a) Node initiating the load redistribution process

The node that initiates the load distribution process can be an overloaded node

seeking to reduce its load by migrating some of its local processes to a lightly

loaded or idle node. It may also desire to transfer newly arriving processes to a

complementary node. The algorithms based on this approach are called sender­

initiated and are commonly used for dynamic load balancing. They do not require

preemptive scheduling. The initiation of the load distribution process by the idle

or lightly loaded node is the second alternative. In this case the node is searching

for an overloaded node for the purpose of relieving it of part of its load. These

algorithms are called receiver-initiated and~n most cases assume the availability

of preemptive migration of processes, because there is a small probability that at

the time the idle node interrogates the overloaded node, a new external job arrives.

34

It must be a resident or running process that has to be migrated. In a study by

Eager et al. [Eager85], it is shown that under low system loads the sender­

initiated algorithms perform better than the receiver-initiated algorithms, the latter

performs better under heavy system loads. A third alternative is to have either the

sender or the receiver node initiate the load distribution process. These types of

algorithms are called symmetrically-initiated [Krueger87a] and have more

potential for adaptability.

b) Type of process transfer

The transfer of a process for remote execution can be done before it begins

execution on the local node (i.e. non-preemptive scheduling) or even while it is

running on the local node. In this case it is interrupted and sent, along with its

image including the changes which occurred due to execution [Smith88] to

another node for remote execution. In both types of transfer, the results of

execution are sent back to the originating node if no shared file system is used.

There is a substantial cost involved in migrating a running process. However ,

preemptive algorithms have more potential to adapt to dynamic changes in system

conditions (e.g. process completions or resumptions) than the non-preemptive

algorithms because the latter cannot transfer processes after they have begun their

execution. They deal only with newly arriving processes. Before a new process

arrives no load anomalies can be corrected.

c) Load redistribution objective

Based on the system conditions and the performance objectives sought, different

degrees of load distribution can be implemented [Krueger87]. When all the nodes

in the pool are idle or lightly loaded, or all heavily loaded; there is no performance

gain in trying to distribute the load. If the load distribution goal is to maximise the

rate at which work is performed by the system by making sure no node is idle

35

while processes are waiting for service at other nodes (i.e. work conservation

scheduling), then load sharing is the solution. This assumes that keeping all the

nodes busy results in a better mean job response time. Load balancing extends the

load sharing objective by aiming at allocating a near equal number of jobs to each

node in the system. In addition to mean response time, the mean and standard

deviation of the wait ratio (i.e. wait time per unit of service) are to be minimised.

Load balancing reduces both wait time and wait ratio [Krueger87]. This implies a

fairness of scheduling, but may degrade performance in some cases as in a system

with heterogeneous node capacities. By allowing the load balancing algorithm to

select the degree of distribution to aim for, adaptability to wide ranging system

conditions can be achieved.

2.4.4. Implementation Considerations

The general purpose of the adaptability attribute is to get around the lack of global

state information or out of date information which characterises distributed systems,

and the cost of its maintenance. This can be achieved by using approximate

information, and successive dynamic adjustments of the scheduling strategy to the

system environment. To implement an adaptive strategy and control the adaptive

components for a load balancing algorithm, the rules which link the current system

conditions to the appropriate scheduling parameters and policies must be identified.

Then a decision-making procedure to dynamically apply those rules must be

established.

Although the centralised approach presents the advantage of scalability in

implementing an adaptive multiple-options scheme [Zhou88], it is rejected for the

classical disadvantages of centralised systems, namely the central controller may

become a bottleneck and have an adverse effect on the complete system. Another

36

reason for choosing decentralised scheduling is that it is less complex to implement,

compared to its centralised counterpart [Theimer88]. It involves the following steps:

Step 1: On-line evaluation of dynamic changes in conditions which drive the

decision-making process (e.g. current system load).

Step 2: Use built-in rules (heuristics) and current system state for the selection of

scheduling strategy components: the algorithm dimension(s) to be affected, the

policies and parameters to be affected (information, transfer, negotiation), and the

choice of appropriate level of adaptability.

Step 3: Perform on-line modifications of scheduling strategy using the

mechanisms for manipulation of values of parameters within their tolerance or

switching to an appropriate algorithm option.

Step 4: Perform the load balancing actions.

Some of the choices to be made during the development of this scheme include periodic

invocation or on-demand adjustments, whether to memorise and use past decisions or to

base the decision on the currently perceived system state only, how to control the

algorithm modifications in a decentralised environment and to what extent are these

decisions affected by the accuracy of the local view of the global state. Since the

adaptive decision-making procedure will be implemented for several basic load

balancing policies, it has to be decided which parts are to be embedded in the

scheduling algorithm itself and which parts are to be embedded in the distributed

kernel.

2.4.5. Design Methodology for Adaptive Scheduling Algorithms

For a dynamic system tuning, made necessary by the wide and unpredictable

fluctuations in the distributed system, algorithms with adaptability feature are to be

developed. The design of such algorithms can be pursued along two approaches. One

37

approach is to design new algorithms based on novel adaptive models or policies with

inherent adaptability. The alternative approach is to add explicit adaptability to

dynamic algorithms based on representative strategies and deriving adaptive algorithms

(e.g. symmetrical OLOBAL_A VO [Johnson88] and PollOen [Krueger88]) by

combining the best policies of existing dynamic algorithms and allowing a dynamic

switching of these policies based on the system conditions.

A methodology for adding adaptability to a load balancing algorithm involves the

following steps:

1) Performance objectives specifications

(response time, balance factor, stability, minimum cost)

2) Changing environment characteristics specification

(extent of variability for system and workload)

3) Identify structure of load balancing strategy and communication model assumed

4) Identify load balancing algorithm components involved

(Information, Transfer, Location/Negotiation)

5) Establish basic load balancing activities cost (computation and communication)

6) Identify dimension(s) of algorithm to which adaptability is to be added

7) Identify adaptable features for each component:

-dynamically estimated parameters

-tunable parameters

-adjustable policies

8) Derive algorithm structure based on added dimensions

(i.e. combined policies)

9) Establish relationships between current system state and scheduling strategy

(Le. which policy(ies) and parameter(s) to adjust and when) taking into account:

-performance objectives

-load balancing activities costs

-current system state and extent of variability

-adaptable features of algorithm

(Provide a decision-making procedure to tune parameters and policies)

10) Construct full adaptive algorithm structure

11) Test algorithm performance against no load balancing case or other algorithms

lfEDS UNIVERSITY UBRARY

38

This design methodology could be used for the design of adaptive load balancing

strategies. It consists of adding an explicit adaptability feature to a load balancing

algorithm through a combination of different policies or by adding a mechanism for an

automatic tuning of the algorithm parameters.

2.5. Description of a Selection of Algorithms

In this section, the algorithms selection criteria are outlined, then a set of load

balancing algorithms where most components and attributes defined in previous

sections are represented, is described. Last other algorithms included in reported load

balancing studies and referred to in Section 2.6, are detailed.

A dynamic algorithm uses fixed algorithm parameters and the same policy (e.g.

when a new job arrives and finds the node overloaded, the current system load vector is

checked and the job is sent to the node with the shortest queue). The job placement

decision is based on the current system state (e.g. threshold-type information, inter­

nodes load imbalance information). When the load balancing algorithm places the users

jobs using the current perception of system load distribution, and also adjusts its

policies to reflect the needs of load redistribution, it becomes an adaptive algorithm.

Both aperiodic algorithms where the arrival of a job (process creation) or a job

departure (process completion) trigger the load balancing process, and periodic

algorithms which are timer-driven, are considered in this study. The algorithms

developed below include both categories of load sharing and load balancing objectives,

however we use the more general load balancing denomination. The choice of these

algorithms has been motivated by the need to cover a range of information and control

policies identified in Section 2.3.

For a consistent description of the load balancing strategies a common

terminology is defined. The load level at a sending node is indicated by load.i, and by

39

load.j at the receiving node. The algorithms considered are threshold driven according

to the queue length of processes. Four threshold parameters are used and whose

crossing corresponds to:

Tsi the load balancing strategy is activated by the sending node

Tsa an acceptance of a transfer is indicated by the sending node

Tri the load balancing strategy is activated by the receiving node

Tra an acceptance of a transfer is indicated by the receiving node

All the strategies considered are based on non-preemptive transfer policies. Below

is detailed a set of load balancing algorithms covering different information and control

policies. The load level at a node represents the number of jobs waiting plus the

currently executing task. The term load.i is used at the node which activates the load

balancing process while load.j is used at the node being polled.

2.5.1. Representative Load Balancing Algorithms

1) Random Algorithm

This is the simplest algorithm. When a node load level crosses the threshold Tsi

(load.i > Tsi), it sends the newly arrived job to a randomly selected node. Only the local

information is used. A variant to this algorithm is to consider a transfer _limit greater

than one by allowing a transferred job to be transferred again if its destination is found

overloaded too.

2) Sender Algorithm

This algorithm is based on the Sender policy [Eager85] and THRHLD policy

[Zhou87]. When a node becomes overloaded (loadj > Tsi used for load balancing

initiation), it sequentially polls a set of (Lp) rand?m nodes looking for one whose load

is below the threshold (load.j < Tsa used for remote job acceptance). If so an ACCEPT

message is sent back, otherwise it replies with a REJECT message. Then if the

40

requesting node is still overloaded when the ACCEPT reply arrives, the newly arrived

job is transferred, otherwise the job is processed locally. The job is also processed

locally when the probing limit is reached or if the node is no longer overloaded before

the probing is exhausted or when a polling session is already in progress when the job

arrives. The probing is sequential, no simultaneous negotiations are allowed.

To avoid the situation where a node is the sending and receiving states

simultaneously the choice of Tsi and Tsa must be such that Tsa$.Tsi.

A variant of this algorithm called LOWEST in [Zhou87] transfers the job to the

host with the lowest load among those randomly polled. Probing stops when the first

empty host is found. However, no significant improvement is reported. Another

potential variant to this algorithm (SendecDf) is to search for a partner whose load

difference is less than that of the requesting node by a constant (e.g. load.i - load.j >

Of).

3) Receiver Algorithm

This algorithm is based on the Receiver policy [Eager85]. If the completion of a

job brings the load of a node below the threshold (load.i < Tri), this node polls a random

set of nodes up to a probe limit looking for an overloaded node (load.j > Tra), in which

case a non-preemptive "migration" of a job from the ready queue of the overloaded

node is done. The transfers are receiver-initiated. The triggering of load balancing is

done when the completion of a job bring the load level of the node below a threshold

value. A special case is the idle node state (load.i = 0).

A variant of this receiver-initiated algorithm is to use a timer-driven load

balancing activation instead of using departing jobs. Periodically (i.e. timer -'period), the

load of a node is checked to identify if the node is idle (load.i= 0) or if its load is below

the threshold (load.i < Tri)' If so a polling session is initiated for up to the probe limit.

41

This strategy has an advantage over the Receiver algorithm in that the situation where a

polling session has failed and no new job arrives leaving the node idle forever, will not

occur because the algorithm is periodically awakened.

To avoid the situation where a node is the sending and receiving states

simultaneously the choice of Tri and Tra must be such that Tra~Tri'

4) Shortest Algorithm

This algorithm is based on the DISTED algorithm in [Zhou87]. It allocates a new

job that brings load.i above Tsi , to the node with the shortest queue (node.j = min (L I,

L 2 , ... , Ln». It maintains a load vector at each node. This vector is periodically (i.e.

exchange yeriod) updated using a broadcast mechanism. To reduce the number of

information exchanges, the nodes broadcast their state only when the load changes (a

new job arrives, a job is transferred in, a job is transferred out, or a process departs).

5) Symetric Algorithm

This algorithm is a combination of the Sender and Receiver algorithms. It involves

a symmetric initiation of load balancing [Krueger88a], depending on the value of the

load relative to the thresholds (Tsi' and Tri), with Tri=l for whom the idle node initiates

the load balancing negotiation. The load balancing strategy is dynamically adjusted

based on the node load level by allowing the algorithm to switch automatically between

a sender-initiated (SI) or a receiver-initiated (RI) policy.

To avoid the situation where a node is the sending and receiving states

simultaneously, which corresponds to a node sending its new local jobs to remote nodes

while accepting remote jobs to be executed locally, or having both sender-initiated and

receiver-initiated negotiations engaged at the same time, the choice of the thresholds

must be such that Tri <= Tsi and Tra ~ Tsi'

42

It is to be noted that all the algorithms described so far are Tsi or Tri threshold

driven or both. Random and Shortest algorithms have no Tsa acceptance condition at all

(Le. overriding the remote node autonomy), while Sender and Symetric can have D
f

the

inter-node load difference as an acceptance condition instead of Tsa or T ra threshold.

2.5.4. Other Load Balancing Algorithms

The load balancing algorithms commonly reported in comparative studies include:

centralised, distributed, preemptive, non-preemptive, adaptive and non-adaptive

examples. A sample of the algorithms is described below. They all work on a

broadcast communication model, however most of them could be implemented on a

point-to-point model. Except for PollGen which dynamically adjusts its degree of

redistribution, all these algorithms have load balancing as a global objective. The next

three algorithms have been evaluated by Zhou [Zhou87a].

GLOBAL (centralised control)

One host, designated as the LIC (load information centre), assembles the load of

all the hosts in a LV (load vector) and broadcasts the L V to all the hosts every P

seconds. The placement policy is as follows: send new job to the host with lowest

load (Le. load ~ local load - 0, where 0 is a constant), if there is more than one host

with the lowest value, select one arbitrarily.

CENTRAL (centralised control)

The LIC acts both as the load information centre and the central scheduler for all

the hosts (e.g. Process Server [Hagmann86]). Such a distinguished agent requires

less overheads making the algorithm more scalable.

RESERVE

It is a receiver-initiated algorithm based on job reservation. If the load gets below

T/, the host probes the other hosts to register R reservations at R hosts with load

43

above T1• At the overloaded host, outstanding reservations are stored in a stack.

When a job arrives, it is sent to the node that made the most recent reservation. If

the load falls below T1, all reservations are cancelled. An improvement of this

algorithm is made if before sending the job the host makes sure the server host is

still lightly loaded. This is the only non-preemptive receiver-initiated algorithm

evaluated in Zhou's work [Zhou87a]. Most receiver-initiated algorithms are

preemptive.

GLOBAL_AVG

This is a preemptive algorithm developed by Krueger [Krueger84]. Each node

maintains a value for the network average load (Av) and strives to keep its own

load to within a pre-defined acceptable range (A) from it. If the load is not within

the acceptable range then it attempts to find a transfer partner by broadcasting its

conditions and waiting for a reply within a reasonable time (Tr). If no

complementary partner can be found, it updates the global average load by (U)

amount and broadcasts the new average value to the other nodes otherwise it

migrates an advantageous process to a complementary partner. A symmetrically­

initiated version of the algorithm has been developed by Johnson [Johnson88].

DRAFfING

This is a receiver-initiated preemptive algorithm based on a drafting strategy

[Ni85]. Each node maintains a load table of candidate processors from among its

neighbours, but instead of using numerical values to describe the load of a node,

three states are used: Low state when the node can accept remote processes,

Normal state when no transfer in either direction is desirable, and Heavy state

when the node needs help from other nodes. The negotiation engaged is as

follows. A message (draft request) is sent by L-Ioad node to those H-Ioad

identified from local table. A response message from H-Ioad sent indicating how

44

much help they need (draft age). This value is zero if the node is no longer in the

H-Ioad state. After a timeout period all the draft ages must be received. At this

point a draft-standard is calculated based on all the received draft-ages. The node

with the highest draft age (i.e. the one that needs help most) is selected. If all draft

ages are zero then suspend the drafting process. The drafted node sends a new

task or responds with a "too late" message.

Bidding

This is a sender-initiated non-preemptive algorithm [Stankovic84]. The loaded

node (based on threshold crossing) requests bids from neighbours or all nodes (i.e.

through broadcast). The bids (i.e. current load) are sent by underloaded nodes.

The node with the winning bid (i.e. shortest load) is selected and will receive a

transferred job. If no appropriate bids arrive within a time window, then extend

the request for further bids in the network or process locally.

PollGen

This is a preemptive algorithm with an adaptive feature [Krueger88]. It is based on

the PID algorithm [Livny84] and Threshold received-initiated version [Eager86].

It has also a sender-initiated aspect and can be symmetrically-initiated. Several

parameters can be manipulated to tune the algorithm to the changing system

conditions.

TRmax : The maximum load of a suitable receiver which indicates appropriate

degree of sharing or load redistribution objective. Three objectives are possible:

LS(O) for load sharing, LS(l) for load sharing with an anticipatory migration, and

LB(00) for load balancing.

TSfU!g : The negotiation is initiated when the load is above this threshold.

4S

T Tdiff: The minimum load difference between transfer partners when the load

difference is used in the negotiation policy (load balancing objective).

SendProb: A sending node initiates negotiation with a probability SendProb when

arrival of a process causes the load to be at least TSneg.

RecvProb: A receiving node initiates negotiation with a probability RecvProb

when the completion of a process causes a node to become idle.

Pol/Limit: The maximum number of nodes polled before giving up.

2.6. Load Balancing Studies and Implementations

In this section, the comparative studies of different algorithms, taking into account

the model assumptions made, are analysed. The approach used (i.e. analytical,

simulation, measurement) is also indicated. Last the implementation of a few load

balancers is reviewed.

2.6.1. Load Balancing Comparative Studies

The performance study of load balancing algorithms can be carried out along two

dimensions: system characteristics and algorithm nature. The first involves the model

assumptions made and experimental factors while the second is concerned with the load

balancing strategy used.

Eager et al. [Eager86] investigated the trade-offs in the level of complexity of the

load sharing policies and the level of performance gain. Three types of decentralised,

threshold-based. algorithms (Random, Threshold, Shortest) with various amount of

information are evaluated (no information, threshold-type information, complete

information). The load balancing overhead is added to the CPU and corresponds to an

increased load. Other assumptions made are no delay in transferring jobs and perfect

global state information. The main conclusion of their work is that collecting little

46

infonnation is more advantageous in tenns of perfonnance improvement and

communication cost trade-offs. Parametric tuning investigations were also carried out

on threshold, probe limit, and transfer limit. In [Eager85] sender-initiated and

receiver-initiated policies (Sender, Receiver, Reservation) were compared. It was

shown that sender-initiated are preferable to receiver-initiated at light to moderate load

levels while receiver-initiated policies perfonn better at higher load levels. In both

references simulation results are used to validate the use of simple analytic models.

Zhou has carried out a thorough comparative performance study of seven non­

preemptive dynamic load balancing algorithms among the most commonly described in

the literature [Zhou87a]. A homogeneous distributed system based on the broadcast

model and a trace-driven simulation of independent sequential jobs are assumed. This

implementation is aimed at minimum changes to the system kernel. A

foreground!background round-robin local scheduling discipline with 100 milliseconds

time slice for the CPU is used.

These algorithms are non-preemptive and, except for the RESERVE algorithm, are

all sender-initiated. Most algorithms are decentralised, except for the GLOBAL and

CENTRAL, which include some centrally controlled components. The other algorithms

are DISTED, RANDOM, THRill.D and LOWEST. All these algorithms use the same

load index (Le. CPU queue length) and the same transfer policy (i.e. based on the

command name of the job and local load threshold) but they differ in their infonnation

and corresponding negotiation (called placement for non-preemptive algorithms)

policies. Within the assumed constraints the most promising algorithms are GLOBAL,

CENTRAL, THRlll.,D, and LOWEST. One conclusion that might be drawn is that

centralised algorithms perfonn well and that a small amount of state information used

is sufficient to gain most improvements for decentralised algorithms. These schemes,

which use current system load in determining job placements, have been shown to

47

improve significantly the average response time of jobs, especially under heavy and/or

unbalanced workload and make response time more predictable, even with the transfer

of a small number of jobs. The trace-driven simulation results have been confirmed

through measurement studies. The simulation work has been repeated on data from

three computing environments (Berkeley, Bell Labs, and Lawrence Labs).

In a similar effort Johnson [Johnson88] has compared the performance of fewer

algorithms but included both preemptive (actually jobs are migrated from ready queue,

not while executing or blocked), and non-preemptive dynamic algorithms. The

algorithms called RANDOM, lliRHLD are non-preemptive algorithms while

GLOBAL_AVG and P _THRIll...D are preemptive algorithms. P _THRHLD is the same

as lliRHLD except that it is triggered periodically to allow anomalies that occur before

a new process arrival to be corrected through process migration. He used probability

distribution generated artificial workloads to drive a simulated distributed system

composed of a Manhattan connection of virtual processors (i.e. a point-to-point

communication structure). The local scheduling is based on round-robin discipline with

50 milliseconds time slice and the CPU queue length used (i.e. no. of resident

processes) as a load index. The performance of the algorithms was tested using both

independent processes and cooperating process groups. He also modified the

GLOBAL_A VG based preemptive algorithm to make it adapt its policy to changes in

the system load for a simple case of a group of cooperating processes. Based on the

current system load the algorithm switches between the sender-initiated policy which

performs best for light system load, and the receiver-initiated policy which performs

best under heavy system load. The experiment on this Sender_Receiver version of the

GLOBAL_A VG showed that, using the instantaneous value of the global system load

as the indicator to switch between sender and receiver initiated negotiation, the best

results are obtained under both light and heavy system load.

48

The load balancing cost is equated to the communication cost and is evaluated

only in tenns of the number of the messages exchanged. A modification is made to the

GLOBAL_A VG algorithm to limit the simulated broadcast to immediate neighbours

only, with the aim of reducing the number of messages exchanged.

However, a more elaborate work on adaptive load balancing was done by Krueger.

In [Krueger84] the GLOBAL_A VG algorithm is described. This algorithm is adaptive

in the sense that each node attempts to keep its load within a close range of a

dynamically updated global average load. It also adapts to communication medium

utilisation (i.e. a broadcast token ring) by allowing only the most advantageous transfers

to occur. Using a system wide negotiation for transfer partner and the update of the

global average, this algorithm has perfonnance limitations due to indiscriminate

broadcast overhead costs. In [Krueger87, Krueger87a, Krueger88a], analytical studies

of load balancing strategies were carried out. An analytical justification for adaptive

scheduling is given. The PollGen algorithm was designed and using simulation, it was

shown that good perfonnance and stability can be maintained over a broad range of

system environment changes for independent processes, through adaptability.

In [Concepcion88] a testbed, based on the Simscript 11.5 simulation language, for

the comparative perfonnance study of dynamic load balancing algorithms is described.

It addresses particularly the effect of the network topology (Le. ring, bus, and mesh) on

the perfonnance of three algorithms (drafting [Ni85], bidding [Stankovic84], and

probabilistic [Hsu86]) which are not adaptive according to the definition in Section

2.2.2 despite the title of the paper. Various algorithmic parameters are experimented

with to identify heuristic values for the best perfonnance under fixed workload

conditions. A variety of perfonnance criteria (CPU queue length, CPU utilisation,

mean response time, balance factor, and communication overhead) are used.

49

In [Mirchandan89] the authors provide an analysis of the effects of jobs and

messages transfer delays on the performance of three load balancing algorithms

(Forward, Reverse, and Symmetric). The model is based on the disk-based structure

and consists of homogeneous nodes with Poisson job arrivals and exponentially

distributed service times and job transfer times. The delays incurred by the probes are

assumed negligible. Simulation is used to validate the analytic results. The

performance of the three algorithms have been evaluated at O.IS and 2S delay levels

where S is the mean service time. The performance difference is significant at low

network delays with the best results obtained by the Symmetric algorithm. At high

delays the performance of the algorithms are identical except at high load levels (p~O.9)

Where the performance of the algorithms is more spread out. The relative performance

order of the algorithms is: Symmetric, Reverse, and Forward. Forward performs better

than Reverse at low to moderate load with the break-even obtained at a system load

P=O.75. The network delays have no effect on the relative performance order of the

algorithms.

2.6.2. Load Balancers Implementations

Although most work on load balancing in distributed systems has been based on

analytic or simulation techniques there have been some measurement studies on

prototype systems usually with a small number of processors [Dikshit89], and a

simplified workload model [Barak85].

Most implementations of load balancing in distributed systems have been done in

an ad hoc manner [Bershad86, Hagmann86, Ezzat86] and have been added on the top

of already existing operating systems. This involves a special syntax for command

submission and a modification of the operating system to provide for remOte execution

mechanisms. Zhou and Ferrari [Zhou87] implemented an automatic load balancing

50

scheme with minor modifications to the operating system. Through an evaluation of a

several load balancing algorithms they showed that load balancing can have beneficial

effects on the system performance. If prototype measurement results based on the

insights of the simulation results increase the confidence in the performance through

load balancing, it is still a step away from a real product. Commonly missing are

remote process management and control, and the user interface facilities.

Over the last decade many analytical, simulation, and prototyping studies of load

balancing on distributed systems have been carried out. Despite the beneficial effect of

load balancing shown through experimental systems, no commercial products are

reponed. However, in the case of parallel system there are some implementations such

as Helios 1 which do effect load balancing on transputers systems. The potential reasons

are:

Technical

Few distributed system built from scratch are successful. Even their developers do

not use such systems because they are too slow [Renesse88]. This is due to the

inherent complexity of distributed software. There is also a lack of distributed

applications which justify the load balancing approach.

Economical

The workstations and communication hardware keep getting faster and cheaper.

In most computing environments there is no real incentive to use resources

efficiently. However, when the physical limit of single processor speed is reached,

there would be a drive for more efficient use of the existing resources. Most of the

software engineering experience is in a centralised environment where a vast

amount of software packages exist. These products are not compatible to a

1 Perihelion Software limited

51

distributed system environment [Beck90]. The problem is therefore with the

distributed systems rather than with the load balancing scheme.

We conjecture that the lack of commercial products that include load balancing

schemes has more to do with the need for further maturing of distributed systems rather

than the viability of load balancing schemes. More general investigations are needed

for a better understanding of the behaviour of distributed systems subject to load

balancing strategies, together with a clearer picture on the level of performance

improvement achievable to justify the implementation costs. This could make load

balancing services a reality in future distributed systems, thus achieving a near optimal

utilisation of global computing resources without an adverse effect on the users'

expectations.

2.7. Summary

In this chapter, we have surveyed research on load balancing algorithms according

to the algorithm components and attributes, and the modelling of distributed systems for

performance studies. An algorithm taxonomy was developed with an extented review of

the adaptability attribute. A methodology for the design of adaptive load balancing

algorithms was outlined. Based on this approach the design of some adaptive load

balancing algorithms is considered in Chapter 3. A review of previous performance

studies of load balancing algorithms revealed some over-simplifications in the system

model assumptions made in both analytical and simulation work. This point is

expanded in next chapter.

CHAPTER 3

Performance Study of Load Balancing Algorithms

3.1. Introduction

After many years of research into load balancing for distributed systems, there still

remains many open questions that require further research. One of the most important is

to understand the performance of load balancing algorithms on realistic systems and

under more realistic operating conditions. Earlier studies have used very simple models

of distributed systems and it is difficult to assess these load balancing algorithms on real

distributed systems. The common approach followed is to propose new ideas on a load

balancing algorithm component, and using simulation or mathematical techniques for a

simple system model, it is shown that the proposed strategy performs better than the no

load balancing case or some other algorithms.

In this research a much more complex system model is simulated and a thorough

empirical investigation is carried out. Based on this model we evaluate a selected set of

load balancing algorithms. We also propose an adaptive algorithm called Diffuse and

modify the Random, Sender, Receiver, Symetric algorithms described in Section 2.5.1,

as well as for the Diffuse algorithm to take into account the case of heterogeneous hosts

processing speed in a distributed system.

3.2. System Modelling Issues

Below are described the system modelling issues that have a potential effect on the

performance of a distributed system and the assumptions commonly made in related

work. In a distributed system the essential performance factors are: file system

structure, hosts speed configuration, communication bandwidth and protocols, load

52

53

balancing overheads, and the workload model.

File System Structure

In most reported studies a single file system structure is assumed (e.g. diskless

with a shared file server, disk-based, or diskless with shared file server and a small local

disk attached to each node). The disk-based file system structure is commonly assumed

in analytical models. An exception is the work by Krueger [Krueger88a] where non­

preemptive and preemptive transfers are compared under both diskless and disk-based

Structures. A Place factor is used to indicate the size of the task transferred which

characterises each file structure. It is shown that non-preemptive transfers are preferred

on diskless systems because they rely on a shared file server and only involve the

transfer of the job command name. This contrast with a preemptive transfer where the

complete process file and current state are transferred. This leads to improvement under

disk-based model because a preemptive transfer is not more expensive than a non­

preemptive one. The process state added to the transfer does not increase its size or

complexity. Comparative studies of the effect of the file system Structure on the

performance of load balancing strategies are needed.

For the case of diskless workstation based distributed systems, Lazowska et al.

[Lazowska86] point out that the file server's CPU tends to be the first resource in the

system that gets saturated. Zhou[Zhou87] reached the same conclusion in the context of

load balancing and reduced the number of clients from six to five to cope with a slow

file server. What is the effect of the file server speed on the performance of different

load balancing strategies?

Hosts Speed Configuration

In previous studies all the processors are assumed to have the same computing

power as well as functionality (homogeneous processors). With the proliferation of

54

personal computer/workstations and the constant increase of their processing speed, it is

very common to have a computer network with nodes of different computing speeds but

which are compatible at the operating system and binary code levels. The case of

heterogeneous processor speeds have been mainly considered in the context of

centralised control systems [Tantawi85, Bonomi88]. Optimal probabilistic schemes are

used where a weighting factor is given to the processor speed. In the simulation work

of distributed systems by Stankovic [Stankovic84] heterogeneous processor speeds (i.e.

different average service time for each host) were considered but no attempt has been

made to adapt the algorithms to the heterogeneous environment.

Castagnoli states that heterogeneous environments are where many load balancing

algorithms break down [Castagnoli86]. He suggests that a weighting factor be assigned

for the particular CPU in the formula used to identify the node with the shortest queue

of jobs (Le. the best destination B).

B= min (w I *(ll +d d, , Wn * (In+dn))

where:

Wi : CPU speed weighting factor

Ii : CPU load average
dj : total no. of jobs queued on that machine

Banawan [Banawan87] developed a heuristic algorithm based on the idea of scaled

load index for an algorithm similar to Shortest algorithm described in Section 2.5, with

scaled arrival rates. He concludes that the adapted version does improve the

performance over the standard version. When only one fast node is used, the standard

version degrades the performance at low utilisation levels. At heavy load level for all

the speeds configurations the standard and adapted algorithms performance converges.

The scaled load index is applicable only to algorithms with load . vector based

information policies. There is a need to develop adaptation mechanisms for random

55

polling negotiation based algorithms to take into account the heterogeneity of nodes

speeds and job arrival rates in a distributed system.

Communication Network

In most reported work it is assumed that the communication device has a

bandwidth large enough for there to be no contention or significant communication

delays. The communication protocols commonly assumed in simulation work are "first

come first serve", and "CSMA/CD" or "Token Passing" for prototyping based studies,

but no comparative analysis has been undertaken in the context of load balancing. The

work in [Mirchandan89] addresses the effect of job transfer delays on load sharing in a

disk-based distributed system. It is concluded that the delays have no effect on the

relative order of algorithms (Forward, Reverse, Symmetric). However, under long

delays the algorithms have an identical performance except for heavy load levels. There

is also a global degradation of the level of response time for all the algorithms under

short delays with a spreading out of the curves. Further investigations of the

interdependence of the communication device attributes (communication bandwidth

and protocols) and the load balancing activities under both file system structures are

needed.

Workload Environment

In previous studies it is commonly assumed that the workload consists of

homogeneous users and jobs. For this type of workload non-selective job transfers are

acceptable. When the workload involves two or more classes of jobs which reflects

more accurately actual computing environments [Cabrera86], selective transfers where

only long jobs are transferred to overcome the overhead of a remote execution, seem

more appropriate. However, selective transfers involve a non-negligible job separation

cost that must be taken into account. Heterogeneous jobs have been used in

56

[Krueger88a] for non-selective transfers, but no comparison to homogeneous jobs is

reponed.

Load Balancing Overheads

The overhead of a load balancing algorithm includes a communication cost and an

execution cost. It affects the sending node, the receiving node as well as the transfer

device. The communication cost is due to the exchange of status messages and the

transfer of jobs across the network (CPU cost and communication delay). For a

practical system the execution of communication protocols for packing of messages far

outweighs the communication delay [Lazowska86] , and must be taken into account.

The other costs associated with the algorithm are due to the execution of the

infonnation, transfer, and the negotiation policies of the algorithm. This is referred to

as the execution cost and its level depends on the complexity of the load balancing

algorithm.

The cost of handling the load balancing messages (probing/infonnation, job

transfer) and the increased traffic on the transfer device are usually assumed negligible.

In [Zhou87a] the effect of non-negligible message overheads (5 to 40 msecs) and job

transfer cost (50 to 400 msecs) for a diskless model are evaluated. It is concluded that

under this wide range of overhead assumptions load balancing does still reduce the job

mean response time. Further experiments are needed to evaluate the impact of non­

negligible message overheads on both diskless and disk-based models.

57

3.3. Design of Load Balancing Algorithms

The following algorithms have been designed to address some disadvantages of

the Symetric algorithm described in Section 2.5.1, and to provide load balancing

algorithms adapted to a distributed system with heterogeneous hosts speed.

1) Diffuse Algorithm

This algorithm is inspired from the infonnation exchange policy in [Barak85]. It

emulates a "gas diffusion" process in its negotiation policy as opposed to the

infonnation policy in Barak's algorithm. It is symmetrically initiated and uses periodic

polling of a single remote node. The load level at a node represents the number of jobs

waiting plus the currently executing task. The tenn load.i is used at the node which

activates the load balancing process while load} is used at the node being polled (see

Section 2.5). For every timer yeriod (using different start times to make the initiation

of load balancing globally asynchronous), the node load is checked against the

threshold:

1) if exceeding the threshold (load.i > Tsi) , a request is sent to a random node (Lp=

1), this node replies with an ACCEPT message if it is underloaded (load.j < Tsa),

otherwise it ignores the request. The requesting node transfers a job from its

transferable jobs queue as a response to an ACCEPT message, or ignores the request if

it is no longer overloaded (or overloaded but with an empty transferable jobs queue in

the case of selective transfers).

2) if below the threshold (loadj < Tri), a request to receive a job is made to a

random node, the chosen node will respond by sending a job from its transferable jobs

queue, or just ignores the message if it is also underloaded (load.j < Tra). However, in

the case of selective transfers, if the node is overloaded but the transferable jobs queue

is empty, the node is considered as if underloaded and the message is also ignored.

58

3) if the load is normal (loadj = Tsi), no load balancing is attempted.

To avoid the situation where a node is the sending and receiving states

simultaneously the choice of the thresholds must be such that T'i ~ Tsi and (Tra ~ TsJ

The node load regions and load balancing states for the Diffuse algorithm are depicted

in Figure 3.1. This algorithm is adaptive in the sense that based on the current load

level, it activates either is sender-initiated (SI) component or its receiver-initiated (RI)

component. It is to be noted that this algorithm can be used for homogeneous as well as

heterogeneous types of workload.

2) Strategies Adapted to Heterogeneous Hosts

When the processing speeds of the nodes in a distributed system are different, the

instantaneous CPU queue length is not a good load metric. The load index, among other

system and algorithm parameters, needs to be adjusted to maintain the performance of

the system through load balancing. As has been shown in previous studies, the most

influential parameters are: the threshold level above or below which the load balancing

is triggered, the remote location selection (e.g. a random destination, one with the

shortest queue or the first one whose load is below a given threshold), and the timer

period for periodic algorithms.

n

sending state (SI or RI)

no load balancing

receiving state (SI or RI)

1

o

OVERLOADED

UNDERLOADED

loadj > Tsi· (SI) or Tra (RI)

threshold (loadj = Tsi (SI) or Tri(RI))

load.i < Tri (RI) or Tsa (SI)

Figure 3.1 Node Load Regions and Load Balancing States

59

The scaled load index has been suggested as a way to deal with the heterogeneity

of processing speeds [Castagnoli86]. The Shortest algorithm, modified to have a load

vector where load values are scaled by a factor proportional to the node speed, lends

itself to the scaled index mechanism. The newly arrived job is transferred to the node

with the smallest value of d.

d = (l+I)ls= K*l +K for K = lis where

d destination node scaled queue length

1+ 1 CPU queue length including the new job

s node processing speed factor

However, Zhou [Zhou87] has shown that this algorithm called DISTED in his work,

when evaluated on homogeneous nodes, performs better than the Random algorithm

only. This is due to the out of date global state information collection and the

overriding of the nodes autonomy it involves. This approach is not considered further.

There are two ways to specify the workload for a heterogeneous system. These are

known as scaled arrival rates and identical arrival rates:

• Scaled arrival rates

The objective of scaled arrival rates is to maintain the same CPU utilisation level

at the different nodes. The inter-arrival time used to generate the jobs is chosen to

get the same utilisation level on all the nodes regardless of the processing speed.

• Identical arrival rates

The above assumption about the jobs arrival rates is not justified in a workstation-

based computing environment with similar users. It is the job arrival rates (not the

CPU utilisation level) that are to be kept the same (i.e. identical inter-arrival times)

for all the nodes regardless of their processing speed.

Two adaptation mechanisms have been developed to make some random polling

based load balancing algorithms take into account the processing speed of the nodes in

60

the network: weighted destination and scaled timer period. The random destination is

not chosen based on a uniform probability function as in the Random algorithm, but

each node destination is given a weight proportional to the processor speed (i.e.

weighted destination). This also applies to the choice of node to be polled for the

algorithms based sender-initiated as well as receiver-initiated probing. For the Diffuse

algorithm, the timer period is scaled to the node service rate (i.e. scaled timer).

Based on a the weighted destination and the scaled timer mechanisms, the

following adapted algorithm versions have been developed: Random_a, Sendeca,

Receiveca, Symetric_a, and Diffuse_a. The algorithms versions without these

mechanisms are referred to as standard algorithms.

3.4. Summary

This review of performance studies of load balancing algorithms revealed that

some over-simplifying assumptions are made in the modeling of distributed systems,

and that there is a need for load balancing strategies that adapt their policies to

heterogeneous and rapidly changing workload, or include mechanisms to take into

account the heterogeneity of nodes processing speeds. We set out to evaluate the load

balancing algorithms on different models of distributed systems with more realistic

assumptions and system design alternatives. Then it would become possible to identify

the most appropriate algorithm for a distributed system knowing its attributes and

workload environment. The research questions to be addressed are:

i) What is the effect of system attributes on the performance of load balancing and

how does the Diffuse algorithm compare to others in the literature (i.e. Sender,

Receiver, Symetric)?

61

ii) What is the effect of the workload model on the perfonnance of load balancing

algorithms?

iii) What is the effect of the heterogeneity of nodes speed on the perfonnance on the

the standard algorithms and what is the level of performance improvement when

adapted versions of these algorithms are used?

In Chapter 4, the design as well as the implementation of the system built to

examine the research questions identified above, are described.

CHAPTER 4

A System to Measure the Performance of Load Balancing Algorithms

4.1. Introduction

In this Chapter, the experimental system design and implementation, how to use

the simulation package developed, and the simulated system validation are described.

This description is divided into four sections:

(i) The design of the experimental system is outlined. This involves a description

of experimental method, the distributed system models considered, the experimental

objectives and factors, and the nature of the investigations to be carried out.

(ii) The essential components of the system under investigation are modelled. the

default parameters values indicated have been arrived at through modelling decisions or

experimental tuning for optimal performance, and correspond to the baseline system.

(iii) The simulated system implementation is described. This includes the

simulation environment, the distributed system components, and an overview of the

simulation package.

(iv) The calibration and validation of the simulated system is described.

Section 4.6 concludes this Chapter by providing a summary of the system features

and its validation.

62

63

4.2. Experimental System Design

The goal of this study is to evaluate the performance of load balancing algorithms

against particular distributed system attributes and workload models. For this purpose a

system is to be built to allow experimentation with distributed system attributes, load

balancing algorithms, and workload models.

Three methods have been used to study the performance of load balancing

algorithms: analytical modelling (using queuing theory), simulation modelling, and

prototyping. The first approach is often based on simplified model assumptions (e.g.

instantaneous job transfers and at no cost), leading to results useful only to set

performance bounds [Krueger87]. Also as shown in a survey by Wang et al. [Wang85]

even simple load balancing schemes can lead to unsolved problems in queuing theory.

This is particularly true for systems with nonhomogeneous process initiation rates,

hyperexponentially distributed service demands, and a variable number of nodes

participating in the system [Krueger88a]. We also reject the prototype based

measurement method for the specific equipment required, the excessive development

time needed, and the restricted control of the system parameters. We chose the

simulation method of analysis for the advantages it provides: much less time to set up a

model with realistic assumptions, makes it possible to have a complete control over all

parameters and events of the system under study, and experimentation in virtual time

[Jard88].

The objective of this work is to use modelling for load balancing not to present a

comprehensive measurement study of a prototype system. This experimental

methodology is justifiable since no specific real environment is targeted, and the aim of

the experimentation being a demonstration of the effects different system characteristics

on load balancing strategies, and an exhibition of the system behaviour to its full extent.

64

4.2.1. Experimental Models and Factors

Since the approach used for this research is to study the interdependence of

various distributed system attributes and workload parameters, and the load balancing

algorithms performance based on simulation experiments, the simulation model input

involves many factors. Some have different quantitative levels and some have different

qualitative nature. In order to have a manageable experimental environment, the

maximum number of parameters are to be kept fixed based on modelling decisions or

through experimental identification of optimal values. Given the large number of factor

and level combinations that can be manipulated in the simulated distributed system,

three categories of parameters can be identified. The structural assumptions which

represent the system components that are fixed across a set of experiments (e.g. file

system structure, workload model), while a second category of parameters are changed

one at a time and constitute the experiment options or decision variables (e.g.

communication bandwidth). The third category which includes the system load level

and the load balancing algorithm option are used as experiment variables in the

evaluation of the distributed system performance.

The description of an experiment involves the specification of the experiment

attributes: the objectives sought, the input factors, and the performance metrics along

with the format of the results presentation (tables, graphs, etc:). As the analysis of the

results progresses, more model factors will be discovered as not having an impact on

the performance and therefore their values should be fixed or the number of their levels

reduced (e.g. load balancing strategies). It is also to be noted that changing the level of

one factor might require the adjustment of other parameters to get an optimal operation.

As shown in Chapter two, a load balancing system modelling involves a

representation of the load index, the load balancing algorithm, the workload, and the

65

distributed system attributes. Based on the distributed system attributes assumed four

distributed system models are identified:

• system with disk-based homogeneous nodes.

• system with diskless homogeneous nodes.

• system with diskless heterogeneous nodes.

• system with disk-based heterogeneous nodes.

The baseline version for each model corresponds to the default parameter values and

serves as a reference to the models with more realistic assumptions. The default system

components have been arrived at through a combination of modelling decisions and

experimental parametric tuning for optimal performance.

The essential system attributes considered are: the file system structure, the system

nodes configuration and host modelling, and the communication device. The fixed

parameters and default values of the simulated system have been presented under the

default tables in the following sections. After many preliminary tests only the

parameters for which the system response time is potentially sensitive are considered.

The load index is defined as the node CPU queue length. Homogeneous as well as

heterogeneous workload models are considered. Table 4.1 depicts the experimental

factors to be investigated for each system component along with their options and

levels.

The algorithms implemented are random polling based around the following

strategies: Sender, Receiver, Symetric, Random, and Diffuse. A textual form

description is given in Sections 2.5.1 and 3.3. They cover different information and

control policies. This includes the following features: dynamic, adaptive, sender­

initiated, receiver-initiated, symmetrically-initiated, periodic and aperiodic activation,

and versions adapted to heterogeneous nodes.

66

Periodic algorithm (a timer-driven version of the Receiver algorithm), Shortest

(system-wide load information vector based algorithm), Sender_Df variant of Sender,

Symetric_Df variant of Symetric algorithm have also been investigated. These variants

use the inter-node load difference in the negotiation policy instead of the threshold

level. In order to keep the number of algorithms under evaluation small, they have been

eliminated from further investigations either because they do not improve the

performance significantly or because they behave with no significant difference to other

selected algorithms or do not have the autonomy or scalability attributes.

4.2.2. Performance Studies

Previous studies of the performance of load balancing strategies were based on

simplified distributed system models and with no consideration of the effect of some

essential system design options such as communication model, heterogeneity of node

speed, and file system structure. To address the research questions stated in Chapter 3, a

series of simulation runs are carried out. The experimental factors are varied one at a

time and their influence studied.

1) System Calibration and Validation Experiments

The aim of this first experimental phase is the calibration and validation of the

simulation model of our system. Based on the model used in Eager et al. [Eager86] and

Michandaney et al. [Mirchandan89] the following issues are addressed.

• calibration of workload model, local and global schedulers, load balancing

algorithms, and transfer device model.

• reproduction of literature results for Sender, Receiver, and Symetric algorithms.

• validity of results checking.

67

A. Distributed System Attributes

1) System size and hosts configuration
a) Network size: 5, 10, 20 nodes
b) Speeds configuration

-Homogeneous nodes with single speed configuration: 1 job/time unit
-Heterogeneous nodes with two classes of nodes speed: 1 and 2 jobs/time unit

c) Local scheduling discipline: FCFS, Round Robin, preemptive priority FCFS
2) File system structure

-Diskless nodes with shared file server
-Disk-based nodes with no shared file server

3) Communication device attributes
-topology: bus, ring
-protocol type: FCFS, CSMNCD, TOKEN PASSING
-data transfer rate: 5 to 100 Mbits/sec

B. Workload Models

a) nature of jobs and service demands
-homogeneous jobs (single class of jobs)
-heterogeneous jobs (two-classes jobs with short/long proportions: 95/5, 70/30)

.non-selective transfers

.selective transfers
b) job initiation rates or load levels

-homogeneous users load levels:
(0.1), S (0.2), (0.3), L (0.4), (0.5), M (0.6), (0.7), H (0.8), V (0.9)
-combination of heterogeneous users: 4S, 2M, 4V for homogeneous nodes
-arrival rates for heterogeneous nodes: scaled, identical

C. Load Balancing Algorithms

a) homogeneous nodes
-Algorithm: Sender, Receiver, Symetric, Diffuse, Random, Shortest
-Algorithm adjustable parameters:

threshold (T), number of probes (Lp), timer period (Pt)
-Load balancing overheads:

.Message packaging/unpackaging cost (Msend/Mrecv)

.Transferable jobs separation cost for selective transfers (Job_sep)
b) heterogeneous nodes

-Standard algorithms: Sender, Receiver, Symetric, Diffuse, Random
-Algorithm adjustable parameters:

threshold (T), number of probes (Lp), timer period (Pt)
-Adapted algorithms: Sendeca, Receiveca, Symetric_a, Diffuse_a, Random_a

Table 4.1 Experimental Factors and their Levels

68

2) Experiments on Homogeneous Systems

The objective of the experiments below is to measure the effect of system

attributes on the performance of load balancing and in particular to classify the

performance of the Diffuse algorithm with regard to others in the literature: Sender,

Receiver, Symetric, and NOLB case. The effect of the following system attributes and

workload models is to be evaluated.

• File System Structure

How do the algorithms implemented behave under the shared file structure and

local file system structure and which algorithm is most appropriate for each

structure? Are the diskless and disk-based systems affected differently by the

other experimental factors?

• Communication Attributes

In most reported work, the broadcast device is assumed to have a large bandwidth

(Le. network subsystem not heavily loaded), there is no contention for

communication device and therefore no communication delays. Is this assumption

valid for realistic conditions? In this experiment we investigate the effects of the

communication device attributes (device speed, communication protocols) which

determine the level of communication delay and its effect on the performance of

load balancing strategies .

• Load Balancing Overheads

The impact of non-negligible load balancing overhead (message and job

separation costs) on the distributed system performance is assessed .

• File Server Speed in Diskless Model

69

Does the file server speed have an effect on the distributed system performance in

the presence of a load balancing scheme?

• Workload Model

Three workload models are considered: homogeneous users with homogeneous

jobs, heterogeneous users with homogeneous jobs, and homogeneous users with

heterogeneous jobs. For heterogeneous jobs the transfers can be non-selective or

selective. This involves the identification of the level of performance

improvement under different workload models as well as the relative order of the

load balancing algorithms. For each workload model, the most appropriate local

scheduling discipline is used.

3) Experiments on Heterogeneous Systems

The objective of the experiments below IS to measure the effect of the

heterogeneity of network nodes speed on the performance of standard load balancing

algorithms, and to assess the performance improvements made when adapted versions

of these algorithms are used. The following algorithms are evaluated: Random, Sender,

Receiver, Symetric, and Diffuse. This evaluation is done on a ten nodes network: five

nodes with service rate fll and five nodes with service rate fl2, where fll = jobs/time unit

and fl2 = I job/time unit. Two types of workload are considered: identical arrival rates

for all nodes, and identical node utilisation level on all nodes or scaled arrival rates.

70

4.3. Distributed System Model

The model of the system under investigation is divided into the following parts:

file system structure, hosts configuration, communication network, workload model,

and performance metrics. Each aspect is detailed below with a table of default and

variable parameters given where appropriate. The notation used to describe the

parameters of the workload model is depicted in Table 4.2.

n Number of nodes

E[T] Mean job inter-arrival time to a node

Aj Arrival rate at node i (Aj = llE[T])

M Exponential distribution describing jobs arrival process

/li Processor service rate at node i

Pi Utilisation of node i = AJ /lj
i=n

P System load = LPi In

H

p,l-p

E[S]

i=O

Hyper-exponential distribution describing jobs service demands

Probability mix for the hyper-exponential distribution

CPU expected service time for a job

Standard deviation of job service time

Coefficient of variation of job service time = as I E[S]

Table 4.2 Workload Model Notation

4.3.1. Overview of the Model

The loosely-coupled distributed systems modelled in this study consists of a set of

autonomous computers connected by a local area network, exchanging information

through a message passing mechanism [Chandras90], and operating in a cooperative

fashion. In this environment the resulting pool of processors can be shared to improve

the system performance by relieving overloaded nodes through remote execution of pan

of their load on less loaded nodes. The load balancing strategies to be investigated

apply to a general-pUIpose distributed computing system composed of a cluster of

workstations!compute servers [Ezzat86]. The nodes are assumed to be public ally

71

owned, therefore there is no priority for local jobs over remote jobs of the same

category.

Figure 4.1 shows a distributed-queue representation of the system inspired from

the models in [Livny84, Ezzat86]. It consists of n identical nodes subject to external as

well as transferred jobs arrivals. No prior knowledge of the jobs arrival time and service

demands is assumed. This system can best be approximated by the n*(M!HI1) queuing

theory model [Krueger88a]. The communication network is based on a broadcast bus

device.

external job arrivals

NaDEl r---------------,

I
I
I
I

PI

L ______________ _

completion

external job arrivals

NODEn
r---------------,

Pn

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I _______________ .J

completion

communication network

Figure 4.1 n*(MIHI1) distributed system queuing network

The file system structure of a distributed system is a major component whose

impact on the perfonnance of a load balancing scheme needs to be assessed. At one

end of the spectrum are systems with no local secondary storage relying solely on a

shared disk server (i.e. diskless nodes); at the other end are systems with local disk

72

storage at each node and no files replication (i.e. disk-based nodes). Between the two

are hybrid architectures for example a common structure is one with shared file server

and small local disk attached to each node used for swapping or holding of temporary

files. We are interested in upper and lower bound performance, therefore we deal only

with the two extreme cases: diskless and disk-based system structures.

In a diskless system, the communication device is used for remote file access, and

other shared servers access (e.g. printer) as well as for load balancing activities. A

remote job placement requires only the sending of a message (e.g. 1 Kbytes of data for

program name, input and output files path description), and the saving of the results

onto the shared server. A local job execution involves fetching the job image from the

shared disk through the transfer device and saving the results back through the same

channel onto the shared disk or their display to the screen for interactive jobs. The

shared disk I/O operation demands are assumed evenly distributed and requiring 60,000

machine cycles. This structure is represented in Figures 4.2 and 4.3.

For a disk-based system, since each node has its own local disk, no file access is

done through the transfer device. In this case a remote job placement entails

transferring the full job along with its input to the new node. When the job completes

the output is returned back through the communication device to the originating node.

A local job execution involves fetching the job image from the local disk and saving

back the output or their display to the screen for interactive jobs. The transfer device is

used mainly for the load balancing activities. This structure is represented in Figures

4.4 and 4.5.

The choice of the parameters for shared and local file system structures have been

made through realistic system abstraction to achieve a comparable utilisation level and

service time when the nodes are subject to the same workload with no load balancing

File

Server

Computer

Nodel

Userl

(1 Kbytes)

73

File

Server

Communication Network

Computer

Noden

Usern

Figure 4.2 Diskless Distributed System Architecture

Disk read

Shared

File
SelVer

Save results
(25 Kbytes)

0 trans er messagf J b fi
(1 Kbytes)

~

Client i Negotiation messag< s Clientj

oE
(100 Bytes)

)00

Figure 4.3 Data Flow in Diskless Model

Computer

Node I

User!

74

Communication Network

Computer

Noden

Usern

Figure 4.4 Disk-based Distributed System Architecture

Returned results

(25 Kbytes)

Job transfer
(50 Kbytes)

Station i negotiation messages
(100 Bytes)

Save local results ~
(20 msecs) I Fetch local image for local execution

(20msecs)
Save returned resul Fetch local image for remote execution
(20 msecs) ----- (20 msecs)

Figure 4.5 Data Flow in Disk-based Model

activated.

Station j

1 ---

Each host is managed by a separate copy of kernel [Cheriton88] with associated

communication protocols and the load redistributing software referred to in this study as

a global scheduler. It is implemented based on the message passing paradigm, and is

75

replicated at every node to provide an interface to the users jobs, the load balancing

strategy, identical global schedulers at other nodes, and to its own local scheduler. It is

also in charge of the maintenance of the system state, resource queues, and the handling

of other special provisions such as an ageing mechanism to solve the potential "queued

forever" situation inherent to the preemptive local scheduling discipline.

4.3.2. Host Modelling

Although the network is made up of functionally identical processors, the

processing speed of the nodes can be identical (homogeneous hosts) or the nodes come

in different classes of processing speeds or service rates (heterogeneous hosts). Both

configurations are briefly described below.

The first-come-first-serve (FCFS) local scheduling discipline [Ferrari85] for the

execution of jobs is assumed. A first alternative discipline to FCFS is the preemptive

priority FCFS (PFCFS) which gives a priority to short jobs [Eager88], taking into

account the characteristics of the jobs by filtering out jobs with small demands which do

not justify a remote execution [Ezzat86]. This also results in a better ratio of response

time to service demands. The second alternative local discipline is the round robin

(RR) strategy. Both the FCFS and the RR disciplines schedule the jobs independently

of their actual service time.

Zhou points out that the CPU is the main contention resource in a computer

system [Zhou86]. The memory is assumed large enough or a local hard disk is

provided for swapping. The secondary storage devices are modelled as infinite servers

with 40,000 cycles processing delays for each I/O operation as a rough approximation.

This corresponds to about 20 milliseconds on common workstation processors with a

processing speed (Le. service rate Ili) of one job/second for a 0.5 Ilsecs machine cycle

time. Further host parameters are depicted in Table 4.5 (Section 4.4.2).

76

With the proliferation of personal computer/workstations and the constant increase

of their processing speed, it is very common to have a computer network with nodes of

different computing speeds but which are compatible at the operating system and binary

code levels. The execution time of a job depends on speed of the node where it is

executed. There is an intuitive advantage of dynamic load balancing in such an

environment. While some substantial related work has been done for centralised

system, very few works have been reported on load balancing for distributed

heterogeneous systems. Models with homogeneous hosts are evaluated in Sections 5.2

and 5.3, while heterogeneous hosts are considered in Section 5.4.

4.3.3. Communication Network Model

The broadcast communication device which is widely used for the interconnection

of multicomputer systems and networks of workstations is assumed in this work. The

jobs are executed independently at individual computers, with no inter-communication.

The communication device is used for remote file access, job transfer, nodes status

exchange, negotiation messages, and the interaction with other shared servers. The

information delivered across the network can be classified into two categories:

messages (i.e. status information, negotiation, job descriptor), and files (Le. remote job

image from shared file server or originating host, returned results, other files). The

default communication device assumed is a 10 Mbits/second broadcast device with a

FCFS protocol. However, in Sections 5.2.1 and 5.3.1, a simulation study of the

performance of other protocols [Mitrani87] (i.e. CSMA/CD, TOKEN PASSING), as

well as the transfer speed, is undertaken. It is to be noted that the practical transmission

speed of a communication device is only a fraction (20 to 40 %) of the theoretical speed

limit given [Johnson89]. This is due to contention delays and packets overheads. Table

4.3 depicts the communication device default parameters.

Network topology

Device data transfer rate

Word size

Packet size

Protocols

Packet Overheads

77

bus, ring

5 to 100 Mbits/sec

32 bits

1 Kbytes

FCFS (options: CSMAICD, TOKEN PASSING)

12.8 j..lsecs

Table 4.3 Communication Device Parameters

The transmission time of a job depends on device data transfer rate, job size, and file

system structure. However, the actual job transfer time is unpredictable and depends on:

message packing time (Msend: fixed value), transmission time (based on job size,

packet structure), unpredictable network delay (device speed, traffic level, and

communication protocols used), message unpacking time (Mrecv: fixed value).

In a typical general purpose computing environment the individual nodes would be

presenting a range of input/output to the network because the hosts operate with

differing performance characteristics (e.g. file server, line printer, nodes with

heterogeneous speeds, heterogeneous users). As a consequence the load on the network

would most likely be asymmetrical both in arrival rate and transfers size.

4.3.4. Workload Model

To stress the importance of the workload model for load balancing we use a

quotation from Zhou "Load balancing is based on exploiting the dynamics of

workload" [Zhou87]. The users' environment being modelled consists of independent

jobs arriving at individual computer nodes based on Poisson distributions. Both

homogeneous as well as heterogeneous users are considered.

The workload nature can be assessed along the arrival patterns and i.ntensities (i.e.

arrival rate Ai), and the job characteristics: type, mix, size, service time [Krueger88].

The models used in this study are based on the results in [Cabrera86, Lee86, Zhou86].

78

The exponential distribution is frequently used to represent job arrivals at each

node. This is referred to as the Poisson process [Lavenberg83]. This model fits

homogeneous random job arrivals well, but to represent bursty job arrivals to the

system each node is subjected to a different load level. These are called heterogeneous

initiation rates and correspond to heterogeneous users.

The other aspect of the workload model is the job size and the service demand.

Zhou [Zhou88] and Leland et al. [Leland86] have shown that exponential distributions

approximate poorly to process service demands, instead hyperexponential distributions

are to be used [Leland86]. A hyper-exponential distribution H is a mixture of two or

more exponentials [Krueger88]. In our model two-classes of jobs are assumed and are

simulated by two exponentials distributions one for short/immobile jobs and the other

for long/transferable jobs. The combined service time S is given by [Kobayashi78]::

(4.1)

where p is the probability of a job being from the short class such as 0 < p < 1. The

service time E{S] is defined by

E[S] == 1/1l=pl lll + (1-p)11l2' (4.2)

The coefficient of variation Cs for a 2-stage hyper-exponential job service demands is

defined by [Lavenberg83]:

Cs = [[2(PIS;+(1-p)/St)l(pISs+(1-p)/S/f]-1]1I2 (4.3)

where Ss and S/ are mean service time for short and long jobs respectively.

In addition to the service time length, jobs can be categorised based on the nature

of their service demands: CPU-bound jobs, and I/O bound jobs also called interactive

jobs. In this simulation study only CPU-bound jobs are eligible for remote execution,

all interactive jobs are processed locally. Also processed locally are immobile jobs

which include jobs requiring short service time, and local node dependent jobs whether

short or long.

79

It is difficult to estimate the execution time of a job as opposed to transfer time

which can be assumed proportional to the program length. However, the separation of

short jobs from long jobs can be based on the job initiation command. The choice is

made by the user or by an enhanced command interpreter. For the latter case a

configuration file containing the names of jobs eligible for remote execution is

provided. If the expected processing time of a job is less than T cpu , a threshold value,

then it is not worth executing remotely. An empirical value of Tcpu is 2*C where Cis

the minimum wall clock transmission time of a job [Castagnoli86]. The service time of

a job depends on its service demands, the file system structure, the load level, and the

processor speed.

As further defined in Section 4.4.5, the system workload is generated artificially

using probability distributions. Although these functions may not represent any specific

real environment, they give a good approximation of the fluctuations of workload under

small (S), light (L), moderate (M), heavy (H), and very heavy (V) load levels, and the

service demands that the load balancing strategies must handle. To evaluate the

performance at different load levels, the system load is varied by shortening or

lengthening the mean inter-arrival time for users jobs at each node. Table 4 .• depicts

the workload parameters with one job/second service rate hosts assumed.

4.3.5. Load and Performance Metrics

For load balancing algorithms the local processor load level is the prime factor

used to decide whether to allocate a process locally or to transfer it to a remote node for

execution. Many alternatives for its evaluation are outlined in Section 2.3.1. Among

these alternatives, the CPU queue length is the most favoured load index [Zhou86], for

its correlation to the response time and the instantaneous CPU utilisation, and for its

quick and efficient evaluation. The CPU queue length is considered as the main

80

Job size

Jobs arrival

exponential with mean= 50 Kbytes

Poisson process with different system load levels:

(0.1), S (0.2), (0.3), L (0.4), (0.5), M (0.6), (0.7), H (0.8), V (0.9)

a) Homogeneous jobs service demands exponential

E[S] = 1.0 secs

b) Heterogeneous jobs service demands hyper-exponential

combined job E[S]= 1.0 secs, (P*short + (l-p)*long)

short job Ss = 0.8 secs, p = 0.95

long job Sf = 4.8 secs, 1-p = 0.05

Cs 1.04

c) Heterogeneous jobs service demands hyper-exponential

combined job E[S]= 1.0 secs, (p*short + (1-p)*long)

short job

long job

Cs

Ss = 0.4 secs, p = 0.70

Sf = 2.4 secs, 1-p = 0.30

1.23

Table 4.4 Workload Parameters

resource of contention and used as the load indicator throughout this work.

The main objectives of the scheduling strategies for an autonomous computer

system are to minimise the job (process) response time or the average time spent by a

job in the system, to maximise the CPU utilisation, to maximise the system throughput,

and to ensure fairness. The latter represents the quality of service from the user's point

of view and can be represented by the response ratio of the wait time over the service

demands.

When dealing with a distributed system, the notions of system balance and

stability are to be introduced. The goal of a load balancing scheme is to 1) minimise

the job mean response time with a minimum job movement, 2) to balance the load over

the nodes in the network, and 3) to minimise the load balancing costs. The performance

of a load balancing algorithm is a trade-off between its benefits (overall system

response time, balance factor, node utilisation) and its costs (job movements,

81

communication and control overhead). The balance factor represents the queue length

difference between the least loaded and the most loaded nodes in the network

[Livny84].

There are two types of system instability [Zhou87a] that appear in a distributed

system: the host overloading or flooding, and the job thrashing. Job thrashing

corresponds to a successive transfer of a job from one node to the other due to bad

decisions. Job thrashing is not considered since jobs are allowed a single move in the

load balancing strategies under investigation. Host overloading occurs when a number

of nodes detect that a node is underloaded and each simultaneously transfers a job to it.

This can be evaluated by the level of job movement introduced by the load balancing

algorithm and the resulting bad decisions rate.

In this study the system performance is evaluated in terms of:

a) Overall job response time (R)

-mean value

-standard deviation to measure the response time variability

(i.e. response time predictability)

b) System stability

-percentage of jobs moved across the network

-percentage of bad decisions which indicate the level of host overloading

c) Load balancing cost

-number of negotiation/information messages exchanged per host per second

-percentage of CPU utilisation increase due to load balancing activities

d) Transfer device performance indices [Hayter88]

-percentage of network utilisation

-mean request delay (level of networklhost devices interactions)

The relation between the response time R and the system load is given by the Little

formula L= A R [Lavenberg83] ; where L is the load, A the arrival rate, and R the

response time. This formula states that the average number of customers in the system

is equal to the product of the arrival rate and the average system response time. When

82

applied to a system of n subsystems, it becomes:

i=n
R = 'LA.iRJA. (4.4)

i=l

4.4. Simulated System Implementation

The testbed environment for this study is composed of artificial workloads

generated using probability distributions to drive a simulator that implements a number

of load balancing algorithms in a loosely-coupled distributed system environment. Four

system options are simulated: homogeneous diskless workstations with file servers,

homogeneous disk-based workstations with no shared file server, heterogeneous

diskless workstations with shared file servers, and heterogeneous disk-based

workstations with no shared file server. A graphical representation of the components

of the simulated system is shown in Figure 4.6. In this section, the implementation of

this simulated system is described.

4.4.1. Simulation Environment

Simulation is an important stage in the development of new load balancing

algorithms. It is based on an abstract model of the real system, which is usually

specified by mathematical or logical relationships. The model is described in terms of

its state, entities and their attributes, sets, events, activities and delays [Banks84]. It is

by simulating an algorithm that we increase the confidence in its superior performance,

demonstrate the existence of errors or gain new insights into its behaviour under more

realistic model assumptions. The intended study requires the simulation of the

following distributed system components:

1) Distributed system structure

a) computing node

-CPU, processor speed

-user process creation, execution, destruction functions

83

I
I

Communication Network I
I
I

------------------------------~ I Load Balancing I

Hosts and File System Structure I
I
I Algorithms --- ___________________________ J
I
I
I

Global Scheduler I
I
I
I

I I I
I Performance Monitoring I I
I I I

Jobs Arrival Jobs Done

Workload Generation

Simulation Model Specification

i
Experimental factors

Figure 4.6 Simulated System Components

-local process scheduling discipline

b) communication device

-communication protocols, communication bandwidth

-network data packet structure

c) distributed kernel mechanisms for

-interprocess message-passing

-process placement (non-preemptive)

-global state information exchange

d) maintenance of a global time source

2) Decentralised load balancing algorithms

-algorithm structure

-adjustable parameters and policies

84

3) Workload generation

-probability distributions type and mean value

for job arrivals, job size and service demands

-system load specification

4) Statistics information generation (both at node and network levels)

-length of virtual time over which the experiment is carried out

-period at which evaluation is invoked

-nature and volume of information generated

-computation/presentation of relevant results in tables, graphs etc:.

This tool must also place the simulation model under the control of the user

[Casavant87a]. The performance objectives and metrics specification, the distributed

system components parameters, the workload specification, and the load balancing

algorithms options and parameters should be accessible to the user.

The simulation of a system is not a goal in itself. It is a means to learn more about

the behaviour of the system under study and to make specific decisions based on the

simulation results obtained. The main purpose of this simulated system is to implement

the essential features needed to study the behaviour of various models of distributed

computer systems, and to provide an environment in which experiments on load

balancing algorithms can be carried out.

We have chosen Network 11.5 [CACI89] as a software design aid for the building

blocks it provides for the simulation of computer systems, and the computer

communication structure which is included. It is to be noted that Network 11.5 provides

a more realistic simulation of communication device, and powerful probability

distributions to simulate the workload. On top of this structure we designed and

implemented our models of distributed computer systems, and the load balancing

algorithms to be evaluated as specified in Section 4.2.1. This simulator has been

85

developed within a Simscript II.S 1 language environment. It is a general purpose

simulation language based on the process interaction simulation strategy and is of a

declarative type. The simulation model obtained on such an environment lends itself to

a diagrammatic representation (two-dimensional picture) [Evans88], which is preferred

to a textural representation (sequential program text or flow chart). The software

module bubble chart representation is used to describe the simulator logic. It is based on

modules entities, modules precedence, semaphore dependency, and message

dependency.

In the following sections, the designed and implemented entities are documented

at a high level and their representation justified in accordance with the system model

specified in Section 4.3. The choice of the features of the distributed computer system

to be implemented is to be tailored to the experimental needs and system model

requirements. Some aspects of these entities are assumed negligible, while others are

actually simulated using abstract models which capture the essential features, and may

be considered as a good approximation of reality. The main system hardware and

software entities simulated are: autonomous hosts, communication network, file system

structure, global scheduler, local scheduler, load balancing algorithms, workload

generation, performance metrics monitoring, and other simulation control

considerations. Below is a summarised description of each entity. The scheduling

component of the distributed system is split into a local scheduler which manages the

access to the processor for the jobs that are to be processed locally, and a global

scheduler which redistributes the system workload among the nodes through job

transfer. The local scheduler is described under the next section.

1 CACI Products Company

86

4.4.2. Autonomous Hosts

The processing nodes are simulated as autonomous entities with the instruction

repertoire (processing, message, assignment, read/write) needed to implement the

system model software components. The relevant parameters are made tunable to test

the effect of different values. Since the autonomous nodes communicate only through

message passing, the message passing primitives implementation is fairly sophisticated

and includes all the needed global inter-process communication mechanisms for

buffering, packing, routing/broadcast, and interactions with the transfer device.

Messages are sent to other nodes in a non-blocking manner. To reduce the processing

capacity taken by the load balancing messages from the main processor, an input

controller is provided. This allows the processor to receive input messages while

executing other modules. The received messages are put in a received messages list and

can be consumed when appropriate provided there are modules to consume them. In

the absence of the input controller, the processor must work the entire amount of time it

takes to receive the message from the communication device. If the processor is busy, it

will block both the sending processor and the connecting transfer device.

The local scheduler or kernel provides the necessary mechanisms for the process

creation, execution, interruption, destruction of user as well as supervisory processes.

The local discipline options implemented are: PCPS, preemptive priority PCPS, and

Round Robin. An optimal time quantum of 50 msecs for the Round Robin discipline

was identified experimentally. The access to the local scheduler is regulated through a

maximum value of the local queue (LQ) based on the local discipline. Except for the

transferred jobs which are fed to the local scheduler upon arrival at the remote node,

both local short and long jobs are queued in their respective wait queues before their

submission. Since we are not dealing with preemptive load balancing policies, once a

job is handed to the local scheduler, it becQmes a process out of the control of the

87

global scheduler, its process image is already fetched or currently being fetched for

local execution. A graphical representation of the local scheduler is included in Figure

4.7 (Section 4.4.4). The relationships between the different queues is as follows. The

CPU queue length includes the short wait queue, the long wait queue, and the local

queue (LQ). The local queue (LQ) represents the local ready queue, the interrupt

queue, and the resident process. The main characteristics of the local scheduler are

depicted in Table 4.5.

To get an accurate model abstraction, the file system structure is to be represented.

Basically the file system structure specifies where the files are held and where the

computing results are to be saved. In this study the case where all files reside at a shared

file server (i.e. diskless model), and the case where each computing station has its own

file system (Le. disk-based model) are both simulated. The default network size

experimented with is ten clients and one server for the diskless model and ten

autonomous hosts for the disk-based model. Network sizes of five and twenty nodes

have also been considered to measure the sensitivity of the results on the choice of the

network size.

4.4.3. Communication Network Attributes

The simulated transfer device models the communication layers up to the transport

layer, and allows the user specification of the transfer device speed, the data packet

structure, and the medium access control protocols with their relevant parameters. The

nodes connected to the broadcast bus are: FILE_SERVER, NaDEl, , NODEn where n

Number of hosts

Host service rate (Ili)

Local discipline

10 hosts (options: 5, 20 nodes)

1 job/time unit (option: 2 jobs/time unitfor fast hosts)

FCFS (options: pFCFS, RR100)

Table 4.5 Local Hosts Parameters

88

represents the network size. The common characteristics of the transfer device are

chosen as specified in Table 4.2 (Section 4.3.3). The protocols options implemented

are: FCPS, Collision, and Token Passing. They are detailed below.

FCFS protocol

For this protocol a simple rule is used. The request to the transfer device are

serviced in the order they are made. The node keeps the device until its transfer

instruction is completed, regardless of how long it takes. A central controller is used to

arbitrate among contending communication device users.

COUlSION protocol

This corresponds to the IEEE 802.3 carrier sense multiple access protocol with

collision detection (CSMNCD). A broadcast transfer device can be in one of the

states: idle, unsettled or busy. It is unsettled during the collision window. When still in

use after the collision window period is over, its state is busy.

A collision occurs if two or more nodes "see" the transfer device as idle and both

try to use it (Le. execute a message instruction or transmit a set of packets). The

collision is detected when the packet received during the collision window is different

from the packet transmitted. The collision window is the period of time during which

the transfer device is vulnerable to collision after a new user takes it. This is due to 1)

propagation delays due to physical separation of devices, and 2) delays between

checking a transfer device status and actually beginning to transmit. It is estimated as

the time required by light to travel between the two most widely separated stations

[Cheung88, Coulouris88]. For a distance of 20 meters, the collision window is

20/3* 108= 0.066 J.lsecs. It should be less than 5 J.lsecs for a one kilometer distance cable.

When a collision occurs, a jamming signal is sent to all stations. It ensures that all

stations know of the collision and back off when they should. It is a collision consensus

89

enforcement strategy, though it is not an essential feature of CSMAlCD protocols

[Hammond86] .

The contention interval is the additional amount of time a node has to wait before

attempting to access a transfer device, once the requested device becomes idle taking

into account the assumed inter-packet interval time. Since CSMNCD does not include

such a feature, it can be assumed with a value zero.

After a collision the period of time to wait before trying again is called (Le. retry

interval). It can be chosen as an arbitrary multiple of the collision window. The IEEE

backoff algorithm based statistic distribution is commonly assumed for the retry interval

[Hammond86] .

The jam time is the time length of the jamming signal sent by both users when a

collision is detected, then wait for retry interval. Since the jamming signal is not an

essential feature of CSMA/CD, the jam time can be assumed with a value zero.

The main parameters of the collision protocol are depicted in Table 4.6.

Collision window

Retry interval

Jam time

Contention interval

0.066 J.lSecs

standard backoff distribution

O.Ollsecs

O.Ollsecs

Table 4.6 Collision Protocol Parameters

TOKEN PASSING protocol

For this protocol the requests to the communication device are ordered in a

dynamic manner. The nodes are arranged into a logical ring; with the access granted in

a sequential manner. Once holding the device, the node can use it for a continuous

series of transfer instructions. The size of the series is specified by the key attribute of

the node. A node key is used to indicate the number of consecutive transfer device

accesses (Le. message instructions). The toke'1 passing time is the time it takes to pass

90

the token from one node to the next (i.e. delay to add realism to the model). When a

token passing time value is specified the transfer device will always be 100% busy. For

this protocol, a key value is specified for each node connected to the ring

communication device. In this study the key value is one for all the nodes including the

file server.

4.4.4. Global Scheduler

The global scheduler is implemented on top of the local scheduler and has a

network-wide scope. It is the scheduling component of the distributed system that is

replicated on every node, and provides an interface to user jobs, the load balancing

algorithm, identical global schedulers at other nodes, and to its own local scheduler.

The functions of the global scheduler include:

• Job Separation

This function involves the identification of long jobs from shon jobs. It is an

important function, in the case of heterogeneous jobs, because only long jobs are

worth executing remotely on lightly loaded nodes despite the communication

overheads for a service time E[S] > Tcpu. There are two ways to implement it, by

putting the burden on the user to identify transferable jobs and submitting them

with a specific command identifier, or by enhancing the command interpreter for

example adding a software routine that uses a database containing the name of

possible commands to separate the two categories of jobs. In this simulation

model, this function is assumed to be a black box which generates the job category

based on the uniform distribution (P) which is also used to generate the hyper­

exponential service time distribution. However, a job separation parameter is

provided to evaluate the effect of this overhead on the load balancing algorithms

performance.

91

• System Information Gathering and Maintenance

This module continuously updates the instantaneous local load value, periodically

updates the system load vector for the load balancing requiring full system state

information. It also periodically updates the estimated job arrival rate for the

adaptive load balancing strategies.

• Maintenance of Resources Queues

Once the decision to place a job in the local node is made, this routine requests a

job image from the file system and puts the job into the queue of the local node.

The local node queue is regulated by this routine to keep the number of

jobs/processes allowed into the local scheduler below a fixed maximum value.

This value depends on the local scheduling discipline, and the file system

structure. It includes the process currently running, the interrupted processes, and

the jobs in the local ready queue. Other resources queues to be maintained are:

transferable jobs queue, immobile jobs queue. Jobs are guaranteed execution after

one transfer, they are fed to the local scheduler upon their arrival at the remote

node.

• Load Balancing Algorithm Activation

Whenever the conditions of a need for load redistribution are met, the load

balancing algorithm is activated. The transferring of jobs is given a preemptive

priority over the processing of users jobs.

• Remote Nodes Interface

An inter-processor messages handler is implemented to manage the negotiation,

information, and jobs messages exchanged between the different nodes of the

distributed system. It also transfers jobs for remote execution, and handles the jobs

transferred from other nodes.

92

The implementation of the simulation model involves supervisory software and user

processes. The supervisory software includes the global scheduler functions, the jobs

generation modules, the load balancing algorithm modules, and is executed at a priority

higher than the user job processing modules. Two graphical representations of the

global scheduler can be made depending on the nature of the activation of the load

balancing algorithm: aperiodic Gob arrival or departure initiated) and periodic initiation

for the Diffuse algorithm. The distributed scheduler structure which include both local

and global schedulers is shown in Figures 4.1 and 4. S for the case of heterogeneous

jobs with selective transfers. In the case of homogeneous jobs and heterogeneous jobs

with non-selective transfers, the "Jobs Separation" and "Immobile Jobs" boxes can be

removed. This means that the external jobs are fed directly to the "Loadj" box (in the

case of an aperiodic scheduler) and to the "Transferable Jobs" queue (in the case of a

periodic scheduler).

4.4.5. Models Generation and Performance Monitoring

After the description of the system to be simulated and the specification of the

structure of the system model, now we discuss the generation of the simulation model.

The simulation model generator, developed using a set of Unix shell scripts, takes the

experimental factors as input and uses a library of model components to generate the

appropriate simulation model. The options for each component of the distributed

system, the workload model, the load balancing algorithm including the values for its

parameters are selected. Next the simulator is invoked with the proper control

parameters. At the end of the run length period the results are dumped into the output

file. Not all the data in this file is useful for each experiment. To get only the needed

results an output filter has been developed. It collects the essential metrics and generate

the results tables and graphs input files. It also computes and produces other

93

External Job Arrivals Remote Jobs Local Scheduler

~ - -- - -::.:-.::.:-.::.:k::-.~.:.:-.::.:-: - - -- - - -- ---- - -:
1 Jobs Separation

Load
Balancing

Transferable Jobs

Algorithm
Caperi dic)

'Negotiation Failed'

'Partner Found'

OVER~

-----------------------~-

Global Scheduler

I
I
I I

I
I I I L _________________ J

r _____ J ~/~_ ~~~~n~,

I L ________________ _

File Server(s) or Local System

pushed jobs pulled jobs

Figure 4.7 Distributed Scheduler Structure- Aperiodic Algorithms (selective transfers)

External Job Arrivals

r----------t--------------------'
: : :

Local Scheduler

· . · .
~ Jobs Separation ~
· . · .

l-:~·· ···· ···· .. ·~ .. ··T··: I:mobile Jobs

Transferable Jobs

illJ=jOVER
Load

Balancing
Algorithm
(periodic)

UNDER

~--------------i----- ----------
Global Scheduler Pushed Jobs Pulled Jobs

I
I
I I

I I I

I L------J----------J
I/O operations

r------ ----------,

: U i L--------- ________ J

File ServerCs) or Local System

Figure 4.8 Distributed Scheduler Structure- Diffuse Algorithm (selective transfers)

94

miscellaneous results. These simulation stages are sketched in Figure 4.9.

An important aspect of the simulation model is the workload generation. Each

autonomous host has an exponential statistical distribution source of user jobs which

has the inter-arrival time E[T], and the start time of the arrival as variables. The service

time of the jobs are taken from a hyper-exponential distribution source with p, E[Ss],

E[SI], as variables, for which the combined E[S] is fixed to one second for a one

job/second host service rate. The service demands pattern are kept fixed except in the

experiment on long jobs proportion where the probability (P) is changed. To get

different levels of CPU utilisation, different levels of arrival rate are used.

In addition to the statistics automatically generated by Network 11.5 which include

node utilisation, node queues, transfer device utilisation, transfer device queues, module

execution times, others statistics generation mechanisms have been added to account

for system-wide performance considerations as well as at individual nodes such as job

response time, jobs movement, bad decisions, load balancing costs, wait time in queues

before access to the processor, and job throughput.

Model

Components

Library

J
Output

Experimental -Factors

Model Simulation Simulation Filtering Results til
JOoo

Simulator and Graphs
Generator Model Output

Processing Tables

Misc

Figure 4.9 Simulation Stages

es:

9S

4.5. Simulated System Calibration and Validation

The first experimental phase is devoted to the validation of the simulated system.

To this end a simulation model based on the work by Eager et. al [Eager86] and

Mirchandaney et. al [Mirchandan89] was built. This corresponds to the following

characteristics:

• network size: ten homogeneous nodes with one job/sec service rate

• disk-based file structure

• local discipline: FCFS

• homogeneous jobs with mean service time S= 1.0 sec

• average job transfer delay:
0.1 S for short communication delay
2S for long communication delay

• transfer device access protocol: FCFS

• algorithms: Sender, Receiver, Symetric

On this baseline model the experiments on calibration of the simulation model, the

reproduction of literature results for Sender, Receiver, and Symetric algorithms (see

Figures 4.11 and 4.12), and the checking of the validity of results, were carried out. As

a result of these tuning experiments the optimal parameters values identified are in

accordance with the reported results. Based on the definition of the threshold

parameters introduced in Section 2.5, the following convention on the threshold level is

used: Tsi = Tsa = Tri = T ra = T + 1, where T + 1 represents the waiting jobs at a node plus

the executing job. In Table 4:7 these default experimental values of the tunable

parameters of the load balancing algorithms are given. The default values for other

system components are depicted in the tables in Sections 4.3 and 4.4.

These results confirm that sender-initiated algorithms perform best for light to

moderate load levels while receiver-initiated algorithms do better at moderate to heavy

load levels. The symmetrically-initiated version has the best performance for the whole

range of load levels. Under long transfer delays, the performance of all three algorithms

Threshold (T + 1)

Poll_limit (Lp)

Fixed message overhead

Jobs separation overhead

96

1 job (for short communication delay)

3 jobs (for long communication delay)

2 nodes

5.0 msecs

0.0 msecs for homogeneous jobs

Table 4.7 Load Balancing Algorithms Default Parameters

is nearly identical. The optimal threshold value varies with the level of job transfer

delay or communication bandwidth.

For a simulation run length of 4000 seconds, the percentage of error on the job

mean response time is less 3% for a load level pSO.8, and less than 5% for a load level

p==O.9. Further details on the simulation run length required for a steady state simulation

output and the confidence levels for the numerical results obtained can be found in

Section 5.5.2.

4.6. Summary

A simulated system was built to allow the evaluation of different load balancing

algorithms taking into account the effect of various system attributes and workload

models. Through a reproduction of the literature results, the validation of the

simulation model was undertaken. In Chapter five, the simulation results obtained on

this system for the experiments designed in Section 4.2, are presented and analyzed.

M
e 10
a
n

R
e
s
p
o
n
s
e

T
i

9

8

7

6

5

4

3

2

97

J

I

I
I

I

I
I

I
I

I
I

I
I

I
I

NOLB

Sender

Receiver
Symetnc

m
e 1~~~~~~~==~~==;==-~--~ __ ~

(Sees) 0.2 0.3 0.4 0.5 0.6 0.7
System Load

0.8 0.9 1

Figure 4.11 Algorithms Performance under Short Communication Delays

M
e 10
a
n

R
e
s
p
o
n
s
e

9

8

7

0.3 0.4 0.5 0.6 0.7
System Load

I

J

I
I

I

0.8

I
I

I

I

I
I

I

I
I

0.9

Figure 4.12 Algorithms Performance under Long Communication Delays

NOLB

~~ender
K'ecelver
Symetric

1

CHAPfER 5

Simulation Results

5.1. Overview

In this chapter the results of a performance study of several load balancing

algorithms on four models of distributed systems are reported. As explained in Section

4.2, these models are broadly distinguished by the file system structure and the

homogeneity of the processing speed of the nodes. For each model the performance of

the load balancing algorithms is compared for a range of the distributed system

attributes, including: the communication bandwidth and protocols, the load balancing

overheads, the file server speed (for the diskless model). The workload models

considered are homogeneous users with homogeneous jobs, heterogeneous users with

homogeneous jobs, and homogeneous users with heterogeneous jobs. This work will

contribute to answering the research questions posed in Section 3.4.

The purpose of load balancing is to reduce the job response time of a distributed

system by increasing the utilisations of the processors. Care is needed to minimise the

overheads of moving jobs around the system. The main measure of the performance of

the load balancing algorithms is the metric: job mean response time. This measures the

average time a job spends in the system. Also, to gain further insights into the

performance of the load balancing algorithms, the following metrics are obtained: the

response time predictability (standard deviation of job response time), the mean CPU

queue length, the system instability (level of job movement), the quality of remote

allocation (bad decisions rate), the level of negotiation message traffic per node per

second on the network, the total load balancing overhead added to the computing nodes

(i.e. increased CPU utilisation), and the final metric is the communication device
98

99

utilisation (e.g. percent of busy time, mean request delay).

A pictorial representation of the experimental investigations undertaken in this

chapter is depicted in Figure 5.1. The details of the simulation and system validation

have been described in Chapter 4. The experiments are grouped as follows:

i) Experiments on Homogeneous Diskless Systems

ii) Experiments on Homogeneous Disk-based Systems

iii) Experiments on Heterogeneous Systems

In Section 5.2, the performance of the load balancing algorithms is compared on a

simulated system using homogeneous diskless nodes and a shared file structure. The

system comprises a fixed set of system attributes and workload parameters. It is referred

to as the baseline system. Following this, the performance characteristics of the more

promising algorithms are investigated using different system attributes and workload

parameters. The trade-offs involved between creating a stable, balanced system and the

overheads incurred in bringing this about, are also discussed. With the exception of the

file server related experiment, an almost identical set of investigations are carried out in

Section 5.3, for a system comprising disk-based homogeneous nodes.

Load balancing in heterogeneous systems with various processors speed is

investigated in Section 5.4. Strategies adapted for such configurations are developed

and evaluated using arrival rates scaled to the nodes speed to have the same utilisation

level on all the nodes, and identical job arrival rates on all the nodes regardless of their

speed.

Finally the scalability and confidence levels issues are addressed in Section 5.5.

The tables containing the detailed simulation results are presented in the appendix.

100

4.5

5.3.2

5.3.3

5.3.4 5.4.1.1 5.4.1.2 5.4.2.1 5.4.2.2

.2.5

Figure 5.1 Investigations Structure

101

5.2. Load Balancing in Systems with Diskless Homogeneous Nodes

The objectives of this perfonnance study are:

• To evaluate the load balancing algorithms on a baseline system using the job mean

response time and other perfonnance metrics. This also involves an assessment of

the interdependence of the algorithms properties and the perfonnance obtained.

• To determine the relative perfonnance ordering for the algorithms and the

sensitivity of this ordering to changes in the system attributes and workload

parameters.

• To identify the system attributes which have a significant effect on the algorithms

perfonnance.

• To detennine which algorithms perfonn well under a wide range of system

behaviours.

The simulated system comprises identical diskless workstations connected through

a broadcast communication device. A shared file server to support a distributed file

system is connected to the same communication device and used to hold all the files and

other infonnation needed by the diskless nodes. Further details on the system design

assumptions can be found in Section 4.3. The essential characteristics of the baseline

system which are based on the assumptions commonly made in the literature, are

summarised below. The communication bandwidth is expressed relative to the system

job service rate. A ratio R= compute rate Icommunicate rate is used. The nodes service

rate is kept fixed while the communication data transfer rate is varied.

The baseline system attributes are:

• File system structure: diskless

• System size: 10 homogeneous hosts

102

• System service rate: 10 jobs/sec (Host service rate: 1 job/sec)

• Compute/Communicate ratio: R= 0.13

• Communication protocol: token passing

• File server I/O overhead time:

related to file size

fixed 3.75 msecs + communication delay

• Workload model: homogeneous users, homogeneous jobs with E[S]= 1.0 sees

• Local scheduling discipline: FCFS

• Fixed load balancing message overhead: 5.0 msecs

The essential algorithm parameters to be tuned are the probe limit (Lp), the threshold

(T), and the timer period (Pt). Experimentally the following values have been found

optimal for the baseline system: Lp = 2, T= 1 (for R= 0.13), Pt = 0.4 msecs. Based on

this baseline model, the relative performance of Sender, Receiver, Symetric, Diffuse,

and Random algorithms is computed. These algorithms use different information and

control policies. The effect of the various system factors on the performance of these

algorithms is assessed. The system factors considered are communication bandwidth

and protocols; the load balancing messages cost; the file server speed; and the workload

model.

5.2.1. Algorithms Performance on the Baseline System

The performance factors considered in this section are the load balancing

algorithm, the load level, and the load pattern. The selected set of algorithms is

evaluated for homogeneous users at different load levels, and for heterogeneous users

combination (4S, 2M, 4V) (see details in Table 4.7).

103

The results for the baseline system are shown in Figure 5.2, and Table 5.1. It is to

be noted that the tables are in the appendix. The following remarks can be made:

• While Sender performs better than Receiver at low to moderate load levels, it is

outperformed by the latter at heavy load levels. As all the nodes become heavily

loaded, it gets more difficult to find an idle or underloaded node through a sender­

initiated load balancing.

• The Symetric algorithm, which is a combination of Sender and Receiver, does

well over all the range of load levels. However it involves a higher number of load

balancing messages and job movements. This tends to increase the percentage of

CPU utilisation significantly.

• The Diffuse algorithm (Le. periodic version of Symetric) produces the best mean

job response time, though it involves a larger number of wrong job movements.

This algorithm results in fewer number of messages and job movements than the

Symetric one.

• The Random algorithm which has the lowest overhead, since no system

information collection is needed, has the poorest performance due to large job

movements and high wrong decision rate.

• A reduction of the job mean response time of up to 80% is possible for the

baseline system. For a load level between 0.65 to 0.9, the performance ordering

for the algorithms is: Diffuse, Symetric, Receiver, Sender, Random.

104

5.2.2. Effect of Communication Bandwidth and Protocols

In earlier studies on the performance of load balancing algorithms, it has been

commonly assumed that a large communication bandwidth is available, so there is no

contention on the communication device. However, this is not realistic since in present

day technology the processor speed is increasing at a faster rate than the bandwidth of

the communication network. Therefore it is worthwhile to investigate the performance

of the load balancing algorithms under a large compute!communicate ratio. The

experiments carried out on the baseline system, were repeated using a

compute/communicate ratio R= 0.4. This makes it possible to compare the effect of the

compute/communicate ratio on the algorithms performance.

1) Performance under Large Compute/Communicate Ratio (R= 0.4)

A larger value of the threshold was found more appropriate when a large

compute/communicate ratio is used (T= 2 for R= 0.4). The results of using slower

communication device are shown in Figure 5.3, and Table 5.2. It is possible to draw the

following conclusions.

• The relative performance order of the algorithms is unchanged. The only

exception is the Symetric algorithm for which the job mean response time tends to

saturate at very heavy load level. This can be explained by the large number of

load balancing messages inherent to this algorithm.

• Due to the longer communication delay, the level of improvement of all the

algorithms drops by up to 10%. Even under the NOLB case, the job mean

response time degrades because it takes longer to access the file server.

• The performance of all the algorithms is nearly identical, except for the Diffuse

algorithm which maintains a more significant improvement of the mean response

time.

M
e 13
a 12
n

11

R 10
e 9
s
p 8

0 7
n 6
s
e 5

4

105

, , ,
/

.-

, , ,

, , , ,
NOLB

./ Random
T 3 S~

i b~~~====~~~~~_~-~-~-~-~-~~~~~~~~-~-~_~_~-~R~e~e~e~IV~~ m 2 - - - - - - - - - - S...Yroetne
= = = = = = ::: : - - - - - - Diffuse

e 1
(Sees) 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

System Load

Figure 52 Performance under Small Compute/Communicate Ratio (R= 0.13)

M
e 13
a 12
n

11

R 10
e 9
s
P

8

0 7
n 6
s
e 5

4
T 3
i

m 2

e 1
(Sees) 0.2 0.3

" ./

------ ---------
======----

0.4 0.5 0.6 0.7
System Load

"
" " ,

I

I

0.8

I
I

I

I

I
I

I

I
I

I
I

I NOLB
I

Random
Sender

_ Svm~trie
R'eeelver
Diffuse

0.9 1

Figure 5.3 Performance under Large Compute/Communicate Ratio (R= 0.4)

106

2) Performance under Heterogeneous Users

In previous experiments, the generation of workload was based on identical users

on all the nodes. The results shown in Tables 5.3, and 5.4, are for a heterogeneous

combination of users (4S, 2M, 4V). The following remarks can be made:

• The Random algorithm does well in terms of reduction of job mean response time,

while the Receiver performs poorly due to the low negotiation success rate. It is

difficult to find an overloaded node when most nodes are barely used.

• The performance of Symetric, Random, and Sender are very similar, though at a

lower cost for the latter. Only the Diffuse algorithm has a significant mean

response time reduction.

• The compute/communicate ratio has no effect on the relative performance order of

the algorithms. However for long communication delays, the level of improvement

is smaller and at a higher cost.

Benefit Cost
Algorithm response(A VO) response(STD) job mov.

messages %LB_exec time(s) Impr(%) time(s) Impr(%) %jobmov %baddcs
NOLB 5.47 0.00 2.46 0.00 0.00 0.00 0.00 0.00
RANDOM 1.63 70.18 0.56 77.43 29.77 28.40 0.00 0.31
RECEIVR 2.07 62.10 0.76 69.08 17.25 0.63 1.42 1.20
SENDER 1.55 71.67 0.52 79.05 24.14 0.49 0.39 0.54
SYMTRIC 1.54 71.90 0.51 79.38 25.59 0.55 2.50 1.50
DIFFUSE 1.30 76.16 0.54 77.86 23.83 7.25 2.22 2.22

Load Pattern= 4S, 2M,4V

Table 5.3 Performance under Small Compute/Communicate Ratio (R= 0.13)

107

Benefit Cost
Algorithm response(A VG) response(STD) jobmov.

messages %LB_exec
time(s) Impr(%) time(s) Impr(%) %jobmov %baddcs

NOLB 6.40 0.00 2.87 0.00 0.00 0.00 0.00 0.00
RANDOM 2.01 68.54 0.62 78.32 19.44 16.79 0.00 0.42
RECEIVR 2.48 61.32 0.81 71.69 14.01 0.72 1.60 2.14
SENDER 1.98 69.00 0.61 78.87 16.53 0.58 0.23 0.75
SYMTRIC 2.03 68.25 0.61 78.87 18.30 0.55 2.35 2.81
DIFFUSE 1.69 73.53 0.66 77.09 17.18 4.26 2.32 3.73

Load Pattern= 4S, 2M, 4V

Table 5.4 Performance under Large Compute/Communicate Ratio (R= 0.4)

3) Load Balancing Overheads

A load balancing scheme consumes CPU cycles for the execution of its policies

and adds message traffic onto the communication device. Three types of overhead can

be identified : the eligible job separation for selective transfers; the load balancing

messages; and the job transfer overheads. Global load balancing overheads depend on

the structure of the algorithm, the level of load balancing activity assumed, and the job

arrival rates. To assess the average CPU utilisation due to the load balancing activities,

the percentage of processor busy time of individual nodes is monitored for each

algorithm and compared with the NOLB case. The percentage average increase is then

computed. From the results shown in Figures 5.4 and 5.5, it can be concluded:

• The algorithms that perform best have higher overheads. The level of overhead

increases with the load level. However, under long communication delays, the

Symetric algorithm cost is more than that of Diffuse at very heavy load level,

though its reduction of the mean response time is less. The load balancing

overhead is nearly twice as big as for the baseline system.

• As the load balancing overhead is mainly due the handling of load balancing

messages and job transfers, the increase in CPU utilisation is affected by the

108

number of .load balancing messages induced by the load balancing algorithm and

the level of job movement.

The increase in the percentage of communication device utilisation is less than 2%

under both compute/communicate ratios, for all load balancing algorithms and at all

load levels. From this we conclude that on a diskless model of distributed systems, the

load balancing overhead is mainly on the CPU utilisation.

4) Effect of Communication Protocols

In the baseline system a token passing communication protocol was assumed. To

assess the effect of the choice of the communication protocol, the performance of the

two more promising algorithms (i.e. Diffuse and Symetric) is evaluated under First­

Come First-Serve and CSMNCD communication protocols. This evaluation was

carried out under both large (R= 0.4) and small (R= 0.13) compute/communicate ratios.

The results for the Symetric algorithm are shown in Figures (Figures 5.6, and 5.7). No

significant effect on the mean response time was noticed. This can be explained by the

low device utilisation level which was « 20%) for slow device and « 50%) for fast

device, and the similar load put by all the nodes on communication device.

U

t 5
i
1
i
s 4
a
t
i 3
o
n

I 2
n
c
r 1
e
a

--- ---------
...,

, , ,

, , ,

109

,.-------

Diffuse

Symetric

s O~~~~~~~~~~~~~~--~--~
e

(%) 0.2

U

t 5
i
1
i
s 4
a
t

i 3
o
n

I 2
n
c
r 1
e
a

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
System Load

Figure 5.4 Load Balancing Overheadfor the Baseline System (R= 0.13)

--
.. -------.-"" ---

, ,
, , ,

Symetric

Diffuse

Sender

Receiver

Random

! O~~~~~~~~~~~;;~~~----~--~
0.5 0.6 0.7 0.8 (%) 0.2 0.3 0.4

System Load
1

Figure 55 Load Balancing Overhead for R= 0.4

M
e
a
n

R
e
s
p
0

n
s
e

T
i
m

5

4

3

2

e
(Sees) 1

0.2

110

0.3 0.4 0.5 0.6 0.7
System Load

0.8 0.9

fefs
token

esma

1

Figure 5.6 Effect oj Communication Protocols on Symetric Algorithm (R= 0.13)

M 5
e
a
n

esma
R 4 fefs
e token
s
p
0 3
n
s
e

2
T
1

m
e

(Sees) 1
0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.2 1

System Load

Figure 5.7 Effect oj Communication Protocols on Symetric Algorithm (R= 0.4)

111

5.2.3. Impact of Load Balancing Messages Cost

To get a better understanding of how well the results obtained for the baseline

system apply to environments with important message costs, two experiments were

conducted.

The first evaluates the effect of a range of message cost (2 to 30 msecs) on the

Symetric and Diffuse algorithms at a heavy load level and shon communication delays.

From this it is reasonable to conclude that the performance improvement is consistent

over a wide range of load balancing messages cost (Figures 5.8, and 5.9), provided they

are not too high, as shown in [Zhou88]. The advantage of the Diffuse algorithm over

Symetric algorithm is clearly maintained.

The second experiment compares the performance of all algorithms for a message

cost of 20 msecs. Diffuse and Receiver algorithms are less sensitive to message cost

and maintain a good performance over the whole range of workload. Symetric and

Sender algorithms degrade sharply at very heavy load level.

112

M
7 NOLB

e --
a ---
n 6

R -----------e 5
s
p
0 4 Symetrie
n
s
e 3

T
i 2

m

Diffuse

------------------ -----------==------
e 1

(Sees)
0 5 10 15 20 25 30

Load Balancing Messages Cost (msecs)

Figure 5.8 Effect o/LoadBalancing Messages Cost/or Baseline System (R= 0.13)

M 12
e
a 11
n

10

R 9
e
s 8

p 7
0

n 6
s 5
e

4
T 3
1

I

)

I
I

I
I

I
I

I
I

NOLB

Sender

~ymetrie
Random

--__ - - __ - Receiver
m 2

e 1
(Sees) ~~===;::~~~~~-~-~~~~~~~;;;;~~==~----~

.... = = = = = = = ::: : - - - Diffuse

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
System Load

Figure 5.9 Performance/or Message Cost 0/20 msecs (R= 0.13)

113

5.2.4. Effect of File Server Speed

The effect of the file server speed on the mean response time is evaluated for the

Diffuse and Symetric algorithms(see Figure 5.10). The file server speed attribute used

is the fixed overhead time it takes to service an I/O operation. To remove any side

effects due to the contention on the communication device, short communication delays

are assumed. As would be expected, there is a range of server speeds which has little

effect on the the job mean response time. However, when the file server takes over 30

msecs to service an I/O operation, a sharp increase of the mean response time occurs.

The same behaviour can be observed when a large compute!communicate ratio is used.

This supports the conclusion drawn by Zhou [Zhou87], that the file server is the first

resource to saturate. The performance order of the algorithms is not affected.

M 10
e
a 9
n

8
R
e 7
s
p 6
0

n 5
s
e 4

T 3
i
m 2

e 1
(Secs)

0

.-
". .-.-.-

--------"" - -- --- -- -- - N"OLB

Symetric

.-.-.-.-

.­.­.-
.- .-

". .-
.-

.­
".

.-.-.-

.-.-
.­.-

.- .-
.­.-

.­

5 10 15 20 25 30 35 40 45 50 55 60
I/O service time (msecs)

Figure 5.10 Effect of File Server Speed

114

5.2.5. Performance under Heterogeneous Workload

The Poisson arrival- exponential service demands workload is commonly assumed

as the default model. In this experiment a workload model with hyper-exponential

service demands is investigated. Furthermore two types of job transfer for load

balancing purposes are considered: (i) non-selective transfers where all jobs are eligible

for transfer whether it is a long or a short job, and (ii) a selective transfer which is

restricted to long jobs. To accommodate heterogeneous jobs the following changes

have been made to the system model. The FCFS local scheduling discipline is replaced

by a Round Robin local scheduling discipline because the FCFS is not suitable for

heterogeneous jobs [Mitrani87]. A parameter to assess the job separation cost is

introduced. Its default value is fixed to 10 msecs. The tuning of the timer period for

Diffuse algorithm had also to be repeated. A new value of 1.6 msecs was found

optimal. The effect of three issues is investigated:

i) Proportion of short/long jobs: 95/05, 70/30

ii) Type of job transfer

-non-selective transfers of jobs

-selective transfers of jobs

iii) job separation cost: 10 to 200 msecs

The results for a 95/05 proportion of short/long jobs with non-selective transfers

are shown in Figure 5.12, and Table 5.5. It can be concluded that the Receiver

algorithm performance degrades, even at very heavy load level it does not catch up with

the Sender algorithm. Due to the long running jobs the state of near idleness takes

place less often. This causes the Receiver algorithm to be activated less often. In fact

the latter algorithm has the lowest job movement level (i.e. < 50%) than the other

algorithms. The other algorithms performance ordering is similar to the ordering under

homogeneous jobs.

115

The results for selective transfers are shown in Figure 5.13, and Table 5.6. It can

be seen that the level of improvement is reduced significantly (i.e. over 20%) because at

most 5% of the jobs can be transferred, while the relative performance order of the

algorithms is similar to previous experiment.

When the proportion of long jobs is changed to 70/30 (see Figure 5.14, and Table

5.7), the following conclusions can be drawn:

• The performance order remains the same as under 95/05 proportions. A similar

level of performance improvement is obtained for non-selective transfers.

• For selective transfers (Figure 5.15, and Table 5.8), the level mean response time

improvement is higher because a larger number of jobs are eligible for transfer.

Due to a significant number of wrong movement of jobs at very heavy load level,

the performance of Diffuse degrades. This can be overcome by slowing down the

algorithm at very heavy load levels, a situation which should be rare, otherwise a

significant upgrade of the system is necessary.

M
e 14
a 13
n 12

R 11

e 10
s 9
p 8
0

7 n
s 6
e 5

4
T

3 i
m 2
e 1

(Sees) 0.2

116

.," --- -'

., .," .,
,/

, ,

-- ----===--=====-------__ ---_c: --
0.3 0.4 0.5 0.6 0.7

System Load

, , , , ,

/ ,

I
I

I

0.8

I
I

I
I

I

I

I
I

I

I
I

I NOLB

Random

Receiver
J,ender
l1rnlJ~1c

0.9 1

Figure 5.12 95/05 Jobs Proportion with Non-selective Transfer

M
e 14
a 13
n 12

R 11

e 10
s 9
p 8
0

7 n
s 6
e 5

4
T

3 i
m 2

e 1
(Sees) 0.2

I
I

I
I

I

I NOLB
I

I
I Random

0.3 0.4 0.5 0.6
System Load

0.7 0.8

I
I

, ,
,

Figure 5.13 95/051obs Proportion with Selective Transfer

, Receiver ,
" Sender

Symetric
Diffuse

0.9 1

M
e 12
a 11
n

R
e
s
p
o
n
s
e

M
e
a
n

R
e
s
p
0

n
s
e

T
i

m
e

10

9

8

12

11

10

9

8

7

6

5

4

3

2

1

117

/

0.3 0.4 0.5 0.6 0.7 0.8
System Load

I
I

I

I
I

I

I

I NOLB

0.9 1

Figure 5.1470130 Jobs Proportion with Non-selective Transfer

_/

c::==::::::==::
::::-----

, ,
/

I
I

I
I

I NOLB

Random

(Sees) 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
System Load

Figure 5.1570/30 Jobs Proportion with Non-selective Transfer

118

For a job separation cost of up to 200 msecs (see Figure 5.16), selective transfer

based load balancing improve the job mean response time. However, for more than 100

msecs the level of improvement is not worthwhile. The degradation of the job mean

re!!l0nse time is sharper for the Diffuse algorithm.
10 e

a 9
n NOLB

8
R

- Symetric

e 7 Diffuse
s
p 6
0
n 5
s
e 4

T 3
i

m 2

e
(Sees) 1

10 30 50 70 90 110 130 150 170 190 210
Job Separation Cost (msecs)

Figure 5.16 Effect of Job Separation Cost under 95105 Proportion

5.2.6. Conclusion

The main conclusions to be drawn on relative performance of different load

balancing algorithms evaluated on the diskless system model are as follows:

• All the algorithms evaluated improve the job mean response time of the system

particularly for a load level greater than 0.4. The amount of improvement

increases with the load level. Improvements of up to 80% were found at very

heavy system loads.

• The Diffuse algorithm produces the lowest mean response time. This is due to its

symmetric and periodic structure. Although it has a high level of wrong job

movements.

119

• Random algorithm has the lowest communication overhead since no system state

information is gathered but it produces a large number of bad decisions and the

highest system instability, leading to a poor penormance. These results confirm

the findings of Eager et al. [Eager85]. That is sender-initiated policies are good at

light load while receiver-initiated policies perform better only at heavy load. The

symmetrically-initiated version performs well over the whole range of load levels.

Below are summarised the effects of the distributed system attributes and workload.

The communication device speed has an impact on the performance of the load

balancing algorithms. When the device is slow the mean system response time

degrades even for the NOLB case. Another significant effect is a reduced level of job

movement and a slight increase of wrong decisions rate. The performance of all the

algorithms is nearly identical making the choice of the algorithm less relevant. For

heterogeneous users an increased predictability of the mean response time is observed.

For a communication device utilisation level of up to 50%, the load balancing

algorithms perform similarly with all the three communication protocols evaluated.

The algorithms performance is robust over a wide range of load balancing cost.

Symetric algorithm is the most sensitive to this cost at very high load levels. This

suggests that this algorithm should be used when there is a large communication

bandwidth is available. As far as the global load balancing cost (i.e. message cost, job

transfer cost) is concerned a general pattern emerges. The algorithms with the best

improvement tend to have the worst overheads associated with them. This cost is

increased when the communication delay and load level are higher. However, a general

conclusion is that the load balancing is still effective for a wide range of load balancing

overheads. Provided a minimum file server speed is available, load balancing

performance is not affected.

120

When heterogeneous workloads are used, the relative performance order of the

algorithms is unchanged. Selective transfers are worthwhile only when a large number

of long jobs are generated and the job separation cost is not too high.

The results show clearly that the Diffuse algorithm is the most promising one in

reducing the job mean response time. It is robust in the sense that it performs well over

a wider range of system attributes and workload. However, some care is needed in

interpreting the results because the algorithm parameters have been tuned for optimal

performance on the systems considered.

5.3. Load Balancing in Systems with Disk-based Homogeneous Nodes

The distributed system considered in this section consists of a set of identical

autonomous nodes. Each node has its own local file system and is connected to a

broadcast communication device. In this environment load balancing involves the

actual transfer of the complete job information (i.e. programs, files) to the remote host,

and the return of the results data and files to the job originating host. Except for the file

server related experiment, which does not apply to the disk-based system, all the

experiments of the previous section were repeated on this disk-based system model. A

structure similar to that of Section 5.2 has been adopted for this section.

5.3.1. Algorithms Performance on the Baseline System

Except for the file system structure which is changed to a disk-based model, all the

characteristics of the system under study are the same as those used in the baseline

system described in Section 5.2. Since no file server is used, all I/O operations are

handled by a local disk. The time to service an I/O operation is assumed evenly

distributed and fixed to 20 msecs.

The results obtained under the baseline system conditions are shown in Figure 5.17, and

121

Table 5.9. The following conclusions can be drawn:

• The algorithms perfonnance order for moderate to heavy load level is: Diffuse,

Symetric, Receiver, Sender, Random. The cross-over of SenderlReceiver

algorithm takes place at 0.75 load level. For light to moderate load level, all the

algorithms perfonn similarly with a slight degradation for Receiver. For such load

levels the probability of finding an overloaded node is small.

• The level of perfonnance improvement of up to 80% is possible. The standard

deviation of the response time obtained is similar for all the algorithms.

• The poor perfonnance of Random algorithm is due to its high level of job

movement (nearly twice that of other algorithms at heavy load level) and wrong

job movements.

• The most promising algorithms are Diffuse and Symetric, which are both

symmetrically-initiated. Diffuse algorithm produces the best mean response time,

but involves a higher level of wrong job movement.

It is interesting to observe that there is no significant difference between the

perfonnance ordering of the algorithms for the diskless and disk-based models of the

baseline system.

5.3.2. Effect of Communication Bandwidth and Protocols

The perfonnance of the load balancing algorithms is compared under a large

compute/communicate ratio, heterogeneous users, and different communication

protocols. The level of load balancing overhead is also assessed.

1) Performance under Large Compute/Communicate Ratio (R= 0.4)

The results obtained when a large Compute/Communicate ratio is used are shown

in Figure 5.18, and Table 5.10. The following, remarks can be made on the perfonnance

122

of the load balancing algorithms:

• The relative performance ordering of the algorithms remains unchanged.

Surprisingly the level of performance improvement is significant (Le. up to 75%)

even for long communication delays, though the algorithms CUlVes tend to cluster

making the choice of the load balancing algorithm less relevant.

• The Receiver/Sender cross-over takes place at a much higher load level. This

indicate that the probability of finding an overloaded node is reduced (Le. the

threshold level was raised to 2 to make the probing of remote nodes cost-effective

under long communication delays).

• The only significant performance difference obselVed between diskless and disk-

based models, is the poorer performance of Random at heavy load levels on disk­

based model. This can be explained by the nature of transfers on the disk-based

model where the actual job is moved and the very level of job movement inherent

to the Random algorithm.

The main conclusions to be drawn from this experiment IS that the

compute/communicate ratio does not affect the relative performance order of the

algorithms. For a large ratio a lower level of improvement is obtained and performance

of the algorithms is almost identical. However, the Diffuse algorithm still produces the

highest reduction of the job mean response time.

2) Performance under Heterogeneous Users

In previous experiments, the generation of workload was based on identical users

on all the nodes. The results shown in Tables 5.11 and 5.12 are obtained for a

heterogeneous combination of users (4S, 2M, 4V). The following remarks can be

made. Diffuse, Symetric, and Random algorithms perform similarly for both shon and

long communication delays. This unexpected performance of Random can be

M 10
e
a 9
n

8
R
e 7
s
p 6
0

n 5
s
e 4

T 3
1

m 2

e -
(Sees) 1

0.2

123

--
------::::-----

----- ---------

0.3 0.4 0.5 0.6 0.7
System Load

,
J

I
I

I ,

0.8

I ,
I

I

I

I
I

I

I NOLB

Random

Sender
_ - Receiver

Sj'm~tric
Diffuse

0.9 1

Figure 5.17 Performance under Small Compute/Communicate Ratio (R= 0.13)

M 10
e
a 9
n

8
R
e 7
s
p 6
0

n 5
s
e 4

T 3
i
m 2

---e
(Sees) 1

0.2 0.3

--------:::----

0.4 0.5 0.6 0.7
System Load

,
J

, ,

0.8

I ,

,
I ,

,
I ,

I NOLB

Random

Receiver
Sender

Sj'metric
Diffuse

0.9 1

Figure 5.18 Performance under Large Compute/Communicate Ratio (R= 0.4)

124

explained by the large number of lightly loaded nodes. For the same reason Receiver

algorithm does rather poorly (i.e. reduced probability of finding an overloaded node).

No significant difference in the performance ordering of the algorithms with the

diskless model is observed.

Benefit Cost
Algorithm response(A VO) response(STD) jobmov.

messages %LB_exec time(s) Impr(%) time(s) Impr(%) %jobmov %bad des
NOLB 6.10 0.00 2.66 0.00 0.00 0.00 0.00 0.00
RANDOM 1.69 72.33 0.61 77.07 32.49 29.56 0.00 0.45
RECEIVR 2.11 65.39 0.78 70.77 18.38 1.75 1.40 1.28
SENDER 1.59 73.93 0.52 80.33 25.24 1.72 0.41 0.84
SYMTRIC 1.52 75.15 0.51 80.66 27.45 2.08 2.51 1.66
DIFFUSE 1.48 75.82 0.53 79.93 24.51 8.77 2.22 1.87

Load Pattern= 4S, 2M, 4V

Table 5.11 Performance under Small Compute/Communicate Ratio (R= 0.13)

Benefit Cost
Algorithm response(A VO) response(STD) job mov.

messages %LB_exec time(s) Impr(%) time(s) Impr(%) %jobmov %baddes
NOLB 6.10 0.00 2.66 0.00 0.00 0.00 0.00 0.00
RANDOM 2.01 67.03 0.66 75.32 20.20 17.53 0.00 0.64
RECEIVR 2.45 59.87 0.82 69.32 14.62 1.55 1.64 1.62
SENDER 1.95 68.11 0.62 76.71 17.68 1.26 0.24 0.97
SYMTRIC 1.95 68.00 0.62 76.82 18.43 1.45 2.39 2.00
DIFFUSE 2.00 67.28 0.64 75.96 17.16 4.16 2.35 2.15

Load Pattern= 4S, 2M, 4V

Table 5.12 Performance under Large Compute/Communicate Ratio (R= 0.4)

3) Load Balancing Overheads

The results shown in Figures 5.19, and 5.20, represent the load balancing overhead

on a disk-based model. It can be concluded that:

125

• The load balancing overheads increase with the increase of the perfonnance gain.

However, under long communication delays, the overheads for the Random

algorithm increases sharply due the large number of jobs transferred (up to 22%

utilisation of a slow communication device).

• The overhead level is slightly affected by the communication delay for low to

moderate load levels, because the utilisation of the communication device is

relatively low « 14% for large ratio and < 5% for small ratio). This is the main

difference with the diskless model where the communication device utilisation is

higher because it is used for both load balancing activities and shared file server

accesses.

• The communication device utilisation for the disk-based model, being mainly due

to the load balancing activities, the increase in CPU utilisation gives an indication

on the load balancing overhead put on the communication device.

4) Effect of Communication Protocols

The increase in the traffic imposed on the communication device by the load

balancing algorithm also depends on the file system structure. On a disk-based system

a transfer of a job requires the transfer of the full program and associated files as well as

the return of results. On this basis one would expect a more important overhead

imposed on the communication device for the disk -based model. This is not the case, it

is on the diskless model that, the accesses to the files on the shared device puts a much

bigger burden on the communication device.

The effect of the communication protocol was evaluated for both Diffuse and

Symetric algorithms. The results for the Symetric algorithm are shown in Figure 5.2I.

All the communication protocols perform similarly. This can be explained by the low

device utilisation level which was « 5%) for: slow device and « 14%) for fast device,

126

U
t 4
i
1
i
s
a 3

t
i Symetric
0

n 2 Diffuse

I
n
c 1
r
e
a
s 0 e

(%) 0.2 0.3 0.4 0.5 0.6 0.7 0.8
System Load

0.9 1

U
t 4
1

1
1

S
a 3
t
1

o
n 2

I
n
c 1
r
e
a

Figure 5.19 Load Balancing Overheadfor the Baseline System (R= 0.13)

Symetric
,," Diffuse

Sender

s O~~~-===~==--~~--.----.----~----~---­e
(%) 0.2 0.3 0.4 0.5 0.6 0.7

System Load
1 0.8 0.9

Figure 5.20 Load Balancing Overhead for R= 0.4

127

and the unifonn network traffic.

5.3.3. Impact of Load Balancing Messages Cost

The perfonnance of the two most promising algorithms Diffuse and Symetric at

heavy load level is slightly affected by load balancing messages fixed overhead. The

mean response time is shown for a range of 2 to 30 msecs (see Figure 5.22).

The same conclusion is reached when all the algorithms are evaluated with a load

balancing message overhead fixed at 20 msecs (see Figure 5.23). As shown is Section

5.2, Sender and Symetric algorithms degrades sharply at very heavy load level under a

diskless model. This is not observed for a disk-based model and can be explained by

the higher communication device mean request delay which was up to five times higher

than for a disk-based model.

M
e
a
n

R
e
s
p
0

n
s
e

T
i
m

5

4

3

2

e
(Sees) 1

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
System Load

Figure 5.21 Effect o/Communication Protocol on Symetric (R= 0.4)

csma
fcfs

token

1

M
e
a
n

R

7

6

e 5
s
p
o 4
n
s
e 3

T
i 2
m

128

NOLB

Symetric

D~fuse

e 1 (Sees) I-------"T----r----r----.------,r---~

o 5 10 15 20 25 30
Load Balancing Message Cost (msecs)

Figure 5.22 Effect of Load Balancing Message Cost under R= 0.13

M
11

e
a 10
n

9
R

8 e
s 7
p
0 6
n
s 5

e 4

T 3
i
m 2

e 1
(Sees)

0.2

-----====-----

0.3 0.4

/

./

--

0.5 0.6 0.7
System Load

/ ,
/ ,

/
/

/

/

, , , ,

0.8

, , ,

, ,
, ,
,

, NOLB , , , ,

0.9

Random

Sender
Receiver
Symetric
Diffuse

1

Figure 5.23 Performance/ora Message 0/20 msecs (R= 0.13)

129

5.3.4. Performance under Heterogeneous Workload

In this experiment the performance of the load balancing algorithms using a

workload model based on Poisson arrival but with hyper-exponential service demands

is investigated. The service demands used have the following characteristics:

a) 95/05 proportion of short/long jobs

-short jobs mean service time: 0.80 secs

-long jobs mean service time: 4.80 secs

-coefficient of variation: 1.04

b) 70/30 proportion of short/long jobs

-short jobs mean service time: 0040 secs

-long jobs mean service time: 2.40 secs

-coefficient of variation: 1.23

To accommodate this type of workload, some adjustments to the system model were

necessary. These adjustments involve the local scheduling discipline and the tuning of

the Diffuse algorithm (see details in Section 5.2.5).

When a 95/05 proportion with non-selective transfers is used (see Figure 5.24, and

Table 5.13), the same relative performance order of the algorithms as for the diskless

model is observed, though the level of reduction of the mean response time is slightly

higher for the disk-based model.

For selective transfers (see Figure 5.25, and Table 5.14), the level of performance

improvement is much less. The relative performance order of the algorithms is basically

unchanged. This is due to the very low number of transferable jobs.

The effect of changing the proportion of long jobs to 70/30 is shown in Figure

5.26, and Table 5.15. Although the performance order of the algorithms is similar to

that under 95/05 proportion, the level of improvement is higher. For selective transfers

(see Figure 5.27, and Table 5.16), a degradation in the performance of Diffuse

algorithm is observed. It is marginally outperformed by the Symetric algorithm.

130

A general conclusion to be drawn is the similarity of the performance under both

diskless and disk-based models. Also for non-selective transfers the level of mean

response time reduction is higher than that under homogeneous jobs. For a job

separation cost higher than 100 msecs, load balancing with selective transfers is not

worthwhile.

5.3.5. Conclusion

The main conclusions that can be drawn from the results in this section on the

relative performance of different load balancing algorithms are as follows:

• All the algorithms evaluated improve the mean response time of the system at all

levels of utilisation. The level of improvement increases with the load level. It

reaches 80% at very heavy system loads for the Diffuse algorithm.

• The performance of the algorithms obtained supports the results by Mirchandaney

et. al [Mirchandan89], in terms of both the relative ordering of the algorithms and

the level of performance improvement obtained.

• The main conclusion is that Diffuse is the most promising algorithm. The Symetric

algorithm does well but generates more load balancing messages which put more

load on the communication device.

Below are summarised the effects of the system attributes for a distributed system

based on the disk-based model. As under the diskless model the compute/communicate

ratio does affect the level of performance improvement but not the relative order of the

algorithms. Even under large compute/communicate ratio the utilisation of the

communication device due to load balancing activities is less than 14%. For this level

it can be justified to assume that there is no contention on the communication device

and that the communication protocols perform similarly.

M

e 17
a 16
n 15

R 14
13

e 12
s 11
p 10
o 9
n 8
s 7
e 6

5
T 4

131

,
./

, , ,

, , , ,
/

I
I

I
I

I
I

I
I

I
I

I

I
I

I
I

I NOLB
I

Random

i 3 _--'

m 2~~~~~~-~--~~~~~~ e 1~
(Sees) 0.2

M

e 17
a 16
n 15

R 14
13

e 12
s 11
p 10
o 9
n 8
s 7
e 6

5
T 4
i 3

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
System Load

Figure 5.2495/05 Jobs Proportion with Non-selective Transfer

I
I

I

I
I

I
I

I
I

I

I
I

I

I
I

I

I NOLB

Random
, Receiver

Sender

~Wfu~c

m 2~~~~==~--=-=2~~~ __ ~~ e 1~
(Sees) 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

System Load

Figure 5.2595/05 Proportion of Jobs with selective Transfer

M
e 15
a 14
n 13

R 12

e 11

S 10

P 9
0 8
n 7
S 6
e 5

T 4

i 3

m 2
e 1

(Sees) 0.2

M
e 15
a 14
n 13

R 12

e 11

s 10

P 9
0 8
n 7
s 6
e 5

T 4

I 3

m 2
e 1

(Sees) 0.2

132

I NOLB
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I Random I

./ ~ender ...
... ... ecelver ...

-- Symetric ...
--" -- Diffuse ----

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
System Load

Figure 5.2670/30 Proportion of Jobs with Non-selective Transfer

0.3

... ...
-- --"

... ...
... ./

I

----======:::::----

0.4 0.5 0.6 0.7
System Load

I
I

I
I

I

I
I

I

I

I
I

0.8

I
I

I

I
I

I
I

I

I
I

I NOLB

Random

Sen<;ler
... '" Receiver

.. '" Diffus~
Symetnc

0.9 1

Figure 5.27 70/30 Proportion of Jobs with selective Transfer

133

Load balancing is still effective for a wide range of load balancing overheads. For

a load balancing message fixed overhead of up to 30 msecs there is no significant

degradation of the mean response time. Even Sender and Symetric algorithms are not

affected when a 20 msecs fixed message overhead is used, which was not the case under

the diskless model. The total load balancing overhead is less than 4%.

When a heterogeneous workload is used, the same performance ordering of the

algorithms is maintained.

5.4. Load Balancing in Systems with Heterogeneous Nodes

In previous experiments the nodes were assumed homogeneous. In the system

studied in this section the nodes are assumed to have the same functionality and are

subjected to the same job arrival rate or to the same utilisation level but have different

computing speeds. A job can run on any node, but its service time depends on the speed

of the node where it is executed. Consequently, the load index (Le. CPU queue length),

and remote node selection weight when polling is used, will not have the same system

wide weight. To take this into account, adapted versions of the algorithms with

information about the nodes computing speed built-into are considered.

There are two ways to specify the workload for a heterogeneous system, namely:

scaled arrival rates (in Section 5.4.1) and identical arrival rates (in Section 5.4.2). The

parameters that need to be adjusted to the node speed are the polling probability weight

and the timer period for the Diffuse algorithm. In the following sections the adapted

algorithms are evaluated against the NOLB case as well as the standard versions which

ignore the nodes speed. Further details on standard/adapted algorithms, and

scaled/identical arrival rates can be found in Section 3.3.

134

The system model used is based on the baseline system described in previous

Sections with the following modifications made to accommodate heterogeneous hosts:

• System size: 10 heterogeneous hosts with 15 jobs/sec total service rate

-5 fast hosts: J.Ll = 2 jobs/sec
-5 slow hosts: J..l2 = 1 job/sec

• Compute/Communicate ratio: R= 0.6

• File server I/O time: 3.75 msecs + communication delay (diskless model)

• Local I/O time: fast hosts: 10 msecs, slow hosts: 20 msecs (disk-based model)

• Workload model: homogeneous users, homogeneous jobs with E[S]= 0.75 sees

-service time on fast hosts: S 1 = 0.5 sec
-service time on slow hosts: S2= 1.0 sec

The experimental factors in this section are three-fold: diskless and disk-based file

system structures, standard and adapted algorithm versions, and scaled as well as

identical job arrival rates.

5.4.1. Evaluation of Algorithms under Scaled Arrival Rates

In this section the system load is specified by scaled arrival rates (jobs/sec). This

corresponds to a same level of processor utilisation on all the nodes.

5.4.1.1. Diskless Model

Based on the results represented in Figure 5.28 and Table 5.18, the following

assessment can be made:

• At very heavy load level all the algorithms, except the Receiver, a sharp increase

of the mean response time takes place. The Receiver maintains its level of

response time as the load level increases. This is due to an activation of the

algorithm mainly on fast nodes which clear their queue of jobs more often.

135

• Given the large number of fast nodes, standard algorithms are good enough so that

no further improvement can be made by the adapted versions.

• When the Diffuse algorithm is used with a scaled timer, the slow nodes get

saturated leading to a sharp degradation of the mean response time.

• A degradation of Sender and Symetric algorithms performance is observed at very

heavy load levels. This is due to a higher failure of the sender-initiated

negotiations of these algorithms.

• Performance order for standard algorithms at heavy load level IS: Receiver,

Diffuse, Symetric, Sender, Random.

• Performance order for adapted algorithms at heavy load level is: Receiver ,

Diffuse, Random, Sender, Symetric.

The advantage of weighted destination is to focus receiver-initiated transfers from

slow to fast nodes and sender-initiated transfers from slow to fast nodes. For scaled and

identical arrival rates used, this property of adapted algorithms is is barely used. A

third arrival pattern where adapted algorithms would be more advantageous is when fast

nodes are lightly loaded and while slow nodes are over-used. This case needs to be

investigated.

M 10
e
a 9
n

8
R

7 e
s 6
P
0 5
n
s 4

e 3

T 2
i
m 1
e

(Sees) 0
0.1 0.2 0.3

136

~~

-----:--

0.4 0.5 0.6 0.7
System Load

I
I

I
I

0.8

NOLB

Random
Sender

Symetric

Diffuse
Receiver

0.9 1

Figure 5.28 Performance of Standard Algorithms under Scaled Arrivals

M 10
e
a 9
n

8
R

7 e
s 6
p
0 5
n
s 4

e 3

T 2
i
m 1

e 0

~ -- -----::::::::::--

I
I

I
I

I
I

I

NOLB

Symetric
Sender

Random
Diffuse

Receiver

(Sees)
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

System Load

Figure 5.29 Performance of Adapted Algorithms under Scaled Arrivals

137

5.4.1.2. Disk-based Model

Based on the results represented in Figure 5.30 and Table 5.20, the following

assessment can be made:

• There is a slight improvement of adapted version of the algorithms over standard

ones.

• All the algorithms perform similarly. When an important number of nodes in the

network are fast, any random polling based algorithm will do.

• The Random algorithm results in the saturation of the slow nodes, particularly in

its standard version, leading to a sharp degradation of the mean response time at

heavy load levels.

• Due to the higher number of jobs generated at the fast nodes, a significant

difference between diskless and disk-based is the saturation of the nodes for

diskless model even at 0.8 load level, which means there is a need for a faster file

server or a more appropriate local scheduling discipline.

• No clear superiority of Diffuse is observed under either of the two file system

structures.

M 10
e
a 9
n

8
R

7 e
s 6
p
0 5
n
s 4

e 3

T 2
i

m 1
e

(Sees) 0
0.1

138

0.2 0.3 0.4 0.5 0.6 0.7
System Load

I

/

I
I

0.8

I
I

I

I
I

I

I

Random

I NOLB

Sender
Receiver
Symetric
Diffuse

0.9 1

Figure 5.30 Performance of Standard Algorithms under Scaled Arrivals

M
10

e
a 9
n

8
R

7 e
s 6
p
0 5
n
s 4

e 3

T 2
i
m 1

e 0

--- -
------::-----

Random

I NOLB

Sender

Receiver
_ - - Symetric

- - Diffuse

(Sees)
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

System Load

Figure 5.31 Performance of Adapted. Algorithms under Scaled Arrivals

139

5.4.2. Evaluation of Algorithms under Identical Arrival Rates

In this section, the system load is specified by identical arrival rates Gobs/sec).

This corresponds to a normal load on slow nodes and a light load on fast nodes.

5.4.2.1. Diskless Model

Several observations can be made on the results represented in Figures 5.32 and

5.33:

• Both standard and adapted versions of all the algorithms improve the mean

response time and its standard deviation by up to 80%, when compared to the

NOLB case.

• The level of mean response time is kept nearly constant as the load level is

increased. Receiver has the poorest performance. Keeping all the nodes busy may

not be appropriate in the context of heterogeneous speeds because keeping a slow

node busy while a fast node has only few jobs in its queue can be counter­

productive.

• The relative performance order is the same for standard and adapted versions:

Diffuse, Symetric, Sender, Random, Receiver. One advantage of adapted version

is a lower overhead.

• When the load level is increased to 0.95, the mean response time becomes lower

than that under moderate load levels. As the load increase more jobs are

transferred from slow nodes to fast nodes where it takes them less time to execute,

the mean system response time is reduced.

• For a heterogeneous system the average system percent utilisation can be lower

than the NOLB case (e.g. Sender and Random). If a job is generated at a slow

node but remotely executed at a fast node, its service time is shorter and the

M
e
a
n

R
e
s
p
0

n
s
e

T
i
m

140

utilisation level of the slow node is smaller.

10

9

8

7

6

5

4

3

2

1

/
/

/
/

./

/
/

/
/

/

NOLB

Receiver
Random
Sender

L __ --------.... --~~~~-~-~-~-~~--~~~~-~-~-~--S metn·c -----:::- ---------- ~y
Diffuse

e
(Secs) 0

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

M
e
a
n

R
e
s
p
0

n
s
e

T
i
m

N ode Arrival Rate (jobs/sec)

Figure 5.32 Performance of Standard Algorithms under Identical Arrivals

10

9

8

7

6

5

4

3

2

1

/
/

/
/

./

/
/

/
/

/

NOLB

Receiver

----- _ ----- -----~<tT -- ---: : : - ----- SnWr~c

e
(Secs) 0

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8· 0.9 1
Node Arrival Rate (jobs/sec)

Figure 5.33 Performance of Adapted Algorithms under Identical Arrivals

141

5.4.2.2. Disk-based Model

Several observations can be made on the results represented in Figures 5.34 and

5.35:

• The performance order observed for both standard and adapted versions is:

Syrnetric, Diffuse, Sender, Receiver, Random. However, the mean response time

they produce is nearly identical.

• Under identical arrival rates even a 0.95 load level does not does not degrade the

mean response time.

• When compared to homogeneous systems the level of wrong movement of jobs is

reduced for Diffuse algorithm.

• The performance of Receiver under identical arrival rates is rather poor.

Under identical arrival rates only minor performance differences are observed

between diskless and disk-based file system structures.

5.4.3. Conclusions

The main conclusions that can be drawn from the results in this section are:

• For the workload models used (i.e. scaled and identical arrival rates) and five fast

five slow nodes configuration, there was no significant advantage in the adapted

version of algorithms.

• Under scaled arrival rates all the algorithms perform similarly, with the exception

of the Sender and Symetric algorithms which degrade the response time for the

diskless model at heavy load levels. Also the Random algorithm performs rather

poorly.

• Under identical arrival rates, there is a marginal difference in the response time for

all the algorithms. However, the perf<?rmance of Receiver algorithm is slightly

M
e
a
n

R
e
s
p
0

n
s
e

T
i
m

10

9

8

7

6

5

4

3

2

1

142

" " ./

" " "

NOLB

Receiver
Ranaom

, Sender
- - - - - ' - - - - - - - - - - Diffuse - - - - - - - - - - - - - - - - S-ymetnc

e 0
(Sees)

M
e
a
n

R
e
s
p
0

n
s
e

T
1

m

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Node Arrival Rate (jobs/sec)

Figure 5.34 Performance of Standard Algorithms under Identical Arrivals

10

9

8

7

6

5

4

3

2

1

"
" "
"

" " "

NOLB

./ Receiver

Random

~ __________ ----~-~-~-~-~-~-~-~-~-~-~-d-~-d-'-~~-~-~-~-~-~--------==-- 6r&~~~
Symetric

e 0
(Sees)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
N ode Arrival Rate (jobs/sec)

Figure 5.35 Performance of Adapted Algorithms under Identical Arrivals

143

worse than that of Random algorithm. This is because it is harder to find

overloaded nodes as the fast nodes complete their jobs in less time. The mean

response time is kept nearly steady over the range of load levels.

• The average system busy time can be lower under load balancing than under

NOLB. As in the case where jobs generated at a slow nodes are remotely

executed at a fast node where they take less time to run.

These conclusions basically hold for both the diskless and disk-based file

structures. One exception is the saturation of nodes observed at a load level higher than

0.8, and the sharp degradation of Sender and Symetric algorithms at a load level of 0.8

and higher for the diskless model. The Receiver algorithm maintains its level of

improvement over the range of load levels. The advantage of adapted version of the

algorithms could be more important when a workload model with high arrival rate on

the slow nodes and light arrival rate on the fast nodes is used. Finally this study has

shown that heterogeneous systems can be accommodated after minor modifications to

the random polling based class of load balancing algorithms.

5.5. Further Discussion on the Results

The study given in this chapter has shown that the Diffuse algorithm leads to the

smallest job mean response time of the load balancing algorithms studied for a range of

system attributes and workload models. Two other issues are explored in this section:

• Scalability

• Confidence Levels for the Results

5.5.1. Scalability

An important feature of any load balancing algorithm is that performance

improvements are maintained as the number of processors in the system increases. This

144

is referred to as scalability and some scalability principles have been reviewed in

Section 2.3.2. In this thesis we have looked at three broad types of algorithms based on

their information policy:

i) no system information

ii) system wide information

iii) information about subset of nodes

For scalability it is important to avoid algorithms that use system wide information.

Instead it is better to use algorithms that make their decisions based on a small subset of

the nodes.

A study by Zhou [Zhou88] on the effect of varying the system size on the mean

job response time, for systems comprising up to 49 nodes connected through an

Ethernet network, has shown that for THRHLD (an algorithm from type iii) the best

that can be achieved is the performance improvements obtained for systems with 28

nodes. For larger number of nodes no further improvement is obtained. This result can

be explained by the fact that the potential gain from having a larger system is consumed

by the processing of a larger number of messages and a high number of wrong job

transfers. In the case of DISTED (an algorithm from type ii), it is shown that the best

results are obtained for a 14 nodes system while a performance deterioration was

observed for larger systems. The latter is due to the periodic broadcast nature of the

algorithm information policy, which leads to an excessive exchange of information,

heavy contention on the communication device, and load balancing decisions based on

out of date information. The overhead is higher for each node and grows linearly with

the system size.

All the algorithms investigated in this study adhere to the scalability principles

established in [Barak87] (see Section 2,3.2). For example the load balancing decision is

based on information from a subset of the other nodes (on demand information

145

gathering policy). A medium size distributed system comprising ten hosts was assumed

in this work. To assess the scalability of the results obtained, some further experiments

were conducted. The performance of the load balancing algorithms under a heavy load

level for 5, 10, 20 nodes (with 0.06, 0.13, and 0.26 computelcommunicate ratio

respectively) is shown in Figures 5.36 and 5.37. From these results it can be seen that

the relative performance ordering of the algorithms holds for different system sizes and

that the level of performance improvement increases with the system size. This agrees

with the conclusions drawn by Zhou [Zhou88]. In Figures 5.38 and 5.39, the effect of

the system size is shown for the Diffuse and Symetric algorithms over the range of load

levels. The best results are obtained for a 20 nodes system. We conjecture that these

results remain valid for system size of few tens of nodes larger, but as shown in the

work in [Livny84] and [Zhou88], even for scalable algorithms, the performance

becomes insensitive to the number of nodes as the number of nodes increases. When a

larger number of nodes is available in an organization, the way forward is clustering.

The nodes can be divided into clusters of few tens to hundred nodes (based on present

day communication technology), and should reflect the physical proximity, the

administrative boundaries, or other groupings. In a study of load balancing for two­

level hierarchical distributed systems Banawan [Banawan87] suggests that most

expected gains can be obtained through intra-cluster load balancing, and that no

significant further performance improvement can be achieved through inter-cluster load

balancing particularly if the job transfer cost between clusters is higher.

5.5.2. Confidence Levels for the Results

The need for statistical output analysis is based on the observation that the output

data from a simulation exhibits rando!ll variability when random numbers generators

are used to produce the values of the input variables [Banks84]. Consequently two

M
e
a 10
n

9
R 8
e
s 7
p 6
0

n 5

s 4
e

3

T 2
i
m 1

e 0
(Sees)

M
e
a 10
n

9
R 8
e
s 7

P 6
0

n 5
s 4
e

3

T 2
i

m 1

e 0
(Sees)

146

:::::---

~

5 10 15 20
Network Size

Figure 5.36 Scalability of Algorithms (Diskless Model)

~================

5 10 15 20
Network Size

Figure 5.37 Scalability of Algorithms (Disk-based Model)

NOLB

Random
Sender

Reeelver

NOLB

Random
Sender

25

~
eelver a¥itne
1 use

25

147

M
e
a 10
n

9
R 8
e
s 7
p 6
0

n 5
s 4 5 nodes
e

3
10 nodes

T 2
i

m 1

e 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
(Sees) System Load

M
e
a
n

R
e
s
p
0

n
s
e

T
i
m
e

Figure 5.38 Effect of Network Size on Diffuse Algorithm (Disk-based Model)

10

9

8

7

6

5

4

3

2

5 nodes

10 nodes
20 nodes

1 L-~~~~~~~~~
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

(Sees) System Load

Figure 5.39 Effect of Network Size on Symetric Algorithm (Disk-based Model)

different streams of random numbers will produce two sets Qf output which would

highly likely be different. Two other sources of error are the arbitrary or artificial

nature of the initial conditions (e.g. starting with an "empty or idle" system) and the

lack of accounting of the jobs "leftover" when the simulation is terminated. A solution

148

to the effect of initial conditions is to reset the statistics after some initial phase.

However, a common way of dealing with these sources of error is to increase the

experiment run length for a long enough interval to make the effect of any error

introduced negligible. The choice of the simulation run length is crucial to the validity

of the results. There are two ways to deal with this issue: (i) the batch means method

and (ii) the replication method. The objective of the batch means method (or one long

run) is to monitor the performance measure for a large time interval until the steady

state is reached (i.e. the successive performance metric values remain within an

acceptable range). In the replication method the same experiment is repeated for a

given run length but with different seeds and making sure the results fall within an

acceptable confidence interval. Both methods have been used in the analysis of our

results.

The minimum simulation run length has been experimentally determined for one

seed. This is achieved by recording the mean response time as a function of the run

length for a large time interval at different load levels. From the results for a disk-based

baseline system shown in Figures 5.40, 5.41, 5.42, and 5.43, it can be seen that a 4000

secs run length is long enough to ensure the effect of initial conditions and "left over"

jobs can be ignored, and a reliable ranking of the algorithms is obtained. Also from the

results it is apparent that as the load level increases so does the variability of the output.

Similar results were obtained for a diskless baseline system. The minimum run length

of 4000 seconds corresponds to a generation of about 3,600 jobs population on each

host at a very heavy arrival rate for our workload model. To increase the confidence in

the results further, the same experiments are repeated at p=O.8 and p=O.9 for a 4000 secs

simulation run length but for 9 different random number seeds. This is to smooth out

the perturbations caused by the statistical nature of the random number generator. On

149

these replications the 95% confidence interval has been evaluated using the Minitab 1

data analysis software, from which the percentage of error was computed. It has been

found that on the average for this run length the mean response time stabilises and the

percentage of error is less than 3% for a system load p~O.8, and less than 5% for a

system load p=O.9. For subsequent experiments one seed is chosen. The confidence

levels in the job response time numerical results are shown below:

Diskless baseline system

Load level Percentage of error

p~O.8 3%

1.69%

p=O.9 5%

3.65%

Disk-based baseline system

Load level Percentage of error

p~O.8 3%

p=O.9

2.18%

5%

4.12%

95% Confidence Interval

±O.077 (algorithms average)

±O.024 (Diffuse)

±O.176 (algorithms average)

±O.065 (Diffuse)

95% Confidence Interval

±O.085 (algorithms average)

±O.052 (Diffuse)

±O.222 (algorithms average)

±O.096 (Diffuse)

The curves representing the load balancing algorithms ranking on the diskless base-

line system and including the confidence intervals are shown in Figure 5.44.

Although at the lower load levels the confidence interval is smaller no significant

ranking is obtainable. For load levels p<O.5 the performance of the algorithms is

nearly identical because the need for load balancing activation is reduced.

This statistical analysis of the simulation results shows that the estimates of

the performance are sufficiently accurate to make the use of the simulation model

and the conclusions drawn on the performance ranking of the Diffuse and other al-

gorithms, reliable.

1 Minitab Inc.

150

M
e 11
a

10 NOLB n

9 Random
R
e 8 Sender

s 7 Receiver
p
0 6 Symetrie
n

5 Diffuse s
e 4

T 3
1 2
m
e 1

(Sees) 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Run Length (sees)

Figure 5.40 Steady State Performancejor p=O.2 (Disk-based Model)

M
e
a
n

R
e
s
P
0

n
s
e

T
i
m
e

11

10

9

8

7

6

5

4

3

2

1

NOLB

Random

Sender

Receiver

Symetric

Diffuse

(Sees) 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Run Length (sees)

Figure 5.41 Steady State Performancejor p=O.6 (Disk-based Model)

151

M
e 11 r­
a

IO­n
NOLB

R
e
s
p
o
n
s

9-

8-

7'-

Random

Sender

6 I--- - - - _ _ _ _ _ _ _ _ _ -lteceiver
- - - --

5 r- Symetric

e 4 r- Diffuse

T
i
m

3r-

2r-- - - - - - --- - -- - -- - - - - -- - -- - - - - --- - - - - - --- - - - ---
e 1~--~I----~I.----r-I---.I-----r-I---.I----~I-----r-I---.,

(Sees) 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Run Length (sees)

M
e
a
n

R
e
s
P
0

n
s
e

T
i
m
e

Figure 5.42 Steady State Performance/or p=O.8 (Disk-based Model)

11

10

9

8

7

6

5

3

2

1

.-.-.-

---­.... - --

NOLB

Random

Sender

Receiver

Symetric

Diffuse

(Sees) 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Run Length (sees)

Figure 5.43 Steady State Performance/or p=O.9 (Disk-based Model)

10

M
e 9

a
n 8

R 7
e
s
p 6
0

n 5
s
e

4

T
i 3

m

152

I: confidence interval

e 2 _----

"

I

./

I
I

I
I

I

I
I

I

1

, ,

, ,

, , ,
,I NOLB

Random

Sender
- Receiver

Symetric
Diffuse (Sees) l-iioi-ioi-~=~=';;-~='=':'=':~: :~::~~-;;:;-~-~-:::-~-::-==::==~===-

1~----~-----r----~------~----~----~----~----~
0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

System Load

Figure 5.44 Performance under Compute/Communicate Ratio (R= 0.13, Diskless)

CHAPTER 6

Summary and Future Work

In this chapter, we reVIew the research work described in previous chapters,

summarise the main results and draw some conclusions. We then discuss future work

related to this research.

6.1. Survey of Load Balancing Algorithms

As a result of a survey of the literature on load balancing in distributed systems a

taxonomy on load balancing algorithms has been developed. This extends previous

taxonomies by considering the algorithm attributes as well as the algorithm components

(e.g. information policy, transfer policy, and location/negotiation policy). The attributes

include: the load redistribution objective, the decision-making structure, the

transparency, the autonomy, the scalability, and the adaptability of the load balancing

scheme. For the case of a rapidly changing distributed system environment, the

motivation for adaptive scheduling is given and the concept of tolerance of an algorithm

is used in the review of the different adaptability approaches. The adaptive load

balancing strategies are then structured according to adaptability issues and the

dimensions involved. Based on this framework for adaptive scheduling, a design

methodology for adaptive load balancing algorithms has been outlined.

A new algorithm called Diffuse has been proposed. It is symmetrically initiated

and uses periodic polling of a single random node. It produces the best mean response

time among the algorithms evaluated.

153

154

6.2. Performance of Load Balancing Algorithms

The assessment of this perfonnance study of load balancing algorithms is made at

three levels: the relative ordering of the algorithms within the simulated systems, the

effect of the system attributes and workload on the perfonnance of the algorithms, and

the wider implications of these results.

6.2.1. Algorithms Performance within Simulated Systems

A simulated system was used to evaluate a set of load balancing algorithms. To

assess the effect of distributed system attributes three system versions were built. The

relative perfonnance ordering of these algorithms across all three versions is deduced

from the results of the simulation given in the last chapter.

In the case of heterogeneous systems modifications to the Sender, Random,

Receiver, Symetric, and Diffuse algorithms have been made to take into account the

processing speed of the hosts. When choosing a random node to transfer a job to, or a

node to engage a polling negotiation with, a weighting factor proportional to the node

speed is used in the probability distribution (i.e. weighted destination). For the Diffuse

algorithm a scaled timer mechanism is used.

The summary of the performance of the algorithms is:

Random

This simple algorithm does not require the knowledge of the system state

infonnation. Hence no load balancing overheads will be incurred with the

exception of the overhead associated with transferring a job. Although it has the

lowest overhead, its performance is the poorest due to the high level of wrong job

movement. Also it does not preserve the autonomy of the nodes. It is not

recommended.

155

Receiver

Under this algorithm load balancing is initiated when the load at a node drops

below a pre-specified threshold. It has a good performance for moderate to heavy

load levels. In the case of heterogeneous systems with scaled arrival rates, this is

the only algorithm that maintains the reduction of the response time even for

heavy to very heavy load levels.

Sender

In this algorithm the load balancing is initiated by the overloaded node. It

performs well for light to moderate load levels. Its advantage over Receiver

algorithm is maintained even at heavy load levels under a heterogeneous

workload. However, a sharp degradation of the mean response time is observed

under scaled arrival rates on diskless heterogeneous systems at heavy load levels.

Symetric

This algorithm is a combination of Sender and Receiver algorithms. It has a good

performance over the whole range of load levels. However, this algorithm tends to

generate more load balancing messages which results in more overheads on the

nodes. This makes it more sensitive to the communication bandwidth.

Diffuse

This is a novel periodic version of the Symetric algorithm. To reduce the number

of load balancing messages only single probes are allowed and periodically the

load at a node is checked. The algorithm is a hybrid of the above ones and selects

between one of three possible cases: i) the receiver-initiated component of the

algorithm is activated if the load is below the threshold, ii) the sender-initiated

component of the algorithm is activated if the load is above the threshold, and iii)

no load balancing i s activated if the load equals the threshold value. The Diffuse

156

algorithm is the most promising one and on the simulated system produces the

lowest job mean response time. This advantage is maintained practically under all

three system versions, and over the range of system attributes and workload.

However, this algorithm does involve a high level of wrong job movements. Also

some care is needed in interpreting these results because the timer period of this

algorithm has been tuned for optimal performance for the simulated system.

Adapted Algorithms Versions (case of heterogeneous systems)

These versions attempt to focus sender-initiated probes from slow nodes to fast

nodes and receiver-initiated probes from fast nodes to slow nodes. For the speeds

configuration (Le. large number of fast nodes) and job arrival patterns considered,

no significant advantage of adapted versions was observed when compared the

standard versions where no focusing is attempted. Further work is needed on these

systems by considering other nodes speed configurations and heterogeneous users.

6.2.2. Effect of System Attributes and Workload Models

An important aspect of this study was the assessment of the effect of system

attributes and workload model on the load balancing algorithm performance. This effect

can be on three performance aspects: the job mean response time, the level of job mean

response time reduction relative to the NOLB case, and the relative ordering of the

algorithms.

File System Structure

The file system structure has no significant effect on the relative ordering of the

load balancing algorithms. However, the results might not generalise to all practical

systems because only non-preemptive transfers were considered. It is to be noted that a

sharp degradation of the job mean response time is observed under diskless model at

157

heavy load level with scaled arrivals for heterogeneous systems.

Communication Bandwidth

Although the relative ordering of the algorithms is not affected, the

communication bandwidth does affect the level of perfonnance improvement. As the

communication delays get longer an increase of the threshold level becomes necessary.

Also the curves of the algorithms tend to cluster, making the choice of the load

balancing algorithm less relevant.

Communication Protocols

The perfonnance of algorithms under "First Come First Serve", "CSMA/CD",

"Token Passing" protocols is nearly identical. However, some care is needed in

interpreting this results because under the operating conditions used (Le. system size,

job size, homogeneous users), the network traffic was such that a less 50% utilisation of

the communication device was induced, with similar medium access demands from all

nodes.

Load Balancing Overheads

Provided it is not too high (e.g. < 20 msecs), the fixed message cost has no

significant effect on the algorithm perfonnance ordering. The job separation cost for

selective transfers can significantly affect the level of algorithms perfonnance. Load

balancing is not worthwhile if this cost exceeds a minimum value (e.g. 50 msecs).

File Server Speed

Provided a minimum service rate is available, the file server speed does not affect

the job mean response time substantially. It is to be noted that the file server saturates

while the communication device and computing node are still providing nonnal service.

158

Workload Model

When a heterogeneous workload is used, the relative ordering of the algorithms is

basically unchanged. However, the cross-over Sender/Receiver does not take place even

at a 0.9 load level. Non-selective transfers are more advantageous than selective

transfers.

6.2.3. Wider Implications

The wider implications of this study on the development of load balancing

schemes for distributed systems are two-fold:

1) Design of Distributed Systems

The performance level provided by the Diffuse algorithm and its consistency over

a range of system attributes and workload makes it a very promising algorithm. It is

recommended that this algorithm be evaluated using a real distributed system.

2) Simulation

This thesis has demonstrated the value of simulation in the design of load

balancing algorithms. It has enabled a range of algorithms to be evaluated and a new

algorithm (Diffuse) has been proposed. It has been shown that it is important to

consider more complex systems than that can be studied using theoretical tools. For

example this has enabled us to study more realistic file system structure. Our

investigations suggest that in future experiments it is not necessary to consider the

communication protocols and the heterogeneous workload model. The same

conclusions can be drawn from a homogeneous model if only the ordering of the

algorithms is sought. However, the modelling of other system attributes can affect the

quality of the results significantly. The correct representation of the communication

bandwidth and the algorithm parameters tuning (i.e. T, Pt) is important to get an

159

accurate ordering of the algorithms. Assuming non-preemptive transfers, any file

system structure is sufficient for load balancing algorithms ordering purposes.

However, to get a clearer idea on the level of performance improvement the modelling

of the specific file system structure is necessary. For the diskless file system structure,

to realise the potential benefits of load balancing a minimum file server speed is needed

to avoid a major I/O bottleneck (i.e. incorrectly configured system). A reasonable value

of the load balancing message overhead is needed to obtain a realistic level of

performance improvement.

6.3. Future Work

This work has demonstrated the utility of simulation in identifying the most

promising load balancing algorithms. However, it is important to test these simulation

results, particularly for Diffuse and Symetric algorithms, on a real distributed systems

to confirm the conclusions drawn based on simulation. With simulation only load

balancing policies can be investigated with confidence. The load balancing mechanisms

such as remote process management and user interface facilities are much more difficult

to simulate. Load balancing can become a reality only when its performance and cost

effectiveness is proven on actual distributed systems.

Another investigation worthwhile to undertake is the issue of adaptive load

balancing based on dynamic parameter tuning and multi-options algorithms, which are

more suitable to a changing environment (i.e. in this study a fixed size system with

mainly homogeneous users were assumed). This aims for the development of load

balancing algorithms where explicit adaptability is added to maintain the performance

of a distributed system with a rapidly changing environment. This involves an

automatic switching of the load balancing algorithm policies and the dynamic

adjustment of the algorithm parameters to take into account the fluctuating system

160

attributes and workload environment. A preliminary work on this approach to adaptive

load balancing is described in Section 2.4. This could increase the confidence in the

Diffuse algorithm further.

In this study the jobs were assumed independent sequential units. In parallel

computation, which is becoming more popular due to advances in the related hardware,

a program consists of several modules which need to be dispatched to different hosts for

execution. Since these modules are not independent because they need to interact with

each other to carry out their tasks, load balancing in this context involves different

objectives and requirements. It is worthwhile to investigate the applicability of the load

balancing concepts considered in this work to parallel systems.

161

REFERENCES

ANSA87.

ANSA, ANSA Reference Manual Release 00.03, ANSA Project, Cambridge

(1987).

Alonso86.

R. Alonso, "The Design of Load Balancing Strategies for Distributed Systems,"

Proc. of Workshop on Future Directions in Computer Architecture & Software,

pp. 202-207 (May 1986).

Alonso88.

R. Alonso and L. L. Cova, "Sharing Jobs Among Independently Owned

Processors," IEEE Proc. 8th International Conference on Distributed Computing

Systems, pp. 282-288 (June 1988).

Banawan87.

S. A. Banawan, "An Evaluation of Load Sharing in Locally Distributed

Systems," PhD Thesis, University of Washington (1987).

Banks84.

J. Banks and J. S. Carson, Discrete-Event System Simulation, Prentice-Hall

International (1984).

Barak85.

A. Barak and A. Shiloh, "A Distributed Load-balancing Policy for a

Multicomputer," Software- Practice and Experience 15 (9) pp. 901-913

(September 1985).

Barak87.

A. Barak and Y. Kornatzky, "Design Principles of Operating Systems for Large

Scale Multicomputers," pp. 104-123 in International Workshop on Experiences

162

with Distributed Systems, ed. J. Nehmer ,Springer Verlag (September 1987).

Beck90.

B. Beck, "AAMP: A Multiprocessor Approach for Operating System and

Application Migration," ACM Operating Systems Review 24 (2) pp. 41-55 (April

1990).

Bershad86.

B. Bershad, "Load Balancing with Maitre d' ," ;login: 11(1) pp. 32-43 (Jan/Feb.

1986).

Bonomi88.

F. Bonomi and A. Kumar, "Adaptive Optimal Load Balancing in a

Hetereogeneous Multiserver System with a Central Job Scheduler," IEEE Proc.

8th International Conference on Distributed Computing Systems, pp. 500-508

(June 1988).

Broy87.

M. Broy and T. Streicher, "Views of Distributed Systems," pp. 114-143 in

Lecture Notes in Computer Science on Mathematical Models for the Semantics of

Parallelism, ed. M. V. Zilli,Springer-Verlag (1987).

Bryant81.

R. M. Bryant and R. A. Finkel, "A Stable Distributed Scheduling Algorithm,"

IEEE Proc. 2nd Intern. Conj. on Distributed Computer Control Systems, pp.

314-323 (April 1981).

CACI89.

CACI, NETWORK //.5 User's Manual Version 5.0, CACI Products Company

(August, 1989).

163

Cabrera86.

L. F. Cabrera, "The Influence of Workload on Load Balancing Strategies," Proc.

of the 1986 Summer USENIX Conference, pp. 446-458 (June 1986).

Casavant87.

T. L. Casavant and 1. G. Kuhl, "Analysis of Three Dynamic Distributed Load­

Balancing Strategies with Varying Global Infonnation Requirements," IEEE

Proc. 7th I nternat. Conf. on Distributed Computing Systems, (September 1987).

Casavant87a.

T. L. Casavant, "DSSAP - An Automated Design Aid for Algorithms and

Software Development in Distributed Computing Systems," 2nd International

Conf. on Supercomputing, pp. 123-132 (May 1987).

Casavant88.

T. L. Casavant and 1. G. Kuhl, "A Taxonomy of Scheduling in General-Purpose

Distributed Computing Systems," IEEE Transactions on Software Engineering 14

(2) pp. 141-153 (February 1988).

Castagnoli86.

C. Castagnoli, ' 'Load Balancing Computational Servers in a UNIX

Environment," EUUG Autumn 1986, pp. 267-272 (1986).

Chandras90.

R. G. Chandras, "Distributed Message Passing Operating Systems," ACM

Operating Systems Review 24(1) pp. 7-17 (January 1990).

Cheriton88.

D. R. Cheriton, "The V Distributed System," Communications of the ACM

31(3) pp. 314-333 (March 1988). "

164

Cheung88.

S. Cheung, S. Dimitriadis, and W. 1. Karplus, Introduction to Simulation using

NETWORK II.5, CACI Products Company (September, 1988).

Chow86.

T. C. K. Chow, "Distributed Control of Computer Systems," IEEE Transactions

on Software Engineering C-35(June 1986).

Concepcion88.

A. I. Concepcion and W. M. Eleazar, "A Testbed for Comparative Studies of

Adaptive Load Balancing Algorithms," Proc. of the SCS Multiconference on

Distributed Simulation, pp. 131-135 (February 1988).

Coulouris88.

O. F. Coulouris and J. Dollimore, Distributed Systems: Concepts and Design,

Addison Wesley (1988).

Dikshit89.

P. Dikshit, S. K. Tripathi, and P. Jalote, "SAHAYOG: A Test Bed for Evaluating

Dynamic Load-sharing Policies," Software- Practice and Experience 19 (5) pp.

411-435 (May 1989).

Eager85.

D. L. Eager, E. D. Lazowska, and J. ZahOIjan, "A Comparison of Receiver­

Initiated and Sender-Initiated Adaptive Load Sharing," Proc. of the 1985 ACM

SIGMETRICS Conference on Measurement and Modelling of Computer Systems,

pp. 1-3 (August 1985).

Eager86.

D. L. Eager, E. D. Lazowska, and J. Zahorjan, "Adaptive Load Sharing in

Homogeneous Distributed Systems," IEEE Transactions on Software Engineering

165

SE·12 (5) pp. 662-675 (May 1986).

Eager88.

D. L. Eager, E. D. Lazowska, and J. Zahorjan, "The Limited Perfonnance

Benefits of Migrating Active Processes for Load Sharing," ACM SIGMETRICS

Conference on Measurement and Modeling of Computer Systems, pp. 63-72 (May

1988).

Efe82.

K. Efe, "Heuristic Models of Task Assignment Scheduling in Distributed

Systems," IEEE Computer, (June 1982).

Evans88.

J. B. Evans, Structures of Discrete Event Simulation: An Introduction to the

Engagement Strategy, Ellis Horwood Series in Artificial Intelligence (1988).

Ezzat86.

A. K. Ezzat, "Load Balancing in NEST: A Network of Workstations," Proc. Fall

Joint Computer Conference, pp. 1138-1149 (November 1986).

Ferrari85.

D. Ferrari, "A Study of Load Indices for Load Balancing Schemes," Report No.

UCB/CSD 86/262, Computer Science Division (EECS), University of California,

Berkeley, California 94720 (October 1985).

Goscinski90.

A. Goscinski and M. Beannan, "Resource Management in Large Distributed

Systems," ACM Operating Systems Review 24 (4) pp. 7-25 (October 1990).

Green88.

J. J. Green, "Load Balancipg Algorithms in a Distributed Processing

Environment," PhD Thesis, University of California at Los Angeles (1988).

166

Hac87.

A. Hac and X. Jin, "Dynamic Load Balancing in a Distributed System Using a

Decentralized Algorithm," IEEE Proc. 7th Internat. Conf. on Distributed

Computing Systems, (September 1987).

Hagmann86.

R. Hagmann, "Process Server: Sharing Processing Power in a Workstation

Environment," IEEE Proc. 6th Inter. Con! on Distributed Computer Systems, pp.

260-267 (May 1986).

Hammond86.

J. L. Hammond and J. P. O'Reilly, Performance Analysis of Local Computer

Networks, Addison-Wesley (1986).

Hayter88.

T. Hayter and G. R. Brookes, "Simulation of some Local Area Network

Topologies," Report no. 88/5, Department of Computer Science - University of

Hull (1988).

Hoare85.

C.A.R. Hoare, Communicating Sequential Processes, Prentice Hall (1985).

Hong88.

1. Hong, X. Tan, and M. Chen, "From Local to Global: An Analysis of Nearest

Neighbor Balancing on Hypercube," Proc. ACM SIGMETRICS Conference on

Measurement and Modeling of Computer Systems, pp. 73-82 (May 1988).

Hsu86.

C. Y. H. Hsu and J. W. S. Liu, "Dynamic Load Balancing Algorithms in

Homogeneous Distributed Systen:ts," IEEE Proc. 6th International Conference on

Distributed Computing Systems, pp. 216-223 (May 1986).

167

Jard88.

C. Jard, J. F. Monin, and R. Groz, "Development of Veda, a Prototyping Tool for

Distributed Algorithms," IEEE Transactions on Software Engineering

14(3)(March 1988).

Jesty88.

P. H. Jesty and K. Benmohammed-Mahieddine, "Modelling Distributed Systems

Services," Report 88.16, School of Computer Studies, University of Leeds (July

1988).

Johnson88.

I. D. Johnson, "A Study of Adaptive Load Balancing Algorithms for Distributed

Systems," PhD Thesis, Aston University, U.K. (January 1988).

Johnson89.

M. Johnson, "Network Protocol Performance," Proc. ACM SIGMETRICS

Conference on Measurement and Modeling of Computer Systems, (May 1989).

Kara89.

M. Kara, P. H. Jesty, and T. G. Gough, "A Distributed Scheduling Algorithm

Based on a Decentralised Global Plan Strategy," Report 89.29, School of

Computer Studies, University of Leeds (December 1989).

Kleinrock85.

L. Kleinrock, "Distributed Systems," Communications of the ACM

28(11)(November 1985).

Kobayashi78.

H. Kobayashi, Modelling and Analysis: An Introduction to System Performance

Evaluation Methodology, Addiso~-Wesley (1978).

168

Krueger84.

P. Krueger and R. Finkel, "An Adaptive Load Balancing Algorithm for a

Multicomputer," Computer Sciences Technical Report #539, University of

Wisconsin- Madison (April 1984).

Krueger87.

P. Krueger and M. Livny, "The Diverse Objectives of Distributed Scheduling

Policies," IEEE Proc. 7th Internat. Conf. on Distributed Computing Systems,

(September 1987).

Krueger87a.

P. Krueger and M. Livny, "When is the Best Load Sharing Algorithm a Load

Balancing Algorithm?," Computer Sciences Technical Report #694, University

of Wisconsin - Madison (Apri11987).

Krueger88.

P. Krueger, "Distributed Scheduling for a Changing Environment," Computer

Sciences Technical Report #780, University of Wisconsin- Madison (June 1988).

Krueger88a.

P. Krueger and M. Livny, "A Comparison of Preemptive and Non-Preemptive

Load Distributing," IEEE Proc. 8th International Conference on Distributed

Computing Systems, pp. 123-130 (June 1988).

Kunz91.

T. Kunz, "The Influence of Different Workload Descriptions on a Heuristic Load

Balancing Scheme," IEEE Transactions on Software' Engineering 17 (7) pp.

725-730 (July 1991).

Lavenberg83.

S. S. Lavenberg, Computer Performance Modeling Handbook, Academic Press

169

(1983).

Lazowska86.

E. D. Lazowska, J. ZahOljan, D. R. Cheriton, and W. Zwaenepoel, "File Access

Performance of Diskless Workstations," ACM Transactions on Computer Systems

4(3)(August 1986).

Lee86.

K. J. Lee and D. Towsley, "A Comparison of Priority-Based Decentralized Load

Balancing Policies," Proc. of Performance '86 andACM SIGMETRICS 1986, pp.

70-77 (May 1986).

Leland86.

W. E. Leland and T. J. Ott, "Load-balancing Heuristics and Process Behavior,"

Proc. of the ACM SIGMETRICS Conference, pp. 54-69 (May 1986).

Lin87.

F. C. H. Lin and R. M. Keller, "The Gradient Model Load Balancing Method,"

IEEE Transactions on Software Engineering 13(1)(January 1987).

Livny84.

M. Livny, "The Study of Load Balancing Algorithms for Decentralized

Distributed Processing Systems," Computer Sciences Technical Report #570,

University of Wisconson- Madison (December 1984).

Lo84.

V. M. Lo, "Heuristic Algorithms for Task Assignment in Distributed Systems,"

IEEE Proc. 4th Inter. Conf. on Distributed Computing Systems, (1984).

Mirchandan89.

R. Mirchandaney, D. Towsley, !p1d J. A. Stankovic, "Analysis of the Effects of

Delays on Load Sharing," IEEE Transactions on Computers 38 (11) pp.

170

1513-1525 (November 1989).

Mitrani87.

I. Mitrani, Modelling of Computer and Communication Systems, Cambridge

University Press (1987).

Mullender86.

S. J. Mullender and A. S. Tanenbaum, "The Design of a Capability-based

Distributed Operating System," The Computer 10urnal29 (4) pp. 289-299 (1986).

Mutka87.

M. W. Mutka and M. Livny, "Profiling Workstations' Available Capacity for

Remote Execution," Computer Sciences Technical Report #697, University of

Wisconsin- Madison, (April 1987).

Needham82.

R. M. Needham and A. 1. Herbert, The Cambridge Distributed System, Addison

Wesley (1982).

Ni85.

L. M. Ni, C. W. Xu, and T. B. Gendreau, "A Distributed Drafting Algorithm for

Load Balancing," IEEE Transactions on Software Engineering 11 (10) pp.

1153-1161 (1985).

Ousterhout82.

J. K. Ousterhout, "Scheduling Techniques for Concurrent Systems," IEEE Proc.

3rd Internat. Con/. on Distributed Computer Systems, pp. 22-30 (1982).

Power89.

J. Power, "Distributed System Evolution - Some Observations," ACM Operating

Systems Review 23 (2) pp. 31-32 (1989).

171

Pulidas88.

S. Pulidas, D. Towsley, and J. A. Stankovic, "Imbedding Gradient Estimators in

Load Balancing Algorithms," IEEE Proc. 8th International Conference on

Distributed Computing Systems, (June 1988).

Ramamritha87.

K. Ramamritham and W. Zhao, "Meta-Level Control In Distributed Real-Time

Systems," IEEE Proc. 7th Internat. Conj. on Distributed Computing Systems,

(September 1987).

Renesse88.

R. Renesse, H. Staveren, and A. S. Tanenbaum, "Performance of the World's

Fastest Distributed Operating System," ACM Operating Systems Review 22

(4) pp. 25-34 (October 1988).

Shamir87.

E. Shamir and E. Upfal, "A Probabilistic Approach to the Load-Sharing Problem

in Distributed Systems," Journal of Parallel and Distributed Computing 4 pp.

521-530 Academic Press, (1987).

Siewiorek82.

D. P. Siewiorek, C. G. Bell, and A. Newell, Computer Structures: Principles and

Examples, McGraw Hill (1982).

Smith88.

J. M. Smith, "A Survey of Process Migration Mechanisms," ACM Operating

Systems Review 22(3) pp. 28-40 (July 1988).

Stankovic82.

J. A. Stankovic, N. Chowdhury, ~. Mirchandaney, and I. Sidhu, "An Evaluation

of the Applicability of Different Mathematical Approaches to the Analysis of

172

Decentralized Control Algorithms," Proc. IEEE COMPSAC, pp. 62-69

(November 1982).

Stankovic84a.

J. A. Stankovic, "Simulations of three Adaptive, Decentralized Controlled, Job

Scheduling Algorithms," Computer Networks 8 pp. 199-217 Elsevier Science,

(1984).

Stankovic85.

J. A. Stankovic, "An Application of Bayesian Decision Theory to Decentralized

Control of Job Scheduling," IEEE Transactions on Computers C34(2) pp.

117 -130 (February 1985).

Stankovic84.

J. H. Stankovic and I. S. Sidhu, "An Adaptive Bidding Algorithm for Processes,

Clusters and Distributed Groups," IEEE Proc. 4th Internat. Conj. on Distributed

Computing Systems, pp. 49-58 (1984).

Stumm88.

M. Stumm, "The Design and Implementation of a Decentralized Scheduling

Facility for a Workstation Cluster," IEEE Proc. 2nd Conference on Computer

Workstations, pp. 12-21 (March 1988).

Tanenbaum85.

A. S. Tanenbaum and R. Van Renesse, "Distributed Operating Systems," ACM

Computing Surveys 17 pp. 419-470 (December 1985).

Tantawi85.

A. Tantawi and D. Towsley, "Optimal Static Load Balancing in Distributed

Computer Systems," Journal AC~ 32(2)(ApriI1985).

173

Theimer85.

M. M. Theimer, K. A. Lantz, and D. R. Cheriton, "Preemptable Remote

Execution Facilities for the V-System," ACM 10th Symposium on Operating

Systems Principles, (1985).

Theimer88.

M. M. Theimer and K. A. Lantz, "Finding Idle Machines in a Workstation-based

Distributed System," IEEE Proc. 8th International Conference on Distributed

Computing Systems, pp. 112-122 (June 1988).

Tilborg84.

A. M. Van Tilborg and L. D. Wittie, "Wave Scheduling- Decentralized

Scheduling of Task Forces in Multicomputers," IEEE Transactions on Computers

C-33 (9) pp. 835-844 (September 1984).

Walker83.

B. J. Walker, G. J. Popek, R. Kline, and G. Thiel, "The LOCUS Distributed

Operating System," Proc. 9th ACM Symposium in Operating System Principles,

pp. 49-70 (Oct 1983).

Wang85.

Y. T. Wang and R. J. T. Morris, "Load Sharing in Distributed Systems," IEEE

Transactions on Computers C-34 (3) pp. 204-217 (March 1985).

Zhou86.

S. Zhou, "An Experimental Assessement of Resource Queue Lengths as Load

Indices," Report No. UCB/CSD 86/298, Computer Science Division (EECS),

University of California, Berkeley, California 94720 (June 1986).

Zhou87.

S. Zhou, "Performance Studies of Dynamic Load Balancing in Distributed

174

Systems," Report No. UCB/CSD 87/376, Computer Science Division (EECS),

University of California, Berkeley, California 94720 (October 1987).

Zhou87a.

S. Zhou and D. Ferrari, "A Measurement Study of Load Balancing Performance,"

IEEE Proc. 7th Internat. Con! on Distributed Computing Systems, (September

1987).

Zhou88.

S. Zhou, "A Trace-Driven Simulation Study of Dynamic Load Balancing," IEEE

Transactions on Software Engineering 14 (9) pp. 1327-1341 (September 1988).

175

Appendix

Detailed Simulation Results

The detailed simulation results included in this appendix are divided according to the

three groups of experiments identified in Chapter 5:

i) Homogeneous Diskless Systems (Tables 1-9)

ii) Homogeneous Disk-based Systems (Tables 10-18)

iii) Heterogeneous Systems (Tables 19-26)

These tables indicate the benefit brought by the load balancing algorithms and the

cost incurred. The benefit is expressed in terms of job mean response time and its

predictability shown by the standard deviation. The cost is expressed in terms of the

percentage of job movement (out of the total number of jobs processed), the percentage

of wrong job movements, the number of load balancing messages per node per second,

and the average percentage increase in processor utilisation. The load pattern indicates

the average external load level present at each node in the system (LLLLL: Pi=: 0.4,

MMMMM: Pi= 0.6, HHHHH: pi=0.8, and VVVVV: Pi=: 0.9).

176

Benefit Cost
Algorithm response(A VO) response(STD) jobmov.

messages %LB_exec time(s) Impr(%) time(s) Impr(%) %jobmov %baddcs
NOLB 1.71 0.00 0.71 0.00 0.00 0.00 0.00 0.00
RANDOM 1.39 18.64 0.54 24.45 13.74 16.68 0.00 0.05
RECEIVR 1.50 12.07 0.60 15.99 6.15 0.00 1.41 0.62
SENDER 1.36 20.65 0.54 24.50 12.50 025 0.12 0.06
SYMTRIC 1.36 20.31 0.53 25.66 13.00 0.29 1.71 0.77
DIFFUSE 1.36 20.38 0.54 24.02 10.47 3.80 2.31 1.70

Load Pattern= LLLLL

Benefit Cost
Algorithm response(A VO) response(STD) jobmov.

messages %LB_exec
time(s) Impr(%) time(s) Impr(%) %jobmov %baddcs

NOLB 2.53 0.00 0.86 0.00 0.00 0.00 0.00 0.00
RANDOM 1.66 34.30 0.56 35.23 30.46 33.83 0.00 0.00
RECEIVR 1.64 35.19 0.58 33.08 15.18 0.39 1.79 0.72
SENDER 1.58 37.35 0.52 39.46 24.89 0.72 0.47 0.12
SYM1RIC 1.56 38.31 0.49 42.56 27.00 0.80 2.75 1.22
DIFFUSE 1.27 49.93 0.56 35.28 24.50 9.69 2.20 2.02

Load Pattern= MMMMM

Benefit Cost
Algorithm response(A VO) response(STD) job mov.

messages %LB_exec time(s) Impr(%) time(s) Impr(%) %jobmov %baddcs
NOLB 5.22 0.00 1.64 0.00 0.00 0.00 0.00 0.00
RANDOM 2.45 52.98 0.88 46.47 57.56 60.45 0.00 0.17
RECEIVR 2.06 60.50 0.78 52.69 26.32 0.82 1.70 0.81
SENDER 2.23 57.22 0.84 48.80 31.58 1.59 1.44 0.80
SYMTRIC 1.74 66.70 0.67 59.10 43.00 1.95 3.92 2.08
DIFFUSE 1.41 72.97 0.74 54.64 37.93 19.05 2.10 2.48

Load Pattern= HHHHH

Benefit Cost
Algorithm response(A VO) response{STD) job mov.

messages %LB_exec time(s) Impr(%) time(s) Impr(%) %jobmov %baddcs
NOLB 8.48 0.00 2.36 0.00 0.00 0.00 0.00 0.00
RANDOM 3.42 59.66 1.31 44.54 71.07 73.14 0.00 0.81
RECEIVR 2.49 70.58 1.07 54.76 28.87 1.05 1.43 0.79
SENDER 2.89 65.94 1.18 50.12 29.06 1.81 2.06 1.10
SYMTRIC 2.02 76.12 0.95 59.82 44.72 3.03 4.22 2.27
DIFFUSE 1.65 80.49 1.01 57.31 41.54 26.44 2.10 2.69

Load Pattern= VVVVV

Table 5.1 Performance under Small Compute/Communicate Ratio (R= 0.13)

177

Benefit Cost
Algorithm response(A VO) response(STD) jobmov.

messages %LB_exec time(s) Impr(%) time(s) Impr(%) %jobmov %baddcs
NOLB 1.79 0.00 0.72 0.00 0.00 0.00 0.00 0.00
RANDOM 1.58 11.46 0.61 15.79 4.66 5.23 0.00 0.02
RECEIVR 1.70 4.94 0.66 8.83 2.58 0.24 1.51 1.22
SENDER 1.58 11.71 0.61 15.91 4.57 0.27 0.04 0.06
SYMTRIC 1.61 10.11 0.60 16.91 5.26 0.24 1.63 1.30
DIFFUSE 1.61 9.90 0.62 13.77 4.26 1.90 2.38 2.71

Load Pattern= LLLLL

Benefit Cost
Algorithm response(A VO) response(STD) jobmov.

messages %LB_exec time(s) Impr(%) time(s) Impr(%) %jobmov %baddcs
NOLB 2.71 0.00 0.89 0.00 0.00 0.00 0.00 0.00
RANDOM 1.98 27.06 0.63 29.48 16.19 19.27 0.00 0.07
RECEIVR 2.13 21.23 0.67 24.53 9.73 0.43 2.02 2.00
SENDER 1.95 27.98 0.61 31.93 14.25 0.44 0.23 0.12
SYMTRIC 2.02 25.61 0.61 31.60 16.06 0.96 2.54 2.56
DIFFUSE 1.72 36.43 0.64 28.54 14.41 4.94 2.30 3.30

Load Pattern= MMMMM

Benefit Cost
Algorithm response(A VO) response(STD) job mov.

messages %LB_exec time(s) Impr(%) time(s) Impr(%) %jobmov %baddcs
NOLB 6.25 0.00 1.92 0.00 0.00 0.00 0.00 0.00
RANDOM 2.90 53.54 0.93 51.66 44.32 50.30 0.00 0.33
RECEIVR 2.73 56.26 0.89 53.44 23.18 1.71 1.93 2.76
SENDER 2.75 55.99 0.90 52.97 28.42 2.12 1.01 1.30
SYMTRIC 2.24 64.11 0.95 50.55 37.80 3.98 3.67 4.77
DIFFUSE 2.03 67.46 1.08 43.92 34.20 16.58 2.19 4.31

Load Pattern= HHHHH

Benefit Cost
Algorithm response(A VO) response(STD) jobmov.

messages %LB_exec time(s) Impr(%) time(s) Impr(%) %jobmov %baddcs
NOLB 12.92 0.00 3.52 0.00 0.00 0.00 0.00 0.00
RANDOM 4.25 67.09 1.58 55.01 64.84 68.99 0.00 1.24
RECEIVR 3.38 73.83 1.25 64.37 27.56 2.63 1.49 2.47
SENDER 4.16 67.78 1.71 51.45 26.69 3.40 1.92 2.60
SYMTRIC 3.59 72.20 1.85 47.35 37.07 8.37 3.83 5.40
DIFFUSE 3.14 75.72 1.98 43.89 36.18 27.37 2.17 4.71

Load Pattern= VVVVV

Table 5.2 Performance under Large Compute/Communicate Ratio (R= 0.4)

178

Benefit Cost
Algorithm response(A VG) response(STD) jobmov.

messages %LB_exec
time(s) Impr(%) time(s) Impr(%) %jobmov %baddes

NOLB 5.47 0.00 2.46 0.00 0.00 0.00 0.00 0.00
RANDOM 1.63 70.18 0.56 77.43 29.77 28.40 0.00 0.31
RECEIVR 2.07 62.10 0.76 69.08 17.25 0.63 1.42 1.20
SENDER 1.55 71.67 0.52 79.05 24.14 0.49 0.39 0.54
SYMlRIC 1.54 71.90 0.51 79.38 25.59 0.55 2.50 1.50
DIFFUSE 1.30 76.16 0.54 77.86 23.83 7.25 2.22 2.22

Load Pattern= 4S, 2M, 4V

Table 5.3 Performance under Small Compute/Communicate Ratio (R= 0.13)

Benefit Cost
Algorithm response(A VG) response(STD) jobmov.

messages %LB_exec
time(s) Impr(%) time(s) Impr(%) %jobmov %bad des

NOLB 6.40 0.00 2.87 0.00 0.00 0.00 0.00 0.00
RANDOM 2.01 68.54 0.62 78.32 19.44 16.79 0.00 0.42
RECEIVR 2.48 61.32 0.81 71.69 14.01 0.72 1.60 2.14
SENDER 1.98 69.00 0.61 78.87 16.53 0.58 0.23 0.75
SYMlRIC 2.03 68.25 0.61 78.87 18.30 0.55 2.35 2.81
DIFFUSE 1.69 73.53 0.66 77.09 17.18 4.26 2.32 3.73

Load Pattern= 4S, 2M, 4V

Table 5.4 Performance under Large Compute/Communicate Ratio (R= 0.4)

179

Benefit Cost
Algorithm response(A VO) response(STD) jobmov.

messages %LB_exec
time(s) Impr(%) time(s) Impr(%) %jobmov %baddcs

NOLB 1.74 0.00 0.77 0.00 0.00 0.00 0.00 0.00
RANDOM 1.41 18.75 0.60 22.34 13.95 16.84 0.00 0.33
RECEIVR 1.64 5.49 0.71 7.57 0.77 0.00 1.34 0.12
SENDER 1.34 22.83 0.55 28.03 12.18 0.36 0.12 -0.40
SYM1RIC 1.36 21.75 0.57 26.46 12.74 0.20 1.70 0.32
DIFFUSE 1.20 31.01 0.76 1.53 7.78 12.69 0.64 2.36

Load Pattern= LLLLL

Benefit Cost
Algorithm response(A VO) response(STD) jobmov.

messages %LB_exec
time(s) Impr(%) time(s) Impr(%) %jobmov %baddcs

NOLB 2.69 0.00 0.94 0.00 0.00 0.00 0.00 0.00
RANDOM 1.70 36.71 0.59 36.88 31.35 34.47 0.00 0.45
RECEIVR 2.03 24.50 0.73 22.10 4.25 0.39 1.56 -0.21
SENDER 1.59 41.06 0.56 40.63 24.18 0.73 0.47 -0.62
SYM1RIC 1.61 40.31 0.57 39.08 24.80 0.64 2.72 0.40
DIFFUSE 1.10 58.99 0.72 23.49 15.18 18.03 0.68 3.49

Load Pattern= MMMMM

Benefit Cost
Algorithm response(A VO) response(STD) jobmov.

messages %LB_exec time(s) Impr(%) time(s) Impr(%) %jobmov %baddcs
NOLB 7.32 0.00 2.74 0.00 0.00 0.00 0.00 0.00
RANDOM 2.66 63.66 1.09 60.27 59.27 62.91 0.00 0.14
RECEIVR 2.67 63.55 0.92 66.49 10.36 0.51 1.36 -0.38
SENDER 2.22 69.73 0.83 69.61 31.67 1.66 1.43 -0.28
SYM1RIC 2.09 71.44 0.78 71.71 33.16 1.63 3.79 0.86
DIFFUSE 1.52 79.28 1.32 51.70 19.71 26.10 0.70 2.93

Load Pattern= HHHHH

Benefit Cost
Algorithm response(A VO) response(STD) jobmov.

messages %LB_exec time(s) Impr(%) time(s) Impr(%) %jobmov %baddcs
NOLB 13.27 0.00 4.08 0.00 0.00 0.00 0.00 0.00
RANDOM 4.07 69.31 2.00 51.06 73.29 75.79 0.00 0.40
RECEIVR 3.60 72.90 1.40 65.71 12.65 0.93 1.07 -0.03
SENDER 3.34 74.82 1.82 55.42 27.55 2.12 2.10 0.52
SYM1RIC 2.81 78.79 1.48 63.67 30.73 2.15 4.04 1.52
DIFFUSE 2.40 81.93 2.22 45.70 18.15 29.73 0.69 1.99

Load Pattern= VVVVV

Table 5595105 Jobs Proportion with Non-selective Transfer

180

Benefit Cost
Algorithm response{A VO) response{STD) jobmov.

messages %LB_exec
time(s) Impr(%) time(s) Impr(%) %jobmov %baddcs

NOLB 1.74 0.00 0.77 0.00 0.00 0.00 0.00 0.00
RANDOM 1.74 0.16 0.78 -1.80 0.83 20.30 0.00 0.83
RECEIVR 1.74 0.10 0.76 0.94 0.08 0.00 1.33 0.62
SENDER 1.70 2.41 0.74 4.42 0.77 0.81 0.01 -0.02
SYMlRIC 1.69 2.79 0.72 6.82 0.80 0.00 1.35 0.57
DIFFUSE 1.57 10.00 0.74 3.25 0.70 19.47 0.50 1.43

Load Pattern= LLLLL

Benefit Cost
Algorithm response{A VO) response{STD) jobmov.

messages %LB_exec
time(s) Impr(%) time(s) Impr(%) %jobmov %baddcs

NOLB 2.69 0.00 0.94 0.00 0.00 0.00 0.00 0.00
RANDOM 2.60 3.22 0.98 4.54 1.89 36.78 0.00 0.78
RECEIVR 2.65 1.33 0.97 -3.45 0.34 l.23 1.48 0.74
SENDER 2.37 12.02 0.83 11.82 1.48 0.00 0.03 0.07
SYMlRIC 2.45 9.06 0.89 5.49 l.61 l.04 1.55 0.88
DIFFUSE 1.77 34.15 1.17 -24.37 3.34 42.64 0.38 7.71

Load Pattern= MMMMM

Benefit Cost
Algorithm response(AVO) response{STD) jobmov.

messages %LB_exec time(s) Impr(%) time(s) Impr(%) %jobmov %baddcs
NOLB 7.32 0.00 2.74 0.00 0.00 0.00 0.00 0.00
RANDOM 5.89 19.58 2.73 0.43 3.27 66.16 0.00 0.85
RECEIVR 5.65 22.82 1.99 27.50 0.76 0.41 l.03 1.60
SENDER 4.87 33.44 1.90 30.52 l.78 0.70 0.08 0.78
SYMlRIC 4.75 35.14 1.67 38.99 1.95 0.64 l.21 1.62
DIFFUSE 3.46 52.78 2.79 -1.76 4.70 70.41 0.16 13.05

Load Pattern= HHHHH

Benefit Cost
Algorithm response{A VO) response(STD) jobmov.

messages %LB_exec time(s) Impr(%) time(s) Impr(%) %jobmov %baddcs
NOLB 13.27 0.00 4.08 0.00 0.00 0.00 0.00 0.00
RANDOM 10.42 2l.50 5.09 -24.70 3.93 80.28 0.00 0.87
RECEIVR 9.22 30.51 3.70 9.34 0.81 0.71 0.70 1.72
SENDER 8.29 37.50 3.55 12.91 1.43 0.60 0.12 l.20
SYMlRIC 7.07 46.72 2.45 40.01 l.88 0.92 0.90 l.65
DIFFUSE 6.13 53.80 4.85 -18.95 4.36 75.36 0.12 9.34

Load Pattern= VVVVV

Table 5.695105 Proportion of Jobs with Selective Transfer

181

Benefit Cost
Algorithm response(A VO) response(STD) jobmov.

messages %LB_exec time(s) Impr(%) time(s) Impr(%) %jobmov %baddcs
NOLB 1.84 0.00 0.93 0.00 0.00 0.00 0.00 0.00
RANDOM 1.41 23.20 0.63 31.75 14.24 17.37 0.00 -0.15
RECEIVR 1.65 10.14 0.73 22.03 0.71 0.00 1.34 -0.11
SENDER 1.36 26.31 0.59 36.84 12.29 0.15 0.12 -0.59
SYMTRIC 1.37 25.32 0.60 35.09 12.36 0.45 1.70 0.16
DIFFUSE 1.18 36.13 0.78 15.84 9.92 11.27 0.63 1.99

Load Pattern= LLLLL

Benefit Cost
Algorithm response(A VO) response(STD) jobmov.

messages %LB_exec time(s) Impr(%) time(s) Impr(%) %jobmov %baddcs
NOLB 2.95 0.00 1.30 0.00 0.00 0.00 0.00 0.00
RANDOM 1.73 41.36 0.67 48.45 32.00 35.98 0.00 -0.04
RECEIVR 2.14 27.38 0.76 41.47 4.10 0.20 1.57 -0.50
SENDER 1.56 47.03 0.57 56.41 24.37 0.67 0.46 -0.91
SYMTRIC 1.60 45.82 0.58 55.41 25.47 0.80 2.73 0.20
DIFFUSE 1.14 61.47 0.83 36.41 17.50 18.97 0.67 3.19

Load Pattern= MMMMM

Benefit Cost
Algorithm response(A VO) response(STD) job mov.

messages %LB_exec time(s) Impr(%) time(s) Impr(%) %jobmov %baddcs
NOLB 6.98 0.00 2.72 0.00 0.00 0.00 0.00 0.00
RANDOM 2.77 60.31 1.14 58.04 60.85 62.66 0.00 0.38
RECEIVR 2.95 57.73 0.99 63.56 11.03 0.57 1.36 -0.42
SENDER 2.25 67.73 0.91 66.61 32.09 1.51 1.44 -0.29
SYMTRIC 2.06 70.43 0.75 72.49 34.20 1.68 3.82 0.87
DIFFUSE 1.72 75.38 1.29 52.46 21.52 26.60 0.69 2.23

Load Pattern= IllIHHH

Benefit Cost
Algorithm response(AVO) response(STD) job mov.

messages %LB_exec time(s) Impr(%) time(s) Impr(%) %jobmov %baddcs
NOLB 11.94 0.00 4.18 0.00 0.00 0.00 0.00 0.00
RANDOM 4.19 64.88 1.87 55.26 74.14 75.50 0.00 0.51
RECEIVR 3.60 69.83 1.28 69.49 13.65 0.78 1.09 -0.32
SENDER 3.24 72.84 1.59 61.93 28.65 1.74 2.11 0.30
SYMTRIC 2.65 77.80 1.21 70.96 31.79 2.41 4.07 1.26
DIFFUSE 2.59 78.34 1.96 53.01 18.77 29.16 0.68 1.33

Load Pattern= VVVVV

Table 5.7 70130 Proportion of Jobs with Non-selective Transfer

182

Benefit Cost
Algorithm response(A VO) response(STD) jobmov.

messages %LB_exec time(s) Impr(%) time(s) Impr(%) %jobmov %baddcs
NOLB 1.84 0.00 0.93 0.00 0.00 0.00 0.00 0.00
RANDOM 1.55 15.91 0.70 24.74 4.71 18.15 0.00 0.47
RECEIVR 1.73 5.82 0.81 13.26 0.32 0.00 1.34 1.00
SENDER 1.52 17.26 0.69 26.34 4.48 0.28 0.04 0.42
SYMTRIC 1.52 17.40 0.66 28.55 4.31 0.14 1.47 1.04
DIFFUSE 1.32 28.06 0.75 19.73 2.22 16.85 0.58 1.83

Load Pattern= LLLLL

Benefit Cost
Algorithm response(A VO) response(STD) jobmov.

messages %LB_exec time(s) Impr(%) time(s) Impr(%) %jobmov %baddcs
NOLB 2.95 0.00 1.30 0.00 0.00 0.00 0.00 0.00
RANDOM 2.05 30.41 0.79 39.12 10.67 37.44 0.00 0.83
RECEIVR 2.32 21.46 0.90 30.85 1.38 0.00 1.53 0.20
SENDER 1.87 36.61 0.68 47.62 8.45 0.30 0.16 0.25
SYMTRIC 1.90 35.54 0.70 45.81 8.49 0.49 1.95 1.13
DIFFUSE 1.18 59.87 0.80 38.81 6.89 27.70 0.53 6.39

Load Pattern= MMMMM

Benefit Cost
Algorithm response(A VO) response(STD) jobmov.

messages %LB_exec time(s) Impr(%) time(s) Impr(%) %jobmov %baddcs
NOLB 6.98 0.00 2.72 0.00 0.00 0.00 0.00 0.00
RANDOM 4.08 41.57 1.81 33.27 19.56 65.12 0.00 1.09
RECEIVR 3.45 50.59 1.40 48.68 3.83 0.33 1.20 0.04
SENDER 3.16 54.78 1.47 45.79 9.91 0.95 0.47 0.01
SYMTRIC 2.70 61.32 1.06 60.91 10.86 1.04 2.04 0.88
DIFFUSE 1.74 75.01 1.69 37.74 11.47 42.06 0.45 7.88

Load Pattern= HHHHH

Benefit Cost
Algorithm response(A VO) response(STD) job mov.

messages %LB_exec time(s) Impr(%) time(s) Impr(%) %jobmov %baddcs
NOLB 11.94 0.00 4.18 0.00 0.00 0.00 0.00 0.00
RANDOM 7.29 38.96 3.31 20.71 23.60 77.80 0.00 1.40
RECEIVR 5.05 57.74 2.28 45.56 4.76 0.60 0.92 -0.20
SENDER 4.98 58.30 3.09 26.07 8.75 1.22 0.67 0.21
SYMTRIC 3.57 70.14 1.98 52.74 10.27 1.43 1.89 0.84
DIFFUSE 4.00 66.53 3.92 6.27 10.13 47.11 0.42 6.03

Load Pattern= VVVVV

Table 5.870130 Proportion of Jobs with selective Transfer

183

Benefit Cost
Algorithm response{A VO) response{STD) jobmov.

messages %LB_exec time(s) Impr(%) time(s) Impr(%) %jobmov %baddcs
NOLB 1.73 0.00 0.73 0.00 0.00 0.00 0.00 0.00
RANDOM 1.42 18.12 0.56 23.19 14.09 16.91 0.00 0.31
RECEIVR 1.52 12.42 0.60 17.66 6.31 0.79 1.42 0.59
SENDER 1.37 20.83 0.53 27.27 12.32 0.81 0.12 0.09
SYM1RIC 1.37 20.64 0.54 26.69 13.04 0.96 1.71 0.74
DIFFUSE 1.41 18.56 0.54 26.09 11.14 4.20 2.31 1.28

Load Pattern= LLLLL

Benefit Cost
Algorithm response(A YO) response(STD) jobmov.

messages %LB3xec time(s) Impr(%) time(s) Impr(%) %jobmov %baddcs
NOLB 2.64 0.00 0.92 0.00 0.00 0.00 0.00 0.00
RANDOM 1.71 35.26 0.60 35.23 31.09 35.32 0.00 0.33
RECEIVR 1.81 31.41 0.61 34.05 16.20 1.47 1.77 0.70
SENDER 1.62 38.65 0.53 42.59 24.51 1.92 0.48 0.27
SYMTRIC 1.58 40.28 0.51 44.45 28.32 2.10 2.75 1.29
DIFFUSE 1.48 43.88 0.55 40.00 24.56 10.63 2.20 1.60

Load Pattern= MMMMM

Benefit Cost
Algorithm response{A YO) response{STD) jobmov.

messages %LB_exec time(s) Impr(%) time(s) Impr(%) %jobmov %baddcs
NOLB 5.69 0.00 1.75 0.00 0.00 0.00 0.00 0.00
RANDOM 2.75 51.68 1.02 41.75 60.96 64.28 0.00 1.12
RECEIVR 2.27 60.12 0.77 55.87 27.60 2.77 1.62 0.89
SENDER 2.37 58.34 0.96 45.19 31.18 4.08 1.50 0.99
SYMTRIC 1.88 66.97 0.82 53.21 44.18 5.18 3.85 2.18
DIFFUSE 1.61 71.70 0.84 51.79 40.22 21.89 2.14 2.27

Load Pattern= HHHHH

Benefit Cost
Algorithm response(A YO) response(STD) job mov.

messages %LB_exec time(s) Impr(%) time(s) Impr(%) %jobmov %baddcs
NOLB 10.72 0.00 3.26 0.00 0.00 0.00 0.00 0.00
RANDOM 4.39 59.09 1.85 43.35 76.67 78.55 0.00 1.69
RECEIVR 2.91 72.88 1.14 64.91 28.98 3.81 1.30 1.08
SENDER 3.49 67.43 1.55 52.58 26.01 5.12 2.23 1.34
SYMTRIC 2.50 76.72 1.23 62.19 42.82 7.42 4.08 2.46
DIFFUSE 2.15 79.95 1.21 62.82 41.03 29.43 2.16 2.43

Load Pattern= VVVVV

Table 5.9 Performance under Small Compute/Communicate Ratio (R= 0.13)

184

Benefit Cost
Algorithm response(A VO) response(STD) jobmov.

messages %LB_exec time(s) Impr(%) time(s) Impr(%) %jobmov %baddcs
NOLB 1.73 0.00 0.73 0.00 0.00 0.00 0.00 0.00
RANDOM 1.57 9.38 0.61 16.01 4.99 5.12 0.00 0.33
RECEIVR 1.61 6.98 0.62 14.63 2.51 0.25 1.53 0.64
SENDER 1.53 1l.45 0.60 17.80 4.57 0.55 0.04 0.06
SYMTRIC 1.55 10.58 0.61 16.98 4.86 0.90 1.64 0.75
DIFFUSE 1.59 7.89 0.60 17.93 3.97 0.94 2.41 1.34

Load Pattern= LLLLL

Benefit Cost
Algorithm response(A VO) response(STD) job mov.

messages %LB_exec time(s) Impr(%) time(s) Impr(%) %jobmov %baddcs
NOLB 2.64 0.00 0.92 0.00 0.00 0.00 0.00 0.00
RANDOM 1.93 26.71 0.63 31.76 15.47 19.85 0.00 0.45
RECEIVR 2.10 20.52 0.68 25.61 9.59 1.17 2.05 0.98
SENDER 1.90 28.11 0.62 32.88 14.31 1.43 0.22 0.31
SYMTRIC 1.91 27.49 0.62 32.72 15.53 2.07 2.57 1.37
DIFFUSE 1.89 28.49 0.64 30.70 14.17 5.73 2.34 1.84

Load Pattern= MMMMM

Benefit Cost
Algorithm response(A VO) response(STD) job mov.

messages %LB_exec time(s) Impr(%) time(s) Impr(%) %jobmov %baddcs
NOLB 5.69 0.00 l.75 0.00 0.00 0.00 0.00 0.00
RANDOM 2.94 48.37 l.06 39.65 44.37 50.79 0.00 1.84
RECEIVR 2.85 49.96 0.88 49.93 22.91 2.72 2.03 l.60
SENDER 2.61 54.15 0.89 48.99 27.28 3.76 0.94 1.27
SYMTRIC 2.35 58.78 0.93 46.72 36.55 6.00 3.55 3.14
DIFFUSE 2.07 63.56 0.89 49.20 32.93 16.72 2.24 3.01

Load Pattern= HHHHH

Benefit Cost
Algorithm response(A VO) response(STD) job mov.

messages %LB_exec time(s) Impr(%) time(s) Impr(%) %jobmov %baddcs
NOLB 10.72 0.00 3.26 0.00 0.00 0.00 0.00 0.00
RANDOM 4.84 54.82 2.09 36.01 68.26 72.13 0.00 3.38
RECEIVR 3.52 67.16 l.27 60.90 27.27 3.88 1.66 l.90
SENDER 3.48 67.58 1.43 56.23 29.07 5.03 l.67 1.96
SYMTRIC 3.04 71.67 1.46 55.25 41.08 8.82 3.99 3.84
DIFFUSE 2.68 74.95 1.41 56.74 39.28 26.82 2.25 3.74

Load Pattern= VVVVV

Table 5.10 Performance under Large Compute/Communicate Ratio (R= 0.4)

185

Benefit Cost
Algorithm response(A VG) response(STD) jobmov.

messages %LB_exec time(s) Impr(%) time(s) Impr(%) %jobmov %bad des
NOLB 6.10 0.00 2.66 0.00 0.00 0.00 0.00 0.00
RANDOM 1.69 72.33 0.61 77.07 32.49 29.56 0.00 0.45
RECEIVR 2.11 65.39 0.78 70.77 18.38 1.75 1.40 1.28
SENDER 1.59 73.93 0.52 80.33 25.24 1.72 0.41 0.84
SYMlRIC 1.52 75.15 0.51 80.66 27.45 2.08 2.51 1.66
DIFFUSE 1.48 75.82 0.53 79.93 24.51 8.77 2.22 1.87

Load Pattern= 4S, 2M, 4 V

Table 5.11 Performance under Small Compute/Communicate Ratio (R= 0.13)

Benefit Cost
Algorithm response(A VG) response(STD) jobmov.

messages %LB_exec time(s) Impr(%) time(s) Impr(%) %jobmov %baddes
NOLB 6.10 0.00 2.66 0.00 0.00 0.00 0.00 0.00
RANDOM 2.01 67.03 0.66 75.32 20.20 17.53 0.00 0.64
RECEIVR 2.45 59.87 0.82 69.32 14.62 1.55 1.64 1.62
SENDER 1.95 68.11 0.62 76.71 17.68 1.26 0.24 0.97
SYMTRIC 1.95 68.00 0.62 76.82 18.43 1.45 2.39 2.00
DIFFUSE 2.00 67.28 0.64 75.96 17.16 4.16 2.35 2.15

Load Pattern= 4S, 2M, 4V

Table 5.12 Performance under Large Compute/Communicate Ratio (R= 0.4)

186

Benefit Cost
Algorithm response(A VO) response(STD) jobmov.

messages %LB_exec time(s) Impr(%) time(s) Impr(%) %jobmov %baddcs
NOLB 1.77 0.00 0.80 0.00 0.00 0.00 0.00 0.00
RANDOM 1.42 19.66 0.58 27.11 14.04 16.39 0.00 0.28
RECEIVR 1.65 6.93 0.75 6.64 0.90 0.69 1.35 -0.16
SENDER 1.36 23.43 0.55 30.97 12.27 1.07 0.12 -0.63
SYM1RIC 1.37 22.61 0.56 29.83 12.43 1.15 1.70 0.00
DIFFUSE 1.22 31.32 0.77 4.19 7.83 13.23 0.64 1.43

Load Pattern= LLLLL

Benefit Cost
Algorithm response(A VO) response(STD) jobmov.

messages %LB_exec time(s) Impr(%) time(s) Impr(%) %jobmov %baddcs
NOLB 2.95 0.00 1.21 0.00 0.00 0.00 0.00 0.00
RANDOM 1.76 40.39 0.65 46.63 32.86 36.38 0.00 0.29
RECEIVR 2.12 27.99 0.74 38.59 4.32 1.25 1.58 -0.79
SENDER 1.60 45.62 0.56 53.57 25.15 2.12 0.48 -0.84
SYM1RIC 1.62 45.12 0.57 53.23 24.89 1.84 2.73 0.08
DIFFUSE 1.15 61.06 0.77 36.53 14.21 18.74 0.68 2.28

Load Pattern= MMMMM

Benefit Cost
Algorithm response(AVO) response(STD) job mov.

messages %LB_exec time(s) Impr(%) time(s) Impr(%) %jobmov %baddcs
NOLB 8.18 0.00 2.65 0.00 0.00 0.00 0.00 0.00
RANDOM 2.92 64.34 1.24 53.09 61.88 65.60 0.00 1.01
RECEIVR 3.05 62.75 1.21 54.52 10.76 2.09 1.32 -0.62
SENDER 2.39 70.79 1.03 61.01 31.40 4.05 1.48 -0.05
SYM1RIC 2.16 73.63 1.00 62.34 32.86 4.07 3.77 0.93
DIFFUSE 1.59 80.56 1.22 53.88 19.78 27.62 0.70 2.17

Load Pattern= HHHHH

Benefit Cost
Algorithm response(A VO) response(STD) job mov.

messages %LB_exec time(s) Impr(%) time(s) Impr(%) %jobmov %baddcs
NOLB 17.52 0.00 4.54 0.00 0.00 0.00 0.00 0.00
RANDOM 4.98 71.57 2.49 45.12 77.63 79.56 0.00 2.09
RECEIVR 3.64 79.23 1.45 68.04 13.43 2.82 1.04 0.21
SENDER 3.60 79.42 1.88 58.68 26.85 4.95 2.21 1.04
SYM1RIC 2.83 83.83 1.25 72.54 31.48 5.69 4.04 1.94
DIFFUSE 2.74 84.38 2.12 53.36 18.38 31.29 0.69 2.04

Load Pattern= VVVVV

Table 5.1395/05 Jobs Proportion with Non-selective Transfer

187

Benefit Cost
Algorithm response(A VO) response(STD) jobmov.

messages %LB_exec time(s) Impr(%) time(s) Impr(%) %jobmov %baddcs
NOLB 1.77 0.00 0.80 0.00 0.00 0.00 0.00 0.00
RANDOM 1.77 0.17 0.77 3.22 0.98 18.47 0.00 0.63
RECEIVR 1.84 -3.88 0.78 2.93 0.04 0.00 1.31 1.54
SENDER 1.73 2.23 0.73 8.57 0.70 0.88 0.01 0.84
SYM1RIC 1.74 1.60 0.75 6.57 0.72 0.86 1.34 1.44
DIFFUSE 1.62 8.35 0.77 4.16 0.54 17.24 0.50 1.62

Load Pattern= LLLLL

Benefit Cost
Algorithm response(A VO) response(STD) jobmov.

messages %LB3xec time(s) Impr(%) time(s) Impr(%) %jobmov %baddcs
NOLB 2.95 0.00 1.21 0.00 0.00 0.00 0.00 0.00
RANDOM 2.68 9.02 1.19 1.35 1.97 38.56 0.00 0.59
RECEIVR 2.78 5.85 1.08 10.54 0.29 1.45 1.44 0.99
SENDER 2.53 14.20 0.96 20.72 1.47 0.85 0.03 0.49
SYMlRIC 2.60 11.99 1.03 14.69 1.55 0.00 1.53 1.10
DIFFUSE 1.77 39.91 1.24 -2.11 4.21 49.56 0.36 9.53

Load Pattern= MMMMM

Benefit Cost
Algorithm response(AVO) response(STD) jobmov.

messages %LB_exec time(s) Impr(%) time(s) Impr(%) %jobmov %baddcs
NOLB 8.18 0.00 2.65 0.00 0.00 0.00 0.00 0.00
RANDOM 6.46 21.06 2.73 -3.11 3.44 71.03 0.00 0.89
RECEIVR 6.30 22.97 2.50 5.83 0.67 1.87 0.99 1.19
SENDER 6.06 25.86 3.40 -28.15 1.67 1.69 0.09 0.72
SYMTRIC 5.12 37.39 2.35 11.32 1.96 2.23 1.16 1.11
DIFFUSE 4.07 50.21 3.45 -30.14 4.67 72.72 0.14 13.39

Load Pattern= HHHHH

Benefit Cost
Algorithm response(A VO) response(STD) job mov.

messages %LB_exec time(s) Impr(%) time(s) Impr(%) %jobmov %baddcs
NOLB 17.52 0.00 4.54 0.00 0.00 0.00 0.00 0.00
RANDOM 11.76 32.86 4.90 -7.83 4.07 81.94 0.00 1.47
RECEIVR 10.93 37.60 5.31 -16.92 0.75 2.68 0.64 1.69
SENDER 9.74 44.40 5.07 -11.68 1.29 1.56 0.12 1.15
SYMlRIC 8.19 53.24 4.14 8.82 1.72 1.84 0.87 1.61
DIFFUSE 7.54 56.98 6.50 -43.16 3.98 75.61 0.11 9.09

Load Pattern= VVVVV

Table 5.1495/05 Proportion of Jobs with Selective Transfer

188

Benefit Cost
Algorithm response(A VO) response(SlD) jobmov.

messages %LB3xec time(s) Impr(%) time(s) Impr(%) %jobmov %baddcs
NOLB 1.86 0.00 0.90 0.00 0.00 0.00 0.00 0.00
RANDOM 1.41 24.32 0.62 31.15 14.75 14.25 0.00 -0.46
RECEIVR 1.64 12.07 0.75 16.33 1.15 1.08 1.34 -0.65
SENDER 1.36 26.89 0.61 32.69 13.05 0.76 0.13 -1.00
SYMTRIC 1.37 26.38 0.62 31.15 12.68 0.88 1.70 -0.36
DIFFUSE 1.17 37.20 0.79 12.70 10.31 11.19 0.63 1.98

Load Pattern= LLLLL

Benefit Cost
Algorithm response(A VO) response(SlD) jobmov.

messages %LB_exec time(s) Impr(%) time(s) Impr(%) %jobmov %baddcs
NOLB 3.00 0.00 1.22 0.00 0.00 0.00 0.00 0.00
RANDOM 1.75 41.71 0.66 45.82 32.30 35.37 0.00 0.61
RECEIVR 2.22 25.98 0.80 34.61 4.58 1.36 1.57 -0.10
SENDER 1.62 46.15 0.62 49.02 24.86 1.88 0.49 -0.20
SYMTRIC 1.64 45.45 0.61 50.35 24.89 1.96 2.72 0.75
DIFFUSE 1.19 60.42 0.84 31.16 18.19 19.95 0.67 3.56

Load Pattern= MMMMM

Benefit Cost
Algorithm response(A VO) response(SlD) job mov.

messages %LB_exec time(s) Impr(%) time(s) Impr(%) %jobmov %baddcs
NOLB 8.53 0.00 3.06 0.00 0.00 0.00 0.00 0.00
RANDOM 3.27 61.72 1.47 51.97 64.63 67.65 0.00 1.21
RECEIVR 2.76 67.60 1.10 64.06 11.35 2.09 1.31 -0.43
SENDER 2.40 71.87 0.99 67.49 31.72 3.93 1.51 0.12
SYMTRIC 2.05 75.92 0.84 72.45 33.24 4.36 3.78 1.06
DIFFUSE 2.03 76.18 1.48 51.58 21.69 26.60 0.69 1.99

Load Pattern= HHHHH

Benefit Cost
Algorithm response(A VO) response(SlD) job mov.

messages %LB3xec time(s) Impr(%) time(s) Impr(%) %jobmov %baddcs
NOLB 15.13 0.00 5.30 0.00 0.00 0.00 0.00 0.00
RANDOM 5.33 64.74 2.67 49.58 78.56 80.32 0.00 1.55
RECEIVR 3.47 77.09 1.42 73.18 13.83 2.59 1.01 -0.02
SENDER 3.74 75.30 1.90 64.10 26.48 5.10 2.24 0.68
SYMTRIC 3.14 79.25 1.45 72.63 31.03 5.87 4.03 1.66
DIFFUSE 3.16 79.10 2.22 58.11 18.16 29.46 0.68 1.17

Load Pattern= VVVVV

Table 5.1570/30 Proportion of Jobs with Non-selective Transfer

189

Benefit Cost
Algorithm response(A VG) response(STD) jobmov.

messages %LB_exec time(s) Impr(%) time(s) Impr(%) %jobmov %baddcs
NOLB 1.86 0.00 0.90 0.00 0.00 0.00 0.00 0.00
RANDOM 1.55 16.59 0.69 23.53 4.65 16.38 0.00 0.25
RECEIVR 1.75 5.73 0.78 13.22 0.35 0.00 1.33 0.56
SENDER 1.55 16.87 0.71 21.56 4.53 0.96 0.04 0.13
SYMTRIC 1.54 17.46 0.68 24.67 4.46 0.56 1.47 0.69
DIFFUSE 1.35 27.45 0.74 18.09 2.19 12.22 0.53 1.95

Load Pattern= LLLLL

Benefit Cost
Algorithm response(A VG) response(STD) jobmov.

messages %LB_exec time(s) Impr(%) time(s) Impr(%) %jobmov %baddcs
NOLB 3.00 0.00 1.22 0.00 0.00 0.00 0.00 0.00
RANDOM 2.08 30.77 0.80 34.56 10.76 36.61 0.00 1.21
RECEIVR 2.37 21.15 0.95 22.19 1.90 1.10 1.51 0.77
SENDER 1.99 33.74 0.77 36.92 8.60 1.31 0.17 0.76
SYMTRIC 2.13 29.12 0.76 37.99 9.10 1.70 1.89 1.46
DIFFUSE 1.29 56.99 0.82 33.09 6.09 26.57 0.49 5.85

Load Pattern= MMMMM

Benefit Cost
Algorithm response(A VG) response(STD) job mov.

messages %LB_exec time(s) Impr(%) time(s) Impr(%) %jobmov %baddcs
NOLB 8.53 0.00 3.06 0.00 0.00 0.00 0.00 0.00
RANDOM 4.83 43.33 2.57 16.07 20.32 68.46 0.00 1.46
RECEIVR 3.53 58.60 1.56 49.01 4.26 1.91 1.15 0.27
SENDER 3.37 60.52 1.44 53.04 10.14 2.87 0.49 0.37
SYMTRIC 2.60 69.47 1.29 57.89 10.94 2.72 1.99 0.87
DIFFUSE 1.94 77.24 1.53 49.97 11.16 41.91 0.41 7.83

Load Pattern= HHHHH

Benefit Cost
Algorithm response(A VG) response(STD) job mov.

messages %LB_exec time(s) Impr(%) time(s) Impr(%) %jobmov %baddcs
NOLB 15.13 0.00 5.30 0.00 0.00 0.00 0.00 0.00
RANDOM 10.92 27.83 5.37 -1.33 24.70 82.08 0.00 1.88
RECEIVR 5.42 64.18 2.98 43.80 4.86 2.96 0.81 0.42
SENDER 5.78 61.77 2.84 46.32 8.03 3.12 0.71 0.99
SYMTRIC 4.07 73.07 1.95 63.15 10.23 3.43 1.80 1.57
DIFFUSE 4.29 71.65 3.41 35.72 9.44 49.29 0.38 5.88

Load Pattern= VVVVV

Table 5.1670/30 Proportion of Jobs with selective Transfer

190

Benefit Cost
Algorithm response{A VO) response{STD) jobmov.

messages %LB_exee time(s) Impr(%) time(s) Impr(%) %jobmov %bad des
NOLB 1.26 0.00 0.49 0.00 0.00 0.00 0.00 0.00
RANDOM 1.14 9.91 0.42 13.76 5.40 6.47 0.00 0.39
RECEIVR 1.18 6.46 0.43 11.35 2.51 0.33 2.23 1.66
SENDER 1.12 11.09 0.41 17.13 4.99 0.17 0.07 -0.08
SYMTRIC 1.15 8.34 0.42 14.29 5.37 0.47 2.40 2.17
DIFFUSE 1.17 6.81 0.43 11.81 4.80 2.95 2.39 3.22

Load Pattern= LLLLL

Benefit Cost
Algorithm response{A VO) response{STD) jobmov.

messages %LB_exee time(s) Impr(%) time(s) Impr(%) %jobmov %baddes
NOLB 2.04 0.00 0.68 0.00 0.00 0.00 0.00 0.00
RANDOM 1.47 27.74 0.43 36.30 18.15 23.24 0.00 1.14
RECEIVR 1.53 25.15 0.48 28.84 11.07 1.63 2.50 4.07
SENDER 1.47 27.89 0.45 33.94 16.04 1.31 0.41 1.47
SYMTRIC 1.38 32.43 0.48 29.18 19.49 2.24 2.95 6.41
DIFFUSE 1.30 36.51 0.50 27.08 15.61 8.72 2.34 5.18

Load Pattern= MMMMM

Benefit Cost
Algorithm response{A VO) response{STD) jobmov.

messages %LB3xec time(s) Impr(%) time(s) Impr(%) %jobmov %baddes
NOLB 8.06 0.00 2.63 0.00 0.00 0.00 0.00 0.00
RANDOM 5.00 38.01 2.79 -6.18 62.27 69.54 0.00 3.55
RECEIVR 2.28 71.69 0.88 66.64 25.49 4.62 1.88 5.15
SENDER 4.10 49.14 1.89 28.08 21.84 7.32 2.50 7.21
SYMTRIC 3.88 51.91 2.14 18.80 29.02 16.69 3.59 10.48
DIFFUSE 2.54 68.43 1.63 37.87 31.48 30.99 2.28 7.58

Load Pattern= HHHHH

Benefit Cost
Algorithm response{A VO) response(STD) jobmov.

%LB_exec time(s) Impr(%) time(s) Impr(%) %jobmov %bad des
messages

NOLB 42.85 0.00 16.81 0.00 0.00 0.00 0.00 0.00
RANDOM 99.78 -132.85 60.27 -258.55 82.47 83.94 0.00 0.35
RECEIVR 11.66 72.79 6.54 61.10 10.96 7.49 0.28 3.43
SENDER 131.50 -206.88 77.77 -362.67 1.25 12.36 2.50 4.04
SYMTRIC 132.30 -208.75 77.74 -362.44 1.36 22.04 2.52 4.09
DIFFUSE 83.43 -94.71 43.73 -160.12 2.30 49.65 2.35 3.81

Load Pattern= VVVVV

Table 5.17 Performance of Standard Algorithms under Scaled Arrivals

191

Benefit Cost
Algorithm response{A VO) response{STD) jobmov.

messages %LB_exee time(s) Impr(%) time(s) Impr(%) %jobmov %baddes
NOLB 1.26 0.00 0.49 0.00 0.00 0.00 0.00 0.00
RANDOM 1.13 9.96 0.42 14.11 5.39 5.79 0.00 0.22
RECEIVR 1.20 5.15 0.45 8.86 2.28 0.37 2.21 1.56
SENDER 1.12 11.34 0.41 15.84 4.94 0.17 0.07 -0.36
SYMTRIC 1.14 9.33 0.41 15.46 5.37 0.39 2.41 1.97
DIFFUSE 1.16 7.78 0.44 10.17 4.64 2.15 2.39 3.18

Load Pattern= LLLLL

Benefit Cost
Algorithm response{A VO) response{STD) job mov.

messages %LB_exee time(s) Impr(%) time(s) Impr(%) %jobmov %bad des
NOLB 2.04 0.00 0.68 0.00 0.00 0.00 0.00 0.00
RANDOM 1.45 29.11 0.43 37.07 18.58 22.32 0.00 0.29
RECEIVR 1.61 21.18 0.48 29.25 9.67 1.38 2.50 3.93
SENDER 1.45 29.15 0.43 36.60 15.74 1.46 0.41 0.90
SYMTRIC 1.42 30.41 0.47 31.37 18.92 2.11 2.95 5.56
DIFFUSE 1.28 37.30 0.48 29.46 15.70 8.24 2.35 5.03

Load Pattern= MMMMM

Benefit Cost
Algorithm response{A VO) response{STD) jobmov.

messages %LB_exec time(s) Impr(%) time(s) Impr(%) %jobmov %baddes
NOLB 8.06 0.00 2.63 0.00 0.00 0.00 0.00 0.00
RANDOM 2.92 63.77 1.14 56.79 62.18 66.93 0.00 2.29
RECEIVR 2.26 72.00 0.85 67.57 23.24 4.77 1.91 4.87
SENDER 4.29 46.82 1.93 26.52 20.89 7.33 2.50 7.03
SYMTRIC 4.68 41.95 2.43 7.73 26.49 14.69 3.52 10.40
DIFFUSE 2.52 68.68 1.66 36.77 30.38 29.45 2.27 7.49

Load Pattern= HHHHH

Benefit Cost
Algorithm response{A VO) response{STD) job mov.

messages %LB_exec time(s) Impr(%) time(s) Impr(%) %jobmov %bad des
NOLB 42.85 0.00 16.81 0.00 0.00 0.00 0.00 0.00
RANDOM 29.29 31.64 14.42 14.22 98.00 97.03 0.00 3.57
RECEIVR 12.32 71.26 6.52 61.22 11.05 6.04 0.32 3.34
SENDER 138.60 -223.45 81.55 -385.11 1.60 8.69 2.50 4.00
SYMTRIC 138.60 -223.45 80.51 -378.96 2.12 17.37 2.53 4.11
DIFFUSE 82.85 -93.35 44.65 -165.63 2.65 47.40 2.34 3.84

Load Pattern= VVVVV

Table 5.18 Performance of Adapted Algorithms under Scaled Arrivals

192

Benefit Cost
Algorithm response(A YO) response(STD) jobmov.

messages %LB_exec time(s) Impr(%) time(s) Impr(%) %jobmov %baddes
NOLB l.15 0.00 0.48 0.00 0.00 0.00 0.00 0.00
RANDOM 1.05 8.46 0.42 11.84 5.12 6.97 0.00 0.49
RECEIVR 1.09 5.24 0.45 6.93 2.41 0.69 2.27 0.56
SENDER 1.03 10.01 0.43 11.02 4.60 0.55 0.06 0.05
SYMTRIC 1.05 9.06 0.41 13.92 4.88 1.20 2.43 1.10
DIFFUSE 1.06 7.52 0.41 13.81 3.75 2.11 2.44 1.22

Load Pattern= LLLLL

Benefit Cost
Algorithm response(A YO) response(STD) job mov.

messages %LB3xec time(s) Impr(%) time(s) Impr(%) %jobmov %baddes
NOLB 1.76 0.00 0.63 0.00 0.00 0.00 0.00 0.00
RANDOM 1.34 23.88 0.43 31.18 16.11 21.37 0.00 1.49
RECEIVR 1.41 20.05 0.45 28.85 9.39 1.80 2.50 1.72
SENDER 1.31 25.48 0.42 32.70 14.48 2.08 0.34 1.58
SYMTRIC 1.29 26.47 0.44 30.87 16.06 2.35 2.85 3.24
DIFFUSE 1.29 26.78 0.46 27.50 13.00 6.80 2.42 2.64

Load Pattern= MMMMM

Benefit Cost
Algorithm response(A YO) response{STD) job mov.

messages %LB_exec time(s) Impr(%) time(s) Impr(%) %jobmov %baddes
NOLB 3.84 0.00 1.28 0.00 0.00 0.00 0.00 0.00
RANDOM 2.96 23.04 1.56 -21.57 50.49 60.27 0.00 5.07
RECEIVR 1.98 48.40 0.60 52.80 22.55 4.14 2.50 2.81
SENDER 1.93 49.85 0.65 49.48 28.00 5.27 1.56 3.55
SYMTRIC 1.69 56.11 0.72 43.45 38.65 8.68 4.36 6.56
DIFFUSE 1.59 58.71 0.72 43.76 30.33 20.59 2.42 4.57

Load Pattern= HHHHH

Benefit Cost
Algorithm response(A YO) response(STD) job mov.

messages %LB_exee time(s) Impr(%) time(s) Impr(%) %jobmov %bad des
NOLB 6.91 0.00 2.21 0.00 0.00 0.00 0.00 0.00
RANDOM 35.63 -415.63 20.71 -837.31 73.24 79.55 0.00 5.23
RECEIVR 2.47 64.29 0.79 64.31 27.02 5.99 2.18 3.00
SENDER 2.91 57.95 1.22 44.76 26.23 7.68 2.50 4.18
SYMTRIC 2.35 66.02 1.04 52.73 40.67 13.13 4.75 6.77
DIFFUSE 2.21 68.00 1.19 46.14 32.98 28.99 2.42 4.65

Load Pattern= YYYYY

Table 5.19 Performance of Standard Algorithms under Scaled Arrivals

193

Benefit Cost
Algorithm response(A VG) response(STD) jobmov.

messages %LB_exec time(s) Impr(%) time(s) Impr(%) %jobmov %baddcs
NOLB 1.15 0.00 0.48 0.00 0.00 0.00 0.00 0.00
RANDOM 1.05 8.86 0.41 13.72 5.17 6.35 0.00 0.25
RECEIVR 1.08 5.91 0.44 8.83 2.10 0.20 2.27 0.55
SENDER 1.03 10.44 0.42 12.90 4.40 0.48 0.06 -0.21
SYMlRIC 1.04 9.90 0.41 13.89 4.93 1.02 2.43 0.85
DIFFUSE 1.07 6.94 0.42 12.17 3.68 0.90 2.44 1.13

Load Pattern= LLLLL

Benefit Cost
Algorithm response(A VG) response(STD) jobmov.

messages %LB_exec time(s) Impr(%) time(s) Impr(%) %jobmov %baddcs
NOLB 1.76 0.00 0.63 0.00 0.00 0.00 0.00 0.00
RANDOM 1.31 25.80 0.43 32.12 16.15 19.45 0.00 0.91
RECEIVR 1.41 20.13 0.46 26.90 8.27 1.37 2.50 1.58
SENDER 1.28 27.10 0.42 33.70 14.34 1.82 0.34 1.03
SYMlRIC 1.32 25.25 0.42 32.65 16.19 2.34 2.85 2.70
DIFFUSE 1.33 24.56 0.44 29.45 12.55 5.66 2.42 2.40

Load Pattern= MMMMM

Benefit Cost
Algorithm response(A VG) response(STD) jobmov.

messages %LB_exec time(s) Impr(%) time(s) Impr(%) %jobmov %baddcs
NOLB 3.84 0.00 1.28 0.00 0.00 0.00 0.00 0.00
RANDOM 2.25 41.48 0.92 27.88 49.35 55.59 0.00 3.63
RECEIVR 2.00 47.93 0.60 52.77 20.06 3.58 2.50 2.42
SENDER 2.07 46.09 0.67 47.33 29.49 6.25 1.77 3.24
SYMlRIC 1.59 58.54 0.65 48.88 37.34 7.87 4.23 5.76
DIFFUSE 1.70 55.76 0.72 43.45 28.64 18.86 2.42 3.89

Load Pattern= HHHHH

Benefit Cost
Algorithm response(A VG) response(STD) job mov.

messages %LB_exec time(s) Impr(%) time(s) Impr(%) %jobmov %baddcs
NOLB 6.91 0.00 2.21 0.00 0.00 0.00 0.00 0.00
RANDOM 7.22 -4.54 4.33 -96.02 82.74 85.56 0.00 6.69
RECEIVR 2.55 63.11 0.85 61.61 24.15 5.44 2.19 2.52
SENDER 2.70 60.96 1.04 53.00 27.59 7.52 2.50 3.63
SYMlRIC 2.44 64.67 0.99 55.11 39.31 12.73 4.90 6.33
DIFFUSE 2.22 67.86 1.18 46.58 31.31 26.91 2.42 4.20

Load Pattern= VVVVV

Table 5.20 Performance of Adapted Algorithms under Scaled Arrivals

194

Benefit Cost
Algorithm response(A VO) response(STD) jobmov. messages %LB_exec time(s) Impr(%) time(s) Impr(%) %jobmov %baddcs
NOLB 1.26 0.00 0.59 0.00 0.00 0.00 0.00 0.00
RANDOM 1.16 7.96 0.51 13.59 2.89 3.90 0.00 -0.08
RECEIVR 1.19 5.42 0.53 9.79 1.35 0.00 1.55 0.85
SENDER 1.12 11.01 0.50 15.69 2.57 0.24 0.02 -0.42
SYMTRIC 1.14 9.23 0.49 17.23 2.46 0.00 1.61 0.81
DIFFUSE 1.17 7.01 0.51 14.06 2.14 0.58 2.41 2.23

Node Arrival Rate: 0.4 jobs/sec

Benefit Cost
Algorithm response(A VG) response(STD) jobmov.

messages %LB_exec time(s) Impr(%) time(s) Impr(%) %jobmov %baddcs
NOLB 1.79 0.00 0.71 0.00 0.00 0.00 0.00 0.00
RANDOM 1.32 26.40 0.46 35.55 8.12 8.52 0.00 -0.92
RECEIVR 1.45 19.18 0.52 26.36 5.02 0.25 2.17 1.27
SENDER 1.31 26.76 0.46 34.89 7.67 0.27 0.11 -1.00
SYMTRIC 1.35 24.65 0.47 33.45 7.98 0.37 2.44 1.31
DIFFUSE 1.33 25.68 0.49 30.37 7.07 1.88 2.36 2.10

Node Arrival Rate: 0.6 jobs/sec

Benefit Cost
Algorithm response(A VO) response(STD) jobmov.

messages %LB_exec time(s) Impr(%) time(s) Impr(%) %jobmov %baddcs
NOLB 3.48 0.00 1.40 0.00 0.00 0.00 0.00 0.00
RANDOM 1.55 55.57 0.46 67.13 17.04 20.80 0.00 -1.67
RECEIVR 1.63 53.26 0.52 62.83 10.86 0.84 2.50 1.37
SENDER 1.51 56.47 0.45 67.85 14.70 0.85 0.32 -1.74
SYMTRIC 1.43 58.89 0.46 67.24 16.35 1.28 2.82 1.92
DIFFUSE 1.34 61.40 0.48 65.91 14.94 6.02 2.32 1.95

Node Arrival Rate: 0.8 jobs/sec

Benefit Cost
Algorithm response(A VO) response(STD) job mov.

messages %LB_exec time(s) Impr(%) time(s) Impr(%) %jobmov %baddcs
NOLB 5.79 0.00 2.35 0.00 0.00 0.00 0.00 0.00
RANDOM 1.66 71.35 0.46 80.31 22.05 26.99 0.00 -2.05
RECEIVR 1.73 70.06 0.50 78.92 13.80 1.50 2.50 1.25
SENDER 1.61 72.22 0.45 80.70 17.59 1.47 0.44 -2.02
SYMTRIC 1.38 76.25 0.46 80.42 20.22 1.92 2.96 2.14
DIFFUSE 1.28 77.85 0.47 80.05 17.39 7.42 2.30 1.67

Node Arrival Rate: 0.9 jobs/sec

Table 5.21 Performance of Standard Algorithms under Identical Arrivals

195

Benefit Cost
Algorithm response(A YO) response(STD) jobmov. messages %LB_exec

time(s) Impr(%) time(s) Impr(%) %jobmov %baddcs
NOLB 1.26 0.00 0.59 0.00 0.00 0.00 0.00 0.00
RANDOM 1.14 9.64 0.48 17.95 2.62 0.72 0.00 -0.15
RECEIVR 1.19 5.60 0.53 10.50 1.47 0.00 1.55 0.84
SENDER 1.12 11.38 0.49 16.48 2.29 0.00 0.02 -0.44
SYM1RIC 1.13 10.22 0.50 15.77 2.51 0.00 1.61 0.73
DIFFUSE 1.16 7.59 0.50 14.59 2.26 0.55 2.41 2.30

Node Arrival Rate: 0.4 jobs/sec

Benefit Cost
Algorithm response(A YO) response(STD) jobmov. messages %LB_exec

time(s) Impr(%) time(s) Impr(%) %jobmov %bad des
NOLB 1.79 0.00 0.71 0.00 0.00 0.00 0.00 0.00
RANDOM 1.31 27.06 0.45 36.76 7.93 8.04 0.00 -1.17
RECEIVR 1.43 20.04 0.51 28.44 5.16 0.40 2.18 1.29
SENDER 1.29 27.82 0.46 35.83 7.04 0.18 0.10 -1.27
SYMTRIC 1.32 26.21 0.46 34.95 7.70 0.27 2.44 1.00
DIFFUSE 1.27 29.23 0.47 33.90 7.36 2.48 2.37 2.04

Node Arrival Rate: 0.6 jobs/sec

Benefit Cost
Algorithm response(A YO) response(STD) jobmov.

messages %LB_exec
time(s) Impr(%) time(s) Impr(%) %jobmov %baddcs

NOLB 3.48 0.00 1.40 0.00 0.00 0.00 0.00 0.00
RANDOM 1.49 57.07 0.43 69.13 15.83 15.51 0.00 -2.11
RECEIVR 1.68 51.61 0.47 66.26 11.22 1.03 2.50 1.26
SENDER 1.48 57.53 0.43 69.36 13.63 0.50 0.27 -2.16
SYMTRIC 1.28 63.09 0.44 68.32 15.52 1.05 2.79 1.55
DIFFUSE 1.25 64.20 0.46 66.90 14.22 7.15 2.32 1.80

Node Arrival Rate: 0.8 jobs/sec

Benefit Cost
Algorithm response(A YO) response(STD) job mov.

messages %LB_exec
time(s) Impr(%) time(s) Impr(%) %jobmov %baddcs

NOLB 5.79 0.00 2.35 0.00 0.00 0.00 0.00 0.00
RANDOM 1.59 72.52 0.45 81.03 19.84 22.92 0.00 -2.75
RECEIVR 1.72 70.29 0.50 78.58 14.09 1.37 2.50 1.25
SENDER 1.56 73.00 0.43 81.70 16.39 1.23 0.39 -2.53
SYMTRIC 1.39 76.03 0.46 80.45 21.33 1.67 2.96 1.39
DIFFUSE 1.23 78.78 0.48 79.51 17.28 8.56 2.30 1.58

Node Arrival Rate: 0.9 jobs/sec

Table 5.22 Performance of Adapted Algorithms under Identical Arrivals

196

Benefit Cost
Algorithm response(A VO) response(STD) jobmov.

mes~ges %LB_exec time(s) Impr(%) time(s) Impr(%) %jobmov %baddcs
NOLB 1.19 0.00 0.59 0.00 0.00 0.00 0.00 0.00
RANDOM 1.09 8.58 0.51 13.72 2.53 2.96 0.00 -0.03
RECEIVR 1.11 7.06 0.53 10.68 1.18 0.00 1.57 0.44
SENDER 1.07 10.49 0.50 15.55 2.19 0.00 0.02 -0.24
SYMTRIC 1.07 10.13 0.50 15.56 2.34 1.06 1.62 0.39
DIFFUSE 1.10 7.63 0.50 15.81 2.00 0.93 2.44 0.86

Node Arrival Rate: 0.4 jobs/sec

Benefit Cost
Algorithm response(A VO) response(STD) jobmov.

messages %LB3xec time(s) Impr(%) time(s) Impr(%) %jobmov %baddcs
NOLB 1.68 0.00 0.73 0.00 0.00 0.00 0.00 0.00
RANDOM 1.24 25.92 0.46 37.19 7.58 8.66 0.00 -0.57
RECEIVR 1.35 19.78 0.52 29.31 4.65 0.63 2.22 0.30
SENDER 1.24 26.44 0.47 35.01 7.38 0.96 0.10 -0.81
SYMTRIC 1.24 26.00 0.47 35.88 7.65 0.65 2.48 0.18
DIFFUSE 1.28 23.60 0.49 32.89 6.45 2.19 2.41 0.53

Node Arrival Rate: 0.6 jobs/sec

Benefit Cost
Algorithm response(A VO) response(STD) jobmov.

messages %LB_exec time(s) Impr(%) time(s) Impr(%) %jobmov %baddcs
NOLB 3.11 0.00 1.28 0.00 0.00 0.00 0.00 0.00
RANDOM 1.44 53.61 0.45 65.19 15.94 18.01 0.00 -1.28
RECEIVR 1.56 49.68 0.51 59.87 9.97 1.41 2.50 -0.48
SENDER 1.40 54.90 0.44 65.33 13.92 1.57 0.28 -1.57
SYMTRIC 1.39 55.17 0.44 65.62 15.02 2.06 2.77 -0.21
DIFFUSE 1.45 53.30 0.46 63.69 13.06 5.69 2.38 -0.33

Node Arrival Rate: 0.8 jobs/sec

Benefit Cost
Algorithm response(A VO) response(STD) jobmov.

messages %LB_exec time(s) Impr(%) time(s) Impr(%) %jobmov %baddcs
NOLB 4.86 0.00 2.11 0.00 0.00 0.00 0.00 0.00
RANDOM 1.54 68.40 0.48 77.47 20.39 23.28 0.00 -1.83
RECEIVR 1.65 65.95 0.50 76.49 12.93 1.73 2.50 -0.79
SENDER 1.47 69.66 0.44 79.15 16.81 2.01 0.40 -1.95
SYMTRIC 1.45 70.12 0.44 79.22 18.70 2.51 2.89 -0.38
DIFFUSE 1.51 68.95 0.46 78.21 15.77 8.12 2.37 -0.76

Node Arrival Rate: 0.9 jobs/sec

Table 5.23 Performance of Standard Algorithms under Identical Arrivals

197

Benefit Cost
Algorithm response(A VG) response(SID} jobmov. messages %LB_exec

time(s) Impr(%) time(s) Impr(%) %jobmov %baddcs
NOLB 1.19 0.00 0.59 0.00 0.00 0.00 0.00 0.00
RANDOM 1.07 10.36 0.49 16.70 2.45 3.05 0.00 -0.11
RECEIVR 1.12 6.24 0.52 11.49 1.32 0.00 1.57 0.42
SENDER 1.06 10.77 0.50 16.05 2.26 0.00 0.02 -0.32
SYMIRIC 1.06 10.77 0.49 17.04 2.28 0.00 1.62 0.31
DIFFUSE 1.10 7.74 0.51 13.39 2.23 0.84 2.44 0.87

Node Arrival Rate: 0.4 jobs/sec

Benefit Cost
Algorithm response(A VG) response(STD} jobmov. messages %LB_exec

time(s) Impr(%) time(s) Impr(%) %jobmov %baddcs
NOLB 1.68 0.00 0.73 0.00 0.00 0.00 0.00 0.00
RANDOM 1.23 26.83 0.45 38.04 7.49 6.77 0.00 -0.90
RECEIVR 1.33 20.70 0.51 30.23 4.88 0.68 2.23 0.30
SENDER 1.22 27.28 0.46 36.71 7.05 0.41 0.09 -0.99
SYMIRIC 1.24 26.13 0.45 38.16 7.47 0.56 2.48 0.02
DIFFUSE 1.29 23.50 0.48 34.64 6.90 2.59 2.41 0.42

Node Arrival Rate: 0.6 jobs/sec

Benefit Cost
Algorithm response(A VG) response(SID) jobmov.

messages %LB3xec
time(s) Impr(%) time(s) Impr(%) %jobmov %baddcs

NOLB 3.11 0.00 1.28 0.00 0.00 0.00 0.00 0.00
RANDOM 1.39 55.16 0.44 65.86 14.45 15.37 0.00 -1.74
RECEIVR 1.54 50.51 0.49 61.99 10.74 1.34 2.50 -0.52
SENDER 1.37 56.00 0.43 66.60 13.14 1.69 0.25 -2.06
SYMIRIC 1.37 55.83 0.42 67.49 14.36 1.70 2.75 -0.73
DIFFUSE 1.38 55.64 0.46 63.77 12.86 5.78 2.38 -0.41

Node Arrival Rate: 0.8 jobs/sec

Benefit Cost
Algorithm response(A VG) response(SID) jobmov.

messages %LB_exec
time(s) Impr(%) time(s) Impr(%) %jobmov %baddcs

NOLB 4.86 0.00 2.11 0.00 0.00 0.00 0.00 0.00
RANDOM 1.46 69.94 0.43 79.43 17.19 17.97 0.00 -2.52
RECEIVR 1.62 66.66 0.49 76.83 13.08 1.82 2.50 -0.84
SENDER 1.44 70.46 0.43 79.84 15.76 1.62 0.35 -2.41
SYMIRIC 1.34 72.42 0.42 80.18 17.38 2.24 2.84 -0.83
DIFFUSE 1.43 70.63 0.45 78.46 15.27 6.98 2.37 -1.02

Node Arrival Rate: 0.9 jobs/sec

Table 5.24 Performance of Adapted Algorithms under Identical Arrivals

	305426_001
	305426_002
	305426_003
	305426_004
	305426_005
	305426_006
	305426_007
	305426_008
	305426_009
	305426_010
	305426_011
	305426_012
	305426_013
	305426_014
	305426_015
	305426_016
	305426_017
	305426_018
	305426_019
	305426_020
	305426_021
	305426_022
	305426_023
	305426_024
	305426_025
	305426_026
	305426_027
	305426_028
	305426_029
	305426_030
	305426_031
	305426_032
	305426_033
	305426_034
	305426_035
	305426_036
	305426_037
	305426_038
	305426_039
	305426_040
	305426_041
	305426_042
	305426_043
	305426_044
	305426_045
	305426_046
	305426_047
	305426_048
	305426_049
	305426_050
	305426_051
	305426_052
	305426_053
	305426_054
	305426_055
	305426_056
	305426_057
	305426_058
	305426_059
	305426_060
	305426_061
	305426_062
	305426_063
	305426_064
	305426_065
	305426_066
	305426_067
	305426_068
	305426_069
	305426_070
	305426_071
	305426_072
	305426_073
	305426_074
	305426_075
	305426_076
	305426_077
	305426_078
	305426_079
	305426_080
	305426_081
	305426_082
	305426_083
	305426_084
	305426_085
	305426_086
	305426_087
	305426_088
	305426_089
	305426_090
	305426_091
	305426_092
	305426_093
	305426_094
	305426_095
	305426_096
	305426_097
	305426_098
	305426_099
	305426_100
	305426_101
	305426_102
	305426_103
	305426_104
	305426_105
	305426_106
	305426_107
	305426_108
	305426_109
	305426_110
	305426_111
	305426_112
	305426_113
	305426_114
	305426_115
	305426_116
	305426_117
	305426_118
	305426_119
	305426_120
	305426_121
	305426_122
	305426_123
	305426_124
	305426_125
	305426_126
	305426_127
	305426_128
	305426_129
	305426_130
	305426_131
	305426_132
	305426_133
	305426_134
	305426_135
	305426_136
	305426_137
	305426_138
	305426_139
	305426_140
	305426_141
	305426_142
	305426_143
	305426_144
	305426_145
	305426_146
	305426_147
	305426_148
	305426_149
	305426_150
	305426_151
	305426_152
	305426_153
	305426_154
	305426_155
	305426_156
	305426_157
	305426_158
	305426_159
	305426_160
	305426_161
	305426_162
	305426_163
	305426_164
	305426_165
	305426_166
	305426_167
	305426_168
	305426_169
	305426_170
	305426_171
	305426_172
	305426_173
	305426_174
	305426_175
	305426_176
	305426_177
	305426_178
	305426_179
	305426_180
	305426_181
	305426_182
	305426_183
	305426_184
	305426_185
	305426_186
	305426_187
	305426_188
	305426_189
	305426_190
	305426_191
	305426_192
	305426_193
	305426_194
	305426_195
	305426_196
	305426_197
	305426_198
	305426_199
	305426_200
	305426_201
	305426_202
	305426_203
	305426_204

