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Abstract 

This thesis describes research contributions in the field of electrical machines for 

operation at elevated temperatures. High temperature operation of electrical machines is 

considered critical for the realisation of the ‘more-electric aircraft’ concept, which involves 

electrical machines embedded directly on to the shafts of the aircraft gas turbine. The 

particular machine of interest for this thesis is a switched reluctance machine for operation on 

the high pressure shaft. The hostile environment, mainly due to the high temperatures 

(~350°C ambient) introduces several challenges in the modelling, design and manufacture of 

electrical machines.  

In order to aid selection of materials and collect necessary data for the machine 

design, detailed analysis of the published magnetic and electrical data for key materials at 

high temperatures has been carried out. Further measurements on the high strength 50% 

Cobalt Iron materials were also conducted, which supplement the understanding of the 

materials behaviour at high temperatures, specifically in terms of the effects of the long term 

thermal ageing on the individual loss mechanisms in the material. 

The design optimisation of an SR machine for 350°C operation is also described in 

detail. The design procedure illustrates how the high temperature material properties 

influence machine performance and achievable power densities. In order to more reliably 

predict the performance of machines at elevated temperatures several modelling techniques 

have been developed. A method to calculate instantaneous core loss was introduced, which 

was formulated such that it could be used in circuit simulations to ensure power balance. 

Extensive validation of this model has also been carried out.  
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Chapter 1 : Introduction 

 

1.1 More-Electric Aircraft 

The more-electric aircraft (MEA) concept is based around the principle of replacing 

many of the existing mechanical,  hydraulic and pneumatic systems with a single globally 

optimized electrical system[1]. This concept has been driven by advancements in power 

electronics and electrical machines that can provide improved system integration, 

performance, fault tolerance and overall power density. The increase in aircraft electrical 

loads as part of the MEA concept requires a step change in the on-board electrical generation 

system, leading to the development of the so called more-electric engine (MEE).   

The MEE design draws it electrical power from a series of high power density, high 

speed motor generators embedded on the different shafts of the gas turbine engine. Figure 1.1 

shows a schematic of a three-shaft design of a turbo-fan engine. In this particular example, 

three motor/generators are integrated, one on each of the shafts which are commonly referred 

to as the low pressure (LP), intermediate pressure (IP) and high pressure (HP) shafts. There 

are numerous benefits of having electrical machines embedded directly on the shafts such as 

the reduction in weight and operating costs, increased reliability and improved fuel 

efficiency, which make it a very attractive option for the future aero engines[2]. Some of the 

requirements for embedded machines are high power density to minimize weight and high 

reliability in variable operating conditions. The operating conditions on the three shafts vary 

considerably. Arguably, the most severe conditions exist on the HP shaft in which ambient 

temperatures range from 350~400°C in the regions into which an electrical machine would be 

embedded. This thesis is focussed on addressing the design considerations for an electrical 

machine operating in this environment.  

An electrical machine driven by the HP shaft would usually be required to both start 

the engine, and when the engine attains its ignition speed operate as a generator supplying 

power to the aircraft electrical network. In conventional engine architectures, such as the 

Trent 1000 engine on the Boeing 787[3], the starter-generator is positioned outside the main 

core of the engine and is connected to the IP shaft through a take-off shaft and the main 

accessory gearbox as shown in Figure 1.2.  A machine mounted directly on the HP shaft will 



2 

 

do away with the need for a take-off shaft (at least in terms of driving the electrical machine) 

with consequent weight savings and reduced maintenance requirements. However, the 

technical challenges in terms of designing and manufacturing a functional and reliable 

electrical machine to operate at such temperatures are extremely challenging. This thesis 

addresses several of the main issues which are raised by high temperature operation and 

considers the design methodology and the development of a laboratory demonstrator. 

 

 

Figure 1.1: Cross-section through a three-shaft aero-engine gas turbine with shaft-line 

mounted electrical machines. (source: [4]) 
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Figure 1.2: Rolls Royce Trent 1000 engine showing take off shaft and starter generator. 

 

1.2 Challenges for high temperature operation of electrical machines 

The main challenges of operating electrical machines at high temperatures, i.e. above 

300⁰C or so, are mainly related to the material properties at temperature, specifically:  

o Materials exhibit increased corrosion and oxidation at high temperatures.  

o The full temperature range varies from -40°C for a cold start to a peak hotspot 

temperature of 450°C. Therefore it is important that materials used have 

similar coefficients of thermal expansion.  

o Due to the long expected working lifetime of highly embedded engine 

components (orders of 10s of thousands of hours) thermal ageing effects are a 

concern as material properties tend to degrade over time.  

o Magnetic materials lose their magnetic properties as they approach their Curie 

temperatures, and only a few soft magnetic materials have Curie temperatures 

above the 400-450°C. Permanent magnets tend to have lower Curie 
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temperatures and exhibit significant levels of degradation in performance with 

temperature. 

o Soft magnetic materials exhibit some degree of reduction in saturation flux 

density with increase in temperature.  

o The temperature co-efficient of electrical resistance copper is about 40% per 

100°C which gives a resistivity at 450°C of ~2.8 times that at room 

temperature. This has a direct consequence on the copper loss, and 

consequently the peak temperature within the coil.  

o Soft magnetic materials exhibit an increase in electrical resistivity with 

increasing temperature. This is however advantageous in terms of reducing 

eddy current losses. 

All these drawbacks have a dramatic effect on the machine design and pose 

significant challenges in terms of achieving acceptable operational reliability. As an example, 

the copper loss in the windings is proportional to the resistance of copper and the square of 

the current density, and hence an increase in copper resistance would have to be compensated 

for by reducing the current density, which in turn incurs a penalty in power density. The 

reliable design of electrical machines also requires a significant amount of magnetic material 

data in order to select the most appropriate material and in the design stage to accurately 

predict machine performance and losses. To further improve the understanding of important 

aspects of material behaviour, this thesis includes extensive measurements on specific soft 

magnetic grades at temperature. 

 

1.3 Challenges of incorporating an electrical machine on the HP shaft  

In addition to the high temperatures, the HP shaft machine poses several challenges in 

terms of electrical machine design. The HP shaft has the highest rotational speed of the three 

shafts which can have a significant effect on the mechanical stresses incurred in the rotor. 

There are also severe space envelope constraints around the HP compressor. The HP shaft 

also has the largest diameter of the three shaft (the other two passing through its bore), and 

hence the electrical machine rotor core tend to have large inner diameters which can often 

dictate the need for high pole numbers to fit within the machine within a narrow annulus[5].  
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The power density is usually limited by the cooling techniques available to dissipate 

losses from the coils. In order to maximise power density, machines often incorporate 

elaborate cooling methods varying from forced air cooling to direct liquid cooling of 

windings. Due to the location of the HP shaft, there are several limitations with respect to 

employing such cooling systems as it might entail significant modifications to engine 

structures, and may not be considered feasible.  

As the machine is directly mounted on the engine shaft, the rotor will be subjected to 

vibrations and rotor dynamic effects of the main HP shaft. This may require a larger radial 

clearance between the rotor and stator than would be necessary in a stand-alone machine with 

its own bearings. Similarly, the need to avoid exciting resonant frequencies in the shaft may 

place limits on torque ripple and/or radial unbalance. Secondary issues such as routing the 

cables through to the HP inter-case and terminating coils at high temperatures also pose a 

significant challenge.  

In summary, there are many challenges that must be overcome before electrical 

machines can be considered as a ready technology for embedded operation on the HP shaft a 

commercial gas turbine aero-engine. This thesis addresses some of these challenges, 

particularly those related to electromagnetics, and aims to improve the understanding of 

materials and machine operation in such environments. 

 

1.4 Switched Reluctance machines for HP shaft integration  

Switched reluctance (SR) machine have emerged as the favoured electrical machine 

type option for embedding on the HP shaft [4, 5]. The main advantages of SR machines cited 

for the HP shaft application are its ability to operate at elevated temperatures, rugged 

mechanical construction, high torque density, reliability, inherent fault-tolerance and ability 

to operate over a wide speed range.  

Permanent magnet (PM) machines have historically been largely discounted for such 

operating environments due to modest properties of the available permanent magnets at 

elevated temperatures. Synchronous reluctance machines and induction machines have also 

been considered as alternative options. The main advantage of synchronous reluctance 

machines is that they can employ solid rotors which are more robust and have lower rotor 
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losses as compared to the SR machine. Achieving low rotor losses is however reliant on 

maintaining low harmonics content in the air gap flux distribution, which require complex 

distributed winding configurations which are not necessarily well-suited to high temperature 

wires. The existing high temperature wire technologies are limited to encapsulated ex-situ 

wound concentrated coils. The harmonics introduced by short pitched concentrated coils 

would cause rotor losses to increase substantially and reduce the performance of synchronous 

reluctance machines. SR machines on the other hand require concentrated short pitched coils. 

In comparison to PM machines, SR machines generally have lower efficiencies and at low 

speeds generally tend to be copper loss dominated. This is in large part because of their 

singly excited nature. Since the resistivity of Copper increases by ~40% for every 100°C rise 

in temperature, copper loss is likely to be the critical factor for high temperature operation.  

Previous studies on the integration of  an SR machine  onto the HP shaft of a gas 

turbine[6] focussed on modelling rotor mechanical stresses although the issues of 

electromagnetic and thermal modelling were performed in the context of a generating 

requirement of 100kW at 13,500 rpm. Several issues concerned with designing a high power 

SR machine within a specified space envelope of a gas turbine were addressed, however 

many high temperature material properties were not considered and the machine constructed 

was not intended for tests at high temperature. The specification considered on this thesis will 

not target a specific turbine application and power rating, but rather will a more generic 

machine as a proof of concept, with the aim developing generic procedures for design and 

optimisation of machines for high temperatures. 

 

1.5 Modelling of electrical machines 

The modelling techniques used for electrical machines have improved significantly 

over the last 20 years with the need to extract higher performance and efficiencies at the 

narrowest of margins. These improvements have been largely driven by finite element (FE) 

techniques which are a powerful tool for design and analysis. These allow the designer to 

optimize machine geometry, winding configuration and operating conditions, to suit the 

demands of a particular application. However, simulating machine performance under 

dynamic operating conditions pose several challenges, such as core loss estimation, eddy 

current screening and rotor dynamics. Due to the high speed of the HP shaft, an improved 
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understanding of machine performance under dynamic conditions is critical to the design of 

such machines.  

Advanced thermal modelling techniques have also been gaining significant 

importance in electrical machine design. Knowledge of the machine temperatures is essential 

in terms of understanding the limits of machine performance, especially as high power dense 

machines tend to be designed to operate at, or near, to their thermal limit. As the power 

density of machines increase and more complex methods of cooling need to be employed, the 

accurate a-priori modelling of machine temperatures becomes more important. In the case of 

the high temperature machines considered in this thesis, the extreme environment in the 

vicinity of the HP shaft application requires effective management of losses. 

 

1.6 Summary of thesis structure  

As described in section 1.2, many of the challenges for the HP shaft machine are 

related to material behaviour at elevated temperatures.  This application requires materials to 

operate beyond the temperature ranges over which they are normally used. One consequence 

is that material data at elevated temperatures is usually very limited.  Therefore, it was proved 

necessary to undertake a literature review of available material data at representative 

temperatures to enable selection of appropriate materials and collect necessary data for the 

machine design and analysis. Chapter 2 summarizes the data available in the literature along 

with some basic material characterisation for loss parameters using the available data. 

The high specific core loss of the material selected for the machine cores when in 

combined with the high speed and pole number of the SR machine, dictated that the core 

losses would form a significant proportion of the total power. Chapter 3 considers methods of 

modelling electrical machines under dynamic conditions with the main focus being on core 

loss prediction. It is shown the common practice of excluding core loss in the dynamic circuit 

simulations can lead to significant over-estimates of output power and under prediction of 

copper loss when the machine is supplied by a given voltage pulse. A method to include core 

losses in the circuit simulations which involves modelling instantaneous core losses is 

developed in chapter 3. 
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Chapter 4 outlines a simplified method to characterise core materials for the loss 

model described in chapter 3. The measurements are carried out on two ring samples of 

Vacodur S+ Cobalt Iron grades heat treated to achieve specific balances of electromagnetic 

and mechanical properties. Extensive validation of the loss model proposed in chapter 3 is 

also carried out using the same ring samples. The samples were also thermally aged at 400°C 

of up to 2000 hours and core loss data was collected at set intervals.  

Chapter 5 describes a design methodology used for the HP shaft SR machine. The 

design procedure illustrates how the high temperature material properties influence machine 

performance and achievable power densities. The loss models developed in chapter 3 along 

with the material parameters estimated in chapter 4 are used to design the machine. The 

chapter also describes the thermal modelling techniques employed to aid the design of the 

machine.  

Finally, chapter 6 describes the manufacture of the demonstrator machine, and 

illustrates the number of challenges faced in building a laboratory high temperature machine 

and an associated test-rig. The chapter also describes the testing carried out on the built 

machine at temperature and proposes a series of modifications to the current test-rig to 

achieve better testing conditions.   
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Chapter 2 : Materials for high temperature machines 

 

2.1 Introduction 

This chapter discusses the influence of elevated temperature on the electrical and 

magnetic properties of key materials used in electrical machines, and the implications of 

these effects on electrical machine design. The upper limit on operating temperatures in 

conventional electrical machines using well-established technology and materials is of the 

order of 200°C for long-term operation. Hence, applications in which machine components 

are exposed to temperatures of 350-450°C necessitate a fundamental review of the materials 

used. Published literature and manufacturer’s data sheet present a large amount of technical 

data to aid selection of suitable materials for more conventional operating temperatures. In 

such applications with modest ambient temperatures, maintaining the temperature within the 

prescribed limits of the materials is a matter of effectively managing the losses. In this 

application, operating temperature is the key driving factor in the selection of materials. 

Hence, this chapter reviews the published magnetic and electrical data for key materials at 

high temperatures. Although there is a significant amount of published data for a set of 

materials at the temperatures involved, several gaps remain to populate the knowledge base 

that would be required for effectively designing machines operating at such temperatures. In 

addition to the ambient temperature, there are several challenges introduced by the 

application such as the high speed, which necessitates good mechanical strength for the 

moving components.  

The materials required to manufacture a machine can be separated into those required 

for active and structural components. Depending on the type of electrical machine, the active 

elements can comprise of, permanent magnets, soft magnetic core and coils, the structural 

components being the casing, shaft, bearings etc. This chapter focuses on candidate materials 

for the active components of the machine. The selection of structural components will be 

briefly described in chapter 6. The key enabling component for high temperature machine 

operation, and arguably the least developed and established, are the stator coils. Localised 

hotspot temperature and the mechanical loads imposed by vibrations and thermal cycling, 

dictate that the coils have to endure very harsh conditions while maintaining high mechanical 



11 

 

and electrical integrity. There are several challenges that must be overcome in order to 

manufacture high temperature coils several of which will be described in this chapter.  

Permanent magnets have in the past been largely discounted for operation at high 

temperatures. The absence of permanent magnets in switched reluctance (SR) machines is 

one of the mains reason for them being favoured for high temperature operation. Nonetheless, 

over the past 15 years or so, there have been significant advances in permanent magnet 

materials, with grades now available that are rated at temperatures up to 550°C. Thus, it is 

important to re-evaluate the state-of-the-art high temperature permanent magnets and their 

properties so as to assess the viability of a permanent magnet PM machine option for a HP 

shaft starter/generator.  

The main focus of this chapter however is the effects of temperature on soft magnetic 

materials. Although in the short term high temperature operation of soft magnetic materials 

show some benefits such as lower eddy current losses, long term operation has several 

limitations due to ageing effects as was found through the literature review. These ageing 

related issues will be outlined in this chapter with an aim to select the materials required for 

the machine design.  

 

2.2 High temperature coils 

Operating an electrical machine in an ambient temperature of 350°C requires coils 

that can withstand considerably higher localised temperatures in order to accommodate 

internal heating generated by ohmic losses. Although the ultimate temperature will depend on 

the design constraints and performance requirements, it is likely that regions of the coil may 

be required to operate at ~450°C. Despite Copper having a relatively high temperature 

coefficient of resistance (increasing by some 40% per 100°C) it still offers the highest 

volumetric electrical conductivity at around 400-450°C and hence is still considered the 

leading core conductor material for wires operating at these temperatures.  

Copper tends to oxidise at relatively low temperatures. Unalloyed Copper can start to 

oxidise at 200°C in 25 minutes and at 350°C in as less as 5 minutes[1]. Copper oxidation 

rates also increase very rapidly as the temperature increases [2]. Commercially available high 

temperature wires have plated or clad a Nickel coating which forms a protective barrier for 

the Copper at the expense of some increase in wire resistivity. A comparison of the oxidation 
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rates of pure Copper and Nickel coated Copper at high temperatures of 600-800°C showed a 

tenfold reduction in mass gain for the Nickel coated material [3]. The commercially available 

Nickel coated Copper wires have rated temperature ranges of about 400-500°C, though 

several different options are being considered for applications at 600°C and above[4].  

Although Nickel is useful for enhancing oxidation resistance, long-term exposure of 

Nickel coated Copper to elevated temperature wires gives rise to diffusion of Nickel into 

Copper conductor due to grain boundary diffusion[5]. A study carried out in [6] considered at 

the effect of the Nickel diffusion on the electrical resistivity of potential commercially 

available high temperature wires. The Nickel diffusion causes an increase in the resistivity of 

the conductor which over a period will have a marked effect on the copper loss. Very 

extensive diffusion of Nickel into Copper core may result in some Copper reaching the 

surface and hence exposed to oxidation. Thus the use of Nickel coated Copper at 

temperatures of 400-450°C for extended periods will require that careful consideration is 

given to the thickness of Nickel coatings. Other options such as silver coatings or pure silver 

conductors could also be possible contenders for this application.  

Conventional insulated wires dominate the manufacture of electrical machines for 

almost all applications. The insulation systems on conventional wire typically consist of 

organic materials that are limited to maximum operating temperatures of around 250°C, 

beyond which they increasingly and rapidly degrade with temperature. They can be used 

beyond their long-term rated temperature but at the expense of rapidly reducing lifetime. A 

useful rule-of-thumb is a halving of lifetime with every 10⁰C of temperature increase. In 

some short-term applications such as missiles, motor-sport components they may be pushed 

up to 280-300⁰C. Commercially available high temperature wires, i.e. wires with a long-term 

temperature capability of >250-300°C  tend to have non-organic based insulations such as 

conformal ceramics, glass fibre braided sleeving of ceramic/glass fibre tapes. Wires with 

conformal ceramic coatings tend to be fragile, are limited to relatively large bend radii and 

are prone to cracking during coil forming.  

To overcome some of these drawbacks, some high temperature wires such as 

‘Fujikura Fujithermo A’ have a hybrid organic-ceramic coating which starts off as a flexible 

insulation with properties similar to organic coatings which can be formed more or less with 

standard methods. Once heated to a certain temperature (600°C in the case of the Fujithermo 

A) converts into a rigid ceramic coating. Although these commercially available wires are 
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notionally rated for the temperatures of 400⁰C and above, little data exists on their behaviour 

at temperature, either in terms of key electrical indicators or long-term stability. A study by 

[7] compared the dielectric properties of two commercially produced wires the Ceramawire 

and Fujithermo M. The results showed a significant difference in the dielectric strengths with 

the Fujithermo wire having breakdown voltages orders in magnitude higher than the 

Ceramawire at rated temperatures.  

In addition to the primary insulation on the wire itself, an encapsulation material is 

required to ensure good thermal contact between the individual turns within the coil and the 

stator core. It also provides some secondary insulation and mechanical support to maintain 

coil integrity. The encapsulation materials require good mechanical strength to withstand 

thermal cycling and vibrations. The thermal conductivity of the encapsulant also helps 

dissipate the coil losses through the core which in many machines may be the dominant 

mechanism for dissipating the losses. It is also important that the potting compounds have 

similar thermal expansion coefficients as the core and wire to avoid cracking during thermal 

cycling. Due to the high viscosity of the encapsulation materials, methods such as vacuum 

impregnation cannot be used effectively as any voids or air capsules formed may compromise 

the mechanical integrity of the coils. Therefore the coils need to be pre-formed or 

manufactured or ex-situ and then placed in the stator, as opposed to in-situ winding of 

individual turns into the slot. The high temperature encapsulate is applied between layers 

during the manufacturing process to provide a good consistency.  Pre-formed coils offer 

several benefits in term of: 

o Ease of stator assembly 

o High coil packing factor  

o Reduced repair turn-around time for example stator rewound after a stator fault  

o May be the only means of forming a coil for some wire insulation types which do 

not have the abrasive resistance to tolerate in-situ winding 

Pre-forming coils however imposes several constraints on the manufacturing process. These 

include: 

o Requirement to employ parallel sided stator core teeth with no tooth tips (In 

machines which require flared teeth, semi-permeable slot wedges can be 
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employed. However the maximum operating temperature of these materials is 

likely to be the limiting factor) 

o The coils must pass the adjacent coil when inserted into the stator slot 

o There will be little or no deformability in the coil once formed 

These constraints tend to incur penalties in the proportion of the final slot which is 

occupied by actual conductor as opposed to voids and space between individual conductors 

which is often referred to as the ‘packing factor’. The packing factor has a significant impact 

on the machine design as it dictates the slot area required to accommodate a given ampere-

turns which has a knock-on effect on the size of the core.  

There are several commercially available insulated Nickel coated Copper wires with 

rated temperatures of 400-500°C. The simulated results reported in [6] suggests that these 

may not possess the long term capability for ~30,000 hours of continuous operation, due to 

effects of Nickel diffusion. Nonetheless, they remain the leading candidates for this design 

study although their introduction into service would be contingent on establishing a detailed 

understanding of long term stability. Commercially available high temperature wires can be 

used with a variety of encapsulation materials. However, manufactures tend to suggest 

specific encapsulates for the wires based on experience. In selecting an optimal combination 

of wire and encapsulate to produce a reliable high temperature coil, there are several 

electrical and mechanical tests that sample coils should be subjected to such as voltage 

breakdown capability, susceptibility to partial discharge, mechanical and electrical integrity 

with thermal cycling of coils and exposure to vibration.  

In this machine a combination of a commercially available wire SK650 by Von Roll 

and No. 10 encapsulate by Sauereisen was selected. Previous studies, conducted at the 

University of Sheffield, including a high temperature actuator demonstrator, have identified 

this combination as the best available at present in terms of electrical and mechanical 

robustness[8, 9]. As part of these previous investigations, a series of commercially produced 

wires and encapsulates were systematically evaluated using simple test coils. The 

combination of SK650 and Sauereisen No. 10 encapsulant showed a high voltage breakdown 

compared to the other combinations on test, and also had a better net cross sectional thermal 

conductivity with the encapsulate combination.  

However, the data produced in these previous studies, is not sufficient to 

unequivocally state that this option is superior to the other combinations for such 
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applications. The main disadvantage of this wire is its comparatively thick insulation layer, 

which reduces the achievable packing factor, i.e. the proportion of the total coil cross-section 

which is occupied by the core Copper conductor. For the 1mm diameter SK650 wire under 

consideration, the insulation thickness of ~0.1mm results in only 62% of the wire cross 

section being composed of conductor. Although in practice slightly better packing is achieved 

due to a level of compressibility in the wire insulation, this factor in combination with the 

78% fill factor for circular conductors in a rectangular slot suggests that the maximum 

packing factor geometrically possible is at best 48%. Previous experience of constructing 

coils using this combination yielded packing factors of no more than 30%. The implications 

of this modest packing factor on the machine design are discussed in detail in chapter 5. 

 

2.3 Hard magnetic materials 

Table 2-1 lists some of the common grades of high performance hard magnetic 

materials used in electrical machines together with key magnetic properties which have been 

drawn from manufacturer datasheets. There are many different measures of the effectiveness 

of hard magnetic materials. Three commonly used measures which are useful in the context 

of assessing suitability of different grades for electrical machines are the remanence, energy 

product calculated as (BH)max and the maximum service temperature. The lowest cost and 

most commonly used permanent magnet is hard ferrite, but it has both a low Curie 

temperatures and very modest magnetic properties. In ferromagnetic materials the Curie 

temperature is the temperature at which the material becomes completely non-magnetic. 

However for most practical purposes these materials have to be operated at temperatures 

reasonably lower than the Curie temperature. Certain magnetic materials such as Alnico have 

much higher curie temperatures (850°C) but have quite low demagnetising fields. In 

applications which demand high power density such as electrical machines, the rare earth 

materials such as Neodymium Iron Boron (NdFeB) and Samarium Cobalt (SmCo) are more 

commonly used due to their higher energy products. NdFeB have higher energy products and 

are relatively cheaper but have low Curie temperatures and peak operating temperatures of 

under 200°C. Thus the SmCo magnets have been preferred for higher operating temperature 

ranges [10]. 
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Table 2-1 : Temperature limits of magnetic materials. 

Magnet 

Material 

Remanence 

(T) 

Energy product 

(BH)max  (kJ/m
3
) at 

room temperature 

Maximum 

operating 

temperature (°C) 

Curie 

temperature 

(°C) 

Hard Ferrite 0.40 27 200 450 

AlNiCo 1.12 35 450 860 

Samarium Cobalt 

(SmCo5) 
0.85 143-59 250 725 

Neodymium Iron 

Boron  (NdFeB) 
1.43 382-398 80 310 

Neodymium Iron 

Boron-HT   

(NdFeB) 

1.20 223-239 200 310 

Samarium Cobalt 

(Sm2Co17) 
1.15 159-175 300 800 

Samarium Cobalt 

-UHT 

(Sm2Co17) 

0.85 167 500 800 

 

Figure 2.1 shows the demagnetisation curves for a high temperature grade of 

Sm2Co17, which is rated for operation up to 550°C [11]. These magnets start with a lower 

remanence than their conventional grade counterparts at room temperature. As is common 

with all grades of Sm2Co17, as temperature increases, the performance decreases further. The 

(BH)max for the grade EEC 16-T550 drops from 134 kJ/m
3 

at 25°C to 71 kJ/m
3
 at 450°C. Due 

to the lower coercivities at elevated temperature, the risk of demagnetisation increases, and 

the electric loading must be compromised. Exposure to high temperatures for extended 

periods showed that the material is susceptible to oxidation, which causes irreversible 
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damage to magnetic properties[12]. Methods such as protective coatings or doping with 

Silicon [13] can significantly reduce oxidation, but are still a long way from solving the 

problem of oxidation completely.  

Other than the magnetic properties, there are other issues with permanent magnet 

machines such as magnet containment on high speed rotors. At high rotational speeds surface 

mount magnet rotors tend to use a mechanical retaining sleeve for magnet containment, based 

on materials such as carbon fibre or high strength metals. Carbon fibre bandings have a much 

higher strength to weight ratio and almost no losses and hence is becoming more prevalent. 

However the temperature limits for the carbon fibre and the bonding resins used are fairly 

low (~150°C). Metal based bandings are capable of temperature but have additional eddy 

current losses and weight. The interior permanent magnet rotor option may be more 

promising for such an application, however the centrifugal stresses acting on the magnets at 

high speeds need to be alleviated, as the materials tend to have poor mechanical strength. 

Therefore, many challenges remain to be overcome before permanent magnetic materials can 

be readily employed in applications of power dense high temperature machines. 

 

 

Figure 2.1: Demagnetisation curves of Sm-Co UHT grade at high temperatures 

[Source:[11]]. 
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2.4 Soft magnetic materials 

The choice of soft magnetic material for either the stator or rotor cores is an important 

factor in determining the performance of electrical machines. The dominant soft magnetic 

material in industrial electrical machines is Silicon steel (Si-Fe) with grades having typical 

Silicon contents of between 3-6%. In very low cost machines with modest performance, plain 

low-carbon steels are sometimes used despite their relatively poor electromagnetic 

performance. The comparatively low cost, high saturation flux density and low loss 

characteristics of Si-Fe grades with 3-3.5% Silicon make them the preferred material choice 

for many medium to high performance applications.  

In applications which the very highest level of performance, particularly in terms of 

reduced weight, such as aerospace or motorsport, Cobalt Iron (Co-Fe) is often preferred 

despite its very high cost (can be 80-100 times the cost of Si-Fe depending on volume etc). 

The main benefit of using Co-Fe in such applications is the higher saturation flux density 

which leads to savings in weight as the volume of core required to carry a given flux is 

reduced. For an aerospace HP shaft machine considered in this thesis, the key requirements 

are high power density and high temperature capability, Co-Fe grades offer advantages in 

both these regards compared to Si-Fe.   

Table 2-2 lists the range of Curie temperatures exhibited by soft magnetic materials 

used in magnetic cores. The Silicon and Cobalt steels have Curie temperatures much higher 

than the proposed operating temperature of the HP machine. Nickel iron also has a Curie 

temperature of 480°C, however has a much lower saturation flux density. Nevertheless, it is 

considered as a potential candidate for low power actuator applications. It is important to note 

that although a material retains some degree of magnetism up to its Curie temperature, it is 

usually necessary to maintain a considerable margin from the operating temperature in order 

to retain useful levels of performance. 

Figure 2.2 shows the saturation flux density of the different commercially available 

soft magnetic alloys manufactured by Vacuumschmelze (VAC) [14]. Co-Fe grades show the 

highest saturation flux density which is largely maintained even at 400°C. The high cost of 

Co-Fe makes it a seldom used material, even though it has superior magnetic properties. In 

the HP shaft application, since power density is at such a premium, this higher cost can be 

justified.  

 



19 

 

Table 2-2 : Curie temperatures of typical soft magnetic materials.  

Material Curie Temperatures (°C) 

NiZn ceramic ferrites  150  

MnZn ceramic ferrites  200  

Amorphous Metallic Glass (80%Fe-20%B)  375  

77% Nickel Iron (Permalloy) 480  

3% Silicon Steel  720  

Pure Iron  770  

49% Cobalt Iron ( Permendur)  950  

Pure Cobalt  1121  

 

The addition of silicon reduces the Curie temperatures of iron but this increases the 

electrical resistivity so as to achieve lower losses. Nevertheless, the susceptibility to oxidation 

in silicon steels at even modest temperatures is a fundamental shortcoming for the material in 

this application. Conversely, Co-Fe exhibits good resistance to oxidation and has been used 

in applications for temperatures above 400°C [15]. Other benefits include high strength 

capability and relatively low losses. Commercially available laminations use a variety of 

protective coatings for insulation which could be either a simple organic varnish or in cases 

where higher resistance and temperatures are required inorganic coatings. Co-Fe laminations 

have a magnesium based oxide layer, a few microns thick, which acts as insulation between 

successive laminations. This coating is well suited to high temperatures. In machines 

operating at more conventional temperatures, lamination stacks can be adhesively bonded to 

form a high integrity single piece stack. However, in the case of high temperature machines, 

the stack must be either simply clamped, welded or bonded with a high temperature ceramic 

adhesives, should a suitable adhesive be identified (which would need both high strength at 

high temperature and be capable of being applied in very thin layers so as not to diminish the 

achievable stack factor). 
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Figure 2.2: Saturation flux density of various Vacuumschmelze soft magnetic materials 

as a function of operating temperature [Source:[14]]. 

 

Co-Fe is produced in various grades providing a range of magnetic and mechanical 

properties. Even for a given alloy composition, the final properties can be tailored by varying 

the heat-treatment schedule. It is possible to trade-off magnetic and mechanical properties by 

selecting a particular heat-treatment schedule. Several studies have been published on the 

high temperature properties of three different grades of Co-Fe manufactured by Carpenter 

viz., Hiperco 50, Hiperco 50-HS and Hiperco 27 [16-21]. The Hiperco 50 and 50-HS grades 

(which both have Cobalt content of ~49%) have a higher permeability and saturation flux 

density than Hiperco27 (which has a Cobalt content of 27%). However the lower Cobalt 

content results in a lower cost alloy which makes it attractive in some applications, notably 

high value automotive components such as fuel injector actuator.  

The  most significant body of data on the performance of Co-Fe is published in [16]. 

This includes measurements of thermal ageing effects of magnetic and mechanical properties 

due to long term exposure to high temperatures. The studies indicate that the materials show 

evidence of significant degradation in mechanical and magnetic properties over the test 

period of 5000 hours of ageing in 500°C air. A reduction in mechanical strength of some 36% 

was observed over this period, which would need to be factored into the rotor design to avoid 

mechanical failure. The materials also showed an increase in core losses over time which 
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reduces efficiency and necessitates improved management of heat dissipation to 

accommodate this ageing effect into the design. As the operating periods of application may 

be of the order of 30000 hours, such significant degradation in relatively small operating 

times is undesirable. If some of the known degradation rates can be taken into account in the 

design stage, failures in the long term due to ageing effects can be avoided. In the next part of 

this chapter the basis for selecting the materials using the published data is discussed. 

 

2.5 Properties of Cobalt-Iron  

2.5.1 Mechanical properties 

The SR machine rotor comprises a stack of thin Co-Fe laminations (typically 0.1 mm- 

0.5mm thick). At high rotational speeds, the rotor is subjected to centrifugal loading which 

can result in large hoop stresses which tend to be most pronounced at the base of the rotor 

teeth[22]. For a given maximum speed, the peak stresses are a function of the rotor outer 

diameter and the radial length of the rotor teeth. Hence, if the maximum stress that the 

material can sustain is low, the maximum rotor diameter is constrained, which consequently 

compromises the torque per unit length. Since the SR rotor is subjected to time varying flux 

excursions which generate core loss, it is also important to achieve better magnetic 

properties. Optimal  mechanical and magnetic properties cannot be achieved simultaneously 

as the microstructures that benefit better mechanical strength impede the motion of magnetic 

domains required for magnetisation[23]. However, for the rotor core of the SR machine in the 

HP shaft, the mechanical properties will tend to be the overriding consideration, and the 

increased core losses will need to be carefully managed. 

Of the three grades, Hiperco 50-HS has the best mechanical properties, specifically in 

terms of having a higher yield strength (0.2%) at all temperatures, ranging from 550 MPa at 

room temperature to 480 MPa at 480°C. The Hiperco 50 and Hiperco 27 grades have much 

lower strengths, and showed high failure rates in the creep tests [16]. Hence they were not 

considered as being viable options for the rotor design.  

The yield strengths of Hiperco 50-HS showed degradation with ageing and after 2000 

hours in 500°C air the yield strengths drops to 350MPa [16]. For ageing durations greater 

than 2000 hours Hiperco50-HS exhibited an increase in yield strength. This was attributed to 

the material hardening after some initial corrosion effects. For ageing times greater than 5000 
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hours it has been speculated that there might be a further increase in mechanical strength, but 

there is no published data to support this. If long term aged material does indeed exhibit 

stability to ageing at elevated temperature, there may be some scope to deploy pre-aged 

materials to minimise in-service variation, but this would come at a significant cost. The 

creep tests in [16]were carried out using a load of 300MPa which was close to the materials 

aged yield strengths at 2000 hours, and so unsurprisingly, creep rates increased after 2000 

hours of ageing. From the various experimental findings in [16] it is apparent that the most 

likely case for potential mechanical failure would be due to creep effects as a result of the 

reduced strength of the rotor due to long term ageing. Drawing on these findings, the 

maximum rotor stress specified for the design study in this thesis was limited to half the 

worst case yield stress of 350MPa, which corresponds to 175MPa. This was deemed to 

provide a safety margin which should be sufficient to reliably accommodate thermal ageing. 

 

2.5.2 Magnetic properties 

The stator core is not subjected to high mechanical loads, and hence magnetic 

properties are the overriding consideration. Figure 2.3 shows the DC magnetisation curves of 

the three materials at room temperature taken from manufacturer’s datasheets [14]. Hiperco 

50 shows the highest saturation flux density at room temperature, followed by Hiperco 50-HS 

and Hiperco 27. At higher temperatures, the saturation flux density reduces but only at a 

modest rate. The thermal ageing of the materials in 450°C air showed that the magnetic 

permeability values degraded over the first 200 hours but reached more stable values after 

1000 hours[20]. All material grades maintain a saturation flux density above 2T even after 

long term ageing (i.e. hundreds of hours). Hence, the flux carrying capability remains largely 

unaffected when the material is exposed to high temperatures for extended periods.  
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Figure 2.3: Manufacturer supplied magnetisation curves of Hiperco 50, Hiperco 50-HS 

and Hiperco 27 [Source: [24]]. 

 

As is the case in all electrical machines, employing materials with low core losses is 

beneficial in terms of minimising temperature rise and enhancing efficiency. The specific 

core loss of the three materials shows rather different behaviour with temperature and ageing. 

The eddy current losses in the core are inversely proportional to the electrical resistivity of 

the core material, and hence the increase in resistivity with temperature is beneficial in terms 

of reducing core losses. All the three materials have positive temperature coefficients of 

electrical resistivity with Hiperco 27 having the highest as seen in Figure 2.4. Figure 2.5 

show the losses of three grades at an operating point of 1 kHz with a peak flux density of 

1.8T as a function of temperature. In Hiperco 27, the losses reduce significantly with 

temperature, whereas the grades containing 50% Cobalt do not exhibit a significant variation 

in losses with temperature. This can in large part be attributed to the fact that the eddy current 

losses at the outset is a smaller fraction of the total losses for the 50% Cobalt grades.   
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Figure 2.4: Measured resistivity as a function of temperature for the three Hiperco 

grades [Source: [16]] .  

 

 

Figure 2.5: Measured core loss as a function of temperature for the three Hiperco 

grades at B=1.8T and f=1kHz [Source: [25]].  
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The Hiperco 50 grade exhibits the lowest losses across the full range of temperature, 

and would appear to be the leading candidate for the stator core. However, the electrical 

resistivity of all materials decreased with ageing at 500°C, as illustrated in Figure 2.6. The 

effect on Hiperco50, which has the highest electrical resistivity at 0 hours, is most 

pronounced, dropping by 34% over 5000 hours, whereas the Hiperco 50-HS material shows 

much better long-term stability. At 5000 hours the resistivity of these two grades converges. 

Hence, considerable increases in eddy current losses will occur with the Hiperco 50 as the 

material ages, in turn eroding its apparent superiority.  This is illustrated in Table 2-3 which 

shows a comparison of core losses at 2 kHz and 2T, for Hiperco 50 and Hiperco 50-HS at the 

outset of testing and following 2000 and 5000 hours of ageing at 500⁰C. It can be seen that 

the loss for Hiperco 50 exceeds that of the 50-HS grade before 2000 hours of ageing. The 

high flux density and frequency were selected for comparison as being representative of the 

operating range of the machine.  

Although Hiperco27 material was shown to relatively stable to ageing, the absolute 

losses remain higher as compared to those of the 50% grades. Thus, for long term operation, 

Hiperco 50-HS appears to be the most suitable material for the stator core. The materials used 

in [16] were heat treated at the lower end of the heat treatment range (730°C) which tends to 

result in improved mechanical properties. Annealing at higher temperatures (up to 820°C) 

results in better magnetic properties, but at the expense of mechanical strength. For the stator, 

a heat treatment schedule at the upper end of the range is likely to provide the best 

performance. 

 

Table 2-3: Room temperature core loss density in W/kg at 2 kHz and 2T for the un-

aged, 2000 hours aged and 5000 hours aged samples (aged in air at 500C) as read from 

[Source:[16]]. 

Grade Un-aged 2000 hours aged 5000 hours aged 

Hiperco 50 650 1370 1690 

Hiperco 50-HS 780 1080 1330 
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Figure 2.6: Room temperature resistivity as a function ageing duration at 500°C 

[Source: [16]]. 

 

2.6 Selection of rotor and stator materials 

The degradation of the core materials with ageing, although not desirable, can be 

accounted for in the design process. Mechanical creep effects can be managed by limiting the 

rotor size and hence the stress levels, whereas the increase in core loss can be accounted for 

by either increasing the cooling provision or by reducing the flux levels in the core, although 

the latter would increase the machine size. The core loss shows a steep increase due to ageing 

at 2 kHz and 2T for Hiperco50-HS as well, almost doubling at 5000 hours of ageing. As the 

resistivity of the Hiperco50-HS appears to be relatively stable with ageing, the observed 

increase in losses cannot be attributed to classical eddy current losses, and is likely to be due 

to a change in the hysteresis and excess loss which indicates changes to the material 

microstructure. In order to improve the understanding of these variations, it is useful to fit the 

data to a loss separation model, which can then describe the effects of temperature and ageing 

on the individual loss components. Section 2.7 describes the method to characterise the 

materials with the limited data available. 

Although published literature is predominantly based on the properties of the Hiperco 

range of alloys from Carpenter Technology, similar grades manufactured by 

Vacuumschmelze GmbH (VAC) were preferred for this project due to a combination of 
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availability in small batches and cooperation with VAC on data sharing. VAC manufactures 

two similar high strength grades of ~50% Cobalt content alloys, Vacodur 50 and Vacodur S+. 

The Vacodur 50 uses Niobium additions similar to the Hiperco 50-HS to achieve its 

mechanical properties, whereas the Vacodur S+ uses Tantalum and Zirconium additions. The 

Vacodur S+ can achieve a wider range of mechanical strengths but they are also not immune 

from degradation due to thermal ageing as described in [26]. Figure 2.7 shows the range of 

properties that can be achieved for different heat treatments of Vacodur 50 and Vacodur S+. 

The Vacoflux 50 grade is similar to Hiperco50, which has the better magnetic properties.  

The Vacodur S+ material was selected for the rotor material due to its higher strength. 

The rotor laminations were annealed at 720°C to provide 0.2% yield strengths of 600MPa. 

Although higher strengths could be achieved with this material, the exponential increase in 

coercivity with strength which is shown in Figure 2.7 was undesirable. For the stator, 

Vacodur S+ laminations were selected and heat treated at 820°C to provide enhanced 

magnetic properties and a more modest 0.2% yield strength of ~390MPa. The manufacturer’s 

material datasheets for Vacodur S+ only included limited core loss data, which was not 

sufficient to reliably fit to core loss models. As the selected materials had slightly different 

composition, and heat treatment schedules as compared to the Hiperco grades reported in the 

literature, the Hiperco data could not be reliably used. Hence, samples of Vacodur S+ were 

obtained to carry out loss measurements at temperature so as to characterise the materials for 

the two different heat treatments, including ageing data for comparison with the trends 

observed by Fingers et al. In the next chapter a loss model is developed for estimating losses 

in switched reluctance machines. The details of the measurement techniques used to 

characterise the materials for the loss model are described in chapter 4.   
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Figure 2.7: Coercivity vs. yield strength resulting from different annealing temperatures 

[Source: [13]]. 

 

 

Figure 2.8: BH curves of Vacodur S+ from datasheet.  

 



29 

 

2.7 Material loss characterisation 

In order to predict losses for the preliminary machine design studies, the published 

core loss measured data in [16] was used to fit parameters to a standard loss separation 

model. Since core loss changes markedly with temperature and ageing, some temperature 

dependency of the model parameters is inevitable. A widely used technique for predicting 

losses in electrical machines is that of loss separation. It is based on arriving at the total losses 

by the summation three constituent components, viz. classical eddy current loss, excess loss 

and hysteresis loss [27].  The standard loss formulation in the frequency domain is given as 

 

           
         

           
      

   (2.1)   

The parameters of the loss model are    ,     ,   , α and β. The coefficient for 

classical eddy current losses     is a function of the lamination electrical conductivity (   and 

thickness (  . The hysteresis energy loss per cycle is the frequency independent term, which 

is calculated as the energy lost within the static hysteretic loop. The hysteresis loss term is 

curve fit to an exponential curve whose coefficients are    α and β. The β term adds 

nonlinearity required to represent magnetic saturation effects. Excess losses arise due to the 

concentration of losses around magnetic domains. The parameter associated with excess loss 

     is a function of the micro structural features of the material and, as such, is difficult to 

mathematically quantify on an a-priori basis. Thus      is usually predicted by curve fitting 

the value of                 for a set of AC loss measurements. In this case, only the 

classical losses could be separated from the total losses as the only parameter available is the 

conductivity. As there were no hysteresis loop measurements published, it was not possible to 

separate the hysteresis losses directly. Therefore the hysteresis loss and excess loss 

parameters had to be curve fitted to the remaining loss by trial and error.  This is far from 

ideal, but is the most pragmatic approach when there is little in the way of independent 

hysteresis measurements available. 

The hysteresis loss coefficients were first selected to give good fit at the lower 

frequencies where they are at their most dominant. The residual losses at higher frequencies 

were incorporated into the excess loss coefficient. These were then tuned to give a good fit 

over the whole measurement spectrum. Figure 2.9 shows the loss predicted by this method 

for Hiperco 50-HS at room temperature 200 and 400°C using published data as the basis for 
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the coefficients. Table 2-4 shows the values of these coefficients estimated for the un-aged 

Hiperco50-HS as a function of temperature. The hysteresis losses which are a function of the 

material coercivity reduced marginally at temperatures around 400°C but there was an 

increase in the excess loss. However these were not sufficiently significant to gain any insight 

into the detailed behaviour of the excess loss with temperature. However, it can be inferred 

that the large contribution to the drop in loss with increasing temperature was due to the 

classical eddy current component.  

 

Table 2-4 : Variation in parameters of loss model with temperature for Hiperco 50-HS  

Temperature (°C) 
Room 

Temperature 
200 400 

Resistivity (μΩ-m
-1

) 38 43 51 

     2x10
-5

 3x10
-5

 7 x10
-5

 

    0.095 0.095 0.085 

a 2.0 1.9 1.9 

b -0.15 -0.20 -0.20 
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Room temperature 

 

200°C 

 

400°C 

Figure 2.9 : Curve fit of loss model to Hiperco50-HS prior to ageing. 



32 

 

This curve-fitting technique was also used to fit parameters for aged Hiperco 50-HS. 

The graphs of the curve fits and the parameters used are included in Appendix A for 

completeness. The data showed a significant increase in losses at high frequencies and flux 

densities for the aged material. As the resistivity of the material remained relatively 

unchanged with ageing, the increase in loss could not be reliably attributed to classical eddy 

current losses. At high frequencies skin effect has the tendency to reduce the eddy current 

losses and hence this effect can also be ruled out as well. As a result, the vast majority of the 

increase in losses had to be incorporated into the hysteresis and excess loss components. 

However, when the hysteresis losses were fitted at the lower frequencies, there was a 

significant under prediction of loss at high frequencies, which hints that a large proportion of 

the temperature sensitivity of the loss was coming from the excess loss component.  

The formulations used for excess losses described by Bertotti in [27] were based on 

statistical analysis of losses in the low to medium frequencies of around 400Hz, which are 

well below the frequencies considered in this case. At higher frequencies rate dependent 

hysteresis effects are more dominant which may have a power relationship with frequency of 

greater than the unity power adopted by Bertotti. These losses were incorporated into the 

excess loss co-efficient which showed a five-fold increase at 5000 hours ageing. It should be 

noted that the curve fits here, are only approximations and for a better understanding of the 

contributions from the various components and improved models for design purposed, 

detailed hysteresis loss data is required. Therefore, the samples obtained for characterisation 

were also aged at 400°C for 2000 hours. These results are described in detail in chapter 4. 

 

2.8 Summary 

This chapter has demonstrated that the magnetic and electrical materials used in high 

temperature machines have several limitations. Material ageing is considered as the main 

obstacle for long term operation at these temperatures. The mechanical ageing can be taken 

into account while setting the maximum stress level in the rotor, although the increases in 

losses have to be dealt with by the cooling system. If the diffusion of Nickel in Copper can be 

reliably predicted the ideal thickness of the nickel coating can be gauged for the length of 

operation. An attempt of modelling this is described in [6], which provides a useful starting 

point for specifying conductor dimensions. The increase in resistance and copper loss due to 

this must be accounted for in aged thermal models.  
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Although the core materials can withstand the 450°C temperatures and operate with a 

significant fraction of their room temperature capability, long term degradation remains a 

concern. From the data published in [26] it appears that the ageing accelerates at temperatures 

above 350°C. Thus, for long term operation it may be beneficial if core temperatures could be 

maintained under 350°C. This would require special cooling techniques the feasibility of 

which remains unknown at this point. From the published data on commercially available 

materials it was found that the high strength 50% Co-Fe grades were more stable with long 

term operation. However, these materials have much higher losses at the outset of service. To 

improve stator magnetic properties the material can be heat treated at the higher temperatures 

to deliver the optimal magnetic properties. A significant amount of published data exists on 

the Co-Fe materials, however due to the range of grades and heat treatments available, 

characterising the materials for loss models requires very specific measurements on the 

particular grade being used. In the case of the current application, further loss measurements 

for the heat treatment are described in chapter 4. 
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Chapter 3 : Dynamic modelling of switched reluctance 

machines 

 

3.1 Introduction 

The operation of switched reluctance (SR) machines is characterised by being very 

dynamic and transient when compared to other machines such as induction machines, 

synchronous machines and permanent magnet which can often be modelled for most 

operating conditions using steady-state AC analysis. SR machine operation, even when 

operating at a fixed speed and load, involves a sequence of transient pulses of voltage, current 

and torque. Hence, numerical time-stepping simulation methods are usually adopted to 

predict even steady-state operation.  

A key element in dynamic simulations of this type is the prediction of losses, this 

being a particular issue when power density is a major design objective. The reliable 

prediction of core losses in electrical machines remains possibly the most challenging aspect 

of their design. This is particularly the case for electrical machines in which the flux density 

excursions in various regions of the rotor and/or stator core are highly distorted. SR machines 

pose particular challenges as they include regions exposed to uni-polar flux density 

excursions, asymmetric bi-polar excursions, often with significant minor loops[1]. It has 

become common practice to calculate core losses as a post-processing operation and 

commercial finite element packages increasingly include core loss post-processing models 

based for example on the methods proposed in [2, 3].  

The established approach is that a series of magneto-static finite element (FE) 

predicted magnetic field distributions spanning one complete cycle of the excitation are used 

to calculate time-varying flux density waveforms for all regions in the stator and/or rotor 

cores. This procedure is often performed on an element by element basis and the losses over 

one cycle in each finite element are aggregated to yield a total core loss for the machine. 

Various refinements and alternative approaches to this method have been proposed, for 

example in [4-7]. The method proposed in [7] for example, is based on enforcing the flux 

waveforms from the magneto-static FE calculations onto a separate one dimensional FE 
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model, in which the flux variation across the thickness is simulated to which can account for 

eddy current effects. Although these core loss models can predict accurate losses for a given 

flux density waveform, their post-processing nature means that they are unable to reflect the 

influence of the core loss on the electrical circuit and hence the field distribution itself. 

In some machines, the combination of operating conditions and core magnetic 

properties are such that the core losses can constitute a significant fraction of the input power, 

which one could broadly regard as being 10-15% or above. Although such inefficiencies are 

undesirable, in cases where power density is the over-riding consideration, such losses may 

need to be accommodated. In cases where core loss constitutes such a significant fraction of 

input power, a failure to account for its influence on the electrical circuit behaviour can give 

rise to over-estimates of output power and under predict the copper loss when the machine is 

supplied by a given voltage pulse. Integrating a core loss model into the dynamic simulation 

of an electrical machine has the potential to improve the accuracy of performance predictions, 

it poses several challenges. The most obvious of these challenges is that the core loss must be 

predicted on an essentially instantaneous basis (or more strictly the energy in one simulation 

time step) as opposed to over a complete cycle. This is straightforward for eddy current and 

excess components of loss, as there are expressions for instantaneous loss readily available, 

and indeed integration of these expressions is used to calculate their contribution to the loss 

per cycle in well-established models. However, the need for dynamic models of instantaneous 

hysteresis loss is far from straightforward. This chapter describes the use of a Preisach based 

loss model which is capable of tracking hysteresis losses for arbitrary waveforms. Having 

calculated the various contributions to the instantaneous core loss at each time step, its 

influence can then be fed back into the circuit model to provide improved predictions of 

currents and hence magnetic fields in the machine and ensure power consistency in the 

simulations.  

 

3.2 Overview of existing simulation techniques 

When a series of simulations are to be performed on SR machines, for example to 

select optimum excitation angles, tune controllers etc, it is far more efficient in terms of 

computational time to pre-characterise the electromagnetic behaviour of the machine using 

magneto-static finite element analysis and produce a series of look-up tables which capture 

the various attributes of the machine, rather than perform specific time-stepped finite element 
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simulations for each conditions studied. By performing a series of isolated magneto-static 

calculations for all inclusive combinations of prescribed current and rotor angular position 

increments, the full dependency of the coil flux-linkage, electromagnetic torque and localised 

flux densities on the current and rotor angular displacement can be captured in look up tables.  

In order to greatly reduce the number of field calculations, the characterisation is 

performed for a single phase, which makes use of the fact that in SR machines the mutual 

coupling between phases in terms of coil flux-linkage is small compared to self inductance 

effects and can therefore be neglected to a reasonable approximation.  

The flux linkage and torque is calculated for a single phase using a set of currents 

over a set of rotor angular positions from unaligned to aligned. The predicted values of flux 

linkage are stored in a ψ-ί-θ table making use of interpolation functions to estimate 

intermediate values. This table can be then rearranged to derive a value of current from the 

flux linkage and angular position. The static torque predicted using a virtual displacement 

method within the finite element package employed for each combination of phase current 

and rotor angular displacement is stored in a T-i-θ look up table. The two look up tables, i.e. i 

in terms of ψ-θ and T in terms of i-θ, are then be used in a dynamic circuit simulation to 

determine the current and torque for a given applied voltage waveform. The equivalent circuit 

used in the dynamic simulation is shown in Figure 3.1, and the corresponding equation for 

flux-linkage is given by 

                    

     (3.1) 

The effective voltage across the coil is integrated to calculate the flux linkage and the 

corresponding current is read from the look up table. The current can be subsequently used to 

recalculate the voltage across the coil and hence the flux, essentially iterating around this 

loop until convergence within a prescribed tolerance is achieved. However in many cases, for 

higher power machines, the voltage drop across the coil resistance is small compared to the 

applied voltage and hence this iteration stage can be excluded if a small time step is used. It is 

important to note that this simplification still accounts for the resistive volts drop in the 

circuit equations using the first derived values of current, but does not perform repeated 

iterations. 



39 

 

 

Figure 3.1 : Circuit diagram for dynamic simulations. 

 

3.3 Representing core loss in circuit simulations 

The inclusion of core loss in post-processing of simulations makes the dynamic circuit 

simulation inconsistent in power terms, as the core losses are not represented in the power 

flow in the model. In applications such as the high temperature machine considered in this 

thesis, the core losses are expected to be significant as a proportion of the overall dynamic 

power flow due to a combination of high speed, high pole number and the use of relatively 

lossy material grades due to reasons described in chapter 2. In a normal high-speed operating 

scheme in which the machine is supplied using pulses of a fixed DC voltage, if the same 

operating conditions are applied to the actual machine, the current drawn would be higher 

than predicted, whereas the power delivered to the converter in generation mode would fall 

short of the predicted value. In the case of core losses as high as 10% of rated power, such 

shortfalls may not be recoverable during commissioning by adjusting turn-on and turn-off 

angles, which in any case is achieved at the expense of a further increase in copper loss.   

An increase in current due to core loss will impact on the predicted voltage drop 

across the coil resistance, in turn affecting the flux-linkage. This factor will be compounded 

in high temperature electrical machines because of the increase in coil resistance at elevated 

temperatures, e.g. the resistivity of copper is almost three times higher at 450⁰C than at room 

temperature. Any underestimate of the current caused by neglecting core loss will also result 

in an underestimate of the copper losses, which could be significant in design terms as the 

margins between operating temperature and the limits imposed by materials are likely be fine.  
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 Hence, for the particular combination of circumstances encountered in high-speed, 

high pole number and high temperature SR machines, integrating a dynamic core loss model 

into an FE based simulation of an electrical machine such that it more fully captures the 

various components of power flow, has the potential to improve the accuracy of performance 

predictions. However, as noted previously, such an approach poses several challenges, with 

arguably the greatest being the need to calculate instantaneous hysteresis loss.  

FE based dynamic models which incorporate representations of core loss have been 

implemented and reported [8, 9] with the core loss represented as a component in the field 

equation using the equivalent elliptical loop approach[10]. In this method, the hysteresis 

characteristic of the core material is represented by equating the area within actual measured 

BH loops to an equivalent ellipse in the B-H plane whose extent is parameterised simply by 

the magnitude of the peak flux density. Once the extent of the ellipse is defined, its inherent 

geometrical form defines the accumulation of loss as it is traversed in the B-H plane. This 

method has been shown to be effective in describing instantaneous hysteresis loss for 

symmetrical centred BH loops with limited influence of minor loops. However, such methods 

have significant limitations in terms of predicting losses for highly distorted waveforms 

encountered in SR machines.  

An analytical method described in [11] employs a ladder network to represent losses 

in different discrete layers within a lamination. The hysteresis loss in this case is represented 

by a nonlinear inductance in parallel with a resistance element which accounts for eddy 

currents. The multilayer lamination model has an added benefit that it can incorporate skin 

effect within a lamination, but cannot be easily incorporated in FE based models as it 

effectively requires a three dimensional lamination model. In this chapter, a Preisach based 

model is employed which is both capable of tracking hysteresis losses for any arbitrary 

waveform and can be employed in magneto-static time-stepped finite element simulation. An 

additional benefit of an instantaneous core loss model is its ability to provide detailed 

information regarding the distribution of losses over the cycle, which in principle, provides 

some insight on how machine geometry and control strategy can be optimised to minimise 

overall loss. Finally, since this approach to modelling ensures that the circuit is power 

consistent, which will assist in more reliable rating of drive circuit components. 
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3.4 Dynamic circuit model 

As noted previously in section 3.2, there is little mutual coupling between phase 

windings in 3-phase SR machines with well-established stator and rotor tooth number 

combinations. By way of illustration, for the 12-8 SR machine designed in Chapter 5, the 

maximum and minimum values of phase self-inductances are 260μH and 44μH at low levels 

of excitation (i.e. below any meaningful level of saturation) whereas the maximum value of 

mutual inductance is only 8.1μH. Since each phase of an SR machine is driven from a 

separate full-bridge with a common coupling point of a reasonably stiff DC-link, it is usually 

adequate to model the electrical circuit behaviour and the variation in phase flux-linkage on a 

phase-by-phase basis using separate equivalent circuits for each phase. This approach 

remains valid even when current is flowing in more than one phase, which can occur for 

example either by deliberate overlap to minimise torque ripple or simply the dynamic 

behaviour at high speed in which the rise and fall time of current occurs over a significant 

angular displacement of the rotor.   

Figure 3.2 shows the equivalent electrical circuit employed in the time-stepped 

simulation for one phase of a rotating electrical machine.  The electrical resistance of the coil 

itself is represented by the fixed resistor     although its resistance could be modified to 

reflect changes in coil temperature in a full electro-thermal simulation. The inductor      

represents any fixed values of inductance that reside outside the FE region, e.g. end winding 

inductance. The voltage source represents the FE model of the machine which generates a 

time-varying emf in response to a given combination of imposed current, rotor speed and 

rotor angular displacement. As the FE model captures the changing stored magnetic energy 

and the mechanical output power, it can act as a sink or source of power. This model of the 

field within the machine is lossless, with the core loss being represented by a separate circuit 

component, viz. the resistor        

During the solution of the governing field equations at each time step, the FE model 

employs an anhysteretic magnetisation curve to represent the magnetisation response of the 

core material. This provides a unique one-to-one mapping of flux density to magnetising field 

strength. Of the several possible means of establishing a single anhysteretic magnetisation 

curve a method based on horizontal averaging of a measured major B-H loop was adopted 

[12]. Hence, hysteresis is neglected in terms of predicting localised flux density variations in 

the core for a given combination of excitation currents, even though clearly hysteresis is a 
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factor that is considered in the subsequent loss calculation. Ultimately, it is entirely possible 

to include a hysteresis model into the finite element simulation, although this would be at the 

expense of a significant increase in the number of iterations required to solve the field and a 

greater number of time steps to remove start-up transients. Under dynamic conditions the 

eddy current effects also reduce the net permeability of the material and must be incorporated 

in the material model. 

The core loss is represented in the electrical circuit by the variable resistor       which 

is connected in parallel with the voltage source which represents the FE region. At each time-

step, the value of the effective core loss resistance is re-calculated to ensure that the 

instantaneous loss in this resistance (     
      ) is equal to the predicted core loss. The total 

power flow into the core at any instant is given by:
 
 

 

                        

 (3.2) 

 

 

Figure 3.2: Equivalent circuit for a generic electromagnetic device supplied from a 

voltage source. 

 

The instantaneous flux linkage of the machine coils are calculated using the 

anhysteretic BH curve for the material and hence is denoted as    . The current     can be 

calculated from the lossless flux linkage vs. current model in a similar manner to the SR 

machine model described in section 3.2. The loss current (     ) represents the additional 
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current drawn by the phase due to the instantaneous core loss in the machine. The flux 

linkage for the modified circuit is  

             

      (3.3) 

where,  

                     

    

   

     (3.4) 

              

      (3.5) 

Inspection of the circuit of Figure 3.2 and equations 3.3-3.5 suggests that iterations of 

the field and core loss calculations at each time step may be necessary to ensure circuit 

consistency since the voltage drop across the coil resistance and external inductance are 

dependent on the magnitude of the current drawn through      . However, as explained 

earlier, the voltage drop associated with the coil resistance and external inductance is usually 

a very small proportion of the applied voltage and hence there is often little merit in 

undertaking such iterations. This said there is nothing inherent in the modelling approach 

adopted which would preclude iteration. 

The circuit model of Figure 3.2 is a per-phase model and hence only represents the 

behaviour a single phase of a machine. Whereas this phase-by-phase approach can 

accommodate currents flowing in more than one phase at any given instant from the point of 

view of flux-linkage, when it comes to core loss, isolated consideration of each phase is more 

problematic. Despite the low mutual coupling between coils, some regions of the stator core, 

notably the back-iron, can have net flux densities with significant contributions from more 

than one phase. Since core loss is not linearly proportional to flux density, simple 

superposition cannot be readily applied.  This poses a problem in that although the overall 

core loss can be derived from a combined finite element/loss model, it needs to be 

apportioned to individual equivalent circuits.   

In a case where the currents in successive phases do no overlap, the current       

assigned to the conducting phase would correspond to the total machine loss. For cases of 

overlapping currents, the ratio of the flux linkages in the individual phases can be used as a 
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proxy measure to disaggregate the overall loss into individual phase losses. It is recognised 

that this involves some degree of approximation for regions of the stator and/or rotor cores 

with common flux paths, but it nevertheless provides a reasonable reflection of the likely 

contributions of different phases to the fluxing of the core. 

 

3.5 Circuit implementation 

Figure 3.3 shows a flowchart of the circuit simulation. The voltage       can be 

calculated from the voltage      which is derived from the state of the switching circuit and 

the current     from the previous time step. Integrating       gives the flux linkage     which 

in turn allows     to be estimated from a look table. The currents from all the machine phases 

are used as input to a two-dimensional finite element model, which calculates the flux density 

distribution throughout the core using the anhysteretic BH curve. This localised distribution 

of flux density along with the corresponding flux density distribution from the preceding time 

step provide the input required for the core loss model which has been developed and which 

is described in detail in section 3.6.  

This loss model calculates the instantaneous core loss,       for the entire machine. 

The core loss for each phase is then calculated using the ratio of flux linkages. The core loss 

current       is then calculated from the phase core loss and voltage across the coil. The 

values of    and       are recalculated and the procedure is repeated until convergence within 

a prescribed tolerance is achieved. The disadvantage with this method is that for every time 

step several iterations may be required each with a finite element solution which can increase 

the solution times considerably. As mentioned before, in most cases, the voltage drop across 

the resistance     and      are relatively small compared to the applied voltages, and hence 

the iterative loop can be avoided and the total current from the previous step can be used to 

calculate the voltage for the next step. In this method the core loss current lags the voltage by 

one time step, and as a result smaller time steps are required to minimise error.  
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Figure 3.3:  Flow chart of circuit simulation. 

 

3.6 Core loss modelling 

3.6.1 Introduction to core loss modelling 

All soft magnetic materials exhibit core losses when subjected to time varying 

magnetic fields. The losses are generally a non-linear function of the magnitude and 

frequency of the imposed flux density. The Stienmetz equation is a straightforward and 

commonly used method for estimating core losses for the particular case of sinusoidal 

excitation. It employs a frequency domain approach in which an exponential curve fit is used 

to measured sinusoidal loss data.  

       
    

      (3.6) 

The values of the material-specific constants  ,   and   are those that best fit a set of 

loss measurements taken with sinusoidal excitations on test samples. Whereas the Steinmetz 

method has proved to be a useful approach in cases with well-defined sinusoidal excitation 

with low harmonic content, e.g. AC utility and power supply transformers, it is less suitable 

for the flux conditions that are encountered in SR machines. Figure 3.4 shows a typical series 

of flux waveforms in the different regions of a SR machine calculated by finite element 

analysis under single pulse operation. The waveforms in the stator teeth are uni-polar and are 

indicative of significant magnetic saturation, whereas the stator and rotor back iron contain 
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significant minor loops which are in some areas DC biased. In addition to these bulk regions, 

there are localised areas of very high saturation on the edges of tooth tips and rotational flux 

excursions in some areas.  

 

 

 

Figure 3.4: Typical flux density waveforms in SR machines calculated under single 

pulse operation using FE analysis. 

 

Hence, in order to reliably calculate core losses in SR machines, it is necessary to 

employ a model that can accommodate essentially arbitrary flux density excursions rather 

than being limited to some sub-set of waveforms. The most widely used methods of core loss 
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estimation in electrical machines, and which can handle arbitrary flux density waveforms, are 

based on loss separation techniques which has been developed and championed by 

Bertotti[13]. In this method, the total core loss is considered to be the summation of three 

distinct components, viz. classical eddy current loss, hysteresis loss and excess loss. 

                   

     (3.7) 

The underlying basis of the loss separation technique comes from the solution of 

Poyntings equation, which is a widely used general expression of the law of conservation of 

energy in magnetic fields, and is useful for describing power flow in many different 

applications.  

          

 

   
  

  
 

   
 

 
     

 

   

(3.8) 

The left hand side term is referred to as the Pointing vector and describes the total 

energy through surface s per unit time. The terms of the right hand side of equation 3.8 

describe how energy is stored or dissipated. When applied to the problem of core loss, the 

second term on the right side represents integral of joule losses produced by the eddy currents 

induced in the core due to a time varying flux. The main component of these losses is known 

as classical eddy current loss and can be calculated if the distribution of the induced current 

density across the core cross section is known, assuming the material is perfectly 

homogeneous. The instantaneous classical eddy current loss is given by:  

    
   

  
 
  

  
 
 

 

    (3.9) 

The first term on the right side in equation 3.8 describes the energy stored in the 

magnetic field. The stored energy has reversible and irreversible components, the latter of 

which corresponds to the hysteresis loss. The hysteresis component is effectively a frictional 

type loss in the magnetisation process which is understood to be caused by so-called 

Barkhausen jumps. These Barkhausen jumps occur as magnetic domains reverse polarities 

and have typical time scales that are very short (typically of the order of a microsecond). 

Relative to frequency ranges encountered in electrical machines, these Barkhausen jumps can 
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be regarded as being instantaneous and hence the hysteresis power loss generated by a given 

number of Barkhausen jumps can be reasonably assumed to be linearly proportional to 

frequency[14].  

The loss per cycle is typically calculated from the area within the static hysteresis 

loop which is traced by the variations in B and H. The form of hysteresis loops varies a great 

deal depending on the nature of the excitation, with minor loops caused by inflections in the 

variations of B and the influence of DC bias being particularly challenging. Many curve 

fitting techniques have been proposed and implemented using methods such as [15], in which 

the total loss from a set of minor loops are expressed as a function of their average peak flux 

density. Calverley [16] suggested using the ratio of the area enclosed by the different regions 

of the BH loop to the overall loop to calculate the losses due to the minor loops in those 

specific regions. These techniques have several limitations such as, the method described in 

[15] is only applicable for smooth harmonics with peak flux densities in the range of 1-2T. 

As these techniques use exponential curves to fit hysteresis loss, they are also poor at 

predicting loss when significant magnetic saturation is present. The equivalent elliptical loop 

method[10] is derived using curve fitting formulae and thus has similar limitations. 

Mathematical models such as Preisach or the Jiles-Atherton are better at predicting minor 

loops, and are becoming more commonly employed in finite element analysis[17]. In the 

model adopted in this thesis, the Jiles-Atherton model was not used as it is parameter 

intensive, requiring a great deal of material specific measurements. A Preisach type model 

was preferred as it allowed calculation of instantaneous hysteresis losses for arbitrary 

waveforms with a reduced reliance on material characterisation. 

The third component of core loss in equation 3.7 is the less understood term, which is 

known as excess or anomalous loss. This component of loss is introduced in an attempt to 

cater for the inhomogeneity within the magnetic material caused by the presence of discrete 

magnetic domains. The movement of magnetic domains caused by changes in the applied 

field cause additional eddy current losses to be increased locally around the domain walls. 

Bertotti[13] argued that excess losses can be predicted by separating the classical eddy 

current losses as the average losses in a homogeneous material and the loss due to eddy 

current concentration on domain walls as excess loss. These losses were observed to broadly 

increase with a power of 1.5 type relationship with the rate of change of flux density. The 

instantaneous excess loss predicted by the Bertotti model is  
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    (3.10) 

The value of the co-efficient      is an aggregation of constants related to the material 

cross sectional area and distribution of domains in the material. The numerical value adopted 

for       for a given material grade if established by curve fitting measured loss data rather 

than by calculation from first principles. 

 

3.6.2 Instantaneous hysteresis loss 

The finite element model uses an anhysteretic BH curve to solve the governing field 

equations in the core; i.e. hysteresis is neglected in terms of predicting localised flux densities 

in the core for a given combination of excitation currents. As the FE solution outputs flux 

density, a modified Preisach model is used to calculate the hysteretic field      from the FE 

predicted flux density. The losses over a cycle are typically calculated as a function of the 

area traversed by the predicted hysteretic         curve.  

         

  

  
  

 

 

 

     (3.11) 

The standard Preisach model is built on the notion of a number of parallel discrete 

hysteretic switches as shown in Figure 3.5 each with an upper (α) and lower (β) switching 

point. The distribution of the switches are defined on a two dimensional plane with the upper 

and lower switching points as its axis, by a probability distribution function        known as 

the Preisach distribution function (PDF). The PDF essentially describes the number of 

switching domains per unit volume as a function of an increasing and decreasing magnetic 

field. The magnetisation at any time during the excursion can be calculated using the PDF as 

                 

 

             

  

 

    (3.12) 

 Figure 3.6 shows the plane over which the PDF is defined. From Figure 3.5 it is 

evident that    , and the upper and lower limits are given by the applied field at which the 



50 

 

material gets saturated     . Once the material is saturated, all the domains are oriented in the 

same direction and the incremental relative permeability of the material reduces to unity. 

Hence, no hysteresis losses are incurred beyond saturation and the material is effectively 

linear under quasi-static conditions. The region S+ is defined by the history of flux reversals 

in the magnetising field where every edge on the dotted line is defined by a flux reversal. An 

important feature of the Preisach model is the wiping out rule, which deletes stored reversal 

points when a larger magnitude of field is applied. 

 

Figure 3.5: Rectangular unit hysteresis switch.  

 

 

Figure 3.6: Triangle over which the Preisach model is defined. 
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Numerical implementation of the Preisach model using the PDF in eq. 3.12 is a 

computationally intensive process as it requires evaluating double integrals. In addition 

determining the PDF requires double differentiation of first order reversal curves. The more 

common implementation uses Everett integrals, which implements the double integrals of the 

PDF to calculate the magnetisation directly.  

The Everett integral is defined as 

                     

        

 

     (3.13) 

From the Everett integral the value of the flux density can be calculated as  

                    

    (3.14) 

Where, Hm is the applied field at the last reversal point and, T(H,Hm) is the solution of 

the Everett integral for the excursion from Hm to H. The Preisach model requires an initial 

condition which can be assumed to be either ±saturation or alternatively as from an 

unmagnetised state at the origin of the B-H plane, in which case the flux density relationship 

for the flux density of the initial transient is  

             

       for B > 0  or,   

              

  for B < 0  (3.15) 

A technique which draws on the method described by Mayergoyz[18] has been 

implemented to calculate the corresponding instantaneous hysteresis loss associated with 

each time-step of the simulation. The method is based around the assumption that a certain 

amount of loss can be associated with every switching transient in the Preisach model. The 

loss in any H excursion, however small, is given from a summation of the losses due to all the 

switches within that excursion. Consider the switching element in Figure 3.5, in which the 

loss incurred by the element is the area of the loop which is       . No losses are incurred 

in the horizontal parts of the loop as these are reversible. Therefore all the losses occur in the 

upward and downward transitions. If these are assumed to be equal, the loss in each transition 
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is      . Using this as the basis, the energy loss within the region S+ due to an arbitrary 

waveform was calculated as 

                  

  

 

    (3.16) 

The energy lost in an excursion from any reversal point a to a subsequent point b, 

Q(a,b) is calculated as: 

                            
 

 

          
 

 

 

  (3.17) 

This equation requires the calculation of two line integrals every time step which 

incurs a penalty on the computational requirements of the model. The total number of 

switching transients in the upward and downward curve is the same, and hence the total 

losses are the same. The advantage of this method is that it can be used for any arbitrary 

waveform, and does not depend on the waveform being periodic which may be beneficial in 

predicting core loss during start up transients.   

  The essence of the method implemented is illustrated in Figure 3.7, which shows an 

arbitrary time variation in the magnetic field strength alongside the corresponding excursion 

on the Preisach probability α, β plane. Consider the excursion from point m4 onwards, in 

which the localised region of the core under consideration has been exposed to previous 

peaks identified as m1 m2 and m3. In the first time step after point m4, the energy dissipated 

during the time step, which in turn determines the average power over the time-step, is 

derived from the shaded area identified in zoomed region 1 (ZR1). This process repeats itself 

on subsequent time steps past point b up until point m3 is reached. For the next time step 

around point c, it is necessary to account for the ‘wiping-out’ of the influence of points m3 

and m4. Hence, the energy dissipated in the next time step is derived from the shaded area 

shown in part in zoomed regions 2(ZR2). As will be evident, since the time-step straddles 

point c, it is necessary to account for the increase in area on the     plane part-way through 

the time step, as shown in zoomed region 3(ZR3). 
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(a) 

 

 

(b) 

Figure 3.7:  (a) Typical magnetisation curve. (b) Implementation on Preisach plane. 

 

Figure 3.8 shows the predicted instantaneous loss for a Co-Fe grade Vacodur S+, for a 

sinusoidal flux density excursion with a peak flux density of 2 T i.e. a value for which there is 

a degree of magnetic saturation and hence appreciable non-linearity in the response of the 

core. As the core loss model assumes a symmetrical BH loop, it has an equal distribution of 

losses in the upward and downward flux density trajectories. As would be expected, the 

maximum value of instantaneous loss occurs when       is a maximum. This is because 
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the number of domains switching orientation are higher in this region. As the core begins to 

saturate, all the domains are oriented in the direction of magnetisation, and hence the loss 

reduces towards zero. The initial start-up transient in the model, which is evident in the first 

cycle or so of Figure 3.8. is a consequence of the need for the Preisach model to establish and 

update the reversal points, as the initial conditions are unknown and set at (0,0) in the     

plane. Figure 3.9 shows the results for a sine wave flux density with a 50% third and 25% 

fifth harmonic. It should be noted that this waveform is similar to the flux excursions in the 

rotor back iron of a SR machine shown in Figure 3.4. 

 

 

Figure 3.8: Predicted instantaneous hysteresis loss for a sinusoidal flux density 

waveform for a Vacodur S+ Co-Fe grade. 

 

Start up 

transient 



55 

 

 

Figure 3.9: Predicted instantaneous hysteresis loss for flux density excursion with minor 

loops generated by third and fifth harmonic for a Vacodur S+ Co-Fe grade. 

 

3.7 Summary  

This chapter has described the development of a methodology which can be used to 

predict instantaneous core loss in a manner which makes is suitable for integration into a 

dynamic machine simulation. The overall core loss is predicted from a summation of the 

losses from an instantaneous hysteresis model whose elements have been selected and/or 

developed to cater for the specific conditions encountered in SR machine with well-

established instantaneous eddy current and excess loss models. A detailed experimental 

validation of this methodology is described in chapter 4. 

This methodology for predicting core loss has several advantages over the more 

established methods reviewed in section 3.6. Firstly, the distribution of loss over a given flux 

density excursion is based on material specific behaviour with a sound physical 

underpinning, as distinct from the convenient but rather generic elliptical representation of 

[10]. Secondly, it provides an improved representation of DC biased loops and minor loops 

because of the use of the Preisach model. Finally, it is a truly instantaneous model that is not 

reliant on periodicity, and hence could be used for predicting losses in machine start up 

Start up 

transient 
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transients and in machines with a PWM voltage supplies in which there is no synchronisation 

between the fundamental and carrier frequency.  

This methodology has two main drawbacks. Firstly, the time required for solving the 

model is much higher than a core loss calculation based on post-processing of a series of field 

solutions since model requires two line integrals for every finite element in each and every 

time step. Secondly, a larger data set is required to characterise the core of material, 

especially for the hysteresis and excess loss components. A method to simplify such 

measurements is described in Chapter 4.  
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Chapter 4 : Characterisation of materials for core loss 

estimation 

 

4.1 Introduction 

The accurate prediction of core loss in electrical machines is reliant on extensive and 

precise characterisation of test samples of the core material in order to establish the various 

material specific constants and parameters. The datasheets produced by manufacturers tend to 

provide useful, but rather limited, data on core loss. This usually comprises average loss at a 

few standard combinations of sinusoidal frequencies and peak flux densities, invariably being 

limited to measurement performed at room temperature. In many cases, the complexity of a 

core loss model which is deployed can be limited by the availability of data from which to 

estimate the parameters for the loss models. As the complexity of loss models increase, the 

data required for characterisation exceeds that available from manufacturer datasheets. 

For the model described in chapter 3 which is capable of estimating instantaneous 

core loss, extensive characterisation over wide range of flux densities, excitation frequencies 

and temperatures was required. The literature review in chapter 2 demonstrated that although 

a significant amount of published data exists on the three Co-Fe grades manufactured by 

Carpenter Technology, these could only be used to fit parameters for a standard frequency 

domain loss model at best. Although the published core loss data on 5000 hour aged samples 

measurements at temperatures [1] were useful in terms of selecting the preferred material 

grade, due to the absence of any applicable hysteresis loss measurements, these could not be 

accurately fit to the loss separation model. In addition the loss model proposed in chapter 3 

necessitated a measured set of static BH loops in order to characterise the Preisach hysteresis 

model. The material ultimately selected for the machine was the Vacodur S+ grade 

manufactured by VAC which underwent different heat treatments for the rotor and stator. The 

heat treated materials exhibit different loss characteristics, the data for which does not exist in 

published literature.  

This chapter describes a method to characterise the materials for the proposed loss 

model in chapter 3 using a simplified test setup. The measurements for characterising the 
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material were collected at temperatures up to 400°C and for 2000 hours of thermal ageing at 

400°C. The established method for characterising materials involves curve fitting loss model 

parameters for sinusoidal flux density measurements. Inducing sinusoidal flux density 

waveforms in magnetic material samples requires a closed loop test system in order to 

contend with the non-linearity in the BH loop. The standard techniques developed for 

measuring losses such as [2, 3] employ proportional feedback control using a difference 

amplifier. The main setback of the analog method was that if the gain of the proportional 

control was high then the system risked turning unstable. The recent drive towards using 

digital control has improved the quality and bandwidth of measurements that can be achieved 

significantly. These methods typically use iterative closed loop feedback control techniques 

giving quick convergence while reducing the risk of oscillations[4]. An alternative option is 

to use iterative open loop methods [5], which use point by point correction on successive 

cycle’s offline make the process of digital control easier, however they require multiple 

iterations to converge especially at higher frequencies. The loss model proposed in chapter 3 

is capable of predicting losses for arbitrary waveforms. The method used to characterise 

materials for the loss model takes advantage of this facet by using a set of arbitrary (non-

sinusoidal) waveforms to calculate the material parameters, and in turn avoiding the need to 

use the feedback mechanisms that complicate the measurement process.  

 

4.2 Measurements required for characterising materials 

The loss model described in chapter 3 uses a loss separation technique, and is based 

on arriving at the total losses by the summation of three constituent components, viz. classical 

eddy current loss, excess loss and hysteresis loss [6].  

   

                   

     (4.1) 

The most straightforward of the material specific coefficients to establish are those 

required for classical eddy current losses, viz. the core material electrical conductivity (   

and the individual lamination thickness     Room temperature values of electrical 

conductivity are readily found in manufacturer’s datasheets, although the information is 

rarely available at elevated temperatures and hence must be measured from appropriate 

material samples. A typical coefficient of thermal expansion for Co-Fe is 10.1x10
-6

 per°C, 
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and hence a temperature rise of 400°C would only cause a change in lamination thickness of 

0.4%. This change can be neglected in comparison with the many other temperature 

dependencies of core loss. 

The Preisach model adopted is reliant on establishing the material specific Everett 

function, which in this case requires measurements of a set of quasi-static BH loops varying 

in magnitude as described in section 4.5. The very low frequency excitation used (typically 

1Hz) means that the measured current and search coil emf loops are dominated by the 

hysteresis loss and hence the hysteresis parameters can be derived in isolation from any of the 

other loss coefficients.  

The prediction of excess loss requires a material specific excess loss parameter     . 

The value of this parameter is a function of micro-structural features of the material, notably 

behaviour around the grain boundaries, and as such is very difficult to quantify on a priori 

basis from measured material properties. Indeed, there is no recognisable experimental 

method for measuring this component in isolation. In practice,      is usually established 

from the difference between the total measured loss and the classical eddy current and 

hysteresis loss predictions, i.e.                     . This procedure is performed for a 

series of AC loss measurements spanning a range of flux densities and frequencies[6]. The 

main drawback of this approach is that the      parameters are not derived from any physical 

basis but simply end up providing the best fit between the total loss and those components 

that can be predicted. Hence, any errors in the classical eddy current and hysteresis losses 

models, either in the derivation of the material coefficient or their assumed variation with 

frequency will give rise to variations in the value of     . This problem is compounded in this 

grade of material, since the high hysteresis losses means that that the value of      can be as 

low as 5-10% of the total loss, and hence any errors in     and   , which account for the 

remaining 90% can produce a large variation in prediction of     .  

In the model adopted in this study, the value of both     and       are based on the 

actual instantaneous time derivative and    can be predicted for arbitrary waveforms. Hence, 

unlike some simplified loss separation models which are based on frequency domain data, the 

measurements performed to derive the material specific parameter need not be necessarily 

sinusoidal. Hence a set of AC measurements with non-sinusoidal waveforms can be used to 

estimate      . In summary, in order to characterise any material at a given operating 

temperature for the proposed loss model, the following measurements are required: 
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o A series of static hysteresis loops centred about the origin. 

o AC loss measurements for a set of arbitrary waveforms ranging in peak flux 

densities and cycle frequencies.  

o Bulk electrical conductivity of the material if insufficient data is provided by 

the manufacturer. 

 

4.3 Measurement technique 

The apparatus employed for measuring the core loss in the test sample is shown 

schematically in Figure 4.1. The test sample is equipped with a search coil which is wound 

tightly around the core material and a drive coil which is wound on top of the search coil. The 

drive coil is supplied by a high-bandwidth 100V linear power amplifier, specifically a 

Techron 7570 which has a power bandwidth of 20 kHz. Since the methodology employed to 

extract the material specific constants is not reliant on achieving precise sinusoidal flux 

density waveforms, the control system which drives the power amplifier is rather 

straightforward in comparison with the closed-loop systems that are used to ensure sinusoidal 

flux density variations for frequency domain model characterisation. A series of sinusoidal 

current demands with varying peak magnitudes and cycle frequencies is generated using a 

waveform generator, and fed to the amplifier in constant current mode. The output current of 

the amplifier is measured as the actual drive current, which may differ from the current 

demand depending on the bandwidth and precision of the internal loop of the amplifier. At 

higher current demands and frequencies, the internal loop of the amplifier tends to give rise to 

oscillations. The instantaneous loss is calculated from the product of the measured primary 

current and secondary (search coil) voltage scaled by the appropriate turns ratio. A Voltech 

PM3000 digital wattmeter was used to supplement the measurements for order of magnitude 

checking of the loss per cycle. In addition a Magnet Physik EF14 integrating flux meter was 

used to read the flux directly from the search coil for the static hysteresis loop measurements. 

Two toroidal test-pieces consisting of 80 laminations of 0.15 mm thick Vacodur S+ 

Co-Fe were prepared in accordance with dimensions specified in the ASTM A927 

standard[7]. Each annular ring lamination is 0.15mm thick and has inner and outer diameters 

of 82mm and 90mm respectively. The diameter ratio of 0.91 reduces the variation in flux 

density across the sample width. In one test-piece, the Co-Fe was heat treated at 730°C to 

attain desired mechanical properties giving room temperature yield strengths of 620MPa 
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sample. The second sample was heat treated at 830°C for optimal magnetic properties and 

had room temperature yield strengths of 390MPa. Although all the measurements mentioned 

were carried out on both the samples (referred to as the 390MPa and 620MPa sample), in 

some cases, only the 390MPa sample results are presented in detail in the following sections 

of this chapter to reduce repetition.  

 

Figure 4.1:  Experimental set up used for core loss measurements. 

 

The stack of Co-Fe laminations was wrapped with a ceramic woven high temperature 

tape (0.8mm Cotronics 395) and wound with a 65 turn close-fitting search coil using 1mm 

diameter Cerafil 500 ceramic high temperature wire. The search-coil was then covered with a 

further layer of high temperature tape and then a double layered, toroidal drive coil was 

wound onto the test piece using Von-Roll SK650 1mm diameter high temperature wire. The 

first and last few of turns and leads of the coils were covered with a glass fibre sheathing to 

provide added protection at the entry and exits points. The prepared samples were placed in a 

Carbolite high temperature oven capable of temperatures up to 700°C as shown in Figure 4.2. 

Due to the thickness of the Cotronics 395 tape, the sense coil is somewhat distant 

from the core, at least in comparison to normal arrangements for room temperature, where a 

very thin Kapton tape is used. Hence, it will sense some so-called ‘air-flux’, particularly if the 

saturation levels in the material are high. Air flux compensation tends to be a more significant 

matter in test methods such as the Epstein frame or single sheet tester where the thickness of 

the coils is much larger than the core sample. In these types of measurement systems, a 

common technique is to employ a mutual inductor to subtract any output when the specimen 
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is not present in the core. For the case of the ring specimens used in this study, a relatively 

simple compensation for air flux can be employed using [8], 

  
 

   
     

    

 
  

    (4.2) 

 

 

Figure 4.2: Prepared core samples placed in a high temperature oven. 

 

A set of hysteresis loops with varying peak flux densities at a quasi-static frequency 

of 1Hz were measured, to characterise the hysteresis loss. A carefully controlled 

demagnetising sequence was applied prior to every measurement in order to ensure all the 

loops were centred around the origin. A series of 32 AC measurements were performed on 

each test-piece, in each case with sinusoidal current demands having frequencies varying 

from 100 Hz to 4 kHz. At the high frequencies, the power dissipated in the samples could be 

sufficient to raise the temperature considerably. In the case of automated measurement 

systems, these high power measurements would be restricted to a few cycles that take a 

fraction of a second. In this case, the measurements were taken manually and hence it was 

important to establish the potential temperature rise due to the loss dissipation in the sample. 

Table 4-1 shows the calculated temperature rise in the sample at a given level of 

power dissipation within the coil, based on a simple adiabatic temperature rise and the 
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manufacturer’s published specific heat capacity. In this case a temperature rise of 10°C was 

selected to be the maximum allowable rise in temperature. The cells marked in red hence 

show the maximum time allowed for a given power loss, and losses greater than 150 W were 

not induced in the coil. The table were used as a guideline during measurements, and 

sufficient time was left in between the high frequency loss measurements to allow 

temperatures to return to the nominal setting, as a result increasing the time required for 

measurements.  

 

Table 4-1: Expected temperature rise in °C for a corresponding loss in the core. 

Time (s) 1 3 5 10 20 

Loss (W) 

10 0 1 1 2 4 

20 0 1 2 4 9 

50 1 3 6 11 22 

100 2 7 11 22 45 

150 3 10 17 33 67 

 

During the course of this study, 12 full sets of hysteresis and AC loss measurements 

were performed on both coils, viz. nominally un-aged measurements at room temperature, 

200°C and 400°C, and measurements at the three set temperatures following continuous 

400°C temperature soaks of 500 hours, 1000 hours and 2000 hours. In each case, on reaching 

the set temperature, the samples were first allowed to soak at temperature for 2 hours after 

which measurements were taken over a period of some 24 hours allowing sufficient time 

between measurements.  

 

4.4 Resistivity measurements 

To characterise the two Co-Fe grades in terms of eddy current losses, electrical 

resistance measurements were carried out on serpentine samples of the core materials. The 

supplied lamination sheets used to manufacture the demonstrator machine and the core loss 

samples had two punched holes in order to allow the sheets to be individually hung during 

heat treatment. In order to maximise the length of the test sample, the test-piece was cut 
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around the punched holes in the specific shape shown in Figure 4.3. The resulting samples 

have a total mean path length of 1.8m and a cross-sectional area of 0.6mm
2
, resulting in a 

sample resistance of 1.4Ω. 

Three samples of each of the two heat treated grades samples were prepared and 

placed in the oven along with the toroidal core loss samples for the high temperature and 

ageing measurements. A Cropico DO5000 micro ohm meter was used along with a four-wire 

kelvin probe. The average of the three resistance measurements were scaled with due account 

of the cross-sectional area and path length to establish an estimate of the resistivity of the 

material. The measured resistivity of the two Vacodur S+ grades as a function of temperature 

prior to ageing is shown in Figure 4.4. The 390MPa samples showed a marginally higher 

resistivity at room temperature but at 400°C both materials showed the same resistivity.  

 

 

Figure 4.3: Drawings for wire erosion of lamination for resistivity measurements. 



66 

 

 

Figure 4.4:  Measured resistivity as a function of temperature for the two Vacodur S+ 

samples. 

 

4.5 Characterisation of hysteresis loss parameters using magneto-static 

measurements 

4.5.1 Characterisation of the Everett function 

There are several methods of determining the Everett function, such as using first 

order transition curves[9], least squares approximation[10]or Gaussian distribution[11]. The 

main drawback of these techniques is the extensive measurements required for characterising 

materials. To simplify the measurements required, a method of determining the Everett 

function from just the BH limiting loop was developed in[12]. The limiting loop can be 

defined as the BH loop obtained when the core is driven into complete saturation at both 

ends. This method was selected as the preferred option in this study, mainly due to the lower 

number of measurements required. The measured BH limiting loops for the two samples are 

shown in Figure 4.5. In order to provide some interim validation of the model, a set of BH 

loops were measured with varying peak flux densities and the Preisach model was used to 

reconstruct the BH loops.  



67 

 

 

Figure 4.5: Measured limiting BH loops for the two samples. 

 

A comparison of four of the measured and predicted loops is shown in Figure 4.6(a). 

It shows that the model generates significant errors for loops at lower peak flux densities, i.e. 

below ~1T. To overcome this problem, a method described in [13] was implemented which 

uses a further set of BH curves to generate a set of individual Everett functions. Linear 

interpolation is then used to calculate the Everett function for the whole set. Each centred 

loop with peak applied field Hmi is used to calculate an Everett function E(Hmi,H), for values 

of H in the range –Hmi<H<Hmi, and is repeated for n loops with increasing applied magnetic 

fields. A set of 12 loops were used in this case. The final Everett function E(Hm,H) is 

calculated by linear interpolation over the set of individual Everett functions E(Hmi,H) for 

i=1:n. 

The static measurements were carried out using the same set up described in section 

4.3 in conjunction with a Magnet Physik EF14 integrating flux meter on the secondary sense 

coil. The measurements were taken at cycle frequencies of 1Hz. Figure 4.6(b) shows a set of 

measured and predicted loops using this interpolation technique for Vacodur S+ (390MPa). 

The predicted loops (using the Preisach model and the measured Everett functions) track the 

measured loops accurately over the whole range of BH plane as can be seen in Figure 4.6 (b). 
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The drawback of this method however is that a larger number of hysteresis loops are required 

to be measured, which also need to be carefully centred around the origin in order to 

minimise error. Figure 4.7 shows the measured Everett functions for the two samples using 

the interpolation technique. The Everett functions are stored in look up tables to simplify the 

implementation. It should be noted that in the Everett functions for the selected materials, a 

significant proportion of the characteristic information is stored around the central region, in 

this case the region from -1000<α, β<1000. For better accuracy a higher sampling may be 

used in this region of the look up table, however in practice this significantly increases 

complexity and solution times. 

Figure 4.8 compares the measured and predicted static loop area for both samples. It 

can be seen that although the loops are followed very closely by the model there is an error in 

the overall area enclosed of 3-5%. This error is larger at higher peak flux densities. The 

source of error is partially a consequence of the linear interpolation used between successive 

loops to calculate the Everett function and offsets in the integration and procedure for 

centring the loops. It is also worth noting that the static loss for the 620MPa sample is almost 

twice that of the 390MPa, a finding which is consistent with the well-established trade-off 

between loss and mechanical strength. In order to verify the accuracy of the hysteresis model 

for minor loops, a test waveform with minor loops was generated using the arbitrary 

waveform generator. Figure 4.9 shows the comparison of the measured and predicted 

hysteresis loops for this test waveform. The measured flux density was used to predict the 

applied magnetic field which is shown in Figure 4.10. It can be seen that the model traces the 

main loop well, but shows some error in predicting some of the biased minor loops.  
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(a) 

 

 

(b) 

Figure 4.6: Hysteresis loops predicted using (a) limiting BH loop and (b) minor loop 

interpolation. 
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(a) 

 

 

(b) 

Figure 4.7 :  Everett function for Vacodur S+: (a) 390MPa, (b) 620MPa. 
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(a) 

 

 

(b) 

Figure 4.8.  Measured and predicted hysteresis loss per cycle for BH loops containing no 

minor loops: (a) 390MPa, (b) 620MPa 
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Figure 4.9: Measured and predicted BH loop including several DC biased minor loops. 

 

 

Figure 4.10: Measured and predicted applied magnetic field, using the Preisach model. 
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4.5.2 Anhysteretic magnetisation curve 

The anhysteretic magnetisation curve provides a one to one mapping of the flux 

density to the applied field, and forms a lossless representation of the magnetisation process 

in the core material which passes through the origin of the B-H plane. This curve is often 

referred to as the normal BH characteristic curve or the initial magnetisation curve and is 

commonly used to represent the non-linearity of the core material during the numerical 

solution of finite element models. In chapter 3, the anhysteretic curve was used to model the 

instantaneous reactive power flow in the electromagnetic model. The initial magnetisation 

curve is generally one of the few characteristics provided by material manufacturers. In the 

case of the Co-Fe grades considered in this study, the information can be found in the VAC 

datasheet[14]. However, since data is only available for two specific heat treatments and at 

room temperature, it was necessary to measure the initial magnetisation curve for the samples 

with the specific heat treatments applied and at elevated temperatures. 

There are several methods of establishing an anhysteretic curve from experimental 

measurements. The IEEE standard 393-1991 requires the measurement of a set of minor 

hysteresis loops, and defines the normal BH characteristic as the curve that joins the tips of 

these individual loops. An alternative method is to use the virgin magnetisation curve which 

is measured by first demagnetising the sample completely and then increasing the magnetic 

field to saturation and measuring the corresponding flux. A method to measure the 

anhysteretic curve is described in the Jiles Atherton model [15] which uses a set of DC biased 

demagnetising curves to measure the flux for the respective Hbias. This data is then curve 

fitted to a modified Langevin function in order to simplify the solver. A more recent method 

suggested in [16] calculates the measured anhysteretic curve by taking a horizontal average 

of the measured limiting BH loop. A similar curve can also be calculated by vertical 

averaging of the BH loop.  

The Jiles Atherton method requires an extensive set of complicated measurements 

which would include controlled measurements on the induced flux waveforms in a closed 

loop circuit. As this could not be straightforwardly achieved using the existing experimental 

set-up, it was not considered as a viable option in this study. Of the remaining methods, viz. 

IEE 393-1991, initial magnetisation curve, horizontal and vertical averaging, they require the 

limiting BH loop and at most a set of minor loops and can be calculated from the set of BH 

loops measured for estimating the Everett function. Figure 4.11 shows a series of anhysteretic 

curves for Vacodur S+ 390 established using the four different methods. It can be seen that 
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all the curves have slightly varying initial permeability but as one would expect, they tend to 

converge as saturation is approached. Figure 4.12 shows the corresponding variations in the 

absolute relative permeability (i.e. B/H) as a function of the applied magnetising field 

strength established by the different methods.  

The vertical averaging and IEE 393-1991 methods show lower initial permeability 

and are similar to the initial magnetisation curve, whereas horizontal averaging shows a much 

higher initial permeability. The initial magnetisation curve itself includes some hysteretic 

behaviour which can be observed as lower initial permeability and hence does not represent 

what should be the anhysteretic curve. On the other hand a higher initial permeability shown 

in the horizontal averaging method was considered to be more representative of the 

anhysteretic curve, as it does not exhibit a drop in permeability due to a hysteresis lag. 

Therefore the horizontal averaging method was selected to represent the anhysteretic BH 

curve for the model used in this study. However, it should be noted that the selection does not 

affect the outcome of the model by a significant margin and either of the described methods 

can also be used. The anhysteretic curves using horizontal averaging of measurements for the 

two materials with temperature are shown in Figure 4.13 and Figure 4.14. Although the 

saturation flux density in both the samples starts to reduce at 400°C, an increase in initial 

permeability is observed.  

 

 

Figure 4.11: Measured anhysteretic curves for Vacodur S+ (390MPa). 
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Figure 4.12: Variation in absolute relative permeability (B/H) as a function of 

magnetising field of Vacodur S+ (390MPa heat treatment regime). 

 

 

Figure 4.13: Anhysteretic curves for Vacodur S+ derived from horizontal averaging 

method (390MPa heat treatment regime). 
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Figure 4.14: Anhysteretic curves for Vacodur S+ derived from horizontal averaging 

method (620MPa heat treatment regime). 

 

4.6 AC core loss measurements 

A series of AC measurements are necessary to estimate the excess loss coefficients. 

Whereas low frequency and low current operating points can result in reasonably sinusoidal 

current waveforms, at the higher currents and frequencies, some distortion of the flux density 

is inevitable due to the non-linear magnetisation behaviour of the core material. This is 

illustrated in Figure 4.15 which shows the measured current and flux density waveforms at a 

peak current of 16A for 100Hz and 800Hz, which correspond to peak flux densities of ~1.9T. 

In both cases, the amplifier (which is operating in current control mode) is fed by a sinusoidal 

input demand. The current waveform at 800Hz demonstrates the limited capability of the 

power amplifier to follow the current demand, which in turn has implications in terms of the 

flux density waveform. Although the method for extracting the material specific coefficients 

can cater for significant distortion of the current and flux density waveforms, ultimately there 

are issues of stability of the current control loop, which dictated that for high peak current 

demands, the fundamental frequencies that could be used were limited.  
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(a) 

 

 

(b) 

Figure 4.15: Measured current and induced flux density for a peak sinusoidal demand 

of 16A at (a) 100Hz (b) 800Hz. 
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A large number of separate AC core loss measurements were performed, in each case 

with the current and search coil emf waveforms captured at high sample rate (typically 20 

MS/s) at up to 12 bits vertical resolution. A total of 32 measurements were performed with 

waveforms having measured peak flux densities from ~0.4T to 2T, and fundamental 

frequencies varying from 100Hz to 4 kHz, although the maximum flux densities achieved at 

4 kHz are just above 1.5T due to amplifier stability. 

An indication of the coverage of flux density and frequency which is provided by the 

series of measurements can be obtained from the various Fourier spectrums of the individual 

measured flux density waveforms. The resulting superposition of all the frequency 

components is shown in Figure 4.16. It is important to note that the graph is only used as a 

representation of the region covered by the measurements, and is not used for a frequency 

domain calculation. The spectrum shows some harmonics as high as 9 kHz. Figure 4.17 

shows the average core loss density as a function of peak flux density of the two core samples 

for the series measured waveforms, noting that the frequencies used to identify each 

measurement are the fundamental of the current demand to the power amplifier.  

 

 

Figure 4.16: Fourier spectrum of the set of the measured flux densities 
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(a) 

 

 

(b) 

Figure 4.17: Measured average core loss for the range of frequency demand waveforms 

for the Vacodur S+ grades: (a) 390MPa, (b) 620MPa. 
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4.6.1 Extraction of excess loss parameters 

For the set of measured search voltage waveforms obtained experimentally, the 

corresponding flux density waveforms in the core sample can be calculated. The eddy current 

loss and hysteresis loss were then calculated over one complete cycle using equations 3.9 and 

3.16 respectively. The residual loss per cycle calculated by the difference between the 

measured total and the sum of the calculated hysteresis and classical eddy current loss is 

assumed to be equal to the excess loss per cycle. Given a particular value of excess loss per 

cycle, the time domain integration of the instantaneous excess loss predicted by equation 3.10 

can be used to establish a value of the constant kexc. By performing this process for each 

individual combination of excitation magnitude and frequency, a series of estimates of kexc 

can be obtained. Figure 4.18 shows the resulting values of kexc obtained from the 32 loss 

measurements, from which it is apparent that there is a significant scatter in the value of kexc. 

A certain level scatter might reasonably be anticipated since, as noted previously in section 

4.2, the excess loss is the only term that requires a fitting parameter which cannot be 

established from an isolated measure of that loss component alone while also being the 

smallest term in magnitude. At the lower frequencies, i.e. below 1 kHz or so, the calculated 

residual loss from which the excess loss constant is predicted was less than 8% of the total 

measured core loss and even at the higher frequencies was no larger than 15%. As a result, 

any errors in the hysteresis and eddy current loss, even of a few percent of the total of that 

component, could cause the value of kexc to vary markedly between measurements.   

A more significant factor however may be that the formulation of excess loss by 

Bertotti in his key paper[6]were based on observations for frequencies up to 400Hz for 

specific types of lamination grades and thickness. For this range of frequencies a single value 

of kexc proved adequate, and moreover the 1.5 exponent of the dB/dt term seemed to provide a 

good description of the observed behaviour. Since then several authors have shown a 

measured variation in the excess loss parameter with frequency and flux density and 

consequently several enhancements or variations of the basic Bertotti model have been 

proposed [17, 18]. In these models the parameters of hysteresis and excess losses are made 

functions of peak flux density and frequency. Similarly in [19], the model uses hysteresis loss 

coefficients that vary with frequency and peak flux density, whereas the excess and eddy 

current losses parameters vary only with flux density. These methods were shown to achieve 

a better correlation to measurements from 25-400Hz. For higher frequencies, some models 

suggest splitting the model parameters into different frequency ranges with different 
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parameters for each range, for example the models described in [20]. However none of the 

models can unequivocally predict losses over the complete range of frequencies and flux 

densities considered in this study. 

From Figure 4.18 it is evident that employing a single value of kexc for the entire range 

of frequencies and flux densities considered will lead to significant errors in the prediction of 

excess loss, although the impact on the overall loss is less pronounced given its modest 

contribution under most operating conditions. However, the clustering of the data points at a 

given peak flux density indicates that employing one of several indicators of mean values of 

the parameter may be a straightforward solution to accommodate with the observed variation 

in the excess loss parameter.  

As the SR machine had peak operating flux densities in the 2T range at frequencies of 

4kHz, the value of kexc can be selected such that it gives a better correlation at the higher 

frequencies and flux densities. Hence the mean of data points in the region of interest marked 

in Figure 4.18 were used for loss prediction in the SR machine. The measured and predicted 

losses for the complete data set using this parameter (kexc= 2.34x10
-4

) are shown in Figure 

4.19. It can be seen that the predicted loss at the lower flux densities are higher than the 

measured loss, however the losses at higher frequencies and flux densities show a good 

correlation. Since the excess loss forms a relatively small percentage of the total loss, this 

rather sweeping assumption does not translate into a corresponding significant error in the 

total loss prediction. The measured and predicted losses for the two samples at room 

temperature, 200°C and 400°C along with the excess loss parameters employed are included 

in Appendix B. 
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Figure 4.18: Predicted values of kexc from the set of residual loss values. 

  

 

Figure 4.19: Measured (marker) vs. predicted (line) total loss using selected kexc. 
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4.7 Validation of instantaneous loss model using a toroidal test sample 

Although the simulation methodology described in chapter 3 is ultimately aimed at predicting 

electrical machine performance, in order to experimentally verify its ability to predict 

instantaneous core loss and accurately reflect this loss in an electrical circuit, the more 

straightforward case of a ring core sample wound with a toroidal excitation coil was 

considered. This arrangement provides a reliable means of accounting for the instantaneous 

power flows as there is no mechanical power to account for, and also provides a very simple 

magnetic model in terms of geometry. The test arrangement shown in Figure 4.1which was 

used for material characterisation can be used to undertake the necessary measurements for 

the model validation. 

The measured product of the search coil voltage (appropriately scaled by the turns 

ratio to give      ) and the drive coil current provides a measure of the instantaneous power 

flow into the core. As this measured power consists of core loss and reactive power in 

unknown proportions at any given instant, it is not possible to directly isolate the 

instantaneous core loss using the apparatus. Hence, it is necessary to use total instantaneous 

power flow as a basis to compare measurements with predictions. This said, since the net 

reactive power over one complete cycle of steady-state excitation is zero, measurements and 

predictions of core loss can be directly compared in terms of the average loss.  

Variations in instantaneous power flow measured for three cases which cover a range 

of frequencies and flux excitation conditions were selected. The first case consists of a 

waveform with a peak flux density is ~1.9T and a fundamental frequency of 100Hz, the 

second a waveform with a fundamental of 4kHz and peak flux density of ~1.5T and a third 

with a fundamental of 1kHz incorporating several minor loops. 

The simplified circuit equivalent of the toroidal sample is shown in Figure 4.20. The 

measured secondary voltage is scaled to primary turns to obtain the voltage (     ) across the 

coil and hence the voltage drop across the resistance and any leakage inductances need not be 

calculated. This voltage is integrated to calculate the instantaneous flux which is fed to the 

one dimensional single element     function (equivalent to material anhysteretic BH curve) 

to read the anhysteretic current (   ). This is the effective current predicted by a lossless 

model and the reactive power is calculated as (          ). The central assumption in the 

reactive power model is that instantaneous reactive power follows the measured anhysteretic 
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curve. The core loss current (     ) is the current that flows parallel to the coil and dissipates 

the appropriate instantaneous power so that the total power at the terminals is 

                                 

     (4.3) 

where,               is the instantaneous core loss and can be calculated from the flux 

density in the core using the model described in section 3.6. Figure 4.21 shows the measured 

secondary voltage scaled to primary turns and primary current for two current cycles with a 

fundamental frequency of 100Hz. The flux density can be calculated from the integrated 

secondary voltage and is shown in Figure 4.22 along with the applied field strength. The 

initial transient in the first half cycle is required for the Preisach model to set its initial 

conditions and only the power for the second cycle is displayed to aid clarity.  

Figure 4.23 shows comparisons between measured and predicted instantaneous total 

power flow. It can be seen that there is a surge in total power as the flux density waveform 

moves from saturation through the central part of the curve. In regions of saturation the core 

losses are almost zero and the power flow is mainly reactive. Although the measured and 

predicted total power in Figure 4.23 shows a very good correlation, it can be seen that there is 

an over prediction of instantaneous power at both the positive and negative peak section. 

However, the average measured and predicted power is in good agreement and in this case 

forms a very small percentage of the total power (as shown by the blue line). The 

comparisons between measured and predicted values of average power over one complete 

cycle are summarised in Table 4-2. 

 

Table 4-2: Measured and predicted averages for test case 

Average Loss 100Hz test case 4kHz test case 1kHz test case 

Measured (W) 1.61 87.5 25.4 

Predicted(W) 1.58 88.3 26.3 
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The measurements were repeated for flux density waveforms with fundamental 

frequencies varying from 100Hz to 4kHz and were in good agreement. The series of results 

for the 4 kHz test case are shown in Figure 4.27-Figure 4.31. Figure 4.28 shows the measured 

flux density for this case which has a peak of just over 1.5T. As mentioned previously, the 

peak flux density achievable at high frequencies was limited by the power capability of the 

power amplifier. The predicted and measured instantaneous powers at the source exhibit a 

much better correlation as compared to the 100 Hz case as can be seen in Figure 4.29. The 

total power loss constitutes a larger portion of the total power as compared to the 100Hz 

waveform as is evident in Figure 4.30. Hence the errors in predicting reactive power will 

have lesser effect on the total power.  

 

Figure 4.24 shows the breakdown of the predicted total power flow into core loss and 

reactive power, from which it can be observed that the instantaneous losses form a significant 

fraction of the total power flow at many points in the cycle. It is interesting to note that a 

standard simulation approach with a lossless FE model would only account for the reactive 

power component in Figure 4.24, which for this particular test arrangement would yield a 

significant discrepancy in the overall power flow if core loss was added in as a post-

processing operation. Figure 4.25 shows the comparison of the reactive power as predicted 

using the anhysteretic model to that inferred if the model predicted loss is assumed to be 

appropriately accounted for. It is evident that the predicted reactive loss has a much larger 

swing as compared to that required to fit the model, which may suggest that the anhysteretic 

curve used has limitations in terms of its ability to  represent reactive power flow though the 

circuit.  

A possible source of error in which is prominent in this region could be a phase shift 

introduced in the process of offsetting of the flux density waveform during integration. Figure 

4.26 shows the measured BH loop and the corresponding curve traced by the reactive 

component of power. Almost all the power loss occurs in a small part of the cycle, 

corresponds to the central region of the loop where the rate of change of flux is at its 

maximum. There is also a significant shift in the reactive component of the power in this 

region. Hence a small error in either of the models can give a significant discrepancy in the 

total predicted power. Nonetheless, the results of the total predicted power demonstrate that a 

significant improvement can be achieved, in comparison to a lossless model.  
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Figure 4.20. Simplified circuit model of a toroidal coil. 

 

 

Figure 4.21:  Measured voltage and current waveforms for the 100Hz test case. 
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Figure 4.22: Measured flux density for the 100Hz test case. 

 

 

Figure 4.23.  Measured and predicted instantaneous power for the 100Hz test case. 
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Figure 4.24: Instantaneous core loss and reactive power for the 100Hz test case. 

 

 

Figure 4.25: Anhysteretic predicted and reactive power inferred from measurements 

for the 100Hz test case. 
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Figure 4.26: Measured BH loop and anhysteretic curve for the 100Hz test case. 

 

The measurements were repeated for flux density waveforms with fundamental 

frequencies varying from 100Hz to 4kHz and were in good agreement. The series of results 

for the 4 kHz test case are shown in Figure 4.27-Figure 4.31. Figure 4.28 shows the measured 

flux density for this case which has a peak of just over 1.5T. As mentioned previously, the 

peak flux density achievable at high frequencies was limited by the power capability of the 

power amplifier. The predicted and measured instantaneous powers at the source exhibit a 

much better correlation as compared to the 100 Hz case as can be seen in Figure 4.29. The 

total power loss constitutes a larger portion of the total power as compared to the 100Hz 

waveform as is evident in Figure 4.30. Hence the errors in predicting reactive power will 

have lesser effect on the total power.  
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Figure 4.27:  Measured voltage and current waveforms for the 4 kHz test case. 

 

 

Figure 4.28: Measured flux density for the 4 kHz test case. 
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Figure 4.29.  Measured and predicted instantaneous power for the 4 kHz test case. 

 

 

Figure 4.30: Instantaneous core loss and reactive power for the 4 kHz test case. 
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Figure 4.31: Measured BH loop and anhysteretic curve for the 4 kHz test case. 

 

Figure 4.32 and Figure 4.33 shows the breakdown of the total predicted loss into the 

individual loss components for the 100 Hz and 4 kHz test cases respectively. At 100Hz the 

hysteresis loss is dominant while the eddy current and excess loss components contribute 

modestly to the overall loss. At 4 kHz, the eddy current loss is comparable to the hysteresis 

loss. Table 4-3 shows the average loss of the individual components for the two cases.  

 

Table 4-3: Predicted average values of the individual loss components 

Average Loss (W) 100Hz test case 4kHz test case 

Hysteresis 1.26 40.2 

Classical eddy current loss 0.23 40.0 

Excess loss 0.09 8.2 

 



93 

 

 

Figure 4.32: Predicted individual loss components for the 100 kHz test case. 

 

 

Figure 4.33: Predicted individual loss components for the 4 kHz test case. 
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The third series of results illustrated in Figure 4.34-Figure 4.37 are for a waveform 

with a fundamental at 1 kHz incorporating several minor loops. Figure 4.36 shows the 

comparison of the predicted and measured powers. It can be seen that there are some errors in 

the model especially around the biased minor loops. Figure 4.38 shows the measured BH 

loop of the applied test case along with the corresponding anhysteretic curve traced by the 

model. The shapes and slopes of the minor loops that sit outside the central region are 

markedly different to the single curve anhysteretic model and hence the larger reactive power 

flows for these loops cannot be easily modelled by the single curve. Nevertheless the model 

captures much of the very intricate behaviour and provides a significant improvement in the 

prediction of instantaneous powers at the source as compared to a lossless model. 

 

 

 

Figure 4.34:  Measured voltage and current waveforms for the 1 kHz test case with 

minor loops. 
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Figure 4.35: Measured flux density for the 1 kHz test case with minor loops. 

 

 

Figure 4.36.  Measured and predicted instantaneous power for the 1 kHz test case with 

minor loops. 
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Figure 4.37: Instantaneous core loss and reactive power for the 1 kHz test case with 

minor loops. 

 

 

Figure 4.38: Measured BH loop and corresponding curve traced by anhysteretic model. 
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4.8 High temperature ageing 

The literature review in chapter 2 discussed the observation that both the Carpenter 

50% Co-Fe grades studied in [1] viz. Hiperco 50 and Hiperco 50-HS exhibited degradation in 

magnetic properties when aged at temperatures of 500°C, notably in terms of core loss. The 

data presented in [1] demonstrated that in comparison, the high strength grade Hiperco 50-HS 

was less affected by elevated temperature ageing, showing a smaller drop in resistivity and 

lower losses at high frequencies [1]. The VAC grade Vacodur S+ also showed an increase in 

coercivity on long term exposure to temperatures above 350°C[21]. However very limited 

data was available to quantify this effect in terms of a direct measure of increase in loss. Due 

to the absence of magneto-static hysteresis data, it was also not possible to gauge the 

behaviour of the individual loss mechanisms through the ageing process. Therefore, to gain a 

better understanding of the behaviour of core loss to long term thermal ageing some 

additional ageing data was collected. The samples were aged in the high temperature oven at 

400°C for a total of 2000 hours. All the measurements described previously in sections 4.5 

and 4.6 were repeated at 500, 1000 and 2000 hours. Due to the large set of data collected, a 

sub-set is described in the following sections. The remaining data is contained in Appendix C 

for reference. As the two samples composed of the same material grade, but with different 

heat treatment regimes, very similar trends were observed in both samples.  

 

4.8.1 Effect of thermal ageing on core electrical resistivity 

Figure 4.39 shows the measured variation in the electrical resistivity as a function 

temperature of the two samples taken at the ageing test points. There was a small, but 

measurable, decrease in the room temperature resistivity with increased ageing of the sample. 

However the measured resistivity at 400°C for the most aged condition was higher than the 

corresponding value prior to any ageing. The measurements taken on the Hiperco 50-HS 

material exhibited similar trends to those reported by Fingers [1]. From a core loss 

perspective, this should result in comparatively higher eddy current and excess losses at the 

lower temperatures for the aged conditions whereas the losses at higher temperatures should 

be lower than those of the un-aged condition. Therefore, the net increase in resistivity due to 

thermal ageing should be beneficial in terms of reducing higher temperature core loss with 

time, although the benefits are marginal. 
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(a) 

 

 

(b) 

Figure 4.39: Effect of thermal ageing on resistivity for Vacodur S+: (a) 390MPa, (b) 

620MPa. 
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4.8.2 Effect of thermal ageing on magneto-static behaviour 

Figure 4.40 and Figure 4.41 shows the room temperature anhysteretic BH curves for 

the two samples when aged at 400°C using the horizontal averaging technique described in 

section 4.5.2. The samples showed a consistent decrease in permeability and saturation flux 

density with increased exposure to a 400⁰C environment. Similarly, the energy loss over a 

cycle under static conditions increased with ageing time. By way of example, as shown by 

Figure 4.42, there is a ~12% increase in loss at 2T after 2000 hours at 400⁰C. However, the 

increase in the measured static loss was lower in comparison to the anticipated values seen in 

the coefficients obtained using the curve fitting technique described in section 2.7 which 

suggested ~26% increase in the hysteresis loss for the same ageing time.  

 

 

Figure 4.40:  Effect of thermal ageing at 400⁰C on room temperature anhysteretic 

curves for Vacodur S+ (390MPa) 
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Figure 4.41:  Effect of thermal ageing at 400⁰C on room temperature anhysteretic 

curves for Vacodur S+ (620MPa). 

 

 

Figure 4.42: Effect of thermal ageing on room temperature static hysteresis losses for 

Vacodur S+ (390MPa). 
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4.8.3 Effect of thermal ageing on AC losses 

Figure 4.43 shows a sub-set from the many of the measured AC loss measurements 

taken. In this case, the variation loss is shown as a function of peak flux density for the 

390MPa sample for different ageing durations. It can be seen that there is a significant 

increase in core losses, especially at the higher frequencies (N.B the core loss axis has a 

logarithmic scale). Similar increases in losses were observed in the Hiperco 50-HS material 

from the data published in Fingers[1]. Due to the drop in permeability, similar current 

excitations resulted in lower induced flux densities for the aged samples.  

Figure 4.44 shows the predicted vales of kexc for the room temperature measured 

losses in the 2000 hour aged 390MPa sample. It can be seen that there is a significant 

increase in the magnitudes of the predicted excess loss constant kexc. The main reason for this 

increase being that the measured ac losses increased significantly, whereas the measured 

resistivity and static losses remained relatively stable only changing by small amounts. Hence 

most of the increase in measured losses has to be absorbed by the excess loss term. The 

spread in the predicted values of kexc with flux density and frequency also widened. Thus 

using a single mean value of kexc for the clustered regions described in section 4.6.1 could not 

be used for the aged samples.  

 

Figure 4.43:  Effect of thermal ageing on room temperature ac losses of Vacodur S+ 

390MPa. 
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Figure 4.44:  Predicted room temperature values of kexc for the 2000 hours aged 390MPa 

sample. 

 

To account for this increase in predicted excess loss effectively the method for 

calculating the excess loss and its coefficients had to be modified.  As the predicted values of 

the excess loss coefficient increased with frequency and flux density, an increase in the 

exponent value which is conventionally set to 1.5 was considered. Rather than using a single 

term a new excess loss formula was introduced which has the form 

        
  

  
 
  

    
  

  
 
  

    
  

  
 
  

 

    (4.4) 

 where, the constants ki and the power terms pi are fitting parameters which must be 

calculated from the measured residual loss. Using multiple terms help fit the losses over the 

complete spectrum using a single set of coefficients rather than using different set of 

parameters for different regions. Figure 4.45 shows the predicted and measured loss using 

this technique for the 2000 hour aged 390MPa samples at room temperature. The constants 

used for this curve fit are shown in Table 4-4. It is worth noting that the exponential terms for 

the excess loss were as high as 2.7. This model was used to curve fit the measured data for 



103 

 

both samples at all the measured temperatures and ageing times, and showed good correlation 

for all cases. The parameters calculated and corresponding curve fits are shown in Appendix 

C.  

 

Table 4-4: Predicted coefficients for the excess loss model  

Coefficient / 

number 
1 2 3 

p 1.5 1.9 2.7 

k 9.56x10
-5

 1.72 x10
-5

 3.23 x10
-9

 

 

 

Figure 4.45: Measured (marker) vs. Predicted(line) losses using the modified version of 

excess loss for the 2000 hour aged 390MPa samples at room temperature. 
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4.9 Summary 

The chapter has described a simplified method to characterise materials for the 

proposed loss model in chapter 3. The characterisation method takes advantage of the 

capability of the loss model to predict losses for arbitrary waveforms, and combining these 

with analytical models and curve fitting techniques generates the required parameters for 

predicting losses in the specified material. Following on from the literature review in chapter 

2, this chapter also supplements the understanding of the behaviour of the high strength 50% 

Co-Fe materials at high temperatures. The work was directed more towards the effects of the 

long term thermal ageing on the individual loss mechanisms in the material. 

The instantaneous core loss model described in chapter 3 was validated using the 

available setup required for material characterisation. The results showed very good 

correlation between the measured and predicted instantaneous powers at the source. However 

for the test cases considered the anhysteretic or lossless model showed some discrepancies. 

This illustrated the limitations of using the anhysteretic model for characterising reactive 

power. 

The measurements on the aged showed that the static loop area and resistivity of the 

material were relatively stable with ageing, and yet there was a significant increase in high 

frequency core losses. Thus the increase in losses had to be encompassed mainly by the 

excess loss component. This was contrary to the predictions made using the method described 

in section 2.7 according to which an increase in both hysteresis and excess losses were 

predicted.  

It was also established that for the aged samples, predicting the dynamic losses over 

the complete frequency range considered here required modification of the excess loss 

formula. By dividing the excess loss term into sub-components, an improvement in the loss 

prediction over the complete range of measured frequencies and flux densities can be 

observed with a single set of parameters. The parameters obtained using this method showed 

that values of the exponential power in the excess loss term greater than 2 were required to 

achieve a good correlation to the measured losses over the entire range.  
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Chapter 5 : High temperature switched reluctance 

machine design 

 

5.1 Introduction 

This chapter describes the design optimisation of a switched reluctance (SR) machine 

for the HP shaft starter/generator application. By way of selecting an appropriate design 

specification the feasibility of high temperature machine operation is investigated, and an 

effective design methodology is developed. The key requirement for carrying out a feasibility 

study of high temperature machines is the knowledge of material behaviour such that its 

effects on the machine performance can be gauged. The review of the published data on 

material properties at high temperatures described in chapter 2 illustrated the numerous 

challenges that must be overcome before a machine can function reliably at high 

temperatures.  

The most noteworthy among these pertain to the long term operation, with material 

ageing playing a key role in limiting machine performance. The only soft magnetic material 

capable of continuous operation at temperatures above 350°C viz. the Cobalt-Iron (Co-Fe) 

grades showed significant degradation with ageing as described in chapters 2 and 4. This will 

have a knock on effect on the machine temperatures from operating times as low as 500 to 

1000 hours. The core loss estimation for the machine in this chapter was carried out using the 

material characteristics obtained by the methods suggested in chapter 4. However only the 

material parameters prior to thermal ageing were employed as the ageing data was not 

collected until after the machine design and build was completed.  

Therefore the inevitable increase in losses due to ageing will have to be compensated 

for by either increasing cooling capability or de-rating machine performance. In order to 

avoid the latter, selecting an effective cooling strategy is paramount in the design of the 

machine. Due to the location of the machine on the HP shaft the only easily available method 

for cooling is via. forced air which is at a temperature of 350°C. Since the maximum hotspot 

temperature in the coils cannot exceed 450°C there is a margin of 100°C to ambient in which 
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the losses in the machine must be dissipated. As a result of the increased copper loss at 

temperatures and relatively higher core loss due to the selected materials, this poses a 

significant challenge. 

 

5.2 Machine specification 

It is envisaged that the initial physical implementation of more electric engines with 

embedded generation are likely to be for small UAV sized gas turbines. Therefore the 

specification selected in this case is representative of an embedded HP shaft machine for a 

UAV sized engine specification. A more conventional gas turbine starter generator 

specification would require comparatively higher powers and larger size, which can introduce 

challenges more often related to building and testing of a prototype. A study on rotor 

mechanical design for a machine specification representative of a larger civil gas turbine, was 

outlined in [1]. The lower power specification here simplifies the rotor mechanical design 

allowing for a single piece rotor lamination, and hence the direction of the work is focused 

more on the challenges related to high temperature operation, laboratory testing at 

temperature being the ultimate objective. 

 It should be noted that the HP shaft application would require the machine to be 

operated as a starter/generator, with the starter specification being different to that of the 

generating mode. The specification outlined in [2] suggests that in the starting mode, the 

machine would require similar output power levels at up to a third of the rated speed. 

However, the temperatures are likely to be relatively lower and the machine would typically 

operate under motoring mode for a very limited period. Therefore, the machine may be 

designed solely to the generating mode specification, keeping in mind that some level of 

compromise in performance/efficiency may result during starting mode operation. As a result 

the machine specification is described here under generating mode only. 

Table 5-1 outlines the main design specification of the machine. The specified 

rotational speed of 30,000 rpm may be considered to be on the higher side of the HP shaft 

operating speeds. However this places emphasis on a number of challenges such as the high 

stresses on the rotor. The rated power is specified at 15kW, which requires an average torque 

of 4.8N-m. On the drive aspect, the machine is specified to operate from a 270V fixed DC 

bus, which is the typical rating of the high voltage bus on commercial aircraft gas turbines. 

For the high speeds considered however, the 270V may be considered to be a relatively low 
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voltage which necessitates lower inductances to generate sufficient power flow to and from 

the machine.  

The location of the machine on the HP shaft introduces dimensional constraints that 

have been neglected in this study as the purpose here is to gauge achievable power densities, 

rather than design a machine to match a specific engine. However some dimensional 

constraints were selected to represent traits of high pressure shaft such as the inner diameter 

of the rotor shaft which is constrained by the diameter of the HP shaft. The HP shaft is the 

outermost of the three shafts and has the largest diameter. The shaft diameter of 60 mm for 

this machine was selected to be representative of a HP shaft of a small UAV sized engine. 

The stator outer diameter was not restricted by the specification; although the maximum 

width of laminations available for the desired material was 220mm for a lamination thickness 

of 0.15mm.  

 

Table 5-1 : Specification for the HP shaft SR machine. 

Quantity Value 

Power (kW) 15 

Speed (rpm) 30,000 

DC supply voltage (V) 270 

Ambient temperature (°C) 350 

Peak winding hotspot temperature (°C) 450 

 

5.3 Machine design and sizing 

5.3.1 Mechanical aspects in rotor sizing 

A useful starting point for sizing an SR machine is to regard the net torque as being 

proportional to the bore volume[3] using the equation: 

 

           
   

     (5.1) 
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The coefficient    which takes into account several factors such as the efficiency and 

saliency ratio which is the ratio of aligned to unaligned inductance. In high speed machines, 

the maximum outer diameter of the rotor tends to be constrained by the mechanical strength 

of the rotor material, as it must be capable of withstanding centrifugal loading. A formula for 

calculating the hoop stress of a SR rotor from its diameter and rotational speed was derived in 

[4] as  

                
     

  

     (5.2) 

Conversely, if the maximum allowable stress levels of the material are known the 

maximum rotor diameter can be calculated as   

      
    

           
 

 

     (5.3) 

The constant    is a dimensionless number estimated from numerous finite element 

analyses conducted for a range of rotor bore diameter to rotor outer diameter ratios and fillet 

radius to rotor outer diameter ratios. The value    was shown to vary from 0.206 to 0.222 for 

rotors with bore diameter to outer diameter ratios ranging from 0.04 to 0.60. It was concluded 

by the authors of [4] that adopting a single value of    of 0.2  results in an accurate prediction 

of peak stress for most practical rotor geometries [4].  

Although the rotor material possessed a 0.2% yield stress of 620 MPa, the maximum 

allowable localised stress in the rotor was limited to 175 MPa to ensure sufficient margin to 

accommodate degradation in the material mechanical properties with ageing as described 

previously in section 2.5.1. Using equation 5.3, the maximum outer diameter of the rotor was 

calculated as 100 mm for a rotational speed of 30,000 rpm. The rotor inner diameter was 

constrained by the diameter of the turbine shaft which was specified to be 60 mm resulting in 

a rotor design space which comprises of an annulus of radial thickness 20 mm which must 

contain the rotor teeth and rotor back iron. The net torque produced is a function of the 

saliency ratio which can be increased if the unaligned inductance is reduced.  The unaligned 

inductance can be reduced if the distance between the stator and rotor tooth tips (    are 

further away from each other and the rotor tooth height      is larger as shown in Figure 5.1.  
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However this relationship is not linear and increasing the ratio of the tooth height to 

the unaligned distance above values of around 1.5 to 2 results in relatively small further gains 

in the inductance ratio[5]. Accordingly, an acceptable trade-off in electromechanical 

performance is obtained with a rotor tooth height of 1.5 times the distance between the teeth 

at the unaligned position is required. Furthermore, the radial thickness of the rotor core must 

be at least 1.5 times the width of the rotor teeth to avoid saturation. Therefore, for fixed rotor 

inner and outer diameters, the number of rotor poles which are likely to produce reasonable 

electromagnetic performance tend to be limited to some minimum number.  Table 5-2 shows 

the minimum rotor diameter for the different stator and rotor pole combinations given a rotor 

inner diameter of 60mm. For the 100mm rotor diameter limit imposed by consideration of 

centrifugal loading, the first feasible stator/rotor pole combination was a 3-phase 12/8 SR 

machine.  

 

Figure 5.1: SR rotor in the unaligned condition showing tooth height and unaligned 

distance. 

 

Table 5-2:  Minimum rotor diameter for different pole combinations for a fixed inner 

diameter of 60mm. 

Stator and rotor pole combinations 6/4 8/6 12/8 

Stroke angle in mechanical degrees 30 15 15 

No of phases 3 4 3 

Minimum rotor diameter (mm) 193 115 92 
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5.3.2 Current density and packing factor 

The operating current density in the coils is a key factor in the sizing of electrical 

machines, with higher current densities yielding smaller machines since a reduced slot area is 

required to accommodate the rated ampere turns. However, the copper loss is proportional to 

the current density and the resulting temperature in the coils turns out to be a limiting factor. 

For a small to medium sized machine operating at room temperature, and cooled by either 

natural convection or modest volumes of forced air, a typical value of the rms current density 

in the coil tends to be around 6 A/mm
2 

rms. In higher power dense machines, current 

densities as high as 12 to 14 A/mm
2 

rms
 
can be adopted, typically in conjunction with forced 

liquid cooling to manage the increased copper loss.  

These starting estimations of current density however cannot be applied to machines 

operating at 350°C due to the 130% increase in the resistance of the stator coils compared to 

room temperature. To compensate for the increased resistance at temperature, the current 

density has to be reduced by at least a factor of the square root of the increase in resistivity. 

For example a four times increase in Copper resistance may require halving the operating 

current density. Taking into consideration the limited cooling and relatively small 

temperature differential between the stator coil hotspot and surrounding ambient a 

conservative starting estimate of 3A/mm
2 

rms was adopted for the initial design phases. The 

machine designed using this starting current density is referred to subsequently as the 

‘baseline design’ forms a reference for subsequent designs.  

A key factor in the performance of a coil, and in turn the overall machine, is the so-

called packing factor which is defined as the proportion of the slot cross-section occupied by 

the core copper conductor as opposed to insulation, encapsulation voids and gaps. It is useful 

to consider the net packing factor (i.e. the proportion of the overall slot area occupied by 

Copper) as being made up by the product of the coil fit factor and the packing factor within 

the coil cross-section itself. The overall packing factor is a critical feature in the design of 

machine, and has a first-order impact on the size of a machine to meet a given power rating. 

From previous experience of manufacturing pre-formed coils using the selected wire and 

encapsulate, it was found that a reasonable estimate of the achievable coil packing factor was 

of the order of 0.3. This is low in comparison with machines wound with conventional wire, 

where packing factors of 0.6 or so can be achieved with pre-formed coils. The combination of 

low current density and low packing factors is likely to require much deeper slots to 

accommodate a given mmf. Therefore, the split ratio which is defined as the ratio of the bore 
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diameter to the stator outer diameter will be lower as compared to conventional machines, 

resulting in a rather unusual proportion for the machine. 

 

5.3.3 Maximising slot utilization 

The constraints of pre-formed coils with low packing factors operating at modest 

current densities will require comparatively deep slots in the stator. In order to minimize this 

penalty, an investigation into the geometry of the preformed coils and stator slots was 

undertaken to maximise the slot fill. The most straightforward embodiment of a pre-formed 

coil which fits over a parallel sided stator tooth is an essentially rectangular cross-sectioned 

coil as shown in Figure 5.2.  The width of the rectangular coil (labelled as    in Figure 5.2) is 

limited to half the slot opening     so as to allow adjacent coils to pass each other during 

assembly of the stator. It can be shown that for the dimensions defined in Figure 5.2(a), the 

maximum coil fit factor (i.e. the proportion of the slot occupied by the overall coil cross-

section) is given by: 

    
 

   
   
   

 
 

       (5.4) 

It should be noted that the coil fit factor is influenced by the value of the ratio  
   

   
 

which is in turn determined by the bore diameter, the slot depth    and the number of poles. 

For most practical machine coil designs, rectangular coils can achieve values of     ranging 

from 0.5-0.7 (tending to be higher in shallower slots).The coil geometry used in this machine 

is aimed at improving the maximum coil fill factor that can be achieved with coils which can 

still be pre-formed and then fitted to parallel sided stator teeth. It is based on employing an 

asymmetrical arrangement of coils in which two different coil cross-sections are used within 

the machine (as compared to the single rectangular cross-section shown in Figure 5.2a). The 

proposed arrangement is shown in Figure 5.2b. The individual coil dimensions were selected 

such that the two coils have equal cross-sectional area. As will be apparent, the coils must be 

inserted in a specific order, i.e. the rearmost coil must be inserted first.  
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In establishing suitable coil dimensions for a given slot, it is necessary to meet two 

constraints, viz.: 

o The width of both coils must be less than or equal to the slot opening. 

o The coil cross-sectional areas must be equal 

For a given slot depth, the only variable in the geometry is the width of the 

rectangular winding    , with the dimensions of the second coil following on as a 

consequence of    . The value of     that gives a constant area in both windings is given by 

the positive root of the equation. 

  
 

     
  
  

 
              

     (5.5) 

 

(a)      (b) 

Figure 5.2: a) Simple rectangular cross-sectioned coil. b) Cross section of asymmetrical 

coil arrangement. 

 

As noted previously, the coil geometry proposed optimises the slot fill factor subject 

to the constraints that the coils are required to pass each other during insertion of the second 

coil into the slot and that both are capable of passing through the slot opening.  However, 

implicit in the geometries proposed are additional factors that the coils of adjacent phases 

which share a slot have equal net cross-sectional area and that only one coil is inserted over 
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each tooth.  It is difficult to envisage a machine where the former condition of equal cross-

section would not be desirable or indeed essential for balanced operation.  However, the latter 

condition of a single coil would not have such a fundamental impact on machine 

performance. Hence, an approach in which the overall coil structure which is inserted onto an 

individual tooth comprises two or more sub-coil (suitably connected) could be employed.  A 

symmetrical coil arrangement with two sub-coils is shown in the two possible embodiments 

in Figure 5.3. However, due to similar restrictions in terms of sub-coils needing to pass each 

other, there are no discernible benefits in terms of fill-factor to warrant incurring the penalty 

of increased complexity of terminations (with potential consequences for reliability). As will 

be apparent from Figure 5.3, the constraint that any sub-coil must also slot over a tooth and 

pass through the slot opening precludes the filling of the all the rear most regions, specifically 

it cannot fill the triangular shaped wedge which lies behind the dashed limiting line of Figure 

5.2b.  

 

Figure 5.3: Coil arrangements in which each tooth is equipped with two sub-coils. 

 

A 12 slot/8 pole SR machine equipped with this asymmetrical coil arrangement is 

shown in Figure 5.4. As will be apparent diametrically opposite teeth have the same coil type. 

It is recognised that the two coil types will have slightly different leakage reactances (the 

extent of which will vary from machine type to machine type) and potentially marginally 

different emf constants. However, such differences are likely to be of the order of a few 

percent at most and unlikely to significantly affect performance. Moreover, it is likely that the 



116 

 

two types of coil can be balanced across the individual phases of the machine. By way of 

example, in the 12 coil / 3 phase machine shown in Figure 3, phase A would consist of coils 

at 12, 3, 6 and 9 o’clock, i.e. 2 of each type would make up a series wound phase. 

For the stator dimensions shown in Figure 5.4, equipping the machine with 

straightforward symmetrical rectangular coils would yield a coil fill factor of 57% whereas 

the asymmetrical arrangement shown in Figure 3 increases this to 83%. The coil arrangement 

in Figure 5.3 with two sub-coils had a coil fill factor of 84%. Hence either arrangement can 

be employed, the enhancement from which would have a significant impact on the power 

density of the machine. On comparison it was found that as the tooth height is increased, the 

arrangement with two sub-coils produced a marginally higher coil fill factor. This 

arrangement although designed for high temperature coils, is of equal utility and benefit in all 

electrical machines irrespective of whether they are required to operate at high temperatures.  

 

5.3.4 Radial air gap between rotor and stator 

In singly excited machines, the penalty for utilising a larger air gap in terms of power 

density can be substantial as the ampere turns required to maintain the air gap flux density 

increases significantly (broadly in proportion to the air gap up to the point of significant 

magnetic saturation in the stator and/or core). To accommodate the larger ampere turns, 

deeper slots are required, which when combined with the constraints on the current density 

and packing factor described above, results in a relatively large stator outer diameter. The 

deeper slots may result in increased cross slot leakage which can promote magnetic saturation 

and the larger stator volume reduces the machines overall power density. In power dense 

machines, it may be considered preferable to design the machine such that the core material 

has maximum utilisation by operating it with significant magnetic saturation. However, as the 

flux density in the core material is driven past saturation, only diminishing returns in flux 

density are achieved with increasing larger ampere turns which in turn necessitate a larger 

stator core diameter, increasing the weight significantly. Therefore to keep the required 

ampere turns low, the operating core flux density can be reduced. The resulting drop in 

mechanical torque however must be compensated for by increasing the axial length which 

again has a penalty on weight. In this case the air gap flux density was selected to be 1.8T 

which is representative of the ‘knee point’ on the BH curves of the core material.  
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 Conventional SR machine utilise small air gaps of the order of 0.3mm to 0.5mm as is 

the case with most singly excited machines. In gas turbines applications small air gaps such 

as 0.3mm may be impractical due to mechanical considerations such as shaft vibrations and 

uneven thermal expansion. That said, aerospace gas turbines can achieve blade tip clearances 

in the range of 0.4 to 0.5 mm in the high pressure turbine, by employing active tip clearance 

control [6] on the turbine casing. This is typically implemented by using a cooling jacket on 

the casing to shrink the casing size or possibly actively controlled electrical actuators. 

However it is unlikely that such level of control could be applied to the HP shaft machine air 

gap and the air gap may have to incorporate the large changes in clearance during the 

different operating phases of the turbine. Table 5-3 shows the required slot area and split ratio 

for increasing air gaps, while maintaining the current density at 3A/mm
2
 and air gap flux 

density at 1.8T. In this instance an air gap of 0.5mm was selected to maintain the stator outer 

diameter below 220mm which was the maximum width of the stator lamination available 

from the manufacturer.  

 

Table 5-3: Effect of increasing air gap on the split ratio for a fixed current density of 

3A/mm
2
 at a packing factor of 0.3. 

Air gap (mm) Ampere Turns (A) Slot Area (mm
2
) Split Ratio 

0.5 1730 467 0.47 

0.8 2637 717 0.40 

1.0 3296 900 0.37 

 

5.4 Electromagnetic modelling of the baseline design  

The established methods of sizing SR machines [7, 8] were adapted to include the 

material parameters at high temperatures. The dynamic modelling techniques developed in 

chapter 3 can be used to achieve improved estimates of core loss and performance. For all the 

electromagnetic FE simulations the core material was assumed to be at a steady state 

temperature of 400°C whereas the coils were assumed to be at 450°C. The magnetic material 

data for the stator and rotor cores at 400°C was measured using the techniques described in 

chapter 4. The electrical resistivity of the coils at 450°C was calculated using a single-valued 
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published temperature coefficient of resistance for Copper (α            ), which was 

shown to be constant up to 500°C[6].  

A two dimensional cross-section through of the baseline machine design is shown in 

Figure 5.4 with the key dimensions detailed in Table 5-4. The slot depth required to 

accommodate the coils was 43mm resulting in a split ratio of 0.47, value which is lower than 

the typical values of 0.6-0.7 encountered in machines designed to operate at lower 

temperatures. The total estimated active weight of the machine (i.e. excludes stator casing, 

rotor hub and shaft) is ~14.2 kg which yields a power density of ~1.1 kW/kg.  

 

 

Figure 5.4 : Baseline design drawing with asymmetric coil arrangement (all linear 

dimensions in mm). 
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Table 5-4 : Key dimensions for the baseline design 

Dimension  Baseline design values Units 

Rotor diameter  100 mm 

Air gap flux density  1.8 T 

Stator diameter  212 mm 

Packing factor  0.3 - 

Slot area  432 mm
2
 

Air gap  0.5 mm 

Slot depth  43 mm 

Split  ratio (rotor outer diameter : stator outer 

diameter) 

0.47 - 

Axial length  70 mm 

Number of series turns per phase 20 - 

Weight of rotor + stator cores  10.2 kg 

Weight of Copper + encapsulate 4.0 kg 

Total active weight  14.2 kg 

 

The electromagnetic characterisation of the baseline design was performed out using 

two-dimensional electromagnetic finite element solver, specifically Comsol Multiphysics. 

The magneto-static field distribution within machine was calculated for a series of increasing 

ampere turns in each phase from 400 to 6000 A in steps of 400 A at all rotor angular 

displacements from the unaligned to aligned position in 1⁰ (mechanical) increments. The 

magnetisation behaviour of the core material was represented by anhysteretic (or lossless) BH 

curves (one for stator core and a different characteristic for the rotor core).   
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Figure 5.5 shows the predicted flux linkage for a single phase as a function of stator 

Ampere turns with the rotor position varying from the unaligned to aligned. The nominal 

rated current density of 3A/mm
2
 corresponds to a phase Ampere turns of 3132A. As shown 

Figure 5.5, the rated current density corresponds to the onset of saturation in the aligned 

position. However 3A/mm
2
 corresponds to the rms current density, and under dynamic 

conditions the peak current can be more than two times the rms value. The corresponding 

variation the static torque per unit length as a function of rotor angle for the phase ampere 

turns increasing in steps of 400 A is shown in Figure 5.6. The torque at each combination of 

rotor angle and current was calculated by virtual work method.  

 

 

Figure 5.5:  Variation in phase flux linkage as function of vs. mmf plot from magneto-

static FE solutions for rotor angles varying from unaligned to aligned positions in steps 

of 1 mech. deg. 
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Figure 5.6: Two dimensional magneto-static FE predicted variation in torque as a 

function rotor position for phase ampere turns varying from 0 to 6000A in steps of 

400A. 

 

5.4.1 Inductance and number of turns 

The commutation frequency for the 12 slot / 8pole SR machine operating at 

30,000rpm is 4kHz. Although some precise shaping of the current may be possible at the 

lower end of this speed range using PWM, over much of the speed range, single pulse 

operation or PWM with only a few switching events per commutation interval is likely to be 

possible. Under these conditions, the form of the current waveform applied to each 

successive phase will be heavily influenced by the electrical time constant of the winding. 

For the relatively low rated DC link voltage (270 V) coils with low inductance are likely to 

be required to achieve competitive torque densities under dynamic conditions, which in turn 

will require a relatively low number of turns. The phase inductance at any rotor angle can be 

calculated from the flux linkage characteristics using 

    
   

   
 

      (5.6) 
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The net inductance of the machine at any rotor angle and current is proportional to its 

axial length and square of number of turns in each coil. 

 

Table 5-5 shows the maximum number of turns capable of generating the rated power 

as a function of specified machine length. Lower inductance can also be achieved by 

reducing the stack length and utilising higher current densities to generate the rated torque. 

The stack length of 70 mm produces the rated torque at a current density lower than 3 

A/mm
2
. The corresponding maximum number of turns is 20 turns per phase. As there are 3 

phases and 12 stator poles, each phase has 4 coils which if wound in series requires 5 series 

turns. The calculated inductance profile from the unaligned to aligned rotor positions for the 

baseline design is shown in Figure 5.7. The predicted unaligned self inductance for phase A 

was calculated as 0.044mH, whereas the aligned self inductance is 0.26mH. The maximum 

mutual inductance to the neighbouring phases was calculated as 8.1μH. 

 

Table 5-5: Required current density and number of turns for different active lengths for 

the baseline design. 

Stator Axial Length (mm) 40 50 60 70 80 

No of turns in each coil 26 23 21 20 18 

Current density (A-mm
-2

) 3.94 3.50 3.20 2.93 2.78 

Average Torque (N-m) 4.85 4.87 4.82 4.77 4.90 
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Figure 5.7 : Inductance profile from unaligned to aligned position. 

 

5.4.2 Skin and proximity effects 

The low number of turns per coil dictates that the cross-sectional area of each 

individual turn will be large. By way of example, for 5 series turns per coil the cross-sectional 

area of each turn is 25.7mm
2

, which corresponds to a wire diameter of ~5.7mm for the case of 

a circular conductor. At high frequencies the current distribution within the conductor can 

become non-uniform as skin effects force currents towards the surface of the conductor. The 

consequence is a higher net ac resistance and consequently higher copper loss. The skin depth 

in a conductor of resistivity    , with permeability    at a frequency    , is given by the 

formula 

    
    

   
 

      (5.7) 

The skin depth of Copper at 4 kHz is 1.0mm at room temperature, increasing to 

1.2mm at 450°C. The selected wire diameter of 0.8mm is below the skin depth and should 

therefore mitigate against significant problems with AC resistance. However, in order to 
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make up the conductor cross-section of 25.7mm
2
 using this wire, approximately 52 parallel 

strands are required. There are several physical challenges in manufacturing a high 

temperature coil with so many multiple parallel strands, as will be described in detail in 

chapter 6. When multiple strands are employed in parallel, at higher frequencies proximity 

affects can become more significant which can cause a further increase in copper loss. In a 

coil, if multiple strands of the same series turn span a large fraction of the slot area, there may 

be a significant variation in the flux linking of individual strands depending on its location 

within the slot. This variation in flux linkage across the different strands of a single turn will 

result in some degree of uneven current flow in the individual strands, leading to potential 

hotspots in the coil and a net increase in copper loss.  

In many electrical machines, proximity effects and uneven current distribution 

amongst different strands are often compensated for by employing transposition within the 

bundle of conductors. This serves to provide some degree of, balance in the net flux linkage 

by spatial averaging [9]. An extreme example of this approach is so-called ‘Litz’ wire which 

employs a large number of parallel wires with diameters typically less than 0.2mm that are 

continuously transposed along its length, often with some degree of mechanical rolling to 

produce a compact and precisely shaped overall conductor. The consequence of this that the 

process of manufacturing the coils make it comparitively expensive and there is a net 

reduction in packing factor as the total cross section of Copper within the complete conductor 

reduces with transposition. The Litz wire however requires the indiviudal strands to be 

insulated from each other, and typically employ organic varnish type insulations for the 

purpose. The processes involved in manufacturing Litz wire are not suitable for high 

temperature insulated wires as the ceramic insulation is prone to abrasion and requires 

relatively large bend radii to avoid cracking. Therefore, Litz wires were deemed not feasible 

with high temperautre insulation. In the current protoype machine, the coils were 

manufactured with multiple parallel conductors of the SK650 wire with transposition of the 

bundled wires along in the end winding regions. However, as previously suggested it can 

cause significant complications in the manufacturing process and will be further discussed in 

chapter 6.  
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5.5 Dynamic modelling  

The methods for modelling machines under dynamic conditions were described in 

detail in Chapter 3. The method proposed includes the effects of core loss in the circuit 

simulation in order to achieve improved representations of power flow and currents at the 

terminals of the machine. This model was partly verified on a toroidal sample, as described in 

section 4.7. A comparison between the simulated and measured results showed a marked 

improvement in the prediction of instantaneous power flow at the terminals of the toroidal 

sample when compared to a post-processing approach to core loss calculation.  

However, although the toroidal sample was useful for model validation, it does 

present a rather simplified example for modelling power within a circuit. Since the power 

flowing into the device is either stored as reactive power or dissipated as loss. In the SR 

machines by contrast, there is the added feature of mechanical power flow. In many well 

designed SR machines operating with high performance core materials, the sum of the 

reactive power and mechanical power at any instant tend to be significantly larger than the 

core loss. Hence, the accuracy of the core loss model has less direct impact on the SR 

machine performance when compared to the test case of the toroidal sample.  

 

5.5.1 Circuit implementation 

The methodology and algorithm described in section 3.5 was implemented without 

the performing iterations within each time step to achieve convergence of coil voltage and 

phase current. Even with the higher resistivity of copper at elevated temperatures, the voltage 

drop due to coil resistance remains very small in relation to the DC link (e.g. 0.6V at rated 

current of 80A). The circuit model was implemented in Simulink, and the machine FE model 

was solved at each time-step using Comsol Multiphysics via the Comsol Matlab interface 

module.  

Figure 5.8 shows the top-level block diagram of the Simulink model for the circuit 

simulations. The contents of the individual Simulink blocks are included in Appendix D. The 

Power-Sim toolbox was used to generate the voltage waveforms from a three phase H-bridge 

converter operating from a 270V fixed DC supply. The gate signals were generated using 

preselected turn-on and turn-off angles and fed to the converter model. The resulting phase 

voltages at the converter output are shown in Figure 5.9. 
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 The voltage waveforms are applied to the circuit model to calculate the anhysteretic 

current waveforms from the ψ-ί look up tables. The predicted anhysteretic current is then fed 

into the electromagnetic finite element model via a Matlab S- function. The FE model 

calculates the flux density in individual elements and the total core loss is calculated using 

the instantaneous core loss model described in section 3.6. The core loss model was 

implemented in Matlab code as part of the S-function. The core losses in all the individual 

elements are aggregated to calculate the total instantaneous core loss. As discussed in section 

3.4, the core loss calculated for entire machine must be assigned into the loss corresponding 

to each conducting phase. This was implemented by multiplying the ratio of the flux linkages 

of the conducting phases to the total core loss as described previously in section 3.4. The 

individual phase core loss can be subsequently used to calculate the core loss current      . 

This current is then added to the anhysteretic current in the current time step to predict the 

currents and coil voltages for the next step. The predicted phase currents, voltages and torque 

are read into Matlab workspace for processing and plotting. 

Figure 5.9 shows the applied phase voltages and predicted phase currents, torque and 

instantaneous loss for baseline design of the SR machine. Due to the high speed and 

frequencies involved, the machine was driven under single pulse operation, and hence no 

direct control is exercised while the current is flowing. This said, the ‘turn on’ and ‘turn off’ 

angles provide a means of controlling average power, although not via a straightforward 

relationship.  The core loss model shows that the peaks of core loss tend to coincide with the 

peak mechanical power. The periodicity in the total instantaneous core loss depends on the 

arrangement of the coils, specifically how successive coils are connected in terms of polarity. 

If an alternate north-south (NSNSNS) arrangement is used then the periodicity in core loss is 

the same as the torque, i.e. one stroke angle. The flux waveforms in the rotor and stator 

however show longer cycle periods equivalent to three stroke angular durations. The total 

loss averages out amongst the different phases of the machine. However, in this arrangement 

the average losses are higher compared to the grouped NNNSSS pole arrangement. This 

arrangement has a periodicity of 3 strokes, but shows a lower loss during the third stroke as 

illustrated in Figure 5.10.  
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Figure 5.8: Simulink block-diagram of circuit coupled FE simulation. 
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Figure 5.9 : Phase voltages, currents, torque and instantaneous loss for a 15kW 

30,000rpm (270Vdc pulse from an independent H-bridge between rotor angles 22.50 

and 32.16). 
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Figure 5.10: Predicted instantaneous core loss for the baseline design using different 

pole arrangements. 

 

In order to illustrate the benefits of incorporating the core losses into this simulation 

methodology, further simulations were performed without feeding back the core loss current 

into the electric circuit. The current waveforms for the SR machine with and without core 

losses represented in the circuit are compared in Figure 5.11 in generating mode at a 

rotational speed of 30,000 rpm. In both cases, the excitation consists of a 270V voltage pulse 

applied between rotor angles of 22.50 and 32.16 deg. (0 deg. corresponds to the unaligned 

condition, 22.5 deg. the aligned condition and 45 deg. the subsequent unaligned condition). 

In the first part of the current cycle, power is drawn from the source as the coils are 

energised, i.e. the core is ‘fluxed’. It can be seen that, as expected, a larger current is drawn 

from the source when the core loss is included as compared to the lossless model. As 

discussed previously, the higher current will increase the voltage drop across the coil 

resistance and hence the effective voltage across the electromagnetic model and hence the 

flux predictions. However, the voltage drop across the resistor only constitutes a small 

fraction of the applied voltage, and hence will only have a minor effect on flux predictions. 

Hence, during this fluxing period, the core loss predicted by both models is very similar.   

In the second half of the conduction cycle, the polarity of the voltage is reversed, and 

power is delivered back into the supply. In this phase of the cycle, the current drawn into the 

source predicted with the inclusion of core losses is lower than that predicted by the lossless 
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model, and hence less power is delivered to the source. As the predicted current is higher in 

flux interval and lower in the de-fluxing interval, the net rms current is only reduced by a 

modest amount. The average power delivered to the source is however much lower than that 

predicted by the lossless model, with a reduction of 8%. As would be expected, in order to 

produce the required electrical output power, a higher mechanical power must be drawn from 

the prime-mover to overcome the core loss than is predicted with the lossless model.   

 

 

Figure 5.11: Effect of the inclusion of core loss on predicted current waveforms for the 

three phases. 

 

5.5.2 Power balance 

The effects of representing the core loss on the predicted average power values of the 

SR machine are illustrated in Table 5-6. The first case shows the predicted powers for the 

circuit simulations without core loss represented in the circuit simulations. The negative sign 

on the power indicates flow of power is into the circuit as the machine is operated in 

generating mode. The second column shows the machine with core losses included in the 

model. The power delivered to the load for the same conditions drops to 13.88kW which 

matches the sum of the mechanical power and losses. Hence the total power in the circuit 
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simulation is balanced. The third column shows the case for the machine model with losses 

included, and updated such that it delivers 15kW to the converter. The average mechanical 

power required is now 16.52kW resulting in an average torque of 5.25Nm. In this case a 

larger conduction angle is required which increases the mechanical torque and phase currents. 

The result shows a 13% increase in predicted copper loss, whereas the core loss is less 

affected.  

 

Table 5-6: Average powers predicted with and without losses represented in circuit 

simulations. 

Predicted components of power  Core losses not 

included 

With losses Generating rated 

power 

Mechanical power (kW) -15.18 -15.16 -16.52 

Core Loss (kW) 1.16 1.16 1.16 

Copper Loss  (W) 133 130 148 

Power into converter (kW) -15.04 -13.87 -15.21 

Mechanical Power +Losses (kW) -13.88 -13.87 -15.21 

  

5.5.3 Copper losses 

Since copper loss is directly proportional to the resistance of the coil, which itself is a 

function of temperature, a reasonable estimate of coil temperature is a prerequisite for 

calculating copper losses in the dynamic circuit simulation model. In this case, for the circuit 

simulations it was assumed that the steady state temperature in the coils is 450°C and uniform 

throughout the coil volume. This value was selected as it corresponds to the maximum 

allowable temperature in the coils. At this temperature, the resistivity of Copper is 4.65x10
4
 

Ω-m as compared to 1.68 x10
4
 Ω-m at 20⁰C. 

For a given fixed value of rms current, the thermal model employs an iterative loop 

which updates the resistivity of copper with temperature and recalculates the copper loss and 

the resulting temperatures for until convergence is achieved. It is important to recognise that 
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the thermal model was used separately from the dynamic simulation model described in 

section 5.5. Hence, the model considers the effect of the temperature coefficient of resistivity 

solely in terms copper loss and resultant temperatures, but does not account for this 

temperature dependency in the electrical circuit. In the electrical circuit model, the resistance 

remains fixed at the value calculated for a wire temperature of 450°C.   

Under dynamic conditions, the skin and proximity effects may cause copper losses to 

increase with frequency as discussed earlier in section 5.4.2. Although the diameter of the 

wire selected was below the skin depth at the fundamental operating frequency, due to the 

pulsed nature of the voltages, there may be significant harmonic currents present whose 

classically skin depths are smaller than the wire diameter. Furthermore, due to the number of 

parallel strands used to form one series conductor, proximity effects may start to play a role 

at the frequencies of interest at the high-speed operating point. As explained in section 2.2, 

Nickel migration during the course of high temperatue ageing can cause an increase in copper 

loss. As these effects can add significant complication to the machine design, their effects 

were investigated by means of a sensitivity study described in section 5.9. 

 

5.5.4 Core losses 

The total instantaneous core loss was calculated using the dynamic model described in 

chapter 3. The predicted individual loss components in each element were averaged over a 

cycle and the sum total of the elements were used to calculate the contribution of the 

individual loss terms. Table 5-7 lists the breakdown of the total losses in the stator and rotor 

into their individual constituent loss components. It can be seen that even at the high 

frequencies, hysteresis loss forms a significant proportion of the total loss in the stator and 

rotor. As the un-aged material parameters were employed in the simulations, the excess 

losses were a relatively small percentage of the total losses. The total core loss was 1.16kW 

which forms 8% of the total power. Although the high core losses results in a modest 

efficiency, since power density and ability to operate at 350⁰C are the overriding design 

considerations, in this application the modest efficiencies, although undesirable, will need to 

be accommodated. 
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Table 5-7 : Predicted losses for baseline design at 15kW and 30krpm 

Type of Loss Stator (W) Rotor(W) Total(W) 

Hysteresis 289 215 504 

Eddy current 327 103 430 

Excess 176 53 229 

Total core losses 792 371 1164 

Copper loss 

 

148 

Total loss 

 

1312 

 

The spatial distribution of the average total core losses in the stator and rotor are 

shown in Figure 5.13 and Figure 5.13 respectively. As would be expected, the loss density in 

the tooth tips is extremely high in due to concentration of flux during the partial alignment of 

the rotor and stator teeth. Employing an auto-ranging linear colour scale to the produce a 

graphical representation of the loss with such localised extreme values of loss causes a large 

fraction of the stator core to appear towards the lower end of the colour range. The majority 

of the stator cross section showed loss densities of below a 100W/kg. The loss densities in the 

rotor are relatively higher due to the material characteristics, i.e. the emphasis on mechanical 

as opposed to magnetic properties in terms of its heat treatment, were typically below the 

200W/kg mark. 
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Figure 5.12: Core loss density distribution for baseline machine operating at 15kW and 

30,000rpm in the stator. 

 

 

Figure 5.13: Core loss density distribution for baseline machine operating at 15kW and 

30,000rpm in the rotor. 
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5.6 Thermal modelling 

5.6.1 Introduction to thermal modelling 

Having developed methods for predicted the various components of loss, it is 

necessary to use these in conjunction with a thermal model of HP shaft machine and its 

immediate surrounding environs. A thermal model is of particular importance because of the 

high temperatures involved and the small operating temperature margin from the ambient of 

350°C to a maximum hot-spot of 450°C. The thermal model is critical in determining the 

power densities that can be achieved. There are a number of methods to model the thermal 

behaviour of electrical machines, the most common techniques being the lumped parameter 

thermal networks, often in combination with parameters derived from thermal FE models, or 

full FE models. Recent versions of commercial electromagnetic FE packages such as 

Flux[10] and JMAG[11] now include add-ons for thermal modelling, although this is 

generally limited to conduction within the machine geometry with external cooling from 

surfaces being represented by boundary conditions and/or heat transfer coefficients. 

An important factor in the accurate thermal modelling of machines is reliable and 

quantitative understanding knowledge of the cooling techniques employed and the resulting 

heat transfer coefficients. In order to calculate the heat transfer coefficients, the temperature 

distribution of the cooling medium must be known, which in turn depends on the flow rates 

of the medium. In the last decade or so, there has been a significant interest in using 

computational fluid dynamics (CFD) to model air flows around machine elements and 

estimate the convection coefficients as a function of the airflow. However the complex 

geometries involved necessitates enormous computing power, and can be prohibitively time 

consuming. A comprehensive review of these techniques can be found in [12].  

A more realistic approach is to apply convective heat transfer coefficients to external 

surfaces. Some commercial FE solvers are increasingly providing features to include a 

variety of different cooling techniques which can be used as a basis for comparison. The 

convection coefficients are calculated from a set of correlation formulae, which can be found 

in standard heat transfer text books such as [13-15]. The heat transfer coefficients of fluids 

vary significantly with pressure and, to a lesser extent, temperature and hence the correlation 

formulae can be used only under the specified range of conditions. These are typically 

specified by means of a range of Reynolds number which represents fluid flow rates, and 

Prandtl numbers which represent fluid properties. For air or liquid cooled machines, 
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representative heat transfer coefficients may be calculated using such correlation formulae, 

using known physical properties of the coolant at the representative temperatures and 

pressures. In many cases, such as the HP shaft machine, there is little in the way of detailed 

or reliable information on the air pressures and cooling techniques that will be eventually 

employed. Therefore, some assumptions would need to be made with regard to the fluid 

properties and flow rates that are likely to be encountered. However, since the value of the 

resulting heat transfer coefficients employed are sensitive to these assumed conditions, it 

proved necessary to adopt a different approach to bounding the thermal model.  

 

5.6.2 Finite element thermal model of baseline design 

The rotor core losses are expected to be dissipated almost entirely through the shaft of 

the HP shaft with a likely further contribution from forced cooling over the rotor surfaces. 

Hence, it was deemed a reasonable assumption, that only losses generated in the stator need 

to be dissipated via the stator core into the casing which is fitted directly onto the stator core 

back. However it is recognised that should a substantial temperature differential exist 

between the rotor and stator, there may be significant heat transfer across the air gap via. 

radiation. This allows the rotor and stator to be thermally decoupled from the point of thermal 

modelling. It was assumed that the cooling air available has a mean inlet temperature of 

350°C.  

The thermal model for the rotor relies on the heat sinking ability of the main HP shaft 

and requires details of the rotor location on the turbine shaft and the capability of the turbine 

shaft to draw heat from the rotor. Due to the early stages of this research, in terms of the 

overall concept of a HP embedded machine, such detailed information was not available. 

Hence it proved necessary to resort to approximate surface heat transfer coefficients.  

As the stator carries a significant fraction of the total loss (core and copper loss 

components) and contains the most temperature sensitive elements, viz. the coils which have 

to be maintained at temperatures within 450°C, it is arguable that the entire viability of high 

temperature operation largely depends on the stator steady state temperatures. Hence, focus 

was given to modelling the stator region, recognising that ultimately, some mechanical design 

effort may be required in terms of ensuing that that the rotor arrangement can provide the 

heat dissipation required. The FE thermal model for the stator was implemented using the 

Comsol Multi-physics 3D solver. Due to both axial and circumferential symmetry, a region 
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which corresponds to one quarter of the tooth geometry was modelled as shown in Figure 

5.14. 

  

 

Figure 5.14: Exploded view of stator geometry showing quarter tooth symmetry. 

 

5.6.3 Stator thermal model 

The thermal properties of the materials employed in the thermal model are listed in 

Table 5-8. The slot liner was modelled as a thin thermally resistive layer on the surface 

boundary between the coil and stator. The coils are modelled as a homogenous composite 

material which is a combination of the wire and encapsulate properties in the appropriate 

proportions which reflect the coil packing factors achieved. The thermal conductivity of the 

coil across its cross section is low and depends largely on the conductivity of the encapsulant 

material. In the axial direction however, the conductivity is relatively higher due to the 

continuity of Copper in that direction. The end windings have to take into consideration the 
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rotation of the conductors and hence the anisotropic thermal conductivities in these regions 

were defined in cylindrical co-ordinates. A method to estimate and measure the net thermal 

conductivity across a coil cross section is described in [2]. In measurements conducted in 

[16] on the particular wire and encapsulant combination used in this design study, the net 

cross sectional thermal conductivity was measured to be 2.5 W/mK.   

 

Table 5-8: Heat transfer parameters of materials employed in thermal model. 

Material 

Thermal 

conductivity  

(W-m
-1

.K
-1

) 

Density           

(kg-m
-3

) 

Specific 

Heat 

(J-kg
-1

.K
-1

) 

Source 

Vacodur S+ 30 8120 427 [17] 

Titanium 6-4 6.7 4430 523 [18] 

Copper 385 8910 385 [19] 

Encapsulate 1.4 2340 880 [20] 

Slot Liner 0.1 900 1000 [21] 

Slot wedge 4.6 4000 350 [22] 

 

The conductivity of the core in the axial direction is a function of the lamination and 

insulating varnish employed to manufacture the stack and can be calculated using    

   

 

      
    

 

    
        

 

    
 

    (5.8) 

The stacking factor α   is typically in the range of 0.9-0.95 and is usually a function of 

the manufacturing processes employed in assembling and fixing the core and the individual 

lamination thickness. The laminations are insulated by an oxide layer as the more usually 

adopted varnishes (which largely tend to be based on organic solvents) cannot be employed at 

high temperatures. A stacking factor of 0.95 was assumed in this case and an approximate 

varnish thermal conductivity of 1W/mK was assumed.  
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The sources of heat in the stator are the copper loss in the coils and stator core loss. 

The copper loss source is assumed to be evenly distributed throughout the coil volume. The 

loss in the stator core is divided spatially into three sections, the tooth tip, the tooth body and 

the back iron, and can be seen by the separating lines in the thermal model diagram shown in 

Figure 5.15. The breakdown of the average core losses in the rotor and stator regions are 

shown in Table 5-9. An element-by-element level coupling of core loss from the 

electromagnetic loss model to the heat transfer model can be implemented if the two-

dimensional mesh in the loss model is extruded in three-dimensions in the thermal model.  

However, this adds a significant level of complexity and element number to the thermal 

model, which is not required since the high thermal conductivity within the plane of the Co-

Fe laminations (at least relative to other thermal conductivities in the model) dictates that the 

temperature gradient within each lamination is small.  

 

Table 5-9: Distribution of the total core losses in the different rotor and stator regions. 

Region Stator(W) Rotor(W) 

Tooth Tip 
75 87 

Tooth Body 
347 103 

Back-iron 
371 181 

 

The first pass thermal model shown in Figure 5.15 was implemented along with a 10 

mm thick Titanium casing cooled directly on its outer surface. The heat transfer coefficient as 

a function of the Nusselt number over a flat surface with forced air cooling can be calculated 

using the correlation formula[13]: 

   
       

   
  
   

                     
 

       (5.9) 

   
    

  
 

       (5.10) 
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This equation is specified for fluids with        and         . For air at 350°C 

at standard atmospheric pressure over the length of the axial machine (70mm) the heat 

transfer coefficient vs. air velocity is plotted in Figure 5.16. However at higher atmospheric 

pressures, the heat transfer coefficient for the same air velocity is relatively higher as the 

density of air is higher, resulting in a larger Reynolds number.   

As the specific pressure and air velocities remain to a large degree unknown, the first 

iteration of the thermal model was based on specifying a surface heat transfer coefficient of 

100 W/m
2
K on the casing outer surface with an ambient temperature of 350°C. At standard 

atmospheric pressure, this would require an air velocity of ~27 m/s which may be considered 

to be high for a typical test set-up. However in the high pressure compressor region of a jet 

engine, the air velocities can be as high as 200m/s and hence, providing provision could be 

made to duct high velocity air to the casing, a heat transfer coefficient of 100 W/m
2
K could 

be realised. 

Titanium was selected as the casing material since its coefficient of thermal expansion 

is well matched to that of the Co-Fe stator lamination stack. It also offers a significant 

advantage in terms of weight reduction compared to a stainless steel or other high 

temperature aerospace alloys. The cooling air in the high pressure compressor may contain 

some level of abrasive debris, and exposing the coils surface directly to such debris may 

cause long-term damage. Hence, it is likely that only very modest cooling may be available 

for the coil end windings, either through some level or air re-circulating inside a fully 

enclosed stator, or possibly a conductive path though a fully encapsulated stator. A maximum 

heat transfer coefficient of 30 W/m
2
K was envisaged using such techniques and was applied 

to the exposed surfaces of the coils in the end-winding regions. For the similar case of a flat 

surface with the cooling air at 350°C, would require an air velocity of less than 3m/s to 

produce a convection coefficient of 30 W/m
2
K.  

The resulting temperature distribution from the FE simulation of the stator section is 

shown in Figure 5.15. The FE simulation showed a maximum localised temperature of 

~515°C at the tooth tips of the core under steady-state conditions. Although the cross-slot 

thermal conductivity of the coil is modest, the most significant thermal drop in the model was 

observed to be across the Titanium casing. Indeed, rather surprisingly, the hot-spot was not in 

the coil but rather in the core. This is a consequence of the relatively poor thermal 

conductivity of Titanium which is only ~ 6.7W/mK at 400°C and the large contribution of the 
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core loss to the overall loss. Alternative lightweight casing materials with higher thermal 

conductivities, notably Aluminium, tend to have high thermal expansion coefficients and as a 

result, cannot be used in direct contact with the stator core.  

 

 

Figure 5.15: Thermal model of baseline design using Titanium casing. 

 

 

Figure 5.16: Surface heat transfer coefficient as a function of air velocity for air at 

350°C with a 70mm long flat plate.  
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The results from these FE simulations were hence considered misrepresentative and a 

means to obtain a bounded thermal problem without having to define any of the cooling 

requirements or casing structures was essential to move forward. Given all the uncertainties 

involved in the cooling that can be applied, rather than specifying heat transfer coefficients 

for the external cooling surfaces, an alternative method was employed in which the boundary 

condition imposed on the outer surface of the stator core was a fixed temperature. This 

approach assumes that in due course, a casing and cooling arrangement can be put in place 

which is capable of maintaining this specified core temperature with the predicted losses. 

This approach was adopted with an assumption that the back of the stator core would be 

maintained at 400°C by the cooling system irrespective of the losses within the machine. The 

consequence of this set-point was that there was some 50°C of temperature drop between the 

back of the core and the surrounding cooling air at 350°C. Moreover, it provides scope for a 

temperature difference of 50°C within the machine from the back of the stator core to the 

stator hot-spot (which might be in either the core or the coils).  

It was also assumed that all the losses would be dissipated via the back of the core 

into the casing, with no cooling provided directly to the end windings. On the basis of these 

assumptions and boundary conditions, the maximum hot-spot temperature in the coil could 

then be calculated using the FE thermal model. The thermal performance of each design can 

be quantified by two figures of merit 

o The temperature difference between the hotspot in the stator and the surface of the 

core back iron. 

o The heat flux through the surface of the back iron which would need to be dissipated 

in order to maintain its temperature at 400°C. 

The temperature distribution in the stator calculated using this revised thermal FE 

model for the baseline design is shown in Figure 5.17.  The hotspot temperature of the 

machine is ~453°C with a heat flux of 20kW/m
2
 to be drawn through the back of the stator 

core. Although the hotspot temperature is higher than the coil maximum of 450°C, this is by 

a mere 3°C and can be reduced if some cooling is applied to the coil surfaces.  

However, the heat flux which passes through the back of the stator core under this 

condition is 20kW/m
2
, a value which requires aggressive cooling given that there is only a 

50°C margin to the 350°C ambient. On the basis of a directly cooled stator back iron with a 
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70mm length, the average heat transfer coefficient required on the core back iron is 

~400W/m
2
K, which is 4 times higher than the previously selected value. The predicted 

temperature distribution of Figure 5.15 demonstrates that such aggressive cooling 

requirements cannot be achieved by employing a Titanium casing given its modest thermal 

conductivity. Moreover, the casing would need to achieve a high degree of heat spreading, 

since the surface area on the core back iron occupies a fraction of the overall casing surface 

area (the remainder being the overhang to accommodate the end-windings).  

 

 

Figure 5.17: Updated thermal model without casing and imposed temperature of 400⁰C 

on back of the stator core 

 

5.6.4 Rotor thermal model 

The dominant source of heat generated in the rotor is the core loss in the rotor 

laminations (other contributions being aerodynamic drag and bearing friction). As previously 

explained, due to the heat treatment selected for the rotor material to achieve superior 

mechanical properties, the core loss densities were higher than the stator. It was initially 

assumed that the absence of coils in the rotor (which limit the peak temperatures of the stator 
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to 450°C) may allow higher temperatures to be accepted in the rotor. However, the 

deterioration in the rotor material mechanical and magnetic properties due to thermal ageing 

at temperatures above 350°C suggests that the temperatures in the rotor must also be kept in 

check.  

The main path for heat dissipation in the rotor is assumed to be through the main 

engine shaft. Additional cooling can also be generated over the rotor surfaces via. forced air 

cooling. However, increasing the forced air cooling may result in an increased aerodynamic 

loss and a careful balance would need to be struck. Figure 5.18 shows the thermal model of a 

quarter of the rotor tooth section. A fixed heat transfer coefficient      of 10 W/m
2
K on the 

rotor exposed surfaces is assumed and the heat transfer coefficient on the rotor shaft is 

progressively increased while noting the maximum rotor temperatures. This allows an 

estimate to be made of the cooling capability required from the engine shaft to maintain a 

specific rotor temperature. A summary of the findings from this sensitivity analysis is shown 

in Figure 5.19. These simulations were repeated with increased cooling on the exposed rotor 

surfaces of 30 and 50 W/m
2
K. To restrict the rotor temperatures to the ~400°C requires a 

very challenging heat transfer coefficient from the inner bore of the rotor to the shaft in the 

region of 500 W/m
2
K. The results also demonstrate that achieving peak rotor temperatures 

below 400°C may not be possible irrespective of any amount of cooling for the specific 

conditions. The temperatures in the rotor are more likely to be in the range of 450-500°C, 

which can be achieved with arguably more realistic heat transfer coefficients of 100-150 

W/m
2
K at the shaft/core interface. 
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Figure 5.18:  Rotor thermal model for a quarter tooth section of baseline SR machine. 

 

 

Figure 5.19: Maximum localised rotor temperatures for varying heat transfer 

coefficients on the rotor shaft and exposed surfaces. 
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5.7 Baseline design results 

As noted previously, the initial baseline design was based on a simplistic specification 

of a current density and hence slot areas. The analysis of this baseline design proved to be an 

invaluable exercise in terms of gaining various insights into the key design issues in high 

temperature machines. Although the initial concern at the outset of the analysis was that the 

higher resistivity of copper would lead to excessive copper loss, it transpired that it was a 

relatively low contributor to the overall loss due to the low current density employed in the 

stator. Conversely, the core loss proved to be the dominant loss mechanism in the stator from 

an efficiency and, somewhat surprisingly, thermal standpoint as well. As explained 

previously the main reason for the high core loss was a combination of the material grade and 

the high speed and pole number of the machine. The estimated core loss was ~8% of the total 

power. This has a significant effect on the efficiency of the machine, although it may prove to 

be an acceptable trade-off as the cost of achieving higher power density in this specific 

application.  

The hotspot temperature was 3°C higher than the 450°C limit which demonstrates that 

the baseline design was not far from meeting the requirements. However, the dissipation of 

losses from the stator to the surrounding cooling air is arguably the greater challenge. To 

attain a 20 kW/m
2 

heat flux through the back iron requires a very aggressive cooling 

mechanism in combination with an effective heat spreader. The limitations of Titanium as a 

thermal conductor, and the lack of alternative lightweight structural casing materials with 

suitable thermal expansion coefficients and high temperature corrosion resistance, dictated 

that an alternative approach to cooling the stator through the casing was required.  

It is worth noting that the active power density of 1.16kW/kg can be considered 

relatively low for mainstream aerospace applications. However given the multitude of 

compromises and material challenges in operating at such high temperature, the power 

density achieved may prove to be competitive. Table 5-10 shows the results from the 

electromagnetic and thermal modelling for the baseline design.  
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Table 5-10 : Predicted electromagnetic and thermal performance of the baseline design 

(15kW, 30,000 rpm).  

Parameter Baseline design 

values 

Units 

Rms current density 2.9 A.mm
-2

 

Slot area x rms current density 1253 A 

Copper loss @ 450°C 148 W 

Stator core loss 792 W 

Rotor core loss 371 W 

% Copper loss in stator 15.7 - 

Mechanical power 16.5 kW 

Power delivered to converter 15.2 kW 

Power density 1.1 kW/kg 

Total power loss 1312 kW 

Core loss density 93.7 W/kg 

Copper loss density 75.7 W/kg 

Overall loss density 92.5 W/kg 

Temperature differential between the hotspot 

and the core back iron at 400°C 
52.7 °C 

Average heat flux to maintain stator at 400°C 

[does not include rotor loss] 
20.0 kW/m

2
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5.8 Selection of turn on and dwell angles 

There are several combinations of turn on and dwell angles that can be utilised to 

generate a rated power and speed when the machine is operating in a single-pulsed mode at 

high speeds. Each combination will give rise to different current waveform and consequently 

different copper and core losses. A method to analyse the effects of the operating angles with 

respect to power and copper loss was described in [23], which solves the basic circuit 

simulation described in section 3.2 for all the possible combinations of turn on and dwell 

angles. The power and copper loss contours are displayed as shown in Figure 5.20 for the SR 

machines baseline design rotating at 30,000rpm. This enables selecting appropriate turn on 

and dwell angles to minimise copper loss for a particular power contour.  

Recreating this plot using the dynamic model with core loss included is not feasible 

due to the higher simulation times. However, of the possible turn on and dwell angle 

combinations that generate 15kW at 30,000rpm, three operating points of interest are 

considered as shown in Figure 5.20. Table 5-11lists the simulation results for the three 

selected operating points. There are several alternative criteria that could be set to establish 

the optimal combination, e.g. minimum copper loss, minimum torque ripple, maximum 

torque per unit copper loss etc. In this study, the optimum turn-on and dwell angles were 

selected such that the temperature differential (ΔT) from the coil to the back of the core is 

minimised.  

In the case of the baseline design, the highest efficiencies were achieved when 

operating at point B, which has the lowest core losses, and highest copper losses. However 

the high copper losses results in a larger ΔT across the stator geometry. Conversely, operating 

point A has the lowest copper loss but higher core losses and hence a larger ΔT across the 

stator geometry. It was found that operating point C resulted in minimum ΔT across the stator 

and hence was employed for all the subsequent machine design studies.    
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Figure 5.20: Contours plots for equal power and copper loss as a function of turn-on 

and dwell angles for baseline SR machine. 
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Table 5-11: Effect of operating points on the baseline SR machine. 

Parameter Operating point A Operating point B Operating point C 

Turn on angle (deg electrical) 132.0 212.0 180.0 

Dwell angle (deg electrical) 112.2 86.2 93.3 

Rms current density (A.mm
-2

)  2.7 3.5 2.9 

Slot area × rms current density (A) 1166.4 1524.3 1252.8 

Copper loss (W) @450°C   130 222 148 

Stator core loss (W) 979 719 792 

Rotor core loss (W) 505 252 371 

Total power loss (W)  1614 1193 1312 

Mechanical power (kW)  16.8 16.5 16.5 

Power delivered to converter (kW) 15.2 15.3 15.2 

Efficiency 89.4 92.2 91.4 

Overall loss density (W/kg)  113.9 84.2 92.5 

ΔT to the hotspot with the back of 

core at 400°C (°C)  
59.4 58.5 52.7 

Average heat flux to maintain back 

of stator core at 400°C (kW/m2)  
23.5 20.0 20.0 

 

5.9 Machine optimisation  

As mentioned previously, the baseline design has a thermal hot-spot higher than the 

450°C limit albeit by only 3°C. It was evident from the thermal model that the core loss was 

the dominant loss mechanism from the thermal standpoint, and the high loss densities in the 

tooth body and tooth tips were the key drivers of the temperature difference between the 
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localised hot-spot and the back of the stator core. These observations suggests the baseline 

design was based on an overly cautious choice of deep stator slots (to allow low levels of 

current density to be used) which led to a penalty in core loss in the long stator teeth. If 

shallower slots are employed, the core loss in the stator teeth will be reduced and the thermal 

resistance between the tooth tips and end windings to the back of the core can be reduced. 

This may well result in a lower temperature hot-spot in the coil despite the increased current 

density in the coil required to maintain the rated mmf in a shallower slot. There is therefore 

likely to be some optimal slot depth which yields the lowest temperature difference between 

the coil hot-spot and the back of the core (which is fixed at 400⁰C in this analysis).  It is also 

worth noting that optimum in terms of this criterion is unlikely to coincide in a minimum 

overall loss, since the one Watt of core loss is more readily dissipated than one Watt of 

copper loss. 

In order to establish the optimum slot depth, an optimisation study was performed. 

During this study, the following key dimensions and parameters were kept fixed: rotor outer 

diameter, core axial length and air gap flux density. As the slot depth was varied, the overall 

stator outer diameter was correspondingly modified. Hence a reduction in slot depth yields 

savings in overall volume and mass. A summary of the key performance attributes of a series 

of design updates with reducing slot depths is shown in Table 5-12. The updated designs 

showed that the optimum slot depth was ~32mm, and the resulting average current density 

4.1A/mm
2
. For shallower slots, the copper loss started to dictate the hot-spot temperature. 

The stator for the 32mm slot depth case had a temperature difference of 48.8°C to the back of 

the core. 

Although the temperature gradient is only reduced by ~4⁰C, the optimised design is 

2.87 kg lighter with a 11% reduction in the overall stator loss. However, the heat flux density 

at the back iron remained largely unchanged at ~20kW/m
2
, since the net surface area at the 

back of the core reduces with the smaller stator outer diameter. Therefore, despite the reduced 

loss, a heat transfer coefficient of 400 W/m
2
K to the 350°C ambient was still required from 

the back of the core. It should be noted however that as no cooling was applied to the stator 

coils in the thermal model, and that some heat dissipation from the end windings may be 

possible which would in turn reduce the cooling requirements on the stator back iron. The 

reduction in stator size as compared to the baseline design, improves the power density to 

1.35kW/kg. 
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Table 5-12: Optimisation of stator slot depths 

Parameter Baseline 

design 

Update 

1 

Update 

2 

Update 

3 

Update 

4 

Update 

5 

Stator outer diameter(mm)  212 196 190 185 182 179 

Slot area (mm
2
)  432 324 285 253 234 215 

Slot depth(mm)  43.4 35.0 32.0 29.5 28.0 26.5 

Rotor : stator split  ratio  0.47 0.51 0.53 0.54 0.55 0.56 

Number of series turns per phase  20 20 20 20 20 20 

Rms current density (A.mm
-2

)  2.9 3.7 4.1 4.5 4.7 5 

Slot area x rms current density (A) 1253 1186 1157 1126 1107 1075 

Mass of Cobalt Iron(kg)  10.2 9.1 8.7 8.3 8.2 6.2 

Weight of Copper (kg)  1.9 1.4 1.3 1.2 1.1 7.9 

Total Weight (kg) 14.2 12.0 11.3 10.7 10.3 9.9 

Copper Loss (W) at 450degC   148 186 204 229 235 246 

Stator Core Loss (W) 792 685 632 595 566 541 

Rotor Core Loss (W) 371 386 382 381 378 377 

Mechanical Power (kW)  16.50 16.53 16.47 16.49 16.39 16.30 

Power delivered to converter (kW) 15.20 15.27 15.24 15.28 15.20 15.12 

Power density (kW/kg)  1.07 1.25 1.35 1.43 1.48 1.52 

Total Power loss (W)  1312 1257 1218 1205 1173 1164 

Delta T to the HS with the back 

of core at 400C(C)  
52.7 49.7 48.8 50.1 51.4 53.8 

Average Heat Flux to maintain 

stator at 400C (kW/m
2
)  

20.0 20.0 19.9 19.9 19.9 20.0 

Copper loss adjusted by thermal 

model (W) 
144 181 199 218 230 248 
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5.10 Sensitivity of optimum 

The machine optimisation described above demonstrated that thermal hotspot 

temperature below the 450°C limit can be achieved by employing a current density of 

~4A/mm
2
 in 32mm deep slots However, the analysis which underpinned this optimisation 

included several assumption (e.g. the limitation of the core loss model in terms of predicting 

excess losses over the entire frequency spectrum), while several factors could not be readily 

incorporated in the machine models such as high frequency copper losses, ageing effects in 

the Co-Fe core and Nickel diffusion in the conductor. All these factors could influence the 

outcome of the optimisation in terms of identifying the most appropriate slot depth.  Hence, a 

sensitivity study was performed which involved varying systemically the copper loss and 

core loss values from their as-predicted values to gauge the sensitivity of the optimum slot 

depth to the precision of the loss predictions..  

The copper loss (Pcu) in the thermal model was increased from its originally 

calculated values in steps of 10% up to 140% of the original loss in order to assess the 

potential impact of factors such as Nickel diffusion and AC losses. Figure 5.21 shows the 

change in the maximum temperature in all the designs for increasing copper loss. As 

expected, progressively increasing the losses increase the maximum stator temperatures over 

the 450°C limit and the optimum moves towards the larger slot depths, however only by 

small amounts. Next, the core losses (Pcore) in all the stator sections of the thermal model 

were increased in steps of 25% to 200% of the originally predicted loss in an attempt to 

replicate material ageing and any inaccuracies in the loss model. Figure 5.22 shows the 

increase in stator temperatures for this systematically increased core loss. As would be 

expected, the optimum slot depth tends to move towards shallower slots. However, the 

optimum slot depths did not move significantly away from 32mm value identified previously.  

As the core losses can be expected to double at ageing times of around 5000 hours, it 

is evident that maximum stator temperatures under 450°C will not be sustainable using the 

existing designs, and the machine output power may have to be reduced as the operating time 

increases. A key assumption in the thermal model was that all the losses in the stator must be 

dissipated through the back iron alone. Figure 5.23 shows that if some cooling provision were 

to be made on the coil end windings, this would reduce the hotspot temperature. The values 

of surface heat transfer coefficient (hs) in Figure 5.23 range from 5 W/m
2
K (typical for 

natural convection) through to 15 W/m
2
K (representative of some forced-air cooling). The 
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optimum slot depths however remained relatively unchanged. This sensitivity study has 

demonstrated that the optimum dimensions only change by relatively small amounts and are 

robust to changes in material properties and the specific assumptions employed in the 

designs. 

 

 

Figure 5.21: Sensitivity of design to increased copper losses.  
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Figure 5.22: Sensitivity of designs to increased core loss.  

 

 

Figure 5.23: Sensitivity of optimum to additional cooling provisions. 
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5.11 Summary  

The chapter has highlighted the key challenges in designing SR machines for HP shaft 

applications, particularly the influence of elevated temperatures. As there is little existing 

knowledge or established guidelines for designing machines at elevated temperatures and 

employing the appropriate materials, a design methodology has been outlined which 

incorporates all the material properties at the specified temperatures. However more 

complicated phenomena such as ageing were more difficult to incorporate into the initial 

design stage. These were therefore modelled by means of a sensitivity study. The design 

outcome showed that only modest power densities can be achieved for steady state operation 

at 350°C (order of 1.35kW/kg) and even this is contingent on being able to handle very high 

heat flux densities at the back of the core. However, once ageing affects manifest itself the 

machine performance might have to be de-rated to avoid further temperature rise and material 

degradation. 

The inclusion of the core loss model in the circuit simulations for the SR machine 

resulted in a very complex implementation in comparison to the toroidal sample described in 

chapter 4. Due to the combination of the reactive and mechanical power at any instant being 

much larger than the core loss, the effect of the loss on the predicted current waveform was 

much smaller than observed in chapter 4. However, the circuit simulations demonstrated that 

the net power delivered to the load reduces as the circuit simulations are power balanced. The 

circuit simulations with 15kW delivered to the load showed a 13% increase in predicted 

copper loss, which in the case of the HP shaft machine can lead to a significant temperature 

rise in the coils. The solution times required and overall complexity of the model increased 

significantly using the proposed method. The loss model also required a larger data set for 

characterisation of materials. This said a somewhat simpler technique to characterise 

materials for the loss models described in chapter 4 can be employed.  

The thermal modelling techniques were based on decoupling the cooling mechanism 

from the active machine thermal model. The model reserved a 50°C temperature differential 

to the 350°C ambient across which the ~20kW/m
2
 of heat flux would have to be drawn. This 

may seem like a significant task for a conventional heat sink but given the high air velocities 

in the HP shaft region, this can be realised using several possible solutions, one of which is 

described in chapter 6. The final design highlighted in the optimisation table showed 

robustness to changes in losses and modelling techniques only moving by small amounts in 
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either direction for rather large changes in model parameters. Therefore it was selected as the 

preferred design option for the machine build and test described in the next chapter. 
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Chapter 6 : High temperature machine demonstrator 

and testing 

 

6.1  Introduction  

This chapter addresses the manufacture of the high temperature demonstrator SR 

machine, the associated test-rig and the testing. The final dimensions of the machine cross-

section which were established in Chapter 5 are shown in Figure 6.1. A full set of engineering 

drawings for all the machine and test-rig components are contained in Appendix E.  

There are two factors which must be taken into account in selecting the materials for 

manufacturing a high temperature machine casing and test rig. Firstly, any structural 

materials should have a thermal coefficient of expansion which is reasonably well-matched to 

the core and active materials. Secondly, the materials should be resistant to corrosion at 

elevated temperatures while providing required mechanical properties. The material selected 

for all the structural components in this case was a Titanium 6-4 alloy. This material provides 

the closest thermal match to Co-Fe (10.7x10
-6 

per°C for Co-Fe as compared to 9.7x10
-6

 per°C 

for Titanium 6-4), has high mechanical strength, low weight and is also commonly used 

within the gas turbines. However, Titanium has a fairly low thermal conductivity (6.7 W/mK) 

as mentioned in chapter 5, which means that it is not particularly effective at dissipating heat 

through the casing. In addition to many structural elements within a machine, there is also a 

need to identify insulating materials for slot liners, slot wedges and end-plates for the core 

stack. At these elevated temperatures, the many polymer insulators cannot be used, and 

recourse to ceramic materials, such as Alumina, Macor, etc. is necessary. 

The bearings prove to be the biggest challenge in terms of producing a demonstrator 

machine. Almost all industrial bearings are not capable of operating at high temperatures and 

hence the complete machine cannot be placed in an environment chamber. This also entails 

that the bearings have to be relatively distant from the active machine which is at temperature 

and cooled separately. The cooling air for the machine itself has to be at a temperature of 

350°C and requires specialist fans and heaters. In the machine design described in chapter 5, 

it was found that although the 450°C temperature limit could be maintained within the coils it 
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required a substantial amount of heat to be dissipated through a small surface area of the core 

back iron. In order to supplement the cooling at the back iron some cooling could be applied 

on the coil end windings. The rotor cooling scheme described in chapter 5 was based on the 

turbine shaft providing a significant proportion of the heat sink. In the demonstrator machine 

however a Titanium shaft has to be employed, which as mentioned has a good thermal 

expansion match to the rotor laminations, but has a low thermal conductivity. Therefore the 

cooling on the rotor surfaces may have to be increased. In order to raise the machine 

temperatures and provide the high temperature airflows, a method employing a coil heater 

and fan arrangement with a closed loop is proposed.  

 

 

 

Figure 6.1 : Cross-section of the final machine design with leading dimensions.  
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6.2 Cooling techniques for stator core 

The initial study on the baseline design highlighted the high fluxes which need to pass 

from the back of the core to the Titanium casing and that this was unlikely to be achievable 

with a plain cylindrical core-back mated into a Titanium casing, which would then be 

externally cooled. In order to overcome this limitation, direct cooling of the stator core may 

prove to be the only way to dissipate the heat from the back of the stator core. This was 

employed in a manner that still provides separation between the coolant air and the stator 

void, recalling that the stator void may need to be completely enclosed as the purity of the 

cooling air cannot be guaranteed. This section describes one particular approach developed to 

realise direct cooling.  

Direct cooling of machine core laminations is by no means a new concept, and has 

been used on several types of machines in several different embodiments. These include 

placing cooling ducts in strategic locations on the stator [1], extending stator laminations by 

fining [2], or combinations of such techniques [3] which provide enhanced cooling. Large 

high power generators tend to have complex cooling systems which incorporate radial and 

axial coolant flow within the core [4-6]. 

One representation which has been reported for low to medium power machines 

consists of channelling the coolant (whether this is simply air or a liquid) in laminations 

containing one or more recessed sections [7]. The laminations have the same shape but are 

arranged in such a way as to form a labyrinthine path along the outer surface of the stator 

core. The general method consists of channelling the coolant through the labyrinth, directly 

cooling the exposed surfaces of the stator. The coolant path is generally a combination of 

axial and circumferential paths, often with right-angle changes of path direction. This method 

provides a considerable increase in the surface area available for cooling as compared to a 

plain cylindrical outer surface, which in turn improves heat transfer from the stator core. 

However, the effect of forcing high velocity coolant around such a tortuous path, particularly 

impinging normal to a surface in the vicinity of right-angle turn, may give rise to problems in 

terms of back-pressure and possibly aerodynamically induced heating.  
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Figure 6.2:  Cooling arrangement proposed in [7]. 

 

An alternative to a labyrinthine flow channel is to employ circumferential flow around 

the rear of the stator core with radial orientated ‘fins’. On implementation of this approach 

was initially described in a paper by [8]. The method proposed in [8] is based the single 

lamination profile shown in Figure 6.3, in which rotational indexing (by 90°) allows a group 

of laminations in turn to have exposure to the circumferentially flowing coolant. The essence 

of the arrangement is best appreciated by inspection of Figure 6.3. The principles developed 

in [8] were taken on by different authors in [9] which reports on further analysis of magnetic 

and thermal aspects of circumferentially cooled machines. This follow-on paper addresses the 

need to optimize the ratio of the back iron to fin height to reduce cogging and saturation at 

the edge of the fin.  
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Figure 6.3: Lamination profile for circumferential flow as proposed in [8]. 

 

In the case of the HP shaft machine considered in this thesis, there is a requirement 

for a large increase in exposed surface area, with minimum weight penalty. The surface area 

gain i.e. the ratio of the heat exchange surface area with and without fins, depends on the 

number of laminations in a sub-lamination group which act as one external fin. Allowing 

each lamination to form a fin on itself (i.e. in essence a grouping of one) would yield 

maximum surface area gain, but with thin laminations (0.15-0.2mm) the channel width may 

be too narrow for high velocity airflow, and depending on the height of fin, may give 

concerns for rigidity noting that these fins may well be the sole mechanism to centrally 

aligning the stator core within the case. Moreover, the equalisation of air-flow between 

channels, which in essence form an array of parallel paths from a single entry manifold may 

prove problematic if small tolerance variations give rise to significant changes in individual 

channel widths. Grouping laminations together will increase the channel width but reduce 

surface area for cooling. More critically, laminations in the centre of the group will be hotter 

than those with exposed surface area, since the heat flow must cross one or more interfaces 

between adjacent laminations before reaching a surface which is exposed to the forced-air. 

Against this significant background of published patent and research papers, the scope to 

enhance this basic principle to achieve higher levels of performance, i.e. improved cooling, 

was investigated.  
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6.2.1 Proposed method of circumferential cooling 

The new method, adopts many of the same principles of previously published 

concepts based on circumferential flow, but takes a new approach to addressing several 

limitations. It is based on a combination of a modified individual lamination profile and the 

means by which they are subsequently arranged to form a stator core. Three possible 

embodiments of the proposed concept for a 12/8 switched reluctance machine stator are 

shown in Figure 6.4. 

   

Design 1 Design 2 Design 3 

Figure 6.4: Alternative stator core lamination profiles. 

 

These three designs share common features, and would be arranged in a similar 

manner to form a complete stack. Improvements in performance are obtained with increasing 

elaboration of the profile. The key factors which drive the adoption of these designs of 

lamination are: 

i) Each lamination should have exposed surface area for cooling for at least a proportion 

of the periphery, in order to exploit the high in-plane thermal conductivity.  

ii) It is desirable with such thin laminations to group them such that the resulting channel 

width (which has implications on pressure drop and equalising flow from a single 

input manifold) is as wide as possible – the conflict with requirement (i) is a key 

driver. 

iii) The stator should have a single symmetrical lamination profile, rather than requiring a 

complex and costly set of tooling to stamp out several different profiles for use in 

combination.  
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The key differences between the three lamination profiles of Figure 6.4 are the 

number of radial steps and the angle subtended by these steps. The three profiles provide 

varying degrees of exposed surface area and channel widths. Taking each profile in turn: 

Design 1 – This lamination design is based on two stepped regions around the 

periphery, which can be offset in a rotational sense by an integer number of tooth widths to 

expose each lamination in turn to impinging air. The exposed surface will be the full height 

of the fin and hence the resulting coolant channel has a rectangular cross-sectional area. 

Design 2 – The three steps on the lamination profile and the symmetry of the 12/8 

machine dictates that successive laminations are transposed by 30° relative to each other. The 

resulting stator core has stepped fins which result a V-shaped spiral channel around its 

circumference which is the equivalent of 5 lamination thicknesses wide at the outermost 

diameter. Figure 6.5 shows an assembled stack for design 2 in which the lamination thickness 

has been greatly exaggerated to aid clarity. The staggered nature of the exposed fins at any 

point around the periphery are such that neighbouring laminations provide a degree of 

structural support to the central, and tallest fin at that point. This may prove to be an 

important feature given the aspect ratio of the fins.  Furthermore, it is conjectured that the 

steps at regular intervals around the periphery will increase turbulence in the flow which 

could enhance heat transfer. This stator core would be fitted into a plain cylindrical casing 

which picks up on the outermost diameter. This arrangement only requires a single intake and 

a single outlet which are arranged diametrically opposite each other.  

Design 3 – This has a reduced number of steps as compared to design 2. In this case, 

the angle subtended by the outermost step is twice that of design 3, which could provide 

some benefits in terms or location in the casing (not that this is unduly a concern for design 

2). It results in the same exposed area as design 2, but the channel width is reduced by one 

lamination thickness.  

When considering variant for SR machines with a number of teeth that is not the 12 of 

this example, it important to note that the number of transpositions is limited by the number 

of teeth. Furthermore, it is important to maintain at least half symmetry in order to retain the 

lamination concentrically within a plain cylindrical casing. Machines with higher numbers of 

stator teeth could adopt more step levels to suit the geometry.  
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Figure 6.5: Stator core assembled from a series of ‘Design 2’ laminations (lamination 

thickness increased to 2mm to aid clarity). 

 

Figure 6.6 shows representative outer casings for the lamination designs in Figure 6.4. 

The two features presented in the casing are, 

i) The entry and exit slots for the coolant flow. 

ii) The key-ways required for locating the laminations.  

In design 1, the channel formed between successive laminations only traces 90 deg of 

the machine circumference. This requires 2 sets of inlet and outlets for coolant. Designs 2 and 

3 have the exact same casing structure, as in both designs successive lamination's are 

transposed by 30 deg and hence require 12 key-ways. The channels formed have spiral paths 

that trace the whole circumference of the machine. Thus, only one inlet and one outlet are 
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required. The casing design shows a split path for the lower and upper regions of the 

machine. It should be noted that there may not be equal flow in both paths due to unequal 

pressure drops caused by tolerances of the build. If this imbalance is significant, some degree 

of adjustment of the cross-section of the aperture at the inlet could be made to equalise flow-

rate. In all three cases, the inlets and outlets must span the whole axial length of the core to 

ensure coolant flow in all channels.  

 

 

Design 1        Design 2 and 3 

Figure 6.6: Stator casing designs for lamination designs in Figure 6.4. 

 

Table 6-1 shows a comparison of the three laminations for the specific case of the 

12/8 baseline SR machine design. All three lamination profiled designs are based on adding 

fins to the final machine design which has a cylindrical outer stator diameter 190mm. In order 

to provide a fair basis for comparison, the fin dimensions were set such that the additional 

weight in each of the 3 cases is the same.  

The figures of merit quoted for lamination profile 1 is based on a grouping of 5 

laminations in order to yield the same channel width as profile 2. All three profiles inevitably 

add weight when compared to a plain cylindrical stator core. However for the same added 

weight laminations 2 and 3 provide a better surface area gain. Lamination 3 however 

provides a slightly lower channel width as compared to lamination 2.  
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Table 6-1: Comparison of lamination designs for same fin height. 

Parameter Design 1 Design 2 Design 3 

Stator outer diameter for cylindrical profile (mm) 190 190 190 

Core overall axial length (mm) 70 70 70 

Lamination thickness (mm) 0.15 0.15 0.15 

Number of laminations 467 467 467 

Original surface area of plain cylindrical stator core (m
2
) 0.042 0.042 0.042 

Fin height (mm) 12 12 12 

Number of steps 1 3 2 

Height of step (mm) 12 4 6 

Angle of transposition (deg) 90 30 30 

Area added per fin (mm
2
) 3695 1232 1232 

Total surface area (m
2
) 0.34 0.57 0.57 

Surface area gain compared to plain cylindrical stator core 8.25 13.75 13.75 

Width of channel (mm) 0.75 0.75 0.6 

Added weight (kg) based on density of 8120 kg/m
3
 1.05 1.04 1.04 

 

This section has described the development of a new method of enhancing the 

exposed surface area at the rear of the stator core to enhance cooling, albeit at the expense of 

some increase in core volume and weight. It provides a means of customising the lamination 

profile to balance the surface area increase versus channel width and offers scope for 

significantly increasing the mechanical rigidity of fins of a given height. Of the 3 designs 

considered, design 2 was deemed to offer the most favourable combination of thermal and 

mechanical properties and was hence adopted in the demonstrator machine. 
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6.3 Bearings for high temperatures 

The switched reluctance machine under study is nominally rated for 15kW at 

30,000rpm (air gap=0.5mm). The ambient temperature of the test chamber into which the 

machine is fitted needs to be maintained at 350°C for testing. Commercial bearings with 

grease or oil lubrication tend to have maximum temperature ratings of 120-150°C, this being 

a limit of the lubrication rather than the bearing structure itself. As the temperatures increase 

the tolerances in the bearings reduce and as a result wear rates increase. Manufacturers advise 

that, at rated speed, each 10°C rise in temperature over 70°C will tend to reduce the lifetime 

of the bearing by a factor of two. Therefore, even at modest temperatures of 120-150°C, 

conventional the bearings have limited lifetimes which are of the order of a few tens of hours 

with a significant risk of bearing seizure.  

Commercially available bearings from the manufacturer NSK known as SPACEA 

bearings were identified as being capable of running in extreme conditions, including 

temperatures up to 450°C. These bearings employ solid lubrication which allows such high 

temperature but unfortunately are only available for relatively low rated speeds, e.g. for a 

shaft diameter of 30mm maximum speeds are of the order of  ~650 rpm. Although the rated 

speeds are low compared to the speed of the SR machine they would be of interest for low 

speed proof of concept type test demonstrator purposes. However these highly specialised 

bearings were only made to order with prohibitive lead times of at least 12 to 18 months. As a 

result, standard readily available angular contact bearings had to be used for the current test 

demonstrator.  

Standard bearings need to be suitably insulated from the high temperature 

environment around the machine active components. In addition, measures must be taken to 

keep a low temperature differential between the inner and outer races of the bearing. A 

difference in temperature leads to uneven thermal expansion which reduces the internal 

clearance of the bearings leading to thermal seizure. Bearings are typically rated by the 

product of the maximum speed (N) and average bearing diameter (Dm). The high precision 

angular contact bearings procured have a Dm*N rating of 1000000 and hence can employ a 

maximum inner diameter of ~30 mm at 30,000 rpm. The advantage of the higher precision 

bearings is that the wear rates are lower which can increase lifetimes at the higher operating 

temperatures.  
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Two test rig architectures were identified as potentials for bearing insulation. The first 

shown in Figure 6.7 is based on having the bearings mounted externally and remotely in 

bearing stands on a base plate. The stator and machine internals will be heated to 350°C 

while the bearings will be outside at a certain distance and decoupled from the machine 

internal. The advantage of this topology is the bearings are in a benign environment. 

However the major drawback is that the shaft has to be much longer than the active rotor 

length. This has implications on the maximum rotor speed in terms of rotor dynamics in 

terms of factor such as bending moments at high speeds. As the stator is mounted on a base 

plate there is an uneven thermal expansion between the cool bearing stands and the stator and 

rotor which are at high temperatures. Due to the small operating air gap, this difference in 

centre heights as the temperature is increased will be problematic. Hence, it is necessary to 

incorporate some means of adjusting the centre height of each bearing to compensate for the 

thermal expansion.  

 

 

Figure 6.7: Cross section view of test-rig schematic with bearings located on separate 

end stands. 
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The second rig architecture of Figure 6.8 avoids some of the more complex thermal 

expansion by locating the bearings within highly modified end-caps which are connected to 

the main stator. This would still require that the bearings have to be somehow insulated from 

the internal 350°C ambient and then cooled to temperatures less than 150°C. The advantage 

of this topology is that the distribution of temperature is symmetric about the rotor/stator axis 

giving rise to more even thermal expansion.  However, it necessitates complex cooling 

arrangements for the bearings which at 350°C pose a significant challenge.  By providing 

aggressive cooling on the bearing the length of the shaft may be reduced allowing for higher 

rotational speeds. However the rotor shaft itself would act as a short thermal path to the 

bearings and a method would be required to insulate the bearings from the shaft since 

differential thermal expansion between the races could cause the bearing to seize. As a result, 

the first option of mounting the bearings on separate stands which can be thermally insulated 

was preferred, although it was recognised that there would be little prospect of reaching the 

30,000rpm rated speed. 

 

 

Figure 6.8: Cross section view of test-rig schematic with bearings located on casing 

endplates. 
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6.4 Test-rig manufacture  

The  design  and  subsequent manufacture  of  the  test-rig  posed  many  challenges  

in terms of bearings, rotor dynamics and thermal management. A full set of engineering 

drawings for the various components is included in Appendix E. In addition, a series of 

photographs of the manufactured components during the build process are contained in 

Appendix F. A key driver in the design of the test-rig was the need to locate the bearings in 

an environment with a maximum temperature of some 120°C. This necessarily required 

significant extension of the shaft so that the bearing could be located outside the 350°C 

environment with scope to force cool the exposed section of the shaft and bearing stands. 

Furthermore, it was deemed necessary to include provision for adjustment of the centre 

height of the rotor relative to the stator. This was achieved by means of adjustable bearing 

stands which could be set when the machine was at its operating temperature. The general 

arrangement of the test-rig is shown in Figure 6.9.  

 

 

 Figure 6.9: General arrangement of the high temperature test-rig. 
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6.4.1 Manufacture of stator components  

The stator core was manufactured by wire erosion from a total of 470 laminations of 

Vacodur S+ Co-Fe, each lamination being 0.15mm thick. The stator laminations were pre 

heat-treated at 820°C for 4 hours to achieve optimum magnetic properties. The stator 

lamination profile includes a series of stepped projections around the outer periphery which 

enhance heat transfer from the core as described in section 6.2.1. The laminations require a 

casing containing a series of keyways on the inner bore to provide circumferential location of 

the indexed stator core laminations and two rectangular bosses with apertures which interface 

with the externally provisioned cooling.  

The tubular section of the machine casing was manufactured from a cylindrical bar of 

Titanium, principally by wire-erosion. The stator core laminations were inserted into the 

stator casing, with each successive lamination being indexed by one keyway pitch. The 

tubular section of casing is attached to two Titanium end-caps which serve to axially 

constrain stator core and include integral legs to connect the casing to the test-rig base-plate 

via. a set of Titanium feet. The two end-caps, which were manufactured by a combination of 

milling and wire-erosion, are identical and connect to the tubular section of the casing with 

M6 Titanium bolts. 

The  ceramic  slot-wedges,  which  serve  to  retain  the  windings  within  the  slots  

were externally manufactured by laser cutting 1mm thick Alumina sheets. The rectangular 

slot wedges span the full axial length of the core in one-piece and are retained by specific 

slots near the leading edges of the stator teeth. Due to the technique used in stacking the 

stator and the transposition of the stator laminations the tolerances on small features in the 

laminations such as the keyways in the laminations for the slot wedges require much larger 

tolerances.  

To provide secondary coil insulation and prevent abrasion of the wire insulation by 

the core, the stator slots were lined with Rescor 390 ceramic paper. This paper is 

compressible (nominal starting thickness of 0.8mm thick) and has a modest thermal 

conductivity of 0.05 W/mK. After some initial trials of this paper at temperature it was found 

that the binder used in the manufacture of the paper burns off at around 200°C after which the 

paper becomes very fragile and crumbles to pieces fairly easily. Once in the slot and in 

position this should not cause significant issues in terms of insulation failure. Alternatives 
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with better strengths such as silica woven cloth can be considered. However these would 

have a relatively lower dielectric strength. 

As with all cores manufactured from thin laminations, it is desirable to apply a degree 

of axial compression to the core by some form of clamping to overcome the natural tendency 

for the core to spring apart. Whereas the core can be readily clamped around the outer regions 

of the stator core, the individual teeth cannot be so readily clamped and some means must be 

accommodated to prevent the teeth from flaring out axially. Given that any clamping 

structures must pass through the semi-circular void at the end of each stator coil, it is 

desirable, if not essential, that they are made from non-electrically conducting material. The 

first attempt at realising appropriate clamping was based on incorporating a series of Alumina 

sheets at each end of the core (specifically two 1mm thick sheets and a 0.5mm thick to make 

a total thickness of 2.5mm. The Alumina sheets were laser cut to the same profile on the 

inner edge as the core laminations. However, because of the limitations of available sheet 

size, the Alumina parts only spanned an angle of 90°. The outer edge did not include the 

same stepped projections at the outer edge, but rather has a circular profile with an outer 

diameter corresponding to the bore of the tubular section of the Titanium casing.   

Unfortunately, the Alumina clamping plates achieved little in the way of drawing 

together the tooth regions of the core at clamping force levels which they themselves could 

withstand. Attempts to apply sufficient force to draw in the toothed regions resulted in failure 

of the Alumina sheet, in most cases at root of the tooth sections. Following a review of the 

requirement of the clamping plates and the failure of the Alumina parts, a modified clamping-

plate arrangement was adopted based on a 3mm thick Titanium sheet which was profiled by 

wire-erosion to provide continuous support at the rear of the core and finger-like projections 

along the stator teeth of the core. In order to minimise the losses that would be induced in 

these Titanium end-plates, the support limbs which pass through the semi-circular voids in 

the stator cores were narrowed considerably in comparison with the width of the tooth being 

clamped. Figure 6.10 shows the assembled stator using Titanium clamping plates. 
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Figure 6.10: Assembled stator casing, core and Titanium clamping plates. 

 

6.4.2 Stator coils   

The  manufacture  of  the  stator  coils  provided  the  greatest  challenges  in  terms  

of developing new techniques of manufacture and in ensuring the requisite degree of 

dimensional tolerance. Several iterations of the winding design, jigs and coil forming 

methods were trialled, including a re-manufacture of a full new set of 12 coils to replace an 

earlier set. The wire selected was Von-Roll SK650 which is based on a copper core conductor 

with Nickel plating which is lap wound with a phlogopite mica tape. The coils were 

encapsulated with Sauerisen No.10 encapsulant. This coil and encapsulant combination was 

down-selected during a previous systematic study [10] on a wide range of commercially 

produced high temperature wires and encapsulant.   

The machine stator winding is a 3-phase, 12 slot winding with 20 series turns per 

phase. Hence, if the coils which make up are phase to be connected in series, then each phase 

would be made up of 4 coils of 5 series turns each. Of the two coil geometries proposed in 

section 5.3.3, the asymmetric coil arrangement was preferred over the two sub-coil geometry 
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for ease of manufacture. The required equivalent wire diameter for each series turn if a single 

conductor was used is ~4.8mm. Wires with such large diameters tend to have limited 

formability and as such can be very difficult to shape them into the required racetrack shaped 

coils in small to medium machines. Therefore, a parallel bundle of thinner wires with 

diameters in the range of 0.3mm to 1.2mm are typically used to manufacture coils which 

require a large cross-sectional area per turn. Additionally, the parallel wires require some 

form of transposition due to proximity effects as described in section 5.4.2. 

However, the SK650, in common with all commercially available high temperature 

wires is only available in a very limited number of diameters, with 1mm overall diameter 

(0.8mm diameter core conductor)  being  the  only  diameter  available  at  the  time  of  

winding  design. As the selected conductor core diameter was 0.8mm, ~36 strands would be 

required per turn to make up the required cross-sectional area of one turn. In addition, the 4 

coils would have to be terminated in the machine which requires high temperature 

terminations or else the individual coils would have to be brought out of the machine and 

terminated. Alternatively, the 4 coils of one phase could be wound in one continuous pass 

eliminating the need for coil to coil terminations.  

In general, it is preferred in electrical machines to have the coils of a given phase 

connected in series to avoid issues such as unequal current distribution between coils. The 

use of asymmetric windings also derive benefit from employing series coils as it evens out 

any imbalance from the coils with different shapes having slightly different flux inductances. 

On the other hand, manufacturing high temperature coils for series connection this machine 

with the large number of multiple parallel strands required to achieve 5 series turns per coil is 

procedure very difficult process in terms of achieving a competitive packing factor, 

especially as these coils would be wound by hand in the demonstrator. In addition, the very 

large cross-sectional area of the region covered by one series turn will results in some degree 

of variation in flux linkages across this region, causing uneven current distribution which 

may lead to localised hotspots.  

 By making up one phase from a parallel connection of 4 coils, the number of turns in 

each individual coil can be increased. This makes the coils easier to manufacture. The 

terminations in this case can be made outside the machine, but most importantly coils with 

lower number of strands are easier to wind. Therefore, for the demonstrator machine a 

parallel connection of coils were employed, with each individual coils comprising 20 series 

turns, each of which comprises 9 parallel strands on 1mm overall wire diameter. It is 
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recognised that parallel connection of the coils is not ideal in terms of ensuring equal 

currents, and ultimately means of dealing with the uneven current sharing between coils may 

have to be included on the converter side.  

The winding is based on employing two different coil cross-sections with the 

consequence that the arrangement of coils sharing a given slot is asymmetric as discussed 

previously in section 5.3.3. This arrangement was developed to enhance the slot fill while 

still maintaining the ability of adjacent coils to pass each other during the sequential insertion 

of coils. The coils are ex-situ wound on two different Aluminium jigs (to produce the two 

different cross-sections required). One of the jigs, prior to winding, is shown in Figure 6.11.  

The central limb around which the coil is wound is insulated with Kapton tape to prevent 

damage to the mica insulation. The coil is wound by rotating the jig using a chuck of a 

conventional lathe, albeit by hand at a very slow rate.   

 

Figure 6.11: Aluminium coil winding jig. 

  

As part of the coil forming process, the encapsulant was applied  to each successive 

layer  as  the  coil  is  built  up  by  manual  spreading  in  order  to  produce  a  rigid  coil 

assembly.  In  an  attempt  to  ensure  that  the  cured  coil  retains  its  shape  and dimensions 

when released from the jig, the process adopted for the first series of coils used clamping 

plates to precisely clamp the coil in shape during the initial drying of the coil encapsulant.  

Figure 6.12 shows a wound coil clamped into the jig (N.B.  jig  shown  being  that  with  the  

different  cross-section  to  that  shown previously in Figure 6.11).  
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 Figure 6.12: Wound coil clamped in jig during curing of the encapsulant.  

 

Many iterations and variants of the coil winding process were trialled during the 

manufacture of coil set for the demonstrator machine. There were several key modifications 

made to the coil design and the process as these trials progressed. The initial coil winding 

technique that was trialled was based on winding all 9 parallel strands simultaneously. The 

wire bunch also had to be periodically transposed to reduce proximity effects as described in 

section 5.4.2. These transpositions were restricted to the end turns in order to maximise 

packing factor in the slot area. However, winding with all 9 strands at once gave rise to 

significant difficulties in terms of controlling the lay-up of individual conductors, with 

tendency for conductors to cross-over. Such deviations from a precisely laid-up arrangement 

of individual wires diminish the achievable packing factor within the coil (i.e. the proportion 

of the overall coil cross-section which is occupied by copper as opposed to gaps and 

insulation). The difficulties of handling 9 wires in parallel, and the problems of maintaining 

precise location of each wire is illustrated by Figure 6.13, which shows the second layer of 

the coil being wound. 
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 Figure 6.13: Initial winding trials with 9 parallel wires wound simultaneously. 

 

In order to overcome these difficulties, which would have led to unacceptable 

reductions in packing factor, the coil winding technique was modified to employing 8 strands 

and winding 4 parallel strands at a time in an alternate fashion. Thus the coil includes some 

degree of imbalance as any form of bundle transposition would cause a significant decrease 

in packing factor. The loss of parallel strand compared to the original 9 stand design will lead 

to a higher current density and copper loss. However, on the basis of repeated unsuccessful 

attempts to employ 9 strands, this was considered essential in order to manufacture 

representative coils. This revised approach allowed far greater control over the disposition of 

individual wires as shown in Figure 6.14 which shows the 8 parallel conductors nearing 

completion, with the entry conductors of the 8 parallel conductors (which are shrouded within 

a braided fibre sheath) being evident in the background.   
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Figure 6.14: Coil part-way through manufacture based on winding with two sets of 4 

parallel strands.  

 

Using the revised method of winding two sets of 4  parallel stranded bundles wound 

alternatively, a full set of 12 coils was manufactured, i.e. 6 of each cross-section, in order to 

populate the stator core. As noted previously these were left clamped in the jigs overnight to 

allow the encapsulant to dry. On release from the jig, these were tested for dimensional 

clearance over the stator tooth and that they passed a coil of the different type during 

insertion. The coils were assessed one by one as the coils were manufactured and then set 

aside pending assembly of the full stator coil. However, although a full set of coils  was  

manufactured  in  this  way,  when  it  came  to  final  assembly  of  the  stator winding, the 

majority of the coils would not fit into the slots, and by virtue of being essentially rigid could 

not be deformed to fit.   

Some further trials indicated that this was due to the protracted nature of the full cure 

process of the encapsulant and that whereas a dry surface was achieved within a matter of 

hours, full curing to a rigid state was only achieved over period of 72 hours or so. This is 

consistent with the behaviour observed when insulation testing the coils, specifically a 1000V 
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insulation test between parallel strands. Tests of coils showed that the insulation withstand 

was achieved progressively over several days as the water based encapsulant fully dried out.  

To accommodate this ‘relaxing’ of the coil dimensions during cure, the process was modified 

to clamp the coil in the jig for an extended period of at least 72 hours. Although this slowed 

the rate of manufacture, it did result in more dimensionally stable coils. On removal from the 

clamp, the coils were inserted into the lined stator slots, with the remaining half of each slot 

being occupied either by a previously inserted coil or a PTFE wedge with the same cross-

section as the coil that would be subsequently inserted into that region. This prevented 

invasion of the remaining half of the slot during any subsequent ‘relaxation’ of the coil. A 

part-populated stator core in which the PTFE wedges are visible is shown in Figure 6.15.  

In addition to this change in process, the coil design was modified to reflect the 

difficulties encountered in fitting of the first set of manufactured coil. In order to provide a 

greater margin on the coil, particularly the tendency for the last few conductors to spring 

through the thin outer layer of encapsulant, the number of series turns in each coil was 

reduced from 20 to 19. The net packing factor of the coils produced was under the previously 

achieved 0.3, mainly due to the complications added by manufacturing coils with 8 parallel 

strands. Although this will have some impact on performance, i.e. an increase of some 5% in 

the operating current density, this design modification yielded significant dividends in terms 

of coil fit to the slot and hence additional margin on insulation reliability. Having identified 

these process and design modifications, a second full set of 12 coils were manufactured and 

inserted into the stator assembly. The stator fully populated with coils with slot wedges is 

shown in Figure 6.16. 
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Figure 6.15: Part populated stator core illustrating the PTFE wedges employed to retain 

coil geometry during final cure. 

 

 

Figure 6.16: Fully wound stator assembly. 
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6.4.3 Rotor manufacture  

The rotor core was manufactured from the same Vacodur S+ grade of Co-Fe as the 

stator core, but was subjected to a different heat treatment regime to achieve high mechanical 

strength at the expense of increased core losses. The rotor laminations were pre heat treated at 

720°C for 2 hours to achieve a 0.2% yield strength of 620 MPa. The rotor core laminations 

were also produced by wire-erosion.  

The rotor core is connected to the main shaft by means of a Titanium hub which was 

manufactured by wire-erosion. As mentioned previously, Titanium was selected as this is 

well matched in terms of thermal expansion with the Co-Fe core. Two notable design 

features, are the integral keys which locate into keyways on the inner bore of the rotor core 

and the axial skew in the 6 apertures from one end to the other. This skew was incorporated 

to provide some axial pumping of air to aid cooling of the rotor, although the extent of this 

benefit was not quantitatively assessed at the design stage.  

The rotor core is retained axially and clamped by a pair of Titanium clamping-plates 

which  are  profiled  to  provide  support  to  the  sides  of  the  rotor  teeth. They are recessed 

away for the working air gap in order to reduce the magnitude of the eddy current induced 

losses. The main shaft which runs through the rotor core and the bearing stands was 

manufactured from Titanium (in order to provide a good thermal expansion match to the hub 

and Co-Fe core).  Figure 6.17 shows the completed rotor assembly clamped using a set of 

Titanium bolts. 
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Figure 6.17: Completed rotor assembly.  

 

6.4.4 Ancillary components  

As discussed previously, in order to accommodate various potential differential 

thermal expansions between the hot and cold elements of the test-rig, it was deemed prudent 

to incorporate a mechanism which allowed the centre height of the rotor shaft to be adjusted. 

This was realised using adjustable bearing stands. The bearing vertical position can be 

allowed to float during the warm-up phase of the test rig with the rotor core resting on the 

bore of the stator core. Once the rig is up to temperature, the vertical position can be 

centralised and the bearings locked in place.    

The entire test-rig is built up on an Aluminium base-plate into which are incorporated 

various slots and locating holes as detailed in the engineering drawings in Appendix E. A 

series of 4 Titanium feet were manufactured to connect the legs of the stator casing end-caps 

to the base-plate. The machine with the exception of the bearing stands is located within a 

thermal enclosure in order to achieve the desired ambient temperature of 350°C. This 

chamber was manufactured from layers of ceramic fibre board with Aluminium external 

framing.  It incorporates a series of holes and to accommodate various structural, electrical 
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and cooling air elements. A pair of ports was also manufactured in Titanium to interface the 

bosses on the side of the tubular section of casing to cooling ducts through which 350°C air is 

passed to effect cooling to the rear of the stator core. 

 

6.5 Procedure for raising the test-rig temperature 

As described above, the HP shaft machine requires 350°C air flowing through the 

back of the stator core in order to draw heat from the stator. In the case of the demonstrator 

machine this cooling air can be initially used to raise the temperature of the machine and 

ambient to 350°C. The cooling air must then maintain this temperature and dissipate the 

losses in the stator. The 50mm thick thermal enclosure insulates the bearings and externals 

from the machine.   

Raising air temperature from room temperature of 20°C to a temperature of 350°C 

requires a significant amount of power especially at higher flow rates if the system is a non-re 

circulated system, i.e. the hot air is exhausted on exit and the incoming air is draw in at 20°C. 

Figure 6.18 shows the calculated outlet temperatures for different flow rates and the power 

required to raise the temperature of standard pressure air at 20°C for such a non-recirculating 

system [11]. It can be seen that with a 9kW heater a flow rate of 50 ft
3
/min (85 m

3
/hr) must 

be maintained to gain an outlet temperature of 350°C. If the volume flow is increased, the 

heater outlet temperature drops sharply and the required heater rating increases. Therefore a 

closed loop or recirculating heater and fan arrangement has been proposed. As the hot air 

from the machine is fed back to the heater, the required increase in temperature from the 

heater and higher flow rates can be utilised. However this requires the fan to have a high inlet 

temperature capability.  

A higher fan inlet temperature will necessitate smaller powers to raise the air 

temperature to the rated 350°C. The highest inlet temperature of a commercially available fan 

that could be sourced for this project was ~300°C. Therefore in the closed loop form the 

heater would only require to raise the temperature by some 50°C. A 9kW heater could raise 

the temperature by 50°C at flow rates of above 400 cubic ft/min (680m
3
/hr).  
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Figure 6.18: Outlet temperatures vs. flow rates for specific heater power ratings [11]. 

 

A schematic of the overall test-rig is shown in Figure 6.19. The fan which circulates 

the hot air is a high temperature centrifugal fan (Secomak 669SO) which is capable of long-

term operating with an inlet temperature of 300⁰C. This is a medium pressure fan with a 

static pressure of 1.7 kPa and a rated maximum flow rate of 750 m
3
/hr, albeit at a much 

reduced pressure of 1.1 kPa. The heater is a 3 phase 9kW Secomak model 632. It consist of a 

stainless steel tube (containing resistive heating elements) covered with an insulated jacket to 

maintain low external surface temperatures. The fan outlet is connected directly to the heater 

inlet. The heater coils are switched on/off using relays controlled by a PID controller and a 

standard V/f control is implemented to adjust the fan speed. The demonstrator SR machine if 

operating on full load would produce ~1.2kW of loss, a significant percentage of which is 

dissipated through the back of the core and into the re-circulating air raising the exit air 

temperature to ~400C. It is therefore necessary to effect some cooling of the return leg if the 

fan inlet is to be maintained at 300°C. This may have to be managed by partially exhausting 

some high temperature air and mixing with some room temperature air.  
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Figure 6.19: Schematic of the test-rig used for high temperature testing.  

 

The outlet of the heater was connected to the SR machine casing by means of a 

flexible, high temperature ducting which is shown in Figure 6.20a prior to the application of 

additional insulation. However, the temperature drop between the heater outlet and the 

machine inlet proved excessive in terms of achieving the desired steady-state temperatures 

and a single layer of some 10 mm thick of loose Rescor ceramic fibre blanket (akin in form to 

‘cotton wool’) which was kept in place by an overwrap of a Silica woven cloth was used to 

insulate the duct as shown in Figure 6.20b. An additional layer of the loose ceramic fibre 

insulation was then added, which was maintained in place with Rescor 390 ceramic paper and 

Aluminium foil as this proved more suitable for tight wrapping of the loose insulation. The 

final duct arrangement used for the tests is shown in Figure 6.20c.  
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(a) Flexible duct with no 

insulation 

 (b) Single layer of 

additional insulation with 

Silica cloth over-wrap 

(c) Second layer of 

insulation with 

Aluminium foil over-

wrap 

Figure 6.20: Heater to machine ducting at various levels of insulation. 

 

However, the limited pressure capability of the fan and the apparently large flow rate 

restriction presented by the complex series of narrow channels in the back of the core through 

which air flows resulted in rather modest air flow rates. This low flow rate resulted in 

problems with ensuring sufficient power flow into the system, since for reasons of safety, the 

heater power was regulated by the heater output temperature rather than by a down-stream 

sensor. The low flow rates resulted in rather rapid heating of the regulating temperature for 

the controller which in turn gave rise to significant modulation of the heater power despite 

the fact that the machine components were lagging significantly in terms of temperature rise.  

Although improving the insulation between the heater output and the machine inlet 

allowed some improvements in steady-state temperature capability, ultimately it became 

necessary to include a supplementary 500W, 230V ceramic heating element in the enclosure 

itself. This heater, which is rated for a continuous operating temperature of up to 700°C, is 

shown in Figure 6.21. This was independently controlled by a dedicated PID controller using 

a thermocouple mounted in the heater block itself. This reduced the time taken to heat up the 

rig components, and more particularly allowed a steady-state machine temperature of 350°C 

to be reached before testing the machine. In order to maximise the heating rate of the entire 

rig, the set-point temperature for the main air circulating heater was initially set at a 
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temperature substantially higher than the final target temperature and stepped down as the 

remainder of the rig heated up.  

For the purposes of measuring representative coil temperatures, thermocouples were 

attached to the surfaces in the end-winding regions of selected coils using an Idenden 10-02 

ceramic adhesive. It is recognised that this is a localised temperature and that there will be 

some degree of temperature gradient within the coil, particularly but not exclusively, when 

the machine is excited and there is appreciable copper loss generated in the stator coils 

themselves. Due to the location of the air inlet and outlet, a temperature variation across the 

machine will be expected especially under unexcited conditions. The thermocouple 

measurements were taken from coils numbered A1, B1 and C4 shown in Figure 6.22, as these 

were deemed to provide a representative set of coil locations and temperatures. It was 

observed that during initial ramping up of the test-rig temperature, the coil B1 would always 

have higher temperatures than coil A1, followed by C4. The average coil temperature quoted 

in the figures below is based on the average of the 3 measured coil temperatures and was 

considered to be the overall machine average.  

 In addition to thermocouples attached to the machine coils, the temperature at other 

key points in the test rig were measured using thermocouples. The locations of these 

thermocouples are: 

1. Inlet temperature - measured by a thermocouple mounted in the air-flow in the 

conical section of the ducting at the inlet to the insulated enclosure. 

2. Outlet temperature - measured by a thermocouple mounted in the air-flow in 

the conical section of the ducting at the outlet to the insulated enclosure. 

3. Ambient temperature - measured by a thermocouple in the main cavity of the 

enclosure 

4. Room temperature - measured by a thermocouple in the main test cell in 

which the entire test-rig was located. This temperature is not regulated per-se, 

but a powerful extract system can be used to avoid any significant drift in the 

room temperature. 
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Figure 6.21: Supplementary ceramic heater used in 350°C tests. 

 

 

Figure 6.22: Numbering of coils as positioned in the stator. 
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The variations in temperatures at key points around the test-rig up the point at which 

the testing was conducted are shown in Figure 6.23 for the 200°C test case. The initial set 

point on the heater outlet was set to 350°C. The downward steps in the inlet temperature 

show the effect of the manual adjustment of the system regulating temperature at the heater 

outlet which was dropped to 275°C at steady state. The set temperature of the ceramic heater 

was reduced from the initial set maximum of 700°C to 500°C at steady state.  

As noted previously, a significant temperature variation was observed across the 

stator. The average temperature of the three coils was adopted as being representative of the 

average temperatures across the entire stator. For this temperature set-point of 200C, the 

system takes ~2.5 hours to come to a reasonable steady-state. Figure 6.24 shows the variation 

in the measured temperatures for the 350°C test case. The heater outlet temperature for this 

case had to be increased from 450°C to 500°C in order to achieve the 350°C (average of the 

three measured coil temperatures). For the 350°C test case the system took ~5 hours for the 

average temperature in the coils to reach a steady state. 

 

 

Figure 6.23: Measured temperatures during heat-up procedure for 200°C test. 



192 

 

 

Figure 6.24: Measured temperatures during heat up to 350°C. 

 

6.6 Testing schedule 

Ultimately, in order to fully validate all the findings from the design study reported in 

chapter 5, it would be necessary to run the machine at the rated power and speed in a well 

controlled 350°C which prescribed air flow conditions in the cooling path. It was planned to 

perform some level of machine running at elevated temperatures in the test-rig by using a 

three-phase SR drive developed during a previous research project [3], and further developed 

as reported in [12].  Unfortunately, static testing of the SR machine and initial attempts to 

achieve some degree of rotation highlighted several practical problems which hindered the 

full commission of the test-rig. 

The setting up of the bearing stands at elevated temperatures and the limited overall 

stiffness of the overall drive-train gave rise to significant problems with unbalanced magnetic 

pull, to the extent that for currents in excess of 15A, it proved difficult to prevent the rotor 

from being drawn into contact with the stator bore. This may in part have been the result of 

the difficulty of reliably setting a symmetrical air gap, when trying to do this remotely with 

one degree of freedom at each end at elevated temperatures. Despite many endeavours to 

produce a system of sufficient stiffness and precision to run at elevated temperatures, 
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ultimately it was concluded that a fundamental re-appraisal of the test-rig, specifically in 

terms of the bearing arrangements would be required as detailed in section 6.7 at the end of 

this chapter. The level of rig re-design required in terms of structural and thermal issues 

around the bearings, was deemed to be prohibitive in terms of the outcomes of this research. 

Hence, testing of the demonstrator machine was limited to static considerations of many 

important aspects of behaviour, including extensive testing at the rated temperature of 350°C.    

 

6.6.1 As-manufactured coil resistance and inductance 

Prior to raising the machine temperatures, the resistance and inductance of the 

individual coils were measured. Due to the inherent saliency of the SR machine the 

inductance of the coils are functions of the rotor position. Therefore the minimum and 

maximum inductance was recorded by keeping the rotor at the aligned and unaligned 

positions. The coil resistances were measured using a Cropico DS5000 micro-ohmmeter, and 

the inductance was measured on a Hioki LCR meter at 1 kHz. As might be expected given 

the manual procedures involved in manufacturing coils, there was some variation in 

measured resistance and inductance. Normalising the mean values to 100%, gives resistance 

and inductance variations of ±7% and ±10% respectively.   
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Table 6-2: Measured as-manufactured resistance and inductances of the individual 

coils. 

Coil Resistance (mΩ) Lunaligned (μH) @1kHz Laligned (μH) @1kHz 

A1 25.0 178 695 

A2 23.9 164 771 

A3 24.2 178 704 

A4 24.1 164 613 

B1 25.0 163 720 

B2 26.4 176 760 

B3 25.2 161 648 

B4 24.9 177 632 

C1 27.4 184 750 

C2 27.8 176 723 

C3 25.9 190 698 

C4 25.3 167 642 

 

6.6.2 Measuring flux linkage vs. current curves 

The measured variations in flux linkage as a function of current and rotor angular 

position provides significant information regarding the torque capability using simple test 

equipment. The procedure involves driving a set of DC currents at a fixed rotor position and 

measuring the flux linkage in the coil. This would require a separate drive coil for carrying 

the current and sense coil to measure the flux-linkage of each phase. Since the SR machine 

coils consisted of 8 parallel strands insulated from each other, one strand was separated and 

used as a sense coil, and the remaining 7 strands were bunched and used as the drive coil. The 

rotor position was kept fixed at known angular positions using a locking mechanism shown in 

Figure 6.25. The measurements were taken by connecting all the coils in phase A in series. 

The flux linkage was measured using the Magnet Physik EF14 integrating flux meter, and a 
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20V, 100A Tektronix DC power supply with a current limit was used to drive the phase 

currents.  

 

 

Figure 6.25: Arrangement for measuring flux-linkage versus current curves at 

temperature.  

 

In measuring successive curves it is necessary to recognise that there may be some 

residual magnetisation remaining from previous excitation. These effects will be more 

pronounced around the fully aligned position. In order to minimise the effects of residual 

magnetisation, the current schedule was selected to be representative of a demagnetisation 

curve. The highest current was selected first, after which, the direction was reversed with the 

same magnitude. The current was then reduced in steps and consequently reversed to 

represent what may look like a step-wise demagnetisation curve. The procedure was also 

repeated with an increasing current profile and alternatively by selecting individual currents 

without switching polarities. In all the cases, the difference in the flux measurements was 

marginal and hence either scheme can be employed. 

Figure 6.26 shows a comparison of the predicted variation in the flux linkage as a 

function of current for a series of discrete rotor positions at room temperature. Although the 

flux linkage curve broadly matches the predicted curves, there is a small reduction in flux 

linkage at the aligned positions, which will correspond to a reduction in torque capability. 
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Figure 6.27 shows the measured flux linkage curves at room temperature, 200°C and 350°C.  

As expected there was a reduction in flux linkage close to the aligned conditions due to the 

reduction of permeability of the core. 

 

 

Figure 6.26: Comparison of measured (markers) and predicted (lines) flux linkage vs. 

current characteristics at various rotor angular positions (Mechanical angle of 0 

corresponds to fully aligned position). 
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Figure 6.27: Comparison of measured flux linkage vs. current characteristics at various 

rotor angular positions at room temperature, 200°C and 350°C. 

 

6.6.3 Steady state coil temperatures 

As mentioned previously, due to issues with bearing and rotor alignment, the SR 

machine could not be tested under rotating conditions. Therefore, after reaching the test 

temperatures and conducting the     measurements at elevated temperatures, further test 

were performed to establish representative thermal conditions within the coils (recognising 

that the absence of core loss means that the temperature distribution within the machine will 

be markedly different from rated operating conditions of 15kW at 30,000rpm). 

 The DC power supply was used to drive the rated current through all the coils. As the 

predicted rms phase current was 78A for an arrangement with 4 coils connected in parallel, 

each coil has an rms current of ~20A assuming equal current sharing. In this case, all 12 coils 

were series connected to the power supply (operating in constant current mode). The rated 

current of 20A was driven through the coils with ambient chamber temperatures of 200°C 

and 350°C for a period of 2 hours during which steady-state temperatures were achieved. The 

DC current and voltage across the series connection of 12 coils were measured in order to 

calculate the increased resistance and hence estimate a mean coil temperature from the 
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manufacturer’s published temperature coefficient of resistance for the actual wire (0.004041 

per °C as compared to 0.00393 per °C for pure copper). 

The measured variation in temperatures from the thermocouples is shown in Figure 

6.28 for the 200
°
C test case. The mean coil temperature estimated from the current and 

voltage measurements is shown in Figure 6.29. For the 200
°
C case the bulk coil temperature 

increased by ~65
°
C which may be higher than expected considering the core losses were not 

present in the stator. The measured average coil temperatures at the end windings increased 

by 75
°
C above the nominal 200

°
C ambient. The ambient temperatures within the enclosure 

also crept up as it was not directly controlled (recalling that the control temperature is the 

heater outlet). Figure 6.30 shows the measured localised coil temperatures for the 350
°
C test 

case with rated current in the coils. Figure 6.31 shows a 75
°
C rise in bulk coil temperature as 

estimated from the increase in total coil resistance. The measured average coil temperatures 

at the end windings increased by 80
°
C above the nominal 350

°
C ambient in this case.   

The higher than expected coil temperatures were due to the low flow rates achieved 

by the fan and heater arrangement, restricting the level of cooling provided at the back of the 

stator core. The major drawback of the lower flow rates however was that a significant 

temperature differential existed across the stator from the air inlet to the outlet of ~80
°
C at the 

350°C temperature set-point. This meant that the coils closer to the inlet had temperature a 

higher than 350
°
C (up to 380

°
C) and those at the outlet lower. Therefore a means to more 

uniformly heat up the demonstrator machine would need to be employed for future test rigs 

and a higher flow rate cooling air must be applied to reduce the large temperature differential 

across the stator.  
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Figure 6.28: Measured temperatures with rated current in coils at 200°C. 

 

 

Figure 6.29: Average coil temperature inferred from resistance measurements at 200
°
C. 
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Figure 6.30: Measured temperatures with rated current in coils at 350
°
C. 

 

 

Figure 6.31: Average coil temperature inferred from resistance measurements at 350
°
C. 
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6.7 Proposed upgrades to demonstrator machine and test rig 

As mentioned in section 6.3 the unavailability of bearings at operating temperatures 

imposed a number of compromises on the rotational machine test-rig at high temperatures, 

which turned out to be very restricting in terms of demonstrating viable rotation of the 

demonstrator. The test-rig architecture of having the bearings situated remotely from the 

machine on separate end stands was successful at keeping bearings insulated and below its 

rated temperatures. However, the method employed to adjust the rotor centre height at both 

ends could not align the rotor accurately enough at elevated temperature, resulting in 

excessive unbalanced radial forces when the coils are excited. Therefore, an essential upgrade 

would be to modify bearing stands and include necessary systems to measure the rotor 

position with respect to the stator, when the machine is at temperature and largely 

inaccessible. Recourse to a more conventional integrated machine end-cap with highly 

localised cooling of the bearings might be another option, i.e. something akin to Figure 6.8. 

The dynamometer machine used to drive/load the demonstrator machine would also need to 

be mounted on adjustable endplates such that the two shafts can be aligned at temperature.  

The second major shortcoming of the test-rig was the inability to sustain sufficiently 

high air flow rates due to the large pressure drop across the cooling fins on the stator back 

iron and the modest pressure capability of the fan employed. Overcoming this problem either 

requires procuring a high pressure/high temperature fan, or reconsidering the cooling strategy 

altogether, the first option being the preferred. The search for commercially available high 

pressure/temperature fans however proved fraught, and it may be necessary to employ a 

bespoke fan design to more closely replicate the kind of high pressure, high temperature air 

flow that would be available in an engine.  

Managing the rotor losses in the machine has been largely over-looked in this study, 

but is a significant factor if rotor temperatures are to be contained. Another issue faced was 

the need to employ Titanium end plates due to the mechanical failure of the preferred 

Alumina counterparts. A simple method to overcome this would be to employ a relatively 

lower core stacking factor, in order to reduce the stresses on the end plates. 
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6.8 Summary  

This chapter has described the manufacture of a high temperature electrical machine 

demonstrator together with an associated test-rig. Of the various elements of the machine, by 

far the most challenging in terms of the need for several iterations of the process has been the 

manufacture of the stator coils. The final set of coils had a lower than expected packing 

factor, however the initial prediction of packing factor of 0.3 was based from relatively 

simple single stranded circular coils. The larger number of parallel wires makes 

manufacturing high temperature coils much more problematic, and methods of increasing 

packing factors are vital for such machines. 

The limitations on bearings also proved to be a significant factor in constructing a 

demonstrator for high rotational speeds. The need to accurately centre the rotor axis and 

cancel out unbalanced forces required significant modification to the built test rig and hence 

limited the possibilities of testing the SR machine. The cooling strategy proposed for the 

stator although provides a large surface area gain required high pressure air which could not 

be achieved from the high temperature fan. However as mentioned in section 6.7, with 

extensive structural modifications to the bearing arrangement (most likely a radical re-design) 

and modifications to the heating arrangement dynamometer, the testing of the machine is 

considered as future work. 
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Chapter 7 : Conclusions 

 

7.1 Introduction 

This thesis has described research contributions in the field of electrical machines for 

operation in high temperatures, which culminated in the design, construction and preliminary 

testing of an SR machine for operation in a 350°C ambient. The thesis has described methods 

to overcome many of the challenges of high temperature machine operation, particularly in 

terms of the modelling and understanding of the impact of temperature on key material 

properties and aspects of machine performance. Some of the key outcomes and resulting 

suggestions for future work in this area are outlined in this chapter. 

 

7.2 Material properties 

The research has demonstrated material properties for operation at such temperatures 

are critical feature, both in terms of material selection and the effect of temperature and 

ageing on performance. Key findings are 

i. The magnetic properties of high temperature grades of permanent magnet materials are so 

dilute at 350-400°C (e.g. 50% of room temperature remanence of conventional grades)  

that they are  unlikely to be suitable for use in high temperature machines, without a step 

change in magnetic performance from new materials.  

ii. There is evidence that thermal ageing rates increase at temperatures above 300°C and 

begin to accelerate above 350°C. Hence, thermal ageing of core materials is an important 

issue to factor in during material grade selection and predictions of machine performance 

when operating at these temperatures.  

 

7.3 Electromagnetic modelling of machines 

In order to more reliably predict the performance of machines at elevated temperatures, 

several new modelling methods were developed and used during the course of this research: 
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i. A method to calculate instantaneous core loss was introduced, which was formulated 

such that it could be used in circuit simulations to ensure power balance.  

ii. The Preisach model was shown to predict instantaneous hysteresis loss effectively for 

complex excitations.  

iii. The method employed to represent losses in the circuit simulation had some drawbacks, 

notably the requirement to divide the total loss among different phases. 

iv. The instantaneous core loss model showed good correlation when validated against 

experimental measurement on a toroidal sample. However for the test cases considered, 

the anhysteretic or lossless model showed some discrepancies. This illustrated the 

limitations of using a single anhysteretic curve for characterising reactive power. 

v.  The effects of including core loss in the system predictions for the SR machine model 

were not as pronounced as expected in terms of the effect on the machine current and 

torque. Nevertheless, the model provides a rigorous power balanced approach to 

dynamic circuit coupled FE modelling. 

 

7.4 Material characterisation for loss models 

The relative lack of published data on high temperature magnetic properties for use in 

the proposed model made it necessary to undertake a substantial programme of material 

characterisation, the key outcome of which are: 

 

i. By taking advantage of the ability of the model to predict loss for arbitrary flux 

waveforms, simple open loop measurements methods such as those proposed in chapter 

4 can be employed.  

ii. Prediction of losses over a large frequency range up to 4 kHz has been shown to have 

limitations. The model based on using the residual loss to calculate excess loss 

coefficients showed a significant spread of the predicted excess loss coefficients. 

Therefore it was not possible to specify a single value of the co-efficient to cover such a 

wide range of frequency and flux density.  

iii. The measurements on the aged samples demonstrated that the static loop area and 

electrical resistivity of the Co-Fe core material were relatively stable with ageing at 

high temperatures, and yet there was a significant increase in high frequency core 
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losses. Thus, there is reasonable evidence base to suggest that excess loss is a 

significant contributor to the increase in loss with temperature.  

iv. The spread of values of excess loss coefficients was much larger in the case of the aged 

samples.  Therefore, a modified dynamic model was proposed which employs a larger 

number of parameters in order to better fit the measured loss data. However this model, 

which is based on fitting parameters to observations, does not have a rigorous 

theoretical basis and, was used as a means to an end. 

 

7.5 Design of a high temperature SR machine 

The design optimisation of a 15kW 30,000rpm SR machine for 350°C ambient 

operation was described in detail. Key issues which arose in the design are: 

i. The design illustrated the effects of the material properties on the machine sizing and 

operation.  

ii. Although the initial concern at the outset of the analysis was that the higher resistivity 

of copper would lead to excessive copper loss, it transpired that it was a relatively small 

contributor to the overall loss was the high core loss.  

iii. The high core loss, which is largely a consequence of the material grade selection and 

the high frequency nature of the machine, proved to be the dominant loss mechanism in 

the stator from an efficiency and, somewhat surprisingly, thermal standpoint. 

iv. The final design showed that moderate power densities (order of ~1.35 kW/kg) can be 

achieved for the rated specification at an ambient temperature of 350°C. However the 

machine required a significant amount of heat dissipation from the core back iron. 

v. Several practical factors were not incorporated in the machine models, such as high 

frequency copper losses, ageing effects in the Co-Fe core and Nickel diffusion in the 

conductor. All these factors could influence the outcome of the optimisation in terms of 

identifying the most appropriate slot depth. This was mitigated to some degree by a 

sensitivity study.  

vi. The rotor would require a significant degree of cooling on its exposed surfaces to 

maintain temperatures below 450°C.  
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7.6 Construction and testing of the high temperature demonstrator 

machine 

The many challenges faced in the manufacture of a machine prototype and test-rig for 

high temperatures has been discussed at length in chapter 6. Key outcomes include: 

i. The manufacture of reliable high temperature coils was the most challenging aspect of 

the machine build. Typically high speed machines require coils with multiple parallel 

strands, employing methods such as bundle transposition to reduce AC copper losses.  

ii. The bearings were the main limitation to testing machines at temperature. The non-

availability of high temperature bearings required the use of bearing stands that were 

insulated from the high temperatures. This lead to several complications such as uneven 

thermal expansion, which required adjustment of the bearing heights.  

iii. A method to cool the stator core directly by employing a large number of parallel 

cooling channels was proposed as a solution to dissipating the large heat flux at the 

stator core. This method takes advantage of the high velocity and high pressure air 

present in the HP compressor of the gas turbine. However the method used to generate 

the high temperature air in the lab had severe limitations due to the low pressure of the 

high temperature fan.  

iv. The practical demonstration of a reliable, high-speed, power-dense electrical machine 

operating in a 350°C ambient still remains a somewhat distant prospect at the 

culmination of this research. However, this is now largely an issue of mechanical 

arrangements and bearing rather than one of limited electromagnetic understanding.  
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Appendix A: Curve fits of core loss model to published 

data for Hiperco50-HS. 

This appendix illustrates results of employing the curve-fitting technique described in 

section 2.7, on the published data of thermally aged Hiperco 50-HS samples. The published 

core loss data at temperatures up to 400°C at ageing times of 1000, 2000 and 5000 hours 

were fitted to the standard core loss model described in section 2.7.  

 

Table A.1: Variation in parameters of loss model with temperature for 1000 hours aged 

Hiperco 50-HS. 

Temperature (°C) 
Room 

Temperature 
200 400 

Resistivity (μΩ-m
-1

) 38 43 51 

     0.8x10
-4

 1.0x10
-4

 1.5 x10
-4

 

    0.12 0.11 0.10 

a 1.9 2.0 2.0 

b -0.15 -0.15 -0.15 
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Room temperature 

 

200°C 

 

400°C 

Figure A.1: Curve fit of loss model to 1000hrs aged Hiperco50-HS. 
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Table A.2: Variation in parameters of loss model with temperature for 2000 hours aged 

Hiperco 50-HS. 

Temperature (°C) 
Room 

Temperature 
200 400 

Resistivity (μΩ-m
-1

) 36 40 49 

     0.8x10
-4

 1.2x10
-4

 1.4 x10
-4

 

    0.12 0.12 0.11 

a 1.9 1.9 1.9 

b -0.15 -0.15 -0.15 

 

Table A.3: Variation in parameters of loss model with temperature for 5000 hours aged 

Hiperco 50-HS. 

Temperature (°C) 
Room 

Temperature 
200 400 

Resistivity (μΩ-m
-1

) 31 35 41 

     1.0x10
-4

 1.6x10
-4

 2.0 x10
-4

 

    0.14 0.13 0.125 

a 2.0 1.9 1.8 

b -0.15 -0.15 -0.15 
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Room temperature 

 

200°C 

 

400°C 

Figure A.2: Curve fit of loss model to 2000 hours aged Hiperco50-HS. 
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Room temperature 

 

200°C 

 

400°C 

Figure A.3: Curve fit of loss model to 5000 hours aged Hiperco50-HS. 
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Appendix B: Measured and predicted core loss in un-

aged Vacodur S+ samples 

 

Figure B.1:  Measured (marker) vs. predicted (line) total loss at room temperature 

using kexc=2.3x10
-4

 for Vacodur S+ (390MPa). 

 

 

Figure B.2:  Measured (marker) vs. predicted (line) total loss at 200°C using 

kexc=2.1x10
-4

 for Vacodur S+ (390MPa). 
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Figure B.3:  Measured (marker) vs. predicted (line) total loss at 400°C using 

kexc=1.5x10
-4

 for Vacodur S+ (390MPa). 

 

 

Figure B.4:  Measured (marker) vs. predicted (line) total loss at room temperature 

using kexc=4.4x10
-5

 for Vacodur S+ (620MPa). 
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Figure B.5:  Measured (marker) vs. predicted (line) total loss at 200°C using 

kexc=6.2x10
-5

 for Vacodur S+ (620MPa). 

 

 

Figure B.6:  Measured (marker) vs. predicted (line) total loss at 400°C using 

kexc=5.3x10
-5

 for Vacodur S+ (620MPa). 
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Appendix C: Measured and predicted core loss in the 

aged Vacodur S+ samples 

 

Table C.1: Predicted excess loss coefficients for 500 hours aged Vacodur S+ (390Mpa). 

Sample Co-efficient / 

number 

1 2 3 

500 hours aged Vacodur 

S+ (390Mpa) at room 

temperature 

p 1.5 1.8 2.2 

k 3.53 x10
-5

 6.08 x10
-6

 2.04 x10
-7

 

500 hours aged Vacodur 

S+ (390Mpa) at 200°C 

p 1.5 1.8 2.2 

k 2.67 x10
-5

 6.87 x10
-6

 1.64 x10
-7

 

500 hours aged Vacodur 

S+ (390Mpa) at 400°C 

p 1.5 1.8 2.2 

k 3.87 x10
-5

 5.63 x10
-6

 2.42 x10
-7

 

 

 

Figure C.1: Measured (marker) vs. predicted (line) total loss for 500 hour aged 

Vacodur S+ (390MPa) at room temperature.  
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Figure C.2: Measured (marker) vs. predicted (line) total loss for 500 hour aged 

Vacodur S+ (390MPa) at 200°C.  

 

 

Figure C.3: Measured (marker) vs. predicted (line) total loss for 500 hour aged 

Vacodur S+ (390MPa) at 400°C.  

Table C.2: Predicted excess loss coefficients for 500 hours aged Vacodur S+ (620Mpa). 
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Sample Co-efficient / 

number 

1 2 3 

500 hours aged Vacodur 

S+ (620Mpa) at room 

temperature 

p 1.5 2.1 2.5 

k 6.88 x10
-5

 1.90 x10
-6

 2.71 x10
-8

 

500 hours aged Vacodur 

S+ (620Mpa) at 200°C 

p 1.5 2.1 2.5 

k 6.96 x10
-5

 1.68 x10
-6

 1.06 x10
-8

 

500 hours aged Vacodur 

S+ (620Mpa) at 400°C 

p 1.5 2.1 2.5 

k 1.54 x10
-5

 1.20 x10
-6

 1.79 x10
-8

 

 

 

Figure C.4:  Measured (marker) vs. predicted (line) total loss for 500 hour aged 

Vacodur S+ (620MPa) at room temperature.  
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Figure C.5: Measured (marker) vs. predicted (line) total loss for 500 hour aged 

Vacodur S+ (620MPa) at 200°C.  

 

 

Figure C.6: Measured (marker) vs. predicted (line) total loss for 500 hour aged 

Vacodur S+ (620MPa) at 400°C.  
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Table C.3: Predicted coefficients for the excess loss model for 1000 hours aged 

Vacodur S+ (390Mpa). 

Sample Co-efficient / 

number 

1 2 3 

1000 hours aged Vacodur 

S+ (390Mpa) at room 

temperature 

p 1.5 1.9 2.7 

k 1.11x10
-4

 3.68 x10
-6

 2.64 x10
-9

 

1000 hours aged Vacodur 

S+ (390Mpa) at 200°C 

p 1.5 1.9 2.7 

k 6.61 x10
-5

 4.02 x10
-6

 3.55 x10
-9

 

1000 hours aged Vacodur 

S+ (390Mpa) at 400°C 

p 1.5 1.9 2.7 

k 8.56 x10
-5

 3.69 x10
-6

 3.22 x10
-9

 

 

 

Figure C.7: Measured (marker) vs. predicted (line) total loss for 1000 hour aged 

Vacodur S+ (390MPa) at room temperature. 
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Figure C.8: Measured (marker) vs. predicted (line) total loss for 1000 hour aged 

Vacodur S+ (390MPa) at 200°C.  

 

 

Figure C.9: Measured (marker) vs. predicted (line) total loss for 1000 hour aged 

Vacodur S+ (390MPa) at 400°C.  
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Table C.4: Predicted coefficients for the excess loss model for 1000 hours aged 

Vacodur S+ (620Mpa) 

Sample Co-efficient / 

number 

1 2 3 

1000 hours aged Vacodur 

S+ (620Mpa) at room 

temperature 

p 1.5 1.9 2.6 

k 1.48 x10
-4

 1.12 x10
-6

 1.90 x10
-8

 

1000 hours aged Vacodur 

S+ (620Mpa) at 200°C 

p 1.5 1.9 2.6 

k 1.74 x10
-4

 3.70 x10
-6

 2.02 x10
-8

 

1000 hours aged Vacodur 

S+ (620Mpa) at 400°C 

p 1.5 1.9 2.6 

k 3.52 x10
-4

 1.24 x10
-5

 1.16 x10
-8

 

 

 

Figure C.10: Measured (marker) vs. predicted (line) total loss for 1000 hour aged 

Vacodur S+ (620MPa) at room temperature. 
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Figure C.11: Measured (marker) vs. predicted (line) total loss for 1000 hour aged 

Vacodur S+ (620MPa) at 200°C.  

 

 

Figure C.12: Measured (marker) vs. predicted (line) total loss for 1000 hour aged 

Vacodur S+ (620MPa) at 400°C.  
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Table C.5: Predicted coefficients for the excess loss model for 2000 hours aged 

Vacodur S+ (390Mpa) 

Sample Co-efficient / 

number 

1 2 3 

2000 hours aged Vacodur 

S+ (390Mpa) at room 

temperature 

p 1.5 1.9 2.7 

k 9.56 x10
-5

 1.72 x10
-5

 3.23 x10
-9

 

2000 hours aged Vacodur 

S+ (390Mpa) at 200°C 

p 1.5 1.9 2.7 

k 1.30 x10
-4

 1.72 x10
-5

 4.42 x10
-9

 

2000 hours aged Vacodur 

S+ (390Mpa) at 400°C 

p 1.5 1.9 2.7 

k 3.15 x10
-4

 7.38 x10
-6

 7.77 x10
-9

 

 

 

Figure C.13: Measured (marker) vs. predicted (line) total loss for 2000 hour aged 

Vacodur S+ (390MPa) at room temperature.  
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Figure C.14: Measured (marker) vs. predicted (line) total loss for 2000 hour aged 

Vacodur S+ (390MPa) at 200°C.  

 

 

Figure C.15: Measured (marker) vs. predicted (line) total loss for 2000 hour aged 

Vacodur S+ (390MPa) at 400°C.  
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Table C.6:  Predicted coefficients for the excess loss model for 2000 hours aged 

Vacodur S+ (620Mpa) 

Sample Co-efficient / 

number 

1 2 3 

2000 hours aged Vacodur 

S+ (620Mpa) at room 

temperature 

p 1.5 1.8 2.2 

k 2.22 x10
-4

 2.18 x10
-5

 2.07 x10
-6

 

2000 hours aged Vacodur 

S+ (620Mpa) at 200°C 

p 1.5 1.8 2.2 

k 2.49 x10
-4

 1.52 x10
-5

 2.25 x10
-6

 

2000 hours aged Vacodur 

S+ (620Mpa) at 400°C 

p 1.5 1.8 2.2 

k 4.76 x10
-4

 3.06 x10
-5

 1.83 x10
-6

 

 

 

Figure C.16: Measured (marker) vs. predicted (line) total loss for 2000 hour aged 

Vacodur S+ (620MPa) at room temperature.  
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Figure C.17: Measured (marker) vs. predicted (line) total loss for 2000 hour aged 

Vacodur S+ (620MPa) at 200°C. 

 

 

Figure C.18: Measured (marker) vs. predicted (line) total loss for 2000 hour aged 

Vacodur S+ (620MPa) at 400°C. 
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Appendix D: Simulink models 

Figure D.1: Main Simulink model for the SR machine. 



 

229 

 

 

 

Figure D.2: Core loss model. 

 

 

Figure D.3: Machine model from look up tables. 
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Figure D.4: Circuit model 
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Figure D.5: Converter model from Power-sim toolbox. 

 

 

Figure D.6: Generation of gate signals. 
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Appendix E: Solidworks drawings of the demonstrator 

machine. 

 

 

Figure E.1: Isometric view of high temperature SR machine demonstrator. 
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Figure E.2: Front and section view of high temperature SR machine demonstrator. 

 

 

Figure E.3: Stator and rotor lamination profiles. 
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Figure E.4: Stator casing. 

 

 

Figure E.5: Stator casing end-plates. 
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Figure E.6: Stator Assembly with windings. 

 

 

Figure E.7: Rotor assembly and parts. 
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Figure E.8: Bearing stands. 

 

 

Figure E.9: Thermal enclosure. 
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Figure E.10: Stator end plate base stands and HP air inlet/outlet. 

 

 

Figure E.11: Stator core clamping plates. 
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Figure E.12: Base plate. 
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Appendix F: Photographs of demonstrator machine in 

course of build. 

  

 

Figure F.1: Single stator core lamination  

 

Figure F.2: Indexing of laminations along length to form the stator core. 
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Figure F.3: Tubular section of stator casing  

 

Figure F.4: Stator core part-way through assembly  
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Figure F.5: Close up of cooling apertures illustrating the cooling channels realised in the 

stator core. 

 

 

Figure F.6: Titanium casing end-caps. 
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  Figure F.7: Laser-cut Alumina clamping-plates. 

  

 

Figure F.8: Alumina clamping plates prior to fitting of Titanium end-cap. 

  

 

Figure F.9: Failed Alumina clamping plates.  
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Figure F.10: Titanium clamping plate prior to insertion into the stator casing. 

  

 

Figure F.11: Assembled stator casing, core and Titanium clamping plates. 
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Figure F.12: Cooling ports. 

 

Figure F.13: Titanium rotor hub  

 

Figure F.14: Titanium rotor clamping plate.  
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Figure F.15: Completed rotor assembly.  

 

 

Figure F.16: Adjustable bearing stand  



 

246 

 

 

Figure F.17: Test-rig base-plate.  

 

 

 Figure F.18: Thermal enclosure during construction. 

 

 

 

 


