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Abstract

This thesis describes the synthesis of macrocyclic trinuclear ruthenium(l1) “bowls”
that incorporated 9-methyladenine, 9-benzyl-9H-purin-6-amine, 9-ethyladenine and
9-(4-methoxybenzyl)-9H-purin-6-amine as ligands with good yields and high
purities. Their binding to a variety of anion guests was investigated through nuclear
magnetic resonance as well as electrochemical studies. These macrocycles possess
extremely interesting binding affinity:*H-NMR investigations revealed selectivity in
the macrocycles-host binding, particularly with medium sized halide anions, namely
chloride and bromide, being most strongly bound. Generally, electrochemistry-based
titrations showed good agreement with the NMR host-guest titrations results, with
potential shifts being dependent on binding affinities -although there are some
specific differences in the results with fluoride and iodide. In the case of nuclear
magnetic resonance we found that the fluoride ion is too small in size to be suitable
for the macrocycle cavity to bind strongly, whilst in the case of electrochemistry
titrations larges shifts are seen after addition of fluoride due to the high charge
density of thision.

It was found that more complex oxo-anions also bound to the host and affected the
Ru" based oxidations. However, in general, the binding affinities for these more
complex anions were lower than the highest values for halide guests. Agan
electrochemical potential shifts generally correlated with binding affinity. Studies
also revealed that the electrochemical response to addition of anion guest was
complex, as the guest induced shifts of the three Ru" oxidations of the bowls were

not always the same. This observation indicates that individua guests preferentially



stabilize specific oxidation states of the bowl. Due to this phenomenon, the

macrocycles can function as novel “ion-switched electron transfer gates.”
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Chapter 1

1. Introduction

Supramolecular chemistry is defined as the chemistry of the non-covalent bond.*
The development of this area of chemistry has been tremendous within the last
guarter of a century. This expansion is mainly due to the growing knowledge
regarding synthetic and characterisation methods for complex structures.”®
Researchers in supramolecular chemistry examine weaker and reversible
noncovalent interactions, such as hydrogen bonding, meta coordination
hydrophobic forces, van der waals forces, m interactions, and electrostatic effects.
Crucial areas that have been researched by supramolecular chemistry involve
molecular folding, molecular self-assembly, molecular recognition, and host-guest
chemistry. Expansion into these areas is mainly due to the growing knowledge
concerning synthetic and characterization methods for complex construction. This
research has been inspired by the structure and function of assemblies observed in
nature such as the hydrogen bonded structure of DNA, the ability of enzyme
receptor sites to act on one molecule with absolute selectivity, and the control by
metall oproteins such as haemoglobin over ameta coordination environment. True to
its inspiration, supramolecular chemistry is a highly interdisciplinary field
encompassing chemistry (selective and recognition transformation), biology
(tranglocation of drugs across membranes), and materials science (construction of
macroscopic assemblies and devices on the molecular level).* It may be loosely
divided into two categories: host-guest chemistry (also known as molecular
recognition) and self assembly.

1.1 Host-Guest Chemistry
Host-Guest chemistry in its simplest sense can be considered to involve a molecule
(a “host’) binding another molecule (a ‘guest’) to produce a host-guest complex or
supermolecule. The host is quite often a large molecule or aggregate for example an
enzyme or synthetic cyclic compound holding a sizeable, central cavity or hole. The
host is aso the molecular species possessing convergent binding sites (e.g. Lewis
basic donor atoms etc.). The guest may be a simple inorganic anion, a monoatomic

cation, a simple inorganic, or a more complex molecule such as a hormone. Guests
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possess contrasting binding sites (e.g. Lewis acidic metal cation, a spherical
hydrogen bond acceptor halide anion). The related field of crystal engineering is
concerned is with study of intermolecular interaction in the solid state, the
construction of new solids and architectures, and the improvement of functional
materials.

The synthetic design of an effective host or receptor complex requires a number of
criteriato be met. Theseinvolve: -

1-the host should be macrocylic and contain a large cavity in which the number of
interactions with the bond guest can be maximized.

Macrocycles are very useful in supramolecular chemistry as they provide whole
cavities that can completely surround guest molecules and may be chemically
modified to fine-tune their properties. Cyclodextrins, calixarenes, cucurbiturils and
crown ethers are readily synthesized in good quantities and they are therefore
convenient for use supramolecular systems.

2- The Van der Waals surfaces and electrostatic potential surfaces of the host and
guest should be complementary.

3- The host should be relatively rigid so that the loss of conformational entropy on
binding a guest is minimised.

The synthesis of such macrocyclic structures is not straightforward; the use of high
dilution is one way to accomplish the synthesis of macrocyclic structures, but yields
can be low and chromatographic separation of linear and cyclic oligomers difficult.
One dlternative is template directed synthesis.® This approach is effective when there
are strong interactions between the template and the precursor. But templating is not
so successful for the construction of hosts for neutral guests where the interactions

between template and precursor are orders of magnitude weaker.

1.1.1 Self-Assembly

Current research has seized on self-assembly as a promising approach to the
generation of compounds with enormous molecular sized cavities. Self-assembly is
one of the core concepts of supramolecular chemistry and has been defined as the
spontaneous formation of higher-ordered structures from molecular construction
blocks. Research into biological systems led to this hypothesis being put
forward.’As understanding on the complex architectures found within living cells



became deeper, the idea that such assemblies were built up by the convergent
assembly of smaller building blocks was increasingly accepted. In order to provide
a general framework for discussion and research, Lindsey.” Created a wide-ranging
classification scheme for self-assembly processes. Encompassing self-assembly
processes in biology and chemistry, this definitive scheme is divided into seven

broad, overlapping classes.

1.1.1.1 Class 1. Strict Self-Assembly

Strict self-assembly concerns all processes where components assemble reversibly
and the resulting structure is the most stable structure available to that system under
those conditions. One example of such a system is the Tobacco Mosaic Virus
(TMV)®® whose particles consist of a helical strand of DNA embedded in a right-
handed helix composed of identical protein subunits. TMV particles will dissociate
into their component parts by changes in pH, temperature or even pressure.
However, once the correct conditions are attained again, protein subunits and RNA
spontaneously reassemble into virus particles that are indistinguishable from the
original TMV.

1.1.1.2 Class 2. Irreversible Self-Assembly

This class is the converse situation of 2.1. Steps towards the final assembly are
irreversible; consequently the building blocks must assemble into the final correct
structure with no margin for error. This type of process is currently attracting much

attention in synthetic organic chemistry.**°

1.1.1.3 Class 3. Precursor Modification Followed by Self-Assembly

These processes involve the synthesis of precursors that are subsequently modified.
A biological exampleis collagen synthesis. Collagens are fibrous proteins that form
the maor component of skin and bone. They are the most abundant mammalian
protein and are found in long, extracellular polymeric structures called fibrils. In
turn, these fibrils are often aggregated into larger cables known as fibers that are big
enough to be viewed under light microscopes™.

Assembly of such structures within a cell would be fatal. To prevent such an
occurrence a precursor, known as procollagen, is synthesised. Procollagen consists

of triple helical polypeptide strands capped at their terminal ends by amino acid
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chains, called propeptides, that prevent aggregation of procollagen molecules. Once
synthesised, procollagen is secreted out of the cell, where proteolytic enzymes
remove the propeptides. The resulting collagen molecules are severa orders of
magnitude less soluble than their precursors and self-assembly of fibrils is rapidly
initiated.™

1.1.1.4 Class 4. Self-Assembly with Post-M odification

In this case the self-assembly process precedes the final modifications that lead to
the targeted architecture. Using this powerful methodology, self-assembled
structures can be irreversibly locked into position. Within supramolecular chemistry,
this strategy has been most commonly employed in the elegant syntheses of
catenanes, rotaxanes, knots, and other interlocked species.*

1.1.1.5 Class 5. Assisted Self-Assembly

Here externa factors, that are not part of the final assembly, mediate the self-
assembly process. This concept was developed as the function of molecular
chaperones became apparent.** Chaperones help in folding of nascent polypeptide
chains by preventing aggregation of peptide sequences and modulate refolding of
denatured proteins. Chaperones do not affect the thermodynamics of folding - the
ratio of folded and unfolded polypeptides is left unchanged — but they do influence
the kinetics of the process. It is thought that this is accomplished by stabilising
intermediates along the folding pathway, thus decreasing activation-energy barriers.

1.1.1.6 Class 6. Directed Self-Assembly

In Lindsey’s original definition this class includes processes where a template
participates as a structural element in the self-assembly process, but does not appear
in the final assembled architecture. An example from biology is the scaffolding
protein directed assembly of viral capsids. External and internal scaffolding protein
frameworks direct the construction of the protein coat that houses the viral DNA.
Packaging of DNA is then accompanied by withdrawal of the internal scaffolding,

and the final virion is produced after removal of the external scaffold.*



An example from chemistry is the use of vesicles, liquids and foams to direct
biomimetic mineralisation and pol ymerisation. Such templates, whose existence may
only be transitory, have been used to template the assembly of structurally complex,
three-dimensional architectures.®

Subsequently, within supramolecular chemistry, the term directed self-assembly has
become more generally understood to include any templated process that brings
together molecular components, even if the directing moiety is part of the final

structure.*®

1.1.1.7 Class 7. Self-assembly with I nter mittent Processing

This final class incorporates elements from all the proceeding classes. It includes al
processes where there are sequential phases of self-assembly and irreversible

modification. Such complex processes are still the exclusive domain of biology.

1.1.2 Metal-lon Templated Self-Assembly

Self-assembled complexes are discrete, structurally well defined species composed
of at least two molecular units connected by non-covalent interactions. The use of
non-covalent interactions to generate macrocyclic structures is particularly
advantageous since the cyclisation process is under thermodynamic control and the

entropicallyunfavorablepolymerisation is avoided.

The construction of amost any entity that contains a transition metal requires an
assessment of the angles between the binding sites of each donor and acceptor
subunit. Based on the value of this angle, the subunits can be classed in two types:
linear subunits have an angle of 180°C, and angular subunits have other, smaller
angles.’” When these building blocks are combined the structure of the resulting
species will depend solely on the symmetry and the number of binding sites within
each subunit. Therefore, the symmetry of the resulting assembly will depend solely
on the symmetry of each building block. Thus monocyclic entities can be built by
combining subunits with a symmetry axis not higher than twofold, whilst the
construction of polycyclic frameworks require at least one subunit to possess a

symmetry axis higher than twofold.*®
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Figure 1.1 Molecular library of cyclic molecular polygons.*®

The design of three-dimensional polyhedra is more complex since it requires the
interaction of many more subunits and at least one subunit needs more than two
binding sites. However, a ssmilar molecular library of cyclic molecular polyhedra

may be constructed.'’

It is important to note that this approach only accounts for the angles between the
binding sites within each free subunit and extrapolates them into the fina product. It
can therefore be assumed that the value of the directing angle within each subunit
does not change significantly upon its incorporation into the self-assembled
structure. In redlity, distortions of several degrees may occur, but in most cases they
can be neglected, as weak coordination bonding to the transition metal is likely to
prevent the formation of highly distorted structures.

The strategy of receptor site self-assembly is one that has only been exploited in
synthetic chemistry in recent years. A range of other interactions can be used for the
association of two or more compounds in the formation of new recognition sites. For
example, Rebek has illustrated that complementary lactam subunits situated on a

concave framework can dimerize to form spherical structures - Figure 1.2.%°



Figure 1.2 Rebek’s self-assembled ball structure.

These self-assembly cavities bind small organic guests in nonpolar solvents.® The
complementarity between thymine and adenine bases has been used by Gokel® in
the arrangement of two hydrogen-bonded base pair units connected by crown ethers.

The resulting box structures are capable of coordinating akyl bis-ammonium ions
inside the self-assembled bis-crown ether cavity - Figure 1.3.
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Figure 1.3 Gokel’s self-assembling host.

These two exampl es represent systems where hydrogen bonding is used as the
primary interaction to generate the recognition position.



1.2 Intramolecular Assembly of Recognition Sites by a single Metal
lon

The ability of ametal ion to organize aflexible ligand around its coordination sphere
has led to the design of severa intramolecularly organized recognition sites. This
concept is exemplified in Figure 1.9 where coordination of one part a molecule to a
metal center resultsin the allosteric organization of a second distant binding site. For
example, the flexible bis(aminomethyl)pyridine derivative — Figure 1.4, developed
by Scrimin, is organized by Cu®* binding to the tridentate binding site. This leads to

promoted complexation of second Cu?* ion at the distal amine site.

Br- NMe3
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Figure 1.4 Scrimin's self-assembling host bis(aminomethyl)pyridine
derivative.

The resulting bis Cu“"complex displays selective catalysis of the hydrolysis of -
amino acid esters due to the cooperative effect of the metal ions, a process whichis
inhibited by a-amino acids.?* In areverse of this strategy, Shinkai has used
oligoethercomplexation of alkali metals to organize multiple binding interactions for

anucleotide substrate Figure 1.5.%
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Figure 1.5 Shinkai's self-assembling host.



Anthracene and (diacylamino)-pyridine units were sited at opposite ends of
oligo(ethyleneoxy) chain. Addition of Na" ions located the two termini to bind in a
cooperative manner with an alkyl thymine derivative by simultaneous hydrogen
bonding and m-stacking interaction a significant increase in the association constant
was seen between the salt free (1000 M™) and sodium containing (7000 M™%
solutions.

In a strategy that exploits tripodal coordination to a transition metal, Scrimin has
developed a metal template transacylase mimic. The key ligand®® was based on tren
derivatives [tris(aminoethyl)amine] functionalized with three m-hydroxyphenyl
groups. Addition of Zn(I1) ions leads to tripodal coordination and organization of the
three hydroxyl groups in region above the metal center. In this position it can
interact with the p-nitrophenyl ester of 4-pyridinecarboxylic acid, which is
simultaneously coordinated to the open site on the Zn(Il). One of the three phenol
groups was illustrated to be more acidic than the others and thus more easily

deprotonated to form the nucleophilic phenoxide illustrated in Figure 1.6.

NO,

Figure 1.6 Shows Complex of nucleophilic phenoxide with zinc.

Large rate acceleration were seen for the transacylation reaction only in the presence

of templating Zn(11) and unfunctionalized hydroxyl groups.



1.3 Sdf-Assembly of Binuclear M acrocycles
The earliest example of a cyclic self-assembled host molecule was reported by
Maverick and co-workers.?*% Mixing a Cu(NHs).*" complex and a bis (B—diketone)
ligand in a aqueous solution led to the formation of the macrocycle shown in Figure
1.7.

Figure 1.7 The first example of acyclic self-assembled host.

Binding studies revealed that this macrocycle is a host for pyrazine, pyridine,
quinuclidine, and diazabicyclo[2,2,2]octane (DABCO).** In chloroform and with
other guests also present, DABCO was selectively bound inside the macrocyclic host
with K = 220 M. X-ray studies of the inclusion complex established the internal
coordination of DABCO. These investigations were among the early observations
of the intermolecular coordination of bifunctional Lewis bases to binuclear
transition-metal -based hosts.**

Fujitaet a. have assembled several water-soluble binuclear macrocycles.”®%” Mixing
adipyridyl ligand with an agueous solution of [(en)Pd(NO3),] leads to the formation

of the assembly shown in Figure 1.8.

F I 2 H0  Hz > | N
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Figure 1.8 Scheme of Self-assembly of Fujita’s binuclear macrocycle.
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The presence of an electron-deficient perfluoronated phenylene subunit alows the
complex to recognize electron-rich compounds, such as naphthalene, in aqueous

med| a26—27

This work was extended by using a dightly different subunit, 4-bis(4-
pyridylmethyl)benzene, to assemble a corresponding palladium-based bimetallic
species.”®* Furthermore, it was shown using dilution studies of this macrocycle in
D,O by 'H NMR spectroscopy that the monomeric palladium system was in

equilibrium with a catenane Figure 1.9.

I\
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Figure 1.9 Fujita’s binuclear macrocycle in equilibrium with catenane.

This equilibrium favoured the single ring assembly at low concentrations (<2 mM),
but at high concentrations (>50 mM), the interpenetrating in Figure 1.9 was the
dominant species. Formation of the catenane is due to the benzene unit of one
macrocycle behaving as a guest molecule for the other macrocycle. The processis

driven by -7 interactions.

By changing to platinum, which forms stronger bonds with pyridine donors, Fujita et
al. were able to exclusively form the monocyclic structure at room temperature. On
heating to 100°C in water in the presence of NaNO3 however, the formation of the
catenane was observed due to the increased thermal lability of the Pt-pyridine

bond 28-29
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The binuclear systems discussed above are all homodimetallic systems, but there are
two examples of mixed-metal systems, the first of which was reported by Hupp and
co-workers.**? While attempting to synthesise a molecular square using a flexible
ligand system, bis(pyridyl)ethane, they isolated the compound in Figure 1.10.
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Figure 1.10 Huppet al’s mixed valence systems.

Surprisingly, they found that the luminescence in this system was completely
quenched.

1.4 Sdf-Assembly of Trianglesand Squares

Relatively few examples of trinuclear molecules have been reported in the literature.
At first glance it would appear to be a ssmple synthetic challenge. It may be from a
design point that a cyclic combination of three linear building blocks with three
corners which possess a 60° directing angle would result in the formation of a
molecular triangle. One explanation for the rarity of such structures maybe the size
of the directing angle which is uncommon in both transition metals and organic
ligand linking subunits.

Loeb and co-workers reported such an example where they assembled
complementary molecular building blocks with specific angular requirements.®
Using 4,7-phenanthroline as a 60° corner that favours bridging metal complexes
over forming chelate complexes and reacting it with the linear phenyl-bridged bis-

palladium complex, formed the self-assembled triangle shown in Figure 1.11.
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Figure 1.11 Scheme of Self-assembly of Loeb’s molecular triangle.

Using variable temperature NMR, Loeb and co-workers were able to provide
additional evidence for the cyclic nature of this triangle in solution, showing
dynamic behaviour of the compound.®®

Self-assembly of molecular triangles using less rigid building blocks was observed
by Fujita and co-workers.*** Reaction of [(en)Pd(NOs),] with 1 equivalent of a
series of bis-heteroaryls in water led to the formation of molecular squares and

molecular triangles (see Figure 1.12).
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Figure 1.12 Scheme of Self-assembly of Fujita’s molecular squares and molecular

triangles.

NMR confirmed the cyclic structure of both products since no signals were observed
for the existence of polymeric compounds with uncoordinated end groups. Also, the
two products were in equilibrium with one another, with the major product being the
molecular square (see Figure 1.12). This was supported by the observation of
concentration-dependant effects on the equilibrium. At higher concentrations the
ratio shifted in favour of the less strained molecular square (see Figure 1.12). From
a thermodynamic perspective, molecular squares are less strained and thus more
stable in terms of enthalpy, while entropy favours the triangle since it is assembled

from fewer components.3**
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In principle, the directional-bonding approach should involve exclusively rigid
linkers, which are suppose to undergo only minor distortion upon metal-coordination
within the metallacycle. Thus, the orientations of their two coordinate vectors can be
guessed quite precisely from a model structure. However, in some cases, even an
educated guess may be difficult, for number of reason:

A The linker might have more than two binding sites, and thus, its geometry depends

on which sites are used in construction of the metallacycle.

In genera, arigid linker is defined as a molecule that does not bend significantly,
typically for the presence of extended conjugation. However, even rigid linkers can
have one or more degree of torsiona freedom, i.e., free rotation about single
bonds.A typically example is 2,2 -bipyrazine (2,2-bpz, Figure 1.13): depending on
the mutual orientation of the two six-membered rings and on which N atom (1,1’
and/or 4,4") are involved in the coordination, different combinations of coordinate
vectors (and thus geometries) are possible. Finally, if the linker itself isnot rigid, e.g.
It comprises some aliphatic fragments between the two binding sites, then any guess
about its geometry within the metallocycle will be very tentative at best.*

\4

, N N =

Figure 1.13 2,2"-bpz

The self-assembly of molecular squares is much more widespread and numerous
examples are reported in the literature® This requires the interaction of four
bidentate 90° angular units with four linear bridges. Square planar transition metal

complexes are ideally suited for such assemblies.
The solution structure of this square was confirmed by NMR and mass spectroscopy

Figure 1.14. This molecular square also showed the unique ability for molecular

recognition of neutral aromatic guests such as benzene and naphthalene.®
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Figurel.14 Fujita’s self-assembled square.

1.5 Cp*Rh Complexesof DNA/RNA Nucleobases

Fish and co-workers***investigated the reaction of 9-methyladenine with
[Cp* Rh(H20)3][OTf], in D-O a pD 7.2 (pD = pH + 0.4). *H NMR spectroscopy
provided evidence for the formation of a new complex with dramatic shifts for H2
and H8 in comparison to those of free 9-methyladenine at 8.83 and 7.67 ppm,
respectively. They found that these dramatic *H NMR chemical shifts for H2 and
H8 were a characteristic feature for Cp*Rh cyclic trimer structures with 9-
substituted adenine derivatives, which was verified by X-ray crystalography of the
Cp* Rh-9-methyladenine cyclic trimer (see Figure 1.15).

R= —CHj
[(OTf)a]
H .Rh. H HO ,o\m
RN e SN R=
OH OH
N H‘N“\{kN.R
N =/
H '}I H ’l.l H HO e
: - _o-
N < R=
éh F—:a OH H
®/ \N'H KG) o
SN R= o=b- o
; o
/ \ OMe
H Vi H
N™ "N OH OH
R

Figure 1.15 Fish’s Cp*Rh cyclic trimer structures with 9-substituted adenine
derivatives.
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The single-crystal X-ray structure of an enantiomer of 9-Me adenine macrocycle was
shown to have a triangular dome like supramolecular structure, with three Cp*
groups stretching out from the top of the dome, three methyl groups pointing to the
bottom. Three adenine planes form the surrounding shell and three Rh atoms are
embedded in the top of the dome.** The structures of all these macrocycles are
similar to that of the parent structure except that the three Me groups are replaced by
three ribose, deoxyribose, or three Me-5’-ribose monophosphate ester units,
respectively.

The shape, the cavity size and the agqueous stability of these Cp*Rh-
nucleobase/nucleoside/nucleotide cyclic trimers prompted Fish, et al. to utilise them
as hosts to recognise biologically relevant molecules in agueous media. At a
physiological pH of 7.37 they were the first reported examples of bioorganometallic
hosts, being able to recognize aromatic amino acids L-tryptophan and L-
phenylalanine in aqueous media at pH 7. A variety of guest aromatic and aliphatic
amino acids, substituted aromatic carboxylic acids, and aliphatic carboxylic acids,
were studied by 'H NMR spectroscopy for their interactions with the host
complexes. The aromatic groups interact by a classical ©-m mechanism, while the

aiphatic guests engage in classical hydrophobic interactions.>*"

1.5.1 Trinuclear metal complexes.

Related non-macrocyclic, but el ectrochemically active triangles have been reported.
For example, Habinet and co-workers studied trinuclear mixed valence of type (1)
which are synthesised by oxidation of [{ Cp*(dppe)Fe(CO)s} 1,3,5-CsH3)] (dppe =
nz-bi s(diphenyl phosphino)ethane]) with [(CsHs).Fe][PFg].
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Figure 1.16 [{Cp*(dppe)Fe(CC-)}5(1,3,5-CsH3)]™ (n=0,1, 2, 3) trinuclear iron
complexes.

Cyclic voltammetric analysis of complex [{Cp*(dppe)Fe(CO)}3(1,3,5-CeH3)]
displays three one electron reversible oxidation waves. The bis(ethnyl)benzene
organic moiety acts as a connector between the organoiron building blocks to
convey electronic interactions from one metal centre to the other through continuous
overlap between the d orbitals of the metal centres and the n orbitals of the
polyethylbenzene ligands.*>**Analysis of the NIR spectra showed a IVCT band for
the weakly coupled mixed valence system [{ Cp* (dppe)Fe(CO)} 5(1,3,5-CsH3)]*. In
the case of the druidical trinuclear mixed valence [{Cp*(dppe)Fe(CO)}3(1,3,5-
CeH3)]%". Two distinct IVCT bands were observed and attributed to the two possible
independent ways to transfer an electron in the singlet and triplet states of such a

mixed valence compound.*®**

1.5.2 Lahiri and co-workerscomplexes

Ruthenium (11) triangles have also been synthesized. For example, Lahiri and co-
workers® have synthesised, via reactions of [Ru'(bpy)2(EtOH),]** (bpy = 2,2’
bypyridine) and [Ru'(phen),(EtOH),]** (phen = 1,10’-phenanthroline) with the
trisodium salt of 1,3,5-triazine-2,4,6 trithiol (NagL), the triruthenium complexes A
and B (see Figurel.17). In CHiCN, the complexes A*" and B** exhibit three

reversible one-electron redox processes corresponding to successive Ru(l1)/Ru(ll1)
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couples.*? The remarked three responses are assigned as stepwise electron-transfer
processes involving the meta centres, Ru'Ru''Ru’"/Ru"Ru"Ru'(couple 1);
Ru'Ru"'Ru"/Ru"Ru"Ru"(couple I1); Ru"'Ru"RU"/Ru"Ru"'Ru"' (couple 111).4%

(bpy)2 } (phen),
AN N
S N S S N S
I Y [(CIO)s] I [(CIO4)]
(bpy)Ru'"—N /N\ (phen)zRU"\N\(N\
\S(/Ru”(bpy)z g—Ru'(phen),
B N ] i ) |

bpy=Q—@ phen = </ \;:2 \>
=N =

Figure 1.17 Lahiri’ trinuclear ruthenium complexes.

Spectroel ectrochemical studies on the bipyridine derivative A™ (n = 3-6) shows
there is electronic interaction between the Ru(ll) and Ru(lll) sites in the mixed
valence species A*" and A°*. This is apparent from the broad, relatively weak
intervalence charge transfer IVCT transitions in the near-IR region which are present
for these two oxidation states, but absent for the two isovalent states** The width of
these transitions is consistent with class Il mixed valence states.** The electronic
coupling constant, V¥, for the two mixed valence states are essentialy the same
because of the fact that the bridging pathway (between two N atoms of the triazine

unit viaa metal-substituted linkage) is the same in each case.”?

1.6 Thermodynamic rulesof Host-Guest interaction:

There is an equilibrium between the unbound state, in which of the host and guest
are separate from each other, and the bound host- guest complex.

H+G ¥ HG
In this component H= host, G= guest, HG= host- guest complex.*
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1.6.1 Association and Dissociation constants

_ [HGleq
“ = [Hleq[Gleq

The association constant, K, for a host-guest interaction is found by multiplying
the concentration of the guest and host concentration divided by the product of the
concentration of the individual Host and Guest molecules at the point of equilibrium
of the system (equilibrium state of the system).

The state of equilibrium between the Host-Guest complex and free molecules also be
defined or identified by the dissociation constant, Kg.

_ [Hleq[Gleq _ 1
= TiGleq ~Ka

Gibbs free energy depends on the value of Ka

The resulting change in free energy is related to the equilibrium constant.

AG=RTInK,

Therefore by knowing value of the association constant, we can solve for the Gibbs
free energy of the reaction and because:
AG = AH - TAS

The Gibbs Free energy can be used to obtain Enthalpy, AH, and Entropy, AS.

1.7 Nuclear M agnetic Resonance:

NMR is one of the best spectra methods in anaytical chemistry. Which is
particularly effective in studying host-guest complexes. The binding activity
between two molecules generates a significant change in the electronic environment
for both molecules, which leads to a change in the signals in resonance spectrum of
molecules. *° Prior NMR investigations have given profitable information about the
binding of several gueststo hosts. *">*

It is worth mentioning that one of the important factors that should not be
overlooked when analyzing the host-guest interaction is the time it takes to

acquire the data compared with the time for the binding event. In many cases, the
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binding events are much faster than the time-scale of data acquirement; therefore, in
this case the output data is an averaged signal for particular molecules and the

complexes.*#*

1.8 Electrochemical Sensing

Electrochemical sensing involves the use of electrochemically active host structures
that are able to selectively bind or interact with a guest species, resulting in an
alteration of the electrochemical properties of the host.® The design of a sensor is

simple as shown in Figure 1.18 below:

[ Cutput Device Spacer Eeceptor O ‘
. [Ton Guest]

[ Cutput Device Spacer Eeceptor . ‘

Output
Figure 1.18 Show simple design of sensor.
The receptor is asite on the host complex that is able to bind a specific molecule/ion.
In the case of macrocyclic complexes the central cavity is the site where guests bind.
The binding of the guest triggers a response in the output device. This alows the
binding to be detected. For example, the oxidation potentials of a particular host will
be known. If this host is able to selectively bind to a guest it may result in an
alteration of the oxidation whether it is an anodic or cathodic shift in the cyclic

voltammogram.

The ferrocene and cobaltocenium groups have been extensively used as effective

signaling devices in macrocyclic sensors.®® They are amongst the most effective
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signaling devices due their production of clear oxidation/reduction potentials. Beer
and co-workers have carried out extensive research into the field of electrochemical
sensing using these units. For example, in 2005 this group described work on ditopic
redox-active polyferrocenylzinc(l1) dithiocarbamate macrocyclic receptors.”” These
complexes were found to be excellent hosts that could bind and sense the host anions
benzoate and isonicotinate and neutral molecule 4-picoline. Different binding
constants were observed for the different hosts interacting with the guest species. All
of the receptors were shown to sense binding of isonicotinate and benzoate anions
via large cathodic shifts in the respective cyclic voltammograms. This was possible
due to the presence of the redox active ferrocene moiety acting as a reporter device
on the hosts. The oxidation potentials of the ferrocene units significantly
cathodically shifted upon the binding of the anions.

1. 9 Self-assembled electrochemical sensors

Very few self-assembled electrochemical sensors have been reported. In fact, the
following section reviews virtually all the work in this area.

Beer, et al. (2001) investigated the self-assembly of Cu'"based metalomacrocycle
from ditopic dithiocarbamate ligand.>® Cyclic voltammetry (CV) investigation of
these redox active systems indicated that macrocycles 5 and 6 (see Figure 1. 19 )
function constructively as very specific sensors for anions as guests. The addition of
five mole equivaents of Cl" to acetonitrile solution of 5 produced small shifts.
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Figure 1. 19 Beer's self-assembly of Cu''-based metalomacrocycle.

However, a noticeable cathodic shift (20 mV) in the Cu'"" oxidation redox pair of
the macrocycle was not found on addition of other guests. For macrocycle 6 (see
Figure 1. 19), the greatest redox response results from guests that have a tetrahedral
shape, dihydrogenphosphate and perrherate;both H,PO, and ReO4 produced a 85
mV oxidation shift in the Cu"/Cu'" redox couple of the macrocycle. From these
findings, it was concluded that high anion selectivity is enforced by the size of
thiocarbamatecopper(l1) host. In alater study, the same strategy was used to isolate
new metallocrypt and-based sensors. Cryptand compounds were also obtained from
dithiocarbamate ligands. In this case octahedral metal ions (Co'"', Ni'V, Fe'") were
employed to direct assembly.> Macrocycles containing polyether were created to
complex group | metal cations. CV investigations illustrated that the addition of
alkali metal cations to MeCN:DCM(1:1) solutions of these macrocycles show
significant anodic shifts in the macrocycle metal-based oxidation importantly, the
ratio of metal cation:cryptand cavity size and the extent of anodic shift coincide. The
ion Cs" produces the greatest electrochemical shifts (45 mV), while Li* results in no
change in the redox chemistry of cryptand 7 (see Figure 1.20).
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Figure 1.21 Macrocycle of cryptand containing amide group

A series of cryptands containing amide hydrogen bond donors such as 8 (see Figure

1.21), were created for anion sensing. Once again, structure specific effects were
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observed. For example the addition of 10 mole equivaents of H,PO, to DCM
solutions of 8 (see Figure 1.21), resulted in a large cathodic shift of the macrocycle
Co"' " based oxidation couple by Ey» = 125 mV. On the other hand, the addition of
Cl" only caused a 15 mV shift.

The Severin Group have also synthesized electrochemical sensors based on their
originally reported self-assembled metallomacrocycles. This first macrocycle binds
to Li* with huge affinity. Notably, chloroform solution of macrocycle 9 (see Figure
1.22) can quantitatively extract Li* from agqueous solutions, in excess of other alkali
metal ions.

OEt

Figure 1. 22 Severin's self-assembly of Ru"—based metalomacrocycle

This macrocycle is akinetic labile thermodynamic product. However, very high
sweep rate CV investigations on 9 (see Figure 1.23) in MeCN:DCM (1:1) solvent
mixture illustrate that it exhibits three oxidation peaks at 0.683, 0.963 and 1.150 V
(against Ag/AQCI), respectively.
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Figure 1. 23 self-assembled of Ir with 3-hydroxy-2-pyridone ligands

In the presence of Li* the first oxidation pesk illustrates a huge anodic shift of over
350 mV.% Interestingly binding affinities are dependent on the nature of the metal
centre used to template these macrocycles. For example, macrocycle 10 (see Figure
1.22) was sdlf-assembled from the base-catalysed reaction between 3-hydroxy-2-
pyridone ligands and [{ Cp*IrCl,},]. In contrast to 9 macrocycle 10 binds Li* with
low affinity, it was concluded that this was because the binding site of macrocycle
10 is very rigid and sterically shielded.®*

By exploitation a ditopic ferrocene based ligand the Duan and Meng groups formed
the NisFcs heterometallic macrocycle (Figure 1.24) in good yields through Ni'" ion
enforced self-assembly.

Figure 1. 24 Duan and Meng self-assembly of NisFc, heterometallic macrocycle
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It was found that athough the ferrocene-base Fe'""

oxidation couple of the
macrocycle was unperturbed by the addition of the mgjority metal ions tested; it is
very sensitive to Mg®" ions. Commonly, metal cations induce anodic shifts in
ferrocene-based macrocycle; nevertheless the addition only two mole equivalents of
Mg(NO3), to organic solvents of macrocycle yielded a 240 mV cathodic shift in the
oxidation potential. This suggests a guest-induced reorganisation of the host’s

electronic arrangement.®

1.8 Aims
The am of this work is to investigate the host guest chemistry of ruthenium(ll)
supramolecular metal organic host analogous to the rhodium macrocycle complexes,
produced by Fish et al.>* using the facially coordinating [9]aneS; ligand in place of
n5-pentamethyl cyclopentadienyl units (see Figure 1.25). These complexes contain

adenine based units as bridging ligands and cationic [Ru'"'([9]aneSs)]?* fragments as

vertices.
S
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Figure 1.18 scheme of Bowl shaped metallo-macrocyclic complexes containing the
[Ru"([9]aneSy)] fragment.

The host guest chemistry of these systems may be of interest as they possess two
possible binding sites. At the “base” of the bowl the amine groups of the briging

ligands and the thiacrown ligands create a polar site rich in possible hydrogen bond
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donor sites. On the other face, the adenine aromatic faces create a hydrophobic
binding pocket.

Apart from their host-guest chemistry, triangular complexes such as these are
appealing targets for the study of redox properties and metal-metal interactions
because of their unusual topology. The triangular arrangement of redox centres
means two different mixed valence states can be generated. The [Ru'"([9]aneSs)]*
fragment was selected as a synthon for the corner units. Previous work has
demonstrated that this moiety possesses suitable electronic and electrochemical
properties®® and that self-assembly at high temperature allows thermodynamic
assembly of species which become “kinetically locked” at room temperature®and so
avoid kinetic lability. The accessibility of a central cavity, in conjunction with the
possibility to exploit the ruthenium(I1)/(I11) electrochemical couple, provides the
basis for amolecular sensor (see Figure 1.26).

3+ n+

* i‘\
+Ru.,
s "1,, W "y, Electrochemical
D D Guest Molecule D |:| Analysis
—_—
N
S, N

S 'S I:I _ 9-methyl-9H-purin-6-amine, 9-ethyl-9H-purin-6-amine, 9-benzyl-
- & 9H-purin-6-amine, 9-4-methoxybe nzyl)-9H-purin-6-amine.

O =F, CI, Br,I' HPO4 , Ac’, ClO4",NO3, HSO4.
Figure 1.26 Exploitation of the Ru(l)/Ru(l11) couple for host-guest chemistry.

28



CHAPTER 2

2. Synthetic Studies

Initially one previously reported macrocycle was assembled as the host-guest
chemistry of this system has yet to be explored. This work was extended to make
three new systems. In al cases the bridging ligand was an sterically hindered
adenine made by established procedures. The ligand 6-mercaptopurine is
commercialy available. The syntheses of 9-methyladenine and 9-ethyladenine were
through previously reported procedures. These procedures were adapted for the
syntheses of the new ligands 9-benzyladenine and 9-methoxyadenine.

2.1 Reaction of [Ru([9]aneS;)(DM SO)Cl,] with 9-M ethyladenine.

[Ru([9]aneS3)(DMSO)Cl;] was reacted with two equivaent of silver
trifluorosulfonate in water to produce the [Ru([9]aneSs)(CF3S03)s]** metal complex.
The silver chloride precipitate is removed by celite filtration and one equivaent of
9-methyladenine, and one equivalent of the hindered amine, 1,2,2,6,6-
pentamethyl piperidine (PMP) was added to the reaction mixture to form the complex
[Ru([9]aneSs)(9-methyladenine)]s*. The compound was isolated as the PFg salt on
addition of excess NH4PFs and fully characterized. Each nucleobase ligand
coordinates to two metal centre via the N(1), N(7) amine groups. The sterically
hindered base PMP is a strong Bronstead base but a weak nucleophile. The use of
“normal” bases such as NaOH vyields intractable black solids. Presumably, such
bases react with the thiacrown instead of deprotonating the N5 position. In contrast
to the [Cp Rh""] centre, the [Ru([9]aneSs)] fragment is not a strong enough Lewis
acid to initial deprotonation of amine group.

The product was isolated as a PFg sdt on addition of excess NH4PFs and
characterised. Evidence of trimer formation comes from 'H NMR, mass
spectrometry and elemental analysis. A comparison of these data with previous

reports confirmed that the expected trinuclear host was synthesized.
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Figure 2.1 scheme of synthesis [Ru([9]aneSz(9-methyl-adenine)] [ PFg]s.
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Figure 2.2 "H NMR of [Ru([9]aneS;)(9-methyladenine)]s* in CD;CN-ds.

The numbering scheme employed for 9-methyladenine is shown in Figure 2. 3.

Me

Figure 2.3 Numbering scheme for 9-methyladenine
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Figure 2.4 *H NMR of 9-methyladeninein CD;CN-d.

The proton chemical shifts for free 9-methyladenine and complex [Ru([9]aneSs)(9-

methyladenine)]s>" are given in Table 2.1.

Table 2.1 Proton chemical shift data for unbound 9-methyladenine and complexes
[Ru([9]aneSs)(9-methyladenine)] s> in CD3CN-ds.

Complex H2 H8 NH6
9-methyladenine 8.15 8.09 7.21
[Ru([9] aneSs)(9-methyladenine)] 5> 8.00 797 | 6.07

The complex, [Ru([9]aneSs)(9-methyladenine)]s>* shifts for H2 and H8 are observed
in comparison to free 9-methyladenine, at 8.15 and 8.09 ppm. The complex displays
similar shiftsin the signals for H2 and H8. H8 is shifted 0.12 ppm downfield from
free 9-methyladenine and H2 is shifted 0.15 ppm upfield in CD3CN.

32



The mass spectrum adds support to the structure [Ru([9]aneSs)(9-
methyladenine)]s>*. The complex [Ru([9]aneSs)(9-methyladenine)]s* was analysed
as a CF3S0; salt using Electrospray lonisation Mass Spectrometry (ESI MS). Peaks
attributable to [M-20Tf] "2 (m/z 719) and [M — 20Tf — [9]aneS;]+/2 (m/z 629) were
observed. The former and the latter were isotopically resolved and agree very well
with the theoretical distribution.

2.2 Reaction of [Ru([9]aneS;)(DM SO)CI,] with 9-ethyladenine.

Using the same procedure used for the previously reported supramolecular
compounds, [Ru([9]aneS;)(DMSO)CI,] was reacted with one equivalent of 9-
ethyladenine in water to give [Ru([9]aneSs)(9-ethyladenine)]s*". Addition of excess
NH4PFs precipitated the final product which was characterised using *H NMR, mass
spectrometry and elemental analysis. Again, evidence of trimer formation comes

from *H NMR, mass spectrometry and elemental analysis.
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Figure 2. 5 shows the 'H NMR of the macrocycle [Ru([9]aneS;)( 9-ethyladenine)]s>

in CD3CN.
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Figure 2.6 scheme of synthesis [Ru([9]aneSz(9-ethyl-adenine)] s[ PFg] s.
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The numbering scheme employed for 9-ethyladenine ligands is shown in Figure 2.7.

H H

\N/
6
7
5
= N\S
)\ ‘ ’
H 2\N 4 N 9
3 |
/CH2
CH3

Figure 2.7 Numbering scheme for 9-ethyladenine.

The proton chemical shifts for free 9-ethyladenine and complex[Ru([9]aneSs)(9-
ethyladenine)]s>" are given in Table 2.2.

Table 2.2 Proton chemical shift data for unbound 9-ethyl adenine and complexes
[Ru([9]aneS3)(9-ethyladenine)] s> in CD3CN-dks.

Complex H2 H8 NH6
9-ethyladenine 8.24 7.92 6.00
[Ru([9]aneS3)(9-ethyladenine)]** 804 | 800 | 6.09

Table 2.2 compares the proton chemical shift data for free 9-ethyladenine with
complex [Ru([9]aneSs)(9-ethyladenine)]s®*. The complex, [Ru([9]aneSs)(9-
ethyladenine)]s>* shifts for H2 and H8 are observed in comparison to free 9-
ethyladenine, at 8.24 and 7.92 ppm. Complex displays similar shifts in the signals
for H2 and H8. H8 is shifted .08 ppm downfield from free 9-ethyladenine and H2 is
shifted 0.20 ppm upfield in CD3CN.

The mass spectrum adds support to structure [Ru([9]aneSs)(9-ethyladenine)]s®".
Complex [Ru([9]aneSs)(9-ethyladenine)]s> was analysed as a CF3SO; salt using
Electrospray lonisation Mass Spectrometry (ESI MS). Peaks attributable to [M-
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20Tf]+/2 (m/z 740.2) were observed. The former and the latter were isotopically
resolved and agree very well with the theoretical distribution. See Figure 2.5.

200 954 {00
M3 09 Cn 5 TOFIE
i 0 1

.2 924 {00
AThomaglB53(0970) Cm (453 TOFMSESt
iy Ll i
oy | T4
T
T
i
T
0

36



1004

A, Zubi 9-ea 09-Jul-2010
27thomas08 51 (0.934) AM (Cen,4, 80.00, Ar,5000.0,745.42,1.00); Cm (3:54) TOF MSES+

1404637 4.52¢3

1454198

7447443 T46.4265

7474380
R ‘HM\‘\ m\ M Jall1 |

135 736 737 138 739 740 741 142 743 744 745 746 747 748

Figure 2.8 Mass of ([M™ - (CF3;S03)] (m/z 1479.867)). Mass (740.4637).
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2.3 Reaction of [Ru([9]aneS;)(DM SO)CI,] with 9-(4-methoxybenzyl)-
purin-6-amine.

Again this macrocycle was isolated using the same procedure that was used for
previous supramolecular compounds: [Ru([9]aneS;)(DMSO)Cl;] was reacted with
one equivaent of 9-(4-methoxybenzyl)-purin-6-amine in water to give
[Ru([9]aneSs)(9-(4-methoxybenzyl)-purin-6-amine)]s>*. Addition of excess NH4PFg
precipitated the final product which was characterized using *H NMR, mass
spectrometry and elemental analysis. Evidence of trimer formation comes from ‘H
NMR, mass spectrometry and elemental analysis. Figure 2.9 shows the *H NMR of
in CD3CN.
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Figure 2. 9 showsthe 'H NMR of the macrocycle [Ru([9]aneSs)( 9-(4-methoxybenzyl)- purin-
6-amine)]s*" in CD4CN.
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Figure 2.10 scheme of synthesis [Ru([9]aneS;(9-(4-methoxybenzyl)- purin-6-
ami ne)] 3[ PFG] 3.
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The numbering scheme employed for 9-(4-methoxybenzyl)- purin-6-amine is shown
inFigure 2. 11.

NH,

7 6

N-_ 5 X
<A,
9N" 4 N3/2

HsC
Figure 2.11 Numbering scheme for 9-(4-methoxybenzyl)- purin-6-amine

The proton chemical shifts for free 9-(4-methoxybenzyl)- purin-6-amine and
complex [Ru([9]aneSs)(9-(4-methoxybenzyl)-purin-6-amine)]s** are given in Table
2.3.

Table 2.3 Proton chemical shift data for unbound 9-(4-methoxybenzyl)- purin-6-
amine and complexes [Ru([9]aneSs)(9-(4-methoxybenzyl)- purin-6-amine)] s>

Complex H2 H8 | NH6

[Ru([9]aneSs)(9-(4-methoxybenzyl)- purin-6-amine)]s> | 8.06 | 7.94 | 5.94

9-(4-methoxybenzyl)- purin-6-amine 825 | 791 | 6.33

The complex, [Ru([9]aneSs)( 9-(4-methoxybenzyl)- purin-6-amine)]s>* shifts for H2
and H8 are observed in comparison to free 9-(4-methoxybenzyl)- purin-6-amine, at
8.25 and 7.94 ppm. H8 is shifted .03 ppm upfield from free 9-(4-methoxybenzyl)-
purin-6-amineand H2 is shifted 0.19 ppm upfield in CD3CN.

The mass spectrum adds support to structure [Ru([9]aneSs)(9-(4-methoxybenzyl)-
purin-6-amine)]s®>*.  Complex  [Ru([9]aneSs)(9-(4-methoxybenzyl)-  purin-6-
amine)]s>" was analysed as a CF3SO; salt using Electrospray lonisation Mass
Spectrometry (ESI MS). Peaks attributable to [M-20Tf]**? (m/z 878.5) and [M —
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20Tf — [9]aneS;s)+/2 (m/z 1905) were observed. The former and the latter were
isotopically resolved and agree with the theoretical distribution. See figure 2.12.
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2.4 Reaction of [Ru([9]aneS;)(DM SO)CI,] with 6-mer captopurine.

Again this macrocycle was isolated using the same procedure that was used for
previous supramolecular compounds: [Ru([9]aneS;)(DMSO)Cl;] was reacted with
one equivalent of 6-mercaptopurine in water to give [Ru([9]aneSs)(6-
mercaptopurine)],**. Addition of excess NH,4PFs precipitated the final product
which was characterised using *H NMR, mass spectrometry and elemental analysis.
Evidence of trimer formation comes from *H NMR and mass spectrometry. Figure
2.13 shows the *H NMR of in DMSO.
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Figure 2.13'H NMR of [Ru([9]aneS:)(6-mercaptopurine)],*". DMSOdk.
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Figure 2.14 Numbering scheme for 6-mercaptopurine.
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Figure 2.15 shows the '"H NMR of in DM SO for 6-mercaptopurine.

The proton chemical shifts for free 6-mercaptopurine and complex [Ru([9]aneSs3)(6-

mercaptopurine)] . are given in Table 2.4.

Table 2.4 Proton chemical shift data for unbound 6-mercaptopurine.

Complex H1,H9| H2 H8
6-mercaptopurine 13.66 | 839 | 819
[Ru([9] aneSs)(6-mercaptopuring)] 1395 | 870 | 8.06

The complex, [Ru([9]aneS3)( 6-mercaptopurine)],** shifts for H1,H9 ,H8 andH2 are
observed in comparison to free 6-mercaptopurine, at 13.66 , 8.39 and 8.19 ppm. H1
and H9 are shifted 0.29 ppm lowfield from free 6-mercaptopurine, H2 is shifted 0.31
ppm lowfield and H8 is shifted 0.13 ppm upfield in DMSO. A comparison of
intergrates for 5* the free ligand confirms the deprotonation of H1 of
mercaptopurine in the complex.

The mass spectrum adds support to structure [Ru([9]aneSs)(6-mercaptopurine)],**.
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Complex [Ru([9]aneSs)(6-mercaptopurine)]s*" was analysed as a CF3SOs and PFg
salt using Electrospray lonisation Mass Spectrometry (ESI MS). Peaks attributable
to MS (FAB): M/z (%)=1010.8 (90) [M™*"- 2CFsS0s] were observed. The former
and the latter were isotopically resolved and agree very well with the theoretical
distribution. See Figure (2. 16).
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Figure 2.16 Peaks attributable to MS (FAB): M/z (%)=1010.8 (100) [M™* - 2CF;S0j]
were observed.
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2.6 Reaction of [Ru([9]aneS;)(DM SO)CI,] with 9-benzyl-9H-purin-6-
amine.

Again this macrocycle was isolated using the same procedure that was used for
previous supramolecular compounds: [Ru([9]aneS;)(DMSO)Cl;] was reacted with
one equivaent of 9-benzyl-9H-purin-6-amine in water to give [Ru([9]aneS;)( 9-
benzyl-9H-purin-6-amine))]s**. Addition of excess NH4PFs precipitated the final
product which was characterised using *H NMR, mass spectrometry and elemental

analysis. Evidence of trimer formation comes from *H NMR and mass spectrometry.
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Figure 2.1 "H NMR of [Ru([9]aneS;)( 9-benzyl-9H-purin-6-amine)]s* in CD;CN.
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The numbering scheme employed for 9-benzyl-9H-purin-6-amine is shown in Figure

2.19.
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Figure 2.19 Numbering scheme for 9-benzyl-9H-purin-6-amine.
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Figure 2.20 Showsthe*H NMR of in CDsCN for 9-benzyl-9H-purin-6-amine.
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The proton chemical shifts for free for 9-benzyl-9H-purin-6-amine and complex
[Ru([9]aneSs)( for 9-benzyl-9H-purin-6-amine)] s> are given in table 2.5.

Table 2.5 Proton chemical shift data for 9-benzyl-9H-purin-6-amine unbound and
complex [Ru([9]aneSs)(9-benzyl-9H-purin-6-amine)]s** in CDsCN.

Complex H2 H8 NH6

9-benzyl-9H-purin-6-amine 8.26 7.94 5.89

[Ru([9]aneSs)( 9-benzyl-OH-purin-6- | 809 | 7.92 | 633
amine )]s

The complex, [Ru([9]aneSs)(9-benzyl-9H-purin-6-amine)]s>* shifts for H2 and H8
are observed in comparison to free 9-benzyl-9H-purin-6-amine , at 8.24 and 7.92
ppm. Complex displays similar shiftsin the signals for H2 and H8. H8is shifted .08
ppm downfield from free 9-benzyl-9H-purin-6-amine and H2 is shifted 0.20 ppm
upfield in CD3CN.

The mass spectrum adds support to structure [Ru([9]aneSs)( 9-benzyl-9H-purin-6-
amine)]s>". Complex [Ru([9]aneSs)(9-benzyl-9H-purin-6-amine)]s>" was analysed
as a CF3S0; salt using Electrospray lonisation Mass Spectrometry (ESI MS). Peaks
attributable to [M-20Tf]+/2 (m/z 833.2) was observed. The former and the latter
were isotopically resolved and agree very well with the theoretical

distribution. See Figure 2. 21.
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2.7 Synthesisand Structural Characterization:

2.7.1 General Method of M acrocycle Synthesis

A brief description of the changes in conditions for the synthesis of macrocycles
compared to previous work:

When we used the previous method we found that a lot of our compound was lost
during recrystallization, which gave a very poor yield. To improve the yield, three
changes to the reaction conditions and workup were used. First, the volume of
solution was increased from 25cm® to 50 cm®. This helped to avoid the production of
a side product (which appeared to be a oligo/polymeric mixture that dissolves in
DMSO0). Second, the time of the reaction was increased from four days to six days.
Third, the crude product mixture was recrystallized from a new solvent system as
this led to the collection of the target compound in high purity and good yield. The
combination of these three changes improved the yield as well as the purity. High
purity and good yield helped us to investigate the binding between macrocycles and
guests. Also a series of electrochemistry experiments have been done to probe the
effect guests on macrocycles by SWV technique.

2.7.2 Other Attempted Syntheses

Some initial attempts to obtain larger macrocycles bigger than the triangle reported
in this thesis were also investigated. What follows is a brief overview of these
attempts. Inspired by related studies on Rh"'(Cp*) fragments, the synthesis of
macrocyclic squares or bigger macrocycles from ruthenium thiacrown fragments
[Ru(9-aneS;3)CI,.DMSO]CI were aso investigated using 6-mercaptopurine-9-3-D-
ribofuranoside and 6-mercaptopurine as ligands. A series of different attempts, using
the same thiacrown fragment and ligands but different temperatures and changing
the reaction time were made. Several different solvents were employed, individually
or as a mixture (water, ethanol, methanol and acetonitrile). The results from NMR
and mass spectrometry showed that the reaction was not success, as NMR revealed a
mixture of products and mass spectrometry indicated that this mixture of compounds

had small molecular weights.
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2.7.3 X-Ray Crystallography Studies

In a number of cases, newly synthesized ligands and self-assembled macrocycles
provided x-ray quality crystals. What follows is a brief description of these
structures. Unless otherwise stated, the structures described in this section were
solved by Harry Adams in the department's X-ray structure determination service.
Full details of the structure, including ORTEP diagrams are included in the
supplementary data found in the accompanying CD.

2.7.3.1 Ligand 9-(4-methoxybenzyl)-9H-purin-6-amine

This ligand was synthesized by the reaction of adenine with methoxybenzyl chloride
in57% yield.

Azt

Figure 2.22 Ellipsoid representation of the X-ray crystal structure of 9-(4-methoxybenzyl)-
9H-purin-6-amine. Hydrogen atoms omitted for clarity.

Single crystals of 9-(4-methoxybenzyl)-9H-purin-6-amine suitable for X-ray
structure analysis were obtained from slow vapour diffusion of mixture acetonitrile
and chloroform (1:1) solution. Details of the bond angles and bond lengths are found
in the appendix.

As seen from Figure 2.22, the repeat structure is made up of three independent
molecules of the ligand, which shows the expected structure with the 4-
methoxybenzyl moiety held at an angle to the adenine base by the methylene linker.
Figure 2.23 shows how hydrogen-bonding interactions involving dimeric “strands”

of adenines lead to the formation of “ribbon” structures.

51



Figure 2.23 Details of the packing of 9-(4-methoxybenzyl)-9H-purin-6-amine showing
hydrogen-bonding between individual “strands”.

2.7.3.2 Ligand 9-benzyl-9H-purin-6-amine
This ligand was synthesized by the reaction of adenine with benzyl chloride in 59%

yield. Again, single crystals of 9-benzyl-9H-purin-6-amin suitable for X-ray
structure analysis were obtained from slow vapour diffusion of mixture acetonitrile
and chloroform (1:1). Details of the bond angles and bond lengths are found in the
appendix.

Figure 2.24 Ellipsoid diagram of structure of 9-benzyl-9H-purin-6-amine.

The data also confirms the postulated structure of the ligand. Interestingly, the
packing of this ligand is quite different to the methoxybenzyl derivative asit is made
of the discrete dimers shown Figure 2.25.
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Figure 2.25 Dimer found in the structure of the 9-benzyl-9H-purin-6-amine.

2.7.3.3 [Ru([9]aneS;)(9-methyl-9H-purin-6-amine)]3(PFs)s[ 1] (PFe)3

This supramolecular was synthesized by the reaction of 9-methyl-9H-purin-6-amine
with [Ru([9]aneS;)(DM SO)CI,] in 39% yield. Single crystals of [1](PFe)s of suitable
for an X-ray structure analysis were obtained from slow vapour diffusion in
acetonitrile. Details of the bond angles and bond Iengths are found in the appendix.

The crystal structure of [1](PFg)s is shown in Figure 2.26, and for the first time this

allows us to confirm the detailed structure of the macrocycle.

Figure 2. 26 Ellipsoid diagram of the cation in the X-ray crystal structure of the [1](PFe)s,
hydrogen atoms and counter-ions omitted for clarity.
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Figure 2.27 Detail from X-ray crystal structure of the [1](PFs)3 showing the two binding
pockets of the macrocyclic host. Hydrogen atoms and counter-ions omitted for clarity.

From the structure, it is clear that the macrocycle shows two possible binding
pockets - Figure 2.27. A PFg ionisfound sitting at the open face of the bowl making
close contacts with hydrogens on the 9-methyl groups of the bridging ligands, while
a second is found in in a binding pocket defined by the thiacrown ligands and the
three amine hydrogens on the other edge of the 9-methyladenine units. A closer
inspection of the structure reveals that the interaction between cationic bowls and
anionic guests define extended hexagonal channels that are occupied by further
anions— Figure 2.28.

Figure 2.28 Hexagonal channels found in the structure of [1](PFs)s. Anions of the same
colour are symmetry related. Hydrogen atoms and counter-ions omitted for clarity.
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2.7.3.4[Ru([9]aneS;)(9-methyl-9H-purin-6-amine)]s(Br)s[1] Brs
This supramolecular was obtained from the change the counter ion of

[Ru([9]aneSs3)(9-methyl-9H-purin-6-amine)] 3(PFe)3 by bromide.

A crystal structure with macrocycle 1, but a different anion - in this case bromide -
was also obtained. The x-ray quality crystals of [1](Br); were grown from
nitromethane/diethylether and details of the structure are shown in Figure 2.29.

Details of the bond angles and bond lengths are found in the appendix.

Figure 2.29 Ellipsoid view of the two independent cations in the structure of [1](Br)s.
Hydrogen atoms and counter-ions omitted for clarity.

In this structure, only one of the macrocycle two possible binding pockets is
occupied. On one face of the macrocycle, a bromide counter-ion sits on top of a
binding pocket defined by the thiacrown ligands and the three amine hydrogens on
the other edge of the 9-methyl-9H-purin-6-amine units. The other open face of the
macrocycle, defined by the 9-methyl-9H-purin-6-amine bridging ligands, forms an
unoccupied capsule like space through interleaved close contacts with the same face
of a neighboring macrocycle — Figure 2.30. These dimeric capsules pack together to
define linear strands and the other bromide anions are located on the outside of the

dimer structures forming close contact with anumber of thiacrown residues.
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Figure 2.30 Detail from the structure of [1] Br; showing the interaction between bromide and
hydrogens of thiacrown and bridging ligands (left). Interleaving of two of these units that
creates a dimeric “capsule” structure (right).

2.7.3.5 [Ru([9]aneSs)(9-benzyl-9H-purin-6-amine)]3(CF3SO3)3
This supramolecular was synthesized by the reaction of 9-benzyl-9H-purin-6-amine

with [Ru([9]aneS;)(DM SO)Cl;] in 65% yield.

Figure 2.31 Stick representation of the independent macrocyclic cationsin the
structure of [3](CF:SO3)s. Hydrogen atoms and counter-ions omitted for clarity.

Small X-ray quality crystals of macrocycle 3 were grown via slow vapour of
acetonitrile solution of the complex. Since these crystals were poorly diffracting, the
structure described in this section was solved by the national X-ray structure
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determination service in Southampton University. Details of the bond angles and
bond lengths are found in the appendix.

The crystal confirms the connectivity and overall geometry of the macrocycle. The
crystal structure - Figure 2.31- shows that all metal centres possess octahedral
geometries with the 9-benzyl-9H-purin-6-amine bridging ligand binding in both
mono and bidentate fashion, whilst as expected the 1,4,7- trithiacyclononane is a
tridentate ligand. Interestingly, the benzyl units of the bridging ligands extend over
the aromatic faces of the adenine moieties to create a well-defined, potentialy
interesting, binding site for hydrophobic/aromatic guest molecules.

The packing of this structure shows that the triflate counter ions lie away from the
complex in channels between rows of cations — Figure 2.32. Presumably -because
they are larger in size then bromide of hexafluorophosphate ions - they cannot sit in
the relatively small binding pocket of the host.

Figure 2.32 Detail from structure of the [3](CFsS0s); showing triflate ions located in
channels away from the macrocycle binding sites.

2.7.3.6 Conclusions

A previously reported and four new self-assembled trinuclear Ru'' macrocycles have
been synthesized by an improved synthetic method. In two cases, newly synthesized
adenine derivatives have been used as the bridging ligands. Crystal structures of the
new ligands are reported. In both cases non-covalent interactions, such as pi-pi

interactions and hydrogen bonding are observed in the long-range packing of the
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structures. The structures of the prototype macrocycle 1 with two different anions,
bromide and hexafluorophosphate, have also been solved. These studies confirm that
the macrocycles are hosts for anions, with potentialy two binding sites.
Furthermore, it is clear that the long-range order of these structures is highly
dependent on the nature of the anionic guest. The structure of a second host, 3, with
triflate anions has also been solved. In this case the triflate anion does not sit in
either binding pocket. These studies demonstrate that the macrocycles are hosts for
anions and suggest that the “hydrogen bonding” pocket of these hosts is favoured for

these interactions.
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Chapter3

3. NMR titrationswith halide guests

3.1 Titration accuracy and solution concentrations

The interaction of the macrocyclic hosts with a range of halide anions were
investigated through *H NMR spectroscopy. NMR based determinations of K, are
usually only reliable for association constants <10* M™: this is a generalisation and
requires some detailing. Results obtained for K, measurements drastically depend on
the concentrations and chemical shifts (or other observable NMR changes) being
accurately measured and analysed. Chemical shift differences need to be particularly
large between free and bound guest; bigger shifts give better results. For *H-based
titrations of host-guest interaction it is preferable for Aoma=0.5. The perfect situation
is when the monitored proton is proximal to an isotropic moiety in the produced
complex (for example a carbonyl or aromatic ring). However, meaningful results can
even be obtained on a Ad s Of 0.1 ppm. For a typical spectrometer (400 MHz 'H
frequency) observing a sharp singlet (line width 0.2 Hz), chemical shifts can be

measured with an accuracy of 0.005 ppm.®

Ideally titrations require a series of solutions that can represent the full binding curve
between guest and host. In the 1960s Person, Weber, and Deranleau identified the
fundamentals of this approach in a series of papers describing the theory of binding
measurements. These early papers discussed graphical study of spectroscopic data,
but their conclusions are completely general .®*Later on, Wilcox discussed this issue
from a clearer perspective and extended this analysis to NMR curve fitting.®*® The
big problem with measuring small K, from AG ma values (<10 M™) is that there will
be a huge error associated with the extrapolation to Aoma. An additional problem
when estimating large K, values (>10° M) is that there is no real curvature in the Ao
versus [H]o/[G]o plot as reagent concentrations change. The guest is effectively
entirely complexed by any available amount of host and the graph rises linearly with

increasing [H]. This process continues until AC max is reached at the 1:1
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stoichiometry. In order to observe curvature in the A0 versus [H]y/[G]o plot, the
solutions should be sufficiently diluted (usually mmol range). However, NMR is a
potentialy sensitive technique, and experiments are quite often accurate in this mmol

range.®

3.2 Anion Binding

Anions play a significant role in catalysis and medicine. Additionally, pollutant
anions have been linked to the contamination of rivers through the use of phosphate

%% and carcinogenic compounds (metabolites of nitrate).®®

containing fertilizer
Anions arising from the reprocessing of nuclear fuel (which can discharge into the
seas) are also a serious environmental concern. Consequently, anion sensors have a
range of possible applications. However, the design of anion hosts as receptors are
especialy challenging, for a number of reasons. For example, anions are larger than
isoelectronic cations and subsequently have a lower charge to radius ratio — Table

3.1

Table 3.1 A comparison of the radii (r) of isoelectronic anionsin octahedral
environments.

Anion r [0A] Cation r [°A]
F 1.19 Na’ 1.16
clr 1.67 K* 1.52
Br 1.82 Rb* 1.66

I’ 2.06 Cs' 181

60



spherical
F,Cr, Br, I

linear
OH, SCN", CN", Ny’
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o trigonal planar
CO5, NO4y

octahedral )
[Fe(CN)J*, [Co(CN)g]*

& -

tetrahedral
8042-; PO43-I Mn04_,

VO43', 59042-
Figure 3.1 The structural diversity of anions.

Compared to cations, anions also have an extensive range of geometries Figure 3.1.
And thus, detailed design may be required to produce receptors of complementary
Size to their anionic guest. Solvent effects aso play an important role in dominating
binding strength and selectivity for anions. Electrostatic interactions are usually
important in anion solvation, and hydroxylic solvents in particular can make strong
hydrogen bonds with anions. A potential anion receptor must therefore efficiently
contend with the solvent surroundings in which the anion-recognition incident takes
place. The neutral receptor that binds anions through ion-dipole interactions may
only complex anions in nonprotic organic solvents. Charged receptors generally

prefer to bind strongly solvated (hydrate) anions in protic solvent environments.®®®’
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Figure 3.2 Scheme of trends in hydro philicity and hydro phobicity for series of anions.

Hydrophobicity can affect the selectivity of a receptor, the Hofmeister series®
(Figure 3.2), used in numerous studies on the effect of salts on the solubility of
proteins, orders anions by their hydrophobicity (and determined degree of aqueous
solvation). This series reflects a genera trend: hydrophobic anions generally bind

more strongly in hydrophobic binding sites.

3.3 Anion Binding studies

The anion binding properties of [Ru([9]aneSs)(9-methyl-9H-purin-6-amine)]s (PFs)3
(1), [Ru([9]aneSs)(9-ethyl-9H-purin-6-amine)]s(PFe)z (2), [Ru([9]aneSs)(9-benzyl-
9H-purin-6-amine)]3(PFe)3 (3), and [Ru([9]aneSsz)(9-(4-methoxybenzyl)-9H-purin-6-
amine)]s(PFe)s (4) were investigated using *H NMR spectroscopic analysis through
the addition of TBAX sdts (X= CI, Br, I', F, ClO4, NOs, CH3COO, HSO/,
H.POy).
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34 H NMR Titrations

To measure the strength of anion binding of macrocycles, *H spectroscopic titration
experiment were undertaken in CD3CN. Spectroscopy samples of the four
macrocycles were prepared, to which guest of tetrabutylammonium (TBA) salts
were added. The chemical shifts of peaks due to bridging ligand’s NH protons of the
host were monitored. Anion binding events were quick on the NMR spectroscopic,
thereby permitting the calculation of association constants with data fitting to 1:1
stoichiometric binding models- a binding ratio confirmed by Job plots. A range of
anions was tested as the macrocycles’ hydrogen-bonding cavity is expected to be
capable of selectivity binding anions of complementary size and shape within the
anion recognition site. For macrocycles 1, 2, 3 and 4 the addition of anions as guests
caused considerable downfield shift of amide NH resonance. The values of K, were
calculated using an Excel program supplied by Prof C. A. Hunter, FRS.

3.5 Halidetitrations

3.5.1 Titration of [Ru([9]aneS;)(9-methyl-9H-purin-6-
amine)]s (PFe)s(1)

3.5.1.1 Titration of macrocycle 1 with chloride guest

Our initial study was based on the most common halide: chloride anion. Upon
addition of even small amounts of ClI” significant downfield shifts of —NH protons
(Aomax = 1.54) were observed, indicating the chloride binds within the
macrocyclelcavity. There was also significant splitting of the thiacrown protons:

some of protons downfield shift and some protons upfield shift.
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Figure 3.3 'H NMR (400 MHz) spectra of macrocycle 1 upon addition of equivalents
of TBACI. In response, Solvent CD;CN; temperature: 293 K; [1] =1.5x10-°mol dm-’.

As can be seen from Figure 3.4, there is downfield shifting of the thiacrown protons
(labelled a and f), which are indicative of hydrogen binding between the chloride
ion and these protons. At the same time upfield shifts of the thiacrown protons
labelled b, c and d are also observed, although no appreciable shifts in e protons
occur. As will be seen later, these same splitting patterns are also observed on
addition of chloride ion to macrocycles 2 and 3. These changes are consistent with
the macrocycle becoming more rigid on addition of the guest: binding into this
pocket prevents the previously observed fluxional processes involving the ethylenic
groups of the thiacrown. Again as will be seen, these changes are slightly different
for each guest almost amounting to a “fingerprint” for each guest anion.
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Figure3.4'H NM R (400 M Hz) spectra of macrocycl 1 upon addltl on of equwal ents of
TBACI. In response, Solvent CD;CN; temperature: 293 K; [1] =1.5x10-°mol dm->
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It seems likely that the observed behaviour is due to the unique combination of
individual guest electronegativities and distance between individua ions and

hydrogen atoms of thiacrown.

The shiftsin NH signal have been used to construct binding curves and Job plots for
the interaction between the guest and host below. The Job plots confirm a 1:1
interaction and thus a binding affinity can be estimated from model fits to the

obtained binding curve.
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1,20 A
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Figure 3.5 Binding curve obtained through analysis of the '"H NMR titration data with chloride,
monitoring the NH proton (H6) shift. Association constants were determined by using Excel to
fit the 'H NMR titration data, The line represents the fit to the model. K J[M™]= 1.56x10°.
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Figure 3.6 Job-plot analysis revealed a 1:1 binding mode for chloride.

3.5.1.2 Titration of macrocycle 1 with Fluoride
Following the promising results with chloride, host-guest chemistry with all the

other common halide anions was investigated.

Upon addition of afew titres of F to macrocycle 1 very large downfield shifts of the
NH protons (Aomax = 3.651) were observed. These are the largest shifts observed for
any of the guests that were investigated. However, in contrast to the chloride study,
binding between fluoride and macrocycle 1 appears to be relatively weak, as these
changes did not appear to reach saturation and unfortunately, macrocycle 1

precipitated after addition of 3.5 equivalents of fluoride.
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Figure 3.7 *H NMR (400 MHz) spectra of macrocycle 1 upon addition of equivalents of TBAF.
In response, Solvent CD;CN; temperature: 293 K; [1] =1.5x10-°mol dm->.
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In fact this problem is common for all macrocycles with fluoride, making studies of
fluoride binding with these macrocycles very difficult relative to the results obtained
with chloride. Nevertheless, fits to this data indicate that the affinity between
fluoride ion and macrocycle 1 is relatively weak, suggesting that fluoride does not
complement the size of the cavities of the macrocycle. However, significant splitting
of the thiacrown protons is again observed with some of protons downfield shifting

and some protons of upfield shifting.
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Figure 3.8 'H NMR (400 MHz) spectra of macrocycle 1 upon addition of equivalents of
TBAF. In response, Solvent CD;CN; temperature: 293 K; [1] =1.5x10-°mol dm->.
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Figure 3.9 Binding curve obtained through analysis of the '"H NMR titration data (with
fluoride ion), monitoring the NH proton (H6) shift. Association constants were determined
by using Excel to fit the '"H NMR titration data, The line represents the fit to the model. K=
2.83x10°M™.
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3.5.1.3 Titration of macrocycle 1 with Bromide

The binding between macrocycle 1 and bromide ion is somewhat similar to data
obtained for chloride, athough NH shifts are lower (A05 = 1.01) and again the
thiacrown protons gave a new splitting pattern that is different to that for the
chloride and fluoride ions. Figure 3.10 *H NMR (400 MHz) spectra of macrocycle 1
upon addition of equivalents of TBABTr. In response, solvent CD3CN; temperature:
293 Ka; [1]=1.5x10° mol dm™ shows the splitting pattern in the thiacrown region
after bromide addition. The bromide has a dightly lower binding affinity than
chloride but is much stronger than fluoride. This probably reflects the fact that the

size difference between the chloride and bromide is not big, while the difference in

size with fluorideislarge.
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Figure 3.10 *H NMR (400 MHz) spectra of macrocycle 1 upon addition of equivalents of TBABT.
In response, Solvent CD;CN; temperature: 293 K; [1] =1.5x10-°mol dm->.

3.5.1.4 Titration of macrocycle 1 with lodide

The data shows that binding between macrocycle 1 and iodide produces similar
effects, although shift in the NH are lower (Ao = 0.524) than those for the other
halides. The calculated binding affinity between macrocycle 1 and iodide is weaker
than bromide and chloride but stronger than fluoride, again this is probably due to
ion size, but in this case iodide is too large for the binding pocket. lodide aso has

own splittings in the thiacrown region, Figure 3.11 shows this splitting pattern.
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The interaction of macrocycle 1 with all the halides investigated is summarised in
Table 1 and the shiftsin the NH proton are compared in Figure 1.11. It isclear from

this data that medium size halide ions are preferentially bound by the macrocycle.
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Figure 3.11 'H NMR (400 M Hz) spectra of receptor 1 upon addition of equivalents of TBAI. In
response, Solvent CD;CN; temperature: 293 K; [1] =1.5x10-°mol dm->.

Notably, although fluoride produces large shifts in the host macrocycle signals
(presumably due to its highly polarising nature) its binding is the weakest of the
halides, probably asit istoo small to fit into the host binding pocket.

Table 3.2 shifts in NH resonance (Ad) and 1:1 anion association constants (Ka) of
macrocycles 1 and halides Table arranged in binding affinity rank order.®

lon KIM A3[ppm]
cl 1.6x10°+4% 1.42
Br 3.9x10%+3% 1.01

I 2.1x10°+1% 0.52
F 2.8x10°+4% 3.65

Anions added as TBA sdts. Shifts are for 5 equiv. of anions added. Association constants are
calculated by Excel program, with errors of experimental data fitting to the calculated binding
isotherms 10%. Solvent: CDsCN, concentration of macrocycles: 1.5x10° mm, T = 293 K, peaks
monitored: amine NH of macrocycle 1.
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3.12 Plotsof the average chemical shift of the amine NH resonances macrocycle 1 versus
equivalentsof TBA salts(Cl" o, Brm, F A and | ~¢) added (solvent: CD3CN, concentration of
macrocycle 1: 1.5 mM, T = 293 K).

3.5.2 Titrations[Ru([9]aneS;)(9-ethyl-9H-purin-6-
amine)]s(PF¢)s (2)

After the initial investigation involving macrocycle 1, the host guest chemistry of the
three other macrocycles were investigated. Although titrations of macrocycles 1 and
2 with halides are very similar, this does not preclude the existence of some
differences. For example, macrocycle 2 continues to be soluble even after addition of
guest halide concentrations that caused host 1 to precipitate.

3.5.2.1 Titration of macrocycle 2 with fluoride
An example of differences between 1 and 2 is provided by titration studies involving

macrocycle 2 and fluoride. Fluoride ion caused macrocycle 2 to precipitate after
addition 4.5 mole equivalents of TBAF whereas macrocycle 1 precipitated after
addition 3.5 mole equivalents of TBAF. Furthermore, judging from NMR shifts, it
also appears that hydrogen bonding between this guest and macrocycle 2 is stronger
than that observed for macrocycle 1 leading to a higher estimated K 5 than that shown

for macrocycle 1.
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Figure 3.13 *H NMR (400 MHz) spectra of macrocycle 2 upon addition of equivalents
of TBAF. In response, Solvent CDsCN; temperature: 293 K [1] =1.5x10-°mol dm->.

4.00 -
3.20
3.00 4
2.50 4
: 2.00 4
1.50 +
1.00 4
0.50 4

0.00 -+ T T

G/ mm

Figure 3.14 Binding curve obtained through analysis of the *H NMR titration data for
fluoride binding, monitoring the NH proton (H6) shift. Association constants were

determined by using Excel to fit the *H NMR titration data. The line represents the fit to
the model. Ko= 6.69x10°M ™,
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Experiments on all the halides are summarised in Table 3.3 and Figure below.
Generally speaking binding affinities obtained using this host is slightly lower than
those obtained for 1.

Table 3.3 shiftsin NH resonance (Ad) and 1:1 anion association constants (Kj) of
macrocycles 2.

lon K{MJ A3[ppm]
cl 2.8x10"+1% 1.46
Br 3.3x10%+3% 1.10

I 1.5x10°+8% 0.55
F 6.7x10%+1% 5.04

®Anions added as TBA sdts. Shifts are for 5 equiv. of anions added. Association
constants are calculated by Excel program, with errors of experimental datafitting to
the calculated binding isotherms 10%. Solvent: CD3CN, concentration of
macrocycles: 1.5x10° mm, T = 293 K, peaks monitored: amine -NH macrocycle 1.
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Figure 3.15 Plots of the average chemical shift of the amine NH resonances
macrocycle 2 versus equivalents of TBA salts (Cl e, Br m, F A and | e) added
(solvent: CD3CN, concentration of macrocycle2 1: 1.5 mM, T = 293 K).
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3.5.3 Titration [Ru([9]aneS3)(9-benzyl-9H-purin-6-
amine)]s3(PFe)3 (3).

Although titrations of macrocycle 3 with halides were quite similar to those for hosts
1 and 2 there were some differences. For example, macrocycle 3 precipitates after
addition of 1 molar equivaent of TBAF. Furthermore, there are relatively small
upfield shifts in H2 and H8, these contrasts with the behaviour of macrocycle 1,
where these signals shifted to low field. No shifts are observed for the phenyl
protons and -CH, protons. Fits from the fluoride data were still possible although the
estimates are probably less accurate.

The relative data for macrocycle 3 binding to halides is summarised in Table 3.3 and
Figure below. Clearly the binding of this macrocycle to these guests shows a much
bigger range of affinities than that of hosts 1 and 2. Job plots show this binding is
(1:2).

Table 3.4 Shifts in NH resonance (Ad) and 1:1 anion association constants (K,) of
macrocycles 3.2

lon K{M™ A3[ppm]
Cl 1.6x10°+5% 1.05
Br 1.8x10°+8% 0.70
I 3.6x10°+3% 0.36
F 9.8+8% 1.65

Anions added as TBA sdlts. Shifts are for 5 equiv. of anions added. Association
constants are calculated by Excel program, with errors of experimental datafitting to
the calculated binding isotherms 10%. Solvent: CD3CN, concentration of
macrocycles: 1.5x10° mm, T = 293 K, peaks monitored: amine ~NH macrocycle 3.
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Figure 3.16 Plots of the average chemical shift of the amine NH resonances macrocycle 3 versus
equivalents of TBA salts (ClI" ¢, Br m and | e) added (solvent: CD3;CN, concentration of
macrocycle 3: 1.5 mM, T = 293 K). Fluoride is not included as it precipitates after addition of
around 1 equivalent.

3.5.4 Titration [Ru([9]aneSs3)(9-(4-methoxybenzyl)-9H-
purin-6-amine)]s3(PFe¢)3 (4)
In terms of solublities this macrocycle is closer to host 3 rather than macrocycles 1

and 2. For example, macrocycle 4 precipitated after addition of only 1.2 molar
equivalents of TBAF. The data collected in these studies is summarized in Table 4
and Figure below. They show that this macrocycle does not have the same range of
selectivities/affinities shown by host 3. Indeed they indicate that macrocycle 4 has
the lowest selectivity of all of the 4 macrocycles studied.

Table 3.5 shifts in NH resonance (Ad) and 1:1 anion association constants (K;) of
macrocycles 4.

lon K{M™ A3[ppm]
Cl 4.1x10"+3% 1.01
Br 2.9x10"+4% 0.74

I 5.0x10°+3% 0.25
F 1.4x10°+5% 5.50

®Anions added as TBA sdts. Shifts are for 5 equiv. of anions added. Association
constants were calculated by Excel program, with errors of experimental data fitting
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to the calculated binding isotherms 10%. Solvent: CD3;CN, concentration of

macrocycles: 1.5x10° mm, T = 293 K, peaks monitored: amine -NH macrocycle 4.

P * * o+ L 2
7.45 +* ¥ ¢ Cl
= *
E 7.25
= | I | u
= ¢ .-. | I N )
£ 705 | g° "B
x
i
£ g |
E +
< 665 |H
A= * o
L] ®
B 645 .
- 5
S
6.25
0 2 4
Equivalents of TBA salts added

Figure 3.17 Plots of the average chemical shift of the amine NH resonances

macrocycle3versus equivalents of TBA salts( Cl'¢, Brland |'©) added (solvent: CDsCN,
concentration of macrocycle 3 1. 1.5 mM, T = 293 K). Fluoride is not included as it
precipitates after addition of around 1.2 equivalents

3.55 Titration macrocycle [1](NOz); with TBA chloride
ionin D,O

Given the strong binding of the macrocycle with chloride in organic solvent, its
interaction in water was also investigated. In these conditions, the host-guest
interaction is expected to be greatly attenuated, as water is a highly competitive
hydrogen bonding solvent and highly polar.

Upon addition of chloride a slight shift (Ao = 0.17) in macrocycle 1 NH protons
were observed in D,0O titration compared with the shift in CD3CN titration of Ao =
1.54. This suggests binding between macrocycle 1 and chloride ion is attenuated in
this solvent. Analysis of the titration data following the NH protons gave a greatly
reduced association constant (K,=58.9 M™Y. Therefore, macrocyclel exhibits a very
much lower binding affinity for chloride in agueous conditions. Thisis presumably a
consequence of the D,O competing and thus inhibiting hydrogen bonding between
NH and the anion guest. This suggests that chloride is not bound well in this
competitive solvent.
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Figure 3.18 *H NMR (400 MHz) spectra of macrocycle 1 upon addition of equivalents of
TBACI In response, Solvent D,O; temperature: 293 K; [1] =1.5x10-°mol dm-.
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Figure 3.19 "H NMR (400 MHz) spectra of macrocycle 1 upon addition of equivalents of
TBA chloride In response, Solvent D,O; temperature: 293 K; [1] =1.5x10°mol dm™.

In this agueous titration only small effects on the thiacrown region are observed,
compared to the large splitting and shifts observed in the CD3CN titrations Figure
3.19.
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Figure 3.20 Binding curve obtained through analysis of the '"H NMR titration data,
monitoring the NH proton (H6) shift. Association constants were determined by using
Excel to fit the 'H NMR titration data, The line represents the fit to the model K.= 59 M™.

36 CONCLUSION

Summarising the data for all the titrations: for macrocycles 1 and 2 the addition of
chloride and bromide anions caused large downfield shifts (Aomax>>1) of the NH
resonance. The same guests produced lower shifts for macrocycles 3 and 4. A
similar trend was observed for iodide generaly binding to these anions followed the
same trend: Br'=CI>>I">F, which — apart from fluoride - follows the basicity of the
anions as expected for simple hydrogen-bond donor-acceptor systems. It is proposed
that chloride and bromide bound more strongly than fluoride due to better geometric
complementarity between each of the chloride, bromide and macrocycles cavities
than fluoride and iodide. Thus, these results indicate that the host cavities of
macrocycles 1, 2, 3, and 4 bind chloride and bromide guests best due to a

complementary combination of shape, size and basicity.

It is notable that all the macrocycles bind fluoride anion very weakly, despite
producing large NH shifts. Indeed, the binding of fluoride was found to be more
unfavourable than for any of the other halideions. Thisis possibly due to the size of
the cavities not being complementary to that of the fluoride ion.®*® Investigations
into the binding between macrocycle 1 and chloride ion in the more competitive
solvent water revealed that binding under these circumstances be very weak,
therefore it could be argued that hydrogen bonding plays a major role in the binding

strength between the ions and the macrocycles.

77



Chapter 4

4. Oxotitrations

After the investigation of binding to simple spherical halides the interaction of the
macrocyclic hosts with more structurally complex oxo anions was explored. In this

case the anionsinvestigated could be either tetrahedral or trigonal in shape.

4.1 Titration of [Ru([9]aneS;)(9-methyl-9H-purin-6-amine)];
(PFe)s (1)

4.1.1 Titration of macrocycle 1 with acetateion

Titration with the acetate anion resulted in relatively large downfield shifts of NH
protons (Ac max = 0.948) Figure 4.1. Furthermore, as in the case of the halide ions,
notable splitting of the thiacrown protons occurred with some protons downfield
shifted and some protons upfield shifted. However, again, a different splitting pattern

is observed in the thiacrown region compared with halide ions.

3eq TBAACO r“

2eq TBAACO m

& ) J- J‘v-'w)

|I 1eq TBAACO H :

W _—)lu Jdu A'L%‘I
‘ 0.6 eq TBAACO U

I Ji .J{ ‘ i L./
\ 0eq TBAACO “J =

- S .J'.. JL_,.LJ |‘L

Figure 4.1'H NMR (400 MHz) spectra of macrocycle 1 upon addition of equivalents of
TBAOAC. Solvent CD,CN; temperature: 293 K; [1] =1.5x10-° mol dm->.

There is appreciable downfield shifts of the thiacrown protons labelled a, b and f
which are indicative of hydrogen binding between AcO™ and these protons (Figure
4.2). Upfield shifting of the thiacrown protons labelled e and d and no shifting in the
c protons were also observed. All these shifts are very weak in comparison with
chloride and bromide guests, but are ssimilar in magnitude to the iodide shifts. Using

the NH shifts a binding curve for the interaction with acetate was constructed. Since

78



Job plots clearly indicated 1:1 binding (Figure 4.3). Model fits to the curve using this
binding ratio were carried out leading to an estimated K, value of 6.34x10°M™
(Figure 4.4).

a b [ c d f e
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Figure 4.2 "H NMR (400 MHz) spectra of macrocycle 1 upon addition of equivalents of
TBAACO. Solvent CD;CN; temperature: 293 K; [1] =1.5x10-° mol dm-.
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Figure 4.3 A job plot based on the NH proton (H6) shifts on addition of acetate clearly
indicate a1:1 binding ratio.
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Figure 4.4 Binding curve obtained through analysis of the 'H NMR titration data for addition
of acetate guest, monitoring the NH proton (H6) shift. Association constants were
determined by fitting the *H NMR titration datato a 1:1 model. The line represents the line
represents the fit to the model. K,=6.3x10°M™.

4.1.2 Titration of macrocycle 1 with succinateion

Upon addition of succinate ion to macrocycle 1, smaller but clear down field shifts
of NH protons (Aomax = 0.543) occur (Figure 4.5). Furthermore, slight splitting of
the thiacrown protons is also observed. However, the host precipitates after addition
of more than 1 equivalent of succinate guest.

1 eq of (TBA),Succinate
NH
0.6 eqof (TBA),Succinate J O
J NH Aot A
0.3 eq of (TBA),Succinate ‘t pL, s
W Jﬂ._NH o Jnj )
0.2 eq of (TBA),Succinate a
N A
J el e
0 eq of (TBA),Succinate a
NH A

T I G G T R e
7 6 & 4 3 [ppm]

Figure 4.5 'H NMR (400 MHz) spectra of macrocycle 1 upon addition of equivalents of
TBAsuccinate. Solvent CD;CN; temperature: 293 K; [1] =1.5x10-° mol dm->.
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Figure 4.6 illustrates the relatively small perturbations observed in the thiacrown
protons on addition of succinate ion. Slight downfield shift of the thiacrown protons
labelled a, b and f are indicative of weak hydrogen binding between succinate ion
and these protons. Upfield shifts of the thiacrown protons labelled e and - less so -
for d also occur. However, no shifts in the ¢ protons occurred. As mentioned
previousdly, al shifts in thiacrown region in this experiment are very small,
suggesting the possibility of a different binding mode, perhaps external to the
macrocycle’s cavity for the larger succinate ion.

Binding curves were constructed using the shifts of the macrocycle 1 based on NH
shown in Figure 4.5. Unfortunately, due to the poor solubility of the host in the
presence of this guest, a meaningful curve for any possible second event could not be
constructed. Again, due to poor solubility problems, Job plots for the interaction of
host 1 and succinate could not be fully constructed. However it does appear that the
first binding event observed in Figure 4.7 isfor a 1:1 interaction with the carboxylate
units of the succinate guest.
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Figure 4.6 “"H NMR (400 MHz) spectra of macrocycle 1 upon addition of equivalents of
TBASuccinate. Solvent CD;CN; temperature: 293 K; [1] =1.5x10-° mol dm.
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Job plots
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Figure 4.7 A job plot based on the NH proton (H6) shifts on addition of succinate indicate a
1:1 binding ratio.
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Figure 4.8 Association constants for the 1:1 interaction with succinate were determined by
using analysis of the "H NMR titration data, monitoring the NH proton (H6) gave (K= 4.88
X 10° M™Y.

4.1.3 Titration of macrocycle 1 with dihydrogenphosphate ion
Addition of dihydrogenphosphate ion produces smaller downfield shifts of NH

protons (Aomax = 0.27) compared to succinate. However, in this case, the compound
precipitated after addition of 2 equivalents of TBAH,PO,.
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Figure 4.9 "H NMR (400 MHz) spectra of macrocycle 1 upon addition of equivalents of
TBA dihydrogenphosphate. Solvent CD;CN; temperature: 293 K; [1] =1.5x10-° mol dm-
TBAH,PO,.

Figure 4.10 illustrates the small perturbations observed in thiacrown protons on
addition of dihydrogenphosphate ion. Slight downfield shifting of the thiacrown
protons labelled a and f occurs. Upfield shifts of the thiacrown protons labelled e and
f, to alesser extent, d occurs. Again, in general all shifts in thiacrown region in this
experiment are very small, reflecting the weak interaction between this guest and
host 1. Indeed fits of models to 1:1 binding produced a very low K, (28 M™)  see
Figure 4.11.
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Figure 4.10 *H NMR (400 MHz) spectra of macrocycle 1 upon addition of equivalents of
TBAdihydrogenphosphate. In response, Solvent CD;CN; temperature: 293 K,; [1] =1.5x10-°
mol dm-.
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Figure 4.11 Association constants for the interaction with dihydrogenphosphate were
determined by analysis of the '"H NMR titration data, monitoring the NH proton (H6) gave
(K=28M™).

4.1.4 Titration of macrocycle 1 with Hydrogensulfateion (1:1)
binding
On addition of this guest only a small downfield shift of NH protons (Ac = 0.222)
initially occurs. It is aso noticeable that only a very slight splitting of the thiacrown
protons is observed on addition of hydrogensulfate ion. This suggests that, like
dihydrogenphosphate, any interactions with this anion and the host’s binding pocket

isweak.

FNH 0.7 eq of TBAHSO4 |}|
I . o mefl
[I‘—.H: 0.6 eqof TBAHSO4 |*
L . ;
b

e
-NH 0.5 eqof TBAHSO4 |l i
B T '_,I"{IJ“__M}_}'-L“#._J«"
NH 0.4 eq of TBAHSO4
'|-NH 0.3 eq of TBAHSO4 leJ j L]
= | A A H"L__J“"L{

0.2 eqof TBAHSO4

[ | W
P S = S——— m‘!h‘]‘}‘.‘—",‘:’:\hwml—‘! LU
A

NH 0.1 eq of TBAHSO4 A | I
| 4 Lo MM ]
II-I\-—H 0.0 eq of TBAHSO4 : m‘Lﬁ“ 4
- - s Ak J‘INA-_..
é ; : :

Figure 4.12 "H NMR (400 MHz) spectra of macrocycle 1 upon addition of equivalents of
TBA hydrogensul phate. Solvent CD,CN; temperature: 293 K; [1] =1.5x10-° mol dm->.
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Figure 4.13 *H NMR (400 MHz) spectra of macrocycle 1 upon addition of equivalents of
TBA hydrogensulfate. Solvent CD;CN; temperature: 293 K; [1] =1.5x10-° mol dm->.

Figure 4.13 illustrates the very small perturbation observed in thiacrown protons with
hydrogen sulfate ion that indicate the interaction between hydrogen sulfate ion and
thiacrown protons are very weak. Slight downfield shifting of the thiacrown protons

|abelled a, cand f also occurs.
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Figure 4.14 Job-plot analysis revealed a 1:1 binding mode for sulfate ion (1:1) binding.

However, somewhat surprisingly, fits of the macrocycle 1 based NH shiftstoa 1:1
binding model lead to arelatively high K, value of 5.6x10°M™.
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Figure 4.15 Binding curve obtained for addition of hydrogen sul phate through analysis of
the 'H NMR titration data, monitoring the NH proton (H6) shift. The line represents the fit
to the model. K,=5.6x10°M ™,

4.1.5 Titration of macrocyclel with hydrogen sulfateion (1:2)
Binding

Further addition of hydrogen sulfate ion over 1:1 ratios produced an unusua and
interesting effect. Increasing amounts of the guest caused a sudden and distinctive
perturbation in the shifts of the spectra of the macrocycle, suggesting a second
binding event. To investigate this effect in more details a second binding titration
was performed in CD3CN. The first set of changes in the spectrum of host 1 ends
when ~0.9 eq was added and the NH protons shifted from 6.08 ppm to 6.23 ppm. In
contrast, the addition of HSO,4 above this ratio, prompted a sudden upfield shifted in
the NH protons to 6.16 ppm (Figure 4.16).
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Figure 4.16 *H NMR (400 MHz) spectra of macrocycle 1 upon addition of equivalents of
TBA hydrogensulfate Solvent CD;CN; temperature: 293 K; [1] =1.5%x10-° mol dm->.

A similar - but clearer - discontinuity was observed in the thiacrown shifts. Thisis

most clearly seen in the proton signas labelled a and b and f in Figure A sudden

shift appears at binding ratios above 1 eq of guest, followed by downfield shifting on

further additions of guest. The rest of the signalsin thisregion are hardly affected by

binding. This second set of changes does not produce a saturation binding curve,

suggesting a possible second non-specific binding event.
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Figure 4.17 *H NMR (400 MHz) spectra of macrocycle 1 upon addition of second equivalent
of TBA hydrogen sulphate. Solvent CD;CN; temperature: 293 K; [1] =1.5x10"® mol dm’®.



4.1.6 Titration of macrocycle 1 with perchlorate

The perchlorate ion was chosen as a very simple example of atetrahedral oxo-anion.
Upon addition of tetrahedral ClO,4, the shifts in NH are significantly smaller than
those that occurred with acetate (Ac max = 0.12). In contrast with the acetate anion-
which precipitated after addition of 3 molar equivalents —the macrocycle precipitated
after addition 5 molar equivalents of perchlorate guest. All thiacrown shifts were
also very small compared to those for chloride and bromide, or even acetate. Very
weak downfield shifts of the thiacrown protons labelled a, b, ¢, d and f and an
upfield shift of the thiacrown protons labelled e occurred. These observations all
indicate a weaker interaction with perchlorate ion. The reason for this relatively
weaker interaction may be due to the shape and size of this guest compared to
acetate. The acetate is trigonal and perhaps this guest shape is more complementary
to the host binding pocket than the tetrahedral perchlorate.
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Figure 4.18 *H NMR (400 MHz) spectra of macrocycle 1 upon addition of equivalents of
TBACIO,. Solvent CD;CN; temperature: 293 K,; [1] =1.5%x10-° mol dm->.

Job Plots suggest 1:1 binding, therefore association constants were determined by
model fitof the *H NMR titration data, monitoring the NH proton (H6) giving a
binding affinity estimate of K;=1.2 x 10° M™* around 5 times weaker than the binding
to acetate.
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Figure 4.19 Binding curve obtained for addition of perchorate through analysis of the 'H
NMR titration data, monitoring the NH proton (H6) shift. The line represents the fit to the
model. K;=1.2x10°M ™.

4.1.7 Titration of macrocycle 1 with nitrateion

Mixing macrocycle 1 with trigonal nitrate ion produced distinctive downfield shifts
of NH protons (Ao = 0.52), which are intermediate to those between acetate and
perchlorate guests, again suggesting a relatively weak binding affinity compared to
chloride and bromide. However, the shifts are still appreciably larger than those for
the tetrahedral perchorate ion suggesting that the shape of the guest is important.
Again, downfield shifts of the thiacrown protons labelled a and f are observed
indicating hydrogen binding between nitrate ion and the aand f protons. And upfield
shifts of the thiacrown proton, labelled e is observed, while there are no shifts for b,

¢ and d protons.
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Figure 4.20 "H NMR (400 MHz) spectra of macrocycle 1 upon addition of equivalents of
TBA nitrate Solvent CD;CN; temperature: 293 K; [1] =1.5x10°® mol dm®.

In this case, there was also some evidence of a second binding event on addition of a
second equivalent of guest. However, due to the small shifts observed and problems
with solubility it is difficult to obtain binding parameters for this interaction, which

judging by the small shifts appears to be quite weak.
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Figure 4.21 Binding curve obtained for addition of nitrate guest through analysis of the *H
NMR titration data, monitoring the NH proton (H6) shift. Association constants were
determined through fits of the '"H NMR titration data. The line represents the fit to the fit to
the model. K;=1.19x10°M™.
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4.1.8 Summary of binding data for macrocycle 1
To aid comparison, the oxo anion binding data for macrocycle 1 are summarized in

Table 4.1 while the shifts generated in the NH protons are shown in Figure 4.22 and

Figure.

Table 4.1 Maximum shifts in NH resonance (Ad) and 1:1 anion association constants
(K3) of macrocycles 1.2

lon K{MJ A3[ppm]
CH,COO 6.3x10°+5% 0.95
(CH,CO0)* 7.7x10°7% 0.45
NOs 1.2x10%+8% 0.52
ClOs 1.2x10°+2% 0.12
H,PO4 2.8+15% 0.27
HSO, 5.6x10°+7% 0.22

®Anions added as TBA salts. The two figures below show plots of the chemical shift
of the amine NH resonances macrocycle 1 versus equivaents of TBA salts. The first
figure shows data for anions that can be added in excesses of >5 equivalents. Whilst
the data shown in the second figure shows the effect of guests that cause
precipitation of the guest at lower binding ratios.
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Figure 4.22 Chemical shift of amine NH resonances in macrocycle 1 on addition of TBA
salts (OAC , NO;s A andCIO4m).
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Figure 4.23 Chemical shift of amine NH resonances of macrocycle 1 on addition of TBA
sats (CHZCOO)Z- H, HSO4_ eand H2P04_ A )

4.2 Titration of [Ru([9]aneS3)(9-ethyl-9H-purin-6-amine)]s

(PFe)s3

The host-guest chemistry between the other hosts and the same oxo-anions
investigated with host 1 were also explored. Titrations with macrocycle 2 and oxo
guests give very similar results to those obtained with macrocycle 1 although the NH
shifts tended to be larger and macrocycle 2 only precipitated after addition of higher
molar equivalents of guests. The results from these experiments are summarized in
Table 4.2.

Table 4.2 Maximum shiftsin NH resonance (Ad) and 1:1 anion association constants
(K3) of macrocycles 2.2

lon K{M7 ASmax[ppm]
AcO 5.2x10°+4% 1.17
NOs 8.5x10°+1% 0.57
ClOy 2.1x10°+1% 0.12
H.PO, 8.1+4% 0.50
HSO, 1.6x10%+3% 1.54
@Anions added as TBA sdlts.
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Asfor macrocycle 1, some of the anionic guest cause host 2 to precipitate relatively

rapidly therefore the induced shifts are summarized in two separate figures.
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Figure 4.24 Plots of chemical shift of the amine NH resonances macrocycle 2 on addition of

TBA salts(AcO'm, NO; A and ClOj'e) .
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Figure 4.25 Plots of chemical shift of amine NH resonances macrocycle 2 versus equivalents

of TBA salts (HSO4 e and H,PO, m).

4.3
amine)]s(PFe)3 (3)

Titration of [Ru([9]aneS;)(9-benzyl-9H-purin-6-

Macrocycle 3 also behaves in a ssimilar manner to hosts 1 and 2, but it precipitates

more easily when guests are added, so only titrations with the trigonal guests acetate

and nitrate could be fully completed. Interestingly, these experiments indicate that

this host binds to these guests with slightly higher affinity than macrocycles 1 and 2.
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Table 4.3 Maximum shifts in NH resonance (Ad) and 1:1 anion association constants
(K3) of macrocycles 2.2

lon KIM A3[ppm]
AcO 3.1x10%+2% 1.06
NO3 1.4x10°+5% 0.38

Anions added as TBA salts. Shifts are for 5 equiv. of anions added. "Error in the fit
Over the data set is estimated at 4%.
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>
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Figure 4.26 Plots of guest induced chemical shifts of the amine NH resonances of
macrocycle 3 on addition of TBA salts (AcO” A and NO; @),

4.4  Titration of [Ru([9]aneS;)(9-(4-methoxybenzyl)-9H-purin-6-
amine)]s (PFe)3 (4)

The solubility of the macrocycle is similar to that of host 3, rather than 1 and 2,
consequently only the same two guests could be studied. However the association
constant values determined for macrocycles 4 with acetate and nitrate ions appear to

be dlightly lower than those for macrocycle 3.
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Table 4.4 Maximum shifts in NH resonance (Ad) and 1:1 anion association constants

(Kg) of macrocycles 4.

lon KIM A3[ppm]
AcO 1.8x10°+4% 0.84
NOs 1.2x10°+3% 0.42
@Anions added as TBA salts.
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Figure 4.27 Plots of chemical shifts of the amine NH resonances of macrocycle 4 on
addition of TBA salts( AcO e and NOs A).

4.5 Conclusions

Overdl the titrations with oxo guests and al the hosts are similar. Although HSO4
binds more strongly to host 1, generally the host cavities seem more suited to acetate,
nitrate and perchlorate than other oxo guests; it is aso notable that the acetate and
nitrate guests do not cause the macrocycle to precipitate so easily. Indeed, other
guests precipitated after addition of just afew molar equivalents. In these latter cases

the data collected was incomplete, yielding less information on the binding between
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macrocycles and guests. For example, in the titration between macrocycles and the
H.PO4, HSO, and (CH,COOQ), guests, precipitation occurred after the addition of
very small amounts of anion to macrocycles 3 and 4. In both macrocycles 1 and 2
strong interactions were detected with OAc’, NOs and ClOyin this order: NOs3’
>AcO>ClO,. In contragt, titrations of NOs” and OAc with macrocycle 3 and 4
showed the acetate ion binds more strongly than nitrate ion. The results indicate that,
generaly, triangular shaped guests like NO3, AcO™ are bound more strongly than
those of tetrahedral shape (e.g.; ClO4). Taken the halide binding in consideration
too, the general observed tendency of anion binding for al the macrocycles is ClI°
>Br>>1">AcO->NO3;>ClO,>F. This trend broadly follows the basicity of the
anions as expected for simple hydrogen bond donor and acceptor systems.®®™ It is
proposed that chloride and bromide bound more strongly than fluoride and oxo
guests (which are more basic) due to greater geometric/size complementarity
between each of the chloride, bromide and macrocycle cavities compared to the
acetate, nitrate and iodide guests. " In addition, weaker binding is observed with
the more basic and larger size nitrate and acetate anions due to unfavourable size
complementarity.” In sharp contrast to macrocycle 1 and 2, which exhibit low
binding affinities for basic anions (OAc’, NO3), the macrocycles 3, and 4 binds
OAc and NO3 anions more strongly, perhaps due to the greater acidity of their NH
moieties.” These investigations reveal that the macrocycles host cavities is of
preferable complementary shape, size and electronegativity for halides in particular
chloride and bromide, over the non-spherical oxo anions of guests (acetate,

succinate, nitrate, hydrogen sulphate, and dihydrogen phosphate).
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CHAPTER 5

5.1 Electrochemistry Studies

The electrochemical behavior of the trimetallic complexes described in the previous
chapters was investigated by cyclic voltammetry. All electrochemistry was carried
out using the same conditions (0.1M [nBusN][PFg]; 20 °C, Pt working and counter
electrodes, Ag'/AgCl reference electrode, Sweep Rate 100 V s?). If the metal
centres of [Ru([9]aneSs)(9-methyl adenine)] (1), [Ru([9]aneSs)(9-
ethyladenine)]s>*(2), [Ru([9]aneSs)(9-benzyl-9H-purin-6-amine)] s> (3) and
[Ru([9]aneS3)(9-(4-methoxybenzyl)-purin-6-amine)]s**(4) are interacting they will
not oxidize at the same potential. From simple electrochemical concepts it is
expected that oxidation of metal centers in the complexes should occur in three
steps. During each step, the potentia for each ruthenium (I1) oxidation will become
greater; electrochemical data for previously reported 1 and new macrocycles 2 — 4

aregivenin Tableb. 1.

Table 5.1 Electrochemical Datafor macrocycles 1, 2, 3and 4 in CH3;CN (0.1 M
[NBusN][PFe]; 20 °C, Pt Electrodes, Sweep Rate 0.05 V s-%)

Eyp @ Eyp @ () Ey, @ K
Complex (DN QN Ke BV
1 0.7769 0.9119 1.94x10° 1.2717 1.25x10°
2 0.7891 0.9029 0.85x10° 1.2657 1.41x10°
3 0.7290 0.8668 2.17x10° 1.1697 1.36x10°
A 0.7919 0.9358 2.75x107 1.2716 4.92x10°
(a) vs Ag/AgCl

(b) Kc values were calculated using log Kc = [AE1/2/0.059].

(c) Complexes are not fully reversible, therefore only E1 values are quoted.
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Previous studies by Nazam Shan of the Thomas group have shown that macrocycle 1
displays three reversible one electron couples. This means at the platinum electrode
the trimer undergoes three successive one-electron oxidations to yield species with
4", 5" and 6" charges.

[Ru” 3]3+ -e [Ru” Ru|||]4+ - [Ru”Ru'" 2]5+ - [RUIII ]6+

The peak-to-peak separation for the first and second processes, (AEy2(1-2), was
found to be 0.135V. These results in a comproportionation constant, K, of 1.94x10°
associated with the following equilibrium.

52

[RU||3]3+ + [RU"RU|||2]5+ Z[RUIIZRU|||]4+

For the second and third processes, AEy; (2-3) = 0.360 V. In this case the value of
K. is much higher at 1.25x10° and is associated with the following equilibrium.

The fact that K (5-3) is significantly larger than K. (5-2) suggests that the 1°* state
displays a stronger intermetallic interaction compared with 1*. This is in direct
contrast to other redox-active triangular complexes containing a tritopic bridging
ligand,” in which the spacing are approximately constant. This is as would be
expected if there is no variation on the pair wise metal-metal interactions across the
redox series. The unusua behavior of the macrocycle implies that on moving from
1* to 1°* there is much greater delocalisation of the positive charges, making the
fina oxidation more difficult than it would be otherwise. Complex 2 is also
characterised by three reversible one-electron couples, but — compared to 1 these are
dightly shifted, occurring at +0.789, +0.903 and +1.267 V vs Ag/Cl respectively.
Again, AE < 100 and | Ipa/lpc| = 1. These values of Ey, closely match those for
complex 1 meaning that both complexes 1 and 2 exhibit similar comproportionation
constants (see Equation 5.1): the peak to peak separation for the first and second
processes for 2 (AEy, (1-2), is 0.1138 V. This results in a comproportionation
constant, Kc, of 0.85 x 10%. For the second and third processes, AEy, (5-3) =
0.7763; in this case the value of Kc is much higher a 1.41 x 10°. These figures
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indicate that similar levels of electron delocalization are observed within the
analogous mixed valence states of both macrocycles.

macrocycles 1, 2, 4
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0.000013 -

0.000008 -

0.000003 -

Current(A)

-0.00000 0
-0.00000 -

-0.00001 -

Potential(V)

Figure 5.1 Electrochemical CV datafor macrocycle 2. The responses of macrocycle 4
and 1 are very similar.

macrocycle 3
0.000015

0.00001 -
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1.5
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-0.00001 -

Potentia[V)

Figure 5.2 Electrochemical CV datafor macrocycle 3.

Although the electrochemical properties of macrocycles 1, 2 and 4 are very similar,
those of 3 are dightly different. Another oxidation process appears in macrocyle 3
after the third metal based oxidation at 1.361 V.This peak is assigned to a ligand-
based oxidation (which, in similar conditions, occurs at 1.466 V in the free ligand).

Complexes 3 and 4 produce similar electrochemical results. For complex 4 the
difference between the first and second process is AE1»(5-2) =0.1439, this leads to a
value of K. very close to that of complex 3. For the second and third process,
AE1;5(5-3)= 0.3358, leading to a value of K= 4.92x10°, again thisis similar to 3 and
dlightly lower than 1 and 2. These results indicate that, as might be expected, the
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nature of the bridging ligands affects the electronic delocalization between metal
centres. Although this effect is not simple as the two MV states are shifted by

contrasting amounts.

5.3 Electrochemistry titrations on newly reported trinuclear hosts

Given the results described in 4.2, the electrochemical response of macrocycles 1 -4
to guest binding was explored. The support electrolyte used in the experiment was a
0.1 M solution of tetrabutyl ammonium hexafluorophosphate (TBAF) in dry
acetonitrile and all cyclic voltammograms were obtained under an atmosphere of
dinitrogen. A background cyclic voltammogram of the TBAF solution was initialy
obtained for all experiments in order to see that the electrodes were clean and
working. The mass added to the solution every time was precise and once added

formed a host solution with a concentration of 3 x 103 M.

The square wave voltammograms of the host was then measured in the 0-1.6 V range
and as expected produced the distinctive three peaks. Potentials greater than 1.6 V
were not necessary because no oxidation is present above this vaue. The
voltammograms clearly showed the reversible generation of the two mixed valence
states at potentials between the three peaks. The guest anions were then titrated into
the solution. Initially, the guests tested with macrocycles were structurally relatively
simple spherical anions: fluoride, chloride, bromide, and iodide. All of the anions
used were present as tetrabutylammonium salts. Solutions of the anions were made
up so that they were 25 times more concentrated than the host ensuring that when
volumes of guest anion were titrated into the host solution, there would be a minimal
change in the volume inside the cell therefore keeping the concentrations of the
species in solution relatively constant. Following the first addition of 0.25
equivalents of guest, the concentration of guest in the solution was increased to 0.5
mole equivalents and then raised stepwise to 0.75, 1, 2, 3 and 4 mole equivalents
respectively. After each titration, the square wave voltammetry was used to monitor

if any electrochemica changes had taken place. The SWVs for the progressive
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increase in anion concentration were plotted on the same axis as one another. This

made it very easy to see any shifts upon addition of anion.

5.4 Halidetitrations

5.4.1 Titration macrocycle 1 with guests

5.4.1.1 Fluoride guest

On initial inspection of the results, shown in Figure 5.4, it is clear that the F anion
has alarge effect on the oxidations of 1, producing cathodic shifts. For example, the
third peak Ep(3) at 1.27 V is shifted to 1.19 after addition 3 mole equivalents of
TBAF. It is also clear that there is a gradual cathodic shift in Ey(3) upon each
addition of guest Figure 5.3.

Titration macrocycle 1 with TBAF
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Figure 5.3 SWV of macrocycle 1 upon the addition of aliquots of F.Electrolyte:
0.1 M TBAPF¢/CH3CN (concentration of macrocycle 1: 0.5 mm. T = 293 K,
potential compared to Ag/AgCl reference).

Thereis also abig shift of 110 mV in Ey(2) after addition of 1 mole equivalent of F.
The shifts for Ey(1) are more difficult to interpret than those the Ey»(2) and Ey2(3).
On addition of 1 mole equivalent of F Ey(1) and Ey(2) appear to merge, this may be
the result of the high shift for second oxidation compared to the lower shift for first
oxidation. After addition of 3 mole equivalents of F the first and second oxidation
separate again. Clearly, these data show that not all oxidations are affected by the
same amount when a guest binds into a site on a host: E(1) isrelatively less affected
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by the binding of F, but Ex(2) and Ey(3) show significant cathodic shifts. This
indicates that the two mixed valence state (Ru'Ru"'Ru'") and (RU"'Ru"'Ru™)
becomes easier to access when the anion is bound.

5.4.1.2 Chloride guest

TBACI is redox active in the potential window used. The SWV curves of TBACI
exhibit one cathodic peak, which lies in the potential range between the reversible
oxidation peaks Ey(2) and Ey(3) of macrocycle 1. However, this guest aso has a
large effect on the electrochemistry of the host — Figure 5.5. The third peak Ey(3) at
1.28 V is shifted to 1.22 V even after addition of 0.25 mole equivaents of TBACI.
Addition of more than 1 mole equivalent of Cl™ haslittle effect on the potential of the

macrocycle oxidations, indicating a strong interaction.

Titration macrocycle 1 with TBACI
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Figure 5.4 SWV of macrocycle 1 upon the addition of aliquots of TBACI. Electrolyte: 0.1
M TBAPFs/CH3CN (concentration of macrocycle 1: 0.5 mm. T = 293 K, potentia
compared to Ag/AgCl reference).

Again Ep(1) is most affected by the binding of Cl” with the mixed valence states
(Ru"Ru"RU™, (Ru"Ru"'Ru"") becoming stabilized when the anion is bound.

102



5.4.1.3 Bromide guest

Bromide ion is also redox active. The first cathodic peak of TBABr lies between the
potentials for oxidation peaks Ey(1) and Ey(2) of the macrocycle and a second
bromide oxidation is observed in the potential between Ey(2) and Ey(3). However,
after 0.25 mole equivaent the first anodic peak of TBABr merged into the reversible
cathodic peaks Ey(1), E(2) of macrocycle 1. Notably, Figure 6 clearly shows there is
no shift in peak Ey(3). Therefore, again, in this titration the mixed valence states
(Ru"Ru"RU™), (Ru"Ru"'Ru"") become stabilized when the anion is bound.

Titration macrocycle 1 with TBABr
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Figure 5.5 SWV of macrocycle 1 upon the addition of aiquots of TBABr. Electrolyte:

0.1 M TBAPFs/CH3CN (concentration of macrocycle 1: 0.5 mm. T = 293 K, potential

compared to Ag/AgCI reference).

0.00001 -

0.000005 -

5.4.1.4 1odide guest

The last halide anion to be investigated using the same conditions and concentrations
used for F was iodide. Although iodide is redox active, it is clear that, even as the
concentration of guest was gradually increased from 0 mole equivalents to 3 molar

equivalents see Figure 5.6 virtually no shift in the oxidation potentials of the
macrocycle occurs.
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Figure 5.6 SWV of macrocycle 1 upon the addition of aiquots of TBAI. Electrolyte:

0.1 M TBAPFs/CH3CN (concentration of macrocycle 1: 0.5 mm. T = 293 K, potential
compared to Ag/AgCI reference).

Table 5.2 below summarizes the maximum changes in electrochemistry for host 1
calls by anion guests:

Table 5.2 shows Maximum shifts in the electrochemistry of macrocycle 1 induced by
halide anions.

lon AEp(1) (mV) AEL(2) (mV) AEK(3) (mV)
F -71 -119 -100
Cclr -120 -101 -78
Br -81 -131 -35
-21 -45 -42
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5.4.2 Titration of macrocycle 2 with halide guests

The electrochemical response to halide binding of the three newly synthesized

macrocycles were aso reported and compared to macrocycle 1. This study began
with host 2.

5.4.2.1 Fluoride guest

Inspection of these results shown in Figure 5.7 revedls that the third peak Ey(3) is
shifted by up to 130 mV Figure 5.7.
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Figure 5.7 SWV of macrocycle 2 upon the addition of aliquots of F. Electrolyte:
0.1 M TBAPFs/CH3CN (concentration of macrocycle 1: 0.5 mm. T = 293 K,
potential compared to Ag/AgCl reference).

A shift of 180 mV occursin Ey(2) after addition of 3 molar equivalents of F. As for
host 1, the shifts present for Ey(1) are more difficult to interpret than those the E(2)
and Ep(3). On addition of 0.5 mole equivalents of F* there appears to be one peak for
Ep(1) and Ey(2). Thisis due to the high shift for second oxidation and lower shift for
first oxidation, but after addition 3 equivalents of F two oxidations are observed
again. Clearly the SWV behavior of macrocycle 2 is very similar to that of
macrocycle 1. It is noteworthy that in both cases there are no shifts after addition 3
mole equivalentsin both macrocycles.
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5.4.2.2 Chloride guest

Again it appearsthat Cl™ has a strong interaction with the host. In particul ar, the third
peak Ep(3) at 1.35V is shifted to 1.19 after addition of 2 mole equivalent of TBACI
and there is no more shifting after addition of 2 mole equivalents. After addition
0.75 mole of guest the oxidation peaks Ey(1) andEy(2) of macrocycle 1 and the
oxidation peak of the guest cannot be seen separately. After addition 3 moles of Cl°
equivalents the first and second oxidation spread again. A big shift of 130 mV is
noticed in Ey(2), and Ep(1) after addition of 3 mole equivalent of CI".

Thus, the titration of macrocycle 2 with TBACI is aso very similar with to that of
macrocycle 1. But there is some difference in solubility: macrocycle 1 precipitates
after the addition of 3 mole equivalents whilst macrocycle 2 precipitates after the
addition of 5 mole equivaents. Although both macrocycles 1 and 2 exhibit large
electrochemical shifts, larger perturbations were observed for the latter with chloride
ion than for macrocycle 1: Ey(1), Ey(2) and Ey(3) of macrocycle 2 shift by 130 mV,
120 mV and 140 mV respectively. Compared to shifts of 100 mV, 100 mV and 80
mV for 1.
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Figure 5.8 SWV of macrocycle 2 upon the addition of aliquots of TBACI.
Electrolyte: 0.1 M TBAPF/CH3CN (concentration of macrocycle 1: 0.5 mm. T =
293 K, potential compared to Ag/AgCI reference).
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5.4.2.3 Bromide guest

Again, some differences were observed in comparing the titration of macrocycles 1
and 2 with this anion. The biggest difference was that, although no shifts were
observed for Ey(3) of macrocycle 1, measurable shifts were found for Ey(3) of

macrocycle 2.

Titration macrocycle 2 with TBABr

0.000035 -

0.00003 - 0 eq TBABr

0.000025 - ——0.5 eq TBABr

0.00002 -
——TBABr test

Current(A)

0.000015

3 eq TBABr
0.00001 -

0.000005 -

o T T —

0 0.5 1 1.5
Potential(V)

Figure 5.9 SWV of macrocycle 2 upon the addition of aliquots of TBABY.
Electrolyte: 0.1 M TBAPFs/CH3CN (concentration of macrocycle 1: 0.5 mm. T =
293 K, potential compared to Ag/AQCI reference).

5.4.2.4 1odide guest

The concentration of guest was gradually increased from 0 mole equivalents to 1
mole equivalents see Figure 5.10. Further addition of anion leads to no shift in

potential of new wave.
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Figure 5.10 SWV of macrocycle 2 upon the addition of aliquots of TBAI.
Electrolyte: 0.1 M TBAPF/CH3CN (concentration of macrocycle 1: 0.5 mm. T =
293 K, potential compared to Ag/AgCI reference).

Again, as the table shows, there is no change the values for Ey(1) and Ey(3) during
the titration. The values for Ey(2) show very small shift from 0.921 V to 0.912 V.
This suggests that both macrocycles 1 and 2 show weak binding to iodide ion. The
possible reason for this behavior may be the size of iodide is not being

complementary with the cavity macrocycles and the weak negative iodide ion

charge, resulting in very weak polarization.

Table 5.3 below summarizes the maximum changes in electrochemistry for host 2

calls by anion guests:

Table 5.3 Maximum shiftsin the electrochemistry of macrocycle 2 induced by halide

anions.
lon AEL(1) (mV) AEL(2) (mV) AEL(3) (MmV)
F -130 -180 -131
cr -131 -121 -142
Br- merged peak -40
|- -04 -09 -02
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5.4.3 Titration of macrocycle 3 with halide guests
5.4.3.1 Fluoride guest

The concentration of guest was gradually increased from O mole equivaents to 2
mole equivalents. When the concentration exceeded 2 mole equivaents it was
noticed that the product precipitated out of solution. Nevertheless fluoride ion has
strong effects on the oxidations of 3 in the 0-1.6 V window.

Titration macrocycle 3 with TBAF
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Figure 5.11 SWV of macrocycle 3 upon the addition of aliquots of TBAF.
Electrolyte: 0.1 M TBAPFs/CH3CN (concentration of macrocycle 1: 0.5 mm. T =
293 K, potential compared to Ag/AgCI reference).

Again, not all oxidations are affected by the same amount when this guest binds to
the host, with Ey(3) being relatively less affected by the binding of F and with E,(1)
and Ey(2) showing large shifts, it is seen that obtaining the first and second mixed
vaence states (Ru'Ru''Ru""" ,Ru"'Ru'"'Ru""") becomes easier when the anion is bound.
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5.4.3.2 Chloride guest

Again, the chloride ion has a strong effect on oxidations in the window of 0-1.6 V,

as it seemsthat chloride anion is a suitable size for the cavity of the host.

Titration macrocycle 3 with TBACI
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Figure 5.12 SWV of macrocycle 3 upon the addition of aliquots of TBACI.
Electrolyte: 0.1 M TBAPF/CH3CN (concentration of macrocycle 1: 0.5 mm. T = 293
K, potential compared to Ag/AgCl reference).

After addition of 4 mole equivaents of ClI", Ey(1) and Ep(2) are shifted by 140 mV
and 150 mV (Figure 5. 13). These shifts to lower potentia indicate that the host
becomes easier to oxidise to the Ru"Ru"'Ru"'and Ru"Ru"'Ru"" states. In contrast,
Ep(3) shows smaller changes
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5.4.3.3 Bromide guest
As with chloride the oxidation peak current increase during the titration.
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Figure 5.13 SWV of macrocycle 3 upon the addition of aliquots of TBABT.
Electrolyte: 0.1 M TBAPF/CH3CN (concentration of macrocycle 1: 0.5 mm. T =
293 K, potential compared to Ag/AgCI reference).

The electrochemical activity of Br it self makes the shifts for Ey(1) and Ey(2) more
difficult to interpret than that for E,(3). On addition of 3 mole equivalents of Br
there appears to be shift of 30 mV.

5.4.3.4 lodide guest

Again this anion produced no real detectable change in the electrochemistry of this
host. Table 5.4 below shows the maximum changes in electrochemistry for host 3
calls by anions guests.

Table 5.4 Maximum shifts in the el ectrochemistry of macrocycle 3 induced by halide
anions.

lon AE,(1)/mV AE(2)/mV AE,(3)/mV
F -105 -160 -40

cr -140 -150 merging peak
Br- merging peak -40
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5.4.4 Titration of macrocycle 4 with halide guests
5.4.4.1 Fluoride guest

In this titration, shifts were similar with macrocycles 1, 2 and 3. Although, due to

this host’s improved solubility up to 7 equivalents of guest can be added before
precipitation of the macrocycle occurs.

Titration macrocycle 4 with TBAF
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Figure 5.14 SWV of macrocycle 4 upon the addition of aliquots of TBAF.
Electrolyte: 0.1 M TBAPF/CH3CN (concentration of macrocycle 1: 0.5 mm. T =
293 K, potential compared to Ag/AgCI reference).
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5.4.4.2 Chloride guest
The crucial difference between this titration and previous hostsis that Ey(1) and
Ex(2) merge and there is no further shifts in this merged peak after 2 mole
equivalents host are added.
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Figure 5.15 SWV of macrocycle 4 upon the addition of aliquots of TBACI.
Electrolyte: 0.1 M TBAPF/CH3CN (concentration of macrocycle 1: 0.5 mm. T =
293 K, potential compared to Ag/AgCI reference).

5.4.4.3 Bromide guest

Titrations with TBABr and macrocycle 4 showed less distinctive changes than the
same experiments with hosts 1-3, as in this case the host and guest electrochemical

couples merge to produce two relatively poorly defined peaks.

Titration macrocycle 4 with TBABr
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Figure 5.16 SWV of macrocycle 4 upon the addition of aliquots of TBABT.
Electrolyte: 0.1 M TBAPF/CH3CN (concentration of macrocycle 1: 0.5 mm. T =
293 K, potential compared to Ag/AQCI reference).
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Table 5.5 below shows the maximum changes in electrochemistry for host 4 calls by

anion guests:

Table 5.5 Maximum shiftsin the electrochemistry of macrocycle 4 induced by halide
anions.

lon AE,(1)/mV AEL(2)/mV AE,(3)/mV
F -120 -149 -110

Cl- merged peak merged peak
Br- merged peak merged peak

5.5 Oxo-anion titrations

Since NMR studies showed significant binding interactions with oxo anions, the
effect of these guests on the electrochemistry of the macrocycles was aso
investigated

5.5.1 Titration of macrocycle 1 with the guests

5.5.1.1 Perchlorate guest

ClOy4 is ardatively large anion whose size may be not be complementary with the
cavity of the host. The results of the titration of ClO4 against macrocycle 1 are
shown in Figure 5.17. The addition of even alarge excess of perchlorate ion (6 mole
equivalents) to a solution of macrocycle 1 caused no significant changes in the
oxidation states.

114



Current[A)

0.00001 -

uoooooE -

0000006 -

a.ononnd

0.000002 -

Titration macrocycle 1 with TBACIO.

e TRACKDG

2 ca TDACIO4

G ea TBACIOS

e Potentlal(v) * AL

Figure 5.17 SWV of macrocycle 1 upon the addition of aliquots of ClO4-.
Electrolyte: 0.1 M TBAPFs/CH3;CN (concentration of macrocycle 1: 0.5 mm.

T =293 K, potential compared to Ag/AgCl reference).

5.5.1.2 Nitrate guest

The results of the titration of NO3™ against macrocycle 1 are shown below in Figure

5.19. Note that addition of 0.25 and 0.5 mole equivaents also induce very small

shiftsin the SWV and are not shown in these results.
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Figure 5.18 SWV of macrocycle 1 upon the addition of aliquots of NO3-.

Electrolyte: 0.1 M TBAPFs/CH3;CN (concentration of macrocycle 1: 0.5 mm.

T =293 K, potential compared to Ag/AQCI reference).
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On inspection of these results shown in Figure 5.19. There are small measurable
shiftsin Ep(1), Ex(2) and Ey(3) upon addition of larger concentration of guest. After

addition of 5 mole equivalents of NOgs, the three peaks have been shifted by 50
mV,70 mV and 40 mV respectively.

5.3.1.7 Acetate guest

There are in fact very small cathodic shifts induced this guest. The compound
precipitated after addition 3 mole equivalents. There are no shifts at Ey(3) after
addition 2 mole equivalents of acetate ion, although interestingly these shifts that are
observed are anodic.

Titratiom macrocycle 1 with TBAOAc
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=L
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Figure 5.19 SWV of macrocycle 1 upon the addition of aliquots of TBAOAC. Electrolyte:
0.1 M TBAPF¢/CH3CN (concentration of macrocycle 1: 0.5 mm. T = 293 K, potential
compared to Ag/AQCI reference).

Table 5.6 below shows the maximum changes in el ectrochemistry for host 1 calls by
anion guests.
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Table 5.6 Maximum shifts in the el ectrochemistry of macrocycle 1 induced by oxo

anions.

lon AEL(1) AE,(2) AEL(3)
ClO4 -10 -10 -35
NO3 -50 -72 -44
AcO 15 117 2

5.3.2 Titration of macrocycle 2 with the guests

5.3.2.1 Perchlorate guest

Asfor macrocycle 1, perchlorate ion causes small shiftsin the electrochemistry of 2.
The third peak Ey(3) shows a cathodic shift of 80 mV Figure 5. 20. However, there
are only small shifts for peaks Ep(1) and Ey(2) of 20 mV and 30 mV respectively. It
is noteworthy that E(1) and Ep(2) shifts for both macrocycles 1 and 2 were similarly
very small. In stark contrast the Ey(3) peaks for macrocycle 2 shifted significantly
compared to the Ey(3) peaks of 1.
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Figure 5.20 SWV of macrocycle 2 upon the addition of aliquots of TBACIO,.
Electrolyte: 0.1 M TBAPF/CH3CN (concentration of macrocycle 1: 0.5 mm. T =
293 K, potential compared to Ag/AgCI reference).

5.3.2.6 Acetate guest

The concentration of guest was gradually increased from 0 mole equivaents to 4
mole equivaents - see Figure 5.21. Further addition of anion leads to no further
shifts in potential of new wave. The third peak E,(3) at 1.294 V is shifted to 1.193 V
after addition of 4 mole equivalents of TBAOAc Figure 5. 22 clearly show this
large shift in peak Ey(3). Also oxidation peaks Ey(1) and Ey(2) of the host merge.
Thisis aresult of the high shifting of the second oxidation and low shifting for the
first oxidation. Again, this clearly illustrates that not all oxidations are affected by

the same amount when a guest binds to the host.
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Figure 5. 21 SWV of macrocycle 2 upon the addition of aliquots of TBAOAC.
Electrolyte: 0.1 M TBAPFs/CH3CN (concentration of macrocycle 1: 0.5 mm. T = 293
K, potential compared to Ag/AgCl reference).

5.3.3.7 Nitrate guest

The concentration of nitrate was gradually increased from 0 to 3 mole equivalents.
Further addition of anion leads to no shifts in potential of new wave. Figure 5.22
clearly shows the peaks Ey(1) and Ey(2) are shifted more than peak Ey(3).
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Figure 5.22 SWV of macrocycle 2 upon the addition of aliquots of TBANO;. Electrolyte:
0.1 M TBAPFs/CH5CN (concentration of macrocycle 1: 0.5 mm. T = 293 K, potential
compared to Ag/AgCl reference).
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Table 5.7 below shows the maximum changes in electrochemistry for host 2 called

by anion guests:

Table 5.7 Maximum shiftsin the el ectrochemistry of macrocycle 2 induced by oxo

anions.
lon AEL(1) (mV) AEL(2) (mV) AEL(3) (MV)
ClOo4 -21 -31 -82
NO3 merged peak -101
AcO’ -43 -57 -10
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5.3.2 Titration of macrocycle 3 with oxoguests

5.3.3.1 Perchlorate guest

Again, there are, in fact, very little shifting on addition of this guest. In contrast with
macrocycle 2 but similar to macrocycle 1, there is small shift in Ey(3). The
compound precipitated after addition 8 mole equivalents but there are no shifts after
addition of 5 mole equivalents.
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Figure 5.23 SWV of macrocycle 3 upon the addition of aliquots of TBACIO,.
Electrolyte: 0.1 M TBAPFs/CH3CN (concentration of macrocycle2: 0.5 mm. T =
293 K, potential compared to Ag/AQCI reference).

5.3.3.6 Nitrate guest

The nitrate ion has less effect on macrocycle 3 than macrocycle 1. Not all oxidation
are affected by the same amount when the guest binds to the host. Although Ey(1) is
relatively unaffected by the binding of nitrate, Ey(2) shows significant shifts, so the
second mixed valence state (Ru'Ru"'Ru") becomes easier to access when the
nitrate ion is bound. The shift present for Ey(3) is more difficult to interpret than
those for the Ey(1) and Ey(2).
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Figure 5.24 SWV of macrocycle 3 upon the addition of aliquots of TBANO;. Electrolyte: 0.1
M TBAPFs/CH3CN (concentration of macrocycle 3: 0.5 mm. T = 293 K, potential compared to

Ag/AgCI reference).

5.3.3.7 Acetate guest

There is negligible change in oxidation values for Ey(1) on addition of OAc. In
contrast Ep(2) shifts were much bigger and this peak merges with the first oxidation

peak.
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Figure 5.25 SWV of macrocycle 3 upon the addition of aliquots of TBAOAC.

Electrolyte: 0.1 M TBAPF/CH3CN (concentration of macrocycle 3: 0.5 mm. T = 293

K, potential compared to Ag/AgClreference).
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Table 5.8 below shows the maximum changes in electrochemistry for host 3 calls by

anion guests:

Table 5.8 Maximum shiftsin the electrochemistry of macrocycle 3 induced by oxo
anions.

lon AE,(1)/mV AEL(2)/mV AE,(3)/mV
ClO4 merged peak -13
NO3 merged peak -16
AcO merged peak -2

5.3.2 Titration of macrocycle 4 with oxo guests

5.3.4.1 Perchlorate guest
The shifts in macrocycle 4 with TBACIO,4 were similar to those in macrocycle 1 and

differ sharply from those in macrocycle 2 in Ey(3) shifts.
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Figure 5.26 SWV of macrocycle 4 upon the addition of aliquots of TBACIO,.

Electrolyte: 0.1 M TBAPF/CH3CN (concentration of macrocycle 4: 0.5 mm. T = 293

K, potential compared to Ag/AQCI reference).

5.3.4.5 Nitrate guest

No significant shifts occurred in the oxidation peaks of macrocycle 4. Thisis similar

to macrocycle 2, 3 and in contrast to macrocycle 1.

0.000004 -

0.000003 -

0.000003

0.000002 -

0.000002

Current{A]

0.000001 -

0.000001 -

0.000000 -

o

Titration macrocycle 4 with TBANO:z

—— 0 TBANO3

1cg TEANOZ

3 eq TBANOS

o

0.5 1

Potential (V)

Figure 5.27 SWV of macrocycle 4 u
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5.3.4.6 Acetate guest

The addition of amounts of tetrabutyl ammonium acetate to electrochemical solution
of macrocycle 4 led to large shifts of Ey(3) peaks, and a maximum shift (130 mV)
was observed after six mole equivalents of acetate ion had been added. There are
aso significant shifts of Ey(1) and E(2) peaks to produce a merged peak.
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Figure 5.28 SWV of macrocycle 4 upon the addition of aliquots of TBANO;. Electrolyte:
0.1 M TBAPFs/CH5CN (concentration of macrocycle 4: 0.5 mm. T = 293 K, potential
compared to Ag/AgCl reference).
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Table 5.9 below shows the maximum changes in electrochemistry for host 4 cased
by anion guests:

Table 5.9 shows Maximum shiftsin the electrochemistry of macrocycle 4 induced by
halide anions.

lon AE,(1)/mV AE(2)/mV AE,(3)/mV
ClO4 -11 -31 -71
NOs Merged peak -18
AcO’ Merged peak -130

5.4 Conclusions

The oxo guests have tetrahedral and triangular shapes while halides al have
spherical shapes. From these electrochemical titration results, we find that the effect
of medium sized halides have on the electrochemistry of the hosts are larger than the
oxo ions. The possible reason for this behavior is because the size and shape of these
specific halide ions (chloride and bromide) are more suited to the macrocycles’
cavities. They also possess higher electronegativity and this must be a factor.
Generally, a comparison of al the data reveals that the electrochemical response of
the hosts is dependent on the binding affinities, which were measured through NMR
titrations and reported in the previous chapter.

126



5. 6 Spectroelectrochemistry Studies

5.6.1 Spectroelectrochemistry of macrocycle 4.

Macrocycle 1 has been studied by this technique previously by Thomas group.”
However for the first time macrocycle 4 was examined by UV/Vis/NIR
spectroelectrochemistry in acetonitrile using an OTTLE cell thermostated at 273.
Unfortunately, due to time constraints studies on the other two macrocycles could
not be compl eted.

The redox interconversions examined for 4 were fully chemically reversible, as
shown by the presence of clean isosbestic points during the interconversions in all
cases. In the fully reduced state, 4** the spectrum contain two transitions. They are
assigned as a ligand centred n-* transition at 238 nm and a Ru(d) - L(=*) Metal to
Ligand Charge Transfer (MLCT) transition involving the adenine ligands at 287 nm.
On oxidation to 4*, this MLCT (whose origin is Ru(l1) diminishes in intensity and
two new features develop in the low energy part of the spectrum: a relatively weak
transition centred at 848 nm and a broad, lower energy transition at ca. 1441 nm
Figure 5.30. The transition at 849 nm is assigned to a thiacrown— Ru(ll1) ligand to
metal charge transfer LMCT. In addition, above 998 nm, the spectrum of 4* is
dominated by a broad, low intensity absorption (¢ = 152 dm?® mol™ cm™) and has the
characteristic position and appearance of an intervalence charge transfer (IVCT)
band Figure 5.29.

Further oxidation to 4°* results in an additional collapse of the Ru(Il) - adenine
MLCT, accompanied by simultaneous growth of the thiacrown - Ru(lll) LMCT
band. However, the most notable feature of the 4°" absorption spectrum is an
intense structured band in the NIR, displaying a maximum absorbance at 2115 nm
(¢ = 340 dm® mol™ cm™) Figure 5.30.
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Figure 5.29 Electronic spectra associated with the oxidation of 4% to 4*.
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Figure 5.30 Electronic spectra associated with the oxidation of 4** to 4°.

The final oxidation to give 4° results in collapse of all NIR bands (which confirms
their assignment as IVCT processes) and further growth of the thiacrown - Ru(l11)
LMCT (see Figure 5.31).
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Figure 5.31 Electronic spectra associated with the oxidation of 4°*
to 4%,

The energies of the NIR bands observed for the mixed valence [Ru'/Ru"/Ru'""], 4*,
and [RU"/Ru""/Ru"", 4°*, states are consistent with previous reports of intervalence
charge transfer indicating electron transfer between Ru" and Ru" sites.””™
However, the differing intensities and structure of these bands imply very different

electron transfer properties.

The NIR of 4* contains a structured, low intensity, extremely broad band that seems
to be comprised of several overlapping transitions. Similar structured IVCTs have
previously been observed in oligo-nuclear Ru and Os based mixed vaence

systems79'81

and arise due to a combination of low symmetry, extensive orbital
mixing and spin orbit coupling splitting the dr° states into Kramer doublets, Figure

5. 32.

> dTE3

' /
dTE2 3 —t— dTE2
dTCl —‘— dTEl

Ru Il RuU i
Figure 5.32 Schematic energy level diagram for Ru"'(N — N)Ru"4* ( denotes the ligand
bridge).
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There are three IVCT transitions for 4, the one at lowest energy being IVCT 1. The
relatively low intensity of these transitions, aong with the low Kc value of 800,
indicates that 4" is a valence localised structure. In contrast, the NIR band for 4> is
intense and clearly consists of at least three overlapping transitions. The intensity of
these transitions and their sharpness suggests that the 4°* state is a valence
delocalised system.

Further evidence for these conclusions can be drawn from the application of Hush
theory® to the lowest energy IVCTs of the 4*" and 4°* states. Assuming Gaussian
shaped bands, the low energy shoulder for the IVCT of 4** can be used to estimate
Avyofor this transition.” In this case, Avip(exptal) =3992 cmis lower than
Avip(calc) = 4353 cm . Taken together, the data on 4* indicates that it is a Robin
and Day™ class 111 (valence delocalised) system, or perhaps a Class II/111 (valence

localised/sol vent decoupled) system.”®®

In contrast, the same calculation carried out on the lowest energy band for 4°*
reveals thatAvy,(exptal) = 1256cm™ is much narrower than Avy»(calc) = 3384 cm™,
Given this very narrow bandwidth, the large Kc, and the exceptionally high intensity
of this IVCT (emax = 4958 dm® mol™ cm™) it is clear that 4°* is fully valence
delocalised, solvent decoupled, class |11 system. The UV/Vis data for macrocycle 4
are summarised in Table 5.10.

Table 5.10 Summary of UV/Vis datafor macrocycle 4.

macrocycle Amax (nm) ¢ (dm* mol ™t cm™®) Assignment
4% 238 25346 -
287 56205 MLCT
4™ 848 1894 LMCT
1441 1526 IVCT
4 874 3031 LMCT
2115 3378 IVCT
4% 889 4559 LMCT
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5.6.2 Anion switching of MV states

This unique combination of readily accessible multiple oxidation states and anion-
induced electrochemical shifts also means that these macrocyclic hosts can
potentially function as an entirely new form of device in which access to a specific
MV state is gated by ion recognition. Spectroelectrochemistry was used to
investigate this possibility. In these initial studies, fluoride was used as a guest as it
is not redox active in the potential window employed.

A MeCN solution of the host1®" was first oxidized into the Ru';Ru'"' MV state by
holding it at a potential just under that required for oxidation into the Ru"Ru"', MV
state (0.980 V). The formation of 1*" was confirmed though generation of
characteristic absorption spectrum which includes structured intervalence charge
transfer (IVCT) bands in the NIR- Figure 5.34. After adding one equivaent of F to
1*", the absorption spectrum initially reverted to that of 1%, as the diffusion current
produced by the guest addition disturbed the electrochemical equilibrium at the
electrode. Therefore, the solution was left for >15 minutes, alowing time for the
anion guest to diffuse from the top of the OTTLE to the electrode and for a new
equilibrium between the electrode and oxidized product to be established.
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Figure 5.33 shows the effect fluoride on macrocycle 1, the IVCT bands
displayed bathochromic shifting and increase in intensity.

After this period, even though the applied potential had been held constant, it was
found that the absorption spectrum had spontaneously changed. Strikingly, the IVCT
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bands displayed bathochromic shifting and increases in intensity; at higher energy,
the thiacrown(S)—Ru'"' ligand-to-metal charge-transfer centered at ~800 nm also
grew in intensity. The finally generated spectrum is characteristic of 1°*. These
changes confirm an unprecedented phenomenon: anion-gated switching between
MV states without a change in potential. This response can aso be viewed as the
operation of a novel Boolean logic AND gate where the two inputs are a potential
difference and the fluoride anion, while the output is the easily detectible optical

change induced by the modulation in electronic del ocalization.

5.6 Conclusion

Due to its cationic charge and array of hydrogen-bonding sites involving the
thiacrown and macrocycles bridging ligands, the structure of hosts isideally suited to
anion binding. Although the well-defined cavity of the host also means that it shows
good binding selectivity for specific halide anions, its distinctive binding to halide
anions induces anodic shifts in the Ru'-based oxidation potentials of the host,
facilitating a new phenomenon: ion-gated switching of MV states.

In future work, since this host is kinetically robust, binding studies in a variety of
solvents can be envisaged. The synthesis and host-guest chemistry of derivatives of
this prototype structure are aso currently underway and these studies will form the

basis of future reports.
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Chapter 6

6 Experimental Techniques and Synthetic Procedures
6.1 Materials and Equipment
6.1.1 Chemicals

All chemicals were purchased from commercia sources and used as suppliedunless
otherwise stated.

6.1.2 Solvents

Solvents were obtained from commercial sources and were used as supplied except
in the following cases:- Dry dichloromethane, acetonitrile and chloroform for al the
reactions were obtained using the University of Sheffield Grubbs TM dry solvent
system.

6.1.3 Reaction Conditions

Reactions were open to the atmosphere when performed unless otherwise stated.

6.1.4 Chromatography

Alumina column chromatography was carried out on Brockmann grade I.All aumina

and silica column sizes were approximately 150 x 30 mm unlessotherwise stated.

6.1.5 Nuclear Magnetic Resonance Spectra

Standard *H NMR spectra were recorded on a Bruker AV400 machine, working in
Fourier transform mode. Somespectra were also recorded on a Bruker DRX500
machine. The following abbreviations are used in the annotation of *H NMR spectra:
br — broad, s— singlet, d — doublet, dd — double doublet, td —triple doublet, t — triplet,
g — quartet, m — multiplet.

6.1.6 Mass Spectra

FAB mass spectra were recorded on a Kratos MS80 machine in positive ion mode

with am-nitrobenzyl alcohol matrix. ES mass spectra were recorded on a Micromass
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LCT ES-TOF machine. All spectra were run by Mr. Simon Thorpe, or Ms. Sharon
Spey of the University of Sheffield Mass Spectrometry Service.

6.1.7 Electrochemistry Studies

Cyclic Voltammograms were recorded using a Versastat 4 potentiostat using EG &
G software. Measurements were made using approximately 2 mmol solutions made
up in anhydrous acetonitrile containing 0.1M BusNPFg as the support electrolyte.
Potentials were measured against a Ag/AgCI reference electrode and ferrocene used
as the interna reference. All cyclic voltammagrams were corrected for internal

resistance.

6.1.8 X-Ray Diffraction

Structures were solved by Harry Adams in the department’s X-ray structure
determination service on a Bruker Smat CCD area detector with Oxford
Cryosystems low temperature system and complex scattering factors from the
SHELXTL program package.

6.1.9 Spectroelectrochemistry

UV/VIis/NIR spectroelectrochemistry measurements were performed in an OTTLE
cell mounted in the sample compartment of a Perkin-Elmer Lamba 19 spectrometer,
anhydrous acetonitrile was the solvent in every case and al measurements were
carried out 273 K.

6.1.101H-NMR Host-Guest Titration Method

Host:guest titrations were implemented using *H-NMR spectroscopy. A 1.5x10-°
M stock solution of the particular macrocycles 1-4 was prepared in deutirum
acetonitrile. Guest solutions were prepared in concentration of about 3x10-> M.
Standard addition titrations were performed with aliquots of guest solutions
ranging from 5yt to 50u1 added immediately to stock solution in the NMR tube,

and the 'H-NMR spectra measured in order to monitor the changes in chemical
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shift of the macrocycles N-H protons until such time as the saturation point was
attained.

6.2EXPERIMENTS

6.2.1 1,4,7- Synthesis of Trithiacyclononane [9]aneS;.**

(

s

Finely powdered anhydrous cesium carbonate (13.03 g, 40 mmol) was suspended in
N,N-dimethylformamide (DMF) (250 mL, from a freshly opened bottle) under a
dinitrogen atmosphere. To the vigorously stirred suspension maintained at 100 °C
was added a solution of 2-mercaptoethyl sulfide (5.56 g, 36 mmol) and 1,2-
dichloroethane (3.54 g, 36 mmol) in DMF (150 mL) from addition machine at arate
of 3 mL/h. After the addition was complete, stirring was continued at 100 °C for a
further 12 h, after which the solvent was removed in vacuo. The residual white solid
was extracted with CH,C1, (3 X 100 mL), and the filtered extract washed with 1.0
M agueous NaOH (2 X 100 mL) and evaporated to dryness. The resulting sticky
solid was washed with water (3 X 50 mL) and dissolved in CH,CI, (100 mL). The
solution was dried over MgSO,, and evaporated to dryness. The residue was placed
in a sublimation apparatus and heated at 90 °C under vacuum, whereupon the
product crystallized as a white solid on the water-cooled cold finger (0.5 g, 50%);
mp 79-80 °C.
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6.2.2 Synthesis 9-methyladenine.®

H. _H
N

k4*

Me

Numbering scheme for 9-methyladenine
Adenine (1.35g, 10 mmol) was dissolved in (40%) tetrabutyl ammonium hydroxide
(9 g, 10mmol) solution. This in turn was mixed with a solution comprised of
iodomethane (2.86 g, 20 mmol) in dichloromethane (30 mL). After vigorous stirring
for 10 minutes, a white solid was filtered and recrystallised from hot ethanol. *H
NMR (CD3CN, 400 MH): 6H = 8.00 (s, 1H), 7.98 (s, 1H), 6.08 (s, 2H), 3.59 (s, 3H)
calc Mass (150.0723) found (150.0731)(CgH7Ns).
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Preparation of [Ru([9]aneS;)(9-methyladenine)]s[PFe]s. °
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[Ru([9]aneS3)(DM SO)Cl;] (0.215 g, 0.5 mmol) and silver trifluoromethanesulfonate
(0.256 g, 1.0 mmol) were heated at reflux for 3 hours in 30 cm® of water. After
cooling, the silver chloride precipitate was removed by cdlite filtration. To the
filtrate was added 9-methyl-adenine (0.075g, 0.5mmol) and 1, 2, 2, 6, 6
pentamethyl piperidine (0.073g, 0.5mmol) and the resulting solution heated at reflux
for 6 days. The solution was allowed to cool and any insoluble material was filtered
off. The solution was evaporated to dryness and the remaining solid residue was
dissolved in 20 mL of methanol. Any insoluble material was filtered off and then 20
mL diethyl ether was added to the filtrate, the resultant green precipitate was
collected by centrifuging. It was dissolved in 10 mL water and addition of
ammonium hexafluorophosphate (0.226g, 2.0mmols) precipitated the final product,
which was collected by centrifuge and washed by (3 x 10 cm®) portions of water,
ethanol and diethyl ether and then alowed to dry in vacuo. Green solid: Yield 0.29
g (35%). UV/VIS (CHsCN): amax (¢ mol™ dm® em™) = 314nm (15366), 245nm
(33729). 'H NMR (DMSO- dg): 3H = 8.5 (s, 1H), 7.95 (s, 1H), 6.05 (s, 1H), 3.6 (S,
3H), 3.35 - 1.7 (m, 36H). EA obtained (expected Ru3CssHssN15S9PsF18H20) C —
24.53% (24.08%), H — 3.33% (3.48%), N — 11.2 % (11.7%). MS (FAB): M/z (%) =
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1579 (100) [M™ - PFg], 1434 (40) [M" - 2PFg]. MS (ES): M/z (%) 719 (100) [M-
2PF6] "2, 629 (100) [M — 2PFs — [9]aneS;] 2.

6.1.1 9-ethyladenine®

9-Ethyladenine

A mixture of adenine (3.00g, 22.2 mmol), K,COj3 (6.14g, 44.4 mmol), and ethyl
bromide (3.33 ml) was stirred in DMF (60 ml) for 24 hour under a nitrogen
aimosphere. The yellow solution was filtered then concentrated in vacuo. the
resulting yellow solid was purified by silica gel flash chromatography (5:95) MeOH/
CHCI3 to yield 9-ethyladenine as a white crystalline solid (1.82g, 50%yield) : mp =
190-193 °C. 'H NMR (CD4CN, 400 MH): 3H = 8.24 (s, 1H), 7.92(s, 1H), 6.00 (s,
2H), 4.219 (dd, J=7, J=15, 2H), 1.47 (s, 3H). Accurate Mass —calc (164.0927) found
(164.0923) (C7HgNs).
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6.1.2 [Ru(9-aneS;)(9-ethyladenine)]s[PFgls.”

[Ru([9]aneS;)(DMSO)Cl,] (0.215 g, 0.5 mmol) and silver trifluoro methane
sulfonate (0.256 g, 1.0 mmol) were heated at reflux for 3 hours in 30 cm® of water.
After cooling, the silver chloride precipitate was removed by filtration. To the
filtrate was added 9-ethyladenine (0.082 g, 0.5mmol) and 1, 2, 2, 6, 6 pentamethyl
piperidine (0.073g, 0.5mmol) and the resulting solution heated at reflux for 6 days.
The solution was alowed to cool and any insoluble material was filtered off. The
solution was evaporated to dryness and the remaining solid residue was dissolved in
20 mL of methanol. Any insoluble material was filtered off and then 20 mL
diethylether was added to the filtrate. The resultant green precipitate was collected
by centrifuging. It was then dissolved in 10 mL water and addition of ammonium
hexafluorophosphate (0.226g, 2.0mmols) precipitated the fina product, which was
collected by centrifuge and washed by (3 x 10 cm®) portions of water, ethanol and
diethyl ether and then allowed to dry in vacuo. Green solid. Yield 0.29 g (35%). H

NMR (CD3CN, 400 MH): 6H = 8.04 (s, 1H), 7.99(s, 1H), 6.1 (s, 1H), 4.04 (dd, J=7,

J=15, 2H), 3.19-2.36(m, 12H), 1.40 (s, 3H). 9-ethyladenine obtained (expected)

(RusCzgHgoN15S9PsF15. CH3CHL,OH. 4H,0) C - 26.73%(26.91), H — 3.46%(3.74%),

N — 11.04%(11.48%) MS; m/z (%):740.2(100)[M*? -(CFsS0s),], accurate
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mass(CaoHeoN1sF30sS10RU*, i.e. 2ion) Accurate Mass - cal. (740.4647) found:
(740.4642).

6.1.3 9-(4-methoxybenzyl)- purin-6-amine.®*®
CHs

T
J/

o}

A mixture of adenine (3.00g,22 mmol),K,CO3z (6.14g, 44.4 mmol), and (4-
methoxybenzylchloride(44.4 mmol, 6.95g) was stirred in DMF (60 ml) for 24 hours
under a nitrogen atmosphere the yellow solution was filtered then concentrated in
vacuo. The resulting yellow solid was purified by silica gel flash chromatography
(7.5:92.5) (MeOH/CHCI3). White solid. Yield 5.71 g (57%) *H NMR (CDsCN, 400
MH): dH =8.24 (s, 1H), 7.94 (s, 1H), 7.28 (d, J= 9, 2H), 6.9 (d, J= 9, 2H), 5.94 (s,
2H), 53 (s, 2H), 3.78 (s, 3H). Accurae Mass-cac (256.1198) found
(256.1202)(C13H14Ns0).
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6.1.4 [Ru(9-aneS;)(9-(4-methoxybenzyl)-purin-6-
amine)]sCF3S04]5 "

S CF3SO
H,C-0 (\\ (CF3S03);

[Ru([9]aneS;)(DM SO)Cl,] (0.215 g, 0.5 mmol) and silver trifluoromethanesulfonate
(0.256 g, 1.0 mmol) were heated at reflux for 3 hours in 30 cm® of water. After
cooling, the silver chloride precipitate was removed by cdlite filtration. To the
filtrate was added 9-(4-methoxybenzyl)-purin-6-amine (1.2764 g, 0.5mmol) and 1,
2, 2, 6, 6 pentamethylpiperidine (0.073g, 0.5mmol) and the resulting solution heated
at reflux for 6 days. The solution was evaporated to dryness and the remaining solid
residue was dissolved in 20 mL of methanol. Any insoluble material was filtered off
and then 20 mL diethyl ether was added to the filtrate, the resultant green precipitate
was collected by centrifuging. Green solid: Yield 0.72 g (70%). 'H NMR
(CDsCN, 400 MH): d3H= 8.11 (s, 1H), 7.95 (s, 1H), 7.25 (d, j=8.81, 2H), 6.9 (d,
j=8.56, H=2), 6.38(s, 1H), 5.08(s, 2H), 3.78(s, 3H), 2.43-3.21 (m, 16H). EA
obtained (expected) (RusCsoH72N15512012F9.4H,0) C-33.82% (33.89%). H- 3.81%
(3.79%). N-9.83% (9.88%). MS; m/z (%):1905(100)[M* -(CFsSOs)], 878.5018 (30)
[M*%(CF5S0s3)]. Accurate Mass for (CsgH7oN15S1006RUsF3/2. i.e. 2'ion) cal.
(878.5040) found: (878.5018).
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86-87

6.1.5 9-benzyl-9H-purin-6-amine.

H,N

{1/

A mixture of adenine (3.00g,22 mmol). K,COsz; (6.14g, 44.4 mmol), and
benzylchloride (44.4 mmol, 5.595¢g) was stirred in DMF (60 ml) for 24 hours under
a nitrogen atmosphere the yellow solution was filtered then concentrated in vacuo.
The resulting yellow solid was purified by silica gel flash chromatography (7.5:92.5)
(MeOH/CHCI5). White solid. Yield 5.89 g (59%) *H NMR (CDsCN, 400 MH): 3H =
8.256 (s, 1H), 7.9400 (s, 1H), 7.294-7.351 (m, Ar-H), (s, 1H), 5.891 (s, 2H).
Accurate mass — calc (226.1093) found (226.1088)(C12H12Ns).
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6.1.6 [Ru(9-aneS;)(9-benzyl-9H-purin-6-amine)-9H-purin-
6-ami ne)] 3[CF3803] 3.76

H o\ H L
_---Ru. i
______ PR/ NN H Ruzzz-----=S
S 7, [N PN
/\,”” e \\ N/ /// \\\/\\
s ). N s
\/S N/ \ \>,H S\/

[Ru([9]aneS;)(DM SO)Cl,] (0.215 g, 0.5 mmol) and silver trifluoromethanesulfonate
(0.256 g, 1.0 mmol) are heated at reflux for 3 hours in 30 cm® of water. After
cooling, the silver chloride precipitate was removed by filtration. To the filtrate was
added 9-benzyl-9H-purin-6-amine (0.1126 g, 0.5mmol)( dissolved in 20 cm® H.0 :
EtOH 1:1) and 1, 2, 2, 6, 6 pentamethylpiperidine (0.073g, 0.5mmol) and the
resulting solution heated at reflux for 6 days. The solution was evaporated to
dryness and the remaining solid residue was dissolved in 20 mL of methanol. Any
insoluble material was filtered off and then 20 mL diethyl ether was added to the
filtrate, the resultant green precipitate was collected by centrifuging. Green solid,
Yield 0.64 g (65%)."H NMR (CDsCN, 400 MH.): 3H= 8.087 (s, 1H), 7.92(s, 1H),
7.219-7.304 (m, Ar-H, 6.332(s, 1H), 5.122 (s, 2H), 2.43-3.21 (m, 12H). EA obtained
(expected) (Cs7HgsFoN1509RU3S;2, HCF3SO3, 2 CH30H) C-33.46% (33.08%). H
3.25% (3.47%). N 9.94% (9.64%). MS;, m/z(%): 833.2 (100)[M™" -
(CF3S05)],833.4874  (50) [M*%(CFs;S0s)]. accurate mass for  (
CssHesN15RUsS10F304/2. i.€. 27ion) cal. (833.4882) found: (833.4874).
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Appendix
Crystallographic Data

Table 1. Crystal data and structure refinement for 9-benzyl-9H-purin-6-amine
(CHPO803P21C).

I dentification code chp0803p21c
Empirical formula C12 H11 N5
Formula weight 225.26
Temperature 97(2) K
Wavelength 0.71073 A
Crystal system Monaoclinic
Space group P2(1)/c
Unit cell dimensions a=11.7666(17) A a=90°.
b =12.3383(17) A B=90.336(3)°.
c=7.1014(10) A y = 90°.
Volume 1031.0(3) A3
Z 4
Density (calculated) 1.451 Mg/m3
Absorption coefficient 0.094 mm-1
F(000) 472
Crystal size 0.30 x 0.10 x 0.10 mm3
Thetarange for data collection 1.73t0 27.48°.
Index ranges -15<=h<=15, -14<=k<=16, -7<=I<=8
Reflections collected 5712
Independent reflections 2294 [R(int) = 0.0616]
Completeness to theta = 27.48° 97.4 %
Absorption correction Semi-empirical from equivalents
Max. and min. transmission 0.9906 and 0.9723
Refinement method Full-matrix |east-squares on F2
Data/ restraints/ parameters 2294 /3/154
Goodness-of-fit on F 1.071
Final R indices[I>2sigma(l)] R1=0.0570, wR2 = 0.1439
R indices (al data) R1 = 0.0645, wR2 = 0.1512
Largest diff. peak and hole 0.312 and -0.401 e A3
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Table2. Atomic coordinates ( x 104) and equivalent isotropic displacement parameters (A2x 103)
For 9-benzyl-9H-purin-6-amine (CHP0803P21C). U(eq) isdefined as one third of the trace of the
orthogonalized Uij tensor.

X y z U(eq)
N(1) 2147(14) -23(14) 7060(30) 15(4)
N(2) 1633(14) -1516(15) 5450(30) 17(4)
N(3) 1590(14) 1373(14) 4840(30) 15(4)
N(4) 707(14) 611(14) 2060(30) 14(4)
N(5) 535(15) -1218(15) 1460(30) 18(4)
C(1) 4612(18) 218(17) 7520(30) 16(5)
c(2) 5758(18) 466(19) 7500(30) 19(5)
C(3) 6162(18) 1406(19) 8310(30) 20(5)
C(4) 5409(19) 2117(19) 9150(30) 21(5)
C(5) 4254(19) 1877(18) 9150(30) 19(5)
C(6) 3850(17) 927(17) 8360(30) 15(5)
c(7) 2605(17) 649(18) 8570(30) 17(5)
C(8) 2081(17) -1127(18) 7000(30) 17(5)
C(9) 1376(16) -589(16) 4410(30) 14(5)
C(10) 867(16) -425(17) 2630(30) 14(5)
C(11) 1077(17) 1422(17) 3160(30) 16(5)
C(12) 1698(16) 337(17) 5390(30) 14(5)
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Table3. Bond lengths[A] and angles[°] for 9-benzyl-9H-purin-6-amine CHPO803P21C.

N(1)-C(8)
N(2)-C(12)
N(2)-C(7)
N(2)-C(8)
N(2)-C(9)
N(3)-C(11)
N(3)-C(12)
N(4)-C(11)
N(4)-C(10)
N(5)-C(10)
N(5)-H(5A)
N(5)-H(5B)
C(1)-C(2)
C(1)-C(6)
C(1)-H(D)
C(2)-C(3)
C(2)-H()
C(3)-C(4)
C(3)-HE)
C(4)-C(5)
C(4)-H(4)
C(5)-C(6)
C(3)-H()
C(6)-C(7)
C(7)-H(7A)
C(7)-H(7B)
C(8)-H(8)
C(9)-C(12)

1.36(3)
1.37(3)
1.46(3)
1.31(3)
1.39(3)
1.34(3)
1.34(3)
1.34(3)
1.35(3)
1.34(3)
0.8800
0.8800
1.38(3)
1.39(3)
0.9500
1.38(3)
0.9500
1.38(3)
0.9500
1.39(3)
0.9500
1.38(3)
0.9500
1.51(3)
0.9900
0.9900
0.9500
1.39(3)

C(5)-C(6)-C(7)
C(1)-C(6)-C(7)
N(1)-C(7)-C(6)
N(2)-C(7)-H(7A)
C(6)-C(7)-H(7A)
N(1)-C(7)-H(7B)
C(6)-C(7)-H(7B)
H(7A)-C(7)-H(7B)
N(2)-C(8)-N(1)
N(2)-C(8)-H(8)
N(1)-C(8)-H(8)
C(12)-C(9)-N(2)
C(12)-C(9)-C(10)
N(2)-C(9)-C(10)
N(5)-C(10)-N(4)
N(5)-C(10)-C(9)
N(4)-C(10)-C(9)
N(3)-C(11)-N(4)
N(3)-C(11)-H(11)
N(4)-C(11)-H(11)
N(3)-C(12)-N(1)
N(3)-C(12)-C(9)
N(1)-C(12)-C(9)
C(12)-N(1)-C(7)
C(8)-N(1)-C(7)
C(8)-N(1)-C(12)
C(11)-H(11)
C(9)-C(10)

Symmetry transformations used to generate equivalent atoms:

118.9(19)
121.8(19)
114.2(18)
108.7
108.7
108.7
108.7
107.6
114.3(19)
122.8
122.8
110.6(19)
116.4(19)
133.0(19)
117.7(19)
124.8(19)
117.5(19)
129(2)
1155
1155
126.5(19)
128(2)
105.7(18)
126.4(18)
127.5(18)
106.0(17)
0.9500
1.41(3)

Tablel. Crystal data and structure refinement for 9-(4-methoxybenzyl)-9H-purin-6-amine

(iaj601_0m 0).
Identification code

ig/601_Om
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Empirical formula
Formula weight
Temperature
Wavelength

Crystal system
Space group

Unit cell dimensions

Volume

z

Density (calculated)
Absorption coefficient

F(000)

Crystal size

Thetarange for data collection
Index ranges

Reflections collected
Independent reflections
Completeness to theta = 25.00°
Absorption correction

Max. and min. transmission
Refinement method

Data/ restraints/ parameters
Goodness-of -fit on F2

Final R indices[I>2sigma(l)]
R indices (al data)

Largest diff. peak and hole

CI13H1I3N50

255.28

150(2) K

0.71073 A

Orthorhombic

P2,2,2,

a=8.0824(8) A o=90°.
b =16.5719(15) A B=90°.
c=27.246(2) A v =90°.
3649.4(6) A3

12

1.394 Mg/m3

0.095 mm'?

1608

0.18 x 0.04 x 0.04 mm3

1.44 10 27.77°.

-10<=h<=10, -21<=k<=21, -35<=I<=32
27692

4758 [R(int) = 0.0659]

99.9%

Semi-empirical from equivalents
0.9962 and 0.9831

Full-matrix |least-squares on F2
4758/0/517

1.201

R1 =0.0465, wR2 = 0.1161
R1=0.0631, wR2 = 0.1323

0.288 and -0.299 e A3
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Table2. Atomic coordinates ( x 10%) and equivalent isotropic displacement parameters (A2x 109)
For 9-(4-methoxybenzyl)-9H-purin-6-amine (igj601_0m). U(eq) isdefined asonethird of thetrace
of the orthogonalized Ul tensor.

X y z U(eq)
N(2) 3283(4) 9078(2) 9099(1) 22(1)
N(2) 4224(3) 10184(2) 9489(1) 22(1)
N(3) -183(3) 10242(2) 9877(1) 22(1)
N(4) 389(4) 9123(2) 9332(1) 24(1)
N(5) 1771(4) 11160(2) 10137(1) 24(1)
o(1) 2432(3) 8214(2) 6795(1) 33(1)
N(1A) 7338(4) 413(2) 5977(1) 23(1)
N(2A) 6440(4) 1504(2) 5569(1) 22(1)
N(3A) 10260(4) 458(2) 5771(1) 26(1)
N(4A) 10879(4) 1575(2) 5228(1) 24(1)
N(5A) 8915(4) 2464(2) 4931(1) 26(1)
0(1A) 7332(3) 30(1) 8327(1) 30(1)
N(1B) 8270(4) 3099(2) 1189(1) 21(1)
N(2B) 9224(3) 2049(2) 750(1) 22(1)
N(3B) 5393(4) 3092(2) 937(1) 23(1)
N(4B) 4815(3) 2028(2) 354(1) 21(1)
N(5B) 6762(4) 1119(2) 74(1) 25(1)
O(1B) 7251(4) 3014(1) 3531(1) 33(1)

Table3. Bond lengths[A] and angles[°] for 9-(4-methoxybenzyl)-9H-purin-6-amine (igj601_0m).

N(1)-C(8) 1.365(4) N(1B)-C(7B) 1.454(4)
N(1)-C(12) 1.371(4) N(2B)-C(8B) 1.313(4)
N(1)-C(7) 1.464(4) N(2B)-C(9B) 1.393(4)
N(2)-C(8) 1.312(4) N(3B)-C(11B) 1.326(4)
N(2)-C(9) 1.388(4) N(3B)-C(12B) 1.344(4)
N(3)-C(11) 1.340(4) N(4B)-C(11B) 1.343(4)
N(3)-C(10) 1.356(4) N(4B)-C(10B) 1.362(4)
N(4)-C(11) 1.333(4) N(5B)-C(10B) 1.335(4)
N(4)-C(12) 1.348(4) C(8)-N(1)-C(12) 105.7(3)
N(5)-C(10) 1.333(4) C(8)-N(1)-C(7) 128.2(3)
N(1A)-C(8A) 1.364(4) C(12)-N(1)-C(7) 125.3(3)
N(1A)-C(12A) 1.371(4) C(8)-N(2)-C(9) 103.5(3)
N(1A)-C(7A) 1.463(4) C(11)-N(3)-C(10) 118.7(3)
N(2A)-C(8A) 1.315(4) C(11)-N(4)-C(12) 109.7(3)
N(2A)-C(9A) 1.391(4) N(1)-C(7)-C(4) 115.1(3)
N(3A)-C(11A) 1.330(4) N(2)-C(8)-N(2) 114.4(3)
N(3A)-C(12A) 1.343(4) N(2)-C(9)-C(12) 110.5(3)
N(4A)-C(10A) 1.348(4) N(2)-C(9)-C(10) 132.8(3)
N(4A)-C(11A) 1.347(4) C(12)-C(9)-C(10) 116.5(3)
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N(5A)-C(10A)
N(1B)-C(12B)
N(1B)-C(8B)
N(1)-C(8)
N(1)-C(12)
N(1)-C(7)
N(2)-C(8)
N(2)-C(9)
N(3)-C(11)
N(3)-C(10)
N(4)-C(11)
N(4)-C(12)

N(5)-C(10)

N(1A)-C(8A)
N(1A)-C(12A)
N(1A)-C(7A)
N(2A)-C(8A)
N(2A)-C(9A)
N(3A)-C(11A)
N(3A)-C(12A)
N(4A)-C(10A)
N(4A)-C(11A)
N(5A)-C(10A)
N(1B)-C(12B)
N(1B)-C(8B)
N(1)-C(8)
N(1)-C(12)
N(1)-C(7)

N(2)-C(8)

N(2)-C(9)
N(3)-C(11)
N(5B)-C(10B)-N(4B)
N(5B)-C(10B)-C(9B)
N(4B)-C(10B)-C(9B)
N(3B)-C(11B)-N(4B)
N(3B)-C(12B)-N(1B)

1.334(4)
1.373(4)
1.372(4)
1.365(4)
1.371(4)
1.464(4)
1.312(4)
1.388(4)
1.340(4)
1.356(4)
1.333(4)
1.348(4)

1.333(4)

1.364(4)
1.371(4)
1.463(4)
1.315(4)
1.391(4)
1.330(4)
1.343(4)
1.348(4)
1.347(4)
1.334(4)
1.373(4)
1.372(4)
1.365(4)
1.371(4)
1.464(4)
1.312(4)
1.388(4)
1.340(4)
117.8(3)
124.7(3)
117.5(3)
130.0(3)
126.4(3)
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N(5)-C(10)-N(3)
N(5)-C(10)-C(9)
N(3)-C(10)-C(9)
N(4)-C(11)-N(3)
N(4)-C(12)-N(1)
N(4)-C(12)-C(9)
N(1)-C(12)-C(9)
C(8A)-N(1A)-C(12A)
C(8A)-N(1A)-C(7A)
C(12A)-N(1A)-C(7A)
C(8A)-N(2A)-C(9A)
C(11A)-N(3A)-
C(12A)
C(10A)-N(4A)-
C(11A)
N(1A)-C(7A)-C(4A)
(2A)-C(8A)-N(1A)
N(2A)-C(9A)-C(12A)
N(2A)-C(9A)-C(10A)
N(5A)-C(10A)-N(4A)
N(5A)-C(10A)-C(9A)
N(4A)-C(10A)-C(9A)
N(3A)-C(11A)-N(4A)
N(3A)-C(12A)-N(1A)
N(3A)-C(12A)-C(9A)
N(1A)-C(12A)-C(9A)
C(12B)-N(1B)-C(8B)
C(12B)-N(1B)-C(7B)
C(8B)-N(1B)-C(7B)
C(8B)-N(2B)-C(9B)
C(11B)-N(3B)-C(12B)
C(11B)-N(4B)-C(10B)
N(1B)-C(7B)-C(4B)
N(2B)-C(8B)-N(1B)
C(12B)-C(9B)-N(2B)
N(1B)-C(7B)
N(5B)-C(10B)-N(4B)
N(5B)-C(10B)-C(9B)

118.0(3)
124.5(3)
117.5(3)
129.8(3)
126.2(3)
127.8(3)
106.0(3)
106.4(3)
127.4(3)
126.1(3)
103.9(3)
110.1(3)

118.8(3)

113.7(3)
113.7(3)
110.3(3)
132.8(3)
119.1(3)
123.5(3)
117.4(3)
129.5(3)
127.0(3)
127.3(3)
105.7(3)
105.9(2)
125.9(3)
128.2(3)
104.2(3)
110.0(3)
118.2(3)
114.2(2)
113.7(3)
110.0(3)
1.454(4)
117.8(3)
124.7(3)



Symmetry transformations used to generate equivalent atoms:

153



Summary of crystallographic datafor [1][(Br)3].
Table 1. Crystal dataand structure refinement for [1][(Br)3].

| dentification code ig627new

Empirical formula C36 H54 Br3 N15 Ru3 S9

Formula weight 1528.42

Temperature 150(2) K

Wavelength 0.71073 A

Crystal system Monaoclinic

Space group P2(1)/c

Unit cell dimensions a=27.5205(14) A a=90°.
b = 21.6096(12) A B=119.123(2)°.
c=21.7526(12) A v = 90°.

Volume 11301.0(11) A3

z 8

Density (calculated) 1.797 Mg/m3

Absorption coefficient 3.288 mm'!

F(000) 6048

Crystal size 0.43 x 0.32 x 0.32 mm?3

Thetarange for data collection 0.85t0 26.98°.

Index ranges -34<=h<=30, -26<=k<=27, -27<=l<=27

Reflections collected 139458

Independent reflections 24312 [R(int) = 0.0548]

Completeness to theta = 26.98° 98.8 %

Absorption correction Semi-empirical from equivalents

Max. and min. transmission 0.4193 and 0.3321

Refinement method Full-matrix |east-squares on F2

Data/ restraints/ parameters 24312 /32 /1187

Goodness-of -fit on F2 1.090

Final R indices[I>2sigma(l)] R1=0.0547, wR2 = 0.1456

Rindices (all data) R1=0.1128, wR2 = 0.1645

Largest diff. peak and hole 1.198 and -1.846 e A3
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Table2. Atomic coordinates ( x 10%) and equivalent isotropic displacement parameters (A2x 103)
For [1][(Br)3] (ia627new). U(eq) is defined as one third of the trace of the orthogonalized Uij tensor.

X y z U(eq)
Ru(1) 8904(1) 3244(1) 2435(1) 38(1)
Ru(2) 8820(1) 5781(1) 1684(1) 34(1)
Ru(3) 10831(1) 4448(1) 2735(1) 36(1)
Ru(1A) 4188(1) 4349(1) 2220(1) 35(1)
Ru(2A) 6207(1) 5672(1) 3340(1) 32(1)
Ru(3A) 6120(1) 3140(1) 2542(1) 37(1)
Br(1) 7475(1) 3923(1) 9484(1) 73(1)
Br(2) 7495(1) 3785(1) 5505(1) 71(1)
Br(3) 8123(1) 7956(1) 3906(1) 75(1)
Br(4) 6876(1) 6921(1) 6106(1) 79(1)
Br(5) 610(1) 6416(1) 409(1) 117(1)
Br(6) 5604(1) 3751(1) 5459(1) 104(1)
(1) 8361(1) 3366(1) 1260(1) 43(1)
S(2) 9229(1) 2341(1) 2225(1) 56(1)
S(3) 8202(1) 2693(1) 2447(1) 61(1)
S(4) 7953(1) 5783(1) 712(1) 47(2)
S(5) 8837(1) 6828(1) 1571(1) 54(1)
S(6) 9186(1) 5689(1) 942(1) 46(1)
S(7) 10539(1) 3763(1) 1827(1) 46(1)
S(8) 11092(1) 5099(1) 2123(1) 50(1)
S9) 11692(1) 4005(1) 3221(1) 49(1)
S(1A) 3322(1) 3919(1) 1714(1) 49(1)
S(2A) 3925(1) 4994(1) 2834(1) 48(1)
S(3A) 4463(1) 3652(1) 3116(1) 44(1)
S(4A) 5821(1) 5568(1) 4058(1) 42(1)
S(5A) 6189(1) 6716(1) 3468(1) 49(1)
S(6A) 7065(1) 5664(1) 4325(1) 44(1)
S(7A) 5777(1) 2237(1) 2718(1) 62(1)
S(8A) 6648(1) 3238(1) 3724(1) 44(1)
S(9A) 6828(1) 2588(1) 2542(1) 60(1)
N(1) 8624(2) 4122(2) 2630(2) 40(1)
N(2) 8289(2) 4597(3) 3372(3) 55(2)
N(3) 8235(2) 5742(3) 3216(3) 48(1)
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N(4)
N(5)
N(6)
N(7)
N(8)
N(9)
N(10)
N(11)
N(12)
N(13)
N(14)
N(15)
N(1A)
N(2A)
N(3A)
N(4A)
N(5A)
N(6A)
N(7A)
N(8A)
N(9A)
N(10A)
N(11A)
N(12A)
N(13A)
N(14A)
N(15A)

8497(2)
8784(2)
9629(2)

10187(2)

11119(2)

11019(2)

10050(2)

10586(2)

10910(2)

10135(2)
9475(2)
9623(2)
5407(2)
4870(2)
3926(2)
4018(2)
4974(2)
6412(2)
6753(2)
6812(2)
6542(2)
6244(2)
4437(2)
4126(2)
4905(2)
5560(2)
5398(2)

5795(2)
4801(2)
5778(2)
6254(2)
5777(2)
5116(2)
4934(2)
3884(2)
3530(2)
3047(2)
3169(2)
3680(2)
5675(2)
6173(2)
5712(2)
5030(2)
4827(2)
4022(2)
4518(3)
5654(3)
5692(2)
4695(2)
3787(2)
3441(2)
2957(2)
3076(2)
3582(2)

2398(2)
1846(2)
2605(2)
3769(3)
4391(2)
3548(2)
2296(2)
3350(2)
4560(2)
4662(2)
3542(2)
2487(2)
2403(2)
1255(3)

602(2)
1415(2)
2680(2)
2377(2)
1649(3)
1824(2)
2634(2)
3157(2)
1602(2)

394(2)

306(3)
1428(3)
2479(2)

38(1)
33(1)
35(1)
46(2)
47(2)
42(2)
35(1)
37(2)
48(2)
48(2)
44(2)
39(1)
32(1)
42(2)
43(2)
40(2)
33(1)
39(1)
60(2)
47(2)
39(1)
33(1)
36(1)
49(2)
48(2)
43(2)
37(2)
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Summary of crystallographic datafor [1][(Br)3].
Table3. Bond lengths[A] and angles[°] for [1][(Br)3]. ig627new.

Ru(1)-N(14) 2.147(5) Ru(3A)-N(14A)
Ru(1)-N(15) 2.146(5) RU(3A)-N(6A)
Ru(1)-N(1) 2.167(5) N(9)-Ru(3)-N(10)
Ru(1)-S(1) 2.2625(15) N(10)-Ru(3)-S(8)
Ru(1)-S(3) 2.2793(18) S(7)-Ru(3)-S(8)
Ru(1)-S(2) 2.2812(18) N(9)-Ru(3)-S(9)
Ru(2)-N(4) 2.134(5) N(11)-Ru(3)-S(9)
Ru(2)-N(6) 2.153(4) N(10)-Ru(3)-S(9)
Ru(2)-N(5) 2.157(4) S(7)-Ru(3)-S(9)
Ru(2)-S(5) 2.2768(17) S(8)-Ru(3)-S(9)
Ru(2)-S(6) 2.2836(16) N(5A)-Ru(1A)-N(11A)
RU(2)-S(4) 2.2909(16) N(5A)-Ru(1A)-N(4A)
Ru(3)-N(9) 2.141(5) N(11A)-Ru(1A)-N(4A)
Ru(3)-N(11) 2.146(5) N(5A)-Ru(1A)-S(2A)
Ru(3)-N(10) 2.153(4) N(11A)-Ru(1A)-S(2A)
Ru(3)-S(7) 2.2794(16) N(4A)-Ru(1A)-S(2A)
Ru(3)-S(8) 2.2797(18) N(5A)-Ru(1A)-S(3A)
Ru(3)-S(9) 2.2809(15) N(11A)-Ru(1A)-S(3A)
RU(1A)-N(5A) 2.154(4) N(4A)-Ru(1A)-S(3A)
RU(1A)-N(11A) 2.155(5) N(9A)-Ru(2A)-N(1A)
RU(1A)-N(4A) 2.157(5) N(9A)-Ru(2A)-N(10A)
RU(1A)-S(2A) 2.2798(17) N(1A)-Ru(2A)-N(10A)
RU(1A)-S(3A) 2.2809(15) N(9A)-Ru(2A)-S(5A)
RU(1A)-S(1A) 2.2825(15) N(1A)-Ru(2A)-S(5A)
RU(2A)-N(9A) 2.142(5) N(10A)-Ru(2A)-S(5A)
Ru(2A)-N(1A) 2.151(4) N(9A)-Ru(2A)-S(4A)
Ru(2A)-N(10A) 2.160(4) N(1A)-Ru(2A)-S(4A)
RU(2A)-S(5A) 2.2783(17) N(10A)-Ru(2A)-S(4A)
RU(2A)-S(4A) 2.2875(16) S(5A)-Ru(2A)-S(4A)
RU(2A)-S(6A) 2.2904(15) N(9A)-Ru(2A)-S(6A)
N(1A)-Ru(2A)-S(6A) 179.03(13) N(10A)-Ru(2A)-S(6A)
S(5A)-Ru(2A)-S(6A) 88.08(6) S(4A)-Ru(2A)-S(6A)
N(15A)-Ru(3A)-N(14A) 79.80(17) N(15A)-Ru(3A)-N(6A)
N(14A)-Ru(3A)-N(6A) 89.43(18) N(15A)-Ru(3A)-S(8A)
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2.153(5)
2.166(5)
79.98(17)

88.24(13)
88.46(6)
96.92(13)
92.49(12)
175.59(13)
88.76(6)
88.77(6)
90.46(17)
79.80(16)
83.51(18)
88.17(12)
176.46(13)
93.04(14)
94.53(12)
95.04(13)
174.12(13)
85.44(16)
79.21(18)
86.99(16)
96.36(14)
92.26(12)
175.55(13)
175.17(13)
92.65(12)
96.27(12)
88.14(6)
93.62(12)

92.60(12)
88.27(6)

90.27(17)
95.35(12)



N(14A)-Ru(3A)-S(8A)
N(15A)-Ru(3A)-S(7A)
N(6A)-Ru(3A)-S(7A)
N(15A)-Ru(3A)-S(9A)
N(6A)-Ru(3A)-S(9A)
S(7A)-Ru(3A)-S(9A)
Ru(3)-N(10)-H(10)
RU(1A)-N(5A)-H(5NA)
C(28A)-N(6A)-Ru(3A)
Ru(2A)-N(10A)-H(10N)
C(32A)-N(14A)-Ru(3A)
Ru(3A)-N(15A)-H(15N)

175.11(14)
86.88(13)
177.14(13)
174.03(13)
94.25(14)
88.61(7)
1234
1234
124.4(4)
123.1
106.2(4)
1235

N(6A)-Ru(3A)-S(8A)
N(14A)-Ru(3A)-S(7A)
S(8A)-Ru(3A)-S(7A)
N(14A)-Ru(3A)-S(9A)
S(8A)-Ru(3A)-S(9A)
Ru(2)-N(5)-H(5)
Ru(1)-N(15)-H(15)
C(24A)-N(6A)-Ru(3A)
C(26A)-N(9A)-Ru(2A)
C(31A)-N(14A)-Ru(3A)
C(33A)-N(15A)-Ru(3A)

Symmetry transformations used to generate equivalent atoms:
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91.17(12)
90.33(14)
88.83(6)
96.32(14)
88.47(6)
1235
1233
117.5(4)
149.5(5)
149.0(4)
112.9(4)



Table4. Anisotropic displacement parameters (A2x 103) for [1][(Br)4]. (i8/627new). The

anisotropic

displacement factor exponent takes the form: -2x7[ h2 a*2U + ... + 2hk a b* U1?]

Ull U22 U33 U23 U13 U12
Ru(1) 31(1) 46(2) 32(1) 3(1) 11(1) 1(1)
Ru(2) 33(1) 40(2) 31(1) 4(2) 18(1) 6(1)
Ru(3) 26(1) 48(2) 31(1) -3(1) 13(1) 5(1)
RU(1A)  27(2) 44(2) 32(1) 2(1) 13(1) -5(1)
Ru(?A)  31(1) 38(1) 29(1) -1(1) 16(1) -4(1)
Ru(3A)  33(1) 40(2) 34(1) -5(1) 13(1) 0(1)
Br(1) 64(1) 82(1) 70(1) -6(1) 30(1) -6(1)
Br(2) 61(1) 83(1) 63(1) 2(1) 25(1) 15(1)
Br(3) 55(1) 107(1) 51(1) -15(1) 17(1) 7(1)
Br(4) 57(1) 121(1) 54(1) -25(1) 23(1) -2(1)
Br(5) 93(1) 146(1) 99(1) -48(1) 36(1) 12(1)
Br(6) 78(1) 156(1) 72(1) 14(1) 32(1) -17(1)
(1) 34(1) 52(1) 36(1) 1(1) 10(1) 4(2)
S(2) 46(2) 50(1) 53(1) -1(1) 9(1) 8(1)
S(3) 49(2) 80(1) 53(1) 4(2) 24(1) -15(1)
S(4) 37(2) 62(1) 41(2) 10(1) 18(1) 6(1)
S(5) 61(1) 42(2) 55(1) 6(1) 25(1) 8(1)
S(6) 43(2) 59(1) 41(2) 7(1) 26(1) 6(1)
S(7) 41(2) 59(1) 38(1) -8(1) 20(1) 3(1)
S(8) 45(1) 59(1) 54(1) 2(1) 30(1) 4(2)
S9) 32(1) 70(1) 43(2) 2(1) 17(1) 13(1)
S(1A) 29(1) 67(1) 47(2) -3(1) 17(1) -12(1)
S(2A)  48(1) 53(1) 50(1) 0(1) 30(1) -2(1)
S(3A)  42(1) 47(2) 39(1) 6(1) 18(1) -5(1)
S(4A)  43(1) 52(1) 40(2) -3(1) 26(1) -2(1)
S(5A) 53(1) 40(2) 50(1) -3(1) 22(1) -5(1)
S(6A) 35(1) 58(1) 37(2) -5(1) 16(1) -2(1)
S(7A) 50(1) 44(2) 66(1) 4(2) 8(1) -8(1)
S(8A) 38(1) 50(1) 36(1) 0(1) 13(1) 1(1)
S(9A) 55(1) 72(1) 51(1) -8(1) 24(1) 19(1)
N(2) 38(3) 54(3) 31(3) 7(2) 19(2) 8(2)
N(2) 57(4) 80(4) 40(3) 13(3) 34(3) 14(3)
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N(3)
N(4)
N(5)
N(6)
N(7)
N(8)
N(9)
N(10)
N(11)
N(12)
N(13)
N(14)
N(15)
N(1A)
N(2A)
N(3A)
N(4A)
N(5A)
N(6A)
N(7A)
N(8A)
N(9A)
N(10A)
N(11A)
N(12A)
N(13A)
N(14A)
N(15A)

38(3)
33(3)
38(3)
35(3)
47(3)
40(3)
23(3)
30(3)
27(3)
42(3)
46(3)
42(3)
37(3)
31(3)
38(3)
41(3)
31(3)
24(2)
37(3)
61(4)
45(3)
30(3)
36(3)
31(3)
43(3)
54(3)
39(3)
35(3)

70(4)
47(3)
33(3)
37(3)
56(3)
63(4)
57(3)
45(3)
53(3)
62(4)
68(4)
58(3)
50(3)
33(3)
46(3)
51(3)
48(3)
38(3)
48(3)
79(4)
71(4)
51(3)
40(3)
42(3)
60(4)
54(3)
49(3)
46(3)

41(3)
42(3)
32(2)
33(3)
41(3)
31(3)
39(3)
32(3)
27(2)
32(3)
31(3)
36(3)
26(2)
33(2)
43(3)
28(3)
34(3)
26(2)
34(3)
53(3)
36(3)
35(3)
27(2)
33(3)
33(3)
33(3)
44(3)
28(2)

4(3)
2(2)
2(2)
-4(2)

-11(2)

-1(2)
-5(2)
-5(2)
-3(2)
-3(2)
10(2)
5(2)
0(2)
3(2)
13(2)
10(2)
0(2)
2(2)

-10(2)
-18(3)

-7(3)
2(2)
3(2)
-3(2)
-1(2)
-6(2)
-9(2)
-1(2)

23(3)
25(2)
21(2)
17(2)
26(3)
13(2)
10(2)
17(2)
9(2)
12(2)
19(3)
22(2)
13(2)
17(2)
20(2)
9(2)
10(2)
5(2)
18(2)
39(3)
28(3)
15(2)
18(2)
14(2)
10(2)
18(3)
22(2)
13(2)

18(3)
8(2)
4(2)
7(2)
5(3)
-6(3)
4(2)
5(2)
6(2)
5(3)
12(3)
-1(3)
0(2)
-8(2)
2(2)
5(2)
-2(2)
-3(2)
-4(2)

-12(3)
-20(3)
-12(2)

2(2)
-3(2)
-4(3)
-8(3)
-1(2)
0(2)
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Tablel. Crystal data and structure refinement for [1][(PFg)s] (igj602c2).

| dentification code ig602c2

Empirical formula C36 H57 F18 N15 P3 Ru3 9

Formula weight 1726.63

Temperature 150(2) K

Wavelength 0.71073 A

Crystal system Monaoclinic

Space group Cc2

Unit cell dimensions a=27.5079(16) A a=90°.
b = 16.0629(9) A B=108.033(4)°.
C = 14.4082(10) A v = 90°.

Volume 6053.6(6) A3

z 4

Density (calculated) 1.894 Mg/m3

Absorption coefficient 1.230 mm'?

F(000) 3444

Crystal size 0.32 x 0.28 x 0.23 mm?3

Thetarange for data collection 1.49 to 27.50°.

Index ranges -35<=h<=35, -20<=k<=20, -18<=I<=18

Reflections collected 62696

Independent reflections 7169 [R(int) = 0.0963]

Completeness to theta = 27.50° 99.6 %

Absorption correction Semi-empirical from equivalents

Max. and min. transmission 0.7652 and 0.6944

Refinement method Full-matrix |east-squares on F2

Data/ restraints/ parameters 7169/12/ 791

Goodness-of -fit on F2 1.102

Final R indices[I>2sigma(l)] R1 = 0.0574, wR2 = 0.1496

Rindices (all data) R1 =0.0728, wR2 = 0.1652

Absolute structure parameter 0(10)

Largest diff. peak and hole 1.886 and -1.957 e A3
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Table2. Atomic coordinates (x 10%) and equivalent isotropic displacement parameters (A2x 103)
For [1][(PFe)s] (igj602c2). U(eq) is defined as onethird of the trace of the orthogonalized Ui tensor.

X y z U(eq)
Ru(1) 6598(1) 6703(1) 1840(1) 22(1)
Ru(2) 6166(1) 3244(1) 1976(1) 22(1)
Ru(3) 8138(1) 4263(1) 1912(1) 22(1)
(1) 6460(1) 2153(2) 3023(2) 29(1)
S(2) 5348(1) 2768(2) 1717(2) 28(1)
S(3) 6082(1) 3988(2) 3277(2) 26(1)
S(4) 6130(1) 7167(2) 2806(2) 28(1)
S(5) 7315(1) 6802(2) 3177(2) 26(1)
S(6) 6723(1) 8059(2) 1488(2) 27(1)
S(7) 8146(1) 3468(2) 3250(2) 26(1)
S(8) 8689(1) 3319(2) 1602(2) 26(1)
S(9) 8830(1) 4972(2) 2906(2) 27(1)
N(1) 7594(3) 5214(5) 2045(6) 22(2)
N(2) 7044(3) 6260(5) 942(6) 18(2)
N(3) 7168(4) 6486(6) -640(7) 27(2)
N(4) 7897(4) 5631(6) -810(7) 26(2)
N(5) 8085(3) 4981(6) 622(7) 24(2)
N(6) 6937(3) 3604(6) 2064(6) 24(2)
N(7) 7476(3) 3611(6) 995(6) 22(2)
N(8) 7140(3) 2922(6) -593(7) 29(2)
N(9) 6312(3) 2221(6) -734(7) 27(2)
N(10) 6248(3) 2606(5) 716(7) 26(2)
N(11) 6432(3) 5412(6) 2023(6) 23(2)
N(12) 5919(3) 4287(6) 1004(6) 24(2)
N(13) 5376(4) 4677(6) -646(6) 27(2)
N(14) 5400(4) 6198(6) -900(7) 30(2)
N(15) 5952(3) 6535(5) 580(7) 26(2)

Table3. Bond lengths[A] and angles[°] for [1][(PFe)4] i8/602¢2.

Ru(1)-N(15) 2.129(9) N(12)-Ru(2)-N(6) 86.3(3)
Ru(1)-N(11) 2.158(9) N(10)-Ru(2)-N(6) 79.6(3)
Ru(1)-N(2) 2.159(8) N(12)-Ru(2)-S(3) 92.0(3)
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Ru(1)-S(6)
Ru(1)-S(4)
Ru(1)-S(5)
Ru(2)-N(12)
Ru(2)-N(10)
Ru(2)-N(6)
Ru(2)-S(3)
Ru(2)-S(1)
Ru(2)-S(2)
Ru(3)-N(5)
Ru(3)-N(7)
Ru(3)-N(1)
Ru(3)-S(8)
Ru(3)-S(9)
Ru(3)-S(7)

N(15)-Ru(1)-N(11)

N(15)-Ru(1)-N(2)
N(11)-Ru(1)-N(2)
N(15)-Ru(1)-S(6)
N(11)-Ru(1)-S(6)
N(2)-Ru(1)-S(6)
N(15)-Ru(1)-S(4)
N(11)-Ru(1)-S(4)
N(2)-Ru(1)-S(4)
S(6)-Ru(1)-S(4)
N(15)-Ru(1)-S(5)
N(11)-Ru(1)-S(5)
N(2)-Ru(1)-S(5)
S(6)-Ru(1)-(5)
S(4)-Ru(1)-(5)

N(12)-Ru(2)-N(10)

Ru(1)-N(15)
Ru(1)-N(11)
Ru(1)-N(2)
Ru(1)-S(6)
Ru(1)-S(4)
Ru(1)-S(5)
Ru(2)-N(12)

2.286(3)
2.295(3)
2.297(3)
2.155(9)
2.157(10)
2.166(9)
2.294(3)
2.291(3)
2.295(3)
2.154(9)
2.162(9)
2.185(8)
2.284(3)
2.297(3)
2.307(3)
80.2(3)
85.8(3)
86.4(3)
94.3(2)
174.3(2)
91.7(2)
94.7(3)
93.3(2)
179.4(2)
88.64(10)
176.2(3)
97.1(2)
91.5(2)
88.35(10)
88.03(10)
85.2(3)
2.129(9)
2.158(9)
2.159(8)
2.286(3)
2.295(3)
2.297(3)
2.155(9)

N(10)-Ru(2)-S(3)
N(6)-Ru(2)-S(3)
N(12)-Ru(2)-S(1)
N(10)-Ru(2)-S(1)
N(6)-Ru(2)-S(1)
S(3)-Ru(2)-3(1)
N(12)-Ru(2)-S(2)
N(10)-Ru(2)-S(2)
N(6)-Ru(2)-S(2)
S(3)-Ru(2)-5(2)
S(1)-Ru(2)-S(2)
N(5)-Ru(3)-N(7)
N(5)-Ru(3)-N(1)
N(7)-Ru(3)-N(1)
N(3)-Ru(3)-S(8)
N(7)-Ru(3)-S(8)
N(1)-Ru(3)-S(8)
N(3)-Ru(3)-S(9)
N(7)-Ru(3)-S(9)
N(1)-Ru(3)-S(9)
S(8)-Ru(3)-3(9)
N(3)-Ru(3)-S(7)
N(7)-Ru(3)-S(7)
N(1)-Ru(3)-S(7)
S(8)-Ru(3)-3(7)
S(9)-Ru(3)-3(7)
C(6)-S(1)-Ru(2)
C(D)-S(1)-Ru(2)
C(3)-S(2)-Ru(2)
C(2)-S(2)-Ru(2)
C(4)-S(3)-Ru(2)
C(5)-S(3)-Ru(2)
C(12)-S(4)-Ru(1)
C(7)-S(4)-Ru(1)
C(8)-S(5)-Ru(1)
C(9)-S(5)-Ru(1)
C(11)-S(6)-Ru(1)
C(10)-S(6)-Ru(1)
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176.9(2)
99.0(2)
177.8(2)
94.8(2)
91.5(2)
87.97(10)
93.3(2)
93.3(2)
172.9(3)
88.05(10)
88.91(10)
85.0(3)
80.6(3)
85.5(3)
93.4(3)
92.5(2)
173.7(2)
95.4(2)
178.6(2)
93.3(2)
88.83(10)
176.6(2)
91.8(2)
98.2(2)
87.76(10)
87.79(10)
103.4(4)
105.8(4)
107.0(4)
102.5(4)
102.4(4)
106.6(4)
106.1(4)
103.2(4)
105.8(4)
102.7(4)
104.2(4)
107.1(4)



Ru(2)-N(10)
Ru(2)-N(6)
Ru(2)-S(3)
Ru(2)-(1)
Ru(2)-S(2)
Ru(3)-N(5)
Ru(3)-N(7)
Ru(3)-N(1)
Ru(3)-S(8)
Ru(3)-(9)
Ru(3)-(7)
N(15)-Ru(1)-N(11)
N(15)-Ru(1)-N(2)
N(11)-Ru(1)-N(2)
N(15)-Ru(1)-S(6)
N(11)-Ru(1)-S(6)
N(2)-Ru(1)-S(6)
N(15)-Ru(1)-S(4)
N(11)-Ru(1)-S(4)
N(2)-Ru(1)-S(4)
S(6)-Ru(1)-S(4)
N(15)-Ru(1)-S(5)
N(11)-Ru(1)-S(5)
N(2)-Ru(1)-S(5)
S(6)-Ru(1)-(5)

2.157(10)
2.166(9)
2.294(3)
2.291(3)
2.295(3)
2.154(9)
2.162(9)
2.185(8)
2.284(3)
2.297(3)
2.307(3)
80.2(3)
85.8(3)
86.4(3)
94.3(2)
174.3(2)
91.7(2)
94.7(3)
93.3(2)
179.4(2)
88.64(10)
176.2(3)
97.1(2)
91.5(2)
88.35(10)

C(13)-S(7)-Ru(3)
C(18)-S(7)-Ru(3)
C(14)-S(8)-Ru(3)
C(15)-S(8)-Ru(3)
C(17)-S(9)-Ru(3)
C(16)-S(9)-Ru(3)
C(19)-N(1)-Ru(3)
Ru(3)-N(1)-H(1A)
Ru(3)-N(1)-H(1B)
C(20)-N(2)-Ru(1)
C(19)-N(2)-Ru(1)
C(22)-N(5)-Ru(3)
C(23)-N(5)-Ru(3)
C(28)-N(6)-Ru(2)
Ru(2)-N(6)-H(6A)
Ru(2)-N(6)-H(6B)
C(24)-N(7)-Ru(3)
C(28)-N(7)-Ru(3)
C(26)-N(10)-Ru(2)
C(27)-N(10)-Ru(2)
C(29)-N(11)-Ru(1)

Ru(1)-N(11)-H(11A)
Ru(1)-N(11)-H(11B)

C(30)-N(12)-Ru(2)
N(12)-Ru(2)-N(6)
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102.3(4)
105.6(4)
108.3(4)
103.1(4)
104.2(4)
106.8(4)
110.0(6)
109.7
109.7
117.1(7)
126.2(7)
148.9(8)
104.7(7)
113.3(7)
108.9
108.9
118.0(7)
123.4(7)
149.7(8)
105.5(7)
112.6(7)
109.1
109.1
118.8(7)
86.3(3)



Table4. Anisotropic displacement parameters (A2x 103) for [1][(PFe)s] 18602c2. The anisotropic

displacement factor exponent takes the form: -2x7[ h2 a*2U + ... + 2hk a b* U1?]

Ull U22 U33 U23 U13 U12
Ru(1) 27(1) 10(1) 28(1) -1(1) 6(1) -1(1)
Ru(2) 25(1) 12(1) 29(1) 0(1) 6(1) -2(1)
Ru(3) 24(1) 12(1) 27(1) 1(1) 5(1) 0(1)
(1) 34(1) 16(1) 36(2) 4(2) 10(1) 3(1)
S(2) 29(1) 18(1) 36(2) -2(1) 8(1) -5(1)
S(3) 30(1) 16(1) 30(1) 1(1) 7(1) 0(1)
S(4) 34(1) 17(1) 35(2) -4(1) 12(1) -4(1)
S(5) 33(1) 14(1) 30(1) -2(1) 8(1) -1(1)
S(6) 33(1) 12(1) 34(2) 2(1) 6(1) 0(1)
S(7) 29(1) 17(1) 28(1) 0(1) 5(1) -1(1)
S(8) 27(1) 16(1) 34(1) 1(1) 8(1) 2(1)
S9) 28(1) 20(1) 30(1) -1(1) 4(2) -4(1)
N(2) 28(4) 9(4) 28(5) -5(3) 8(4) -4(3)
N(2) 22(4) 5(3) 27(4) 1(3) 5(3) 4(3)
N(3) 31(5) 23(5) 26(5) 4(4) 10(4) 4(4)
N(4) 37(5) 16(4) 28(5) -2(4) 13(4) 5(4)
N(5) 22(4) 14(4) 33(5) 0(4) 5(4) -2(3)
N(6) 31(4) 18(4) 20(4) 4(4) 3(4) 2(4)
N(7) 35(5) 16(4) 18(4) 5(3) 12(4) 2(4)
N(8) 27(4) 25(5) 33(5) -3(4) 5(4) -2(4)
N(9) 18(4) 27(5) 30(5) -6(4) 0(4) 5(3)
N(10) 24(4) 10(4) 37(5) 2(4) 1(4) 1(3)
N(11) 24(4) 18(4) 24(5) -1(3) 5(4) -2(3)
N(12) 27(4) 11(4) 32(5) 2(4) 4(4) -3(3)
N(13) 32(5) 23(5) 20(4) 0(4) 2(4) -3(4)
N(14) 36(5) 20(5) 34(5) 8(4) 9(4) -2(4)
N(15) 30(4) 10(4) 34(5) 3(3) 7(4) -4(3)

Tablel. Crystal data and structure refinement for [3][ CF3SO3] 3 2012ncs0665.

I dentification code 2012ncs0665
Empirical formula C57 H66.50 FO9 N15 09 Ru3 S12
Formula weight 1964.68
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Temperature 100(2) K

Wavelength 0.71075 A

Crystal system Triclinic

Space group P-1

Unit cell dimensions a=16.087(4) A o= 82.077(6)".
b =16.940(4) A B=78.560(6)°.
c=29.637(7) A y = 73.861(5)°.

Volume 7575(3) A3

z 4

Density (calculated) 1.723 Mg/m3

Absorption coefficient 1.006 mm-?

F(000) 3962

Crystal size 0.08 x 0.07 x 0.01 mm3

Thetarange for data collection 2.98t0 25.03°.

Index ranges -18<=h<=19, -20<=k<=20, -35<=I<=35

Reflections collected 117730

Independent reflections 26648 [R(int) = 0.1897]

Completeness to theta = 25.03° 99.6 %

Absorption correction Semi-empirical from equivalents

Max. and min. transmission 0.9900 and 0.9238

Refinement method Full-matrix |east-squares on F2

Data/ restraints/ parameters 26648 / 31/ 861

Goodness-of -fit on F2 1.017

Final R indices[I>2sigma(l)] R1=0.1277, wR2 = 0.3266

Rindices (all data) R1 = 0.2060, wR2 = 0.3724

Largest diff. peak and hole 1.960 and -1.849 e A3
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Table2. Atomic coordinates ( x 10%) and equivalent isotropic displacement parameters (A2x 109)
For [3][CF5S04]52012ncs0665. U(eq) is defined as one third of the trace of the orthogonalized Ui

tensor.

X y z U(eq)
Ru(1) 934(1) 7849(1) 567(1) 40(1)
Ru(2) 1868(1) 6017(1) 2208(1) 38(1)
Ru(3) 4319(1) 7508(1) 990(1) 40(1)
N(1) 1310(8) 7119(7) 1168(4) 40(3)
N(2) 12(7) 8531(7) 1096(4) 36(3)
N(3) -798(8) 9231(8) 1664(5) 47(3)
N(4) -132(7) 8341(7) 2308(4) 33(3)
N(5) 958(7) 7166(7) 2006(4) 38(3)
N(6) 2842(7) 6490(7) 1727(4) 37(3)
N(7) 2217(7) 6728(7) 2645(4) 36(3)
N(8) 2534(7) 7613(7) 3037(4) 35(3)
N(9) 3452(8) 8182(7) 2407(4) 43(3)
N(10) 3670(8) 7523(8) 1694(5) 45(3)
N(11) 3074(8) 7591(8) 789(5) 51(3)
N(12) 3767(8) 8815(7) 951(4) 41(3)
N(13) 3120(8) 10137(8) 897(5) 48(3)
N(14) 1708(8) 10022(8) 710(5) 46(3)
N(15) 1774(8) 8594(8) 655(5) 44(3)
Ru(1A) 5837(1) 9092(1) 2737(1) 43(1)
Ru(2A) 4832(1) 7194(1) 4371(1) 48(1)
Ru(3A) 8302(1) 7501(1) 3926(1) 51(1)
N(1A) 6791(7) 8644(7) 3196(4) 39(3)
N(2A) 6915(8) 8397(8) 2289(5) 50(3)
N(3A) 7978(8) 7501(8) 1890(5) 46(3)
N(4A) 8856(7) 6899(7) 2501(4) 40(3)
N(5A) 8183(8) 7587(7) 3214(4) 42(3)
N(6A) 5211(8) 7952(7) 3767(4) 38(3)
N(7A) 4591(8) 6583(8) 3843(5) 45(3)
N(8A) 4441(8) 5990(8) 3246(5) 45(3)
N(9A) 5134(8) 6838(8) 2628(4) 43(3)
N(10A) 5467(8) 7947(7) 2924(4) 42(3)
N(11A) 6963(8) 7438(8) 4120(5) 50(3)
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N(12A)
N(13A)
N(14A)
N(15A)

8460(9)
8537(10)
6919(10)
6153(8)

6225(9)
4872(10)
4975(9)
6396(8)

3929(5)
3927(6)
4131(6)
4249(5)

61(4)
65(4)
66(4)
51(3)
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Table3. Bond lengths[A] and angles[°] for [3][CFsSO4]3 2012ncs0665 .

Ru(1)-N(1) 2.116(12) Ru(3)-S(8) 2.289(4)
Ru(1)-N(2) 2.150(12) Ru(1A)-N(2A) 2.131(13)
Ru(1)-N(15) 2.160(12) Ru(1A)-N(10A) 2.154(12)
Ru(1)-S(1) 2.280(4) Ru(1A)-N(1A) 2.163(12)
Ru(1)-S(2) 2.280(4) Ru(1A)-S(3A) 2.278(4)
Ru(1)-S(3) 2.287(4) Ru(1A)-S(1A) 2.281(5)
Ru(2)-N(7) 2.129(12) RU(1A)-S(2A) 2.285(4)
Ru(2)-N(6) 2.151(11) Ru(2A)-N(7A) 2.140(13)
Ru(2)-N(5) 2.175(11) Ru(2A)-N(6A) 2.144(12)
Ru(2)-S(5) 2.273(4) Ru(2A)-N(15A) 2.170(13)
Ru(2)-S(6) 2.274(4) RU(2A)-S(4A) 2.263(4)
RU(2)-S(4) 2.277(4) Ru(2A)-S(6A) 2.283(5)
Ru(3)-N(10) 2.140(13) Ru(2A)-S(5A) 2.293(5)
Ru(1)-N(1) 2.116(12) Ru(3A)-N(12A) 2.104(15)
Ru(1)-N(2) 2.150(12) Ru(3A)-N(5A) 2.137(13)
Ru(1)-N(15) 2.160(12) Ru(3A)-N(11A) 2.144(12)
Ru(1)-S(1) 2.280(4) Ru(3A)-S(8A) 2.273(5)
Ru(1)-S(2) 2.280(4) Ru(3A)-S(7A) 2.280(5)
Ru(1)-S(3) 2.287(4) Ru(3A)-S(9A) 2.287(5)
Ru(2)-N(7) 2.129(12) N(1)-Ru(1)-N(2) 79.2(4)
Ru(2)-N(6) 2.151(11) N(1)-Ru(1)-N(15) 86.9(5)
Ru(2)-N(5) 2.175(11) N(2)-Ru(1)-N(15) 84.6(5)
Ru(2)-S(5) 2.273(4) N(1)-Ru(1)-S(1) 94.8(3)
Ru(2)-S(6) 2.274(4) N(2)-Ru(1)-S(1) 173.9(3)
RU(2)-S(4) 2.277(4) N(15)-Ru(1)-S(1) 94.2(4)
Ru(3)-N(10) 2.140(13) N(1)-Ru(1)-S(2) 91.1(3)
Ru(3)-N(12) 2.140(12) N(2)-RUL)-S2) 03:3(3)
Ru(3)-N(11) 2.164(13) N(15)-Ru(1)-S(2) 177.4(4)
Ru(3)-S(7) 2.277(4) S(1)-Ru(1)-S(2) 87.65(16)
Ru(3)-S(9) 2.279(4) N(1)-Ru(1)-S(3) 176.4(3)
N(2)-Ru(1)-S(3) 97.3(3) N(7)-Ru(2)-N(6) 80.0(4)
N(15)-Ru(1)-S(3) 93.3(4) N(7)-Ru(2)-N(5) 85.5(4)
S(1)-Ru(1)-S(3) 88.74(15) N(6)-Ru(2)-N(5) 84.9(4)
S(2)-Ru(1)-S(3) 88.51(16) N(7)-Ru(2)-S(5) 92.8(3)
N(6)-Ru(2)-S(5) 92.2(3) C(19)-N(1)-Ru(1) 115.3(10)
N(5)-Ru(2)-S(5) 176.8(3) Ru(1)-N(1)-H(1A) 1085
N(7)-Ru(2)-S(6) 175.6(3) Ru(1)-N(1)-H(1B) 1085
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N(6)-Ru(2)-S(6)
N(5)-Ru(2)-S(6)
(5)-Ru(2)-5(6)
N(7)-Ru(2)-S(4)
N(6)-Ru(2)-S(4)
N(5)-Ru(2)-S(4)
(5)-Ru(2)-S(4)
S(6)-Ru(2)-S(4)
N(10)-Ru(3)-N(12)
N(10)-Ru(3)-N(11)
N(12)-Ru(3)-N(11)
N(10)-Ru(3)-S(7)
N(12)-Ru(3)-S(7)
N(11)-Ru(3)-S(7)
N(11)-Ru(3)-S(9)
(7)-Ru(3)-S(9)
N(10)-Ru(3)-S(8)
N(12)-Ru(3)-S(8)
N(11)-Ru(3)-S(8)
(7)-Ru(3)-S(8)
9)-Ru(3)-S(8)
C(7)-S(4)-Ru(2)
C(12)-S(4)-Ru(2)
C(9)-(5)-Ru(2)
C(8)-S(5)-Ru(2)
C(10)-S(6)-Ru(2)
C(11)-S(6)-Ru(2)
C(13)-S(7)-Ru(3)
C(18)-S(7)-Ru(3)
C(15)-S(8)-Ru(3)
C(14)-S(8)-Ru(3)
C(16)-S(9)-Ru(3)
N(1A)-Ru(1A)-S(2A)
S(3A)-RU(1A)-S(2A)
S(1A)-Ru(1A)-S(2A)
N(7A)-Ru(2A)-N(6A)
N(7A)-Ru(2A)-N(15A)
N(6A)-Ru(2A)-N(15A)

95.8(3)
93.0(3)
88.57(15)
95.4(3)
175.3(3)
93.9(3)
88.93(15)
88.80(15)
85.2(5)
88.4(5)
79.3(5)
95.2(3)
173.5(3)
94.2(4)
176.8(4)
88.69(15)
176.2(4)
91.6(4)
93.1(4)
88.21(15)
88.51(15)
104.0(5)
107.4(6)
102.4(6)
105.9(6)
106.2(6)
103.5(6)
101.8(6)
104.6(6)
101.8(6)
107.8(6)
107.5(6)
95.5(3)
89.06(16)
88.01(16)
79.3(5)
85.2(5)
87.4(5)

C(21)-N(2)-Ru(1)
C(20)-N(2)-Ru(1)
C(19)-N(5)-Ru(2)
C(23)-N(5)-Ru(2)
C(31)-N(6)-Ru(2)
Ru(2)-N(6)-H(6A)
Ru(2)-N(6)-H(6B)
H(6A)-N(6)-H(6B)
C(33)-N(7)-C(32)
C(33)-N(7)-Ru(2)
C(32)-N(7)-Ru(2)
C(35)-N(10)-Ru(3)
C(31)-N(10)-Ru(3)
C(43)-N(11)-Ru(3)
Ru(3)-N(11)-H(11A)
Ru(3)-N(11)-H(11B)
C(45)-N(12)-Ru(3)
C(44)-N(12)-Ru(3)
C(47)-N(15)-Ru(1)
N(2A)-Ru(1A)-N(10A)
N(2A)-Ru(1A)-N(1A)
N(10A)-Ru(1A)-N(1A)
N(2A)-Ru(1A)-S(3A)
N(10A)-Ru(1A)-S(3A)
N(1A)-Ru(1A)-S(3A)
N(2A)-Ru(1A)-S(1A)
N(10A)-Ru(1A)-S(1A)
C(35)-N(10)-Ru(3)
N(1A)-Ru(1A)-S(1A)
S(3A)-Ru(1A)-S(1A)
N(2A)-Ru(1A)-S(2A)
N(10A)-Ru(1A)-S(2A)
C(12A)-S(4A)-Ru(2A)
C(7A)-S(4A)-Ru(2A)
C(9A)-S(5A)-Ru(2A)
C(8A)-S(5A)-Ru(2A)
C(10A)-S(6A)-Ru(2A)
C(11A)-S(6A)-Ru(2A)
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145.7(11)
106.2(9)
122.1(9)
116.8(10)
112.5(9)
109.1
109.1
107.8
101.2(12)
150.6(10)
107.6(9)
118.5(10)
124.4(10)
114.4(10)
108.7
108.7
150.3(11)
104.1(9)
116.1(9)
85.2(5)
79.2(5)
87.6(5)
96.2(4)
89.8(3)
174.9(3)
92.9(4)
177.2(4)
118.5(10)
94.0(3)
88.44(17)
174.7(4)
94.1(3)
103.8(9)
105.2(7)
105.0(8)
103.2(7)
104.6(9)
104.9(7)



N(7A)-Ru(2A)-S(4A)
N(6A)-RU(2A)-S(4A)
N(15A)-Ru(2A)-S(4A)
N(7A)-Ru(2A)-S(6A)
N(6A)-Ru(2A)-S(6A)
N(15A)-Ru(2A)-S(6A)
S(4A)-Ru(2A)-S(6A)
N(7A)-Ru(2A)-S(5A)
N(6A)-Ru(2A)-S(5A)
S(4A)-Ru(2A)-S(5A)
S(6A)-Ru(2A)-S(5A)
N(12A)-Ru(3A)-N(5A)
N(12A)-Ru(3A)-N(11A)
N(5A)-Ru(3A)-N(11A)
N(12A)-Ru(3A)-S(8A)
N(5A)-Ru(3A)-S(8A)
N(11A)-Ru(3A)-S(8A)
N(12A)-Ru(3A)-S(7A)
N(5A)-Ru(3A)-S(7A)
N(11A)-Ru(3A)-S(7A)
S(8A)-Ru(3A)-S(7A)
N(12A)-Ru(3A)-S(9A)
N(5A)-Ru(3A)-S(9A)
N(11A)-Ru(3A)-S(9A)
N(15A)-Ru(2A)-S(5A)
S(8A)-Ru(3A)-S(9A)
S(7A)-Ru(3A)-S(9A)
C(5A)-S(3A)-Ru(1A)
C(4A)-S(3A)-Ru(1A)

91.9(3)
90.8(3)
176.8(4)
175.7(4)
96.4(3)
94.4(4)
88.39(17)
95.9(4)
175.2(4)
89.20(17)
88.42(18)
86.6(5)
79.4(5)
89.7(5)
175.5(4)
92.6(3)
96.1(4)
92.2(4)
178.6(4)
89.3(4)
88.6(2)
96.7(4)
91.9(3)
175.6(4)
92.4(4)
87.83(19)
88.95(18)
103.9(6)
105.8(6)

C(13A)-S(7A)-Ru(3A)
C(18A)-S(7A)-Ru(3A)
C(15A)-S(8A)-Ru(3A)
C(14A)-S(8A)-Ru(3A)
C(17A)-S(9A)-Ru(3A)
C(16A)-S(9A)-Ru(3A)
C(19A)-N(1A)-Ru(1A)
Ru(1A)-N(1A)-H(1A1)
Ru(1A)-N(1A)-H(1A2)
C(21A)-N(2A)-Ru(1A)
C(20A)-N(2A)-Ru(1A)
C(23A)-N(5A)-Ru(3A)
C(19A)-N(5A)-Ru(3A)
C(31A)-N(6A)-Ru(2A)
Ru(2A)-N(6A)-H(6A1)
Ru(2A)-N(6A)-H(6A2)
C(33A)-N(7A)-Ru(2A)
C(32A)-N(7A)-Ru(2A)
C(34A)-N(10A)-Ru(1A)
C(31A)-N(10A)-Ru(1A)
C(43A)-N(11A)-Ru(3A)
C(44A)-N(12A)-Ru(3A)
C(45A)-N(12A)-Ru(3A)
C(46A)-N(15A)-Ru(2A)
C(43A)-N(15A)-Ru(2A)
C(21A)-N(2A)-Ru(1A)
C(20A)-N(2A)-Ru(1A)
C(23A)-N(5A)-Ru(3A)
C(19A)-N(5A)-Ru(3A)
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103.2(8)
101.0(8)
107.2(7)
102.8(6)
104.4(8)
101.8(6)
112.3(10)
109.1
109.1
146.9(11)
105.6(10)
117.6(10)
125.9(10)
113.8(10)
108.8
108.8
150.4(12)
105.0(10)
122.0(10)
121.4(10)
112.7(11)
110.4(11)
153.7(14)
117.7(11)
121.4(11)
146.9(11)
105.6(10)
117.6(10)
125.9(10)



