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Abstract 

In this thesis, new applications of microdosing were explored in two clinical 

trials.  Methods were developed for the separation and quantification of          

14
C-labelled analytes in human plasma using two-dimensional HPLC and 

accelerator mass spectrometry (AMS).  Caffeine, midazolam, tolbutamide and 

fexofenadine were quantified in plasma after administration of a 
14

C-labelled 

cassette microdose to human volunteers via a HPLC-AMS recovery constant 

method.  Mean accuracy for all analytes was within 13% of the measured plasma 

concentration with precision of <20% CV, meeting recommended acceptance 

criteria for HPLC-AMS assays.  Complete resolution of each analyte was 

demonstrated by two-dimensional HPLC.  Pharmacokinetic data obtained after 

cassette microdose administration were in close agreement with those previously 

obtained after administration of therapeutic doses.  Co-administration of the 

cassette microdose with known inhibitors of metabolism enzymes and 

transporters resulted in a significant (p<0.01) increase in the area under the 

concentration-time curve from time zero to infinity (AUC0-∞) for caffeine (x8.2), 

midazolam (x11.7), fexofenadine (x3.2) and tolbutamide (x1.8, p<0.05).   

Administration of a combined 
11

C and 
14

C-labelled verapamil microdose allowed 

distribution in the brain to be monitored by PET imaging, while simultaneously 

obtaining plasma pharmacokinetics by AMS.  The separation of 
14

C-verapamil 

by two-dimensional HPLC and AMS analysis resulted in the individual 

pharmacokinetics of R- and S-verapamil being consistent with those reported 

after therapeutic doses.  In addition, a significant difference in pharmacokinetic 

data obtained for the two enantiomers clearly showed the preferential clearance 

of S-verapamil.  Data were accurate within 12% of the true value with precision 

of <18% CV.  Pharmacokinetic data obtained after PET analysis were consistent 

with those obtained during AMS analysis, proving the concept of combining the 

two techniques in clinical studies and enabling maximum information to be 

achieved from one single study. 
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1.1 Introduction 

The cost of developing of a new drug, from its discovery through to registration 

and marketing is estimated to be between $800 million to $1.7 billion, with the 

process taking approximately ten years [1-3].  At the early stages of 

development, the drug is known as a new chemical entity (NCE).  An ideal NCE 

is one that may be dosed in amounts that maintain efficacy at the site of action 

without causing toxic side effects.  The balance between these two parameters is 

dependent upon the systemic concentrations and the site of action, which in turn 

is dependent upon the dose administered.  In some therapeutic areas, for example 

the development of life saving cancer therapies, the tolerance for side effects 

may be greater than in other therapeutic areas where even mild side effects may 

be deemed unacceptable.  A key parameter in the relationship between the dose 

and the efficacy of an NCE are its pharmacokinetics (PK, Section 1.4).  Although 

PK data may be obtained from laboratory animal species relatively early in the 

drug development process, human PKs are only obtained once the NCE reaches 

clinical trials.  Clinical trials are the most costly phase of drug development.  In 

addition, it is estimated that of any NCE which reaches the first phase of clinical 

trials, only 8% will eventually become a marketed drug [1].  Recognition and 

elimination of NCEs that possess poor PK profiles prior to human clinical trials 

not only considerably reduces cost, but also reduces unnecessary exposure of 

human volunteers to a potentially unsuitable drug.  Allometric scaling using 

animal in vivo data and use of in vitro-in vivo modelling are two commonly used 

methods in predicting human PK [4].  Although these methods have their value, 

they are often unreliable.  In fact, typically only 60-80% of NCEs have been 

found to have human PK within two-fold of predictive methods [4, 5].  Human 

microdosing was first suggested as an alternative method for the prediction of PK 

in 2003 [6].  The US food and drug administration (FDA) released a ‘Guidance 

for Industry’ document in 2006, recognising the use of microdosing within phase 

0 (Section 1.8) prior to phase 1 trials.  Microdosing has been consistently 

recommended in recent years to predict human PK at the earliest possible stage 

of drug development in human volunteers [5, 7, 8]. 
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Microdosing (Section 1.8) is defined as the administration of a test compound to 

human volunteers at less than 1/100
th

 of the calculated pharmacological dose 

(based on animal data) with a maximum dose of 100 µg [9].  PK data obtained 

after microdose administration are then scaled to enable prediction of PK at the 

therapeutic dose.  Due to the low dose administered in a microdosing study, the 

regulatory authorities allow studies to be implemented with reduced safety and 

toxicology data, thus allowing them to take place earlier in the drug development 

process than more conventional phase 1 studies (Section 1.2.3).  It is the 

relatively early administration that provides microdosing with its major 

advantage, its potential to identify problematic compounds at an early stage of 

drug development.  

A concern with microdosing from the outset was its ability to predict the PK after 

administration of a therapeutic dose, from the very small doses administered [8, 

10].  A number of human microdosing studies have been carried out in recent 

years [11, 12] with the primary aim of examining how predictive microdosing is 

of therapeutically relevant doses (Section 1.8.1.1).  In addition, microdosing 

studies have been carried out to investigate development drugs (Section 1.8.2.1) 

and these data have been used in decision making processes resulting in 

compounds being rejected or chosen for further development [13, 14].  More 

recently, microdosing has been utilised in more specific study designs, such as 

the detection of polymorphic effects (Section 1.8.2.3) and the detection of drug-

drug interactions (DDI; Section 1.8.2.4 and Section 1.8.2.5).   

This thesis details the design and implementation of two microdosing clinical 

studies and the subsequent determination of analyte concentrations and PK data.  

Both studies were designed around novel applications of microdosing.  The first 

was designed to determine whether DDI effects could be detected using cassette 

microdosing in human volunteers.  HPLC and AMS methods for the 

determination of analyte concentrations in clinical plasma samples were required 

and these are presented in Chapter 2.  The clinical study design, implementation 

and analyte plasma concentration and PK data are presented in Chapter 3.  The 

second clinical study was an investigation of the feasibility of combining an 

imaging study (using positron emission tomography) and a conventional 
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microdosing study.  The imaging study is not of concern in this thesis, rather the 

PKs obtained.  The primary objective for the work presented here was to 

determine a method for the quantification of enantiomers after administration of 

a chiral compound dosed as a racemic mixture.  Methods for chiral HPLC and 

AMS analysis were required and these methods are detailed in Chapter 4.  

Subsequent analysis of clinical plasma samples and determination of PK 

parameters of enantiomers is detailed in Chapter 5.  

1.2 Drug development 

The drug development process is traditionally divided into a number of discrete 

phases, including discovery and pre-clinical analysis, through to the several 

phases of clinical trials, and a brief overview of each phase is given in Sections 

1.2.1 – 1.2.6.  In practice, these phases can overlap and although there is no 

specific pathway that a drug will follow in development, these phases are useful 

in describing the development process [2].    

Before a drug can be registered, mandatory data are required by the various 

regulatory authorities throughout the world and these data are collated 

throughout the stages of drug development.  Once an NCE has been identified for 

development it will undergo pre-clinical testing (Section 1.2.1) followed by 

several phases of clinical drug development (typically phase 1 to phase 3, and 

sometimes phase 0, Section 1.2.2 – 1.2.5), followed by post-marketing 

surveillance studies (phase 4, Section 1.2.6).  Animal models are used in pre-

clinical testing; however, humans are only permitted to participate in phase 0 

through to phase 4 studies, once sufficient pre-clinical data is available to ensure 

the compound can be safely administered to volunteers at specific doses.  

Participants may be patients or healthy human volunteers, and although females 

may be enrolled in clinical studies, the majority are carried out using male 

volunteers [2].  
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1.2.1 Pre-clinical development 

Pre-clinical development primarily concerns the assessment of the safety, 

pharmacology, toxicity and genotoxicity of an NCE prior to its first 

administration to humans.  These tests are normally performed using in vitro or 

in animal models.  There are a number of pre-clinical tests which must be 

completed prior to the administration of the drug to humans [2].    

1.2.2 Phase 0 

Phase 0 studies (or microdose studies) can be performed with only limited pre-

clinical safety data, due to the administration of doses much lower than those 

intended for therapeutic use [15].  Due to the exposure of the volunteer in a 

microdosing study to relatively small amounts of test compound, a complete 

toxicology package is not required prior to its implementation [9].  For example, 

it is often possible to minimize pre-human in vivo testing to a single dose, two 

week toxicity study in the rat [9, 16].  This is in contrast to a regular phase 1 

study that requires a more lengthy study, including at least two species.  The 

inclusion of microdosing studies allows identification of PK data at a much 

earlier stage of the drug development process than was previously possible with 

reduced costs [17].  Microdosing can be more costly and time consuming than 

traditional scaling models and is often only applied when there are concerns 

around the reliability of these models or where PK properties are key to the 

continued development of an NCE. 

1.2.3 Phase 1 

Phase 1 studies are undertaken to determine the maximum tolerated dose (MTD), 

PK, pharmacodynamic (PD) and food effects.  These studies are typically carried 

out in small numbers of healthy human volunteers (approximately 6-12) [2].  

Prior to the commencement of a phase 1 study in Europe, a clinical trials 

application (CTA) must be submitted to the relevant regulatory authority.  The 

CTA includes a summary of pre-clinical data (and information obtained in phase 

0 where available) and highlights potential risks to study volunteers [2].  In the 

US, the equivalent document is an Investigational New Drug (IND) application 
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[2].  Approval of these documents by the relevant regulatory body is required 

prior to commencement of a phase 1 study.   

1.2.4 Phase 2 

Phase 2 studies are performed on limited numbers of patients (typically 100-300) 

and are the first trials which assess the efficacy of the NCE in treating the target 

disease [2].  Polymorphisms, food-drug and drug-drug effects are all examined 

during phase 2 [2].    

1.2.5 Phase 3 

Phase 3 trials are performed using large numbers of patients (typically 100s to 

1000s) and often take place in more than one country.  During phase 3 trials, the 

NCE may be compared to a placebo, or if available a currently marketed drug, 

and these are normally double-blind studies.  Double blind studies are those 

where neither the physician nor the patient is aware of whether it is the placebo 

or the drug that is being administered [2].  Efficacy in treating the target disease 

is a major focus in phase 3 studies.   

1.2.6 Phase 4 

Although the drug has undergone rigorous testing in phase 3, the numbers of 

subjects are much smaller than those who will be exposed to the drug post-

approval.  If adverse effects are observed after its release in a wider and more 

diverse population of patients, the drug may have to be withdrawn [2].  A recent 

example of a withdrawal of this type is sitaxentan, which was prescribed for 

pulmonary arterial hypertension.  This drug was found to cause unpredictable 

serious hepatic toxicity, including one fatal case on the UK in 2009 and two 

cases from clinical trials in India and the Ukraine in 2010.  In December 2010 the 

drug was withdrawn for worldwide usage by the license holder [18].   
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1.3 Drug metabolism 

Drug metabolism is the study of the processes (mostly enzymic) which result in 

the formation of drug metabolites and which become the main elimination 

pathway for most drugs.  The processes are usually described as being divided 

into four phases: absorption, distribution, metabolism and elimination (ADME).  

This process may also apply to a range of chemical substances entering the body, 

known generically as xenobiotics.  In this case, it is assumed that the xenobiotic 

is a prescribed drug.   

Following the oral administration of a drug, absorption occurs into the 

gastrointestinal (GI) tract, the surrounding capillaries and the hepatic portal vein.  

Intravenous administration results in the drug entering the systemic circulation 

directly (Figure 1).   

 

Figure 1: Schematic showing the main routes of drug elimination (reproduced with the 

permission of the author [19]).  

The hepatic portal vein transports the drug to the liver where it either enters the 

systemic circulation or the bile [19], largely dependent upon its molecular 

weight.  Absorption is followed by the reversible distribution of the drug into 

tissue where metabolism of the drug may occur.  Enzymatic metabolism or 

biotransformation is responsible for converting the drug into a hydrophilic 
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metabolite which is more readily excreted into bile or urine than the drug [20].  

The majority of metabolic mechanisms fall into one of three categories, phase I, 

phase II and phase III reactions [21]. 

1.3.1 Phase I reactions 

Phase I reactions include oxidation, reduction, hydrolysis and rearrangement 

reactions (Figure 2 – Figure 5).   

R1 CH
2

NH
2 R1 CHO

 

Figure 2: Oxidation reaction [19]. 

R1 N N R2 R1 NH
2

NH
2

R2+
 

Figure 3: Reduction reaction [19]. 

R1 O

O

R2
R1 OH

O

OH
R2+

 

Figure 4: Hydrolysis reaction [19].  
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Figure 5: Rearrangement reaction [19]. 

Phase I reactions are mediated by a wide range of enzymes including the 

Cytochrome P450 enzymes (Section 1.5), which are largely responsible for the 

metabolic clearance of drugs.  Following oral absorption, a drug enters the liver 

via the hepatic portal vein where it can be metabolised, resulting in the drug and 

metabolites reaching the systemic circulation.  This effect is known as first-pass 

metabolism.  An example of a drug that undergoes extensive first pass 

metabolism is the benzodiazepine midazolam.  Following oral administration, 

midazolam is hydroxylated by the enzyme CYP3A4 (Section 1.5.6) in the GI 

tract and the liver, resulting in a significantly lower amount of midazolam 

reaching the circulation than was initially administered [19].   

1.3.2 Phase II reactions 

Phase II reactions are generally conjugative processes.  They occur when active 

groups either inherent to a drug or formed as a result of a phase I reaction, react 

with large water soluble compounds prior to excretion [19].  Conjugation with 

sugars, amino acids and glutathione are examples of phase II biotransformations 

[19] (Figure 6).   
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Figure 6: Conjugation of a drug or a product with glutathione [19]. 

1.3.3 Phase III reactions 

Phase III reactions involve further metabolism of products of phase II reactions.  

An example is the metabolism of glutathione conjugates to N-acetylcysteine, 

commonly known as mercapturic acid (Figure 7).   

 

Figure 7: Schematic of the glutathione pathway [19]. 
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1.3.4 Elimination 

Another important mechanism removing drugs from the body involves 

transporters such as P-glycoprotein (P-gp).  P-gp is an efflux pump that prevents 

water-soluble products of metabolism and un-metabolised drugs from entering 

cells, resulting in their removal from the body (Section 1.6).  Fexofenadine is an 

example of a drug that is excreted via a transporter mechanism [22].  

Fexofenadine undergoes very minimal metabolism, with unchanged fexofenadine 

being the major circulating component [23].  

1.4 Pharmacokinetics 

Pharmacokinetic (PK) parameters are mathematical descriptions of the systemic 

fate of a drug from its administration to the point of elimination [19].  Typically,        

post-dose drug concentrations are determined in plasma samples collected at 

various time points post-dose.  The data are plotted to construct a concentration-

time curve, which is used to determine PK parameters.  PK parameters that are 

pertinent to this thesis are summarised below:   

Cmax is the maximum drug concentration reached after administration.  The units 

for Cmax are typically mass concentration per volume, for example pg of drug per 

mL of plasma [19].   

tmax is the time at which Cmax is reached and is expressed in units of time, 

commonly h [19].   

The elimination half-life, t1/2, is described as the time taken for the drug 

concentration to fall by one half and is determined from the slope of the drug 

concentration – time curve during the elimination phase [19].  

AUC0-t is the area under the drug concentration – time curve from time zero to 

time t, where t is a given time-point, often the last measurable sample.  Typical 

units are h.ng/mL [19].  
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AUC0-∞ is the area under the drug concentration – time curve from time zero 

extrapolated to infinity.  Typical units are h.ng/mL.  The higher the percentage 

extrapolation from the AUC0-t to the AUC0-∞, the less robust the value for AUC0-

∞ becomes.  As a general guide, extrapolation which is much greater than 20% is 

a sign that that extended sample collection times may have been appropriate [19]. 

F represents the fraction of the drug absorbed or its absolute bioavailability and 

is calculated using Equation 1 [19].   

EV

IV

IV

EV

Dose

Dose

AUC

AUC
 F             Equation 1 

Where: EV = extra-vascular and IV = intravenous 

F is a ratio from zero to 1, where zero represents a drug that is not bioavailable 

and 1 is a drug that is 100% bioavailable.  F may also be expressed as a 

percentage (F%).    

CL describes the clearance of the drug.  The clearance is the volume of plasma 

from which the drug is irreversibly removed per unit time, and is expressed in 

units of volume per unit time, typically L/h [19].  CL is calculated following an 

intravenous dose.  

V is the volume of distribution, and describes the apparent volume of plasma 

accounting for a given concentration of the drug at equilibrium.  This parameter 

is calculated following an intravenous dose, and typically has units of L or L/kg 

body weight [19]. 

1.5 Cytochrome P450 (CYP) 

Cytochrome P450 (CYP) is responsible for the metabolism of over 85% of 

currently marketed drugs [20].  When discovered, the P450 or CYP enzymes 

were named as they were observed to absorb UV light at 450 nm when 

undergoing reduction and binding to carbon monoxide [24].  Although the name 

P450 has remained, their classification is now based on the DNA sequence of the 
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relevant gene.  CYPs are categorized by a family and a subfamily notation 

(Figure 8).  Following the family number is a letter denoting the subfamily and 

finally a number, which defines the gene number.  For example, an individual 

enzyme numbered 2 and belonging to subfamily A within the family CYP1 is 

named CYP1A2 [25]. 

 

Figure 8: Cytochrome P450 nomenclature. 

Enzymes which show greater than 40% amino acid sequence homology are 

designated the same family number.  Where two or more subfamilies exist, 

enzymes that show greater than 60% homology are allocated the same subfamily 

number.  The gene number is assigned on an incremental basis [26].  CYP 

enzymes are membrane bound and are located mainly in the endoplasmic 

reticulum with fewer in the mitochondria.  They are prevalent in the major 

organs, particularly the liver and the intestinal epithelia [26].  The most 

commonly recognized CYP mechanism in the metabolism of a drug is the 

oxidation of a substrate in the presence of oxygen leading to the formation of a 

molecule of water and a metabolite of the drug [20].  Human CYP enzymes may 

be inhibited or induced by drugs, dietary supplements, food and environmental 

effects.  The major CYPs and some substrates, inducers and inhibitors are 

summarised in Table 1.  CYP3A4 and CYP2D6 are responsible for the 

metabolism of the largest proportion of currently marketed drugs, with 

approximately 40% being metabolised by CYP3A4 and 25% by CYP2D6 [20]. 

CYP A 1 2 

Cytochrome 
P450 prefix 

Family 
number 

Sub-family 
number 

Gene 
number 
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Table 1: Examples of CYP enzyme substrates, inhibitors and inducers. 

Enzyme Inducers Inhibitors Substrates 

CYP3A4 

rifampin [26], 

phenytoin [20], 

phenobarbital [27], 

St Johns wort [28]   

fentanyl [29], St Johns wort 

[30, 31], testosterone [32], 

ketoconazole, grapefruit 

juice [26, 33]  

midazolam, triazolam, 

erythromycin, nifedipine 

[26], cyclosporine [28]  

CYP2D6 rifampin [34]  
quinidine, ritonavir [26], 

hyperforin, omeprazole [35]  

debrisoquine, 

dextromethophan, 

metoprolol [26] 

CYP2C9 rifampin [36]  

fluconazole, phenylbutazone, 

[36], sulphaphenazole [26], 

fluvoxamine [37], 

ketoconazole [38]  

fluoxetine, losartan, 

tolbutamide, S-warfarin 

[36], phenytoin [26] 

CYP2C19 
St John’s wort [39], 

ginkgo biloba [33] 

fluvoxamine [40, 41], 

fluoxetine [26, 40] 

1
mephenytoin[32], 

proguanil, omeprazole 

[42], diazepam, 

imipramine [26] 

CYP2E1 
St John’s wort [43], 

ethanol [44]
 

disulfiram [45],  

4-methylpyrazole [20] 

chlorzoxazone [46], 

paracetamol [47] 

CYP1A2 
2
omeprazole, 

cigarette smoke [26] 

fluvoxamine [48], α-

naphtholone [20],  

furafylline [26] 

propranolol, caffeine, 

theophylline, tacrine [26] 

1
 not suitable for poor metabolisers, 

2
 dose dependent inducer 

1.5.1 CYP Inducers 

The induction of a CYP enzyme results the increased metabolism of the inducer 

(also known as auto-induction) or of a co-administered substrate.  This effect 

results in increased clearance rates and hence an altered PK profile.  The 

induction of CYP has been found to be largely due to a process involving RNA 

and transcription factors [30], where ligand activation leads to over expression of 

CYP3A4.  An example is the induction of CYP3A4 by binding to the pregnane X 

receptor (PXR).  Many xenobiotics bind to PXR which is ligand activated, 

inducing synthesis of CYP3A4 [30].     

The induction of an enzyme responsible for clearance of xenobiotics may be 

beneficial or potentially undesirable, depending on the circumstances.  For 

example, St John’s wort is a non-prescription herbal remedy often administered 

for depression and induces CYP3A4.  Cyclosporine is an immune suppressant 

used to prevent transplant rejection after surgery.  Co-administration with St 

John’s wort leads to enhanced cyclosporine metabolism resulting from CYP3A4 
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induction via St John’s wort.  Insufficient plasma cyclosporine levels result, 

which can have serious implications including rejection of the transplanted organ 

[28].   

1.5.2 CYP Inhibition 

CYP inhibition leads to a decrease in the activity of an enzyme and is generally a 

more rapid reaction than induction.  If the metabolism of a drug is inhibited, the 

plasma concentrations of the drug can reach dangerously high levels, particularly 

after repeat dosing.  Examples of the different types of inhibition are summarised 

in Sections 1.5.2.1 – 1.5.2.3.  

1.5.2.1 Competitive CYP inhibition 

Competitive inhibition occurs when the drug and the inhibitor have similar 

reversible affinities for CYP active sites.  Substrates are normally metabolised to 

a molecule with reduced affinity for the active site.  Owing to its stronger 

binding action, an inhibitor blocks substrate from the active site, reducing 

metabolism of the substrate.  Binding to the active site is also concentration 

dependent, hence if the inhibitor concentration is low, substrate concentration 

may be increased to counteract the inhibitory effect [26].  Azoles are P450 

inhibitors; ketoconazole is a very potent competitive inhibitor of CYP3A4 [49, 

50].       

1.5.2.2 Non-competitive CYP inhibition 

Non-competitive inhibition involves the active site and the binding of an 

inhibitor to an allosteric site.  Binding of the inhibitor causes the active site to be 

altered and substrate-active site binding decreases [26].  Examples of non-

competitive inhibitors are hyperforin (potent in vitro inhibitor of CYP2D6) and 

omeprazole (potent in vivo inhibitor of CYP3A4) [35]. 
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1.5.2.3 Mechanism-based CYP inhibition 

Mechanism-based inhibition generally follows the same principles as competitive 

inhibition, but involves the covalent binding of a metabolite to the active site 

[26].  In addition, mechanism-based inhibitors may also occupy an allosteric site 

in CYP and therefore may also be classed as non-competitive inhibitors [35].  

Mechanism-based inhibitors such as constituents of grapefruit can damage an 

enzyme to such an extent that it no longer functions (also known as suicide 

inhibition).  The damage can take several days to repair, as the enzyme must be 

re-synthesised before returning to its normal function [35].    

1.5.3 CYP polymorphisms  

A polymorphism occurs when more than one genotype is present in a population 

for a particular enzyme and is one of the major causes of inter-individual 

variation in drug metabolism.  Genetic polymorphisms of CYP enzymes result in 

groups within the population that differ in their ability to carry out 

biotransformation reactions and are generally caused by gene mutations [51].  

The first CYP polymorphism was discovered in the 1980s during a study of the 

metabolism of mephenytoin.  This anticonvulsant drug is enantiomeric and the S-

isomer is more rapidly metabolised than the R-isomer.  The pathway for S-

warfarin was confirmed to be polymorphic [52] and has since been determined to 

be due to a CYP2C19 polymorphism.  CYP2C19 and CYP2C9 are especially 

prone to such polymorphisms [52].  The specificity of CYP enzymes varies from 

species to species.  Human CYP are of specific interest in the work on DDIs 

presented here and CYPs that are particularly relevant to this thesis are examined 

in Section 1.5.4 – Section 1.5.6. 

1.5.4 CYP1A2 

CYP1A2 is highly expressed in the liver with the level of expression varying 

from species to species.  In humans, CYP1A2 accounts for approximately 13% 

of active CYP enzymes in the liver and is responsible for the metabolism of 

approximately 4% of drugs currently on the market, including propranolol, 

caffeine and theophylline [53, 54].  The structure of CYP1A2 is considered to be 
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such that only planar structures may occupy the binding site [20, 26].  It does not 

have an obvious preference for acidic or basic molecules, as is the case with 

some other CYPs [26].  CYP1A2 may be induced by the diet, in particular on 

ingestion of cruciferous vegetables and char-grilled red meat [55, 56], 

environmental factors such as cigarette smoke, and several marketed drugs.  

Induction of CYP1A2 can result in reduced plasma concentrations of drugs that 

are metabolised by it, such as the antipsychotic drugs olanzipine and clozapine 

[57].  An example of the mechanism-based inhibition of CYP1A2 is by 

furafylline, a structural analogue of theophylline, which results in the decreased 

metabolism of caffeine [26, 58].  Fluvoxamine is another well documented 

potent inhibitor of CYP1A2 and causes increased caffeine concentrations on co-

administration, even at low doses (10-20 mg), due to reversible inhibition of 

CYP1A2 [41, 59].     

1.5.5 CYP2C9 

CYP2C9 is responsible for the metabolism of approximately 15% of currently 

marketed drugs including fluoxetine, tolbutamide and S-warfarin [36].  

Approximately 20% of hepatic CYP content is represented by CYP2C9 [60].  

Substrates are generally weak acids with pKa values ranging from 3.8 – 8.1 [26].  

Their interaction with CYP2C9 is due to electrostatic interactions between the 

electronegative substrate and the electropositive enzyme [26].  CYP2C9 is 

induced by several drugs, the mechanisms being complex and involving at least 

three known nuclear receptors: glucocorticoid (GR), PXR and constitutive 

androstone receptor (CAR).  The induction of CYP2C9 by rifampin, hyperforin 

(an active ingredient of St John’s wort) and phenobarbital has been confirmed to 

be due to PXR [61].  CYP2C9 has several isoforms, each of which demonstrate 

different clearance rates for particular compounds, tolbutamide being one 

example [62].  A total of 33 human CYP2C9 polymorphic variants are known 

[60].  These polymorphisms have raised particular concern in treatment 

involving administration of non-steroidal anti-inflammatory agents, sulfonylurea 

anti-diabetic drugs and oral anticoagulants belonging to the class of vitamin K 

epoxide reductase inhibitors [60].    
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1.5.6 CYP3A4 

CYP3A4 is the most abundant CYP isoform in the human liver [63] and is 

responsible for the metabolism of the largest number of drugs currently on the 

market (approximately 60%) [64].  These include chemotherapeutic drugs, 

antipsychotics, and benzodiazepines.  Substrates for CYP3A4 are generally 

lipophilic, the majority being neutral or basic [20].  Oxidation reactions are the 

major route of metabolism, particularly N-dealkylation reactions [20].  The 

CYP3A4 substrate midazolam has been studied extensively in vitro and in vivo in 

investigations of the enzyme activity [65-67].  CYP3A4 is induced by a large 

number of drugs including carbamazepine [27], phenobarbital [27] and rifampin 

[20]. There are species differences in the induction of CYP3A4 for example 

rifampin induces CYP3A4 in humans and the rabbit, but not in the rat [20].  

CYP3A4 has been found to be induced by the binding of PXR to xenobiotics 

(Section 1.5.1) and is susceptible to reversible and irreversible inhibition.  

Reversible inhibition is often caused by enzyme activation as CYP3A4 converts 

the drug into a reactive metabolite.  An example of a CYP3A4 inhibition with 

serious consequences to patient health is given in Section 1.7, with ketoconazole 

being a recognised competitive inhibitor of CYP3A4 in vivo [68].   

1.6 P-glycoprotein 

The membrane-associated efflux pump P-gp was first discovered in                 

cytotoxin-resistant Chinese hamster ovary (CHO) cells in 1976 [69].  P-gp is 

encoded by the multidrug resistance (MDR) gene, which is also known as 

ABCB1.  The ABC or adenosine triophosphate (ATP) binding cassette proteins 

transport molecules across extra- and intra-cellular membranes.  P-gp is present 

in almost all barrier tissues [70] and is highly expressed in tumour cells [71] 

leading to resistance to anti-cancer drugs [72].  Inhibitors of P-gp (Table 2) 

dramatically decrease the plasma clearance of anti-cancer agents and, 

consequently, the dose of the anti-cancer agent must often be reduced.  P-gp also 

acts as an efflux transporter at the blood-brain barrier (BBB) [73].  Substrates 

(Table 2) cover a wide range of chemical classes, and the presence of P-gp in 

epithelial and endothelial barrier tissues modulates the transport of these 

compounds.  Inhibitors of P-gp fall within the same chemical class as substrates, 
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and many share the following properties: presence of nitrogen group, aromatic 

group, planar domains, molecular mass of > 300 Da and positively charged at 

physiological pH [69]. 

Table 2: Substrates and inhibitors of P-glycoprotein. 

Inhibitors & Modulators Substrates 

verapamil, quinidine,  

cyclosporine-A [70], ketoconazole [74] 

digoxin [70], doxorubicin [69], 

pravastatin [69], loperamide [69] 

 

1.6.1 P-glycoprotein (P-gp) and absorption of orally administered drugs 

For orally administered drugs to be absorbed directly from the GI tract they must 

first pass through a barrier of enterocytes in the intestine [69].  The poor absolute 

bioavailability of drugs is often attributed to either first pass metabolism in the 

liver, limited absorption, or a combination of the two.  P-gp controls the rate at 

which a substrate permeates across intestinal enterocytes into the blood.  P-gp 

can potentially reduce the rate of absorption, and therefore decrease the Cmax and 

AUC of an administered drug [70].  The reduction in permeation may also have a 

secondary effect of increasing intestinal metabolism.  P-gp is also expressed in 

hepatocytes and has the potential to enhance biliary excretion.  Inhibition of P-gp 

may, therefore, increase the amount of substrate which enters systemic 

circulation [69].   

1.7 Drug-drug interactions (DDIs) 

The dose of drug must be high enough to be efficacious without causing adverse 

effects to the patient, effects which in some cases may even be dangerous and 

potentially life threatening.  The appropriate concentration-time profile is 

determined during the drug development process and is known as the therapeutic 

window [75, 76].  Circulating drug concentrations remain within the therapeutic 

window as long as the dose is administered correctly and the circulating levels 

are not altered by the physiology of the patient.  Co-administration of therapeutic 

agents may induce or inhibit the enzymes responsible for the elimination of the 
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drug, which can alter the PK and in some cases result in a life threatening effect, 

known as a drug-drug interaction (DDI).  It is not unusual for patients to receive 

a number of drugs concomitantly, which increases the potential incidence of a 

DDI.  Recent research involving a cohort of over 3000 patients aged 75 and over, 

found that almost one third were prescribed three or more drugs which were 

taken along with three or more dietary supplements each day [77].  With the 

administration of multiple therapies comes increasing risk of undesirable 

interactions, hence, DDIs are of major concern to the health industry, patients 

and the medical profession [78].   

An example of a serious interaction is that between ketoconazole and 

terfenadine.  Ketoconazole competitively inhibits CYP3A4, which is responsible 

for the metabolism of terfenadine [68].  A study published in 1993 examined the 

effect of the co-administered drugs on the QT interval (the time between the start 

of the Q wave and the end of the T wave in the electrical cycle) of the heart.  Of 

the six subjects participating in the study, only two were able to complete the 

course.  The remaining four received a shortened course due to ‘significant 

electrocardiographic re-polarization abnormalities’ [79].  A further study found 

that terfenadine caused decreased hepatic extraction of terfenadine coupled with 

significant increase in first pass extraction when dosed with ketoconazole at 

steady state [50].  Terfenadine was removed from the US market in 1997 [80] 

due to the toxic effects encountered when co-administered with ketoconazole.  

Fexofenadine, which is a primary active derivative of terfenadine, is now used as 

an alternative.   

Drug interactions may not always have such serious consequences and can even 

prove advantageous in drug therapy, and so can be used to the benefit of the 

patient.  For example, the antiretroviral drug saquinavir is administered as a 

human immunodeficiency virus (HIV) protease inhibitor (PI).  PIs generally 

exhibit poor systemic bioavailability and large numbers of capsules or tablets are 

often required to be ingested in order to obtain the required therapeutic dose.  

This can be costly as well as inconvenient for the patient taking the medication.  

PIs are susceptible to DDIs, which can be used favourably in the treatment of 

HIV.  The simultaneous administration of saquinavir and ritonavir, another PI, 
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results in up to a 30-fold increase in saquinavir concentrations, allowing reduced 

doses to be administered [81].  Both of the DDIs described here are due to some 

extent to the effect of the co-administered drug on the CYP enzyme CYP3A4 

(1.4.6), which is responsible for their metabolism.  Over the last 15-20 years, the 

role of the CYP enzymes has been a major focus in DDI studies.   

1.7.1 Evaluation of DDIs 

Understanding the interaction of an NCE with CYP and transporter systems is an 

important step in its development.  NCEs that are primarily metabolised by one 

enzyme are vulnerable to the effects of a co-administered drug that is 

metabolised by the same enzyme.  In addition, NCEs that significantly inhibit or 

induce specific enzymes or transporters may lead to interactions with already 

marketed drugs.  Potential interactions of NCEs with CYP enzymes may be 

evaluated in vitro using hepatocytes, microsomes and expressed human drug 

metabolizing enzymes [82].  A common approach is to administer the NCE with 

a substrate whose selection is based on its metabolism being driven primarily by 

a particular enzyme [83].  Substrates with such specificity are known as probe 

substrates.  DDI studies are normally first performed in vitro using cocktails, 

typically comprising between three and six probe substrates, together with a 

candidate drug suspected of affecting a particular drug metabolizing or clearance 

mechanism.  During in vivo studies designed in the same way, urine and plasma 

samples may be collected and analysed to determine probe substrate 

concentrations over time.  If the test drug affects the activity of a drug 

metabolizing enzyme or transporter, this will be reflected by changes in the PK 

of the probe substrate.  It is vital that probe substrates dosed within a cocktail do 

not interact with each other and the combined use of the probes must be assessed 

prior to use in DDI studies.  Several cocktails have been validated in this way, 

which include well-established probes that are known to be metabolised by a 

particular enzyme [65, 84, 85].      
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1.8 Microdosing 

A microdose is defined as the administration of a test compound at less than 

1/100
th

 of the calculated pharmacological dose and at a maximum dose of 100 µg 

to human volunteers [9].  Due to the very small doses administered through 

microdosing, sensitive analytical techniques are required for the quantification of 

analyte.  Accelerator mass spectrometry (AMS, Section 1.10) and positron 

emission tomography (PET, Section 5.1) are two highly sensitive techniques 

utilised in microdosing studies [6].  AMS quantifies drug-related material in 

biological samples such as plasma, blood and urine and allows PK information to 

be obtained.  PK data obtained after microdose administration are then scaled to 

predict PK at the therapeutic dose.  At the time of the first publication of 

microdosing data, AMS was the preferred analytical method for obtaining PK 

data due to the analytical sensitivity of the instrument [6], however in recent 

years data have been obtained using LC-MS/MS [86, 87].  AMS determines an 

isotope ratio; hence, the drug must be radiolabelled prior to administration.  This 

is not necessary for studies where LC-MS/MS can quantify drug concentrations 

with sufficient precision.  Although valuable PK data may be obtained in 

microdosing studies, it is not possible to assess the safety or the efficacy of an 

NCE via this technique as doses are typically administered at less than 1/100
th

 of 

the dose required to yield a pharmacological effect [9].  This presents perhaps the 

biggest uncertainty around microdosing, which is its ability to predict the PK of a 

pharmacological dose [17].  A growing number of studies examining the 

predictability of a microdose have appeared in the literature over the last few 

years (Table 3 and Table 4).   
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Table 3: Summary of human microdosing data.  

Year  

of 

publication 

 

Drug Primary purpose of study Source 

2003 α1A-adrenoreceptor Proof of concept/PK linearity assessment [6] 

2006 Warfarin PK linearity assessment [12] 

2006 Midazolam PK linearity assessment [12] 

2006 Diazepam PK linearity assessment [12] 

2006 Erythromycin PK linearity assessment [12] 

2006 ZK-253 PK linearity assessment [12] 

2007/2010 Fexofenadine 
Determination of absolute bioavailability 

& assessment of PK linearity  

[23, 87, 

88] 

2007 Zidovudine PK linearity assessment [89] 

2009 
Diphenhydramine, NB-1 

NB-2, NB-3, NB-4 

Compound selection & determination of 

PK 
[14] 

2009 Nicardipine Metabolite identification [86] 

2009 IDX899 & IDX989 Determination of PK [90] 

2009 
Atenolol, enalapril, 

losartan 
PK linearity assessment [91] 

2010/2011 
Acetaminophen 

(paracetamol) 

Determination of PK & metabolite 

identification/PK linearity assessment 
[11, 92] 

2011 Clarithromycin PK linearity assessment [11] 

2011 Sumatriptan PK linearity assessment [11] 

2011 Propafenone PK linearity assessment [11] 

2011 Phenobarbital PK linearity assessment [11] 

2011 Verapamil PK linearity assessment [93] 

2011 Quinidine PK linearity assessment [93] 

2011 Atorvastin DDI study [94] 

2011 
Celiprolol / 

Fexofenadine & 

Atenolol 

Detection of PK differences due to 

polymorphisms 
[95] 

2011 Telmisartan 
Detection of PK differences due to 

polymorphisms 
[96] 

2011 Metformin DDI study [97] 

2012 PF-4776548 Determination of PK  [13] 
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Table 4: Summary of animal microdosing data exploring dose linear PK.  

Year  

of 

publication 

 

Species Drug Source 

2004 Beagle dog 7-deaza-2’-C-methyl adenosine [98] 

2006 Rat Tolbutamide [99] 

2006 Rat Fluconazole [99] 

2006 Rat MLNX [99] 

2007 Monkey PHA-XXX [100] 

2008 Rat Antipyrine [101] 

2008 Rat Atenolol [101] 

2008 Rat Carbemazepine [101] 

2008 Rat Digoxin [101] 

2008 Rat Metoprolol [101] 

 

The first AMS microdosing study was reported in 2003 and investigated the PK 

of an orally active α-adrenoreceptor antagonist, which was administered to six 

healthy male volunteers at doses of 5, 50 and 500 µg (1.11 x 10
5
 disintegrations 

per minute, dpm).  Drug concentrations were obtained and a linear relationship 

was observed over the dose range [6].  Due to speculation over the ability of 

microdosing to predict PK at the therapeutic dose, further studies were performed 

(Section 1.8.1).  The generally accepted criterion for dose linearity in allometric 

scaling and extrapolation from in vitro to in vivo data is where data lie within a 

two-fold range [5, 102].  Although this is a general guide, it should be treated 

with caution, particularly where the therapeutic window is narrow.  In such 

cases, a two-fold difference may not be appropriate.  If a two-fold difference 

results in the drug no longer being within the therapeutic window, toxic effects or 

loss of efficacy may result.  As discussed by Lappin et al. [11], although 

allometric scaling uses the comparison of CL, V or F, the peak shape, overall 

AUC and the Cmax are also important factors. 
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1.8.1 Microdosing studies – pharmacokinetic linearity tests 

1.8.1.1 Human microdosing studies 

Two collaborative studies reported in 2006 and 2011 were designed with the 

primary objective of assessing dose linear PK after administration of a 

microdose.  The studies were carried out by the consortium for resourcing and 

evaluating AMS microdosing (CREAM), and the European microdosing 

accelerator mass spectrometry (AMS) partnership programme (EUMAPP).  Data 

were reported for four compounds administered during the CREAM study: 

warfarin, midazolam, diazepam and the development drug ZK-253 (donated by 

Schering-Plough).  The EUMAPP project successfully investigated six 

compounds, fexofenadine (published in 2010 [23]) and a further five marketed 

drugs, clarithromycin, sumatriptan, paracetamol, phenobarbital and propafenone.  

Drug concentrations after microdose administration were quantified via HPLC 

and AMS.     

Warfarin was chosen to represent a low clearance acidic drug, whose clearance 

could not be accurately predicted in humans (in vivo) from in vitro data.  

Microdose warfarin data (100 µg) did not show linearity with data obtained after 

the therapeutic dose (5 mg), consistent with previous observations in rats [12].  

When microdose (100 µg) and therapeutic dose (5 mg) data were dose 

normalised to 1 mg, there was no concordance in the concentration time curves 

(120 h) [12].  The microdose tmax was reached earlier followed by a sharp drop in 

plasma concentration and a prolonged terminal phase, when compared with the 

therapeutic dose data.  This non-linearity is thought to be due to the low volume 

of distribution of the drug, its uptake by high affinity, low capacity binding sites 

and target mediated disposition [12].  The individual enantiomers of S- and R-

warfarin were not quantified in this study, which would have enabled the 

presence of enantiomeric differences in PK parameters to be determined after 

microdose administration.  Midazolam, diazepam and ZK-253 showed linear PK 

within a factor of 2 [12] over a 75-fold, 100-fold and 500-fold dose range 

respectively.  
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During the EUMAPP study, paracetamol and phenobarbital were administered as 

a microdose only, due to the large amount of PK data already available.  The 

remaining four compounds were administered as an oral and an IV microdose 

and as an IV microdose, concomitant with the oral therapeutic dose, to assess 

disposition kinetics and absolute bioavailability.  Determination of absolute 

bioavailability data has been reported several times using this approach [23, 103, 

104] and has become a widely accepted use of the technology [105, 106].  The 

combination of the two doses precludes classification as a phase 0 microdose 

study due to the co-administered therapeutic dose.  Such studies, classified as 

microtracer studies, have a different design and regulatory requirements and are 

typically performed in phase 1.  The mass of the intravenous dose in a 

microtracer study is equivalent to a microdose (maximum of 100 µg) and is 

administered after administration of an oral therapeutic dose.  Systemic 

concentrations are, therefore, dependent on the mass of intravenous dose and the 

circulating oral dose.  Microtracer studies allow PK data to be obtained using the 

IV tracer, but under therapeutically relevant conditions.  For example, should a 

particular PK parameter be dose dependent, a difference will be observed 

between an IV microdose alone vs. that obtained after co-administration of an IV 

tracer and a therapeutic dose.   

Comparison of values for CL, V, Vss and t1/2 obtained after IV administration 

with those obtained after administration of a concomitant IV and oral therapeutic 

dose (clarithromycin, sumatriptan and propafenone) showed good agreement 

[11].  Cmax and AUC data obtained after administration of an oral microdose (100 

µg) and an oral therapeutic dose (250 mg, clarithromycin; 50 mg, sumatriptan; 

150 mg, propafenone) did not agree as closely, resulting in a difference in 

derived values for bioavailability [11].  Clarithromycin showed an approximate 

two-fold increase in bioavailability between the microdose and therapeutic dose, 

which was attributed to saturation of the CYP3A enzyme or P-gp efflux.  This 

dose-dependent increase in bioavailability had been observed previously, with a 

higher value being calculated after administration of a 500 mg dose [11] 

compared with the 250 mg dose.  The bioavailability of sumatriptan decreased 

almost three-fold and whilst it was hypothesised that this may also be due to 

saturation of a transporter responsible for the uptake of the drug, there was no 
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evidence to support this.  Finally, propafenone saw an approximate two-fold 

increase in F between the microdose and therapeutic oral dose.  Propafenone is 

known to demonstrate dose dependent PK over the therapeutic dose range due to 

saturation of first pass CYP2D6, which is observed in the current data [11].  

Paracetamol IV and oral microdose PK data and phenobarbital oral microdose 

PK data were both linear on comparison with literature data over a 14000 and 

2400-fold dose range [11].  This was further supported for paracetamol in a 

second microdosing study published in 2010 [92] where linearity was seen over a 

comparison range of 5000-fold (Section 1.8.2.2).  Data obtained after IV and oral 

administration of fexofenadine were comparable with data obtained after a 

therapeutic dose of 120 mg [23].  Fexofenadine was previously administered as a 

microdose in a similar study and the analytical methodology using LC/ESI-

MS/MS was reported.  Although linearity between microdosing and clinical 

profiles were observed, the data were not presented [88].  A follow up study 

confirmed the findings of Lappin et al. [23], where data were confirmed to be 

linear over a 600-fold dose range from 100 µg to 60 mg [87].   

Subsequent to the two reported collaborative studies, two further microdose 

studies were performed to investigate dose linear PK.  The first confirmed 

microdose PK data for atenolol, losartan and enalapril (100 µg, 4.44 x 10
6
) to be 

dose linear with therapeutic doses [91].  A second study was performed to 

investigate the dose dependent non-linear kinetics of verapamil and quinidine.  

Quinidine and verapamil were orally administered to human volunteers at four 

doses followed by quantification of verapamil and quinidine plasma 

concentrations by LC-MS/MS.  Quinidine was dosed at 100 µg (microdose) and 

1.29, 1.82 and 2.56-fold increases and 1.34, 1.97 and 2.99-fold increases in dose 

normalized AUCs and Cmax were observed after administration of 1 mg, 10 mg 

and 100 mg doses.  Verapamil was dosed at 100 µg (microdose), 3 mg, 16 mg 

and 80 mg, and 1.02, 1.92 and 2.34-fold increases in dose-normalised Cmax and 

1.19, 1.83 and 2.30-fold increases in AUCs were observed after the respective 

doses [93].  Although some of these parameters only become non-linear when 

applying the convention of a > 2-fold difference in PK (i.e. at the highest 

administered dose), there is a clear trend observed between increasing dose and 

increase in PK parameter.  A proposed theory for this was MDR1-mediated 
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efflux saturation and/or saturation of CYP3A4 in the small intestine.  When 

measuring metabolite concentrations and determining Km values for production 

of major metabolites, the authors were able to attribute a dose dependent effect to 

each of the above [93].   

The most recent study reported the microdose administration of zidovudine, a 

drug approved for the treatment of HIV, to one human volunteer [89].  After 

administration, zidovudine is rapidly absorbed and passively diffuses into 

peripheral mononuclear cells (PBMCs) where it undergoes phosphorylation and 

results in the termination of viral replication.  The uptake and phosphorylation of 

zidovudine is highly variable between patients and has not been found to 

correlate with either plasma concentrations or extracellular concentrations of 

zidovudine [89].  After oral microdose administration (520 ng, 2.22 x 10
5
 dpm), 

zidovudine and metabolite concentrations were quantified by UPLC and AMS 

and were dose linear with previously obtained data over a 1 million-fold range.  

In addition, the assay was of adequate sensitivity to determine PBMC 

concentrations of all ZDV related material and therefore able to determine the 

cell uptake of zidovudine [89].            

1.8.1.2 Animal studies 

Microdosing has the potential to reduce the use of animals in early clinical 

development [107].  Animal studies have been useful in corroborating the 

linearity observed between a microdose and a therapeutic dose.  The first, in 

2004, examined 7-deaza-2’-C-methyl adenosine in beagle dogs.  Total 
14

C and 7-

deaza-2’-C-methyl adenosine plasma concentrations were determined by AMS 

and LC-MS/MS after administration of 1 mg/kg (37.7 dpm/mg) and 0.02 mg/kg 

(1212 dpm/mg) oral doses and a 0.02 mg/kg (950 dpm/mg) IV dose.  Total 
14

C 

measurements obtained during AMS analysis incorporate all drug-related 

material, including drug and metabolites, hence direct comparison with data for 

the drug can result in misleading conclusions, as discussed by Lappin et al. [10].  

Total 
14

C concentration data in this study, however, were very close to 
14

C parent 

drug concentrations, indicating that the majority of drug-related material 

circulating in plasma was in fact 7-deaza-2’-C-methyl adenosine [98].  On this 
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assumption, 7-deaza-2’-C-methyl adenosine and total radioactivity plasma 

concentration data were compared and linearity in PK data was observed over a 

50-fold range [98].   

Two further studies involved the administration of a range of compounds to rats 

with the quantification of plasma drug concentrations by LC-MS/MS.  In the first 

study, tolbutamide, fluconazole and the development drug MLNX were orally 

administered at 1, 0.1, 0.01, 0.002 and 0.001 mg/kg (tolbutamide), 5, 0.05, 0.005 

and 0.001 mg/kg (fluconazole), and 10, 1, 0.1 and 0.01 mg/kg (MLNX) [99].  

Tolbutamide and fluconazole concentrations were linear over a 1000 and 5000-

fold dose range respectively, which was in agreement with previous studies of 

dose linear PKs in humans.  AUC0-∞ comparisons for MLNX were non-linear in 

the 1 to 10 mg/kg range, where an approximate 4.2-fold increase was observed 

[99].  Although the conclusion drawn by the authors was that this information is 

useful in determining the compounds for which microdosing may be suitable, 

limited information was provided regarding the properties of the compound.  

Accordingly, further conclusions regarding the cause of the non-linearity cannot 

be drawn.   

In the second study, atenolol, antipyrine, carbemazepine, digoxin and metoprolol 

were orally administered at doses of 0.167, 1.67, 16.7, 167 and 1670 µg/kg.  The 

compounds were selected from different classes (I-III) of the Biopharmaceutical 

Classifications System (BCS), which classifies compounds based on their 

permeability and solubility (Table 5).   
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Table 5: Biopharmaceutical Classification System for drug absorption [108]. 

Class Solubility Permeability 

I High High 

II Low High 

III High Low 

IV Low Low 

 

Four of the five compounds (across BCS classes I-III) demonstrated linearity 

between AUC and Cmax data obtained over the 10000-fold dose range.  The fifth 

compound, metoprolol, a BCS class I compound, showed a linear Cmax response, 

however the AUC was non-linear.  The AUC exposure of metoprolol is known to 

be low due to its metabolic stability and high liver extraction ratio.  This resulted 

in only a partial PK profile being obtained for the 16.7 µg/kg dose and may 

account for the non-proportional increases in AUC.  The study concluded that 

although LC-MS/MS was a feasible alternative to AMS for use in microdosing 

studies it did not have adequate sensitivity to quantify metoprolol levels after 

administration of lower doses.  A final compound, an NCE named PHA-XXX 

was administered intra-gastrically (IG) at 10 mg/kg as well as a separate 

microdose at 0.5 µg/kg (20000 times lower).  Plasma drug concentrations were 

obtained by LC-MS/MS analysis and PK found to be dose linear across the two 

dose ranges [100]. 

Efforts have been made to determine the cause of non-linearity to ascertain the 

value of microdosing in early drug development (Table 6). 
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Table 6: Summary of non-linear pharmacokinetic data.  

Drug 

Linear 

within a 

factor 

of two 

Dose range 

where non-

linearity 

observed 

Dose 

route 
Species 

Hypothesis for 

non-linearity 
Source 

Warfarin No 
100 µg to 5 

mg 
Oral Human 

Saturation of 

tissue binding 
[12] 

Clarithromycin No
1
 

100 µg to 250 

mg 
Oral Human 

Saturation of 

CYP3A4 

metabolism or    

P-gp efflux 

[11] 

Sumatriptan No 
100 µg to 50 

mg 
Oral Human 

Saturation of an 

uptake 

transporter 

[11] 

Propafenone No 
100 µg to150 

mg 
Oral Human 

Saturation of 

CYP2D6 enzyme 
[11] 

Verapamil No 
100 µg to 100 

mg 
Oral Human Saturation of 

MDR1-mediated 

efflux or 

CYP3A4 enzyme 

[93] 

Quinidine No 
100 µg to 100 

mg 
Oral Human [93] 

MLNX No 1 to 10 mg/kg Oral Rat 
No hypothesis 

made 
[99] 

1
PK data for oral dose are linear within a factor of 1.8, whereas IV data show much closer 

agreement 

In the case of clarithromycin, sumatriptan and propafenone, linear PK data were 

observed after administration of intravenous doses, whereas oral microdose data 

for the same compounds showed some degree of non-linearity suggesting that the 

disposition kinetics are linear [11, 23].  Non-linearity was in all cases 

hypothesised to be due to saturation of CYP enzymes or transporters (efflux and 

uptake).  This hypothesis was supported by previous data for two compounds 

(propafenone and clarithromycin) but could not be supported for the third 

compound, sumatriptan [11].  All of the compounds listed in Table 6 are BCS 

class I or II compounds [93, 109, 110] with the exception of clarithromycin 

[110].  The relevance of the classification was explored by Balani et al. [99] in 

the previously described five compound rat study, where compounds producing 

linear data crossed the I-III classification.  Class I and II compounds are 

primarily eliminated via metabolism, whereas classification III and IV 

compounds are primarily excreted unchanged into the urine and bile [109].  

Although the data presented here are limited, the majority of compounds that 

tended towards dose linear PK were class I or Class II compounds.  This may 

suggest that data obtained after administration of a microdose of a class III or IV 
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compound may be more representative of those obtained after administration of a 

therapeutic dose, than class I and II compounds, due to the lack of metabolism of 

the compound.  Further studies are required to investigate this further. 

The investigations described above have led to researchers further understanding 

the limitations of microdosing and the technique has seen an increase in use in 

recent years [15, 16, 105].  Section 1.8.2 focuses on specific applications 

demonstrating the value of microdosing in drug development, particularly in the 

selection of drug candidates in phase 0.  In addition, the use of microdosing in 

the detection of polymorphic effects, determination of metabolites and 

identification of DDIs is also discussed.  

1.8.2  Microdosing studies – Further applications 

1.8.2.1 Early pharmacokinetics and candidate selection 

A 2008 study demonstrated for the first time, the use of microdosing in obtaining 

early PK data for several NCEs by a pharmaceutical company using microdosing 

for candidate selection.  Diphenhydramine, a marketed antihistamine, was 

administered to human volunteers.  NBI-1 a comparator drug, previously 

administered in a phase 1 trial, and three candidates for further development, 

NBI-2, NBI-3 and NBI-4, each under development for the treatment of insomnia 

were also administered.  A microdose of each 
14

C-labelled compound (100 µg, 

4.44 x 10
5
 dpm) was administered orally and then IV to four healthy human 

volunteers in a randomized two period study design.  Plasma concentration-time 

curves were obtained after HPLC and AMS analysis and PK data obtained after 

microdose administration were linear with respect to previously published Cmax 

and AUC data for diphenhydramine (50 mg dose) and NBI-1 (10 mg).  

Examination of PK data and mechanistic information led to NBI-2 being selected 

as the most suitable drug candidate, due to its high bioavailability and low 

clearance, essential parameters for an insomnia drug [14].  

The microdose studies of NCEs IDX-899 and IDX989 [90] and PF4776548 [13] 

were published in 2009 and 2012 respectively.  Data obtained after oral and IV   

IDX-899 and IDX-989 microdose administration (100 µg, 2.22 x 10
5
 dpm), 
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followed by HPLC-AMS analysis of plasma and urine, showed rapid and 

extensive drug absorption, extensive metabolism and absolute bioavailability of 

>60%.  IDX-899 plasma AUC data were compared with those obtained after 

administration of doses of up to 1200 mg, and were found to be linear, as were 

urine excretion data.  IDX899 was taken forward for clinical development, 

although reasons for the choice of this specific compound are not given in the 

publication [90]. 

A second study determined plasma PF4776548 concentrations by HPLC-AMS to 

be very low after oral administration, with a >100-fold increase observed in the 

Cmax obtained after an IV dose.  The data were used in order to make a rapid 

decision regarding PF4776548 resulting in the termination of further 

development shortly after completion of the microdosing study.  This decision 

was due to an inappropriate PK profile, particularly the low systemic 

bioavailability of the compound after oral administration [13].   

1.8.2.2 Metabolite identification 

In recent years there has been growing interest in the safety of drug metabolites 

resulting in the issue of the FDA Guidance for Safety Testing of Drug 

Metabolites (MIST) and International Conference on Harmonisation M3 

(ICHM3) [111, 112].  The former makes the recommendation that prior to phase 

3 trials, a report must be made of any metabolites which have a systemic 

exposure of > 10% of the parent drug, with the latter recommending that 

metabolite exposure must not be greater than 10% of the entire exposure [92].  A 

study was reported in 2010, which was the first to present metabolite data after 

microdose administration.  The PK of the established drug acetaminophen 

(paracetamol) and its metabolites were examined [92].  Although acetaminophen 

is a widely available drug, this was the first reported clinical study to investigate 

the PK of its metabolites.  After oral microdose administration (100 µg, 4.262 x 

10
5
 dpm) of 

14
C-acetominophen to healthy human volunteers, three metabolites 

were identified in plasma, and seven in urine.  Recovery in the urine was 

approximately 96% with the remaining 4% being present in faeces after 24 h.  

The two major metabolites identified in urine, acetaminophen-glucuronide and 
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acetaminophen 4-O-sulfate both accounted for less than 10% of the total 

radioactivity and satisfy the requirements of MIST and ICHM3 [92].   

Nicardipine was the second drug for which metabolite data were obtained after 

microdose administration.  A 2008 publication reported the development of an 

LC/MS-MS assay for quantification of nicardipine in plasma and also metabolite 

determination by linear ion trap fourier transform ion cyclotron resonance mass 

spectrometry (LIT-FTICRMS) [86].  These methods were applied to samples 

obtained after administration of nicardipine (100 µg) and six metabolites were 

detected in human plasma by LC/MS-MS and reported in 2011.  Using the           

LIT-FTICRMS assay, metabolite structures were elucidated and concentration-

time profiles determined up to 8 h [113].  As well as supporting the identification 

of metabolites after microdose administration, this report highlights the 

sensitivity capabilities of an analytical method other than HPLC and AMS.  The 

analytical techniques presented have an advantage over AMS, the capability to 

identify metabolites based on their structure and mass, which is not possible with 

AMS. 

1.8.2.3 Detection of polymorphic effects 

Two papers published by Ieiri et al. in 2011 [95, 114] examined the use of 

microdosing in the detection of polymorphic differences between individuals 

using celiprolol, atenolol, fexofenadine and telmisartan as test compounds.  The 

absorption of celiprolol has been found to decrease on concomitant ingestion of 

grapefruit juice [95].  Inhibition of organic anion transporting polypeptide 

(OATP) uptake by grapefruit juice is suggested to be the cause, in particular the 

inhibition of the OATP2B1 isoform, encoded by the SLCO2B1 gene.  A similar 

response is observed on co-administration with fexofenadine [95].  Similarly, 

orange juice reduces the AUC of atenolol, which was also hypothesised to be an 

OATP2B1 substrate.  Thirty male volunteers were selected, and each volunteer 

was administered a single microdose (period one) containing celiprolol (37.5 

µg), fexofenadine (30 µg) and atenolol (30 µg).  In period two, the microdose 

was concomitantly administered with a therapeutic dose of celiprolol (100 mg).  

In period three, grapefruit juice (200 mL) was administered twice daily for two 
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days, followed by administration of the microdose.  A further 400 mL of 

grapefruit juice was ingested at 0.5 and 1.5 h after the microdose administration.  

Each drug was quantified by LC-MS/MS in plasma samples collected post-dose.   

The results showed that the contribution of the SLCO2B1 polymorphism in 

celiprolol PKs was associated with differences in PK profiles between 

individuals after administration of the therapeutic dose.  These differences were 

not observed after microdose administration.  The celiprolol PKs obtained after 

microdose administration were not comparable to therapeutic dose PKs.  It was 

hypothesised that this difference was due to saturation of transporters responsible 

for the efflux of celiprolol after therapeutic dose administration.  In addition, data 

obtained from the fexofenadine and atenolol microdose gave further information 

regarding the involvement of specific transporters.  Although the data obtained 

were useful in the study of celiprolol and the impact of polymorphic differences 

in individuals, these effects could not have been predicted from the microdose 

data alone in this case.  Further work was recommended to be carried out to 

determine the ability of a microdose to determine polymorphic effects [95]. 

In a separate study, the inter-individual variability in telmisartan plasma 

concentrations and dose dependent PK differences after oral administration were 

examined.  The role of the OATP1B3 in hepatic uptake was investigated, 

specifically the involvement of SLC01B3 and UGT1A polymorphisms, by 

administration of a microdose (100 µg) alone and concomitantly with a 

therapeutic dose (80 mg) of telmisartan in the same subjects.  Telmisartan and 

telmisartan glucuronide concentrations were determined by LC-MS/MS and dose 

normalised plasma concentration-time curves were found to differ between the 

two doses, particularly in the absorption phase.  No inter-individual differences 

were observed for either dose for individuals with SLC01B3 polymorphisms.  

Significant variability was observed between individuals with UGT1A3 

polymorphisms, and this was observed after microdose administration as well as 

the therapeutic dose.  While the specific involvement of SLCO1B3 

polymorphisms requires further investigation, the study showed the ability of a 

microdose to probe polymorphic effects [115].  
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1.8.2.4 Microdosing in DDI studies 

The first DDI microdosing study was reported in 2011 with the primary objective 

of investigating the ability of a microdose to detect a DDI in human volunteers 

[116].  Metformin, used in the treatment of type 2 diabetes mellitus, was 

administered to eight healthy human volunteers as a microdose (100 µg) and 

following a 7 day washout period, a therapeutic dose (250 mg) was administered 

followed by metformin quantification in urine and plasma samples.  Following a 

further washout period the same subjects were administered identical doses, with 

concomitant oral administration of pyrimethamine (50 mg).  Pyrimethamine is a 

potent multidrug and toxin extrusion inhibitor and slightly delayed the 

elimination of metformin.  The amount of metformin excreted in urine was 

reduced, with significant difference in renal clearance observed for both the 

microdose and therapeutic dose.  The Cmax and AUC0-12h for metformin were 

significantly greater on co-administration of pyrimethamine than for the 

metformin dose alone.  No significant increase was observed in the microdose 

data (alone and with pyrimethamine).  This was attributed to the more marked 

decrease in renal clearance observed in the therapeutic dose.  It should be noted 

that although an overall trend was observed, the inter-subject variability was 

quite large, with some subjects showing no marked increase in AUC and Cmax (in 

some cases, a slight decrease was observed).  Nevertheless, clear overall 

differences were determined, which supports the concept of the ability of a 

microdose to detect changes in PK on co-administration of a known inhibitor 

[97].   
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1.8.2.5 Cassette microdosing and DDI studies 

2011 saw the publication of the first cassette microdosing study designed to 

determine DDIs, specifically the role of CYP3A4 and OATP in the hepatic 

clearance of atorvastatin [117].  A cassette microdose consisting of atorvastatin, 

pravastatin (a substrate of OATP) and midazolam (a substrate of CYP3A4) was 

administered to eight healthy human volunteers (33 µg dosed per compound, 

total dose 99 µg).  The cassette microdose was administered alone (phase one) to 

determine the PK of each compound and co-administered (phase two) with the 

OATP inhibitor rifampicin (600 mg, oral dose).  In a third phase (phase three), 

the cassette microdose was co-administered with the CYP3A4 inhibitor 

itraconazole (200 mg IV dosed one hour prior to cassette microdose 

administration).   

Atorvastin, 2-hydroxyatorvastatin (metabolite), pravastin and midazolam 

concentrations in plasma were determined by LC-MS/MS.  PK parameters 

obtained from these measurements showed that atorvastatin and 2-

hydroxyatorvastatin plasma concentrations obtained in phase two were higher 

than phase one, therefore increasing on co-administration of rifampicin.  

Metabolite concentrations were decreased on co-administration of itraconazole 

however no significant change in atorvastin concentrations were observed (phase 

three).  The atorvastatin AUC0-10h only saw a significant increase during the 

phase two rifampicin treatment and was unchanged during phase three.  The 

findings were identical for pravastatin.  Conversely, midazolam concentrations 

were only altered by itraconazole and not rifampicin.  These data were used to 

determine that hepatic uptake via OATP is dominant in the hepatic elimination of 

atorvastatin, after microdose administration and opens up the possibility of 

identifying rate determining processes for other compounds after microdose 

administration. 

The publication did not compare microdose data with those available in the 

literature, which would have supported the reliability of the control data; 

however, the findings do support the use of a cassette microdose.  There is no 

clear evidence to suggest interactions took place between the drugs themselves, 
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and the low levels administered should prevent such an event from occurring 

[83].  One further observation is the failure to administer the cassette microdose 

after repeat dosing of rifampicin and itraconazole, and therefore at steady state 

conditions.  This is briefly discussed by the author in the case of itraconazole, 

which was administered IV instead of orally to avoid exposure of intestinal 

CYP3A4 to itraconazole.  It is also noted that midazolam undergoes greater 

increases in plasma concentrations on repeat administration of itraconazole, due 

to accumulation, which leads to mechanism-based inhibition.  In addition, 

previous studies had reported an increase in the AUC of pravastatin on co-

administration of itraconazole, which was not observed in this study.  The 

previous studies both included a repeat daily dose of itraconazole, for 4 days 

prior to administration of pravastatin [118, 119].  The half-life of itraconazole is 

reasonably long at approximately 24 h, however to make a direct comparison 

repeat dosing would be more appropriate.   

The microdosing literature discussed here focus heavily on the ability of a 

microdose to predict the PK of a compound when administered at a therapeutic 

dose [11, 12].  More recent studies have focused on particularly problematic 

compounds, where dose linearity is suspected to be an issue, particularly around 

enzyme and transporter saturation [93].  In addition, the use of microdosing in 

metabolite identification has been reported and initial investigations into the 

ability to detect polymorphisms and DDIs using a microdose have been carried 

out.  Microdosing studies have also allowed key decisions to be made in the 

further development of NCEs [13, 14, 90].   

1.9 Accelerator mass spectrometry 

Accelerator mass spectrometry (AMS) is a highly sensitive technique, which was 

developed in the 1970s for radiocarbon dating [120, 121].  AMS determines the 

isotope ratio of a sample and has been used in human microdosing studies  [11, 

12, 23, 89], IV tracer and mass balance studies [103, 122], where the 

concentration of an analyte is determined after the administration of a 
14

C-

labelled drug (Section 1.8).  A schematic of a tandem pelletron accelerator mass 

spectrometer is shown in Figure 9 [121].  Prior to analysis by AMS, the sample 
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must be converted to graphite and pressed into an aluminium cathode (Section 

1.9.2).  The cathode is placed into a sample wheel (a) containing up to 127 

samples, which is subjected to the MC-SNICS ion source (b).  The ion source 

consists of a caesium oven, a heated ionizing surface and an extractor, all of 

which are under high vacuum conditions (10
-6

 to 10
-9 

Torr, where 1 Torr is 

13.595 kg/m
2
).   

 

Figure 9: Schematic of a tandem pelletron accelerator mass spectrometer [121].  

Caesium vapour from the oven is ionised, which results in Cs
+ 

ions being 

accelerated towards the cathode where carbon atoms sputter negative ions.  The 

negative ions are extracted by plates that are held at a voltage several thousand 

times more positive than the ion source, and enter the injection magnet (c).  The 

injection magnet separates 
12

C, 
13

C and 
14

C according to their mass/charge ratio 

and they are pulsed out of the injection magnet into the 5MV particle accelerator 

(d).  The negative ions are subjected to a potential difference towards a high 

voltage positive terminal, which causes their energy to increase.  This high-

energy ion beam is focused to collide with argon gas molecules within the 

positive terminal, stripping the outer valence electrons.  The negative ions 
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become positively charged and are therefore accelerated away from the positive 

terminal towards the analysing magnet (e).  The analysing magnet separates 
12

C, 

13
C and 

14
C by their mass-momentum-charge state ratio.  

12
C and 

13
C are 

measured by Faraday cups (f).  
14

C is focused by a quadruple (g) and analysed by 

an electrostatic cylindrical analyser (h), which selects ions according to their 

energy-charge state ratio.  The final stage is the analysis of the 
14

C ions by a gas 

ionisation detector (i) [123]. 

1.9.1 AMS vs. MS 

There are several fundamental differences between AMS and conventional mass 

spectrometry (MS).  Analysis by AMS differs from conventional MS, in that 

structural information is not obtained.  While MS determines m/z ratios of ions, 

the identities of which may be used to differentiate between analytes, AMS only 

measures the isotope ratio of the analyte [124].  In addition, the process of 

conversion of 
14

C-analyte to graphite (Section 1.10.2) results in the loss of 

structural information making it impossible to distinguish the analyte by 

molecular mass or to obtain information on chemical structure [124].  Matrix 

effects in MS can be caused by interferences from constituents at the retention 

time of the analyte with m/z ratios that can interfere with the analysis, or cause 

ion suppression [124].  The nature of the graphitisation (Section 1.10.2) and 

AMS process means that matrix effects are not observed, as it is only 
14

C-analyte 

which is measured, and non-labelled constituents cannot cause interference with 

the measurement [124].  Finally, AMS is a lengthy process with the time from 

dispensing the sample for AMS to obtaining data taking at least three days 

compared to a few hours for MS.    

1.9.2 AMS sample processing procedure 

A large proportion of the analysis time in AMS lies in the processing of the 

sample prior to AMS measurement.  This processing involves a complex off-line 

procedure (Figure 10).   
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Figure 10: Sample processing prior to analysis by AMS. 

Sample preparation is conducted under conditions of a continuous background of 

naturally occurring 
14

C.  Precautions must be taken during sample processing to 

exclude this background, which otherwise could introduce contamination.  For 

example, all glassware used in the process described below is pre-treated at a 

high temperature prior to use.  In addition, all laboratory areas and equipment 

must be closely monitored to ensure that background levels of 
14

C do not 

increase to a level that may compromise the integrity of the sample.   

The sample is dispensed into a quartz tube containing copper (II) oxide.  If the 

sample does not contain sufficient background carbon (Section 1.9.3.5), carbon 

carrier is also added to the quartz tube.  Analysis of additional carbon carrier 

controls is important as a monitor of potential background contamination.  

Solvent is removed from the sample in a rotary evaporator.  The quartz tube is 

inserted into a larger tube with a break-seal point at one end.  The tubes are 

evacuated and sealed, using a glass-blowing torch.  The sealed tube is placed in a 

furnace for 2 h at 900°C, resulting in the production of CO2 (Equation 2).   
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O2H  2CO 6Cu   6CuO  H2C 222xx     Equation 2 

The CO2 is transferred across a temperature gradient into a second tube 

containing cobalt and zinc (II) titanium hydride.  The first tube is immersed in a 

mixture of dry ice and isopropanol and the second tube is immersed in liquid 

nitrogen.  The end of each tube is placed into y-shaped tubing and a vacuum 

applied.  The tip of the sealed tube is snapped at the break point allowing the 

cryogenic transfer of CO2 into the second tube, which is sealed using a glass-

blowing torch.  The sealed tube is placed in a furnace at 600°C for 10 h.  This 

process results in the catalytic conversion of CO2 to graphite, which is formed in 

the tube containing cobalt (Equation 3a and Equation 3b).   

22 H   ZnTi ZnTiH        Equation 3a 

OH C  H CO 2 22        Equation 3b 

The cobalt/graphite mixture is then pressed into an aluminium cathode and the 

cathode inserted into the AMS prior to analysis [125].  Assuming the sample 

graphitised was an untreated biological sample this measurement would provide 

the total radioactivity of the sample, which would include both drug and any 

metabolites produced in vivo.  Due to the nature of the sample processing, 

samples are occasionally lost, or the graphite may be of poor quality.  It is 

essential that sufficient sample remains to carry out repeat analysis if necessary.  

HPLC separation of the analytes prior to AMS analysis allows quantification of 

individual analytes.  At the commencement of the work presented in this thesis, 

there was no available interface between HPLC and AMS, however, a prototype 

has recently been developed [126].  The offline process is described in Figure 11.   
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Figure 11: HPLC and AMS analysis of plasma. 

A chromatographic marker, typically non-labelled analyte, is added to the plasma 

and the non-labelled and 
14

C-labelled analyte is co-extracted from the plasma.  

The resulting plasma filtrate is injected onto the HPLC and the eluate collected 

as a single fraction or as a series of fractions.  These HPLC fractions may be 

collected by time or by UV detection.  The UV detection mode uses the UV 

signal of the chromatographic marker to trigger the start and stop of the fraction 

collector.  As the retention time of the non-labelled and the 
14

C-labelled analyte 

are assumed the same (see Section 1.10.3.4), the fraction collected based on the 

response for the non-labelled analyte should also contain the 
14

C-labelled 

analyte.  Time-based collection may be programmed to collect one fraction or a 

series of fractions (Figure 11).  The collection of fractions across an entire HPLC 

run is a common approach for the qualitative analysis of the administered drug 

and its metabolites, whereas single collections normally focus on a particular 

analyte.     

At the outset of this research (2006) there were no specific guidelines for the 

development and validation of HPLC-AMS assays.  Guidelines for bioanalytical 

method validation were published by the FDA in 2001, however these did not 
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specifically refer to HPLC-AMS assays, only to procedures such as LC-MS, LC-

MS-MS and GC-MS-MS [127].  Quantification of an analyte by HPLC and AMS 

is a complex process, which has been developed over the last 10 years.  Much of 

the approach was established during the development of the methods applied in 

this thesis and the entire assay is described in Section 1.10.6.   

1.9.3 Terminology used in AMS analysis 

1.9.3.1 Isotope ratio (percent modern carbon) 

The isotope ratio (
14

C:
12

C) obtained after AMS analysis is expressed in units of 

percent modern carbon (pMC).  Units of pMC were introduced for radiocarbon 

dating, since AMS was first developed for this purpose.  The pMC values 

obtained from AMS analysis can be converted to radioactive concentrations 

(Section 1.10.6).  100 pMC is equal to 98 attomoles (10
-18

 mole) of 
14

C per mg of 

carbon [128].  100 pMC was originally quoted as the level of background 
14

C in 

the atmosphere.  Background 
14

C was elevated after the atomic bomb tests in the 

1950s, which introduced additional 
14

C into the atmosphere.  The pMC in a 

biological sample taken from a human post 1950s is approximately 110 pMC 

[123].  Carbon carriers used in AMS analysis (Section 1.9.3.5) are taken from 

petrochemical sources and contain no 
14

C.  The isotope ratio of a carbon carrier 

from a petrochemical source is typically less than 8 pMC (Section 7.11.1). 

1.9.3.2 Units of radioactivity 

Radioactivity is expressed as the number of decay events per unit of time [128]  

i.e. disintegrations per minute (dpm) or disintegrations per second (dps).  The SI 

unit for radioactivity is the Becquerel (Bq), where 1 Bq is 1 dps (1 MBq = 6 x 

10
7 

dpm).  Typically units of dpm are more commonly used in drug development 

and studies of metabolism.  Many of the equations used in conversion of pMC 

values obtained from AMS analysis also use dpm.  Radioactive concentrations 

are presented in this thesis either in pMC for raw AMS data, or dpm where 
14

C 

concentrations are required.   



45 

1.9.3.3 Specific radioactivity 

The value for a specific radioactivity is based on an average [128].  For example, 

14
C-labelled analyte can be synthesised such that the 

12
C at a specific position is 

replaced with 
14

C.  Radiolabelled material may be diluted with non-labelled 

material to obtain the required dose.  A solution which is a mixture of 
14

C-

material and non-labelled material will have a mass and a radioactivity 

associated with it.  The required specific radioactivity dictates the composition of 

this mixture.  Units of specific radioactivity are expressed as units of 

radioactivity per mole or per weight of analyte, e.g. Bq/mmole, Bq/mg or 

dpm/mg [128].   

1.9.3.4 HPLC fractionation and the kinetic isotope effect (KIE) 

In experiments where a radiotracer is used, it is assumed that the radioisotope 

and stable isotopic forms of the compound under study have identical chemical 

properties [128].  There is, however, a difference in the vibrational frequencies of 

the chemical bonds of isotopes, which is dependent upon the mass of the bonded 

isotopes [128].  The mass difference between 
12

C and 
14

C is 14%, compared to 

300% between 
3
H and 

1
H [128].  The KIE can be described mathematically using 

the rate constant for each isotope, and is equal to k
L
/k

H
, where K

L
 represents the 

rate constant for the light isotope and K
H
 represents the heavy isotope.  Typical 

values for KIE are 2.52 for 
1
H/

3
H and 1.07 for 

12
C/

14
C (calculations not shown 

[128]) revealing a small magnitude for the effect.  Consequently, its influence on 

factors such as retention time can be expected to be minimal and it is assumed 

that the chromatographic detector response for the non-labelled species 

adequately reflects the retention time of the equivalent 
14

C-analyte [128].   

1.9.3.5 Carbon carrier and isotopic dilutor 

The amount of graphite required for AMS analysis is approximately 2 mg [124].  

Samples such as plasma, faeces and blood contain sufficient background carbon 

to be taken directly for AMS analysis, without additional carbon being required.  

Samples such as HPLC fractions do not contain sufficient carbon and require 

addition of a carbon carrier, such as liquid paraffin [12].  Carbon carrier is also 
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termed an isotopic dilutor, as it disturbs the natural 
14

C:
12

C ratio of the sample 

[129].  

1.9.4 Processing of plasma prior to analysis by HPLC 

14
C-labelled analytes must be extracted from plasma samples prior to HPLC 

analysis.  The extraction method must provide a sample that is free from 

chromatographic interferences (such as plasma proteins) without compromising 

the recovery of the analyte, either from lack of recovery or due to degradation.  

While the recovery of the analyte need not be 100%, it should be consistent and 

reproducible [127].  In addition, the sample should be compatible with the HPLC 

method and must not cause the performance of the column to be compromised 

[130].  The extraction step is just one part of a multi-step offline process and 

liquid-liquid extraction methods are often chosen for their simplicity.  Ranges of 

96-well extraction plates containing removable vials are commercially available 

which are specifically designed to carry out large numbers of extractions.  An 

advantage of using 96-well plates is the collection of plasma filtrate directly into 

the collection vial, reducing the number of manual steps.   

1.9.5 Chromatographic resolution 

Plasma extracts from liquid-liquid extractions typically contain the 
14

C-drug and 

14
C-metabolites.  Complete resolution of the target analyte is essential prior to 

AMS analysis.  HPLC methods are typically developed with non-labelled 

reference standards and metabolites where available.  With established drugs, 

where the PK profile is well known, resolution of the analyte may be relatively 

straightforward.  During analysis of NCEs where limited metabolism data are 

available, or following administration of a cassette dose, the HPLC resolution of 

the analyte(s) and metabolites must be demonstrated.  Two-dimensional 

chromatographic methods, where the analyte is separated using two different 

modalities, can provide the best separation and resolution (Section 2.3.5 and 

4.3.5).   
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1.9.6 Current methods for quantification of analyte concentrations 

The first publication to report microdose data with specific analytical details was 

published in 2006 [12].  Human plasma was subjected to liquid-liquid extraction 

followed by HPLC analysis, with isolation of the analyte by the collection of 

eluate fractions.  HPLC fractions corresponding to the analyte (typically 2-3 

fractions), were combined and analysed by AMS.  The isotope ratio was 

converted to a concentration, reported as dpm per fraction.  Concentrations were 

calculated as follows (Equation 4 – Equation 6), using one of the administered 

drugs, midazolam, as an example.   

(mL) volume extract x 
 (mL) volume injection HPLC

fraction per dpm
 extract per midazolam dpm  

                 Equation 4 

 
 (mL) extracted volume

extract per midazolam dpm
 plasma mL per midazolam dpm    Equation 5 

 
 (dpm/ng)ity radioactiv Specific

plasma mL per midazolam dpm
plasma mL per midazolam ng     Equation 6 

There are several areas in the procedure where experimental errors are 

unaccounted for in the reported plasma concentrations.  The calculations assume 

100% analyte recovery; however, 
14

C-midazolam recovery from plasma was 

stated to be 92%, introducing an error of 8% in plasma midazolam 

concentrations.  In practice, this error may vary from sample to sample.  The 

method assumes a chromatographic column recovery of 100%.  If left 

unaccounted, loss of 
14

C-midazolam prior to AMS analysis may lead to errors in 

the final midazolam concentration.   

In recognition of the above, the quantification process was developed further and 

reported in 2008 [129].  These developments occurred in parallel with the 

development of the HPLC-AMS assay for the research detailed in Chapters 2 and 

4.  The method describes the quantification of 
14

C-labelled analyte via a recovery 

constant generated from a recovery curve.  It should be noted that a recovery 

curve differs from a conventional LC-MS calibration curve in that the latter 
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calibrates the MS signal output with an analyte concentration.  In LC-AMS, 

however, the AMS is calibrated as a single entity.  A recovery curve corrects for 

loss of analyte from every single sample during the processing steps prior to 

AMS analysis.  The procedure is summarised below, with a summary of the 

basic equations and further derivations given for clarity.   

Vogel and Love published the equation for determination of total 
14

C 

concentrations (i.e. analyte plus metabolites) in a biological sample [131] and 

was simplified by Salehpour et al. (Equation 7).   

(W/L) Ψ )nR- m(R  K       Equation 7 

[129] 

Where K = analyte concentration (mass equivalents per volume) 

Rm = 
14

C:
12

C isotope ratio of analyte (pMC)  

Rn = natural background 
14

C:
12

C isotope ratio of the sample (pMC) 

Ψ = carbon mass fraction in the sample (percent of carbon in the sample) 

W = molecular mass of the analyte 

L = specific molar radioactivity (pMC per unit mass) 

 

Rm and Rn are expressed in units of pMC, where 100% modern carbon is defined 

as 98 attomole of 
14

C per mg of carbon.  To calculate the drug concentration 

from an isotope ratio the fraction of the sample consisting of carbon must be 

known.  For samples such as plasma, the carbon fraction (% carbon) is 

determined by a carbon analyser.  Where HPLC fractions are analysed, only the 

carbon content of the isotope dilutor needs to be accounted for, as inherent 

carbon is very small.  The pMC value is converted to units of Modern prior to 

further manipulation as follows (Equation 8): 

 
100

pMC
 Modern              Equation 8 

Equation 7 is simplified by expressing the specific radioactivity of the drug 

administered (dpm/mg) and by expressing Rm – Rn as Rnet (Equation 9). 

 
mass

net

L

ΨR
 K         Equation 9 
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Equation 9 is used in the determination of the total 
14

C concentration of a sample 

in plasma (or other biological matrices), where it is taken directly for AMS 

analysis.  Analyses of HPLC fractions require the addition of an isotopic dilutor 

(Section 1.10.3.5).  Equation 9 does not account for procedural losses 

encountered during sample processing and assumes 100% sample recovery.  

Equation 9 was modified to account for the addition of isotopic dilutor and for 

procedural losses (Equation 10).  

 
θL

ΦR
 K

mass

D         Equation 10 

Where  

K = analyte concentration 

Φ = the amount of carbon added as isotopic dilutor 

RD = the 
14

C:
12

C ratio after isotopic dilution 

θ = analytical recovery 

Lmass = specific radioactivity of the analyte 

 

Equation 10 assumes that the recovery is the same for all samples analysed.  As θ 

varies between samples due to differences in analyte recovery, this value should 

be determined for each sample analysed.  Introduction of a recovery constant 

accounts for procedural losses during the quantification of 
14

C-analyte via use of 

an internal standard.  The internal standard employed in HPLC and AMS 

analysis is normally the non-labelled analyte, which acts as a chromatographic 

marker and is typically measured by UV absorption.  The amount of carbon 

present in the internal standard is negligible compared to the carbon carrier and is 

ignored in calculations.  The internal standard method accounts for sample-to-

sample variation by differences in the UV response of an analyte during HPLC 

analysis.  The internal standard method is discussed in detail by Lappin et al. 

[129].   

A recovery curve is typically constructed as follows: 

 plasma samples are prepared at several different 
14

C-analyte 

concentrations (at least 4 concentrations, plus a blank) and the 

concentration of each plasma sample is determined; 
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 replicate aliquots of plasma (typically n=5) are dispensed, internal 

standard (i.e. non-labelled analyte) is added and each sample is extracted 

and analysed by HPLC; 

 the internal standard response (peak area) is recorded for each HPLC 

analysis and the eluate corresponding to the internal standard is collected 

as a HPLC fraction; 

 HPLC fractions are analysed by AMS and the isotope ratio of the fraction 

is determined. 

Plasma concentrations are plotted on the x-axis and HPLC fraction concentration 

/ UV response is plotted on the y-axis.  A curve is fitted to the data by linear 

regression and substitution of the equation y = mx + c into Equation 10 results in 

Equation 11.   

Φ
L

mU

c-R

 K
mass

A

       Equation 11 

Where: 

RA = isotope ratio of sample – isotope ratio of isotopic dilutor 

m = recovery constant (slope of recovery curve) 

c= intercept of recovery curve 

U = HPLC detector response 

Φ = amount of carbon added as isotopic dilutor 

Lmass = specific radioactivity of analyte (pMC per unit mass) 

The slope of the line (m) is the recovery constant.  The recovery curve is used in 

the quantification of analyte concentrations in clinical plasma as follows: 

 internal standard is added to plasma and analyte is extracted; 

 plasma extract is analysed by HPLC with fraction collection and the UV 

response of the analyte recorded; 

 the HPLC fraction is analysed by AMS and the isotope ratio determined; 
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 analyte concentration in plasma is determined using Equation 11. 

1.9.7 Limitations of the recovery curve method 

The recovery curve quantification method described in Section 1.10.6 is a basic 

overview of the process.  There are several further considerations to be made in 

developing such an assay for HPLC-AMS analysis (Section 1.10.7.1 – 1.10.7.2).  

1.9.7.1 Analyte purity 

As 
14

C-analyte is spiked into plasma in the generation of the recovery curves, its 

purity is essential to the accuracy of the data obtained and significant impurities 

must be accounted for in the calculation of analyte concentrations.  In the 

example in Section 1.10.6, test substances were between 98% and 99.8% 

radiochemical purity, which results in a maximum error of 2% in the plasma 

concentration determined.  In addition, non-labelled analyte must be 

demonstrated to be free of residual 
14

C.   

1.9.7.2 Linear analyte response 

AMS analysis is linear up to the point of saturation of the detector.  In practice, 

reaching this saturation level must be avoided as it is damaging to the instrument.  

Assays are designed so that the maximum amount of 
14

C placed in the AMS is 

below the saturation limit.  In addition, the AMS detector is programmed to stop 

when it reaches a specific number of counts, after which point the statistical 

accuracy of the analysis is reduced.  Samples that are counted for less than the 

required number of cycles, owing to this programmed stop, are deemed 

statistically inaccurate and are not used.  The HPLC detector response for the 

sample must also be ascertained prior to development of an assay and must be 

accounted for in the quantity of internal standard added to each sample. 

1.9.7.3 Uniform analysis 

Determination of plasma analyte concentrations using Equation 11 allows direct 

conversion of the isotopic ratio of the sample obtained on AMS analysis to a 

mass concentration per mL.  The method requires that particular analytical 
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processes remain constant throughout sample analyses.  Specifically, the plasma 

volume taken for extraction, the proportion of plasma extract taken for HPLC 

analysis, the HPLC fraction volume and proportion taken for AMS must be 

considered.  In addition, the amount of isotopic dilutor and the specific 

radioactivity applied must remain constant.  In practice, some of the above may 

vary which impacts on the processing of the samples.   

1.10 Aims of this thesis 

The literature reviewed in Section 1.8 illustrates progression in the use of 

microdosing, from proof of concept studies using established drugs, to more 

recent studies where NCEs have been investigated and in some cases, go/no-go 

decisions have been taken on progressing with the development of a compound.  

More recent studies have explored the use of microdosing in detecting DDIs and 

also introduced the cassette microdosing approach.  At the outset of the work 

presented in this thesis limited published examples of novel applications of 

microdosing were available as the wider use of the technique was still being 

accepted by the industry.  This thesis presents two applications of microdosing, 

which were not previously detailed in the literature.  The first is the detection of 

DDIs after cassette microdose administration, a concept that has recently been 

supported (Section 1.8.2.4 and 1.8.2.5).  The second is the use of microdosing to 

determine PK data along with drug distribution data via the combined use of 

microdosing and an imaging technique (Section 1.9.1 and 1.9.2).  AMS (Section 

9) was chosen for quantification of the analyte in each study due to the low doses 

administered. 

1.10.1 Ability to detected DDIs after cassette microdose administration  

There are several examples in the literature of an NCE being administered for the 

first time in a microdosing study (Section 1.8.1.1).  Adding a second arm to each 

of these studies, where the NCE was co-administered with known inhibitors of 

major P450 enzymes or transporters would have the added benefit of identifying 

DDIs at the earliest stage of development.  The administration of a cassette 

microdose allows multiple compounds to be administered to the same subjects in 

one single dose.  Cassette dosing has been widely used in the investigation of 
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DDIs (Section 1.7) as a common time-saving approach, particularly in screening 

and candidate selection [83].  This approach remains controversial due to the 

potential for interactions to occur between compounds within the cassette [83].  

Due to the very low levels of drug administered in a microdose there is a very 

low risk of interactions occurring [83], with the recent work published by Maeda 

et al. [117], further supporting this theory (Section 1.8.2.5).  The clinical study 

described in this thesis (Chapter 2 and Chapter 3) was designed to prove the 

concept of detecting DDIs after administration of a cassette microdose.  Chapter 

2 describes the analytical methods developed to allow the AMS quantification of 

four 
14

C-labelled analytes in human plasma after administration of a cassette 

microdose.  The development of a preparation method for plasma filtrate and a 

HPLC method for isolation of 
14

C-labelled analyte are detailed in Chapter 2.  The 

verification of analyte resolution by two-dimensional chromatography is also 

presented in Chapter 2.  Finally, Chapter 2 details the construction of a recovery 

curve for 
14

C-analyte quantification after AMS analysis of HPLC fractions 

containing 
14

C-analyte.  Chapter 3 details the design and implementation of the 

clinical study and the analysis of plasma samples using the methods developed in 

Chapter 2.  Mass concentration data are determined and PK data are presented, 

discussed and compared with literature data to assess linearity with therapeutic 

doses.  PK data obtained after administration of a cassette microdose alone and 

with CYP and P-gp inhibitors are compared to determine the ability of the 

cassette microdose to determine DDIs.     

1.10.2 Combination of positron emission tomography and AMS in obtaining 

pharmacokinetic and imaging data after microdose administration 

Microdosing studies allow drug concentrations to be quantified in samples such 

as blood, plasma, urine and faeces, providing PK data that may be used to 

determine the systemic fate of the drug.  These types of study do not provide 

information regarding the distribution of a drug within the rest of the body.     

Positron emission tomography (PET) is routinely used to study the distribution 

and PK of a drug labelled with a positron emitting isotope such as 
11

C or 
18

F [6].  

It is a non-invasive nuclear imaging technique with applications in drug 

disposition studies.  There are two commonly used approaches in the design of 
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PET imaging studies.  Ligand displacement studies involve the administration of 

a positron emitting radiolabelled ligand followed by administration of a 

pharmacologically active dose of NCE.  Displacement of the ligand designed to 

bind specifically to a particular receptor is determined by measurement of the 

positron emitter.  This approach is particularly useful in the development of 

central nervous system (CNS) drugs, in establishing whether an NCE reaches the 

brain and also if it binds to the target site [87].  Alternatively an NCE itself may 

be radiolabelled and traced in target tissues [87] to measure uptake.  Under these 

circumstances, the radiolabelled drug is administered as a microdose.  The 

microdosing study reported in this thesis (Chapter 4 and Chapter 5) is a proof of 

concept study to investigate the feasibility of obtaining plasma PK data along 

with drug distribution data in the same subjects after a single dose 

administration.  In addition, the ability to quantify enantiomers in plasma after 

administration of a 
14

C-labelled racemic mixture was explored.  Chapter 4 

describes the analytical methods developed to prepare plasma filtrate and isolate 

14
C-labelled enantiomers by HPLC.  Verification of analyte resolution using a      

two-dimensional C18-chiral HPLC method and the construction of a recovery 

curve for quantification of 
14

C-enantiomers is described in Chapter 4.  Chapter 5 

details the design and implementation of a clinical study and the analysis of 

venous plasma samples for 
14

C-enantiomer concentrations.  PK data obtained 

after microdose only and concomitant microdose and therapeutic dose 

administrations are compared, to determine dose linearity.  PK data obtained for 

each enantiomer are described, discussed and compared with imaging data 

obtained by PET analysis to determine the applicability of combining the two 

techniques.    

 

 

 

 



55 

 

 

 

 

 

 

CHAPTER 2 

Development of HPLC and AMS methods for 

quantification of caffeine, midazolam, 

tolbutamide and fexofenadine in plasma 
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2.1 Introduction 

This chapter reports the development of methods used to analyse clinical samples 

derived from a study whereby a cassette microdose consisting of 
14

C-caffeine, 

14
C-midazolam, 

14
C-tolbutamide and 

14
C-fexofenadine was administered to 

healthy human volunteers.  The main objectives for the clinical study were to 

quantify caffeine, midazolam, tolbutamide and fexofenadine concentrations by 

AMS analysis.  The cassette microdose consisted of a combined mass of 100 µg 

and radioactive dose of 4.44 x 10
5
 dpm (i.e. 25 µg, 1.11 x 10

5
 dpm of each 

compound).  Due to the very low doses administered, AMS detection was chosen 

for quantification of each drug in the plasma samples collected during the study, 

with prior separation of each analyte by HPLC.  This chapter describes how the 

HPLC-AMS technologies were developed for use with the clinical samples.   

2.1.1 Development of an HPLC-AMS assay 

The two main considerations for the practical development of an HPLC AMS 

assay are the isolation and the quantification of the analyte.  It is necessary to 

consider the development of a suitable method for sample pre-treatment as well 

as the development of an HPLC method with sufficient chromatographic 

resolution.  A typical HPLC-AMS assay is outlined in Section 1.10.6.  The 

properties and metabolism of each analyte for which quantification is required 

are detailed below (Section 2.1.2). 

2.1.2 Compounds chosen for cassette dose administration 

2.1.2.1 Caffeine 

Caffeine is a psychoactive substance found in coffee, tea and chocolate.  Low to 

moderate doses of caffeine (50-300 mg) result in increased alertness and energy.  

Higher doses can result in anxiety, restlessness and tachycardia [132].  Caffeine 

is metabolised in the liver to form dimethyl and monomethylxanthines [133], a 

process mediated by CYP1A2 (Figure 12). 
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Figure 12: Caffeine and the major routes of metabolism via CYP1A2 [134].  

2.1.2.2 Midazolam 

Midazolam is widely used as an intravenous anaesthetic [29].  It is rapidly 

metabolised by CYP3A in the liver to the major hydroxylated metabolite, 1’-

hydroxymidazolam and two minor metabolites, 4-hydroxymidazolam and 1’4-

hydroxymidazolam [135] (Figure 13).      
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Figure 13: Midazolam and the major routes of metabolism via CYP3A. 

2.1.2.3 Tolbutamide 

Tolbutamide is a sulphonylurea, used in the treatment of diabetes [136].  It is 

metabolised by CYP2C9 to hydroxytolbutamide.  Hydroxytolbutamide 

undergoes further metabolism by hydrogenases to carboxytolbutamide [37] 

(Figure 14). 
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Figure 14: Tolbutamide and the major routes of metabolism [37].  

2.1.2.4 Fexofenadine 

Fexofenadine (Figure 15) is a drug used for the treatment of allergic rhinitis and 

chronic uticaria [137].  Approximately 95% of fexofenadine is excreted in the 

urine and faeces unchanged.  It is not significantly metabolised by CYP and is a 

substrate of P-glycoprotein [137]. 

 

Figure 15: Fexofenadine. 
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2.1.2.5 Absorption and distribution of caffeine, midazolam, tolbutamide and 

fexofenadine 

After oral administration, most drugs are absorbed by diffusion across biological 

membranes.  Absorption of a drug by passive diffusion through the GI tract is 

dependent upon its partitioning between aqueous fluids in the GI tract and the 

lipid membrane [138].  The un-ionised form of a compound will more freely 

partition into lipophilic membranes than the ionised form, whereas the ionised 

form favours the aqueous phase.  This absorption process is described by pH-

partition theory [138, 139].   

Dissociation of weak acids and weak bases is quantified by the dissociation 

constant Ka, often expressed as pKa (the negative logarithm of the acid 

dissociation constant).  The extent of ionisation is dependent upon the pH of the 

solution [139].  The pH range of the human stomach is approximately pH 1 – pH 

3, and the lumen of the duodenum to the colon ranges from pH 5 to pH 8 [139].  

The pH of the blood is 7.4, hence blood perfused tissues are at a similar pH 

[138].  The relationship between the pH and the pKa is described by the 

Henderson-Hasselbalch equation for acidic and basic compounds (Equations 12a 

and 12b). 

]-[A

[HA]
log  pH pKa   Equation 12a [139]  

Where:  

[A
-
] = concentration of ionised compound  

[HA] = concentration of the un-ionised compound (acid) 
 

[B]

][BH
log  pH pKa   Equation 12b [139]  

Where:  

[B] = concentration of the un-ionised compound (base)  

[BH
+
] = concentration of ionised compound 

 



61 

The pKa of a compound is the pH at which the un-ionised and ionised forms are 

present in equal concentrations [138].  The pKas for caffeine, midazolam, 

tolbutamide and fexofenadine are given in Table 7. 

Table 7: pKa and logP of caffeine, midazolam, tolbutamide and fexofenadine. 

Analyte pKa
 

logP References 

Caffeine 14
1
/0.8

2
 -0.55 

[138, 140, 141] 
Midazolam 6.57 3.33 

Tolbutamide 4.33 2.30 

Fexofenadine 4.04
1
/9.01

2
 2.94 

  
1
acidic 

2
 basic 

Midazolam is a basic compound, tolbutamide is acidic, caffeine is neutral and 

fexofenadine is zwitterionic.  The Henderson-Hasselbalch equation allows the 

ratio of ionised: un-ionised compound in aqueous solution at a given pH to be 

determined.  For example, at pH<2, which is typical of the stomach environment, 

tolbutamide with a pKa of 4.33 exists predominantly in the un-ionised form.  The 

un-ionised form dominates until the drug reaches an environment of 

approximately pH 4.3 and above, hence the pH of the stomach favours the 

absorption of tolbutamide.  Midazolam is predominantly in the un-ionised form 

at approximately pH 8.5 and fexofenadine at approximately pH<2 and pH>11.  

Based upon the physicochemical properties of midazolam, the pH of the large 

intestine would favour its absorption.  Fexofenadine will be highly ionised in the 

stomach and absorption would be favoured in the small intestine, where it is 

zwitterionic.   

Absorption dependent on pH is expected for bases with pKa values between 5 

and 11, and acids with pKas of less than 7.5 [138].  The two pKa values for 

caffeine both fall outside of these ranges, hence caffeine shows no pH dependent 

absorption.  Caffeine is rapidly absorbed from the gastrointestinal tract and 

reaches the Cmax at around 45 min in humans [133].   

The partition coefficient (logP) is the ratio of the concentrations of an un-ionised 

compound in each of the two phases of a biphasic mixture of solvents, typically 
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an octanol and water mixture at equilibrium [139].  Octanol and water most 

closely represent the polarities of the epithelial membrane.  Compounds which 

favour the aqueous phase have low logP values (<1), whereas those with higher 

logP values (>3.5) favour the octanol phase [142]. 

Caffeine has a logP value of -0.55 (Table 7).  Compounds with logP values in 

this range tend to be polar and have good aqueous solubility.  Midazolam, 

tolbutamide and fexofenadine all have logP values between 2 and 4.5 (Table 7).  

Compounds that fall within this range tend to be of intermediate polarity, with a 

good balance between aqueous and lipid solubility [142].  Based on its logP 

caffeine should less readily cross the epithelial membrane than the other three 

compounds.  

The distribution coefficient (logD) represents the distribution between octanol 

and water at a defined pH.  Unlike logP, logD includes the amount of ionised 

compound in the aqueous phase.  Definitions of logD for an acid and a base are 

given in Equations 13a and 13b, respectively: 

]
pKa) - (pH

10log[1 - logP logD     Equation 13a 

]
pH) - (pKa

10log[1 - logP logD     Equation 13b 

Following absorption into the blood a compound experiences a pH environment 

of 7.4.  The calculated logD values for caffeine, midazolam, tolbutamide and 

fexofenadine at pH 7.4 are given in Table 8.   

Table 8: logD(pH7.4) of caffeine, midazolam, tolbutamide and fexofenadine. 

Analyte logD(pH7.4)
 

Caffeine 0.00
1
/-0.55

2
 

Midazolam 3.27 

Tolbutamide -0.57 

Fexofenadine -0.21
1
/0.81

2
 

                                                                             1
acidic 

2 
basic 
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Based on their logD(pH7.4) values, caffeine, tolbutamide and fexofenadine would 

be expected to favour the aqueous phase and should exhibit good systemic 

distribution.  Midazolam has logD(pH7.4) of 3.27 and as the most lipophilic of the 

four compounds may favour the lipid phase to the greatest extent.  This is 

supported by the higher volume of distribution of midazolam (V=1.1 L/kg) 

compared with caffeine (0.5 L/kg) and tolbutamide (0.12 L/kg) [143].   

Fexofenadine is an efflux transporter substrate.  The P-gp mediated efflux of 

fexofenadine across the membrane and back into the lumen of the GI tract limits 

its bioavailability [23].  Thus, the absorption and distribution of fexofenadine 

cannot be predicted by its physicochemical properties alone.   

2.2 Aims 

The primary aims of the work presented in this chapter were (Figure 16): 

 to develop a method for the extraction of caffeine, midazolam, 

tolbutamide and fexofenadine from plasma, prior to separation by HPLC;  

 to develop an HPLC method for the separation of caffeine, fexofenadine, 

midazolam and tolbutamide and their commercially available metabolites 

in human plasma; 

 to assess the compatibility of the plasma extraction and HPLC methods; 

 to develop methods to verify the chromatographic separation of caffeine, 

midazolam, tolbutamide and fexofenadine from 
14

C-drug related material 

and to demonstrate their applicability to samples of human plasma; 

 to develop a quantification method for caffeine, fexofenadine, midazolam 

and tolbutamide in samples of human plasma;
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Figure 16: Schematic of method development and verification of methods for the quantification of caffeine, midazolam, tolbutamide and fexofenadine. 
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2.3 Results and discussion 

2.3.1 Development of methods for pre-treatment of plasma 

A protein precipitation extraction method was selected for development.  The 

advantages of using a protein precipitation plate are detailed in Section 1.9.4 and 

this method was selected due to its ability to extract large numbers of samples 

consistently.  The method involves the use of a 96-well plate (Sirocco, Waters 

[144]) capable of accommodating 600 µL of solvent and 200 µL of plasma (3:1 

v/v) to yield approximately 700 µL of plasma filtrate.  The maximum injection 

volume for HPLC analysis is 100 µL (Agilent 1200 series; Section 7.8).  Altering 

plasma: solvent ratios and/or introducing a sample volume reduction step 

(typically under N2) could increase the concentration of the analyte for HPLC 

injection.  For example sample reduction followed by reconstitution in 200 µL 

would result in all of the analyte extracted being present in the plasma filtrate, 

with half of this potentially available for analysis by HPLC.   

Several published methods employ acetonitrile in the protein precipitation 

extraction of caffeine, midazolam and tolbutamide [12, 65, 145] and it was 

chosen for use in the initial development of the extraction method.  The purpose 

of method development was to evaluate:   

 the overall recovery from plasma vs. recovery from plasma with the 

addition of a volume reduction step; 

 the volume of plasma required for extraction. 

2.3.1.1 Development of protein precipitation extraction Method 1 

Spiked plasma samples were prepared and subjected to protein precipitation 

extraction (Figure 17; Section 7.5.1).  Spiked plasma and filtrate samples were 

analysed by LSC (Figure 17; Section 7.9).   
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Figure 17: Outline of the method for plasma extraction and liquid scintillation counting 

(LSC) of samples. 

Mean extraction efficiencies were calculated for each analyte (Equation 14).   

100
ionprecipitat protein for taken plasma in dpm

filtrate plasma in recovered dpm
  efficiency Extraction  

   Equation 14 

The mean recovery of all analytes from plasma was >79% (Table 9).  The 

introduction of a volume reduction step followed by reconstitution of the dried 

filtrate in acetonitrile (200 μL) resulted in less efficient recovery.  The loss was 

most marked in the case of fexofenadine and tolbutamide where less than 20% of 

the radioactivity was recovered (Table 8).  Data for fexofenadine showed high 

variability between the two replicates (% difference from the mean = 37.61%).        
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Table 9: Caffeine, midazolam, tolbutamide and fexofenadine extraction efficiency data 

(Method 1). 

Analyte 

Neat plasma filtrate-

mean extraction 

efficiency (%)
1
  

Reduced and reconstituted 

plasma filtrate – mean 

extraction efficiency (%)
1 

Caffeine 90.7 (0.89) 69.8 (1.90) 

Midazolam 79.4 (16.64) 60.6 (15.64) 

Tolbutamide 86.5 (0.95) 18.4 (9.90) 

Fexofenadine 91.2  (0.73) 12.0 (37.61) 
               1

Mean of duplicate analyses (% difference from the mean stated in parentheses) 

2.3.1.2 Development of extraction Methods 2a and 2b 

Method 1 was modified to include a smaller extraction solvent to plasma ratio to 

achieve maximum concentrations without a volume reduction step.  Spiked 

plasma samples were prepared and subjected to protein precipitation in duplicate 

(Section 7.5.1) with the following plasma and solvent volumes: 

 Method 2a – plasma 100 µL / acetonitrile 200 µL; 

 Method 2b – plasma 100 µL / acetonitrile 300 µL. 

Mean extraction efficiencies were calculated for each analyte using Equation 14 

(Section 2.3.2.1; Table 10).  Analyte recovery was >76% (n=2) for Method 2a.  

Better recoveries were observed for Method 2b (>81%).   

Table 10: Caffeine, midazolam, tolbutamide and fexofenadine extraction efficiency data 

(Method 2). 

Analyte 
Extraction efficiency 

(%) Method 2a 

Extraction efficiency 

(%) Method 2b 

Caffeine 86.6 (2.4) 83.4 (5.5) 

Midazolam 86.5 (2.6) 91.0 (2.6) 

Tolbutamide 76.1 (5.1) 81.9 (0.7) 

Fexofenadine 82.6 (0.2) 87.7 (2.7) 

Mean recovery (%) 83.0 86.0 

                   Mean from duplicate analyses (% difference from the mean stated in parentheses) 

Although there is not a large difference in the recoveries for the two methods, the 

greater final volume for Method 2b means that the analyte and hence the 
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radioactivity is more dilute.  When accounting for the filtrate volumes, Method 

2a (Table 11) results in a larger proportion of analyte being analysed by HPLC, 

based on an injection volume of 100 µL.  This method was chosen for use in 

further development of the HPLC-AMS assay. 

Table 11: Typical proportions of analyte available for HPLC analysis on extraction using 

Methods 2a and 2b. 

Method 

Approximate 

filtrate 

volume (µL) 

Approximate amount of 

analyte per 100 µL of plasma 

filtrate assuming 100% 

analyte recovery (%) 

Approximate amount of 

analyte per 100 µL of plasma 

filtrate accounting for mean 

analyte recovery (%) 

2a 240 42 35 

2b 340 29 25 

2.3.2 Development of a HPLC method for separation of caffeine, 

midazolam, tolbutamide and fexofenadine in human plasma 

A HPLC method for midazolam using an Xterrra MS C18 column was 

previously reported [12].  The method employed isocratic elution, which gave 

the flexibility to introduce a gradient in order to achieve separation of the four 

analytes.  Waters Xterra columns consist of a silica stationary phase, in which the 

hydroxyl of every third silanol is replaced with a methyl group [146].  This 

feature enables the column to operate at elevated temperatures (up to 60°C) over 

a wide pH range (pH 1 – pH 12).  The reported method [12] was developed to 

separate midazolam from its metabolites and was used as a starting point for the 

further development of a HPLC method to separate caffeine, midazolam, 

fexofenadine and tolbutamide. 

2.3.2.1 Determination of detector wavelength  

The λmax of each analyte was determined by UV spectrophotometry (Section 

7.10).  Optimum wavelengths were determined as 270 nm for caffeine and 240 

nm for midazolam and tolbutamide.  Fexofenadine does not have a strong UV 

absorbance.  Instead fluorescence detection (λex 220 nm and λem 290 nm) was 

used as reported by Uno et al [147].   
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2.3.2.2 HPLC Method A1 method transfer 

A mixed reference standard comprising caffeine, midazolam, tolbutamide and 

fexofenadine (0.25 mg analyte/mL; Section 7.2.4) was injected onto a HPLC 

column, using the reported method for midazolam [12] (Method A1; Section 

7.8.1).  UV peaks were observed at 2 and 7.3 min (Figure 18).  

 

Figure 18: HPLC chromatogram of a mixture of midazolam, 1’-hydroxymidazolam and           

4-hydroxymidazolam (Method A1) at 240 nm. 

Injection of individual caffeine, midazolam, tolbutamide and fexofenadine 

reference standards (1 mg/mL; Section 7.2.4) showed midazolam to elute at 7.3 

min, and the poor retention and co-elution of the three remaining analytes at 

approximately 2 min (Figure 19).   
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Figure 19: HPLC chromatogram of a mixture of caffeine, midazolam, tolbutamide and 

fexofenadine (Method A1) at 240 nm. 

2.3.2.3 Development of HPLC Method A2 

Method A1 was modified to introduce a gradient with the acetonitrile: 

ammonium acetate ratio increasing from 10:90 (v/v) to 50:50 (v/v) over 15 min, 

followed by a column flush (90% acetonitrile) and re-equilibration (Method A2; 

Section 7.8.1).   

Individual reference standards (1 mg analyte/mL) were analysed by HPLC as 

well as the following mixed reference standards (Section 7.2.4): 

 caffeine, midazolam, tolbutamide and fexofenadine (0.25 mg 

analyte/mL);  

 caffeine and metabolites theobromine, theophylline and paraxanthine 

(0.25 mg analyte/mL); 

 tolbutamide and metabolites 4-hydroxytolbutamide and 

carboxytolbutamide (0.33 mg analyte/mL); 
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 midazolam and metabolites 1’-hydroxymidazolam and 4-

hydroxymidazolam (0.33 mg analyte/mL). 

Metabolites of fexofenadine are not reported to be present in significant 

concentrations in plasma [22, 137] and so were not included.  Reducing the ratio 

of acetonitrile in the initial mobile phase composition from 50% to 10% in 

Method A2 reduced the initial solvent strength and resulted in the increased 

retention of each analyte.  Caffeine, fexofenadine, midazolam and tolbutamide 

were baseline resolved (Figure 20).   

 

Figure 20: HPLC chromatogram of a mixture of midazolam and tolbutamide at 240 nm (a), 

caffeine at 270 nm (b) and fexofenadine at λex 220 nm and λem 290 nm (c) (Method A2). 

In addition, baseline separation was also observed between each analyte and its 

metabolites (Figure 21 – Figure 23).   
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Figure 21: HPLC chromatogram of a mixture of midazolam, 1’-hydroxymidazolam and 4-

hydroxymidazolam at 240 nm (Method A2). 
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Figure 22: HPLC chromatogram of a mixture of tolbutamide, 4-hydroxytolbutamide and 

carboxytolbutamide at 240 nm (Method A2). 

 

Figure 23: HPLC chromatogram of a mixture of caffeine, theobromine, theophylline and 

paraxanthine at 270 nm (Method A2). 
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Method A2 was satisfactory in terms of separation of the four analytes, caffeine, 

midazolam, tolbutamide and fexofenadine, and commercially available 

metabolites.  Slight modifications were required to further separate caffeine and 

4-hydroxytolbutamide, and tolbutamide and fexofenadine.  Prior to further 

development of HPLC Method A2 the chromatography was assessed for 

compatibility with protein precipitation Method 2a.  

2.3.2.4 Analysis of plasma filtrate by HPLC using Method A2 

Spiked predose plasma samples were prepared and subjected to protein 

precipitation extraction.  Aliquots of each filtrate were analysed by HPLC under 

Method A2 conditions (Section 7.6.1).  The chromatogram obtained for plasma 

filtrate containing caffeine contains a broad peak eluting up to the retention time 

of caffeine, resulting in poor resolution of the analyte (Figure 24).   

 

Figure 24: HPLC chromatogram of pre-dose clinical plasma spiked with caffeine and 

extracted with acetonitrile. 

This poor resolution was not observed during analysis of the caffeine reference 

standard.  Where possible, the analyte should be dissolved in the mobile phase 

prior to analysis by HPLC.  All reference material used to generate 

chromatograms shown in Figure 20 – 23 was prepared in ethanol.  Although the 

ethanol solution was at a higher solvent strength than the mobile phase 

(acetonitrile: ammonium acetate 10:90 v/v) at initial conditions, the relatively 

low injection volume of 5 – 10 µL resulted in no significant loss of resolution of 
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the reference material.  The plasma filtrate shown in Figure 24 consists of a large 

proportion of acetonitrile (approximately 75-80%) and the injection volume was 

much higher (100 µL).  The combination of the increased solvent strength and 

the large injection volume of a solvent incompatible with the initial mobile phase 

conditions resulted in the poor resolution of caffeine in plasma filtrate.  The 

extraction method was further developed with the lower strength solvent, 

methanol (Section 2.3.2.5).   

2.3.2.5 Development of protein precipitation extraction Method 3 

Pre-dose plasma filtrate was prepared with methanol in place of acetonitrile and 

analysed by HPLC Method A2 (Section 7.6.2).  No interfering peaks were 

present in the chromatogram (Figure 25) and caffeine was baseline resolved.  

Protein precipitation extraction with methanol was deemed suitable for use and 

was employed in all further method development. 

 

Figure 25: HPLC chromatogram of caffeine extracted from plasma with methanol. 

The effect on the recovery of each analyte when using methanol to precipitate 

plasma proteins was assessed.  Spiked plasma samples were prepared and 

extracted (Section 7.5.1) and the extraction efficiencies calculated using 

Equation 14 (Section 2.3.2.1).  Plasma extraction efficiencies were > 74% for all 

analytes, with recoveries of 76.3%, 77.2%, 74.1% and 74.4% for caffeine, 

midazolam, tolbutamide and fexofenadine in turn with good precision (CV<5%).   
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2.3.2.6 Development of HPLC method A3 

The gradient used in method A2 was modified between 0 and 22 min (Section 

7.8.1) to allow separation of the four most closely eluting analytes.  The method 

achieved greater separation, due to the slower introduction of acetonitrile and 

therefore increased retention of each analyte.  Caffeine and 4-

hydroxytolbutamide, and tolbutamide and fexofenadine were each separated by a 

further 0.5 min.  Separation between all other analytes was maintained (Table 

12).  Separation of caffeine, midazolam, tolbutamide and fexofenadine using 

Method A3 is shown in Figure 26. 

Table 12: Typical retention times of caffeine, midazolam, tolbutamide and fexofenadine 

plus selected metabolites (HPLC Method A3). 

Analyte 
Retention 

time (min) 

Carboxytolbutamide 4.1 

Theobromine 4.5 

Theophylline / paraxanthine 5.5 

Caffeine 7.6 

4-hydroxytolbutamide 8.7 

Tolbutamide 16.5 

Fexofenadine 18.4 

1’-hydroxymidazolam 21.7 

4-hydroxymidazolam 22.3 

Midazolam 24.3 
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Figure 26: HPLC chromatogram of a mixture of caffeine (270 nm), midazolam (240 nm), 

tolbutamide (240 nm) and fexofenadine at λex 220 nm and λem 290 nm (Method A3). 

Of the four major analytes, caffeine is the most polar compound and eluted first 

at 7.6 min under Method A3 conditions.  Separation of the analytes was mediated 

by their partition between the C18 stationary phase and the mobile phase.  The 

introduction of acetonitrile to the mobile phase over time decreased the polarity 

of the mobile phase.  The pH of the mobile phase was not measured but is 

assumed to be pH 7.  The logD for each analyte at pH 7 is shown in Table 13. 

Table 13: pKa, logP and logD of caffeine, midazolam, tolbutamide and fexofenadine. 

Analyte pKa
 logD 

(pH 7) 
References 

Caffeine 14
1
/0.8

2
 0.07 

[138, 140, 141] 
Midazolam 6.57 3.98 

Tolbutamide 4.33 2.36 

Fexofenadine 4.04
1
/9.01

2
 2.94 

                                    1
acidic 

2 
basic 



78 

The linear relationship between the partition coefficients (logD) versus the 

retention time of the analyte is described in Figure 27.  The elution time is 

mediated by the polarity of the mobile phase at a given time. 

 

Figure 27: logD (pH 7) plot for caffeine, midazolam, tolbutamide and fexofenadine 

separated on a C18 reverse phase column eluted with acetonitrile: 0.1 M ammonium 

acetate. 

Where the logD of two analytes are close together, separation may be increased 

by a slower change in the polarity of the mobile phase.  This was deemed 

unnecessary as all analytes were fully resolved.  As an alternative to gradient 

modifications, separation could have been achieved using a buffered mobile 

phase and a pH gradient.  The effect of pH on the partition coefficient (logP) of 

an analyte could have been used to predict the retention time under these 

modified conditions.  It is well established that altering the pH within 1 pH unit 

at either side of the pKa of an analyte results in the most marked changes in 

retention time [148].  
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2.3.2.7 Assessment of method repeatability and carryover 

Caffeine, midazolam, tolbutamide and fexofenadine reference standards (0.25 

mg analyte/mL; Section 7.2.4) were analysed by HPLC Method A3 (Section 

7.8.1).  Repeatability was evaluated by multiple injections of each reference 

standard (n=3) and a blank injection was made after injection 3 for evaluation of 

carryover.  Further analyses were performed on four consecutive days to assess 

the inter-day repeatability of the HPLC method.   

Replicate injections (n=3) on day 1 resulted in mean retention times of 7.7 min, 

24.6 min, 16.9 min and 18.5 min for caffeine, midazolam, tolbutamide and 

fexofenadine in turn (Table 14).  The precision at each retention time was good 

(CV<0.5%).  The blank injections gave no detector response at the retention 

times corresponding to caffeine, midazolam, tolbutamide and fexofenadine, 

indicating that there was no detectable carryover.   

Table 14: Intra-day repeatability data for caffeine, tolbutamide, fexofenadine and 

midazolam (Day 1, HPLC Method A3). 

 

Caffeine 

retention time 

(min) 

 

Tolbutamide 

retention time 

(min) 

 

Fexofenadine 

retention time 

(min) 

 

Midazolam 

retention time 

(min) 

 Injection 1 7.77 16.81 18.51 24.60 

Injection 2 7.73 16.89 18.51 24.60 

Injection 3 7.73 16.89 18.51 24.60 

Mean 7.74 16.87 18.51 24.60 

% CV 0.30 0.27 0.00 0.00 

 

The mean retention times over 5 days were identical to those obtained on day 1 

(Table 15).  
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Table 15: Inter-day repeatability data for caffeine, tolbutamide, fexofenadine and 

midazolam (HPLC Method A3). 

 

Caffeine 

retention time 

(min) 

 

Tolbutamide 

retention time 

(min) 

 

Fexofenadine 

retention time 

(min) 

 

Midazolam 

retention time 

(min) 

 Day 1 (mean) 7.74 16.87 18.51 24.60 

Day 2 7.73 16.89 18.51 24.60 

Day 3 7.71 16.87 18.46 24.57 

Day 4 7.70 16.85 18.47 24.58 

Day 5 7.80 16.90 18.51 24.57 

Mean 7.74 16.88 18.49 24.58 

% CV 0.51 0.12 0.13 0.06 

 

2.3.3 Development of a HPLC method to separate caffeine, midazolam, 

tolbutamide and fexofenadine in human plasma 

The purity of caffeine, tolbutamide, midazolam and fexofenadine fractions 

obtained using HPLC Method A3 (Section 7.8.1) was assessed prior to its use in 

the analysis of clinical plasma samples using two-dimensional chromatography.  

All commercially available metabolites were separated from each of the four 

analyte peaks in the UV chromatogram (Section 2.3.1.4) using the C18 Method 

A3.  The presence of further 
14

C-containing components in clinical plasma 

samples was investigated via a second method using a different (phenyl) 

stationary phase contrasting with the C18 stationary phase used in the initial 

separation.  Two columns were selected, a Phenomenex Synergi Polar RP and a 

Phenomenex Gemini C6-phenyl (Method B1 – B4; Section 7.8.1).  Both columns 

feature phenyl groups bound to the silica stationary phase, via an ether linkage in 

the case of the Synergi column and via a 6-carbon chain in the case of the 

Gemini column (Phenomenex Column Literature).  The interaction of the analyte 

with the phenyl stationary phase differs from the hydrophobic interactions 

observed in C18 HPLC analysis (HPLC Method A3).  The π electrons in the 

phenyl ring of the stationary phase interact with the π electrons of the analyte, 

which are not present in a C18 stationary phase.  This difference in selectivity 

was exploited in the development of a two-dimensional HPLC separation 

method.  A phenyl HPLC method was developed and assessed (Section 2.3.3.1 – 

Section 2.3.3.4) for caffeine, midazolam, tolbutamide and fexofenadine standards 
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(5 µL; 1 mg/mL; Section 7.2.4).  The aim of phenyl method development was to 

obtain a chromatogram free of baseline interferences, to enable the analyte to be 

isolated by HPLC fractionation.  Significant development of the methods was not 

required.  The mobile phase conditions (Section 2.3.3.1 – Section 2.3.3.4) were 

the initial conditions chosen for each system.  These conditions gave satisfactory 

peak shapes and peak widths to enable each analyte to be isolated by HPLC 

fractionation.  Optimisation of the HPLC methods was not considered, however 

had further development been necessary the principles considered in Section 

2.3.2.3 would also be applicable here.   

2.3.3.1 Caffeine HPLC method B1 

The Synergi Polar RP column (40°C) was eluted with a water: methanol gradient 

decreasing from 90:10 v/v to 50:50 v/v over 3 min, then to 10:90 v/v over 5 min.  

The gradient was held at 10:90 v/v for 3 min and re-cycled to 90:10 v/v (Section 

7.8.1).  Elution of caffeine at 9.3 min (Figure 28) was determined by UV 

detection (270 nm).   

 

Figure 28: HPLC chromatogram of caffeine at 270 nm (Method B1).    

2.3.3.2 Midazolam HPLC method B2 

The Synergi Polar RP column (40°C) was eluted with a 10 mM aq. KH2PO4: 

acetonitrile gradient decreasing from 90:10 v/v to 50:50 over 3 min, then to 

0:100 v/v over 7 min.  The gradient was held at 0:100 v/v for 1 min, and re-

cycled to 90:10 v/v (Section 7.8.1).  Elution of midazolam at 10.2 min (Figure 

29) was determined by UV detection (220 nm).   
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Figure 29: HPLC chromatogram of midazolam at 240 nm (Method B2). 

2.3.3.3 Tolbutamide HPLC method B3 

The Gemini C6-phenyl column (40°C) was eluted with a 0.1% aq. formic acid: 

methanol gradient decreasing from 70:30 v/v to 10:90 v/v over 25 min.  The 

gradient was held at 10:90 v/v for 1 min, and re-cycled to 70:30 v/v (Section 

7.8.1).  Elution of tolbutamide at 12.9 min (Figure 30) was determined by UV 

detection (240 nm).   

 

Figure 30: HPLC chromatogram of tolbutamide at 240 nm (Method B3). 

2.3.3.4 Fexofenadine HPLC method B4 

The Gemini C6-phenyl column (40°C) was eluted with a water: acetonitrile 

gradient decreasing from 90:10 v/v to 10:90 v/v over 10 min  The gradient was 

held at 10:90 v/v/ for 2 min followed by 0:100 v/v for 2 min and re-cycled to 

90:10 v/v (Section 7.8.1).  Elution of fexofenadine at 9.8 min (Figure 31) was 

determined by fluorescence detection (λex 220 nm and λem 290 nm). 
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Figure 31: HPLC chromatogram of fexofenadine at λex 220 nm and λem 290 nm (Method 

B4). 

2.3.3.5 Assessment of method repeatability 

Repeatability of the HPLC methods (B1 – B4) was evaluated by analysis of 

replicate injections (3 x 5 µL) of each reference standard (1 mg/mL; Section 

7.2.4), with a blank injection after injection 3 for evaluation of carryover.  Mean 

retention times were 9.3 min for caffeine, 10.2 min for midazolam, 12.9 min for 

tolbutamide and 9.8 min for fexofenadine.  The precision at each retention time 

was good (CV<0.3%).  Blank injections gave no detector response at the 

retention times corresponding to caffeine, midazolam, tolbutamide and 

fexofenadine, indicating that there was no carryover (Table 16). 

Table 16: Intra-day repeatability data for caffeine, midazolam, tolbutamide and 

fexofenadine (HPLC methods B1-B4). 

 

Caffeine 

retention 

time (min) 

Method B1 

Midazolam 

retention 

time (min) 

Method B2 

Tolbutamide 

retention 

time (min)  

Method B3 

Fexofenadine 

retention 

time (min)  

Method B4 

Injection 1 9.33 10.24 13.00 9.85 

Injection 2  9.33 10.23 12.92 9.79 

Injection 3 9.33 10.23 12.93 9.81 

Mean 9.33 10.23 12.95 9.82 

% CV 0.00 0.06 0.34 0.31 
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2.3.4 Determination of the internal standard level 

In HPLC-AMS analysis, the internal standard used in analysis is the non-labelled 

analyte of interest [106].  The amount of internal standard for HPLC analysis 

must be above the LOQ of the detector without exceeding the linear range.  In 

addition, endogenous levels of non-labelled analyte in plasma must be negligible 

with respect to the amount of internal standard added.  In the present study, 

levels of non-labelled analyte after microdose administration are expected to be 

relatively small, but should still be taken into consideration.   

2.3.4.1 Assessment of detector response linearity 

Reference standard solutions were prepared over the range 1 – 5 µg for caffeine 

and tolbutamide and 2 – 10 µg for midazolam and fexofenadine (Section 7.2.4) 

and the detector response assessed for HPLC Method A3 (5 µL; Section 7.8.1).  

The amount of analyte vs. detector response gave correlation coefficients (r
2
) of 

> 0.999 for all analytes over the given concentration ranges (Figure 32 – Figure 

35).   

 

Figure 32: UV detector response for caffeine. 
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Figure 33: UV detector response for midazolam.  

 

Figure 34: UV detector response for tolbutamide.  
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Figure 35: Fluorescence detector response for fexofenadine.  

2.3.4.2 Determination of non-labelled caffeine, midazolam, tolbutamide and 

fexofenadine present in clinical plasma 

The expected Cmax of caffeine, midazolam, tolbutamide and fexofenadine after 

oral administration have been previously reported and these data were used to 

estimate the Cmax after administration of a 25 µg oral microdose (Table 17).     

Table 17: Cmax data for caffeine, midazolam, tolbutamide and fexofenadine as reported in 

the literature. 

Analyte Dose (mg) 
Cmax 

(ng/mL) 

Calculated Cmax 

after 25 µg dose 

(ng/mL) 

Source 

Caffeine 100 2390 0.60 [42] 

Midazolam 
0.1

 
(microdose) 0.37 0.092 [12] 

7.5 34 0.11 [12] 

Tolbutamide 125 16300 3.3 [149] 

Fexofenadine 
0.1 (microdose)

1 
0.31 0.078 [23] 

60 286 0.072 [150] 
                      1

data not available at time of present work, used only for retrospective comparison 

Assuming dose linearity between Cmax obtained after microdose administration 

and those obtained after higher doses, values for the estimated Cmax of 0.6 ng/mL, 

approximately 0.1 ng/mL (mean value), 3.3 ng/mL and approximately 0.075 
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ng/mL (mean value), were determined for caffeine, midazolam, tolbutamide and 

fexofenadine respectively.  Where data were available for a microdose and a 

higher therapeutic dose, a mean of the two values was assumed.   

The protein precipitation method (Section 7.6.1) and HPLC method A3 (Section 

7.8.1) developed (Section 2.3.2.2. and Section 2.3.1.4) uses the following 

volumes: 

 plasma volume taken for extraction – 100 µL; 

 resulting plasma filtrate volume – approximately 240 µL; 

 plasma filtrate volume analysed by HPLC – 100 µL.   

Application of the above volumes results in the equivalent of 42% of the analyte 

that is present in 1 mL of plasma being available for HPLC analysis.  Hence, the 

minimum amount of internal standard was calculated (Table 18). 

Table 18: Calculation of estimated caffeine, midazolam, tolbutamide and fexofenadine Cmax 

data after microdose administration. 

Analyte 

Calculated 

Cmax after 

25 µg dose 

(ng/mL) 

Mass present in 

240 µL aliquot 

taken for 

extraction (ng)  

Mass present in 100 

µL of plasma filtrate 

taken for HPLC 

analysis (ng) 

Minimum 

amount to be 

added as internal 

standard (ng)
1
 

Caffeine 0.60 0.060 0.025 2.5 

Midazolam 0.10 0.010 0.0040 0.42 

Tolbutamide 3.3 0.33 0.14 13.8 

Fexofenadine 0.075 0.0075 0.0031 0.031 
1
x100 carbon mass present in 100 µL of plasma filtrate taken for HPLC analysis 

2.3.4.3 Calculation of amount of internal standard 

The amount of internal standard was determined to be a maximum of 5 µg for 

caffeine and tolbutamide, and 10 µg for fexofenadine and midazolam, as 

determined from the HPLC detector response (Figure 32 – Figure 35).  An 

internal standard mass of 3 µg was chosen for eventual HPLC analysis, which 
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gives a UV response within the range assessed for detector linearity.  This is also 

at least 9000 times the tolbutamide Cmax after microdose administration. 

2.3.5 Verification of the chromatographic separation of caffeine, 

midazolam, tolbutamide and fexofenadine by HPLC 

Prior to its application in the clinical study, the complete isolation of caffeine, 

midazolam, tolbutamide and fexofenadine from other 
14

C containing components 

using HPLC Method A3 (Section 7.8.1) was tested.  This was performed using 

clinical plasma samples that contained all four analytes plus in vivo metabolites.  

This check was carried out at several time-points, should metabolites be time-

point specific.  Clinical plasma samples were pooled in equal volumes across all 

six subjects.  As there were two separate dosing regimens, samples for each 

dosing period were analysed separately resulting in eight pooled plasma samples 

as follows: 

 1, 6, 12 and 24 h post administration, dosing period 1; 

 1,6,12 and 24 h post administration, dosing period 2. 

Pooled plasma samples were prepared and subjected to protein precipitation 

extraction.  Plasma filtrates were analysed by HPLC with C18 stationary phase 

(Method A3).  Fractions were collected over the retention times for caffeine, 

midazolam, tolbutamide and fexofenadine and analysed by HPLC with phenyl 

stationary phase using Method B1 to Method B4 (Figure 36; Section 7.6.3).     
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Figure 36: Schematic representation of the two-dimensional HPLC separation and isolation 

method.  

Fractions of 15 second duration were collected over each of the second 

dimension separations and were analysed by AMS.  The concentration of each 

fraction was plotted vs. the fraction collection time (Figure 37 – Figure 44; 

Section 7.6.3).     
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Figure 37: Reconstructed caffeine radio-chromatogram, period 1, legend: blue = 1 h, red = 

5 h, green = 12 h, purple = 24 h. 

 

 

Figure 38: Reconstructed caffeine radio-chromatogram, period 2, legend: blue = 1 h, red = 

5 h, green = 12 h, purple = 24 h. 
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Figure 39: Reconstructed midazolam radio-chromatogram, period 1, legend:  blue = 1 h, 

purple = 5 h, 12 h and 24 h. 

 

 

Figure 40: Reconstructed midazolam radio-chromatogram, period 2: legend: blue = 1 h, red 

= 5 h, green = 12 h, purple = 24 h. 
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Figure 41: Reconstructed tolbutamide radio-chromatogram data, period 1, legend:  blue = 1 

h, red = 5 h, green = 12 h, purple = 24 h. 

 

 

Figure 42: Reconstructed tolbutamide radio-chromatogram data, period 2, legend:  blue = 1 

h, red = 5 h, green = 12 h, purple = 24 h. 
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Figure 43: Reconstructed fexofenadine radio-chromatogram, period 1, legend:  blue = 1 h, 

red = 5 h, green = 12 h, purple = 24 h. 

 

 

Figure 44: Reconstructed fexofenadine radio-chromatogram, period 2, legend:  blue = 1 h, 

red = 5 h, green = 12 h, purple = 24 h. 
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14
C-midazolam concentrations of the 6, 12 and 24 h plasma samples for period 1 

were below the AMS limit of quantification (LOQ; Section 7.11.4.1).  Similarly, 

14
C data were only obtained for the 1 and 6 h plasma sample for fexofenadine, 

the remainder being below the AMS LOQ (Section 7.11.4.1).   

All of the radioactivity recovered from the fractions collected using the Method 

A3 (C18 analysis) for caffeine, midazolam, tolbutamide and fexofenadine was 

contained exclusively in the fractions corresponding to the analyte, as identified 

by the internal standard during phenyl HPLC analysis (Methods B1 – B4).  The 

absence of 
14

C in the eluate collected over the remainder of the chromatogram 

verifies that the peak obtained from HPLC Method A3 contained only the 

analyte. 

2.3.6 Quantification of 
14

C-caffeine, fexofenadine, tolbutamide and 

midazolam in plasma by HPLC-AMS 

A quantification method to complement the extraction and separation methods 

was developed by modifying the recovery curve quantification method (Section 

1.10).  Recovery curve sample preparation is detailed below (Section 2.3.6.2), 

followed by a discussion of the modifications made to the original method 

(Section1.10.6).    

2.3.6.1 Confirmation of analyte purity 

Radiochemical purity values for caffeine, midazolam, tolbutamide and 

fexofenadine provided by the suppliers were >96% (96%, 99%, 99% and 98% 

for caffeine, midazolam, tolbutamide and fexofenadine (Section 7.2.3).  Non-

labelled caffeine, midazolam, tolbutamide and fexofenadine were purchased at 

>98% chemical purity (Section 7.2.2) and were assessed for 
14

C contamination 

by AMS analysis prior to development of the assay.  Non-labelled caffeine, 

midazolam, tolbutamide and fexofenadine were analysed by AMS (Table 19; 

Section 7.11).  All samples returned pMC values below the LOQ of the AMS 

instrument (Section 7.11.4.1).     
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Table 19: AMS data obtained on analysis of non-labelled caffeine, fexofenadine, 

tolbutamide and midazolam reference standards. 

Analyte pMC 

Caffeine 1.99 

Fexofenadine 1.39 

Tolbutamide 0.80 

Midazolam 2.13 

 

2.3.6.2 Preparation of recovery curve 

A recovery curve was prepared and QC plasma samples were analysed to 

determine the accuracy and precision of the method. 
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Figure 45: Schematic of sample preparation and analysis for preparation of caffeine, 

midazolam, tolbutamide and fexofenadine recovery curve and QC samples.  

Recovery standards and QC plasma samples were prepared (Section 7.4.1).  

Accurate recovery standard and QC plasma concentrations were determined by 

AMS analysis of spiking solutions used in their preparation (Section 7.1.1; n=2).  

The concentration data were used along with plasma and solvent volumes (Vp 

and Vs) to calculate the concentration of each recovery standard and QC plasma 

sample (Equation 15; Table 20).   
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p

ss
p

V

V x K
 K          Equation 15 

Where Ks = spiking solution concentration (dpm/mL)  

           Kp = plasma concentration (dpm/mL) 

Table 20: AMS data obtained on analysis of 
14

C-solutions and the determination of recovery 

standard and QC plasma concentrations. 

Analyte Sample ID 

Spiking solution 

concentration 

(dpm/mL)
1
 

Target plasma 

concentration 

(dpm/mL) 

Calculated plasma 

concentration 

(dpm/mL) 

  Recovery standard 1 1128 (10.8) 50 56.4 

 Recovery standard 2 688.2 (0.5) 25 34.4 

Caffeine Recovery standard 3 305.0 (2.2) 12.5 15.3 

 Recovery standard 4 125.8 (8.8) 6.25 6.29 

 QC 23.66 (5.4) 1 1.18 

  Recovery standard 5 0.00 (N/A) 0 0 

 Recovery standard 1 1266 (3.8) 50 63.3 

 Recovery standard 2 629.8 (8.9) 25 31.5 

Midazolam Recovery standard 3 349.7 (3.8) 12.5 17.5 

 Recovery standard 4 185.3 (3.8) 6.25 9.27 

 QC 25.06 (2.4) 1 1.25 

  Recovery standard 5 0.00 (N/A) 0 0 

 Recovery standard 1 1628 (2.9) 50 81.4 

 Recovery standard 2 647.3 (1.6) 25 32.4 

Tolbutamide Recovery standard 3 346.6 (0.5) 12.5 17.3 

 Recovery standard 4 169.7 (2.9) 6.25 8.49 

 QC 25.52 (4.2) 1 1.28 

  Recovery standard 5 0.00 (N/A) 0 0 

 Recovery standard 1 1435 (3.9) 50 71.8 

 Recovery standard 2 618.6 (4.3) 25 30.9 

Fexofenadine Recovery standard 3 354.9 (7.9) 12.5 17.7 

 Recovery standard 4 183.4 (10.7) 6.25 9.17 

 QC 24.24 (1.1) 1 1.21 

  Recovery standard 5 0.00 (N/A) 0 0 
1 
% difference from mean value in parentheses 
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Recovery standards and QC plasma were subjected to protein precipitation extraction 

(n=5; Section 7.7.1), C18 HPLC analysis (Method A3; Section 7.8.1) and AMS 

analysis (Section 7.11) of caffeine, midazolam, tolbutamide and fexofenadine 

fractions.  The concentration of 
14

C caffeine, midazolam, tolbutamide and 

fexofenadine in each HPLC fraction was determined (Equation 16, modified from 

Equation 11).   

 F x 
A

ΦR
 K v

v

D       Equation 16 

Where  

K = concentration of HPLC fraction (dpm/fraction) 

RD = isotope ratio of sample – isotope ratio of isotopic dilutor (in Modern) 

Φ = amount of isotopic dilutor 

Av = volume of sample taken for AMS analysis (mL) 

Fv = total fraction volume (mL) 

 

Equation 16 assumes that the specific radioactivity and process recovery are both 

equal to 1.  The specific radioactivity is not used at this stage.  Plasma 

concentrations (dpm/mL) were plotted on the x-axis against fraction 

concentrations (dpm/fraction, determined via Equation 16) / internal standard 

(IS) detector response (peak area mAU) on the y-axis.  With the exception of one 

datum point for fexofenadine (9 dpm/mL; replicate a), which failed to meet the 

acceptance criteria, all recovery standards successfully analysed by HPLC were 

included in the recovery curves (Figure 46 – Figure 49).  
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Figure 46: Caffeine recovery curve (y = 0.00756x).  
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Figure 47: Midazolam recovery curve (y = 0.00508x). 
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Figure 48: Tolbutamide recovery curve (y = 0.0140x).  
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Figure 49: Fexofenadine recovery curve (y = 0.0281x). 
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The slope of the curve (m) and intercept on the y-axis (c) were used to determine 

the concentration of the QC plasma.  The precision of the method was assessed 

by evaluation of QC concentrations (n=5) via the recovery curve (Table 21).  

Mean accuracy for all analytes was within 13% of the measured plasma 

concentration with good precision (CV<20%).    

Table 21: Caffeine, midazolam, tolbutamide and fexofenadine QC accuracy and precision 

data (n=5). 

Replicate 

Caffeine 

plasma 

concentration 

(dpm/mL) 

Midazolam 

plasma 

concentration 

(dpm/mL) 

Tolbutamide 

plasma 

concentration 

(dpm/mL) 

Fexofenadine 

plasma 

concentration 

(dpm/mL) 

1 1.11 1.13 1.40 1.28 

2 1.19 1.17 1.07 0.877 

3 0.931 1.05 1.56 1.19 

4 1.00 1.15 1.73 1.42 

5 1.52 1.09 1.44 1.17 

Mean plasma 

concentration (dpm/mL) 
1.15 1.12 1.44 1.19 

Actual plasma 

concentration (dpm/mL) 
1.18 1.25 1.28 1.21 

Mean accuracy (%) 97.5 89.4 112.5 98.1 

Mean precision (% CV) 19.9 4.64 16.9 16.8 

 

As discussed in Section 1.10.7.3, key variables must remain constant throughout 

the analysis of samples for construction of a recovery curve.  In practice, this was 

not always possible.  In particular, the proportion of the HPLC fraction taken for 

AMS varied in cases where one of the replicates failed to meet the AMS 

acceptance criteria (Section 7.11.3).  Initial AMS analysis was carried out using a 

constant proportion (50%) of each HPLC fraction.  Samples that failed to meet 

the AMS acceptance criteria were re-graphitised.  This is standard procedure in 

AMS analysis due to the nature of the graphitisation process (Section 1.10.2).  In 

order to allow sufficient sample to be available in the event that the repeat AMS 

analysis also failed to meet the acceptance criteria (Section 7.11.3), only 25% of 

the fraction volume was taken for repeat analysis.  Consequently, the method was 

modified to account for the variation in HPLC fraction volumes.   
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Conversion of pMC values to concentrations in units of dpm corrects for 

differences in volume and allows the plasma concentration of the QC sample and 

during clinical sample analysis to be determined in dpm/mL.  This concentration 

is then converted to a mass concentration per mL plasma using the specific 

radioactivity (Equation 17).   

 
(dpm/mg)activity  Specific

(dpm/mL) ionConcentrat
 mL) per  (pg ionConcentrat           Equation 17 

The specific radioactivity was excluded from the calculations, and is discussed in 

more detail in Section 2.3.6.3. 

2.3.6.3 Limitations of the developed method 

At the outset of this research, no guidelines for carrying out a HPLC-AMS assay 

had been published.  Since the completion of the experimental work for this 

thesis recommended guidelines have been published [124].  The method 

developed in the current study is compared with these recommendations, 

specifically in four key areas; 1) the selectivity and chromatographic resolution 

of the analyte 2) carryover, 3) recovery and 4) accuracy and precision.   

Selectivity is an important consideration, particularly for LC-MS, where matrix 

may contain a constituent that co-elutes with the target analyte [124].  It is also a 

concern for HPLC-AMS assays.  Due to the graphitisation step prior to analysis, 

co-elution must be eliminated during HPLC isolation as it is not possible to 

identify and correct for it at the AMS stage.  Two factors that may compromise 

selectivity are the presence of background 
14

C due to volunteers taking part in a 

clinical trial where 
14

C was administered, and the presence of unknown 
14

C-

metabolites that co-elute with the target analyte during HPLC analysis.  Subjects 

chosen for the study summarised in Chapter 3 had not participated in a 
14

C study 

in the year prior to commencing the present study.  In addition, all pre-dose 

plasma samples were analysed for 
14

C content.  All results were below the LOQ 

of the AMS and are reported in Chapter 3.   
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Pooled clinical plasma samples for 1, 6, 12 and 24 h were evaluated for the 

presence of unknown 
14

C-metabolites.  The HPLC fraction corresponding to each 

analyte after isolation by C18 HPLC was subjected to further separation by 

phenyl HPLC.  
14

C was only detected in the phenyl HPLC fractions 

corresponding to each analyte.  No 
14

C was detected throughout the remainder of 

the chromatogram, verifying that the C18 method produces a pure analyte peak 

and therefore confirming the method valid for use in analysis of human plasma 

samples.  Only selected samples (1, 6, 12 and 24 h) were chosen for the 

determination of peak purity.  The recommended guidelines suggest taking 

samples from the elimination phase ideally at 1 – 2 times the half-life [124].  

Approximate half-lives of 4, 3.5, 8 and 14 h have been reported for caffeine [42, 

59], midazolam [12, 151] tolbutamide [149] and fexofenadine [23, 150], 

respectively (Table 22).   

Table 22: Recommended samples for verification of analyte resolution by 2D 

chromatography. 

Analyte 
Reported t1/2 

(h) 

Recommended 

sampling time 

at 1-2 x t1/2 (h)
 
 

Source 

Caffeine 4  4-8 [42, 59] 

Midazolam 3.5  3.5-7 [42, 59] 

Tolbutamide 8  8-16 [149] 

Fexofenadine 14   14-28 [23, 150]   

 

The sampling times are within 1 – 2 times the t1/2 (Table 22) and therefore 

comply with recommended guidelines.  In addition, samples were taken across 

both dosing periods, which were expected to reflect marked differences in 

metabolism due to the co-administration of inhibitors.  The resolution of each 

analyte using the developed C18 method demonstrates the suitability of the 

method for analysis of samples obtained during both dosing periods.       

A consideration for future analysis would be to quantify analyte after subjecting 

every plasma sample to the 2D-HPLC method.  Only a selection were analysed 

in the present study due to the large number of samples (768) and the lengthy 

HPLC-AMS procedure.  
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Assessment of carryover should be accounted for and minimised in method 

development [150].  Carryover of non-labelled material was assessed by HPLC 

analysis of blank injections made following replicate injections of analyte 

reference standards.  The absence of an appreciable detector response at the 

retention time of each analyte confirmed negligible carryover.  Carryover should 

also be determined for blank plasma analysed immediately after plasma samples 

containing relatively high concentrations of 
14

C, i.e. in QC or recovery standards.  

In retrospect, this check should have been included in the method development, 

however samples were randomised (Chapter 3) and there was no evidence of 

carryover observed in pre-dose plasma samples analysed following samples 

containing relatively high levels of 
14

C (Section 3.3.3).  Although the evidence 

suggests that carryover is not present, a blank plasma sample following a QC or 

recovery standard at a relatively high 
14

C concentration should ideally have been 

analysed to demonstrate this.     

The recovery in a HPLC-AMS assay applies both to the mass and the 

radioactivity concentration of the sample [124].  It is only the radioactive 

concentration that is measured during AMS analysis with the majority of 
12

C 

measured being isotopic diluent, not 
12

C inherent to the sample.  It is 

recommended within the guidelines for HPLC-AMS analysis that the material 

used in the preparation of the recovery standards and QCs contains the same 
14

C 

and mass ratio, i.e. has the same specific radioactivity, as the material 

administered to volunteers in the clinical study.  This approach eliminates mass-

concentration-dependent effects during sample processing, particularly during 

addition of 
14

C-material to plasma, and subsequent extraction of the analyte 

[124].  In the present work, recovery curves and QC samples were prepared from 

neat radiolabelled material, which was at a much higher specific radioactivity 

than that dosed in the clinical study (Chapter 3).  For example, 
14

C-caffeine used 

as a recovery standard and for QC purposes, was at a specific radioactivity of 

approximately 5.95 x 10
8
 dpm/mg.  The nominal specific radioactivity of the 

dose administered in the clinical study was 4.44 x 10
6
 dpm/mg, an approximate 

135-fold difference in mass concentration.  Unfortunately, it is not possible to 

ascertain the impact of this effect retrospectively.  The addition of internal 

standard prior to extraction has the advantage of introducing a significantly 
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larger amount of non-labelled analyte to the sample in addition to the 
12

C 

inherent to the radiolabelled material.  For example, the QC for caffeine has a 

mass concentration of 1.98 pg/mL due to the 
14

C-analyte, of which 0.2 pg is 

taken for analysis by AMS.  The amount of internal standard present (typically 3 

µg), is significantly higher than the carbon inherent to the sample and mass 

concentration dependent effects on extraction are potentially reduced.  This does 

not negate the potential for poor distribution of the 
14

C-material in the spiked 

plasma due to non-specific binding of very small amounts (mass) of material.  

QC data obtained do not show evidence of this occurring.  All data are accurate 

within 13% of the measured plasma concentration, with good precision 

(CV<20%).  If non-specific binding had occurred, the data would be expected to 

show much more variation, due to non-homogeneity of the sample.        

Recommended guidelines for accuracy and precision of a HPLC AMS method 

state that measured QC values should be within 20% of the true concentration 

and that CV should not exceed 20%.  Several individual QC values do not meet 

the criteria for accuracy.  Three samples (one QC for caffeine, fexofenadine and 

tolbutamide) are within ±25%, one caffeine QC is within ±30% and one 

fexofenadine QC is within ±40%.  Nevertheless, the mean accuracy and 

precision data meet the acceptance criteria stated in the guidelines.  Mean 

accuracy and precision data were determined from analysis of QC samples at just 

one concentration.  The recommended guidelines state that QC samples are 

typically prepared at 3 concentrations and encompass the range of plasma 

concentrations anticipated in the clinical study (in mass/mL) [124].  Although the 

QC standards prepared were in the range of anticipated radioactive plasma 

concentrations (approximately 1 dpm/mL) this equates to 2 fg/mL compared with 

0.2 ng/mL for clinical plasma samples of the same radioactive concentration.   

The guidelines also recommend that true plasma concentrations are determined 

by direct AMS analysis of the plasma sample.  In the present study, the 

concentrations were determined from AMS determination of 
14

C-spiking solution 

concentrations and the volumes used in preparing spiked plasma.  The solutions 

were diluted where radioactive concentrations exceeded the AMS upper limit of 

detection.  The dilution step does introduce a potential source of error.  While the 
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recommendation is that direct AMS analysis is used, that is only possible for 

samples with concentrations sufficiently above the AMS background.  The 

concentrations in HPLC fractions can be at significantly lower levels than those 

in plasma, due to the lower level of background carbon (Section 1.10).  Plasma 

concentrations below the LOD must be estimated based on dilution steps or by 

direct analysis of spiking solutions. 

A potential improvement to this method, which also introduces an independent 

measurement of plasma concentrations, is to determine plasma concentrations by 

LSC analysis.  Determination of stock solution concentrations to achieve a 

statistically accurate count time (typically at least 2%2σ) together with a dilution 

scheme to calculate plasma concentrations eliminates additional sample 

manipulation.  To obtain a more robust method for future work the following 

procedure is recommended: 

 prepare a recovery curve using recovery standards at a minimum of five 

concentrations including a blank sample;   

 analyse five replicates at each concentration;   

 prepare recovery standards by serial dilution of a stock spiking solution 

prepared at the specific radioactivity of the dose administered in the 

clinical study;   

 determine the concentration of stock solution by LSC and hence 

determine recovery standard concentrations;   

 prepare QC samples at three concentrations representative of the expected 

plasma concentration range in the clinical study;   

 determine the concentrations in the same way as for recovery standards;   
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 intersperse QC samples between analyses of recovery standards and 

analyse blank plasma filtrate (plasma containing only internal standard) 

after QC samples at the highest concentrations to determine carryover. 

Taking duplicate aliquots for HPLC analysis would allow a back-up sample to be 

generated that is identical to the original sample.  The entire fraction from the 

first injection may be taken for AMS, with the second being retained should 

reanalysis be required.  This method would eliminate the need for the conversion 

of pMC values to dpm/fraction concentrations, as the entire aliquot injected onto 

HPLC each time is taken forward for AMS, therefore keeping this potential 

variable constant.  A recovery curve prepared in this way will be representative 

of clinical plasma samples in terms of mass concentration as well as radioactive 

concentrations.      

2.4 Conclusions 

This chapter details the development of sample treatment and separation methods 

and their use in the development of a quantification method for 
14

C-caffeine, 
14

C-

midazolam, 
14

C-tolbutamide and 
14

C-fexofenadine. 

The plasma extraction method developed has good repeatability and yielded 

recoveries of >74% for all analytes.  A C18 HPLC method, which gives 

complete resolution of all four target analytes and their metabolites, was 

demonstrated by analysis of non-labelled reference standards.  A second HPLC 

method using a phenyl stationary phase was developed.  Pooled clinical plasma 

samples were analysed using both HPLC methods in series and peaks 

corresponding to each of the four analytes were confirmed to be free of 

interfering 
14

C-material.  Peak purity was demonstrated, verifying the C18 

separation method to be suitable for the isolation of caffeine, midazolam, 

tolbutamide and fexofenadine from clinical plasma. 

A quantification method was developed, by adapting the recovery curve method 

reported previously [129].  The accuracy and precision of the method was 

assessed by analysis of QC plasma at a 
14

C-concentration of approximately 1 
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dpm/mL.  Mean concentration data for QCs derived using the recovery curve for 

all analytes were within 13% of the target plasma concentrations.  In addition, 

the error associated with the quantification method for each analyte was less than 

20%.  Recommendations for improvement of the method are given above.  Based 

on the acceptability of the QC data available, the method is deemed suitable for 

determination of plasma concentration in the clinical study outlined in Chapter 3.  

 

 

 

3 Chapter 3 
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CHAPTER 3 

Determination of drug-drug interactions 

using a radiolabelled cassette microdose 
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3.1 Introduction 

Where employed, microdosing studies have often been utilised at the very early 

stages of drug development in phase 0 (Section 1.8).  Microdosing studies can 

permit the early identification of undesirable PKs, which can lead to withdrawal 

of the NCE from further development, allowing conservation of valuable 

resources.  During a typical drug development programme, DDI studies are not 

performed until phase 2.  These trials can take place up to 5 years after the 

implementation of a phase 0 study, depending on the type of drug under 

investigation.  Given that a major DDI effect can lead to the abandonment of the 

drug development programme, detection of a potential DDI during early phase 0 

studies would be of benefit. 

This chapter focuses on the implementation of an exploratory study to evaluate 

the ability of microdosing to detect DDIs.  The study was designed to test the 

hypothesis that the PK of an NCE administered at a microdose, represented here 

by caffeine, midazolam, tolbutamide and fexofenadine, would be significantly 

altered by co-administration of enzyme and transporter inhibitors administered at 

a pharmacologic dose.  Administration of the cassette microdose alone and 

concomitantly with CYP and P-gp inhibitors was intended to highlight the 

potential to identify a DDI.  At the time of this study design, neither a cassette 

microdose study nor a microdose DDI investigation had been carried out, 

however the studies published in 2011 (Sections 1.8.2.4 and 1.8.2.5) [95, 117] 

now support the use of microdosing in this way.  It is important to note that while 

known compounds and their inhibitors are used here, the cassette microdose is 

intended to be made up of NCEs, with inhibitors of the major CYP and P-gp 

being co-administered to determine DDI effects.  Cassette microdosing of 

multiple NCEs in this way may allow candidate selection to take place after just 

one clinical study.  Administration of the cassette microdose alone allows 

baseline PK data to be obtained, which can then be compared with PK data 

obtained after concomitant administration of the cassette microdose with the 

inhibitors.  Differences in PK parameters may then be attributed to an inhibitory 

effect.  In addition to comparison between doses, the PK data obtained after 

administration of the cassette microdose alone may be compared to therapeutic 
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dose data to determine PK linearity.  Should microdose data be available, these 

data may be examined to determine the effects of the administration of each drug 

alone vs. part of a cassette microdose.   

3.2 Aims 

The overall aim for this chapter was to design and implement a microdose-based 

clinical trial in healthy human volunteers to predict changes in PK in NCEs that 

result from the co-administration of marketed drugs (Figure 50).  Specific 

objectives were: 

 to quantify caffeine, midazolam, tolbutamide and fexofenadine in plasma 

samples collected from healthy human male volunteers after 

administration of the following: 

o cassette microdose containing caffeine, tolbutamide, midazolam 

and fexofenadine; 

o cassette microdose (as above) co-administered with enzyme and 

transporter inhibitors, ketoconazole and fluvoxamine; 

 to assess the feasibility of administering multiple compounds within a 

cassette microdose; 

 to compare the PK of caffeine, midazolam, tolbutamide and fexofenadine 

when administered as a microdose, with literature data obtained after 

administration at a pharmacologic dose; 

 to evaluate differences observed in PKs of the compounds of the cassette 

microdose after concomitant administration with fluvoxamine and 

ketoconazole and compare these data with literature data, where 

available. 
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Figure 50: Schematic of cassette microdosing, sample collection and analysis of plasma 

samples by HPLC and AMS.   

3.3 Results and discussion 

3.3.1 Clinical study design and implementation  

3.3.1.1 Selection of microdose compounds 

Caffeine, tolbutamide, midazolam and fexofenadine were selected for microdose 

administration due to their well-characterised PK interactions with other drugs.  
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They are widely reported in the literature to be metabolised or cleared by 

CYP1A2, CYP2C9, CYP3A4 and P-gp, respectively [22, 36, 53, 152].   

In addition, caffeine, midazolam and tolbutamide have been utilised as probes for 

CYP1A2, CYP3A4 and CYP2C9 in DDI studies (Section 1.7).  All four 

compounds were available as 
14

C-labelled compounds suitable for human 

administration.  As all compounds are marketed drugs, there were no additional 

safety considerations as would be required on administration of a new drug, 

therefore streamlining ethical approval.  

3.3.1.2 Selection of inhibitors 

Ketoconazole and fluvoxamine were selected for their ability to inhibit specific 

P450 enzymes and transporters.  Ketoconazole is a potent inhibitor of CYP3A4 

and P-gp and a weak inhibitor of CYP2C9.  It has been widely reported to inhibit 

the metabolism of midazolam, fexofenadine and tolbutamide [38, 74].  No 

clinically significant interactions with CYP1A2 have been reported [49].  

Fluvoxamine is a potent inhibitor of CYP1A2 [48, 59] and a weak inhibitor of 

CYP3A4 and CYP2C9 [37] but has no reported effect on P-gp.   

3.3.1.3 Dose administration design 

The microdose designed for administration was an equal mixture of 
14

C-caffeine, 

14
C-midazolam, 

14
C-tolbutamide and 

14
C-fexofenadine, each dosed at 25 µg 

(1.11 x 10
5
 dpm), therefore not exceeding the maximum microdose of 100 µg.  A 

period of 14 days was introduced between microdose administrations to enable 

caffeine, midazolam, tolbutamide and fexofenadine to be fully eliminated from 

the body.  A time-period of six times the half-life is typically applied to studies 

where multiple administrations are required.  Caffeine, midazolam, tolbutamide 

and fexofenadine have typical t1/2 of 4.9 h (250 mg dose) [42], 4.0 h (100 µg 

dose) [12], 7.7 h (125 mg dose) [149] and 14.4 h (60 mg dose) [150] 

respectively.  Six fexofenadine half lives is less than 1 week, and therefore 2 

weeks between doses is deemed sufficient.  The sampling of pre-dose plasma 

before each microdose administration also enables the suitability of this washout 

period to be tested.    
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Ketoconazole (400 mg) and fluvoxamine (100 mg) were co-administered once 

daily prior to and after the cassette microdose administration to a single group of 

volunteers.  Ketoconazole and fluvoxamine are known collectively to inhibit at 

least one of the drug metabolism enzymes or transporters responsible for the 

elimination of microdose compounds and the aim of the study was to assess 

whether these effects could be detected, and not to attribute these effects to a 

particular compound.  The study was designed to include the administration of 

the cassette microdose alone and with a combined dose of ketoconazole and 

fluvoxamine.  Ketoconazole and fluvoxamine were dosed to achieve steady state 

conditions [41, 153, 154], which were maintained up until the last sampling time.  

3.3.1.4 Implementation of clinical study 

A clinical study was carried out at Simbec Research Limited, Merthyr Tydfil, 

South Wales, CF48 4DR.  The study clinical protocol was prepared in 

collaboration between the author and the Project Manager at Simbec.  The 

protocol, volunteer consent forms and subject information were approved by the 

South East Wales Local Research Ethics Committee (LREC) on 7
th

 March 2007.  

The study was performed in accordance with; the Declaration of Helsinki (South 

Africa, 1996), the ABPI Guidelines for Medical Experiments in Non-Patient 

Human Volunteers – 1988, amended May 1990, the ICH Harmonised Tripartite 

Guideline for Good Clinical Practice and The Medicines for Human Use 

(Clinical Trials) Regulations 2004 (Statutory Instrument 2004 No. 1031) as 

amended by the Medicines for Human Use (Clinical Trials) Amended 

Regulations 2006 (Statutory Instrument 2006 No. 1928).  In addition, Clinical 

Trials Authorisation (CTA) was obtained from the Medicines and Healthcare 

Products Regulatory Agency (MHRA) on 28 February 2007 in accordance with 

Part 3, Regulation 12 of the UK Statutory Instrument. 

The clinic selected six healthy male volunteers to participate in the study, and all 

volunteers met the study inclusion and exclusion criteria.  All were aged between 

26 and 51 and were non-smokers with a body mass index of between 25 and 30 

kg/m
2
.    
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3.3.2 Dose solution preparation and determination of specific activity 

Oral dose solution was prepared by the author and shipped to the clinic for 

administration.  
14

C-caffeine, 
14

C-midazolam, 
14

C-tolbutamide and 
14

C-

fexofenadine (nominally 1.11 x 10
5
 dpm per compound) and non-labelled forms 

of each compound (25 µg) were formulated in bottled spring water: ethanol 

90:10 (v/v) (Section 7.12.1).  The specific activity was determined as 4.44 

dpm/ng for each analyte dosed (Section 7.12.1).   

3.3.2.1 Cassette dose administration and sample collection 

Each volunteer received two identical doses of the cassette microdose either 

alone or after repeat daily administration of fluvoxamine (100 mg) and 

ketoconazole        (400 mg) according to the dosing schedule (Section 7.12.2; 

Figure 51). 

Day 1 2 3 4-7 8 9 10 11 12 13 14 15 16 17 

Microdose 
administration 

x           x   

Plasma collection x x x         x x x 

Inhibitor 
administration 

    x x x x X x x x x x 

Figure 51: Dosing schedule of cassette microdose and inhibitors. 

Blood samples were collected (Section 7.12.2) and a sample removed and 

shipped to Delphic Laboratories (Kent, UK) for determination of CYP1A2, 

CYP2C9 and CYP3A4 genotypes.  Plasma samples were prepared (Section 

7.12.2) and the samples shipped to the AMS facility where they were stored at -

80 ºC prior to analysis. 

3.3.2.2 Determination of 
14

C-caffeine, midazolam, tolbutamide and 

fexofenadine concentrations in post-dose plasma 

Pre-dose and post-dose plasma samples were assigned a random number (using 

the Microsoft Excel RAND function) and subjected to protein precipitation 

extraction (Section 7.7.1) in ascending numerical order.  Plasma filtrates were 
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assigned a second random number and analysed by HPLC (Method A3; Section 

7.8.1: Figure 52) in ascending numerical order.   

 

Figure 52: HPLC chromatogram of a plasma filtrate containing caffeine (270 nm), 

midazolam (240 nm), tolbutamide (240 nm) and fexofenadine at λex 220 nm and λem 290 nm 

(Method A3). 

Discrete fractions were collected over the retention times of caffeine, midazolam, 

tolbutamide and fexofenadine.  HPLC fractions corresponding to caffeine, 

midazolam, tolbutamide and fexofenadine were analysed by AMS (Section 7.11).  

The 
14

C:
12

C ratio (pMC) determined for each fraction by AMS was converted to 

analyte concentrations (mass of analyte per mL of plasma) via the recovery curve 

method summarised previously (Section 2.3.6.2).   

3.3.2.3 Limit of quantification  

Analyte concentrations below the LOQ were excluded from PK calculations.  

The pMC value determined as the LOQ for the clinical plasma sample batch 

(3.833; Section 7.11.4.2) can be converted to a mass concentration, though this 
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depends on experimental variables such as fraction volumes and HPLC peak 

areas causing the LOQ to vary from sample to sample.  Samples with 

concentrations below the LOQ in pMC are stated as such throughout the 

reporting of the data (Section 3.3.5 – 3.3.8). 

3.3.3 Determination of total 
14

C-concentrations in pre-dose plasma 

Pre-dose plasma samples which were taken prior to the 
14

C-doses were analysed 

by AMS (Section 7.11) to determine whether or not levels of 
14

C were 

significantly higher on day 15 than on day 1 (Table 23), due to incomplete 

elimination of the cassette microdose administered on day 1.  These were the 

only samples analysed for total 
14

C-concentration.  Plasma samples are often 

analysed for total                 
14

C-concentration in order to compare total drug 

related 
14

C-material with parent and metabolite concentrations.  As the dose 

administered in this study was a mixture of four compounds, total 
14

C-

concentration concentrations were not determined.        

Table 23: Analysis of pre-dose plasma samples for determination of background 
14

C levels. 

Subject number 
Day 1 pre-dose 

14
C 

(pMC) 

Day 15 pre-dose 
14

C 

(pMC) 

1 98.29 108.99 

2 112.35 110.28 

3 106.20 115.87 

4 99.86 112.57 

5 118.22 139.84 

6 106.37 109.37 

Mean 106.88 116.15 

SD 7.51 11.88 

% CV 7.03 10.23 

 

The background percent modern carbon (pMC) concentration for biological 

samples is 110 pMC [123] (Section 1.10.3.1).  There is no significant difference 

between the data obtained on day 1 and day 15 (p<0.05) indicating that the 

period between doses was sufficient to allow clearance of the first microdose. 
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3.3.4 Subject genotyping 

Genotyping data (Table 24) were obtained only for consideration in analysis of 

plasma concentration data.   

Table 24: Genotyping summary CYP3A4, CYP1A2 and CYP2C9. 

Subject Number 
CYP3A4 

Genotype 

CYP1A2 

Genotype 

CYP2C9 

Genotype 

1 CYP3A4*1 *1F/*1F *1/*1 

2 CYP3A4*1 *1F/*1F *1/*1 

3 CYP3A4*1 *1F/*1F *1/*3 

4 CYP3A4*1 *1F/*1F *1/*2 

5 CYP3A4*1 *1F/*1C *1/*1 

6 CYP3A4*1 *1F/*1F *1/*1 

% Frequency homozygous wild type subject: 100.00 0.00 66.67 

% Frequency subject with one mutation: 0.00 0.00 33.33 

% Frequency subject with two mutations: 0.00 100.00 0.00 

 

No polymorphisms were observed in CYP3A4, with all subjects found to have 

the wild type CYP3A4*1 genotype.  Five of the six subjects were genotyped as 

CYP1A2*1F/*1F, which is the wild type and is associated with high activity.  

The final subject (5) was found to carry CYP1A2 *1F/*1C, which is associated 

with diminished activity.  Two subjects (3 and 4) carried a CYP2C9 mutation, 

CYP2C9 *1/*2 and *1/*3.  Both polymorphisms are associated with a decrease 

in enzyme activity.  

3.3.5 Caffeine microdosing data 

Caffeine concentrations in post-dose plasma samples were above the limit of 

quantification (>LOQ) of 3.833 pMC for all subjects (n=6) to 12 h.  The levels 

for several, but not all, subjects were >LOQ at 18 h (subjects 1, 2, 3 and 5) and 

24 h (subjects 2 and 5) after administration of the microdose (Figure 53).  

Caffeine concentrations in samples analysed at 36 h, 48 h and 72 h were below 

the LOQ.  After administration of the second microdose, during the period of 

administration of ketoconazole and fluvoxamine, plasma concentrations were 

>LOQ for all subjects (n=6) to 72 h (Figure 54).  Individual subject data and 
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mean data are summarised in Appendix 2.  PK data are summarised in Appendix 

8.  Inter-subject variability of calculated PK parameters was moderate with CVs 

of approximately 35% and 40% after administration of the first microdose and 

the second microdose, resectively.   
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Figure 53: Semilog plot of mean caffeine plasma concentration data, before (closed squares, 

n=6 to 12 h, n=4 to 18 h and n=2 to 24 h) and after (open squares, n=6 to 72 h) daily repeat 

dosing of fluvoxamine and ketoconazole.  Error bars represent one standard deviation. 

3.3.5.1 Caffeine microdosing data vs. literature data 

PK data obtained after administration of a microdose of caffeine are in close 

agreement with previously published data for doses of 100 mg [42] and a 250 mg 

[59] (Table 25).   
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Table 25: Plasma pharmacokinetic data obtained after administration of a caffeine 

microdose (25 µg) vs. literature data obtained after therapeutic doses. 

Dose 

Number 

of 

subjects 

t1/2 

(h) 

tmax 

(h) 

Cmax (ng/mL) 
AUC0-t 

(h.ng/mL) Source 

A B A B 

25 μg 6 4.14 0.58 0.612 24.48 2.62 104.8 Present study 

100 mg 30 ND 0.5 2390 23.90 21300 213.0 [42] 

250 mg 7 4.9 1.14 5810 23.24 46300 185.2 [59] 

 A-calculated from dose as administered B-dose normalised to 1 mg 

When microdose and literature data are dose normalised, all PK parameters 

compare favourably.  The normalised Cmax values are very close, with data 

obtained after a microdose being within 3% and 5% of the Cmax obtained after a 

100 mg and 250 mg oral dose respectively.  AUC0-t data obtained after the 

microdose administration agree within a factor of 2.0 and 1.8 with those obtained 

for 100 mg and 250 mg doses respectively.  The data represent the first reported 

for caffeine, suggesting dose-linear PK from a microdose (25 µg) to a dose 

10000-fold higher (250 mg). 

3.3.5.2 Effect of inhibitor administration on the pharmacokinetics of caffeine 

Following repeat administration of ketoconazole and fluvoxamine, the PKs of 

caffeine show statistically significant (p<0.01) increases in AUC0-t (  6.7) and t1/2 

( 6.3) from the baseline measurements (Table 26). 

Table 26: Plasma pharmacokinetic data obtained after administration of a caffeine 

microdose (25 µg) and after administration of a caffeine microdose (25 µg) concomitantly 

with an inhibitor dose (n=6, mean, SD in parentheses). 

PK parameter 25 μg dose 
25 μg + 

inhibitor dose 

Student’s t-test 

p value 

Increase factor 

on inhibitor 

administration 

Cmax (pg/mL) 612 (155) 732 (87.7) 0.162 1.2 

t1/2 (h) 4.15 (1.12) 26.2 (12.8) 0.008 6.3 

AUC0-t (h.pg/mL) 2620 (1060) 17600 (4800) 0.000 6.7 

AUC0-∞ (h.pg/mL) 2670 (1050) 21900 (8900) 0.002 8.2 

tmax (h) 0.583 (0.258) 0.875 (0.607) 0.328 1.5 
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These data are consistent with results obtained in a previous study, where 

caffeine (250 mg) was administered before and after daily repeat daily dosing of 

fluvoxamine (100 mg per day for 4 days).  On co-administration of fluvoxamine, 

t1/2 and AUC0-t increased by factors of 11.4 and 13.7, respectively (Table 27).  

Metabolite concentrations were also examined in the previous study, with the 

AUC0-24h of paraxanthine decreasing by a factor of 3 on co-administration of 

fluvoxamine [59].  

Table 27: Plasma pharmacokinetic data obtained after administration of a caffeine 

microdose plus inhibitors vs. literature data obtained after administration of a therapeutic 

dose. 

Dose 

Increase factor for caffeine concentration on co-administration of 

fluvoxamine (and ketoconazole for 25 μg dose) 

t1/2 (h) tmax (h) 
Cmax 

(ng/mL) 

AUC0-t 

(h.ng/mL) 
Source 

25 μg
1
 6.3 1.5 1.2 6.7 Present study 

250 mg
2
 11.4 4.0 1.4 13.7 [59] 

1 
administered after repeat daily (8 day) dose of fluvoxamine (100 mg)   

2
 administered after repeat daily (4 day) dose of fluvoxamine (100 mg) 

A similar study in which caffeine (200 mg) was administered before and after 

daily administration of fluvoxamine saw general agreement, with the t1/2 

increasing approximately 6.3 from 5 to 31 h.  The N-3 demethylation of 

caffeine to paraxanthine decreased five-fold, showing that fluvoxamine inhibits 

the CYP1A2 biotransformation of caffeine [155].  The same inhibition is 

observed in the current study, where a significant prolongation of t1/2 and increase 

in AUC of caffeine are observed, consistent with reduced clearance of caffeine 

due to inhibition of CYP1A2.  There is no evidence in the literature to suggest 

that ketoconazole has a significant inhibitory effect on caffeine metabolism.  

Hence, it is likely that the administration of fluvoxamine was responsible for the 

changes in caffeine PK.  The subjects enrolled in this study were genotyped for 

CYP1A2 polymorphisms and found to include two polymorphisms (Table 28).   
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Table 28: CYP1A2 genotyping of subjects 1-6. 

Subject CYP1A2*1C CYP1A2*1F 
CYP1A2 

Genotype 

1 2 mutations 2 mutations *1F/*1F 

2 2 mutations 2 mutations *1F/*1F 

3 2 mutations 2 mutations *1F/*1F 

4 2 mutations 2 mutations *1F/*1F 

5 2 mutations 1 mutation  *1F/*1C 

6 2 mutations 2 mutations *1F/*1F 

 

Subjects 1 – 4 and 6 are carriers of the CYP1A2*1F variant which results in 

increased metabolism of caffeine.  Subject 5 is a carrier of the CYP1A2*1C 

variant.  Individuals, who carry one or more 1C alleles, metabolise caffeine more 

slowly.  This polymorphism appears to be reflected in the data obtained in the 

current study (Table 29; subject 5 data highlighted in bold text).   

Table 29: Plasma pharmacokinetic data obtained after administration of a microdose (25 

µg) of caffeine – all subjects. 

Subject Number t1/2 (h) tmax (h) 

Cmax 

(pg/mL) 

AUC0-t 

(h.pg/mL) 

AUC0-∞ 

(h.pg/mL) 

1 3.58 1.00 529 2550 2590 

2 3.94 0.75 476 2940 2880 

3 3.85 0.50 825 2120 2210 

4 4.15 0.25 491 1700 1830 

5 6.31 0.50 791 4560 4640 

6 3.07 0.50 562 1850 1890 

 

By comparison with the mean data for the remaining five subjects, the data 

obtained from subject 5 shows increases in t1/2 (  1.7) and in AUC ( 2.0 for 

AUC0-t and AUC0-∞ respectively).  AUC and t1/2 data were examined and each 

PK parameter was analysed for outliers using Dixon’s Q-test.  The t1/2 and AUC0-

t for subject 5 were both determined to be outliers (Q95%).  The sample size here 

is small (n=6) and inter-subject variability must be treated with caution, however, 

this does open up the possibility of the use of microdosing in detecting individual 
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subject polymorphisms.  Enrolling larger numbers of subjects may allow this 

application of microdosing to be further explored. 

3.3.6 Midazolam microdosing data 

Midazolam concentrations in post-dose plasma samples were above the limit of 

quantification (>LOQ) of 3.833 pMC for all subjects (n=6) to 4 h.  The levels for 

several subjects were >LOQ to 8 h (subjects 1 and 5) and 12 h (subject 5) after 

administration of the microdose (Figure 54).  Midazolam concentrations in 

samples analysed at 12 h to 72 h were below the LOQ.  After administration of 

the second microdose, during the period of administration of ketoconazole and 

fluvoxamine, plasma concentrations were >LOQ for all subjects (n=6) to 36 h 

(Figure 54).  Several subjects were >LOQ at 48 h (subjects 1 to 5) and 72 h 

(subject 1, 4 and 5).  Individual subject data and mean data are summarised in 

Appendix 3.  PK data are summarised in Appendix 9.   
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Figure 54: Semilog plot of midazolam mean plasma concentration, before (closed squares, 

n=6 to 4 h, n=2 to 8 h and n=1 to 12 h) and after (open squares, n=6 to 36 h, n=5 to 48 h and 

n=3 to 72 h) daily repeat dosing of fluvoxamine and ketoconazole.  Error bars represent one 

standard deviation.   
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Two data points were excluded from calculations (microdose only, subject 3, 

0.25 h, and microdose plus inhibitors, subject 2, 8 h) as these samples failed to 

meet the AMS acceptance criteria (Section 7.11.4).  Inter-subject variability of 

calculated PK parameters was moderate with CVs of approximately 29% and 

27% after administration of the first microdose and the second microdose, 

respectively.       

3.3.6.1 Midazolam microdosing data vs. literature data 

Midazolam microdose PK data obtained show concordance with data obtained 

after administration of a 7.5 mg and a 0.5 mg dose [12, 151].  Cmax, AUC0-  and 

t1/2 agree with those previously reported for a 7.5 mg dose within a factor of 1.3, 

1.5 and 1.2 respectively, and within a factor of 2.0, 2.0 and 1.7 for a 0.5 mg dose 

(Table 30). 

Table 30: Plasma pharmacokinetic data obtained after administration of a midazolam 

microdose (25 µg) vs. literature data obtained after a microdose and therapeutic doses. 

Dose 

Number 

of 

subjects 

t1/2 

(h) 

tmax 

(h) 

Cmax         

(ng/mL) 

AUC0-t 

(h.ng/mL) 

AUC0-∞ 

(h.ng/mL) Source 

A B A B A B 

25 μg 6 4.00 0.75 0.151 6.04 0.390 15.6 0.444 17.8 N/A 

100 μg 6 3.95 0.56 0.37 3.70 0.89 8.90 1.02 10.2 [12] 

0.5 mg 10 2.7 0.75 1.49 2.98 4.35 8.70 4.38 8.76 [151] 

7.5 mg 6 3.31 0.63 34.0 4.53 81.8 10.91 87.0 11.6 [12] 

A-calculated from dose as administered B-dose normalised to 1 mg 

The midazolam data obtained after cassette microdosing compare favourably 

with microdose data obtained from a previous study [12].  AUC0-∞, Cmax and t1/2 

obtained after administration of a 25 μg dose agree within a factor of 1.7, 1.6 and 

1.0, with data obtained for a 100 µg dose.  These data demonstrate PK linearity 

over a 300-fold range.  
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3.3.6.2 Effect of inhibitor administration on the pharmacokinetics of 

midazolam 

Following repeat administration of ketoconazole and fluvoxamine the PK of 

midazolam show a statistically significant (p<0.01) increases in AUC0-∞ (x 11.7),  

Cmax (x 3.6) and t1/2 (x 4.6)  The tmax is unchanged (Table 31).   

Table 31: Plasma pharmacokinetic data obtained after administration of a midazolam 

microdose (25 µg) and after administration of a midazolam microdose (25 µg) 

concomitantly with an inhibitor dose (n=6, mean, SD in parentheses). 

PK parameter 25 μg dose 
25 μg + 

inhibitor dose 

Student’s      

t-test p value 

Increase  factor on 

inhibitor 

administration 

Cmax (pg/mL) 151 (37.6) 549 (83.0) 0.000 3.6 

t1/2 (h) 4.00 (1.83) 18.2 (4.55) 0.000 4.6 

AUC0-t (h.pg/mL) 390 (83.3) 5210 (1660) 0.001 13.4 

AUC0-∞ (h.pg/mL) 444 (101) 5200 (1900) 0.002 11.7 

tmax (h) 0.750 (0.224) 0.708 (0.188) 0.741 0.9 

 

These results are consistent with results obtained in a previous study [156] where    

co-administration of ketoconazole (200 mg daily for 3 days) and single dose of 

midazolam (6 mg) resulted in a increase in AUC0-∞ ( x 13.6) and Cmax (x 4.2) 

compared with midazolam administration only (Table 32).  

Table 32: Plasma pharmacokinetic data obtained after administration of a midazolam 

microdose plus inhibitor vs. literature data obtained after administration of a therapeutic 

dose. 

Dose 

Increase factor for midazolam concentration on co-administration of repeat 

daily doses of ketoconazole 

t1/2 (h) tmax (h) 
Cmax 

(ng/mL) 

AUC0-t 

(h.ng/mL) 

AUC0-∞ 

(h.ng/mL) 
Source 

25 μg
1
 4.6 0.9 3.7 13.4 11.7 N/A 

75 μg
2
 1.6 1 3.74 ND 6.47 [157] 

6 mg
3
 ND 1 4.24 ND 13.6 [156] 

1 
400 mg for 8 days, 

2
 200 mg for 2 days, 

3
 200 mg for 3 days. 

In a second study, midazolam was administered at reduced dose of 75 μg, both 

before and after twice daily doses of ketoconazole [157].  The Cmax and AUC0-∞ 
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saw statistically significant (p>0.05) approximate x 3.7-fold and x 7-fold 

increases, respectively.  The magnitude of the increase in Cmax and AUC on co-

administration of ketoconazole and fluvoxamine appears to be equivalent 

irrespective of the midazolam dose administered.  The increase in Cmax may be 

explained by the inhibition of CYP3A, which reduces first pass metabolism.  The 

increased t1/2 is consistent with the reduction in clearance due to inhibition of 

CYP3A enzymes [158] by ketoconazole and fluvoxamine.  While there is 

evidence to suggest that fluvoxamine does also inhibit the metabolism of 

midazolam [159, 160], the magnitude of the inhibition is much reduced 

compared to that caused by ketoconazole.  A recent study examined the co-

administration of midazolam with fluoxetine, fluvoxamine, nefazodone, and 

ketoconazole [159].  Ketoconazole        co-administration resulted in an increase 

in midazolam AUC of 771.9%, compared with a 66.1% increase in AUC with 

fluvoxamine. 

3.3.6.3 CYP3A4 polymorphisms affecting the metabolism of midazolam 

All subjects were genotyped for CYP3A4 polymorphisms, and all subjects 

returned the CYP3A4 *1/*1 genotype associated with normal enzyme activity.   

3.3.7 Tolbutamide microdosing data 

Tolbutamide concentrations in post-dose plasma samples were >LOQ of 3.833 

pMC for all subjects (n=6) to 36 h.  The levels for several, but not all, subjects 

were >LOQ at 48 h (subjects 1 to 5) and 72 h (subjects 3 and 4) after 

administration of the microdose (Figure 55).  After administration of the second 

microdose, during the period of administration of ketoconazole and fluvoxamine, 

plasma concentrations were >LOQ for all subjects (n=6) to 72 h (Figure 55).  In 

addition, one pre-dose sample (subject 5) was >LOQ.  Individual subject data 

and mean data are summarised in Appendix 4.  PK data are summarised in 

Appendix 10.   

One datum point was excluded from calculations (microdose following oral 

administration of ketoconazole and fluvoxamine, subject 1, 24 h) as this sample 

failed to meet the AMS acceptance criteria (Section 7.11.4).  Inter-subject 
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variability of calculated PK parameters was moderate with CVs of approximately 

37% and 54% after administration of the first microdose and the second 

microdose, respectively.  
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Figure 55: Semilog plot of tolbutamide mean plasma concentration, before (closed squares, 

n=6 to 36 h, n=5 to 48 h and n=2 to 72 h) and after (open squares, n=6 to 72 h) daily repeat 

dosing of fluvoxamine and ketoconazole.  Error bars represent one standard deviation.   

3.3.7.1 CYP2C9 polymorphisms affecting the metabolism of tolbutamide 

After completion of the study, all subjects were genotyped for CYP2C9 (Table 

33).  Subjects 1, 2, 5 and 6 were genotyped as wild-type CYP2C9 (*1/*1), with 

no mutations found.  Subject 3 was genotyped as CYP2C9 (*1/*3) and subject 4 

was genotyped as CYP2C9 (*1/*2).   
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Table 33: CYP2C9 genotyping of subjects 1-6. 

Subject 

number 
CYP2C9*2 CYP2C9*3 

CYP2C9 

Genotype 

1 No mutation No mutation *1/*1 

2 No mutation No mutation *1/*1 

3 No mutation One mutation *1/*3 

4 One mutation No mutation *1/*2 

5 No mutation No mutation *1/*1 

6 No mutation No mutation *1/*1 

 

The mutations result in reduced CYP2C9 activity [145, 161], with the CYP2C9 

(*1/*3) polymorphism expected to be the more significant, hence the plasma 

concentrations of tolbutamide in these subjects would be expected to be elevated 

above the levels observed in the remaining four subjects.  A study carried out by 

Kircheiner et al. determined that oral clearance of tolbutamide in CYP2C9 

(*1/*2) and CYP2C9 (*1/*3) genotyped volunteers was reduced by 

approximately 12% and 51% respectively, compared with CYP2C9 (*1/*1) [62].  

Mean data for subject 3 and 4 and the normal CYP2C9 (*1/*1) metabolisers 

indicate that two populations are evident (Figure 56).   
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Figure 56: Concentration-time curves of 
14

C-tolbutamide in venous plasma after 

administration of a microdose, CYP2C9 (*1/*1) genotyped subjects, n=4 (squares), CYP2C9 

(*1/*2) genotyped subject 4, n=1 (triangles) and CYP2C9 (*1/*3) genotyped subject 3, n=1 

(circles). 

The AUC0-t for subject 3 is approximately two-fold higher than the mean AUC0-t 

for CYP2C9 (*1/*1) genotyped subjects (63.1 h.ng/mL cf a mean of 31.6 

h.ng/mL).  This has been observed previously in vivo [145] due to slower 

metabolic elimination of tolbutamide.  The difference between the AUC0-∞ for 

subject 4, and the mean of CYP2C9 (*1/*1) genotyped subjects is of a similar 

magnitude (x 1.8).  Dixon’s     Q-test was applied to the AUC data, and both 

subject 3 and subject 4 were found to be outliers (Q90%).  Similarly, when co-

administered with ketoconazole and fluvoxamine, subjects 3 and 4 show 

approximate increases in AUC0-t of 1.8 and    2.3-fold compared with the four 

CYP2C9 (*1/*1) genotyped subjects (Figure 57).    
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Figure 57: Concentration-time curves of 
14

C-tolbutamide in venous plasma after microdose 

plus daily repeat dosing of fluvoxamine and ketoconazole, CYP2C9 (*1/*1) genotyped 

subjects, n=4 (squares), CYP2C9 (*1/*2) genotyped subject 4, n=1 (triangles) and CYP2C9 

(*1/*3) genotyped subject 3, n=1 (circles). 

When applying the Dixon’s Q-test to the data, AUC0-t values for subject 3 and 

subject 4 are outliers in comparison to mean AUC0-t data for subjects 1, 2, 5 and 

6 (to 99% confidence).  While these data seem to indicate some significance, and 

are supported by literature data, they must be treated with caution, due to the 

small sample size.  The data indicate that differences in CYP2C9 genotypes may 

be phenotyped using tolbutamide after administration of a microdose and 

therefore microdosing may have a potential application in phenotyping studies.     

Due to these differences in genotype and subsequent phenotypic properties 

observed, data obtained after administration of the microdose and inhibitors are 

examined with and without inclusion of subjects 3 and 4.  
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3.3.7.2 Tolbutamide microdosing data vs. literature data 

The PK data obtained after microdosing of tolbutamide show concordance with 

previously published data for a 125 mg dose [149].  The mean t1/2 for subjects 1, 

2, 5 and 6 is almost identical (8.13 h, cf 7.7 h for the 125 mg dose).  The overall 

mean (n=6) is also close at 7.22 h.  When normalised to the 125 mg dose, Cmax 

(n=6) was within 14% of the reported Cmax after an oral 125 mg dose.  The 

AUC0-∞ for all subjects (n=6) was within 17% of the reported value for the 125 

mg dose.  Exclusion of subjects 3 and 4 from this mean value resulted in a 

slightly closer agreement of 11% (Table 34).   

Table 34: Plasma pharmacokinetic data obtained after administration of a tolbutamide 

microdose (25 µg) vs. literature data obtained after therapeutic doses. 

Dose 

Number 

of 

subjects 

t1/2 

(h) 

tmax 

(h) 

Cmax (ng/mL) 
AUC0-t 

(h.ng/mL) 

AUC0-∞ 

(h.ng/mL) Source 

A B A B A B 

25 μg 6 (all) 8.13 0.875 3.72 149 41.3 1650 41.8 1670 

Present 

study 

25 μg 41 7.22 0.938 3.70 148 31.6 1264 32.1 1280 

25 µg 12 8.51 0.500 4.34 173.6 63.1 2524 63.4 2536 

25 µg 13 11.4 1.00 3.18 127.2 58.2 2358 59.3 2384 

125 mg 10 7.7 ND 16300 130.4 ND ND 179000 1432 [149] 
1
subjects 1, 2, 5 & 6, 

2
subject 3, 

3
subject 4 

Thus, the data show dose linearity over a 500-fold range.  This degree of dose 

linearity has been demonstrated previously in the rat, where a microdose was 

compared with doses up to 1000 times higher [99].   Notably this is the first time 

PK dose linearity has been demonstrated for tolbutamide in humans.   

Tolbutamide microdose data obtained for all subjects on co-administration of 

fluvoxamine and ketoconazole show a statistically significant (p<0.01) 1.2-fold 

increase in Cmax, while AUC0-t and AUC0-∞ show a 1.7-fold (p<0.01) and 1.8-fold 

(p<0.05) increase (Table 35).   
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Table 35: Plasma pharmacokinetic data obtained after administration of a tolbutamide 

microdose (25 µg) and after administration of a tolbutamide microdose (25 µg) 

concomitantly with an inhibitor dose (n=6, mean, SD in parentheses). 

PK parameter 25 μg dose 
25 μg + inhibitor

 

dose 

Student’s 

t-test p 

value 

Increase factor 

on inhibitor 

administration 

Cmax (ng/mL) 3.72 (0.429) 4.51 (0.516) 0.004 1.2 

t1/2 (h) 8.13 (2.05) 16.5 (10.7) 0.0717 2.0 

AUC0-t (h.ng/mL) 41.3 (15.8) 68.7 (29.2) 0.008 1.7 

AUC0-∞ (h.ng/mL) 41.8 (16.0) 76.4 (42.5) 0.036 1.8 

tmax (h) 0.875 (0.627) 0.708 (0.660) 0.712 0.8 
1
ketoconazole (2 x 200 mg) and fluvoxamine (1x100 mg) administered daily for 10 days 

 

Exclusion of the two subjects determined to have reduced CYP2C9 activity does 

appear to alter the outcome of the statistical analysis (Table 36).  In particular, 

the t1/2 is now demonstrated to be significantly altered (p<0.01) by the co-

administration of fluvoxamine and ketoconazole.  On inclusion of these 

polymorphic subject data, the increase in t1/2 is deemed statistically insignificant.  

Overall, the magnitude of the changes in PK parameters is similar on inclusion 

and exclusion of the polymorphic subject data.    

Table 36: Plasma pharmacokinetic data obtained after administration of a tolbutamide 

microdose (25 µg) and after administration of a tolbutamide microdose (25 µg) 

concomitantly with an inhibitor dose (n=6, subjects 3 and 4 excluded). 

PK parameter 25 μg dose 
25 μg + inhibitor

 

dose 

Student’s 

t-test p 

value 

Increase factor 

on inhibitor 

administration 

Cmax (pg/mL) 3.70 (0.284) 4.29 (0.193) 0.025 1.2 

t1/2 (h) 7.22 (1.51) 10.6 (1.72) 0.003 1.5 

AUC0-t (h.ng/mL) 31.6 (6.27) 50.9 (6.31) 0.000 1.6 

AUC0-∞ (h.ng/mL) 32.1 (6.51) 51.4 (6.62) 0.000 1.6 

tmax (h) 0.938 (0.774) 0.500 (0.204) 0.367 0.5 
1
ketoconazole (2 x 200 mg) and fluvoxamine (1x100 mg) administered daily for 10 days 

 

The data obtained in this study are consistent with data obtained in an in vitro 

study where ketoconazole was demonstrated to inhibit tolbutamide hydroxylation 

in liver microsomes by way of a 1.8-fold increase in t1/2 [38].  In vivo, on co-

administration with fluvoxamine, a reduction in the formation of 
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hydroxytolbutamide was observed, signifying a decrease in the clearance of 

tolbutamide [37].  This reduction in hydroxylation leads to an increase in the 

tolbutamide AUC, as was observed in this microdosing study (Table 37).   

Table 37: Plasma pharmacokinetic data obtained after administration of a tolbutamide 

microdose plus inhibitors vs. literature data obtained after administration of a therapeutic 

dose. 

Inhibitor Dose 
No of 

subjects 

Fold increase observed in tolbutamide concentration 

on co-administration of fluvoxamine and ketoconazole 

t1/2 

(h) 

tmax 

(h) 

Cmax 

(ng/mL) 

AUC0-t 

(h.ng/mL

) 

AUC0-∞ 

(h.ng/mL) 

Fluvoxamine/ketoconazole1 25 μg 45 2.0 0.8 1.2 1.7 1.8 

Fluvoxamine/ketoconazole1 25 µg 16 2.3 4.0 1.3 1.5 1.6 

Fluvoxamine/ketoconazole1 25 µg 17 3.2 0.3 1.4 2.0 2.6 

Fluvoxamine [37] 500 mg 7 1.3 ND ND ND ND 

Ketoconazole [38] 150 mg4 7 3.3 ND ND 1.8 ND 
1
ketoconazole (2 x 200 mg) and fluvoxamine (1 x 100 mg) administered daily for 10 days,      

2
fluvoxamine (150 mg) administered daily for 5 days, 

3
ketoconazole (200 mg) administered daily 

for 10 days, 
4
daily for 5 days, 

5
subjects 1, 2, 5 & 6, 

6
subject 3, 

7
subject 4

 

Although there is evidence that both ketoconazole and fluvoxamine inhibit the 

clearance of tolbutamide, both have an apparently weaker effect on CYP2C9 

than on CYP3A4, CYP1A2 and P-gp.  AUC0-t for tolbutamide (normal 

metabolisers only) increased by a factor of 1.7 between doses, however the 

increases observed in the AUC0-t for midazolam; x 13.4 (Section 3.3.6.2), 

caffeine; x 6.7 (Section 3.3.5.2) and fexofenadine; x 3.2 (Section 3.3.8.2) are 

much higher, indicating a greater effect of the inhibitors.  Given the co-

administration of fluvoxamine and ketoconazole, it is not possible to determine 

which has the greater inhibitory effect on tolbutamide metabolism as both 

inhibitors were co-administered.   

3.3.8 Fexofenadine microdosing data 

Fexofenadine concentrations in post-dose plasma samples were >LOQ of 3.833 

pMC for all subjects (n=6) from 0.5 h to 4 h.  Concentrations at 0.25 h were 

>LOQ for subjects 4 and 6 only.  The levels for several, but not all, subjects were 

>LOQ to 8 h (subjects 1, 2, 3, 5 and 6) and 12 h (subjects 1 and 3) after 

administration of the microdose (Figure 58).  Fexofenadine concentrations in 
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samples analysed at 18 h to 72 h were below the LOQ.  After administration of 

the second microdose, during the period of administration of ketoconazole and 

fluvoxamine, plasma concentrations were >LOQ for all subjects (n=6) to 12 h, 

except for the 0.5 h sample for subject 6 (Figure 58).  Several subjects, but not 

all, were >LOQ at 18 h (subjects 1, 3, 5 and 6), 24 h (subjects 1, 3 and 6) and 48 

h (subject 3).  All data points were included in calculations with the exception of 

four 12 h samples (microdose only, subjects 2 and 5, and microdose following 

oral administration of ketoconazole and fluvoxamine, subjects 2 and 3), which 

failed to meet the AMS acceptance criteria (Section 7.11.4).  Individual subject 

data and mean data are summarised in Appendix 5.  PK data are summarised in 

Appendix 11.  Inter-subject variability of calculated PK parameters was moderate 

with CVs of approximately 38% and 40% after administration of the first 

microdose and the second microdose, respectively.   
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Figure 58: Semilog plot of fexofenadine mean plasma concentration, before (closed squares, 

n=6 to 4 h, n=5 to 8 h and n=2 to 12 h) and after (open squares, n=6 to 12 h, n=4 to 18 h, 

n=3 to 24 h and n=1 to 48 h) daily repeat dosing of fluvoxamine and ketoconazole.  Error 

bars represent one standard deviation.   



135 

3.3.8.1 Fexofenadine microdosing data vs. literature data 

PK data obtained for fexofenadine after microdosing show concordance with that 

previously reported for doses of 60 mg dose [150] and 120 mg [23] when 

normalised to a 1 mg dose (Table 38).  Cmax data obtained after a 25 μg dose are 

within 12% and 56% and AUC0-∞ data are within 22% and 8% of those 

previously obtained at a 60 and 120 mg dose respectively.   

Table 38: Plasma pharmacokinetic data obtained after administration of a fexofenadine 

microdose (25 µg) vs. literature data obtained after therapeutic doses. 

Dose 

Number 

of 

subjects 

t1/2 

(h) 

tmax 

(h) 

Cmax 

(ng/mL) 

AUC0-t 

(h.ng/mL) 

AUC0-∞ 

(h.ng/mL) 
Source 

A B A B A B  

25 μg 6 5.75 1.00 0.105 4.22 0.444 17.8 0.497 19.9 N/A 

100 μg 6 16 1.2 0.310 3.10 2.51 25.1 2.77 27.7 [23] 

60 mg 24 14.4 1.31 286 4.80 ND ND 1520 25.4 [150] 

120 mg 6 12 2.7 318 2.7 2130 17.7 2210 18.4 [23] 

A-calculated from dose as administered B-dose normalised to 1 mg 

The results obtained from this microdose administration of fexofenadine also 

show close agreement with oral microdose data obtained in a previous study 

[23], where the values obtained for Cmax and AUC0-  were within 36% and 28% 

of previously reported microdose data.  Thus, the data are consistent with 

fexofenadine demonstrating PK linearity over a 240-fold range.  The half-life 

obtained after administration of a microdose (25 μg) is not in such close 

agreement with the values obtained previously.  A 2.8, 2.5 and 2.1-fold 

difference is seen compared with the data obtained from 100 μg, 60 mg and 120 

mg doses.  The half-life for fexofenadine varies widely within the literature 

depending on the length of the sample collection period [162] as this can affect 

the shape of the curve.  The elimination phase is   poly-exponential, hence the t1/2 

of fexofenadine may be determined during both the α- and β- elimination phases 

(Figure 59).  It was not possible to determine a reliable β-t1/2 for microdose only 

data, as the majority of the data points are present in the    α-t1/2. 
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Figure 59: Semilog plot of fexofenadine plasma concentration before and after daily repeat 

dosing of fluvoxamine and ketoconazole with α-t1/2 and β-t1/2.   

3.3.8.2 Effect of inhibitor administration on the pharmacokinetics of 

fexofenadine 

The PK data for fexofenadine on co-administration of ketoconazole and 

fluvoxamine (Table 39), show statistically significant (p<0.01) increases in 

AUC0-t and AUC0-∞   (x 3.2) and a statistically significant increase (p<0.05) in 

Cmax (x 2.7). 

Table 39: Plasma pharmacokinetic data obtained after administration of a fexofenadine 

microdose (25 µg) and after administration of a fexofenadine microdose (25 µg) 

concomitantly with an inhibitor dose (n=6, mean, SD in parentheses). 

PK parameter 25 μg dose 
25 μg + inhibitor

1
 

dose 

Student’s 

t-test p 

value 

Increase factor 

on inhibitor 

administration 

Cmax (pg/mL) 105 (33.3) 285 (154) 0.022 2.7 

t1/2 (h) 5.75 (2.10) 13.8 (9.62) 0.067 2.4 

AUC0-t (h.pg/mL) 444 (152) 1430 (452) 0.000 3.2 

AUC0-∞ (h.pg/mL) 497 (170) 1580 (455) 0.000 3.2 

tmax (h) 1.00 (0.548) 0.875 (0.137) 0.581 0.9 
1
ketoconazole (2 x 200 mg) and fluvoxamine (1 x 100 mg) administered daily for 10 days 
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The increases in the three concentration-related parameters are consistent with 

the inhibition of the gut efflux transporter P-gp by ketoconazole, leading to an 

increase in absorption and hence an increase in Cmax [163].  The resulting shape 

of the PK plasma concentration-time curve from Cmax to 12 h is parallel to that of 

the untreated subjects, showing no evidence of inhibition of elimination 

mechanisms.  These data are consistent with previous studies with ketoconazole 

and fexofenadine in vitro and in vivo (monkey) carried out to examine DDIs [74].  

A study performed in human volunteers [163] found ketoconazole inhibition of 

P-gp decreased fexofenadine efflux, hence fexofenadine concentrations 

increased, leading to an increase in Cmax of 135% and increase in AUC of 165%.  

A study was undertaken by Tannergren et al. [164] to confirm the involvement of 

P-gp in this DDI, specifically in the small intestine where P-gp is thought to be 

most prevalent.  An intestinal Loc-I-Gut® perfusion technique was employed, 

allowing direct measurement of intestinal transport along with plasma 

concentration measurements.  A jejunal segment of approximately 10 cm was 

isolated and was perfused with fexofenadine.  This was repeated after 5 day 

repeat ketoconazole dosing and both perfusate leaving the jejunal segment and 

venous blood samples were collected.  Examination of the data obtained during 

that study contradicted the hypothesis and it was found that the AUC of 

fexofenadine in plasma did not significantly increase on co-administration of 

ketoconazole.  Furthermore, Peff, the jejunal permeability and fractions absorbed 

also showed a negligible change in concentration after ketoconazole pre-

treatment.  A follow up study was undertaken where fexofenadine was 

administered with and without another P-gp inhibitor, verapamil.  It was 

hypothesised that co-administration of fexofenadine and verapamil would result 

in an increase in fexofenadine plasma AUC and ka.  Also in the perfusate, Peff 

would be expected to increase along with an increase in the fraction absorbed 

(fabs) due to inhibition of     P-gp activity by verapamil.  While the hypothesis for 

plasma AUC was correct, with a significant increase in fexofenadine 

concentration being observed, there was still no significant difference in 

absorption [165].   

The results obtained in these studies indicate that fexofenadine absorption 

mechanisms are not solely dependent on P-gp but may also depend on other 
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transporters such as the OATP family.  Fexofenadine is a known substrate of 

OATP as well as P-gp [166].  P-gp and OATP are thought to work in opposite 

directions across enterocytes and inhibition of the two mechanisms may not 

result in significantly increased concentrations of metabolic targets (Figure 60). 

Figure 60: P-glycoprotein and OATP at hepatocytes and enterocytes [165]. 

By contrast, OATP and P-gp in the liver work in the same direction and if 

fexofenadine is highly hepatically extracted, inhibition of the liver uptake would 

result in increased plasma concentrations.  The involvement of the liver in the 

uptake of fexofenadine was determined in a recent study by the first IV 

administration of fexofenadine, where 70% of the dose was hepatically cleared 

[23].  While the mechanisms are not yet fully understood, it appears that 

ketoconazole inhibits the efflux of P-gp, resulting in increased plasma 

concentrations, and that OATP may play a part in this inhibition. 

3.4 Conclusions 

Since the implementation of the very first microdosing study, there has been 

concern and much debate about the ability of microdose data to predict the PKs 

of a drug at the pharmacological dose.  Over the last 10 years a growing number 

of compounds have been assessed for dose linearity between a microdose and a 

pharmacologic dose [10] (Section 1.8.1).  In the current study, four compounds, 

caffeine, midazolam, tolbutamide and midazolam, were found to exhibit linearity 

from a microdose (25 µg) to higher doses reported in the literature.  These 

OATP 

P-gp 

Hepatocyte Enteroyte 

Bile 

canaliculus 

P-gp OATP 
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compounds were linear over a 10000, 300, 5000 and 4800-fold dose range for 

caffeine, midazolam, tolbutamide and fexofenadine respectively.  Caffeine, 

midazolam, tolbutamide and fexofenadine are known to exhibit DDIs in vivo 

when co-administered with fluvoxamine and/or ketoconazole.  Inhibitors were 

administered daily for eight days prior to the administration of the second 

cassette microdose, allowing ketoconazole and fluvoxamine levels to reach 

steady state [41, 153, 154].  These levels were maintained by continuation of this 

daily inhibitor dosing throughout the plasma sample collection period.  All PK 

microdose data obtained after administration of fluvoxamine and ketoconazole 

show significant differences to the PK data obtained for the microdose only.  In 

particular the AUC for all compounds was significantly increased (p>0.05).   

The results obtained are in close agreement with literature data obtained during 

similar studies, the majority of which were obtained after administration of 

pharmacologic doses.  While the present data show concordance, they have been 

obtained from relatively small numbers of volunteers, with only six participants 

in the cassette microdose study, and consequently the results are unlikely to 

reflect population variations.  A considerable improvement to this study would 

be to obtain data from the same subjects after administration of a microdose and 

a pharmacologic dose, with and without inhibitors, which would allow direct 

comparison of data.  Data obtained in this study were generated after a single 

microdose of each compound administered alone and with inhibitors.  The 

majority of drugs are prescribed to patients as a course of treatment, not as a 

single dose.  This study does not allow the effects of inhibitors once the 

compound itself has reached steady state to be examined and therefore is a 

limitation of this work.   

In the current study, the inhibitors were co-administered, as the aim was to 

investigate the ability of a microdose to detect a DDI, not to attribute this to a 

particular inhibitor.  Accordingly, the quantitative contribution and individual 

function of each inhibitor therefore could not be assessed.  For example, 

CYP2C9 is known to be inhibited by both fluvoxamine and ketoconazole; the 

current study design does not allow differentiation between the two inhibitors 

and their individual effects on tolbutamide.  
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There has been some debate in the use of cassette doses, particularly in the 

context of DDI studies and the possibility that the different components in the 

cassette might interact with each other [65, 84].  Microdosing is not expected to 

produce pharmacological effects and is advantageous in cassette probe dosing, as 

interactions between compounds are very unlikely to occur.  Data obtained in the 

current study support this theory as all PK data obtained on cassette microdosing 

were linear with pharmacologic doses, with no evidence of interactions between 

compounds within the cassette.  There is negligible body burden, both from the 

respect of the radioactive dose administered, and the very low drug 

concentrations, which mean pharmacological effects are dramatically reduced 

resulting in no side effects.  In addition, as the compounds are 
14

C-labelled 

background substrate will not affect the data.   

The maximum dose administered in a microdose study is 100 μg.  Where 

multiple compounds are administered, the dose is shared.  In this study, the dose 

was shared equally between all compounds and caffeine, midazolam, 

tolbutamide and fexofenadine concentrations in this study were quantifiable by 

AMS during the two dosing periods.  For all four compounds, there were 

samples in which the levels were below the LOQ.  The time-points to which each 

drug was quantifiable in plasma are summarised below (Table 40).      

Table 40: Plasma samples analysed by HPLC-AMS with concentrations below the LOQ.  

Dose Caffeine Midazolam Tolbutamide Fexofenadine 

Microdose only 

12 h (6 subjects) 

18 h (4 subjects)  

24 h (2 subjects)  

4 h (6 subjects) 

8 h (2 subjects) 

18 h (1 subject) 

36 h (6 subjects) 

48 h (5 subjects) 

72 h (2 subjects) 

4 h (6 subjects) 

8 h (5 subjects) 

12 h (2 subjects) 

Microdose plus 

inhibitors 
72 h (6 subjects) 

36 h (6 subjects) 

48 h (5 subjects) 

72 h (3 subjects) 

72 h (6 subjects) 

12 h (6 subjects) 

18 h (4 subjects) 

24 h ( subjects) 

48 h (1 subject) 

 

With some simple steps, the quantifiable limit may have been reduced; however, 

plasma volumes are often a limiting factor.  When implementing a cassette 

microdose study the number of compounds sharing the dose must be carefully 

considered to ensure that sensitivity is adequate.  Generally, the greater the 

number of compounds sharing the dose, the higher the assay LOQ will be.   
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The LOQ in a microdosing study is dependent upon the specific radioactivity of 

the compound dosed.  As shown in this study, the LOQ for a typical microdose 

equivalent to 25 μg, 1.11 x 10
5
 dpm, is approximately 9 – 10 pg/mL.  Reducing 

the mass dose, for example by administration of neat radiolabel at 2.22 x 10
6
 

dpm which requires the same regulatory approval as a conventional microdose 

study, would dramatically reduce the LOQ.  Assuming a specific radioactivity of 

approximately   1 μg, 2.22 x 10
6
 dpm, an LOQ of 0.01 pg/mL could be achieved, 

an approximate 1000-fold reduction on the current study, without additional 

optimisation of the current methods. 

The concentrations measured in this study may also be detectable using an 

alternative method such as LC-MS.  A microdosing study was recently performed 

in which midazolam was administered at 75 μg [157].  All analyses were carried 

out using LC-MS and the reported LOQ was 10 pg/mL, which is in the same 

order of magnitude as the LOQ obtained in this study.  In addition, mass 

discrimination by LC-MS offers a clear advantage over the lengthy validations 

required for acceptance of data obtained by HPLC and AMS analysis in this 

study.   

Each compound in the current study was quantified by AMS, which does not 

provide structural information, only an isotope ratio.  It was therefore essential 

that each compound was chromatographically separated and resolved prior to 

AMS analysis.  The efficacy of a method for separation of caffeine, midazolam, 

tolbutamide and fexofenadine from each other and from major metabolites was 

demonstrated using a 2D-HPLC method.  The development of the HPLC method 

for the current study was straightforward as all compounds administered were 

established compounds with known and commercially available metabolites.  It 

would be more difficult to develop such a method for a cassette microdose 

containing several NCEs if there was limited knowledge of their metabolism.  

Resolution can be assessed using a 2D-HPLC method as was performed in this 

study and if compounds were found to be unresolved, further method 

development would be required.  As HPLC-AMS analysis is a lengthy offline 

process with at least 1 week between isolating an HPLC fraction and determining 

its isotope ratio by AMS, further method development could prove lengthy.  
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These problems are specific to the analysis of samples by HPLC-AMS after 

microdosing.  An alternative technique such as LC-MS, which has the advantage 

of mass discrimination as well as analyte quantification may be preferable for 

some studies, though the response required may be inadequate without 

significant optimization of the analytical methods.  Should sufficient limits of 

detection be achieved, the use of LC-MS would pose a significant advantage 

over HPLC-AMS in studies involving cassette microdosing.    

Caffeine is a well established substrate for use as a DDI probe for CYP1A2 and it 

has been incorporated into several cocktails validated for investigation of 

CYP1A2 activity in human volunteers [42, 167].  Caffeine PKs obtained in the 

current study were significantly altered on co-administration of fluvoxamine and 

ketoconazole, thus demonstrating that DDIs may be detected after administration 

within a cassette microdose.  The administration of a radiolabelled caffeine 

microdose has a significant advantage in cassette DDI studies over the 

administration of a non-labelled pharmacologic dose, allowing differentiation 

between the caffeine dosed and residual levels present in the body.  Volunteers 

participating in studies involving the administration of non-labelled caffeine are 

often required to abstain from caffeine intake, e.g. tea, coffee and coca-cola prior 

to the start of the study.  Even so, plasma samples are still found to contain 

residual caffeine levels [59], which are often difficult to correlate with caffeine 

consumption levels [168].  As the measurements made in this study were of 
14

C-

labelled material, there is very little possibility of background caffeine levels in 

the body having a significant effect on the data.  The introduction of 
14

C-labelled 

caffeine may present a significant benefit over current methods.  It should also be 

noted that during CYP1A2 DDI studies, phenotypic caffeine to paraxanthine 

ratios are assessed and are most widely used as a benchmark due to the close 

correlation of this ratio with the systemic clearance of caffeine [84].  While the 

focus of this research was to determine the ability of a caffeine microdose to 

detect DDI effects when co-administered with fluvoxamine, the approach could 

readily be extended to assess caffeine metabolite ratios.   

In conclusion, the data obtained demonstrate the concept of using a microdose to 

detect differences in PK parameters arising from inhibitory DDIs.  The approach 
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has potential applications in phase 0 studies, in aiding the detection of DDIs early 

in the drug development process, as well as presenting potential improvements to 

standard assays currently employed in drug development.   
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4.1 Introduction 

A clinical study was carried out (Chapter 5), whereby a microdose of 
14

C-

labelled verapamil was intravenously administered to seven healthy human 

volunteers.  The microdose was administered alone in period 1, and with a 

therapeutic oral dose in period 2.  The main objective of the study was to 

quantify R- and S-verapamil and to evaluate PK parameters after microdose 

administration.  A secondary objective was to compare the PK data obtained for 

each enantiomer in each dosing period.  Due to the very low doses administered 

in the microdose, AMS detection was chosen for quantification of R- and S-

verapamil in the plasma samples collected during the study.  As verapamil was 

dosed as a racemic mixture, separation of the enantiomers was required, and 

therefore chiral chromatography was required.      

As analytes cannot be identified by mass discrimination during AMS analysis 

(Section 1.10.1) R- and S-verapamil must be completely chromatographically 

resolved from each other and from potential co-eluting compounds prior to 

analysis.  In this case, racemic verapamil was first resolved using an established 

HPLC method with a C18 stationary phase (Section 4.3.5).  Isolated verapamil 

was then separated into its two enantiomers by chiral HPLC chromatography 

(Section 4.3.2) prior to AMS measurement.  In addition to the HPLC method 

development and assessment of suitability, a method for the quantification of 

each enantiomer was developed (Section 4.3.7).    

4.1.1 Verapamil 

Verapamil is a calcium channel blocker and is used in the treatment of 

supraventricular arrhythmias, coronary heart disease and arterial hypertension  

[169].  R-verapamil is metabolised through N-demethylation, O-demethylation 

and N-dealkylation, processes mediated by CYP [170] (Figure 61).     
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Figure 61: Main routes of verapamil metabolism. 
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Verapamil is administered as a racemic mixture and the enantiomers are shown 

in Figure 62, designated R and S according to the Cahn Ingold Prelog (CIP) rules.  

The CIP rules assign priorities to the groups attached to the chiral centres of 

optical isomers.  Priorities are first assigned based on the atomic number of each 

directly attached group.  Priority 1 is given to the atom with the highest atomic 

number, and 4 to the lowest.  In cases where the two atoms have the same 

priority, the atoms attached directly to those atoms are next considered.  After all 

groups have been assigned priorities, the molecule is visualised in 3D with the 

group of lowest priority to the back.  Where the priority order flows in a 

clockwise rotation, the molecule is designated R.  Where the priority order is 

anti-clockwise, the molecule is designated S.           

  

Figure 62: Structures of S- and R-verapamil showing assignment of groups attached to the 

chiral centre according to Cahn Ingold Prelog priority rules. 
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4.1.1.1 Chiral discrimination in HPLC chromatography  

Several methods can be used to resolve enantiomers.  The first is to react the 

chiral molecule with a chiral derivatising agent, yielding two diastereoisomers 

which can be separated by conventional HPLC [171].  An alternative is to add an 

enantiomerically pure compound to the HPLC mobile phase as a chiral mobile 

phase additive (CMPA).  HPLC is then used to separate the diastereomic 

complexes that form between the analyte and the CMPA [171].  A third and 

more commonly used method is the use of a chiral stationary phase (CSP).  The 

CSP interacts with the enantiomers to form short-lived diastereomic complexes.  

One complex will have a slightly stronger binding strength with the CSP, 

resulting in separation of the enantiomers.  The ability of the analyte to form a 

transient diastereomic complex is dictated by hydrogen-bonding, π-π 

interactions, dipole stacking, inclusion complexing and steric bulk [171].   

There are four main types of CSP; cyclodextrin, Pirkle, protein and carbohydrate, 

all of which may be used in reverse phase chromatography.  Each of these CSPs 

has a slightly different chiral recognition mechanism.  Cyclodextrin CSPs 

interact with the analyte by hydrogen bonding and inclusion complexation.  

These interactions are driven by the ability of the analyte to fit into the 

cyclodextrin cavity [171].  Pirkle CSPs operate based on the three-point rule, 

which states that for chiral recognition to occur there must be three simultaneous 

points of interaction between the analyte and the CSP with at least one of these 

interactions being stereochemically dependent [171].  Pirkle columns 

preferentially bind one enantiomer to the CSP through a combination of π-π 

bonding, hydrogen bonding, steric interactions and dipole stacking.  The chiral 

recognition mechanisms of protein and carbohydrate columns are not as well 

elucidated as Pirkle and cyclodextrin columns, however they are applicable to a 

wider range of compounds [171].  Carbohydrate CSPs do not require a specific 

combination of functional groups to chirally separate enantiomers.  Inclusion 

complexation and attractive interactions are thought to play a major role in the 

separation of enantiomers using a carbohydrate CSP [171].  
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4.2 Aims 

The primary aims of the work presented in this chapter were (Figure 63): 

 to develop a method for the extraction of verapamil from plasma, prior to 

analysis by HPLC;  

 to develop an HPLC method for the C18-chiral separation of R- and S-

verapamil; 

 to assess the compatibility of the plasma extraction method and HPLC 

method; 

 to verify the chromatographic separation of 
14

C-R- and S-verapamil from 

14
C-drug related material and to demonstrate the  applicability of the 

method to samples of human plasma; 

 to develop a quantification method for R- and S-verapamil in samples of 

human plasma; 

 to determine the specific radioactivity of the dosing solutions for 

conversion of AMS data (pMC) to mass concentrations of R- and S-

verapamil per mL of plasma. 
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Figure 63: Schematic of method development and verification of methods for quantification of R- and S-verapamil. 
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4.3 Results and discussion 

4.3.1 Development of methods for pre-treatment of plasma 

The protein precipitation extraction method chosen for development in Chapter 2 

(Section 2.3.2.1) was selected for the preparation of verapamil samples.  

Complex methods including the use of solid phase extraction have been reported 

for verapamil assays [169, 170].  These methods specifically apply to the 

separation and quantification of verapamil and metabolites.  The method 

development reported here focuses only on the removal of verapamil from 

plasma, as metabolites did not require quantification by HPLC-AMS.  The 

simplicity of an extraction method is important in HPLC-AMS analysis, as there 

are a significant number of manual steps.  The method employed in Section 2.3.1 

was assessed for suitability with verapamil.  Methanol and acetonitrile were 

chosen as solvents for initial extraction experiments.  The purpose of the method 

development was to evaluate: 

 the overall recovery from plasma vs. recovery after introduction of a 

volume reduction step; 

 the difference in recovery of analyte when using acetonitrile and 

methanol.  

Plasma samples spiked with 
14

C-verapamil were prepared and subjected to 

protein precipitation extraction (Section 7.5.2) as follows:   

 Method 1 – acetonitrile; 

 Method 2 – acetonitrile, followed by reduction to dryness under N2 and 

reconstitution in the initial mobile phase composition (Section 4.3.2);  

 Method 3 – methanol; 

 Method 4 – methanol, followed by reduction to dryness under N2 and 

reconstitution in the initial mobile phase composition (Section 4.3.2). 
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Mean extraction efficiencies were calculated for each analyte (Equation 14, 

Section 2.3.2.1).  Mean recovery of verapamil from plasma was >76% (Table 41) 

for all methods.   

Table 41: Verapamil extraction efficiency data for Methods 1 – 4. 

Extraction solvent 

Mean extraction 

efficiency of neat 

plasma filtrate (%)  

Mean extraction efficiency of 

reduced and reconstituted 

plasma filtrate (%) 

Acetonitrile 86.3 (1.85) 81.8 (1.99) 

Methanol 76.9 (1.92)
1
 71.4 (3.22) 

1
based on 2 replicates only, 3

rd
 replicate discarded as sample only partially extracted, 

value in parentheses = % difference from mean value  

Better recoveries were observed with acetonitrile than with methanol.  The 

introduction of solvent reduction followed by reconstitution of the dried plasma 

filtrate in mobile phase (200 μL) resulted in a further loss of approximately 5% 

(Table 41).  Despite this loss, Method 2 was chosen for further development of 

the HPLC-AMS assay as it provides a larger proportion of the analyte for HPLC 

analysis when analysing the same volume of sample by HPLC.  The recoveries 

represent those of racemic verapamil.  It was not possible to ascertain the 

individual extraction efficiencies of R- and S-verapamil using this method as 

individual 
14

C-labelled R- and S-verapamil standards were not available.  Hence, 

it was assumed that 
14

C-labelled R- and S-verapamil were extracted with the 

same efficiency.  Given that the recovery of each individual sample was to be 

determined via a recovery curve quantification method, this assumption would 

not affect the final plasma concentration data.      

4.3.2 Development of a chiral HPLC method for separation of R- and S-

verapamil (Method C1) 

A HPLC method was obtained for a Phenomenex Lux Cellulose-1 column 

(Phenomonex, Personal Communication).  The column consists of a 

polysaccharide based chiral stationary phase, cellulose tris (3,5-

dimethylphenylcarbamate) (Figure 64). 



153 

 

Figure 64: Lux Cellulose-1 stationary phase [172]. 

Although polysaccharide stationary phases are readily available, the retention 

process has not been elucidated [171].  Unlike columns such as Pirkle columns, 

which operate based on the three point rule, polysaccharide stationary phases are 

applicable to a wider range of analytes as they do not require specific 

combinations of functional groups [171].  Polysaccharide stationary phases are 

most often operated in normal phase conditions.  There is recent limited 

experience with reverse phase solvents.  The mobile phases used in the chiral 

verapamil HPLC method are acetonitrile and potassium hexafluorophosphate 

(KPF6).  KPF6 is a chaotropic salt, which forms an ion pair with positively 

charged basic analytes, resulting in a neutral ion pair and therefore increasing 

separation [173]. 

Racemic verapamil, R-verapamil and S-verapamil (1 mg/mL; Section 7.2.4) were 

analysed (5 µL) by HPLC and the column (40°C) eluted with 50 mM KPF6: 

acetonitrile at 1 mL/min.  Elution was achieved with a gradient from 60:40 (v/v) 

to 40:60 (v/v) over 25 min followed by a column flush and re-equilibration 

(Method C1; Section 7.8.2).  The method translated well with baseline resolution 

being achieved for R- and S-verapamil.  Analysis of each separate enantiomer                 

(R-verapamil and S-verapamil reference standards) with fluorescence detection 

showed R-verapamil to elute at 13.9 min, followed by S-verapamil at 15.3 min 

(Figure 65).  
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Figure 65: HPLC chromatogram of verapamil at λex 276 nm and λem 290 nm (Method C1). 

4.3.2.1 Assessment of method repeatability and carryover 

Repeatability was evaluated by multiple injections of the verapamil reference 

standard (1 mg/mL; 5 x 1 µL), with a blank injection after injection 5 for 

evaluation of carryover.  Further analyses were performed on a second day to 

assess the      inter-day repeatability of the HPLC method.  Replicate injections 

(n=5) on day 1 resulted in mean retention times of 13.4 and 14.9 min for R- and 

S-verapamil (Table 42).  The precision at each retention time was good 

(CV<2%).   

Table 42: Day 1 repeatability data for R-and S-verapamil (HPLC Method C1). 

Injection 

number 

R-verapamil 

retention time 

(min) 

 

S-verapamil 

retention time 

(min) 

R-verapamil 

peak area 

(LU) 

S-verapamil 

peak area 

(LU) 
1 13.0 14.5 1007 1008 

2 13.5 15.0 1020 1020 

3 13.5 15.1 1018 1017 

4 13.5 15.0 1016 1018 

5 13.5 15.0 1015 1014 

Mean 13.4 14.9 1015 1015 

%  CV 1.68 1.60 0.46 0.45 

 

Blank injections gave no detector response at the retention times corresponding 

to   R- and S-verapamil, indicating that there was no carryover.  The mean 

retention times obtained on day 2 were identical to those obtained on day 1 
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(Table 43).  The precision at each retention time on day 2 was very good 

(CV<0.5%).   

Table 43: Day 2 repeatability data for R-and S-verapamil (HPLC Method C1). 

Injection 

number 

R-verapamil 

retention time 

(min) 

 

S-verapamil 

retention time 

(min) 

R-verapamil 

peak area 

(LU) 

S-verapamil 

peak area 

(LU) 

1 13.5 15.0 1017 1016 

2 13.5 15.0 1020 1019 

3 13.4 14.9 1015 1014 

4 13.4 14.9 1018 1018 

5 13.4 14.8 1019 1020 

Mean 13.4 14.9 1018 1017 

%  CV 0.32 0.49 0.19 0.25 

 

4.3.3 Compatibility of the protein precipitation extraction and HPLC 

method C1 

Protein precipitation extraction Method 2 was assessed for its compatibility with 

chiral HPLC Method C1.  Specifically, human clinical plasma filtrates were 

assessed for the presence of components eluting at the retention times of R- and 

S-verapamil.    

4.3.3.1 Assessment of detector interference from plasma filtrate 

Pre-dose plasma samples were pooled across all subjects and subjected to protein 

precipitation extraction and HPLC analysis (Method C1; Section 7.6.4).  Pooled 

samples were used to retain the plasma and in addition, to capture subject 

specific interferences that may be present.  Subject 2 did not complete the 

microdose only part of the study and so plasma was not available.  The absence 

of detector response at the retention times of R- and S-verapamil indicated no 

appreciable interference.   

4.3.3.2 Assessment of fraction alignment and isotopic fractionation 

Post-dose human plasma samples were pooled across all subjects, spiked with      

non-labelled verapamil to allow R- and S- verapamil to be identified in the UV 
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chromatogram, and subjected to protein precipitation extraction.  Plasma filtrate 

was analysed by chiral HPLC Method C1 (Section 7.6.5).  Discrete fractions 

were collected at 12 s intervals across the elution times of R- and S-verapamil 

(11.0 to 12.6 min).  Aliquots of each fraction were analysed by AMS and the 

pMC values determined.  

Table 44: Verification of R-and S-verapamil peak purity. 

Fraction start / 

end time (min) 

Fluorescence 

response 
pMC 

Fraction 

number 

pMC per 

enantiomer 

11.0 / 11.2 R-verapamil 12.89 20 

1845.48 11.2 / 11.4 R-verapamil 1612.40 21 

11.4 / 11.6 R-verapamil 220.19 22 

11.8 / 11.8 N/A <LOQ 23   

11.8 / 12.0 S-verapamil <LOQ 24 

1829.48 
12.0 / 12.2 S-verapamil 626.92 25 

12.2 / 12.4 S-verapamil 1159.48 26 

12.4 / 12.6 S-verapamil 43.38 27 

 

From the fluorescence response, seven fractions were identified to correspond to 

either R- or S-verapamil.  Six of these fractions contained quantifiable levels of 

14
C as measured by AMS (Table 44).  For S-verapamil, the 

14
C was contained 

within fractions 25 to 27.  Fraction 24 was identified from the fluorescence 

response as containing unlabelled S-verapamil, though this was a very small 

amount eluting at the start of the analyte peak.  The corresponding fraction was 

below the AMS LOQ (Section 7.11.4.1).  The fraction that separated the two 

enantiomers was also below the LOQ, showing their resolution.  In addition to 

confirming that 
14

C-R- and S-verapamil were aligned with the peaks identified by 

the fluorescence detector, this experiment also determined the ratio of R- and S-

verapamil at 50.2:49.8 R:S.  
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4.3.4 Development of a HPLC method for demonstration of separation of 

R- and S-verapamil (Method D1) 

To ensure complete resolution of 
14

C-R- and S-verapamil from 
14

C-containing 

components in the clinical plasma samples, an orthogonal element was built into 

the separation.  A C18 method for the resolution of verapamil from its 

metabolites was obtained (Phenomenex, personal communication).  The Waters 

Xterra MS C18 column (Method D1; Section 7.8.2) was eluted with 20 mM 

potassium phosphate: acetonitrile:water 22:35 v/v with a gradient decreasing 

from 90:10 v/v to 43:57 v/v over 5 min.  These conditions were maintained for 7 

min after which the ratio was decreased to 20:80 v/v over 1.5 min, then to 10:90 

over 1.5 min.  The elution gradient was followed by a column flush and re-

generation (Section 7.8.2).  The retention time of verapamil was 11.2 min (Figure 

66). 

 

Figure 66: HPLC chromatogram of verapamil at λex 276 nm and λem 290 nm (Method D1). 

4.3.4.1 Assessment of method repeatability  

The repeatability of the C18 HPLC Method D1 was evaluated by analysis of 

replicate injections (3 x 1 µL) of verapamil (1 mg/mL; Section 7.2.4) followed 

immediately by a blank injection after the third replicate for evaluation of 
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carryover.  Replicate injections (n=3) resulted in mean retention times of 11.2 

min for day 1 and 11.3 min for day 2 (Table 45).  The precision on each occasion 

was good (CV<0.78%).  Blank injections gave no appreciable detector response 

at the retention time corresponding to verapamil, indicating that there was no 

detectable carryover.  

Table 45: Intra-day and inter-day repeatability data for verapamil (HPLC Method D1). 

 Injection 

Number 

Day 1 verapamil 

retention time (min) 

Day 2 verapamil 

retention time (min) 

1 11.3 11.3 

2 11.2 11.4 

3 11.1 11.2 

Mean 11.2 11.3 

%  CV 0.78 0.56 

 

4.3.5 Verification of the chromatographic separation of R- and S-

verapamil  

Prior to its application in the clinical study the combination of the two 

chromatographic methods (chiral and C18 stationary phases) was evaluated to 

ensure that the R- and S-verapamil obtained was chromatographically resolved 

from other 
14

C-containing components present in clinical samples of human 

plasma (Section 5.3.1).  Four plasma pools were created at time-points chosen to 

represent a range of times across which metabolites may be formed.     

 microdose only – 5 and 12 h post administration; 

 microdose and therapeutic dose – 1 and 24 h post administration. 

Plasma filtrates were prepared and analysed by chiral HPLC (Method C1; 

Section 7.8.2).  Discrete fractions were collected across the retention times for R- 

and S-verapamil, reduced to dryness under N2 and reconstituted in initial mobile 

phase composition.  An aliquot of each reconstituted eluate was analysed by 

HPLC using C18 Method D1.  Fractions of 15 s duration collected over the 

second dimension separation for R- and S-verapamil were analysed by AMS and 
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the concentration (dpm) of each fraction determined and plotted vs. the fraction 

collection time (Section 7.6.6; Figure 67 and Figure 68).  R- and S-verapamil 

concentrations of the 12 h and 24 h plasma samples and S-verapamil 

concentrations of the 5 h plasma samples were below the AMS LOQ (Section 

7.11.4.1).   

 

Figure 67: Reconstructed R-verapamil radio-chromatogram, legend:  blue line = 1 h, red 

line = 5 h. 
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Figure 68: Reconstructed S-verapamil radiochromatogram legend:  blue line = 1 h, red line 

= 5 h. 

All of the detectable 
14

C recovered from R- and S-verapamil fractions collected 

using the chiral HPLC method was contained exclusively in the fractions 

corresponding to the retention time of verapamil on C18 analysis.  The absence 

of 
14

C in the eluate collected over the remainder of the chromatogram verified 

that the HPLC fractions corresponding to the R- and S-verapamil peaks obtained 

during chiral HPLC separation contained only the 
14

C-analyte.  Of the plasma 

samples analysed at the four time points only the 1 h (R- and S-verapamil) and     

5 h (R-verapamil) fractions were above the LOQ.  Thus, employing the method 

in the quantification of R- and S-verapamil, would limit the data obtained, due to 

the amounts of 
14

C being close to the LOQ.  Increasing the injection volume for 

the chiral separation from 50 to 100 µL would double the amount of radioactivity 

in the aliquot collected for AMS and this was applied in the analysis of clinical 

plasma samples (Chapter 5). 
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4.3.6 Determination of the internal standard concentration 

The amount of internal standard (non-labelled verapamil) for HPLC analysis 

must be above the LOQ of the fluorescence detector, without exceeding the 

linear range (Section 1.10.7.2).  In addition, inherent levels of non-labelled 

analyte must be negligible with respect to the amount of internal standard added.  

Due to the administration of the microdose (50 µg) with the therapeutic dose (80 

mg) in period 2, non-labelled R- and S-verapamil concentrations are expected to 

be much higher than those in period 1, where R- and S-verapamil concentrations 

result from the microdose (50 µg) alone. 

4.3.6.1 Assessment of detector response linearity 

Verapamil solutions were prepared over the range 3.13 – 2500 ng for each of R- 

and S-verapamil (Section 7.2.4) and fluorescence response for chiral HPLC 

Method C1 (5 µL; Section 7.8.2) assessed with triplicate injections at each 

concentration.  The amount of analyte vs. detector response gave R
2 

of > 0.999 

for both analytes over the range 3.125 ng to 500 ng (Figure 69 and Figure 70).  

R- and S-verapamil showed a non-linear fluorescence response between 500 ng 

and 2500 ng (data not shown).         

 

Figure 69: Assessment of detector response for R-verapamil (R
2
=0.999). 
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Figure 70: Assessment of detector response for S-verapamil (R
2
=0.999). 

4.3.6.2 Determination of non-labelled verapamil in clinical plasma 

Based on published data, the expected Cmax of verapamil after administration of 

the 80 mg dose is 29.1 – 97.5 ng/mL [174].  The protein precipitation extraction 

and HPLC methods developed above (Sections 4.3.1, 4.3.2 and 4.3.4) assume the 

following: 

 plasma volume taken for extraction – 200 µL; 

 plasma filtrate reduced and reconstituted – 200 µL; 

 reconstituted plasma filtrate analysed by C18 HPLC – 100 µL; 

 HPLC fraction reduced to complete dryness under N2 and reconstituted in 

chiral mobile phase and the entire volume taken for chiral HPLC 

analysis – 100 µL. 

Application of the dilutions noted above results in the equivalent of 1/10
th

 of the 

analyte that is present in 1 mL of plasma being available for chiral HPLC 

analysis.  Hence, assuming a Cmax of 97.5 ng/mL, which is the maximum quoted 
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value, 9.75 ng of verapamil or 4.88 ng of each enantiomer is expected to be 

present in every HPLC fraction, giving a fluorescence response of approximately 

40 LU (determined from the linearity data).    

4.3.6.3 Calculation of internal standard amount 

Addition of internal standard to plasma, such that 500 ng is present in the 

reconstituted plasma filtrate taken for chiral HPLC analysis (100 µL), results in a 

fluorescence response of approximately 2200 LU per enantiomer (from Figure 69 

and 70).   

The maximum estimated amount of 
12

C inherent to the samples collected in 

period 2 is 40 LU, representing 1.8% of internal standard peak response (2200 

LU) assuming 100 % process recovery.   

Thus the amount of IS required for chiral HPLC analysis was determined as 500 

ng, significantly above inherent 
12

C, while remaining in the linear range of the 

fluorescence detector.    

4.3.7 Development of a method for quantification of 
14

C-R- and S-

verapamil in plasma by HPLC-AMS 

A quantification method to complement the extraction and separation methods 

was developed (Figure 71) by modifying the recovery curve quantification 

method described previously (Section 1.10.6).   

 

 

 

 



164 

4.3.7.1 Confirmation of analyte purity 

The radiochemical purity value for verapamil provided by the supplier was 

99.6% (Section 7.2.3).  Non-labelled verapamil was purchased at 98.9% 

chemical purity (Section 7.2.2) and assessed for 
14

C contamination by AMS 

(Section 7.11) prior to development of the assay.  One replicate failed to meet the 

AMS acceptance criteria (Section 7.11.3).  The remaining four replicates 

returned pMC values below the LOQ of the AMS instrument (Section 7.11.4.1; 

Table 46). 

Table 46: Non-labelled verapamil analysis by AMS for determination of background 
14

C. 

Replicate pMC 

1 1.16 

2 Failed AMS acceptance criteria (Section 7.11.3) 

3 1.14 

4 0.97 

5 1.03 
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4.3.7.2 Preparation of the recovery curve 

 

Figure 71: Schematic of sample preparation and analysis for preparation of a recovery 

curve and QC samples.  

14
C-verapamil recovery standards and QC plasma samples were prepared 

(Section 7.4.2).  Solutions used in the generation of recovery standard and QC 

plasma were analysed by AMS (n=5; Section 7.11).  Spiking solutions with 

concentrations      >20 dpm/mL were diluted prior to AMS analysis.  Spiking 

solution concentration data and solvent volumes were used to calculate the 

concentration of each recovery standard and QC plasma sample (Table 47).  The 
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precision of the replicates was good (CV<15%).  Two values were excluded from 

calculations as they failed to meet the AMS acceptance criteria (Section 7.11.3).  

Table 47: Spiking solution AMS data and calculation of 
14

C-verapamil concentrations. 

Sample 

ID 

Target spiking 

solution / plasma 

concentration 

(dpm/mL) 

Spiking solution 
14

C-verapamil 

concentration 

(dpm/mL)
1
 

Calculated plasma 
14

C-verapamil 

concentration 

(dpm/mL)
2
 

Mean plasma 
14

C-verapamil 

concentration 

(dpm/mL)
3
 

  132.0 8.25  

  116.2 7.26  
Recovery 120 / 7.5 108.6 (7.8) 6.79 7.51 / 3.76 

Standard 1  117.1 7.32  
  127.2 7.95  

  49.71 3.11  
  50.21 3.14  

Recovery 60 / 3.75 47.39 (11.1) 2.96 3.27 / 1.64 

Standard 2  62.30 3.89  
  52.33 3.27  

  9.790 0.612  
  12.14 0.759  

Recovery 12 / 0.75 13.12 (14.3) 0.820 0.763 / 0.382 

Standard 3  LCU LCU  
  13.77 0.861  

  5.925 0.370  
  6.436 0.402  

Recovery 6 / 0.375 5.949 (6.1) 0.372 0.387 / 0.194 
Standard 4  6.748 0.422  

  5.918 0.370  

  0.6924 0.0433  
  0.6159 0.0385  

Recovery 0.6 / 0.0375 0.6065 (11.7) 0.0379 0.0403/ 0.0201 
Standard 5  0.7467 0.0467  

  0.5587 0.0349  

  0.06130 0.00383  
  0.06160 0.00385  

Recovery 0.06 / 0.00375 0.06620 (10.8) 0.00414 0.00426 / 

0.00213 Standard 6  0.07690 0.00481  

  0.07480 0.00468  
  47.73 2.98  

  LCU LCU  

QC 40 / 2.5 45.09 (6.9) 2.82 2.80 / 1.40 
  45.88 2.87  

  40.48 2.53  
1
precision (% CV), 

2 14
C-verapamil (15 µL) added to plasma (225 µL), 

3
verapamil concentration / 

enantiomer concentration 

Recovery standard (n=5) and QC plasma (n=8) were subjected to protein 

precipitation extraction (Section 7.7.2), followed by C18 HPLC analysis (Method 

D1; 100 µL; Section 7.8.2).  Replicate 1 recovery standards were analysed first 

from the zero sample through to the sample of the highest concentration.  

Replicates 2 to 5 were analysed in sequence order in the same way.  QC samples 



167 

were interspersed among the recovery standards.  The fraction corresponding to 

verapamil was collected and reduced to complete dryness under N2.  Residues 

were reconstituted in the mobile phase initial composition (100 µL) and analysed 

by chiral HPLC (Section 7.8.2) with collection of discrete fractions over the 

retention times of R– and S-verapamil.  HPLC fractions corresponding to R- and 

S-verapamil were collected (approximately 550 µL) and aliquots taken for 

analysis by AMS (Section 7.11).   

HPLC data were reviewed throughout the analysis to ensure that 

chromatographic resolution of R- and S-verapamil was maintained.  A minimum 

resolution (Rs) of 2.15 was calculated for QC samples interspersed throughout 

the recovery curve standards.  The retention times of R- and S-verapamil varied 

by less than 0.5 min (Table 48).  

Table 48: QC resolution data for R- and S-verapamil.  

Replicate 
R-verapamil 

retention time (min) 

S-verapamil retention 

time (min) 
Rs 

1 12.0 13.6 2.14 

2 12.0 13.7 2.17 

3 12.2 13.8 2.15 

4 12.5 14.1 2.01 

5 12.2 13.8 2.19 

6 12.1 13.7 2.11 

7 12.1 13.7 2.21 

8 12.0 13.7 2.21 

Mean 12.1 13.8 2.15 

%  CV 1.39 1.09 2.97 
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4.3.7.3 Processing of AMS data to generate recovery curve 

A detector-based trigger activated by the fluorescence response was used to 

generate HPLC fractions.  As every analysis differs slightly due to differences in 

analytical recovery of the internal standard, the fraction volume may also vary 

slightly between samples.  The pMC value obtained on analysis of a HPLC 

fraction will vary depending on the sample volume.  The recovery curve 

quantification method described in Section 1.10.6 was modified to allow 

adjustments to be made to pMC values to account for these variations.     

The concentration of a 
14

C-R- and S-verapamil HPLC fraction assuming 100% 

analyte recovery was calculated (Equation 18). 

 
S

K
 F

F

p
c          Equation 18 

Where:  

Fc = fraction concentration (dpm) 

Kp = plasma concentration (dpm/mL) 

SF = sample processing factor 

Where SF accounts for plasma, HPLC fractions and plasma filtrate volumes 

(Equation 19). 

Ei

v

A

v

P

1
 x 

E

E
 x 

F

F
 SF        Equation 19 

Where:  

FV = total fraction volume (mL) 

FA = fraction volume taken for AMS (mL) 

EV = plasma filtrate volume (mL) 

EI = plasma filtrate volume analysed by HPLC (mL) 

PE = plasma volume extracted (mL) 

 

The HPLC fraction concentration (dpm) was then converted back to pMC (Equation 

20) and plotted on the x-axis.   
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100 x
φ

0.01356

ondpm/fracti
 

 recovery) (100% fraction per pMC   Equation 20 

The HPLC fraction isotope ratio (pMC) / IS detector response was plotted on the y-

axis.  The slope of the curve (m) and intercept on the y-axis (c) were determined and 

these values used to correct for losses in recovery on analysis of QC samples using 

Equation 21.  Note this equation gives the pMC of the entire fraction after correction 

for the procedural loss of analyte.  

mU

c-R
 fraction) per (pMC K

AX
     Equation 21 

Where RAX is the pMC of the entire fraction, and may be converted to a 

concentration of dpm/fraction via equation 22. 

0.01356 x 1.63 x 
100

fraction) per (pMC K
 ion)(dpm/fract K  Equation 22 

Converting the concentration from dpm/fraction to dpm/mL is carried out using 

Equation 23. 

=
Ei

v

P

1
 x 

E

E
  (dpm/mL) K        Equation 23 

The recovery curve x-axis was created as described above and a worked example is 

given below for clarity.   

The sample processing factor (SF; equation 19) for R-verapamil, recovery standard 1 

(3.76 dpm/mL), replicate 1 was 19.67, where the total fraction volume was 590 µL 

and 300 µL was taken for AMS analysis.     

=
0.2

1
 x 

0.1

0.2
 x 

0.300

0.590
 SF   
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Assuming 100% recovery, this sample processing factor was applied to the plasma 

concentration determined for recovery standard 1 (3.76 dpm/mL) to give the fraction 

concentration (Fc – dpm/fraction).  

 
19.67

3.76
 Fc =   

The radioactivity fraction concentration (0.191 dpm) was converted to pMC using 

equation 21. 

100 x 1.63  /  
(0.01356)

0.191
 recovery) (100% fraction per pMC =    

This calculation results in 864 pMC, which represents the isotope ratio for a HPLC 

fraction of volume 590 µL for recovery standard 1, and values calculated in this way 

form the x-axis of the recovery curve.    

4.3.7.4 Recovery curves and assessment of precision 

The AMS response for HPLC fractions from plasma at target concentrations of 

0.00375 dpm/mL were below the AMS LOQ (Section 7.11.4.3) and were not 

included in the recovery curve.  All remaining points were included.   
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Linear regression for the recovery curve for R-verapamil gave a slope (m) of 

0.000504 (Figure 72).  

 

Figure 72: R-verapamil recovery curve. 

The recovery curve for S-verapamil gave a slope (m) of 0.000463 (Figure 73). 

 

Figure 73: S-verapamil recovery curve. 
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The pMC of each QC was determined (Table 49).  All measured QC 

concentrations (individual and mean values) were within ±20% of the actual 

concentrations.  The precision of the method was 12.7% for R-verapamil and 

2.32% for S-verapamil.  The data were scrutinised to determine a cause of the 

slightly wider variation for R-verapamil compared to S-verapamil.  Although 

pMC data obtained on AMS analysis were slightly more variable, there was no 

obvious cause for this.  Despite this variation, the data still met acceptance 

criteria for accuracy and precision.   

Table 49: QC accuracy and precision data for R- and S-verapamil (n=8). 

Replicate 
R-verapamil plasma 

concentration (pMC) 

S-verapamil  plasma 

concentration (pMC) 

1 708 674 

2 707 645 

3 548 657 

4 743 651 

5 661 651 

6 615 680 

7 559 645 

8 539 635 

Mean plasma concentration (pMC) 635 655 

Actual plasma concentration (pMC) 633 633 

Mean accuracy (%) 99.7 103 

Mean precision (% CV) 12.7 2.32 
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4.3.8 Suitability of the developed methods 

A document including recommended procedures for carrying out a HPLC-AMS 

assay is now available [124].  In a similar way to the critique of the method 

developed in Chapter 2, the 2D chiral HPLC-AMS assay described here was 

assessed for suitability with respect to these recommendations, focusing 

specifically on; 1) the selectivity and chromatographic resolution of the analyte, 

2) carryover, 3) recovery and 4) accuracy and precision.  The importance of each 

of these factors is discussed in detail in Chapter 2.   

4.3.8.1 Selectivity 

Subjects chosen for this study had not participated in a 
14

C study in the year prior 

to commencing the present study, therefore the presence of background levels of 

14
C was minimised.  The presence of unknown 

14
C-metabolites was evaluated in 

pooled clinical plasma samples at 1, 5, 12 and 24 h.  The results demonstrated 

that the HPLC fraction corresponding to each analyte determined for the internal 

standard, contained 
14

C-analyte only, verifying the method for use.  The 

published HPLC-AMS guidance document suggests taking samples from the 

elimination phase at 1 – 2 times the half-life for such an investigation [124].  

Approximate half lives of R- and S-verapamil of 4.07 and 5.01 h are quoted in 

the literature for a 5 mg dose [174].  Due to levels being below the LOQ at 12 h, 

data were not available.  Ideally, this experiment would have been repeated prior 

to commencing with the study.  Data obtained at 1 h and 5 h (for R-verapamil 

only) showed that the enantiomers were well resolved.  In addition, although 

limited data were obtained prior to analysis of the clinical human plasma 

samples, all samples were eventually analysed using the two-dimensional 

method, which minimises the risk of co-elution. 
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4.3.8.2 Carryover 

Carryover of non-labelled material was assessed by HPLC in blank injections 

made following replicate injections of reference standards.  The absence of 

significant fluorescence detector response at the retention time of the analyte 

demonstrated negligible carryover.  
14

C carryover may also be determined from 

blank plasma analysed immediately after the analysis of the plasma samples 

containing relatively high concentrations of 
14

C, i.e. in QC or recovery standards.  

In retrospect, this should have been included in method development, and is a 

criticism of the method.  The inclusion of a blank plasma sample analysed 

immediately after recovery standard 1, would have confirmed that there was no 

carryover.  The data obtained show very low pMC values for samples at 0 

dpm/mL (pMC<1) indicating that the residual level of 
14

C in the system is at a 

minimum.  Accordingly an assumption is made that carryover between samples 

is also minimal.     

4.3.8.3 Recovery 

Recovery in a HPLC-AMS assay relates both to the mass and the radioactivity of 

the sample [124].  It is only the isotope ratio that is measured during AMS 

analysis and the majority of 
12

C measured is isotopic diluent, not 
12

C inherent to 

the sample.  It is recommended that the material used in the preparation of 

recovery standards and QCs contains the same 
14

C and mass ratio, i.e. has the 

same specific radioactivity, as the material administered to volunteers in the 

clinical study.  This eliminates mass concentration dependent effects during 

sample processing, particularly during the addition of 
14

C material to plasma, and 

the subsequent extraction of the analyte [124].   

Spiking solutions for preparation of recovery standards and QC plasma were 

prepared by dilution of the solution of radiolabelled material at the specific 

activity provided by the supplier.  An ethanol solution of non-labelled verapamil 

was added at a constant amount throughout the preparation of the recovery 

standards and QC plasma to act as both a diluent and internal standard (Section 

1.10.6).  This material was at a significantly higher level than that inherent to the 

sample.  Thus, the specific radioactivity was lower than that dosed in the clinical 
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study.  Although the radioactivity concentrations were representative of those 

measured in clinical samples, the mass concentrations were not, preventing direct 

translation of AMS measurement to mass concentrations.  Given that the specific 

radioactivity was not equivalent to that dosed in the clinical study, only 

comparisons at the pMC or dpm level could be made.  Although this makes the 

explanation of the data slightly more complex, it does not change the outcome of 

the study.    

4.3.8.4 Accuracy and precision of the assay 

Recommended guidelines for accuracy and precision of HPLC-AMS assays, 

state that measured QC values should be within 20% of the true concentrations 

and the error should not exceed 20%.  All QC data are within 20% of the true 

concentration and the precision of the R- and S-verapamil assay was 12.8% and 

2.3% respectively.  As discussed in Chapter 2 the most recently published 

recommended guidelines state that QCs should ideally be prepared at three 

concentrations encompassing the range of plasma concentrations anticipated in 

the clinical study (in mass/mL) [124].  

The guidelines also recommend that true plasma concentrations be determined by 

AMS.  In the work reported here, true concentrations were determined by 

analysis of spiking solutions used in the preparation of the spiked samples.  

These solutions were diluted where radioactive concentrations exceeded the 

AMS upper limit of detection.  This method introduces the potential for error due 

to the additional dilution step.  While the recommendation is for direct AMS 

analysis of plasma, this is only possible for samples with concentrations 

sufficiently above the AMS background.  Plasma samples have a natural 

background carbon level that is much higher than that of HPLC mobile phase, for 

example (110 pMC vs. 0 pMC).  Plasma concentrations generating a pMC<110 

must be estimated, either on dilution steps, or by direct analysis of spiking 

solutions. 

As in Chapter 2, a potential improvement to this method, which also introduces 

an independent measurement of plasma concentrations, is to determine plasma 
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concentrations by LSC analysis.  Determination of stock solution concentrations 

for a statistically accurate count time (typically at least 2%2σ) and accounting for 

dilutions in the calculation of plasma concentrations eliminates the introduction 

of sample manipulation.  The recommendations made in Chapter 2 for further 

development of a quantification method also apply here.   

The data were processed such that results from analysis of clinical plasma could 

be converted directly from pMC to mass concentrations per mL of plasma, 

without the need to determine the radioactivity concentrations per fraction (dpm) 

as an intermediate step.  Instead of constructing a recovery curve where the 

concentrations in HPLC fractions (in dpm/fraction) were plotted vs. plasma 

concentration (dpm/mL) as described in Chapter 2, the axes in this case represent 

pMC.  All analytical variables remained constant throughout the analysis, with 

the only variable being the volume of HPLC fractions.  As fractions were 

collected using a peak-based mode, triggered by the fluorescence response, the 

volume varied slightly between analyses.  Accordingly, the pMC value was 

determined for the aliquot taken and then corrected to account for the entire 

fraction.   
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4.3.9 Development of an alternative quantification method using a 

recovery constant 

Although the plasma samples used to generate the recovery curve encompass a 

range of 
14

C-concentrations, this is not essential, as AMS is known to be linear.  

Thus, an alternative single point calibration method is described here.  A 

recovery constant was determined for each concentration (n=5) measured for the 

recovery curve using Equation 24 [129]. 

 
U

F
= m

r
         Equation 24 

The fraction recovered (Fr) and UV response were used to determine a value for 

m, the recovery constant.  The fraction recovered is a value for the overall 

recovery of the analyte, expressed as a value of <1.  The calculated values for m 

range from 0.000465 – 0.000591 LU/s for R-verapamil and 0.000445 – 0.000571 

LU/s for S-verapamil.  Processing QC data for R- and S-verapamil using each 

recovery constant gave similar results to those obtained when using the recovery 

curve method (Table 50 and Table 51). 

Table 50: R-verapamil QC data calculated using m values determined from recovery 

constants (RC) and recovery curve (RS). 

 RC1 RC2 RC3 RC4 RC5 RS 

Accuracy (%) 

115 95.3 103 121* 102 112 

115 95.1 103 121* 102 112 

89.3 73.7* 79.5* 93.6 79.2* 86.6 

121* 100 108 127* 107 117 

108 88.9 96.0 113 95.5 104 

100 82.6 89.2 105 88.8 97.2 

91.0 75.1* 81.1 95.4 80.7 88.3 

87.9 72.6* 78.4* 92.2 78.0* 85.2 

Mean accuracy (%) 103 85.4 92.3 109 91.7 100 

* >±20% of actual concentration 
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Table 51: S-verapamil QC data calculated using m values determined from recovery 

constants (RC) and recovery curve (RS). 

 RC1 RC2 RC3 RC4 RC5 RS 

Accuracy (%) 

110 92.1 97.2 110 86.1 106 

105 88.2 93.0 106 82.4 102 

107 89.8 94.7 108 83.9 104 

106 89.0 93.9 107 83.1 103 

106 88.9 93.8 107 83.1 103 

111 93.0 98.0 111 86.8 107 

105 88.2 93.1 106 82.4 102 

103 86.8 91.6 104 81.1 100 

Mean accuracy (%) 107 89.5 94.4 107 83.6 103 

* >±20% of actual concentration 

Mean QC data for S-verapamil were accurate within ±20% of the target 

concentration, though 10 of 60 individual calculated recovery values for R-

verapamil were outside this range.  Although the precision for R-verapamil QCs 

was previously calculated to be higher than for S-verapamil (12.8% CV 

compared to 2.3% CV), all individual values were within ±20%.  Applying 

individually calculated RC values results in at least one sample on each occasion 

failing to meet an accuracy of ±20%.  The handling of the data in this way gave 

no significant change in the outcome of the QC data for S-verapamil, but R-

verapamil data points were affected.  This highlights greater variability in the R-

verapamil method compared to S-verapamil.  On examination of the data, it is 

apparent that the variability stems from variability in pMC data obtained on 

analysis of HPLC fractions as all peak area data are similar.  The recovery curve 

method used in subsequent calculations results in all individual data points 

falling within ±20%, and hence is an acceptable method for quantification.  The 

manipulation of the data to determine recovery constants does present a possible 

improvement, though it would require further investigation of the variability of 

the data.     
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4.3.10 Dose solution preparation and analysis 

Dosing solution was prepared at the Medical University of Vienna.  Dosing 

solution comprised 
11

C-R-verapamil, 
14

C-verapamil and non-labelled verapamil 

(Section 5.3.1.2).   

4.3.10.1 Dosing solution analysis and determination of specific activity 

In order to determine the specific activity of the dosing solution, the amount of     

non-labelled verapamil must be accurately calculated.  This was complicated by 

the addition of 
11

C-R-verapamil, which results in a disruption to the natural 50:50 

ratio of R- and S- verapamil present.  This ratio was determined by HPLC-UV 

and used along with the calculated amounts present as a result of 
14

C-labelled 

and               non-labelled verapamil to determine the mass of each enantiomer.  

The mass and measured 
14

C-concentrations were used to determine the specific 

activity of each enantiomer in every dosing solution.  

4.3.10.2 Determination of 
14

C-verapamil concentration in dosing 

solution by LSC 

The concentration of all dosing solutions was determined by duplicate analysis of 

weighed aliquots of dosing solution by LSC (Section 7.9, Equation 25).  Mean 

duplicate data had a precision of less than 4% (Table 52).   

(g)  solutiondosing of weight

(g)  solutiondosing of dpm/g
  (dpm) ionconcentrat  solutionDosing    Equation 25 
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Table 52: Determination of 
14

C-verapamil concentration in dosing solution. 

Dosing 

solution 

Dose solution 

weight (mg) 

Concentration 

(dpm/mass taken) 

Concentration 

(dpm/g) 

Mean concentration 

(dpm/g)
1
 

P1, Sub 1 
25.9 1359.95 52507.7 

54462.1(3.59) 
24.6 1387.85 56416.5 

P2, Sub 1 
25.6 1742.59 68069.8 

69323.3  (1.81) 
25.3 1785.59 70576.7 

P2, Sub 2 
25.8 1160.16 44967.5 

44298.8  (1.51) 
26.1 1138.75 43630.1 

P1, Sub 3 
25.7 797.98 31050.0 

31750.7  (2.21) 
25.8 837.25 32451.4 

P2, Sub 3 
25.2 1282.24 50882.4 

50577.3  (0.60) 
25.2 1266.86 50272.1 

P1, Sub 4 
25.8 1946.55 75447.8 

76605.3  (1.51) 
25.6 1990.73 77762.8 

P2, Sub 4 
26.2 1352.41 51618.8 

52880.0  (2.39) 
25.1 1358.95 54141.2 

P1, Sub 5 
25.5 1452.58 56963.8 

57446.9  (0.84) 
25.6 1483.00 57929.9 

P2, Sub 5 
25.6 1743.16 68092.3 

69249.3  (1.67) 
24.4 1717.91 70406.2 

P1, Sub 6 
25.2 949.22 37667.6 

37596.7  (0.19) 
24.7 926.88 37525.7 

P2, Sub 6 
25.1 1079.00 42987.9 

42341.7  (1.53) 
25.8 1075.74 41695.4 

P1, Sub 7 
25.6 1172.04 45782.9 

46127.0  (0.75) 
25.6 1189.66 46471.0 

P2, Sub 7 
25.7 1126.36 43827.3 

45136.3  (2.90) 
24.7 1147.20 46445.2 

1
value in parentheses = % difference from the mean value, P = period, Sub = subject

 
 

4.3.10.3 Determination of amount of R- and S-verapamil present as a 

result of non-labelled and 
14

C-verapamil addition   

The specific radioactivity of the 
14

C-material was certified (Section 7.2.3) as 0.94 

GBq/mmol, which is equivalent to 1.146 x 10
5
 dpm/µg.  The weight of the 

dosing solution provided by the clinic was used along with LSC data to 

determine the amount of non-labelled R- and S-verapamil present in each dosing 

solution as a direct result of 
14

C-verapamil addition (Equation 26; Table 53). 

  
x2 (dpm/µg) material ledradiolabel neat ofactivity   specific

(dpm) ionconcentrat  solutiondosing
  (µg) M14   

   Equation 26 
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The non-labelled verapamil mass was 50 µg (25 µg per enantiomer).  The 

amount of non-labelled S-verapamil (M14S) was calculated using Equation 27. 

25   M M 1414s                                Equation 27 

Table 53: Determination of non-labelled verapamil present in 
14

C-verapamil.  

Dosing 

solution 

Mean 

dpm/g of 

dosing 

solution 

Weight of 

product 

solution 

(g) 

dpm/dose 

preparation 

Mass of     

non-labelled 

verapamil 

added (µg) 

Mass of 

each 

enantiomer 

(µg) M14 

Mass of 

S-

verapamil 

(µg) M14S 

P1, Sub 1 54462.1 4.8050 261690 2.28  1.14  26.1 

P2, Sub 1 69323.3 3.2212 223300 1.95 0.98 26.0 

P2, Sub 2 44298.8 6.8329 302690 2.64 1.32 26.3 

P1, Sub 3 31750.7 8.1773 259640 2.27 1.34 26.3 

P2, Sub 3 50577.3 5.2438 265220 2.31 1.56 26.6 

P1, Sub 4 76605.3 3.2066 245640 2.14 1.07 26.1 

P2, Sub 4 52880.0 4.5880 242610 2.12 1.06 26.1 

P1, Sub 5 57446.9 4.9803 286100 2.50 1.25 26.3 

P2, Sub 5 69249.3 3.6064 249740 2.18 1.09 26.1 

P1, Sub 6 37596.7 6.6034 248270 2.17 1.09 26.1 

P2, Sub 6 42341.7 4.1296 174850 1.53 0.77 25.8 

P1, Sub 7 46127.0 5.5782 257310 2.25 1.13 26.1 

P2, Sub 7 45136.3 6.0301 272180 2.37 1.19 26.2 

P1, microdose only, P2, microdose plus therapeutic dose, Sub = subject  

 

4.3.10.4 Measurement of R- and S-verapamil ratio in dosing solution 

by HPLC-UV  

Each dosing solution was analysed by the chiral HPLC (50 µL, weight recorded; 

Section 7.8.2) and the peak areas recorded.  UV detection was used, as 

fluorescence detection was not available with the instrument (Shimadzu; Section 

7.8.2) used for the analysis of dosing solution.  The method was transferred and 

repeatability confirmed prior to proceeding with analysis of dosing solutions.  All 

solutions were analysed in the same way.  Several samples were analysed in 

duplicate to assess variability between analyses.  The ratio of non-labelled R- and 

S-verapamil present was determined (Table 54).  
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Table 54: Determination of R- and S-verapamil ratio in dosing solution. 

Dosing solution 
R-verapamil 

peak area (mAU) 

S-verapamil 

peak area (mAU) 
R % S % 

P1, Sub 1 445487 379064 54.0 46.0 

P2, Sub 1 328346 249447 56.8 43.2 

P2, Sub 2 420491 261570 61.7 38.4 

P1, Sub 3 229400 187812 55.0 45.0 

P2, Sub 3 406497 313401 56.5 43.5 

P1, Sub 4 149263 59877 71.4 28.6 

P2, Sub 4 302185 230631 56.7 43.3 

P1, Sub 5 368048 298114 55.3 44.8 

P2, Sub 5 633296 387366 62.1 38.0 

P1, Sub 6 573815 448424 56.1 43.9 

P2, Sub 6 441580 351409 55.7 44.3 

P1, Sub 7 360255 262759 57.8 42.2 

P2, Sub 7 156429 101784 60.6 39.4 

P1, period 1 microdose only, P2, period 2 microdose plus therapeutic dose, Sub = subject  

Due to the small volume of dosing solution available, it was not possible to 

analyse all samples in duplicate, and therefore a selection of samples with 

sufficient sample remaining were analysed to determine the accuracy of the data 

(Table 55).  Duplicate analysis of dosing solutions administered to subjects 1, 3 

and 4 (period 1) and subject 3 (period 2) were analysed a second time and the 

percentage difference from the original result was determined to be less than 

0.45% (Table 55).   

Table 55: Confirmation of R-and S-verapamil ratio in selected samples of dosing solutions.  

Dosing 

solution 

R-verapamil 

peak area 

(LU) 

S-verapamil 

peak area 

(LU) 

R % 

% difference 

from original 

ratio 

S % 

% difference 

from original 

ratio 

P1, Sub 1 
445487 379064 54.0 

-0.09 
46.0 

0.11 
310241 264505 54.0 46.0 

P1, Sub 3 
229400 187812 55.0 

0.2 
45.0 

-0.24 
160418 130764 55.1 44.9 

P2, Sub 3 
406497 313401 56.5 

-0.25 
43.5 

0.32 
133358 103372 56.3 43.7 

P1, Sub 4 
149263 59877 71.4 

-0.18 
28.6 

0.45 
174801 70551 71.2 28.8 

P = period, Sub = subject 
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Original data for all solutions were, therefore, used in the calculation of the 

amount of R-verapamil present in dosing solutions (Table 56).  

verapamil-R of Ratio x
verapamil- Sof Ratio

M
  M

14s
14R             Equation 28 

Table 56: Determination of total mass of R- and S-verapamil present in dosing solution. 

Dosing 

solution 
R % S % 

Total S-

verapamil 

mass (µg) 

Total R-

verapamil 

mass (µg) 

P1, Sub 1 54.0 46.0 26.1 30.7 

P2, Sub 1 56.8 43.2 26.0 34.2 

P2, Sub 2 61.7 38.4 26.3 42.3 

P1, Sub 3 55.0 45.0 26.1 31.9 

P2, Sub 3 56.5 43.5 26.2 34.0 

P1, Sub 4 71.4 28.6 26.1 65.1 

P2, Sub 4 56.7 43.3 26.1 34.2 

P1, Sub 5 55.3 44.8 26.3 32.5 

P2, Sub 5 62.1 38.0 26.1 42.7 

P1, Sub 6 56.1 43.9 26.1 33.4 

P2, Sub 6 55.7 44.3 25.8 32.4 

P1, Sub 7 57.8 42.2 26.1 35.8 

P2, Sub 7 60.6 39.4 26.2 40.3 

 

The specific radioactivity (dpm / µg) was determined for R- and S-verapamil 

(Equations 29 and 30). 

14RM

/2 ionconcentrat    solutiondosing
 verapamil)-(Ractivity   Specific         Equation 29 

14SM

/2 ionconcentrat    solutiondosing
  verapamil)-(Sactivity   Specific        Equation 30 

Using the ratio of R- and S-verapamil present, the amount of non-labelled 

verapamil (50 µg) added to the dosing solution and the non-labelled verapamil 

resulting from addition of 
14

C-verapamil, the amount of R- and S-verapamil (µg) 

was calculated (Table 57).  The specific activities of R- and S-verapamil were 

calculated (Table 56).   
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Table 57: Determination of specific radioactivity of R- and S-verapamil in dosing solution.   

Dosing 

solution 

Total 

amount of 

R-verapamil 

(µg) 

Total 

amount of 

S-verapamil 

(µg) 

Amount of 
14

C 

verapamil per 

enantiomer 

(dpm) 

R-verapamil 

specific 

radioactivity 

(dpm/pg) 

S-verapamil 

specific 

radioactivity 

(dpm/pg) 

P1, Sub 1 30.7 26.1 261690 4.26 5.01 

P2, Sub 1 34.2 26.0 223300 3.27 4.29 

P2, Sub 2 42.3 26.3 302690 3.58 5.76 

P1, Sub 3 31.9 26.1 259640 4.07 4.97 

P2, Sub 3 34.0 26.2 265220 3.90 5.06 

P1, Sub 4 65.1 26.1 245640 1.80 4.71 

P2, Sub 4 34.2 26.1 242610 3.55 4.65 

P1, Sub 5 32.5 26.3 286100 4.40 5.44 

P2, Sub 5 42.7 26.1 249740 2.92 4.78 

P1, Sub 6 33.4 26.1 248270 3.72 4.76 

P2, Sub 6 32.4 25.8 174850 2.70 3.39 

P1, Sub 7 35.8 26.1 257310 3.59 4.93 

P2, Sub 7 40.3 26.2 272180 3.38 5.19 

 

4.4 Conclusions 

This chapter details a method for the quantification of R- and S-verapamil in 

plasma involving two-dimensional chiral HPLC-AMS analysis.  Despite 

involving a complex multi-step process, accuracy and precision fall within the 

recommended guidelines pertaining to HPLC-AMS assay for accuracy and 

precision (±20%).  It should also be noted that standard bioanalytical guidelines 

require accuracy and precision to be within ±15%.  These acceptance criteria 

were intentionally widened due to the nature of a HPLC-AMS assay, specifically 

the number of off-line steps required.  In this particular case, the data meet both 

the HPLC-AMS recommended guidelines and the standard bioanalytical 

guidelines, the overall precision being <12.8%.  All QC plasma samples also had 

accuracies of <15% of the target concentration, with the exception of 1 replicate 

(R-verapamil, replicate 4) which was +20% from the target concentration.   
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Combination of accelerator mass 

spectrometry and positron emission 

tomography in the determination of R- and S-
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5.1 Introduction   

A typical microdosing study (Section 1.8) provides information on the 

distribution of a drug within the central blood compartment, but it does not 

provide information on the distribution of a drug within the rest of the body 

unless biopsy samples are taken.  In many cases, these may not be easily taken 

from healthy human volunteers.  Positron emission tomography (PET) is an 

imaging technique, which is used to monitor drug distribution in tissue and PK 

after the administration of a drug containing a positron-emitting radionuclide, 

either as a direct label or as a ligand.  Typical positron-emitting isotopes used in 

PET are 
11

C, 
13

N, 
15

O and 
11

F [175, 176].  These short-lived isotopes are unstable 

proton-rich or neutron-deficient isotopes, which achieve stability through the 

emission of a positron (β+).  The isotope used in this study, 
11

C, decays 

according to the following reaction (Equation 31) where β+ is the positron and ν 

is the neutrino: 

 keV) (97energy v β  B  C 1111      Equation 31 

After emission, the positron collides with electrons in the surrounding tissue, 

losing energy until it annihilates with an electron, typically within 1 to 2 mm of 

the labelled atom (Figure 74).   

 

Figure 74: 
11

C emission and collision with an electron.  

The annihilation of the positron with the electron produces two gamma rays, 

called annihilation photons.  These annihilation photons, each with 511 kEV of 
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energy are scattered perpendicular to the electron and are detected by the PET 

cameras which produce an image (Figure 75). 

 

Figure 75: Production of gamma rays and detection by PET camera. 

Positron emitting radionuclides have relatively short half-lives. 
11

C has a half life 

of 20.4 min, while 
18

F and 
15

O have half lives of 109.8 min and 2.0 min, 

respectively [175].  The experimental design of PET studies is limited by the 

short radioactive half-lives.  The 
11

C-labelled material must be prepared 

(normally in a cyclotron) in close proximity to the PET scanner to enable 

administration before significant radioactive decay has occurred.  In addition, 

dosing must be IV as there is insufficient time to measure absorption after extra-

vascular routes of administration.  The doses administered are normally at a high 

specific radioactivity, where each molecule of the drug administered contains 

one 
11

C isotope.  Due to the administration of this low mass, high radioactive 

dose, these studies are classed as microdose studies.   

While PET is advantageous in that it provides distribution data, the short half-

lives mean that the determination of PK data is only possible over short periods 

of time which is often impractical for studies requiring extended PK information.  

Combining the use of AMS and PET as complementary analytical techniques 

enables drug distribution and PK data to be obtained simultaneously in the same 

subjects, thus maximising the outcome of the study without significant extra 

resource.  
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A study was proposed, whereby a dual-labelled 
14

C and 
11

C microdose of 

verapamil was administered to human volunteers.  The aim of the study was to 

simultaneously determine PK in plasma, by AMS analysis, and in the brain, by 

PET analysis in the same subjects.  As verapamil is racemic, determination of the 

plasma PK of each individual enantiomer was proposed.  The study was a 

collaboration between the author and Claudia Wagner, a PhD student registered 

at the Medical University of Vienna.  The author was responsible for obtaining 

and interpreting AMS data only and these data are the focus of this chapter.  The 

PET methodology and data reported in this chapter were the work of Claudia 

Wagner and are presented for data comparison purposes.       

5.2 Aims 

The primary aims of the work presented in this chapter were (Figure 76): 

 to determine plasma PKs of R- and S-verapamil using 2 dimensional RP-

chiral chromatography; 

 to determine differences in PK parameters for R- and S-verapamil and to 

compare these observations with literature data; 

 to assess the linearity of PK data obtained after an intravenous microdose 

compared with that obtained after concomitant intravenous microdose 

and oral therapeutic dose; 

 to compare AMS data with brain imaging and PK data obtained after PET 

analysis. 
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Figure 76: Schematic of verapamil dosing, sample collection and analysis of plasma samples 

by HPLC and AMS.  

5.3 Results and discussion 

5.3.1 Clinical study   

5.3.1.1 Choice of test compound 

Verapamil was chosen as the test compound, as it has been studied extensively in 

PET studies and the chemistry of 
11

C-labelling is also well established [170, 177, 

178]  It is a calcium channel blocker with a well established safety profile [169].  

Verapamil is a racemic drug, with both enantiomers being substrates for P-gp.  

The P-gp-driven transport of verapamil across the blood brain barrier (BBB) has 

been the focus of several PET studies [73, 179, 180].  The clearance and hepatic 
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metabolism of S-verapamil in humans have been shown to be higher than for R-

verapamil, resulting in higher R-verapamil concentrations.  In addition, levels of 

protein binding are increased for S-verapamil, therefore suggesting that tissue 

uptake may also differ [170, 174].  As PET analysis cannot differentiate between 

the two enantiomers, the R-verapamil has been developed for the study of the 

kinetic modelling of PET data [169, 178, 180].  R-verapamil is metabolised 

through N-demethylation, O-demethylation and N-dealkylation, processes 

mediated by CYP.  N-demethylation forms the polar metabolites, norverapamil 

and 
11

C-formaldehyde, which account for approximately 70% of the total plasma 

radioactivity after 1 h in initial studies in rats [170].  The metabolites formed by 

N-dealkylation and O-demethylation have similar lipophilic properties to R-

verapamil and were found to cross the BBB readily.  As with verapamil, they are 

rapidly transported back out of the brain by P-gp.  Although the N-demethylation 

metabolites may also pass through the BBB they have no affinity for P-gp, 

resulting in significant amounts being present in the brain (approximately 50%) 1 

hour after administration [170, 178].   

Further studies in human volunteers showed a difference in the metabolism of         

R-verapamil to that observed in the rat.  Metabolism occurred mainly by the           

N-dealkylation route and to a lesser degree, N-demethylation.  O-demethylation 

metabolites were not found in the brain in humans.  The N-demethylation 

fraction accounted for approximately 20% of the blood radioactivity, compared 

to 70% in rats.  This lower blood concentration was suggested to be related to 

much lower concentrations of polar metabolites in the brain [178].   

While PET cannot differentiate between the verapamil enantiomers, they can 

each be determined during AMS microdosing studies as analytes can be 

separated by HPLC prior to AMS analysis.  The dose selected for the current 

study was a mixture of 
11

C-R-verapamil and 
14

C-verapamil.  Separation of the 

enantiomers prior to AMS analysis would allow determination of differences in 

PK to be determined.  The majority of PK studies only report data for racemic 

verapamil with only a few having investigated the PK parameters of the 

individual enantiomers [174, 181].  This is the first reported microdose study, 

where PK parameters are determined following microdose administration.      
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5.3.1.2 Clinical study design and implementation 

The clinical study was performed at the Medical University of Vienna, Austria in 

2008.  A clinical protocol was prepared and approved by the ethics committee of 

the Medical University of Vienna, and the Vienna General hospital.  The study 

was performed in accordance with the Declaration of Helsinki (1964, revised 

2000), the International Conference of Harmonisation (ICH) guidelines, good 

clinical practice (GCP) guidelines and the Austrian drug law 

(Arzneimittelgesetz).  Seven healthy male volunteers gave written consent for 

their involvement in the study and met required inclusion and exclusion criteria.   

The study was a crossover design, consisting of a dual labelled 
11

C-R-verapamil 

and 
14

C-verapamil microdose (period 1) and the same intravenous microdose               

co-administered with an oral therapeutic verapamil dose (period 2) separated by 

a 14 day washout period.  Period 2 was introduced to enable investigation of the 

linearity of R- and S-verapamil PK following a microdose and a therapeutic dose 

in the same subjects.   

5.3.1.3 Dose administration and sample collection 

Dose solutions were prepared at the Department of Nuclear Medicine (University 

of Vienna, Section 7.12.3) and transported to the PET camera.  Each volunteer 

received two identical intravenous doses of the microdose, the first administered 

alone (period 1) and the second administered 2 h following an oral therapeutic 

dose of verapamil at the estimated tmax of the oral dose (period 2) (Section 

7.12.4). 

Blood samples were collected at regular intervals to 24 h (Section 7.12.4) and 

throughout the first 60 min each volunteer was subjected to PET imaging 

(Section 7.12.4).  Plasma samples were prepared (Section 7.12.4) and the 

samples shipped to the AMS facility where they were stored at -80 ºC prior to 

analysis. 
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Six volunteers completed both study periods whilst one subject (2) completed 

period 2 only.  Subjects 1, 3, 6 and 7 completed period 1 first and subjects 4 and 

5 completed period 2 first.   

5.3.2 Determination of 
14

C-R- and S-verapamil concentrations in plasma 

Plasma samples were split into two batches consisting of period 1 and period 2 

samples (Section 7.12.4) and each batch of samples was randomised.  QC 

samples were prepared (Section 7.4.2) and replicates (n=8) interspersed 

throughout each batch of clinical plasma samples.  Plasma filtrates were prepared 

(Section 7.7.2) and aliquots (100 µL) were analysed by C18 HPLC (Method D1; 

Figure 77; Section 7.8.2) and fractions corresponding to 
14

C-verapamil, identified 

by the verapamil internal standard were collected and reduced to complete 

dryness under N2.   

 

Figure 77: Example chromatogram, analysis of plasma filtrate containing verapamil at λex 

276 nm and λem 290 nm (Method D1).. 

The residue was reconstituted in mobile phase at starting conditions (Method C1; 

Section 7.8.2; 100 µL).  The entire reconstituted HPLC fraction was analysed by 

chiral HPLC (Method C1; Figure 78; Section 7.8.2) and fractions corresponding 

to R- and S-verapamil collected.   
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Figure 78: Example chromatogram, analysis of reconstituted HPLC fraction containing 

verapamil at λex 276 nm and λem 290 nm (Method C1). 

Fractions were analysed by AMS (Section 7.11), pMC data corrected to account 

for fraction volumes (QCs) and converted to mass concentrations of R- and S-

verapamil (clinical plasma samples) via the recovery curve (Section 4.3.7.4). 

5.3.3 R- and S-verapamil data obtained after administration of a 

microdose of verapamil 

5.3.3.1 Period 1 batch suitability  

Analyte retention times showed a slight drift of approximately 0.3 min; however, 

peak resolution was ≥2.0 (Table 58).   

Table 58: Period 1 QC resolution data for R- and S-verapamil. 

Replicate 

R-verapamil 

retention time 

(min) 

S-verapamil 

retention time 

(min) 

Rs  

1 12.8 14.4 2.0 

2 12.4 14.1 2.1 

3 12.5 14.1 2.1 

4 12.7 14.3 2.0 

5 12.9 14.5 2.0 

6 13.0 14.6 2.1 

7 13.2 14.7 2.1 

8 13.2 14.7 2.2 

Mean 12.8 14.4 2.1 

%  CV 2.3 1.7 3.6 
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QC plasma data showed mean accuracy of 11% for R-verapamil and less than 

1% for S-verapamil with acceptable precision (CV<19%).  Four individual QC 

concentrations were between ±20% and ±25%, with a fifth, replicate 3                   

(R-verapamil), seeing a % difference of -27%.  The HPLC fraction for this 

sample had a pMC value that was slightly lower than the remaining samples 

within the data set.  The AMS data were examined and there was no indication of 

the root cause of this unexpectedly low result (Table 59).        

Table 59: Period 1 QC plasma concentration data for R- and S-verapamil. 

Replicate 

R-verapamil plasma 

concentration 

(pMC) 

S-verapamil plasma 

concentration 

(pMC) 

1 532 657 

2 536 482* 

3 464* 561 

4 502* 550 

5 528 697 

6 675 711 

7 776* 787* 

8 517 638 

Mean plasma concentration (pMC) 566 635 

Actual plasma concentration (pMC) 633 633 

Mean accuracy (%) 89.5 100 

Mean precision (% CV) 18.4 15.7 

           *< ±20% of isotope ratio for plasma 

Mean data for accuracy and precision were within the acceptance criteria stated 

in the recommended guidelines for accuracy (±20%) and precision (≤20% CV) 

[124] and based on these criteria the clinical plasma sample batch is deemed 

acceptable for use. 

5.3.3.2 Period 1 R- and S-verapamil plasma concentration data 

Plasma concentrations were mostly above the limit of quantification (>LOQ) of 

1.611 pMC (R-verapamil) and 1.696 pMC (S-verapamil) for all subjects (n=6) to 

24 h (Figure 79).  Exceptions to this were the final (24 h) samples for S-

verapamil (subjects 3 and 4) and R-verapamil (subject 4).  Individual subject data 
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and mean data are summarised in Appendices 6 and 7.  PK data are summarised 

in Appendices 12 and 13.   

 

Figure 79: Semilog plot of mean R-verapamil (triangles, n=6 to 12 h, n=5 to 24 h) and                

S-verapamil (squares, n=6 to 12 h, n=6 to 24 h) plasma concentration data after 

administration of an intravenous microdose (nominally 50 µg) of 
14 

C-verapamil (n=6).  

Error bars represent one standard deviation. 

The S-verapamil concentration for subject 1 at 6 h was unusually high within the 

data set at 38.6 pg/mL plasma.  This is a higher concentration than obtained for 

the previous three time points (3 h, 36.8 pg/mL; 4 h, 17.5 pg/mL and 5 h, 17.2 

pg/mL).  The mean half-life increases slightly on inclusion of this point in PK 

calculations (from 7.44 h to 7.57 h) and the V increases from 893 L to 905 L.  

The percentage difference when including and excluding this data point is small 

at less than 2%.  This value is excluded from the PK data summarised in Table 

60.  There was no significant difference between the mean half-lives (6.89 h and 

7.44 h) observed for R- and S-verapamil.  All other parameters (Table 60) were 

significantly lower for     S-verapamil than for R-verapamil (AUC0-t, AUC0-∞, CL 

and Vss (p<0.01); Cmax and V (p<0.05).  Inter-subject variability observed in PK 

parameters was moderate with CVs of approximately 24% and 28% for R-

verapamil and S-verapamil, respectively.    
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Table 60: Period 1 R- and S-verapamil microdosing pharmacokinetic summary data (n=6, 

mean, SD in parentheses). 

PK parameter R-verapamil S-verapamil 
Students t-test 

p value 

t1/2 (h) 6.89 (1.97) 7.44 (2.19) 0.336 

Cmax (pg/mL) 206 (77.9) 94.4 (28.0) 0.012 

AUC0-t (h.pg/mL) 607 (126) 291 (81.2) 0.005 

AUC0-∞ (h.pg/mL) 649 (147) 329 (88.3) 0.005 

CL (L/h) 58.2 (12.0) 84.6 (23.6) 0.004 

V (L) 556 (78.0) 893 (306) 0.029 

Vss (L)  374 (76.8) 622 (144) 0.005 

 

5.3.4 R- and S-verapamil data obtained after administration of a 

microdose of verapamil concomitantly with a therapeutic dose 

5.3.4.1 Period 2 batch suitability 

During the analysis of period 2 samples, the retention times drifted by 

approximately 2.7 min (Table 61).  Although the mean peak resolution was 1.3, 

individual values for resolution varied.  The column was regenerated once during 

these analyses (after analysis of replicate 6) because of the decreased resolution.  

Further column degradation was apparent towards the end of the analyses.  

HPLC fractions were collected based on a fluorescence detector trigger.  

Although the decrease in resolution is not ideal, the HPLC fractions were 

separated by a minimum of 0.28 min, ensuring that each peak contained pure R- 

or S-verapamil only.   
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Table 61: Period 2 QC resolution data for R- and S-verapamil. 

Replicate  

R-verapamil 

retention time 

(min) 

S-verapamil 

retention time 

(min) 

Rs 

1 13.6 15.2 1.9 

2 13.7 15.3 1.6 

3 13.8 15.3 1.6 

4 13.6 15.2 1.6 

5 16.7 17.7 1.0 

6 16.9 18.0 0.9 

7 16.0 17.2 1.5 

8 16.8 18.9 0.9 

Mean 15.1 16.6 1.3 

% CV 10.5 9.1 27.8 

 

To investigate the decrease in resolution further and to confirm that this was 

appropriate for the measurement, the mean (±SD) of peak areas for period 1 and 

period 2 analysis were summarised and determined (Table 62).   

Table 62: Comparison of period 1 and period 2 mean pharmacokinetic data for R- and             

S-verapamil. 

Period Enantiomer  Mean peak area (LU)
1
 

1 R-verapamil 1540 (220) 

2 S-verapamil 1440 (184) 

1 R-verapamil 1490 (258) 

2 S-verapamil 1421 (192) 

       1 
SD in parentheses 

Although a slight decrease in peak area for R-verapamil was observed for batch 2 

compared to batch 1, it was also mirrored for S-verapamil.  This suggests that the 

overall analyte recovery for batch 2 was slightly lower than for batch 1 and the 

data were therefore accepted.    

QC plasma data showed mean accuracy within 5% and good precision (CV > 

15%) for R- and S-verapamil (Table 63).  
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Table 63: Period 2 QC plasma concentration data for R- and S-verapamil. 

Replicate 

R-verapamil plasma 

concentration 

(dpm/mL) 

S-verapamil plasma 

concentration 

(dpm/mL) 

1 446* 649 

2 592 621 

3 602 592 

4 605 723 

5 695 794* 

6 715 828* 

7 714 706 

8 714 757 

Mean plasma concentration (pMC) 635 709 

Actual plasma concentration (pMC) 633 633 

Mean accuracy 100 112 

Mean precision (% CV) 14.8 11.8 

           *< ±20% of isotope ratio for plasma 

Three samples had recoveries that showed greater variability than ±20%.                

R-verapamil replicate one had a slightly elevated peak area, but lower pMC value 

than the remainder of the samples, resulting in an overall recovery of 70%.  In 

addition, the accuracy of replicate six was 122%.  There was no indication of 

unusual variation in either the peak area, or pMC value for this sample.  In 

addition, mean values for accuracy and precision were within ±20% and 20% 

CV.  Clinical plasma batch data were deemed acceptable for use.   

5.3.4.2 Period 2 R- and S-verapamil plasma concentration data 

Plasma concentrations were above the limit of quantification (>LOQ) of 1.611 

pMC (R-verapamil) and 1.696 pMC (S-verapamil) for all subjects (n=7) to 24 h 

(Figure 80), with the exception of the final (24 h) sample for S-verapamil 

(subject 6).  In addition, concentration data were not obtained for several 

samples, due to the data failing to meet the AMS acceptance criteria (Section 

7.11.3).  These samples were R-verapamil, subject 5 collected at 12 h, subject 6 

collected at 1 h and subject 7 collected at 3 h.  For S-verapamil, the 0.75 h 

sample for subject 2 was excluded.  Individual subject data and mean data are 

summarised in Appendices 6 and 7.  PK data are summarised in Appendices 12 

and 13.  
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Figure 80: Semilog plot of mean R-verapamil (triangles, n=6) and S-verapamil (squares, 

n=6 to 12 h, n=5 to 24 h) plasma concentration data, after administration of an oral 

therapeutic dose (80 mg) of verapamil, followed by an intravenous microdose (nominally 50 

µg) of 
14

C-verapamil (n=6).  Error bars represent one standard deviation. 

All PK parameters are significantly lower (p<0.01) values for S-verapamil when 

compared to R-verapamil, with the exception of t1/2 (Table 64)  Inter-subject 

variability observed in PK parameters was moderate with CVs of approximately 

27% and 23% for R-verapamil and S-verapamil respectively.  Subject 2 was 

excluded from mean PK assessments, as this subject did not complete both study 

periods.  These data are shown in Appendices 7, 12 and 13. 
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Table 64: Period 2 R- and S-verapamil microdosing pharmacokinetic summary data (n=6, 

mean, SD in parentheses) 

PK parameter R-verapamil S-verapamil 
Students      

t-test p value 

t1/2 (h)  6.27(1.30) 7.72 (1.59) 0.075 

Cmax (pg/mL)  240 (83.1) 105 (34.2) 0.003 

AUC0-t (h.pg/mL)  793 (276) 321 (65.3) 0.004 

AUC0-∞ (h.pg/mL)  831 (288) 354 (54.4) 0.005 

CL (L/h)  46.7 (11.4) 75.3 (12.0) 0.000 

V (L)  420 (122) 851 (276) 0.003 

Vss (L)  285 (73.0) 584 (196) 0.003 
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5.3.5 Comparison of period 1 and 2 data and assessment of dose linearity 

The PK data for period 2 show a general trend towards a slightly higher Cmax,   

AUC0-24h and AUC0-∞ and lower CL, and Vss than those obtained for period 1 

(Figure 81 and Figure 82).   

 

Figure 81: Semilog plot of mean R-verapamil plasma concentration data, after 

administration of an intravenous microdose (nominally 50µg) of 
14

C-verapamil (filled 

triangles, n=6) and after administration of an oral therapeutic dose (80 mg) of verapamil 

followed by an intravenous microdose (nominally 50µg) of 
14

C-verapamil (open triangles, 

n=7).  Error bars represent one standard deviation. 
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Figure 82: Semilog plot of mean S-verapamil plasma concentration data, after 

administration of an intravenous microdose (nominally 50µg) of 
14

C-verapamil (filled 

triangles, n=6) and after administration of an oral therapeutic dose (80 mg) of verapamil 

followed by an intravenous microdose (nominally 50µg) of 
14

C-verapamil (open triangles, 

n=7).  Error bars represent one standard deviation. 

The increase is not statistically significant except for V for R-verapamil (Table 

65), which decreases from 556 L for period 1 to 420 L during period 2 (p<0.05).      

Table 65: Comparison of period 1 and period 2 mean pharmacokinetic data for R- and             

S-verapamil. 

PK parameter 

R-verapamil % 

difference 

between P1 & P2 

Students     

t-test p 

value 

S-verapamil % 

difference 

between P1 & P2 

Students      

t-test p 

value 

t1/2 (h) -9.94 0.533 3.65 0.804 

Cmax (pg/mL) 14.4 0.474 10.3 0.564 

AUC0-t (h.pg/mL) 23.4 0.165 9.28 0.500 

AUC0-∞ (h.pg/mL) 21.8 0.200 7.07 0.568 

CL (L/h) -24.5 0.120 -12.3 0.411 

V (L) -32.4 0.044 -4.89 0.809 

Vss (L) -31.4 0.066 -6.60 0.706 
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The statistical difference is likely to be an anomalous result, as V is related to CL 

and t1/2 by Equation 32.  Since there is no significant difference between t1/2 and 

CL then according to Equation 32, there should not be a significant difference in 

V due to the relation of V to the t1/2 and CL.     

0.693 x /CLV  t  d1/2                     Equation 32 

There is no significant difference between the R-verapamil t1/2 and CL 

determined in period 1 and period 2.  The individual PK data (Appendix 12) do 

not appear to contain outliers that could contribute to this anomaly.  V shows 

higher precision in period 1 (14%) compared with period 2 (29%).  Although this 

parameter shows a statistical difference at the 95% confidence level, this is not 

statistically different at 99% confidence.  The statistical difference between the 

two parameters, therefore, should be treated with caution.   

A previous study showed that dose dependent kinetics were observed after oral 

administration of verapamil.  Verapamil was found to show non-linear PKs over 

the range 100 µg (microdose) to 80 mg, with AUCs being 1.19, 1.83 and 2.30 

times higher after a 3, 16 and 80 mg oral dose compared with the microdose [93].  

This non-linearity was hypothesised by the authors to be due to saturation of 

intestinal CYP3A4 and MDR1 (Section 1.8.1).  The same magnitude of 

difference in AUC was not observed in the present study after administration of a 

50 µg microdose and a 50 µg microdose concomitantly administered with an 80 

mg oral dose.  Differences in AUC of 1.4 and 1.1-fold were observed for R- and 

S-verapamil respectively between the two doses.  These data do not show the 

same non-linearity, which supports the findings made in previous studies, where 

dose non-linear PK tend to be observed after extra-vascular routes of 

administration but not observed on oral administration (Section 1.8.1).     

5.3.6 Comparison of R- and S-verapamil pharmacokinetics with previous 

studies 

All PK parameters obtained for R-verapamil compared with S-verapamil (period 

1) were statistically significant different with the exception of t1/2.  These 

differences were also reflected for period 2 samples.  The difference in the 
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metabolism of R- and S-verapamil is well documented [174, 182] and was 

quantified in a previous study after administration of a 5 mg IV dose [174].  

Table 66: Comparison of R-verapamil pharmacokinetic data obtained after administration 

of a microdose and a microdose concomitantly with an oral therapeutic dose of R/S-

verapamil, with literature data obtained after a 5 mg intravenous dose. 

Nominal dose 
Number 

of subjects 
t1/2 (h) CL (L/h) V (L) Vss (mL) Source 

50 μg 6 6.89 58.2 556 374 Present study 

50 µg (80 mg) 6 6.27 46.7 420 285 Present study 

5 mg
1 

5 4.07 45.1 266 200 [174] 

Factor difference, 50 

µg to 5 mg 
5 1.7 1.3 1.4 1.9 [174] 

Factor difference, 50 

µg  (80 mg) to 5 mg 
5 1.6 1.0 1.6 1.4 [174] 

1
data were converted from reported units to those equivalent to measurements made in this study  

All PK data obtained in the present study agree with previously published data 

[174] within a factor of 2 (Table 66 and Table 67), with the data for S-verapamil 

showing slightly closer correlation (Table 67).  Verapamil, particularly the S-

enantiomer undergoes extensive first pass metabolism.  The preferential 

clearance observed for S-verapamil observed in both the current study and in 

previously reported data has been investigated in vitro.  In vitro studies showed 

that the enantiomers were found to be primarily converted to different 

metabolites, at different rates with CYP3A4, CYP3A5 and CYP2C8 [183].  

CYP3A4 resulted in the formation of norverapamil when S-verapamil was the 

substrate and D-617 when R-verapamil was the substrate, with similar Km values 

being obtained for both processes.  The Km value for CYP3A4 metabolism to D-

620 (a metabolite of norverapamil) was four-fold higher for R-verapamil than for 

S-verapamil.  CYP3A5 resulted in the equal metabolism of R– and S-verapamil 

to norverapamil, whereas D620 formation was two-fold higher for S-verapamil 

than for R-verapamil.  CYP2C8 also resulted in the formation of norverpamil as 

the major metabolite on administration of R- and S-verapamil [183].  Elevated 

Km values were observed for formation of D617 and PR-22 (a metabolite of 

norverapamil) from S-verapamil than from the racemic mixture.  These data 

support the preferential clearance of S-verapamil by CYP enzymes [183].   
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Verapamil is also a substrate for P-gp [177].  A previous study demonstrated that 

the uptake of verapamil into mouse brain by P-gp was found to be equal for both 

enantiomers.  The same study also confirmed in vitro, that there was no 

difference in the P-gp transport of R- and S-verapamil [177].  These findings 

indicate that the difference in the metabolism of R- and S-verapamil is due to 

CYP enzymes, primarily the CYP3A enzymes and not due to P-gp uptake.      

Table 67: Comparison of S-verapamil pharmacokinetic data obtained after administration 

of a microdose and a microdose concomitantly with an oral therapeutic dose of R/S-

verapamil, with literature data obtained after a 5 mg intravenous dose. 

Nominal dose 
Number 

of subjects 
t1/2 (h) CL (L/h) V (L) Vss (mL) Source 

50 μg 6 7.44 84.6 894 622 Present study 

50 µg (80 mg) 6 7.72 75.3 851 584 Present study 

5 mg 5 5.01 82.2 577 470 [174] 

Factor difference, 50 

µg to 5 mg 
5 1.5 1.0 1.5 1.3 [174] 

Factor difference, 50 

µg  (80 mg) to 5 mg 
5 1.6 1.1 1.5 1.2 [174] 

1
data were converted from reported units to those equivalent to measurements made in this study  

The findings reported here corroborate the pronounced differences in CL, V and 

Vss observed in studies after administration of an IV 5 mg dose and show that 

these differences can be detected after administration of a microdose.   

5.3.7 Comparison of R- and S-verapamil AMS data with PET data 

The PK data obtained after administration of 
14

C-verapamil were compared with 

the data obtained after PET analysis in the same subjects.  Total 
11

C-R-verapamil 

radioactivity concentrations measured in the brain by PET analysis and in arterial 

plasma using a gamma counter [184]  were plotted vs. the sampling time (Figure 

83 and Figure 84) and show no significant differences in the resulting AUCs.    
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Figure 83: Semilog plot of mean total 
11

C-radioactivity (squares) and 
11

C-R-verapamil 

(circles) in arterial plasma.  Period 1 = open symbols, period 2 = filled symbols.  

  

Figure 84: Semilog plot of total 
11

C-radioactivity in whole brain grey matter.  Period 1 = 

open symbols, period 2 = filled symbols.  
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11
C-R-verapamil concentrations measured in arterial plasma by solid phase 

extraction followed by HPLC [184] and plotted vs. collection time (Figure 84) 

show no significant differences between administration of doses in period 1 and 

period 2, suggesting no dose dependent effects.  It should be noted that R-

verapamil metabolism was slightly (but not significantly) lower for period 2, 

with the fraction of polar radiometabolites being reduced.  This correlates with 

the decrease in CL between period 1 and period 2 previously observed after 

analysis of 
14

C-R-verapamil.   

Although the degree of non-linearity is not statistically significant, this cannot be 

ignored.  This could be investigated further by carrying out an additional study 

whereby IV doses of verapamil are administered to volunteers at doses greater 

than 80 mg.  The data obtained for 
14

C-R-verapamil in the present study were 

more variable in period 2 than in period 1.  Thus enrolling a larger number of 

subjects may also be advantageous in such a study.  

5.4 Conclusions 

This study presents the first report of the quantification of R- and S-verapamil by 

C18-chiral HPLC-AMS after administration of an IV microdose.  Despite the 

complex methodology, consisting of off-line 2 dimensional C18 and chiral 

HPLC chromatography and the use of a bespoke quantification method, QC data 

analysed alongside clinical plasma samples showed mean accuracy and precision 

of <19%.  This variability, while slightly higher than that required for 

conventional bioanalytical studies (<15%) [185] agrees with recently published 

guidelines for bioanalytical studies using AMS analysis [124].  It should be 

noted, that these guidelines assume a single chromatographic method and 

additionally do not specifically apply to chiral methods, further highlighting the 

robust nature of the assay.  

In agreement with previous studies, significant differences were observed in CL, 

V and Vss for R- and S-verapamil, with S-verapamil showing higher clearance 

and volume of distribution.  These data support the use of a microdose in 

predicting the individual PK parameters of enantiomers after administration of a 
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racemic mixture.  PK parameters for each enantiomer were compared across 

dosing periods and slight increases were observed in Cmax, AUC0-24h, AUC0-∞ 

values and decreases in CL, V and Vss for period 2 compared with period 1.  

With the exception of V for R-verapamil, none of these differences was found to 

be statistically significant.  Due to the small sample size it is not possible to 

determine whether the data set exhibits slight non-linearity as was predicted for 

verapamil at an 80 mg dose level [186].  As only V shows a statistically 

significant difference (p<0.05) but CL, Vss and t1/2 do not these data alone must 

be treated with caution.  This trend is supported by decreased metabolism of 
11

C-

R-verapamil for period 2 than for period 1, and cannot be ignored.  Further 

analysis would be necessary with larger numbers of subjects and the 

administration of a wider range of doses to ascertain whether this difference is 

due to an underlying dose dependent mechanism or whether these effects are true 

anomalies within the data set.    

PET imaging data provided the measurement of total 
11

C-R-verapamil 

concentrations in whole brain grey matter.  PET does not distinguish between 

unchanged drug and metabolites, however analysis of arterial plasma showed 

that 60 min after IV dosing, total plasma radioactivity was the sum of (R)-
11

C-

verapamil (42±8%), lipophilic N-dealkylation products (31±8%), and polar 

radiometabolites (28±9%) [184].  Administration of an oral and IV 
14

C-

microdose in the same subjects at a microdose, 10 mg, 80 mg, 160 mg and 240 

mg would open up the possibility of examining dose dependent effects.  In 

addition to this isolation and enantiomeric separation of each of the metabolites 

would enable differences in metabolism to be observed between the R- and S-

metabolites, and to determine dose dependent effects on their production.  

Inclusion of the oral dose would allow direct correlation between the two doses 

in the same subjects.  A previous study employed LC-MS as the analytical 

technique after administration of a 100 µg microdose [186].  The LOQ obtained 

was 1 pg/mL for verapamil compared with 1.5 pg/mL for           R-verapamil and 

S-verapamil in the present study.  Employing chiral LC-MS would be an obvious 

choice for these analyses.   
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The reported HPLC-AMS method resulted in the 24 h sample for several subjects 

being below the LOQ.  The following modifications would allow the LOQ to be 

reduced: 1) increasing the plasma volume taken for extraction, 2) reducing the 

reconstitution volume to concentrate the plasma filtrate; 3) taking the entire 

sample for HPLC analysis and 4) taking the entire fraction for analysis by AMS.  

In the present study the volumes for points 1) – 4) listed above were 200 µL, 200 

µL, 100 µL and approximately half of the resulting fraction.  Altering the amount 

of plasma taken for extraction to 400 µL, reconstituting the sample in 100 µL and 

taking this entire volume for HPLC analysis, and then analysing the entire HPLC 

fraction would result in the concentration of analyte taken for AMS being eight 

times greater, an LOQ of 0.2 pg/mL.  This LOQ may be more appropriate for the 

quantification of metabolites of R- and S-verapamil and the quantification 

method should be carefully considered.  

The data reported in this chapter show the value of combining PET and AMS 

after administration of a dual-labelled microdose.  Obtaining imaging data 

(Appendix 1) allows the distribution of the drug to be studied, while PK data are 

obtained simultaneously.  This could prove to be very useful in situations where 

outlier subject data are obtained.  For example, if a subject showed particularly 

unusual PET data, for example increased levels of drug concentration in the brain 

compared with other subjects, the corresponding plasma PK data may provide 

additional insight into the possible cause.   

PET cannot provide extensive data due to the short 
11

C-half life.  Adding a           

14
C-tracer to an already existing PET study could provide this valuable 

information, without significant additional resource.  The current study was 

complicated somewhat by the complex methodology required for separating and 

analyzing individual enantiomers and method development would be much 

reduced for a simpler compound.  Despite the complexities detailed here it has 

been demonstrated that enantiomeric mixtures may be analysed by HPLC-AMS, 

and the accuracy and precision of such data fall within recommended guidelines.  
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6.1 Overall summary and conclusions 

This thesis describes the development of two applications of microdosing for 

characterising human PKs prior to phase 1 clinical trials.  Separation and 

quantification techniques were developed for HPLC and AMS analysis of trace 

levels of drug compounds.  Application of these methods in the development of a 

NCE has the potential to reduce resource requirements.   

The first application was developed to explore the use of cassette microdosing in 

clinical trials and the ability of the cassette microdose approach to detect drug-

drug interactions.  Although cassette dosing is a valuable tool in drug candidate 

selection, it is not routinely utilised in phase 0 studies.  In the current study, a 2D 

C18-phenyl HPLC method was employed and separation was verified prior to 

clinical plasma sample analysis.  Due to the low doses administered, AMS was 

chosen as the quantification method.  Each analyte was quantified via a recovery 

constant method.  Mean accuracy for all analytes was within 13% of the 

measured plasma concentration with good precision (CV<20%), meeting 

recommended acceptance criteria for HPLC-AMS assays [124].   

In the current study, method development was simplified as information 

regarding the PK profiles and expected plasma metabolites of each analyte was 

available.  With NCEs, information regarding metabolism and PK is often 

limited and although cassette microdosing has its value, the unavailability of a 

suitable analytical technique may limit its use.  Administration of several NCEs 

within a cassette microdose would allow PK data to be obtained for multiple 

compounds within a single clinical trial.  A recent publication by a separate 

research group corroborates this use of cassette microdosing [117]. 

The PK data obtained after administration of a cassette microdose was shown to 

be quantitatively consistent with previously reported data for therapeutic doses.  

The study represents the first report of microdose PK data for caffeine and 

tolbutamide.  Although the data were obtained from a relatively small number of 

subjects, microdosing was able to detect differences in PK parameters potentially 

attributable to CYP polymorphisms.  The application of microdosing would be 
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particularly useful for detecting CYP2C9 polymorphisms, which vary widely 

across populations.   

PK parameters for each analyte determined after cassette microdose 

administration were significantly altered on co-administration of inhibitors.  The 

magnitude of DDIs in humans is often difficult to predict prior to clinical studies.  

The microdose DDI approach allows early identification of interactions 

involving CYP or P-gp.  The use of a microdose is not sufficient to cause enzyme 

saturation or show dose dependent effects and as a result, DDIs detected after a 

microdose may appear more pronounced than with therapeutic doses of an NCE.  

The observation of a DDI may be sufficient to enable a decision to be made as to 

whether to continue or abandon the development of the NCE.   

The ability to determine PKs of enantiomers after administration of a racemic 

drug was explored.  In the same way as in the cassette microdose study, complete 

resolution of R- and S-verapamil was achieved using a 2D-HPLC method.  Each 

analyte was quantified via a recovery constant which was derived from a 

recovery curve method.  Mean accuracy for both analytes was within 12% of the 

measured plasma concentration with good precision (CV<18%), meeting 

published recommended acceptance criteria for HPLC-AMS assays.  The method 

differed slightly from that developed for cassette microdosing in that each 

clinical plasma sample was subjected to two-dimensional chromatography, not 

just those samples selected for verification of analyte purity.  This method is 

particularly applicable where the quantification of the target analyte is hindered 

by the presence of a co-eluting metabolite.   

In agreement with previous studies, significant differences in several PK 

parameters were observed for R- and S-verapamil.  S-verapamil showed higher 

clearance and a larger volume of distribution when compared to R-verapamil.  

Significant differences were not observed for either enantiomer after microdose 

only vs. microdose concomitantly with a therapeutic dose.  This is the first report 

of the separation and quantification of enantiomers by HPLC-AMS after 

administration of a racemic microdose, which supports the applicability of the 

method in the study of enantiomeric mixtures in the early phases of drug 
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development.  S-verapamil is the pharmacologically active enantiomer and, 

although verapamil is administered in its racemic form, identification of 

enantiomeric PK differences may be advantageous in optimizing the 

development of racemic NCEs.   

PK data obtained in the brain and arterial plasma for 
11

C-R-verapamil were 

consistent with the data simultaneously obtained for 
14

C-R-verapamil, confirming 

the benefit of combining AMS and PET.  Combination of AMS and PET 

microdosing in a single clinical study allows long-term PK data to be obtained 

along with tissue distribution data in the same subjects.  Addition of a 
14

C-

labelled microdose to an existing PET study allows valuable information to be 

obtained without significant additional resource. 

6.2 Future work and applications 

Administration of a number of drugs within a cassette allows PKs to be obtained 

for all compounds in the same subjects after a single dose.  In addition to 

developing a method capable of completely resolving each analyte prior to AMS 

analysis, an additional challenge in a study of this type is the development of an 

analytical technique capable of quantification of each NCE, as the maximum 

permitted dose of 100 µg is shared between the components of the cassette.  

Although LC-MS/MS has been shown to be capable of quantifying analyte 

concentrations after microdose administration (typically 100 µg doses), 

quantification becomes more challenging as the dose decreases.  Estimations of 

the analyte LOQ may be made prior to commencing with a microdosing study, 

although are not always possible, due to limited NCE metabolism information.  

AMS, therefore, may be a more suitable technique in cases where a separation 

technique capable of resolving all analytes is also readily available or developed 

with minimal resource.   

The addition of a DDI study to an existing microdose NCE study could provide 

valuable data.  A simple study design would involve the administration of the 

NCE alone and with therapeutic doses of CYP or transporter inhibitors.  This 

approach was reported by a separate research group in 2011 and further supports 
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the application of microdosing in detecting DDIs [116].  Another useful 

development would be to replace the inhibitors with inducers, with a study 

design similar to the inhibitor assessment reported in this thesis.  If this concept 

was proven an efficient way of identifying induction effects, this may be added 

to the inhibitor study described above.    

Microdosing may be useful in obtaining PK data from humans in the disease 

state, for example subjects who are hepatically or renally impaired.  Because of 

ethical constraints, it is difficult to assess the magnitude that such impairments 

have on the metabolism and PKs of drugs, as the normal dose levels required 

may be harmful.  Administering a microdose to patients and to healthy 

volunteers (where baseline data are required) and comparing the PKs obtained 

would be a valuable application of the technology.  In addition, the examination 

of DDIs and the differences in the magnitude of such interactions may be 

explored using a study design similar to that reported in the thesis, without 

causing harm to the volunteer.  This approach would also be useful in the study 

of DDIs in the elderly, who are particularly vulnerable to DDIs and are often 

prescribed multiple drugs that are taken concomitantly.   

The addition of a 
14

C-labelled microdose to a PET study has a wide range of 

applications, particularly in the determination of PK together with the location of 

a drug within the body.  This approach would be of particular interest in cancer 

studies with a tumour being the target tissue.  The study would involve the 

concomitant administration of an IV dose of the drug labeled with both a 

positron emitter and a 
14

C label and an oral therapeutic dose.  This approach 

would allow absolute bioavailability data to be obtained together with 

information regarding the IV PK of the drugs and the amount of drug reaching 

the target tissue.  An area of recent research in cancer treatment is the co-

administration of cancer therapies with P-gp inhibitors to reduce the efflux of the 

drug from the tissue.  Administration of the dose described above with and 

without a P-gp inhibitor would enable the effectiveness of co-administration to 

be assessed and would provide an insight into the effect of the P-gp inhibitor on 

the plasma PKs. 
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An investigation that could be carried out to extend the current study would 

involve the quantification of the individual metabolites of R- and S-verapamil in 

plasma.  Although the differences in the PKs of R- and S-verapamil are well 

documented, the mechanisms underlying the differences are not as well defined.  

Quantification of the major N-demethylation, O-demethylation and N-

dealkylation metabolites of      R- and S-verapamil would provide information 

regarding the major routes of metabolism.  A further study could then be 

conducted to examine the metabolite concentrations for a microdose compared to 

therapeutic doses, particularly in the expected range where dose dependent 

effects may be observed.  Differences in metabolite concentrations could then be 

used to determine the metabolic pathways(s) affected by enzyme or transporter 

saturation after administration of increasing doses of verapamil.   

The applications of microdosing presented here have the potential to identify at 

the earliest stage of drug development NCEs with poor PK profiles, or those that 

pose significant risk due to DDIs.  Studying the distribution of a drug along with 

its plasma PK after microdose administration, provides valuable data which 

cannot currently be easily obtained during phase 0 studies with any other 

approach. Obtaining such data prior to a phase 1 clinical trial allows resources to 

be used most effectively, increasing the efficiency of a drug development 

program.   
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CHAPTER 7 

Materials and methods 

7 Materials and methods 
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7.1 Chemicals 

7.1.1 Reagents used in preparation of reference material, protein 

precipitation and HPLC analysis 

HPLC grade water, acetonitrile, methanol and formic acid were purchased from 

Fisher Scientific (Leicestershire, UK).  Ethanol, ammonium acetate (≥98%), 

potassium hexafluorophosphate (>99.5%), and monobasic potassium phosphate 

(≥98%) were purchased from Sigma Aldrich Company Ltd (Dorset, UK).  

7.1.2 Reagents used in LSC analysis 

Gold Star liquid scintillant was obtained from Meridian Biotechnologies Ltd, 

South Yorkshire, UK. 

7.1.3 Reagents used in the graphitisation process 

Liquid paraffin was purchased from Lloyds Pharmacy (Coventry, UK).  Copper 

(II) oxide wire, cobalt powder (100 mesh, 99.9%), zinc powder (100 mesh, 

99.9%), titanium (II) hydride (325 mesh, 98%) and aluminium powder were 

purchased from Sigma Aldrich Company Ltd (Dorset, UK).  Synthetic graphite 

(200 – 325 mesh, 99.99%) was purchased from Alfa Aesar (Lancashire, UK).  

Australian National University (ANU) sugar was purchased from Quaternary 

Dating Research Centre, Australian National University (Canberra, Australia). 

7.2 Reference material 

7.2.1 Control plasma 

Control non-filtered plasma (K2EDTA) was obtained from BioReclamation (New 

York, USA). 

7.2.2 Non-labelled reference material 

Caffeine, paraxanthine, theobromine, theophylline, fexofenadine, tolbutamide,        

4-hydroxytolbutamide, carboxytolbutamide, 1’-hydroxymidazolam,                          

4-hydroxymidazolam, fexofenadine, R/S-verapamil, R-verapamil and S-
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verapamil were obtained from Sigma-Aldrich Company Ltd. (Dorset, UK).  

Midazolam HCl was obtained from Toronto Research Chemicals (Ontario, 

Canada).  All reference material was obtained at >98% purity. 

7.2.3 14
C-labelled reference material 

14
C-caffeine (1,3,7-trimethyl-[

14
C]-1H-purine-2,6(3H,7H)-dione) and 

14
C-

tolbutamide (3-butyl-1-(4-methylphenyl)-[
14

C]-sulfonyl-urea) were supplied by 

American Radiolabelled Chemicals Inc. (Cardiff, UK) with specific activities of 

1.93 GBq/mmol and 2.04 GBq/mmol and radiopurities of >96% and >99%, 

respectively.
14

C-fexofenadine(2-[4-[1-hydroxy-4-[4-(hydroxy-diphenyl-[
14

C]-

ethyl)-1-piperidyl]butyl]phenyl]-2-methyl-propanoic acid), with a specific 

activity of 1.86 Gbq/mmol, was a gift from Sanofi-Aventis (Germany), and was 

re-purified by Biodynamics (Northamptonshire, UK) to a radiopurity of 98.9%.  

14
C-midazolam (4H-imidazo(1,5-a)-[

14
C]-(1,4)benzodiazepine,8-chloro-6-(2-

fluorophenyl)-1-ethyl) was supplied by F. Hoffman La Roche (Basel, 

Switzerland) with a specific activity of 1.9 GBq/mmol and radiopurity of >98%.  

14
C-verapamil (2-(3,4-dimethoxyphenyl)-5-{2-(3,4-dimethyoxyphenyl)ethyl-

[
14

C]-methylamino]-propan-2-ylpentanenitrile) was supplied by Biodynamics 

Research (Northamptonshire, UK) with a specific activity of 0.94 GBq/mmol and 

a radiopurity of >98%.   

7.2.4 Preparation of reference standard solutions 

All reference material was dispensed using an AT200 analytical balance (Mettler 

Toledo, Leicestershire, UK).  Solvent addition was performed using calibrated 

pipettes (Rainin LTS, Mettler Toledo, Leicestershire, UK).  All verapamil 

reference material was prepared in ethanol and the remainder prepared in 

acetonitrile, except where otherwise stated.  Solutions for determination of 

detector linearity were prepared at 200 – 1000 µg/mL (caffeine and tolbutamide), 

400 – 2000 µg/mL (midazolam and fexofenadine) and 3.13 – 1000 µg/mL for 

verapamil.  All other reference standard solutions were prepared at 1 mg/mL 

except where otherwise stated.   
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7.3 Preparation of internal standard solutions 

7.3.1 Preparation of caffeine, midazolam, tolbutamide and fexofenadine 

internal standard solution 

Non-labelled caffeine, midazolam, tolbutamide and fexofenadine (1.5 mg; 

Section 7.2.2) were dispensed into a 1 mL volumetric flask using an AT200 

analytical balance (Mettler Toledo, Leicestershire, UK).  Acetonitrile was added 

to the mark and the solution was vortex-mixed.  Where larger volumes of internal 

standard solution were required, the weights and volumes were scaled 

accordingly.     

7.3.2 Preparation of verapamil internal standard solution 

Non-labelled verapamil (783 µg; Section 7.2.2) was dispensed into a 10 mL 

volumetric flask using an AT200 analytical balance (Mettler Toledo, 

Leicestershire, UK).  Ethanol was added to the mark and the solution was vortex-

mixed.  Where larger volumes of internal standard solution were required, the 

weights and volumes were scaled appropriately.     

7.4 Preparation of recovery standard and QC plasma  

7.4.1 Preparation of caffeine, midazolam, tolbutamide and fexofenadine 

recovery standard and QC plasma  

Stock solutions of 
14

C-caffeine, 
14

C-midazolam, 
14

C-tolbutamide and 
14

C-

fexofenadine (Section 7.2.3) were diluted to a concentration of 2.5 x 10
5
 dpm/mL 

in acetonitrile.  Each 
14

C-stock solution was serially diluted (Table 68) to 

generate recovery standard and QC spiking solutions.   

 

 

 

 



220 

Table 68: Preparation of recovery standard and QC spiking solutions. 

Sample ID 
14

C  solution 

taken 

14
C 

concentration 

(dpm/mL) 

Volume of 
14

C-stock 

solution 

(µL) 

Volume of  

acetonitrile 

(µL) 

Final 
14

C 

concentration 

(dpm/mL) 

Recovery 

standard 1 

Diluted 
14

C-

stock solution 
250000 20 4980 1000 

Recovery 

standard 2 

Recovery 

standard 1 
1000 2000 2000 500 

Recovery 

standard 3 

Recovery 

standard 2 
500 1000 1000 250 

Recovery 

standard 4 

Recovery 

standard 3 
250 1000 1000 125 

QC 
Recovery 

standard 4 
125 320 1680 20 

Zero N/A 0 0 2000 0 

 

Spiking solutions and QC stock solutions (150 µL) were added to control human 

plasma (2850 µL; Section 7.2.1) to generate recovery standards at target 

concentrations of approximately 50, 25, 12.5 and 6.25 dpm/mL, and QC plasma 

at a concentration of approximately 1 dpm/mL. 

7.4.2 Preparation of verapamil recovery standard and QC plasma 

14
C-verapamil stock solution (10 µL; Section 7.2.3) was diluted with internal 

standard solution (Section 7.3.2) to a concentration of 3125 dpm/mL and 78.3 

µg/mL.  The 
14

C-stock solution was serially diluted (Table 69) with non-labelled 

verapamil (78.3 µg/mL) to generate recovery standard and QC spiking solutions. 
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Table 69: Preparation of recovery standard and QC spiking solutions. 

Sample ID 
14

C  solution 

taken 

14
C 

concentration 

(dpm/mL) 

Volume 

of 
14

C-

stock 

solution 

(µL) 

Volume of 

non-labelled 

standard in 

acetonitrile 

(µL) 

Final 
14

C 

concentration 

(dpm/mL) 

Recovery 

standard 1 

Diluted 
14

C-

stock solution 
3125 100 2500 120 

Recovery 

standard 2 

Recovery 

standard 1 
120 1000 1000 60 

Recovery 

standard 3 

Recovery 

standard 2 
60 400 1600 12 

Recovery 

standard 4 

Recovery 

standard 3 
12 1000 1000 6 

Recovery 

standard 5 

Recovery 

standard 4 
6 10 990 0.06 

QC 
Recovery 

standard 1 
40 500 1000 40 

Zero (LOQ) N/A 0 0 2000 0 

 

Spiking solutions and QC stock solutions (150 µL) were added to control human 

plasma (2250 µL; Section 7.2.1) to generate recovery standards at target 

concentrations of approximately 7.5, 3.75, 0.78, 0.0375 and 0.00375 dpm/mL 

and QC plasma at a concentration of approximately 2.5 dpm/mL.  The final mass 

concentration of each plasma sample was 4.9 µg/mL.   

7.5 Methods for determination of extraction efficiency   

All protein precipitation extractions were performed using a Sirocco protein 

precipitation extraction (PPE) plate (Waters, Hertfordshire, UK). 

7.5.1 Protein precipitation extraction method development for caffeine, 

midazolam, tolbutamide and fexofenadine from plasma (Method 1, 

2a, 2b and 3) 

Stock solutions of 
14

C-caffeine, 
14

C-midazolam, 
14

C-tolbutamide and 
14

C-

fexofenadine (Section 7.2.3) were spiked into plasma (Section 7.2.1; Table 70). 
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Table 70: Preparation of spiked plasma 

Analyte Concentration 

of stock solution 

(dpm/mL) 

Volume of stock 

solution (µL) 

Volume of 

plasma (µL) 

Caffeine 2.30 x 10
6
 10 2295 

Midazolam 2.48 x 10
6
 10 2475 

Tolbutamide 1.81 x 10
6
 10 1805 

Fexofenadine 2.88 x 10
6
 10 2880 

 

Accurate plasma concentrations of
 14

C-caffeine, 
14

C-midazolam, 
14

C-tolbutamide 

and 
14

C-fexofenadine were determined by direct analysis of each sample (2 x 100 

µL) by LSC (Section 7.9).  Protein precipitation solvent and plasma (n=2) were 

added to wells of the PPE plate (Table 71).  The plate was agitated (15 min) and 

placed under vacuum until the filtrate was collected (approximately 20 min).  

Plasma filtrates were analysed by LSC (entire filtrate volume, Section 7.9).   

Table 71: Sample volumes for protein precipitation extraction Method 1, Method 2a, 

Method 2b and Method 3. 

Method 

Volume of 

plasma 

extracted (µL) 

Extraction 

solvent /volume 

(µL) 

Reduction and 

reconstitution 

assessed? 

1 200 Acetonitrile / 600 Y 

2a 100 Acetonitrile / 200 N 

2b 100 Acetonitrile / 300 N 

3 100 Methanol / 200 N 

 

Additional samples (n=2) were subjected to PPE for Method 1 only.  The 

resulting filtrates were reduced to complete dryness under N2 and reconstituted in 

acetonitrile (200 µL).  Reconstituted plasma filtrates were analysed by LSC 

(entire filtrate volume; Section 7.9). 

7.5.2 Protein precipitation extraction method development for verapamil 

A stock solution of 
14

C-verapamil (1 x 10
5
 dpm/mL) was prepared in ethanol and 

spiked (200 µL) into plasma (3800 µL; Section 7.2.1).  The plasma concentration 

was confirmed by direct analysis of each sample (2 x 200 µL) by LSC (Section 
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7.9).  Protein precipitation solvent (600 µL) and plasma (200 µL; n=3) were 

added to wells of a PPE plate (Waters, Hertfordshire, UK; Table 72).  

Table 72: Sample volumes for verapamil protein precipitation. 

Method 

Extraction 

solvent /volume 

(µL) 

Reduction and 

reconstitution 

assessed? 

1 Acetonitrile N 

2 Acetonitrile Y 

3 Methanol N 

4 Methanol Y 

 

The plate was agitated (15 min) and placed under vacuum until the filtrate was 

collected (approximately 20 min).  Where an additional reduction and 

reconstitution step was required, filtrates were reduced to complete dryness 

under a stream of N2 gas and the dried filtrate reconstituted in 50 mM potassium 

hexafluorophosphate: acetonitrile 60:40 v/v (200 µL).  Each filtrate (entire 

volume) was analysed by LSC (Section 7.9).    

7.6 Preparation and analysis of plasma filtrates for assessment 

of HPLC method compatibility 

7.6.1 Preparation and analysis of plasma filtrate containing caffeine, 

midazolam, tolbutamide and fexofenadine for HPLC Method A3 

assessment  

Equal volumes of pre-dose human plasma from all subjects (Section 7.12.2) were 

combined to create a single pooled plasma sample.  Non-labelled caffeine 

reference standard (20 µL; 1 mg/mL; Section 7.2.4) was added to pooled pre-

dose plasma (980 µL).  Three further spiked plasma samples were prepared in 

the same way, each containing midazolam, tolbutamide or fexofenadine.   

Plasma (100 µL) was added to the wells of a PPE plate containing acetonitrile 

(200 µL; Method 2a) or methanol (200 µL; Method 3).  The plate was agitated 

(15 min) and placed under vacuum until the filtrate was collected (approximately 
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20 min).  Aliquots of each filtrate (100 µL) were analysed by HPLC under 

Method A2 conditions (Section 7.8.1). 

7.6.2 Preparation and analysis of plasma filtrate for HPLC Method A3 

assessment  

Equal volumes of pre-dose human plasma from all subjects (Section 7.12.2) were 

combined to create a single pooled plasma sample.  Plasma (100 µL) was added 

to methanol in the wells of a PPE plate.  The plate was agitated (15 min) and 

placed under vacuum until the filtrate was collected (approximately 20 min).  

Aliquots of each filtrate (100 µL) were analysed by HPLC under Method A2 

conditions (Section 7.8.1).  

7.6.3 Preparation and analysis of plasma filtrate for verification of 

caffeine, midazolam, tolbutamide and fexofenadine separation in 

clinical plasma  

Clinical plasma (100 µL; Section 7.12.4) was pooled across all subjects at the 

following time-points to yield eight pooled plasma samples: 

 1, 6, 12 and 24 h post administration, dosing period 1; 

 1,6,12 and 24 h post administration, dosing period 2. 

Caffeine, midazolam, tolbutamide and fexofenadine were dispensed (6 mg of 

each) into a single vial and acetonitrile (1 mL) added.  The solution (10 µL) was 

added to aliquots of each of the prepared pooled plasma samples (190 µL).  

Plasma (100 µL) was added to the wells of a PPE plate containing methanol (200 

µL).  The plate was agitated (15 min) and placed under vacuum until the filtrate 

was collected (approximately 20 min).  Aliquots of each filtrate (100 µL) were 

analysed by HPLC under Method A3 conditions (Section 7.8.1).  Fractions were 

collected across the retention times of caffeine, midazolam, tolbutamide and 

fexofenadine.  HPLC fractions were reduced to approximately 100 µL under N2 

and analysed by HPLC with phenyl stationary phase using Method B1 to Method 

B4 (Section 7.8.1).  HPLC fractions at the retention times of caffeine, 

midazolam, tolbutamide and fexofenadine were collected and analysed by AMS 



225 

(Section 7.11).  HPLC fraction concentrations were calculated via Equation 16 

(Section 2.3.6.2).      

7.6.4 Assessment of compatibility of protein precipitation extraction 

method with HPLC method C1 

Clinical pre-dose human plasma samples (Section 7.12.4) collected from all 

subjects were combined (100 µL) as follows: 

 plasma obtained from microdose only (period 1) – subjects 1, 3, 4, 5, 6 

and 7; 

 plasma obtained from microdose plus therapeutic dose (period 2) – 

subjects 1 – 7 

Pooled pre-dose plasma (200 µL) was added to wells of a PPE plate containing 

acetonitrile (600 µL).  The plate was agitated (15 min) and placed under vacuum 

until the filtrate was collected (approximately 20 min).  Filtrates were reduced to 

complete dryness under N2 and dried filtrates were reconstituted in 50 mM 

potassium hexafluorophosphate: acetonitrile 60:40 v/v (200 µL).  Aliquots of 

each filtrate (50 µL) were analysed by HPLC under Method C1 conditions 

(Section 7.8.2).    

7.6.5 Preparation and analysis of samples for assessment of verapamil 

fraction alignment and isotopic fractionation 

Equal volumes (100 µL) of human plasma collected from all subjects at 0.5 h 

(Section 7.12.4) were combined (period 1 only).  Pooled plasma (240 µL) was 

spiked with non-labelled verapamil in ethanol (1 mg/mL; 10 µL; Section 7.2.4).  

Pooled spiked plasma (200 µL) was added to wells of a PPE extraction plate 

containing acetonitrile (600 µL).  The plate was agitated (15 min) and placed 

under vacuum until the filtrate was collected (approximately 20 min).  Filtrates 

were reduced to complete dryness under N2 and dried filtrates were reconstituted 

in         50 mM potassium hexafluorophosphate: acetonitrile 60:40 v/v (200 µL).  

Aliquots of each filtrate (50 µL) were analysed by HPLC under Method C1 

conditions (Section 7.8.2).    
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7.6.6 Preparation and analysis of plasma filtrates for verification of the 

chromatographic separation of R- and S-verapamil  

Equal volumes (100 µL) of human plasma collected from all subjects at 1, 5, 12 

and 24 h (Section 7.12.4) were combined to create four plasma pools.   

 microdose only – 5 and 12 h post administration; 

 microdose and therapeutic dose – 1 and 24 h post administration. 

Each plasma sample (300 µL) was spiked with non-labelled verapamil (20 µL;         

1 mg/mL; Section 7.2.4).  Pooled spiked plasma (200 µL) was added to wells of 

a PPE plate containing acetonitrile (600 µL).  The plate was agitated (15 min) 

and placed under vacuum until the filtrate was collected (approximately 20 min).  

Filtrates were reduced to complete dryness under N2 and dried filtrates were 

reconstituted in 50 mM potassium hexafluorophosphate: acetonitrile 60:40 v/v      

(200 µL).  Aliquots of each filtrate (50 µL) were analysed by HPLC under 

Method C1 conditions (Section 7.8.2).  Discrete fractions of approximately 0.5 

min were collected across the retention times for R- and S-verapamil.  HPLC 

fractions were reduced to dryness under N2 and reconstituted in initial mobile 

phase composition (100 µL; Method D1; Section 7.8.2).  An aliquot (95 µL) of 

each reconstituted eluate was analysed by HPLC using C18 Method D1 (Section 

7.8.2).   

Fractions of 15 s duration collected over the second dimension separation for R- 

and S-verapamil were analysed by AMS and the concentration (dpm/fraction) 

determined via Equation 14 (Section 2.3.6.2).   

7.7 Preparation of plasma filtrates from clinical, recovery 

standard and QC plasma 

7.7.1 Preparation of plasma filtrates from clinical, recovery standard and 

QC plasma containing caffeine, midazolam, tolbutamide and 

fexofenadine 

Plasma (190 µL) was spiked with internal standard (10 µL; Section 7.3.1).  

Methanol (200 µL) and spiked plasma (100 µL) were added to wells of a PPE 
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plate.  The plate was agitated (15 min) and placed under vacuum until all the 

filtrate was collected (approximately 20 min).   

7.7.2 Preparation of plasma filtrates from clinical, recovery standard and 

QC plasma containing verapamil 

Clinical plasma (225 µL) was spiked with verapamil internal standard (Section 

7.3.2).  Acetonitrile (600 µL) and spiked clinical plasma (200 µL), recovery 

standard and QC plasma were added to wells of a PPE plate (Waters, 

Hertfordshire, UK).  The plate was agitated (15 min) and placed under vacuum 

until all the filtrate was collected (approximately 20 min).  The filtrate was 

reduced to complete dryness under N2 followed by reconstitution in 50 mM 

potassium hexafluorophosphate: acetonitrile 60:40 v/v (200 µL).   

7.8 HPLC methods 

All HPLC analysis was carried out using an Agilent 1200 series HPLC system 

fitted with a 96-well plate fraction collector (Agilent Technologies, Berkshire, 

UK) with the exception of the analysis of cassette dosing solutions which was 

performed using a Shimadzu LC10 (Shimadzu, Buckinghamshire, UK). 

7.8.1 HPLC methods for separation of caffeine, midazolam, tolbutamide 

and fexofenadine 

Reference standards (5-10 µL), plasma filtrates (50-100 µL) and reconstituted 

HPLC fractions (95-100 µL) were analysed under the following chromatographic 

conditions.   

 

 

 

 



228 

Table 73: HPLC Conditions for separation of caffeine, midazolam, tolbutamide and 

fexofenadine (Method A1). 

Column XTerra MS C18, 5 µm, 4.6 x 250 mm (Waters, Hertfordshire, UK) 

Column temperature 40°C 

Flow rate 1 mL/min 

UV detection 240 nm (midazolam, tolbutamide), 270 nm (caffeine),  

Fl detection 220 nm (ex) and 290 nm (em) 

Time (min) 0.1 M ammonium acetate (%) Acetonitrile (%) 

0 –  20 50 50 

 

Table 74: HPLC Conditions for separation of caffeine, midazolam, tolbutamide and 

fexofenadine (Method A2). 

Column XTerra MS C18, 5 µm, 4.6 x 250 mm (Waters, Hertfordshire, UK) 

Column temperature 40°C 

Flow rate 1 mL/min 

UV detection 240 nm (midazolam, tolbutamide), 270 nm (caffeine),  

Fl detection 220 nm (ex) and 290 nm (em) 

Time (min) 0.1 M ammonium acetate (%) Acetonitrile (%) 

0 90 10 

15 50 50 
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Table 75: HPLC Conditions for separation of caffeine, midazolam, tolbutamide and 

fexofenadine (Method A3). 

Column XTerra MS C18, 5 µm, 4.6 x 250 mm (Waters, Hertfordshire, UK) 

Column temperature 40°C 

Flow rate 1 mL/min 

UV detection 240 nm (midazolam, tolbutamide), 270 nm (caffeine),  

Fl detection 220 nm (ex) and 290 nm (em) 

Time (min) 0.1 M ammonium acetate (%) Acetonitrile (%) 

0 90 10 

7 81 19 

8 80 20 

9 79 21 

11 66 34 

14 62 38 

20 50 50 

22 10 90 

 

Table 76: HPLC Conditions for resolution of caffeine (Method B1). 

Column Synergi Polar RP, 4 µm, 4.6 x 250 mm (Phenomenex, Cheshire, UK) 

Column temperature 40°C 

Flow rate 1 mL/min 

UV detection 270 nm  

Time (min) Water (%) Methanol (%) 

0 90 10 

3 50 50 

5 10 90 

8 10 90 
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Table 77: HPLC Conditions for resolution of midazolam (Method B2). 

Column Synergi Polar RP, 4 µm, 4.6 x 250 mm (Phenomenex, Cheshire, UK) 

Column temperature 40°C 

Flow rate 1 mL/min 

UV detection 240 nm  

Time (min) 10 mM potassium phosphate (%) Acetonitrile (%) 

0 90 10 

3 50 50 

10 0 100 

11 0 100 

 

Table 78: HPLC Conditions for resolution of tolbutamide (Method B3). 

Column Gemini C6 phenyl, 3 µm, 4.6 x 150 mm (Phenomenex, Cheshire, UK)  

Column temperature 40°C 

Flow rate 1 mL/min 

UV detection 240 nm  

Time (min) 0.1% formic acid (%) Methanol (%) 

0 70 30 

25 10 90 

 

Table 79: HPLC Conditions for resolution of fexofenadine (Method B4). 

Column Gemini C6 phenyl, 3 µm, 4.6 x 150 mm (Phenomenex, Cheshire, UK)  

Column temperature 40°C 

Flow rate 1 mL/min 

Fl detection 220 nm (ex) and 290 nm (em) 

Time (min) Water (%) Acetonitrile (%) 

0 90 10 

10 10 90 
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7.8.2 HPLC methods for separation of R- and S-verapamil  

Table 80: HPLC Conditions for separation of R- and S-verapamil (Method C1). 

Column Lux Cellulose-1, 3 µm, 250 x 4.6 mm (Phenomenex, Cheshire, UK) 

Column temperature 25°C 

Flow rate 1 mL/min 

UV detection 220 nm 

Fl detection 276 nm (ex) and 310 nm (em) 

Time (min) 50 mM potassium hexafluorophosphate (%) Acetonitrile (%) 

0 60 40 

25 40 60 

30 10 90 

32 10 90 

NB: Shimadzu LC10 was used for the analysis of dosing solution, Agilent 1200 used for all other 

analysis 

Table 81: HPLC Conditions for isolation of verapamil (Method D1). 

Column XTerra MS C18, 5 µm, 4.6 x 250 mm (Waters, Hertfordshire, UK) 

Column temperature 25°C 

Flow rate 1 mL/min 

Fl detection 276 nm (ex) and 310 nm (em) 

Time (min) 
20 mM potassium  phosphate (aq.) 

(%) 

Acetonitrile: Methanol 22:35 v/v  

(%) 

0.0 90 10 

5.0 43 57 

12.0 43 57 

13.5 20 80 

15.0 10 90 

18.0 10 90 

 

7.9 LSC analysis 

Sample aliquots were added directly to Gold Star liquid scintillant in a liquid 

scintillation vial.  A blank sample was prepared, comprising liquid scintillant 

only and used for background subtraction.  The vials were capped, gently shaken 

and dark adapted for at least 1 h in a Tricarb 2770 TR liquid scintillation counter 

(Perkin Elmer, Cambridgeshire, UK) before counting to 2%2σ [187].  The 
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number of counts per min (cpm) for each sample aliquot was converted to dpm 

using Equation 33. 

(%) efficiency count

100
 (blank)) cpm - (sample) (cpm dpm  Equation 33 

7.10 Spectrophotometric analysis of caffeine, midazolam and 

tolbutamide  

A Shimadzu 1600 UV-visible spectrophotometer (Shimadzu, Buckinghamshire, 

UK) was used to determine the λmax prior to HPLC analysis.  A system 

performance check was performed and the baseline set to zero.  Samples were 

analysed in spectrum mode from 180 nm to 350 nm and the λmax recorded.   

7.11 AMS analysis 

7.11.1 Preparation of samples for AMS analysis 

Sample aliquots were added to quartz sample tubes containing copper (II) oxide     

(40 ± 10 mg) and liquid paraffin (containing 1.7 ± 0.17 mg carbon) and the 

aliquot volumes recorded.  Plasma samples were analysed with copper (II) oxide 

only.  Aliquot volumes are summarised in Table 82.   

Table 82: Sample volumes taken for analysis by AMS 

Sample type Aliquot volume (µL) 

Plasma 60  
12

C-reference standards (1 mg/mL solution) 200 
14

C-caffeine, midazolam, tolbutamide & fexofenadine spiking 

solutions 
50 

14
C-verapamil spiking solutions 50 

HPLC fractions (containing 
14

C caffeine) 375 (250) 

HPLC fractions (containing 
14

C fexofenadine) 375 (250) 

HPLC fractions (containing 
14

C midazolam) 250 (150) 

HPLC fractions (containing 
14

C tolbutamide) 250 (150) 

HPLC fractions (containing 
14

C R-and S- verapamil) 500 (300) 

    *values in parentheses are volumes used in repeat analysis  
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The following process controls were dispensed: 

 Copper (II) oxide and liquid paraffin (n=7), used to determine pMC of 

isotopic dilutor for background subtraction;  

 Copper (II) oxide and ANU sugar (n=6), used for data acceptance;  

 Copper (II) oxide and graphite (n=4), used to show 
14

C contamination had 

not occurred during sample processing;      

The maximum number of samples processed with each batch of controls was 

110.  Glass tubes were placed in a rotary evaporator (Savant environmental 

speedvac, Thermo Fisher, Leicestershire, UK) and reduced to complete dryness.  

Dried samples were subjected to graphitisation as described in brief in Section 

1.10.2 and according to Garner et al.  [188].  The borosilicate glass tube 

containing the graphite formed during the process was removed and carefully 

tipped into an aluminium cathode and compressed to form a tablet.  The samples 

and controls were placed into a 134-position AMS sample wheel for analysis.  In 

addition to the process controls, the wheel also contained a solid aluminium 

cathode (National Electrostatics Corp, Middleton, WI, USA) and two pre-

prepared synthetic graphite samples (machine blank) and a graphite sample 

(POCO Graphite Inc, Decatur, TX, USA) containing depleted levels of 
14

C which 

was used for instrument tuning.  In addition, pre-prepared graphitised ANU sugar 

(n=3) was also added for normalisation.   

7.11.2 AMS analysis of graphite samples 

The sample wheel was placed into the multi-cathode negative ion source (MC-

SNICS, NEC, WI, USA) [188] of the NEC 15SDH pelletron accelerator mass 

spectrometer (National Electrostatics Corp, Middleton, WI, USA).  The burn time for 

each sample was set to 600 cycles, with 1000 cycles (100.7 s) for each analysis.  
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7.11.3 AMS sample acceptance criteria 

Analyses were considered acceptable for sample and controls where the current 

was ≥ 1 µAmp, 
13

C/
12

C ratio was <1.1 ± 15% and at least three measurements 

were made on each cathode.  Where a sample exceeded the maximum number of 

counts, three full measurements were not made and the data were rejected.  A 

minimum of four ANU sugar, five liquid paraffin and two process graphite 

cathodes were required to meet the following acceptance criteria:   

1. Process graphite – pMC≤8 

2. ANU sugar – pMC =150.61± 15%  

3. Liquid paraffin – pMC≤8 

In addition machine and process control were required to meet the following 

acceptance criteria:   

1. Synthetic graphite – pMC≤3 

2. ANU sugar – pMC = 150.61±15% 

Where the minimum number of standards and controls failed to meet the 

acceptance criteria, the data for the entire wheel were rejected and the samples 

were reprocessed.   

7.11.4 Limit of quantification 

7.11.4.1 Limit of quantification for method development 

The LOQ for each sample batch was calculated by a statistical method as 

detailed by Young et al. [189].  The isotopic ratio of the isotopic dilutor (liquid 

paraffin, n=7) analysed with each batch of samples (≤110) was determined.  The 

LOQ was determined as the mean liquid paraffin + 5xSD. 
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7.11.4.2 Limit of quantification for caffeine, midazolam, tolbutamide 

and fexofenadine in clinical plasma 

The LOQ was determined from all liquid paraffin samples analysed throughout 

the 28 sample batches containing recovery curve, QC and clinical plasma HPLC 

fractions.  The LOQ was determined using the statistical method stated above 

(Section 7.11.4.1) as 3.833 pMC.   

7.11.4.3 Limit of quantification for verapamil in clinical plasma  

The LOQ was determined from control plasma (n=5) which was processed with 

the recovery curve, QC and clinical plasma samples.  The LOQ was determined 

using the statistical method stated above (Section 7.11.4.1) as 1.611 pMC (R-

verapamil) and 1.696 pMC (S-verapamil).   

7.12 Clinical study design and sample collection 

7.12.1 Preparation of cassette dosing solutions 

14
C-caffeine, 

14
C-fexofenadine, 

14
C-tolbutamide and 

14
C-midazolam (Section 

7.2.3) were prepared in ethanol and the concentration of each solution 

determined by LSC (Section 7.9).  Caffeine, midazolam, tolbutamide and 

fexofenadine (Section 7.2.2) were prepared in ethanol (1 mg/mL) and added (625 

µL) to a volumetric flask.  In addition, aliquots of 
14

C-labelled caffeine, 

midazolam, tolbutamide, and fexofenadine were added (Table 83).  Evian bottled 

mineral water (450 mL) was added and the flask filled to the mark with ethanol.  

The final solution was mixed well and sub-aliquoted (18 x 24 mL) and shipped to 

the clinic for dosing.  Dosing solutions were stored at 4°C for 24 days throughout 

the clinical study and routinely analysed to ensure sample integrity was 

maintained prior to dosing. 
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Table 83: Caffeine, tolbutamide, midazolam and fexofenadine dose solution analysis and 

determination of specific radioactivity. 

Analyte 
14

C-concentration 

(dpm/mL) 
Volume 

taken (µL) 

Amount of non-

labelled analyte 

added (µg) 

Specific 

activity 

(dpm/µg) 

Caffeine 4.59 x 10
6  

604 625 4440 

Tolbutamide 4.80 x 10
6 
 578 625 4440 

Midazolam 3.59 x 10
6 
 773 625 4440 

Fexofenadine 5.64 x 10
6 
 492 625 4440 

 

7.12.2 Cassette dose administration and sample collection 

Two hours after breakfast on day 1, a venous pre-dose plasma sample was 

collected from each of the six volunteers followed by administration of the first 

cassette microdose, which was taken with 100 mL water.  Venous plasma 

samples were collected at 0.25, 0.5, 0.75, 1, 2, 3, 4, 6, 8, 12, 24, 36, 48 and 72 h 

after administration.  After four days without treatment (days 4-7), fluvoxamine 

(100 mg tablet) and ketoconazole (2 x 200 mg tablets) were administered orally 

on day 8 after breakfast with 200 mL water.  This administration continued daily 

to day 17.  Two hours after breakfast on day 15, a venous pre-dose plasma 

sample was collected from each of the six volunteers.  Volunteers were 

administered a second cassette microdose (identical to day 1 administration).  

Venous plasma samples were collected at 0.25, 0.5, 0.75, 1, 2, 3, 4, 6, 8, 12, 24, 

36, 48 and 72 h after cassette microdose administration.  Blood samples were 

collected into pre-chilled vials containing EDTA and the tube inverted several 

times to ensure mixing.  Plasma samples were prepared by centrifugation at 1500 

g, for 10 min at 4°C.   

7.12.3 Preparation of verapamil dosing solution 

An aliquot (20 µL) of non-labelled verapamil solution containing a mass of 50 

µg of racemic verapamil (Section 7.2.2.1) was added to a sterile vial containing 

14
C-verapamil (approximately 4.2 x 10

5
 dpm in 200 µL of ethanol; Section 

7.2.3).  An aliquot (6 mL) of R-
11

C-verapamil (approximately 2.4 x 10
10

 dpm) 

was added to the same vial.  R-
11

C-verapamil was prepared in a cyclotron at the 
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Medical University of Vienna according to the method summarised by Abrahim 

et al. [169].  The sample was vortex-mixed and filtered (Millex-GS 0.22 µm) into 

a sterile (10 mL) vial.  The solution was diluted to 10 mL with sterile 

physiological saline solution and transported to the PET camera for dosing. 

7.12.4 Verapamil dose administration and sample collection 

On study day 1, each subject first ingested 500 mL of tap water.  A venous 

catheter was placed in one arm for drug infusion, and a radial artery catheter was 

placed in the same arm for arterial blood sampling.  A second venous catheter 

was place in the other arm for parallel venous blood sampling.  The radioactivity 

of the syringe containing the dosing solution was recorded using a well counter 

and once the 
11

C activity decreased to <450 MBq (2.7 x 10
10 

dpm) the dose was 

administered intravenously over 30 s into the first subject (approximately 2 h 

after administration of the non-labelled R-S verapamil).  The 
11

C activity 

remaining in the syringes was recorded along with the dose administration end 

time.  This was repeated for the remaining six volunteers.  Blood was sampled 

over a 24 h period and PET analysis performed over the first hour.  The PET 

images were acquired using an Advance PET scanner (General Electrics Medical 

Systems, WI, USA) run in 3D mode (Appendix 1).   

The process was repeated on study day 2 with the addition of an oral therapeutic 

dose of racemic verapamil (80 mg, Isoptin tablets, Abbott, Vienna), followed 2 h 

later by a second intravenous dose of labelled drug.  Blood sampling and PET 

analysis was carried out as on study day 1.  Venous blood samples were collected 

for AMS analysis after administration of the microdose only at pre-dose, 0.25, 

0.5, 0.75, 1, 2, 3, 4, 6, 8, 12 and 24 h.  Venous blood samples were collected at 

15, 30, 60 and 120 min after oral administration, plus 0.25, 0.5, 0.75, 1, 2, 3, 4, 6, 

8, 12 and 24 h after IV microdose administration.  Blood samples were collected 

into pre-chilled vials and the tube inverted several times to ensure mixing.  

Plasma was obtained by centrifugation of blood samples at 3000 g, for 10 min at 

room temperature.  
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7.13 Pharmacokinetic data analysis 

Pharmacokinetic calculations were performed using WinNonLin software, 

version 4.1 (Pharsight, Mountain View, CA, USA).   

7.13.1 Determination of pharmacokinetics of caffeine, midazolam, 

tolbutamide and fexofenadine  

The data input consisted of plasma drug concentrations (pg/mL), plasma 

sampling times (h) and the administered dose (25 μg).  Output consisted of Cmax, 

tmax, t1/2, AUC0-t and AUC0-∞.  AUCs were determined using a linear trapezoidal 

method.   

7.13.2 Determination of pharmacokinetics of R- and S-verapamil 

The data input consisted of plasma drug concentrations (pg/mL), plasma 

sampling times (h) and the administered dose (Section 4.3.11.3).  Output 

consisted of Cmax, tmax, t1/2, CL, V, Vss, AUC0-t and AUC0-∞.  AUCs were 

determined using a linear trapezoidal method.   

7.14 Statistical data analysis 

7.14.1 Statistical analysis of caffeine, midazolam, tolbutamide and 

fexofenadine data 

Statistical analyses were performed in Microsoft Excel.  PK data obtained from 

all subjects after each microdose administration (day 1 and day 15) were assessed 

for significant differences using a Student’s two-tailed t-test.  Outliers were 

determined using Dixon’s Q-test.   

7.14.2 Statistical analysis of R- and S-verapamil data 

Statistical analyses were performed in Microsoft Excel.  PK data obtained from 

subjects 1, 3, 4, 5, 6 and 7 for each enantiomer after microdose administration 

(period 1 and period 2) were assessed for significant differences using a 

Student’s two-tailed t-test.  Data for each enantiomer measured within the two 

periods were compared in the same way.   
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Appendix 1. PET analysis 

The PET data reported in the following section were produced in their entirety by 

the Medical University of Vienna.  Comparisons of these data with AMS data 

reported in this thesis are a result of a joint collaboration with Claudia Wagner 

and Oliver Langer at the University of Vienna.    

A1.1 PET and MRI analysis 

Imaging was performed with the volunteer positioned supine on the imaging bed 

of the PET camera, the head in a restraining device to prevent movement during 

imaging.  PET images were acquired with an Advance PET Scanner, which was 

run in 3D mode with a transversal field of view of 55 cm, axial field of view of 

15cm and axial slice thickness of 4.25 mm.  A transmission scan was performed 

prior to radiotracer injection to correct for tissue attenuation of photons.  The 

scan lasted 5 min using 400 MBq 
68

Ge.  After intravenous microdose 

administration, PET imaging commenced using the following frame sequence: 1 

x 15 s, 3 x 5 s, 3 x 10 s, 2 x 30 s, 3 x 60 s, 2 x 150 s, 2 x 300 s and 4 x 600 s.  A 

T1 weighted MRI scan of each subject was recorded 1 month prior to PET 

scanning and whole brain grey matter region of interested was defined using 

Hammersmith n30r83 3D maximum probability atlas of the human brain [190].  

MRI and PET data were processed as detailed by Langer et al. [180].  

Radioactivity concentrations (measured as kBq/g tissue) were converted into pg 

equivalents per mL using the specific radioactivity of the dose administered.  The 

mass of R-verapamil present in the dosing solution was determined in Section 

4.3.10.  The 
11

C-concentration was determined by LSC analysis immediately 

prior to dosing.      

A1.2 Blood and metabolite analysis 

Arterial blood and plasma concentrations were measured with a Packard Cobra II 

autogamma counter (Packard Instrument Company, Meridian, CT, USA).  The 

instrument was calibrated with the PET camera.   
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11
C-R-verapamil radiometabolite concentrations were quantified via an SPE-

HPLC method.  The polar metabolites were determined by SPE and lipophilic 

metabolite concentrations were determined by HPLC.   

The arterial input function of 
11

C-verapamil was corrected to account for polar 

radio-metabolites.  

A1.3 Pharmacokinetic modelling 

Standard 1-tissue 2-rate constant (1T2K) or 2-tissue 4-rate (2T4K) compartment 

models were fitted to concentration-time curves for 
11

C in whole brain grey 

matter.  Rate constants of radioactivity exchange were estimated (K1, k2, k3 and 

k4), along with volume of distribution (VT).   

A1.4 Statistical analysis 

Statistical analysis was carried out using STATISTICA software (Release 6.1, 

StatSoft, Inc, Tulsa, OK, USA).  Rate constants (K1, k2, k3, and k4) were 

compared using the Wilcoxon matched pairs test. 

A1.5 PET imaging data 

Transaxial PET summation images and MRI images were co-registered in order 

to determine the area of drug uptake in the brain.   
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Figure A1.1.  PET image of subject 1 brain after period 1 and period 2 microdose 

administration (left and centre) and MRI scan taken 1 month prior to PET analysis (right) 

The activity concentration was normalised to injected dose per subject body 

weight, and expressed as the standardized uptake value (SUV).  Figure A1.1 is a 

representation of the PET and MRI scans from subject 1 where the radiation 

scale was set from zero to 2.8 SUV.  The PET scan to the left was taken after 

period 1 dosing and the scan in the middle was taken after period 2 dosing.  The 

MRI scan on the right of the figure shows a transaxial T1-weighted MRI of the 

same subject.  A 2-tissue 4-rate constant model provided the best fit for the PET 

data and parameter estimates for the exchange of activity between plasma and 

brain returned from the 2t4k model were calculated.   

Table A1.1: Parameters obtained for 2-tissue-4-rate constant (2t4k) compartment model. 

Parameter 
1
Period 1 

1
Period 2 

K1 (mL/mL/min) 0.030±0.003 (10) 0.031±0.005 (9) 

k2 (min
-1
) 0.099±0.006 (49) 0.095±0.008 (40) 

k3 (min
-1
) 0.100±0.001 (90) 0.101±0.000 (96) 

k4 (min
-1
) 0.092±0.029 (26) 0.159±0.063 (42) 

Vd (mL/mL) 0.66±0.12 (4) 0.56±0.11 (2) 

VT (Logan) (mL/mL) 0.66±0.11 (2) 0.57±0.11 (1) 

  1 
mean ± SD (%CV) 

K1 and k2 describe the transport of activity from plasma to and from the first 

tissue compartment (by P-gp).  k3 and k4 characterise the exchange of activity 

between the first and second tissue compartments.  There were no significant 

differences in model outcome parameters between the 2 doses with the exception 

of k4 which was higher for dose 2 (p>0.05).  The volume of distribution (Vd) is 

not the same as the volume of distribution determined in standard PK analysis.  

For this specific model Vd is considered an estimate of the brain tissue-plasma 

partition coefficient at equilibrium.  An independent estimate of Vd was 

determined by application of Logan graphical analysis to PET and arterial 

plasma data (using MATLAB) to determine VT.  The Logan derived VT was in 

good agreement with compartmental derived Vd values. 
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Appendix 2. Caffeine plasma concentration data  

Table A2.1: Caffeine plasma concentration data after oral administration of microdose. 

Time 

(h) 

Plasma concentration (pg/mL) 

Subject 

1 

Subject 

2 

Subject 

3 

Subject 

4 

Subject 

5 

Subject 

6 
Mean SD 

% 

CV 

0 <LOQ <LOQ <LOQ <LOQ <LOQ <LOQ N/A N/A N/A 

0.25 55.4 183 144 491 171 436 247 175 70.8 

0.5 258 425 825 414 791 562 546 225 41.2 

0.75 410 476 560 258 690 366 460 152 33.0 

1 529 458 431 279 433 331 410 90.4 22.0 

2 385 392 286 232 291 275 310 64.2 20.7 

3 162 347 204 241 459 203 269 112 41.7 

4 273 213 198 163 307 186 223 55.2 24.7 

6 128 206 101 76.6 293 108 152 82.0 53.9 

8 139 142 90 67.5 248 68.7 126 68.2 54.2 

12 58.0 70.7 33.5 12.9 134 22.0 55.2 44.3 80.3 

18 19.8 19.5 16.6 <LOQ 62.0 <LOQ 29.5 21.7 73.7 

24 <LOQ 8.52 <LOQ <LOQ 29.3 <LOQ 18.9 14.7 77.7 

36 <LOQ <LOQ <LOQ <LOQ <LOQ <LOQ N/A N/A N/A 

48 <LOQ <LOQ <LOQ <LOQ <LOQ <LOQ N/A N/A N/A 

72 <LOQ <LOQ <LOQ <LOQ <LOQ <LOQ N/A N/A N/A 

<LOQ, below limit of quantification (pMC = 3.833)   

Table A2.2: Caffeine plasma concentration data after oral administration of microdose & 

inhibitors. 

Time 

(h) 

Plasma concentration (pg/mL) 

Subject 

1 

Subject 

2 

Subject 

3 

Subject 

4 

Subject 

5 

Subject 

6 
Mean SD 

% 

CV 

0 <LOQ <LOQ <LOQ <LOQ <LOQ <LOQ N/A N/A N/A 

0.25 143 647 454 708 560 82.4 247 175 70.8 

0.5 593 523 720 751 580 212 546 225 41.2 

0.75 593 498 688 504 709 894 460 152 33.0 

1 669 595 492 445 638 479 410 90.4 22.0 

2 406 549 735 420 562 365 310 64.2 20.7 

3 472 613 704 419 435 361 269 112 41.7 

4 641 445 465 444 500 409 223 55.2 24.7 

6 529 452 570 402 489 441 152 82.0 53.9 

8 395 365 408 467 421 604 126 68.2 54.2 

12 314 402 294 346 468 366 55.2 44.3 80.3 

18 254 258 305 302 434 333 29.5 21.7 73.7 

24 142 322 268 243 363 259 18.9 14.7 77.7 

36 136 191 183 221 400 267 N/A N/A N/A 

48 56.8 110 110 156 337 193 N/A N/A N/A 

72 14.8 52.2 48.4 86.3 198 147 N/A N/A N/A 

<LOQ, below limit of quantification (pMC = 3.833)   
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Appendix 3. Midazolam plasma concentration data  

Table A3.1: Midazolam plasma concentration data after oral administration of microdose.   

Time 

(h) 

Plasma concentration (pg/mL) 

Subject 

1 

Subject 

2 

Subject 

3 

Subject 

4 

Subject 

5 

Subject 

6 
Mean SD 

% 

CV 

0 <LOQ <LOQ <LOQ <LOQ <LOQ <LOQ N/A N/A N/A 

0.25 <LOQ 17.1 ND 85.9 23.1 56.8 45.7 32.0 69.9 

0.5 65.6 60.8 107 112 131 158 106 37.5 35.5 

0.75 99.7 109 122 93.4 214 116 126 44.5 35.4 

1 167 130 96.9 87.6 177 142 133 36.2 27.1 

2 106 59.5 52.1 50.3 55.1 43.0 61.0 22.7 37.2 

3 39.6 39.2 37.5 51.7 68.4 76.9 52.2 16.8 32.2 

4 33.5 23.9 28.8 22.0 32.3 17.6 26.4 6.23 23.6 

6 16.8 <LOQ <LOQ <LOQ 26.5 <LOQ 21.7 6.86 31.7 

8 13.2 <LOQ <LOQ <LOQ 12.3 <LOQ 12.8 0.636 4.99 

12 <LOQ <LOQ <LOQ <LOQ 12.7 <LOQ 12.7 N/A N/A 

18 <LOQ <LOQ <LOQ <LOQ <LOQ <LOQ N/A N/A N/A 

24 <LOQ <LOQ <LOQ <LOQ <LOQ <LOQ N/A N/A N/A 

36 <LOQ <LOQ <LOQ <LOQ <LOQ <LOQ N/A N/A N/A 

48 <LOQ <LOQ <LOQ <LOQ <LOQ <LOQ N/A N/A N/A 

72 <LOQ <LOQ <LOQ <LOQ <LOQ <LOQ N/A N/A N/A 

<LOQ, below limit of quantification (pMC = 3.833)   

Table A3.2: Midazolam plasma concentration data after oral administration of microdose 

& inhibitor administration. 

Time 

(h) 

Plasma concentration (pg/mL) 

Subject 

1 

Subject 

2 

Subject 

3 

Subject 

4 

Subject 

5 

Subject 

6 
Mean SD 

% 

CV 

0 <LOQ <LOQ <LOQ <LOQ <LOQ <LOQ N/A N/A N/A 

0.25 30.3 319 69.0 80.9 185 31.6 119 113 94.7 

0.5 321 541 424 535 529 62.5 402 187 46.6 

0.75 598 428 535 467 630 416 512 89.6 17.5 

1 516 485 406 446 667 396 486 99.8 20.5 

2 287 291 458 296 321 263 319 70.4 22.1 

3 255 198 390 354 203 169 262 90.7 34.7 

4 228 147 251 220 313 143 217 64.6 29.8 

6 206 121 230 189 213 107 178 51.2 28.8 

8 301 149 164 168 164 111 176 64.7 36.7 

12 116 92.9 87.1 115 175 65.7 109 37.6 34.6 

18 83.5 60.7 94.6 96.8 108 40.8 80.7 25.3 31.3 

24 86.8 63.4 67.9 76.3 114 27.0 72.6 28.7 39.5 

36 67.8 39.7 30.1 47.7 72.3 15.7 45.6 21.8 47.9 

48 38.3 40.7 28.7 31.1 55.5 <LOQ 38.9 10.5 27.1 

72 16.6 <LOQ <LOQ 14.8 26.4 <LOQ 19.3 6.24 32.4 

LOQ, below limit of quantification (pMC = 3.833)   
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Appendix 4. Tolbutamide plasma concentration data  

Table A4.1: Tolbutamide plasma concentration data after oral administration of microdose. 

Time 

(h) 

Plasma concentration (pg/mL) 

Subject 

1 

Subject 

2 

Subject 

3 

Subject 

4 

Subject 

5 

Subject 

6 
Mean SD 

% 

CV 

0 <LOQ <LOQ <LOQ <LOQ <LOQ <LOQ N/A N/A N/A 

0.25 556 1270 1342 3170 1360 4060 1960 1350 68.7 

0.5 1850 1770 4340 3080 3650 3780 3080 1060 34.5 

0.75 3060 2890 4210 2540 3460 2590 3130 629 20.1 

1 3720 2420 3080 3180 3280 2910 3100 429 13.9 

2 3010 3370 4000 3000 1770 1820 2830 879 31.1 

3 2620 2050 2530 2150 2740 1980 2350 324 13.8 

4 2210 2510 3050 2380 2020 2100 2380 375 15.8 

6 1300 2100 2410 2620 1800 1450 1950 525 27.0 

8 1300 1560 1620 1470 1170 1080 1370 218 15.9 

12 755 972 2080 1390 1085 520 1130 549 48.5 

18 512 805 1430 1220 738 251 826 438 53.0 

24 438 437 1120 891 534 127 591 357 60.3 

36 90.4 151 435 563 140 22.1 234 214 91.8 

48 32.2 59.0 194 328 58.4 <LOQ 134 125 93.4 

72 <LOQ <LOQ 22.1 65.2 <LOQ <LOQ 43.7 30.5 69.8 

<LOQ, below limit of quantification (pMC = 3.833)   

Table A4.2: Tolbutamide plasma concentration data after oral administration of microdose 

& inhibitors. 

Time 

(h) 

Plasma concentration (pg/mL) 

Subject 

1 

Subject 

2 

Subject 

3 

Subject 

4 

Subject 

5 

Subject 

6 
Mean SD 

% 

CV 

0 <LOQ <LOQ <LOQ <LOQ 54.9 <LOQ 54.9 N/A N/A 

0.25 1890 3830 3040 4380 4530 439 3020 1595 52.9 

0.5 4130 4130 4300 3920 3730 1710 3650 972 26.6 

0.75 4080 3560 4400 3380 4350 4350 4020 444 11.1 

1 3810 3950 3200 3510 4510 3620 3770 446 11.9 

2 2830 3410 5510 2810 3300 2920 3460 1030 29.8 

3 3060 3680 4110 3470 2200 2560 3180 715 22.5 

4 3210 2610 3220 2940 3010 2320 2890 355 12.3 

6 2320 2080 3040 2470 2400 2110 2400 349 14.5 

8 1870 1970 2280 2530 1880 2220 2130 263 12.4 

12 1340 1280 1940 2110 1480 1440 1600 342 21.4 

18 944 1000 1590 2030 975 683 1200 503 41.8 

24 ND 768 1650 1870 933 409 1130 614 54.5 

36 277 391 966 1485 353 218 615 504 82.0 

48 97.6 168 593 1320 232 62.6 412 484 118 

72 19.5 43.3 269 671 51.0 12.1 178 260 146 

<LOQ, below limit of quantification (pMC = 3.833), ND- data failed AMS acceptance criteria (Section 

7.11.3) 
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Appendix 5. Fexofenadine plasma concentration data  

Table A5.1: Fexofenadine plasma concentration data after oral administration of 

microdose. 

Time 

(h) 

Plasma concentration (pg/mL) 

Subject 

1 

Subject 

2 

Subject 

3 

Subject 

4 

Subject 

5 

Subject 

6 
Mean SD 

% 

CV 

0 <LOQ <LOQ <LOQ <LOQ <LOQ <LOQ N/A N/A N/A 

0.25 <LOQ <LOQ <LOQ 29.2 <LOQ 30.5 29.9 0.92 3.08 

0.5 29.5 18.4 77.2 61.0 57.8 123 61.2 37.2 60.9 

0.75 83.6 42.6 87.5 52.2 86.6 105 76.3 23.8 31.2 

1 125 59.5 133 39.5 126 111 99.0 39.5 39.9 

2 94.7 64.4 101 36.9 49.1 68.5 69.1 25.0 36.2 

3 36.9 33.3 54.3 54.2 50.8 49.4 46.5 9.09 19.6 

4 46.9 30.9 51.5 20.9 46.5 32.7 38.2 11.9 31.0 

6 19.7 16.8 35.8 <LOQ 38.6 23.7 26.9 9.75 36.2 

8 17.1 12.7 17.6 <LOQ 27.4 17.5 18.5 5.40 29.2 

12 11.0 ND 11.6 <LOQ ND <LOQ 11.3 0.42 3.8 

18 <LOQ <LOQ <LOQ <LOQ <LOQ <LOQ N/A N/A N/A 

24 <LOQ <LOQ <LOQ <LOQ <LOQ <LOQ N/A N/A N/A 

36 <LOQ <LOQ <LOQ <LOQ <LOQ <LOQ N/A N/A N/A 

48 <LOQ <LOQ <LOQ <LOQ <LOQ <LOQ N/A N/A N/A 

72 <LOQ <LOQ <LOQ <LOQ <LOQ <LOQ N/A N/A N/A 

<LOQ, below limit of quantification (pMC = 3.833), ND- data failed AMS acceptance criteria (Section 

7.11.3) 

Table A5.2: Fexofenadine plasma concentration data after oral administration of microdose 

& inhibitors. 

Time 

(h) 

Plasma concentration (pg/mL) 

Subject 

1 

Subject 

2 

Subject 

3 

Subject 

4 

Subject 

5 

Subject 

6 
Mean SD 

% 

CV 

0 <LOQ <LOQ <LOQ <LOQ <LOQ <LOQ N/A N/A N/A 

0.25 8.45 102 21.9 18.2 81.0 76.8 51.4 39.7 77.3 

0.5 104 157 179 74.4 270 <LOQ 157 75.6 48.2 

0.75 496 185 194 96.4 442 217 272 159 58.6 

1 224 193 210 96.1 398 271 232 99.6 42.9 

2 148 122 177 60.9 234 218 160 64.1 40.1 

3 127 104 156 58.1 176 143 127 41.9 32.9 

4 129 64.2 88.2 49.7 194 105 105 52.0 49.5 

6 66.1 45.4 81.7 38.4 110 93.7 72.6 27.9 38.4 

8 41.3 35.4 34.4 22.5 63.4 68.4 44.2 17.9 40.5 

12 18.8 ND ND 14.4 34.5 22.5 22.6 8.63 38.3 

18 7.39 <LOQ 32.3 <LOQ 11.8 9.23 15.2 11.6 76.1 

24 10.7 <LOQ 24.8 <LOQ <LOQ 10.4 15.3 8.23 53.8 

36 <LOQ <LOQ 14.9 <LOQ <LOQ <LOQ 14.9 N/A N/A 

48 <LOQ <LOQ 15.1 <LOQ <LOQ <LOQ 15.1 N/A N/A 

72 <LOQ <LOQ <LOQ <LOQ <LOQ <LOQ N/A N/A N/A 

<LOQ, below limit of quantification (pMC = 3.833), ND- data failed AMS acceptance criteria (Section 

7.11.3) 
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Appendix 6. R-verapamil plasma concentration data  

Table A6.1: R-verapamil plasma concentration data after IV administration of microdose. 

Time 

(h) 

Plasma concentration (pg/mL) 

Subject 

1 

Subject 

3 

Subject 

4 

Subject 

5 

Subject 

6 

Subject 

7 
Mean SD % CV 

0 137 148 324 184 282 139 202 80.9 40.0 

0.25 158 127 235 124 132 95.9 145 48.2 33.2 

0.5 144 84.7 184 95.5 137 80.2 121 41.0 33.9 

0.75 81.8 88.4 233 112 133 71.9 120 59.6 49.7 

1 70.6 60.3 109 104 60.2 51.0 75.9 24.6 32.4 

2 52.6 46.6 69.8 48.4 47.6 30.3 49.2 12.7 25.8 

3 28.9 31.1 58.4 39.0 32.0 27.8 36.2 11.6 31.9 

4 33.3 25.2 40.4 21.2 30.4 22.0 28.8 7.41 25.8 

6 31.4 22.6 25.4 19.3 23.2 20.1 23.7 4.38 18.5 

8 13.4 15.0 22.5 16.6 18.0 12.4 16.3 3.65 22.4 

12 7.95 9.54 11.8 9.34 16.4 16.2 11.9 3.65 30.7 

24 2.69 3.16 <LOQ 3.16 6.93 2.97 3.78 1.77 46.8 

<LOQ, below limit of quantification (pMC = 1.611)   

Table A6.2: R-verapamil plasma concentration data after IV administration of microdose 

plus oral therapeutic dose. 

Time 

(h) 

Plasma concentration (pg/mL) 

Subject 

1 

Subject 

2 

Subject 

3 

Subject 

4 

Subject 

5 

Subject 

6 

Subject 

7 
Mean SD 

% 

CV 

0 256 227 106 311 199 174 303 225 73.0 32.4 

0.25 171 181 80.7 202 293 135 124 170 67.8 40.0 

0.5 118 166 83.8 142 190 91.3 119 130 38.6 29.7 

0.75 150 169 53.6 183 152 ND 131 140 45.8 32.8 

1 80.2 103 81.6 104 134 101 85.8 98.5 18.7 19.0 

2 64.7 65.3 50.3 87.0 84.0 45.0 ND 66.1 17.1 25.8 

3 38.8 62.0 33.9 35.8 70.2 32.7 40.0 44.8 15.0 33.5 

4 31.4 48.9 30.0 44.6 76.9 32.8 33.4 42.6 16.8 39.4 

6 16.9 62.3 38.7 24.2 53.1 38.6 59.4 41.9 17.4 41.4 

8 17.2 38.0 13.3 18.7 52.9 15.5 37.9 27.6 15.2 55.1 

12 6.97 21.4 9.89 12.5 ND 9.56 17.8 13.0 5.51 42.3 

24 2.67 8.01 2.56 5.62 7.02 3.81 3.32 4.72 2.18 46.3 

ND, data failed AMS acceptance criteria (Section 7.11.3) 



248 

Appendix 7. S-verapamil plasma concentration data  

Table A7.1: S-verapamil plasma concentration data after IV administration of microdose. 

Time 

(h) 

Plasma concentration (pg/mL) 

Subject 

1 

Subject 

3 

Subject 

4 

Subject 

5 

Subject 

6 

Subject 

7 
Mean SD % CV 

0 86.7 94.6 81.0 95.3 146 62.7 94.4 28.0 29.6 

0.25 70.9 70.5 52.3 67.7 70.9 56.3 64.8 8.29 12.8 

0.5 63.7 50.3 43.6 67.7 59.5 47.4 55.4 9.66 17.4 

0.75 49.4 44.8 40.1 55.1 63.0 35.7 48.0 10.0 20.9 

1 47.7 29.8 24.2 45.8 33.5 24.5 34.3 10.3 30.1 

2 36.0 27.8 13.9 19.2 21.4 21.3 23.3 7.67 33.0 

3 17.2 20.4 13.4 16.8 13.8 11.2 15.5 3.30 21.3 

4 16.9 14.7 9.47 12.8 16.3 13.1 13.9 2.72 19.6 

6 37.8 17.7 5.68 17.0 13.6 10.8 13.0 4.92 38.0 

8 11.5 7.70 4.65 11.2 9.45 7.03 8.59 2.64 30.7 

12 6.96 6.86 3.36 5.21 8.82 6.60 6.30 1.85 29.3 

24 2.33 <LOQ <LOQ 2.22 4.61 1.70 2.72 1.29 47.6 

<LOQ, below limit of quantification (pMC = 1.696)   

Table A7.2: S-verapamil plasma concentration data after IV administration of microdose 

plus oral therapeutic dose. 

Time 

(h) 

Plasma concentration (pg/mL) 

Subject 

1 

Subject 

2 

Subject 

3 

Subject 

4 

Subject 

5 

Subject 

6 

Subject 

7 
Mean SD 

% 

CV 

0 105 78.7 58.3 164 75.9 92.5 109 97.6 34.1 35.0 

0.25 68.7 76.6 41.4 92.5 102 78.3 71.5 75.9 19.3 25.4 

0.5 70.5 ND 37.8 71.1 55.5 42.9 60.3 56.4 13.9 24.6 

0.75 58.2 60.6 30.4 68.6 56.6 41.0 39.7 50.7 13.8 27.1 

1 37.4 33.0 28.2 46.0 45.6 33.7 34.2 36.9 6.67 18.1 

2 28.9 30.8 26.4 37.1 26.0 23.5 36.1 29.8 5.17 17.3 

3 22.6 20.4 24.3 18.2 19.9 18.1 15.6 19.9 2.93 14.7 

4 16.0 19.0 12.3 17.2 18.8 15.8 15.6 16.4 2.28 13.9 

6 11.3 16.4 12.7 10.5 23.3 15.0 16.7 15.1 4.34 28.7 

8 9.85 11.6 5.46 8.01 15.2 6.61 17.4 10.6 4.43 41.9 

12 4.54 8.08 4.81 4.38 9.05 4.74 8.99 6.4 2.21 34.7 

24 2.23 3.17 2.96 2.52 2.70 <LOQ 2.30 2.6 0.370 14.0 

<LOQ, below limit of quantification (pMC = 1.696) 

ND-data failed AMS acceptance criteria (Section 7.11.3) 
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Appendix 8. Caffeine pharmacokinetic data 

Table A8.1: Caffeine pharmacokinetic data after administration of microdose & microdose 

plus inhibitors. 

Microdose 

only 

Subject Number t1/2 (h) tmax (h) 
Cmax 

(ng/mL) 

AUC0-t 

(h.ng/mL) 

AUC0-∞ 

(h.ng/mL) 

1 3.58 1.00 0.529 2.55 2.59 

2 3.94 0.75 0.476 2.94 2.88 

3 3.85 0.50 0.825 2.12 2.21 

4 4.15 0.25 0.491 1.70 1.83 

5 6.31 0.50 0.791 4.56 4.64 

6 3.07 0.50 0.562 1.85 1.89 

Mean 4.15 0.583 0.612 2.62 2.67 

Median 3.90 0.500 0.546 2.34 2.40 

SD 1.12 0.258 0.155 1.05 1.04 

% CV 27 44 25 40 39 

Microdose  

plus 

inhibitors 

Subject Number t1/2 (h) tmax (h) 
Cmax 

(ng/mL) 

AUC0-t 

(h.ng/mL) 

AUC0-∞ 

(h.ng/mL) 

1 11.4 1.00 0.669 12.00 12.10 

2 18.3 0.25 0.647 15.90 17.30 

3 19.2 2.00 0.720 15.70 17.00 

4 26.7 0.50 0.751 16.60 19.90 

5 34.9 0.75 0.709 26.20 36.10 

6 46.5 0.75 0.894 19.10 28.90 

Mean 26.2 0.875 0.73 17.6 21.9 

Median 23.0 0.750 0.71 16.3 18.6 

SD 12.8 0.607 0.0877 4.80 8.90 

% CV 49 69 12 27 41 

Ratio 6.3 1.5 1.2 6.7 8.2 

T-Test result 0.0081 0.3284 0.1621 0.0003 0.0024 

Statistical difference observed? Y N N Y Y 
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Appendix 9. Midazolam pharmacokinetic data 

Table A9.1: Midazolam pharmacokinetic data after administration of microdose & 

microdose plus inhibitors. 

Microdose 

only 

Subject Number t1/2 (h) tmax (h) 
Cmax 

(ng/mL) 

AUC0-t 

(h.ng/mL) 

AUC0-∞ 

(h.ng/mL) 

1 6.35 1.00 167 480 553 

2 5.79 1.00 130 392 490 

3 1.47 0.75 122 272 290 

4 4.00 0.50 112 358 400 

5 2.77 0.75 214 489 538 

6 3.63 0.50 158 347 390 

Mean 4.00 0.750 151 390 444 

Median 3.82 0.750 144 375 445 

SD 1.83 0.224 38 83 101 

% CV 46 30 25 21 23 

Microdose  

plus 

inhibitors 

Subject Number t1/2 (h) tmax (h) 
Cmax 

(pg/mL) 

AUC0-t 

(h.pg/mL) 

AUC0-∞ 

(h.pg/mL) 

1 18.0 0.75 598 6300 3730 

2 19.5 0.50 541 4740 5040 

3 13.7 0.75 535 4820 5380 

4 21.4 0.50 535 5540 6000 

5 23.3 1.00 667 7370 8250 

6 13.3 0.75 416 2470 2770 

Mean 18.2 0.7 549 5210 5200 

Median 18.8 0.8 538 5180 5210 

SD 4.06 0.19 83.0 1660 1900 

% CV 22 27 15 32 37 

Ratio 4.5 0.9 3.6 13.4 11.7 

T-Test result 0.0003 0.7412 0.0000 0.0007 0.0016 

Statistical difference observed? Y N Y Y Y 
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Appendix 10. Tolbutamide pharmacokinetic data 

Table A10.1: Tolbutamide pharmacokinetic data after administration of microdose & 

microdose plus inhibitors. 

Microdose 

only 

Subject Number t1/2 (h) tmax (h) 
Cmax 

(ng/mL) 

AUC0-t 

(h.ng/mL) 

AUC0-∞ 

(h.ng/mL) 

1 7.32 1.00 3.72 31.2 31.5 

2 8.31 2.00 3.37 36.8 37.5 

3 8.51 0.50 4.34 63.1 63.4 

4 11.40 1.00 3.18 58.2 59.3 

5 8.20 0.50 3.65 35.5 36.2 

6 5.06 0.25 4.06 22.9 23.1 

Mean 8.13 0.875 3.720 41.3 41.8 

Median 8.26 0.750 3.685 36.2 36.9 

SD 2.05 0.627 0.429 15.8 16.0 

% CV 25 72 12 38 38 

Microdose  

plus 

inhibitors 

Subject Number t1/2 (h) tmax (h) 
Cmax 

(ng/mL) 

AUC0-t 

(h.ng/mL) 

AUC0-∞ 

(h.ng/mL) 

1 9.63 0.50 4.13 50.0 50.3 

2 11.7 0.50 4.13 54.0 54.7 

3 19.7 2.00 5.51 91.8 99.5 

4 36.8 0.25 4.38 117 153 

5 12.3 0.25 4.53 57.1 58.0 

6 8.65 0.75 4.35 42.5 42.7 

Mean 16.5 0.7083 4.51 68.7 76.4 

Median 12.0 0.500 4.37 55.6 56.4 

SD 10.7 0.660 0.516 29.2 42.5 

% CV 65 93 11 42 56 

Ratio 2.0 0.8 1.2 1.7 1.8 

T-Test result 0.0716 0.7121 0.0038 0.0082 0.0363 

Statistical difference observed? Y N N Y Y 
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Appendix 11. Fexofenadine pharmacokinetic data 

Table A11.1: Fexofenadine pharmacokinetic data after administration of microdose & 

microdose plus inhibitors. 

Microdose 

only 

Subject Number t1/2 (h) tmax (h) 
Cmax 

(pg/mL) 

AUC0-t 

(h.pg/mL) 

AUC0-∞ 

(h.pg/mL) 

1 8.69 1.00 125 519 578 

2 3.33 2.00 64.4 245 306 

3 6.98 1.00 133 568 634 

4 4.72 0.50 61.0 274 282 

5 6.95 1.00 126 603 686 

6 3.85 0.50 123 455 493 

Mean 5.75 1.000 105 444 497 

Median 5.84 1.000 124 487 536 

SD 2.10 0.548 33 152 170 

% CV 37 55 32 34 34 

Microdose  

plus 

inhibitors 

Subject Number t1/2 (h) tmax (h) 
Cmax 

(pg/mL) 

AUC0-t 

(h.pg/mL) 

AUC0-∞ 

(h.pg/mL) 

1 25.0 0.75 496 1400 1590 

2 9.00 1.00 193 1080 1190 

3 25.5 1.00 210 2070 2300 

4 14.4 0.75 96 864 1080 

5 4.29 0.75 442 1830 1880 

6 4.51 1.00 271 1350 1420 

Mean 13.8 0.875 285 1430 1580 

Median 11.7 0.875 241 1380 1500 

SD 9.62 0.137 154 452 455 

% CV 70 16 54 32 29 

Ratio 2.4 0.9 2.7 3.2 3.2 

T-Test result 0.0670 0.5805 0.0222 0.0007 0.0004 

Statistical difference observed? Y N N Y Y 
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Appendix 12. R-verapamil pharmacokinetic data 

Table A12.1. R-verapamil pharmacokinetic data after administration of IV microdose.  

Subject 

Number 
t1/2 (h) 

Cmax 

(pg/mL) 

AUC0-t 

(h.pg/mL) 

AUC0-∞ 

(h.pg/mL) 

CL 

(L/h) 
V (L) 

Vss 

(L) 

Missing 

Data 

Point 

1 5.50 158 530 551 55.7 434 314  

3 6.43 148 504 533 58.9 555 394  

4 5.23 324 794 833 73.7 556 324 24 h 

5 6.84 184 590 621 52.3 516 311  

6 10.7 282 728 835 40.0 620 390  

7 6.63 139 495 523 68.4 655 511   

Mean 6.89 206 607 649 58.2 556 374  

SD 1.97 77.9 126 147 12.0 78.0 76.8  

%CV 28.7 37.9 20.7 22.7 20.6 14.0 20.5  

Geomean 6.69 195 597 636 57.1 551 368   

 

Table A12.2. R-verapamil pharmacokinetic data after administration of IV microdose plus 

oral therapeutic dose.  

Subject 

Number 
t1/2 (h) 

Cmax 

(pg/mL) 

AUC0-t 

(h.pg/mL) 

AUC0-∞ 

(h.pg/mL) 

CL 

(L/h) 
V (L) 

Vss 

(L) 

Missing 

Data 

Point 

1 6.48 256 642 667 51.3 480 252  

*2 6.71 227 991 1070 39.6 383 310  

3 5.20 106 507 526 64.7 485 400  

4 7.24 311 836 894 38.2 400 245  

5 5.89 293 1270 1330 32.2 273 217 12 h 

6 8.14 174 602 646 50.1 589 351 1 h 

7 4.64 303 898 920 43.8 293 243 3 h 

Mean 6.27 240 793 831 46.7 420 285  

SD 1.30 83.1 276 288 11.4 122 73.0  

%CV 20.7 34.5 34.9 34.7 24.4 29.1 25.7  

Geomean 6.15 225 756 793 45.6 405 278   

*excluded from mean  
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Appendix 13. S-verapamil pharmacokinetic data 

Table A13.1. S-verapamil pharmacokinetic data after administration of IV microdose plus 

oral therapeutic dose. 

Subject 

Number 
t1/2 (h) 

Cmax 

(pg/mL) 

AUC0-t 

(h.pg/mL) 

AUC0-∞ 

(h.pg/mL) 

CL 

(L/h) 
V (L) 

Vss 

(L) 

1 5.99 86.7 378 398 65.5 567 443 

3 5.34 94.6 254 307 85.1 657 528 

4 8.00 81.0 175 214 122 1409 794 

5 6.74 95.3 318 339 77.5 754 528 

6 11.5 146 378 454 57.4 951 669 

7 7.08 62.7 243 260 100 1020 771 

Mean 7.44 94.4 291 329 84.6 893 622 

SD 2.19 28.0 81.2 88.3 23.6 306 144 

%CV 29.40 29.6 27.9 26.9 27.9 34.2 23.1 

Geomean 7.21 91.3 281 319 81.9 853 608 

 

Table A13.2. S-verapamil pharmacokinetic data after administration of IV microdose plus 

oral therapeutic dose. 

Subject 

Number 
t1/2 (h) 

Cmax 

(pg/mL) 

AUC0-t 

(h.pg/mL) 

AUC0-∞ 

(h.pg/mL) 

CL 

(L/h) 
V (L) 

Vss 

(L) 

Missing 

Data 

Point 

1 7.02 105 319 341 76.5 775 507  

*2 8.63 78.7 350 390 67.5 840 605 0.75 h 

3 9.68 58.3 247 288 91.0 1270 959  

4 9.17 164 370 403 64.8 856 442  

5 6.52 102 383 408 64.0 601 484  

6 8.34 92.5 236 293 88.2 1060 637 24 h 

7 5.61 109 370 389 67.4 546 473   

Mean 7.72 105 321 354 75.3 851 584  

SD 1.59 34.2 65.3 54.4 12.0 276 196  

%CV 20.6 32.5 20.4 15.4 15.9 32.0 33.6  

Geomean 7.58 101 315 350 74.5 815 561   

*excluded from mean  

 



255 

 

Glossary 

λ  wavelength 

ACN  acetonitrile 

AMS  accelerator mass spectrometry 

ANU  Australian national university 

AUC0-t  Area under the concentration time curve from time zero to time t 

BBB  blood brain barrier 

Bq  becquerel 

Cmax time to maximum concentration 

CL clearance 

cpm  counts per minute 

CTA  clinical trials application 

CV  coefficient of variation 

CYP  cytochrome P450  

Da  Dalton  

DDI  drug-drug interaction 

dpm  disintegrations per minute 

Fl  fluorescence 

GI  gastrointestinal 

h  hour 

HPLC  high performance liquid chromatography 

HIV  human immune deficiency virus 

IV  intravenous 

Lmass  mass specific activity 

LOQ  limit of quantification 

LP  liquid paraffin 

LSC  liquid scintillation counter 

LU  luminescence units 

MeOH  methanol 

min  minute 

NCE  new chemical entity 

OATP  organic anion transporter protein 
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PD  pharmacodynamic 

PET  positron emission tomography 

PI  protease inhibitor 

PK  pharmacokinetic 

PD  pharmacodynamic 

pMC  percent modern carbon 

PXR  pregnane X receptor 

Rs  resolution 

RP  reverse phase   

SD  standard deviation 

t1/2  the elimination half-life  

tmax the time at which the drug reaches maximum concentration 

UV  ultraviolet 

V volume of distribution 

Vd brain tissue-plasma partition coefficient at equilibrium 

Vss volume of distribution at steady state 

VT brain tissue-plasma partition coefficient at equilibrium (Logan 

derived) 
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