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Abstract 

 

The aim of this project was to calibrate a thermal-decomposition 

chemiluminescence (TD-Chem) instrument, capable of measuring the composition of 

the reactive nitrogen pool at the Cape Verde Atmospheric Observatory (CVAO) in the 

remote tropical troposphere. This data will be used in global atmospheric models in 

an attempt to better understand the sources of NOx in the remote troposphere and 

how these could affect background ozone (O3) levels. 

Existing nitrogen oxides (NOx = NO + NO2) data from the CVAO was 

analysed for the measurement period of October 2006 to December 2011. The aim 

of this analysis was to identify the cause of the NO2 diurnal, which exhibits a 

maximum mixing ratio at solar noon, in contrast to the minimum expected due to NO2 

photolysis in a clean environment. This anomaly was referred to as ΔNO2. It was 

found that between 4.12.2007 and 28.2.2009, ΔNO2 was significantly higher and 

caused an average increase in ΔNO2 of 5.09 ± 0.94 pptv to the entire dataset. This 

period corresponded with the orientation of the inlet, resulting in the heating of the 

sample and potentially significant levels of thermal dissociation of peroxyacetyl 

nitrate (PAN) to produce the NO2 observed. Future speciated measurements of the 

reactive nitrogen pool will help address the ΔNO2 anomaly fully. 

Calibrations of the inlet in the TD-Chem instrument were carried out using 

PAN, n-propyl nitrate (NPN) and nitric acid (HNO3) standards to represent peroxyacyl 

nitrate (PNs), alkyl nitrate (ANs) and HNO3 reservoirs. Quantification of the standards 

was achieved using a molybdenum oven and a gold oven in con unction with a small 

flow of carbon mono ide, both heated to  00  C. Both methods are known to cause ~ 

100 % conversion of NOy compounds to NO, to allow detection via 

chemiluminescence (NOy = NOx + PNs, ANs, HNO3, aerosol nitrate, halogen nitrates 

etc.). Both ovens agreed on the concentration of the standards to > 99 %. 

Temperature ramp experiments quantified the temperature range at which each 

standard thermally dissociated to form NO2 and a companion radical in each of the 

quartz ovens used in the TD-Chem instrument. All experiments show thermal 

dissociation kinetics consistent with current understanding and kinetic theory. 

Deviations that do occur are either known and can be quantified, have been 

experimentally deduced, or a work schedule is in place in order to quantify them in 

the near future. Completion of the instrument calibration and subsequent installation 

of the TD-Chem instrument at the CVAO is projected to be in the summer of 2013. 
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Preface 

 

Nitrogen oxides (NOx = NO + NO2) in the atmosphere affect the concentration 

of the hydroxyl radical (OH), the main atmospheric oxidising agent, and control the 

photochemical formation of ozone (O3). This is important because the changing 

levels of O3 in the troposphere impairs the ability of countries downwind to achieve 

air quality standards, put in place to offset the adverse impacts of O3 on human 

health, crops and wildlife at high concentrations. By controlling O3 availability and OH 

concentrations, through the reaction of hydroperoxy radicals (HO2) with nitric oxide 

(NO), nitrogen oxides influence the atmospheres oxidising capacity and as a result, 

the rate of removal of species such as methane (CH4), carbon monoxide (CO) and 

other volatile organic carbon species (VOCs). Hence although they are not climate 

gases in the classical sense, nitrogen oxides significantly influence global climate 

through the perturbation of CH4 and O3 concentrations, both important greenhouse 

gases. This process is of particular importance in the remote tropical troposphere 

because the mixing ratios of nitrogen oxides are close to the critical mixing ratio, 

whereby the typical O3 destruction regime changes to one of photochemical O3 

production and due to the high levels of solar radiation and water vapour (and thus 

OH concentration), the majority of CH4 oxidation occurs here.  

Anthropogenic emissions dominate NOx sources in the northern hemisphere. 

The oxidation of NOx in the continental boundary layer to peroxyacyl nitrates (PNs), 

alkyl nitrates (ANs) and nitric acid (HNO3), occurs in less than a day and 

consequently, NOx levels in remote regions are typically very low. As described 

above, the production or loss of O3 is critically dependent on the NOx mixing ratio in 

the range of 5-100 pptv and as a result, only a small fraction of NOx emissions must 

be transported to remote regions in order for significant O3 production to occur. It has 

been suggested that this is made possible due to the more stable nitrogen oxides, 

which following transport to remote regions, decompose to form NOx. Although the 

chemistry involved in these processes is thought to be well understood, experimental 

verification is lacking on both spatial and temporal scales due to the difficulties 

involved in measuring these longer-lived species in remote environments. This is 

highlighted by global atmospheric models which consistently underestimate NOx 

mixing ratios and therefore their impact, in the remote tropical marine boundary layer.  

The aim of this project is to calibrate a thermal-decomposition 

chemiluminescence (TD-Chem) instrument and install this system at the Cape Verde 

Atmospheric Observatory (CVAO). This instrument will be capable of measuring the 
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composition of the reactive nitrogen pool in more detail in the remote tropical 

troposphere providing an exciting and novel data series. This data will then be used 

in global atmospheric models in an attempt to better understand the sources of NOx 

in the remote troposphere and how these could affect background O3 levels. 
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THE ATMOSPHERIC SYSTEM 
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1. 1. Atmospheric Structure and Composition 

 

Earths’ atmospheric system is composed of distinct layers as a result of 

temperature variation with altitude (figure 1.1). This change in temperature with 

altitude is called the lapse rate, whereby a positive lapse rate denotes temperature 

decreasing with altitude. Each layer in the atmosphere is separated by a change in 

lapse rate, or temperature inversion, the position of which varies temporally and 

spatially in both the horizontal and vertical and forms a physical barrier to vertical 

chemical transport.  

 

 

Figure 1.1. Temperature profile and layered structure of the Earth’s atmosphere. 

 

The stratosphere, meaning ‘layered’, gets its name due to the stratified air 

mass within this region. This occurs due to the increasing temperature with altitude, 

resulting in cold dense air and warm buoyant air at the tropopause and stratopause 

boundaries respectively. Within the lower stratosphere, O3 concentrations peak 

between 25-30 km, having significant implications for a number of atmospheric 

processes. Here, O3 is involved in a series of photochemical reactions referred to as 

the Chapman Cycle (reactions 1.1-1.4), which generates a steady state 

concentration of O3 in the stratosphere, balanced between photochemical production 

and removal via reaction with molecular oxygen. 
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O2 + hʋ  2O 1.1 

O + O2 + M  O3 1.2 

O + O3  2O2 1.3 

O3 + hʋ  O(1D) + O2 1.4 

 

O3 strongly absorbs solar radiation at wavelengths () between 200-310 nm, 

dissociating to form electronically excited oxygen. Following oxygen 

photodissociation (1.1) and light absorption by O3 up to the threshold value 

equivalent of 310 nm (1.4), excess energy is released as heat. These reactions 

combined are responsible for the increasing temperature with altitude in the 

stratosphere (figure 1.1) and play a vital role in protecting life on Earth by absorbing 

harmful ultraviolet (UV) radiation ( <  290 nm). As a result of this absorption, only 

lower energy radiation penetrates to the troposphere ( > 290 nm) limiting those 

molecules that are involved in tropospheric photochemistry. This radiation is termed 

actinic radiation. This has important implications as photochemical reactions are one 

of the main processes that initiate removal mechanisms in the atmosphere. 

The rate coefficient for the photolysis of a molecule, J (s-1) is given in 

equation 1.5. 

 

J = ∫ σ(λ T) φ(λ T) F(λ) dλ 1.5 

 

Where, σ(λ,T) is the absorption cross section and φ(λ,T) is the quantum yield. 

Both of these parameters are dependent on wavelength (λ) and temperature (T) and 

are molecule specific. The product of the absorption cross section and quantum yield 

is then multiplied the actinic flux, F(λ), which is a measure of the radiative flu  from 

all directions on a volume of air and given the units, photons cm-2 nm-1. The whole 

expression is then integrated over all wavelengths, dλ, to give the photolytic rate 

coefficient, J.  

Due to the gravitational pull of the Earth, approximately 80 % of the total 

atmosphere is located in the troposphere including essentially all of the water vapour, 

clouds and precipitation, which provide important mechanisms for the scavenging of 

pollutants from the atmosphere. The troposphere, ‘tropos’ meaning ‘turning’, is so 

called due to the strong convective currents that occur in this region of the 

atmosphere. Absorption of radiation at the Earths’ surface results in warm, buoyant 

air existing below cold, dense air.  This creates a strong vertical mixing, allowing 

surface emissions to rise to the tropopause in just a few days. Species that are 

sufficiently both chemically and physically inert (such as some anthropogenic 
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emissions) are also able to traverse the tropopause boundary layer into the 

stratosphere. Once in the stratosphere, little vertical mixing and reduced water 

vapour means that scavenging processes in this region are much slower and due to 

the higher energy radiation above the O3 layer, species are subject to 

photodissociation to form reactive products that can disrupt the chemistry of the 

stratosphere.  

The troposphere can be further divided into two sections, the free 

troposphere which adjoins to the tropopause, a capping inversion which varies from 

8 - 18 km in altitude, and the boundary layer, which is situated immediately above the 

Earth’s surface. The atmospheric boundary layer has been defined as “the layer of 

air directly above the Earth's surface in which the effects of the surface (friction, 

heating and cooling) are felt directly" (Garratt, 1992). It is characterised by highly 

turbulent mixing and is the region of the atmosphere into which most anthropogenic 

(man-made), biogenic (biologically produced) and natural chemical emissions occur 

and therefore, physical and chemical processes that occur in this region directly 

affect the quality of the air that we breathe. Consequently, research has aimed at 

understanding the sources, sinks and processes of the chemical components in this 

environment.  

Nitrogen (78 %) and oxygen (21 %) dominate the atmospheric composition 

and are ubiquitously distributed (table 1) (Wayne, 2000). However, trace gases that 

exist in concentrations on the scale of parts per billion (ppbv) or parts per trillion 

(pptv) by volume, show much greater variation in their distribution and have 

significant impacts on both air quality and the Earth’s climate and radiative balance.  

 

Table 1.1. Principal gases of dry air (Wayne, 2000) 

Constituent Percent by Volume 
Concentrations in Parts Per Million 

(ppmv) 

Nitrogen (N2) 78.084 780,840.0 

Oxygen (O2) 20.946 209,460.0 

Argon (Ar) 0.934 9,340.0 

Carbon Dioxide (CO2) 0.036 360.0 

Neon (Ne) 0.00182 18.2 

Helium (He) 0.000524 5.24 

Methane (CH4) 0.00015 1.5 

Krypton (Kr) 0.000114 1.14 

Hydrogen (H2) 0.00005 0.5 
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 Anthropogenic activities following the industrial revolution, such as the 

burning of fossil fuels, deforestation and the development of synthetic chemicals 

have led to significant alterations in the composition of the natural atmosphere. This 

is highlighted by figure 1.2, produced by the Intergovernmental Panel on Climate 

Change (IPCC) (2007), and summarises large effect these activities are having on 

global radiative forcing alone.  

 

 

Figure 1.2. Global radiative forcings in 2005 relative to the start of the industrial era 

(about 1750), including the spatial scale of the forcing and the level of scientific 

understanding (LOSU) (IPCC, 2007). 
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1.2 The Boundary Layer 

 

The continental boundary layer, typically 0.5-2 km in altitude (Wayne, 2000), 

has a well-defined diurnal cycle as shown in figure 1.3. Following sunrise, solar 

radiation heats the Earth’s surface which in turn warms the boundary layer air mass. 

As this air mass becomes less dense, it ascends creating turbulence. This turbulent 

layer is also known as the mixed layer, the depth of which peaks late in the 

afternoon. This increase in the mixed layer is due to entrainment of the air mass 

situated above it. This air originates from a stable layer that remains on top of the 

mixed layer known as the entrainment zone. At sunset, the convective cells within 

the mixed layer begin to degrade to form what is known as the residual layer. The 

lowest part of this residual layer is further stabilised by radiative cooling and is 

characterised by weak, infrequent turbulence. 

In comparison with the continental boundary layer, the dynamics of the 

marine boundary layer are much reduced as sea surface temperatures do not vary 

as much during the diurnal cycle, thereby restricting the formation of turbulence. Due 

to this inherent stability, any variation is more a result of large scale processes.  

 

 

Figure 1.3. The typical diurnal cycle of the continental boundary layer (Adapted from 

Finlayson-Pitts and Pitts, 2000). 

 

As a result of vertical convective mixing, atmospheric constituents frequently 

come into contact with the Earth’s surface allowing deposition to provide a 

mechanism of removal. The principle movement of air masses and therefore 

pollutants in the boundary layer is vertically within thermals as oppose to the 

comparatively weak horizontal transport determined by surface winds, meaning that 

emissions are spatially confined. However, depending on the magnitude of the 
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turbulence in the mixed layer, pollutants within the boundary layer that are not 

removed from the system can be transported and incorporated into the free 

troposphere on the timescale of days. Within the free troposphere, atmospheric 

circulation is predominantly horizontal and allows long range transport around the 

world in the longitudinal direction on the timescale of weeks and meridional transport 

on the time scale of months for a latitudinal change of approximately 45°. Inter-

hemispheric transport requires approximately 1 year due to the Intertropical 

Convergence Zone (ITCZ). As shown in figure 1.4, this is a low pressure system 

typically found around the equator, though it does show seasonal variation of up to 

25° latitude due to variations in the Earths’ surface. It is a result of solar heating 

causing vertical convection and the creation of a low pressure region. Subsequently, 

subtropical air is drawn in and the convergence of both the north- and south- east 

trade winds reinforces this strong vertical convection, thereby inhibiting horizontal 

transport and inter-hemispheric mixing.  

 

Figure 1.4. Cross-sectional view of the Intertropical Convergence Zone (ITCZ). Arrows 

indicate direction of wind flow. H = area of high pressure, L = area of low pressure. 
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1.3. Tropospheric Chemistry 

 

As discussed above, stratospheric O3 has significant influence over many 

atmospheric processes and is vital for life on Earth due to absorption of harmful UV 

radiation. It also plays an important role in the troposphere as a source of OH as a 

result of photodissociation (reactions 1.6 and 1.7). 

 

O3 + hʋ  O(1D) + O2 

 

1.6 

O(1D) + H2O  2OH 1.7 

 

 Approximately 90 % of the O(1D) formed in reaction 1.6 is quenched back to 

ground state O(3P) via reaction with an unreactive species, or ‘bathgas’ denoted as 

‘M’ before recombining with molecular o ygen to reform O3. In air, M is normally 

accepted to be N2 or O2. The remaining 10 % reacts with water vapour to produce 

two OH radicals for every O3 molecule via reaction 1.7. Despite typically only ever 

being present at concentrations of approximately 106 molecules cm-3 (Prinn et al., 

1995), owing to its’ high reactivity OH is considered to be the most important 

tropospheric species. It is responsible for initiating most atmospheric oxidative 

processes and controlling the lifetimes and rates of removal of many trace gases and 

pollutants, such as CH4 and CO. This process is of particular importance in the 

remote tropical marine boundary layer, where due to the high levels of solar radiation 

and water vapour and therefore OH radicals, up to 80 % of the global CH4 oxidation 

occurs.  

 Pollutants that are both physically inert and resistant to removal via OH 

oxidation or photodissociation are able to be transported across the tropopause 

boundary into the stratosphere. Nitrogen dioxide (N2O) and chlorofluorocarbons 

(CFCs) are examples of such species. As described previously, at higher altitudes 

higher energy solar radiation exists prior to O3 absorption and can lead to the 

photodissociation of these compounds resulting in the production of radical species 

that can destroy O3 and can lead to a thinning of the stratospheric O3 layer. This 

process is highlighted in reaction scheme 1.8 using the CFC, trichlorofluoromethane 

(CFCl3).  
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CFCl3 + hʋ → CFCl2 + Cl 1.8a 

Cl + O3 → ClO + O2 1.8b 

ClO + O → Cl + O2 1.8c 

    

    

Net: O3 + O → 2O2 1.8 

 

 Following the discovery of the Antarctic O3 hole in 1985 (Farman et al, 1985), 

international effort along with the Montreal Protocol and its’ subsequent revisions 

called for a complete ban on CFC production and consumption by 1996 (Ozone 

Secretariat United Nations Environment Programme, 2006). Further studies of the 

impact of this legislation and CFC trends suggest that concentrations have begun to 

decrease indicating successful implementation of the ban leading to a cessation of 

emissions (Prinn et al., 1995). 

Despite the importance of O3 as a precursor to OH and therefore the removal 

of pollutants, in the troposphere, O3 itself is a pollutant and a powerful oxidative 

stressor. At high enough concentrations it can cause damage to crops, livestock  and 

public health by degrading air quality. It is also a greenhouse gas (figure 1.2) and has 

been associated with increased death rates by contributing to the formation of 

photochemical smog (Finlayson-Pitts and Pitts, 2000). 

The tropospheric loss mechanism of O3 is via OH initiated oxidation of carbon 

monoxide, CH4 and other volatile organic carbons (VOCs). This is demonstrated by 

the reactions with CO and CH4 in reaction schemes 1.9 and 1.10 respectively. 

 

CO + OH → H + CO2 1.9a 

H + O2 + M → HO2 + M 1.9b 

HO2 + HO2 → H2O2 + O2 1.9c 

    

Net: CO + OH + HO2 → CO2 + H2O2 1.9 

 

 

CH4 + OH → CH3 + H2O 1.10a 

CH3 + O2 + M → CH3O2 + M 1.10b 

CH3O2 + HO2 → CH3OOH + O2 1.10c 

    

Net: CH4 + OH + HO2 → CH3OOH + H2O 1.10 
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 As the OH radical involved in reactions 1.9 and 1.10 is produced via O3 

photolysis, as described previously through reactions 1.6 and 1.7, and the products 

CH3OOH and H2O2 are water soluble peroxides that can be removed efficiently from 

the system through precipitation and deposition processes, these reactions represent 

an O3 loss mechanism. 

Tropospheric O3 was initially thought to be of stratospheric origin, and 

although this is true, it is now recognised as being only a minor source. In 

comparison to ‘O3 rich’ stratospheric air (typically 10ppmv), tropospheric air is 

relatively ‘O3 deplete’ (0.04ppmv) (Lelieveld and Dentener, 2000). Vertical convection 

of tropospheric air in the tropics (~0° latitude) via the extratropical pump is slow and 

as a result, much of the uplifted air is transported towards the mid-latitudes without 

reaching the stratosphere. During the vertical transport of O3 depleted tropospheric 

air into the stratosphere, O3 is produced via O2 photolysis (reactions 1.1-1.4). This is 

most efficient at tropical latitudes and is followed by O3 transport poleward by the 

Brewer-Dobson circulation (Brewer, 1949; Dobson, 1956) (figure 1.5). O3 

accumulates in this circulating air mass during transport before enriching the 

troposphere with O3 through stratosphere-troposphere exchange (STE). This 

exchange can occur via two main pathways; the simple descending of an air mass as 

it cools during transport or movement across layers of constant potential temperature 

that cross the tropopause. Potential temperature is the temperature an air parcel 

would have if it were compressed or expanded under adiabatic conditions to a 

reference pressure, without the exchange of heat with the environment (Finlayson-

Pitts and Pitts, 2000). Movement of an air parcel across areas of constant potential 

temperature requires no change in heat and is therefore a rapid process. 
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Figure 1.5. Schematic representation of the Brewer-Dobson circulation and 

stratosphere-troposphere exchange (STE). 1 = air is warmed at the tropics and rises. 2 

= O3 deplete air crosses the tropopause into the stratosphere. 3 = Circulation 

transports air mass polewards as O2 is converted to O3. 4 = Air cools and sinks at high 

latitudes. 5 = O3 rich air crosses the tropopause into the troposphere. 6 = Air parcel of 

constant potential temperature crossing the tropopause. 

 

The major source of tropospheric O3 however, involves the photochemistry 

and oxidation of CO and VOCs as described above (1.9 and 1.10), in the presence of 

nitric oxide (NO) and nitrogen dioxide (NO2), collectively termed NOx. Due to the 

ease with which NO and NO2 easily interconvert, they act as catalysts for many 

important atmospheric reactions including the null cycle (NOx cycle) as shown in 

reactions 1.11-1.13. 

 

NO + O3 → NO2 + O2 1.11 

NO2 + hʋ → NO + O(3P) 1.12 

O(3P) + O2 + M → O3 + M 1.13 

  

This cycle reaches a photostationary steady state (PSS) within a couple of 

minutes (Crawford, 1996) with the NO to NO2 ratio, also known as the Leighton 

relationship, being controlled by O3 concentration, temperature and light. This 

relationship is defined in equation 1.14, where j(NO2) is the photolysis rate of reaction 

1.12 and k1.11 is the reaction rate of 1.11. 
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[NO2] 

[NO] 
= 

k1.11[O3] 

j(NO2) 
1.14 

 

 However, this cycle only holds if O3 is the only oxidant causing the conversion 

of NO to NO2. Peroxy radicals (RO2 and HO2) formed during the oxidation of CO and 

VOC by OH (1.9b and 1.10b) can also oxidise NO to NO2 thereby perturbing the PSS 

and creating the catalytic production of O3 by preserving active radicals. The 

alternative reaction pathways for 1.9 and 1.10 in the presence of NOx are illustrated 

in reaction schemes 1.15 and 1.16 respectively. 

 

CO + OH → H + CO2 1.15a 

H + O2 + M → HO2 + M 1.15b 

HO2 + NO → OH + NO2 1.15c 

NO2 + hʋ → O(3P) + NO 1.15d 

O(3P) + O2 + M → O3 + M 1.15e 

    

Net: CO + 2O2 + hʋ → CO2 + O3 1.15 

 

 

CH4 + OH → CH3 + H2O 1.16a 

CH3 + O2 + M → CH3O2 + M 1.16b 

CH3O2 + NO → CH3O + NO2 1.16c 

CH3O + O2 → CH2O + HO2 1.16d 

HO2 + NO → OH + NO2 1.16e 

2 [NO2 + hʋ → NO + O] 1.16f 

2 [O + O2 + M → O3 + M] 1.16g 

    

Net: CH4 + 4O2 + hʋ → CH2O + 2O3 + H2O 1.16 

 

 The oxidation of VOCs in the presence of NOx represent the only known 

production pathway of O3 in the troposphere, highlighting the importance of NOx in 

the O3 budget. This importance is demonstrated by figure 1.6, which shows the net 

change of O3 with changes in the NOx mixing ratio. Here, a negative PO3 represents 

net O3 loss. 
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Figure 1.6. Relationship between net O3 production and NO concentration (adapted 

from Jaeglé et al, 1998). 

 

The NOx concentration at which point there is a transition from an O3 

production to an O3 destruction regime (x-intercept), is known as the compensation 

point (figure 1.6). This is largely dependent on the rates of two competing reactions 

(1.17 and 1.18). 

 

HO2 + O3 → OH + 2O2 1.17 

HO2 + NO → OH + NO2 1.18 

 

For net O3 destruction, the conversion of HO2 to OH must proceed through 

the reaction with O3 (1.17), whereas for net O3 production, the reaction between HO2 

and NO (1.18) must dominate, i.e. when the NO concentration is high. 

Kinetic analysis of this system found that the reaction rate of 1.18 is 4000 

times the rate of 1.17 (Crutzen, 1986), suggesting that net O3 production should 

occur when the NO to O3 ratio increases to greater than 1:4000. However the 

compensation point at two coastal sites, Cape Grim, Tasmania and Mace Head, 

Ireland, was found to be significantly higher than that predicted based solely on the 

kinetics of the reactions. This was attributed to the high humidity found in the marine 

boundary layer resulting in greater OH production and therefore O3 destruction 

(Carpenter et al., 1997). In areas of very low NOx concentrations, such as those 
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found in remote, marine environments, the dominant reactions of radicals are self-

reactions to form water soluble peroxides (1.19-1.22). 

 

HO2 + OH → H2O + O2 1.19 

HO2 + HO2 → H2O2 + O2 1.20 

HO2 + RO2 → products 1.21 

RO2 + RO2 → products 1.22 

  

These products are then removed from the system and therefore represent 

radical terminating reactions. As the rate of these self-reactions depends on the 

square of the radical concentration, these loss processes increase in areas of high 

radical concentrations (Thornton et al, 2002). This loss of radicals means NO 

concentrations must increase so that the HO2 reacts predominantly via reaction 1.18 

in order to allow O3 production.  

At high NOx concentrations, the system becomes NOx saturated (or VOC 

limited) and NOx becomes a sink for radicals rather than recycling them, due to the 

formation of HNO3 and alkyl nitrates (1.23 and 1.24), thereby removing active 

radicals from the system. 

 

OH + NO2 → HNO3 1.23 

RO2 + NO → RONO2 1.24 
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Chapter 2 

 

REACTIVE NITROGEN 
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2.1. The Nitrogen Cycle 

 

Molecular nitrogen is the most abundant constituent in the global atmosphere 

(table 1.1) but due to its stability, it does not take part in tropospheric chemistry. 

However at temperatures greater than 2000 C, atmospheric nitrogen and oxygen 

can react to form NO. These conditions arise primarily through lightning and 

combustion (burning of fossil fuels or biomass). As discussed previously in section 

1.3, due to the ease with which NO and NO2 interconvert as a result of O3 oxidation 

and photolysis, these compounds enter into a photostationary steady state. This 

cycle is shown in reactions 1.11-1.13 and is termed, the NOx cycle. Estimated NOx 

emissions from the major sources are listed in table 2.1. Whilst the burning of fossil 

fuels is the major global source of NOx, soils and lightning dominate natural 

emissions. The emissions of these sources however are difficult to quantify due to 

their high spatial and temporal variability (Williams and Fehensfeld, 1991; Montanyà 

et al., 2007). 

 

Table 2.1. Estimates of the global tropospheric NOx budget from Forster et al. (2007), 

showing both natural and anthropogenic NOx sources.  

Source Emission of NOx 

Tg N yr
-1 

Percentage of Total 

% 

Fossil fuel 33.0 63.6 

Aircraft 0.7 1.3 

Biomass burning 7.1 13.7 

Soils 5.6 10.8 

Lightning 5.0 9.6 

Stratosphere < 0.5 1.0 

Total 51.9  

 

Figure 2.1 shows the Earths nitrogen cycle with important processes listed in 

table 2.2. Denitrification is the reduction of the nitrate ion (NO3
-) by bacteria during 

anaerobic respiration and can lead to the release of NO, nitrous oxide (N2O) or 

atmospheric nitrogen (N2). Nitrification is the reverse process, whereby nitrifying 

bacteria first convert ammonium ions (NH4
+) to nitrite (NO2

-) and then into NO3
-. The 

conversion of decomposing organic matter to NH4
+ is called ammonification, 

The major atmospheric loss mechanisms of nitrogen containing compounds 

are wet and dry deposition of nitric acid (HNO3) as a result of its high solubility or 

through biological uptake to allow incorporation of organic nitrogen into important 
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compounds within the organism, such as amino acids or chlorophyll. Biological 

removal processes include; NO2 stomatal uptake by plants, uptake of nitrate (NO3
-) 

and ammonium ions (NH4
+) via assimilation (Postgate, 1982) (table 2.2) or fixation of 

atmospheric nitrogen (N2) by bacteria that contain the nitrogenase enzyme and 

typically inhabit soils and root nodules of leguminous plants.  

 

 

Figure 2.1. The Nitrogen Cycle. 

 

Table 2.2. Important reaction pathways for nitrogen cycling. 

Process Reactions 

Denitrification: NO3
-
 → NO2

-
 → NO → N2O → N2 

Nitrification: NH4
+ 

→ NO2
- 

→ NO3
-
 

Ammonification: Organic N → NH3 → NH4
+
 

Assimilation: NH4
+
 or NO3

-
 → Organic N 

Fixation: N2 → NH3 or NO 
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2.2. Reactive Nitrogen 

 

As described in Chapter 1, variation in NOx concentrations plays a pivotal role 

in determining whether a system exhibits O3 production or destruction (O3 

compensation point). The nonlinearity in this relationship (Liu et al., 1987) means that 

O3 production efficiency (the number of O3 molecules produced per molecule of NOx) 

is greater at lower NOx concentrations and therefore, minimal transport of NOx 

emissions to the remote troposphere is required in order to create significant O3 

production (Jacob et al., 1993). 

This transport is restricted however as the oxidation of NOx occurs in less 

than a day and its distribution is therefore restricted to the source region. The 

atmospheric pool of oxidised nitrogen products, also known as reactive nitrogen, is 

abbreviated as NOy. This is defined as “the sum of NOx and all oxidised nitrogen 

species that represent sources or sinks of NOx through processes that occur on 

relatively short timescales” (Wayne, 2000). This includes NOx, peroxy nitrates 

(RO2NO2, PNs), alkyl nitrates (RONO2, ANs), HNO3, HONO, HO2NO2, halogen 

nitrates, nitrate aerosol, NO3 and N2O5. The term NOz is also used to separate NOx 

and NOy species (NOz = NOy – NOx).  

The lifetimes of NOz compounds are determined by characteristics such as 

their thermal stability, solubility, photolysis rates, reaction with OH and deposition 

velocities. It has been suggested that those species with longer lifetimes such as 

PNs act as a reservoir for NOx, allowing long-range transport and chemical 

connectivity between polluted and remote environments, resulting in perturbations to 

the local O3 regime (Crutzen, 1979). In this section, these individual components of 

NOz will be discussed in detail. 
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2.2.1. Nitrous Oxide, N2O 

 

Although N2O is a NOx source in the stratosphere, it is generally excluded 

from the NOy definition due to its inherent chemical and physical stability in the 

troposphere. However due to its importance in atmospheric processes, it warrants a 

description here. As described in section 2.1, N2O can be produced naturally through 

the process of denitrification. Anthropogenic emissions include manufacturing 

processes and the burning of fossil fuels, but the dominant source is a result of 

increased nitrogen loading on terrestrial systems due to intensive agriculture 

practices, such as the use of fertiliser as well as land use change, which act to 

enhance soil emissions (Forster et al., 2007). These soil emissions are also 

regulated by temperature and moisture (Parton et al., 1998). As N2O is a greenhouse 

gas with a global warming potential (GWP) 310 times that of CO2, climate change 

could have important implications for the role of N2O in the future. 

Due to its stability within the troposphere, it can also be transported into the 

stratosphere where the increase in solar energy causes N2O photolysis resulting in 

the production of NO as shown in reaction 2.1. This source of NOx in the 

stratosphere can then contribute to the destruction of the O3 layer (reaction 2.2).  

 

N2O + O → NO + O2 2.1 

 

NO + O3 → NO2 + O2 2.2a 

NO2 + O(3P) → NO + O2 2.2b 

    

Net: O3 + O(3P) → 2O2 2.2 

 

 However, despite its role as a GHG and being recently labelled as the 

dominant ozone-depleting substance in the atmosphere (Ravishankara et al., 2009), 

it remains unregulated by the Montreal Protocol and is therefore set to remain the 

most damaging compound for stratospheric O3 and a potential threat to the Earth’s 

climate into the future. 
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2.2.2. Peroxyacyl Nitrates, PNs 

 

Peroxy nitrates (molecules of the form RO2NO2, or PNs) represent a 

dominant fraction of the reactive nitrogen pool, often constituting between 10-80 % 

(Singh and Hanst, 1981; Roberts, 1990; Cleary et al., 2004). PNs can be further 

divided into two groups depending on the nature of the peroxy radical. Peroxy acyl 

nitrates (PANs) are formed where RO2 is of the structure R’C(O)OO, whereas non-

acyl peroxy nitrates form when RO2 does not terminate in a peroxycaroboxylic group 

or is HO2 (Wooldridge et al., 2010). 

Production of PANs in the atmosphere occurs via OH initiated oxidation (2.3) 

or photolysis (2.4) of aldehydes, ketones and other oxygenated VOCs (oVOCs). This 

generates peroxy radicals (RO2 or HO2), which then react with NO2 as shown in the 

forward reaction of 2.5. 

 

oVOC + OH + O2 → RC(O)O2 2.3 

oVOC + hv + O2 → RC(O)O2 2.4 

RC(O)O2 + NO2 ↔ RC(O)OONO2 2.5 

 

PNs exist in equilibrium and exhibit a strong temperature dependence (2.5). 

For example, PANs have thermal stabilities characteristic of the RC(O)OO-NO2 

bond, which is independent of the nature of the R-group (Roberts and Bertman, 

1992) and leads to atmospheric lifetimes of minutes in the boundary layer (T > 287 

K) and months in the free troposphere ( T < 263 K). Mixing ratios for PANs range 

from < 2 pptv in the remote marine boundary layer up to several ppbv in urban areas, 

whereas non-acyl peroxy nitrates, which have much shorter lifetimes, only show 

significant concentrations in colder regions of the atmosphere (Murphy et al., 2004; 

Browne et al., 2010). 

The relative abundance of PN species are a reflection of their sources. 

Accordingly peroxyacetyl nitrate (PAN, CH3C(O)OONO2), which has multiple oVOC 

sources, both biogenic (acetaldehyde, ethanol, isoprene and some monoterpenes) 

and anthropogenic (ethane, acetaldehyde, acetone, toluene and higher alkanes), 

typically comprises 80 % of the PN reservoir (Roberts et al., 2007).  

The diversity of possible PAN precursors has been demonstrated via the 

significance of isoprene oxidation products; methyl glyoxal (MGLY), methyl vinyl 

ketone (MVK) and methacrolein (MACR). Cleary et al (2007) found that in areas of 

high isoprene emissions, the acyl peroxy radical concentration required to produce 

typical PAN concentrations was three times higher than that produced by 
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acetaldehyde alone, consistent with previous findings suggesting isoprene 

photochemistry was the source (Roberts et al., 2006). This was confirmed by 

LaFranchi et al (2009) who found that in a forest environment (strong biogenic 

influence), MGLY, MVK, MACR and biacetyl represented up to 63 % of the total 

source of acyl peroxy radicals at 20°C, with MACR explaining 35 % on average. At 

lower temperatures (reduced biogenic emissions), acetaldehyde accounted for ~60% 

of the acyl peroxy radical source. Similarly, in urban environments with low isoprene 

emissions, PAN concentrations are consistent with that of acetaldehyde as the sole 

source (Roberts et al., 2001). 

Although PAN dominates the PNs reservoir, many other homologues exist, 

though in lower abundance,  including; peroxypropionyl nitrate (PPN, 

C2H5C(O)OONO2), peroxymethacryloyl nitrate (MPAN, CH2=C(CH3)C(O)OONO2), 

peroxyisobutyryl nitrate (PiBN, (CH3)2CHC(O)OONO2), peroxyacryloyl nitrate (APAN, 

CH2=CHC(O)OONO2), peroxybutyryl nitrate (PnBN, CH3(CH2)2C(O)OONO2) and 

peroxybenzoyl nitrate (PBzN, C6H5C(O)OONO2), with many more predicted (Cleary 

et al., 2007).  

In contrast to PAN, PPN and MPAN, which are typically one order of 

magnitude lower in concentration (Roberts et al., 2007), are derived solely from the 

oxidation of anthropogenic emissions of n-alkanes and MACR respectively. As a 

result of this correlation between PN species and their precursors, the PNs 

composition can be used as a tracer to determine the relative contributions of 

anthropogenic and biogenic hydrocarbons to O3 production (Williams et al., 1997; 

Roberts et al., 1998, 2001).  

PNs are considered to be one of the most important NOx reservoirs due to 

their role in long-range transport of emissions, with PAN alone being responsible for 

5-10 % of all NOx being vented from the boundary layer to the free troposphere 

(Moxim et al., 1996; Hudman et al., 2004). The thermal equilibrium described above 

in which PANs exist (2.5), led to the hypothesis that following formation in polluted 

source regions near the earth’s surface, vertical transport into the free troposphere 

could lead to their preservation at low temperatures. Under free tropospheric 

conditions the residence time of these emissions would then be increased, allowing 

long-range horizontal transport. Subsequent warming of the air mass, as it is 

transported towards the tropics via the trade winds or due to sinking of the air mass 

into the boundary layer, would shift this equilibrium allowing the reformation of NOx in 

areas downwind of their original emission source. This process could potentially 

result in the perturbation of the local O3 regime and lead to areas of significant O3 

production in the clean, remote troposphere (Crutzen, 1979; Singh and Hanst, 1981).  
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This process is today, still considered to be the most important mechanism 

for NOx transport in the atmosphere and is currently being strongly investigated in 

connection with the rapid economic and industrial growth of Asia and subsequent 

intercontinental transport of O3 and its precursors into North America (Parrish et al., 

2009; Walker et al., 2010; Hsu et al., 2102). Although quantitative estimates of the 

specific ozone sources involved in this transport are lacking, recent model analysis 

predicts that with the exclusion of Asian anthropogenic emissions, 53 % of O3 

exceedances of 75 ppbv in North America would not occur (Lin et al., 2012). This 75 

ppbv threshold represents the national standard for ambient air quality in the United 

States of America. 

The thermal equilibrium that controls the abundance of PANs means that the 

rates of reaction with OH and photolysis are too slow to be significant loss processes 

for PANs under boundary layer conditions (Talukdar et al., 1995). For example, of 

PAN, PPN and MPAN, only MPAN has a significant loss rate as a result of OH 

oxidation due to its alkene source (Orlando and Tyndall, 2002). Consequently in the 

boundary layer, reactions between peroxyacyl radicals with NO (2.6), HO2 (2.7) and 

RO2 (2.8) represent the dominant loss pathway of PANs. The rates of these reactions 

are considered to be independent of the R-group (Roberts and Bertman, 1992).  

 

RC(O)O2 + NO → Products 2.6 

RC(O)O2 + HO2 → Products 2.7 

RC(O)O2 + RO2 → Products 2.8 

 

 Dry deposition is another process by which PANs may be lost from the 

system. Whereas early studies had assumed that atmosphere-biosphere cycling of 

reactive nitrogen compounds such as PAN and HNO3 would cause exclusively 

negative impacts on ecosystem health due to phytotoxicity and the acidification of 

soils and waterways respectively, recent studies have postulated that active foliar 

uptake of atmospheric reactive nitrogen by biota could be a major source of global 

nitrogen input to the ecosystems (Sparks et al., 2003; Sparks et al., 2009). Estimates 

suggest that up to 20 % of regional dry deposition of nitrogen can be a result of foliar 

uptake of PAN in some areas and could therefore result in increased ecosystem 

productivity (Teklemariam and Sparks, 2004). 

 Modelling studies trying to recreate the biologically induced dry deposition 

velocities (Vd) of PAN in a forest environment consistently underestimate those 

observed (Wolfe et al., 2011; Wu et al., 2012). Although stomatal Vd has been 

reasonably well characterised, the use of biological processes to constrain stomatal 
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uptake such as leaf area index and CO2 assimilation improved model simulations 

(Wu et al., 2012). However both models used by Wu et al (2012) consistently 

underestimated Vd by 20-50 % during both day and night. Thermal decomposition of 

PAN was also shown to be a minor loss pathway due to the lack of relationship 

between total surface conductance and temperature (Wu et al., 2012). It is therefore 

suggested that current model underestimation is due to oversimplification of 

nonstomatal processes (processes that dominate at night) and that key meterological 

parameters, specifically friction velocity and surface wetness, and biological 

conditions should be included in deposition models (Wolfe et al., 2011; Wu et al., 

2012). 

 Although this possible atmosphere-biosphere interaction which has thus far 

received little attention, provides a potentially important mechanism in the modelling 

of both atmospheric reactive nitrogen budgets and O3 regimes and terrestrial 

ecosystem productivites, both of which will also affect climate, it remains a confused 

picture. This is highlighted by studies measuring PNs and speciated measurements 

of PAN, PPN and MPAN at a coniferous forest site in California, USA (Farmer et al., 

2006; Wolfe et al., 2009; Min et al., 2012). Initial eddy covariance studies suggested 

that the total flux of PNs was from the canopy into the overlying atmosphere (Farmer 

et al., 2006). Although a later study at the same site also found the same for PNs, 

individual measurements of PAN, PPN and MPAN showed that these compounds 

were being deposited at different rates (Wolfe et al., 2009). Min et al (2012) have 

since found that these three species deposit approximately 30-60 % faster than 

PNs. This discrepancy and apparent temporal variation was attributed to the 

formation of other, yet unidentified PANs within the canopy, with the diurnal cycle 

and temperature variation thought to be due to cycles in the biogenic production of 

different VOC precursors (Min et al., 2012). 

Furthermore, similar to OH and photolysis initiated loss mechanisms, the rate 

of biological uptake of PANs cannot compete with the rate of chemical loss due to 

thermal decomposition at daytime temperatures and will therefore become more 

important in colder regions or at night (Turnipseed et al., 2006). Additionally, these 

spatial and temporal variations in the deposition of PANs will also differ to those of 

HNO3 that are thought to be controlled predominantly by turbulent transport to 

surfaces (Min et al., 2012). Research is therefore required in order to better 

understand these processes and as a result, better quantify the loss processes of 

one of the most dominant reactive nitrogen reservoirs in the atmosphere. 
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2.2.3. Alkyl Nitrates, ANs 

 

Alkyl nitrates (ANs) are of the form RONO2 and the composition of this 

fraction is known to be complex. They can be classified as mono- or multi- functional, 

branched or linear (Bertman et al., 1995 ; Fischer et al., 2000). 

Early studies were often confounded by the difficulties in measuring the 

different components of NOy and many experiments that measured comprehensive 

suites of NOy species, found that the sum of individual measurements (NOyi) was 

less than that of the total NOy, with the greatest discrepancies found in 

photochemically processed air masses (Russo et al., 2010). This disagreement came 

to be known as the ‘missing NOy’ (Fahey et al., 1986). In recent years, ANs have 

become the subject of intense investigation following a study by Day et al (2003) 

which suggested that ANs are responsible for most, if not all of the ‘missing NOy’. 

Using thermal dissociation laser induced fluorescence (TD-LIF), Day et al measured 

NO2, ΣPNs, ΣANs and HNO3 within an urban plume at three continental sites as it 

was processed during transport. Over an annual cycle in both urban and rural 

environments, ΣANs were found to comprise 10-20% of total NOy, an order of 

magnitude higher than previous reports (Flocke et al., 1998). 

Tropospheric ANs are secondary products of OH initiated hydrocarbon 

oxidation in the presence of NOx, as shown in reactions 2.9-11. They are also the 

primary NOy emissions from both the oceans (Atlas et al., 1993) and biomass 

burning (Simpson et al., 2002) 

 

RH + OH → R + H2O 2.9 

R + O2 → RO2 2.10 

RO2 + NO → RO + NO2 2.11a 

 → RONO2 2.11b 

 

 Depending on the R group the branching ratio of AN formation (2.11b) ranges 

between 1-10’s of percent, with high molecular weight and low temperatures 

favouring AN formation (Atkinson et al., 1983). Although this is evidently the minor 

branch of the reaction between peroxy radicals (RO2) and NO, the formation of ANs 

is believed to be one of the major pathways for converting NOx from radical form to 

inactive reservoirs at, or near, the Earth’s surface by terminating the NOx cycle, 

thereby preventing subsequent O3 production (Ranschaert et al., 2000; Horowitz et 

al., 2007). As O3 and ANs share the OH radical as a common precursor in their 

formation pathways, Day et al (2003) suggest that they should be correlated by the 
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gradient of the correlation based on the branching ratios of reactions 2.11a and 

2.11b as described by equation 2.12. 

 

∝ =       k2.3b_____ 

(k2.3a + k2.3b) 

2.12 

 

Where α is the branching ratio and k is the rate constant for the respective 

reaction pathways of reaction 2.11. As branching ratios increase with hydrocarbon 

carbon chain length within homologous series, the hydrocarbon that is the precursor 

of the RO2 can be inferred from the correlation between O3 with ΣANs and therefore 

also provide a direct test of the hydrocarbon component of models describing O3 

production (Day et al., 2009). However, processing of the air mass during transport 

such as losses due to deposition will alter the observed correlation making estimates 

of the hydrocarbon precursors erroneous, especially during long distance transport 

unless the loss mechanisms are quantified. 

As stated, the oceans are another source of ANs and could therefore have a 

large impact on the remote, marine boundary layer. Peak concentrations of up to 80 

pM have been found in the tropics, associated with the equatorial upwelling and 

characterised by high methyl:ethyl nitrate ratios (Atlas et al., 1993; Thompson et al., 

1993; Chuck et al., 2002; Blake et al., 2003; Dahl et al., 2005; Dahl et al., 2007). 

Saturation anomalies of up to 800% for methyl and ethyl nitrate have been reported 

in the Atlantic Ocean (Chuck et al, 2002) and supersaturations of C1-C3 ANs as high 

as 2000% with respect to the atmosphere have been observed in the Pacific Ocean 

(Dahl et al., 2005). Within the corresponding marine boundary layer, ANs have also 

been found to compose 20-80% of the total NOy (Talbot et al., 2000). 

Model calculations, using only photolysis and OH initiated oxidation of ANs as 

major loss terms, suggests that export of ANs to the surrounding atmosphere is a 

significant removal mechanism (Dahl et al., 2005). This highlights the importance of 

the sea to air flux as a source of ANs in environments sufficiently remote from 

anthropogenic and terrestrial impact, with implications for local O3 regimes. For 

example, total emissions of methyl and ethyl nitrate are estimated to be equivalent to 

0.35 Tg N yr-1 and responsible for ~3% of the global tropospheric oxidative capacity 

(Neu et al., 2008).  

Laboratory studies have found that aqueous phase AN formation follows 

reactions 2.9-2.11 (Dahl et al., 2003). However the branching ratio for reaction 2.11b 

were found to be much higher than those reported in the gaseous phase (Atkinson et 

al., 1982). Dahl et al (2003) propose that photolysis of nitrite (NO2
-) acts as a source 
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of NO (2.13) and photochemical reactions of coloured dissolved organic matter 

(CDOM) provides RO2 (2.14). 

 

 H2O, hʋ   

NO2
- → NO + OH + OH- 2.13 

 O2, hʋ   

CDOM → RO2 2.14 

 

 In support of this mechanism, Dahl et al (2008) observed in situ 

photochemical production of ANs in tropical Pacific surface water samples following 

the addition of NO2
-. The relative rates of production were similar to the concentration 

ratios in the ambient water, indicating that photochemistry may be the dominant 

source. Production showed saturation behaviour when NO2
- concentrations were 

added in excess, suggesting that AN formation became limited by the availability of 

RO2. Furthermore, higher concentrations were required to reach saturation in those 

areas that are typically NO2
- deplete, i.e. within gyre systems, suggesting that 

although different water masses have similar potential for AN production, NO2
- 

concentrations control AN distribution in the surface oceans.  

 While this is consistent with photochemical production, it does not 

discriminate between photochemical or a biological production mechanism. There is 

evidence for the latter, for example, Atlas et al (1993) found that isopropyl nitrate 

correlated with the biogenic halocarbon bromoform. Dahl et al (2007) also found that 

on the scale of different water masses, the spatial distribution of ANs was correlated 

with chlorophyll concentrations.  

Another source of ANs first described by Simpson et al (2002) is emission 

following biomass burning. Emission ratios (ERs) are often used to express trace gas 

emissions from biomass burning, where the background mixing ratio of the target 

compound is subtracted from the elevated concentration within a plume and then 

divided by the mixing ratio of a reference compound such as CO or CO2. The 

conversion efficiency (CE), which is calculated using equation 2.15 is a factor that 

affects ERs and gives an indication to the state of the fire. For example, a 

CO/CO2< 0.1 ppmv ppmv-1 indicates a high CE, meaning the fire is flaming, 

whereas a CO/CO2 > 0.1 ppmv ppmv-1 indicates a low CE associated with a 

smouldering fire (Bonsang et al., 1995). 
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CE =  COplume - CObackground 

CO2 plume - CO2 background 

2.15 

 

Simpson et al (2002) found that methyl nitrate dominated during the flaming 

stage with peak mixing ratios of > 3 ppbv, whereas C2-C4 ANs were primarily emitted 

during the smoldering phase. The authors proposed that following peroxy radical 

self-reactions (2.16a) or reactions with NO (2.16b), the resultant hydroxy radical 

oxidises NO2 to form the AN (2.16c). 

 

RO2 + RO2 → 2RO + O2 2.16a 

RO2
 

→ RO + NO2 2.16b 

RO + NO2 → RONO2 2.16c 

 

 This pathway allowed for the higher mixing ratios of methyl nitrate observed, 

as its formation is no longer constrained by oxidation of the parent hydrocarbon by 

OH or of NO by a peroxy radical. It is also consistent with the better correlation of 

larger ANs with CO than with CO2 as the cooler temperatures during the smouldering 

phase favour larger radicals (Simpson et al., 2002). Although it is well understood 

that biomass burning is a source of ANs, their emissions are heavily dependent on 

the fuel source and therefore the environment (Akagi et al., 2011; Simpson et al., 

2011) 

 Many of the simple ANs are both thermally stable (Hiskey et al., 1991; 

Politzer et al., 1997) and only slightly soluble in water (Luke et al., 1989), meaning 

thermal decomposition and wet deposition are minor loss mechanisms for this class 

of compounds. However, by analogy with the ‘missing NOy’, discrepancies in the 

surface deposition rates also exist when calculated from the sum of deposition rates 

for individual species in comparison with surface deposition rates calculated for total 

NOy, suggesting a missing loss term in the NOy budget (Nielsen et al., 1995; Horii et 

al., 2006). Again, this discrepancy is often greatest in photochemically aged air 

masses and has therefore been attributed to the AN reservoir and has received 

greater research interest in recent years (Cornell et al., 2003; Russo et al., 2010). A 

recent study found evidence that this disagreement could partly be due to dry 

deposition of methyl nitrate, which has a higher solubility than other AN species 

(Russo et al., 2010), thereby also providing another pathway of possible terrestrial-

atmospheric cycling of nitrogen. 

 The dominant sinks for ANs in the atmosphere however are via photolysis 

(He et al., 2011) and OH initiated oxidation (Aschmann et al., 2011). Both cause 
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comparable loss rates with AN lifetimes calculated to be approximately 2-5 weeks 

(Aschmann et al., 2011; He et al., 2011). Photolysis dominates for short chain ANs 

(C1-C3) whereas OH oxidation typically affects larger ANs (Talukdar et al., 1997a, 

Talukdar et al., 1997b). The longevity of ANs facilitates long distance transport to 

remote regions, where these loss processes can lead to the release of NOx and 

subsequent O3 formation.  

Photolysis of ANs results in the formation of an alkoxy radical (RO) and NO2 

(2.17) (Talukdar et al., 1997a). The ratio of ANs to the parent hydrocarbon can be 

employed as a photochemical tracer and measure of age of an air mass during 

transport (Bertman et al., 1995). As the photochemical lifetimes of the C2 and C3 ANs 

are shorter than that of their parent hydrocarbon, the ratio of the two is expected to 

reach steady state over long processing times (weeks). In contrast for larger ANs, 

this ratio will increase indefinitely with time as they are longer lived than their parent 

hydrocarbons (Bertman et al., 1995). This relationship was first tested by Bertman et 

al (1995) who developed a simple kinetic analysis based on two sequential first order 

reactions and assumed that all peroxy radicals react with NO. This compared well 

with observations, though deviations from the predicted values have been observed 

in many studies for smaller ANs (Bertman et al., 1995; Simpson et al., 2003; Russo 

et al., 2010). It has been postulated that this deviation is due to an additional source 

of smaller ANs, which may be a result of decomposition of larger species, specifically 

alkoxy radicals (Bertman et al., 1995).  

 

 hʋ   

RONO2 → RO + NO2 2.17 

 

The products of OH initiated AN oxidation, including whether or not NO2 is 

released, are not well known and direct evidence is ambiguous (Farmer and Cohen, 

2008). The three known pathways are shown by reactions 2.18, where 2.18b and 

2.18c represent a loss of alkyl nitrate functionality and are estimated to account for 6-

30 % of reaction 2.1 in total (Farmer and Cohen, 2008). 

 

RONO2 + OH → R’ONO2 + H2O 2.18a 

 → R’O + HNO3 2.18b 

 → ROOH + NO2 2.18c 
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Recent studies have provided a better understanding of the reaction 

pathways involved in 2.18, the fates of AN oxidation products and the consequences 

this has on the release of NOx. The OH initiated oxidation of monofunctional, 

branched (Aschmann et al., 2011) and linear (Aschmann et al., 2012) ANs was found 

to proceed via H-atom abstraction, producing H2O and a nitrooxy radical (2.19). If an 

∝-nitrooxy radical is formed (2.19a), i.e. abstraction removes an H-atom from the 

same carbon bonded to the nitrate group, then a significant fraction of the NOx 

contained within the AN is released due to rapid decomposition of the ∝-nitrooxy 

radical to form a carbonyl and NO2 (2.20) (Vereecken et al., 2008).  

 

RONO2 + OH → RC•ONO2 + H2O 2.19a 

 → C•RONO2 + H2O 2.19b 

RC•ONO2 → RC(O)R + NO2 2.20 

C•RONO2 + O2 → R(OO•)RONO2 2.21 

R(OO•)RONO2 + NO → RONO2RONO2 2.22a 

 → RONO2RO• + NO2 2.22b 

 

For all other nitrooxy radicals, H-atom abstraction is followed by oxidation 

(2.21) before reaction with NO to form either a dinitrate (2.22a) or an alkoxy radical 

and NO2 (2.22b). The amount of NOx released from the AN following this pathway 

depends predominantly on the subsequent reactions of this alkoxy intermediate.  

 

RONO2RO• → C•RONO2ROH 2.23 

C•RONO2ROH + O2 + NO → O•RONO2ROH + NO2 2.24a 

O•RONO2ROH → OHRONO2R•OH 2.24b 

OHRONO2R•OH + O2                → OHRONO2RO + HO2 2.24c 

    

 RONO2RO• + O2                           → RONO2RO + HO2 2.25 

    

O•RONO2ROH                     → HCHO + ROHRO + NO2 2.26 

    

 

The alkoxy radicals can undergo isomerization (2.23-24), reaction with O2 

(2.25) and / or decomposition (2.26). Recent kinetic (Atkinson, 2007) and 

experimental analysis (Aschmann et al., 2012) suggests that isomerization is the 

dominant pathway (2.23), which in the presence of NO, forms hydroxycarbonyl-
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nitrates (2.24). Reaction of the alkoxy radical with O2 results in the formation of 

multifunctional carbonyl-nitrates (2.25) and decomposition will eventually lead to the 

formation of carbonyls and NO2 (2.26). Dinitrates may also be produced during alkyl 

nitrate oxidation, although this is thought to be a minor pathway (less than 5%) 

(Perring et al., 2009; Aschmann et al., 2012). 

In low NO environments, RO2 self-reactions (reactions with RO2 and HO2) 

dominate over RO2 + NO (2.11a) and a greater yield of multifunctional hydroperoxy-, 

carbonyl- and hydroxycarbonyl- nitrates is expected (Aschmann et al., 2012). These 

multifunctional products will also undergo OH oxidation, photolysis or wet and/or dry 

deposition, but their exact fate and whether or not their degradation results in the 

release of NO2 or the maintenance of alkyl nitrate functionality in the system is still 

unknown. For this reason, further investigation into these processes is merited to 

allow quantification of the contribution of alkyl nitrates as a NOx source in remote 

environments. 

Another important subgroup of alkyl nitrates are isoprene nitrates (INs), which 

have been found to represent a significant fraction of the alkyl nitrate group and up to 

5% of total NOy in environments such as forests where emissions are especially high 

(Grossenbacher et al., 2004; Perring et al., 2009). Isoprene is the dominant VOC 

accounting for ~44% of total global VOC emissions, estimated at 440-660 Tg yr-1 

(Guenther et al., 2006). Therefore, any minor changes to isoprene chemistry can 

have major influences on global atmospheric chemistry.  

OH oxidation of isoprene proceeds via reactions 2.9-2.11 to produce six 

chemically distinct hydroxynitrates with the branching ratio for reaction 2.11b 

estimated to be between 4.4-12% (Chen et al., 1998; Sprengnether et al., 2002). 

Oxidation of isoprene at night by NO3 in high NOx environments, produces another 

set of isoprene nitrates and has been found to be a dominant isoprene sink (Stroud 

et al., 2002; Warneke et al., 2004), accounting for >20% of isoprene losses (Rollins 

et al., 2009). The reaction pathways are identical to that of OH initiated oxidation, 

only with nitrooxyalkyl peroxy radicals formed as an intermediate (2.10) and the 

production of aldehydic or ketonic nitrates (2.11b) instead of a hydroxynitrate as 

described above. The branching ratio of isoprene nitrate formation and the relative 

importance of NO3 oxidation compared with OH is unknown, though recent product 

analysis has found the organic nitrate yield of NO3 initiated oxidation of isoprene to 

be 65 ± 12 % (Perring et al., 2009b). Although this is significantly lower than early 

findings of 80 % yields (Barnes et al., 1990), it confirms the importance of isoprene 

oxidation by NO3, not only as an important contributor to the total alkyl nitrate pool, 

but also as an important isoprene sink as a result of their high solubility.  
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The deposition velocity of isoprene nitrates is thought to be comparable to 

that of HNO3 (Giacopelli et al., 2005). For example in a pine forest in the eastern US 

where isoprene nitrates are dominant (Dreyfus et al., 2002), the deposition velocity of 

ΣANs was calculated to be 0.027 m s-1, 80 % of HNO3 (Farmer and Cohen, 2008). 

Additionally, isoprene nitrate abundance is strongly constrained by NOx due to its 

control of OH concentrations, with greater rates of isoprene nitrate production at 

higher NOx concentrations (Barket et al., 2001; Grossenbacher et al., 2001). This 

highlights the need to quantify the role of multifunctional alkyl nitrates and their 

associated products and their potential for sequestration of atmospheric NOx and 

possible biosphere-atmosphere feedbacks. 

 

2.2.4. Nitric Acid, HNO3 

 

Nitric acid (HNO3) is the dominant form of reactive nitrogen in the 

atmosphere, though it is mainly found in the stratosphere at polar latitudes where it 

plays an important role in regulating O3 concentrations and the development of the 

O3 hole in polar springtime, through both the sequestration of NOx and formation of 

Type 1 Nitric Acid Trihydrate (NAT) polar stratospheric clouds (PSCs) (Solomon, 

1999). In contrast, it is estimated that only 10-15 % on a column basis is present in 

the troposphere (Wespes et al, 2009). Here it is formed predominantly via OH 

initiated oxidation of NO2 as shown in reaction 2.27. However it should be noted that 

the heterogeneous hydrolysis reaction of N2O5, which will be discussed in section 

2.27, is also thought to be a major source of HNO3 (Dentener and Crutzen, 1993) 

 

OH + NO2 → HNO3 2.27 

 

Typically it is assumed that due to its high solubility, HNO3 is lost from the 

system predominantly via wet or dry deposition and has a deposition velocity (Vg) in 

the range of 1-5 cm s-1 (Lovett, 1994), resulting in a tropospheric lifetime on the order 

of hours (Neuman et al., 2006). This loss rate precludes its relatively slow reaction 

with OH and photolysis, due to its absorption cross section decreasing rapidly within 

the actinic region (Finlayson-Pitts and Pitts, 2000). Consequently, this prevents 

reformation and long-range transport of NOx and makes HNO3 an irreversible NOx 

sink. This inability to act as a NOx sink and undergo long-range transport is a 

controversial subject however. In stratified, low-level emission plumes over oceanic 

environments, HNO3 can be contained within an air parcel, thereby preventing 

precipitation or surface contact losses. By this mechanism there is evidence that 
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HNO3 could be transported large distances prior to OH oxidation or photolysis, with 

subsequent reformation of NOx concentrations sufficiently high to maintain an O3 

production regime in an otherwise pristine, remote marine boundary layer 

environment (Neuman et al., 2006).  

Despite this on-going discussion, the deposition of HNO3 is still considered to 

be the greatest loss mechanism for NOx in the global atmosphere and has a 

significant effect on terrestrial systems through the formation of acid rain, which acts 

to damage the environment through the acidification of soils and waterways. 

Consequently, understanding its role in the atmosphere and quantifying its sources, 

sinks and reaction pathways is critical to the understanding of the Earth system as a 

whole. HNO3 measurements in the troposphere are difficult and relatively sparse 

(Wespes et al., 2007) with chemistry and transport models failing to reproduce the 

limited observations (Staudt et al., 2003). Ground based measurements generally 

rely on gas sampling but intercomparisons between different techniques have shown 

discrepancies, mainly a result of losses to the walls of instruments as a consequence 

of its high solubility (Hering et al., 1988; Fehsenfeld et al., 1998, Day et al., 2002) 

It is only recently that spatial, seasonal and inter-annual variations in 

stratospheric HNO3 distributions have been detected through the use of limb 

sounders operating in the infrared (IR) spectral range (Orsolini et al., 2008; von 

Clarmann et al., 2009) and the first global distribution of HNO3 in the troposphere 

was reported only in 2007 following the use of the high-resolution nadir infrared 

satellite, the Interferometric Monitor for Greenhouse gases (IMG) (Wespes et al., 

2007). Clearly more long-term measurements are needed, not only to quantify HNO3 

distributions in the atmosphere, but also to use ground-based measurements to 

verify satellite measurements, which regarding HNO3, are currently still in their 

infancy (Popp et al., 2009). 

  The biosphere-atmosphere exchange of HNO3 not only affects terrestrial 

systems, it is also considered to be an important source of new nitrogen to 

oligotrophic ocean provinces such as gyre systems, with deposition leading to 

increases in ecosystem productivity (Paerl, 1985; Owens et al., 1992; Jordan and 

Talbot, 2000). More recently, it has been suggested that HNO3 could also increase 

deposition of iron to high nutrient low chlorophyll (HNLC) surface waters. These iron-

limited regions represent appro imately  0 % of the world’s oceans (de Baar and 

Boyd, 2000) and increases in productivity have been observed following the 

deposition of mineral dust, the dominant source of iron for HNLC environments (Jo et 

al., 2007). This is thought to occur due to the uptake of acids such as HNO3 onto 

mineral dust surfaces, thereby creating extremely acidic environments that promote 
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iron dissolution and increase the amount of bioavailable iron following deposition 

(Cwiertny et al., 2008). 

 Nitrous acid (HONO) is another acid that is included in the NOy definition and 

of atmospheric importance. This is on account of its role as a major source of OH, 

predominantly in polluted regions within the troposphere, following photodissociation 

due to the absorption of radiation with a wavelength of < 400 nm (reaction 2.28). 

HONO has been found to represent up to 80 % of the OH source during the early 

morning (Elshorbany et al., 2009) and contribute to between 20-60 % of daily OH 

production (Acker et al., 2006; Zhou et al., 2007; Villena et al., 2011). 

 

HONO + hʋ → OH + NO 2.28 

 

 Its formation can occur via both homogeneous and heterogeneous reaction 

pathways, though the dominant pathway is still questioned (Yu et al., 2009; Zhang et 

al., 2012). Heterogeneous production occurs through the reaction of NO2 with H2O 

on a surface as shown in reaction 2.29 and has been observed on surfaces such as 

soils, vegetation, glass and buildings (Zhou, 2007; Zhang et al., 2012) 

 

2NO2 + H2O + surface → HONO + HNO3 2.29 

 

 The homogeneous gas phase production of HONO can proceed via four main 

pathways. Reaction 2.29 can also occur in the absence of surfaces and is thought to 

dominate the homogeneous production pathways (reaction 2.30) (Yu et al., 2009). 

However reaction 2.31 has also been found to be significant, accounting for over 60 

% of daytime HONO production (Elshorbany et al., 2009). Reaction 2.32 (Indarto, 

2012) and the photolysis of HNO3 (2.33) (Koch and Sodeau, 1995) may also provide 

important formation pathways. 

 

2NO2 + H2O → HONO + HNO3 2.30 

NO + OH → HONO 2.31 

NO2 + NO + H2O → 2HONO 2.32 

HNO3 → HONO + O(3P) 2.33 

 

 Mixing ratios of HONO range from tens of ppbv to tens of pptv in urban (Lee 

et al., 2002) and remote (Villena et al., 2011) environments respectively. However, it 

is the consistency of its significant contribution to OH production and therefore effect 
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on the atmospheric oxidising capacity, that provide the reasoning for further 

investigation and understanding of this important compound. 

 

2.2.5. NO3 Aerosol 

 

Further to the role of HNO3 in the gas phase chemistry of the atmosphere, it 

also has a significant effect on aerosol chemistry. Radiative forcing is defined as “an 

e ternally imposed perturbation in the radiative energy budget of the Earth’s climate” 

(Forster, 2007) and aerosols can impact the radiative balance directly through both 

scattering and absorption and indirectly, predominantly through cloud formation. 

Forster et al (2007) estimate that globally, total direct aerosol radiative forcing 

derived from models and observations is approximately -0.5 ± 0.4 W m-2 (has a net 

cooling effect) as shown earlier in figure 1.2 and the inclusion of the cloud-albedo 

effect increases this cooling effect to -2.2 W m-2 (Forster, 2007).  

Nitrate (NO3
-) and ammonium (NH4

+) ions are major constituents of 

atmospheric aerosols contributing up to 13 % of the global anthropogenic forcing (Xu 

and Penner, 2012) and in some instances, have been found to be more important 

than the sulfate aerosol loading (ten Brink et al., 1997; Malm et al., 2004). However 

the gas-aerosol partitioning of nitrate depends strongly on temperature, relative 

humidity and the availability of its precursors, with cooler temperatures and higher 

humidity favouring the aerosol phase (Dall’Osto et al., 2009). Their formation can 

occur via heterogeneous hydrolysis of N2O5 on the surface of aqueous aerosol 

particles (Brown et al., 2006) (2.34), adsorption of HNO3 onto pre-existing particles 

with a sufficient water content (Seinfeld and Pandis, 2006) (2.35) and reaction 

between HNO3 and ammonia (NH3) to form ammonium nitrate (NH4NO3) (Nowak et 

al., 2010) (2.36). The latter is often the dominant fraction of nitrate aerosol and is 

formed if sulfate aerosols become irreversibly neutralised and excess NH3 is 

available to react with HNO3. 

 

N2O5 + H2Oaerosol → 2HNO3 2.34 

HNO3 ↔ NO3
- + H+ 2.35 

NH3 + HNO3 ↔ NH4NO3 2.36 

 

Although the present day aerosol loading and direct radiative forcing from 

nitrate aerosols is considerably smaller than that of sulfate aerosols (Liao et al., 

2004), sulphur dioxide (SO2) emissions are reducing due to restrictions whereas NOx 

emissions are predicted to stabilize or continue to rise throughout the next century 
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(Makkonen et al., 2012).  As a result of the predicted increase in NOx:SO2, it is 

thought that nitrate aerosols may grow increasingly important for the global aerosol 

budget and partially offset the loss of aerosol due to restricitons of SO2 emissions 

through a compensatory effect caused by reaction 2.36 (Adams et al., 2001; 

Makkonen et al., 2012). This increasing importance of nitrogen oxides could also 

have significant consequences for cloud formation.  

HNO3 condenses onto aqueous aerosols at relative humidities close to and 

exceeding 100 % (Kulmala et al., 1997). With increasing humidity, large aerosols 

begin to activate to cloud droplets and as humidity continues to increase, so smaller 

aerosols are able to activate until peak relative humidity is reached, leaving any still 

smaller particles unactivated. Depending on conditions, the fraction of total aerosol 

that is activated can vary from 1 % to almost 100 % (Makkonen et al., 2012). The 

condensation of HNO3 can increase an aerosols hygroscopic mass allowing 

activation at lower relative humidities and increase the total fraction of aerosol that is 

activated as it is more efficient at condensing onto smaller particles that have a 

greater surface area to volume ratio (Xue and Feingold, 2004). This effect of HNO3 

has been shown to be enhanced following the co-condensation of ammonia, which 

as a base acts to neutralise the solution resulting in condensation at lower relative 

humidities (Romakkaniemi et al., 2005). Although this potential shift in aerosol 

dynamics and the associated repercussions for atmospheric processes could occur 

within the next century, the scientific understanding of aerosol impacts is currently 

rated as medium-low (Forster, 2007) and consequently, further investigation is 

warranted to allow the effective incorporation of aerosol processes into global climate 

predictive models.  

 

2.2.6. Halogen Nitrates 

 

Halogen nitrates (HNs) of the form XONO2, where ‘X’ represents a halogen 

molecule are another important class within NOy. They are formed through the 

recombination of XO and NO2 (reaction 2.37) and serve as an important reservoir for 

both NOx and active halogens.  

 

XO + NO2 → XONO2 2.37 

 

Upon photolysis in the stratosphere and subsequent formation of X and NO, 

HNs can take part in stratospheric O3 depletion through a catalytic destruction 

regime. This release of active halogens can also occur via the heterogeneous 
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hydrolysis of HNs on the surfaces of polar stratospheric clouds (PSCs) as shown in 

reaction  2.38. The catalytic O3 destruction cycle for active halogens is shown in 

reaction scheme (2.39). 

 

XONO2 + H2O (S) → HOX + HNO3 2.38 

 

X + O3 → XO + O2 2.39a 

XO + HO2 → HOX + O2 2.39b 

HOX + hʋ → X + OH 2.39c 

    

Net: 2O3 + hʋ  → 3O2 2.39 

 

Halogen chemistry has also been shown to have a significant effect on O3 

chemistry in the remote marine boundary layer (Read et al., 2008). Halogen species 

in this environment include chloride (Cl-), bromide (Br-) and iodide (I-). Whilst Cl- is a 

major component of seawater, Br- and I- have biological sources, being produced by 

phytoplankton and macro algae in the surface ocean waters. These compounds 

undergo sea-to-air transfer where they can then undergo chemical reaction in the 

atmosphere and also form a major component of sea salt aerosol (SSA).  

When incorporated into SSA, they have been shown to undergo reaction with 

dinitrogen pentoxide (N2O5) to form nitryl halides (2.40) (Finlayson-Pitts et al., 1989). 

Nitryl halides all absorb in the actinic region resulting in the production of reactive 

halogen radicals and whilst the relative importance of these reactions is uncertain, 

there remains the potential for an additional mechanism for O3 destruction. 

 

N2O5 + NaCl → ClNO2 + NaNO3 2.40a 

N2O5 + NaBr → BrNO2 + NaNO3 2.40b 

N2O5 + NaI → INO2 + NaNO3 2.40c 

 

2.2.7. Nocturnal Chemistry, NO3 and N2O5 

 
Owing to their photochemical source, OH and O3 are the dominant oxidising 

species in the atmosphere during the day. However at night with the absence of solar 

radiation driving OH production, concentrations diminish due to reactions with 

atmospheric constituents. During the night, although O3 still plays an important role, 

the nitrate radical (NO3) becomes the dominant oxidising species and plays a key 

role in the nocturnal chemistry within the troposphere, with oxidation rates 



Reactive Nitrogen in the Tropical Troposphere 

~ 47 ~ 

 

comparable to that of OH for some VOCs (Wayne et al, 1991). NO3 is formed via 

reaction 2.41 and upon further reaction with NO2, produces and exists in thermal 

equilibrium with dinitrogen pentoxide (N2O5) as shown by reaction 2.42.  

 

NO2 + O3 → NO3 + O2 2.41 

NO3 + NO2 → N2O5 2.42 

 

Although the rate of reaction 2.41 does not change significantly between day 

and night, NO3 and N2O5 concentrations are small during the day. This is due to the 

loss of NO3 via photolysis (2.43), which has a branching ratio of 0.13 and 0.87 for NO 

and NO2 respectively (Sander et al., 2006) and a rapid j[NO3] rate of ∼ 0.2 s−1 in 

direct sunlight (Stark et al., 2007), and reaction with NO (2.44), which as previously 

discussed is a primarily daytime species.  

 

NO3 + hv → NO 2.43a 

 → NO2 2.43b 

NO3 + NO → 2NO2 2.44 

 

As described in section 2.2.5, loss of N2O5 can proceed via heterogeneous 

hydrolysis resulting in the formation of HNO3 and can occur in gas phase and on wet 

surfaces, the latter of which also catalyse the reaction.  

Despite being typically nighttime species, in certain conditions such as those 

in heavily polluted environments where both O3 and NOx concentrations are high, 

daytime concentrations of NO3 and N2O5 have been found to be up to 5 pptv (Geyer 

et al., 2003; Osthoff et al., 2006). This arises due to enhanced O3 concentrations that 

act to increase NO3 production (2.41), which in turn can perturb the photostationary 

steady state that exists for NO and NO2 and lead to elevated N2O5 concentrations 

(2.42). However, this only led to significant NO oxidation during sunrise and sunset, 

or in fresh pollution plumes, when the photostationary steady state approximation is 

of questionable accuracy because of the increased time required to achieve a steady 

state (Geyer et al., 2003; Osthoff et al., 2006) 
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3.1. Measurement Techniques 

 

3.1.1. Differential Optical Absorption Spectrometry (DOAS) 
 

Many atmospheric constituents have absorption cross-sections in the UV and 

visible region of the spectrum. Although the abundance of compounds that do absorb 

in this region creates a limitation to the application of differential optical absorption 

spectrometry (DOAS), many have species-specific narrow band absorption 

structures that allow them to be identified. Species that can be measured and are 

relevant to this work include; NO2, O3, HONO and NO3. Concentrations are 

determined by comparing light intensity in a given path length, both with and without 

the presence of the compound of interest, or by comparing the light intensity from 

two different path lengths. These measurements give values for I and I0 from the 

Beer-Lambert law (3.1.) respectively and the compounds absorption spectrum can 

then also be used to calculate its concentration. 

 

   
     

      
                                                        

  

= - L i σi (λ) i 3.1 

 

where 

λ = wavelength 

I (λ) = light intensity in the presence of absorbers 

I0 (λ) = light intensity without absorbers 

L = optical path length 

σi (λ) = absorption cross section of the ith absorber 

i = concentration of the ith absorber 

 

 NO2 has multiple absorption bands that can be measured using DOAS; 310-

340 nm, 421-437 nm and 437-449 nm. Limits of detection for NO2 using long-path 

DOAS (where the path length is on the order of tens of kilometres or greater) have 

been in the region of 30-200 pptv (Platt, 1994; Plane and Smith, 1995), making it a 

good candidate for measurements in more remote regions. Additional advantages of 

this system are that it does not require calibration due to the high specificity to its 

target molecule. However, there are major drawbacks in that not all molecules have 

the absorbance structure required for identification. The large path lengths required 

also causes problems due to non-uniform air masses when working on the scale of 
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tens of kilometres and its use is restricted by meteorological conditions such as fog 

which increase scattering, thereby affecting transmission (Finlayson-Pitts and Pitts, 

2000). 

 

3.1.2. Cavity Ring-Down Spectroscopy (CRDS) 
 

Cavity ring-down spectroscopy (CRDS) is a laser absorption technique used 

to measure NO2. A light pulse is emitted from a tunable laser into a reaction cell and 

is reflected repeatedly within the cell between two mirrors. The light is then turned off 

and the exponential loss of light intensity through the end mirror is then measured 

over time to give a ring-down time constant. Similar to the DOAS technique, this time 

constant is measured both with () and without (0) the target molecule present. 

Concentrations can then be determined via equation 3.2. 

 

                  
  

      
  
 

 
     

 

  
  

 

3.2 

 

where 

RL = ratio of total cavity length to length over which absorber is present 

c = speed of light 

σNO2 = absorption cross section of NO2 

 

 Due to the many reflections involved in this technique, the path length can 

become very long for high quality mirrors with minimal intensity loss. As a result, this 

technique has a high sensitivity with a limit of detection in the range of tens of pptv 

and has been shown to agree well with the established chemiluminescence 

technique (Osthoff et al., 2006).  
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3.1.3. Laser Induced Fluorescence (LIF) 

 
Laser induced fluorescence (LIF) is a technique that has been shown to 

measure both NO and NO2. NO can be measured using a two-photon LIF technique. 

This involves excitation of the NO by a laser with a wavelength of 226 nm. A second 

laser with a wavelength of 1.1 m then excites the NO to a higher energy state, 

which, as it relaxes back to ground state, fluoresces with a wavelength of 187-220 

nm. Although it has a sensitivity of tens of pptv (Sandholm et al., 1997), the 

complexity and size of the instrument means that it is generally unsuitable for use in 

field studies. More recently, this has technique has been developed further so that 

NO has also been measured using a single photon excitation, whilst maintaining 

sensitivity (Miyazaki et al., 2008). 

 There are many measurements of NO2 using the LIF technique (Thornton et 

al., 2000; Cleary et al., 2002; Dari-Salisburgo et al., 2009). NO2 can be selectively 

excited using a narrow band laser, the resultant fluorescence detected and 

interference from alternative sources of radiation removed through the use of optical 

filters. This is a highly sensitive method, capable of measuring concentrations lower 

than 5 pptv. This method has the added benefit of being a direct NO2 measurement, 

thereby removing the need for conversion of NO2 to NO before detection and the 

interferences and problems associated with this process. 

 

3.1.4. Chemiluminescence 

 

 The method used for measuring NOx at the Cape Verde Atmospheric 

Observatory (CVAO) and during laboratory calibration of the NOy inlet in this study is 

via chemiluminescence. Chemiluminescence is the emission of electromagnetic 

radiation in the form of light following a chemical reaction. It occurs when an excited 

molecule transitions from a higher to a lower energy state, causing the release of 

excess energy (Finlayson-Pitts and Pitts, 2000). For the measurement of NO, gas 

phase oxidation by the addition of O3 creates excited state NO2 as shown in reaction 

3.3. Electronically excited NO2 can then undergo either subsequent relaxation 

causing the emission of chemiluminscence as shown by reaction 3.4, or the energy 

can be quenched via reaction with M as shown in reaction 3.5.  
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NO + O3 → NO2* + O2 3.3 

NO2* → NO2 + hʋ 3.4 

NO2* + M → NO2  + M 3.5 

 

 The intensity of the light emitted via reaction 3.4 is proportional to the 

concentration of the reactant, therefore providing a direct measure of NO 

concentrations. However it should be noted that reaction 3.5 represents interference 

in the measurement that will cause an underestimation of actual NO concentrations 

as this pathway does not fluoresce. This interference can be minimised by reducing 

the pressure in the reaction chamber, and therefore the concentration of M.  

Following conversion to NO prior to detection, NO2 concentrations can also 

be measured using this method. This conversion can be either photolytic, which is a 

more selective method (Kley and McFarland, 1980), or through the use of catalytic 

reduction. For the latter, the most common catalysts used are molybdenum oxide 

heated to 350 C or gold heated to 300 C accompanied by a small flow of CO to act 

as a reducing agent. However, it is has been shown that these catalysts reduce all   

–NO containing species to NO, thereby giving a measure of total NOy rather than just 

NO. Indeed, these catalysts are widely used for this purpose and both show near 100 

% conversion (Williams et al., 1998). 

Owing to the techniques versatility and selectivity, it has become the most 

widely used for the measurements of NO and NO2. Due to its high sensitivity, it is 

also able to detect concentrations lower than 5 pptv, making it suitable for 

determining the concentrations of trace gases in pristine environments. 
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3.1.5. O3 Measurements 

 

Although O3 measurements were not carried out as part of this report, data 

from the CVAO is used for analysis and therefore the method of detection merits a 

brief description. O3 measurements at the CVAO are carried out using UV absorption 

(TEI 49 C), which analyses the proportion of incident UV light produced by a mercury 

lamp that passes through a sample of O3. An O3 scrubber is used to filter ambient air 

and produce a zero measurement that can be used as a reference light intensity for 

measurements of ambient air that bypass this scrubber. A photodetector then 

measures the reduction in light intensity at 254 nm, the wavelength of maximum O3 

absorption, with the difference in light intensity being related to the O3 concentration 

and can be calculated using the Beer-Lambert Law as shown in equation 3.6, where, 

 

I = I0 exp (- α L C) 3.6 

 

where, 

I = light intensity following O3 absorption 

I0 = light intensity at zero O3 concentration 

α = O3 molar absorption coefficient 

L = pathlength 

C = O3 concentration 
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3.2. CVAO NOx Instrument 

 

3.2.1. NOx Inlet 

 

As stated, the technique used for measuring NOx at the CVAO and during 

laboratory calibration of the NOy inlet is via chemiluminescence. Both the CVAO and 

laboratory instruments used are essentially identical and so will be described as one 

in this report, with any major differences made clear in the text. It is a single-channel 

chemiluminescence instrument, manufactured by Air Quality Design Inc., USA (Lee 

et al., 2009), which uses O3 oxidation to measure NO concentrations, as shown in 

reactions 3.3 and 3.4. The NO2 converter used in this system is photolytic, using two 

light emitting diode (LED) arrays that produce radiation with a wavelength of 385-405 

nm. The NO2 to NO conversion efficiency of this setup is typically in the range of 35-

40 % for a residence time of 1 second (Lee et al., 2009). The LEDs can be turned off 

and on to give a measure of NO and of NO+ NO2 respectively, within the same 

channel. The former can then be subtracted from the latter to give a signal that 

corresponds to NO2 only (Lee et al, 2009).  

Figure 3.1 is a schematic drawing of the NOx inlet and table 3.1 describes the 

parameter settings of the instrument and all models and manufacturers of instrument 

parts are listed in appendix 3.1. Each compartment of the NOx inlet is shown in 

greater detail in figures 3.2-4 with parts described in tables 3.2-3.4.  

 

Table 3.1. Parameter settings during instrument operation.  

Parameter Setting 

PMT temperature -30 °C 

Zero volume temperature 40 °C 

Reaction cell temperature 40 °C 

Control (laboratory) temperature 25 °C 

Reaction cell pressure 5 Torr 

Oxygen flow 0.1 L min
-1

 

Sample flow 1 L min
-1
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Figure 3.1. Schematic of the NOx instrument. ■ = NOx inlet, ■ = Ozonizer box, ■ = 

Snooper box. 

 

The NOx chemiluminescence instrument can be divided into three regions; 

the inlet, the ozonizer and the snooper (figure 3.1). An external vacuum pump draws 

air in through the systems inlet at a flow rate of 2.5 L min-1 (figure 3.2). The sample is 

then divided and controlled by separate mass flow controllers, to provide a sample 

flow in each channel of 1 L min-1 with a small overflow to prevent the sampling of 

laboratory air. The inlet also contains two tee junctions prior to the channel 

separation. These allow a known amount of NO calibration gas or zero air, generated 

by an Ecophysics PAG 003 pure air generator (PAG), to be introduced for the 

purposes of calibrating and zeroing the instrument as will be discussed below.  

 The ozonizer box (figure 3.3) comprises of an O3 generator that allows O3 to 

be introduced into both sample lines in the snooper box. This is used to generate 

NO2 via NO oxidation as shown in reaction 3.3, therefore allowing the measurement 

of both NO and NO2. The O3 can be added directly before the main reaction 

chamber, or further upstream into a pre-chamber. As will be described below, adding 

O3 to the pre-chamber allows the quantification of interferences in the NO and NO2 

measurements.  
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 The snooper box (figure 3.4) contains both the pre-chamber where chemical 

interferences are quantified as well as the main reaction chamber where NO and 

NO2 are measured. The chemiluminescence method used is described in detail in 

section 3.2.2. 

 

 

 

Figure 3.2. Schematic of the NOx inlet. Numbered parts are described in table 3.2. 

 

Table 3.2. Descriptions of parts numbered in figure 3.2. 

Number Part 

1 Sample line 

2 Waste 

3 NO calibration gas inlet 

4 NO calibration MFC 

5 Titration cell 

6 Zero air inlet 

7 Critical orifice (10 sccm) 

8 Critical orifice (3 slpm) 

9 NO2 converter 

10 Channel 1 MFC 

11 Channel 2 MFC 

12 NO sample outlet 

13 NOx sample outlet 
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Figure 3.3. Schematic of the ozonizer box. Numbered parts are described in table 3.3. 

 

Table 3.3. Descriptions of parts numbered in figure 3.3. 

Number Part 

1 Oxygen inlet 

2 Channel 1 solenoid valve 

3 Channel 2 solenoid valve 

4 Channel 1 MFC (500 sccm) 

5 Channel 2 MFC (500 sccm) 

6 Channel 1 O3 generator 

7 Channel 2 O3 generator 

8 Channel 1 transformer 

9 Channel 2 transformer 

10 Channel 1 valve 

11 Channel 2 valve 

12 Channel 1 O3 outlet 

13 Channel 2 O3 outlet 
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Figure 3.4. Schematic of the snooper box. Numbered parts are described in table 3.4. 

 

Table 3.4. Descriptions of parts numbered in figure 3.4. 

Number Part 

1 NO sample inlet 

2 NOx sample inlet 

3 Channel 1 teflon prechamber (250 ml) 

4 Channel 2 teflon prechamber (250 ml) 

5 Channel 1 O3 inlet 

6 Channel 2 O3 inlet 

7 Channel 1 reaction volume 

8 Channel 2 reaction volume 

9 Channel 1 solenoid valve 

10 Channel 2 solenoid valve 

11 Transformer 

12 Vacuum pump 

13 Exhaust 
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3.2.2. Measurements 

 

 NO and NOx are measured in turn during a five minute cycle as illustrated in 

figure 3.5. This cycle consists of 60 seconds of a prechamber zero signal during 

which, the sample bypasses the NO2 converter and O3 is added to the prechamber 

reaction vessel. This is followed by 120 seconds of adding O3 to the main reaction 

chamber, before 120 seconds of the sample going through the NO2 converter prior to 

O3 titration in the main reaction chamber. This cycle gives measurements of the 

instruments zero signal, NO and NOx mixing ratios. 

 

 

Figure 3.5. The measurement cycle used by the CVAO instrument. Values are for 

illustration only and do not represent real values. 

 

 It is important to note that the signal (S) detected by the instrument is made 

up of several components (equation 3.7.), all of which must be quantified in order to 

get an accurate measure of the NO signal (SNO). These are described in turn below. 

 

S = SNO + SInt + SD + SArt 3.7 

 

where, 

S = total signal 

SNO = signal due to NO chemiluminescence 

SInt = signal due to chemical interference 

SD = signal due to anode dark current in PMT 

SArt = signal due to ‘fake NO’ 
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Light emitted from reaction 3.4 is detected by a photomultiplier tube (PMT) 

that converts light energy to an electrical impulse. This is achieved by the production 

of electrons when photons hit a photocathode inside the PMT. The electrons are then 

accelerated by an electric field and are directed to an electron multiplier. The build-up 

of charge at the anode results in a current pulse and the number of these pulses over 

a specified integration time produces a signal that corresponds to the NO 

concentration (SNO). The PMT is also cooled to a temperature of -30 °C which acts to 

reduce the anode dark current and therefore improves the signal-to-noise (S/N) ratio. 

The dark current signal (SD or zero counts) is a constant offset to the measurement. 

This is particularly important to quantify when measuring NOx in an environment 

where concentrations are low, such as at the CVAO (Lee et al., 2009). 

 As described, during measurement mode O3 is added to the main reaction 

chamber where the resultant chemiluminescence (3.4) is detected by the PMT. O3 

can also be added upstream of the main reactor into a prechamber system. Most 

chemical interference reactions are slower than that of reaction 3.3 and so when O3 

is added to the prechamber, the residence time is extended and the resultant signal 

detected is a measure of the sum of interferences (SInt), thereby providing an 

instrument zero. This can then be subtracted from the main chamber signal to give a 

signal measure that is the result solely of the NO chemiluminescence (Lee et al, 

2009). 

 In the CVAO setup, calibrations of the system are carried out in ambient air 

using the standard addition method every 37 hours. Calibrations in ambient air are 

beneficial as the sensitivity of the instrument can be calculated under conditions of 

equal humidity. This is important as water vapour is an efficient quencher of excited 

state NO2 (3.5) and therefore changes in humidity can significantly affect the 

instrument sensitivity. However in the laboratory setup, the ambient sample flow is 

replaced with NOx free zero air (ZA). This provides a stable baseline allowing a more 

accurate calculation of the instruments sensitivity. The CVAO calibration cycle 

consists of nine 5 minute measurement cycles. The first three cycles calibrate for the 

instruments NO sensitivity using a 4 sccm flow of 5 ppmv NO gas in nitrogen (BOC, 

UK), added to a an ambient sample flow of 1600 sccm giving an NO concentration of 

~ 12 ppbv. The following three cycles add O3 to titrate approximately 90 % of the NO 

calibration gas to NO2, giving a known NO2 concentration. This allows the calculation 

of the instruments conversion efficiency (CE) of NO to NO2 by titrating with O3 both 

with and without the NO2 converter on. The CE is then calculated using equation 3.8. 

The output of this is shown in figure 3.6. 
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CE = 1 – (NOc 1 – NOc 2) 3.8 

          NO 1 – NO 2  

 

where, 

CE = NO to NO2 conversion efficiency 

NO 1 = NO concentration in calibration gas 

NO 2 = NO concentration in calibration gas once titrated (~ 80 % of NO 1) 

NOc 1 = NO concentration in calibration gas with NO2 converter on 

NOc 2 = NO concentration in calibration gas with NO2 converter on once titrated 

 

 

Figure 3.6. Schematic showing the signal output during the calculation of the 

conversion efficiency.  

 

 The final three cycles sample NOx free zero air, produced by a PAG 003 

generator (Ecophysics, UK), to give a measure of the instruments artefact (Lee et al., 

2009). The artefact of the instrument is caused by a so called “fake NO” signal 

(Drummond et al., 1985). This component (SArt) is a background measure in the 

instrument which is not removed by subtraction of the SInt signal. This can be 

calculated using the following method. As NO is produced via NO2 photolysis, at 

night time when production has stopped but losses continue, NO concentrations 

decrease to zero. The other potential source of NO is anthropogenic emissions, 

however, CVAO is sufficiently distant from any such source and so the artefact of this 

system can be taken to be the NO signal measured by the instrument between 0000-

0400 (Lee et al., 2009).  
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Quantifying all of the components of equation 3.6 allows the accurate 

measurement of NO and NO2 following conversion. Using the average raw and zero 

counts from the calibration during which the NO standard and ZA is being sampled 

respectively, the instrument sensitivity can also be determined using equation 3.9. 

 

Sensitivity = raw counts - zero counts - artefact in counts 3.9 

  [NO] in standard  

 

To assess the reliability of the data collected by the instrument, error analysis 

must be carried out. To characterise the errors, both the precision and the accuracy 

of the measurements must be evaluated. Precision is a measure of reproducibility 

regardless of the determined values proximity to the actual value. To quantify this, 

the zero count rate variability can be used as this is directly related to the precision of 

the photon-counting detector. It is calculated by plotting a frequency distribution of 

the zero counts, before fitting a Gaussian distribution (Silvia and Skilling, 2006) and 

using this to then find the standard deviation (full width half maximum (FWHM)) of 

this population (Figure 3.7). The standard deviation is then divided by the 

instruments sensitivity, as determined through instrument calibrations, to obtain the 

precision in parts per trillion. For the CVAO instrument using a sensitivity of 2.1 Hz 

pptv-1 (Lee et al., 2009), this was calculated to be 40.7 pptv for 1 second frequency 

data.  

 

 

Figure 3.7. Frequency distribution plot of zero count variability with fitted Gaussian 

distribution. Mean = 0.33 ± 69.38 Hz. 2σ standard deviation = 24.70 Hz for 1 minute 

frequency data. 
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Accuracy is a measure of how close to the actual value a measurement is 

and is quantified using equation 3.10 to calculate the combined uncertainty. This 

includes both the systematic uncertainty (Us), which is due to that of the sites gas 

standard and is typically 0.5-2 %, and random uncertainty (Ur), which is a result of 

uncertainties in the analyser, the calibration standard and the flows and dilutions of 

the system used. The individual components of Ur were either determined through 

measurement or as stated by the manufacturer and total Ur was calculated using 

equation 3.11. 

 

Uc = (Ur
2 + Us

2)0.5 3.10 

 

where, 

Uc = combined uncertainty 

Ur = random uncertainty 

Us = systematic uncertainty 

 

 

                               

 

 
 
     

          
     

   

        
 

 

 
 

 

         

 

 
 
     

      
     

   

     
 

 

 
 

   

 

 

3.11 

 

where, 

Ur = random uncertainty  

A = uncertainty due to dilution factor drift (typically 0.5-2 %) 

LSSD = standard deviation of laboratory standard (ppbv) 

USSD = standard deviation of unknown standard (ppbv) 

LS# = number of high time-resolution laboratory standard measurements 

US# = number of high time-resolution unknown standard measurements 

[LS] = mixing ratio of laboratory standard measured (ppbv) 

[US] = mixing ratio of unknown standard measured (ppbv) 

   = Mean 

B = uncertainty due to analyser drift or deviation from equilibrium value (typically 0.5-2 %) 
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The accuracy can then be propagated through the root sum of squares (RSS) 

equation along with the measure of precision to reach a value for total uncertainty in 

the measurement. For NO measurements at the CVAO, total uncertainty was 

calculated to be 12, 6 and 3 % for mixing ratios of 5, 10 and 20 pptv respectively. 

There is the added uncertainty of the conversion efficiency for NO2. The total 

uncertainty in the NO2 measurements was found to be 33 and 29 % for 10 and 20 

pptv respectively and had a precision of 58.1 pptv for 1 second frequency data. 
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3.3. ACTRIS 

 

The Aerosols, Clouds, and Trace gases Research InfraStructure Network 

(ACTRIS) is a European project aiming at integrating European ground-based 

stations equipped with advanced atmospheric probing instrumentation for aerosols, 

clouds, and short-lived gas-phase species. Its role is to develop our understanding 

as well as policy issues on climate change, air quality, and long-range transport of 

pollutants. As part of this consortium (table 3.5.), the laboratory instrument took part 

in two separate workshops that aimed to calibrate NOx measuring instruments from 

13 institutions across Europe, to a common NO standard. 

The first of these was a blind standard round robin that involved a 

measurement schedule alternating between zero air, the individual institution or sites 

(table 3.5.) NO standard and a NO standard of unknown concentration. The 

concentration of the unknown standard was determined to be 2.01  0.03 ppbv, with 

an actual concentration of 2.07  0.01 ppbv (NPL, UK). As can be seen in the results 

from the blind standard round robin (figure 3.8), the instrument provided an accurate 

measure of the unknown standard. However the variation in the measurement is 

relatively large in comparison with the other institutes, most likely a result of 

fluctuating laboratory conditions. 

 

 

Figure 3.8. Graph of results from the blind standard round robin. Red line indicates 

zero deviation from the standard concentration and the y-axis represents each 

institutions estimates and total uncertainty, Ut. Institution acronyms are shown in table 

3.5 and highlighted in grey. 
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Table 3.5. Details of all the institutions involved in the NOx comparison as part of the ACTRIS programme and the technique used for 

measurements. Institutions highlighted in grey also took part in the blind standard round robin. CLD = Chemiluminescence, Mo converter = 

Molybdenum converter, BLC = Blue light converter, PLC = Photolytic converter, DOAS = Differential Optical Absorption Spectrometry, LIF = Laser 

induced fluorescence. 

Institution Acronym Country Method 

Czech Hydrometeorolocical Institute CHMI Czech Republic CLD / Mo converter 

Ecole des Mines de Douai EMD France CLD / BLC 

Energy, Environment and Water Research Centre EEWRC Cyprus CLD / BLC / Mo Converter 

Finnish Meteorological Institute FMI Finland CLD 

Hohenpeissenβerg Meteorlogical Observatory HPB Germany CLD / BLC / PLC 

Joint Research Centre of European Union JRC Italy CLD / Mo converter 

Koninklijk Nederlands Meteorologisch Instituut KNMI France NO2 sonde, Luminol-CLD 

Laboratoire des Sciences du Climat et de l'Environnement LSCE France CLD / PLC 

Max-Planck Institute for Environmental Research MPI Germany Cavity enhanced DOAS 

National Centre for Atmospheric Science NCAS UK / Cape Verde CLD / PLC 

Observatoire de Physique du Globe de Clermont-Ferrand OPGC France CLD / Mo converter 

Research Centre Jeulich, World Calibration Centre WCC Germany CLD / PLC 

University of Heidelberg, Institute for Environmental Physics IUP Germany LIF 
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The second workshop incorporated a 3-day side-by-side comparison at the 

Hohenpeienberg Observatory, Germany. Hohenpeienberg is an atmospheric observatory 

located at 4748’N, 01101’E, 986 m above sea level (Mannschreck et al., 2004; Gilge et al., 

2010). Since 1994, it has been part of the Global Atmospheric Watch (GAW) programme, 

run by the World Meteorological Organisation (WMO). The role of the GAW is to provide 

scientific data and information on the chemical composition of the atmosphere, natural and 

anthropogenic induced changes and help to improve the understanding of interactions 

between the atmosphere, the oceans and the biosphere. As part of this work, the GAW 

monitoring programme collects data from sites around the world and divides these 

measurements into six components of the atmospheric system; O3, UV radiation, 

greenhouse gases, aerosols, selected reactive gases and precipitation chemistry. 

 

 

Figure 3.9. Frequency distribution plot of zero count variability with fitted Gaussian 

distribution. Mean = 0.58 ± 72.83 Hz. 2σ standard deviation = 26.04 Hz for 1 minute frequency 

data. 

 

As with the CVAO instrument, the precision, accuracy and total uncertainty in the 

measurements were calculated for this campaign (Figure 3.9). Using an average sensitivity 

of 4.7 Hz pptv-1 determined from all calibrations carried out during the workshop, the 

precision was calculated as 42.9 pptv and 65.9 pptv for NO and NO2 respectively using 1 

second frequency data. The accuracy of the instrument was determined to be 27, 14 and 7 

% for NO mixing ratios of 5, 10 and 20 pptv respectively and 42 and 33 % for 10 and 20 pptv 

of NO2. 

Institutions listed in table 3.5 sampled from a common inlet (PFA tubing), to which 

synthetic air, spiked ambient air and other complex mixtures were added. The complete 

sampling log from the workshop is listed in appendix 1. Examples of the sampling routines 
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are shown in figures 3.10-12, including the results from an NO concentration ramp, a NOx 

mixture in which the NO was titrated by varying O3 concentrations and an overnight of 

ambient sampling respectively. Figures 3.10 and 3.11 demonstrate that following a brief 

initial stabilization period induced by alterations in the sample composition, the instrument 

gave an accurate measure of the actual NO and NO2 concentrations being introduced into 

the common inlet. 

Figure 3.12 demonstrates clearly the boundary layer dynamics described in section 

1.2. Following the formation of a stable nocturnal boundary, increased solar radiation causes 

surface heating (~ 0700) and leads to the development of vertical thermal convection in the 

boundary layer and subsequent release of high NOx concentrations. This pronounced diurnal 

cycle is typical of Hohenpeienberg (Mannschreck et al., 2004). 

 

 

Figure 3.10. Results from the NO concentration ramping experiment. Common inlet 

concentrations are shown as open diamonds. Briefly; 1100-1130 = zero air, 1130-1200 = 5 ppbv 

NO, 1200-1230 = 15 ppbv, 1230-1300 = 40 ppbv NO, 1300-1330 = Calibration in zero air (data not 

shown), 1330-1400 = zero air. 
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Figure 3.11. Results from the NO titration ramping experiment. Common inlet concentrations 

are shown as open diamonds. Briefly; 1400-1430 = 40 ppbv NO and 8 ppbv O3, 1430-1445 = 

calibration in zero air (data not shown), 1500-1530 = 46 ppbv NO and 18 ppbv O3, 1530-1630 = 

47 ppbv NO and 44 ppbv O3, 1630-1700 = zero air. 

 

 

Figure 3.12. Overnight ambient air sample. A calibration was run from 0845-0915 (data not 

shown). Boundary layer dynamics as a result of solar radiation can be seen starting to develop 

at approximately 0730 on the 14
th

. 
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3.4. Summary 

 

The chemiluminescence NOx instruments installed at the Cape Verde Atmospheric 

Observatory (CVAO) and used in laboratory studies have been shown to be highly sensitive 

for the detection of low NOx mixing ratios. Measurements of the CVAO and laboratory 

instruments uncertainty and precision are summarised in table 3.6. 

 

Table 3.6. Uncertainty and precision measurements of the CVAO and laboratory NOx 

chemiluminescence instruments. 

 CVAO Instrument Laboratory Instrument 

Uncertainty:   

5 pptv of NO 12 % 27 % 

10 pptv of NO 6 % 14 % 

20 pptv of NO 3 % 7 % 

10 pptv of NO2 33 % 42 % 

20 pptv of NO2 29 % 33 % 

Precision:   

1 second frequency data 58.1 pptv 65.9 pptv 

 

 Data from the CVAO instrument will be described in detail in Chapter 4. The 

laboratory instrument has been involved in the European project, The Aerosols, Clouds, and 

Trace gases Research InfraStructure Network (ACTRIS). This involved two workshops, a 

blind standard calibration and a side-by-side 3-day comparison, which both aimed to 

calibrate NOx measuring instruments from 13 institutions across Europe to a common 

standard. The instrument performed well, estimating the blind standard to + 2.98 % of its 

actual concentration. It also accurately traced the NO and NO2 concentrations manually 

introduced into the common inlet throughout the 3-day side-by-side comparison under a 

range of conditions including varying humidity, O3 mixing ratios and complex mixtures. 
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Chapter 4 

 

Cape Verde Atmospheric Observatory (CVAO)  
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4.1. Remote, Tropical Marine Boundary Layer 

 

 The remote marine boundary layer represents appro imately 25 % of the Earth’s 

surface and plays an important role in the chemical processing of the atmosphere (Monks et 

al., 2000). It also provides optimal conditions for the study of baseline photochemical 

processes. As previously described in Chapter 1, the tropical, remote, marine boundary layer 

is characterised by high solar radiation and abundance of water vapour, leading to high OH 

concentrations (Crutzen, 1998) and has important implications for the oxidative capacity of 

the atmosphere. For example, a large proportion of tropospheric O3 loss (Horowitz et al., 

2003) and approximately 80 % of global CH4 oxidation occurs here (Bloss et al., 2005). 

Another important process that dominates the tropical troposphere is the presence of the 

strong vertical transport of compounds due to the ITCZ as described in section 1.2 and 

shown in figure 1.4. Therefore, those compounds that have the potential to disrupt O3 

chemistry in the stratosphere, such as halogen radicals and N2O, must first be processed in 

this region of the atmosphere (Bridgeman et al., 2000). 

 Background O3 levels in the northern hemisphere have more than doubled since pre-

industrial times believed to be a result of an increase in anthropogenic NOx emissions and 

distribution (Lelieveld et al., 2004). Due to the presence of longer lived NOy species able to 

undergo long-range transport as described in Chapter 2, this increase in anthropogenic 

emissions has the potential to impact O3 regimes in countries downwind of source regions, 

impairing their ability to meet their air quality standards (Derwent et al., 2004). As NOx 

emissions from remote uninhabited and oceanic regions are generally very small (Jacob et 

al., 1996), the O3 regime in these areas is highly sensitive to NOx concentrations, with small 

increases leading to mixing ratios in excess of the compensation point resulting in a switch 

of the system from net O3 destruction to one exhibiting photochemical O3 production (Jacob 

et al., 1993). Despite the obvious importance of NOx in these remote regions of the 

troposphere and for atmospheric chemistry in general, measurements of these compounds 

in the remote tropical marine boundary layer are sparse, with long-term measurements even 

more so (Lee et al., 2009). As a result, models are used to make up for this gap in scientific 

knowledge. However, any seasonal and longer term variability is still relatively unknown or 

unverified.  

 

 

 

 

 



Reactive Nitrogen in the Tropical Troposphere 

~ 89 ~ 

 

4.2. Cape Verde Atmospheric Observatory, CVAO 

 

4.2.1. CVAO 

 

The Cape Verde Islands are an archipelago situated in the North Atlantic Ocean off 

the west coast of Africa (figure 4.1). The Cape Verde Atmospheric Observatory (CVAO) is 

situated on the north-east facing coast of the island of São Vicente at 16.848 °N, 24.871 °W 

(figure 4.2). It was installed to further the understanding of sea-air interactions and trends in 

atmospherically important species in the tropical remote marine boundary layer. This site is 

ideally located for the measurement of compounds in a variety of air masses, as the north 

easterly trade winds that arrive here have multiple sources yet provide a constant wind 

direction ~ 95 % of the time, thereby minimising interference from local pollution and 

anthropogenic activity (figure 4.3) (Lee et al., 2009). Due to the volcanic origins of the 

archipelago, the continental shelf in this region is steep and acts to also reduce coastal 

influences, such as biogenic emissions (Carpenter et al., 2010). Appendix 2 lists the 

compounds measured at the CVAO as well as the method and duration of the 

measurements. However the scope of this report is confined to that of the NO and NO2 

measurements, with some reference to the concurrent O3 data. 

 

 

Figure 4.1. Map of the Cape Verde Islands. X = location of the CVAO. 

 

X 
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Figure 4.2. The Cape Verde Atmospheric Observatory, CVAO. Located at 16.848 °N, 24.871 °W. 

Picture shown is facing north east. 

 

 

Figure 4.3. Wind direction and speed measured at the CVAO. 
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4.2.2. Air Mass Classification 

 

 Although wind direction is predominantly from the north-east, the origins of the air 

masses that are sampled at the CVAO can vary widely and consequently, wind sector 

analysis is an invalid method of identification. Trajectory models are an estimate of the 

transport pathway of an infinitesimally small air parcel, which is then transposed to the 

centreline of an advected air mass, taking into account both the vertical and horizontal 

dispersal of the air parcel modelled (Stohl et al., 2002).  

Dispersion models differ in that this air parcel is represented by multiple, small, inert, 

tracer particles and are back calculated from the point of measurement. This added 

complexity has the advantage over trajectory models as the particles can be treated 

individually and allow a more accurate representation of factors such as turbulence, resulting 

in a more realistic growth in the volume of influence (Fleming et al., 2012). The output is a 

series of integrations based on the number of particles per grid cell and represents the 

probability that the air mass encounters a given area. At the CVAO, air mass back 

trajectories are calculated every three hours using the NAME dispersion model (Numerical 

Atmospheric Dispersion Modelling Environment) (Ryall et al., 2001) and are assigned a 

classification according to its trajectory in the past ten days. An example of each are shown 

in figure 4.4. 

 

 

Figure 4.4. Examples of 10-day back trajectories using the NAME dispersion model for the 

most common air masses sampled at the CVAO. a= Atlantic and Coastal Africa,   b= Atlantic, c 

= Atlantic and North America, d = North America and Coastal Africa, e = Europe, f = 

Continental Africa, g = Europe and Coastal Africa (adapted from Carpenter et al., 2010). 
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It is important to note that there are a number of variable errors inherent in 

calculating air mass trajectories. Due to the complexity of these errors, models are often 

evaluated through the use of a ‘true’ reference tra ectory that can be used to estimate the 

error. This involves tagging an air parcel, for example using a chemical tracer (Stohl et al., 

2002) or through the use of balloons (Knudsen et al., 1996). Meteorological data can also be 

used. For example, Lee et al. (2009) used potential vorticity calculations to estimate the 

horizontal position error of trajectories performed for studies of seasonal NOx trends at the 

CVAO to be < 20 % (in distance) for air parcels that had spent more than 24 hours in the 

free troposphere.  

 

4.2.3. NOx and O3 Measurements 

 

 The NO, NO2, NO:NO2 ratio and O3 hourly averages from the CVAO data set 

measured between the 1st October 2006 to the 31st December 2011 are shown in figure 4.5 

(top to bottom). As described in Chapter 3, NOx measurements are made using the 

chemiluminescence technique and O3 is measured via UV absorption (Lee et al., 2009; 

Carpenter et al., 2010). NOx data is filtered for outliers using a three-day running average of 

the 5 minute data. Any points greater than 3 standard deviations from the mean were 

removed prior to hourly averaging and are believed to be a result of local pollution events 

such as visiting vehicles or passing ship emissions (Lee et al., 2009). Raw, 1 second data, 

shows that > 95 % of these pollution events last less than 30 seconds. Due to the 5 minute 

measurement cycle, spikes can exist solely within the NO measurement period and lead to a 

negative NO2 value caused by the subtraction of this NO spike. This NO2 data is also 

removed from the data set (Lee et al., 2009). Data coverage for the entire period is 59, 58 

and 86 % for NO, NO2 and O3 respectively, with missing data also associated with power 

failure and instrument maintenance.  

The monthly day and night time averages for NO, NO2 and O3 are shown in tables 

4.1-4.3 respectively, along with the standard deviation and median values. Daytime is 

classified as 1100-1500 local time, which is approximately 2 hours either side of solar noon 

(figure 4.6) and should therefore represent average daytime mixing ratios. Nighttime values 

are considered to be those between 0000-0400, the same time period as that used to 

calculate the NO artefact. 

 

 

 



Reactive Nitrogen in the Tropical Troposphere 

~ 93 ~ 

 



Reactive Nitrogen in the Tropical Troposphere 

~ 94 ~ 

 



Reactive Nitrogen in the Tropical Troposphere 

~ 95 ~ 

 



Reactive Nitrogen in the Tropical Troposphere 

~ 96 ~ 

 



Reactive Nitrogen in the Tropical Troposphere 

~ 97 ~ 

 



Reactive Nitrogen in the Tropical Troposphere 

~ 98 ~ 

 



Reactive Nitrogen in the Tropical Troposphere 

~ 99 ~ 

 



Reactive Nitrogen in the Tropical Troposphere 

~ 100 ~ 

 



Reactive Nitrogen in the Tropical Troposphere 

~ 101 ~ 

 

Figure 4.5. NO (top), NO2 (second top), NO:NO2 (second bottom) and O3 measurements from 
the CVAO made between the 1

st
 October 2006 and the 31

st
 December 2010. Each plot 

represents 6 months of data. 
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Table 4.1. Monthly day and night time average O3 mixing ratios along with standard deviation, 

median and number of measurements. Day = 1100-1500, night =0000-0400. 

Date 
Night time   Day time 

Mean ± SD Median N   Mean ± SD Median N 

Oct 06 25.7 ± 0.6 25.7 143  25.6 ± 1.1 25.6 145 

Nov 06 24.6 ± 0.7 24.5 150  24.5 ± 0.8 24.5 150 

Dec 06 37.6 ± 0.5 37.6 130  36.2 ± 0.8 36.2 132 

Jan 07 32.9 ± 1.0 32.7 101  32.5 ± 1.0 32.6 118 

Feb 07 36.4 ± 0.7 36.3 130  35.8 ± 1.3 35.8 132 

Mar 07 40.6 ± 0.8 40.6 110  38.7 ± 1.2 38.7 129 

Apr 07 40.6 ± 1.0 40.6 125  38.9 ± 1.3 38.8 130 

May 07 38.1 ± 0.8 38.1 134  37.4 ± 1.5 37.4 135 

Jun 07 30.0 ± 0.7 29.9 91  29.5 ± 1.4 29.7 107 

Jul 07 28.7 ± 0.6 28.8 105  28.4 ± 1.0 28.4 118 

Aug 07 27.3 ± 0.9 27.3 100  27.8 ± 1.1 28.0 108 

Sep 07 23.8 ± 0.7 23.8 133  24.5 ± 1.2 24.6 150 

Oct 07 26.7 ± 0.8 26.7 135  26.5 ± 1.1 26.6 137 

Nov 07 34.5 ± 0.6 34.5 144  34.6 ± 1.5 34.8 144 

Dec 07 36.7 ± 0.5 36.7 155  35.8 ± 0.9 35.8 155 

Jan 08 35.9 ± 0.7 35.9 135  35.4 ± 1.0 35.5 132 

Feb 08 34.6 ± 0.5 34.5 125  33.5 ± 1.0 33.5 128 

Mar 08 34.5 ± 0.6 34.5 101  34.9 ± 1.2 34.9 92 

Apr 08 36.4 ± 0.8 36.4 105  37.6 ± 1.5 37.4 107 

May 08 29.4 ± 0.9 29.4 130  29.4 ± 1.1 29.4 121 

Jun 08 32.7 ± 0.9 32.7 135  32.3 ± 1.4 32.2 125 

Jul 08 27.7 ± 1.1 27.5 110  27.9 ± 1.3 27.8 118 

Aug 08 23.7 ± 0.8 23.7 139  24.3 ± 0.9 24.3 128 

Sep 08 21.1 ± 0.7 21.1 133  20.7 ± 1.2 20.7 129 

Oct 08 30.2 ± 0.5 30.3 121  30.1 ± 1.2 30.1 119 

Nov 08 32.9 ± 0.6 32.8 127  31.9 ± 1.0 31.9 134 

Dec 08 35.5 ± 0.5 35.5 108  35.4 ± 0.8 35.4 102 

Jan 09 42.6 ± 0.8 42.6 119  40.3 ± 0.8 40.3 121 

Feb 09 40.4 ± 0.7 40.3 133  39.8 ± 0.9 39.8 129 

Mar 09 37.9 ± 0.5 37.9 155  37.6 ± 1.1 37.5 150 

Apr 09 38.8 ± 0.9 38.8 89  38.6 ± 1.1 38.7 90 

May 09 37.0 ± 1.0 37.0 140  36.8 ± 1.3 36.9 150 

Jun 09 26.4 ± 0.7 26.3 150  26.3 ± 1.0 26.2 147 

Jul 09 14.0 ± 0.6 14.0 100  14.1 ± 0.8 14.1 91 

Aug 09 14.7 ± 0.5 14.7 140  14.7 ± 0.8 14.7 145 

Sep 09 22.5 ± 1.0 22.5 125  23.1 ± 1.3 23.1 125 

Oct 09 25.3 ± 0.6 25.3 155  24.5 ± 1.0 24.5 155 

Nov 09 32.2 ± 0.6 32.1 145  30.8 ± 1.1 30.7 147 

Dec 09 32.5 ± 0.6 32.5 150  31.1 ± 1.6 31.1 154 

Jan 10 35.8 ± 0.9 35.9 150  35.5 ± 1.0 35.4 154 

Feb 10 34.1 ± 0.6 34.1 140  34.5 ± 1.3 34.6 138 

Mar 10 31.0 ± 0.8 31.0 144  30.4 ± 1.5 30.4 132 

Apr 10 32.7 ± 0.9 32.9 120  32.2 ± 1.4 32.2 106 

May 10 34.2 ± 0.6 34.2 112  33.2 ± 1.2 33.1 106 

Jun 10 30.6 ± 0.8 30.5 125  30.7 ± 1.3 30.6 110 

Jul 10 26.3 ± 0.8 26.3 124  27.3 ± 1.9 27.4 117 

Aug 10 25.2 ± 1.0 25.3 131  25.1 ± 1.4 25.1 138 

Sep 10 21.6 ± 1.0 21.6 146  21.8 ± 1.5 21.5 145 

Oct 10 27.1 ± 0.5 27.1 155  26.5 ± 1.2 26.4 155 

Nov 10 31.3 ± 0.8 31.3 142  31.6 ± 0.9 31.6 132 

Dec 10 33.4 ± 0.6 33.4 152   33.8 ± 0.8 33.9 153 
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Table 4.2. Monthly day and night time average NO mixing ratios along with standard deviation, 

median and number of measurements. Day = 1100-1500, night =0000-0400. 

Date 
Night time   Day time 

Mean ± SD Median N   Mean ± SD Median N 

Oct 06 0.7 ± 1.4 0.7 105  4.6 ± 2.1 4.4 125 

Nov 06 8.8 ± 1.1 8.9 79  9.1 ± 2.0 8.8 84 

Dec 06 1.4 ± 1.5 1.3 69  7.2 ± 3.0 7.0 65 

Jan 07 0.5 ± 0.6 0.5 86  4.6 ± 2.8 3.6 82 

Feb 07 0.4 ± 0.9 0.4 128  3.9 ± 2.1 3.5 128 

Mar 07 1.1 ± 0.9 1.0 131  2.7 ± 1.6 2.6 119 

Apr 07 0.4 ± 0.8 0.4 134  2.3 ± 1.9 2.0 127 

May 07 0.8 ± 0.8 0.9 113  2.4 ± 1.4 2.3 97 

Jun 07 0.5 ± 0.6 0.5 99  2.2 ± 1.3 2.0 94 

Jul 07 0.5 ± 0.7 0.4 104  3.3 ± 1.5 3.2 116 

Aug 07 0.2 ± 0.8 0.2 109  3.6 ± 1.9 3.2 114 

Sep 07 0.3 ± 0.9 0.4 133  3.6 ± 1.3 3.5 128 

Oct 07 1.3 ± 0.9 1.3 116  4.1 ± 3.3 3.1 109 

Nov 07 3.4 ± 1.3 3.5 124  5.9 ± 3.5 5.1 128 

Dec 07 2.1 ± 1.1 2.1 74  6.8 ± 4.9 5.7 72 

Jan 08 1.4 ± 1.3 1.3 109  11.8 ± 4.9 10.9 105 

Feb 08 1.9 ± 1.4 1.8 104  11.7 ± 5.3 10.5 101 

Mar 08 0.6 ± 0.9 0.7 133  8.9 ± 3.9 8.4 110 

Apr 08 1.5 ± 1.2 1.5 109  6.2 ± 2.8 5.9 92 

May 08 0.4 ± 0.9 0.3 149  4.4 ± 2.1 4.2 134 

Jun 08 2.2 ± 1.0 2.3 109  4.6 ± 3.0 4.1 99 

Jul 08 3.2 ± 1.3 3.0 112  7.1 ± 4.1 6.3 115 

Aug 08 1.0 ± 1.3 1.1 133  8.1 ± 3.8 7.5 131 

Sep 08 3.1 ± 2.1 3.2 118  9.8 ± 5.8 8.5 123 

Oct 08 2.5 ± 2.2 2.5 99  5.8 ± 3.5 6.0 102 

Nov 08 2.7 ± 1.9 2.6 113  5.9 ± 4.0 5.6 111 

Dec 08 2.1 ± 1.7 1.9 94  5.9 ± 3.8 5.8 93 

Jan 09 0.7 ± 1.5 0.8 120  8.7 ± 3.3 8.2 118 

Feb 09 1.8 ± 1.5 1.7 104  6.5 ± 2.3 6.5 95 

Mar 09 1.8 ± 2.4 1.7 103  8.3 ± 3.4 8.0 103 

Apr 09 3.0 ± 1.3 3.1 63  8.3 ± 1.9 8.2 62 

May 09 1.7 ± 1.7 1.8 54  6.9 ± 3.8 6.4 47 

Jun 09 2.0 ± 2.0 2.2 64  12.4 ± 6.0 11.2 63 

Jul 09     0      0 

Aug 09     0      0 

Sep 09     0      0 

Oct 09 2.0 ± 1.6 1.8 35  6.8 ± 3.2 6.8 29 

Nov 09 -0.3 ± 1.5 -0.4 83  10.2 ± 3.4 10.1 80 

Dec 09 0.3 ± 1.6 0.2 75  7.6 ± 1.9 7.5 74 

Jan 10 0.3 ± 1.2 0.2 137  6.7 ± 2.1 6.5 136 

Feb 10 0.8 ± 2.6 -0.1 22  13.5 ± 2.4 13.7 23 

Mar 10 0.4 ± 0.6 0.4 99  3.4 ± 1.1 3.4 83 

Apr 10 0.0 ± 0.9 -0.1 122  3.9 ± 1.3 3.9 108 

May 10 0.1 ± 0.7 0.1 98  3.4 ± 1.4 3.4 82 

Jun 10 0.7 ± 1.9 0.6 29  4.3 ± 2.9 4.0 30 

Jul 10 0.8 ± 2.2 0.5 46  5.2 ± 3.3 5.1 41 

Aug 10 2.6 ± 1.6 2.5 86  8.3 ± 2.9 8.1 83 

Sep 10 1.1 ± 2.7 1.2 63  6.5 ± 4.2 6.1 68 

Oct 10 0.0 ± 2.0 0.0 127  2.8 ± 2.2 2.7 129 

Nov 10 -1.1 ± 2.1 -1.2 79  3.8 ± 3.9 4.2 81 

Dec 10 -0.4 ± 1.7 -0.5 100   5.1 ± 3.4 4.7 99 
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Table 4.3. Monthly day and night time average NO2 mixing ratios along with standard 

deviation, median and number of measurements. Day = 1100-1500, night =0000-0400. 

Date 
Night time   Day time 

Mean ± SD Median N   Mean ± SD Median N 

Oct 06 20.8 ± 7.1 19.2 95  24.1 ± 7.2 23.2 114 

Nov 06 14.4 ± 5.5 13.5 75  21.9 ± 5.7 21.3 79 

Dec 06 40.0 ± 10.3 38.0 69  38.9 ± 8.5 38.0 65 

Jan 07 38.2 ± 11.4 36.3 86  43.9 ± 9.0 41.8 82 

Feb 07 27.4 ± 8.6 26.2 128  33.9 ± 7.3 32.2 128 

Mar 07 16.7 ± 8.9 15.0 130  37.3 ± 7.0 37.0 119 

Apr 07 17.0 ± 5.2 16.0 134  45.2 ± 8.3 44.2 127 

May 07 17.9 ± 7.4 16.6 113  13.4 ± 4.7 13.3 95 

Jun 07 9.6 ± 5.3 8.0 99  12.3 ± 4.0 11.7 94 

Jul 07 12.6 ± 7.2 10.0 102  17.9 ± 5.4 17.5 116 

Aug 07 16.4 ± 4.4 16.4 109  22.8 ± 5.6 21.7 114 

Sep 07 17.0 ± 6.6 15.6 133  17.4 ± 4.3 16.9 128 

Oct 07 21.4 ± 11.0 17.7 116  20.5 ± 10.5 18.0 115 

Nov 07 18.5 ± 7.3 17.7 89  24.5 ± 7.7 22.6 90 

Dec 07 37.6 ± 14.4 36.1 72  34.6 ± 9.2 32.5 72 

Jan 08 43.7 ± 12.6 41.2 105  59.9 ± 12.8 61.2 105 

Feb 08 53.6 ± 13.2 51.0 99  72.7 ± 14.1 73.0 102 

Mar 08 12.2 ± 6.7 10.8 133  81.6 ± 16.5 82.8 107 

Apr 08 14.5 ± 7.6 12.3 109  68.5 ± 13.7 69.8 89 

May 08 12.9 ± 6.1 11.7 149  49.6 ± 9.2 51.1 134 

Jun 08 13.8 ± 5.2 13.1 109  48.8 ± 10.2 49.6 99 

Jul 08 18.6 ± 7.3 16.9 111  63.2 ± 12.9 64.6 115 

Aug 08 28.9 ± 7.3 28.6 126  74.2 ± 11.6 75.1 126 

Sep 08 28.1 ± 11.3 25.9 116  68.6 ± 13.5 66.4 120 

Oct 08 30.1 ± 16.4 25.8 96  52.8 ± 10.6 52.4 102 

Nov 08 27.9 ± 12.9 24.8 113  45.6 ± 11.1 44.9 111 

Dec 08 30.6 ± 9.5 29.3 94  56.6 ± 10.8 56.7 93 

Jan 09 26.4 ± 10.3 25.0 120  70.2 ± 15.5 70.9 118 

Feb 09 16.1 ± 9.6 14.0 104  62.1 ± 14.0 64.1 95 

Mar 09 73.0 ± 27.6 72.0 104  36.6 ± 13.4 33.4 104 

Apr 09 26.9 ± 8.2 27.4 63  29.3 ± 7.6 29.2 62 

May 09 22.1 ± 8.6 20.0 54  48.9 ± 8.0 48.5 47 

Jun 09 34.3 ± 13.6 29.9 64  73.5 ± 10.5 73.0 63 

Jul 09      0      0 

Aug 09      0      0 

Sep 09      0      0 

Oct 09 18.7 ± 3.6 18.3 20  46.7 ± 7.8 46.6 15 

Nov 09 26.4 ± 6.0 26.3 83  29.3 ± 6.6 29.6 80 

Dec 09 18.8 ± 7.8 16.7 74  24.6 ± 8.1 24.4 74 

Jan 10 17.8 ± 6.5 16.7 119  14.8 ± 4.9 14.0 114 

Feb 10 7.8 ± 3.6 5.8 5  16.3 ± 12.5 9.2 3 

Mar 10 6.3 ± 3.6 6.5 94  7.9 ± 3.1 8.1 81 

Apr 10 11.7 ± 5.1 11.4 124  13.2 ± 2.3 13.2 104 

May 10 6.9 ± 2.7 7.1 98  14.7 ± 2.7 14.2 82 

Jun 10 13.3 ± 2.5 13.1 33  19.9 ± 6.1 21.4 32 

Jul 10 9.9 ± 4.1 9.3 51  19.3 ± 5.5 18.5 42 

Aug 10 34.4 ± 10.1 32.4 66  31.3 ± 8.9 30.7 63 

Sep 10 36.1 ± 12.2 35.5 57  35.0 ± 8.7 34.0 67 

Oct 10 26.4 ± 9.8 24.7 132  28.8 ± 7.8 28.2 133 

Nov 10 35.3 ± 8.6 33.9 99  45.1 ± 7.3 44.8 96 

Dec 10 39.3 ± 8.2 38.0 94   57.3 ± 10.3 57.4 95 
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Figure 4.6. Diurnal cycle of temperature and solar flux at the CVAO. 

 

NOx levels display seasonality on the annual scale, peaking between November and 

February as shown by figure Figure 4.7. Rather than a result of photochemistry, this is 

believed to be a result of changes in the air mass origin (Lee et al., 2009). Figure 4.8 shows 

the percentage contribution of each air mass sampled at CVAO from October 2006 to March 

2010. During the months of November to February, continental African air masses comprise 

a significant proportion of that sampled and are almost exclusively sampled within this four 

month period. The lower NOx levels measured from mid-March to July correspond with 

predominantly marine or coastal air masses and the elevated levels from late July to October 

occur as the contribution of European air masses increases. 
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Figure 4.7. The annual cycle shown by average monthly daytime mixing ratios over all years, a 

= NO (red line), b = NO2 (blue line), c = O3 (black line). Dashed lines are standard deviation from 

mean. 



Reactive Nitrogen in the Tropical Troposphere 

~ 107 ~ 

 

 

Figure 4.8. Seasonality of air masses sampled at CVAO during 1.10.2006 to 31.3.2010. Light 

blue = ACA, red = A, green = NACA, orange = ANA, purple = ECA, dark blue = CA, gold = E. 

(adapted from Carpenter et al., 2010). 

 

This is further supported by the frequency distribution of NOx measurements in the 

different air masses shown in figures 4.9a-g. Examples of their respective back trajectories 

are shown in figure 4.4. The plots in figure 4.9 can be subdivided by the amount of 

processing time spent in the marine boundary layer with reduced continental interference. 

Figures 4.9a-c represent air masses that have spent a significant amount of time in the 

marine boundary layer, which is reflected in the lower NOx levels and fewer occurrences of 

high pollution events. Of these air masses, purely Atlantic air (figure 4.9b) shows a marked 

reduction in median NOx levels of just 16.53 pptv in comparison with those originating from 

coastal African and North American sources (figures 4.9a and 4.9c). This is most likely due 

to residual NOx that has been transported from these regions in the form of longer lived 

reservoir species prior to reformation. 

Figures 4.9d-g represent those air masses that have a greater contribution from 

continental regions and consequently, have increased NOx loadings. As would be expected, 

air masses transported from North America via coastal Africa (figure 4.9d) have greater NOx 

levels than those from the same source which have not encountered fresh plumes to 

replenish NOx levels (figure 4.9c). As processing of the air mass is not linear with time 

however, this air mass (figure 4.9d) also shows high variability in the NOx mixing ratios 

encountered at the CVAO. This is similar for that of European and coastal African air 

masses which display an almost log normal distribution (figure 4.9g), with 12-15 pptv being 

the most common mixing ratios. European air masses also show a near normal distribution, 

but exhibit both greater levels and variation in the NOx content. Of a similar NOx burden is 
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that of continental African air, which although it shows a reduced average and variation of 

NOx in comparison with European air, it shows the greatest median NOx levels of 26.26 pptv 

and a greater proportion of high NOx events, either as a result of direct transport or via the 

transport of reservoir species and subsequent reformation close to the CVAO. 

 

c 

b 
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Figure 4.9. NOx frequency distribution for different wind masses sampled at CVAO between 

October 2006 and December 2009. Mean, standard deviation and median for each dataset also 

displayed. a= Atlantic and Coastal Africa, b= Atlantic, c = Atlantic and North America, d = North 

America and Coastal Africa, e = Europe, f = Continental Africa, g = Europe and Coastal Africa. 

 

Individually, both NO and NO2 display diurnal cycles as shown in figure 4.10. NO 

values peak around solar noon and are typically less than 10 pptv. This trend is consistent 

with a pristine, remote environment and with current understanding of NO production as a 

result of NO2 photolysis. Although a significant proportion of the NO data is close to the 

instrument detection limit, statistical analysis comparing the day and night time data found 

that they were significantly different at the 99.9 % confidence level (students t-test, P < 0.1), 

giving confidence in the NO data and the trends observed (Lee et al., 2009). The NO2 mixing 

ratio varies between 15-80 pptv and exhibits a diurnal cycle with stable nighttime values and 

peaking a few hours after solar noon. As it is believed that NO2 undergoes photolysis during 

the day to form NO, the source of this diurnal cycle is currently unknown and will be the 

subject of discussion in section 4.2.4. 

 

g 
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Figure 4.10. Average diurnal cycle, for all data, of NO (red line), NO2 (blue line) and O3 (black 

line) at the CVAO. 

 

O3 also exhibits both a clear annual and diurnal cycle as shown in figures 4.7 and 

4.10 respectively. Annually, O3 displays a maximum in spring and a minimum in late summer 

that is consistent with previous studies in remote boundary layer sites in the Northern 

Hemisphere (Ayers et al., 1996; Carpenter et al., 1997). Although the reason for this 

seasonality is not completely understood, it is thought that changes in STE combined with a 

lower stratospheric O3 maximum due to the build-up of O3 precursors over the winter is 

responsible (Penkett et al., 1998; Monks et al., 2000). 

The diurnal cycle peaks around 0800-0900, with daily O3 destruction varying 

between 1-8 ppbv until approximately 1800, when a gradual overnight increase in O3 occurs 

due to advection and / or entrainment from the free troposphere (figure 4.10) (Lee et al., 

2009). Although this diurnal is rare in the northern hemisphere due to greater pollution from 

anthropogenic activity, it is typical of areas with very low NOx levels (Monks et al., 1998; 

Parrish et al., 1998).  

Lee et al (2009) developed a zero-dimensional box model to look at the dependence 

of O3 on NO mixing ratios at the CVAO. O3 was defined as the change in the O3 mixing 

ratio from 0900-1700 each day, with a negative O3 value indicating net O3 destruction. O3 

for each day is plotted alongside the daytime average NO mixing ratio as measured at 

CVAO in figure 4.11, as this would be expected to correspond to the highest NO mixing 

ratios. As demonstrated by figure 4.11, NO is typically lower than 15 pptv and instances of 

O3 production throughout the 5-year dataset are relatively rare. 
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Figure 4.11. ΔO3 values and daytime NO showing dependency of O3 dynamics on NO. Black 

dots = ΔO3, black line = 30-day running average of O3, solid red line = 30-day running average 

of daytime NO mixing ratio, dashed red line = O3 compensation point. 

 

As O3 dynamics are controlled by a range of factors, of which NOx mixing ratios are 

just one, Lee et al (2009) modelled monthly data separately maintaining the months average 

conditions with only the rate of increase and maximum NO concentrations being varied, 

thereby calculating a range of O3 compensation points. The results of this analysis are 

shown in figure 4.12 with each month being represented by a different coloured line and the 

x-intercept representing the O3 compensation point. The corresponding coloured diamond is 

the predicted compensation point based solely on the measured NO mixing ratio for that 

month. The compensation point calculated for each month however, ranged from 17 to 34 

pptv with all but 4 months clustered within the NO mixing ratio of 23 to 27 pptv. The 

difference between these higher compensation points and the values calculated using only 

the average NO values, is due to other factors that contribute to daily O3 dynamics including 

halogen chemistry, which contributes approximately 30 % to the O3 loss at the CVAO (Read 

et al., 2008). Lee et al (2009) found that daily O3 values (y-intercept) at the CVAO are 

controlled predominantly by water vapour concentration and solar radiation and that the 

strength of the relationship between O3 and the NO mixing ratio (the gradient) is controlled 

by HO2 concentrations. Consequently, the O3 compensation point at CVAO displays 

significant temporal variation (Lee et al., 2009). 
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Figure 4.12. Modelled ΔO3 values constrained by NO mixing ratios ranging from 1-40 pptv and 

using averaged conditions for each month in 2007. Actual NO measurements with the 

corresponding ΔO3 values for each month during 2007 are shown as coloured diamonds (Lee 

et al., 2009). 

 

 Similar O3 destruction regimes have been demonstrated in a variety of remote 

marine boundary layer sites globally. As can be seen in table 4.4, measurements from the 

CVAO show some of the greatest O3 values, further supporting the description of the 

CVAO location as a pristine environment. Lower O3 values found in other studies can be 

attributed to a number of sources including; lower photolysis rates due to the latitude of the 

study (Heikes et al., 1996; Ayers et al., 1997; Galbally et al., 2000), halogen chemistry 

(Galbally et al., 2000; Dickerson et al., 1999; Read et al., 2008) and proximity to continental 

source regions (Carsey et al., 1997; Parrish et al., 1998; Jacobi et al., 1999). As evidence for 

the latter, during a study by Carsey et al (1997) at 29° N, 25° W, located near to the CVAO, 

O3 values and NO mixing ratios were similar to those observed at CVAO (table 4.5) with O3 

destruction rates reduced on days that coincided with sampling of continental African air 

masses, similar to the findings of Lee et al (2009) at the CVAO. Of additional interest due to 

the scope of this report, is a study by Jacobi et al (1999) to the east of the CVAO at 15° W. 

These authors found that O3 displayed a diurnal cycle with production peaking mid-afternoon 

and corresponding with a large diurnal cycle in PAN mixing ratios. This highlights the 

importance of NOx transport in the form of reservoir species and the role that proximity of the 

CVAO to continental source regions plays. 
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Table 4.4. Studies showing O3 destruction regimes in remote boundary layer environments. * = 

studies from or near the CVAO. 

Reference Region NO (pptv) ΔO3 (ppbv d-1) 

Liu et al., 1983 Equatorial Pacfic Ocean 3.7 0.13 

Thompson et al., 1993 Equatorial Pacfic Ocean 1.3 0.1-0.2 

Heikes et al., 1996 South Atlantic Ocean < 5 0.08 

Singh et al., 1996 West Pacific Ocean 5.5 0.23 

Ayers et al., 1997 South Pacific Ocean 2.0 0.12 

Carsey et al., 1997 *North Atlantic Ocean 5.0 8.0 

Dickerson et al., 1999 Equatorial Indian Ocean 5.0 4.0 

Galbally et al., 2000 Cape Grim, Tasmania 6.0 2.0 

Lee et al., 2009 *North Atlantic Ocean (CVAO) 1.8 1.0-8.0 

Conley et al., 2011 Equatorial Pacfic Ocean 2.7 0.18 

 

 

4.2.4. NO2 Diurnal, ΔNO2 

 

As described in section 4.2.3, both NO and NO2 display diurnal cycles at the CVAO 

(figure 4.10). Whereas the NO diurnal, which peaks around solar noon, agrees well with its 

known formation pathway of NO2 photolysis, the apparent NO2 diurnal seen at CVAO 

remains an unexplained feature of remote marine boundary layer chemistry at this site. As 

illustrated previously, this diurnal shows a reasonably stable nighttime value and peaks a 

few hours after solar noon reaching maximum mixing ratios of approximately 80 pptv. This 

phenomenon has been termed NO2 and was calculated for all days between the 1st of 

October 2006 and the 31st of December 2010 where data was available. NO2 was 

determined by subtracting the NO2 nighttime average from that of the daytime average, both 

of which are defined as in section 4.2.3.  

One aim of this project was to investigate the source of this NO2 diurnal and 

determine whether it is a ‘real’ trend. Given the timing of its peak values, this would suggest 

a thermal or photolytic source (figure 4.6) such as the thermal decomposition of PAN which 

is known to act as dominant NOx reservoir and lead to alterations in O3 regimes (Carsey et 

al., 1997), or whether it is a fake signal due to instrumental error. 

Hourly data of both NO and NO2 were averaged over annual time scales to create a 

series of diurnal cycles as shown in figures 4.13 and 4.14 respectively. NO diurnals showed 

no deviation greater than that expected due to interannual variation (figure 4.13) further 

consolidating confidence in the NO data. Although the NO2 diurnals showed that nighttime 
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NO2 data did not vary significantly either, there was a distinct increase in the NO2 values for 

the year of 2008 as shown in figure 4.15.  

 

Figure 4.13. Yearly averaged NO diurnal cycle. Blue line = 2006, red line = 2007, green line = 

2008, orange line = 2009, purple line = 2010.  

 

Figure 4.14. Yearly average NO2 annual cycle. Blue line = 2006, red line = 2007, green line = 

2008, orange line = 2009, purple line = 2010. 

 



Reactive Nitrogen in the Tropical Troposphere 

~ 116 ~ 

 

 

Figure 4.15. Average NO2 values and standard deviation for each year. 

 

 

Although seasonally grouped data produced diurnals that showed higher NOx levels 

in periods between December to February in all years (figures 4.16 and 4.17), as described 

previously in section 4.2.3, this can be explained by changes in air mass origins with a 

greater contribution from continental African sources during this period. Aside from this 

known seasonality, there is no fundamental change in the NO2 diurnal profile that would 

suggest that the cause of the NO2 observed is a result of natural seasonal variation (figure 

4.18). 

 

 

Figure 4.16. Seasonally averaged NO diurnal cycle. Blue line = Dec-Feb, red line = Mar-May, 

green line = Jun-Aug, orange line = Sep-Nov. 
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Figure 4.17. Seasonally averaged NO2 diurnal cycle. Blue line = Dec-Feb, red line = Mar-May, 

green line = Jun-Aug, orange line = Sep-Nov. 

 

 

Figure 4.18. Average NO2 values and standard deviation for each season. 

 

This is further supported by the lack of variation in the NO and NO2 diurnals from 

within air masses as shown in figures 4.19 and 4.20, suggesting that the cause of the NO2 

varies temporally rather than spatially and that the cause was particularly strong during the 

year 2008. 
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Figure 4.19. NO diurnal cycle averaged by air mass. Light blue = ACA, red = A,   green = NACA, 

orange = ANA, purple = ECA, dark blue = CA, gold = E. 

 

Figure 4.20. NO2 diurnal cycle averaged by air mass. Light blue = ACA, red = A,   green = 

NACA, orange = ANA, purple = ECA, dark blue = CA, gold = E. 

 

Another parameter by which the data was analysed is using different instrument 

maintenance periods. Over the course of the 5 years, the instrument has undergone 5 

distinct periods in its inlet design and setup as described in table 4.5. Whilst the NO 

variation was consistent between these periods (figure 4.21), the NO2 diurnal showed a 

significant increase in the NO2 observed during P2 as shown in figures 4.22 and 4.23. The 

data within P2 that was not obtained during 2008 was analysed separately and was also 

shown to display this high NO2 value, proving that although present in late 2007 and early 

2009, this was not detected during the analysis of the data on an annual time scale as the 

averaging of the data dampened the appearance of the NO2.  
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Table 4.5. Table showing dates of changes to inlet design and setup. P# = period of inlet design or 

setup where ‘#’ represents the period number. 

Period 
(P#) 

Date 
Inlet Design 

Start   End 

1 
1st Oct. 

2006 
- 

4th Dec. 
2007 

- Start of operation.  

  Uncooled inlet mounted outside facing northeast. 

     

2 
4th Dec. 

2007 
- 

28th Feb. 
2009 

- Inlet mounted outside facing directly upwards. 

  New BLC installed. 

         

3 
28th Feb. 

2009 
- 

16th Oct. 
2009 

- Cooled inlet mounted outside. 

  

         

4 
16th Oct. 

2009 
- 

8th Aug. 
2010 

- Cooled inlet mounted inside.  

  Samples taken from main glass sampling manifold. 

         

5 
8th Aug. 

2010 
- 

30th Jun. 
2011 

- New BLC installed 

  

 

 

 

Figure 4.21. NO diurnal averaged by maintenance period. Blue line = P1, red line = P2, green 

line = P3, orange line = P4, purple line = P5. 
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Figure 4.22. NO2 diurnal averaged by maintenance period. Blue line = P1, red line = P2, green 

line = P3, orange line = P4, purple line = P5. 

 

 

Figure 4.23. Average NO2 values and standard deviation for each maintenance period. 

 

By comparing the NO2 values over the entire dataset for diurnals both with and 

without the P2 data included as shown in figure 4.24, this allowed the contribution of the P2 

data to the NO2 value to be estimated and found that P2 caused an overall increase in 

NO2 of approximately 5.09 ± 0.94 pptv. 
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Figure 4.24. NO2 diurnal averaged for all data (solid blue line) and all data except P2 (dashed 

blue line). Average solar flux diurnal also plotted (yellow line) for comparison. 

  

It was postulated that the positioning of the inlet led to increased exposure to solar 

radiation, resulting in a significant temperature increase within the inlet. As there is no 

temperature data corresponding to the inlet temperature, solar flux (SF) was used as a proxy 

and plotted against ΔNO and ΔNO2 values (figure 4.25-26). Monthly averages of ΔNO, ΔNO2 

and ΔSF were grouped into the relevant period bins and compared.  

 

 

Figure 4.25. Hourly NO and solar flux values averaged for each maintenance period. Blue line = 

P1, red line = P2, green line = P3, orange line = P4, purple line = P5. 
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Figure 4.26. Hourly NO2 and solar flux values averaged for each maintenance period. Blue line 

= P1, red line = P2, green line = P3, orange line = P4, purple line = P5. 

 

Multiple linear regression analysis showed that the ΔNO2 dependency on solar flux 

was significantly greater during P2 (P < 0.01), supporting the hypothesis that inlet positioning 

and resultant temperature fluctuations contributed to the ΔNO2 values observed. This 

suggests that the large ΔNO2 observed during P2 is an instrumental artefact rather than a 

real trend. Temperature measurements within the inlet would help analyse this relationship 

fully and quantify its importance, however, despite the ΔNO2 being significantly greater, the 

ΔNO2 cycle is observed in all of the data to some degree. 

 Similarly, previous studies have also found deviations from the Leighton Ratio (φ > 1) 

where NO2 mixing ratios are greater than those expected from theoretical calculation 

(Parrish et al., 1986; Hauglustaine et al., 1999; Volz-Thomas et al., 2003; Mannschreck et 

al., 2004; Hosaynali-Beygi et al., 2011). As described in section 1.3, reactions 4.1-4.3 

represent the NOx cycle. This is a null cycle, which when reaction 4.1 dominates the 

conversion of NO to NO2, reaches photostationary steady state (PSS) within minutes 

(Leighton, 1961). This is also known as the Leighton ratio (φ) and is calculated via equation 

4.4.  

  

NO + O3 → NO2 + O2 4.1 

NO2 + hʋ → NO + O(3P) 4.2 

O(3P) + O2 + M → O3 + M 4.3 
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φ = 
  JNO2 [NO2] 

k4.1 [O3] [NO] 
4.4 

 

where  

JNO2 = photodissociation frequency of NO2 

k4.1 = reaction coefficient of reaction 4.1 

 

 This disagreement could stem from an unknown or unquantified photochemically 

driven oxidation pathway that would cause additional NO to NO2 conversion and therefore 

suggests an incomplete understanding of the oxidative budget under low NOx conditions in 

the troposphere. Beygi et al (2011) found that for NOx mixing ratios ranging between 5-25 

pptv, this deviation increased by up to a factor of ~7 with NOx mixing ratio and JNO2 intensity, 

indicating the importance of NOx mediated photochemistry. 

 When NOx mixing ratios are very low, peroxy radicals HO2 and RO2 become 

increasingly important and compete with O3 in the oxidation of NO (reaction 4.1). In the 

tropical remote boundary layer, the alkyl group ‘R’, is mostly of the form CH3O2 following the 

oxidation of CH4, the dominant hydrocarbon in this environment (Crutzen et al., 1994). It is 

therefore important that under low NOx conditions, NO oxidation by peroxy radicals is taken 

into consideration as this will significantly affect the calculated Leighton ratio. Furthermore, 

uncertainties in the reaction rates of NO with peroxy radicals will also effect calculations. It is 

a common assumption that the reaction rate coefficient of RO2 with NO is similar to that of 

HO2 and it has been postulated that this assumption is critical to PSS calculations and 

requires more validation (Matsumoto et al., 2006; Hosaynali-Beygi et al., 2011). 

Other criteria which if not met invalidate the steady state assumption include 

additional O3 loss processes such as photolysis or the reaction of O3 with NO2, alkenes and 

radicals. In relation to the former, steady state is invalidated at sunrise and sunset due to 

lower JNO2 values. Insufficient reaction time following perturbations to gas concentrations 

such as source pollution from shipping emissions, which have been shown to interfere with 

measurements at the CVAO, can also result in deviations from PSS. However at the CVAO, 

the data filtering process previously described removes this source of error. Other 

perturbations however can be caused by the oxidation of NO by halogen monoxides 

(Carpenter et al., 1998; Read et al., 2008) or via the decomposition of reservoir species such 

as PAN as previously been shown (Jacobi et al., 1999). Measurements of JNO2, O3, NO, NO2 

and radical concentrations can also contribute to the uncertainty of the measurement. 

As well as unknown or unquantified chemistry being the possible cause of the 

deviation seen, instrumental error may also play a role as shown with the analysis of the 
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maintenance periods and inlet positioning. For example, the BLC wavelength used for the 

detection of NO2 is 385-405 nm with the peak absorption cross section for NO2 at 390-400 

nm as shown in figure 4.27. Of all tropospheric species with the potential to cause 

interference in the BLC measurement resulting in the ΔNO2 observed, Beygi et al (2011) 

found that BrONO2 had the greatest overlap in absorption cross section, but that 26 pptv 

would be required to recreate a ΔNO2 value of 7 pptv. The BLC used in the CVAO 

instrument does exhibit temperature dependence with increases in temperature resulting in a 

decrease in optical power and increase in the wavelength emitted by the LEDs (Martin Buhr, 

personal communication). This shift in output would act to reduce the possible interference 

of BrONO2 which absorbs at lower wavelengths and would increase the interference of NO3. 

However, this is an unlikely source of interference being a nighttime species with detectable 

daytime concentrations only in close proximity to large emission sources as described in 

Chapter 2. 

 

 

Figure 4.27. Absorption cross sections of NO2 and all potentially interfering species at 298 K. 

Emission wavelength band of BLC used in the instrument also shown for comparison. 

 

 

 

 

 

 

 

 

 



Reactive Nitrogen in the Tropical Troposphere 

~ 125 ~ 

 

4.3. Summary 

 

Measurements of NO, NO2 and O3 were made at the Cape Verde Atmospheric 

Observatory (CVAO) in the remote, tropical, North Atlantic, marine boundary layer between 

October 2006 and December 2010. O3 shows an annual cycle with a maximum in spring and 

minimum in late summer, and a clear diurnal cycle, with photochemical destruction rates of 

1-8 ppbv d-1 during the day. NOx levels are dependent on air mass origin, with higher NOx 

observed in air masses originating from the African continent. This elevated mixing ratio 

results in a reduced net O3 destruction rate in air masses that have been influenced by 

African sources with an average of 2.8 ppbv d-1, compared to 3.5 ppbv d-1 in clean Atlantic 

air.  

For all data, independent of air mass origin, NO displays a clear diurnal cycle 

peaking around solar noon with maximum mixing ratios between 3 and 10 pptv. NO2 also 

displays a diurnal cycle with maximum mixing ratios of between 15 and 30 pptv, coinciding 

with solar noon. However, as it is thought that NO2 photolysis should dominate NO2 

dynamics in clean environments, an NO2 minimum would be expected to coincide with solar 

maximum. This discrepancy in NO2 dynamics, referred to as ΔNO2, was investigated for 

potential sources. Although ΔNO2 was observed throughout the measurement period, data 

between 4.12.2007 and 28.2.2009 showed a significantly elevated daytime NO2 signal and 

was responsible for an average increase in ΔNO2 across the dataset of 5.09 ± 0.94 pptv. 

During this period, the inlet was mounted facing directly upwards and would therefore be 

susceptible to high levels of heating. One potential source of this elevated NO2 signal is NOy 

species that can undergo thermal dissociation upon heating resulting in the formation of 

NO2. Of these NOy species, peroxyacteyl nitrate (PAN), which exists in thermal equilibrium 

with its’ precursors and is believed to be the main NOy reservoir for the long range transport 

of NOx, has the lowest thermal dissociation temperature of just 60 °C and can rapidly 

dissociate. Future studies that will enable the characterisation of the NOy composition at the 

CVAO will help address this observed anomaly in full. 
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Chapter 5 

 

NOy Measurements 
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5.1. NOx, NOy and Models 

 

 As described in the preceding chapters, NOx plays a pivotal role in the chemistry of 

the atmosphere, particularly in the troposphere where it is involved in the only known O3 

production pathway. The remote tropical boundary layer regions are of special interest as 

the mixing ratios of NOx are close to the compensation point, where a small increase in NOx 

can result in significant O3 production. Long-range transport of anthropogenically produced 

NOx to such environments is thought possible due to longer-lived nitrogen oxides which have 

lifetimes ranging from weeks to months under free tropospheric conditions. This has 

important consequences for countries downwind of emissions to adhere to their air quality 

standards.  

Despite their importance, long-term measurements of NOx and the rest of the 

reactive nitrogen pool in the remote boundary layer are lacking. To fill the gaps in 

understanding, global atmospheric models are used to predict NOy mixing ratios and their 

resultant impact on O3 dynamics. GEOS-Chem is one such model. GEOS-Chem is a global 

3D chemical transport model for atmospheric composition and is driven by meteorological 

measurements made by the Goddard Earth Observing System (GEOS). However, as can be 

seen from the GEOS model outputs for both NO and NO2 in figures 5.1 and 5.2 respectively, 

seasonal and longer term variability of NOx is poorly represented and requires further 

measurements to help constrain these models.  

The main aim of this project is to calibrate an NOy inlet capable of measuring the NOy 

composition in greater detail as shown by figure 5.3, thereby improving the understanding of 

this important class of compounds in the remote tropical marine boundary layer, as well as 

supporting the development of global model simulations of the long-term trends of important 

atmospheric species. 
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Figure 5.1. Comparison between observed NO mixing ratios at the CVAO (red line) and the 

predicted values from the GEOS model output (blue line). 

 

 

Figure 5.2. Comparison between observed NO2 mixing ratios at the CVAO (red line) and the 

predicted values from the GEOS model output (blue line). 

 

 

Figure 5.3. Schematic representation of the improved NOy composition data achieved 

following the installation of the NOy inlet in comparison to current measurements at the CVAO. 
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5.2. NOy Inlet 

 

5.2.1. NOy Inlet 

 

The NOy inlet on which this project is based will be used for the measurement of NOy 

reservoirs and will provide a better understanding of the composition of the reactive nitrogen 

pool in the remote, tropical, marine boundary layer where the CVAO is situated. This 

technique works on the basis of thermal decomposition of different NOy species (Day et al., 

2002). As the N-O bond strength of each compound is species specific, thermal dissociation 

occurs over different temperature ranges as shown in figure 5.4. Following rapid heating 

most NOy (XNO2) species undergo thermal dissociation to yield NO2 and a companion 

radical as shown in reaction 5.1 and the resultant NO2 can be detected through various 

techniques as described in Chapter 3.  

 

XNO2 + heat → X + NO2 5.1 

 

At the CVAO, the NO2 produced will then be measured using the same 

chemiluminescence instrument previously described. This technique is known as thermal-

dissociation chemiluminescence (TD-Chem) and will allow the measurement of NO, NO2, 

ΣPNs, ΣANs, HNO3 and total NOy (figure 5.3). A schematic representation of the NOy inlet is 

shown in figure 5.5. Aside from the ozonizer and snooper boxes which will remain the same, 

all of the individual compartments are shown in greater detail in figures 5.6-5.8 and all parts 

described in tables 5.1-5.3.  

 

 

Figure 5.4. Modelled temperature dissociation ranges for a variety of NOy species. Open 

squares represent approximate temperature settings of each quartz oven. 
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Figure 5.5. Schematic of the NOy inlet. ■ = NOy inlet, ■ = NOy controller, ■ = updated NOx inlet, 

■ = Ozonizer box, ■ = Snooper box. 

 

 The NOy inlet when installed will join onto the existing NOx system, utilising a second 

channel to measure NOy and NOx simultaneously. A detailed description of the 

measurement cycle will be given in section 5.2.2. This upgrade will result in the addition of 

two new compartments to the existing system; the NOy inlet and the NOy controller and an 

update of the current NOx inlet (figure 5.5). 

 As with the current NOx instrument, sample air will be drawn into the inlet through the 

use of a vacuum pump. However, due to the use of high temperatures to measure NOy 

reservoirs, aerosol nitrate has the potential to cause interference with NO and NO2 

measurements. For this reason, a cyclone inlet will be placed at the beginning of the inlet 

that can be switched on and off to quantify the contribution of NOx from aerosol nitrate 

(figure 5.6). Sample air is then drawn through one of four ovens heated to different 

temperatures to measure the total contribution of each reactive NOy reservoir and total NOy. 

Alternatively sample air can proceed via the NOx bypass with no heating, thereby providing a 

second measure of NOx in addition to the NOx channel. The new NOy inlet will be controlled 

by the NOy inlet controller, which contains a set of valves that will allow the sample flow to 
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switch between the four ovens and the NOx bypass (figure 5.7). The NOx inlet will also be 

upgraded from its current design to allow the introduction of NO calibration gas, zero air and 

NOy standards into the NOy sample line for calibration and zeroing purposes of the new 

instrument (figure 5.8). 

 

 

Figure 5.6. Schematic of the NOy inlet. Numbered parts are described in table 5.1. 

 

Table 5.1. Descriptions of parts numbered in figure 5.6. 

Number Part 

1 Cyclone inlet, NOy sample line 

2 Vacuum pump 

3 Q1, quartz oven, 150 °C operation temperature, ΣPNs 

4 Q3, quartz oven,  50 °C operation temperature, ΣANs 

5 Q6, quartz oven, 650 °C operation temperature, HNO3 

6 Mo , molybdenum oven,  00 °C operation temperature, ΣNOy 

7 Waste 

8 Zero air inlet from updated NOx inlet 

9 HNO3 calibration gas inlet from updated NOx inlet 

10 NOx sample line from NOx inlet 

11 Q1 outlet 

12 Q3 outlet 

13 Q6 outlet 

14 Mo3 outlet 

15 NOx bypass outlet 
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Figure 5.7. Schematic of the NOy controller. Numbered parts are described in table 5.2. 

 

Table 5.2. Descriptions of parts numbered in figure 5.7. 

Number Part 

1 Q1 inlet 

2 Q3 inlet 

3 Q6 inlet 

4 M3 inlet 

5 NOx bypass inlet 

6 MFC 

7 Vacuum pump 

8 Photolytic converter 

9 Channel 2 MFC 

10 NOy outlet (Channel 2) 
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Figure 5.8. Schematic of the updated NOx inlet. Numbered parts are described in table 5.3. 

 

Table 5.3. Descriptions of parts numbered in figure 5.8. 

Number Part 

1 NOx sample line 

2 Filter 

3 NO2 converter 

4 MFC 

5 NOx outlet (Channel 1) 

6 Titration cell 

7 HNO3 permeation oven 

8 NO MFC (10 sccm) 

9 Zero air inlet 

10 Oxygen inlet 

11 NO calibration gas inlet 

12a Critical orifice (10 sccm) 

12b Critical orifice (1000 sccm) 

13 Zero air outlet to NOy inlet 

14 HNO3 calibration gas to NOy inlet 

15 NOx sample line to NOy inlet 
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5.2.2. Measurements 

 

The inlet consists of a bypass line allowing the measurement of ambient levels of NO 

and NO2, a series of quartz ovens heated to 150, 350 and 650 °C which will be used to 

detect ΣPNs, ΣANs and HNO3 respectively and a molybdenum oven heated to 300 °C for 

the measurement of total NOy. Measured thermal decomposition rates of various 

compounds within two organic nitrate classes (RC(O)O2NO2, PNs and RONO2, ANs) show 

little dependence on the R group (Roberts, 1990; Kirchner et al., 1999) The ovens will be 

referred to as Q1, Q3, Q6 and M3 respectively from here on, unless otherwise stated in the 

text. Each component of the NOy pool will be sampled in turn in a single channel system 

during a measurement cycle as shown in figure 5.9 and includes a prechamber zero signal 

for the quantification of chemical interference in the sample channel. The updated inlet 

(figure 5.8.) will also have a second channel allowing the existing instrument to continue 

measuring ambient NO and NO2 as described in Chapter 3. 

 

 

Figure 5.9. The measurement cycle that will be used for the measurements of the NOy 

composition at the CVAO instrument. Sampling schedule yet to be finalised. Values are for 

illustration only and do not represent real values. 
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For the NOy inlet, ambient air will be drawn into the inlet which will be situated on the 

roof of the container at the CVAO, before being rapidly heated in one of the four ovens or will 

flow through the bypass for the measurement of ambient NO and NO2 mixing ratios. The 

residence time in the inlet prior to heating is of upmost importance for the accurate measure 

of different NOy species as chemical conversion and loss processes can occur. Of these, the 

thermal decomposition of PAN and loss of HNO3 to the walls on account of its high solubility 

are considered to be the greatest loss mechanisms within the inlet (Day et al., 2002). For 

example, Val Martin et al (2008) report an NO2 interference of 4 pptv due to the thermal 

dissociation of PAN for a residence time of 8 seconds at a temperature of 39 °C in their 

converter. Neuman et al (1999) investigated HNO3 wall losses for a range of materials and 

found that for Teflon tubing, < 5 % of the available HNO3 adsorbed to the walls in 

comparison to > 70 % for stainless steel. HNO3 adsorption was also shown to be dependent 

on temperature and significantly influenced by relative humidity. For the NOy inlet reported 

here, all tubing used is PFA Teflon (PFA) and lines prior to the ovens are heated to ~ 30 °C 

to minimise wall losses without initiating the thermal dissociation of PAN leading to 

interference. The potential for this interference is also reduced as the pre-oven residence 

time is ~ 0.1 second. 

All tubing post ovens is collected together in an umbilical and following thermal 

dissociation, the sample flows through this tubing from the inlet outside to the detector within 

the container. The production of NO2 due to NOy thermal dissociation such as those shown 

in reactions 5.2-5.4, leads to an elevated signal in comparison to the measured ambient 

NO2. Sampling successive ovens allows the quantification of each reservoir by subtracting 

the signal obtained at the former temperature. For example, a measure of ΣANs is 

determined by subtracting the average NO2 mixing ratio when sampling the Q1 oven, from 

the NO2 signal measured when sampling from the Q3 oven (Figure 5.9). This is explained 

schematically using a simplified kinetic model output shown in figure 5.10, which shows the 

expected NO2 signal produced from the thermal dissociation of a 1 ppbv mixture of PAN, n-

propyl nitrate (NPN) and HNO3 in equal concentrations under a range of temperatures. The 

rate constants used in this model are shown in table 5.4. 

 

PAN + M + heat → CH3C(O)OO + NO2 + M 5.2 

NPN + heat → CH3CH2CH2O + NO2 5.3 

HNO3 + M + heat → OH + NO2 + M 5.4 
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Figure 5.10. Modelled NO2 yield following temperature ramp of an equal mixture of PAN, NPN 

and HNO3 totalling a mixing ratio of 1 ppbv. 

 

Table 5.4. Rate constant parameters for reactions 5.2-5.4 used in the kinetic model described 

and shown in figure 5.10. 

Reaction 

Low Pressure Limit 

k0 (T) = k0
* exp (-a / T) 

High Pressure Limit 

kh (T) = kh
* exp (-b / T) Reference 

k0 a kh b 

5.2 4.9 x 10
-3 

12,100 4.0 x 10
16

 13,600 Bridier et al. (1991) 

5.3   3.16 x 10
16

 20,129 Barker et al. (1977) 

5.4 (1.82 x 10
-4

)(T/298)
-1.98

) 24,004 2 x 10
15

 24658 Glaenzer and Troe (1974) 

 

The model predicts that each compound thermally dissociates over a narrow 

temperature range and that there are broad regions where dissociation of one class is 

complete, prior to significant of the next. It is also assumed that each NOy species thermally 

dissociates to yield exactly 1 NO2 molecule as shown in reaction 5.1. Research so far is 

consistent with this assumption (Day et al., 2009).  

Interferences are another possible source of deviation from this expected output. 

Nonaromatic compounds such as nitromethane can thermally dissociate at high 

temperatures causing interference in the HNO3 channel, but if present, are restricted to close 

proximity of direct emissions and so are not expected to affect the instrument at the CVAO. 

The oven residence time is long enough to drive any volatile compounds off of the surface of 

aerosols present and hence the measurement will be the sum of both gas phase and volatile 

fraction of aerosol nitrate with the corresponding O-N bond energy (Day et al., 2002). 
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However, as shown in figure 5.6 the inlet will be fitted with a cyclone inlet which can be 

turned on and off allowing the contribution from aerosol phase nitrate to be quantified. 

Further to the interferences listed above caused by the presence of compounds 

already in the atmosphere, secondary chemistry within the inlet can also result in deviations 

of the measured value from the true value (Day et al., 2002). There are three classes of such 

potentially interfering sources shown in reactions 5.5-5.7, though for typical conditions at the 

CVAO, reaction 5.7c is the only pathway capable of causing a potentially significant 

interference due to the high mixing ratios of OH. These interference reactions are: 

Oxidation of NO 

O3 + NO → NO2 + O2 5.5a 

RO2 + NO → NO2 + RO 5.5b 

HO2 + NO → NO2 + OH 5.5c 

Reduction of NO2 

O3 + heat → O2 + O 5.6a 

O + NO2 → NO + O2 5.6b 

Oxidation of NO2 

RO + NO2 + M → RONO2 + M 5.7a 

RO2 + NO2 + M → RO2NO2 + M 5.7b 

OH + NO2 + M → HNO3 + M 5.7c 

NO2 + O3                → NO3 + O2 5.7d 
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5.3. NOy Inlet Calibration 

 

5.3.1. Standards 

 

The method for PAN synthesis is based on the photochemical production of 

peroxyacetyl (PA) radicals from the photolysis of acetone (285 nm) in the presence of 

oxygen as shown in reaction 5.8. A small flow of calibration standard NO is added to the gas 

stream and efficiently converted to NO2 (reaction 5.9) before reaction with PA radicals to 

form PAN as shown in reaction 5.10 (Warneck and Zerbach, 1992). This method relies on a 

large excess of acetone and therefore PA radicals to effect the conversion of NO to NO2 and 

suppress reaction 5.11. 

 

(CH3)2CO + hʋ + 2O2 → CH3O2 + CH3C(O)O2 5.8 

NO + O3 → NO2 + O2 5.9 

NO2 + (CH3)2C(O)O2 → CH3C(O)OONO2 5.10 

 

OH + NO2 → HNO3 5.11 

 

 

Figure 5.11. Schematic of plumbing used for PAN synthesis and analysis. 1 = NO cylinder, 

2 = ZA, 3 = MFC, 4 = MFC, 5 = Permeation cell using acetone excess and maintained at 30 

°C, 6 = MFC, 7 = PAN outlet. 
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 For ANs calibrations, a cylinder of 0.997 ± 0.005  ppmv (Scott-Marrin Inc., USA) n-

propyl nitrate (NPN) is used. This has a stability of approximately 3 years. 

 

 

Figure 5.12. Schematic of plumbing used for the NPN standard. 1 = NPN cylinder, 2 = ZA, 3 

= MFC, 4 = MFC, 5 = NPN outlet. 

The HNO3 source used for the calibration of the NOy inlet is a certified permeation 

tube (EcoScientific, UK). A controlled flow of zero air is passed over a permeation tube filled 

with high purity HNO3, which is maintained at a constant temperature of 30 °C. The mixing 

ratio of the HNO3 source is then quantified using equation 5.12 and can then be further 

diluted to the required mixing ratio by using a second controlled flow of zero air.  

 

Emission rate (ppmv) = ( K0 x ER ) 

       F 
5.12 

 

where, 

K0 
1

 = constant, 0.355 

ER 1 = emission rate, 482 ng min-1  

Flow = flow rate, cc min-1 

 

1 values calibrated for permeation tube held at 30 C (EcoScientific, UK). 
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Figure 5.13. Schematic of plumbing used for HNO3 synthesis and analysis. 1 = ZA,  2 = 

MFC, 3 = Permeation oven (maintained at 30°C), 4 = certified HNO3 permeation tube 

(EcoScientific, UK), 5 = MFC, 6 = Waste, 7 = HNO3 outlet. 

 

 The accuracy of this method can be assessed through periodic weighings of the 

permeation tube, as provided conditions are maintained and there is a constant gas flow to 

remove HNO3 permeating into the oven headspace, the mass loss of the permeation tube 

should be linear with time. Figure 5.14 shows the weights of the HNO3 permeation tube 

recorded over time. The R2 value shown gives confidence in the accuracy of this as a source 

of HNO3. 

 

 

Figure 5.14. HNO3 permeation tube weighing’s plotted against time. R
2
 value = 1, gives 

confidence in the accuracy of the calibration source. 
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5.3.2. Experimental Methods 

 

5.3.2.a. Standard Calibration 

 

 Each standard was calibrated for linearity of detection over a range of mixing ratios. 

This was done by passing each standard through both the gold (Au300) and molybdenum 

(Mo300) ovens at a 300 °C. A small flow of CO is added to the Au300 oven as a reducing 

agent. Both of these ovens cause the reduction of O-N containing species to NO with ~100 

% efficiency (Williams et al, 1998). Varying the dilution flows allowed a range of mixing ratios 

to be created. Following stabilisation of the signal, a 10 minute average was compared with 

the theoretical mixing ratio for the respective dilution being measured. This method therefore 

allows quantification of the standards actual concentration and a measure of the conversion 

efficiency of each quartz oven. For example, for 100 % conversion efficiency in the quartz 

ovens, the mixing ratio of the standard being tested must be equal to that detected by the 

Au300 and Mo300 ovens at temperatures above the theoretical temperature at which 100 % 

thermal decomposition of the respective standard occurs. The results of the PAN, NPN and 

HNO3 calibrations are shown in figures 5.15-5.20 
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Figure 5.15. NO production following the thermal dissociation of PAN in the Au3 oven over a 

range of mixing ratios. Dashed black line = theoretical NO mixing ratio expected at each 

dilution. 

 

 

Figure 5.16. NO production following the thermal dissociation of PAN in the Mo3 oven over a 

range of mixing ratios. Dashed black line = theoretical NO mixing ratio expected at each 

dilution. 

 

 

 

 

 

 

 



Reactive Nitrogen in the Tropical Troposphere 

~ 148 ~ 

 

 

Figure 5.17. NO production following the thermal dissociation of NPN in the Au3 oven over a 

range of mixing ratios. Dashed black line = theoretical NO mixing ratio expected at each 

dilution. 

 

 

Figure 5.18. NO production following the thermal dissociation of NPN in the Mo3 oven over a 

range of mixing ratios. Dashed black line = theoretical NO mixing ratio expected at each 

dilution. 
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Figure 5.19. NO production following the thermal dissociation of HNO3 in the Au3 oven over a 

range of mixing ratios. Dashed black line = theoretical NO mixing ratio expected at each 

dilution. 

 

 

Figure 5.20. NO production following the thermal dissociation of HNO3 in the Mo3 oven over a 

range of mixing ratios. Dashed black line = theoretical NO mixing ratio expected at each 

dilution. 

 

 

 

 



Reactive Nitrogen in the Tropical Troposphere 

~ 150 ~ 

 

5.3.2.b. Temperature Ramp 

 

 The instruments response to the thermal decomposition of each standard was 

analysed by passing a known mixing ratio of each standard, quantified by the standard 

calibration procedure, through each quartz oven over a range of temperatures that spanned 

the temperature range over which 0-100 % of the respective standard thermally dissociates. 

The temperature of the quartz oven was ramped in increments ranging from 10-50 °C 

depending on the resolution required. Following stabilisation of the signal, a 10 minute 

average was calculated along with the variation in the signal. As stated, the temperatures 

used for calibrating the quartz oven responses covered the thermal decomposition range of 

each standard and started from ambient air temperature (~25 °C) to ~50 °C higher than that 

expected for 100 % thermal decomposition, or until the signal stabilised with any increase in 

temperature resulting in a non-significant increase in the NO2 signal. 

 For all results of temperature ramp experiments shown in the following section, 

unless otherwise stated, the red line represents NO, the blue line represents NO2, the 

dashed black line represents total NOx and the solid black line is the kinetic model output of 

NO2 produced following the thermal dissociation of the relevant standard at the theoretical 

concentration present following dilution. 
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5.4. Results 

 

5.4.1. Peroxyacetyl Nitrate, PAN 

 

 Figures 5.21 and 5.22 show the instrument response to PAN thermal decomposition 

in the Q3 and Q6 ovens respectively following temperature ramp experiments. As will be 

shown in all temperature ramps of all standards presented in this report, rather than just NO2 

being produced following thermal dissociation, the NO yield increases with higher 

temperatures. The cause of this will be discussed in section 5.5. However, what is important 

is that the NO increase is correlated to that of a decrease in NO2 meaning that total NOx is 

conserved and that the amount detected, is comparable to the total amount of NO2 expected 

following 100 % thermal dissociation of each standard predicted by the kinetic model. As the 

chemiluminescence instrument can provide a measure of both NO and NO2, this deviation 

can be accounted for and shows that the quartz ovens have a conversion efficiency of ~100 

%. 

 As can be seen in both plots, NOx production occurs at temperatures approximately 

30 °C lower than those predicted by the kinetic model. Again this feature is consistent in all 

experiments, though the deviation does vary as will be discussed and is due to the 

thermocouple that acts as a feedback for temperature control of the ovens being located on 

the outside of the oven. Therefore all temperatures recorded are lower than the actual 

temperature of the gas stream. Table 5.6 at the end of this section summarises the 

temperature deviations between observed and modelled values for each standard in each 

oven tested. 

 A particular feature that is specific to PAN thermal dissociation is the large NO2 

artefact as can be seen at lower temperatures when no PAN degradation is occurring. This 

is a recognised interference in instruments that use the chemiluminescence technique to 

measure PAN and originates in the use of acetone in its synthesis. It affects the instrument 

in two ways; chemiluminescence caused by its reaction with O3 creates a fake NO2 signal 

and excited state acetone created during photolysis is longer lived than that for NO2 and so 

also causes an increase in the background interference in the instrument. To remove this 

interference, future work will aim to synthesise PAN using NO in excess and a small flow of 

acetone. This will remove the acetone interference and the elevated NO signal can be 

quantified by the instrument. Figure 5.23 shows a schematic of the novel system that will be 

employed to produce PAN whilst removing the acetone interference observed.  
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 Most importantly, the temperature ranges over which PAN thermal dissociation 

occurs in the Q3 and Q6 ovens occurs is distinct from the region over which NPN thermal 

dissociation occurs. The thermal dissociation temperature ranges for all standards and all 

ovens tested thus far are shown in section 5.5. This is important for the accurate measure of 

all NOy reservoirs due to the calculation procedure which subtracts the NO2 signal of one 

oven from that of another. Overlap of a thermal dissociation range would cause an 

overestimation of the reservoir mixing ratio.  

 

 

Figure 5.21 . PAN temperature ramp in the Q3 oven. Red line = NO, blue line = NO2, dashed 

black line = NOx, solid black = Modelled NO2. 

 

 

Figure 5.22. PAN temperature ramp in the Q6 oven. Red line = NO, blue line = NO2, dashed 

black line = NOx, solid black = Modelled NO2. 
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Figure 5.23. Schematic of plumbing used for PAN synthesis and analysis. 1 = NO cylinder, 2 = 

ZA, 3 = MFC, 4 = MFC, 5 = Permeation tube held in permeation oven creating small acetone 

mixing ratio and restricting interference (maintained at 30 °C), 6 = MFC, 7 = PAN outlet. 

 

5.4.2. n-Propyl Nitrate, NPN 

 

 Figures 5.24-5.26 show the instruments response to a temperature ramp of NPN. As with 

PAN, NO2 is converted to NO at higher temperatures but with total NOx being conserved. NPN 

thermal dissociation also occurs at temperatures lower than those predicted by the model, however 

this deviation does vary between the ovens. With an increasing inlet length sampling from the Q1 to 

the Q6, NPN dissociation occurs at temperatures closer to the modelled values. The source of this 

result will be discussed in section 5.5. Despite this variation, the temperature range over which NPN 

exhibits thermal dissociation occurs is similar to the model and distinct from that of PAN allowing 

accurate quantification. 
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Figure 5.24 . NPN temperature ramp in the Q1 oven. Red line = NO, blue line = NO2, dashed 

black line = NOx, solid black = Modelled NO2. 

 

a 
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Figure 5.25 . NPN temperature ramps in the Q3 oven. Panels a, b and c refer to repeat results 

of the temperature ramp experiments using NPN in the Q3 oven. Red line = NO, blue line = 

NO2, dashed black line = NOx, solid black = Modelled NO2. 

b 

c 
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Figure 5.26. NPN temperature ramps in the Q6 oven. Panels a and b refer to repeat results of 

the temperature ramp experiments using NPN in the Q6 oven Red line = NO, blue line = NO2, 

dashed black line = NOx, solid black = Modelled NO2. 

 

5.4.3. HNO3 

 

 Figures 5.27 and 5.28 show the results of HNO3 temperature ramp experiments in 

the Q3 and Q6 ovens respectively. Similar to PAN and NPN is the production of NO at 

temperatures comparable to that of NPN temperature ramp experiments. However, the 

thermal dissociation range observed is much lower than that predicted by the kinetic model 

resulting in an overlap between NPN and HNO3 degradation and subsequent NOx 

a 

b 
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production. As stated previously, it is important that there is a temperature range during 

which thermal dissociation of one reservoir is complete prior to the significant dissociation of 

the next, thereby allowing the accurate quantification of each reservoir. This was clearly not 

the case and possible reasons for this discrepancy were experimentally verified using the Q6 

oven to maintain all other variables, such as oven and inlet length. 

 

 

 

Figure 5.27. HNO3 temperature ramps in the Q3 oven. Panels a and b refer to repeat results of 

the temperature ramp experiments using HNO3 in the Q3 oven. Red line = NO, blue line = NO2, 

dashed black line = NOx, solid black = Modelled NO2. 

a 

b 
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Figure 5.28. HNO3 temperature ramps in the Q6 oven. Panels a and b refer to repeat results of 

the temperature ramp experiments using HNO3 in the Q6 oven. Red line = NO, blue line = NO2, 

dashed black line = NOx, solid black = Modelled NO2. 

 

 

 

 

 

 

 

 

a 

b 
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 The early degradation was initially thought to be due to either direct interference from 

an acetone permeation tube in the same permeation oven as the HNO3 source, or due to the 

reaction between acetone and HNO3 to form another compound with a lower TD range. The 

acetone permeation tube is in place to be used for PAN synthesis via the NO excess method 

as previously described (figure 5.23) and was removed to investigate its effect on the 

observed result following HNO3 thermal dissociation. The results of this experiment are 

shown in figure 5.29. Early degradation was still apparent at approximately 200 °C 

consistent with the previous temperature ramp experiments suggesting that the acetone 

permeation tube had no significant effect. 

 

 

Figure 5.29. HNO3 temperature ramp in the Q6 oven with the acetone permeation tube removed 

from the permeation oven. Red line = NO, blue line = NO2, dashed black line = NOx, solid black 

= Modelled NO2. 

 

 Other oven setups used in instruments that measure NOy reservoirs via thermal 

dissociation consist of 1.2 m quartz rods with an initial heated section of ~20 cm and a 

cooling region of ~1 m (Day et al., 2002; Dari-Salisburgo et al, 2009). This means that 

downstream of the oven, the gas flow encountered by the PFA tubing is of a much lower 

temperature, thereby suppressing reduction of NO2 to NO or desorption of chemical species 

from the walls (Day et al, 2002). In comparison, the ovens used in this inlet have an internal 

volume of ~ 0.8 m3 and are filled with glass beads with a diameter of 3 mm with no cooling 

region. To investigate whether secondary chemistry within the inlet downstream of the ovens 

caused by leaching of reactants from the PFA, a 1 m length of coiled stainless steel was 

added downstream of the oven to provide a sufficient cooling region. However as shown by 

figure 5.30, early degradation still occurred. 
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Figure 5.30. HNO3 temperature ramp in the Q6 oven with a stainless steel cooling region 

downstream of the Q6 oven. Red line = NO, blue line = NO2, dashed black line = NOx, solid 

black = Modelled NO2. 

 

 Investigation of the source of the early thermal dissociation was then focused on the 

permeation oven and whether residual HNO3 and acetone had accumulated over time 

despite a constant air flow. To quantify the permeation ovens contribution to the measured 

NO and NO2, a flow of zero air was first passed through the permeation oven with all 

permeation tubes removed and then with the permeation oven bypassed completely. The 

results of these experiments are shown in figures 5.31 and 5.32. 

 As would be expected, both experiments showed very low levels of NO and NO2 with 

a small source of NO and NO2 originating from the permeation oven (figure 5.32). Although 

there is a signal from the permeation oven, the level of NO and NO2 is very much reduced in 

comparison to temperature ramp experiments using the HNO3 permeation tube source 

suggesting that the early degradation seen is due to this source. 

 

 

 



Reactive Nitrogen in the Tropical Troposphere 

~ 161 ~ 

 

 

Figure 5.31. ZA temperature ramp in the Q6 oven with the permeation oven in series but empty. 

Red line = NO, blue line = NO2, dashed black line = NOx, solid black = Modelled NO2. 

 

 

Figure 5.32. ZA temperature ramp in the Q6 oven with the permeation oven bypassed. Red line 

= NO, blue line = NO2, dashed black line = NOx, solid black = Modelled NO2. 

 

 To test the stability of the certified HNO3 permeation tube, a certified blank 

permeation tube (EcoScientific, UK) was filled with high purity HNO3 and left to equilibrate in 

the permeation oven for 3 weeks. This was then used as the HNO3 source during a 

temperature ramp, the results of which are shown in figure 5.33. Again, the thermal 

dissociation was observed at lower temperatures predicted by the kinetic model and was 

consistent with all previous HNO3 experiments. 
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Figure 5.33. HNO3 temperature ramp in the Q6 oven with a new blank permeation tube filled 

with high purity HNO3. Note, this is not an EcoScientific certified HNO3 permeation tube. Red 

line = NO, blue line = NO2, dashed black line = NOx, solid black = Modelled NO2. 

 

Table 5.6. Average temperature difference and standard deviation between the observed NOx 

and modelled NO2 for each standard in each of the quartz ovens tested. 

Standard Oven Temperature Deviation (°C) 

PAN 

Q1 
 

 
 

Q3 31.3 ± 13.1 

Q6 28.0 ± 15.2 

NPN 

Q1 43.3 ± 5.2 

Q3 31.4 ± 16.4 

Q6 11.1 ± 28.6 

HNO3 

Q1 
 

 
 

Q3 156.8 ± 33.6 

Q6 197.2 ± 50.7 
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5.5. Discussion 

 

The increase in NO observed is correlated to the NO2 decrease at these higher 

temperatures as shown in figure 5.34. This feature is not present in other instruments that 

use thermal decomposition to measure NOy reservoirs (Day et al., 2002; Dari-Salisburgo et 

al, 2009). The ovens in these instruments consist of glass rods approximately 1.2 m in length 

with an initial heating region of ~20 cm. In comparison, the ovens used in this inlet have an 

internal volume of ~ 0.8 m3 and are filled with glass beads with a diameter of 3 mm. The 

purpose of using quartz in the ovens is to provide an inert surface which is able to conduct 

heat to achieve the temperatures required. The difference between the two systems is a 

significantly larger surface area in the ovens reported in this study.  

 

 

Figure 5.34. Correlation between NO and NO2 during temperature ramp experiments. Data 

shown is during NO2 signal decrease with increasing temperature. Stars = PAN thermal 

dissociation (plotted on secondary y-axis), diamonds = NPN thermal dissociation, crosses = 

HNO3 thermal dissociation. Line of best fit based on all HNO3 data and NPN data excluding two 

anomalous NPN data points at ~1.8 NO2 pptv.  

 

As a result, the increase in NO could be due to surface chemistry within the oven. 

For example, NO2 reduction in the ovens or inlet lines downstream can be caused by the 

presence of free oxygen atoms, which can be produced via the thermal decomposition of O3. 

The equilibrium between Ox (Ox = O3 + O) is controlled by the rate constants for reactions 

5.13 and 5.14. Reaction 5.13 is highly temperature dependent so that at 330 °C only 2 % is 

in the form of O, in comparison to at temperatures of 530 °C, at which nearly all Ox will be 
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oxygen atoms (Day et al., 2002). However, Perez et al (2007) found that 73 ppbv of O3 was 

required to cause a 4 % reduction in NO2 to NO at 400 °C and is therefore an unlikely cause 

of the NO production seen.  

 

O3 + M + heat → O2 + O + M 5.13 

O2 + O + M → O3 + M 5.14 

 

HONO is another possible source of NO which has been shown to form on glass 

surfaces following the heterogeneous reaction between NO2 and H2O as shown in reactions 

5.15 and 5.16 (Perez et al., 2007; Zhou et al., 2007). Future experiments to establish the 

cause of NO production should perform temperature ramps using conditions with variable 

humidities and O3 mixing ratios in order to ascertain the contribution of each of these 

possible interferences. 

 

2NO2 + H2O + surface → HONO + HNO3 5.15 

HONO → OH + NO 5.16 

    

 Other factors that may contribute to the increasing NO are due to the setup of the 

inlet for the experiments conducted and the mixing ratios of the standards used. Regarding 

the inlet setup, the valve system in place to switch sampling between each oven, as will be 

used during the measurement cycle as shown in figure 5.9, is controlled by a software 

package that is currently on the CVAO system. As a result, changing of the sampling lines 

carried out during this work was done manually with all other sample lines having to be 

capped to sustain an over pressure in the line during the experiments, thereby preventing 

contamination from laboratory air. To replicate all inlet dynamics as closely as possible, 

sample lines were capped at the valve system resulting in a dead volume within the ovens 

and channels not being sampled. Back flushing or production of possible interfering species 

due to chemistry within the inlet caused by residual sample could therefore lead to the NO 

production seen. This can be investigated in future studies by capping the sample lines prior 

to the ovens. 

 Similarly the sources of each standard lead to high mixing ratios significantly 

elevated over the levels expected for a remote tropical marine boundary layer environment 

such as that encountered at the CVAO. Dilution of each standard is carried out to achieve 

the mixing ratios used, however further dilution without a second dilution point creates a 

trade-off between final mixing ratio and dilution accuracy. The high mixing ratios used, 

though unfavourable, are nonetheless unavoidable and may be a contributing factor to the 

NO increases seen following chemistry of residual sample within the inlet as previously 
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described. Future experiments would greatly benefit from a second dilution point to achieve 

mixing ratios that are a realistic representative of those expected at the CVAO. 

 Finally, the effect of residence time within the inlet as mentioned previously is critical 

for the accurate measure of NOy reservoirs. Although the main source of error due to inlet 

length is thought to be due to thermal decomposition of PAN and loss of HNO3 to the walls 

of the inlet due to its high solubility, experiments with NPN shown in figures 5.24-5.26, 

display a deviation in measured NOx and predicted NO2 which decreases with increasing 

inlet length. Although there is inherent uncertainty in the measured temperature due to the 

thermocouple being situated on the outside of the oven and not in the gas stream, this 

deviation could equally be a result of chemistry within the inlet. An in depth kinetic study of 

each distinct section of the inlet, as described in table 5.5, which includes all relevant 

reactions for the conditions experienced at the CVAO would help investigate possible 

sources of the deviation in thermal dissociation temperatures observed (figure 5.35). 

 

 

Figure 5.35. Average thermal dissociation ranges (thick black line) and standard deviations 

(thin black line) for all of the standards in each oven tested. For each standard; top black line = 

Q1 oven, middle black line = Q3 oven, bottom black line = Q6 oven. Red line indicates 

modelled temperature range over which significant (P > 0.01) thermal dissociation occurs. 

Dotted black line indicates no data. 
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5.6. Conclusion 

 

 The aim of this project was to calibrate a thermal-decomposition chemiluminescence 

(TD-Chem) instrument, capable of measuring the composition of reactive nitrogen in the 

clean, remote, tropical, marine boundary layer at the CVAO. As shown by the results 

presented in this report, the instrument responds well to the thermal decomposition of 

species that are representative of the major NOy reservoirs that exist in the troposphere. All 

experiments show thermal dissociation kinetics consistent with current understanding and 

kinetic theory. Deviations that do occur are either known and can be quantified, have been 

experimentally deduced, or a work schedule is in place in order to quantify them in the near 

future. Following the completion of the instrument calibration and installation at the CVAO in 

the summer of 2013, this instrument will provide an exciting, novel data series that will aid 

the development of global atmospheric models, which currently underestimate NOx mixing 

ratios in the remote troposphere, and allow these models to improve and produce accurate 

simulations of the trends of important atmospheric species in the future. 
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Appendix 1. The complete sampling log from the ACTRIS workshop at the Hohenpeienberg 

Observatory, Germany (see section 3.3). 

 

Date Time Sample Mixture 
Nov., 12. 1639 10 ppb NO 

1727 Zero air 

1749 5 ppb NO 
Nov., 13. 0712 Zero air 

0947 45.4 ± 0.2 ppb NO 
1030 Add O3 (35 ppb) 7.8 ± 0.1 ppb NO + 38.0±0.3 ppb NO2  

1100 Zero air 

1130 5 ppb NO 

1200 15 ppb NO 

1235 40 ppb NO 

1300 Zero air 

1400  44 ppb NO +  8 ppb O3 

1444  44 ppb NO +  17 ppb O3 

1530  44 ppb NO +  42 ppb O3 

1632 Zero air 

1708 Ambient air 
Nov., 14. 1233 Zero air 

1400 Ambient air 

1432 Ambient air +  8ppb NO 

1501 Ambient air +  8 ppb NO +  4 ppb O3 

1530 Ambient air +  12 ppb NO +  6 ppb O3 

1600 Ambient air 

1630 Zero air 

1655  1 ppb NO. Unstable signal due to problems with MFC 

1734 Ambient air 
Nov., 15. 0919 Ambient air +  4 ppb HNO3 

0953 Ambient air +  20 ppb NH3 

1032 Ambient air (without HNO3 / NH3) 

1300 Zero air dew point -7.77°C 

1422 Zero air +  20 ppb NO +  14 ppb O3 

1507 d.p.: -6.50°C 

1510 
Add H2O: 10 L min-1 humid air + 2 L min-1 NO/O3 mixture + 33 L min-1 dry air. 
This resulted in lower mixing ratios due to larger dilution (45 instead of 40 L min

-1
) by 

factor of 0.89 

1510 d.p.: -4.61 °C 

1520 d.p.: -4.42 °C 

1523 d.p.: -4.41 °C 

1528 d.p.: -4.47 °C 

1530 d.p.: between -4.4 and -4.6 °C 

1531 d.p.: -4.5 °C 

1533 d.p.: -4.54 °C 

1535 d.p.: -4.55 °C 
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Appendix 1. Continued. 

 

Nov., 15. 1536 d.p.: -4.57 °C 

1639 d.p.: -4.62 °C 

1542 20 L min-1 humid air + 2 L min-1 NO/O3 mixture + 18 L min-1 dry air 

1545 d.p.: -0.26 °C 

1547 dew point: -0.28 °C 

1550 dew point: -0.28 °C 

1551 dew point: -0.30 °C 

1552 dew point: -0.31 °C 

1553 dew point: -0.30 °C 

1555 dew point: -0.29 °C 

1609 dew point: -0.34 °C 

1629 38 L min-1 humid air + 2 L min-1 NO/O3 mixture 

1632 dew point: 9.33 °C 

1635 dew point: 9.14 °C 

1646 dew point: 8.79 °C 

1701 dew point: 8.68 °C 

1705 dry zero air 

1715 zero air +  4 ppb HNO3 

1738 zero air 

1756 Relaxation experiment for measurement of LOD 

1816 Relaxation experiment for measurement of LOD. Higher concentration 

1916 Ambient air 
Nov., 16. 0955 Zero air 

1007 Zero air + HNO3 ( 5 ppb) 

1037 d.p.: 7.02 °C 

1038 d.p.: 7.2 °C 

1041 d.p.: 7.12 °C 

1044 d.p.: 7.1 °C 

1103 Only H2O (no HNO3) 

1116 Dry zero air 

1128  30 ppb NO + 40 ppb NO2

1153  15 ppb NO + 20 ppb NO2

1238 Zero air 

1402 5 ppb NO2 

1423 2.5 ppb NO2 

1437 1.25 ppb NO2 

1449 Zero air 

1500 Ambient air 
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Appendix 2. List of measurement species, measured permanently at the CVAO by the University of York, including method of detection and 

duration of measurements (adapted from Caprenter et al., 2011). 

 

Measurements Instrument Duration 

Meteorological data at 4, 10 and 30 m Automatic Weather Station Oct. 2006 - Present 

Solar radiation Spectral Radiometer Apr. 2008 - Present 

JO1D Radiometer Jan. - Feb. 2007, May - Jun. 2007, Apr. 2008 - Present 

Ozone UV Absorption TEI 49 C and 49i Oct. 2006 - Present 

Carbon Monoxide VUV Fluorescence, Aerolaser 5001 Oct. 2006 - Present 

NOx Chemiluminescence, Air Quality Design Oct. 2006 - Present 

C2-C8 NMVOCs and DMS Dual Channel GC-FID Oct. 2006 - Present 

Methanol, Acetone and Acetaldehyde Dual Channel GC-FID Oct. 2006 - Present 

Halocarbons GC-MS May 2007, Sep. 2007 - Jan. 2008, Sep. 2009 - Present 
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