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ABSTRACT 

 

The TREX ('transcription/export') complex couples nuclear RNA processing 

events and undergoes substantial rearrangements with mRNA export receptor Nxf1 

during assembly and maturation for efficient mRNA export. However, it is not clear 

where TREX assembly takes place and where Nxf1 is recruited to TREX to form the 

export competent mRNP. Here we have used sensitized emission Förster resonance 

energy transfer (FRET) and fluorescence lifetime imaging (FLIM)-FRET, to produce a 

spatial map in living cells of the sites for the interactions of two TREX subunits, Alyref 

and Chtop, with Nxf1. In addition, we have performed fluorescence recovery after 

photobleaching (FRAP) to monitor the dynamic behaviors of export factors in the 

nucleus, showing Chotp and Alyref have distinctive attributes between speckle and 

nucleoplasm. Together, our results have been shown that prominent assembly sites 

for export factors are found in the vicinity of nuclear speckles in regions known to be 

involved in transcription, splicing and exon junction complex formation highlighting 

the close coupling of mRNA export with mRNP biogenesis.  
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CHAPTER I  

INTRODUCTION 

Gene expression in eukaryotic cells is compartmentalized between the 

nucleus and cytoplasm, with transcription, RNA processing and translation 

taking place in the nucleus and cytoplasm. This means mRNA has to 

translocate across the nuclear pore during the gene expression pathway. In a 

variety of outlooks on how and where gene expression occurring have been 

reported though the global pictures of coordinated work remain to be 

unraveled in the near future. In this thesis I have mainly introduced the 

architecture of the nucleus and protein complexes involved in 

nucleocytoplasmic transport. 

 

1.1 Global Chromatin-transcription network 

1.1.1 Chromosome architecture 

Under light and electron microscopy, it is observable that nuclear 

architecture encompasses tons of distinct compartments for instance nucleoli, 

euchromatin, heterochromatin, interchromatin granule clusters (IGC, nuclear 

speckles or SC-35 domain) and perichromatin granules (PF). Chromosome 

could be observed at particular zones discretely in which so called 
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chromosome territories during interphase by using the method of fluorescent in 

situ hybridization (FISH). It has been shown that chromatin is able to form a 

looped shape with 1~2 μm into the nucleoplasm recognized as interchromatin 

spaces to slip away from the restraint territories. The shape of chromatin loop 

is thought to be likely a transcription area where chromosome with high 

expression level of genes (Jackson, 2003; Jackson, 2005). The earlier finding 

pointed out that gene clusters could appear at chromosomal bands which were 

topologically close to nuclear speckle SC-35 domain. It also provides an 

insight of SC-35 domain could be as a functional center in recruitment of 

clusters of genes close by and also it could be a neighborhood of euchromatin 

at particular regions in the nucleus (Shopland et al, 2003).The more 

introductions for nuclear speckles will be described in the other sessions.  

 

1.2 Transcription 

1.2.1 RNA Polymerases in Eukaryotes and Prokaryotes 

Generally in eukaryotes, transcription is believed of the first stage of gene 

expression which can be regulated spatial separately by three types of RNA 

polymerase I, II and III. The phosphorylated form of RNA polymerase is 

regarded as the transcription event occurring actively. The RNA polymerase I 
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is of particular known for taking charge of the synthesis of 45S ribosomal RNA, 

which is a precursor of 18s and 28s rRNA, in the nucleoli. The messenger 

RNA is synthesize by RNA polymerase II, comprising 12 subunits (RPB1~12) 

and taking charge of transcribing most of genes in eukaryotes. The RNA 

polymerase III has a role in synthesis of such as ribosomal 5s rRNA, tRNA and 

small RNAs. In the case of the time for 13 kilobase transcripts completed by 

RNA polymerase I have been reported for approximately 2.5 minutes when 

transcription events take place and this could match a line with evidence for an 

interval of re-initiation, 1.5 seconds, in transcriptional process (Dundr et al, 

2002; Jackson, 2003; Jackson, 2005; Melnik et al, 2011). Many of human 

genes are more than 150 kilobases; nevertheless, the TNF-α responsive 

genes in the tilting microarray, the time of transcription for long as 220 kilobase 

gene were measured by more than one hour (Papantonis & Cook, 2010).  

The transcriptional process in prokaryotes takes place while transcribing 

DNA into RNA which is controlled via RNA polymerase (RNAP or core 

enzyme), including five subunits: α, α, 1β, 1β' and 1ω. There are five stages 

are included in the process of prokaryotic transcription: (1) pre-initiation, (2) 

initiation, (3) elongation, (4) promoter clearance and (5) termination. It is of 

Importance a variety of the transcriptional factor σs function in the regulation of 
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transcription process in prokaryote. Whilst the beginning of transcription which 

also called pre-initiation stage, RNAP would bind to promoter elements, which 

locates between -10 and -35 of an upstream region on the DNA sequence. 

Once start of the initiation stage, the transcriptional factor σ coming to interact 

with RNAP forms functional holoenzyme, dependent on the recognition of -10 

and -35 sequences of the DNA. The example for housekeeping factor σ70 of 

E.coli, recognizing the six consensus sequences of TATTAAT at -10 and 

TTGACA at -35 positions on DNA promoters. Another example of 

transcriptional factors σ32 and σ54 family in E.coli usually regulates particular 

genes in response to environmental stimuli. In the beginning of promoter 

clearance, mRNA is synthesized via the first DNA base. It leads abortive 

initiation to happen, representing the incomplete transcripts produced by DNA 

template because of RNAP slipping. Nevertheless, the elongation of mRNA 

starts proceeding when RNAP stops to slip and 23 base-pair transcripts are 

being synthesized. Finally, the termination of mRNA transcription is influenced 

by Rho proteins and the DNA hairpin structures (also known as 

Rho-independent termination) which cause the release of mRNA from DNA 

template (Nickels et al, 2004; Wade et al, 2006; Van Hijum et al, 2009). 
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1.2.2 Laboratory Methods  

The various methods to detect transcription events have been developed, 

and new techniques and tools keep in progress nowadays. The classic 

biochemistry methods used in the laboratory are briefly exampled as follows. 

(1) Northern blotting has been used in the quantitative measurement for the 

probed RNA, (2) RT-PCR is commonly analyzed for the abundance of total 

RNA, (3) Nuclear run-on assay has been manipulated for the measurement of 

newly transcripts, (4) DNA microarray, designed for analysis of collections and 

rates of RNA synthesis, (5) fluorescent in situ hybridization, detecting the 

localization of RNA transcripts, (6) MS2-CP tagging, a strategy that MS2 coat 

protein (MS2-CP) capable of being integrated within MS2-CP recognition sites, 

allowing to track and detect the RNA activity in living cell, (7) RNA-seq assay, 

one method of high-throughput sequencing in used of detecting sequence of 

cDNA. Additionally, three kinds of transcriptional inhibitors have been 

commonly used in the laboratory, for instance  

6-Dichloro-1-β-d-ribofuranosylbenzimidazole (DRB) in inhibition of elongation 

kinase CDK of RNA polymerase II, Actinomycin D with intercalating into DNA 

base pairs, and α-Amantin interference with the large subunit of RNA 
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polymerase to block nascent transcript synthesis (Jackson, 2000; Jackson, 

2003; Céline Cassé et al, 1999). 

 

1.3 Transcriptional Sites   

It is of interest to know where transcriptional sites occur for gene 

expression in the nucleus. Many views of models will be more clarified in the 

near future dependent on the rapid development of technologies. In this thesis 

a model of transcription factories is given as an example.  

 

1.3.1 Transcription factories 

The concept of transcription factories was evolved from the detectable 

and noticeable foci in the nucleus where the active genes coordinated 

transcription events, and in which active and phosphorylated form of RNA 

polymerase II was incorporated. The number of transcription factories could be 

different and measurable from which material sources obtained such as 

primary cells or adult tissues. It is generally thought that RNA polymerase I, II 

and III have a various and distinct kinds of transcription factories on their own 

(Iborra et al, 1996; Osborne et al, 2004; Sutherland & Bickmore, 2009). 

Detection of the transcription factories at subcellular level is achievable by 
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several methods such as (1) 5-bromouridine 5’-triphosphate (Br-UTP or Br-U) 

labeling for nascent transcripts, (2) immunofluorescence antibody staining 

RNA polymerase II, (3) fluorescent in situ hybridization (FISH) probing for the 

localization of RNAs, (4) MS2-CP tagging, incorporated within MS2 coat 

protein recognition sites on RNA transcripts. (5) Native chromosome 

conformation capture (3C) assay, using biochemistry purification method to 

detect the relationship between genome and transcription factories. 

Furthermore, under electron microscopy, the estimated diameter of a 

transcription factory was observed 45~100 nm in the nucleus (Jackson et al, 

1998; Iborra et al, 1996; Jackson, 2000; Jackson, 2003; Martin & Pombo, 

2003). The earlier studies reported that, for example, in the nucleoplasm of 

HeLa cell there are approximately 10,000 transcription factories, including 

~8,000 RNA polymerase II and ~2,000 RNA polymerase III of transcription 

factories. One model has been proposed that each one transcription factory 

which could own ~8 distinguished RNA polymerase II molecules functions in 

transcribing a DNA template from each RNA polymerase molecule (Osborne 

et al, 2004; Sutherland & Bickmore, 2009; Papantonis & Cook, 2010; Edelman 

& Fraser, 2012). 
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1.3.2 DNA elements 

The functional role of DNA elements is thought to be involved in gene 

expression regulation such as enhancers, silencers, promoters, barriers, locus 

control regions (LCRs) and nuclear matrix attachment regions (MARs). How 

do these DNA elements function and work? Their roles in chromosome 

territories remain unclear; however, some studies have been shown the 

functional relationships between transcription factors and DNA elements. For 

example, the LCR function is of interest that the genes expressed from the 

locus control regions (LCRs) of human beta-globin which were integrated into 

genome has an effect on the chromatin loop formation, with helping a loop 

shaped gene slid back to a factory for transcription initiation. Accordingly, a 

new point of view is mentioned that transcription factories appear to be a 

functional but immobilized space for active RNAP polymerase II to attract 

particular DNA elements for transcription start via forming loop shaped genes. 

In other case of DNA promoters, when plasmids which have promoters 

designed from RNA polymerase II were injected into cells, the plasmids with 

different promoters would be led to various factories (Jackson, 2003; Jackson, 

2005; Noordermeer et al, 2008; Papantonis & Cook, 2010; Xu & Cook, 2008; 

Edelman & Fraser, 2012). 
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1.4 NUCLEAR PORE COMPLEX  

1.4.1 STRUCTURE 

Nuclear pore complexes (NPC) found in the nuclear envelope are an 

evolutionarily conserved structure and contain three major parts: a core 

structure, a basket and filaments. The core structure of the NPC which is also 

called the spoke complex has a cylinder-like structure with eight spoke-ring 

complexes symmetrically embedded between a nuclear ring and a cytoplasmic 

ring. Another structure is recognized as the nuclear basket on account of the 

filaments extending from the nuclear ring of the NPC. Besides, the eight short 

flexible fibrils protruding forward from the cytoplasmic ring of the NPC, 

constitute the third part of the NPC (Fahrenkrog et al, 2001; Rout & Aitchison, 

2001). Normally, the channel in the core structure of the NPC appears to be 

around 10nm diameter, but the diameters of the core structure and nuclear 

basket of NPC are able to dilate up to 40nm when mobilizing large cargoes 

through the NPC (Kiseleva et al, 1998). 

The yeast or metazoan NPC is formed by around 30 different 

nucleoporins which consists of 8, 16, 32 or 56 copies per NPC in its 

symmetrical octagon structure (Cronshaw et al, 2002; Rout et al, 2000). There 
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are three major groups of nucleoporins. The first group is the FG nucleoporins 

which are characterized by the repeats of the amino acid sequence FG, GLFG 

and FXFG, interacting with transport receptors such as importins and exportins 

to mediate the nuclear and cytoplasmic transport (Bednenko et al, 2003). The 

second group is the nucleoporins lacking FG-repeat amino acid sequences but 

present of a variety of motifs which are the primarily structural part of the NPC. 

The third group is the integral membrane proteins Nups which anchored the 

NPC within the double nuclear membrane. Though most nucleoporins are 

found symmetrically on both sides of the NPC, a few nucleoporins are located 

asymmetrically on either side of the NPC. It is believed that these assymetrical 

nucleoporins function in directional transport processes from receptors 

targeting through to the transport termination; in addition, they may have a 

compartment-specific role at the NPC by interacting with chromatin or 

transcription factors, or as checkpoint proteins for the quality control of the 

nucleocytoplasmic transport (Kohler & Hurt, 2007). 

 

1.4.2 CARGO TRANSLOCATION 

Although nuclear transportation requires the RanGTP system for recycling 

of the transport receptors importins and exportins, the translocation of cargo 
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and receptor proteins are independent of the energy of NTP hydrolysis. Thus, 

two main models, “Brownian affinity gate model” and the “selective phase 

model” have been proposed to illustrate how FG-nucleoporins interact with the 

cargo and receptor proteins in a direction to pass through the NPC.  

The “Brownian affinity gate model” proposes that Brownian motion 

facilitates the binding affinity of transport receptors with the flexible filaments of 

FG-nucleoporins at both sides of the NPC. Therefore, the dwelling time of 

transport receptors at the nuclear pore is increased and it also enhances the 

chance of passing through the NPC channel. Upon the sequential low affinity 

of binding with FG-nucleoporins, the transport receptor and cargo are able to 

be released from the NPC pore (Rout et al, 2003; Rout et al, 2000). Another 

model is the “selective phase model” whereby FG-nucleoporins constitute a 

mesh in the NPC channel via the low affinity of FG-repeat domain which forms 

a barrier to diffusive movement. The low affinity between FG-repeat domain 

and cargo-receptor proteins facilitates the distribution of movement in the 

channel, promoting the cargo-receptor proteins being released from the NPC 

channel by the enhanced diffusion (Ribbeck & Gorlich, 2001; Ribbeck & 

Gorlich, 2002).  
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1.5 NUCLEAR SPECKLES 

1.5.1 Characterization  

Interchromatin granule clusters (IGCs) known as nuclear speckles localize 

in the interchromatin areas of the nucleoplasm. Nuclear speckles are thought 

to be storage and assembly sites for the pre-mRNA splicing machinery such as 

small nuclear ribonucleo protein particles, spliceosomes, and other 

non-snRNP protein splicing factors. IGCs have variable sizes from one to 

several micrometers in diameter and are formed by 20-25nm granule particles 

which are linked by a thin fibril observed by electron microscopy making them 

look like a beaded chain, including little or no DNA (Spector & Lamond, 2011; 

Thiry, 1995). 

  

1.5.2 Composition  

The hypothesis has been proposed that nuclear speckles play a role in 

regulation of many factors to facilitate the proper coupling of the processes of 

transcription and pre-mRNA splicing in subcellular compartments (Misteli et al, 

1998). Proteomic analysis and localization studies have provided the evidence 

that many non pre-mRNA splicing factors can be detected at nuclear speckles 

including transcription factors, 3’-end RNA processing factors, eukaryotic 

 12



translation initiation factor eIF4E, translation inhibitor eIF4AIII and structural 

proteins (Rappsilber et al, 2002; Zhou et al, 2002) However, whether RNA 

polymerase II is present at nuclear speckle or not, it still has different points of 

view. Several studies showed that RNA polymerase II can not been observed 

at nuclear speckles (Doyle et al, 2002; Grande et al, 1997; Kimura et al, 2002), 

but other studies identified that the subunits of RNA polymerase II were 

located at nuclear speckles by the biochemical analysis of the IGC proteome 

and localization studies (Bregman et al, 1995; Mortillaro et al, 1996; Saitoh et 

al, 2004). Nevertheless, it has been shown that a population of poly(A) RNA 

can be detected its accumulation within nuclear speckles when transcription is 

inhibited (Huang et al, 1994). 

 

1.5.3 Biogenesis  

Nuclear speckles appeared to round-up after the inhibition of transcription, 

implying that those factors may have a consistent movement from all directions 

(Spector, 1993). In addition, other research indicated that it is necessary to 

phosphorylate the splicing factor SR proteins before recruiting the SR proteins 

from nuclear speckle to the active transcription site where pre-mRNA 

processing occurs (Misteli et al, 1998). It has been suggested that regulation 
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between phosphorylation and dephosphorylaiton may have a function in the 

exchange rate of factors at nuclear speckles (Spector & Lamond, 2011). 

Additional studies have pointed out that the treatment of kinase inhibitors in 

cells led to the limitation of mobility on the periphery of speckles and 

overexpressing of mutations of Clk/StY kinase accumulated on the periphery of 

speckles, suggesting the restriction on the release of these factors (Misteli et al, 

1998; Sacco-Bubulya & Spector, 2002). It has raised the possibility that 

nuclear speckle may be formed by a self-assembly process independent of 

other scaffold proteins and can be a place, a nonmembrane-bound nuclear 

organelle, storing one important population of factors which are not in use 

functionally. However, the ability of proteins to move in and out of speckles 

provides a means to allow pre-mRNA processing at the site of transcription. 

(Lamond & Spector, 2003; Spector & Lamond, 2011). 

 

1.5.4 Localization of SC35 domain in gene expression 

Several studies have showed that highly active transcription sites of many 

genes prefer to localize in the vicinity of nuclear speckle domains (Brown et al, 

2008; Moen et al, 2004). Other study also indicated that the gene-rich R bands 

were generally observed around SC35 domains, suggesting nuclear speckles 
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may develop as functional centers for the local euchromatic neighborhoods to 

gather the active genes close by (Shopland et al, 2003). However, there is 

discrepancy between the views that location of mRNA processing takes place 

near or within nuclear speckles domains. Some studies supported the view 

that nuclear speckles service as places of storage and/or assembly and/or 

modification for mRNA processing machinery such as splicing factors and 

export factors supplied to the active transcription sites where near to speckles 

(Cmarko et al, 1999; Daguenet et al, 2012; Fakan, 1994; Lamond & Spector, 

2003; Melcak et al, 2000; Sacco-Bubulya & Spector, 2002; Zhao et al, 2009). 

On the other hand, some studies suggest that nuclear speckles function as 

sites of RNA processing, where pre-mRNAs are able to be assembled and 

spliced by splicesomes (Girard et al, 2012; Hall et al, 2006; Johnson et al, 

2000; Melcak et al, 2000; Shopland et al, 2003; Wei et al, 1999). 

 

1.6 RAN-DEPENDENT NUCLEAR EXPORT OF RNAS 

In a general receptor-mediated active transport system, a conserved 

group of nuclear transport receptors, known as the karyopherins-β family of 

transport receptors or importins/exportins, recognize a nuclear localization 

signal (NLS) or a nuclear export signal (NES) of cargo proteins and the 
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structural motifs of nucleotides of cargo RNAs for the import or export. 

Karyopherins are regulated by the small GTPase Ran (Gorlich & Kutay, 1999; 

Mattaj & Englmeier, 1998; Pemberton et al, 1998). There are two major forms 

of Ran which exist in the cell; a GTP-bound state of Ran, RanGTP, is 

generated by the Ran guanine nucleotide exchange factor (RanGEF or RCC1) 

in the nucleus and a GDP-bound state of Ran, RanGDP, is produced by the 

Ran GTPase activating protein (RanGAP) in the cytoplasm. In other words, 

importins transport cargo from the cytoplasm to the nucleus where they 

release cargo dependent on binding with RanGTP; on the other hand, 

exportins assemble with nuclear cargo while binding together with RanGTP in 

the nucleus. Therefore, the asymmetric distribution of the RanGTP and 

RanGDP gradient provides a driving force to convey the direction of transport 

receptors karyopherin or importins/exportins (Gorlich & Kutay, 1999). Typically, 

exportins and RanGTP involve the export of tRNA, microRNA (miRNA), small 

nuclear RNA (snRNA) and ribosomal RNA (rRNA) through the NPC with the 

exception of messenger RNA (mRNA) (Rodriguez et al, 2004). The RNA 

export pathway of karyoptin-β family of transport receptors is overviewed as 

follows. 
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1.6.1 snRNA and rRNA EXPORT BY CRM1 

The spliceosomal snRNAs involve the intron removal of pre-mRNAs in the 

nucleus. The majority of spliceosomal snRNAs (U1, U2, U4 and U5) are 

transcribed by RNA Polymerase II in the nucleus and transported to the 

cytoplasm with the exclusion of U6 snRNA, which is transcribed by RNA 

Polymerase III and retained in the nucleus. The cap-binding complex (CBC) 

associates with the 5’ cap of snRNAs and recruits a NES-containing adaptor 

protein called PHAX, which in turn recruits CRM1 and RanGTP to promote 

export (Ohno et al, 2000). Once arrived in the cytoplasm, the interaction 

between snRNAs and Sm proteins induce trimethylation of the cap and 3’ 

trailer sequence removals, providing a nuclear signal for the mature and 

functional snRNPs to be re-imported into the nucleus. (Huber et al, 1998). 

Ribosomes are formed from a large subunit (60S) and a small subunit 

(40S) together consisting of 4 rRNAs (28S/25S rRNA, 5.8 rRNA, 5S rRNA and 

18S rRNA) and around 80 ribosomal proteins. In the nucleolus, these 

ribosomal subunits are synthesized from 35S rRNA by RNA polymerase I and 

assembled, and then transported to the cytoplasm. The major role of the 

ribosome serves as a protein-synthesizing machine to translate mRNAs in the 

cytoplasm, but the mitochondria and chloroplasts have their specific ribosomes. 

 17



Though the mechanism of export of 40S is not clear yet, it is known that the 

export of both 40S and 60S subunits are dependent on Crm1 and RanGTP. 

The pre-60S particle recruits an adaptor protein Nmd3 containing a conserved 

NES sequence for nuclear exit at a late stage of pre-ribosome assembly (Ho et 

al, 2000). Unexpectedly, an additional receptor protein Mex67-Mtr2 was found 

to participate in the export of pre-60S subunit in yeast (Yao et al, 2007). 

Another export factor Arx1 is also recruited to the late stage of pre-60S particle 

with Nmd3 and Mex67-Mtr2 (Nissan et al, 2002). The 60S subunit is a large 

RNA-containing particle, similar in size to the NPC diameter ~26nm, and 

therefore it needs to recruit several types of export receptor to assist the 

transport through the NPC (Reed & Hurt, 2002). 

 

1.6.2 tRNA EXPORT BY EXPORTIN-T  

The aminoacylated tRNAs which have the amino acids attached with its 

additional CCA-nucleotide at 3’ termini functions in ribosomal translation in the 

cytoplasm. The genes encoding tRNAs are transcribed by RNA polymerease 

III in the nucleus and they are characterized by the cloverleaf structures with 

single-stranded loops and double-stranded minihelix regions. The metazoan 

exportin-t, a karyotin-β family of transport receptor, is capable of binding tRNA 
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cargo together with RanGTP for nuclear exit and so does its yeast homolog 

Los1p (Hellmuth et al, 1998; Kutay et al, 1998). Unlike the CRM1-dependent 

nuclear export pathway, the interaction of tRNA and exportin-t for export is 

independent of any adaptors. Moreover, exportin-t plays a role in a quality 

control checkpoint by preventing its interaction from the improperly processed 

5’ or 3’ termini of tRNAs or the mutant tRNAs with incorrect structured 

nucleotides prior to their export. Nevertheless, export-t proteins do not 

distinguish between the intron-containing tRNAs and spliced tRNAs, allowing 

the unspliced tRNAs to be exported to the cytoplasm (Arts et al, 1998). 

 

1.6.3 miRNA EXPORT BY EXPORTIN-5  

The pre-miRNAs (microRNAs) can be transcribed from genes containing 

introns or without introns by RNA Pol II or RNA Pol III and then a 60-70 

nucleotides of pre-miRNA with minihelix structural motif, including a 

double-stranded stem with a 3-8 nucleotides 3’ overhang, is produced by the 

RNaseIII endonuclease Drosha (Borchert et al, 2006; Lee et al, 2003). 

Therefore, exportin-5, a karyopherin-β family of transport receptor, is able to 

recognize this minihelix structure of pre-miRNA for the nuclear export upon a 

RanGTP-dependent manner. Once it is relased to the cytoplasm, the 
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cytoplasmic RNaseIII endonuclease Dicer cleaves the pre-miRNA to a final 

product of a ~22-nucleotide miRNA with mismatched base pairings (Bernstein 

et al, 2001). This unstable mismatches lead to one strand degradation and 

other strand assembling with the RNAi-induced silencing complex (RISC) 

(Bernstein et al, 2001; Schwarz et al, 2003). The 3’ untranslated region of 

target mRNA is recognized by the miRNA on the RISC and causes mRNA 

cleavage, translation inhibition or mRNA degradation independent of cleavage 

(Valencia-Sanchez et al, 2006). The different RNA export pathways described 

are summarized in Figure I. 
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[Figure I] THE DIFFERENT RNA EXPORT PATHWAYS 
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1.7 mRNA EXPORT 

Nuclear mRNA export involves the pathway of gene expression from both 

“upstream events” and “downstream events” through nuclear pore complexes 

(NPCs); the upstream events include mRNA transcription, 5’ capping, 

elongation, splicing, mRNP formation, 3’ end processing/polyadenylation and 

NPC recruitment whereas mRNP modification and translation are included in 

“downstream events” (Kohler & Hurt, 2007; Rodriguez-Navarro & Hurt, 2011). 

The recent studies on genome-wide analyses have suggested that different 

functional classes of mRNAs preferentially interact with particular RNA-binding 

proteins, suggesting that each population of mRNAs may have a distinctive 

pathway in the regulation of biogenesis, export and translation (Hieronymus & 

Silver, 2003; Kim Guisbert et al, 2005). Also, it has been shown that some 

conserved export receptors and specific factors involve the successive 

processes while mRNAs are being exported from the nucleus to the cytoplasm. 

These factors are classified and discussed in more detail below. 

 

1.7.1 The mRNA export receptor 

There is a general, specific and conserved mRNA receptor called 
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Mex67-Mtr2 in Saccharomyces cerevisiae or TAP-p15 complex (also known as 

NXF1-NXT1) in metazoan (Kohler & Hurt, 2007; Reed & Hurt, 2002). The 

general mRNA export receptor plays an important role in assisting mRNP 

transport from the nucleus through the nuclear pore complexes (NPCs), and 

the mRNA receptor binds directly to the phenylalanine-glycine-rich repeats of 

FG nucleoporins which form nuclear pore complexes to overcome the 

permeability barrier in order to get access to the cytoplasm (Conti & Izaurralde, 

2001). The large subunit MEX67/TAP has three conserved domains: a 

N-terminal LRR (leucine-rich repeat) domain, a NTF2-like domain whereas 

NTF2 is an important receptor for RanGDP, and a C-terminal UBA (ubiquitin 

associated) domain (Conti & Izaurralde, 2001; Iglesias & Stutz, 2008) whereas 

the small subunit p15 has an NTF2 associated domain (Fribourg et al, 2001). 

The LRR domain functions as binding with mRNA adaptor proteins such as 

Yra1/REF whilst the C-terminal UBA domain and NTF2-like domain of 

MEX67/TAP have function in shutting and interacting with the FG nucleoporins 

of NPC components (Fribourg et al, 2001; Reed & Hurt, 2002). In addition, the 

C-terminal UBA domain of MEX67/TAP has an additional helix 4 (H4) in the 

last 10 amino acids whereas other UBA domains are usually composed of 

three α-helices (Gwizdek et al, 2006; Hobeika et al, 2007; Iglesias & Stutz, 
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2008), thus, allowing MEX67/TAP to make use of this additional helix 4 to 

interact with a specific substrate such as an ubiquitinated Hpr1 and protects 

ubiquitinated Hpr1 from proteasomal degradation (Gwizdek et al, 2005).  

 

1.7.2 The TREX complex 

TREX is abbreviated from transcription/export complex, and TREX 

complex integrates signals from the major nuclear mRNA processing events 

such as capping, splicing and polyadenylation and licenses mRNA for export 

from the nucleus to the cytoplasm. There has been two major parts of TREX 

complex identified, the stable multi-subunit THO components and the mRNA 

export factors Sub2/UAP56 and Yra1/Aly, and THO components of TREX 

complex have function in recruiting the mRNA export factors to load onto the 

mRNA in yeast and human (Reed & Cheng, 2005). Some studies have found 

the conserved TREX complex in yeasts and even in higher eukaryotes such as 

Drosophila melanogaster and humans might have their particular function in 

the regulation of pathway of pre-messenger RNA processing in the nucleus by 

coupling with transcription, elongation, splicing, 3’end processing or export of 

nascent transcripts as described below. 
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1.7.2.1 The conserved THO components in TREX complex 

The conserved multisubunit THO components of TREX complex in yeast 

and in metazoan have been characterized, showing three homologous THO 

components, Tho2 (THOC2), Hpr1 (THOC1) and Tex1, though the cellular 

function of Tex1 is still unknown. Three another parts of THO components, 

fSAP79 (THOC5), fSAP35 (THOC6) and fSAP24 (THOC7) are conserved in 

metazoan but not in yeast. However, the other two THO components Mft1 and 

Thp2 are found conserved in yeast but not in metazoan (Masuda et al, 2005; 

Rehwinkel et al, 2004; Strasser et al, 2002; Zhou et al, 2002) 

 

1.7.2.2 The mRNA export factors in TREX complex 

1.7.2.2.1 Yra1/ALY/REF adaptor  

One important mRNA export adaptor in mRNA export is the conserved 

protein Yra1/ALY adaptor, also named the REF (Strasser & Hurt, 2000). The 

REF family has a RRM/RBD (RNP-motif RNA binding domain/RNA binding 

domain) which was flanked by variable length of RGG-rich regions (N-vr and 

C-vr); the short N and C termini of REF family have highly conserved 

sequence, designated REF-N and REF-C boxes, interacting directly with 

MEX67/TAP in Saccharomyces cerevisiae and in metazoan (Rodrigues et al, 
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2001; Strasser et al, 2000; Stutz et al, 2000). The Yra1 adaptor asociates with 

another conserved mRNA export factor Sub2 in Saccharomyces cerevisiae 

similarly ALY/REF binds the Sub2 orthologue UAP56 in metazoan and 

regulates the mRNA export pathway (Strasser & Hurt, 2001; Zenklusen et al, 

2002). ALY, TAP-p15 and UAP56 form a stable complex with EJC 

(exon-junction complex) located in the ~20-24 nucleotides upstream of every 

exon-exon junction during late splicing (Le Hir et al, 2001; Le Hir et al, 2000). 

Since Sub2 and UAP56 have been characterized are RNA helicases, their 

cellular function is also related to the process of mRNP biogenesis, binding to 

TREX ('transcription/export') complex and the spliceosome complex and may 

help couple splicing and mRNA export.. The Yra1/ALY/REF adaptor play a role 

in being a bridge between RNA and the downstream-acting mRNA export 

receptor (Kohler & Hurt, 2007; Reed & Hurt, 2002).  

 

1.7.2.2.2 UIF (UAP56-interacting factor) adaptor 

In light of evidence that not only one mRNA export adaptor exists in 

metazaon since REF/Aly is not essential for bulk mRNA export (Gatfield & 

Izaurralde, 2002; Longman et al, 2003). However, Yra1 in yeast has been 

shown to interact with only a subset of mRNAs in yeast (Hieronymus & Silver, 
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2003). One new protein, UAP56- interacting factor (UIF), was identified in 2009 

as an mRNA export adaptor. UIF, interacting with TAP, is recruited to mRNA 

via the FACT histone chaperone complex, SSRP1 subunit (Hautbergue et al, 

2009b). This article points out that more than one adaptor involve mRNA 

export pathway. Nevertheless, export adaptors are capable of working with 

export co-adaptors for efficient mRNA export.  

 

1.7.2.2.3 CHTOP co-adaptor 

A finding of mRNA export co-adaptor, CHTOP (Small protein Rich in 

Arginine and Glycine; also known as FOP or CHTOP), positioned at the 

human C1orf77 gene was characterized as a novel TREX component in 2012. 

CHTOP and REF bind to UAP56 in a mutually exclusive manner and this leads 

to the activation of ATPase and RNA helicase activity in UAP56. The 

methylation of CHTOP regulates its associations with Aly, TAP and RNA but 

not UAP56 while CHTOP is able to cooperate with Aly to facilitate the RNA 

binding activity of TAP. Moreover, CHTOP binds to TAP in a mutually exclusive 

manner with THOC5 in the same complex to export specific mRNA. This 

finding reveals that the interaction of TREX complex with UAP56 is dependent 

on an ATPase cycle during the assembly stage, followed by loss of UAP56 and 
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recruiting TAP during maturation stage to undergo subsequent rearrangement 

for efficient mRNA export from the nucleus to the cytoplasm (Chang et al, 

2013). 

 

1.7.2.3 TREX complex coupling pre-mRNA processing 

In yeast TREX complex is thought to be recruited co-transcriptionally on 

nascent transcripts, but in metazoan the recruitment of TREX complex is 

coupled to pre-mRNA splicing (Reed & Cheng, 2005).  

 

The first in vivo evidence in mammalian revealed that pre-mRNA splicing 

requires the recruitment of mRNA export proteins UAP56, ALY and EJC onto 

the mRNA by using in situ hybridization to analyze HeLa cells infected with 

adenovirus and murine erythroleukemia (MEL) cells stably transfected with the 

human β-globin gene (Custodio et al, 2004). A close link between pre-mRNA 

splicing and mRNA export is connected by the interaction of ALY and UAP56, 

where Aly is recruited by UAP56 to the spliced mRNP (Luo et al, 2001). The 

C-terminal of ALY is indispensable to directly interact with UAP56 whilst the 

C-terminal of UAP56 is sufficient to associate with ALY, but the N-terminal of 

UAP56 associates with the THO components at a low level of affinity (Masuda 
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et al, 2005). In addition, it has been proposed that TREX complex is recruited 

to a region close to 5’ end of pre-mRNA via the cap-binding subunit CBP80 

directly associating with ALY/REF. It is dependent on splicing, whereas the 

recruitment of EJC (exon-junction complex) is not required. Since TREX is 

recruited to the 5’ end of mRNA this has led to the suggestion that TREX 

ensures that mRNA is exported in a 5’ to 3’ direction through the nuclear pore 

(Cheng et al, 2006).  

In yeast, the TREX complex can be recruited to either intron-containing or 

intronless transcripts. Once transcription occurs on the intronless transcripts in 

yeast, the TREX complex is recruited to the transcription sites via the 

transcription machinery, and it facilitates Sub2 and Yra1 transfer to the nascent 

transcript (Abruzzi et al, 2004). However, on the intron-containing transcripts, 

the move of Sub2 and Yra1 to the nascent RNA may be presumably hampered 

due to the large spliceosome complex (Abruzzi et al, 2004). Therefore, TREX 

complex might be recruited to active genes whereas it uses the THO complex 

to interact with RNA polymerase II to help deliver Sub2 and Yra1 to the 

nascent transcript (Reed & Cheng, 2005). Furthermore, the yeast THO 

component, Hpr1, does not associate with Yra1 directly, but it interacts with 

Sub2 directly after the recruitment to the active genes, and therefore Yra1 is 

 29



connected to THO components by Sub2 (Zenklusen et al, 2002). In addition, 

as it can cause misfolding transcripts, transcriptional suppression and failing to 

be exported in the absence of a THO subcomplex (Huertas & Aguilera, 2003), 

and these defects can be rescued after slowing down transcription (Jensen et 

al, 2004). Therefore, TREX function is thought to co-transcriptionally load RNA 

binding proteins onto the nascent transcript just at a limited time.  

 

1.7.3 SR adaptor  

In metazoan, SR (Ser/Arg-rich) proteins play multiple roles in the mRNA 

metabolism pathways, such as pre-mRNA splicing, mRNA export, stability and 

translation. SR proteins are loaded onto the exon regions of pre-mRNA and 

play a role in the recruitment of the large splicesome complex to the flank of 5’ 

and 3’ splicing sites, and therefore, dependent on the interaction of U1 snRNP 

and SR proteins working with RNA polymerase II, it organizes splicing factors 

in an appropriate arrangement during the early spliceosome assembly and 

also facilitates the spliceosome machinery to be close to the nascent 

pre-mRNA (Das et al, 2007). A role of SR protein in the splicing process is 

dependent upon the regulation of its phosphorylation states, and hence, even 

when splicing is accomplished, SR protein can be still kept binding on the 
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spliced mRNA (Graveley, 2000). In metazoans, the hypophosphorylated form 

of SR proteins 9G8 and ASF/SF2 are involved in the export of spliced mRNAs 

with TAP from nucleus to the cytoplasm whereas SR proteins dissociate from 

the mRNP complex in the hyperphosphorylated form to return from cytoplasm 

to nucleus (Huang et al, 2004). However, another type of SR protein SC35 

appears not to function as a shuttle protein between nucleus and cytoplasm, 

but it can be observed on the nuclear domain which is known as nuclear 

speckle domain (Sapra et al, 2009).  

In yeast, there are three SR-like proteins: Npl3, Gbp2 and Hrb1. These 

proteins are considered to be participating in mRNA export but not a role in 

pre-mRNA splicing (Reed & Cheng, 2005). Nevertheless, Npl3 is highly related 

to pre-mRNA splicing in Saccharomyces cerevisiae by using the method of 

high-density genetic interaction profiling and genome-wide splicing-sensitive 

microarray, plus, the result of chromatin immunoprecipitation showed that the 

U1 and U2 snRNPs were reduced following the NPL3 gene mutation (Kress et 

al, 2008). Therefore, the yeast SR-like protein, Npl3, is thought to be able to 

function in assist the recruitment of spliceosome complexes to pre-mRNA 

which is quite similar to the situation in metazoa (Reed & Cheng, 2005).  
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1.7.4 Role of 3’end processing and mRNA export 

1.7.4.1 The yeast SR-like protein Npl3  

The yeast SR-like protein plays a role at 3’ end processing machinery and 

in the mRNA export pathway by engaging in the formation and regulation of 3’ 

end of mRNA at the polyadenylation site (Bucheli et al, 2007). The Npl3 protein 

associates with mRNA in the nucleus in hyperphosphorylated form, once Glc7 

is stimulated by the 3’ end processing machinery of mRNA, it helps 

dephosphorylate Nlp3 protein and leads to mRNA and Npl3 releasing from 3’ 

end processing machinery Rna15p and bind to Mex67-Mtr2, facilitating mRNA 

export from nucleus to cytoplasm; however, whilst in the cytoplasm Npl3 

dissociates from mRNPs in phosphorylated form stimulated by Sky1, recycling 

back to the nucleus and start over its work (Gilbert & Guthrie, 2004; Kress et al, 

2008). 

  

1.7.4.2 Through the NPC with yeast Nab2  

Both nuclear poly (A) binding protein 2 (Nab2) in Saccharomyces 

cerevisiae and its orthologue, ZC3H14 (also known as NY-REN-37 or UKp68), 

in higher eukaryotes have a conserved CCCH zinc finger domain which can 

specifically bind with polyadenosine RNA. This zinc finger domain of Nab2 
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includes seven CX5CX4-6C3H motifs in Saccharomyces cerevisiae and five 

analogous motifs in human. In addition, the homologous N-terminal domain of 

Nab2 and ZC3H14 assists export inside the nucleus in binding with Mlp, and 

associates with other mRNA export factors such as Yra1 and Mex67. The 

human ZC3H14 have a NLS domain to regulate the function of the nuclear 

import, and it contains RGG (arginine-glycine-glycine) repeat domain 

performing this function (Kelly et al, 2010; Kelly et al, 2007). Besides, the 

DEAD-box protein Dbp5 has function of ATPase activity in removing Nab2 

from RNA in ADP-bound form by NPC-associated factor Gle1 and this process 

also requires the small molecule inositol hexakisphosphate (IP6) (Tran et al, 

2007).  

On the other hand, a recent study has proposed that Nab2 plays a role as 

an adaptor to assist Mex67 export from nucleus to cytoplasm whereas 

Yra1/REF functions as a cofactor to stabilize the interaction between the 

adaptor Nab2 and the receptor Mex67, representing that Nab2 interacts with 

Mex67 by working with Yra1/REF (Iglesias et al, 2010). Interestingly, Yra1/REF 

is dispensable after overexpressing Nab2 and Mex67 in cells; in addition, Yral 

dissociates from Nab2 following the ubiquitination by E3 ligase Tom1. (Iglesias 

et al, 2010). 
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1.7.4.3 Yra1 recruitment via Pcf11 

The yeast 3’ end of cleavage/polyadenylation complex is recruited to the 

active genes co-transcriptionally by binding the Pcf11 subunit of CF1A with 

RNA polymerase II (Sadowski et al, 2003). Pcf11, a conserved 3’ end 

processing factor, functions in coupling 3’ end processing with transcription via 

its N-terminal CTD interaction domain (CID) to associate with Ser2 

phosphorylated C-terminal domain of heptad repeats of RNA polymerase II 

and nascent transcript (Sadowski et al, 2003). Yeast Pcf11 associates with 

Clp1, Rna14 and Rna15 subunits of CF1A while the homolog of human Pcf11 

is a subunit of CFIIm in the 3’end cleavage-polyadenylation processing 

complex (Proudfoot, 2004). Recently, a study points out that the recruitment of 

Yra1 to the nascent transcript is independent on Sub2 but dependent on the 

cleavage-polyadenylation factor CF1A by interacting directly with the Zn finger/ 

Clp1 binding region of Pcf11 (Johnson et al, 2009b). Moreover, Yra1 plays a 

role in regulation of the 3’end cleavage-polyadenylation processing, competing 

with Clp1 subunit of CF1A for interacting with Pcf11, to modulate the 

co-transcriptional assembly of the 3’end processing factor CF1A/B (Johnson et 

al, 2011). In summary, the Yra1 subunit of TREX complex is recruited to the 
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nascent transcripts via binding Pcf11 subunit of CF1A/CFIIm, providing a 

major link between export and 3’end processing independent of Sub2 in a 

co-transcriptional pathway. 

 

1.7.5 EXPORT OF VIRAL RNAS 

Spliced or intronless mRNAs can be exported efficiently via the 

mechanisms of splicing and export and therefore, a variety of incompletely 

spliced RNAs are retained within the nucleus. However, viruses have evolved 

the mechanism to prevent the retention of unspliced mRNA and overcome the 

inefficient export of intronless mRNAs. For example, lentiviruses and simple 

retroviruses can encode viral proteins to export the incompletely spliced or 

unspliced mRNAs as herpeviruses do for intronless mRNAs. 

 

Rev and CRM1 dependent transport 

Human immunodeficiency virus (HIV) is a complex retrovirus or lentivirus, 

including a single proviral transcript expressing nine genes by alternative 

splicing. The incompletely spliced viral mRNAs are exported dependent on 

CRM1 pathway through the HIV Rev protein. Rev protein consists of nuclear 

localization signal (NLS) and the Rev response element (RRE) binding domain 
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at its N-terminus of arginine-rich sequences, which is required to bind with a 

highly structured RRE of incompletely spliced HIV mRNA. At its C-terminus, 

the nuclear export signal (NES) of leucine-rich sequence of Rev protein 

functions to interact with a nuclear export factor CRM1, a karyopherin or 

importin/exportin family of nuclear transport receptors which requires Ran 

GTPase system for transport (Sandri-Goldin, 2004). 

 

CTE (constitutive transport element) dependent transport 

Simple retroviruses, like Mason-Pfizer monkey virus (MPMV), which 

requires the transport of partly spliced RNAs or unspliced RNAs dependent on 

the constitutive transport element (CTE) but not the Rev protein. This 

cis-acting RNA element CTE binds directly to TAP/NXF1 for mRNA transport; 

on the contrary, the cellular mRNAs requires the export adaptor protein 

Aly/REF or UIF to associate with TAP/NXF1 in transport pathway (Braun et al, 

1999; Jackson et al, 2011). 

 

ICP27 dependent transport 

The ICP27 protein is encoded by Herpes simplex virus type 1 (HSV-1) and 

has been found to be involved in the transport of viral intronless RNAs. ICP27 
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protein abolishes a splicing process of the host cell by binding to SR protein 

kinase 1 (SRPK1), so the improper phosphorylation of SR protein leads to the 

retention of stalled spliceosomal complex and incompletely spliced RNAs 

within the nucleus (Sciabica et al, 2003). Thus, ICP27 protein is able to recruit 

the export factor Aly/REF to the transcriptional site of HSV-1 and export viral 

RNAs to cytoplasm via TAP/NXF1 pathway (Chen et al, 2005; Chen et al, 2002; 

Johnson et al, 2009a; Johnson & Sandri-Goldin, 2009). 

 

1.7.6 Post-translational modification 

Several studies have been shown that post-translational modification of 

mRNA export factors regulates the process of mRNP biogenesis and export 

pathway. Modification of methylation in REF facilitates handing over of mRNA 

to TAP due to the reduced RNA-binding activity of methylated REF (Hung et al, 

2010a), and in addition, methylated Npl3p functions in the regulation of 

transcription elongation and termination (Wong et al, 2010).  

Another thought on the modification of ubiquitination plays a role between 

an mRNP surveillance system and nuclear export pathway. A new finding that 

the modification of ubiquitination of Yra1 by Tom1, an E3 ligase, stimulates the 

release itself from the triple complex of Mex67, Yra1 and Nab2 prior to nuclear 
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export (Iglesias et al, 2010). Moreover, the ubiquitinated Hpr1, a component of 

TREX complex, which associates with the C-terminal UBA domain of MEX67, 

not only protects itself from proteasomal degradation but also recruits Mex67 

to the nascent transcript (Gwizdek et al, 2006). 

As mentioned earlier, the yeast SR-like protein Npl3 is dependent on the 

phosphorylation mechanism, which is dephosphorylated by Glc7p in the 

nucleus and phosphorylated by Sky in the cytoplasm, and this mediates its 

interaction with Mex67-Mtr2 in the mRNA export pathway (Gilbert & Guthrie, 

2004). Furthermore, a finding that the poly(A)+ binding protein Nab2 is 

phosphorylated by MAP kinase Slt2/Mpk1 during heat shock stress. The 

phosphorylated Nab2 displacing from Mex67 appears to colocalize with Yra1 

in nuclear foci (Carmody et al, 2010), representing another example that 

phosphorylation modification of mRNA export proteins regulates the mRNP in 

export pathway. 

 

1.7.7 Co- versus post-transcriptional splicing  

While a nascent transcript is being transcribed by RNA Polymerase II, the 

event called co-transcriptional splicing can occur where the introns are being 

removed and the exons are being spliced. On the other hand, once nascent 
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transcripts have accomplished the process of 3’ end cleavage and formation 

which infers to transcription termination, some introns would be subject to 

being excised. This event is therefore called post-transcriptional splicing 

(Girard et al, 2012). 

 

1.7.8 A MODEL OF mRNA EXPORT 

Shown in Figure II is a model for mRNA export pathway proposed from 

Prof. Wilson group. At the early transcription stage, the Pcf11 subunit of 3’ end 

processing complex CFIIm is recruited together with REF to the CTD 

(C-terminal domain) of RNA polymerase II. During transcriptional elongation or 

termination stage, Clp1 binds to Pcf11 by competing with REF, forming a 

functional 3’ end processing complex. In turn REF interacts with CBP80 

subunit of cap-binding complex by loading close to 5’ end region of pre-mRNA 

with the removal of intron during splicing. At this stage, REF links to the 

components of TREX complex via UAP56 whereas SR protein interacts with 

mRNA in hypophosphorylated form. After the completion of pre-mRNA 

processing, the recruitment of TAP to TREX complex facilitates the release of 

UAP56, leading to mature messenger RNA being handed over from REF to 

TAP in mRNP complex. Whilst mRNP reaches the nuclear pore, REF 
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dissociates from TAP and mRNA. Once passing through the cytoplasmic side 

of the nuclear pore, SR protein forms hyperphosphorylated, allowing its 

dissociation from TAP, and TAP is therefore displaced from mRNA by 

DEAD-box protein Dbp5 (Walsh et al, 2010). 
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[Figure II] A MODEL FOR mRNA EXPORT  

 41



 

1.8 AIM OF THIS STUDY  

The TREX complex couples transcription and nuclear processing of 

mRNA with its subsequent export to the cytoplasm (Reed & Hurt, 2002). Once 

assembled on mRNA, TREX has the ability to release the RNA binding domain 

of the mRNA export receptor Nxf1, allowing the stable association of Nxf1 with 

mRNA which subsequently leads to transport of the mRNA to the cytoplasm 

(Viphakone et al, 2012). Thus TREX acts to license mRNA export, informing 

the cell when an mRNA is processed and suitable for export. TREX is a 

multisubunit complex whose assembly requires ATP (Dufu et al, 2010). Four 

subunits of TREX are known to make contact with Nxf1, these are Alyref, 

Thoc5, Hpr1 and Chtop (Katahira et al, 2009) (Chang et al, 2013). Chtop and 

Thoc5 both bind to the same domain of Nxf1 and both cooperate with Alyref to 

enhance the RNA binding activity of Nxf1. However, Nxf1, Chtop and Alyref all 

exist in a single complex in vivo, indicating that the TREX complex is likely to 

undergo significant structural rearrangements during maturation of the mRNP. 

Both Chtop and Alyref are regulated by arginine methylation (Chang et al, 

2013) (Hung et al, 2010b) and in the case of Chtop, the methylation of 

arginines allows it to bind Nxf1.  
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Although many biochemical approaches have been used to study the 

TREX complex function in gene expression, the sites within the nucleus where 

TREX recruits Nxf1 to mRNA are still unclear. The nuclear speckles are 

thought to be storage, assembly and modification sites for splicing and export 

factors (Spector, 2003) (Spector & Lamond, 2011) and a number of TREX 

subunits have been mapped to nuclear speckles in fixed cells (Chang et al, 

2013) (Zhou et al, 2000) (Hautbergue et al, 2009a). mRNA splicing has been 

shown to take place in the vicinity of the perichromatin fibrils which surround 

nuclear speckle domains (Fakan, 1994) (Hall et al, 2006) and several studies 

have shown that splicing factors can be recruited from speckles to actively 

transcribed genes at the periphery of a speckle (Lamond & Spector, 2003; 

Misteli et al, 1997; Zhao et al, 2009). However, recent work has shown that 

post-transcriptional splicing occurs within the nuclear speckle and that release 

of mRNA from nuclear speckles and subsequent export to the cytoplasm 

requires the TREX complex (Dias et al, 2010; Girard et al, 2012). Despite all 

these studies, the site within the nucleus where Nxf1 assembles with the 

TREX complex remains unknown.  

We have used two fluorescent imaging techniques to study the interaction 

of TREX components with Nxf1, sensitized emission FRET and FLIM-FRET. 
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Both techniques have the advantage that they rely on molecules being within 

1-10nm and therefore are likely to report genuine protein-protein interactions 

(Sekar & Periasamy, 2003). In sensitized emission FRET the donor is excited 

with light of a suitable wavelength and fluorescence is measured in the 

acceptor channel. However, the signal in the acceptor channel does not only 

arise from FRET. The light used to excite the donor also causes some 

excitation of the acceptor due to spectral overlap between the donors and 

acceptors commonly used. To alleviate this problem images are also collected 

for donor only and acceptor only, excited with the same wavelengths used to 

excite the donor when measuring FRET. These control images are used to 

substract the fluorescence caused by spectral bleedthrough, which should in 

principal just leave the FRET signal, though correct acquisition of control 

images and substraction is vital to ensure an accurate FRET image is 

produced. In FLIM-FRET, the time it takes for a fluorophore to become excited 

and then return to ground state is measured. The lifetime of the fluorescence 

of the donor molecule decreases when the donor molecule is engaged in 

FRET with an acceptor molecule, therefore the fluorescence lifetime of the 

donor molecule provides a read out of molecules engaged in FRET and are 

likely to be interacting. Since FLIM-FRET only measured donor fluorescence 
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and is not subject to potential problems associated with spectral crosstalk it 

provides a robust readout of protein interactions in living cells. In addition, 

FLIM-FRET allows quantification of the number of interacting molecules at 

specific sites within the cell with nanometer resolution (Becker, 2012). By using 

both FRET techniques we aimed to produce an accurate and coherent view of 

the interactions between mRNA export factors in human cells. Our results 

provide the first intranuclear spatial map of the assembly of the export 

competent mRNP. We show that TREX assembly with Nxf1 predominantly 

occurs outside nuclear speckles, despite a large proportion of TREX subunits 

residing within nuclear speckles at steady state.  

I also established a novel in vivo reporter assay to address the hypothesis 

that mRNA circularizes in the nucleus prior to mRNA export. 
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CHAPTER II  

MATERIALS AND METHODS 

 

2.1 Plasmids, antibodies and cell cultures 

The full-length Nxf1, Chtop, Alyref, the C-terminus of Nxf1 (the 372-619 

fragment), deletion mutants of Chtop (fragments corresponding to amino acids 

1-87 and 92-213), coat proteins PP7 and MS2 were PCR amplified and cloned 

into pECFP-N1, pEYFP-N1 or pEGFP-N1 vectors. The reporter construct was 

created. First, EcoRV restriction site was created by using site-directed point 

mutation method on the mammalian expression vector pCI-Neo. Secondly, the 

six recognition binding sites of coat protein PP7 were introduced into EcoRV 

restriction sites on the mammalian expression vector pCI-Neo. Thirdly, the 

luciferase DNA with six recognition biding sites of coat protein MS2 were 

cloned into the mammalian expression vector pCI-Neo by specific primers 

introduced MluI and NotI restriction sites. Finally, another NotI restriction site 

was created behind the six recognition binding sites of coat protein MS2 by 

site-directed point mutation method. Therefore, eighty-six base pairs were cut 

out using NotI restriction enzyme. Human HeLa cells were grown on 35 mm 

glass bottom dishes with DMEM (Invitrogen) supplemented with 10% Fetal 

 46



Calf Serum and 100 U/ml of penicillin and streptomycin (Invitrogen) and 

incubated at 37 °C with 5% CO2. Cells were transfected using Turbofect 

(Fermentas). The Nxf1 and Hpr1 antibodies were from Abcam. The Alyref 

monoclonal antibody (11G5) was from Sigma. The Thoc5 and Chtop (KT64) 

antibodies were described (Hautbergue et al, 2009a) (van Dijk et al, 2010). 

The Thoc5 antibody was described previously (Hautbergue et al, 2009a). For 

inhibition of transcriptional activity, cells were treated for 2 hours with 10 μg/ml 

actinomycin D (Sigma-Aldrich) prior to imaging analysis. 

 

2.2 Immunoprecipitation 

Cells were transfected with a construct expressing the target protein or 

mock transfected for 48 hours, each dish was lysed in 1 mL of IP lysis buffer 

(50 mM HEPES pH 7.5, 100 mM NaCl, 1 mM EDTA, 1 mM DTT, 0.5 % Triton 

X-100, 10% Glycerol) containing protease inhibitors and 10 µg/mL RNase A. 

The supernatants of cell extracts were incubated for 1 hour with 30 µL Protein 

G-Sepharose beads in IP lysis buffer supplemented with 1% BSA. The 

anti-GFP monoclonal antibody (Roche) was bound to 30 µL Protein 

G-Sepharose beads for 1 hour prior to immunoprecipitation. The beads were 

then washed with 1 mL IP lysis buffer three times. The bound proteins were 
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finally eluted from the Protein G-Sepharose with 50 µL of buffer (0.2 M glycine 

pH 2.8, 1 mM EDTA), and analysed by SDS-PAGE and Western blotting with 

the indicated antibodies. 

 

2.3 Immunofluorescence microscopy 

HeLa cells were fixed in 4% paraformaldehyde in PBS for 15 mins and 

permeabilized with 0.1% Triton X-100 in PBS for 10 mins before 

immunostaining. After blocking with 2% bovine serum albumin (BSA) in PBS 

for 1 hour, cells were incubated with the primary antibodies for 1 hour at room 

temperature. Then cells were washed in PBS three times and incubated with 

the fluorescently labeled secondary antibody (Cy3-, AlexaFluor 488, 

AlexaFluor 555 and AlexaFluor 680) for 1 hour. Cells were washed in PBS 

three times and nuclei were counterstained with 4, 6-diamidino-2-phenylindole 

(DAPI) for microscopy analysis. For fluorescence in situ hybridization, cells 

grown on coverslips were fixed at room temperature for 30 min with 4% 

paraformaldehyde in PBS. Cells were washed in PBS then incubated for 2 h at 

37°C with hybridisation solution (20% formamide (2×sodium saline citrate, 

10% dextran sulphate and 1% bovine serum albumin) containing 1 ng/µl 

Cy3-labelled oligo (dT) 50, 0.5 µg/µl single-stranded DNA and 0.5 µg/µl tRNA 
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and subsequently washed in PBS three times before mounting on glass slides 

for microscopy analysis. 

 

2.4 Acceptor photobleaching fluorescence resonance energy transfer 

microscopy  

Measurements were conducted on a Zeiss LSM510 META confocal 

microscope. Images were collected using a 63× NA1.4 Plan-Apochromat Oil 

DIC lens. The filter sets were used to the signals: BP 440-505 for ECFP 

passes and LP525 for EYFP passes. The emission light at 514 nm was used 

for photobleaching YFP. In acceptor photobleaching FRET method, after 

obtaining prebleach images, a region of interest (ROI) was photobleached with 

a 100% laser power. A total of images were acquired before and after the 

bleach event. Images of donor (ECFP) and acceptor (EYFP) were taken in 

separate subsequent measurements, bleaching exactly the same spot before 

collecting postbleach images. The values for CFP signal before bleaching 

( CFPpre ) and after each bleach exposure ( CFPpost ) were used to calculate 

the FRET efficiency (%) values: FRET Efficiency (%)= [ ( CFPpost – CFPpre ) / 

CFPpost ] X 100. The values for YFP signal before bleaching ( YFPpre ) and 

after each bleach exposure ( YFPpost ) were used to calculate the percent 
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decrease in YFP signal after each bleach exposure: % Decrease YFP = [ 1- 

( YFPpost – YFPpre ) ] X 100. FRET Efficiency (%)= [ ( CFPpost – CFPpre ) / 

CFPpost ] X 100. The pre-bleach image has values of 0% for both the 

decrease in YFP signal and the FRET efficiency. After each bleach exposure, 

the value for the percent decrease in YFP signal approached 100%. 

Quantification of the effect on the percent FRET efficiency is shown by a 

Box-and-Whisker Plot in each condition. The boxes contain the 25th to 75th 

percentile of data, the lines within boxes represent the data median and the 

upper and lower whiskers indicate the 10th and 90th percentile of data, 

respectively. Data were presented as means ± SD of each conditon and 

P-values were obtained using Student’s t-test. P< 0.05 was considered as 

statistically significant. Each condition contains at least 10 cells. 

 

2.5 Confocal microscopy and fluorescence resonance energy transfer 

analysis 

Cell images were collected using a Zeiss LSM 510 META microscope 

equipped with a Zeiss Plan-Apochromat 63x NA 1.4 oil immersion DIC lens. 

For Z-stack confocal images a micrometer step size was used for the z-scan. 

In situ characterisation of fluorescence emission spectra was performed using 
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the Zeiss META detection module with a 458 nm laser excitation. For 

sensitized emission FRET, a 30 mW Argon laser line 458 nm was used for 

ECFP (donor) and FRET excitation and laser line 514 nm for EYFP (acceptor) 

excitation. To effectively reduce background noise, emission fluorescence 

images of ECFP, EYFP, and FRET pairs were acquired with band pass filter 

BP 470-500, long pass filter LP530, and long pass filter LP530, respectively.  

To measure the normalized FRET (NFRET) value, all three emission 

images from cells expressing FRET pairs were collected and processed using 

the Image J (National Institutes of Health) FRET plug-in based on this equation: 

NIBTIBTINFRET acceptoracceptordonordonorfret )(100 ⋅−⋅−⋅= . Cells expressing donor 

alone or acceptor alone were acquired to measure spectral bleed through 

coefficients BTdonor or BTacceptor. N was determined by the square root of the 

product of donor and acceptor intensities. For quantitative analysis, mean 

NFRET values were determined by defining regions of interest (ROIs) for the 

whole nucleus. Data were presented as mean value ± SD of independent 

experiments and P-values were obtained using the Student’s t-test. P< 0.05 

was considered as statistically significant. An NFRET value of >5% was 

considered a significant protein-protein interaction. 

 

 51



2.6 TCSPC fluorescence lifetime imaging microscopy 

FLIM was performed using an upright multiphoton Zeiss LSM510 NLO 

laser scanning microscope with a 60x NA1.0 water immersion lens. A 

Coherent Chameleon Verdi-pumped ultrafast tunable (690-1040nm) laser was 

used for multiphoton excitation by pumping a mode-locked Ti:Sapphire laser to 

produce sub-200 femtosecond duration pulses at a 90 MHz repetition rate. 

Fluorescence lifetimes were acquired by the high-speed Hamamatsu 5783P 

detector and each photon was delivered to B&H SPCM/SPC-830 TCSPC 

imaging module board. To measure the lifetime of fluorophore, ECFP fusion 

protein was excited by multiphoton laser at 850nm and emission fluorescence 

was collected to bandpass filter 435 ± 50nm. A mean photon count rate of each 

image was monitored at the order 104~106 photons per second and acquisition 

time was over 90 seconds. Time-correlated single-photon counting (TCSPC) 

measurement relies on the fluorescence decay histogram generated from 

accumulated photon counts at different times after the laser excitation pulse. 

The recorded data was analyzed using B&H SPCImage software. 

Measurements of FRET based on the analysis of the fluorescence lifetime of 

the donor by FLIM approach can resolve the FRET efficiency and the FRET 

population (concentration of FRET species) when analyzed using 
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bi-exponential decays model. In the analysis of FLIM-FRET data, a 

bi-exponential decay model ( DDA tt ebea)t(f τ−τ− ⋅+⋅= ) was fitted in ECFP 

fusion proteins and FRET pair specimens. The displayed X2 value was 

optimized to close to one as possible to achieve a best fitting model. We obtain 

information about the lifetimes of two populations of molecules, τDA is the mean 

fluorescence lifetime of the donor in the presence of the acceptor and τD is the 

mean fluorescence lifetime of the donor expressed in the absence of acceptor 

as well as two decay components a and b. By fixing the non-interacting 

proteins lifetime τD using data from control experiments (in the absence of 

FRET) and by assuming invariance in the efficiency of interaction τDA, the 

population of FRET species can be estimated. From this model, the FRET 

efficiency was measured by the equation: )(1E DDA ττ−= . For quantitative 

analysis, the mean value for FRET efficiency was determined by defining 

regions of interest (ROIs) for the whole nucleus. Data were presented as 

means ± SD of independent experiments and P-values were obtained using 

Student’s t-test. P< 0.05 was considered as statistically significant. A FRET 

efficiency of >5% is considered a significant protein-protein interaction. 

 

2.7 Fluorescence recovery after photobleaching 
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HeLa cells expressing EGFP fusion proteins were grown in glass bottom 

dishes. FRAP experiments were performed using a Zeiss LSM 510 META 

microscope equipped with a Zeiss Plan-Apochromat 63x NA 1.4 oil immersion 

DIC lens. A small circular area within the nuclear speckle or nucleoplasm was 

bleached using 100% 488nm laser power. The four images were acquired 

before bleaching with 1.5~2.5 % 488nm laser power. A series of 76 

post-bleached images for the Chtop-GFP in the nuclear speckles were 

captured at intervals of 15s. A series of 76 post-bleached images for 

Chtop-GFP or mutant Chtop-GFP in the nucleoplasm were collected at interval 

of 5 s and 98.9 ms. A series of 76 post-bleached images for Alyref-GFP or 

Nxf1-GFP in the nuclear speckles or nucleoplasm were captured at intervals of 

58.8 ms. Fluorescent intensities of the bleached area collected at different 

series of time were normalized to pre-bleached fluorescent intensity. For the 

measurement of half-time of recovery (τ1/2) and immobile fraction, we used the 

mathematical equation: , whereas A indicates the mobile 

fraction, I(t) is the fluorescent intensity at time (t), and τ is the lifetime of 

recovery to fit the frap curve and meanwhile the value of the immediate 

post-bleached intensity as 0 and the pre-bleached intensity as 1 were carried 

out. 

)1()( teAtI ⋅−−= τ
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CHAPTER III  

3. 1 INTRODUCTION: Investigation of nuclear mRNA circularisation 

 It has been shown that in yeast the mRNA export factor Yra1 is recruited 

to mRNA via the 3’ end processing factor Pcf11 (Johnson et al, 2009b). 

Another 3’ end processing factor, Clp1 directly binds Pcf11 and displaces Yra1 

which then associates with mRNA and this process is likely to occur at the 3’ 

end of the mRNA.  Moreover, the human orthologue of Yra1, ALY (or REF) 

interacts with human Pcf11. Furthermore it is known that  human REF as part 

of the TREX complex is loaded onto the mRNA very close to the 5’ end of the 

mRNA and this positioning of TREX is thought to occur in part because ALY 

associates with the 5’  CAP binding protein CBP80 (Cheng et al, 2006). 

These observations lead to the hypothesis that REF is transferred from the 3’ 

to the 5’ end of the mRNA in the nucleus. Furthermore, this process may be 

facilitated by the RNA circularising in the nucleus such that the 5’ and 3’ ends 

were juxtaposed, allowing efficient relocation of REF form the 3’ end 

processing complex to the TREX complex at the 5’ end.   

Circularisation of mRNA is not unprecedented. For example, mRNA is 

known to form a circular structure during the translation initiation process 

(Wells et al, 1998) whereby the translation initiation factors which associate 
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with the 5’ cap make contact with proteins associated with the poly A tail. This 

process of circularisation of the mRNA is thought to promote cycling of 

ribosomes on the mRNA i.e. a ribosome which has completed translation is 

released in very close proximity to the site where the next round of translation 

would initiate. Circularisation of the mRNA to initiate translation may also act 

as a quality control mechanism to ensure that only intact mRNAs are 

translated. 

In order to test the hypothesis that mRNA may form circles in the 

nucleus with the 5’ and 3’ ends in close proximity I established a fluorescence 

resonance energy transfer (FRET) based RNA reporter assay.  

 

3.2 RESULES: FRET based RNA reporter constructs 

To establish whether RNA might form circles I developed a FRET based 

reporter system in which donor and acceptor FRET molecules would be 

tethered at the 5’ and 3’ ends of a mRNA in vivo. Since FRET measures 

interactions in the 1-10 nm range and a typical mRNA is going to have a linear 

length in excess of 300nm 

(http://bionumbers.hms.harvard.edu//bionumber.aspx?id=100023&ver=1#), we 

considered that such a reporter system, with FRET donors tethered to the 5’  
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and 3’ end of the mRNA, might detect RNA circularisation events in either the 

nucleus or cytoplasm. In order to be able to tether donor and acceptor FRET 

molecules to an mRNA in vivo we took advantage of two sequence specific  

RNA binding proteins, bacteriophage MS2 and PP7 proteins (Gesnel et al, 

2009). Both proteins bind with high specificity to specific short hairpin RNA 

binding elements, therefore we made reporter constructs as shown (Figure 

3-1). The 5’ bs construct had multiple copies of the PP7 recognition sequence, 

close to the 5’ end of the mRNA and the 3’bs construct had multiple copies of 

the MS2 recognition sequence close to the 3’ end of the mRNA. Finally the 

construct called “Reporter” carried 5’ PP7 and 3’ MS2 recognition sequences. 

All three constructs carried an intron so would be spliced and the “Reporter” 

construct and the 3’ bs construct also carried a luciferase open reading frame, 

thus the mRNAs produced from these two latter constructs would be expected 

to be translated.  

To establish that the two constructs carrying the luciferase gene were 

translated, they were transfected into 293T cells and luciferase activity 

measured (Figure 3-2).  Since these reporters carried MS2 binding sites we 

also investigated the effects of tethering mRNA export factors to these RNAs 

since MS2-GFP, MS2-REF and MS2-TAP fusions were available in the 
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laboratory. All three MS2 fusion proteins produced proteins of the expected 

size when the expression constructs for these fusions were transfected into 

293T cells (Figure 3-2A). When MS2-REF was cotransfected with either the 3’ 

bs construct or the reporter construct we observed approximately a three fold 

increase in luciferase expression whereas coexpression of MS2-TAP led to 

approximately a 40 fold increase in lucierase expression. These data indicate 

that firstly, the constructs containing the luciferase gene can be translated, 

secondly that the MS2 sites are likely to be functional since the reporters 

respond to the coexpression of an MS2 fusion protein and thirdly that direct 

tethering of these mRNA export factors to these reporter constructs in vivo 

leads to enhanced gene expression. This may be due to more efficient export 

of these mRNAs.  

We next constructed expression vectors for fluorescent proteins fusion 

with MS2 and PP7 to allow the expression in vivo of fusion proteins which 

when in close proximity would trigger FRET. For this we used cyan fluorescent 

protein (CFP) which we fused to PP7 and yellow fluorescent protein (YFP) 

which we fused to MS2. Figure 3-3A provides a schematic of how I envisaged 

the FRET based reporter system would work, the presence of specific binding 

sites would tether PP7 and therefore CFP at the 5’ end of the mRNA and MS2 
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therefore YFP at the 3’ end of the mRNA. If the two fluorescent proteins came 

into close proximity which might indicate mRNA circularisation, then we would 

expect to see a FRET signal. A Western blot was used to confirm that the 

PP7-CFP and MS2-YFP fusions expressed proteins of the expected size 

(Figure 3-3B).  
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 In order to assay for FRET I used acceptor photobleaching FRET 

microscopy following transfection of HeLa cells with various plasmid 

combinations and the FRET efficiency was monitored for at least ten cells in 

each condition and individual cell FRET efficiencies were plotted (Figure 3-4A) 

together with cumulative data medians (Figure 3-4B). In each case the 

nuclear FRET efficiency was monitored as the nucleus was specifically 

 61



bleached (See Figures 3-4A , right panels). In the absence of the “reporter 

construct” the HeLa cells showed a background median FRET efficiency of 

~2.0% which presumably arose from occasional random interaction of the YFP 

and CFP fusion proteins in the nucleus. In contrast, when the reporter RNA 

was cotransfected with PP7-CFP and MS2-YFP a much higher median nuclear 

FRET efficiency of ~9% was observed, which was much higher than the 

background FRET efficiency. These data indicate that when the PP7-CFP is 

tethered to the 5’ end of an mRNA and MS2-YFP to the 3’ end of an mRNA, 

FRET can be observed between the YCP and CFP indicating they are in close 

proximity within the nucleus, which could indicate circularisation of mRNA in 

the nucleus.  

 As further controls we also look at the nuclear FRET efficiency with RNA 

expression constructs which had single binding sites either for PP7-CFP or 

MS2-YFP (Figure 3-5). Moreover, in a comparison of the nuclear FRET 

efficiency (%) with various expression vectors, the signals have been 

averaged in each condition and shown in bar graph (Figure 3-6). Using the 5’ 

bs or 3’ bs constructs which only harbor binding sites for one of the FRET 

partners we found that the FRET efficiency was equivalent to background 

levels without a reporter when both the PP7-CFP and MS2-YFP were 
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coexpressed in the cell. Finally, we transfected the 5’ bs and 3’ bs constructs 

into the same cell together PP7-CFP and MS2-YFP. In this situation, the 

median FRET efficiency was ~5%, which is considerably higher than 

background. However, there was a significant range in the FRET efficiencies 

and the error bars suggest that on the sample size used, there was no 

significant difference in the FRET efficiency compared with the other controls. 

However, since the median FRET efficiency was higher with the FRET pair 

proteins tethered to two separate RNA molecules, we were concerned that 

there may be an element of FRET occurring in trans between the two RNA 

molecules with PP7-CFP and MS2-YFP tethered on separate molecules. If this 

was the case then it would make it very difficult to dissect out FRET arising in 

trans between two separate RNA molecules, which would not necessarily by 

circularising and in cis FRET within a single RNA molecule, caused by RNA 

circularisation. Given these concerns it was decided not to pursue this reporter 

system further and instead concentrate on the analysis of the interactions 

between mRNA export factors using FRET based microscopy techniques and 

this will be discussed in the next results chapter. 
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Figure 3-6. A comparison of FRET Efficiency (%) with various expression 
vectors 
 
 
HeLa cells coexpressing PP7-CFP and MS2-YFP together with different sets 
of vectors such as 5’ bs or 3’ bs constructs, a combination of both 5’ bs and 
3’bs constructs and reporter constructs or mock constructs. The bar graph of 
FRET efficiency was analyzed in cells by acceptor photobleaching as 
mentioned in Figure 3-4 and Figure 3-5. Data presented as mean ± SD and 
each condition contains at least 10 cells, ∗∗∗P<0.001. 
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CHAPTER IV 

4.1 Subnuclear localization of mRNA export proteins 

To investigate the subnuclear distribution of mRNA export factors in HeLa 

cells we performed immunofluorescence microscopy. The Srsf2 (SC35) 

antibody was used to label the nuclear speckles which coincided with areas of 

the nucleus that stained poorly with the DNA stain DAPI (Figure 4-1A). The 

cells were also stained for the TREX subunit Chtop, which was concentrated in 

and around nuclear speckle domains (Figure 4-1A). Close examination of 

z-stack sections revealed that whilst the majority of Chtop colocalised with 

Srsf2 in nuclear speckles, a significant proportion of Chtop localised to the 

region immediately surrounding the speckle domains (Figure 4-1B).  

The majority of Chtop appears to colocalise with poly (A) + RNA in the 

nuclear speckle domain by using In situ hybridization experiment (Figure 4-2). 

We also examined the localization of endogenous Nxf1 in HeLa cells and 

found it had a diffuse nuclear staining with no obvious concentration in nuclear 

speckle domains (Figure 4-3A). Magnification of the red boxed regions 

revealed that whilst the majority of Nxf1 localised close to the region 

surrounding the speckle domains (Figure 4-3B).  
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4.2 Detection of the Chtop:Nxf1 interaction in living cells 

To investigate the localization of Chtop in live cells we firstly investigated 

whether Chtop tagged with a fluorescent protein was capable of interacting 

with other mRNA export factors. Chtop-GFP was found to 

co-immunoprecipitate with multiple TREX subunits and Nxf1, indicating that 

the fluorescent protein tag does not prevent its assembly with these binding 

partners (Figure 4-4A). Similarly, tagging Nxf1 with GFP did not prevent its 

association with mRNA export factors since it co-immunoprecipitated with 

Alyref (Figure 4-4B). To directly examine the interaction of Chtop and Nxf1, we 

performed sensitized emission FRET in live HeLa cells using Chtop-ECFP as 

donor and Nxf1-EYFP as acceptor. The normalized FRET (NFRET) measured 

from the entire nucleus of a cell in control donor:acceptor pairs of 

ECFP:Nxf1-EYFP, Chtop-ECFP:EYFP and ECFP:EYFP were averaged 

(Figure 4-5). For all these control samples the averaged NFRET values were 

below 5.0, indicating this is a baseline value for non-specific NFRET in these 

conditions. In contrast the Chtop-ECFP:Nxf1-EYFP pair showed an average 

NFRET signal of 6.78, which is significantly higher than the background 

(Figure 4-5). Since Chtop interacts with the NTF2-like (NTF2L) domain of Nxf1, 

we also examined this interaction using a C-terminal fragment of Nxf1  
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encompassing the NTF2L domain and found this also gave an NFRET signal 

significantly higher than the background. The interaction of Chtop with the 

NTF2L domain of Nxf1 requires methylation of Chtop (Chang et al, 2013). 

Therefore we also examined the NFRET signal in cells expressing 

Chtop-ECFP:Nxf1-EYFP in the presence of the methylation inhibitor Adox and 

found that the NFRET signal was reduced to background levels. Together 

these data indicate that the FRET signal observed between 

Chtop-ECFP:Nxf1-EYFP is specific and correlates with previous biochemical 

experiments used to analyse this interaction (Chang et al, 2013). To spatially 

map the interaction between Chtop-ECFP and Nxf1-EYFP in the nucleus, 

NFRET images were displayed in a color-code format (Figure 4-6). Strikingly, 

the pattern of NFRET signal differed markedly from the localization observed 

for Chtop-ECFP and Nxf1-EYFP individually. There was a strong NFRET 

signal at the nuclear periphery together with strong patches of intranuclear 

signal. Since the most intense Chtop staining in the nucleus in fixed cells 

corresponds with Srsf2 in the nuclear speckles (Figure 4-1B). We also 

overlayed the NFRET signal with the Chtop-ECFP signal (Figure 4-6B and 

4-6C). This overlay showed that the strong intranuclear patches of NFRET 

signal do not signficantly overlap with nuclear speckle regions, but some  
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interaction sites lie in close proximity to speckles. The graphic plot from the 

arrow across the merge image also shows the similar results (Figure 4-7). 

Together these data suggest that the major sites for interaction of Nxf1 and 

Chtop are in close proximity to nuclear speckles. There are additional 

intranuclear sites for strong Nxf1:Chtop interactions mapped by NFRET, not 

obviously associated with nuclear speckles and some of these may 

correspond to Chtop and Nxf1 assembled in the mRNP in transit to the nuclear 

pore. The interaction sites at the nuclear rim may correspond to mRNPs 

docked at the nuclear pore, in the process of or awaiting translocation through 

the nuclear pore.  

We also assessed the importance of ongoing transcription for the 

Chtop-ECFP:Nxf1-EYFP interaction and found that there was no significant 

change to the averaged nuclear NFRET signal intensity when transcription 

was inhibited by actinomycin D (Figure 4-8A). However, there was a reduction 

in the strength of the NFRET signals in the intranuclear region, though the 

NFRET signal at the nuclear periphery was more pronounced (Figure 4-8B). 

These data suggest that the intranuclear interaction between Chtop and Nxf1 

requires ongoing transcription yet the interaction at the nuclear periphery does 

not.  

 77



 

 

 

 

 78



 

 

 

 79



We also assessed the importance of ongoing transcription for the 

Chtop-ECFP:Nxf1-EYFP interaction (Figure 4-3A, B). The NFRET signal was 

quantitated across cells and we found that there was a significant reduction in 

the intranuclear NFRET signal when cells were treated with actinomycin D. In 

contrast, the NFRET signal at the nuclear periphery persisted. These data 

suggest that the intranuclear interaction between Chtop and Nxf1 requires 

ongoing transcription yet the interaction at the nuclear periphery does not. 

 

4.3 Spatially mapping the interaction between Chtop and Nxf1 by 

FLIM-FRET 

To further characterise the Chtop:Nxf1 interaction in vivo we performed 

FLIM-FRET analysis. When Chtop-ECFP was expressed with EYFP a 

background average FRET efficiency of 1.59% was observed, whereas when 

cells expressed both Chtop-ECFP and Nxf1-EYFP the FRET efficiency rose to 

9.00% (Figure 4-9). A similar robust interaction was detected for Chtop-ECFP 

together with a construct expressing the C-terminal half of Nxf1 fused to EYFP. 

(Figure 4-9). To map the intracellular distribution of the FLIM-FRET signal, 

images from HeLa cells co-expressing Chtop-ECFP and Nxf1-EYFP were 

mapped with continuous pseudocolors in each pixel to show mean  
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fluorescence lifetime, the percentage of FRET efficiency and FRET population. 

To establish the background FLIM-FRET signal we analysed Chtop-ECFP 

co-expressed with EYFP and observed relatively long fluorescence lifetimes 

throughout the nucleus, thus providing a baseline for non-specific interactions 

(Figure 4-10). In contrast, Chtop-ECFP co-expressed with Nxf1-EYFP gave an 

image with much lower fluorescence lifetimes within the nucleus, indicative of 

a specific interaction (Figure 4-11). The steady state localisation of Chtop 

overlaps with nuclear speckles and therefore the Chtop-ECFP signal provides 

a guide as to the location of the nuclear speckles. Strikingly, when the 

FLIM-FRET signal for Chtop-ECFP:Nxf1-EYFP was overlayed with the 

Chtop-ECFP signal it became apparent that the main sites for interaction 

between Chtop-ECFP and Nxf1-EYFP were found in close proximity to the 

speckle regions, together with additional intranuclear regions not directly 

associated with speckles. Within the nuclear speckles, there was still evidence 

of an interaction above background levels but at a much lower level than that 

seen on the periphery of speckles and at other intranuclear sites. With 

actinomycin D treatment, the FLIM-FRET efficiency signals between 

Chtop-ECFP and Nxf1-EYFP were reduced within the nucleus (Figure 4-12) 

but strong interaction sites were visible around the nuclear periphery as  
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observed earlier (Figure 4-8). To investigate the FLIM-FRET signal for 

Chtop-ECFP co-expressing with Nxf1 Cterminus-EYFP and we observed 

relatively shorter fluorescence lifetimes throughout the nucleus, thus providing 

a intracellular map for non-specific interactions (Figure 4-13). 

 

4.4 Alyref interacts with Nxf1 in living cells  

To establish whether the pattern of interaction observed between Nxf1 and 

Chtop was a more general property of other mRNA export factors which 

interact with Nxf1, we also monitored the Alyref-ECFP:Nxf1-EYFP interaction 

in living cells. Initially we analysed the overall NFRET-signal observed in the 

nucleus, averaged across multiple cells. When Alyref-ECFP co-expressed with 

EYFP and ECFP co-expressed with Nxf1-EYFP gave background NFRET 

signals of 2.06 and 1.57 respectively. In contrast, Alyref-ECFP:Nxf1-EYFP 

gave a significantly higher NFRET value of 8.14, indicating a robust interaction 

(Figure 4-14).  

 We next analysed the distribution of NFRET signals for Alyref-ECFP 

coexpressed with Nxf1-EYFP. Since Alyref localizes with nuclear speckles at 

steady state (Zhou et al, 2000), we overlayed the NFRET and Alyref-ECFP 

images (Figure 4-15). This analysis revealed that the major sites of interaction  
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of Alyref-ECFP and Nxf1-EYFP did not coincide with the nuclear speckle 

regions directly although they were closely associated (Figure 4-15B). We also 

observed that, actinomycin D treatment reduced the intranuclear NFRET 

signal for Alyref-ECFP and Nxf1-EYFP, yet a strong signal persisted at the 

nuclear periphery (Figure 4-16). This striking alteration in the sites of 

interactions mirrors that observed between Chtop-ECFP and Nxf1-EYFP as 

well (Figure 4-8). Further analysis of the Alyref-ECFP:Nxf1-EYFP interaction 

using FLIM-FRET (Figures 4-17) confirmed the specific association of Alyref 

and Nxf1 in living cells. The major sites of association between Alyref-ECFP 

and Nxf1-EYFP did not correspond to the speckle regions where Alyref is 

found at steady state (Zhou et al, 2000) and instead, major interaction sites 

were found in close proximity to the speckles within the nucleus (Figure 4-18). 

However, FLIM-FRET detected interactions between Nxf1 and Alyref even 

within speckle regions, though at much lower levels, consistent with the 

FLIM-FRET analysis of the Chtop-ECFP:Nxf1-EYFP interaction (Figure 4-11).  

 

4.5 Intermolecular interactions between mRNA export factors Chtop and 

Alyref in vivo 

To investigate where TREX assembly occurs in the cell we investigated  
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where two TREX subunits Chtop and Alyref interact. Chtop exists in both 

methylated and unmethylated forms within the nucleus. Its methylation state 

can regulate the intermolecular interactions with Alyref, Nxf1 and RNA, with 

unmethylated Chtop selectively binding Alyref and methylated Chtop binding 

Nxf1 (Chang et al, 2013). We established that Chtop tagged with a fluorescent 

protein retained the same binding characteristics with Alyref using 

co-immunoprecipitation (Figure 4-19A). Following treatment with Adox we 

observed a characteristic shift to a higher mobility form of Alyref in SDS-PAGE 

which corresponds to the hypomethyalted form (Figure 4-19A), indicating Adox 

treatment was successfully blocking protein methylation. Following 

immunoprecipitation with an antibody to GFP we found that Chtop-GFP 

preferentially immunoprecipitated with Alyref when cells were treated with 

Adox (Figure 4-19A, right panel), indicating the interaction between these 

proteins preferentially occurs when they are hypomethylated.  

 We next investigated the steady state localization of both Chtop and Alyref 

and found that they showed substantial colocalisation (Figure 4-19B) 

consistent with their individual colocalisation with nuclear speckles (Figure 

4-1A and (Zhou et al, 2000)). We examined where Chtop and Alyref 

interactions occur in living cells using FLIM-FRET (Figures 4-20). In the  

 94



 

 

 

 

 

 95



absence of Adox only background signals were observed for 

Chtop-ECFP:Alyref-EYFP (Figures 4-20B). This suggests that unmethylated 

Chtop only exists very transiently in cells normally. Following Adox treatment, 

strong intranuclear interactions were observed by FLIM-FRET (Figure 4-21). 

The FRET population and FRET efficiency maps showed substantial 

similarities and when the steady state localization of Chtop-ECFP was 

compared with the FRET efficiency map it was clear that the major 

Chtop-ECFP and Alyref-EYFP interactions occur in regions adjacent to nuclear 

speckles and at additional intranuclear sites. However the FRET efficiencies 

within regions corresponding to nuclear speckles were above background, 

though substantially lower than those seen on the periphery of speckles, 

indicating Chtop and Alyref also associate within nuclear speckles.  

We next used sensitized emission FRET to detect the interaction of 

Chtop-ECFP and Alyref-EYFP in live HeLa cells (Figure 4-22). The more 

increased NFRET signals can be seen in the nucleus and nuclear periphery in 

the presence of Adox compared to the signals where without Adox treatment 

(Figure 4-23). However, we cotransfected with Alyref-ECFP and Chtop-EYFP 

in HeLa cells, and found that the average NFRET signal did not significantly 

change with actinomycin D treatment (Figure 4-22). In the presence of  
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actinomycin D, we observed that <5% NFRET signal was distributed 

intracellularly, showing the binding affinity was reduced intracellularly between 

Alyref and Chtop, however, some NFRET signal at perinuclear domain 

maintain >5%, suggesting that the interaction between Alryref and Chtop may 

have the feedback response in a post-transcriptional pathway (Figure 4-24). 

 

4.6 Nuclear dynamics of mRNA export proteins 

To characterize the dynamic behavior of mRNA export proteins in different 

compartments of the nucleus, we used the fluorescence recovery after 

photobleaching (FRAP) technique. We measured the half-life of recovery and 

mobility of mRNA export proteins tagged with GFP within the nuclear speckles 

and nucleoplasm of live HeLa cells. Chtop-GFP present in the nuclear 

speckles had a half life for recovery from photobleaching of 141.46 seconds 

(Table 1) and reached a plateau of fluorescence intensity post-bleaching after 

800 seconds (Figure 4-25). In contrast, Chtop-GFP in the nucleoplasm 

showed a post-bleach half life for recovery of 48.47 seconds and reached a 

plateau of fluorescence intensity within 300 seconds (Figure 4-25B). These 

data indicate that Chtop-GFP is significantly less mobile in nuclear speckles 

than in the nucleoplasm. Earlier FRAP studies on whole nuclei for Chtop-GFP  
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also showed that it took in excess of 800 seconds to reach a post-bleach 

plateau of fluorescence recovery (van Dijk et al, 2010) which fits with the 

observation that a large proportion of Chtop-GFP resides in the nuclear 

speckles. A large fraction of Chtop-GFP was found in the immobile fractions in 

both the nucleoplasm (39.23%) and nuclear speckles (43.95%) (Table 1), 

which for nucleoplasmic Chtop is consistent with the observation that it stably 

associates with chromatin (van Dijk et al, 2010).  We also analysed the 

mobility of two Chtop-GFP fragments comprising residues 1-87 and 93-213 in 

the nucleoplasm, and found that both these fragments of Chtop had 

substantially shorter half lives for recovery and lower immobile fractions 

compared with full length Chtop (Table 1), suggesting that Chtop requires both 

N and C-terminal regions for interaction with nuclear structures which reduce 

its mobility. For comparison we also monitored the mobility of two other export 

factors, Alyref and Nxf1 (Figure 4-26 and Table 1). Alyref-GFP and Nxf1-GFP 

have very short half lives for recovery post-bleaching compared with 

Chtop-GFP and much smaller immobile fractions, indicating that these two 

export factors have far greater mobility within the nucleus than Chtop. 

Interestingly, Alyref showed reduced mobility in the nuclear speckles compared 

with the nucleoplasm as did Chtop (Table 1). The increased mobility of Chtop  
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and Alyref within the nucleoplasm compared with the nuclear speckles is 

consistent with the NFRET and FLIM-FRET data which show that a major site 

for assembly of TREX with Nxf1 occurs around nuclear speckles. Therefore a 

proportion of the nucleoplasmic Chtop and Alyref may be molecules already 

assembled with TREX and Nxf1, in the process of export to the cytoplasm.  
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CHAPTER IV  

DISCUSSION 

We have spatially mapped the site where TREX subunits associate with 

each other and the mRNA export receptor Nxf1. We found that the major sites 

for interaction between two TREX subunits and Nxf1 do not lie within nuclear 

speckles. This is despite observing significant a concentration of TREX 

subunits within nuclear speckles. Instead, the major interaction sites are often 

found in close proximity to the nuclear speckles and these sites of interaction 

are sensitive to transcriptional inhibition. These data are consistent with an 

earlier study which used bifluorescence complementation to look at the 

interaction between Nxf1 and the exon-junction complex component Y14 

(Schmidt et al, 2006). In these earlier studies, Nxf1 and Y14 interactions were 

prominently observed in perispeckle regions, surrounding nuclear speckles in 

some cells, though weaker interactions were also observed within speckles. 

We also provide further evidence confirming that methylation of Chtop 

provides an important control step during assembly and maturation of the 

mRNA export complex. We have shown that unmethylated Chtop is able to 

bind Alyref in vivo (Figure 4-21). This interaction probably occurs early during 

TREX assembly since only methylated Chtop subsequently binds Nxf1 within 
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assembled TREX (Figure 5 and (Chang et al, 2013)).  

TREX assembly is coupled with transcription, splicing and polyadenylation, 

moreover Nxf1 recruitment to mRNA requires an assembled TREX complex 

(Viphakone et al, 2012). Thus Nxf1 recruitment to TREX might be expected to 

occur at sites where these processes take place. Nuclear speckles are devoid 

of DNA and transcription does not take place within the majority of them 

(Cmarko et al, 1999), though a number of proteins involved in transcription are 

found associated with nuclear speckles (Spector & Lamond, 2011). Active 

transcription sites are found at many sites within the nucleus but are enriched 

in regions surrounding nuclear speckles known as perispeckles (Daguenet et 

al, 2012). Perispeckles correspond to a doughnut like ring structure found 

immediately surrounding nuclear speckles and these are the assembly site for 

the exon junction complex (EJC). This observation fits nicely with the earlier 

observation that splicing factors feed out from nuclear speckles to adjacent 

sites of transcription (Misteli et al, 1997) since the EJC assembles on spliced 

RNA as does TREX. Whilst we have not observed the tight clustering of 

TREX:Nxf1 assembly sites around nuclear speckles in the same way that EJC 

components assemble in the perispeckle region, we clearly see extensive 

interactions in the perispeckle region. Thus the perispeckle region appears to 
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be a major site for both assembly of TREX and subsequent recruitment of 

Nxf1.  

When we inhibit transcription there is a significant reduction in Nxf1:TREX 

interactions observed within the nucleus, which suggests that TREX assembly 

with Nxf1 might occur cotranscriptionally. Consitently, the TREX subunits Hpr1 

and Alyref are recruited cotranscriptionally (Li et al, 2005) (Yoh et al, 2007) 

(Johnson et al, 2009b). The sites of Nxf1:TREX interaction which we observe 

which are not tightly associated with nuclear speckles may correspond to 

additional sites of transcription within the nucleus or TREX:Nxf1:mRNA 

complexes in transit to the cytoplasm. The other striking observation following 

the inhibition of transcription is the persistence of TREX subunit:Nxf1 

interactions at the nuclear periphery. This interaction may represent 

complexes which have become trapped at the nuclear pore following the 

transcription block. In yeast, proofreading of mRNPs at the nuclear pore 

involves the Mlp proteins which can feedback and alter gene transcription in 

response to defects in the mRNP (Vinciguerra et al, 2005) and such a 

proofreading mechanisms exists in human cells involving the mammalian 

orthologue of Mlp1, which is Tpr (Coyle et al, 2011) . Such a proofreading 

mechanism involving might also stall some preassembled mRNPs at the 
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nuclear pore when transcription is inhibited. Nxf1 itself appears to stably 

associate with the nuclear pore since detergent extraction of cells prior to 

fixation readily reveals a distinctive nuclear rim association for Nxf1, though 

this association is dependent on the TREX complex (Viphakone et al, 2012). 

Thus it seems likely that the interaction which persists at the nuclear pore 

involves assembled TREX association with Nxf1.  

TREX deposition on mRNA is coupled with splicing (Masuda et al, 2005) 

and the majority of splicing occurs co-transcriptionally. The majority of active 

spliceosomes localize to the periphery of nuclear speckles (Girard et al, 2012) 

and we see extensive TREX subunit and Nxf1:TREX interactions at the 

periphery of nuclear speckles which provides further support for the idea that 

TREX assembly is coupled with splicing. However, approximately 15-20% of 

active spliceosomes are found within nuclear speckles and these are engaged 

in post-transcriptional splicing (Girard et al, 2012). Post-transcriptionally 

spliced mRNA within nuclear speckles require mRNA export factors including 

Alyref and Uap56 to exit the nuclear speckle domain and for subsequent 

export to the cytoplasm (Girard et al, 2012) (Dias et al, 2010). Using 

FLIM-FRET, we are able to see interactions between TREX subunits and 

TREX:Nxf1 within speckles, indicating that active mRNA export complexes do 
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form within this domain, but the number of molecules engaged in these is 

much lower than at the periphery of speckles. This probably reflects the low 

percentage of transcripts which undergo post-transcriptional splicing.  

In conclusion we have provided the first spatial map of mRNA export 

complex assembly by investigating where TREX assembly takes place and 

where Nxf1 is recruited to TREX in vivo. The major sites of mRNA export 

complex assembly coincide with sites involved in transcription, splicing and 

exon junction complex formation revealing how intimately coupled these 

processes are likely to be.  

In other part, here we include in discussion how to analyse spatial 

distribution quantitatively (e.g. 3D zones etc). In order to detect the intracellular 

distribution of RNA or DNA, first of all, cells are pre-incubated with 

fluorescently labeled secondary antibody such as AlexaFluor 488 or 555 by the 

methods of fluorescent in situ hybridization (RNA FISH or DNA FISH), allowing 

to observe the localization of RNAs or DNAs in the cells under confocal 

microscopy. Secondly, to analyze spatial distribution quantitatively such as 3D 

zones, the image stacks with micrometer step size are collected step by step 

using optical confocal microscopes. In the examples of signals for green or red 

fluorescent staining, the image stacks are obtained from green and red 
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channel separately. Thirdly, the distance between signals observed from the 

image stacks are therefore measured or re-constructed in use of image 

analysis software such as Volocity. 
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