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Abstract

In this thesis, we aim to use the spectral graph theory to develop a framework

to solve the problems of computer vision. The graph spectralmethods are con-

cerned with using the eigenvalues and eigenvectors of the adjacency matrix or

closely related Laplacian matrix. In this thesis we developfour methods using

spectral techniques: (1) We use a Hermitian property matrixfor point pattern

matching problem; (2) We use coefficients of symmetric polynomials to cluster

similar human poses using the skeletal representation acquired from Microsoft

Kinect; (3) We use coefficients of the elementary symmetric polynomials to make

the direction of the eigenvectors of the proximity matricesconsistent with each

other for the problem of correspondence matching; (4) We usecommute time

embedding to construct a 3D shape descriptor for the purposeof 3D shape clas-

sification.

In Chapter 3 we address the problem of correspondence matching. We extend

the Laplacian matrix to the complex domain by constructing aHermitian prop-

erty matrix. We construct a Hermitian property matrix from the spatial locations
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of the 2D feature points extracted from a pair of images and the angular inform-

ation associated with these feature points. We construct the Hermitian property

matrix in a way that reflects the Laplacian matrix. The complex eigenvectors of

the Hermitian matrix is then used to find the correspondencesbetween pairs of

points across two images. We embed the complex eigenvectorsof the Hermitian

property matrix in the iterative alignment EM algorithm developed by Carcas-

soni and Hancock to make it robust to rotation, noise and point-position jitter.

Experimental results on both synthetic and real world data have been presented.

Chapter 4 develops a clustering method using four differenttype of feature

vectors constructed from the complex coefficients of the elementary symmetric

polynomials. These polynomials are computed from the eigenvalues and the

complex eigenvectors of a Hermitian property matrix. The feature vectors are

embedded into a pattern-space using Principal Component Analysis (PCA) and

Multidimensional Scaling (MDS) to cluster similar human poses acquired using

the Microsoft Kinect device for Xbox 360. The Hermitian property matrix is

constructed from the length of the limbs and the angles subtended by each pair

of limbs using the three-dimensional skeletal data produced by the Kinect device.

The given skeleton is converted to its equivalent line graphto compute the angles

between pairs of limbs. The joints locations are used to compute the limb lengths.

In Chapter 5, we describe a method to correct the sign of eigenvectors of

the proximity matrix for the problem of correspondence matching. The signs of

the eigenvectors of a proximity matrix are not unique and play an important role

in computing the correspondences between a set of feature points. We use the

coefficients of the elementary symmetric polynomials to make the direction of

the eigenvectors of the two proximity matrices consistent with each other.

Chapter 6 describes a 3D shape descriptor that is robust to changes in pose

and topology. The descriptor is based on the D2 shape descriptor developed by
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Osada et al, which is essentially the frequency distribution of the Euclidian dis-

tance between randomly selected points on the surface of the3D shape. We use

the commute-time distance instead of using the Euclidian distance between ran-

domly selected points. A new and completely unsupervised mesh segmentation

algorithm is proposed, which is based on the commute time embedding of the

mesh and k-means clustering using the embedded mesh vertices.
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CHAPTER 1

Introduction

1.1 Introduction and Motivation

In this chapter we provide an introduction and motivation for the research work

presented in this thesis. Graph spectral methods study the properties of a graph

using its spectrum, i.e. the eigenvalues and their corresponding eigenvectors of

the adjacency matrix or the closely related Laplacian matrix associated to the

graph. Spectral graph theory has been extensively used in the field of computer

vision and pattern recognition in recent years and has proved to be a powerful

tool for different applications in the field. A large number of spectral methods

have been developed in the computer science literature in recent years, appearing

in the fields of graph theory, computer vision, visualization, computer graphics

and machine learning. In this thesis, we aim to use the graph spectral techniques

to solve problems in the field of computer vision. We develop three methods

1



2 Introduction

using spectral technique for (1) point pattern matching, (2) human pose cluster-

ing using the skeletal representation acquired from Microsoft Kinect and (3) 3D

shape classification using spectral embedding.

Point pattern matching is a fundamental step in many computer vision tasks,

for instance, object tracking, object recognition, shape-from-motion and optical

flow analysis. The problem of point pattern matching or correspondence match-

ing is to find one to one correspondences between two point sets in a 2D space or

in 3D space. The local features of objects in an image are represented by feature

points, for instance, the corners or edges of rigid objects.Point pattern matching

is used to solve the correspondence and registration problems in a wide range of

disciplines, including computer vision, pattern recognition, computational geo-

metry, image registration, molecular biology and computational chemistry. For

example, in chemistry point pattern matching is used for protein structures align-

ment. In biometrics, it is used to match and verify the fingerprints or signatures of

employees in automatic personnel identification systems. Point pattern matching

is used in 3D scene reconstruction, in automatic cartography from photogram-

metric measurements.

There is a vast literature addressing the point pattern matching problem in

pattern recognition, which can be divided broadly into two groups i.e. spectral

methods and non-spectral methods. In this thesis we focus onthe spectral meth-

ods. The spectral methods use the eigenvalues and the eigenvectors of the affinity

matrix. The spectral methods are very elegant and have been successfully used

to solve this problem. However, these methods fail to match the points correctly,

especially, when there is a difference in the size of the point set being matched

or in the presence of structural noise. The importance of point pattern matching

is emphasized by the large amount of work carried out on the subject in the lit-

erature (Shapiro & Brady 1992; Scott & Longuet-Higgins 1991; Carcassoni &
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Hancock 2003; Sun et al. 2009; Aubry et al. 2011). In the literature, many differ-

ent methods to address problems related to point pattern matching are presented.

The work presented in this thesis has the aim of improving theexisting spectral

point pattern matching methods by the introduction of a Hermitian property mat-

rix and using the complex eigenvectors of the Hermitian matrix for the purpose

of point pattern matching.

Detecting the human pose is an important step in human behaviour analysis,

action or gesture recognition. However, human pose detection is a challenging

task because of the huge inter-limb and intra-limb feature variability in both still

images and image sequences. To acquire the data, we use Microsoft Kinect for

Xbox 360. Shotton et al. (Shotton et al. 2011) developed an algorithm for Mi-

crosoft Kinect to extract the human body pose from a single depth image. They

segment the depth image of human body into its parts and obtain its skeletal

model with a set of joint positions. They demonstrate that their algorithm is effi-

cient and effective for reconstructing 3D human body poses even in the presence

of partial occlusions, different points of view and under nolight conditions. We

use the spectral graph technique to cluster similar poses. The technique involves

constructing a Hermitian matrix from the input skeleton andthen embedding

the pattern vectors constructed from the complex coefficients of the elementary

symmetric polynomials of the eigenvalues and the complex eigenvectors of the

Hermitian matrix into a pattern space for the purpose of clustering similar poses.

Rapid improvement in the digital technology for acquisition and processing

of 3D shapes has led to an increase in the number of 3D objects available. The

use of 3D shape has become very common in a number of applications including

games, engineering, culture and medical research studies.Consequently, the field

of 3D shape analysis has attracted the attention of many researchers. The basic

aim of the 3D shape analysis is to develop 3D shape descriptors or signatures
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that capture the important properties of the 3D shapes. The increasing interest

of researchers in different fields motivates the need to develop such 3D shape

descriptors because the currently developed descriptors for classification and re-

trieval of 2D shapes/images cannot be directly extended to 3D shapes. Therefore,

new descriptors need to be developed that capture the local and global proper-

ties of the 3D shapes. The global properties describe the overall shape while

the local properties describe the details of the shape. Unfortunately, developing

such descriptors for 3D object processing is not a simple task. Recently, many

shape descriptors have been developed based on spectral graph theory. In this

thesis, we construct a novel 3D shape descriptor for the purpose of 3D object

classification. We embed the shape using commute time embedding and use

commute time distance computed from the eigenvalues and theeigenfunctions

of the Laplace-Beltrami operator to describe the shape descriptor.

1.2 Goals

The ultimate goal of this thesis is to develop a framework using graph spectral

methods and apply it to a variety of applications in computervision, such as the

correspondence matching and graph clustering problems. Toachieve this, we

focus on:

• Introduction of a graph representation by using a Hermitian property mat-

rix where we associate two type of attributes to the edges andnodes of the

graph. Binary attributes are associated to the edges and unary attributes

are assigned to the nodes of the graph.

• Using the complex eigenvectors of a Hermitian property matrix for the pur-

pose of point-pattern matching. The distance between each pair of points

using a Gaussian weighting function is used as the binary attribute. The
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angular information (SIFT orientations for experiments onreal world data

sets) is used as the unary attribute.

• Embedding the complex eigenvalues and eigenvectors of a Hermitian prop-

erty matrix into the iterative alignment EM algorithm of Carcassoni and

Hancock to make it robust to rotation and point-position jitter.

• Using the complex coefficients of the elementary symmetricpolynomials

constructed from the spectrum of a Hermitian matrix to establish feature

vectors for the purpose of clustering human skeleton poses acquired from

the Microsoft Kinect device for Xbox 360.

• Introduction of a 3D shape signature based on the commute-time embed-

ding which is robust to changes in pose and topology.

• Using the coefficients of the elementary symmetric polynomials construc-

ted from the eigenvectors to make the direction of the eigenvectors pair

consistent with each other for the purpose of correspondence matching.

1.3 Thesis Overview

The previous section outlined the overall goals of the thesis. Next, the struc-

ture of the thesis is presented. In order to set the problem incontext, Chapter 2

will review the literature associated with spectral graph theory, correspondence

matching, graph embedding and clustering and shape segmentation / classifica-

tion.

Chapter 3 introduces the problem of correspondence matching and the graph

spectral approaches to solve it. The use of a Hermitian property matrix (complex

Laplacian) is introduced to improve the performance of two existing correspond-

ence matching methods, and the performance of the new approach is compared
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with the existing techniques. In this chapter, a Hermitian property matrix is

constructed from the 2D feature point locations extracted from a pair of images

and the angular information associated with these points. We use spectra of a

Hermitian property matrix to compute the correspondence matching between the

pair of point sets. The Hermitian matrix is constructed in such a way that it

reflects the Laplacian matrix (degree matrix minus adjacency matrix). The com-

plex eigenvectors of the Hermitian matrix are embedded intothe EM framework

proposed by Hancock and Carcassoni (Carcassoni & Hancock 2003) to render it

robust to the point-position jitter and rotation.

In Chapter 4, we use the spectrum of a Hermitian property matrix and the

coefficient of the symmetric polynomials to cluster different human poses taken

by an inexpensive 3D camera, the Microsoft Kinect for Xbox 360. A Hermitian

property matrix is constructed from the joints and the angles subtended by each

pair of limbs using the three-dimensional skeletal data delivered by the Kinect

device. To compute the angles between a pair of limbs, a line graph is con-

structed from the given skeleton. We construct four different types of pattern

vectors from the complex coefficients of the elementary symmetric polynomials

computed from the complex eigenvectors of the Hermitian property matrix. The

pattern vectors are embedded into a pattern-space using twoclassical embedding

methods i.e. PCA and MDS.

In Chapter 5, the problem of eigenvector sign correction forthe problem of

correspondence matching is addressed. This problem is solved using the coeffi-

cient of the symmetric polynomials computed from the eigenvectors of the prox-

imity matrices for the corresponding point sets.

In Chapter 6, a commute-time based 3D shape descriptor is developed that

is robust to changes in pose and topology. A new and completely unsupervised

mesh segmentation algorithm is proposed, which is based on the commute time
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embedding of the mesh and k-means clustering using the embedded mesh ver-

tices.

Finally, Chapter 7 provides conclusions and summarises thework presented

in the thesis and the results obtained. Some advantages and shortcomings of the

methods described in the thesis are discussed and some possible extensions are

proposed.





CHAPTER 2

Literature Review

In this chapter, we review the main literature which is relevant to the research

presented in this thesis. The aim of the thesis is to develop efficient methods

for four related problems using graph spectral techniques.To comply with this

aim, we divide the content of the chapter into six parts. We commence reviewing

the spectral graph theory and its applications in the area ofimage segmenta-

tion, graph clustering and graph matching in Section 2.1. Wereview spectral

correspondence matching in Section 2.2, followed by a review on eigenvector

sign correction methods for correspondence matching in Section 2.3. We survey

graph clustering and graph classification in Section 2.4, followed by a brief re-

view of graph embedding methods in Section 2.5 that we will use to develop our

methods in the following chapters. In Section 2.6, we reviewsome methods on

3D shape analysis. Finally, we summarise the chapter.

9
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2.1 Spectral Graph Theory

Spectral graph theory (Chung 1997; Biggs 1974; Mohar 1997; Cvetković et al.

1980) is the branch of mathematics that studies the properties of a graph in re-

lationship to the eigenvalues and eigenvectors of the adjacency matrix or the

closely related Laplacian matrix associated to the graph. The earliest literature

on algebraic graph theory can be traced back to that of Collatz and Sinogow-

itz (Collatz & Sinogowitz 1957). This work focused on the co-spectrality of

graphs and the fundamental inequalities for bounding the eigenvalues. Since

then, a large body of literature has emerged aimed at exploiting the relationship

between the spectral and structural properties of a graph. This literature is well

documented in several surveys including (Biggs 1974; Cvetković et al. 1980;

Chung 1997; Mohar 1992). Spectral graph theory has been extensively used

in the field of computer vision and pattern recognition and has proved to be a

powerful tool for different applications in the field. The solution of almost every

problem using spectral graph theory commences by constructing the adjacency

matrix or closely related Laplacian matrix (i.e. the degreematrix minus the adja-

cency matrix). Once the graph is represented in terms of the adjacency matrices,

or the Laplacian matrix, the possibility of using tools fromlinear algebra to study

the properties of graphs is opened up. The graph spectrum refers to the set of ei-

genvalues of the adjacency or Laplacian matrix of a graph (Biggs 1974). The

spectrum can be computed efficiently (Chung 1997) using linear algebra tools.

The Laplacian matrix is a positive semi-definite i.e. all of its eigenvalues are

non-negative. The spectrum of a graph contains many important properties of

the graph. For instance, the isomorphism of two graphs can bedetermined by

their eigen spectra. The multiplicity of the zero eigenvalue of the Laplacian mat-

rix gives the number of connected components of the graph. The corresponding
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eigenvector to the smallest non-zero eigenvalue (also called the Fielder vector)

of Laplacian matrix can be used to divide the nodes of the graph into two disjoint

subset of nodes. A number of data clustering and partitioning algorithms are

based on this, for instance, (Shi & Malik 2000). Since these algorithms deal with

partitioning the data into exactly two disjoint parts, therefore, these are applied

recursively to findk clusters. The spectrum of the Laplacian matrix has recently

been used to embed the nodes of a graph into a vector space. Then, the clusters

of nodes are found using standard clustering techniques such as k-means. He et

al. (He et al. 2005) used the eigenfunctions of the Laplace Beltrami operator on

the face manifold for face recognition.

Recently, several authors have attempted to extend the utility of graph spec-

tral methods using the complex property matrices (a Hermitian matrix). This is a

natural way of incorporating angular or directional information with the proxim-

ity representation. For instance, Wilson, Hancock and Luo (Wilson et al. 2005)

extended the Laplacian matrix to the complex domain and usedthe complex ei-

gen spectrum to cluster similar binary shapes. Leuken et al.(Leuken et al. 2008)

developed a shape retrieval method using a complex eigenvector corresponding

to the smallest non-zero eigenvalue (Fielder vector) of a Hermitian property mat-

rix. In the next sections we review some of the problems in thefield of computer

vision which have been solved using spectral graph theory.

2.2 Correspondence Matching

Point/feature matching in 2D images has been well studied inthe computer vis-

ion community. The point correspondence methods can be broadly categorized

into two types. The first type of methods tries to find a transformation mat-

rix which aligns one point-set with another and then find the correspondences
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between pair of points. The second type of methods are feature based meth-

ods. These methods assign shape descriptors to the points that are invariant to

affine or perspective transformations. Correspondences are computed by com-

paring distances between these descriptors. The feature based methods can be

further divided into two groups namely the non-spectral methods (Ling & Jacobs

2007; Chui & Rangarajan 2000; Lowe 2004) and the spectral methods (Shapiro

& Brady 1992; Scott & Longuet-Higgins 1991; Umeyama 1988). Graph spectral

methods compute the point descriptors using the eigenvalues and eigenvectors of

the adjacency matrix or the Laplaican matrix constructed from the input point-

sets. In Chapter 3 we address the problem of feature correspondence matching

using graph spectral techniques, therefore, this section reviews some of the spec-

tral correspondence matching methods.

Computing correspondence matching using graph-spectral techniques has

proved to be a challenging task. Recently, there have been many attempts to use

spectral graph theory both in the abstract problem of graph matching (Umeyama

1988) and point-set matching (Shapiro & Brady 1992; Carcassoni & Hancock

2003; Scott & Longuet-Higgins 1991; Mateus et al. 2008) problems. The prob-

lem of correspondence matching is often formulated in term of graph matching.

The matches are located between the nodes of the graph by comparing the eigen-

vectors of the corresponding adjacency matrix or Laplacianmatrix. The work

of Umeyama (Umeyama 1988) is one of the earliest to use eigen-decomposition

of the adjacency matrix for graphs of the same size to locate the correspondence

matching. His method commences by constructing the adjacency matrices of

the two graphs being matched. The singular value decomposition is performed

on the adjacency matrices of the two graphs separately. The optimum matching

between two weighted graphs is found by locating the least-square permutation

matrix. Umeyama’s method can be used for graph matching withboth directed
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and undirected graphs. However, the method can only be used on graphs that

have the same number of nodes. The reason for this is that the eigenvectors of

the adjacency matrix are unstable under the changes in the number of nodes of

the graphs being matched.

Scott and Longuet-Higgins (Scott & Longuet-Higgins 1991) borrowed ideas

from structural chemistry and developed an algorithm to match 2D feature-points

in two images. Their study relies on the principles of proximity and exclusion,

i.e. corresponding points must be close, and each point can have one correspond-

ing point at most. It is believed that the human visual systemuses these principles

to establish correspondence between points in consecutiveframe of a video clip.

They used singular value decomposition on a Gaussian-weighted point associ-

ation matrix between points from two different images. The correspondences

are computed by maximizing the inner product of the proximity and exclusion

matrices obtained using singular value decomposition. This method copes with

2D translations, expansion and shears, i.e. affine distortions. However, since this

algorithm does not include the structural information within the image and gives

equal importance to all the feature points, it fails to matchthe points correctly,

especially, when there are large inter-image rotations or large inter-image scaling

differences. Weiss (Weiss 1999) suggested using a normalized affinity matrix to

improve the performance of the related clustering and matching methods. He

concluded that if the matrix is correctly normalised the performance could be

improved significantly. Xu and King (Xu & King 2001) developed an algorithm

to solve the problem of weighted isomorphism that uses the eigenvalues and ei-

genvectors along with optimization techniques. They compute a permutation

matrix by optimizing an objection function using principalcomponent analysis

PCA and the gradient descent. Pilu (Pilu 1997) suggested a modification of the

method proposed by Scott and Longuet-Higgins to improve by adding the sim-
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ilarity information along with the proximity information to compute the point

association matrix. The similarity information is computed as the normalized

correlation between neighbourhoods of the feature points.

To overcome the problems of Scott and Longuet-Higgins method, Shapiro

and Brady (Shapiro & Brady 1992) developed a method, which uses the intra-

image point proximity matrix rather than the inter-image point association mat-

rix. The eigenvectors of the proximity matrices are compared to compute the cor-

respondence across a pair of images. Correspondences are found by minimizing

the Euclidean distance between rows of the modal matrices. Caelli and Kosibov

(Caelli & Kosinov 2004) have improved Shapiro’s method by re-normalizing the

eigenvectors and locating the correspondences by maximizing the inner-product

of the normalized eigenvectors.

Although spectral methods are robust they are sensitive to noise and struc-

tural errors. To cope with this problem several researchershave used the stat-

istical framework of the EM algorithm. One of the earliest examples of using

the EM algorithm for feature correspondence matching is thework of Cross and

Hancock (Cross & Hancock 1998). They extend the standard EM algorithm

by introducing structural consistency constraints to the correspondence matches.

This is done by gating contributions to the expected log-likelihood function ac-

cording to their structural consistency. This so-called dual step EM algorithm

simultaneously locates point correspondence and parameters of the affine or per-

spective transformation matrix underlying the motion. Although their idea is

clearly effective and novel, since it uses a dictionary based approach to compute

the correspondence probabilities, it is computationally very demanding. Tang et

al. (Tang et al. 2007) have used the Gaussian weighted Laplacian property mat-

rix to compute correspondence matching from the eigenvectors of the Laplacian

matrix along with the iterative framework of transformation estimation using the
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thin-plate spline (TPS) deformation model (Chui & Rangarajan 2000). Luo and

Hancock (Luo & Hancock 2001) developed a method using the statistical ap-

paratus of EM algorithm and singular value decomposition SVD. They cast the

problem of graph matching into a maximum likelihood framework. They treat

the correspondences as hidden variables. Carcassoni and Hancock (Carcassoni

& Hancock 2003) later improved the efficiency of the dual stepEM algorithm by

using the eigenvalues and eigenvectors of the point proximity matrix to compute

the gating weights. More recently, Delponte et al. (Delponte et al. 2006) modi-

fied the method of Scott and Longuet-Higgins by introducing the scale invariant

features (SIFT) to compute the association matrix. They employ affine invari-

ant Harris corner detector to localize the feature point in the input images being

matched. The association matrix is established based on theEuclidean distance

between SIFT descriptors, completely disregarding the proximity information.

Most recently, Sun et al. (Sun et al. 2009) introduced the Heat Kernel Signature

(HKS) based on the heat kernel. HKS can characterize the shape up to iso-

metry. However, the HKS is sensitive to low-frequency information. Ovsjanikov

et al. (Ovsjanikov et al. 2010) used the HKS to develop the Heat Kernel Maps

for shape matching. Aubry et al. (Aubry et al. 2011) have proposed a feature

descriptor, the Wave Kernel Signature (WKS), using the Schrödinger equation,

for correspondence matching of points on non-rigid 3D shapes.

The RANdom SAmple Consensus (RANSAC) algorithm developed by Fisc-

hler and Bolles in (Fischler & Bolles 1981) is an iterative robust parameter es-

timation procedure. It is designed from within the computervision community,

to cope with a large proportion of outliers in the input data.This is a random

sampling technique that determines a coarse solution by using the minimum

number observations required to estimate the underlying model parameters. The

RANSAC algorithm is often used in the field of computer vision, to solve the
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correspondence problem and estimate the fundamental matrix related to a pair of

stereo cameras. Torr and Murray (Torr & Murray 1993) were thefirst to use the

RANSAC method to estimate epipolar geometry. Since then, this algorithm has

been used in a number of problems in computer vision. For instance, estimating

the fundamental matrix to match two images (Schaffalitzky &Zisserman 2001),

detecting geometric primitives (Clarke et al. 1996), extracting planes (Cantzler

et al. 2002) and correspondence of points across image sequences (Kawakami

et al. 2006; Hasler et al. 2003). An advantage of RANSAC is itsability to do

robust estimation of the model parameters in the presence oflarge number of

outliers are in the data set. A disadvantage of RANSAC is thatit needs a large

number of iterations to compute these parameters. When the number of iterations

is limited to a small number, the solution obtained may not beoptimal.

2.3 Eigenvector Sign Correction

The spectral techniques for correspondence matching use the eigenvectors of the

proximity matrices constructed from the input point sets tocompute the corres-

pondences. The signs assigned to eigenvectors play a critical role in computing

the correspondences. Several authors have proposed different methods to correct

the direction of the eigenvectors. For instance, Park et al.(Park et al. 2000) have

suggested a method to correct the direction of the eigenvectors by comparing

the magnitude of the sum and difference of the two input eigenvectors. If the

magnitude of the sum is greater than the magnitude of the difference then the

directions of the input pair of eigenvector are consistent with each other, other-

wise, sign of one of the eigenvectors needs to be flipped. Umeyama (Umeyama

1988) handles the problem of eigenvector sign correction bytaking the absolute

values of the components of both the eigenvectors. Caelli and Kosinov (Caelli
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& Kosinov 2004) find the number of positive and negative components for each

eigenvector. The sign of the eigenvector is flipped if the number of negative com-

ponents is greater than the number of positive components. This is essentially a

dominant sign correction, always ensuring that there are more positive entries

in each eigenvector. Shapiro and Brady (Shapiro & Brady 1992) suggested a

greedy approach to correct the direction of the eigenvectors.

2.4 Graph Clustering and Classification

In Chapter 4 we develop a method for clustering similar humanbody poses ac-

quired using the Microsoft Kinect sensor. Here, the eigenvectors of a complex

Laplacian matrix are used to compute the coefficients of elementary symmetric

polynomials. Form these coefficients pattern vectors are established. The pattern

vectors are embedded into a pattern space to cluster similarhuman body poses.

Therefore, in this section we review some of the graph clustering and classifica-

tion methods in the literature.

Data clustering is one of the important and widely used techniques for ex-

ploring the structures of data. It has recently found increasing support and ap-

plications in many areas ranging from statistics, computerscience, biology to

social sciences and psychology. Data clustering is the process of dividing the

given set of data into meaningful groups. Clustering is unsupervised classifica-

tion of data patterns based on some similarity measure (Jainet al. 1999). A good

data clustering procedure should cluster the data in such a way that after clus-

tering the data objects within the same group are more similar than those belong

to different groups. This is usually done using some similarity or dissimilarity

measure between each pair of data. The basic aspects in clustering are the pat-

tern representation and the similarity or dissimilarity measure. The most popular



18 Literature Review

dissimilarity measure for metric representation is the distance, for instance the

Euclidean distance. A large number of techniques have been developed for this

problem in the literature under the name of unsupervised classification (Duda &

Hart 1973). Early approaches of unsupervised data clustering methods include

k-means and minimal spanning trees (Jain et al. 1999). When asmall portion

of data is already classified, then the semi-supervised classification methods are

used. These methods can be broadly divided into two groups, namely statistical

methods and graph theory based methods.

Statistical methods can be further divided into two groups i.e. the paramet-

ric and non-parametric methods. The parametric methods aimto draw patterns

from data having a mixture of distributions, for instance mixture of Gaussian dis-

tributions. These methods estimate the parameters of thosedistributions. These

include k-means (MacQueen 1967), the maximum likelihood estimation (Demp-

ster et al. 1977) and the Expectation Maximisation (EM) algorithms. The aim

of k-mean algorithm is to cluster the data intok groups by maximising the total

inter-class variance. The EM algorithm originally developed by Dempster et

al. (Dempster et al. 1977) is an iterative optimisation algorithm which estimates

the parameters of a model. The maximum likelihood estimation algorithm finds

the parameters of a mixture by maximising the log-likelihood function for the un-

derlying probability distribution to the data. Some examples of non-parametric

methods includes the histogram based estimation (Silverman 1986), kernel dens-

ity estimation (Elgammal et al. 2003) and mean shift (Comaniciu et al. 2002).

The histogram based methods tries to cluster data based on the histogram con-

structed from the data. In (Comaniciu et al. 2002) the authors proposed recursive

mean shift estimation method for the analysis of a complex multi-modal feature

space and to delineate arbitrarily shaped clusters in it. More recently, Shotton et

al. (Shotton et al. 2011) proposed an algorithm to predict 3Dpositions of human
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body joints from a single depth image, quickly and accurately using Microsoft

Kinect device for Xbox 360. They use a huge set of human samples to infer

pixel labels through Random Forest estimation, and skeletal model is defined as

the centroid of mass of the different dense regions using mean shift algorithm

resulting in the 3D joint proposals.

In recent years, graph theory based clustering methods havebecome more

popular amongst the computer vision and the machine learning community (Kan-

nan 2000; Ng et al. 2001; Bach & Jordan 2004; Zelnik-manor & Perona 2004).

There has been a significant amount of work aimed at using spectral graph theory

(Chung 1997) to cluster graphs. The spectral graph theory configures the graph

clustering problem as a graph cut where a suitable objectivefunction needs to

be optimized. The basic idea behind this framework is to use the information

conveyed by the eigenvalues and eigenvectors of the adjacency matrix or the

Laplacian matrix of the weighted graph obtained from the data. The data points

are represented by the nodes of the graph, while the edges denote the similarity

or dissimilarity between each pair of nodes. Thus the clustering problem become

graph cut problem. For a large data set, spectral clusteringcan be used with a

sparse similarity matrix.

In the earliest graph spectral clustering method (Donath & Hoffman 1972),

the authors suggest the use of eigenvectors of an adjacency matrix to find par-

titions of the graph representing the data. Later Fiedler (Fiedler 1973) has pro-

posed using the eigenvector corresponding to the smallest non-zero eigenvalue of

the Laplacian matrix. Since then, a significant amount of work has been done in

this area. Scott and Longuet-Higgins (Scott & Longuet-Higgins 1990) construct

a proximity matrix to measure the dissimilarities between image features and

then use the eigenvalues and eigenvectors of the proximity matrix to partition the

image features into clusters. They relocate the eigenvectors of the affinity mat-
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rix to refine its block structure. Sarkar and Boyer (Sarkar & Boyer 1996) used

leading eigenvectors of the affinity matrix to locate line segments grouping in

images. Weiss (Weiss 1999) suggested the use of normalized affinity matrix to

improve the performance of the related clustering methods.Shi and Malik (Shi

& Malik 2000) use normalized cut to balance the cut and the association between

the nodes of the graph. They use the Fiedler vector recursively (second smallest

eigenvector of the Laplacian matrix) for the purpose of image segmentation. Ng

et al. (Ng et al. 2001) embed the graph into a vector space and then cluster the

point in the space using k-means algorithm. Wilson et al. (Wilson et al. 2005)

construct feature vectors which are permutation invariants from a graph by apply-

ing elementary symmetric polynomial to elements of the spectral matrix derived

from the Laplacian matrix. They used the spectrum of a complex Laplacian mat-

rix to cluster shock graphs extracted from 2D shapes. Qiu andHancock (Qiu

& Hancock 2007) have used commute time for the purpose of image segmenta-

tion and show that the commute time method outperforms the normalized cut. A

comparison of some spectral clustering methods have been detailed in (Luxburg

2007). More recently, Gangopadhyay et al. (Gangopadhyay etal. 2012) used

Laplacian matrix and k-means to study the deterioration of renal functions after

kidney transplant. Xiao et al. (Xiao et al. 2009) explored how permutation in-

variants computed from the heat kernel trace can be used to characterize graphs

for the purposes of measuring similarity and clustering. The trace of the heat

kernel is given by the sum of the Laplacian eigenvalues exponentiated with time.

Ren et al. in (Ren et al. 2011) constructed pattern vectors from coefficients of

the Ihara zeta function for the purpose of graph characterization.



Graph Embedding 21

2.5 Graph Embedding

In Chapter 6 we develop a 3D shape signature using commute time embedding

that is robust with respect to changes in pose and topology. Here we use a com-

bination of conventional and spectral techniques for better shape classification.

Therefore, we review some of the data/graph embedding methods in this section.

We also review some of the 3D shape analysis methods in Section 2.6.

The aim of graph embedding is to establish a mapping between graph and its

vectorial representation. Once a graph is converted into a high dimensional vec-

tor, we are able to operate on graph in the vector space using linear algebra tools.

For instance, the vector can be projected onto a low dimensional manifold for

the purpose of analysis and visualization. In literature, avariety of embedding

methods exist based on spectral graph theory. They all sharethe same principle

of using the eigenvectors of the affinity or similarity matrix. For instance, Prin-

cipal Component Analysis (PCA) (Hotelling 1933) and KernelPrincipal Com-

ponent Analysis (KPCA) (Schölkopf et al. 1998) use the leading eigenvectors

of the covariance matrix to determine the projection directions with the max-

imal variance. Multidimensional Scaling (MDS) (Kruskal & Wish 1978) uses

the eigenvectors of pairwise distance matrix to find an embedding of the data

that minimized the cost function called stress. Its aim is topreserve the pairwise

inner product by minimizing the differences of inner product from the input data

and the vectorial data. The classical MDS preserves the inter-point distance if

the input dissimilarity data is Euclidean. PCA and MDS are suitable when the

low-dimensional manifold is embedded linearly in the vector space. Recently,

a number of spectral embedding methods motivated by graph theory have been

developed to deal with general non-linear manifolds. The isometric feature map-

ping (ISOMAP) (Tenenbaum et al. 2000) is an extension of MDS which preserve
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the geodesic distance between data points located on a manifold. Some other re-

lated embedding algorithms include locally linear embedding (LLE) (Roweis &

Saul 2000), Laplacian eigenmap (Belkin & Niyogi 2003), Hessian LLE (Donoho

& Grimes 2003) and the diffusion map (Lafon & Lee 2006a). LLE is also a vari-

ant of PCA and preserves local structure by using linear coefficients to represent

a data point by its neighbour points with coefficients and then attempting to pre-

serve coefficients from the high-dimensional data space to the low dimensional

manifold. LLE first finds the coordinates for data points on each local patch and

then derives the global coordinates with the alignment of local patches by solv-

ing an eigenvalue problem. Laplacian eigenmaps attempts topreserve certain

local geometric structure of the data by constructing an adjacency weight matrix

from the data points and projecting the data onto the leadingeigenvector of the

resulting Laplacian matrix. Hessian LLE finds a low-dimensional configuration

of points by using the estimated Hessian over neighbourhoodas the Laplacian

matrix. The diffusion map is a variance of Laplacian eigenmaps and constructs

the Laplacian matrix by using a kernel function.

Luo et al. (Luo et al. 2003) proposed using the leading eigenvectors of the

graph adjacency matrix to define eigenmodes of the adjacencymatrix, which

were use to construct a vector representation for the graphs. And then, embed

these vectors into eigenspaces with the use of the eigenvectors of the covari-

ance matrix of the vectors for the purpose of graph classification. In a similar

approach (Wilson et al. 2005) used the coefficients of symmetric polynomials

to construct the vectorial representation of the graphs from the spectrum of the

Laplacian matrix. Robles-Kelly and Hancock (Robles-Kelly& Hancock 2007)

solve the problem of matching the nodes of a pair of graphs by embedding the

nodes of the graph onto a Riemannian manifold. This is done byapplying a

doubly centred multidimensional scaling technique to the Laplacian matrix com-
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puted from the edge-weights. The embedding coordinates aregiven by the ei-

genvectors of the centred Laplacian. Then the problem of matching the nodes is

viewed as the alignment of the embedded point sets.

2.6 3D Shape Analysis

Three dimensional shapes are being used in a large number of application in-

cluding games, engineering, archaeology, biometrics, medical imaging etc. The

discrete representation of 3D shape in the computer is a mesh, or sometimes a

point set. Rapid advancement in the digital technology in 3Dshape acquisition

and processing has increased the availability of large amount of 3D shapes eas-

ily accessible. Consequently, the field of 3D shape analysishas attracted many

researchers’ attention. Analysis of 3D shapes involves object tracking, object

recognition, registration, correspondence matching etc,and it aims to establish

shape descriptors or signatures which capture the important properties of the

shapes for the purpose of classification, clustering, retrieval and correspondence

matching. These descriptors need be developed in a way that captures the local

and global shape characteristics of the object. Unfortunately, developing such

descriptors/signatures for the processing of a 3D object isnot a trivial task. Os-

ada’s work reported in (Osada et al. 2001) is one of the earliest works on 3D

shape representation for classification and retrieval. They computed a number of

different types of global shape distributions to represent3D objects using differ-

ent shape functions. They used the angle between three random points on the

surface of a 3D shape (A3), the distance between a fixed point and one random

point on the surface of the shape (D1), the distance between two random points

on the surface of a 3D shape (D2), the square root of the area ofthe triangle

between three random points selected on the surface the 3D shape (D3) and the
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cube root of the volume of the tetrahedron between four randomly selected points

on the surface the 3D shape (D4). Ohbuchi et al. (Ohbuchi et al. 2005) modified

the D2 shape function proposed by Osada et al. to improve its retrieval perform-

ance. They used the distance between the randomly selected points along with

the mutual angle of the triangles on which the pair of points is located. Unlike

the D2, which is a 1D histogram, they used 2D histograms.

Spectral methods for 3D shape analysis use the eigenvalues and eigenvectors/

eigenfunctions of some appropriately defined operator on the shape. In the re-

cent past, a large number of spectral methods have been developed in many re-

lated fields including computer vision, machine learning, computer graphics and

visualization etc. The methods are developed to solve different problems, for

instance, correspondence matching, segmentation, shape smoothing and surface

reconstruction etc. Early work on spectral shape analysis can be traced back to

that of Taubin in 1995 reported in (Taubin 1995). In this study the author in-

troduced the use of Laplacian operators for the purpose of 3Dshape smoothing.

In (Kolluri et al. 2004) the authors introduced the use of spectral graph partition-

ing for surface reconstruction from noisy point cloud data.

Recently, the graph spectral methods defined in the context of clustering have

been applied to 3D shape processing. In this context, spectral invariants such as

the eigenfunctions of the Laplacian operator can be used fornear-isometric shape

matching. Cuzzolin et al. (Cuzzolin et al. 2008) and Lee et al. (Lee et al. 2008)

have performed segmentation for mesh sequences. The formermethod computes

only protrusions, while the later uses an additional skeleton. In (Cuzzolin et al.

2008), the authors use locally linear embedding (LLE) (Roweis & Saul 2000)

to represent a cloud of points and perform segmentation in the LLE space. The

segments obtained are then propagated across time to obtaina temporal coher-

ent segmentation of a voxel-sequence into protrusions of the shape. The method
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works well for rigid body parts (such as head, hands and legs etc), but cannot be

used directly for identifying rigid body-parts (for example, separating the upper-

arm from the lower-arm). Graph spectral techniques have also been using in a

number of correspondence matching and shape registration algorithms. For in-

stance, Mateus et al. (Mateus et al. 2008) used eigenmaps obtained by the firstk

eigenfunctions of the Laplace operator as low-dimensionalEuclidean represent-

ations of non-rigid shapes for the purpose of 3D point registration.

Spectral methods have recently been used in a number of algorithms to meas-

ure the similarity of 3D shapes. For instance, Rustamov (Rustamov 2007) has

suggested using the eigen-decomposition of the Laplace-Beltrami operator to

construct an isometric invariant surface representation.The Global Point Sig-

nature (GPS) proposed by Rustamov for shape comparison usedthe eigenvalues

and eigenfunctions of the discrete Laplace-Beltrami operator, which closely re-

sembles the diffusion map. The major drawback of his signature was its ambigu-

ity to sign flips of each eigenfunction. Sun et al. (Sun et al. 2009) introduced a

point signature based on the properties of the heat diffusion process on a shape,

referred to as the Heat Kernel Signature (HKS). HKS capturesall the information

about the shape contained in the heat kernel, and can characterize the shape up to

isometry. Castellani et al. (Castellani et al. 2011) have used HKS to develop the

so-called Global Heat Kernel Signature (GHKS) by accumulating the local heat

kernel values at each point into a histogram for a fixed numberof scales. Ovs-

janikov et al. (Ovsjanikov et al. 2010) used a heat diffusionprocess to construct

the Heat Kernel Maps for 3D shape matching. Aubry et al. (Aubry et al. 2011)

have proposed a feature descriptor based on a quantum mechanical approach, for

correspondence matching of points on non-rigid 3D shapes.
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2.7 Summary

In the previous sections of the chapter, we have reviewed therelated literature

on spectral graph theory. We also reviewed different methods developed using

spectral graph theory to solve various problems from computer vision. Based on

the review of the related literature, we may draw several conclusions.

First, although there is an ample amount of research on correspondence match-

ing using graph spectral techniques, developing efficient point/feature matching

algorithms is still a challenging problem to solve. Spectral methods offer an

elegant approach to the problem of correspondence matching. However, these

existing graph matching methods suffer from the curse of expensive computa-

tional complexity and their performance decreases in the presence of structural

noise i.e. they give poor results when dealing with point-sets of different size. In

this thesis, we aim to improve the performance of existing spectral methods for

correspondence matching by introducing a Hermitian property matrix in a way

that reflects the Laplacian matrix. A Hermitian property matrix captures more in-

formation about the input graph. Hence producing better correspondence results.

In the literature, complex Laplacian matrix has been used for graph clustering

(Wilson et al. 2005) and shape retrieval (Leuken et al. 2008)methods. However,

it has not been used before for the correspondence matching.

Second, there is a substantial body of research on graph clustering, embed-

ding and characterization using spectral techniques in thepast few decades with

lesser focus on the use of the Hermitian matrix which encodesthe graph using

complex numbers. Additional information in the form of angles between pair of

limbs is encoded in the Hermitian matrix. Later, in the thesis, we show how fea-

ture vectors can be established by using the eigenvectors ofthe Hermitian matrix

and the coefficients of elementary symmetric polynomials tocluster similar hu-
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man body poses acquired from the Microsoft Kinect sensor.

Third, graph spectral methods solve a problem using the eigenvalues and ei-

genvectors of the adjacency matrix or the Laplacian matrix.However, the direc-

tions of the eigenvectors computed by the numerical solver are arbitrary, which

causes problems in computing correspondences between pairof points. In the

literature many methods have been proposed to solve this problem. However,

none of them is robust. Later, we will show how the coefficients of elementary

symmetric polynomials can be used to correct the directionsof the corresponding

eigenvectors for the problem of correspondence matching.





CHAPTER 3

Feature Point Matching using a Hermitian

Property Matrix

In this chapter we investigate the spectral approaches to the problem of point

pattern matching. We construct a Hermitian property matrixfrom the point loc-

ations and the directional information associated with them. We use spectra of

a Hermitian property matrix to compute the correspondence matching between

the pair of point sets. We construct a complex matrix which reflects the Lapla-

cian matrix (degree matrix minus adjacency matrix). We embed the spectra of

the Hermitian matrix into the EM framework proposed by Hancock and Carcas-

soni (Carcassoni & Hancock 2003) to render it robust to the point-position jitter

and the rotation. The proposed method is compared with Shaprio’s (Shapiro &

Brady 1992), Scott’s (Scott & Longuet-Higgins 1991) and Carcassoni’s (Car-

cassoni & Hancock 2003) original alignment methods. Experiments on both

synthetic and real world data are performed, which show thatthe new approach

29
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gives encouraging results.

3.1 Introduction

Feature-point matching is very fundamental and one of the most important tasks

in computer vision. Correspondence matching between 2D images and more

recently, 3D objects is the pre-processing step for a numberof computer vis-

ion algorithms. These include visual object tracking, object recognition using

corners and edges, shape-from-motion (Jerain & Jain 1991; Tomasi & Kanade

1992; Costeira & Kanade 1998), stereopsis (Dornaika & Chung1999), optical

flow analysis (Weng et al. 1997) and morphable or deformable models. Such

methods have found applications in many fields. For instance, in chemistry, it

can be used to align the protein structures, to find the similarity between them.

In the field of biometrics it can be used for automatic personal identification

based on the finger prints or signatures. Once the correspondences are com-

puted, further analysis can by performed, for instance, recovery of 3D structure

of object (Tomasi & Kanade 1992), localization of objects inthe image and find-

ing the number of moving objects in the image sequence (Costeira & Kanade

1998).

3.1.1 The Correspondence Problem

The problem of feature correspondence matching is to find a one-to-one corres-

pondence between feature points in a pair of 2D images which represent an object

in the image or in 3D shapes. The images can be taken from a different point of

view, at different times. In literature many different methods have been presen-

ted to address the problem of correspondence matching. These methods can be

broadly categorized into two classes namely the non-spectral methods (Ling &
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Figure 3.1: Correspondence Problem. a) 2D feature points. b) 3D points on
articulated shapes.

Jacobs 2007; Chui & Rangarajan 2000) and the spectral methods (Shapiro &

Brady 1992; Scott & Longuet-Higgins 1991; Umeyama 1988). Graph spectral

techniques solve the problem using the eigenvectors and eigenvalues of the adja-

cency matrix or the Laplacian matrix (degree matrix minus the adjacency matrix)

for the point set arrangement. Correspondences are computed by embedding the

graphs into a common eigenspace using an eigen-decomposition of the point-

proximity matrices, where correspondences are computed bythe closest points

matching in this eigenspace. Hence the feature correspondence matching prob-

lem is solved using weighted graph matching technique.

Let G = (V1, w1), H = (V2, w2) be weighted graphs withn nodes, where

V1 and V2 are set of the vertices andw1 andw2 are the weights defined on

the edges of the graphsG and H respectively. The weighted graph match-

ing problem is the problem of finding a one-to-one correspondenceΓ between

V1 = {v1, v2, . . . , vn} andV 2 = {v′1, v′2, . . . , v′n} which minimizes some cost
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functionJ defined as

J(Γ) =
n

∑

i=1

n
∑

j=1

(w1(vi, vj)− w2(Γ(vi),Γ(vj)))
2

if AG andAH are the adjacency matrices of the graphG andH respectively then

the cost functionJ can be written as function of a Permutation matrixP .

J(P ) = ||PAGP
T −AH ||2

where the permutation matrixP represents the node correspondenceΓ and||.||
is the Euclidean norm. Thus the problem of weighted graph matching is reduced

to the problem of finding the permutation matrixP which minimizes the cost

functionJ(P ).

3.2 Graph Spectral Matching

Graph spectral methods solve the feature points correspondence matching prob-

lem by constructing a graph representation for the given feature point sets. The

feature points are represented by the nodes of the graph. Each edge of the graph

corresponds to some spatial relationship between a pair of feature points. This

relationship is usually computed using a weighting function of the Euclidean dis-

tance between each pair of points. These weights represent the similarities (or

dissimilarities) between each pair of points. The most frequently used weighting

function is the Gaussian function. However, various other similarity (or dissim-

ilarity) measurement functions can also be used. For instance Carcassoni and

Hancock (Carcassoni & Hancock 2003) have used Gaussian, sigmoidal, Euc-

lidean and increasing weighting functions and have shown that the best perform-

ance is obtained using the increasing weighting function. The weights computed
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for each edge of the graph are put in the form of a weighted adjacency mat-

rix W . In literature both the adjacency matrix and the Laplacian matrix have

been used as the proximity matrix to compute the correspondences. For in-

stance, Umeyama (Umeyama 1988) has used an adjacency matrixwhile Tang

et. al. (Tang et al. 2007) have used a Gaussian weighted Laplacian matrix. The

elementsWij of the matrixW stores the similarity or dissimilarity relationship

between feature pointxi andxj . Once the property matrixW is to hand, we sub-

ject it to the eigen-decomposition, to compute the eigenvalues and eigenvectors

of the graph. Correspondences are computed from the eigenvalues and eigen-

vectors computed for both the input graphs.

The aim of the graph spectral methods is to embed the similarities of the in-

put graph constructed from the feature points into a common eigen-space, where

correspondence matching is performed. Since we are dealingwith objects sub-

ject to different affine geometric transformations including translation, rotation,

scaling and also some deformation, therefore, the similarity weighting function

should be invariant under these transformations. Since, the Euclidean distance is

invariant to translation and rotation, therefore, weighting function used by many

methods are functions of the Euclidean distance between pair of feature points.

For example, (Shapiro & Brady 1992), and (Scott & Longuet-Higgins 1991) have

used a Gaussian weighting function to construct the proximity matrices.

Wij = e−d2ij/2σ
2

wheredij is the Euclidean distance between the feature pointsxi andxj and

σ is a constant parameter which controls the interaction of the feature points.

Besides the Euclidean distance, the directional property of the feature points is

an interesting example of the invariance of the rigid transformation.

A number of correspondence algorithms analyse the eigenvalues and eigen-
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vector of the inter-image proximity matrix or the intra-image proximity matrices

to find the correspondence between the points in the given pair of images, for

instance (Scott & Longuet-Higgins 1991). A small change in the locations of

points in one image will results in changes in the corresponding proximity mat-

rix. These small changes are translated to small changes in the correspond-

ing eigenvalues and eigenvectors computed. However, thesechanges appear in

the trailing eigenvalues and their corresponding eigenvectors. This captures the

global similarity between the feature points globally, which enables us to com-

pute the correct correspondence between many of the points.The orthogonal

property of the eigen-decomposition ensures that the obtained correspondences

are unique.

In this chapter we aim to perform the correspondence matching of point-

sets by using the directional/angular information associated with each feature

point along with the Euclidean distance between each pair offeature points. We

construct a complex Laplacian matrix, in which we encode both the angle and

distance information about a feature points in the form of complex numbers. We

use the SIFT (Lowe 2004) algorithm to acquire the angles at the extracted fea-

ture points from the two images to be matched. We use the pointlocations and

their angles to construct a complex matrix (Hermitian). We compute the com-

plex eigenvectors of the Hermitian property matrix. Correspondence matching

is calculated by comparing the complex eigenvectors. We show how to em-

bed the eigenvectors of Hermitian matrix in Carcassoni’s EMalgorithm for cor-

respondence problem. The proposed method is more robust to noise, rotation

and point-position jitter. In the experiment section, we compare our results with

Shapiro-Brady’s and Carcassoni’s original alignment methods.
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3.3 Hermitian Property Matrix

A Hermitian matrixH is a square matrix with complex elements that remains

unchanged under the joint operation of transposition and complex conjugation

of the elements. That is, the element in theith row andjth column is equal to the

complex conjugate of the element in thejth row andith column, for all indicesi

andj, i.e. ai,j = aj,i.

Hermitian matrices are named after Charles Hermite. In 1855Charles Hermite

proved that the eigenvalues of these matrices are always real. Following are a few

important properties of a Hermitian matrix.

1. The diagonal elements of a Hermitian matrix are real.

2. The off-diagonal elements of a Hermitian matrix are complex number.

Therefore, these can be a 2-component quantities, for instance, angular

measurements.

3. The complex conjugate of a Hermitian matrix is a Hermitianmatrix.

4. For a Hermitian matrixH, H† = H. The operation of transposition and

complex conjugation is denoted by the dagger operator†

5. The eigenvalues of a Hermitian matrix are real.

6. The eigenvectors of a Hermitian matrix are complex and form an orthonor-

mal basis. Ann × n Hermitian matrixH hasn orthonormal complex

eigenvectorsu1, u2, ..., un sitting in the columns of the matrixU . i.e.

H = UΛU †, whereUU † = U †U = I and therefore,H =
∑n

i=1 λiuiu
†
i ,

whereλi are the eigenvalues sitting on the main diagonal of the diagonal

matrixΛ.

7. A real symmetric matrix is a special case of a Hermitian matrix.
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3.4 Hermitian Matrix Construction

In this section we explain how we construct a Hermitian property matrix from the

given imagesI andI ′ with m andn feature points respectively. We commence

by constructing a complete graph for each set of feature points, where each pair

of nodes is connected by an edge. The nodes of the graphs represent the feature

points and the edges represent the similarity measurementsbetween each pair

of nodes which is some function of the Euclidean distance between the nodes.

We use the SIFT (Lowe 2004) feature extraction algorithm to acquire angles at

each feature point and assign them to the corresponding node. Once we have

the feature point positions and the angles associated with them to hand, we can

construct the Hermitian matrix. We construct it in a way thatreflects the weighted

Laplacian matrix. The Hermitian matricesH andH ′ for both of the graphs being

matched are established.

3.4.1 Complex Laplacian Matrix

To commence, consider an undirected weighted graph denotedby G = (V,E),

whereV is the set of nodes andE ⊆ V × V is the set of edges. The weight

adjacency matrixA of the graphG is a|V | × |V | matrix, which is defined by:

A = [aij ] =











w(vi, vj) if i 6= j

0 otherwise
(3.1)

wherew(vi, vj) is the weight assigned to the edge between nodevi andvj . The

weight w(vi, vj) is usually computed using a Gaussian-weighting function as

e−r2ij/2σ
2

, wherer2ij = ‖vi − vj‖2 is the squared Euclidean distance between each

pair of feature points.
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To construct the weighted Laplacian matrix, we first establish the diagonal

weighted degree matrixD, whose diagonal elementsDii are given by the sum

of the weights on the edges connected to the nodei, i.e. Dii =
∑

j w(vi, vj).

From the degree matrix and the adjacency matrix we can construct the standard

Laplacian matrix. i.e.L = D − A. The elements of the Laplacian matrix are

given as:

L = [lij ] =























deg(vi) if i = j

−w(vi, vj) if i 6= j

0 otherwise

(3.2)

wherew(vi, vj) is the weight assigned to the edge between nodevi andvj and

deg(vi) is the degree of the nodevi and is defined as
∑

i w(vi, vj). The weight

w(vi, vj) is usually computed using a Gaussian-weighting function ase−r2ij/2σ
2

,

wherer2ij = ‖vi − vj‖2 is the squared Euclidean distance between each pair of

feature points.

Complex Laplacian matrixH is a Hermitian matrix which reflects the real

weighted Laplacian matrixL. To construct the complex analog of the Laplacian

matrix, we add the angular information to each element of theLaplacian matrix

in the form of a complex number. The off-diagonal elements ofH are calculated

using a Gaussian-weighting function as:

Hij = −e−r2ij/2σ
2

eι(θi−θj) (3.3)

wherer2ij = ‖vi − vj‖2 is the squared Euclidean distance between each pair of

feature points. The parameterσ controls the interaction between features and

(θi − θj) is the difference between each pair of angles within the sameimage.

The on-diagonal elements are given by the sum of the magnitudes of the elements



38 Feature Point Matching using a Hermitian Property Matrix

−20 −15 −10 −5 0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

1.2

Distance

W
ei

gh
t

 

 
Gaussian
Sigmoidal
Increasing
Euclidian

(a)

0 20 40 60 80 100 120 140 160 180 200
0

10

20

30

40

50

60

70

80

90

100

Graph Size (No. of nodes)

C
or

re
ct

 C
or

re
sp

on
de

nc
e 

(p
er

ce
nt

)

 

 

Gaussian
Increasing
Eudlidean
Sigmoidal

(b)

Figure 3.2: Weighting Functions. a) Graph of the four weighting functions b)
Performance of the four weighting functions on graphs of different sizes.

in the same row or in the same column of the matrix and hence arereal numbers.

Hii =
∑

j 6=i

e−r2ij/2σ
2

(3.4)

3.4.2 Weighting Functions

In (Carcassoni & Hancock 2003) the authors have suggested using different ways

of constructing the weighted point-proximity matrix. Theyhave used four dif-

ferent weighting functions, i.e. Gaussian, sigmoidal, Euclidean and increasing

weighting functions and have shown that the increasing weighting function out-

performs the others. These weighting functions are defined in the following sub-

sections.

3.4.2.1 Gaussian Weighting Function

Using the Gaussian weighting function is the standard way torepresent the ad-

jacency relationship between the points. Ifi andj are two data points then the
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corresponding elements of the proximity matrixH is computed as

H(i, j) = exp(−d2ij/2σ
2)

whered2ij is the squared distance between the points andσ controls the width of

the weighting function.

3.4.2.2 Increasing Weighting Function

The following increasing weighting function can be used to compute the ele-

ments of the proximity matrixH.

H(i, j) =
1

1 + 1
s
||dij||

where the parameters controls the width of the function anddij is distance

between pointsi andj

3.4.2.3 Sigmoidal Weighting Function

The following sigmoidal weighting function is used to construct the proximity

matrixH.

H(i, j) =
2

π||dij||
tanh(

π

s
||dij||)

where the parameters controls the width of the function anddij is distance

between pointsi andj
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3.4.2.4 Euclidean Weighting Function

The Euclidean weighting function decreases linearly with the distance which can

be define as

H(i, j) =























1 if dij < s1

1− 1
s2−s1

if s1 < dij < s2

0 otherwise

wheres1 is the half-width of the ceiling of the function,s2 is the half-width of

the base anddij is distance between pointsi andj.

The graphs of those weighting functions are shown in Figure 3.2(a). We

have empirically confirmed the performance of the those weighting functions

on graphs of different sizes. Figure 3.2(b) shows that the performance of all

the four weighting functions is same when used with smaller graphs (with less

number of nodes). However, with increase in the number of node of graph being

matched, the performance of the functions decreases. With larger graphs the best

performance is obtained by using the increasing weighting function.

Since the matching performance of the weighting functions mentioned above

is same for smaller graphs, therefore, we use Gaussian weighting function for

the real-world data where the nodes are extracted from images. However for

the synthetic data, with large random graphs of more than 60 nodes, we use the

increasing weighting function. In case of the Hermitian property matrix, angular

measurements are used to compute the complex elements of thematrix. Those

elements are scaled by the weights computed using a Gaussianor increasing

weighting function depending on the number of nodes in the graph.
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3.4.3 SIFT Feature Orientation

To acquire angles at each node we use the SIFT (Lowe 2004) feature extraction

algorithm. The angle/orientation at each feature point is calculated as follows.

A gradient orientation histogram is computed in the neighbourhood of the fea-

ture point (using the Gaussian image at the closest scale to the feature point’s

scale). Peaks in the orientation histogram correspond to dominant direction of

local gradients. For a pointI(x, y) in the image, the orientationθ(x, y) and the

scale of gradientm(x, y) are computed as:

m(x, y) =
√

(I(x+ 1, y)− I(x− 1, y))2 + (I(x, y + 1)− I(x, y − 1))2)

θ(x, y) = tan−1(I(x, y + 1)− I(x, y − 1))/(I(x+ 1, y)− I(x− 1, y)))

Some feature points may have more than two or more peaks in their cor-

responding orientation histograms. In that case, an additional feature point is

created at the same spatial location for the angles corresponding to the peaks

in the histogram which are 80 percent of the maximum value of the histogram.

Therefore, some of the points may have more than one orientation assigned to it.

A feature point in the first image of the sequence may have one angle assigned

to it while the corresponding feature point in the second image may have two

angle assigned to it or vice versa. This causes to change the number of feature

points initially extracted from the image, which could in turn badly affect the

computation of the correct correspondence matching. Therefore, we need to

remove the extra angle associated with each point in both of the input images.

In figure 3.3 two frames of the CMU/VASC image sequence (left column)

and their corresponding SIFT histograms of the extracted points (right column)

have been shown . The first image (figure 3.3(a)) is the 1st frame while the second
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Figure 3.3: Feature points with multiple SIFT angles. a) CMU/VASC house
sequence frame 1. b) Local gradient histograms of feature points in figure (a) on
the left hand side. c) CMU/VASC house sequence frame 20. d) Local gradient
histograms of feature points in figure (c) on the left hand side.

image (figure 3.3(c)) is the 20th frame of the sequence. Note that in both frames

each feature point extracted has orientation(s) associated with it. There are two

angles associated with one point (labelled as 6) in both of the frames (marked

with red circle). However, there is a point (labelled as 9) inthe first image to

which two angles have been associated but the correspondingpoint (labelled as

9) in the second image has only one angle assigned to it (marked with green

circle). This could cause wrong matching of the points. Therefore, we need to

remove one of the angles from the feature point marked with green circle in the

first image.

In this subsection we explain how to analyse the local gradient histograms

computed at the feature points to remove any extra angle associated. We take a
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simple but an effective approach. The local gradient histogram has the angular

information stored in a histogram bin indexed by angular interval of ten degree

each. We compute the normalized correlation between a pair of histograms to

find how similar they are. Suppose the input histograms areA andB. The

normalized correlationC between them can be computed as

C =

∑N
i=1(Ai − Ā)(Bi − B̄)

N × σ(A)σ(B)
(3.5)

whereN is the number of bins in both the histogramsA andB, Ā andB̄ are the

means of histogramsA andB respectively, andσ(A) andσ(B) are the standard

deviations of histogramsA andB respectively.

First we normalize the gradient histograms by dividing all the bin values by

the maximum value, so that in each histogram the maximum value becomes one.

Then, we enumerate all those points which have more than one angle associated

with it, in first image. We take the first pointP1 with more than one angles in

the first image and search for the points having similar histograms within some

radiusr in the second image. Next, we suppress one of the angles in thehis-

togram ofP1 in the first image and search again for the points having similar

histogram within the radiusr in the second image. Then, we suppress the other

angle in the histogram ofP1 in the first image and find feature point having sim-

ilar histogram in the same way. Now we have three similarity measures. If the

first one is maximum of them, we keep both angles associated with P1. If the

second similarity measure is maximum of the three we remove the first angle at

P1 and keep the second one. In case, the third similarity measure is maximum of

the three, we keep the first angle and remove the second angle at pointP1. The

same procedure can be generalized to the case where more thantwo angles are

associated to one feature point. We repeat this process for all the points having
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more than one angle assigned to it. The extra angles associated to the feature

points in the second image are removed by repeating the same procedure.

3.5 Correspondence Matching

In this section we describe the feature point correspondence matching algorithm

and show how it uses the eigenvectors of a Hermitian propertymatrix. The idea

behind the graph spectral methods for computing the featurecorrespondence is

to use the eigenvectors of the graph as signature of the points in a high dimen-

sional space. Each row of the modal/eigenvector matrix represents one point.

Correspondences are computed by finding the distances between each pair of the

rows of modal matrices.

Once we haveH andH ′ to hand we perform the eigen decomposition, i.e.

H = V ΛV T andH ′ = V ′Λ′V ′T whereV andV ′ are the modal matrices of the

imagesI andI ′ respectively, with complex eigenvectors as its columns,Λ andΛ′

are the diagonal matrices with real eigenvalues along theirprincipal diagonals.

Each row of the modal matrixV is afeature vector Fi, while each row of the

modal matrixV ′ is afeature vector F ′
j .

V =





















F1

F2

...

Fm





















, V ′ =





















F ′
1

F ′
2

...

F ′
n





















The least significant|m − n| eigenvectors and the feature vectors are discarded

from the larger modal matrix, in the case whereV andV ′ are of different sizes.

The next step is to calculate the correspondence probabilities matrixζ from
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the feature vectors Fi of the imageI andF ′
j of the imageI ′ by taking the

Euclidean distances between each pair of the feature vectors of both images using

the following binary decision.

ζij =











1, if j = argminj′‖Fi − F ′
j′‖2

0, otherwise

i = 1...|m−n|, j = 1...|m−n|. However, before computing the correspondence

probabilities, the eigenvector normalization step is performed. Since, the eigen-

vector are complex, we add the angles of the eigenvector components in a head

to tail fashion, and subtract the resultant angle from each eigenvector component

so thatarg(
∑

i φij) = 0. Correspondence matches are given by the elements in

the matrixζ which are maximum (one) in their row and column.

3.5.1 Expectation Maximization

An Expectation-Maximization (EM) algorithm originally proposed by Dempster,

Laird and Rubin (Dempster et al. 1977) is a method for finding maximum likeli-

hood estimates of parameters in statistical models, where the model depends on

unobserved latent variables. EM is an iterative method which alternates between

performing an expectation (E) step, which computes the expectation of the log-

likelihood evaluated using the current estimate for the latent variables, and a

maximization (M) step, which computes parameters maximizing the expected

log-likelihood found in the E step. These parameter-estimates are then used to

determine the distribution of the latent variables in the next E step.

Although spectral methods are robust, they are sensitive tonoise and struc-

tural errors. To cope with this problem several researchershave used the stat-

istical framework of EM algorithm. One of the earliest examples of using EM
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algorithm for feature correspondence matching is the work of Cross and Hancock

(Cross & Hancock 1998). They extended the standard EM algorithm by intro-

ducing structural consistency constraints to the correspondence matches. This is

done by gating contributions to the expected log-likelihood function according

to their structural consistency. This so-called dual step EM algorithm simultan-

eously locates point correspondences and parameters of theaffine or perspective

transformation matrix underlying the motion. Since this method uses a diction-

ary based approach to compute the correspondence probabilities, it is very time

consuming. Carcassoni and Hancock (Carcassoni & Hancock 2003) later im-

proved the efficiency of the dual step EM algorithm by using the eigenvectors

and the eigenvalues of the point proximity matrix to computethe gating weights

for the expected log-likelihood function.

Here, we use the complex point proximity (Hermitian) matrixin the iterative

framework of EM algorithm for point pattern matching proposed by Carcassoni

and Hancock (Carcassoni & Hancock 2003). The experimental results show that

embedding the Hermitian matrix into Carcassoni’s method makes it more robust

to the random point-position jitter and rotation.

3.5.2 Carcassoni’s EM Algorithm

SupposeT (n) is the affine geometric transformation matrix that best aligns a set

of image feature points~w with the feature points~z in a model. Each point is en-

coded in homogeneous co-ordinates. i.e.~wi = (xi, yi, 1)
T and~zj = (xj , yj, 1)

T .

There are six transformation parameters, which model the translation inx andy

directions, the rotation, the scaling, the shear inx and the shear iny direction.
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These parameters are combined into the transformation matrix as

T (n) =













t
(n)
1,1 t

(n)
1,2 t

(n)
1,3

t
(n)
1,2 t

(n)
2,2 t

(n)
2,3

0 0 1













(3.6)

The new transformed co-ordinates are computed from the pervious co-ordinates

using the following matrix multiplication

~w
(n)
i = T (n) ~w

(n−1)
i (3.7)

here the superscriptn shows that the parameters are taken fromnth iteration.

Carcassoni and Hancock’s iterative EM algorithm matches point-features across

a pair of images. They have shown how structural constraintscan be embedded

in an EM algorithm for point alignment under affine and perspective distortion.

Graph-spectra are used to compute the required correspondence probabilities.

Point correspondence matching and the parameters of the affine transformation

matrix underlying the motion are simultaneously computed,so as to maximize

the expected log-likelihood function:

Q(T (n+1)|T (n)) =
∑

i∈D

∑

j∈M
P (~zj|~wi, T (n))ζ

(n)
i,j × ln p(~wi|~zj , T (n+1)) (3.8)

whereD is the set of data feature points~wi, M is the set of model feature points

~zj . The measurement densitiesp(~wi|~zj , T (n+1)) model the distribution of error-

residuals between the two point sets. The log-likelihood contributions at iteration

n+ 1 are weighted by the a posteriori measurement probabilitiesP (~zj |~wi, T (n))

computed at the previous iteration. The individual contributions to the expected

log-likelihood function are gated by the structural matching probabilitiesζ (n)i,j .
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Under the assignment of Gaussian alignment errors, in the point positions, the

correspondence probability matrix is give as

ζ
(n)
i,j =

∑o
l=1 exp[−µ ‖ V

(n)
D (i, l)− VM(j, l) ‖2]

∑

j′∈M
∑o

l=1 exp[−µ ‖ V
(n)
D (i, l)− VM(j′, l) ‖2]

(3.9)

whereo = min(|D|, |M |). The resulting matrixζ haso rows ando columns.

3.5.2.1 E-Step

In the E step of the algorithm the a posteriori probabilitiesof the points~zj are

updated. The a posteriori probabilities can be written in terms of the conditional

measurement densities using the Bayes rule.

P (~zj |~wi, T (n)) =
α
(n)
j p(~wi|~zj , T (n+1))

∑

j′∈M α
(n)
j′ p(~wi|~zj′, T (n+1))

(3.10)

where the mixing proportions are calculated asα
(n+1)
j = 1

|D|Σi∈DP (~zj|~wi, T (n))

The conditional measurement densitiesp(~wi|~zj , T (n)) can be defined in terms of

a multivariate Gaussian distribution.

p(~wi|~zj, T (n)) =
1

2π
√

|Σ|
× exp

[

−1

2
(~zj − T (n) ~wi)

TΣ−1(~zj − T (n) ~wi)

]

(3.11)

3.5.2.2 M-Step

The dual step EM algorithm originally proposed in (Cross & Hancock 1998) it-

erates between the two interleaved maximization steps. Thefirst step maximizes

the a posteriori probability correspondence estimating correspondence assign-

ments. The second one locates maximum likelihood for alignment parameters

estimation. The update formula to maximize the a posterioriprobability of the
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structural match is

fn+1(i) = argmax
j∈M

P (~zj|~wi, T (n))ζ
(n)
i,j (3.12)

The maximum-likelihood affine transformation parametersa
(n+1)
k,l for k=1,2 and

l=1,2,3 are found by solving the following saddle-point equations, which can be

solved using matrix inversion.

∂Q(T (n+1)|T (n))

∂a
(n+1)
k,l

= 0 (3.13)

T (n+1) =

[

∑

i∈D

∑

j∈M
P (~zj|~wi, T (n))ζ

(n)
i,j ~wiU

T ~wT
i Σ

−1

]−1

×
[

∑

i∈D

∑

j∈M
P (~zj|~wi, T (n))ζ

(n)
i,j ~zjU

T ~wT
i Σ

−1

] (3.14)

whereΣ is the variance-covariance matrix for the position errors.The element of

the matrixU are the partial derivatives of the affine transformation matrix with

respect to the individual parameters, i.e.

U =













1 1 1

1 1 1

0 0 0













(3.15)

A set of improved transformation parameters are computed ateach iteration.

Once the improved parameters are found, the a posteriori measurement probab-

ilities are updated using the Bayes theorem.
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3.6 Computational Complexity

Following are the steps of the algorithm developed in this chapter.

3.6.1 Steps

1. N number of feature of points are extracted from the input images using

a feature points detector (Harris & Stephens 1988) or (Lucas& Kanade

1981). Angles are computed using using Vedaldi’s MATLAB/C imple-

mentation (Vedaldi 2006) of the SIFT detector.

2. A Hermitian matrix is constructed using the distances between each pair

of feature points and the SIFT angles computed at each feature point.

Hi,j = e(−(d2ij/2σ
2)) × eι(θi−θi)

3. The eigenvalues and eigenvectors of the Hermitian matrixare computed.

H = ΦΛΦT

4. The correspondence probabilities are computed to construct the associ-

ation matrixζ from the eigenvectors of the Hermitian matrices.

ζ
(n)
i,j =

∑o
l=1 exp[−µ ‖ Φ(n)(i, l)− Φ′(j, l) ‖2]

∑

j′∈M
∑o

l=1 exp[−µ ‖ Φ(n)(i, l)− Φ′(j′, l) ‖2]

whereΦ andΦ′ are the corresponding eigenvector matrices constructed

using the feature points extracted from the two input images.

5. The association matrixζ is embedded into the iterative framework of EM
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algorithm for point pattern matching proposed by Carcassoni and Han-

cock (Carcassoni & Hancock 2003).

3.6.2 Complexity

LetM andN be the number of feature points extracted from the two input images

respectively. Without the loss of generality, we can assumethatM > N . Step 2

takes quadratic time to construct the Hermitian matrix. Theeigen-decomposition

of each matrix takes cubic time in number of feature points, and so the total com-

plexity of this step becomes O(M3) + O(N3). Finally computing the association

matrix also takes quadratic time. Hence the total running time is O(M2) + O(N2)

+ O(M3) + O(N3) = O(M3).

3.7 Experimental Results

In this section of the chapter, we provide some experimentalinvestigations of

the correspondence matching using the complex Laplacian matrix to evaluate

its performance. We focus on its use in two different settings. The first is an

investigation of using the standard proximity matrix and its Hermitian counter-

part in the Shapiro-Brady (Shapiro & Brady 1992) algorithm.The second is a

similar investigation for the Carcassoni-Hancock (Carcassoni & Hancock 2003)

algorithm. In both settings, we experiment with synthetic and real world data.

To compare the performance of using the Hermitian property matrix when de-

formations are present, experiments are performed on synthetically generated

data where 2D translation, rotation and scaling are added. The effect of missing

points and random point jitter in terms of 2D Gaussian randommatrices with

different covariance are also tested.
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Figure 3.4: Synthetic Dataset

3.7.1 Synthetic Data

Here, we perform a number of experiments on the synthetic data to investigate

the correspondence matching using the Hermitian property matrix. We perform

experiments to evaluate our approach on four point sets which are generated

as follows. First, we take 27 points along the border of the English alphabet

letter Y. Second, we take 20 points along the silhouette of a butterfly. Third, we

take 30 equally spaced points along the silhouette of a bottle. Finally, we take

random point sets of size 25 to 500. The first three point sets are shown in the

figure 3.4. Note that each feature point has a vector associated with it. We need

the difference of angles associated with each pair of feature points to construct

the Hermitian property matrix detailed in Section 3.3. We investigate two sources

of error. The first of these is random measurement error or point-position jitter.

Here we subject the positions of the points to Gaussian measurement error. The

second source of error is structural. Here we randomly delete controlled number

of points. This type of the error is most destructive for the spectral methods.

In our first experiment, we take a feature point set and make a copy of it.

We apply different affine geometric transformation (i.e. translation, rotation and

scaling) to the second copy. We construct Hermitian matrices from both of the

locations of the feature points and the angles associated with them. We compute

the correspondences from the corresponding eigenvectors of the two Hermitian
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matrices as detailed in Section 3.5. Some of the results are shown in figure 3.5

which show that the proposed approach has the ability to compute the correct

correspondences under different affine geometric transformations.

In the second experiment, we evaluate the performance of theproposed ap-

proach on the synthetic data with controlled point-position jitter. We choose 30

feature points taken along the silhouette of a bottle shown in figure 3.4(c). We

take a copy of the point set and subject the positions and the angles associated

with the feature points to Gaussian measurement error. We then compute the

correspondences from the eigenvectors of the Hermitian matrix computed from

both point sets. The results are compared with Shapiro-Brady algorithm applied

to the same point sets. The correspondence results of both Shapiro & Brady al-

gorithm and its Hermitian counterpart are shown in figure 3.6. The left column

(figure 3.6(a) and figure 3.6(b)) shows the point matching using the Hermitian

matrix. The right column (3.6(c) and 3.6(d)) shows the pointmatching using

Shapiro-Brady (Shapiro & Brady 1992) method. The upper and lower rows have

noise ofσ = 0.1 andσ = 0.2 added respectively.

In the third experiment, the performance of our method is evaluated on the

random point sets. We take random point set of size 25 to 300. We experi-

ment on this data set on the problem of correspondence with random position

jitter. Here we compare the results of using Hermitian property matrix, Shapiro

& Brady algorithm and Tang et al. (referred to as Laplacian) algorithm with in-

creasing point-position jitter. The results are shown in figure 3.7. The correct

correspondence is shown as a function of the standard deviation of the Gaussian

noise added. The results are the average of 100 runs for each value of standard

deviation used to generate the random jitter.

To test the performance of the proposed approach on the point-set of differ-

ent sizes we take random point-sets of size 20 to 450. We add a fixed amount of
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Gaussian noise to them. The size of the two point sets being matched is same.

We compare the correspondence results of the Hermitian property matrix with

that of Shapiro & Brady algorithm and Tang et al. (referred toas Laplacian). In

figure 3.8, the fraction of correct correspondences is shownas a function of the

size of the point sets. The performance of all the three methods decreases with

the increase in the size of the point sets because with the increase in the number

of points, the average inter-point distance decreases. However, the correspond-

ence matching using the Hermitian property matrix outperforms the other two

correspondence matching algorithms. The results shown arethe average of 100

runs on each size of the graph.

Next, we introduce the structural noise to the point sets by randomly deleting

a controlled proportion of points. The effect of missing points for rigid point

matching are shown in figure 3.9. Here, note that with the increase in the number

of deleted points the performance of all of the three methodsfall down abruptly.

With 50% of structural error the performance of all of the three algorithms reach

to zero.

We now turn to the use of Carcassoni’s EM algorithm. We embed the com-

plex Laplacian matrix into the framework of Carcassoni’s algorithm to render

it more robust to noise and rotation. We compare the results for the Shapiro

& Brady algorithm, the original EM algorithm (referred to asCarcassoni) and

the modified version (referred to as Carcassoni + Complex Laplacian) in fig-

ure 3.10. The results show that by embedding the complex Laplacian into the

EM algorithm, on the average, clearly improves its performance by about 5 to

10%.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.5: Correspondence matching results under different affine geometric
transformations, Correspondence under a) Translation b) Rotation c) Scaling
d) Scaling, rotation and translation e) Rotation f) Point-position jitter
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(a)

(b)

(c)

(d)

Figure 3.6: Correspondence matching with Gaussian noise added in point po-
sitions using (a) Hermitian matrixσ = 0.1 (b) Hermitian matrixσ = 0.2 (c)
Shapiro-Brady methodσ = 0.1 (d) Shapiro-Brady methodσ = 0.2

3.7.2 Real-World Data

Our final piece of experimental work focuses on real-world data. For real-world

data we evaluate our approach on images from two image sequences, namely, the

CMU/VASC model-house sequence and the Swiss chalet model house sequence.

In the first experiment, we use the CMU/VASC model-house sequence. We

compare our method (referred to as Hermitian) with other spectral point match-

ing methods i.e. Scott and Longuet-Higgins (referred to as Scott) and Carcas-

soni’s EM point alignment algorithm. Forty feature points are extracted using

Kanade-Lucas-Tomasi (Shi & Tomasi 1994) feature point extractor from each
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Figure 3.7: Effect of noise in point positions
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Figure 3.8: Effect of graph-size on correspondence matching
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Figure 3.9: Effect of structural noise
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Figure 3.10: Effect of structural noise, using Carcassoni EM + Complex Lapla-
cian
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Figure 3.11: The Swiss chalet model house sequence, with thefeature points
extracted

image. Hermitian matrices are constructed using equation 3.3 as explained in

Section 3.4. The parameterσ controls the interaction between the feature points.

The choice of the value ofσ significantly affects the performance of the al-

gorithm. Here we choose maximum of thex andy coordinates of all the fea-

ture points in the image as the value ofσ. We compute angles, at the feature

points localised, using Vedaldi’s MATLAB/C implementation (Vedaldi 2006) of

the SIFT detector and descriptor. Correspondences are computed between the1st

frame and the20th, 40th, 60th, 80th and100th frames. Figure 3.18 shows the cor-

respondence matching results of the three methods mentioned above. The match-

ing results of the 1st frame of the sequence with the other frames are shown in fig-

ure 3.12 to figure 3.16. Here, the first pair of frames (top) is the result produced

by the Scott and Longuet-Higgins (Scott & Longuet-Higgins 1991) algorithm.

The second pair(middle) is the correspondence result of theEM algorithm de-

veloped by Carcassoni and Hancock while the third pair (bottom) is the result

obtained when the Hermitian matrix is embedded in Carcassoni and Hancock’s

algorithm. Figure 3.17 shows the matching between the1st frame and the10th

frame of the CMU/VASC sequence. There are6 incorrect matches using only

spectral information. However, there are not any wrong correspondences when
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(a)

(b)

(c)

Figure 3.12: Comparing different methods, matching the1st and20th frame, a)
Carcassoni b) Scott & Longuet-Higgins c) Carcassoni + Hermitian

EM alignment algorithm is incorporated along with the complex spectral inform-

ation. We compare our method with a non-spectral method developed by Chui

and Rangarajan (Chui & Rangarajan 2000). We use the same dataset i.e. the

CMU/VASC model-house sequence. The results are shown in Table 3.1 which

shows that the performance of Chui and Rangarajan’s method referred to as TSP,
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(a)

(b)

(c)

Figure 3.13: Comparing different methods, matching the1st and40th frame, a)
Carcassoni b) Scott & Longuet-Higgins c) Carcassoni + Hermitian

decreases when the rotation in the input point-sets increases.

The second experiment we performed is on the Swiss chalet model house se-

quence. Ten frames of the sequence are shown in figure 3.11 with the extracted

feature points. The feature points are extracted using a corner detector (Harris

& Stephens 1988) which produces the point-sets of differentsizes. For instance,
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(a)

(b)

(c)

Figure 3.14: Comparing different methods, matching the1st and60th frame, a)
Carcassoni b) Scott & Longuet-Higgins c) Carcassoni + Hermitian

in the frames 01 to 10 of the sequence, the sizes of the point-sets are 30, 32, 30,

25, 25, 23, 24, 24, 22 and 25 respectively. Hermitian matrices are constructed

using equation 3.3 as explained in Section 3.4. The parameter σ controls the

interaction between the feature points. The choice of the value ofσ significantly

affects the performance of the algorithm. Here we choose maximum of thex
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(a)

(b)

(c)

Figure 3.15: Comparing different methods, matching the1st and80th frame, a)
Carcassoni b) Scott & Longuet-Higgins c) Carcassoni + Hermitian

andy coordinates of all the feature points in the image as the value of σ. We

compute angles, at the feature points localised, using Vedaldi’s MATLAB/C im-

plementation (Vedaldi 2006) of the SIFT detector and descriptor. The results of

the corresponding matching using different methods are given in Table 3.2 in

terms of the number of correct correspondences. We compare the performance
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(a)

(b)

(c)

Figure 3.16: Comparing different methods, matching the1st and100th frame, a)
Carcassoni b) Scott & Longuet-Higgins c) Carcassoni + Hermitian

of our algorithm with Chui and Rangarajan’s method, referred to as TSP, on the

Swiss chalet model house sequence. The quantitative results are shown in Table

3.2.
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(a)

(b)

Figure 3.17: Experimental results: Correspondence matching of the1st and10th

frame (a)using spectral information only (b)using EM alignment along with spec-
tral information
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Figure 3.18: Effect of viewing angle on correspondence matching
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Number of incorrect matches (out of 40)

Frame 1-20 1-40 1-60 1-80 1-100

Scott 0 0 4 7 18

Carcassoni 0 1 3 5 8

Carcassoni+Hermitian 0 0 1 3 5

TSP (non spectral) 0 3 8 13 19

Table 3.1: Performance on the CMU/VASC house sequence. The first image
frame has been matched against the20th, 40th, 60th, 80th and100th frame

Number of correct correspondences

Frame 1 2 3 4 5 6 7 8 9

# of points 30 32 30 25 25 23 24 24 22

Scott & Longuet-Higgins - 28 25 21 20 15 11 7 6

Shapiro & Brady - 28 26 21 17 14 10 9 5

Carcassoni - 30 29 27 22 20 20 19 16

Carcassoni + Hermitian - 30 30 29 24 22 22 21 19

TSP (non spectral) - 25 22 18 18 19 16 14 12

Table 3.2: Performance of different algorithms on the SwissChalet model house
sequence. The first image frame is matched against remainingnine frames

3.8 Summary

In this chapter we have investigated how the correspondencematching method of

Shapiro and Brady (Shapiro & Brady 1992) can be improved by using complex

eigenvectors of Hermitian property matrix. We added the angular information

to the proximity matrix used by Shapiro and Brady, to extend it to the complex

domain. We constructed a complex analog of a real weighted Laplacian matrix.

We used the eigenvector of complex Laplacian for the purposeof correspondence

matching. Secondly, we used the complex eigenvectors of thecomplex Lapla-
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cian matrix to calculate the correspondence probabilitiesmatrix and embed it

into Carcassoni’s EM algorithm to render it more robust to large viewing angle

change between the images being matched. We tested the proposed method on

both the synthetic data and the real world data. The experimental results on syn-

thetic and real world data both indicate that our approach works with a relatively

higher accuracy.





CHAPTER 4

Unsupervised Clustering of Human Pose using

Spectral Embedding

4.1 Introduction

Full body human pose analysis is one of the fundamental problems in computer

vision. Detecting the human pose is an important step in human behaviour ana-

lysis, action or gesture recognition. However, human pose detection is a chal-

lenging task because of the huge inter-limb and intra-limb feature variability in

both still images and image sequences. It has a wide range of potential applic-

ations such as video-gaming, human-computer interaction,security, and health-

care etc. In literature, a significant amount of work has beendone on human pose

estimation, detection, clustering and classification (Andriluka et al. 2009; John-

son & Everingham 2009; Eichner & Ferrari 2010). Agarwal and Triggs (Agar-

wal & Triggs 2006) describe a learning-based method for recovering 3D human

69
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body pose from single images and monocular image sequences.In (Rogez et al.

2012), an efficient method to jointly localize and recognizethe pose of humans

is proposed, using the randomized hierarchical cascades classifier. Here we use a

graph clustering approach using spectral methods to cluster similar human poses

produced by the Microsoft Kinect device.

Graph partitioning/clustering and classification is one ofthe most extensively

studied topics in computer vision and machine learning community. Clustering is

closely related to unsupervised learning in pattern recognition systems. Graphs

are structures formed by a set of vertices called nodes and a set of edges that

are connections between the pairs of nodes. Graph clustering is grouping similar

graphs based on structural similarity within clusters. Bunke et al. (Bunke et al.

2003) proposed a structural method referred to as the Weighted Minimum Com-

mon Supergraph (WMCS), for representing a cluster of patterns. There has been

significant amount of work aimed at using spectral graph theory (Chung 1997)

to cluster graphs. This work shows the common feature of using graph repres-

entations of the data for the graph partitioning. Luo et al. (Luo et al. 2002)

have used the discriminatory qualities of a number of features constructed from

the graph spectrum. Using the leading eigenvalues and eigenvectors of the ad-

jacency matrix they found that the leading eigenvalues havethe best capabilities

for structural comparison. There are a number of examples ofapplying pairwise

clustering methods to graph edit distances (Pavan & Pelillo2003). Recently, the

properties of the eigenvectors and eigenvalues of the Laplacian matrix of graph

have been exploited in many areas of computer vision. For instance, Shi and

Malik (Shi & Malik 2000) used the eigenvector correspondingto second smal-

lest (none zero) eigenvalue (also called Fielder vector) ofthe Laplacian matrix

to iteratively bi-partition the graph for image segmentation. The information en-

coded in the eigenvectors of the Laplacian has been used for shape registration
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(Mateus et al. 2008) and clustering. Veltkamp et al. (Leukenet al. 2008) de-

veloped a shape retrieval method using a complex Fielder vector of a Hermitian

property matrix. Recent spectral approaches use the eigenvectors corresponding

to thek smallest eigenvalues of the Laplacian matrix to embed the graph onto a

k dimensional Euclidean space (Ng et al. 2001; Yu & Shi 2003).

In this chapter we propose a clustering method using the angular information

and the distance between pair of joints, of the skeleton extracted from the Mi-

crosoft Kinect 3D sensor (Microsoft 2010). Given the skeleton acquired from

Microsoft Kinect, we commence by converting the skeletal graph to its equival-

ent line graph because we need the angles between pairs of limbs. The angle

between adjacent pair of limbs is computed by creating vectors parallel to adja-

cent limbs and taking the inverse cosine of the dot products of the vectors repres-

enting the limbs. For instance, the angle between the upper arm and lower arm is

calculated using vectors created byElbow joint to Wrist joint andElbow joint to

Shoulderjoint as shown in figure 4.5(b). We construct a Hermitian matrix using

the distance as the weights of the edges multiplied by the angles between each

pair of limbs in the form of a complex number. We use the spectrum of the Her-

mitian matrix to cluster similar human poses. The feature vectors are constructed

from the eigenvalues and eigenvectors of the Hermitian matrix of the graph. The

topology of a graph is invariant under permutation of the node labels. How-

ever, if the nodes are relabelled, the adjacency, the Laplacian and the Hermitian

matrices undergo a permutation of rows and columns. The corresponding eigen-

vector matrix undergoes a permutation of rows, i.e. the corresponding elements

of the eigenvectors undergo a permutation. To construct feature-vectors which

are invariant to the nodes labels, we use sets of symmetric polynomial coeffi-

cients. Once the feature-vectors for all the poses are to hand, we subject these

vectors to two of the classical embedding methods includingPrincipal Compon-
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Figure 4.1: Microsoft Kinect 3D depth device for Xbox 360

ent Analysis (PCA) and Multidimensional Scaling (MDS).

The remainder of the chapter is organized as follows. Section 4.2 explains

how a human pose is represented by a graph. In Section 4.3 the Hermitian matrix

is defined. The symmetric polynomials are briefly reviewed inSection 4.4.

Section 4.5 details the construction of the feature vectors. Experimental results

are provided in Section 4.8 and finally Section 4.9 concludesthe chapter.

4.2 Human Pose Representation

This section describes the processing of the graph extracted from the skeleton

acquired from the Microsoft Kinect 3D depth device for Xbox 360. It’s a spe-

cialized sensor built by Microsoft that is capable of recognizing and tracking

humans in 3D space. The Kinect has three windows at the front as shown in

the figure 4.1. The left window on the Kinect is an infrared (IR) projector; the

middle window is a colour (RGB) camera while the right windowis an infrared

sensor. The IR projector and the IR sensor work together to make a 3D depth

sensor. The IR projector emits a grid of IR light in front of it. This light is re-

flected back to the IR sensor. The pattern received by the IR sensor is decoded

in the Kinect to determine the depth information. This depthinformation is very

useful in many computer vision applications.

Using this device Shotton et al. (Shotton et al. 2011) developed a method to

extract the human body pose from a single depth image. They use the depth data
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Figure 4.2: 3D Joint Proposals Pipeline

Figure 4.3: Kinect 3D Joints, with skeletal model

in order to perform the segmentation of the human body to obtain its skeletal

model which consists of a set of joint positions. They use a huge set of human

samples to infer pixel labels through Random Forest estimation, and the skeletal

model is defined as the centroid of mass of the different denseregions using mean

shift algorithm resulting in the 3D joint proposals. Through experimental results,

they demonstrate that their algorithm is efficient and effective for reconstructing

3D human body poses, even in the presence of partial occlusions, different points

of view and under no light conditions. The process of joint proposal from the

depth image is shown in figure 4.2.

We use the Microsoft Kinect Beta 2 SDK API functions to extract the 3D joint

positions of the human skeletal model. The NUI Skeleton API provides inform-

ation about the location of players standing in front of the Kinect device, with
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Figure 4.4: Line graph example, Original graph (left) and its equivalent line
graph (right), the nodes represent the limbs

detailed position and orientation information. The data isprovided to applica-

tion code as a set of points, called skeleton positions, thatcompose a skeleton, as

shown in figure 4.3. This skeleton represents a user’s current position and pose.

The skeleton has 20 points that are called Joints in Kinect SDK.

Here, our aim is to cluster similar human poses represented by the skeleton

with 20 points acquired from the Kinect sensor using the spectral graph tech-

niques. We commence by constructing a graph representing a human pose, where

the nodes of the graph represent the joints and the edges represent the human

body limbs. We use the length of the limbs and the angle between a pair of limbs

as features. Since, we use the angles between each pair of limbs which are rep-

resented by the edges of the graph, therefore, we need to convert that graph to its

equivalent line graph so that the angular information is defined on the nodes.

The line graph of undirected graphG is another graph that represents the ad-

jacency between edges ofG. The nodes in the line graph represents the edges

of the original graphG. For instance, figure 4.4 shows an example graph and

its equivalent line graph. The original graph has 4 nodes and5 edges while the

resulting line graph has 5 nodes and 8 edges. Similarly, we convert the human

skeleton into its equivalent line graph shown in figure 4.5(a). There are 19 edges

in the original skeleton, therefore, the nodes in its equivalent line graph are 19.

The Hermitian matrix is established from the difference between the lengths of
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θ = cos
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Figure 4.5: Human skeleton graph a) Skeleton captured usingMS Kinect (left)
and its equivalent line graph (right); b) Skeleton showing the angleθ between
upper and lower arm

each pair of edges and the angles subtended by those edges. Weuse the spectra

of a Hermitian property matrix along with the coefficients ofsymmetric polyno-

mials to construct a feature vector which represents a single human pose.

4.3 Complex Laplacian (Hermitian) matrix

A Hermitian matrixH (or self-adjoint matrix) is a square matrix with complex

elements that remains unchanged under the joint operation of transposition and

complex conjugation of the elements. That is, the element intheith row andjth

column is equal to the complex conjugate of the element in thejth row andith

column, for all indicesi andj, i.e. ai,j = aj,i. Complex conjugation is denoted

by the dagger operator† i.e. H† = H. Hermitian matrices can be viewed as the

complex number extension of the symmetric matrix for real numbers. The on-

diagonal elements of a Hermitian matrix are necessarily real quantities. Each off-

diagonal element is a complex number which has two components, and therefore,

can represent a 2-component measurement.

To create a positive semi-definite Hermitian matrix of a graph, there should be
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some constraints applied on the measurement representations. Let{x1, x2, ..., xn}
be a set of measurements for the node-setV and{y1,1, y1,2, ..., yn,n} be the set of

measurements associated with the edges of the graph, in addition to the graph

weights. Each edge then has a pair of observations(Wa,b, ya,b) associated with

it. There are a number of ways in which the complex numberHa,b could repres-

ent this information, for example with the real part asW and the imaginary part

asy. However, here we follow Wilson, Hancock and Luo (Wilson et al. 2005)

and construct the complex property matrix so as to reflect theLaplacian. As a

result the off-diagonal elements ofH are chosen to be

Ha,b = −Wa,be
ιya,b

. The edge weights are encoded by the magnitude of the complexnumberHa,b

and the additional measurement by its phase. By using this encoding, the mag-

nitude of the number is the same as the original Laplacian matrix. This encoding

is suitable when measurements are angles, satisfying the conditions−π ≤ ya,b <

π andya,b = −ya,b to produce a Hermitian matrix. To ensure a positive definite

matrix, Haa should be greater than−Σb6=a|Hab|. This condition is satisfied if

Haa = xa+Σb6=aWa,b andxa ≥ 0. When defined in this way the property matrix

is a complex analogue of the weighted Laplacian matrix for the graph.

For a Hermitian matrix there is an orthogonal complete basisset of eigen-

vectors and eigenvalues i.e.Hφ = λφ. The eigenvaluesλi of Hermitian matrix

are real while the eigenvectorsφi are complex. There is a potential ambiguity in

the eigenvectors, in that any multiple of an eigenvector is asolution of the eigen-

vector equationHφ = λφ. i.e.Hαφ = λαφ. Therefore, we need two constraints

for them. Firstly, make each eigenvector of unit length vector i.e. |φi| = 1, and

secondly impose the conditionarg
∑

i φij = 0.
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4.4 Symmetric Polynomials

A symmetric polynomial is a polynomialS(x1, x2, . . . , xn) in n variables, such

that if any of the variables are interchanged, the same polynomial is obtained.

A symmetric polynomial is invariant under permutation of the variable indices.

There is a special set of symmetric polynomials referred to as theelementary

symmetric polynomial (S)that form a basis set for symmetric polynomial. The

elementary symmetric polynomials are the most fundamentalsymmetric polyno-

mials. Any symmetric polynomial can be expressed as a polynomial function of

the elementary symmetric polynomials. For a set of variablesx1, x2, . . . , xn the

elementary symmetric polynomials can be defined as:

S1(x1, x2, . . . , xn) =
n

∑

i=1

xi

S2(x1, x2, . . . , xn) =
n

∑

i=1

n
∑

j=i+1

xixj

...

Sr(x1, x2, . . . , xn) =
∑

i1<i2<...<ir

xi1xi2 . . . xir

...

Sn(x1, x2, . . . , xn) =
n
∏

i=1

xi

The power symmetric polynomial functions (P) are defined as

P1(x1, x2, . . . , xn) =
n

∑

i=1

xi

P2(x1, x2, . . . , xn) =
n

∑

i=1

x2
i

...

Pr(x1, x2, . . . , xn) =

n
∑

i=1

xr
i
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Figure 4.6: Some Examples of Poses for Experiments

...

Pn(x1, x2, . . . , xn) =

n
∑

i=1

xn
i

The elementary symmetric polynomials can be efficiently computed from

the coefficients of the power symmetric polynomials using the Newton-Girard

formula

Sr =
(−1)r+1

r

r
∑

k=1

(−1)k+rPrSr−k (4.1)

here the shortcutSr is used forSr(x1, x2, . . . , xn) andPr is used forPr(x1, x2, . . . , xn).

4.5 Feature Vectors

The skeleton of human body with twenty, 3-dimensional points representing the

joints connected by the lines representing the limbs, is acquired using the Mi-

crosoft Kinect SDK. Kinect provides the skeletal data with the rate of30 frames

per second. Figure 4.6 shows some examples of the skeletons captured with the

Kinect sensor. Each point in the skeleton is represented by athree dimensional

vectorwi = (xi, yi, zi)
T .

We used the limb joint angles and the limb length assigned by the Microsoft

Kinect SKD. We convert the skeleton into its equivalent linegraph. The line

graph of undirected graphG is another graph that represents the adjacency between
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the edges ofG. The nodes in the line graph represents the edges of the ori-

ginal graphG. We construct a Hermitian matrix from the difference between the

lengths of each pair of the edges and the angles subtended by those edges, to

reflect the Laplacian matrix as detailed in section 4.3. Given two adjacent edges

ei andej , with the nodeswk−1, wk andwk+1, wherewk is the common (middle)

node. The angle between the edgesei andej is given by

θij = cos−1

(

(wk − wk−1)
T (wk − wk+1)

||wk − wk−1|| × ||wk − wk+1||

)

(4.2)

The Hermitian matrixH has element with row indexi and column indexj is

given by

H(i, j) = −Wi,je
ιθi,j (4.3)

whereWi,j is the difference of the lengths of the edgesei and ej and θi,j is

the angle between the edgesei and ej. To obey the antisymmetric condition

θi,j = −θj,i, we multiplyθi,j by−1 if length of edgeei > ej .

With the complex matrixH to hand, we compute its eigenvalues and eigen-

vectors. The eigenvector of a Hermitian matrix are complex and the eigenvalues

are real.

H = ΦΛΦT (4.4)

whereΦ is the eigenvector matrix, with eigenvector sitting in its columns, and

Λ is a diagonal matrix with eigenvaluesλi on its main diagonal. We order the

eigenvectors according to the decreasing magnitude of the eigenvalues i.e.|λ1| >
|λ2| > . . . > |λn|. We construct a complex spectral matrixΨ for the input pose

from the eigenvalues and eigenvectors of the Hermitian matrix H by multiplying

each eigenvector by the square root of its corresponding eigenvalue as follows

Ψ =
(

√

λ1φ1|
√

λ2φ2| . . . |
√

λnφn

)

(4.5)
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whereλi are the eigenvalues andφi are their corresponding eigenvectors. From

the scaled eigenvectors in the columns of the complex spectral matrix Ψ, the

symmetric polynomial coefficients are computed. To do so we first compute the

power symmetric polynomials. From the power symmetric polynomials the ele-

mentary symmetric polynomials are computed using the Newton-Girard formula

(equation 4.1) as described in Section 4.4 (Wilson et al. 2005). Each column

of the complex spectral matrixΨ is used as input to the set of symmetric polyno-

mials. For instance, the first column(Ψ1,1,Ψ2,1, . . . ,Ψn,1)
T will produce the

polynomial coefficientsS1(Ψ1,1,Ψ2,1, . . . ,Ψn,1), S2(Ψ1,1,Ψ2,1, . . . ,Ψn,1), . . .,

Sn(Ψ1,1,Ψ2,1, . . . ,Ψn,1). We put these coefficients in the first column of a mat-

rix S. The second column of the matrixS is computed from the second column

of the spectral matrix. Similarly we can compute then coefficients for each

column of the spectral matrix and put these in the corresponding column of the

matrix S. Thenth column of the matrixS is computed from thenth column

of the spectral matrixΨ i.e. the column(Ψ1,n,Ψ2,n, . . . ,Ψn,n)
T will produce

S1(Ψ1,n,Ψ2,n, . . . ,Ψn,n),S2(Ψ1,n,Ψ2,n, . . . ,Ψn,n), . . .,Sn(Ψ1,n,Ψ2,n, . . . ,Ψn,n).

Hence, for alln columns we will haven2 coefficients. These coefficients are in-

variant to the permutation of the node labels of the input graph.

S =





















S1(C1) S1(C2) . . . S1(Cn)

S2(C1) S2(C2) . . . S2(Cn)

...
...

. . .
...

Sn(C1) Sn(C2) . . . Sn(Cn)





















(4.6)

whereS1, S2, ..., Sn are the first, second and thenth coefficients of the symmetric

polynomial, andC1, C2, ..., Cn are the first, second andnth column of the spectral

matrix Ψ respectively. The coefficients of high order polynomials tend to zero

because of the product terms in high order polynomials, therefore, we construct
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the feature vectors using the first 10 coefficients only.

Since, the coefficient of the elementary symmetric polynomials are complex

numbers, therefore, we can construct the feature-vectors in a number of ways

given below

1. LetŜ is2n×n created from then×n complex elementary symmetric poly-

nomials matrixS. The real and imaginary components of the coefficients

of symmetric polynomials are interleaved. The columns of this 2n× n are

stacked to form a long feature vectorFi for the graph representing the pose

frame.

Fi = (Ŝ1,1, Ŝ2,1, . . . , Ŝ2n,1, Ŝ1,2, Ŝ2,2, . . . , Ŝ2n,2, . . . , Ŝ1,n, Ŝ2,n, . . . , Ŝ2n,n)
T

(4.7)

2. LetΓ be the matrix whose elements be the magnitude of the components

of the complex elementary symmetric polynomial matrixS. i.e. Γi,j =

|Si,j| =
√

ℜ(Si,j)2 + ℑ(Si,j)2, whereℜ(Si,j) is the real part of the com-

plex symmetric polynomial coefficientSi,j andℑ(Si,j) is the imaginary

part ofSi,j. The columns of the matrixΓ are stacked to form a long feature

vectorFi for the graph representing the pose frame.

Fi = (Γ1,1,Γ2,1, . . . ,Γn,1,Γ1,2,Γ2,2, . . . ,Γn,2, . . . ,Γ1,n,Γ2,n, . . . ,Γn,n)
T

(4.8)

3. LetR be the matrix with its elementsRi,j be the real part of the compon-

ents of the complex elementary symmetric polynomial coefficientsSi,j.

i.e. Ri,j = ℜ(Si,j), whereℜ(Si,j) is the real part of the complex symmet-

ric polynomial coefficientSi,j. The columns of the matrixR are stacked

to form a long feature vectorFi for the graph representing the pose frame.
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The imaginary part is ignored.

Fi = (R1,1,R2,1, . . . ,Rn,1,R1,2,R2,2, . . . ,Rn,2, . . . ,R1,n,R2,n, . . . ,Rn,n)
T

(4.9)

4. Let I be the matrix with its elementsIi,j be the imaginary part of the

components of the complex elementary symmetric polynomialcoefficients

Si,j. i.e.Ii,j = ℑ(Si,j), whereℑ(Si,j) is the imaginary part of the complex

symmetric polynomial coefficientSi,j . The columns of the matrixI are

stacked to form a long feature vectorFi for the graph representing the

pose frame. The real part is discarded.

Fi = (I1,1, I2,1, . . . , In,1, I1,2, I2,2, . . . , In,2, . . . , I1,n, I2,n, . . . , In,n)
T

(4.10)

4.6 Embedding Methods

In this section we explore two different methods of embedding the graph fea-

ture vectors in a pattern space, namely Principal Components Analysis (PCA)

(Jolliffe 2002) and Multidimensional Scaling (MDS) (Kruskal & Wish 1978).

PCA finds the projection which is in the direction of maximum variance in the

data. Multidimensional scaling on the other hand, preserves the relative distance

between a pair of data. MDS is performed on a set of pairwise distance between

each pair of vectors.

4.6.1 Principal Component Analysis

Principal Components Analysis (PCA) is a popular techniquefor dimensionality

reduction. PCA transforms the input data to a new coordinatesystem such that



Embedding Methods 83

the greatest variance by any projection of the data comes to lie on the first co-

ordinate called the first principal component, the second greatest variance on the

second coordinate, and so on. We start by constructing a matrix S which has the

mean-adjusted feature vectors.S = [F1−F̄ |F2−F̄ | . . . |FN−F̄ ] from the feature

vectorsFi for the graph representing the pose frame, whereF̄ is the mean feature

vector for the given feature vectorsFi. The next step is to compute the covari-

ance matrixC by taking the productC = STS. The principal components of the

covariance matrixC are computed by subjecting it to the eigen-decomposition

C = UΛUT , whereU is the eigenvector matrix with the eigenvectors sitting in

its columns i.e.U = (u1, u2, . . . , un) andΛ is diagonal matrix with eigenval-

ues sitting on its main diagonal. Here we use the firstk leading eigenvectors to

represent the feature vectors for the graphs i.e.U = (u1, u2, . . . , uk). For visu-

alization purpose we take only 2 or 3 leading principal components. Each graph

is represented by a feature vectorFi. We project the feature vectorFi onto the

eigenspace using the equationYi = UT (Fi − F̄ )

4.6.2 Multidimensional Scaling

Multidimensional Scaling (MDS) is a technique which provides a low dimen-

sional representation of high dimensional data for visualization purpose. The

input data should be given in terms of a square, symmetric matrix of pairwise

distances between each pair of the data objects. The data object (high dimen-

sional) are represented as points in a low dimensional pattern space, such that

the Euclidean distances between the points match the input dissimilarities as

closely as possible. To commence we need to compute the pairwise distances

between the graphs representing the pose frames. We computethe Euclidean

distance between the feature vectorFi corresponding to the pair of graph rep-

resenting the pose frames. For instance, the distanced1,2 between feature vector
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F1 andF2 is computed asd1,2 = (F1 − F2)(F1 − F2)
T . The pairwise distances

dr,c are used as the elements of anN × N dissimilarity matrixU . Then, we

need to compute a matrixT whose element with rowr and columnc is give by

Trc = −1
2
[U2

rc−Û2
r.−Û2

.c+Û2
.. ], whereÛ2

r. =
1
N

∑N
c=1Urc, is the average dissimil-

arity value over therth row in the distance matrix,̂U2
.c is the dissimilarity average

value over thecth column in the distance matrix and̂U2
.. =

1
N2

∑N
r=1

∑N
c=1 Urc is

the average dissimilarity value over all rows and columns ofthe distance matrix.

Then, we subject the matrixT to eigenvector decomposition to obtain a matrix of

embedding coordinatesX. The number of non-zero eigenvalues we get is equal

to the rank of the matrixT . If the rank ofT is k, k ≤ N , then we get k non-zero

eigenvalues. We arrange thesek non-zero eigenvalues in descending order, i.e.

λ1 ≥ λ2 ≥ . . . λk ≥ 0. The corresponding ordered eigenvectors are denoted by

ui whereλi is the corresponding eigenvalue. The embedding coordinatesystem

for the graphs isX = [
√
λ1u1,

√
λ2u2, . . . ,

√
λkuk]. The embedded coordinates

vectorxi for the graphi is given byxi = (Xi,1, Xi,2, . . . , Xi,k)
T .

4.7 Computational Complexity

Following are the steps of the algorithm developed in this chapter.

4.7.1 Steps

Given the skeleton with 20 nodes

1. Compute the line graph of the Skeletal graph, as we need theangles between

pairs of limbs. The angles are computed between adjacent pair of limbs by

creating vectors parallel to the limbs and taking the inverse cosine of the

dot products of the vectors.
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2. A Hermitian matrix is constructed from the line graph using the distances

between each pair of joints and the angles between the limbs.

Hi,j = e(−(d2ij/2σ
2)) × eι(θij)

3. The eigenvalues and eigenvectors of the Hermitian matrixare computed.

H = ΦΛΦT

4. Spectral matrix is computed using the eigenvalues and eigenvectors of the

Hermitian matrix.

Ψ =
(

√

λ1φ1|
√

λ2φ2| . . . |
√

λnφn

)

5. Elementary Symmetric Polynomials are computed from the matrix Ψ and

all the columns are stacked to make a long vector which represents a pose.

To construct feature-vectors which are invariant to the node labels, we use

coefficients of the symmetric polynomials.

6. Use PCA and MDS to embed those vectors in space to cluster similar poses

4.7.2 Complexity

Since the number of nodes in each graph is fixed (i.e. 20), therefore, the execu-

tion time for this algorithm is constant.
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4.8 Experimental Results

In this section, we provide some experimental investigations of the clustering of

different human poses. We focus on two different settings. In the first setting

we perform experiments to cluster similar human poses usinga Hermitian prop-

erty matrix and compare the results with that of the real Laplacian matrix. We

also perform clustering using the Laplacian spectral pattern vectors (Luo et al.

2003) for comparison. Under the second setting we perform some experiments

to investigate which combination of the feature vectors (detailed in section 4.5)

and the embedding method (detailed in section 4.6) gives thebest set of cluster-

ing results. Under both setting we use the human skeleton data taken from the

Kinect.

Data set: Our data set consists of the human skeleton poses taken fromMi-

crosoft Kinect device, of 15 different subjects, including7 males, 6 females and

2 children. 10 different poses of each subject were recorded. 150 instances of

each pose were recorded, with slight change in the pose, position and angle.

In the first experiment, we take 5 different poses of randomlyselected sub-

jects. 100 instances of each pose are used. We construct the weighted Laplacian

matrixL = D −W for each pose using the joints as nodes of the graph and the

length of the limbs as the edges of the graph, whereD is the diagonal degree

matrix andW is the weighted adjacency matrix. The entries of the weighted

adjacency matrixW are computed using a Gaussian kernel i.e.Wij = e−d2ij/2σ
2

,

whered2ij is the squared distance between nodei and nodej. We subject the

Laplacian matrixL to eigen-decomposition i.e.L = ΦΛΦT , whereΦ is the ei-

genvector matrix, with eigenvector sitting in its columns,andΛ is a diagonal mat-

rix with eigenvaluesλi on its main diagonal. We order the eigenvectors according

to the decreasing magnitude of the eigenvalues i.e.|λ1| > |λ2| > . . . > |λn|.



Experimental Results 87

We construct a spectral matrix from the eigenvectors and theeigenvalues of the

Laplacian matrixL by multiplying each eigenvector by the square root of its

corresponding eigenvalue i.e.Ψ =
(√

λ1φ1|
√
λ2φ2| . . . |

√
λnφn

)

whereλi are

the eigenvalues andφi are their corresponding eigenvectors. From the scaled ei-

genvectors in the columns of the spectral matrixΨ, the symmetric polynomial

coefficients are computed. Since the Laplacian is a real matrix with real eigen-

values and real eigenvectors, the symmetric polynomial coefficients are also real.

We construct the feature vectorsFi from the real coefficients of symmetric poly-

nomials by stacking the columns of the coefficients matrix. We also construct the

feature vectors from the coefficients of complex symmetric polynomials estab-

lished using a Hermitian property matrix as described in section 4.3 by account-

ing the angular information along with the distances between each pair of nodes

using equation 4.7. We project both sets of feature vectors onto 2 dimensional

space using principal component analysis (PCA). Figure 4.7illustrates the result

of this comparison. Figure 4.7(a) shows the result obtainedusing the symmetric

polynomials computed from the eigenvalues and eigenvectors of the Laplacian

matrixL. Figure 4.7(b) shows the result obtained using the symmetric polyno-

mials established from the eigenvalues and eigenvectors ofthe Hermitian matrix

H. The Hermitian property matrix produces a better classification results than

the Laplacian matrix for the human skeleton data captured from Microsoft Kin-

ect device for Xbox 360, as Hermitian matrix captures more information from

the input human skeleton.

In the second experiment, we randomly choose three poses of randomly se-

lected subjects. Some examples of the input poses are shown in Figure 4.6. We

take 100 different instances of each pose. We construct the feature vectorsFi

according to the steps mentioned in Section 4.5 using equation 4.7. We then

embed the feature vectors into a three dimensional pattern-space by performing
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Figure 4.7: Comparison of clustering results using PCA witha) weighted Lapla-
cian matrix with only the distance measurements b) Hermitian property matrix
with additional angular information embedded along with the distance measure-
ments

the principal component analysis. Figure 4.8(a) shows the result of the clus-

tering using the first three eigenvectors. For comparison weestablish feature

vectors using the spectrum of Laplacian matrix of the graph representing the

human skeleton. The eigenvalues of the Laplacian has an important role in the

graph clustering algorithms. We take the smallest non-zeroeigenvalue to the

largest eigenvalue of the Laplacian matrix as components ofthe feature vector,

i.e. Fi = [λ2, λ3, . . . , λn]
T , whereL = ΦΛΦT , Λ = diag(λ1, λ2, . . . , λn) is the

diagonal matrix with eigenvalues sitting on its main diagonal and0 = λ1 ≤ λ2 ≤
. . . ≤ λn.

Similarly, we construct another set of feature vectors using the spectrum of

the Hermitian property matrixH described in section 4.3. We take the smallest

non-zero eigenvalue to the largest eigenvalue of the Hermitian matrix as com-

ponents of the feature vector, i.e.Fi = [λ2, λ3, . . . , λn]
T , whereH = ΦΛΦT ,

Λ = diag(λ1, λ2, . . . , λn) is the diagonal matrix with eigenvalues on its main

diagonal and0 = λ1 ≤ λ2 ≤ . . . ≤ λn.

We subject the three sets of feature vectors to principal component analysis



Experimental Results 89

−15

−10

−5

0

5

10

−10

−5

0

5

10

15
−20

−10

0

10

20

 

First eigenvectorSecond eigenvector 

T
hi

rd
 e

ig
en

ve
ct

or

Pose a
Pose b
Pose c

(a) 3 poses, Hermitian (Symmetric Polynomial
Coefficients)

−0.3

−0.2

−0.1

0

0.1

0.2

−0.2
−0.15

−0.1
−0.05
0

0.05
0.1

0.15
0.2

−0.4

−0.2

0

0.2

0.4

 

First eigenvectorSecond eigenvector 

T
hi

rd
 e

ig
en

ve
ct

or

Pose a
Pose b
Pose c

(b) 3 poses, Laplacian Spectra

−3

−2

−1

0

1

2

−3

−2

−1

0

1

2
−0.4

−0.2

0

0.2

0.4

 

First eigenvectorSecond eigenvector 

T
hi

rd
 e

ig
en

ve
ct

or

Pose a
Pose b
Pose c

(c) 3 poses, Hermitian Spectra

Figure 4.8: Performance of clustering, 3 poses

to embed them in a three dimensional pattern-space for visualisation. The clus-

tering results are show in figure 4.8. Figure 4.8(a) shows theclustering result

of the feature vectors constructed from the coefficients of the symmetric poly-

nomials computed from the complex spectral matrixS of the Hermitian matrix

using equation 4.7. Figure 4.8(b) shows the clustering result for the feature vec-

tors constructed from the eigenvalues of the real Laplacianmatrix as explained

above. Figure 4.8(c) shows the result for the feature vectors constructed from

the spectrum of the Hermitian matrix, i.e. the feature vector whose elements are

the eigenvalues of the Hermitian matrix. We repeat the same experiment with

five different poses. We randomly take five poses of randomly selected subjects.
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Figure 4.9: Performance of clustering, 5 poses

We construct the three set of feature vectors for all the input poses. We project

the feature vectors into a three dimensional space for visualization. The results

are shown in figure 4.9. The empirical results show that the weighed Laplacian

matrix which records the distances only as its edge weights is not suitable for

clustering the human pose data obtained from Microsoft Kinect. Both type of

feature vectors produced from the Hermitian property matrix gives better class

separation than the Laplacian matrix for the human skeletaldata.

To evaluate the clustering results we apply k-means algorithm to the embed-

ded points to obtain clusters. Then we compute the Rand indices to assess the

clustering results we get using the three type of feature vectors we construct. The
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Rand Indices

# of poses 2 3 4 5

Hermitian (Symmetric Polynomial) 0.99 0.93 0.90 0.87

Hermitian Spectrum 0.90 0.86 0.72 0.65

Laplacian Spectrum 0.52 0.21 0.13 0.08

Table 4.1: Rand Indices Comparison

Rand index is define as

RI =
X

X + Y
(4.11)

whereX is the number of agreements andY is the number of disagreements in

cluster assignment. If two objects are in the same cluster inboth the ground truth

clustering and the clustering from the experiment, this counts as an agreement.

If two objects are in the same cluster in the ground truth clustering but are in

different clusters from the experiment, this counts as a disagreement. The value

of Rand index is always between 0 and 1. Rand index of 1 means a perfect

clustering result.

Table 4.1 shows the Rand indices obtained when clustering isattempted using

different number of poses. The first row shows the Rand indices obtained using

the feature vectors constructed from the symmetric polynomial coefficients of

the Hermitian matrix detailed in section 4.3 (referred to as’Hermitian Symmet-

ric Polynomials’). The second row shows the Rand indices obtained using the

feature vectors constructed from eigenvalues of the Hermitian matrix (referred to

as ’Hermitian Spectrum’), while the third row shows the Randindices obtained

using the feature vectors constructed from eigenvalues of the Laplacian matrix

(referred to as ’Laplacian Spectrum’). The same statisticshave been shown in

the Figure 4.10 visually which shows that the clustering results using the angular

information is better than that of the Laplacian spectral pattern vectors.
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Figure 4.10: Rand Indices Comparison

In the next experiment, we investigate the combination of the feature vectors

and the embedding methods gives best results. Here again we randomly choose

five poses of randomly selected subjects. We take 150 different instances of each

pose. Then we construct four sets of feature vectorsFi according to the steps

mentioned in Section 4.5 using equation 4.7, 4.8, 4.9 and 4.10 respectively. The

first set of feature vectors is established by interleaving the real and imaginary

components of the complex coefficients of the elementary symmetric polynomi-

als and by stacking these to form long feature vectorsFi. The second set of fea-

ture vectors is constructed by taking the magnitude of the complex coefficients

of the elementary symmetric polynomials and putting them ascomponents of the

feature vectorsFi. The third set of feature vectors is constructed by putting the

real part of the complex coefficients of the elementary symmetric polynomials

into the feature vectorsFi. The imaginary part is ignored. Finally, the fourth

set of feature vectors are built using only the imaginary part of complex coef-
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Figure 4.11: Performance of clustering using different feature vectors, with PCA
(left-hand column) and MDS (right-hand column) embedding
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Rand Indices

Feature vector / Embedding method PCA MDS

Real+Imaginary part interleaved 0.9982 0.8819

Magnitude 0.9452 0.8616

Real part only 0.8817 0.7972

Imaginary part only 0.7183 0.6586

Table 4.2: Rand Indices Comparison using different featurevectors, with PCA
and MDS embedding

ficients of the elementary symmetric polynomials. The real part is disregarded.

We then embed the feature vectors into a three dimensional pattern-space by

performing the principal component analysis (PCA) and multidimensional scal-

ing (MDS). Figure 4.11 shows the results of the clustering using the first three

eigenvectors. The left-hand column shows the results obtained with PCA. The

right-hand column shows the results obtained with MDS. The first row shows the

results for the first set of feature vectors constructed using equation 4.7. Simil-

arly, second, third and fourth row show the results for the set of feature vectors

constructed using equation 4.8, 4.9 and 4.10 respectively.After embedding the

feature vectors into a three dimensional pattern space using PCA and MDS, we

locate clusters using the k-means algorithm and compute theRand indices. The

Rand indices for all the combinations are shown in Table 4.2.The feature vectors

constructed using equation 4.7 with principal component analysis (PCA) gives

the best clustering performance. The second best performance is obtained with

the feature vectors constructed using equation 4.8 with PCA. The poorest clus-

tering result is given by the feature vectors constructed using equation 4.10 with

multidimensional scaling (MDS).
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4.9 Summary

In this chapter our aim was to cluster similar human poses represented by the

skeleton with 20 points acquired from the Kinect device for Xbox 360 using the

spectral graph techniques. We studied how to extract feature vectors from the

human skeletal data acquired from the Kinect device. We converted the input

graph into its equivalent line graph. We used the spectrum ofa Hermitian prop-

erty matrix employing the angle between the limbs and the lengths of the limbs.

The nodes of the graph represented the joints and the edges represented the hu-

man body limbs. We used the length of the limbs and the angle between a pair of

limbs as features. From the spectrum of the Hermitian property matrix we con-

structed four different types of feature vectors (detailedin section 4.5) using the

complex coefficients of the symmetric polynomials. We embedded those feature

vectors into pattern-space using two embedding methods i.e. principal compon-

ent analysis (PCA) and multidimensional scaling (MDS). Forcomparison we

constructed feature vectors from the eigenvalues of the Laplacian (real) and the

eigenvalues of the Hermitian property matrix. Experimental results provided

(both quantitative and qualitative) suggest that Hermitian matrix produced best

performance with PCA for the human poses clustering problem.





CHAPTER 5

Eigenvector Sign Correction

5.1 Introduction

Correspondence matching between 2D images is the preprocessing step for a

number of computer vision algorithms. The problem of feature correspondence

matching is to find a one-to-one correspondence between feature points in a pair

of 2D images that represent an object in the image. The imagescan be taken

from a different point of view, at different times. In literature many different

methods have been presented to address the problem of correspondence match-

ing. These methods can be broadly categorized into two classes namely the non-

spectral methods (Ling & Jacobs 2007; Chui & Rangarajan 2000) and the spec-

tral methods (Shapiro & Brady 1992; Scott & Longuet-Higgins1991; Umeyama

1988). Spectral methods solve the problem using the eigenvalues and eigen-

vectors of the adjacency matrix or the Laplacian matrix (degree matrix minus the

97
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adjacency matrix) for the point set arrangement. Correspondence matchings are

computed by embedding the graphs into a common eigenspace using an eigen-

decomposition of the point-proximity matrices, where correspondences are com-

puted by closest point matching in this eigenspace. However, arbitrary determ-

ination of the signs of the eigenvectors returned by a numerical solver causes

error in correct correspondence matchings. This problem needs to be handled

and has already been reported in previous works (Shapiro & Brady 1992; Caelli

& Kosinov 2004).

In this chapter we address the problem of eigenvector sign correction for the

problem of correspondence matching. We propose a novel method that solves the

problem of eigenvector sign flipping by using the co-efficient of the symmetric

polynomials.

5.2 Eigenvector Sign Flip Problem

Spectral graph based correspondence matching algorithms commence by con-

structing the proximity matrices from the given set of points. The structural in-

formation present in the proximity matrices of the point sets are used to establish

correspondences between the point sets. The work of Shapiroand Brady (Sha-

piro & Brady 1992) is one of the earliest and state of the art algorithm. Shapiro

and Brady proposed an algorithm to match 2D feature points across a pair of im-

ages using the eigenvectors of a proximity matrix computed from the intra-image

distances between each pair of feature points. As input, thealgorithm receives a

set ofm feature pointsxi in imageI1 andn feature pointsyj in imageI2. Each

image feature point is assigned a coordinate in the higher space i.e. each 2D

point in imageI1 is mapped from 2D image-plane into anm dimensional hyper-

space, and each 2D point in imageI2 is mapped from 2D image-plane into an
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n dimensional hyperspace. This mapping is performed independently for each

image, and when the shapes of the images are similar, the corresponding feature

points coincide in the hyperspace.

The eigenvectors or the modes of a single image havingm featuresxi are

computed from a square proximity matrixH. The matrixH is created, recording

the affinity between each pair of feature points within the image.

Hij = e−d2ij/2σ
2

(5.1)

whered2ij = ||xi − xj ||2 is the squared Euclidian distance between each pair

of feature points.H is a symmetric matrix and its diagonal entries are unity.

The parameterσ controls the interaction between feature points. For smallσ

the interaction is local, while for largeσ each feature point is more globally

aware of its surroundings. The next step is to compute the eigenvaluesλi and the

eigenvectorsei of the matrixH, i.e. by solving

Hei = λiei, i = 1 . . .m,

The eigenvectors form an orthonormal basis as the eigenvectors are of unit length

and are mutually orthogonal. In matrix form

H = ΦΛΦT (5.2)

where the diagonal matrixΛ contains the eigenvalues along its diagonal in de-

creasing order. The modal matrixΦ is orthogonal and has the eigenvectors as its

column vectors i.e.Φ = [e1| . . . |em]. Each row ofΦ can be thought of a feature
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vectorFi, containing them model coordinates of feature pointi.

Φ =





















F1

F2

...

Fm





















This computation is done for both imagesI1 (with m feature points) andI2 (with

n feature points). Two sets offeature vectorsare obtained, i.e.,Fi,1 andFj,2 one

for each image respectively. The final step is to compute the association matrix

Z. The elements ofZij shows the confidence in the match between the feature

pointsxi andyj. The least significant|m − n| eigenvectors and feature vectors

are discarded from the larger modal matrix, in the case wherethe two modal

matrices are of different sizes. The best matches are given by the elements of the

association matrixZ which are smallest in their row and column. The valuesZij

is the Euclidean distance between feature vectors, i.e.

Zij = ||Fi,1 − Fj,2||2 (5.3)

However, before computing the association matrixZ, the direction of the both

sets of the eigenvectors must be made consistent. The sign ofeach eigenvector is

not unique as the signs of the eigenvectors returned by a numerical solver are as-

signed arbitrary and switching its direction does not violate the orthogonality of

the basis. When calculating the distance between two feature vectors in equation

(5.3), signs play a critical role. In case of inconsistent eigenvector signs, we need

to change the sign of feature vector components in one of the two eigenvector

matrices to be consistent with the other.

If H1 represents the proximity matrix of a set of points andH2 represents



Sign Correction Methods 101

the proximity matrix of the same set of points after reordering the labels of the

points, the two proximity matrices will contain the same measures but at different

locations. Consequently, the eigenvalues obtained from the two matrices will be

the same except that their components will be in different order. Whenm 6= n,

the eigenvalues obtained from the two proximity matricesH1 andH2 are both

order from the largest to the smallest. Similarly, the eigenvectors ofH1 and

H2 are reordered so that their order match the order of their eigenvalues. Then

m eigenvectors are used to create the feature vectors, from which the values of

matrixZ are calculated.

5.3 Sign Correction Methods

Several researchers have proposed different methods to correct the direction of

the eigenvectors. For instance,

1. Park et al. (Park et al. 2000) have suggested a method to correct the direc-

tion of the eigenvectors. LetV andV ′ be the modal matrices withe ande′

as its eigenvectors respectively. In (Park et al. 2000) eacheigenvectorei is

compared with it counterparte′i and the sign ofei is corrected so that

ei :=











ei, if ||ei + e′i|| > ||ei − e′i||

−ei, otherwise

whereei ande′i are the corresponding eigenvectors of the two adjacency

matrices computed from the two images respectively.

2. Umeyama (Umeyama 1988) has handled the problem of eigenvector sign

correction by taking the absolute values of the components of the eigen-

vector of both the modal matrices. Umeyama’s method works fine under
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three conditions. First, when noise is sufficiently low. Second, when the

eigenvalues of the proximity matrices are not very close to each other.

Third, when the rows of the absolute modal matrices are sufficiently dif-

ferent from each other.

3. Caelli and Kosinov (Caelli & Kosinov 2004) find the number of positive

and negative components for each eigenvector. The eigenvector is multi-

plied by -1 if the number of negative components is greater than the num-

ber of positive components. This is essentially a dominant sign correction,

always ensuring that there are more positive entries in eacheigenvector.

However, this is highly unreliable since specific to spectral correspond-

ence, the eigenvectors tend to have about the same number of positive and

negative entries due to orthogonality to a constant eigenvector.

4. Shapiro and Brady (Shapiro & Brady 1992) suggested a greedy approach

to correct the direction of the eigenvectors. They treat onemodal matrix as

reference basis and proceed to orient the axes of the other modal matrix one

at a time by optimizing for a correspondence cost, choosing for each that

direction which maximally aligns the two sets of feature vectors (Shapiro

1991).

5.3.1 Symmetric Polynomials

A symmetric polynomial is a polynomialS(x1, x2, . . . , xn) in n variables, such

that if any of the variables are interchanged, the same polynomial is obtained.

A symmetric polynomial is invariant under permutation of the variable indices.

Symmetric polynomials arise naturally in the study of the relation between the

roots of a polynomial in one variable and its coefficients (Wikipedia 2013). There

is a special set of symmetric polynomials referred to as theelementary symmet-
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ric polynomial (S)that form a basis set for symmetric polynomial. Any sym-

metric polynomial can be expressed as a polynomial functionof the element-

ary symmetric polynomials. For a set of variablesx1, x2, . . . , xn the elementary

symmetric polynomials can be efficiently computed using thepower symmetric

polynomials using the Newton-Girard formula detailed in section 4.4.

5.3.2 Proposed Method

Our proposed method for eigenvector direction correction is based on the use of

the coefficients of the elementary symmetric polynomials. For any two eigen-

vectors the corresponding odd coefficients have opposite sign if their directions

are not consistent with each other. Our approach is similar to that of Shapiro and

Brady, i.e. we treat one modal matrix as reference basis and proceed to orient the

axes of the other model matrix one at a time, by comparing their corresponding

coefficients of symmetric polynomials. If the corresponding odd coefficients for

the two eigenvectors have opposite sign then we multiply oneof the eigenvectors

by -1 to flip its direction. Any odd coefficients will work, forinstance, using

only the first coefficients should work. Which is essentiallythe sum of the ei-

genvector components. i.e.S1(x1, x2, . . . , xn) =
∑n

i=1 xi. However, if the sum

of the eigenvector components is nearly equal to zero then wemove to the next

odd coefficients to compare.

The Algorithm

The following steps show how to correction the sign of eigenvectors for corres-

pondence matching.

Input: Proximity matricesA andB

1. Find eigen-decomposition,A = VAΛV
T
A andB = VBΛV

T
B



104 Eigenvector Sign Correction

2. Discard the least significant eigenvectors and the feature vectors are dis-

carded from the larger modal matrix in the case whereA andB are of

different sizes. Let N be the size of the smaller matrix.

3. Compute the coefficients symmetric polynomial of each column of matrix

VA andVB, LetSA andSB be the matrices containing the coefficients in its

columns, computed from the corresponding columns of the model matrices

VA andVB respectively.

4. for v := 1 to N

i := 1

flipflag := False

while (i < N and not flipflag) do

if (SA[i, v] ∗ SB[i,v]<0) then

Flip the sign of the vth eigenvector in matrixVB

flipflag := True

end if

i := i + 2

end while

end for

5.3.3 Eigenvector Sign Correction for EM Algorithm

In Chapter 3 we have discussed the EM algorithm developed by Carcassoni (Car-

cassoni & Hancock 2003) for the point pattern matching in detail. The algorithm

works very well and offers a powerful means of estimating thetransformation

parameters. However, there is one problem that restrict theautomatic use of the

method, which is the need to initialise the parameters. The quality of the corres-
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ponding matching results very much depends on a good choice of initial values

of the parameters. The authors use classical multidimensional scaling on the

pairwise dissimilarity matricesSD (for data-points) andSM (for model-points)

computed from the given point-sets. MDS embed the dissimilarity matrices onto

a low dimensional space using the eigen-decomposition. Theembedded coordin-

ates for both the point-sets are used to compute the initial correspondence prob-

abilities for the EM algorithm to proceed.

Since, MDS uses the eigen-decomposition to embed the point-set, therefore

the embedded coordinates for both the point-sets may not align properly because

of the eigenvector sign flip problem. The EM alignment algorithm developed by

Carcassoni produces very bad result if the eigenvectors arenot made consistent

with each other by correcting their signs. This is illustrated in figure 5.2.

5.4 Computational Complexity

The steps of the algorithm are given in Section 5.3.2.

5.4.1 Complexity

Let M andN be the sizes of the two matrices. Without the loss of generality,

we can assumeM > N . The execution time for the eigen-decomposition step is

O(M3) + O(N3). Each power symmetric polynomial can be computed in O(N)

time. There areN such polynomials for each matrix, so the total running time to

compute all the power symmetric polynomials is O(N2). Finally the elementary

symmetric polynomials can be computed in linear time, once the power sym-

metric polynomials are computed. Hence the total running time of computing

symmetric polynomials becomes O(N2).

In step 4, both the outer loop and the nested loop take O(N) time. Hence the
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total time is O(N2) for step 4. Step 3 and 4, each take quadratic time in number

of points. Hence the total running time becomes O(M3) + O(N3) + O(N2) =

O(M3), whereM is the size of largest matrix.

Number of incorrect matches

Frames 1-10 1-20 1-30 1-40 1-50 1-60

Park et al. 21 29 34 37 38 37

Caelli & Kosinov 5 7 16 19 19 21

Umeyamma 0 1 5 8 13 16

Symmetric Polynomials 0 0 0 3 7 9

Table 5.1: Performance of sign correction methods on the CMU/VASC
house sequence. The first image frame has been matched against the
10th, 20th, 30th, 40th, 50th and60th frame

5.5 Experimental Results

In this section, we provide some experimental results of thecorrespondence

matching affected by the problem of eigenvector sign flipping. We use differ-

ent techniques for the eigenvector sign correction detailed in Section 5.3. We

extract 40 feature points from the1st, 10th, 20th, 30th, 40th, 50th and60th frame

of the CMU/VASC model house sequence. Table 5.1 shows the number of in-

correct correspondences obtained matching the first frame with the other frames

mentioned above. Figure 5.1 shows correspondence matchingbetween of the

feature points extracted from frame 1 and frame 30 of the CMU/VASC model

house sequence, after using four different method to correct the sign of the ei-

genvectors. The first image (figure 5.1(a)) is the result of the method proposed by

Park et al. (Park et al. 2000). The second image (figure 5.1(b)) is the result of the

method proposed by Caelli and Kosinov (Caelli & Kosinov 2004), the third im-

age (figure 5.1(c)) shows the result of the correspondence after the eigenvector
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(a)

(b)

(c)

(d)

Figure 5.1: Comparing different eigenvector direction correction methods, a)
Park et al. b) Caelli & Kosinov. c) Umeyamma. d) Symmetric Polynomials
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Figure 5.2: Effect of the eigenvector sign correction on Carcassoni’s alignment
EM algorithm, a) Embedded point without sign corrections. b) Embedded point
after sign corrections. c) Correspondence matching without sign corrections. d)
Correspondence matching after sign corrections

sign corrections using the method proposed by Umeyamma (Umeyama 1988)

and the final image (figure 5.1(d)) shows the result of the correspondence after

the eigenvector sign corrections using the coefficients of symmetric polynomials.
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Figure 5.3: Effect of increasing noise on correct correspondences using different
eigenvector sign correction strategies

It is clear from the figure that out of 40 correspondences, themethod proposed

by Park et al. produces 34 wrong correspondences, the methoddeveloped by

Caelli and Kosinov produces 16 wrong correspondences, the method proposed

by Umeyamma produces 5 wrong correspondence while our proposed method

(Symmetric Polynomials) produces 100% correct correspondences.

In the next experiment, we compare the performance of the different eigen-

vectors sign correction strategies against the Gaussian noise added in the point

positions. Figure 5.3 shows the fraction of correct correspondences of the four

eigenvectors sign correction strategies as a function of the increasing random

point-position jitter. Random position jitter is simulated by adding randomly

generated position error sampled from a 2D Gaussian distribution to the data

point-set. The performance of all the methods decreases with the increase in

the noise level. However, the best performance is obtained by using the coef-
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ficients of symmetric polynomials. The next best performance is obtained by

Umeyamma’s strategy. The poorest performance is returned by the method of

Park et al.

In the final experiment, we show the results of the correspondence matching

by the EM algorithm proposed by Carcassoni (Carcassoni & Hancock 2003) with

and without the sign correction. 40 points are extracted from the 1st and 20th

frame of the CMU/VASC model house sequence for matching. Figure 5.2(a) and

5.2(b) show the embedding points of the two frames. Red crosses are the em-

bedded points from Frame 1 while the blue dots represent the embedded points

from Frame 20. Figure 5.2(a) shows the embedded points when the signs of the

eigenvectors have not been corrected. The resulting correspondences are shown

in Figure 5.2(c). Figure 5.2(b) and Figure 5.2(d) show the embedded points and

the resulting correspondences respectively when the signsof the eigenvectors

are corrected. Note that without correcting the signs of theeigenvectors the EM

alignment algorithm can not compute the correct correspondences.

5.6 Summary

In this chapter we have investigated the problem of the eigenvector sign correc-

tion for correspondences matching. The eigenvector sign correction is an import-

ant step in all graph spectral correspondence matching techniques. If the sign of

the eigenvector are not corrected properly, the robust alignment algorithms like

the one developed by Carcassoni (Carcassoni & Hancock 2003)can fail to pro-

duce good results.

We used the coefficients of the symmetric polynomials to solve the problem.

We also compared our method to some other methods already proposed in the

literature, and found that using the coefficients of the symmetric polynomials
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solved the problem better than the others.





CHAPTER 6

3D Shape Analysis using Commute Time

6.1 Introduction

The rapid advancement in the digital technology in 3D shape modelling, digit-

izing and processing has led to an increasing number of 3D models, both on the

internet and in domain specific databases. Computing the similarity between 3D

shapes is a fundamental task in shape-based recognition, retrieval, clustering, and

classification. The aim of 3D shape analysis is to establish ashape descriptors

or signatures which capture the important properties of theshapes for the pur-

pose of classification, clustering, retrieval and correspondence matching. Shape

descriptors are mathematical functions which are applied to a shape and produce

numerical values which represent the shape.

Spectral methods have recently been used to establish shapedescriptors which

can also be used to measure the similarity of 3D shapes. For instance, diffusion

113
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geometry methods were used to define low dimensional representations of mani-

folds. Rustamov (Rustamov 2007) has suggested using the eigen-decomposition

of the Laplace-Beltrami operator to construct an isometricinvariant surface rep-

resentation, aiming to measure similarity between non-rigid shapes, rather than

for correspondence detection. The Global Point Signature (GPS) suggested by

Rustamov (Rustamov 2007) for shape comparison employs the discrete Laplace-

Beltrami operator, which globally captures the shape’s geometry. The Laplace-

Beltrami operator was later employed by many other researchers. For instance,

Sun et al. (Sun et al. 2009) defined a point signature based on the properties of

the heat diffusion process on a shape, referred to as the HeatKernel Signature

(HKS) for brain classification. HKS is obtained by restricting the well-known

heat kernel to the temporal domain. Ovsjanikov et al. (Ovsjanikov et al. 2010)

employed a heat diffusion process to construct the Heat Kernel Maps for the

shape matching. Castellani et al. (Castellani et al. 2011) have extended the idea

of Heat Kernel Signature (HKS). The local heat kernel valuesobserved at each

point are accumulated into a histogram for a fixed number of scales leading to the

so-called Global Heat Kernel Signature (GHKS). In a recent paper (Aubry et al.

2011), based on quantum mechanical approach, Aubry et al. have developed the

Wave Kernel Signature (WKS) for characterizing points on non-rigid 3D shapes.

They have shown that their signature performed better than the Heat Kernel Sig-

nature (HKS).

Despite significant efforts in the past ten to fifteen years, graph clustering and

classification remain an open challenge in the machine learning community. One

of the most promising approaches is to use spectral clustering methods which

exploit graph representations of the data and locate clusters by partitioning the

graph that optimize an edge cut criterion. Early spectral approaches recursively

compute the normalized cut (Shi & Malik 2000) over the graph using the first
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non-zero Laplacian eigenvector (also known as the Fiedler vector) (Chung 1997)

and are referred to as spectral bi-partitioning (SB) methods. Unfortunately, this

does not guarantee good clusters as the normalized cut is computed recursively,

irrespective of the global structure of the data (Belkin & Niyogi 2003). Qiu and

Hancock (Qiu & Hancock 2007) have used commute time for the purpose of

image segmentation and have shown that the commute time method outperforms

the normalized cut.

Recently, the graph spectral methods defined in the context of clustering have

been applied to 3D shape processing. The 3D shape is represented by a mesh

that approximates the boundary surface of the shape. In thiscontext, spectral

invariants such as the eigenfunctions of the Laplacian operator can be used for

near-isometric shape matching. For instance, Mateus et al.(Mateus et al. 2008)

used eigenmaps obtained by the firstk eigenfunctions of the Laplace operator as

low-dimensional Euclidean representations of non-rigid shapes for the purpose

of 3D point registration. Cuzzolin et al. (Cuzzolin et al. 2008) and Lee et al.

(Lee et al. 2008) have performed segmentation for mesh sequences. However,

the former method computes only protrusions, while the later uses an additional

skeleton. In (Mateus et al. 2008), the authors use locally linear embedding

(LLE) to represent a cloud of points and perform segmentation in the LLE space.

The segments obtained are then propagated across time to obtain a temporally

coherent segmentation of a voxel-sequence into protrusions of the shape. The

method works well to segment rigid body parts (such as head, hands and legs

etc), but it cannot be used directly for identifying rigid body-parts (for example,

separating the upper-arm from the lower-arm).

In this chapter we construct a novel 3D shape distribution for the purpose of

3D object classification. The method commences from a modification of the 3D

shape distribution reported in (Osada et al. 2001). Insteadof using Euclidean
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distances between pair of points on the shape, we use commute-time distance

computed from the eigenvalues and the eigenfunctions of theLaplace-Beltrami

operator. The empirical results show that the distributioncomputed using our

method gives a better shape signature than (Osada et al. 2001).

6.2 Laplace-Beltrami operator

Let f be a real valued function defined on a differentiable manifold M with

Riemannian metric. The Laplace-Beltrami operator, like the Laplacian, is the

divergence of the gradient off i.e.

∆f = div(grad(f)) (6.1)

where grad and div are the gradient and divergence on the manifold respect-

ively. The Laplace-Beltrami operator is a self-adjoint andsemi-positive definite

operator (Rosenberg 1997). The Laplacian eigenvalue problem is given by the

following equation

∆f = λf (6.2)

whereλ is the eigenvalue andf is the eigenfunction. The Laplace-Beltrami

operator has an ortho-normal eigensystem, that is a basis ofthe space of square

integrable function, with∆φi = λiφi, λ0 ≤ λ1 ≤ . . . , λi. whereλi are the

eigenvalues andφi are the corresponding eigenfunctions.

Most of the techniques (Rustamov 2007; Meyer et al. 2003) forcharacter-

izing points on non rigid 3D shapes use the eigenpairs of the Laplace-Beltrami

operator. The combinatorial Laplacian is suitable for the meshes only and it

does not contain much information about the shape. The discrete Laplacian or

Laplace-Beltrami operator captures the geometric and topological properties of
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the surface. The solution to the eigenvalue problem (equation 6.2) is approx-

imated by a piecewise linear function over a triangulation with verticespi for

i = 1, . . . , n. The discrete Laplace-Beltrami operator can be written as

∆f(pi) =
1

si

∑

j∈N(i)

wij(f(pi)− f(pj)) (6.3)

whereN(i) are the indices of all the vertices connected topi by an edge,si are

the masses related to vertexi and thewij are the weights associated with the

edges. To write the definition of discrete Laplace-Beltramioperator in equa-

tion 6.3 in the matrix form we need to define a vector~f = (f(p1), . . . , f(pn))
T

whose entries/components are the values of the functionf defined at different

verticespi, a weighted adjacency matrixW , whose entries are the weightswij

associated with the edges, a diagonal degree matrixD whose diagonal entries

Dii =
∑

j∈N(i) wij, a stiffness matrixA = D −W and a diagonal mass matrix

S whose entriesS = diag(s1, . . . , sn). Then we can define the Laplacian matrix

asL = S−1A. Here,∆f(pi) is theith component of the vectorL~f and equation

6.2 can be written asL~f = λ~f . Since,L is not symmetric due to the fact that

each row of the matrixA is divided by differentsi, therefore, equation 6.2 can

be written as a generalized eigenvalue problemA~f = λS ~f .

There are a number of ways to select the edge weightswij and the massessi

to construct the Laplacian matrix. One way is to take the weightswij equal to

1 if the vertexpi is connected with the vertexpj and 0 if they are not connec-

ted, and assume the massessi = 1. In this way we get traditional Laplacian that

only considers the structure of the mesh and ignores the underlying geometry

of the shape. Such approaches are therefore not suitable for3D shapes. Many

schemes have been proposed to construct the discrete Laplacian that estimates

the Laplace-Beltrami operator for 3D shapes. The majority of them use the so



118 3D Shape Analysis using Commute Time

p
i

p
j

β ij

α ij

Figure 6.1: Definitions of the angles and the area appearing in the discrete
Laplace-Beltrami operator.

called cotangent scheme that uses the angles and the area of the region obtained

by joining the circumcenters of all the triangles around thevertex on the shape.

For instance, Pinkall and Polthier’s (Pinkall et al. 1993) work is one of the early

works on the geometric approaches. The weights are computedfrom the cotan-

gents of the angles opposite to the edge between vertexpi andpj as

wij =
cot(αij) + cot(βij)

2

whereαij andβij are the angles opposite to the edge betweenpi andpj as shown

in Figure 6.1. Since this methods does not include the masses, the weights com-

puted form the cotangents are very much dependent on the meshsampling. Des-

brun et al. (Desbrun et al. 1999) solved this problem by taking the average area

of the triangles at the vertexi as the massessi. Meyer at al. (Meyer et al. 2003)

modify the method of Desbrun et al. by taking the massessi equal to the area

obtained by joining the circumcenters of all the triangles around the vertexi,

shown in the Figure 6.1.

Xu (Xu 2006) modified the method proposed by Meyer et al. This modi-

fication gives better convergence properties. In this chapter we will follow Xu’s

method to construct the discrete Laplacian (Laplace-Beltrami operator).



Laplace-Beltrami operator 119

6.2.1 The generalized eigenvalue problem

For a functionf defined on the surface, the Laplacian∆f is approximated as

∆f ≈ 1

si

∑

j∈N(i)

wij[f(pj)− f(pi)]

whereN(i) are the neighbours for the vertexpi andwij is the weight assigned to

the edge between pointpi andpj . The above formula can be written as∆f ≈
Lf . HereL is the discrete Laplacian matrix. The weightwij of the edge is given

by

wi,j =
cotαij + cot βij

2
(6.4)

The angles appearing in this formula i.e.αij andβij are shown in the figure 6.1.

The areasi is also shown as the shaded region in the same figure. We compute

the Laplacian, which has the entries as follows

L(i, j) =



























∑

k w(i, k)/si if i = j

−w(i, j)/si if i andj are adjacent

0 otherwise

The standard eigenvalue problem forL isLφ = λφ, whereλ is the eigenvalue of

L andφ is the corresponding eigenvector. The areasi at each vertex is computed

as

si =
cotαij + cot βij

8
||pi − pj||2 (6.5)

Since the areassi computed at the vertices of the mesh are different, hence, the

discrete Laplacian matrixL computed is not symmetric. This may cause the

eigenvalues and eigenfunction to be complex. Therefore, wesolve the general-

ized eigenvalue problem. LetS be the diagonal matrix with entriesSii = si and
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Wij = wij be the symmetric weight matrix. SinceL = S−1W , therefore, we can

rewrite the equationLφ = λφ asS−1Wφ = λφ or

Wφ = λSφ (6.6)

Once we have the eigenvalues and eigenfunction ofL to hand, we can compute

the commute time matrix using the eigenvalues and eigenfunction.

6.3 Commute Time

In this section, we briefly review how to compute the commute time and describe

its relationship to the graph Laplacian. Commute time is theaverage time taken

by a random walker on a graph walking from a nodeu to nodev and then back

to nodeu. The commute time can be computed from the Laplacian spectrum as

it has a close relationship with the graph Laplacian and heatkernel.

Consider a weighted graph by the tripleΓ = (V,E,Ω), whereV is the set of

nodes,E ⊆ V × V is the set of edges, andΩ is the weighted adjacency matrix.

Ω(u, v) =











w(u, v) if (u, v) ∈ E

0 otherwise

wherew(u, v) is the weight on the edge(u, v) ∈ E. Furthermore, letT =

diag(du; u ∈ V ) be the diagonal weighted degree matrix with elements given

by the degrees of the nodes,du =
∑|V |

v=1 w(u, v). Theunnormalizedweighted

Laplacian matrix is given byL = T −Ω and thenormalizedweighted Laplacian
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matrix is defined to beL = T−1/2LT−1/2 and has elements

L(u, v) =



























1 if u = v

−w(u,v)√
dudv

if u 6= v and(u, v) ∈ E

0 otherwise

The spectral decomposition of the normalized Laplacian isL = ΦΛΦT where

Λ = diag(λ1, λ2, ..., λ|V |) is the diagonal matrix with the ordered eigenvalues

as the elements satisfying the condition0 = λ1 ≤ λ2 ≤ ...,≤ λ|V | andΦ =

(φ1|φ2|...|φ|V |) is the matrix with the ordered eigenvectors as columns.

The hitting timeO(u, v) of a random walk on a graph is defined as the ex-

pected number of steps before nodev is visited, commencing from nodeu. The

commute timeCT (u, v), on the other hand, is the expected time for the ran-

dom walk to travel from nodeu to reach nodev and then return. As a result

CT (u, v) = O(u, v) + O(v, u). In terms of the eigenvectors of thenormalized

Laplacian the commute time matrix is given by

CT (u, v) = vol

|V |
∑

i=2

1

λi

(

φi(u)√
du

− φi(v)√
dv

)2

(6.7)

wherevol =
∑

v∈V dv is the volume of the graph.

The commute time embedding is a mapping from the data space into a Hilbert

subspace, which preserves the original commute times. It has some properties

similar to existing embedding methods including principalcomponent analysis

(Jolliffe 2002) (PCA), the Laplacian eigenmap (Belkin & Niyogi 2003) and the

diffusion map (Lafon & Lee 2006b). The embedding of the nodesof the graph
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into a vector space that preserves commute time has the co-ordinate matrix

Θ =
√
volΛ−1/2ΦTT−1/2 (6.8)

The columns of the matrix are vectors of embedding co-ordinates for the nodes

of the graph.

6.4 Shape Clustering and Classification

The commute time embedding gives a deformation-independent embedding of

a 3D shape into a high dimensional space. In this chapter, we compute a shape

descriptor from the commute time embedding. We use Laplace-Beltrami oper-

ator detailed in Section 6.2 to estimate the Laplacian of theshape. From the

eigenvalues and eigenvectors of the Laplacian obtained, wecompute the com-

mute time matrix using the procedure given in Section 6.3. Weuse a modi-

fication of D2 distributions introduced in (Osada et al. 2001).D2 distribution

is essentially, the histogram of pairwise Euclidean distance between the points

uniformly sampled from the surface. To compute our new shapedescriptor, we

use the commute time distance instead of the Euclidean distance. The commute

time matrix is computed using the equation 6.7. Where we replace the degree of

the nodes (i.e.du anddv) by the area associated with the vertices (i.e.si. andsj

respectively). We replace thevol in the original equation by
∑

i si.

6.5 Computational Complexity

Following are the steps of the algorithm developed in this chapter.
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6.5.1 Steps

Given 3D shape withN vertices

1. Compute the Laplacian, which has the entries as follows

L(i, j) =



























∑

k w(i, k)/si if i = j

−w(i, j)/si if i andj are adjacent

0 otherwise

2. Compute the Commute Time matric using the eigenvalues (λi) and eigen-

vectors (φi) of L as

CT (u, v) = vol

|V |
∑

i=2

1

λi

(

φi(u)√
du

− φi(v)√
dv

)2

wherevol =
∑

v∈V dv is the volume of the graph

3. Take random samples (pair of points) and compute the commute time dis-

tance between them to construct a histogram (64 bins)

4. Use Bhattaharyya distance to construct the distance matrix from the given

set of histograms

5. Use MDS to embed the distance matrix in space to cluster shapes.

6.5.2 Complexity

The running time to the algorithm is dominated by the eigen-decomposition of

the Laplacian matrix. Since we are using MATLAB’seigsfunction, this time is

always less than O(N3), whereN is the number of vertices in the mesh. Each of
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Figure 6.2: The k-means clustering on the Commute Time coordinates results in
segmentation of six deformations of a 3D shape.

step 3 and 4 takes quadratic time in number of vertices. Finally MDS depends

on the eigen-decomposition, which takes cubic time in the number of vertices.

Hence, the worst case time of the proposed method is bounded by O(N3).

6.6 Experimental Results

In this section, we provide some experimental investigations of the proposed

method. We focus on the use of commute time embedding of 3D shapes in

two different settings. The first is an investigation of using the commute time

embedding for the purpose of partitioning the 3D shape into its parts. The second

investigation is about using the modified shape distribution of Osada et al (Osada

et al. 2001) computed by employing the commute time distanceinstead of the

Euclidean distance.

In our first experiment we use the commute time embedding coordinates

computed using equation 6.8 to partition six deformations of a human body

selected from the Nonrigid world 3D database (Alexander & Bronstein 2009)

shown in figure 6.2. The database contains a total of 148 objects, including

9 cats, 11 dogs, 3 wolves, 17 horses, 15 lions, 21 gorillas, 1 shark, 24 female

figures, and two different male figures, containing 15 and 20 poses. The data-

base also contains 6 centaurs, and 6 seahorses for partial similarity experiments.

Each object contains approximately 3500 vertices. Figure 6.2 shows the result
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Figure 6.3: The histogram for the six 3D shapes shown in figure6.2. a) The
commute time histogram b) The Euclidean histogram

of the 3D shape, pose invariant segmentation using the k-means clustering on the

commute time coordinates.

In the second experiment, we construct the shape distribution for six dif-

ferent deformations of each of the 3D shapes shown in figure 6.4(a). Figure

6.3(a) shows the shape descriptors for the six deformationsusing commute times.

The shape descriptors for the same six deformations using Euclidean distances

are shown in figure 6.3(b). This shows that the shape descriptor computed

using commute time is more robust to shape deformations. We find the dis-

tance between each pair of the distributions using Bhattacharyya distance (Bhat-

tacharyya 1943). We project the distance matrix into vectorspace using classical

multi-dimensional scaling (MDS). Figure 6.4 shows that thecommute time shape

distribution clusters similar shapes better than the Euclidean shape distribution.

6.7 Summary

In this chapter we have investigated how the commute time between the ver-

tices on mesh can be used to partition the 3D shape. We also used commute
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Figure 6.4: a) Three shapes used in clustering experiment (six deformations of
each shape are used). b) The classical MDS projection of the shape similarities
as computed using the commute time distributions, with Randindex = 0.77 c)
The classical MDS projection of the shape similarities as computed using the D2
distributions, with Rand index = 0.49

time distance to construct the 3D shape distribution for thepurpose of 3D shape

clustering and 3D shape classification. The empirical results show that commute

time is a better choice for shape classification problem.



CHAPTER 7

Conclusions

This chapter summarises the main contributions of the thesis and draws some

important conclusions. This includes the novel idea to use aHermitian property

matrix for the purpose of correspondence matching and graphclustering, using

the coefficients of symmetric polynomials for the eigenvector direction correc-

tion and 3D shape signature using commute time embedding.

7.1 Contributions

The general objective of this thesis is to develop frameworks using graph spec-

tral methods and apply them to a variety of applications fromcomputer vision,

for example the corresponding matching and graph clustering problems. First,

a spectral graph matching algorithm was developed using thecomplex spectrum

of a Hermitian property matrix. Second, we used the complex coefficients of the

elementary symmetric polynomials derived from the eigenvalues and the com-
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plex eigenvectors of a Hermitian property matrix for a transformed graph (line

graph) of the human skeletal graph captured using MicrosoftKinect device to

construct feature vectors. These feature vectors were embedded into pattern

space to cluster similar human poses. Third, we used the coefficients of the

elementary symmetric polynomials computed from the eigenvectors to make the

directions of a pair of eigenvectors consistent with each other for the purpose

of correspondence matching. Finally, a robust 3D shape descriptor with respect

to changes in pose and topology based on commute time embedding was de-

scribed. Next, we discussed the contributions and analyzedtheir strengths and

weaknesses, discussing possible improvements of the algorithms and suggesting

a potential future extension for more challenging correspondence matching and

clustering / classification tasks.

Spectral graph methods for correspondence matching are based on the ana-

lysis of the eigenvectors of the proximity matrix constructed from the input fea-

ture points. The idea behind the graph spectral methods for computing the fea-

ture correspondence is to use the eigenvectors of the graph as signature of the

points. These methods are elegant and mathematically well posed. However,

they break soon, in the presence of noise and structural corruptions, where the

point sets being matched are of different sizes. The novel part of the correspond-

ence matching algorithm we developed in this thesis was to extend the point

proximity matrix to the complex domain by augmenting additional angular in-

formation to it to construct a Hermitian property matrix. A Hermitian property

matrix is complex analog of a real symmetric proximity matrix. The eigenvalues

of the Hermitian matrix are real while the eigenvectors are complex. In Chapter 3

we used the complex eigenvectors of a Hermitian property matrix to compute the

correspondences between a pair of point sets. The Hermitianproperty matrix

was constructed from the distances between each pair of points and the angular
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information. For the experiments on real world data set we used the SIFT orient-

ations computed at each feature point extracted from the input image as angular

information. The complex eigenvectors of the Hermitian property matrix estab-

lished signatures of the feature points that are robust to noise in point position

jitter and rotation.

To cope with the problem of noise and structural corruptions, Carcassoni

and Hancock (Carcassoni & Hancock 2003) proposed an iterative EM algorithm

for alignment of feature point sets. We embedded the complexeigenvectors of

the Hermitian property matrix to render the EM algorithm robust to noise and

rotation in the input images being matched.

The second contribution of this thesis was the development of a human pose

clustering method using four different types of feature vectors constructed from

the coefficients of the elementary symmetric polynomials. The polynomials are

established from the eigenvalues and the complex eigenvectors of the Hermitian

property matrix. The input human skeleton acquired from theMicrosoft Kinect

device for Xbox 360 was converted to its equivalent line graph. The joints of

the human body are represented by the nodes of the graph whileedges represent

the limbs. The Hermitian property matrix was constructed from the line graph

representing a human pose.

The third contribution of this thesis was the development ofa method for cor-

rection of the sign of eigenvectors for the problem of correspondence matching.

Spectral graph methods for correspondence matching are based on the analysis

of the eigenvectors of the proximity matrix constructed from the input feature

points. Since the sign of eigenvectors are not unique, the eigenvector solver

assigns arbitrary signs to the eigenvectors computed for the pair of proxim-

ity matrices constructed from the input feature point sets.The correspondence

matches can only be computed correctly when the direction (signs) of the corres-
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ponding pair of eigenvectors are consistent with each other. We used the coeffi-

cients of the elementary symmetric polynomial establishedfrom the eigenvectors

of the proximity matrices to make the directions of the pair of eigenvectors con-

sistent with each other for the purpose of correspondence matching.

The fourth contribution of this thesis was the development of a 3D shape

descriptor which was robust to shape deformations and changes in topology. The

proposed descriptor was an extension of the D2 shape descriptor reported by

Osada et al. (Osada et al. 2001). We used commute time distance computed from

the eigenvalues and the eigenfunctions of the Laplace-Beltrami operator instead

of using Euclidean distances between pair of points on the shape.

7.2 Limitations and Future Work

The methods presented in this thesis perform very well. However, several short-

comings can be addressed by further research. Moreover, some of the topics

discussed could be extended and investigated further for subsequent improve-

ments.

Although we have experimentally shown that the correspondence matching

results obtained by using the complex eigenvectors of the Hermitian property

matrix are much better than that of the two state-of-the-artalgorithms i.e. Shapiro

and Brady point pattern matching algorithm (Shapiro & Brady1992) and Car-

cassoni and Hancock EM alignment algorithm (Carcassoni & Hancock 2003).

However, it has limitations, which need to be addressed in future research. One

of the weaknesses is that the new correspondence matching method that has been

developed is computationally expensive for large point sets. The reason for this

is that the eigen-decomposition operation is computationally expensive for large

Hermitian matrices. To reduce this overhead, we need to find methods to com-
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pute and use only the first few eigenvectors.

When we apply the proposed algorithm on real world images, weuse SIFT

orientations as angular information to construct the Hermitian property matrix

for correspondence matching. Therefore, the performance of the proposed meth-

ods depends upon the SIFT orientations. The SIFT orientations are computed

using a local gradient histogram established in the neighbourhood of the feature

points using the Gaussian image at the closest scale to the feature point scale.

The orientation histogram is divided into 36 bins of 10 degrees each, totalling

360 degrees. The peaks in the orientation histogram correspond to dominant dir-

ection of the local gradients. The highest peak in the histogram and any other

peak which is within 80% of the highest peak is used to assign the orientation to

the feature point. Therefore, the feature points with multiple peaks are assigned

multiple orientations, by creating multiple feature points at the same location but

with different orientations. If the a feature point in one image and its corres-

ponding feature point in the second image are assigned a different number of

orientations, then the matching results obtained by using the Hermitian matrix is

negatively affected. This is due to the fact that increase inthe difference between

the number of feature points extracted from the two images being matched in-

creases the probability of getting wrong matching results.Therefore we need to

remove the extra orientations before we proceed to compute the correspondences.

To address this problem we have used cross correlation between the correspond-

ing histograms to remove the extra orientations associatedwith feature points.

However, this method is not very robust and it fails, especially in the case when

more than two orientations are assigned to a feature point. Therefore, a more

general and robust method needs to be developed.

The proposed method is limited to work on 2D point sets and canhandle

only the 2D affine transformations. It would be interesting to extend the method
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to find correspondences between 3D shapes/meshes.

One possible direction to extend the algorithm presented inChapter 3 could

be the use of RANSAC algorithm. RANSAC is a stochastic algorithm that is

based on a heuristic cost function, however, our method is based on the analysis

of local consistency and EM algorithm.

In Chapter 4 we used the spectrum of a Hermitian property matrix and the

coefficient of the symmetric polynomials to cluster similarhuman poses. This

work can be used in human behaviour analysis. It would be interesting to explore

how this work can be used to build a real-time gesture recognition system.

In Chapter 6, we describe a commute-time based 3D shape descriptor that is

robust with respect to changes in pose and topology. Commute-time embedding

can not detect shape symmetry and hence can not be used to compute corres-

pondences. It would be very interesting to explore the use ofcurvatures as the

angular information to construct a Hermitian property matrix for correspondence

matching of 3D shapes.

The algorithms developed in this thesis are not confined to the field of com-

puter vision only. Their applications can be explored in many other research

fields including biometrics, molecular chemistry, social networks etc.



List of Symbols

G(V,E) A graph with node setV and edge setE

Wij The(i, j)th element of edge-weight matrixW

A The adjacency matrix of a graph

H The Hermitian matrix of a graph

D Diagonal matrix with entries, the degrees of nodes of graph

L Laplacian matrix of a graph

L The normalized Laplacian matrix of a graph

Λ The diagonal matrix consisting of eigenvalues

Φ The column matrix consisting of eigenvectors

λi Theith eigenvalue

I(x, y) A pixel of imageI at (x, y) location

ζ Correspondence probability matrix

T Transformation matrix

Pi(x) ith coefficient of power symmetric polynomial ofx
Si(x) ith coefficient of elementry symmetric polynomial ofx
Fi ith feature vector

RI Rand index

CT Commute Time matrix

Zij Association matrix
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