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Abstract

In this thesis, we aim to use the spectral graph theory toldpwe framework

to solve the problems of computer vision. The graph spenisihods are con-
cerned with using the eigenvalues and eigenvectors of tfaeety matrix or
closely related Laplacian matrix. In this thesis we devdtog methods using
spectral techniques: (1) We use a Hermitian property m&brpoint pattern

matching problem; (2) We use coefficients of symmetric poiyials to cluster
similar human poses using the skeletal representationractitom Microsoft

Kinect; (3) We use coefficients of the elementary symmeuwlgpomials to make
the direction of the eigenvectors of the proximity matricessistent with each
other for the problem of correspondence matching; (4) Wecasemute time
embedding to construct a 3D shape descriptor for the purgio3® shape clas-

sification.

In Chaptef B we address the problem of correspondence mgtdhe extend
the Laplacian matrix to the complex domain by constructirigeamitian prop-

erty matrix. We construct a Hermitian property matrix fradme spatial locations
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of the 2D feature points extracted from a pair of images ardatigular inform-
ation associated with these feature points. We constredtgrmitian property
matrix in a way that reflects the Laplacian matrix. The comgigenvectors of
the Hermitian matrix is then used to find the correspondeheeseen pairs of
points across two images. We embed the complex eigenveafttre Hermitian

property matrix in the iterative alignment EM algorithm éé&ped by Carcas-
soni and Hancock to make it robust to rotation, noise andtgmsition jitter.

Experimental results on both synthetic and real world dateelbeen presented.

Chaptef 4 develops a clustering method using four differgm of feature
vectors constructed from the complex coefficients of thenelgtary symmetric
polynomials. These polynomials are computed from the e@eers and the
complex eigenvectors of a Hermitian property matrix. Thatdee vectors are
embedded into a pattern-space using Principal Componeaiysis (PCA) and
Multidimensional Scaling (MDS) to cluster similar humarsps acquired using
the Microsoft Kinect device for Xbox 360. The Hermitian pesty matrix is
constructed from the length of the limbs and the angles sdlet# by each pair
of limbs using the three-dimensional skeletal data prodbgehe Kinect device.
The given skeleton is converted to its equivalent line gtagtompute the angles

between pairs of limbs. The joints locations are used to agene limb lengths.

In Chapter b, we describe a method to correct the sign of eeptors of
the proximity matrix for the problem of correspondence rhatg. The signs of
the eigenvectors of a proximity matrix are not unique ang plaimportant role
in computing the correspondences between a set of featimesp®/e use the
coefficients of the elementary symmetric polynomials to entiie direction of

the eigenvectors of the two proximity matrices consisteittt @ach other.

Chapteif 6 describes a 3D shape descriptor that is robustittgels in pose
and topology. The descriptor is based on the D2 shape descdgveloped by



iv Abstract

Osada et al, which is essentially the frequency distrilboutibthe Euclidian dis-
tance between randomly selected points on the surface @Dlehape. We use
the commute-time distance instead of using the Euclidiatadce between ran-
domly selected points. A new and completely unsuperviseshrsegmentation
algorithm is proposed, which is based on the commute timeeedibg of the

mesh and k-means clustering using the embedded mesh gertice



Contents

ListofTableb . .. .......... ... ... ... .. ..... vii
ListofFigureb . . .\ i
[Acknowledgemenlts . . . . . ... ... Xii
Declaratioh . . ... ........ ... .. ... ... ... ..., xiv
[L__Introduction| 1
[L.1 _Introduction and Motivation . . . . ... ............ 1
L2 Goals . ............. ... ... ... .. . . ... 4
[L.3 ThesisOverview . .. ...................... 5
2__Literature Review 9
2.1 Spectral Graph Thedry . . . ... ... .. ... .. ..... 10
2.2__Correspondence Matching .................... 11
' ON . . . . e e 16
2.4 _Graph Clustering and Classification . .. ... ......... 17
2.5 _Graph Embedding . . . . . . . .o 21
2.6 3D Shape Analysis . . . . . ..o 23
27 Summaly . ......... ... 26
[3__Feature Point Matching using a Hermitian Property Matrix| 29
B ntroductioh . . ... ... .. ... ... ... 30
13.1.1 The Correspondence Problem . . .. .......... 30
13.2__Graph Spectral Matchihg ..................... 32
13.3__Hermitian Property Matfix . . . . . . ..o 35
3.4 Hermitian Matrix Constructibn . . . . . .. ... ........ 36
3.4.1 Complexlaplacian Matfix . . . . . .. ......... 36



Vi CONTENTS

13.6.2 Comolexidy ........................ 51
3.7 Experimental ResUlts . . . . . . . . o v i 51
% ...................... 52
A . e e e e 56
B.8 Summaly . ...... ... ... 66
|4 Unsupervised Clustering of Human Pose using Spectral Emlddind 69
4.1 Introductioh . . . . ... ... 69
ON . . . . e 72
4.3 Complex Laplacian (Hermitian) matrix . . . . . . ... ... .. 57
4.4 Symmetric PolynomialS . . . . . . . ... 77
45 FeatureVectdrs . . .. ... ... ... 78

4.6.2 Multidimensional Scaling . . . .. ... ... ..... 83

M.J%%na@mp&xlty .................... 84
471 Steps . ... 84

M_@% ................... 101
5.3.1 Svymmetric Polynomials . . ... ... ... ...... 102
5.3.2 Proposed Method . . . . . . . . . . .. 103

5.3.3  Eigenvector Sign Correction for EM Algorithm . . . . . 410




CONTENTS Vi

163D Shape Analysis using Commute Time 113

6.1 INtroduction . . . . . . . 113




List of Tables

3.1 Performance on the CMU/VASC house sequence. The first im-
age frame has been matched againstie 40", 60", 80" and

100 frame . . . . ...
3.2 Performance of different algorithms on the Swiss Chaledel

| house sequence. | The first image frame is matched against re-
maining nineframes . . . . ... ... ... ... . ...

66

66

4.2 Rand Indices Comparison using different feature vectaith
PCAand MDSembedding . .. ... ... ... ......... 94

5.1 Performance of sign correction methods on the CMU/VABGsk
| sequence. The first image frame hals been matched against the
10", 20", 30", 40, 50" and60® frame . . . . . ... ... .. 106

viii



List of Figures

3.1 Correspondence Problem. a) 2D feature points. b) 30tpom
articulated shapes. . . . . . . . ... ... ... oo 31
3.2 Weighting Functions. a) Graph of the four weighting fimrs
b) Performance of the four weighting functions on graphsiief d
ferentsizes. . . . . . . .. 38
3.3 Feature points with multiple SIFT angles. a) CMU/VASQ@ée
sequence frame 1. b) Local gradient histograms of featurggo
in figure (a) on the left hand side. ¢c) CMU/VASC house sequence
frame 20. d) Local gradient histograms of feature pointgyarg
(c)onthelefthandside. . .. ... ... ............ 42

3.4 SyntheticDataget . . . .. ... ... ... ... .. 52

3.5 Correspondence matching results under different afioenet-
ric transformations, (Correspondence under a) Translabéto-
tation c) Scaling d) Scaling, rotation and translation e)a®on
f) Point-positionjitter . . . . . . ... .. oL 55
3.6 Correspondence matching with Gaussian noise addedimt po
positions using (a) Hermitian matrix= 0.1 (b) Hermitian matrix
o = 0.2 (c) Shapiro-Brady method = 0.1 (d) Shapiro-Brady
methode =0.2 . . . . .. .. .. ... .. ... 56

[3.7__Effect of noise in point positions . . . . . . ... 57

Clan . . . . . e, 58



LIST OF FIGURES

3.11 The Swiss chalet model house sequence, with the fgabures
extracted . . . . . . ... 59
3.12 Comparing different methods, matching teand20* frame,
cassoni b) Scott & Longuet-Higgins c) Carcassoni + Her
mitian . . . . . . 60
3.13 Comparing different methods, matching teand40* frame,
cassoni b) Scott & Longuet-Higgins c¢) Carcassoni + Her
mitian . . . . .. 61
3.14 Comparing different methods, matching teand60* frame,
cassoni b) Scott & Longuet-Higgins c¢) Carcassoni + Her
mitian . . . . . . 62
3.15 Comparing different methods, matching tifeand80* frame,
cassoni b) Scott & Longuet-Higgins c¢) Carcassoni + Her
mitian . . . . .. 63
3.16 Comparing different methods, matching tHeand 100" frame,
jcassoni b) Scott & Longuet-Higgins c) Carcassoni + Her
mitian . . . . .. 64
3.17 Experimental results: Correspondence matching of thand
10" frame (a)using spectral information only (b)using EM align
ment along with spectral information . . . . . .. ... .. ... 65

3.18 Effect of viewing angle on correspondence mat¢hing .. ... 65

4.3 Kinect 3D Joints, with skeletal mofel . . ... ......... 73
4.4 Line graph example, Original graph (left) and its eql@maline
graph (right), the nodes representthelimbs . . . .. ... ... 74

4.5 Human skeleton graph a) Skeleton captured using MS Kinec
(left) and its equivalent line graph (ridlht); b) Skeletorowsing
the angle) between upper and lowerarm . . . . .. .. .. .. 75
iments . . .......... 78
4.7 Comparison of clustering results using PCA with a) wiidgh
Laplacian matrix with only the distance nteasurements b} Her
mitian property matrix with additional angular informatiem-

bedded along with the distance measurements . . . . . ... .. 88
4.8 Performance of clustering, 3pdses . . . . . ... ... ..... 89
4.9 Performance of clustering, 5pdses . . . . . .. ... ... ... 90

4.11 Performance of clustering using different featuretasc with
PCA (left-hand column) and MDS (right-hand column) embeddP3




LIST OF FIGURES Xi

5.1

Comparing different eigenvector direction correctiaathods,

a) Park et al. b) Caelli & Kosinov. c) Umeyamma. d) Symmetric

5.2

Polynomials . . . . . . .. ... ... .. 107
Effect of the eigenvector sign correction on Carcassatign-

ment EM algorithm| a) Embedded point without sign corratio
b) Embedded point after sign corrections. c¢) Corresporglenc
matching without sign corrections. d) Correspondence hniadc

5.3

after signcorrections . . . . . ... ... . oL 108
Effect of increasing noise on correct correspondenses) ulif-

6.1

ferent eigenvector sign correction strategies . . . . . . . ... 109

Definitions of the angles and the area appearing in therales

6.2

Laplace-Beltramioperator. . . . . .. ... ... ........ 118
The k-means clustering on the Commute Time coordinates r

6.3

6.4

ults in segmentation of six deformations of a 3D shape. . . . 124
The histogram for the six 3D shapes shown in fiduré 6.2ha) T
commute time histogram b) The Euclidean histogram . . . . . 512
a) Three shapes used in clustering experiment (six weftwns

of each shape are usged). b) The classical MDS projectioreof th
shape similarities as computed using the commute timalalistr
tions, with Rand indegx = 0.77 c¢) The classical MDS projection
of the shape similarities as computed using the D2 disiohst

with Rand index=0.49 . . . . . . . . . . . .. . ... ..... 126



Acknowledgements

First and foremost | would like to thank almighty Allah on sessful completion

of my PhD and writing up within due time.

| feel very privileged to have Prof. Edwin Hancock as my swusar. | would
like to thank my supervisor for the help and support he hasrgne throughout
my PhD. This thesis would have not been possible withouthidance, encour-
agement and support. | am very thankful to him for his timegarstanding,
patience and support. | would like to thank my assessor, Ditlia¥ei Smith,
for his rigorous assessment of my work. | would like to tham&fP Richard
C. Wilson for his valuable suggestions. My thanks also go toAdrian Bors
and all the friends at York for their help, kindness and fdgimip. | am grateful
to my colleagues and friends, Furgan Aziz, Gul-e-SamanubhBbdseeb Malik,
Tasawer Khan, Usman Khan, Dr. Ahmad Shahid and Dr. Muhamrha&e®|
for giving me strength, self belief and all the enjoyable neoits. | owe a great
deal to my parents and my sisters for their love, encouraggnsepport and

patience. Especially, | would like to thank my wife Nazneeaskeb and my

Xil



Acknowledgements Xili

daughter Mariah Haseeb for their patience, sacrifices apdastt They have
always been there to provide me with all the moral supporinduhe period of
my PhD study in York.

I would also like to thank the University of Peshawar, Paasind the Higher
Education Commission, Pakistan, who provided me with alfftmancial support

| needed.



Declaration

This thesis has not previously been accepted in substanemyodegree and is
not being concurrently submitted in candidature for anyrdeg@ther than Doctor
of Philosophy of the University of York. This thesis is thesu& of my own
investigations, except where otherwise stated. Othercssuare acknowledged
by explicit references.

Some of the material contained in this thesis has appeartgkifollowing

published conference and workshop papers:

« Haseeb, M. and Hancock, E. R. (2011). Feature Point Magchsing
a Hermitian Property Matrix. IrfProceedings of the First International
Workshop on Similarity-Based Pattern Recognit®MBAD’11, (pp. 321
332). Berlin, Heidelberg. Springer-Verlag.

* Haseeb, M. and Hancock, E. R. (2012). 3D Shape Classificatsing
Commute Time. Eigenvector Sign Correction for Spectralr€pond-
ence Matching, SSPR/SPR, (pp. 208-215). Berlin, Heidgl®pringer-
Verlag.

Xiv



Declaration XV

» Haseeb, M. and Hancock, E. R. (2012). Unsupervised Ciangtef Hu-
man Pose using Spectral Embedding.Phoceedings of Structural, Syn-
tactic, and Statistical Pattern Recognition — Joint IAPRehmational Work-
shop SSPR/SPR, (pp. 467—-473). Berlin, Heidelberg. Springeatag.

* Haseeb, M. and Hancock, E. R. (2013). Eigenvector Signgctan for
Spectral Correspondence Matching.Rroceedings ot 7th International

Conference on Image Analysis and Processi@#AP. (accepted)






CHAPTER 1

Introduction

1.1 Introduction and Motivation

In this chapter we provide an introduction and motivationtfee research work
presented in this thesis. Graph spectral methods studyrdipegties of a graph
using its spectrum, i.e. the eigenvalues and their corredipg eigenvectors of
the adjacency matrix or the closely related Laplacian matsisociated to the
graph. Spectral graph theory has been extensively usee ifneld of computer

vision and pattern recognition in recent years and has provde a powerful

tool for different applications in the field. A large numbdrspectral methods
have been developed in the computer science literature@mtgears, appearing
in the fields of graph theory, computer vision, visualizatioomputer graphics
and machine learning. In this thesis, we aim to use the grpgttal techniques

to solve problems in the field of computer vision. We develogé methods

1
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using spectral technique for (1) point pattern matchinyyh(#nan pose cluster-
ing using the skeletal representation acquired from Muftdsinect and (3) 3D

shape classification using spectral embedding.

Point pattern matching is a fundamental step in many compigi®n tasks,
for instance, object tracking, object recognition, shapei-motion and optical
flow analysis. The problem of point pattern matching or cgpmdence match-
ing is to find one to one correspondences between two pomirsat2D space or
in 3D space. The local features of objects in an image aresepted by feature
points, for instance, the corners or edges of rigid objdetént pattern matching
is used to solve the correspondence and registration pnstlea wide range of
disciplines, including computer vision, pattern recommf computational geo-
metry, image registration, molecular biology and compatetl chemistry. For
example, in chemistry point pattern matching is used fotgancstructures align-
ment. In biometrics, itis used to match and verify the fingatp or signatures of
employees in automatic personnel identification systemst Pattern matching
is used in 3D scene reconstruction, in automatic cartogréyam photogram-

metric measurements.

There is a vast literature addressing the point pattern iraggoroblem in
pattern recognition, which can be divided broadly into twoups i.e. spectral
methods and non-spectral methods. In this thesis we foctiseospectral meth-
ods. The spectral methods use the eigenvalues and the etgers/of the affinity
matrix. The spectral methods are very elegant and have heeessfully used
to solve this problem. However, these methods fail to matelpbints correctly,
especially, when there is a difference in the size of the tg@h being matched
or in the presence of structural noise. The importance aftgmattern matching
is emphasized by the large amount of work carried out on thgstiin the lit-

erature [(Shapiro & Brady 1992; Scott & Longuet-Higgins 198arcassoni &
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Hancock 2003; Sun et al. 2009; Aubry et al. 2011). In thedit@re, many differ-
ent methods to address problems related to point patterchingtare presented.
The work presented in this thesis has the aim of improvingethsting spectral
point pattern matching methods by the introduction of a Heamproperty mat-
rix and using the complex eigenvectors of the Hermitian mdbr the purpose

of point pattern matching.

Detecting the human pose is an important step in human balraanalysis,
action or gesture recognition. However, human pose detedia challenging
task because of the huge inter-limb and intra-limb featareawility in both still
images and image sequences. To acquire the data, we usesbftdienect for
Xbox 360. Shotton et al. (Shotton et al. 2011) developed gordéhm for Mi-
crosoft Kinect to extract the human body pose from a singfgldenage. They
segment the depth image of human body into its parts androlisaskeletal
model with a set of joint positions. They demonstrate thairthlgorithm is effi-
cient and effective for reconstructing 3D human body poses & the presence
of partial occlusions, different points of view and underight conditions. We
use the spectral graph technique to cluster similar podestéchnique involves
constructing a Hermitian matrix from the input skeleton ahen embedding
the pattern vectors constructed from the complex coeffisiehthe elementary
symmetric polynomials of the eigenvalues and the complg&reiectors of the

Hermitian matrix into a pattern space for the purpose oftelirsg similar poses.

Rapid improvement in the digital technology for acquisitend processing
of 3D shapes has led to an increase in the number of 3D objeailalale. The
use of 3D shape has become very common in a number of applisaticluding
games, engineering, culture and medical research sti@iesequently, the field
of 3D shape analysis has attracted the attention of mangnasers. The basic

aim of the 3D shape analysis is to develop 3D shape desaiptosignatures
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that capture the important properties of the 3D shapes. fAtreasing interest
of researchers in different fields motivates the need toldpv&uch 3D shape
descriptors because the currently developed descripioddssification and re-
trieval of 2D shapes/images cannot be directly extende®teh&pes. Therefore,
new descriptors need to be developed that capture the ladaglabal proper-
ties of the 3D shapes. The global properties describe thelbwhape while
the local properties describe the details of the shape. rtinfately, developing
such descriptors for 3D object processing is not a simple tRecently, many
shape descriptors have been developed based on specphltgemry. In this
thesis, we construct a novel 3D shape descriptor for thegserjpf 3D object
classification. We embed the shape using commute time enrgeddd use
commute time distance computed from the eigenvalues andigeafunctions

of the Laplace-Beltrami operator to describe the shaperig¢sic

1.2 Goals

The ultimate goal of this thesis is to develop a frameworkgsgjraph spectral
methods and apply it to a variety of applications in compuigion, such as the
correspondence matching and graph clustering problemsachmve this, we

focus on:

* Introduction of a graph representation by using a Hermifieoperty mat-
rix where we associate two type of attributes to the edgesadds of the
graph. Binary attributes are associated to the edges ang attabutes

are assigned to the nodes of the graph.

» Using the complex eigenvectors of a Hermitian propertyrix&r the pur-
pose of point-pattern matching. The distance between eaicloppoints

using a Gaussian weighting function is used as the binampuaii®. The
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angular information (SIFT orientations for experimentgeal world data

sets) is used as the unary attribute.

* Embedding the complex eigenvalues and eigenvectors offaiki@n prop-
erty matrix into the iterative alignment EM algorithm of €assoni and

Hancock to make it robust to rotation and point-positiotefit

» Using the complex coefficients of the elementary symmeitoignomials
constructed from the spectrum of a Hermitian matrix to dsthldeature
vectors for the purpose of clustering human skeleton posspsir@d from

the Microsoft Kinect device for Xbox 360.

« Introduction of a 3D shape signature based on the comnmtgdmbed-

ding which is robust to changes in pose and topology.

» Using the coefficients of the elementary symmetric polyra&construc-
ted from the eigenvectors to make the direction of the eigetors pair

consistent with each other for the purpose of corresporederatching.

1.3 Thesis Overview

The previous section outlined the overall goals of the thediext, the struc-
ture of the thesis is presented. In order to set the problecontext, Chaptdr|2
will review the literature associated with spectral grapéary, correspondence
matching, graph embedding and clustering and shape segtoent classifica-
tion.

Chaptef B introduces the problem of correspondence mateimd the graph
spectral approaches to solve it. The use of a Hermitian pippe@atrix (complex
Laplacian) is introduced to improve the performance of twisteng correspond-

ence matching methods, and the performance of the new agipi®aompared
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with the existing techniques. In this chapter, a Hermitiaoperty matrix is
constructed from the 2D feature point locations extractechfa pair of images
and the angular information associated with these points.ugé spectra of a
Hermitian property matrix to compute the correspondenceinirag between the
pair of point sets. The Hermitian matrix is constructed iclsa way that it
reflects the Laplacian matrix (degree matrix minus adjagematrix). The com-
plex eigenvectors of the Hermitian matrix are embeddedtimtdEM framework
proposed by Hancock and Carcassoni (Carcassoni & Hanc@3) 2O render it

robust to the point-position jitter and rotation.

In Chaptei 44, we use the spectrum of a Hermitian propertyiratrd the
coefficient of the symmetric polynomials to cluster difier@uman poses taken
by an inexpensive 3D camera, the Microsoft Kinect for Xbo®.38 Hermitian
property matrix is constructed from the joints and the asiglébtended by each
pair of limbs using the three-dimensional skeletal dataveedd by the Kinect
device. To compute the angles between a pair of limbs, a lraphgis con-
structed from the given skeleton. We construct four différiypes of pattern
vectors from the complex coefficients of the elementary sgticpolynomials
computed from the complex eigenvectors of the Hermitiaperty matrix. The
pattern vectors are embedded into a pattern-space usingdsgical embedding
methods i.e. PCA and MDS.

In Chaptef b, the problem of eigenvector sign correctiortlierproblem of
correspondence matching is addressed. This problem isdaking the coeffi-
cient of the symmetric polynomials computed from the eigetors of the prox-

imity matrices for the corresponding point sets.

In Chaptef_6, a commute-time based 3D shape descriptor &ajpmd that
is robust to changes in pose and topology. A new and completsupervised

mesh segmentation algorithm is proposed, which is basedeoodmmute time
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embedding of the mesh and k-means clustering using the etetiedesh ver-
tices.

Finally, Chaptef]7 provides conclusions and summarisewtik presented
in the thesis and the results obtained. Some advantagefiand®snings of the
methods described in the thesis are discussed and somélpasdensions are

proposed.






CHAPTER 2

Literature Review

In this chapter, we review the main literature which is ral@vto the research
presented in this thesis. The aim of the thesis is to deveffapemt methods
for four related problems using graph spectral techniqiescomply with this
aim, we divide the content of the chapter into six parts. Wamm@nce reviewing
the spectral graph theory and its applications in the areaafje segmenta-
tion, graph clustering and graph matching in Section 2.1. révéew spectral
correspondence matching in Sectlon| 2.2, followed by a vewe eigenvector
sign correction methods for correspondence matching iid@®e2.3. We survey
graph clustering and graph classification in Secfioh 2 Hovi@d by a brief re-
view of graph embedding methods in Secfion 2.5 that we wéltosdevelop our
methods in the following chapters. In Sectlonl2.6, we revsieme methods on

3D shape analysis. Finally, we summarise the chapter.

9
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2.1 Spectral Graph Theory

Spectral graph theory (Chung 1997; Biggs 1974; Mohar 199@ikovic et al.

1980) is the branch of mathematics that studies the preseofia graph in re-
lationship to the eigenvalues and eigenvectors of the ad@cmatrix or the

closely related Laplacian matrix associated to the gragte darliest literature
on algebraic graph theory can be traced back to that of @adlatl Sinogow-
itz (Collatz & Sinogowitz 1957). This work focused on the spectrality of

graphs and the fundamental inequalities for bounding ther®alues. Since
then, a large body of literature has emerged aimed at expgidite relationship
between the spectral and structural properties of a grapls. literature is well

documented in several surveys including (Biggs 1974; Guatket al.| 1980;

Chungl 1997, Mohar 1992). Spectral graph theory has beemsaxéty used

in the field of computer vision and pattern recognition and peoved to be a
powerful tool for different applications in the field. Thelson of almost every
problem using spectral graph theory commences by constguitte adjacency
matrix or closely related Laplacian matrix (i.e. the degresdrix minus the adja-
cency matrix). Once the graph is represented in terms ofdjaE@ncy matrices,
or the Laplacian matrix, the possibility of using tools fréinear algebra to study
the properties of graphs is opened up. The graph spectransrtef the set of ei-
genvalues of the adjacency or Laplacian matrix of a grappgd#®i1974). The
spectrum can be computed efficiently (Chung 1997) usingitiadgebra tools.
The Laplacian matrix is a positive semi-definite i.e. all &f €igenvalues are
non-negative. The spectrum of a graph contains many impiopt@perties of

the graph. For instance, the isomorphism of two graphs caetermined by
their eigen spectra. The multiplicity of the zero eigeneadfithe Laplacian mat-

rix gives the number of connected components of the graph.cbiresponding
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eigenvector to the smallest non-zero eigenvalue (alsedatle Fielder vector)

of Laplacian matrix can be used to divide the nodes of thelgap two disjoint
subset of nodes. A number of data clustering and partitgpaigorithms are
based on this, for instance, (Shi & Malik 2000). Since thdgerghms deal with
partitioning the data into exactly two disjoint parts, #fere, these are applied
recursively to findk clusters. The spectrum of the Laplacian matrix has recently
been used to embed the nodes of a graph into a vector spaae, thbelusters

of nodes are found using standard clustering techniqudsasik-means. He et
al. (He et all 2005) used the eigenfunctions of the Laplad&ddei operator on

the face manifold for face recognition.

Recently, several authors have attempted to extend thty atilgraph spec-
tral methods using the complex property matrices (a Heamitnatrix). Thisis a
natural way of incorporating angular or directional infatmon with the proxim-
ity representation. For instance, Wilson, Hancock and IMfdson et al. 2005)
extended the Laplacian matrix to the complex domain and tileedomplex ei-
gen spectrum to cluster similar binary shapes. Leuken étalken et al. 2008)
developed a shape retrieval method using a complex eigemamresponding
to the smallest non-zero eigenvalue (Fielder vector) of mrtit&an property mat-
rix. In the next sections we review some of the problems irfitid of computer

vision which have been solved using spectral graph theory.

2.2 Correspondence Matching

Point/feature matching in 2D images has been well studi¢hddrcomputer vis-
ion community. The point correspondence methods can bellyroategorized
into two types. The first type of methods tries to find a trameftion mat-

rix which aligns one point-set with another and then find therespondences
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between pair of points. The second type of methods are ed&tased meth-
ods. These methods assign shape descriptors to the paantsréhinvariant to
affine or perspective transformations. Correspondenesanputed by com-
paring distances between these descriptors. The featsesl lmaethods can be
further divided into two groups namely the non-spectralmds (Ling & Jacobs
2007; Chui & Ranaaraian 2000; Lowe 2004) and the spectrahoast (Shapiro
& Brady|1992] Scott & L onguet-Higgins 1991; Umeyama 1988)aih spectral
methods compute the point descriptors using the eigenvalug eigenvectors of
the adjacency matrix or the Laplaican matrix constructedchfthe input point-
sets. In Chaptér] 3 we address the problem of feature comdspoe matching
using graph spectral techniques, therefore, this seaews some of the spec-

tral correspondence matching methods.

Computing correspondence matching using graph-spe&cahitques has
proved to be a challenging task. Recently, there have beag ateempts to use
spectral graph theory both in the abstract problem of gragttining (Umeyama
1988) and point-set matching (Shapiro & Brady 1992; Camais& Hancock
2003; Scott & Longuet-Higgins 1991 ; Mateus et al. 2008) fgots. The prob-
lem of correspondence matching is often formulated in teirgraph matching.
The matches are located between the nodes of the graph byadogghe eigen-
vectors of the corresponding adjacency matrix or Laplaomatrix. The work
of Umeyamal(Umeyama 1988) is one of the earliest to use eigeomposition
of the adjacency matrix for graphs of the same size to lotetedrrespondence
matching. His method commences by constructing the adigceratrices of
the two graphs being matched. The singular value deconposit performed
on the adjacency matrices of the two graphs separately. ptn@am matching
between two weighted graphs is found by locating the leqistie permutation

matrix. Umeyama’s method can be used for graph matchingtvath directed
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and undirected graphs. However, the method can only be usggaphs that
have the same number of nodes. The reason for this is thatgbevectors of
the adjacency matrix are unstable under the changes in theetuof nodes of

the graphs being matched.

Scott and Longuet-Higgins (Scott & Longuet-Higgins 199ajrbwed ideas
from structural chemistry and developed an algorithm tocm2D feature-points
in two images. Their study relies on the principles of praxynand exclusion,
i.e. corresponding points must be close, and each pointaandne correspond-
ing point at most. Itis believed that the human visual sysieas these principles
to establish correspondence between points in consedtdiwe of a video clip.
They used singular value decomposition on a Gaussian-vezighoint associ-
ation matrix between points from two different images. Tlerespondences
are computed by maximizing the inner product of the proxmaid exclusion
matrices obtained using singular value decompositions ethod copes with
2D translations, expansion and shears, i.e. affine distwtiHowever, since this
algorithm does not include the structural information witthe image and gives
equal importance to all the feature points, it fails to matod points correctly,
especially, when there are large inter-image rotationargel inter-image scaling
differences. Weiss (Weiss 1999) suggested using a noreadaditfinity matrix to
improve the performance of the related clustering and niragcimethods. He
concluded that if the matrix is correctly normalised thef@enance could be
improved significantly. Xu and King (Xu & King 2001) develapan algorithm
to solve the problem of weighted isomorphism that uses thensalues and ei-
genvectors along with optimization techniques. They camm@upermutation
matrix by optimizing an objection function using princigamponent analysis
PCA and the gradient descent. Pilu (Rilu 1997) suggesteddificadion of the
method proposed by Scott and Longuet-Higgins to improvedulray the sim-
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ilarity information along with the proximity informatiorotcompute the point
association matrix. The similarity information is compaites the normalized

correlation between neighbourhoods of the feature points.

To overcome the problems of Scott and Longuet-Higgins neetistapiro
and Brady ((Shapiro & Brady 1992) developed a method, whids tise intra-
image point proximity matrix rather than the inter-imagenp@association mat-
rix. The eigenvectors of the proximity matrices are comgaoecompute the cor-
respondence across a pair of images. Correspondencesiacedp minimizing
the Euclidean distance between rows of the modal matricaslli@nd Kosibov
(Caelli & Kosinov 2004) have improved Shapiro’s method bywcemalizing the
eigenvectors and locating the correspondences by maxigiibke inner-product

of the normalized eigenvectors.

Although spectral methods are robust they are sensitiv@iserand struc-
tural errors. To cope with this problem several researchave used the stat-
istical framework of the EM algorithm. One of the earliesaeples of using
the EM algorithm for feature correspondence matching iswibik of Cross and
Hancock |(Cross & Hancock 1998). They extend the standard Eerithm
by introducing structural consistency constraints to treespondence matches.
This is done by gating contributions to the expected loghiifood function ac-
cording to their structural consistency. This so-calledldiep EM algorithm
simultaneously locates point correspondence and paresradtihe affine or per-
spective transformation matrix underlying the motion. halagh their idea is
clearly effective and novel, since it uses a dictionary Haggproach to compute
the correspondence probabilities, it is computationadigy\demanding. Tang et
al. (Tang et al. 2007) have used the Gaussian weighted Liaplpooperty mat-
rix to compute correspondence matching from the eigenvecdtfathe Laplacian

matrix along with the iterative framework of transformatiestimation using the
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thin-plate spline (TPS) deformation model (Chui & Rangama?000). Luo and
Hancock [(Luo & Hancock 2001) developed a method using thisstal ap-
paratus of EM algorithm and singular value decompositio®SVhey cast the
problem of graph matching into a maximum likelihood framekvoThey treat
the correspondences as hidden variables. Carcassoni arudbé¢ka(Carcassoni
& Hancock 2003) later improved the efficiency of the dual Eépalgorithm by
using the eigenvalues and eigenvectors of the point proximatrix to compute
the gating weights. More recently, Delponte et al. (Deleagttal. 2006) modi-
fied the method of Scott and Longuet-Higgins by introduchnggcale invariant
features (SIFT) to compute the association matrix. Theyleynaffine invari-
ant Harris corner detector to localize the feature poinh&ihput images being
matched. The association matrix is established based dautlelean distance
between SIFT descriptors, completely disregarding theiprmty information.
Most recently, Sun et al._(Sun et al. 2009) introduced thet Heanel Signature
(HKS) based on the heat kernel. HKS can characterize theeshapo iso-
metry. However, the HKS is sensitive to low-frequency infiation. Ovsjanikov
et al. (Ovsjanikov et al. 2010) used the HKS to develop thet Heanel Maps
for shape matching. Aubry et al. (Aubry et al. 2011) have peggl a feature
descriptor, the Wave Kernel Signature (WKS), using the &itinger equation,

for correspondence matching of points on non-rigid 3D shape

The RANdom SAmple Consensus (RANSAC) algorithm developeBibc-
hler and Bolles inl(Fischler & Bolles 1981) is an iterativéust parameter es-
timation procedure. It is designed from within the compwision community,
to cope with a large proportion of outliers in the input dafdis is a random
sampling technique that determines a coarse solution bygusie minimum
number observations required to estimate the underlyindefqmarameters. The

RANSAC algorithm is often used in the field of computer visitm solve the
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correspondence problem and estimate the fundamentakmeltited to a pair of
stereo cameras. Torr and Murray (Torr & Murray 1993) werefiisé to use the
RANSAC method to estimate epipolar geometry. Since thes aflgorithm has
been used in a number of problems in computer vision. Foamtg, estimating
the fundamental matrix to match two images (Schaffalitzk¥i&sermamn 2001),
detecting geometric primitives (Clarke et al. 1996), edtirey planes (Cantzler
et al. 2002) and correspondence of points across image rseggIéKawakami
et al..2006] Hasler et al. 2003). An advantage of RANSAC isligity to do

robust estimation of the model parameters in the presentargd number of
outliers are in the data set. A disadvantage of RANSAC isithaeds a large
number of iterations to compute these parameters. Whenthber of iterations

is limited to a small number, the solution obtained may nobjémal.

2.3 Eigenvector Sign Correction

The spectral techniques for correspondence matching asagbnvectors of the
proximity matrices constructed from the input point setsampute the corres-
pondences. The signs assigned to eigenvectors play atrile in computing

the correspondences. Several authors have proposecdiffaethods to correct
the direction of the eigenvectors. For instance, Park €Paltk et al. 2000) have
suggested a method to correct the direction of the eigeoreebly comparing

the magnitude of the sum and difference of the two input eigetors. If the

magnitude of the sum is greater than the magnitude of therdiftte then the
directions of the input pair of eigenvector are consisteitit wach other, other-
wise, sign of one of the eigenvectors needs to be flipped. @mayUmeyama
1988) handles the problem of eigenvector sign correctiotaking the absolute

values of the components of both the eigenvectors. Caallikarsinov (Caelli
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& Kosinov|2004) find the number of positive and negative congruas for each
eigenvector. The sign of the eigenvector is flipped if the banof negative com-
ponents is greater than the number of positive componeiis.iJ essentially a
dominant sign correction, always ensuring that there areemositive entries
in each eigenvector. Shapiro and Brady (Shapiro & Brady 18898gested a

greedy approach to correct the direction of the eigenvector

2.4 Graph Clustering and Classification

In Chaptef # we develop a method for clustering similar huimaaly poses ac-
quired using the Microsoft Kinect sensor. Here, the eigetors of a complex
Laplacian matrix are used to compute the coefficients of eteary symmetric
polynomials. Form these coefficients pattern vectors aebbshed. The pattern
vectors are embedded into a pattern space to cluster simuitaan body poses.
Therefore, in this section we review some of the graph ctugjeand classifica-

tion methods in the literature.

Data clustering is one of the important and widely used teples for ex-
ploring the structures of data. It has recently found insirga support and ap-
plications in many areas ranging from statistics, compstéence, biology to
social sciences and psychology. Data clustering is theggsoof dividing the
given set of data into meaningful groups. Clustering is pesused classifica-
tion of data patterns based on some similarity measure édai11999). A good
data clustering procedure should cluster the data in suchyathat after clus-
tering the data objects within the same group are more githiéan those belong
to different groups. This is usually done using some sintylar dissimilarity
measure between each pair of data. The basic aspects iartolgsare the pat-

tern representation and the similarity or dissimilarityasere. The most popular
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dissimilarity measure for metric representation is theadise, for instance the
Euclidean distance. A large number of techniques have beegliabed for this
problem in the literature under the name of unsupervisessiflaation (Duda &
Hart|1973). Early approaches of unsupervised data clagtenethods include
k-means and minimal spanning trees (Jain et al. 1999). Whanadl portion
of data is already classified, then the semi-superviseditilzgion methods are
used. These methods can be broadly divided into two grogsely statistical

methods and graph theory based methods.

Statistical methods can be further divided into two grougs the paramet-
ric and non-parametric methods. The parametric methodsaomaw patterns
from data having a mixture of distributions, for instancetmuie of Gaussian dis-
tributions. These methods estimate the parameters of thissi#utions. These
include k-means (MacQueen 1967), the maximum likelihodidnedion (Demp-
ster et all 1977) and the Expectation Maximisation (EM) atgms. The aim
of k-mean algorithm is to cluster the data iktgroups by maximising the total
inter-class variance. The EM algorithm originally deveddpgoy Dempster et
al. (Dempster et al. 1977) is an iterative optimisation et which estimates
the parameters of a model. The maximum likelihood estimadigorithm finds
the parameters of a mixture by maximising the log-likeliddanction for the un-
derlying probability distribution to the data. Some exaespbf non-parametric
methods includes the histogram based estimation (Silvef86), kernel dens-
ity estimation ((Elgammal et al. 2003) and mean shift (Comianét al. 2002).
The histogram based methods tries to cluster data basecednstiogram con-
structed from the data. In (Comaniciu et al. 2002) the astpooposed recursive
mean shift estimation method for the analysis of a complekirmodal feature
space and to delineate arbitrarily shaped clusters in iteNecently, Shotton et

al. (Shotton et al. 2011) proposed an algorithm to predicp8Eitions of human
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body joints from a single depth image, quickly and accuyatising Microsoft
Kinect device for Xbox 360. They use a huge set of human santplénfer
pixel labels through Random Forest estimation, and skefetdel is defined as
the centroid of mass of the different dense regions usingsédt algorithm

resulting in the 3D joint proposals.

In recent years, graph theory based clustering methods llec@me more
popular amongst the computer vision and the machine lejaoammunity (Kan-
nan 2000; Ng et al. 2001; Bach & Jordan 2004; Zelnik-manor &Ra 2004).
There has been a significant amount of work aimed at usindrsppgcaph theory
(Chung 1997) to cluster graphs. The spectral graph thearfigioes the graph
clustering problem as a graph cut where a suitable objefitivetion needs to
be optimized. The basic idea behind this framework is to hseiriformation
conveyed by the eigenvalues and eigenvectors of the adjaceatrix or the
Laplacian matrix of the weighted graph obtained from thadahe data points
are represented by the nodes of the graph, while the edgeseditie similarity
or dissimilarity between each pair of nodes. Thus the ctirgjg@problem become
graph cut problem. For a large data set, spectral clusteangoe used with a

sparse similarity matrix.

In the earliest graph spectral clustering method (Donatha¥frHan|1972),
the authors suggest the use of eigenvectors of an adjaceaitix 1o find par-
titions of the graph representing the data. Later Fiedlexd|Er/1973) has pro-
posed using the eigenvector corresponding to the smabeszearo eigenvalue of
the Laplacian matrix. Since then, a significant amount ofkdas been done in
this area. Scott and Longuet-Higgins (Scott & Longuet-khigd 990) construct
a proximity matrix to measure the dissimilarities betwesrage features and
then use the eigenvalues and eigenvectors of the proxinatgixrio partition the

image features into clusters. They relocate the eigensseofahe affinity mat-
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rix to refine its block structure. Sarkar and Boyer (Sarkar éy&11996) used
leading eigenvectors of the affinity matrix to locate lingreents grouping in
images. Weiss (Weiss 1999) suggested the use of normaliteidyamatrix to
improve the performance of the related clustering meth&tis.and Malik (Shi
& Malik 2000) use normalized cut to balance the cut and the@ason between
the nodes of the graph. They use the Fiedler vector reclygsecond smallest
eigenvector of the Laplacian matrix) for the purpose of imaggmentation. Ng
et al. (Ng et all 2001) embed the graph into a vector spacelerdduster the
point in the space using k-means algorithm. Wilson et/al.Istvi et al. 2005)
construct feature vectors which are permutation invasiétotn a graph by apply-
ing elementary symmetric polynomial to elements of the spematrix derived
from the Laplacian matrix. They used the spectrum of a coxlpdgplacian mat-
rix to cluster shock graphs extracted from 2D shapes. QiuHemtock (Qiu
& Hancock 2007) have used commute time for the purpose ofénsagmenta-
tion and show that the commute time method outperforms thmal@zed cut. A
comparison of some spectral clustering methods have beaitediein (Luxburg
2007). More recently, Gangopadhyay et al. (Gangopadhyay @€012) used
Laplacian matrix and k-means to study the deterioratiorenél functions after
kidney transplant. Xiao et al. (Xiao et/al. 2009) exploredvimermutation in-
variants computed from the heat kernel trace can be useditaaierize graphs
for the purposes of measuring similarity and clusteringe Titace of the heat
kernel is given by the sum of the Laplacian eigenvalues egptoated with time.
Ren et al. inl(Ren et al. 2011) constructed pattern vectora froefficients of

the Ihara zeta function for the purpose of graph characitoiz.
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2.5 Graph Embedding

In Chaptef_6 we develop a 3D shape signature using commugeaimibedding
that is robust with respect to changes in pose and topologse e use a com-
bination of conventional and spectral techniques for bett@pe classification.
Therefore, we review some of the data/graph embedding rdethdhis section.

We also review some of the 3D shape analysis methods in 8&tHo

The aim of graph embedding is to establish a mapping betwegrh@nd its
vectorial representation. Once a graph is converted inigladimensional vec-
tor, we are able to operate on graph in the vector space usegy lalgebra tools.
For instance, the vector can be projected onto a low dimaabkimanifold for
the purpose of analysis and visualization. In literatureaaety of embedding
methods exist based on spectral graph theory. They all shargame principle
of using the eigenvectors of the affinity or similarity matrFor instance, Prin-
cipal Component Analysis (PCA) (Hotelling 1933) and KerReihcipal Com-
ponent Analysis (KPCA)_(Scholkopf et lal. 1998) use the iegaigenvectors
of the covariance matrix to determine the projection dicers with the max-
imal variance. Multidimensional Scaling (MDS) (Kruskal &i%%il1978) uses
the eigenvectors of pairwise distance matrix to find an emimgdof the data
that minimized the cost function called stress. Its aim igreserve the pairwise
inner product by minimizing the differences of inner protinem the input data
and the vectorial data. The classical MDS preserves the-poiat distance if
the input dissimilarity data is Euclidean. PCA and MDS arieatlle when the
low-dimensional manifold is embedded linearly in the vecpace. Recently,
a number of spectral embedding methods motivated by gragimtthave been
developed to deal with general non-linear manifolds. Thestric feature map-

ping (ISOMAP) (Tenenbaum etial. 2000) is an extension of MD®tvpreserve
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the geodesic distance between data points located on aottarBome other re-
lated embedding algorithms include locally linear embeddLLE) (Roweis &

Saul 2000), Laplacian eigenmap (Belkin & Nivoai 2003), Has4. LE (Donoho

& Grimes|2003) and the diffusion map (Lafon & L.ee 2006a). Liskaiso a vari-

ant of PCA and preserves local structure by using linearficteits to represent
a data point by its neighbour points with coefficients anchtagempting to pre-
serve coefficients from the high-dimensional data spackddaw dimensional
manifold. LLE first finds the coordinates for data points oatelmcal patch and
then derives the global coordinates with the alignment céllpatches by solv-
ing an eigenvalue problem. Laplacian eigenmaps attemppsetgerve certain
local geometric structure of the data by constructing aa@adjcy weight matrix
from the data points and projecting the data onto the |leagiggnvector of the
resulting Laplacian matrix. Hessian LLE finds a low-dimemnsil configuration

of points by using the estimated Hessian over neighbourlasathe Laplacian
matrix. The diffusion map is a variance of Laplacian eigepsnand constructs

the Laplacian matrix by using a kernel function.

Luo et al. (Luo et al. 2003) proposed using the leading eigetors of the
graph adjacency matrix to define eigenmodes of the adjaceratyix, which
were use to construct a vector representation for the grafghd then, embed
these vectors into eigenspaces with the use of the eigemseat the covari-
ance matrix of the vectors for the purpose of graph classidica In a similar
approach|(Wilson et al. 2005) used the coefficients of symmpoblynomials
to construct the vectorial representation of the graphs filwe spectrum of the
Laplacian matrix. Robles-Kelly and Hancock (Robles-K&l\Hancock 2007)
solve the problem of matching the nodes of a pair of graphsniiyeelding the
nodes of the graph onto a Riemannian manifold. This is donadptying a

doubly centred multidimensional scaling technique to thplacian matrix com-
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puted from the edge-weights. The embedding coordinategieea by the ei-
genvectors of the centred Laplacian. Then the problem ofimvag the nodes is

viewed as the alignment of the embedded point sets.

2.6 3D Shape Analysis

Three dimensional shapes are being used in a large numbg@pbéation in-
cluding games, engineering, archaeology, biometrics,jcakonaging etc. The
discrete representation of 3D shape in the computer is a,oesometimes a
point set. Rapid advancement in the digital technology insBBpe acquisition
and processing has increased the availability of large am@itBD shapes eas-
ily accessible. Consequently, the field of 3D shape anahesssattracted many
researchers’ attention. Analysis of 3D shapes involvesatlifacking, object
recognition, registration, correspondence matchingaetd, it aims to establish
shape descriptors or signatures which capture the imgopraperties of the
shapes for the purpose of classification, clustering enetiand correspondence
matching. These descriptors need be developed in a wayahpatres the local
and global shape characteristics of the object. Unforeipatieveloping such
descriptors/signatures for the processing of a 3D objewbis trivial task. Os-
ada’s work reported in_(Osada et al. 2001) is one of the sanerks on 3D
shape representation for classification and retrievaly Thenputed a number of
different types of global shape distributions to repre§Ehbbjects using differ-
ent shape functions. They used the angle between threemapdimts on the
surface of a 3D shape (A3), the distance between a fixed pothbae random
point on the surface of the shape (D1), the distance betwemnandom points
on the surface of a 3D shape (D2), the square root of the ardzedfiangle

between three random points selected on the surface the&i2 ¢B3) and the
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cube root of the volume of the tetrahedron between four nartgleelected points
on the surface the 3D shape (D4). Ohbuchi et al. (Ohbuchi@0ab) modified
the D2 shape function proposed by Osada et al. to improvetiigval perform-
ance. They used the distance between the randomly seleuitets plong with
the mutual angle of the triangles on which the pair of poiat®cated. Unlike

the D2, which is a 1D histogram, they used 2D histograms.

Spectral methods for 3D shape analysis use the eigenvaldesgenvectors/
eigenfunctions of some appropriately defined operator ersttape. In the re-
cent past, a large number of spectral methods have beerogedeh many re-
lated fields including computer vision, machine learnimameputer graphics and
visualization etc. The methods are developed to solverdifteproblems, for
instance, correspondence matching, segmentation, shagsling and surface
reconstruction etc. Early work on spectral shape analysisbe traced back to
that of Taubin in 1995 reported in (Tauhin 1995). In this gttide author in-
troduced the use of Laplacian operators for the purpose affzipe smoothing.
In (Kolluri et al/[2004) the authors introduced the use ofcsgze graph partition-

ing for surface reconstruction from noisy point cloud data.

Recently, the graph spectral methods defined in the contekistering have
been applied to 3D shape processing. In this context, gp@ctariants such as
the eigenfunctions of the Laplacian operator can be usatsar-isometric shape
matching. Cuzzolin et al. (Cuzzolin et al. 2008) and Lee e(lade et all 2008)
have performed segmentation for mesh sequences. The foretbod computes
only protrusions, while the later uses an additional skeletn (Cuzzolin et al.
2008), the authors use locally linear embedding (LLE) (Rewe Saul 2000)
to represent a cloud of points and perform segmentationa_tie space. The
segments obtained are then propagated across time to abtamporal coher-

ent segmentation of a voxel-sequence into protrusionssoéhiape. The method
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works well for rigid body parts (such as head, hands and legskait cannot be
used directly for identifying rigid body-parts (for exarepkeparating the upper-
arm from the lower-arm). Graph spectral techniques hawe lz&n using in a
number of correspondence matching and shape registrdgoritams. For in-
stance, Mateus et al. (Mateus et al. 2008) used eigenmagsettby the first
eigenfunctions of the Laplace operator as low-dimensi&ualidean represent-

ations of non-rigid shapes for the purpose of 3D point regiistn.

Spectral methods have recently been used in a number ofthlgsrto meas-
ure the similarity of 3D shapes. For instance, Rustamov t@osvi 2007) has
suggested using the eigen-decomposition of the LaplatteaBe operator to
construct an isometric invariant surface representatitime Global Point Sig-
nature (GPS) proposed by Rustamov for shape comparisorthisetyenvalues
and eigenfunctions of the discrete Laplace-Beltrami dperavhich closely re-
sembles the diffusion map. The major drawback of his sigeatias its ambigu-
ity to sign flips of each eigenfunction. Sun et al. (Sun et B0 introduced a
point signature based on the properties of the heat diffusiocess on a shape,
referred to as the Heat Kernel Signature (HKS). HKS captaiftélse information
about the shape contained in the heat kernel, and can chiazadhe shape up to
isometry. Castellani et al. (Castellani etal. 2011) hawesldsKS to develop the
so-called Global Heat Kernel Signature (GHKS) by accunmudgthe local heat
kernel values at each point into a histogram for a fixed nurobscales. Ovs-
janikov et al. (Ovsjanikov et al. 2010) used a heat diffugpomcess to construct
the Heat Kernel Maps for 3D shape matching. Aubry etlal. (Airal. 2011)
have proposed a feature descriptor based on a quantum nieadlagproach, for

correspondence matching of points on non-rigid 3D shapes.
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2.7 Summary

In the previous sections of the chapter, we have revieweddlla¢ed literature
on spectral graph theory. We also reviewed different metta®Veloped using
spectral graph theory to solve various problems from coempuision. Based on

the review of the related literature, we may draw severathusions.

First, although there is an ample amount of research onsymrelence match-
ing using graph spectral techniques, developing efficiemtffeature matching
algorithms is still a challenging problem to solve. Spdctn@thods offer an
elegant approach to the problem of correspondence matchklogever, these
existing graph matching methods suffer from the curse okergjye computa-
tional complexity and their performance decreases in tkesence of structural
noise i.e. they give poor results when dealing with poins-sédifferent size. In
this thesis, we aim to improve the performance of existirectal methods for
correspondence matching by introducing a Hermitian prtypeatrix in a way
that reflects the Laplacian matrix. A Hermitian property nxataptures more in-
formation about the input graph. Hence producing bettelespondence results.
In the literature, complex Laplacian matrix has been usedyfaph clustering
(Wilson et al. 2005) and shape retrieval (Leuken €t al. 200&hods. However,

it has not been used before for the correspondence matching.

Second, there is a substantial body of research on graptechg embed-
ding and characterization using spectral techniques ipaiséfew decades with
lesser focus on the use of the Hermitian matrix which encdlgegraph using
complex numbers. Additional information in the form of aeglbetween pair of
limbs is encoded in the Hermitian matrix. Later, in the teegie show how fea-
ture vectors can be established by using the eigenvectting éfermitian matrix

and the coefficients of elementary symmetric polynomialduster similar hu-
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man body poses acquired from the Microsoft Kinect sensor.

Third, graph spectral methods solve a problem using theneadees and ei-
genvectors of the adjacency matrix or the Laplacian makibwever, the direc-
tions of the eigenvectors computed by the numerical solkerebitrary, which
causes problems in computing correspondences betweenfgaints. In the
literature many methods have been proposed to solve thidgggno However,
none of them is robust. Later, we will show how the coefficsenit elementary
symmetric polynomials can be used to correct the directobtise corresponding

eigenvectors for the problem of correspondence matching.






CHAPTER 3

Feature Point Matching using a Hermitian

Property Matrix

In this chapter we investigate the spectral approacheset@tbblem of point
pattern matching. We construct a Hermitian property mdtam the point loc-
ations and the directional information associated withrth&Ve use spectra of
a Hermitian property matrix to compute the correspondenateinmng between
the pair of point sets. We construct a complex matrix whidkects the Lapla-
cian matrix (degree matrix minus adjacency matrix). We enibe spectra of
the Hermitian matrix into the EM framework proposed by Hasicand Carcas-
soni (Carcassoni & Hancack 2003) to render it robust to thetgmosition jitter
and the rotation. The proposed method is compared with 8w pBhapiro &
Brady|1992), Scott’s (Scott & Longuet-Higains 1991) and caasoni’s (Car-
cassoni & Hancock 2003) original alignment methods. Expents on both

synthetic and real world data are performed, which showtttehew approach

29
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gives encouraging results.

3.1 Introduction

Feature-point matching is very fundamental and one of thet mgportant tasks
in computer vision. Correspondence matching between 2@Q@énand more
recently, 3D objects is the pre-processing step for a nurabeomputer vis-

ion algorithms. These include visual object tracking, obyecognition using
corners and edges, shape-from-motion (Jerain & |Jain/ 1991a%i & Kanade
1992; Costeira & Kanade 1998), stereopsis (Dornaika & CHL8®§€), optical

flow analysis [(Weng et al. 1997) and morphable or deformaludets. Such
methods have found applications in many fields. For instaimcehemistry, it

can be used to align the protein structures, to find the giityileetween them.
In the field of biometrics it can be used for automatic persahentification

based on the finger prints or signatures. Once the correspord are com-
puted, further analysis can by performed, for instanceguwexy of 3D structure
of object (Tomasi & Kanade 1992), localization of objectgha image and find-
ing the number of moving objects in the image sequence (CasteKanade

1998).

3.1.1 The Correspondence Problem

The problem of feature correspondence matching is to findeat@one corres-
pondence between feature points in a pair of 2D images whmiesent an object
in the image or in 3D shapes. The images can be taken fromeaetitf point of
view, at different times. In literature many different medls have been presen-
ted to address the problem of correspondence matching.eThethods can be

broadly categorized into two classes namely the non-sgleniethods (Ling &
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Figure 3.1: Correspondence Problem. a) 2D feature points3Dbpoints on
articulated shapes.

Jacobs 2007: Chui & Rangarajan _2000) and the spectral met{8ithpiro &

Brady!1992] Scott & Longuet-Higgins 1991; Umeyama 1988)aphrspectral
techniques solve the problem using the eigenvectors aetadues of the adja-
cency matrix or the Laplacian matrix (degree matrix minesatijacency matrix)
for the point set arrangement. Correspondences are cothpytembedding the
graphs into a common eigenspace using an eigen-decongmositithe point-

proximity matrices, where correspondences are computdtéyglosest points
matching in this eigenspace. Hence the feature correspoadeatching prob-

lem is solved using weighted graph matching technique.

Let G = (Vi,wy), H = (V3,ws) be weighted graphs with nodes, where
Vi, and V; are set of the vertices and; and w, are the weights defined on
the edges of the graphs and H respectively. The weighted graph match-
ing problem is the problem of finding a one-to-one correspocdl’ between

Vi = {v1,09,...,0,} andV2 = {v}, v}, ..., v} which minimizes some cost
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function J defined as

JI) =3 (wi(vs,v5) — wa(T(w3), T(v;)))?
i=1 j=1
if Az andAy are the adjacency matrices of the grapland H respectively then

the cost functiorn/ can be written as function of a Permutation mafrix
J(P) = ||PAgPT — Ay||?

where the permutation matriX represents the node corresponderiand||.||
is the Euclidean norm. Thus the problem of weighted grapltiniag is reduced
to the problem of finding the permutation matdkwhich minimizes the cost
function J(P).

3.2 Graph Spectral Matching

Graph spectral methods solve the feature points corregmmednatching prob-
lem by constructing a graph representation for the givetufegoint sets. The
feature points are represented by the nodes of the graph.delae of the graph
corresponds to some spatial relationship between a pagabiife points. This
relationship is usually computed using a weighting funttbthe Euclidean dis-
tance between each pair of points. These weights reprdsesirilarities (or

dissimilarities) between each pair of points. The mostdszly used weighting
function is the Gaussian function. However, various otlvarlarity (or dissim-

ilarity) measurement functions can also be used. For iost&arcassoni and
Hancock |(Carcassoni & Hancock 2003) have used Gaussiampgigl, Euc-

lidean and increasing weighting functions and have shoatittie best perform-

ance is obtained using the increasing weighting functidre weights computed
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for each edge of the graph are put in the form of a weightedcadgy mat-
rix W. In literature both the adjacency matrix and the Laplaciairix have
been used as the proximity matrix to compute the correspuase For in-
stance, Umeyama (Umeyama 1988) has used an adjacency mhiiexTang
et. al. (Tang et al. 2007) have used a Gaussian weighteddiaplenatrix. The
elementsV;; of the matrix1” stores the similarity or dissimilarity relationship
between feature poinf; andz;. Once the property matri¥’ is to hand, we sub-
ject it to the eigen-decomposition, to compute the eiger@sbnd eigenvectors
of the graph. Correspondences are computed from the eigesvand eigen-
vectors computed for both the input graphs.

The aim of the graph spectral methods is to embed the sitiélgof the in-
put graph constructed from the feature points into a comngemespace, where
correspondence matching is performed. Since we are dealthgbjects sub-
ject to different affine geometric transformations inchgliranslation, rotation,
scaling and also some deformation, therefore, the sinylareighting function
should be invariant under these transformations. Sinee:titlidean distance is
invariant to translation and rotation, therefore, weiggtiunction used by many
methods are functions of the Euclidean distance betweerop&ature points.
For example, (Shapiro & Brady 1992), and (Scott & Longueggtins 1991) have

used a Gaussian weighting function to construct the praximatrices.
Wij = e %/

whered,; is the Euclidean distance between the feature paintnd z; and
o IS a constant parameter which controls the interaction efféature points.
Besides the Euclidean distance, the directional propdrtiieofeature points is
an interesting example of the invariance of the rigid tranmsftion.

A number of correspondence algorithms analyse the eigeesand eigen-
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vector of the inter-image proximity matrix or the intra-igeaproximity matrices
to find the correspondence between the points in the givanopanages, for
instance|(Scott & Longuet-Higgins 1991). A small changehe locations of
points in one image will results in changes in the correspandroximity mat-
rix. These small changes are translated to small changdseimrdrrespond-
ing eigenvalues and eigenvectors computed. However, ttiesgges appear in
the trailing eigenvalues and their corresponding eigeiowvec This captures the
global similarity between the feature points globally, efhenables us to com-
pute the correct correspondence between many of the paolits.orthogonal
property of the eigen-decomposition ensures that the mddacorrespondences

are unique.

In this chapter we aim to perform the correspondence majcbirpoint-
sets by using the directional/angular information asgediavith each feature
point along with the Euclidean distance between each pdeattire points. We
construct a complex Laplacian matrix, in which we encodéd ltbée angle and
distance information about a feature points in the form ohpkex numbers. We
use the SIFTL(Lowe 2004) algorithm to acquire the anglesae#ttracted fea-
ture points from the two images to be matched. We use the fmmations and
their angles to construct a complex matrix (Hermitian). Wenpute the com-
plex eigenvectors of the Hermitian property matrix. Cgom@sdence matching
is calculated by comparing the complex eigenvectors. Wevdhow to em-
bed the eigenvectors of Hermitian matrix in Carcassoni’s&brithm for cor-
respondence problem. The proposed method is more robusfige, rotation
and point-position jitter. In the experiment section, wenpare our results with

Shapiro-Brady’s and Carcassoni’s original alignment roésh
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3.3 Hermitian Property Matrix

A Hermitian matrix H is a square matrix with complex elements that remains
unchanged under the joint operation of transposition amdpd&x conjugation
of the elements. That is, the element in tierow and;** column is equal to the
complex conjugate of the element in tjté row andi* column, for all indices
andy, i.e.a; ; = a;,.

Hermitian matrices are named after Charles Hermite. In G3%#les Hermite
proved that the eigenvalues of these matrices are alwaly$-@owing are a few

important properties of a Hermitian matrix.

1. The diagonal elements of a Hermitian matrix are real.

2. The off-diagonal elements of a Hermitian matrix are carphumber.
Therefore, these can be a 2-component quantities, fornostaangular

measurements.
3. The complex conjugate of a Hermitian matrix is a Hermitizatrix.

4. For a Hermitian matri¥{, H' = H. The operation of transposition and

complex conjugation is denoted by the dagger operator
5. The eigenvalues of a Hermitian matrix are real.

6. The eigenvectors of a Hermitian matrix are complex anchfan orthonor-
mal basis. Ann x n Hermitian matrix H hasn orthonormal complex
eigenvectorsuy, us, ..., u, Sitting in the columns of the matri¥/. i.e.
H = UAU', whereUU' = UTU = I and thereforeH = "7, Nugul,
where\; are the eigenvalues sitting on the main diagonal of the aialgo

matrix A.

7. Areal symmetric matrix is a special case of a Hermitianrixat
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3.4 Hermitian Matrix Construction

In this section we explain how we construct a Hermitian propaatrix from the
given imaged and!’ with m andn feature points respectively. We commence
by constructing a complete graph for each set of featuretpoivhere each pair
of nodes is connected by an edge. The nodes of the graphseeptbe feature
points and the edges represent the similarity measurerbeniseen each pair
of nodes which is some function of the Euclidean distancevéen the nodes.
We use the SIFT (Lowe 2004) feature extraction algorithmcguae angles at
each feature point and assign them to the corresponding nodee we have
the feature point positions and the angles associated gtin to hand, we can
construct the Hermitian matrix. We construct it in a way tledlects the weighted
Laplacian matrix. The Hermitian matricésand H’ for both of the graphs being

matched are established.

3.4.1 Complex Laplacian Matrix

To commence, consider an undirected weighted graph debgtéd= (V. E),
whereV is the set of nodes anfl C V' x V is the set of edges. The weight

adjacency matrixi of the graphG is a|V| x |V| matrix, which is defined by:

U if i .
A= [aij] = w(v ‘ ) e 7& g (31)

0 otherwise

wherew(v;, v;) is the weight assigned to the edge between ne@adv;. The

weight w(v;, v;) is usually computed using a Gaussian-weighting function as

71"% /202

e , Wherer?, = |lv; — v; |* is the squared Euclidean distance between each

pair of feature points.
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To construct the weighted Laplacian matrix, we first estdibthe diagonal
weighted degree matri¥), whose diagonal element3;; are given by the sum
of the weights on the edges connected to the node. D;; = >, w(v;, v;).
From the degree matrix and the adjacency matrix we can eartgtre standard

Laplacian matrix. i.e.L. = D — A. The elements of the Laplacian matrix are

given as:
deg(v;) ifi=j7
L=yl =49 —w(v,v;) if i £ (3.2)
0 otherwise

wherew(v;, v;) is the weight assigned to the edge between nededv; and
deg(v;) is the degree of the node and is defined a3, w(v;, v;). The weight
w(v;,v;) is usually computed using a Gaussian-weighting function &s/2",
wherery; = |lv; — v;||? is the squared Euclidean distance between each pair of

feature points.

Complex Laplacian matrix! is a Hermitian matrix which reflects the real
weighted Laplacian matrix. To construct the complex analog of the Laplacian
matrix, we add the angular information to each element otég@acian matrix
in the form of a complex number. The off-diagonal elementd @fre calculated
using a Gaussian-weighting function as:

H;j = —e /2" g 0i=0)) (3.3)

wherer;; = |lv; — v;||” is the squared Euclidean distance between each pair of
feature points. The parametercontrols the interaction between features and
(6; — 0;) is the difference between each pair of angles within the samage.

The on-diagonal elements are given by the sum of the magstoithe elements
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Figure 3.2: Weighting Functions. a) Graph of the four weigdptfunctions b)
Performance of the four weighting functions on graphs dedént sizes.

in the same row or in the same column of the matrix and hencealaumbers.

H;; = Z e "i/% (3.4)
J#i

3.4.2 Weighting Functions

In (Carcassoni & Hancock 2003) the authors have suggesiiegl different ways
of constructing the weighted point-proximity matrix. Thiegive used four dif-
ferent weighting functions, i.e. Gaussian, sigmoidal, IElean and increasing
weighting functions and have shown that the increasing mtgig function out-
performs the others. These weighting functions are defiméfus following sub-

sections.

3.4.2.1 Gaussian Weighting Function

Using the Gaussian weighting function is the standard wagpoesent the ad-

jacency relationship between the points: Hndj are two data points then the



Hermitian Matrix Construction 39

corresponding elements of the proximity matfixis computed as
H(i, j) = exp(—d;;/20°)

Wheredfj is the squared distance between the pointseaodntrols the width of

the weighting function.

3.4.2.2 Increasing Weighting Function

The following increasing weighting function can be used emnpute the ele-

ments of the proximity matrix{.

1

H(.J) = 7T
1+ 3|l

where the parameter controls the width of the function and}; is distance

between points and;

3.4.2.3 Sigmoidal Weighting Function

The following sigmoidal weighting function is used to caust the proximity
matrix H.

2 T
H(i,j) = ——— tanh(=||d;;
(27.]) 7THdz]H an (8|| ]H)

where the parameter controls the width of the function and; is distance

between points and;
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3.4.2.4 Euclidean Weighting Function

The Euclidean weighting function decreases linearly vhthdistance which can

be define as
1 if dij < 81
H(Z7.7) - 1— 52£51 if S1 < dij < 89
0 otherwise

wheres; is the half-width of the ceiling of the functios; is the half-width of

the base and,; is distance between pointandj.

The graphs of those weighting functions are shown in FiguPéa3 We
have empirically confirmed the performance of the those tegig functions
on graphs of different sizes. Figure 3.2(b) shows that théopeance of all
the four weighting functions is same when used with smaltaplys (with less
number of nodes). However, with increase in the number oéraddjraph being
matched, the performance of the functions decreases. Wgbi graphs the best

performance is obtained by using the increasing weightingtion.

Since the matching performance of the weighting functioestioned above
is same for smaller graphs, therefore, we use Gaussian wejdiinction for
the real-world data where the nodes are extracted from imag®wever for
the synthetic data, with large random graphs of more thanoé@s$, we use the
increasing weighting function. In case of the Hermitiangedy matrix, angular
measurements are used to compute the complex elements obthg. Those
elements are scaled by the weights computed using a Gaussianreasing

weighting function depending on the number of nodes in tlaplgr
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3.4.3 SIFT Feature Orientation

To acquire angles at each node we use the SIFT (L.owe 2004iyéeaxttraction
algorithm. The angle/orientation at each feature pointisudated as follows.
A gradient orientation histogram is computed in the neighthood of the fea-
ture point (using the Gaussian image at the closest scaleetéeature point’s
scale). Peaks in the orientation histogram correspond tairdnt direction of
local gradients. For a poirdt(x,y) in the image, the orientatiof(x, y) and the

scale of gradientu(z, y) are computed as:

m(z,y) =z +1,y) — Iz —1,9)2+ (I(z,y + 1) — I(z,y — 1))?)

O(x,y) =tan " (I(z,y + 1) — I(z,y — 1))/(I(z + L,y) — I(x — 1,y)))

Some feature points may have more than two or more peaks incbe
responding orientation histograms. In that case, an additifeature point is
created at the same spatial location for the angles comelsapy to the peaks
in the histogram which are 80 percent of the maximum valudefhiistogram.

Therefore, some of the points may have more than one onentassigned to it.

A feature pointin the firstimage of the sequence may have ogie assigned
to it while the corresponding feature point in the secondgenmay have two
angle assigned to it or vice versa. This causes to changeuthber of feature
points initially extracted from the image, which could inribadly affect the
computation of the correct correspondence matching. Torerewe need to

remove the extra angle associated with each point in botheaftput images.

In figure[3.3 two frames of the CMU/VASC image sequence (leftian)
and their corresponding SIFT histograms of the extractexdt@gright column)
have been shown . The firstimage (figure 3]3(a)) is the 1s&rahile the second
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Figure 3.3: Feature points with multiple SIFT angles. a) OMASC house
sequence frame 1. b) Local gradient histograms of featurgpio figure (a) on
the left hand side. ¢) CMU/VASC house sequence frame 20. dallgradient
histograms of feature points in figure (c) on the left hane sid

image (figure 3.3(¢)) is the 20th frame of the sequence. Nwateih both frames
each feature point extracted has orientation(s) assdorte it. There are two
angles associated with one point (labelled as 6) in both efftfames (marked
with red circle). However, there is a point (labelled as 9jha first image to
which two angles have been associated but the correspopding(labelled as
9) in the second image has only one angle assigned to it (chavikh green
circle). This could cause wrong matching of the points. €fme, we need to
remove one of the angles from the feature point marked wetemgrircle in the
first image.

In this subsection we explain how to analyse the local gradiestograms

computed at the feature points to remove any extra angleiassd. We take a
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simple but an effective approach. The local gradient histaghas the angular
information stored in a histogram bin indexed by angulaenvel of ten degree
each. We compute the normalized correlation between a paistograms to
find how similar they are. Suppose the input histogramsAm@nd B. The

normalized correlatiod’ between them can be computed as

>y (A — A)(Bi — B)
R o(A)o(B) (3.5)

whereN is the number of bins in both the histograsheind B, A and B are the
means of histogramgd and B respectively, and(A) ando(B) are the standard

deviations of histogramd and B respectively.

First we normalize the gradient histograms by dividing ladl bin values by
the maximum value, so that in each histogram the maximuneuadeomes one.
Then, we enumerate all those points which have more thanrmggie associated
with it, in first image. We take the first poiri?; with more than one angles in
the first image and search for the points having similar gistms within some
radiusr in the second image. Next, we suppress one of the angles imghe
togram of P, in the first image and search again for the points having amil
histogram within the radius in the second image. Then, we suppress the other
angle in the histogram a?; in the firstimage and find feature point having sim-
ilar histogram in the same way. Now we have three similarigasures. If the
first one is maximum of them, we keep both angles associatédiyi If the
second similarity measure is maximum of the three we remoeditst angle at
P, and keep the second one. In case, the third similarity measunaximum of
the three, we keep the first angle and remove the second argbena ;. The
same procedure can be generalized to the case where morevthangles are

associated to one feature point. We repeat this procesd thegoints having
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more than one angle assigned to it. The extra angles assbd¢@mthe feature

points in the second image are removed by repeating the saroedure.

3.5 Correspondence Matching

In this section we describe the feature point corresporelaraiching algorithm
and show how it uses the eigenvectors of a Hermitian propestyix. The idea
behind the graph spectral methods for computing the featomespondence is
to use the eigenvectors of the graph as signature of thespioirat high dimen-
sional space. Each row of the modal/eigenvector matrixesmts one point.
Correspondences are computed by finding the distancesd&etaeh pair of the
rows of modal matrices.

Once we havdd and H' to hand we perform the eigen decomposition, i.e.
H =VAVT andH' = V'A'V'T whereV andV’ are the modal matrices of the
imagesl andl’ respectively, with complex eigenvectors as its columnandA’
are the diagonal matrices with real eigenvalues along fivecipal diagonals.
Each row of the modal matri¥ is a feature vector F;, while each row of the

modal matrixV" is a feature vector Fj.

F Fl
v |7 e k2
F, P

The least significantn — n| eigenvectors and the feature vectors are discarded

from the larger modal matrix, in the case whét@andl’’ are of different sizes.

The next step is to calculate the correspondence prohabititatrix¢ from
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the feature vectors F; of the imagel and F} of the imagel’ by taking the
Euclidean distances between each pair of the feature wamitboth images using
the following binary decision.

1, if j =argming|F — Fj|?

gij -

0, otherwise

i =1...lm—n|, j = 1.../m—n|. However, before computing the correspondence
probabilities, the eigenvector normalization step is @enied. Since, the eigen-
vector are complex, we add the angles of the eigenvector coerjts in a head

to tail fashion, and subtract the resultant angle from eagmeector component

so thatarg() , ¢;;) = 0. Correspondence matches are given by the elements in

the matrix¢ which are maximum (one) in their row and column.

3.5.1 Expectation Maximization

An Expectation-Maximization (EM) algorithm originally gposed by Dempster,
Laird and Rubinl(Dempster etlal. 1977) is a method for findiragximum likeli-
hood estimates of parameters in statistical models, wiherenbdel depends on
unobserved latent variables. EM is an iterative method whlternates between
performing an expectation (E) step, which computes the @agien of the log-
likelihood evaluated using the current estimate for thernatwariables, and a
maximization (M) step, which computes parameters maximgizhe expected
log-likelihood found in the E step. These parameter-esésiare then used to
determine the distribution of the latent variables in thetkestep.

Although spectral methods are robust, they are sensitiveite and struc-
tural errors. To cope with this problem several researchave used the stat-

istical framework of EM algorithm. One of the earliest exdespof using EM
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algorithm for feature correspondence matching is the wb@koss and Hancock
(Cross & Hancock 1998). They extended the standard EM akgorby intro-
ducing structural consistency constraints to the cornedpoce matches. This is
done by gating contributions to the expected log-likelithdonction according
to their structural consistency. This so-called dual stepdigorithm simultan-
eously locates point correspondences and parameters affithes or perspective
transformation matrix underlying the motion. Since thigimoel uses a diction-
ary based approach to compute the correspondence praieabiliis very time
consuming. Carcassoni and Hancock (Carcassoni & Hanco@g)dater im-
proved the efficiency of the dual step EM algorithm by using éigenvectors
and the eigenvalues of the point proximity matrix to comphgegating weights

for the expected log-likelihood function.

Here, we use the complex point proximity (Hermitian) mairixhe iterative
framework of EM algorithm for point pattern matching propd$y Carcassoni
and Hancock (Carcassoni & Hancock 2003). The experimeesalts show that
embedding the Hermitian matrix into Carcassoni’s methollead@ more robust

to the random point-position jitter and rotation.

3.5.2 Carcassoni’s EM Algorithm

SupposeT ™ is the affine geometric transformation matrix that bestredig set
of image feature point& with the feature points'in a model. Each point is en-
coded in homogeneous co-ordinates. ie= (z;,v;, 1)" andz; = (z;,y;,1)".
There are six transformation parameters, which model #restation inz andy

directions, the rotation, the scaling, the sheat iand the shear ip direction.
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These parameters are combined into the transformatiomnaatr

4
7O = o @)
0 0 1

The new transformed co-ordinates are computed from theqesco-ordinates

using the following matrix multiplication
@ = T (3.7)

here the superscript shows that the parameters are taken frathiteration.
Carcassoni and Hancock'’s iterative EM algorithm matchastgeatures across
a pair of images. They have shown how structural constraarishe embedded
in an EM algorithm for point alignment under affine and pecspe distortion.
Graph-spectra are used to compute the required correspomgeobabilities.
Point correspondence matching and the parameters of the &ffinsformation
matrix underlying the motion are simultaneously compussdas to maximize

the expected log-likelihood function:

QT ITMY =375 Pz |, T x Inp(di| 2, T"Y)  (3.8)
i€D jeEM
whereD is the set of data feature poinig, M is the set of model feature points
Z;. The measurement densitiggs;| Z;, 7)) model the distribution of error-
residuals between the two point sets. The log-likelihoatitoutions at iteration
n + 1 are weighted by the a posteriori measurement probabilties|«;, 7))
computed at the previous iteration. The individual conitidns to the expected

log-likelihood function are gated by the structural ma@probabilitiesg(g).
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Under the assignment of Gaussian alignment errors, in tirg positions, the

correspondence probability matrix is give as

Sy expl—p | V20, 1) — Var(5,0) |17

Ci(,n) — - - .
S e o expl | VP, 1) — Vi (7, 1) |12

(3.9)
whereo = min(|D|, |M|). The resulting matriX haso rows ando columns.

3.5.2.1 E-Step

In the E step of the algorithm the a posteriori probabilitéshe pointsz; are
updated. The a posteriori probabilities can be written imseof the conditional
measurement densities using the Bayes rule.

afp(;|Z;, T0+)

P(ZJ|U7HT(”)) = : (n), (=13 (n+1)
Zj’eM Qy p(w;| 2y, T )

(3.10)

where the mixing proportions are calculate(bé’é“) = ﬁzieDP(ij, T ™)
The conditional measurement densiti¢g;;|Z;, 7™) can be defined in terms of

a multivariate Gaussian distribution.

P15, T) =

1
X exp l—i(zj — TW@E)TS Yz — TW@)
(3.11)

1
21/ |2

3.5.2.2 M-Step

The dual step EM algorithm originally proposed in (Cross &kackl 1998) it-
erates between the two interleaved maximization stepsfifdtstep maximizes
the a posteriori probability correspondence estimatingespondence assign-
ments. The second one locates maximum likelihood for alggmnparameters

estimation. The update formula to maximize the a postepibability of the
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structural match is

FrHY(0) = argmax P(Z;|@, T (3.12)
JEM ’
The maximum-likelihood affine transformation parametéjﬁl) for k=1,2 and
[=1,2,3 are found by solving the following saddle-point dgures, which can be
solved using matrix inversion.

OQT+D|T)

8“1(;11“)

=0 (3.13)

-1
Tt — [Z Z P(Z_’}\wi,T(”))CZ-(Z)@UT@TZ_II
i€D jEM

(3.14)
x [Z S P(E s, T ZUTaT S

ieD jeM

where} is the variance-covariance matrix for the position errdtse element of
the matrixU are the partial derivatives of the affine transformationrimatith

respect to the individual parameters, i.e.

U=1]1111 (3.15)

A set of improved transformation parameters are computeddt iteration.
Once the improved parameters are found, the a posteriosume@ent probab-

ilities are updated using the Bayes theorem.
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3.6 Computational Complexity

Following are the steps of the algorithm developed in thegptér.

3.6.1 Steps

1. N number of feature of points are extracted from the input iesagsing
a feature points detector (Harris & Stephens 1988) or (Ldc&anade
1981). Angles are computed using using Vedaldi’'s MATLAB/f@pie-
mentation|(Vedaldi 2006) of the SIFT detector.

2. A Hermitian matrix is constructed using the distancesvbet each pair

of feature points and the SIFT angles computed at each é&paint.

Hl}j — e(*(dfj/zfﬁ)) % et(0i=0:)

3. The eigenvalues and eigenvectors of the Hermitian matexcomputed.

H = dADT

4. The correspondence probabilities are computed to agrsine associ-

ation matrix¢ from the eigenvectors of the Hermitian matrices.

>y expl—p || @M 1) — (5, 1) ]
2 jrent 2= €Xpl—p || (i, 1) — (5, 1) [|?]

gl.(f;.) —

where® and &’ are the corresponding eigenvector matrices constructed

using the feature points extracted from the two input images

5. The association matrixis embedded into the iterative framework of EM
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algorithm for point pattern matching proposed by Carcaisaod Han-

cock (Carcassoni & Hancack 2003).

3.6.2 Complexity

Let M andN be the number of feature points extracted from the two inpages
respectively. Without the loss of generality, we can asstirag\/ > N. Step 2
takes quadratic time to construct the Hermitian matrix. &igen-decomposition
of each matrix takes cubic time in number of feature pointd,so the total com-
plexity of this step becomes O®(*) + O(N?). Finally computing the association
matrix also takes quadratic time. Hence the total runnimgtis O(//2) + O(IV?)

+ O(M?3) + O(N?3) = O(M?3).

3.7 Experimental Results

In this section of the chapter, we provide some experimantastigations of
the correspondence matching using the complex Laplacidnixra evaluate

its performance. We focus on its use in two different setinghe first is an
investigation of using the standard proximity matrix arglhtermitian counter-
part in the Shapiro-Brady (Shapiro & Brady 1992) algorithithe second is a
similar investigation for the Carcassoni-Hancack (Cagoas& Hancock 2003)
algorithm. In both settings, we experiment with synthetid aeal world data.
To compare the performance of using the Hermitian propesdyrimmwhen de-

formations are present, experiments are performed on etycdily generated
data where 2D translation, rotation and scaling are added.effect of missing
points and random point jitter in terms of 2D Gaussian randoatrices with

different covariance are also tested.
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() (b) (c)
Figure 3.4: Synthetic Dataset

3.7.1 Synthetic Data

Here, we perform a number of experiments on the synthete wainvestigate
the correspondence matching using the Hermitian propeatyixn We perform
experiments to evaluate our approach on four point setshaduie generated
as follows. First, we take 27 points along the border of thglish alphabet
letter Y. Second, we take 20 points along the silhouette afteeldly. Third, we
take 30 equally spaced points along the silhouette of adbofinally, we take
random point sets of size 25 to 500. The first three point setskzown in the
figure[3.4. Note that each feature point has a vector asedaiéth it. We need
the difference of angles associated with each pair of feghoints to construct
the Hermitian property matrix detailed in Sectionl3.3. WeeBstigate two sources
of error. The first of these is random measurement error ortygumsition jitter.
Here we subject the positions of the points to Gaussian meas&unt error. The
second source of error is structural. Here we randomly eele@ttrolled number
of points. This type of the error is most destructive for thectral methods.

In our first experiment, we take a feature point set and makeps of it.
We apply different affine geometric transformation (i.@nslation, rotation and
scaling) to the second copy. We construct Hermitian magricem both of the
locations of the feature points and the angles associatidigm. We compute

the correspondences from the corresponding eigenvedtting dwo Hermitian
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matrices as detailed in Sectibn13.5. Some of the resultshanersin figure 3.5
which show that the proposed approach has the ability to atenihe correct

correspondences under different affine geometric tramsfbons.

In the second experiment, we evaluate the performance qirthposed ap-
proach on the synthetic data with controlled point-posifitier. We choose 30
feature points taken along the silhouette of a bottle shawfigure[3.4(d). We
take a copy of the point set and subject the positions andrikes associated
with the feature points to Gaussian measurement error. Afe ¢dbmpute the
correspondences from the eigenvectors of the Hermitianxr@mputed from
both point sets. The results are compared with ShapiroyBasgbrithm applied
to the same point sets. The correspondence results of bafyrSi& Brady al-
gorithm and its Hermitian counterpart are shown in figureé Jiee left column
(figure[3.6(d) and figure 3.6(b)) shows the point matchinggighe Hermitian
matrix. The right column[(3.6(t) arid 3.6(d)) shows the paidtching using
Shapiro-Brady/(Shapiro & Brady 1992) method. The upper anef rows have

noise ofc = 0.1 ando = 0.2 added respectively.

In the third experiment, the performance of our method iduatad on the
random point sets. We take random point set of size 25 to 308. eXjeri-
ment on this data set on the problem of correspondence wiitiora position
jitter. Here we compare the results of using Hermitian priypeatrix, Shapiro
& Brady algorithm and Tang et al. (referred to as Laplacidgpathm with in-
creasing point-position jitter. The results are shown inrgj3.7. The correct
correspondence is shown as a function of the standard amviztthe Gaussian
noise added. The results are the average of 100 runs for ehoh of standard

deviation used to generate the random jitter.

To test the performance of the proposed approach on the-peirmdf differ-

ent sizes we take random point-sets of size 20 to 450. We addddmount of
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Gaussian noise to them. The size of the two point sets beirighed is same.
We compare the correspondence results of the Hermitiarepgomatrix with

that of Shapiro & Brady algorithm and Tang et al. (referrecds$d_aplacian). In
figure[3.8, the fraction of correct correspondences is shasva function of the
size of the point sets. The performance of all the three nustidecreases with
the increase in the size of the point sets because with thease in the number
of points, the average inter-point distance decreases.emewwthe correspond-
ence matching using the Hermitian property matrix outpentthe other two
correspondence matching algorithms. The results showtharaverage of 100

runs on each size of the graph.

Next, we introduce the structural noise to the point setabgomly deleting
a controlled proportion of points. The effect of missingmisifor rigid point
matching are shown in figuke 3.9. Here, note that with thesiase in the number
of deleted points the performance of all of the three methiaéddown abruptly.
With 50% of structural error the performance of all of thesthalgorithms reach

to zero.

We now turn to the use of Carcassoni’'s EM algorithm. We emhed:om-
plex Laplacian matrix into the framework of Carcassonigoaithm to render
it more robust to noise and rotation. We compare the resattshie Shapiro
& Brady algorithm, the original EM algorithm (referred to @arcassoni) and
the modified version (referred to as Carcassoni + Complexacem) in fig-
ure[3.10. The results show that by embedding the complexakcapi into the
EM algorithm, on the average, clearly improves its perfarogaby about 5 to
10%.
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Figure 3.5: Correspondence matching results under diffeafine geometric
transformations, Correspondence under a) Translationdbdtidn c) Scaling

d) Scaling, rotation and translation e) Rotation f) Poiosigion jitter
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Figure 3.6: Correspondence matching with Gaussian noidedath point po-
sitions using (a) Hermitian matrix = 0.1 (b) Hermitian matrixr = 0.2 (c)
Shapiro-Brady method = 0.1 (d) Shapiro-Brady methad= 0.2

3.7.2 Real-World Data

Our final piece of experimental work focuses on real-worlthd&or real-world
data we evaluate our approach onimages from two image seggiaramely, the

CMU/VASC model-house sequence and the Swiss chalet modsklsequence.

In the first experiment, we use the CMU/VASC model-house sege. We
compare our method (referred to as Hermitian) with othectspkpoint match-
ing methods i.e. Scott and Longuet-Higgins (referred to @asttpand Carcas-
soni's EM point alignment algorithm. Forty feature pointe @&xtracted using

Kanade-Lucas-Tomasi (Shi & Tomasi 1994) feature pointagttr from each
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Figure 3.11: The Swiss chalet model house sequence, witfettere points
extracted

image. Hermitian matrices are constructed using equati@ra8 explained in
Sectior . 3.4. The parametercontrols the interaction between the feature points.
The choice of the value of significantly affects the performance of the al-
gorithm. Here we choose maximum of theandy coordinates of all the fea-
ture points in the image as the valueaf We compute angles, at the feature
points localised, using Vedaldi's MATLAB/C implementati¢Vedaldi 2006) of
the SIFT detector and descriptor. Correspondences areutechpetween the*!
frame and th@0'™, 40", 60", 80"" and100*" frames. Figur€3.18 shows the cor-
respondence matching results of the three methods medtadooe. The match-
ing results of the 1st frame of the sequence with the otherdsaare shown in fig-
ure[3.12 to figuré 3.16. Here, the first pair of frames (tophésresult produced
by the Scott and Longuet-Higgins (Scott & Longuet-Higgir@91) algorithm.
The second pair(middle) is the correspondence result oEMelgorithm de-
veloped by Carcassoni and Hancock while the third pair @mo}tis the result
obtained when the Hermitian matrix is embedded in CarcassahHancock’s
algorithm. Figuré_3.17 shows the matching betweenithérame and the 0*"
frame of the CMU/VASC sequence. There &rencorrect matches using only

spectral information. However, there are not any wrongespondences when
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Figure 3.12: Comparing different methods, matchingtieand 20" frame, a)
Carcassoni b) Scott & Longuet-Higgins c) Carcassoni + Heami

EM alignment algorithm is incorporated along with the coexgpectral inform-
ation. We compare our method with a non-spectral methodloleed by Chui
and Rangarajan (Chui & Rangarajan 2000). We use the sameselata. the
CMU/VASC model-house sequence. The results are shown ile [Bab which

shows that the performance of Chui and Rangarajan’s me#feded to as TSP,
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Figure 3.13: Comparing different methods, matchingtieand 40" frame, a)
Carcassoni b) Scott & Longuet-Higgins c) Carcassoni + Heami

decreases when the rotation in the input point-sets ineseas

The second experiment we performed is on the Swiss chale¢irhodse se-
quence. Ten frames of the sequence are shown in figure 3.htheitextracted
feature points. The feature points are extracted using @ecatetector (Harris

& Stephens 1988) which produces the point-sets of diffeserss. For instance,
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Figure 3.14: Comparing different methods, matchingtieand 60" frame, a)
Carcassoni b) Scott & Longuet-Higgins c) Carcassoni + Heami

in the frames 01 to 10 of the sequence, the sizes of the peistase 30, 32, 30,
25, 25, 23, 24, 24, 22 and 25 respectively. Hermitian matrare constructed
using equation_3]3 as explained in Section 3.4. The parametentrols the
interaction between the feature points. The choice of theevaf o significantly

affects the performance of the algorithm. Here we chooseéman of thex
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Figure 3.15: Comparing different methods, matchingtieand 80 frame, a)
Carcassoni b) Scott & Longuet-Higgins c) Carcassoni + Heami

andy coordinates of all the feature points in the image as theevafw. We
compute angles, at the feature points localised, usingldesiMATLAB/C im-
plementation (Vedaldi 2006) of the SIFT detector and desari The results of
the corresponding matching using different methods arerngim Table[ 3.2 in

terms of the number of correct correspondences. We companeerformance



64 Feature Point Matching using a Hermitian Property Matrix

Figure 3.16: Comparing different methods, matchingitt@nd100" frame, a)
Carcassoni b) Scott & Longuet-Higgins c) Carcassoni + Heami

of our algorithm with Chui and Rangarajan’s method, reféteas TSP, on the
Swiss chalet model house sequence. The quantitativeseselshown in Table

B.2.
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(b)

Figure 3.17: Experimental results: Correspondence magabfithelt and10
frame (a)using spectral information only (b)using EM afiggnt along with spec-
tral information
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Figure 3.18: Effect of viewing angle on correspondence mate
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Number of incorrect matches (out of 4(

Frame 1-20 | 1-40 | 1-60 | 1-80 1-100
Scott 0 0 4 7 18
Carcassoni 0 1 3 5 8
Carcassoni+Hermitian O 0 1 3 5
TSP (non spectral) 0 3 8 13 19

Table 3.1: Performance on the CMU/VASC house sequence. Tdtdrfiage
frame has been matched against2bé, 40", 60", 80" and100*" frame

Number of correct correspondences

Frame 1 2 3 4 5 6 7 8 9
# of points 30132 30| 25| 25|23 |24 | 24| 22
Scott & Longuet-Higgins| - | 28 | 25| 21| 20 | 15| 11

Shapiro & Brady - 282621 | 17| 14| 10

Carcassoni - (3029 27|22 20| 20| 19| 16
Carcassoni+ Hermitian | - | 30| 30 | 29 | 24| 22 | 22 | 21 | 19
TSP (non spectral) - |25 22| 18| 18|19 |16 | 14| 12

Table 3.2: Performance of different algorithms on the SwWikalet model house
sequence. The firstimage frame is matched against remaiimedrames

3.8 Summary

In this chapter we have investigated how the correspondaatehing method of
Shapiro and Brady (Shapiro & Brady 1992) can be improved loygusomplex

eigenvectors of Hermitian property matrix. We added theudargnformation

to the proximity matrix used by Shapiro and Brady, to extertd the complex

domain. We constructed a complex analog of a real weightgthtan matrix.

We used the eigenvector of complex Laplacian for the purpbserrespondence

matching. Secondly, we used the complex eigenvectors ofdheplex Lapla-



Summary 67

cian matrix to calculate the correspondence probabili@srix and embed it
into Carcassoni's EM algorithm to render it more robust tgéaviewing angle
change between the images being matched. We tested thesptbpeethod on
both the synthetic data and the real world data. The expeataheesults on syn-
thetic and real world data both indicate that our approaadtksvith a relatively

higher accuracy.






CHAPTER 4

Unsupervised Clustering of Human Pose using

Spectral Embedding

4.1 Introduction

Full body human pose analysis is one of the fundamental enadin computer
vision. Detecting the human pose is an important step in Inunekaviour ana-
lysis, action or gesture recognition. However, human patedtion is a chal-
lenging task because of the huge inter-limb and intra-ligddtre variability in
both still images and image sequences. It has a wide rangeteftel applic-
ations such as video-gaming, human-computer interacsiecyrity, and health-
care etc. In literature, a significant amount of work has lzEsTe on human pose
estimation, detection, clustering and classification (#oka et al. 2009; John-
son & Everingham 2009: Eichner & Ferrari 2010). Agarwal amads (Agar-

wal & Triggs|2006) describe a learning-based method forvegng 3D human

69
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body pose from single images and monocular image sequemc@sogez et al.

2012), an efficient method to jointly localize and recogrize pose of humans
is proposed, using the randomized hierarchical cascadssifiér. Here we use a
graph clustering approach using spectral methods to clsistdar human poses

produced by the Microsoft Kinect device.

Graph partitioning/clustering and classification is onthefmost extensively
studied topics in computer vision and machine learning camity. Clustering is
closely related to unsupervised learning in pattern rettimgnsystems. Graphs
are structures formed by a set of vertices called nodes amdtl af £dges that
are connections between the pairs of nodes. Graph clugisrgrouping similar
graphs based on structural similarity within clusters. Buat al. (Bunke et al.
2003) proposed a structural method referred to as the Waigitnimum Com-
mon Supergraph (WMCS), for representing a cluster of patefhere has been
significant amount of work aimed at using spectral graphhg&€hung 1997)
to cluster graphs. This work shows the common feature ofgugiaph repres-
entations of the data for the graph partitioning. Luo et aLua( et al. 2002)
have used the discriminatory qualities of a number of festwonstructed from
the graph spectrum. Using the leading eigenvalues and\aigens of the ad-
jacency matrix they found that the leading eigenvalues tiaedest capabilities
for structural comparison. There are a number of examplapplying pairwise
clustering methods to graph edit distances (Pavan & P2id@3). Recently, the
properties of the eigenvectors and eigenvalues of the tegplanatrix of graph
have been exploited in many areas of computer vision. Fdamcg, Shi and
Malik (Shi & Malik 2000) used the eigenvector correspondiagecond smal-
lest (none zero) eigenvalue (also called Fielder vectothefLaplacian matrix
to iteratively bi-partition the graph for image segmeratiThe information en-

coded in the eigenvectors of the Laplacian has been usethépesegistration
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(Mateus et al. 2008) and clustering. Veltkamp et al. (Leugeal./ 2008) de-
veloped a shape retrieval method using a complex Fieldéoveta Hermitian
property matrix. Recent spectral approaches use the eigtmg corresponding
to thek smallest eigenvalues of the Laplacian matrix to embed thplgonto a

k dimensional Euclidean space (Ng et al. 2001; Yu &/Shi 2003).

In this chapter we propose a clustering method using thelanigfiormation
and the distance between pair of joints, of the skeletoraete¢d from the Mi-
crosoft Kinect 3D sensor._(Microsoft 2010). Given the skatedicquired from
Microsoft Kinect, we commence by converting the skeletapgrto its equival-
ent line graph because we need the angles between pairslis. lifthe angle
between adjacent pair of limbs is computed by creating vegarallel to adja-
cent limbs and taking the inverse cosine of the dot produdtssovectors repres-
enting the limbs. For instance, the angle between the uppeaad lower arm is
calculated using vectors created Bpowjoint to Wrist joint andElbowjoint to
Shoulderjoint as shown in figurg 4.5(b). We construct a Hermitian iratsing
the distance as the weights of the edges multiplied by théeargptween each
pair of limbs in the form of a complex number. We use the spectof the Her-
mitian matrix to cluster similar human poses. The featurtans are constructed
from the eigenvalues and eigenvectors of the Hermitianimatthe graph. The
topology of a graph is invariant under permutation of theentabels. How-
ever, if the nodes are relabelled, the adjacency, the Leplad the Hermitian
matrices undergo a permutation of rows and columns. Thesponding eigen-
vector matrix undergoes a permutation of rows, i.e. theesmonding elements
of the eigenvectors undergo a permutation. To construttifeavectors which
are invariant to the nodes labels, we use sets of symmetiyo@mial coeffi-
cients. Once the feature-vectors for all the poses are td,ha@ subject these

vectors to two of the classical embedding methods incluéimgcipal Compon-



72 Unsupervised Clustering of Human Pose using Spectral Embeiihg

IR Projector RGB Camera IR Sensor

Figure 4.1: Microsoft Kinect 3D depth device for Xbox 360

ent Analysis (PCA) and Multidimensional Scaling (MDS).

The remainder of the chapter is organized as follows. Sefli@d explains
how a human pose is represented by a graph. In Sectibn 4.3tieitiin matrix
is defined. The symmetric polynomials are briefly reviewedsaction [4.4.
Section[4.5 details the construction of the feature vectexperimental results

are provided in Section_4.8 and finally Section] 4.9 concliudeshapter.

4.2 Human Pose Representation

This section describes the processing of the graph extrdicien the skeleton
acquired from the Microsoft Kinect 3D depth device for Xbds03 It's a spe-
cialized sensor built by Microsoft that is capable of redamg and tracking
humans in 3D space. The Kinect has three windows at the froshawn in
the figureL4.1l. The left window on the Kinect is an infrared)(fRojector; the
middle window is a colour (RGB) camera while the right windsvan infrared
sensor. The IR projector and the IR sensor work together teraaBD depth
sensor. The IR projector emits a grid of IR light in front aof his light is re-
flected back to the IR sensor. The pattern received by theRoses decoded
in the Kinect to determine the depth information. This deptbrmation is very
useful in many computer vision applications.

Using this device Shotton et al. (Shotton €t al. 2011) desxica method to
extract the human body pose from a single depth image. Thethesdepth data
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Figure 4.3: Kinect 3D Joints, with skeletal model

in order to perform the segmentation of the human body toiohts: skeletal
model which consists of a set of joint positions. They use gehaet of human
samples to infer pixel labels through Random Forest esitimatnd the skeletal
model is defined as the centroid of mass of the different dexggens using mean
shift algorithm resulting in the 3D joint proposals. Thréwexperimental results,
they demonstrate that their algorithm is efficient and ¢iffedor reconstructing
3D human body poses, even in the presence of partial ocokigiifferent points
of view and under no light conditions. The process of joirggmsal from the
depth image is shown in figure 4.2.

We use the Microsoft Kinect Beta 2 SDK API functions to exttae 3D joint
positions of the human skeletal model. The NUI Skeleton ABVjes inform-

ation about the location of players standing in front of thad€t device, with
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Figure 4.4: Line graph example, Original graph (left) arsletjuivalent line
graph (right), the nodes represent the limbs

detailed position and orientation information. The datarisvided to applica-
tion code as a set of points, called skeleton positions civajpose a skeleton, as
shown in figuré_ 4.3. This skeleton represents a user’s dupesition and pose.

The skeleton has 20 points that are called Joints in Kine¢&t.SD

Here, our aim is to cluster similar human poses representédebskeleton
with 20 points acquired from the Kinect sensor using the spkgraph tech-
niques. We commence by constructing a graph representingparpose, where
the nodes of the graph represent the joints and the edgessegpprthe human
body limbs. We use the length of the limbs and the angle betwegmir of limbs
as features. Since, we use the angles between each pairsfuinch are rep-
resented by the edges of the graph, therefore, we need tertdimat graph to its

equivalent line graph so that the angular information isreefion the nodes.

The line graph of undirected grajghis another graph that represents the ad-
jacency between edges 6f The nodes in the line graph represents the edges
of the original graphz. For instance, figure 4.4 shows an example graph and
its equivalent line graph. The original graph has 4 nodestaedges while the
resulting line graph has 5 nodes and 8 edges. Similarly, weerbthe human
skeleton into its equivalent line graph shown in figure 4|5{(&ere are 19 edges
in the original skeleton, therefore, the nodes in its edaivaline graph are 19.

The Hermitian matrix is established from the differencensetn the lengths of
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(a) (b)

Figure 4.5: Human skeleton graph a) Skeleton captured iBidlinect (left)
and its equivalent line graph (right); b) Skeleton showing &ngled between
upper and lower arm

each pair of edges and the angles subtended by those edgeseWe spectra
of a Hermitian property matrix along with the coefficientssgfnmetric polyno-

mials to construct a feature vector which represents aeimginan pose.

4.3 Complex Laplacian (Hermitian) matrix

A Hermitian matrixH (or self-adjoint matrix) is a square matrix with complex
elements that remains unchanged under the joint operativarsposition and
complex conjugation of the elements. That is, the elemetitéi” row and;"
column is equal to the complex conjugate of the element injtheow and:*"
column, for all indices andy, i.e. a; ; = @;,. Complex conjugation is denoted
by the dagger operatdri.e. H' = H. Hermitian matrices can be viewed as the
complex number extension of the symmetric matrix for reahbars. The on-
diagonal elements of a Hermitian matrix are necessarilygeantities. Each off-
diagonal elementis a complex number which has two compsenand therefore,
can represent a 2-component measurement.

To create a positive semi-definite Hermitian matrix of a ¢apere should be
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some constraints applied on the measurement represewstatiet{ v, zs, ..., 7, }

be a set of measurements for the nodeysehd{y, 1, y1 2, ..., yn.. } D€ the set of
measurements associated with the edges of the graph, imoadii the graph
weights. Each edge then has a pair of observatfd¥s;, v,,) associated with
it. There are a number of ways in which the complex nunibgs could repres-
ent this information, for example with the real partidsand the imaginary part
asy. However, here we follow Wilson, Hancock and Luo (Wilson E{2805)

and construct the complex property matrix so as to reflect #pacian. As a

result the off-diagonal elements &f are chosen to be

Ha,b = _Wa,b eYab

. The edge weights are encoded by the magnitude of the complekerH,

and the additional measurement by its phase. By using tleisdamg, the mag-
nitude of the number is the same as the original Laplacianxndthis encoding

is suitable when measurements are angles, satisfying titbtmms—7 < y,;, <
mandy,, = —y., 10 produce a Hermitian matrix. To ensure a positive definite
matrix, H,, should be greater thanX,.,|H,|. This condition is satisfied if
Hoo = 24 4 Xp2aWap andz, > 0. When defined in this way the property matrix

is a complex analogue of the weighted Laplacian matrix fergtaph.

For a Hermitian matrix there is an orthogonal complete bssiof eigen-
vectors and eigenvalues i.&l¢ = \¢. The eigenvalue$; of Hermitian matrix
are real while the eigenvectats are complex. There is a potential ambiguity in
the eigenvectors, in that any multiple of an eigenvectorsslation of the eigen-
vector equatior{ ¢ = \¢. i.e. Ha¢ = Aa¢p. Therefore, we need two constraints
for them. Firstly, make each eigenvector of unit length eece. |¢;| = 1, and

secondly impose the conditiaing ) . ¢;; = 0.
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4.4 Symmetric Polynomials

A symmetric polynomial is a polynomid(zy, xs, ..., z,) in n variables, such
that if any of the variables are interchanged, the same pabyal is obtained.
A symmetric polynomial is invariant under permutation oé trariable indices.
There is a special set of symmetric polynomials referredstthaelementary
symmetric polynomial (Shat form a basis set for symmetric polynomial. The
elementary symmetric polynomials are the most fundamegtametric polyno-
mials. Any symmetric polynomial can be expressed as a patyadunction of
the elementary symmetric polynomials. For a set of varg@blex,, ..., z, the

elementary symmetric polynomials can be defined as:

n
51(961,@7-‘-,%) = Zmz
i=1
n n
52(1'1,.772,...,.1'n) = Z Z .Til'j

i=1 j=i+1

Sr(9517$27---,95n) = E TinZig - - - Ty

11 <12<...<ip

Sp(x1, 29, ..., Tp) = sz
=1
The power symmetric polynomial functions (P) are defined as
Pl(l'l,l'g, Ce ,.%'n) = ZZEZ
=1

n
Pg(l'l,l'g,. .. ,l’n) = Z.ﬁlﬂ'?
=1

n
Pr(.%'l,l'g,. .. ,l’n) = Zl’:
i=1
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PR

Figure 4.6: Some Examples of Poses for Experiments

Pn(xl,xz,...,xn) :sz’b

The elementary symmetric polynomials can be efficiently poted from
the coefficients of the power symmetric polynomials using liewton-Girard
formula

(1) & ket
S, — (1) P,S, 4.1)

r
k=1

here the shortcuf, is used forS, (x1, zs, . . ., z,) andP, isused forP, (x1, xo, . . ., x,,).

4.5 Feature Vectors

The skeleton of human body with twenty, 3-dimensional orepresenting the
joints connected by the lines representing the limbs, isiaeq using the Mi-
crosoft Kinect SDK. Kinect provides the skeletal data with tate of30 frames
per second. Figureé_4.6 shows some examples of the skeletphged with the
Kinect sensor. Each point in the skeleton is representedthyea dimensional
vectorw; = (x;,y;, zi)*.

We used the limb joint angles and the limb length assignedhéyicrosoft
Kinect SKD. We convert the skeleton into its equivalent lgraph. The line

graph of undirected graph is another graph that represents the adjacency between
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the edges of7. The nodes in the line graph represents the edges of the ori-
ginal graphGG. We construct a Hermitian matrix from the difference betwte
lengths of each pair of the edges and the angles subtenddtbby edges, to
reflect the Laplacian matrix as detailed in section 4.3. Giveo adjacent edges

e; ande;, with the nodesv,_,, wy, andwy.,, wherewy, is the common (middle)

node. The angle between the edggande; is given by

0.. = cos < (wy wk_l)T(wk ~ Wet1) ) (4.2)
Y |Jwi — wi—1 || X [Jwg — wr41]]

The Hermitian matrixd has element with row indexand column indey is
given by
H(i,j) = —W, e (4.3)

where W, ; is the difference of the lengths of the edggsande; and?; ; is
the angle between the edgesande;. To obey the antisymmetric condition

0, ; = —0;,, we multiplyd; ; by —1 if length of edgee; > e;.

With the complex matrix{ to hand, we compute its eigenvalues and eigen-
vectors. The eigenvector of a Hermitian matrix are complekthe eigenvalues
are real.

H = dADT (4.4)

where® is the eigenvector matrix, with eigenvector sitting in itdwonns, and
A is a diagonal matrix with eigenvalués on its main diagonal. We order the
eigenvectors according to the decreasing magnitude ofgleewaluesi.e|\;| >
|A2| > ... > |\,|. We construct a complex spectral matinor the input pose
from the eigenvalues and eigenvectors of the Hermitianimatiby multiplying

each eigenvector by the square root of its correspondirenegue as follows

v = (\/)\71051’\/)\72@‘ S ’\/Yn@z) (4.5)
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where)\; are the eigenvalues amd are their corresponding eigenvectors. From
the scaled eigenvectors in the columns of the complex sgeuoiatrix ¥, the
symmetric polynomial coefficients are computed. To do so vg¢ dompute the
power symmetric polynomials. From the power symmetric potipials the ele-
mentary symmetric polynomials are computed using the NevM@ward formula
(equation[4.11) as described in Sectibn] 4.4 (Wilson et alSP0Bach column
of the complex spectral matrik is used as input to the set of symmetric polyno-
mials. For instance, the first colum{@, ;, Us1,..., ¥, ;)" will produce the
polynomial coefficientsS; (Vy1, Vo y,...,¥s1), So(Vi1,Yor,.. . Vpn1), ..,
Sn(W11,¥a1,...,¥, ). We put these coefficients in the first column of a mat-
rix S. The second column of the matiixis computed from the second column
of the spectral matrix. Similarly we can compute theoefficients for each
column of the spectral matrix and put these in the corresipgntblumn of the
matrix S. Then'* column of the matrixS is computed from thex'" column

of the spectral matrixV i.e. the column(¥, ,, ¥s,,..., ¥, )" will produce

S W1, Wy W)y So (U, W oo, W)y ey S (W, U, W),
Hence, for alln columns we will have:? coefficients. These coefficients are in-

variant to the permutation of the node labels of the inpuplgra

S1(Ch) Si(Cy) ... Si(Ch)

s_ Sz(.Cl) SQ(.CQ) SQ(.Cn) 4.6)

Sn(C1) Su(Co) ... Su(Ch)

wheresS,, 9,, ..., S,, are the first, second and th& coefficients of the symmetric
polynomial, and”;, O, ..., C,, are the first, second and" column of the spectral
matrix W respectively. The coefficients of high order polynomialsdt¢o zero

because of the product terms in high order polynomialsefoes, we construct
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the feature vectors using the first 10 coefficients only.
Since, the coefficient of the elementary symmetric polyradsnare complex
numbers, therefore, we can construct the feature-veatoasnumber of ways

given below

1. LetS is2n xn created from the xn complex elementary symmetric poly-
nomials matrixS. The real and imaginary components of the coefficients
of symmetric polynomials are interleaved. The columns 2h x n are
stacked to form a long feature vect@rfor the graph representing the pose

frame.

Q 5 Q 5 5 Q Q Q 5 T
E - (8171, 8271, N 78271,17 3172, 3272, . e ,827172, N 781,717 8277“ N 73271,71)
4.7)

2. LetI" be the matrix whose elements be the magnitude of the componen
of the complex elementary symmetric polynomial matfixi.e. I'; ; =
Siil = VR(S:;)? + S(Si;)?, whereR(S; ;) is the real part of the com-

plex symmetric polynomial coefficier®; ; and (S, ;) is the imaginary
part ofS; ;. The columns of the matrik are stacked to form a long feature

vector F; for the graph representing the pose frame.

E = (Fl,la F2,17 cee Fn,la F1,27 F2,27 BRI F71,27 B Fl,na FQ,na ety Fn,n)T
(4.8)

3. LetR be the matrix with its element®, ; be the real part of the compon-
ents of the complex elementary symmetric polynomial coefiiis S; ;.
i.e.R;; = R(S,,), whereR(S, ;) is the real part of the complex symmet-
ric polynomial coefficientS; ;. The columns of the matrik are stacked

to form a long feature vectar; for the graph representing the pose frame.
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The imaginary part is ignored.

E = (Rl,ly ,R,le, e ,le, RLQ, RQ}Q, e ,ng, cee 7R1,n7 RQJH e ,,R,n?n)T
(4.9)

4. LetZ be the matrix with its elements; ; be the imaginary part of the
components of the complex elementary symmetric polynoooiefficients
S,j.1.e.Z; ; = (S, ), where(S; ;) is the imaginary part of the complex
symmetric polynomial coefficien§; ;. The columns of the matri¥ are
stacked to form a long feature vectéy for the graph representing the

pose frame. The real part is discarded.

E - (11,1712,17 s 7In,1711,27:[2,27 .. 7In,27 s 711,71712,717 s 7In,n)T
(4.10)

4.6 Embedding Methods

In this section we explore two different methods of embegdhre graph fea-
ture vectors in a pattern space, namely Principal Compsn&nalysis (PCA)
(Jolliffe 2002) and Multidimensional Scaling (MDS) (Krusk& Wish [1978).
PCA finds the projection which is in the direction of maximuariance in the
data. Multidimensional scaling on the other hand, presetive relative distance
between a pair of data. MDS is performed on a set of pairwistakce between

each pair of vectors.

4.6.1 Principal Component Analysis

Principal Components Analysis (PCA) is a popular techniguelimensionality

reduction. PCA transforms the input data to a new coordisgstem such that
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the greatest variance by any projection of the data comds tunlthe first co-
ordinate called the first principal component, the secoedigist variance on the
second coordinate, and so on. We start by constructing axvtawhich has the
mean-adjusted feature vectofs= [F, — F|F,—F| . .. | Fy— F| from the feature
vectorsF; for the graph representing the pose frame, wiigigthe mean feature
vector for the given feature vectofs. The next step is to compute the covari-
ance matr>xC by taking the produaf’ = ST S. The principal components of the
covariance matrixC' are computed by subjecting it to the eigen-decomposition
C = UAUT, whereU is the eigenvector matrix with the eigenvectors sitting in
its columns i.e.U = (uy,us,...,u,) andA is diagonal matrix with eigenval-
ues sitting on its main diagonal. Here we use the firltading eigenvectors to
represent the feature vectors for the graphsliie= (u, us, . .., ux). For visu-
alization purpose we take only 2 or 3 leading principal congrds. Each graph
is represented by a feature vecfgr We project the feature vectdt, onto the

eigenspace using the equatign= U7 (F; — F)

4.6.2 Multidimensional Scaling

Multidimensional Scaling (MDS) is a technique which prasda low dimen-
sional representation of high dimensional data for vigadilon purpose. The
input data should be given in terms of a square, symmetricixnatt pairwise
distances between each pair of the data objects. The daatghjgh dimen-
sional) are represented as points in a low dimensionalpasigace, such that
the Euclidean distances between the points match the inpsidlarities as
closely as possible. To commence we need to compute theipaidistances
between the graphs representing the pose frames. We commeuEeuclidean
distance between the feature vectgrcorresponding to the pair of graph rep-

resenting the pose frames. For instance, the disténcbetween feature vector
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Fy and F; is computed ag, , = (Fy, — Fy)(F; — F»)T. The pairwise distances
d,. are used as the elements of &nx N dissimilarity matrixU. Then, we
need to compute a matrik whose element with row and columr is give by
T,. = —i[U2—U2-U2+U?), whereU? = £ 3" U,,, is the average dissimil-

arity value over the'” row in the distance math?c is the dissimilarity average

1
2

value over the® column in the distance matrix aif = = > S U, is

the average dissimilarity value over all rows and columnhefdistance matrix.
Then, we subject the matrik to eigenvector decomposition to obtain a matrix of
embedding coordinates. The number of non-zero eigenvalues we get is equal
to the rank of the matri¥’. If the rank of T is k, £ < N, then we get k non-zero
eigenvalues. We arrange thds@on-zero eigenvalues in descending order, i.e.
A1 > Ay > ... \; > 0. The corresponding ordered eigenvectors are denoted by
u; wWhere); is the corresponding eigenvalue. The embedding coordgyatem

for the graphs is\ = [v/ A\ u1, v Azus, . .., vV Arui]. The embedded coordinates
vectorz; for the graphi is given byz; = (X; 1, X;0, ..., Xix)T.

4.7 Computational Complexity

Following are the steps of the algorithm developed in thegtér.

4.7.1 Steps

Given the skeleton with 20 nodes

1. Compute the line graph of the Skeletal graph, as we neeahtles between
pairs of limbs. The angles are computed between adjacantfdanbs by
creating vectors parallel to the limbs and taking the inverssine of the

dot products of the vectors.
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2. A Hermitian matrix is constructed from the line graph gsihe distances

between each pair of joints and the angles between the limbs.

Hi,j — e(—(dfj/QUQ)) w e40ij)

3. The eigenvalues and eigenvectors of the Hermitian mataxomputed.

H = dADT

4. Spectral matrix is computed using the eigenvalues areheagtors of the

Hermitian matrix.

v = (VAavV et |V At

5. Elementary Symmetric Polynomials are computed from ta&im¥ and
all the columns are stacked to make a long vector which reptes pose.

To construct feature-vectors which are invariant to theerlabels, we use

coefficients of the symmetric polynomials.

6. Use PCA and MDS to embed those vectors in space to clustgasposes

4.7.2 Complexity

Since the number of nodes in each graph is fixed (i.e. 20)etbes, the execu-

tion time for this algorithm is constant.
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4.8 Experimental Results

In this section, we provide some experimental investigetiof the clustering of
different human poses. We focus on two different settingsthé first setting
we perform experiments to cluster similar human poses wsidgrmitian prop-
erty matrix and compare the results with that of the real &ajpin matrix. We
also perform clustering using the Laplacian spectral pattectorsi(Luo et al.
2003) for comparison. Under the second setting we perfommesexperiments
to investigate which combination of the feature vectorsditied in section 4J5)
and the embedding method (detailed in sedtioh 4.6) givebébeset of cluster-
ing results. Under both setting we use the human skeletantdkén from the

Kinect.

Data set: Our data set consists of the human skeleton poses takenMiiom
crosoft Kinect device, of 15 different subjects, includihghales, 6 females and
2 children. 10 different poses of each subject were record&@ instances of

each pose were recorded, with slight change in the posdigoand angle.

In the first experiment, we take 5 different poses of randosehgcted sub-
jects. 100 instances of each pose are used. We construcetpkted Laplacian
matrix L = D — W for each pose using the joints as nodes of the graph and the
length of the limbs as the edges of the graph, wheres the diagonal degree
matrix andWV is the weighted adjacency matrix. The entries of the weijhte
adjacency matrixl” are computed using a Gaussian kernellilg; = e %/20,
Wheredfj is the squared distance between noedend node;. We subject the
Laplacian matrixL to eigen-decomposition i.e. = ®Ad?, whered is the ei-
genvector matrix, with eigenvector sitting in its columasdA is a diagonal mat-
rix with eigenvalues\; on its main diagonal. We order the eigenvectors according

to the decreasing magnitude of the eigenvalues|ig. > |Xa| > ... > |A,].
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We construct a spectral matrix from the eigenvectors aneigpnvalues of the
Laplacian matrixZ by multiplying each eigenvector by the square root of its
corresponding eigenvalue i.&f = (vX1¢1[v/ 20| ... [V A,0,) Where); are
the eigenvalues angl are their corresponding eigenvectors. From the scaled ei-
genvectors in the columns of the spectral matrixthe symmetric polynomial
coefficients are computed. Since the Laplacian is a realixnaith real eigen-
values and real eigenvectors, the symmetric polynomidficants are also real.
We construct the feature vectafsfrom the real coefficients of symmetric poly-
nomials by stacking the columns of the coefficients matrie.al¢o construct the
feature vectors from the coefficients of complex symmetalypomials estab-
lished using a Hermitian property matrix as described itise@.3 by account-
ing the angular information along with the distances betwesch pair of nodes
using equation 417. We project both sets of feature vectors ® dimensional
space using principal component analysis (PCA). Figurd@ldstrates the result
of this comparison. Figuie 4.7{a) shows the result obtairgialg the symmetric
polynomials computed from the eigenvalues and eigenvedbthe Laplacian
matrix L. Figure[4.7() shows the result obtained using the symmptiyno-
mials established from the eigenvalues and eigenvectdredfiermitian matrix
H. The Hermitian property matrix produces a better clasgifioaresults than
the Laplacian matrix for the human skeleton data captui@a ticrosoft Kin-
ect device for Xbox 360, as Hermitian matrix captures mofermation from

the input human skeleton.

In the second experiment, we randomly choose three posesdbmly se-
lected subjects. Some examples of the input poses are shadwiguire 4.6. We
take 100 different instances of each pose. We constructetiteirie vectord;
according to the steps mentioned in Secfiod 4.5 using expidi/. We then

embed the feature vectors into a three dimensional pasigane by performing
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Figure 4.7: Comparison of clustering results using PCA wajtiveighted Lapla-
cian matrix with only the distance measurements b) Hermipigperty matrix
with additional angular information embedded along with distance measure-
ments

the principal component analysis. Figlire 4.8(a) shows ¢selt of the clus-
tering using the first three eigenvectors. For comparisoresiablish feature
vectors using the spectrum of Laplacian matrix of the graggresenting the
human skeleton. The eigenvalues of the Laplacian has anriamaole in the
graph clustering algorithms. We take the smallest non-eggenvalue to the
largest eigenvalue of the Laplacian matrix as componentiseofeature vector,
i.e. By = Mo, A3, ..., AT, whereL = ®ADT, A = diag(Ay, Ao, ..., A\,) is the
diagonal matrix with eigenvalues sitting on its main diagiaand) = A\ < Ay <
<A

Similarly, we construct another set of feature vectors gigine spectrum of
the Hermitian property matriX/ described in sectidn 4.3. We take the smallest
non-zero eigenvalue to the largest eigenvalue of the Hexrmihatrix as com-
ponents of the feature vector, i.é; = [\, \3,..., \,]7, whereH = ®ADT,
A = diag(\, e, ..., \,) is the diagonal matrix with eigenvalues on its main
diagonaland = A\ < X\, < ... <\,

We subiject the three sets of feature vectors to principalpcomant analysis
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Figure 4.8: Performance of clustering, 3 poses

to embed them in a three dimensional pattern-space forhsatian. The clus-
tering results are show in figure 4.8. Figlire 4.8(a) showsthstering result
of the feature vectors constructed from the coefficienthefsymmetric poly-
nomials computed from the complex spectral maginf the Hermitian matrix
using equation 4]7. Figufe 4.8(b) shows the clusteringtrésuthe feature vec-
tors constructed from the eigenvalues of the real Laplagiatrix as explained
above. Figuré 4.8(c) shows the result for the feature veatonstructed from
the spectrum of the Hermitian matrix, i.e. the feature veatoose elements are
the eigenvalues of the Hermitian matrix. We repeat the satpergnent with

five different poses. We randomly take five poses of randorllcsed subjects.
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Figure 4.9: Performance of clustering, 5 poses

We construct the three set of feature vectors for all thetippses. We project
the feature vectors into a three dimensional space for Nesti@n. The results
are shown in figure 419. The empirical results show that thighesl Laplacian
matrix which records the distances only as its edge weightsit suitable for
clustering the human pose data obtained from Microsoft &in®oth type of
feature vectors produced from the Hermitian property majives better class

separation than the Laplacian matrix for the human skediztial.

To evaluate the clustering results we apply k-means algarib the embed-
ded points to obtain clusters. Then we compute the Randeadir assess the

clustering results we get using the three type of featurtoveave construct. The
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Rand Indices
# of poses 2 3 4 5
Hermitian (Symmetric Polynomial) 0.99 | 0.93 | 0.90 | 0.87
Hermitian Spectrum 0.90 | 0.86 | 0.72 | 0.65
Laplacian Spectrum 0.52 | 0.21| 0.13| 0.08

Table 4.1: Rand Indices Comparison

Rand index is define as
X

R, =
'~ Xty

(4.11)

whereX is the number of agreements ards the number of disagreements in
cluster assignment. If two objects are in the same clusteotin the ground truth
clustering and the clustering from the experiment, thisnt®e@as an agreement.
If two objects are in the same cluster in the ground truthtehirsg but are in
different clusters from the experiment, this counts as agtsement. The value
of Rand index is always between 0 and 1. Rand index of 1 mearsfacp

clustering result.

Table[4.1 shows the Rand indices obtained when clusterattgisipted using
different number of poses. The first row shows the Rand irsdid®ained using
the feature vectors constructed from the symmetric polyabooefficients of
the Hermitian matrix detailed in sectibn 4.3 (referred toHermitian Symmet-
ric Polynomials’). The second row shows the Rand indicegiobt using the
feature vectors constructed from eigenvalues of the Heaxmihatrix (referred to
as 'Hermitian Spectrum’), while the third row shows the Ramdices obtained
using the feature vectors constructed from eigenvalueseof &placian matrix
(referred to as 'Laplacian Spectrum’). The same statistaoge been shown in
the Figuré 4.70 visually which shows that the clusteringlitssising the angular

information is better than that of the Laplacian spectrétigoa vectors.
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Figure 4.10: Rand Indices Comparison

In the next experiment, we investigate the combination effdature vectors
and the embedding methods gives best results. Here agaianademly choose
five poses of randomly selected subjects. We take 150 diff@nstances of each
pose. Then we construct four sets of feature vectgraccording to the steps
mentioned in Section 4.5 using equation £4.7] 4.8, 4.9 and edpectively. The
first set of feature vectors is established by interleavirggreal and imaginary
components of the complex coefficients of the elementarynsgmc polynomi-
als and by stacking these to form long feature vectgrshe second set of fea-
ture vectors is constructed by taking the magnitude of thepdex coefficients
of the elementary symmetric polynomials and putting therwoasponents of the
feature vectord’;. The third set of feature vectors is constructed by puttivey t
real part of the complex coefficients of the elementary sytnmpolynomials
into the feature vectors;. The imaginary part is ignored. Finally, the fourth

set of feature vectors are built using only the imaginaryt paicomplex coef-
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Rand Indices
Feature vector / Embedding method PCA MDS
Real+Imaginary part interleaved | 0.9982 | 0.8819

Magnitude 0.9452 | 0.8616
Real part only 0.8817 | 0.7972
Imaginary part only 0.7183| 0.6586

Table 4.2: Rand Indices Comparison using different featectors, with PCA
and MDS embedding

ficients of the elementary symmetric polynomials. The reat 5 disregarded.
We then embed the feature vectors into a three dimensiortdrpaspace by
performing the principal component analysis (PCA) and rdintensional scal-
ing (MDS). Figurd4.111 shows the results of the clusteringgighe first three
eigenvectors. The left-hand column shows the results wédawith PCA. The
right-hand column shows the results obtained with MDS. Tits¢ fow shows the
results for the first set of feature vectors constructedgusguation 4J7. Simil-
arly, second, third and fourth row show the results for thteo§éeature vectors
constructed using equation 4.8,14.9 and .10 respectivdtgr embedding the
feature vectors into a three dimensional pattern spacg @A and MDS, we
locate clusters using the k-means algorithm and computBa&mel indices. The
Rand indices for all the combinations are shown in Table Bl feature vectors
constructed using equatién ¥.7 with principal componeufyais (PCA) gives
the best clustering performance. The second best perfagriarobtained with
the feature vectors constructed using equdtioh 4.8 with.Pitw& poorest clus-
tering result is given by the feature vectors constructéagusquatiorn 4.70 with

multidimensional scaling (MDS).
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4.9 Summary

In this chapter our aim was to cluster similar human posesesgmted by the
skeleton with 20 points acquired from the Kinect device f@woX 360 using the
spectral graph techniques. We studied how to extract feateictors from the
human skeletal data acquired from the Kinect device. We exbeg the input
graph into its equivalent line graph. We used the spectruentdérmitian prop-
erty matrix employing the angle between the limbs and thgtlenof the limbs.
The nodes of the graph represented the joints and the edgeseated the hu-
man body limbs. We used the length of the limbs and the angVedas a pair of
limbs as features. From the spectrum of the Hermitian ptgpeatrix we con-
structed four different types of feature vectors (detaifeslectior 4.5) using the
complex coefficients of the symmetric polynomials. We enasebthose feature
vectors into pattern-space using two embedding methodprircipal compon-
ent analysis (PCA) and multidimensional scaling (MDS). Eomparison we
constructed feature vectors from the eigenvalues of théacam (real) and the
eigenvalues of the Hermitian property matrix. Experimenggults provided
(both quantitative and qualitative) suggest that Hermitizatrix produced best

performance with PCA for the human poses clustering problem






CHAPTER 5

Eigenvector Sign Correction

5.1 Introduction

Correspondence matching between 2D images is the pregiogestep for a
number of computer vision algorithms. The problem of feattwrrespondence
matching is to find a one-to-one correspondence betweeanmrégaoints in a pair
of 2D images that represent an object in the image. The imegede taken
from a different point of view, at different times. In liteatse many different
methods have been presented to address the problem ofpmordesice match-
ing. These methods can be broadly categorized into twoedassmely the non-
spectral methods (Ling & Jacobs 2007; Chui & Rangarajan'panqa the spec-
tral methods/(Shapiro & Brady 1992; Scott & Longuet-Higgli991; Umeyama
1988). Spectral methods solve the problem using the eiggwand eigen-

vectors of the adjacency matrix or the Laplacian matrix (degnatrix minus the

97



98 Eigenvector Sign Correction

adjacency matrix) for the point set arrangement. Corredpoce matchings are
computed by embedding the graphs into a common eigenspaggarseigen-
decomposition of the point-proximity matrices, where espondences are com-
puted by closest point matching in this eigenspace. Howewbitrary determ-
ination of the signs of the eigenvectors returned by a nwaksolver causes
error in correct correspondence matchings. This probleadsi¢o be handled
and has already been reported in previous works (Shapirca®\B3t992; Caelli
& Kosinovi2004).

In this chapter we address the problem of eigenvector sigecton for the
problem of correspondence matching. We propose a novebaétiat solves the
problem of eigenvector sign flipping by using the co-effitiehthe symmetric

polynomials.

5.2 Eigenvector Sign Flip Problem

Spectral graph based correspondence matching algoritbmmence by con-
structing the proximity matrices from the given set of psinthe structural in-
formation present in the proximity matrices of the poinss&e used to establish
correspondences between the point sets. The work of Shapar®rady (Sha-
piro & Brady|1992) is one of the earliest and state of the ayo@ihm. Shapiro
and Brady proposed an algorithm to match 2D feature poimtsa@ pair of im-
ages using the eigenvectors of a proximity matrix computaah the intra-image
distances between each pair of feature points. As inpugltdeithm receives a
set ofm feature pointse; in image/; andn feature pointgy; in image/,. Each
image feature point is assigned a coordinate in the higherespe. each 2D
point in imagel; is mapped from 2D image-plane into andimensional hyper-

space, and each 2D point in imaggeis mapped from 2D image-plane into an
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n dimensional hyperspace. This mapping is performed indidgty for each
image, and when the shapes of the images are similar, thespomding feature

points coincide in the hyperspace.

The eigenvectors or the modes of a single image hawvinfgaturesz; are
computed from a square proximity matiik. The matrixH is created, recording

the affinity between each pair of feature points within thage.
H;; = o~ d%/20” (5.2)

whered;; = ||z; — :1:]-||2 is the squared Euclidian distance between each pair
of feature points. H is a symmetric matrix and its diagonal entries are unity.
The parameters controls the interaction between feature points. For small
the interaction is local, while for large each feature point is more globally
aware of its surroundings. The next step is to compute thenggues\; and the

eigenvectors; of the matrixH, i.e. by solving
Hel- = )\iei,i = lm,

The eigenvectors form an orthonormal basis as the eigesng=smte of unit length

and are mutually orthogonal. In matrix form
H = dADT (5.2)

where the diagonal matriX contains the eigenvalues along its diagonal in de-
creasing order. The modal matrxis orthogonal and has the eigenvectors as its

column vectors i.e® = [eq] ... |e,|. Each row of® can be thought of a feature
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vector F;, containing then model coordinates of feature point

By

Fy

Fy,

This computation is done for both imaggqwith m feature points) and, (with

n feature points). Two sets ddature vectorsire obtained, i.e;; andF}, one

for each image respectively. The final step is to compute $se@ation matrix

Z. The elements of;; shows the confidence in the match between the feature
pointsz; andy;. The least significantn — n| eigenvectors and feature vectors
are discarded from the larger modal matrix, in the case wtirerdwo modal
matrices are of different sizes. The best matches are givémebelements of the
association matri¥’ which are smallest in their row and column. The valdgs

is the Euclidean distance between feature vectors, i.e.
Zij = ||Fiq — Fjol? (5.3)

However, before computing the association ma#fixthe direction of the both
sets of the eigenvectors must be made consistent. The sgatbfeigenvector is
not unique as the signs of the eigenvectors returned by amcahsolver are as-
signed arbitrary and switching its direction does not Wekhae orthogonality of
the basis. When calculating the distance between two feagators in equation
(5.3), signs play a critical role. In case of inconsistegeavector signs, we need
to change the sign of feature vector components in one ofwtbheetgenvector

matrices to be consistent with the other.

If H, represents the proximity matrix of a set of points atig represents
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the proximity matrix of the same set of points after reondgihe labels of the
points, the two proximity matrices will contain the same swas but at different
locations. Consequently, the eigenvalues obtained frentvib matrices will be
the same except that their components will be in differedenrWhenm = n,
the eigenvalues obtained from the two proximity matriégsand H, are both
order from the largest to the smallest. Similarly, the eugetors of H; and
H, are reordered so that their order match the order of theanemjues. Then
m eigenvectors are used to create the feature vectors, fraohuie values of

matrix Z are calculated.

5.3 Sign Correction Methods

Several researchers have proposed different methodsrectéie direction of

the eigenvectors. For instance,

1. Park et al.[(Park et al. 2000) have suggested a methodrecttne direc-
tion of the eigenvectors. Lét andV’ be the modal matrices withande’
as its eigenvectors respectively. In (Park et al. 2000) eagdgnvectoe; is

compared with it counterpa#t and the sign oé; is corrected so that

e, i [lei + e[ > les — €|

—e;, Otherwise

wheree; ande, are the corresponding eigenvectors of the two adjacency

matrices computed from the two images respectively.

2. Umeyamal (Umeyama 1988) has handled the problem of eigemaign
correction by taking the absolute values of the componeintiseoeigen-

vector of both the modal matrices. Umeyama’s method worles dimder
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three conditions. First, when noise is sufficiently low. @, when the
eigenvalues of the proximity matrices are not very closedaoheother.
Third, when the rows of the absolute modal matrices are sefily dif-

ferent from each other.

3. Caelli and Kosinov | (Caelli & Kosinov 2004) find the numbépositive
and negative components for each eigenvector. The eigemisanulti-
plied by -1 if the number of negative components is great&n the num-
ber of positive components. This is essentially a domingmtsorrection,
always ensuring that there are more positive entries in eagnvector.
However, this is highly unreliable since specific to spdatarespond-
ence, the eigenvectors tend to have about the same numbesité@and

negative entries due to orthogonality to a constant eiggave

4. Shapiro and Brady. (Shapiro & Brady 1992) suggested a gragporoach
to correct the direction of the eigenvectors. They treatrandal matrix as
reference basis and proceed to orient the axes of the othdalmatrix one
at a time by optimizing for a correspondence cost, choosing#ch that
direction which maximally aligns the two sets of featuretees (Shapiro
1991).

5.3.1 Symmetric Polynomials

A symmetric polynomial is a polynomid(z, xs, ..., z,) in n variables, such
that if any of the variables are interchanged, the same pabyal is obtained.
A symmetric polynomial is invariant under permutation oé trariable indices.
Symmetric polynomials arise naturally in the study of thiatien between the
roots of a polynomial in one variable and its coefficientsk&dia 2013). There

is a special set of symmetric polynomials referred to astementary symmet-
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ric polynomial (S)that form a basis set for symmetric polynomial. Any sym-
metric polynomial can be expressed as a polynomial funatiothe element-
ary symmetric polynomials. For a set of variablgsz,, . . ., z,, the elementary
symmetric polynomials can be efficiently computed usingpbeer symmetric

polynomials using the Newton-Girard formula detailed intem([4.4.

5.3.2 Proposed Method

Our proposed method for eigenvector direction correctsdpaised on the use of
the coefficients of the elementary symmetric polynomialsr &y two eigen-
vectors the corresponding odd coefficients have oppogjteistheir directions
are not consistent with each other. Our approach is sinuldrat of Shapiro and
Brady, i.e. we treat one modal matrix as reference basis erwed to orient the
axes of the other model matrix one at a time, by comparing tteeresponding
coefficients of symmetric polynomials. If the correspompaad coefficients for
the two eigenvectors have opposite sign then we multiplyadiiee eigenvectors
by -1 to flip its direction. Any odd coefficients will work, fanstance, using
only the first coefficients should work. Which is essentiglig sum of the ei-
genvector components. .8y (zy, xa, ..., x,) = » .., x;. However, if the sum
of the eigenvector components is nearly equal to zero themaxee to the next

odd coefficients to compare.

The Algorithm

The following steps show how to correction the sign of eigeors for corres-
pondence matching.

Input: Proximity matricesA and B

1. Find eigen-decompositior, = V4AVI andB = VAV
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2. Discard the least significant eigenvectors and the featectors are dis-
carded from the larger modal matrix in the case whérand B are of

different sizes. Let N be the size of the smaller matrix.

3. Compute the coefficients symmetric polynomial of eachiwwi of matrix
V4 andVpg, Let S, andSg be the matrices containing the coefficients in its
columns, computed from the corresponding columns of theainodtrices

V4 andVp respectively.

4. forv:i=1toN
=1
flipflag := False
while (i < N and not flipflag) do
if (Sali, v] * Sz[i,v] <0) then

Flip the sign of the vth eigenvector in matrij

flipflag := True
end if
=i+2
end while
end for

5.3.3 Eigenvector Sign Correction for EM Algorithm

In Chaptel B we have discussed the EM algorithm developedibsaSsoni (Car-
cassoni & Hancock 2003) for the point pattern matching imdleThe algorithm
works very well and offers a powerful means of estimating triaasformation
parameters. However, there is one problem that restricaub@matic use of the

method, which is the need to initialise the parameters. Tiadity of the corres-
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ponding matching results very much depends on a good chbéioéial values
of the parameters. The authors use classical multidimeakgcaling on the
pairwise dissimilarity matriceS, (for data-points) and,; (for model-points)
computed from the given point-sets. MDS embed the dissiityilmatrices onto
a low dimensional space using the eigen-decompositioneifieedded coordin-
ates for both the point-sets are used to compute the indraéspondence prob-
abilities for the EM algorithm to proceed.

Since, MDS uses the eigen-decomposition to embed the petntherefore
the embedded coordinates for both the point-sets may mpt pioperly because
of the eigenvector sign flip problem. The EM alignment altfori developed by
Carcassoni produces very bad result if the eigenvectors@rmnade consistent

with each other by correcting their signs. This is illustchin figurd 5.2.

5.4 Computational Complexity

The steps of the algorithm are given in Secfion 5.3.2.

5.4.1 Complexity

Let M and N be the sizes of the two matrices. Without the loss of gertgrali
we can assum@/ > N. The execution time for the eigen-decomposition step is
O(M?) + O(V?). Each power symmetric polynomial can be computed itvD(
time. There aréV such polynomials for each matrix, so the total running time t
compute all the power symmetric polynomials is\Gj. Finally the elementary
symmetric polynomials can be computed in linear time, omeepgower sym-
metric polynomials are computed. Hence the total runningetof computing
symmetric polynomials becomes ©¥).

In step 4, both the outer loop and the nested loop také)@ime. Hence the
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total time is O(V?2) for step 4. Step 3 and 4, each take quadratic time in number
of points. Hence the total running time becomes\®) + O(N?) + O(N?) =

O(M?), whereM is the size of largest matrix.

Number of incorrect matches

Frames 1-10 | 1-20 | 1-30 | 1-40 | 1-50 | 1-60
Park et al. 21 29 34 37 38 37
Caelli & Kosinov 5 7 16 19 19 21
Umeyamma 0 1 5 8 13 16
Symmetric Polynomialg 0 0 0 3 7 9

Table 5.1: Performance of sign correction methods on the GMBC
house sequence. The first image frame has been matched tagans
10%", 20", 30", 40" 50" and60*" frame

5.5 Experimental Results

In this section, we provide some experimental results ofaheespondence
matching affected by the problem of eigenvector sign fligpikVe use differ-
ent techniques for the eigenvector sign correction detaileSectior 5.3. We
extract 40 feature points from the¢, 10", 20", 30", 40", 50** and60*" frame
of the CMU/VASC model house sequence. Tdblé 5.1 shows théeuof in-
correct correspondences obtained matching the first fraithethne other frames
mentioned above. Figuie 5.1 shows correspondence matbeimgeen of the
feature points extracted from frame 1 and frame 30 of the Q¥ASC model
house sequence, after using four different method to cotinecsign of the ei-
genvectors. The firstimage (figure 5.1(a)) is the resulteftiethod proposed by
Park et al.|(Park et al. 2000). The second image (figure §.il5H)e result of the
method proposed by Caelli and Kosinov _(Caelli & Kosinov Z)@de third im-
age (figuré 5.1(¢)) shows the result of the corresponderiee the eigenvector
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(d)

Figure 5.1: Comparing different eigenvector directionreotion methods, a)
Park et al. b) Caelli & Kosinov. ¢) Umeyamma. d) Symmetricyipoimials



108 Eigenvector Sign Correction

T T T T T T T T T T T T
. *  Frame 01 x  Frame 01
02l - Frame 20| - Frame 20
- 0.15F - % H
. . -
0.5 % . x *
x 01
0.1 x %
0.05[ 3
x
0.05F :
of x «
of *

-0.05

-0.05 =
x

-0.1
-0.1
015k -0.15}
-0.2 -0.2

L L L L L L K L L L L L L
0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3

(d)

Figure 5.2: Effect of the eigenvector sign correction onc@asoni’s alignment
EM algorithm, a) Embedded point without sign correctionsEmbedded point
after sign corrections. c) Correspondence matching witkigun corrections. d)
Correspondence matching after sign corrections

sign corrections using the method proposed by Umeyamma yaiméa 1988)
and the final image (figufe 5.1{d)) shows the result of theespondence after

the eigenvector sign corrections using the coefficientyminsetric polynomials.
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Figure 5.3: Effect of increasing noise on correct corresieoices using different
eigenvector sign correction strategies

It is clear from the figure that out of 40 correspondencesntbthod proposed
by Park et al. produces 34 wrong correspondences, the mdthadoped by
Caelli and Kosinov produces 16 wrong correspondences, #thad proposed
by Umeyamma produces 5 wrong correspondence while our pegpmethod

(Symmetric Polynomials) produces 100% correct correspooels.

In the next experiment, we compare the performance of tHerdiit eigen-
vectors sign correction strategies against the Gaussiae added in the point
positions. Figuré 513 shows the fraction of correct coresiences of the four
eigenvectors sign correction strategies as a function efithreasing random
point-position jitter. Random position jitter is simuldtéy adding randomly
generated position error sampled from a 2D Gaussian disiito to the data
point-set. The performance of all the methods decreasdsthat increase in

the noise level. However, the best performance is obtaiyegsing the coef-
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ficients of symmetric polynomials. The next best perfornearscobtained by
Umeyamma’s strategy. The poorest performance is returggtdeomethod of
Park et al.

In the final experiment, we show the results of the correspooe matching
by the EM algorithm proposed by Carcassoni (Carcassoni &blekn2003) with
and without the sign correction. 40 points are extractethftbe 1st and 20th
frame of the CMU/VASC model house sequence for matchingurgf§.2(d) and
[5.2(b) show the embedding points of the two frames. Red esoare the em-
bedded points from Frame 1 while the blue dots representritiedded points
from Frame 20. Figure 5.2(a) shows the embedded points wigesigns of the
eigenvectors have not been corrected. The resulting gmnelences are shown
in Figure[5.2(d). Figurg 5.2(b) and Figure 5.2(d) show théedded points and
the resulting correspondences respectively when the sifjtise eigenvectors
are corrected. Note that without correcting the signs oktlgenvectors the EM

alignment algorithm can not compute the correct correspooes.

5.6 Summary

In this chapter we have investigated the problem of the e®eor sign correc-
tion for correspondences matching. The eigenvector sigecton is an import-
ant step in all graph spectral correspondence matchingimgaobs. If the sign of
the eigenvector are not corrected properly, the robushalent algorithms like
the one developed by Carcassoni (Carcassoni & Hancock 2@03fail to pro-
duce good results.

We used the coefficients of the symmetric polynomials toestte problem.
We also compared our method to some other methods alreagpg®d in the

literature, and found that using the coefficients of the swtmim polynomials
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solved the problem better than the others.






CHAPTER O

3D Shape Analysis using Commute Time

6.1 Introduction

The rapid advancement in the digital technology in 3D shapdetiing, digit-
izing and processing has led to an increasing number of 3Detapldoth on the
internet and in domain specific databases. Computing thiéasity between 3D
shapes is a fundamental task in shape-based recognitioeyaé, clustering, and
classification. The aim of 3D shape analysis is to establishage descriptors
or signatures which capture the important properties ofstiepes for the pur-
pose of classification, clustering, retrieval and corresiemce matching. Shape
descriptors are mathematical functions which are apptiedshape and produce

numerical values which represent the shape.

Spectral methods have recently been used to establishdbsgptors which

can also be used to measure the similarity of 3D shapes. B@nice, diffusion

113
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geometry methods were used to define low dimensional repegens of mani-
folds. Rustamov| (Rustamov 2007) has suggested using tee-digcomposition
of the Laplace-Beltrami operator to construct an isometirariant surface rep-
resentation, aiming to measure similarity between noisapes, rather than
for correspondence detection. The Global Point Signat@feS) suggested by
Rustamov [(Rustamov 2007) for shape comparison employssbeete Laplace-
Beltrami operator, which globally captures the shape’snygtoy. The Laplace-
Beltrami operator was later employed by many other reseasch~or instance,
Sun et al.[(Sun et al. 2009) defined a point signature basekeoproperties of
the heat diffusion process on a shape, referred to as thekéeaeél Signature
(HKS) for brain classification. HKS is obtained by restmctithe well-known
heat kernel to the temporal domain. Ovsjanikov etlal. (Qukgav et al. 2010)
employed a heat diffusion process to construct the Heatd{éviaps for the
shape matching. Castellani et al. _(Castellani et al. 20&1¢ lextended the idea
of Heat Kernel Signature (HKS). The local heat kernel valieserved at each
point are accumulated into a histogram for a fixed numberalésdeading to the
so-called Global Heat Kernel Signature (GHKS). In a recexpgp (Aubry et al.
2011), based on quantum mechanical approach, Aubry et\s.developed the
Wave Kernel Signature (WKS) for characterizing points on-nigid 3D shapes.
They have shown that their signature performed better thakieat Kernel Sig-
nature (HKS).

Despite significant efforts in the past ten to fifteen yearsply clustering and
classification remain an open challenge in the machineilgg@oommunity. One
of the most promising approaches is to use spectral clagtenethods which
exploit graph representations of the data and locate chibtepartitioning the
graph that optimize an edge cut criterion. Early spectrpt@aches recursively

compute the normalized cut_(Shi & Malik 2000) over the grapng the first
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non-zero Laplacian eigenvector (also known as the Fiedletov) (Chung 1997)
and are referred to as spectral bi-partitioning (SB) methaghfortunately, this
does not guarantee good clusters as the normalized cut isutechrecursively,
irrespective of the global structure of the data (Belkin &dlil12003). Qiu and
Hancock |(Qiu & Hancock 2007) have used commute time for thrpgme of
image segmentation and have shown that the commute timedethperforms

the normalized cut.

Recently, the graph spectral methods defined in the contelistering have
been applied to 3D shape processing. The 3D shape is refgddmna mesh
that approximates the boundary surface of the shape. Irctimtext, spectral
invariants such as the eigenfunctions of the Laplacianaipecan be used for
near-isometric shape matching. For instance, Mateus €iMdieus et al. 2008)
used eigenmaps obtained by the fikgtigenfunctions of the Laplace operator as
low-dimensional Euclidean representations of non-rigidpes for the purpose
of 3D point registration. Cuzzolin et al.| (Cuzzolin et |al.0&) and Lee et al.
(Lee et al. 2008) have performed segmentation for mesh segee However,
the former method computes only protrusions, while the lases an additional
skeleton. In [(Mateus et al. 2008), the authors use locatigali embedding
(LLE) to represent a cloud of points and perform segmentatioche LLE space.
The segments obtained are then propagated across timedio albtemporally
coherent segmentation of a voxel-sequence into protrasadithe shape. The
method works well to segment rigid body parts (such as headd$rand legs
etc), but it cannot be used directly for identifying rigiddyeparts (for example,

separating the upper-arm from the lower-arm).

In this chapter we construct a novel 3D shape distributioitfe purpose of
3D object classification. The method commences from a madiidic of the 3D

shape distribution reported in (Osada et al. 2001). Instéadsing Euclidean
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distances between pair of points on the shape, we use contimatelistance
computed from the eigenvalues and the eigenfunctions df dipdace-Beltrami
operator. The empirical results show that the distributomputed using our

method gives a better shape signature than (Osada et al). 2001

6.2 Laplace-Beltrami operator

Let f be a real valued function defined on a differentiable madift with
Riemannian metric. The Laplace-Beltrami operator, like taplacian, is the

divergence of the gradient gfi.e.

Af = div(gradf)) (6.1)

where grad and div are the gradient and divergence on thefolcamespect-
ively. The Laplace-Beltrami operator is a self-adjoint &edni-positive definite
operator(Rosenberg 1997). The Laplacian eigenvalue gmoid given by the
following equation

Af =\f (6.2)

where ) is the eigenvalue and is the eigenfunction. The Laplace-Beltrami
operator has an ortho-normal eigensystem, that is a bathe @pace of square
integrable function, withA¢; = \o;, Ao < A < ..., \;. where),; are the
eigenvalues and; are the corresponding eigenfunctions.

Most of the techniques| (Rustamov 2007; Mever et al. 2003k laracter-
izing points on non rigid 3D shapes use the eigenpairs of tmdce-Beltrami
operator. The combinatorial Laplacian is suitable for theshes only and it
does not contain much information about the shape. Thealestaplacian or

Laplace-Beltrami operator captures the geometric andidgpzal properties of
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the surface. The solution to the eigenvalue problem (egnfii2) is approx-
imated by a piecewise linear function over a triangulatiathwerticesp; for

i =1,...,n. The discrete Laplace-Beltrami operator can be written as

M) =~ 3 wi(Fo) — £(07)) (6.3)

" jeN()
where N (i) are the indices of all the vertices connecteghtby an edges; are
the masses related to vertexand thew,; are the weights associated with the
edges. To write the definition of discrete Laplace-Beltraxperator in equa-
tion[6.3 in the matrix form we need to define a vecfor (f(p1),--s flpu))T
whose entries/components are the values of the fungtidefined at different
verticesp;, a weighted adjacency matri¥’, whose entries are the weights;
associated with the edges, a diagonal degree matnxhose diagonal entries
D, = ZjEN(Z.) w;j, a stiffness matrixd = D — W and a diagonal mass matrix
S whose entrie$’ = diag(s1, . . ., s,). Then we can define the Laplacian matrix
asL = S~1A. Here,Af(p;) is thei®® component of the vectomfand equation
can be written aﬁf = )\f. Since, L is not symmetric due to the fact that
each row of the matri¥l is divided by differents;, therefore, equation 8.2 can

be written as a generalized eigenvalue probJ@f_ﬁ: /\Sf.

There are a number of ways to select the edge weightand the masses
to construct the Laplacian matrix. One way is to take the isig),; equal to
1 if the vertexp; is connected with the vertgx; and O if they are not connec-
ted, and assume the masses 1. In this way we get traditional Laplacian that
only considers the structure of the mesh and ignores therlyimte geometry
of the shape. Such approaches are therefore not suitab®fshapes. Many
schemes have been proposed to construct the discrete laapthat estimates

the Laplace-Beltrami operator for 3D shapes. The majofitthem use the so
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Figure 6.1: Definitions of the angles and the area appearinipe discrete
Laplace-Beltrami operator.

called cotangent scheme that uses the angles and the atearefton obtained
by joining the circumcenters of all the triangles aroundvbeex on the shape.
For instance, Pinkall and Polthieris (Pinkall et'al. 1993¥kvis one of the early
works on the geometric approaches. The weights are comfrotadhe cotan-

gents of the angles opposite to the edge between vertaxdp; as

cot(a;) + cot(Si;)
2

’IUZ'j =

whereq;; andg;; are the angles opposite to the edge betweemdp; as shown
in Figurel6.1. Since this methods does not include the masew/eights com-
puted form the cotangents are very much dependent on thesaaygtling. Des-
brun et al. |(Desbrun et al. 1999) solved this problem by ke average area
of the triangles at the vertexas the masses. Meyer at al. [((Meyer et al. 2003)
modify the method of Desbrun et al. by taking the massesjual to the area
obtained by joining the circumcenters of all the trianglesuad the vertex,

shown in the Figure 6l1.

Xu (Xu2006) modified the method proposed by Meyer et al. Thislim
fication gives better convergence properties. In this arapée will follow Xu’s

method to construct the discrete Laplacian (Laplace-Beltioperator).
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6.2.1 The generalized eigenvalue problem

For a functionf defined on the surface, the Laplaciarf is approximated as

1
Af = wilf(p) — f(pi)]
" JEN(i)
whereN (i) are the neighbours for the vertgxandw;; is the weight assigned to
the edge between poipt andp; . The above formula can be written A5 ~

Lf. HereL is the discrete Laplacian matrix. The weight of the edge is given

by

cot ay;; + cot By
2

(6.4)

Wi,j =

The angles appearing in this formula icg; andj;; are shown in the figure @.1.
The areas; is also shown as the shaded region in the same figure. We cemput

the Laplacian, which has the entries as follows

Yoew(ik)/s; ifi=j

L(i,j) = § —w(i,j)/s;  if i and;j are adjacent

0 otherwise

\

The standard eigenvalue problem fois L¢ = A\¢, where) is the eigenvalue of
L andg¢ is the corresponding eigenvector. The afeat each vertex is computed

as
cot av; + cot B;;

Si = S |lpi — psI? (6.5)

Since the areas; computed at the vertices of the mesh are different, henee, th
discrete Laplacian matriX. computed is not symmetric. This may cause the
eigenvalues and eigenfunction to be complex. Thereforesolee the general-

ized eigenvalue problem. Létbe the diagonal matrix with entries; = s; and
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W;; = w;; be the symmetric weight matrix. Sinée= S—'1V, therefore, we can

rewrite the equatiod¢ = \¢ asS—'W¢ = \¢ or
Wo = A\So (6.6)

Once we have the eigenvalues and eigenfunctioh tf hand, we can compute

the commute time matrix using the eigenvalues and eigetitmc

6.3 Commute Time

In this section, we briefly review how to compute the communetand describe
its relationship to the graph Laplacian. Commute time isaverage time taken
by a random walker on a graph walking from a nad® nodev and then back
to nodeu. The commute time can be computed from the Laplacian spacisu

it has a close relationship with the graph Laplacian and kexatel.

Consider a weighted graph by the trigle= (V, £, Q2), whereV is the set of

nodes,FF C V x V is the set of edges, arfdis the weighted adjacency matrix.

e, v) = w(u,v) if (u,v) € E

0 otherwise

wherew(u,v) is the weight on the edgé:,v) € E. Furthermore, lefl’ =
diag(d,;u € V') be the diagonal weighted degree matrix with elements given
by the degrees of the nodes, = ZL‘QI w(u,v). Theunnormalizedveighted

Laplacian matrix is given by, = T'— €2 and thenormalizedweighted Laplacian
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matrix is defined to b& = 7-'/21,7-/2 and has elements

(

1 if u=nvo
L(u,v) = —:‘;% if u#vand(u,v) € £
0 otherwise

\

The spectral decomposition of the normalized Laplaciad is ®A®T where
A = diag(Ai, Ag, ..., \jy)) is the diagonal matrix with the ordered eigenvalues
as the elements satisfying the condition= A\; < Ay < ..., < Ay and® =

(¢1]¢2]...|¢v)) is the matrix with the ordered eigenvectors as columns.

The hitting time O(u, v) of a random walk on a graph is defined as the ex-
pected number of steps before nadis visited, commencing from node The
commute time~'T’(u, v), on the other hand, is the expected time for the ran-
dom walk to travel from node to reach node and then return. As a result
CT(u,v) = O(u,v) + O(v,u). In terms of the eigenvectors of tmormalized

Laplacian the commute time matrix is given by

uv—volz (T @(_)) (6.7)

wherevol =3 _,, d, is the volume of the graph.

The commute time embedding is a mapping from the data sptce Hilbert
subspace, which preserves the original commute times.slsbme properties
similar to existing embedding methods including principainponent analysis
(Jolliffe [2002) (PCA), the Laplacian eigenmap_(Belkin & Ny/2003) and the
diffusion map i(Lafon & Lee 2006b). The embedding of the noofethe graph
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into a vector space that preserves commute time has thedawate matrix
O = Vool A~V2pTT—1/2 (6.8)

The columns of the matrix are vectors of embedding co-otds#or the nodes

of the graph.

6.4 Shape Clustering and Classification

The commute time embedding gives a deformation-indepdrefabedding of
a 3D shape into a high dimensional space. In this chapterowgpuate a shape
descriptor from the commute time embedding. We use LadgBsdtrami oper-
ator detailed in Sectiori_8.2 to estimate the Laplacian ofstiepe. From the
eigenvalues and eigenvectors of the Laplacian obtained;ongute the com-
mute time matrix using the procedure given in Section| 6.3. use a modi-
fication of D2 distributions introduced in| (Osada et lal. 200D2 distribution
is essentially, the histogram of pairwise Euclidean distalpetween the points
uniformly sampled from the surface. To compute our new sligseriptor, we
use the commute time distance instead of the Euclideamdista he commute
time matrix is computed using the equation]6.7. Where weatgpihe degree of
the nodes (i.ed, andd,) by the area associated with the vertices @$,eands;

respectively). We replace thel in the original equation by . s;.

6.5 Computational Complexity

Following are the steps of the algorithm developed in thegtér.
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6.5.1 Steps

Given 3D shape withv vertices
1. Compute the Laplacian, which has the entries as follows
Yoew(ik)/s; ifi=j

L(i,j) = § —w(i,j)/s;  if i and;j are adjacent

0 otherwise

2. Compute the Commute Time matric using the eigenvaligs(d eigen-

vectors ;) of L as

uv—volz <T @(_))

wherevol =) _,, d, is the volume of the graph

3. Take random samples (pair of points) and compute the caentime dis-

tance between them to construct a histogram (64 bins)

4. Use Bhattaharyya distance to construct the distancexhfiam the given

set of histograms

5. Use MDS to embed the distance matrix in space to clust@esha

6.5.2 Complexity

The running time to the algorithm is dominated by the eigeoednposition of
the Laplacian matrix. Since we are using MATLARgysfunction, this time is

always less than Q(3), whereN is the number of vertices in the mesh. Each of
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AR

Figure 6.2: The k-means clustering on the Commute Time ¢oateks results in
segmentation of six deformations of a 3D shape.

(2

¢

step 3 and 4 takes quadratic time in number of vertices. lyiIDS depends
on the eigen-decomposition, which takes cubic time in thalver of vertices.

Hence, the worst case time of the proposed method is bounded?).

6.6 Experimental Results

In this section, we provide some experimental investigegtiof the proposed
method. We focus on the use of commute time embedding of 3Peshan
two different settings. The first is an investigation of @gsthe commute time
embedding for the purpose of partitioning the 3D shape istparts. The second
investigation is about using the modified shape distributibOsada et al (Osada
et al.[2001) computed by employing the commute time distamstead of the
Euclidean distance.

In our first experiment we use the commute time embeddingdioates
computed using equatiof_6.8 to partition six deformatioha dluman body
selected from the Nonrigid world 3D database (Alexander &Btein 2009)
shown in figure [62. The database contains a total of 148 whjewluding
9 cats, 11 dogs, 3 wolves, 17 horses, 15 lions, 21 gorillafiatks 24 female
figures, and two different male figures, containing 15 and @ep. The data-
base also contains 6 centaurs, and 6 seahorses for partikrity experiments.

Each object contains approximately 3500 vertices. Figut:sBows the result
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70

(a) (b)

Figure 6.3: The histogram for the six 3D shapes shown in figou2 a) The
commute time histogram b) The Euclidean histogram

of the 3D shape, pose invariant segmentation using the lkxsngastering on the
commute time coordinates.

In the second experiment, we construct the shape distitddr six dif-
ferent deformations of each of the 3D shapes shown in figulgap. Figure
shows the shape descriptors for the six deformatising commute times.
The shape descriptors for the same six deformations usictidéan distances
are shown in figure[ 6.3(b). This shows that the shape descrgaimputed
using commute time is more robust to shape deformations. hdetfie dis-
tance between each pair of the distributions using Bhaditgeta distance (Bhat-
tacharyya 1943). We project the distance matrix into vespaice using classical
multi-dimensional scaling (MDS). Figure 6.4 shows thattbmmute time shape

distribution clusters similar shapes better than the Heealn shape distribution.

6.7 Summary

In this chapter we have investigated how the commute timevdest the ver-

tices on mesh can be used to partition the 3D shape. We alsbcosemute
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Figure 6.4: a) Three shapes used in clustering experimentésormations of
each shape are used). b) The classical MDS projection otidygessimilarities
as computed using the commute time distributions, with Raddx = 0.77 c)
The classical MDS projection of the shape similarities asated using the D2
distributions, with Rand index = 0.49

time distance to construct the 3D shape distribution forptingose of 3D shape
clustering and 3D shape classification. The empirical testlow that commute

time is a better choice for shape classification problem.
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Conclusions

This chapter summarises the main contributions of the shesd draws some
important conclusions. This includes the novel idea to udemnitian property
matrix for the purpose of correspondence matching and grastering, using
the coefficients of symmetric polynomials for the eigengeclirection correc-

tion and 3D shape signature using commute time embedding.

7.1 Contributions

The general objective of this thesis is to develop framewasing graph spec-
tral methods and apply them to a variety of applications faomputer vision,
for example the corresponding matching and graph clugigmoblems. First,
a spectral graph matching algorithm was developed usingdimplex spectrum
of a Hermitian property matrix. Second, we used the compbetfcients of the

elementary symmetric polynomials derived from the eigkresand the com-

127
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plex eigenvectors of a Hermitian property matrix for a tfansed graph (line
graph) of the human skeletal graph captured using Micrdsiofect device to
construct feature vectors. These feature vectors were duhebeinto pattern
space to cluster similar human poses. Third, we used thdiageats of the
elementary symmetric polynomials computed from the eigetors to make the
directions of a pair of eigenvectors consistent with eadtenfor the purpose
of correspondence matching. Finally, a robust 3D shaperigéscwith respect
to changes in pose and topology based on commute time enmgeddis de-
scribed. Next, we discussed the contributions and analiesd strengths and
weaknesses, discussing possible improvements of thathlgsrand suggesting
a potential future extension for more challenging corresigmce matching and

clustering / classification tasks.

Spectral graph methods for correspondence matching aesl lmasthe ana-
lysis of the eigenvectors of the proximity matrix constectcfrom the input fea-
ture points. The idea behind the graph spectral methodsofopating the fea-
ture correspondence is to use the eigenvectors of the gsaplgaature of the
points. These methods are elegant and mathematically wedo However,
they break soon, in the presence of noise and structuraliions, where the
point sets being matched are of different sizes. The novebpéhe correspond-
ence matching algorithm we developed in this thesis was tenelxthe point
proximity matrix to the complex domain by augmenting addial angular in-
formation to it to construct a Hermitian property matrix. Aeihitian property
matrix is complex analog of a real symmetric proximity matii he eigenvalues
of the Hermitian matrix are real while the eigenvectors ampglex. In Chapterl3
we used the complex eigenvectors of a Hermitian propertyixtatcompute the
correspondences between a pair of point sets. The Hernptigperty matrix

was constructed from the distances between each pair ofspama the angular
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information. For the experiments on real world data set vegltise SIFT orient-
ations computed at each feature point extracted from thet inpage as angular
information. The complex eigenvectors of the Hermitiangamy matrix estab-
lished signatures of the feature points that are robust fgena point position

jitter and rotation.

To cope with the problem of noise and structural corruptiddarcassoni
and Hancock (Carcassoni & Hancock 2003) proposed an iteraiVl algorithm
for alignment of feature point sets. We embedded the comgifganvectors of
the Hermitian property matrix to render the EM algorithmusbto noise and

rotation in the input images being matched.

The second contribution of this thesis was the developmieambhoman pose
clustering method using four different types of featureteecconstructed from
the coefficients of the elementary symmetric polynomialse polynomials are
established from the eigenvalues and the complex eigeongeat the Hermitian
property matrix. The input human skeleton acquired fromMherosoft Kinect
device for Xbox 360 was converted to its equivalent line grafphe joints of
the human body are represented by the nodes of the graphedgés represent
the limbs. The Hermitian property matrix was constructeurfrthe line graph

representing a human pose.

The third contribution of this thesis was the developmerat wfethod for cor-
rection of the sign of eigenvectors for the problem of cquoeslence matching.
Spectral graph methods for correspondence matching aeel lnesthe analysis
of the eigenvectors of the proximity matrix constructedhirthe input feature
points. Since the sign of eigenvectors are not unique, thengector solver
assigns arbitrary signs to the eigenvectors computed ®rptir of proxim-
ity matrices constructed from the input feature point s@lise correspondence

matches can only be computed correctly when the directigngyof the corres-



130 Conclusions

ponding pair of eigenvectors are consistent with each oiverused the coeffi-
cients of the elementary symmetric polynomial establishad the eigenvectors
of the proximity matrices to make the directions of the p&ieigenvectors con-
sistent with each other for the purpose of correspondenctehing.

The fourth contribution of this thesis was the developmdna @D shape
descriptor which was robust to shape deformations and @saindopology. The
proposed descriptor was an extension of the D2 shape descrgported by
Osada et all (Osada etlal. 2001). We used commute time destangputed from
the eigenvalues and the eigenfunctions of the Laplaceddeitoperator instead

of using Euclidean distances between pair of points on thpesh

7.2 Limitations and Future Work

The methods presented in this thesis perform very well. Heweeveral short-
comings can be addressed by further research. Moreoveg sbithe topics
discussed could be extended and investigated further tosegiuent improve-
ments.

Although we have experimentally shown that the correspocelenatching
results obtained by using the complex eigenvectors of thenkien property
matrix are much better than that of the two state-of-thedgdrithmsi.e. Shapiro
and Brady point pattern matching algorithm (Shapiro & Brd®®2) and Car-
cassoni and Hancock EM alignment algorithm (Carcassoni &ddek 2003).
However, it has limitations, which need to be addressedturéuresearch. One
of the weaknesses is that the new correspondence matchthgahrtbat has been
developed is computationally expensive for large poird.s€he reason for this
is that the eigen-decomposition operation is computalipeapensive for large

Hermitian matrices. To reduce this overhead, we need to fiethods to com-
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pute and use only the first few eigenvectors.

When we apply the proposed algorithm on real world images,seeSIFT
orientations as angular information to construct the Heamiproperty matrix
for correspondence matching. Therefore, the performafite@roposed meth-
ods depends upon the SIFT orientations. The SIFT oriemsi@we computed
using a local gradient histogram established in the neighimmnd of the feature
points using the Gaussian image at the closest scale to d@hardepoint scale.
The orientation histogram is divided into 36 bins of 10 degreach, totalling
360 degrees. The peaks in the orientation histogram camelsip dominant dir-
ection of the local gradients. The highest peak in the hrstmgand any other
peak which is within 80% of the highest peak is used to assigmtientation to
the feature point. Therefore, the feature points with midtpeaks are assigned
multiple orientations, by creating multiple feature psiat the same location but
with different orientations. If the a feature point in oneaige and its corres-
ponding feature point in the second image are assigned erefiff number of
orientations, then the matching results obtained by usiadiermitian matrix is
negatively affected. This is due to the fact that increagkerdifference between
the number of feature points extracted from the two imag&sgbmatched in-
creases the probability of getting wrong matching resditerefore we need to
remove the extra orientations before we proceed to competearrespondences.
To address this problem we have used cross correlation batthe correspond-
ing histograms to remove the extra orientations associaitdfeature points.
However, this method is not very robust and it fails, esghcia the case when
more than two orientations are assigned to a feature poinerefore, a more

general and robust method needs to be developed.

The proposed method is limited to work on 2D point sets andhzamdle

only the 2D affine transformations. It would be interestiogxtend the method
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to find correspondences between 3D shapes/meshes.

One possible direction to extend the algorithm presenté&hiaptef B could
be the use of RANSAC algorithm. RANSAC is a stochastic atpanithat is
based on a heuristic cost function, however, our methodgsdan the analysis
of local consistency and EM algorithm.

In Chaptef 4 we used the spectrum of a Hermitian propertyixnatrd the
coefficient of the symmetric polynomials to cluster simifuman poses. This
work can be used in human behaviour analysis. It would begstiag to explore
how this work can be used to build a real-time gesture re¢ogrnsystem.

In Chaptef 6, we describe a commute-time based 3D shapédptesthat is
robust with respect to changes in pose and topology. Comtimeeembedding
can not detect shape symmetry and hence can not be used taitecogpres-
pondences. It would be very interesting to explore the ussupfatures as the
angular information to construct a Hermitian property nxgtr correspondence
matching of 3D shapes.

The algorithms developed in this thesis are not confinedddigid of com-
puter vision only. Their applications can be explored in ynather research

fields including biometrics, molecular chemistry, societworks etc.
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