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ABSTRACT 

 

Tensegrity structures are a type of structural systems that consist of a given set of cables 

connected to a configuration of rigid bodies and stabilized by internal forces of the 

cables in the absence of external forces. Such structures provide an important platform 

for exploring advanced active control technologies. This thesis is, thus, a research on 

tensegrity structures‘ related problems across a wide range of engineering disciplines 

and from a control system‘s viewpoint. It proposes a new algorithm for the form-finding 

of tensegrity structures. This is a process that involves using the mathematical 

properties of these structures to search and/or define a configuration that makes the 

structures to satisfy the conditions of static equilibrium while being pre-stressed. 

The dynamic model of tensegrity structures is derived using the Finite Element 

Method (FEM), and the static and dynamic analyses of tensegrity structures are carried-

out. Furthermore, the effect of including additional structural members (than strictly 

necessary) on the dynamics of n-stage tensegrity structures is also investigated and how 

the resulting change in their geometric properties can be explored for self-diagnosis and 

self-repair in the event of structural failure is examined. Also, the procedures for model 

reduction and optimal placement of actuators and sensors for tensegrity structures to 

facilitate further analysis and design of control systems are described.  

A new design approach towards the physical realization of these structures using 

novel concepts that have not been hitherto investigated in the available literature on this 

subject is proposed. In particular, the proposed realization approach makes it possible to 

combine the control of the cable and bar lengths simultaneously, thereby combining 

together the advantages of both bar control and cable control techniques for the active 

control of tensegrity structural systems. The active control of tensegrity structures in a 

multivariable and centralized control context is presented for the design of collocated 

and non-collocated control systems. A new method is presented for the determination of 

the feedback gain for collocated controllers to reduce the control effort as much as 

possible while the closed-loop stability of the system is unconditionally guaranteed.  In 

addition, the LQG (Linear system, Quadratic cost, Gaussian noise) controllers which are 

suitable for both collocated and non-collocated control systems is applied to actively 

control tensegrity structural systems for vibration suppression and precision control. 



 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

 

 

 

 

 

 

To my dear parents 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 



 
 

 

ACKNOWLEDGEMENTS 

 

All praises and thanks are to Almighty Allah who alone created the universe.  

It is a great pleasure for me to acknowledge those many people who have played a 

major role through their support and help during the course of my PhD studies, in 

particular, and in my career and life, in general. I have worked with many colleagues, 

friends and other researchers and it is not possible for me to mention each one and the 

extent of their support. However, I do gratefully acknowledge and appreciate every help 

I receive from everyone at various stages of my research. Of these, I would like to 

specifically mention and thank a number of people whose assistance and support have 

been invaluable.  

It is with immense gratitude that I acknowledge the support and help of my supervisor, 

Professor Mahdi Mahfouf, for giving me the opportunity to study for a PhD degree 

under his supervision, and with whom I consider it an honour to work with. I am also 

indebted to the University of Sheffield for their sponsorship and aid through the 

Overseas Research Student (ORS) Award to pursue my degree.  

I would like to thank Professor Didier Theilliol of the University of Lorraine (France), 

for many discussions that helped me in understanding many areas of this work and for 

inviting me over to spend few weeks in his research lab, and Professor René Motro of 

the University of Montpellier (France), a prominent researcher on tensegrity structures, 

for accepting my request to visit him to discuss my research work despite being on his 

retirement. Many thanks also go to the staff and my fellow students at our Intelligent 

Systems and IMMPETUS research groups for their friendship, particularly, Osman 

Ishaque, Shen Wang, Guangrui Zhang, Alicia Adriana Rodriguez, Ali Zughrat and Drs. 

Mouloud Denaï, Sid-Ahmed Gaffour and Qian Zhang.  

I would also like to extend my gratitude to the academic, technical and support staffs of 

the Department of Automatic Control and Systems Engineering at the University of 

Sheffield who have given me unlimitedly help and guidance during my studies.  The 



 
 

help of the technical staff, Craig Bacon, Ian Hammond and Anthony Whelpton, in 

assembling the structural system I designed in this project are gratefully appreciated. I 

have also come to know many residents of Sheffield, in at least hundreds, due to many 

community projects that I was involved in and I wholeheartedly thank them for the 

kindness, patience and opportunity that they gave me to be part of them. I will forever 

be indebted for this honour.  

I wish to thank my wife, Rasheedah, and my son, Abdullah, for their patience, 

understanding, support and encouragement during the period of conducting this 

research. 

Importantly, I am deeply indebted to all my brothers and sisters who have been a great 

source of cooperation throughout my life. I thank them for their unwavering support and 

understanding that has made it possible for me to pay full attention on my studies and I 

hope that my achievement is well-worth their sacrifices during the period that I have 

been away from Nigeria. 

Last, but not least, I would like to express my utmost and deepest gratitude to my 

parents for their unequivocal support; indeed, this is a very small acknowledgement of 

their unfailing love and affection.  

All praises and thanks are to Almighty Allah at the end as at the beginning. 

 

MUSA ABDULKAREEM 

Sheffield, March 2013 

 

 

 

 

 

 



 
 

 

PUBLICATIONS 

 

Conference Papers:  

 Abdulkareem, M., Mahfouf, M. and Didier, T, ‗Dynamic Modelling of Tensegrity 

Structures with Expanding Properties‘, Vibration Problems ICOVP2011: The 10
th

 

International Conference on Vibration Problems, 5-8 September, 2011, Prague, 

Czech Republic (In Springer Proceedings in Physics, 2011). 

 Abdulkareem, M., Mahfouf, M. and Didier, T, ‗Design of Tensegrity Structures: the 

kinematic method with forces in structural members‘, Proc. of the 13
th

 International 

Conference on Civil, Structural and Environmental Engineering Computing, 6-9 

September, 2011, Crete, Greece.  

 Abdulkareem, M., Mahfouf, M. and Didier, T, ‗A Constrained Optimization 

Approach for Form-Finding of Tensegrity Structures and their Static-load Deflection 

Properties‘, Proc. of the 13
th

 International Conference on Civil, Structural and 

Environmental Engineering Computing, 6-9 September, 2011, Crete, Greece. 

Contributions in Colloquia:  

 Abdulkareem, M., Mahfouf, M. and Didier, T, ‗Tensegrity Structure: From theory 

to design and implementation‘, IMMPETUS Colloquium, 3-4 April, 2012, 

University of Sheffield, UK.  

 Abdulkareem, M., Mahfouf, M. and Didier, T, ‗Dynamic Modelling of Tensegrity 

Structures‘, IMMPETUS Colloquium, 19-20 April, 2011, University of Sheffield, 

UK.  

 Abdulkareem, M., Mahfouf, M. and Didier, T, ‗Tensegrity Structures: Background, 

Analysis, Current and Future Industrial Applications‘, IMMPETUS Colloquium, 30-

31 March, 2010, University of Sheffield, UK. 

Contributions in Seminars:  

 Abdulkareem, M., Mahfouf, M. and Didier, T, ‗Tensegrity Structures: An overview 

and current challenges‘, Centre de Recherche en Automatique de Nancy (CRAN), 

Faculté des Sciences et Technique, 7
th

 February, 2012, Nancy Universite, FRANCE.  



 
 



 
 

 

AWARDS 

 

 The Royal Academy of Engineering (RAE) Travel Award Grant of £300 

towards attendance of the International Course on Modal Analysis: Theory and 

Practice (ISMA36), Division of Production Engineering, Machine Design and 

Automation, Department of Mechanical Engineering, Katholieke Universiteit 

Leuven, Belgium (20-21 September, 2011). 

 IMMPETUS Mike Frolish Prize Best Oral Presentation at the 13
th

 Annual 

Colloquium of the Institute for Microstructural and Mechanical Process 

Engineering: The University of Sheffield (IMMPETUS), 19-20 April, 2011. 

 Overseas Research Student (ORS) Award of the University of Sheffield, 

United Kingdom October, 2009. 

 Engineering and Physical Sciences Research Council (EPSRC) Case Award 

October, 2009. 

 

 



 
 



xiii 
 

 

CONTENTS 

 

Abstract  .........................................................................................................................  iii 

Dedication .......................................................................................................................  v 

Acknowledgments  .......................................................................................................  vii 

Publications  ...................................................................................................................  ix 

Awards  ..........................................................................................................................  xi 

Contents  ......................................................................................................................  xiii 

List of Figures  ............................................................................................................  xvii 

List of Tables  .............................................................................................................  xxv 

List of Main Symbols and Abbreviations  .............................................................  xxvii 

 

1 INTRODUCTION ........................................................................................................ 1 

1.1 Definition of Tensegrity Structures .......................................................................... 1 

1.2 Origin of Tensegrity Structures ................................................................................ 4 

1.3 Research and Application of Tensegrity Structures and Concept ............................ 5 

1.4 Project Motivation and Description .......................................................................... 8 

1.5 Thesis Outline ......................................................................................................... 11 

 

2 FORM-FINDING OF TENSEGRITY STRUCTURES ......................................... 15 

2.1 Introduction ............................................................................................................. 15 

2.2 Form-finding Method for Tensegrity Structures: The Constrained Optimization 

Approach ....................................................................................................................... 16 

2.2.1 Matrix Analysis of Tensegrity Structures .................................................. 16 

2.2.1.1 Definitions and Notations ..................................................................... 17 

2.2.1.2 Matrix Decompositions related to Equations of Equilibrium ............... 21 

2.2.2 Penalty Function Method of Constrained Optimization ............................ 28 

2.2.2.1 Obtaining Tension Coefficients from the Equilibrium Matrix ............. 33 

2.2.2.2 Obtaining Nodal Coordinates from the Force Density Matrix ............. 35 

2.2.2.3 Obtaining Nodal Coordinates from Geometric Consideration ............. 36 

2.2.3 A Constrained Optimization Approach for the Form-finding of Tensegrity 

Structures ............................................................................................................. 42 



xiv 
 

2.2.4 Examples of Applications of the Constrained Optimization Form-finding 

Algorithm ............................................................................................................ 46 

2.2.5 Discussions ................................................................................................. 50 

2.3 Other Form-finding Methods .................................................................................. 51 

2.4 Summary ................................................................................................................. 53 

 

3 STATIC AND DYNAMIC ANALYSES OF TENSEGRITY STRUCTURES .... 54 

3.1 Introduction ............................................................................................................. 54 

3.2 Static and Dynamic Analyses of Tensegrity Structures Using the Finite Element 

Method .......................................................................................................................... 55 

3.2.1 Derivation and Assembly of the Element Matrices ................................... 55 

3.2.1.1 The Stiffness Matrix ............................................................................. 55 

3.2.1.2 The Relationship between the Geometric and Elastic Stiffness Matrices 

and the Stiffness Matrix of the Conventional Finite Element Method ............. 60 

3.2.1.3 The Mass Matrix ................................................................................... 62 

3.2.2 Basic Equations and Solution Procedure ................................................... 63 

3.2.2.1 Equations of Motion of a Discretized System ...................................... 63 

3.2.2.2 Eigenvalue Problem and Uncoupled Equations of Motion .................. 64 

3.2.2.3 Rigid Body Modes and Static Model Reduction .................................. 67 

3.2.2.4 Pseudo-Static Deflection Properties of a 2-stage Tensegrity Structure 68 

3.2.3 State-Space Model Representation ............................................................. 73 

3.2.4 Dynamic Model Simulation of n-stage Tensegrity Structures ................... 81 

3.3 Discussions ............................................................................................................. 92 

3.4 Summary ................................................................................................................. 97 

 

4 MODEL REDUCTION AND OPTIMAL ACTUATOR AND SENSOR 

PLACEMENT ............................................................................................................. 98 

4.1 Introduction ............................................................................................................. 98 

4.2 Definitions and Notations ..................................................................................... 100 

4.2.1 Controllability, Observability and Grammians ........................................ 101 

4.2.2 The   ,    and Hankel Norms ............................................................... 104 

4.3 Model Reduction .................................................................................................. 107 

4.3.1 Truncation Method ................................................................................... 107 

4.3.2 Residualization Method ............................................................................ 108 

4.3.3 Model Reduction Error ............................................................................. 108 

4.4 Optimal Actuator and Sensor Placement .............................................................. 109 

4.4.1 State, Actuator and Sensor Norms ........................................................... 111 

4.4.2 Placement Indices and Matrices ............................................................... 112 

 



xv 
 

4.5 Numerical Applications ........................................................................................ 116 

4.5.1 Minimal Multistage Tensegrity Structures ............................................... 116 

4.5.2 Non-minimal Multistage Tensegrity Structures ....................................... 118 

4.6 Discussions ........................................................................................................... 119 

4.7 Summary ............................................................................................................... 137 

 

5 PHYSICAL REALIZATION OF TENSEGRITY STRUCTURAL SYSTEMS 

PART I: PHYSICAL STRUCTURE DESIGN ...................................................... 138 

5.1 Introduction ........................................................................................................... 138 

5.2 Tensegrity Prisms and their Regularity, Minimality and Design Approaches ..... 141 

5.3 Designs of Compressive and Tensile Structural Members ................................... 143 

5.3.1 Selection of Extensible Bars .................................................................... 146 

5.3.2 Design of Cables ...................................................................................... 153 

5.3.3 Design of Active Cables ........................................................................... 158 

5.4 Collision avoidance, detection and related issues ................................................. 165 

5.5 Motion of Tensegrity Structures ........................................................................... 172 

5.5.1 Translation of the Tensegrity Prisms ....................................................... 174 

5.5.2 Rotation of the Tensegrity Prisms ............................................................ 178 

5.6 Discussions ........................................................................................................... 181 

5.7 Summary ............................................................................................................... 183 

 

6 PHYSICAL REALIZATION OF TENSEGRITY STRUCTURAL SYSTEMS 

PART II: HARDWARE ARCHITECTURE AND A DECENTRALIZED 

CONTROL SCHEME .............................................................................................. 185 

6.1 Introduction ........................................................................................................... 185 

6.2 Hardware Architecture and Components and the Serial Communication Protocol 

using the USB interface .............................................................................................. 186 

6.2.1 The Interface Board .................................................................................. 187 

6.2.2 Configuration of the Interface Board ....................................................... 191 

6.2.3 The Serial Port Interface and the ‗Pololu‘ Communication Protocol ...... 192 

6.2.4 Control Parameters and Algorithm of the Interface Board ...................... 198 

6.3 Control Strategy, Design Characteristics and Setbacks ........................................ 206 

6.4 Modelling and Simulation of the 3-bar Tensegrity Structural System ................. 218 

6.5 Discussions ........................................................................................................... 222 

6.6 Summary ............................................................................................................... 224 

 

 



xvi 
 

7 CONTROL SYSTEM DESIGN FOR TENSEGRITY STRUCTURES ............. 225 

7.1 Introduction ........................................................................................................... 225 

7.2 Collocated Control of Tensegrity Structures ........................................................ 226 

7.3 Linear Optimal Control of Tensegrity Structures ................................................. 245 

7.3.1 Collocated Control with Linear Optimal State-feedback Regulator ........ 246 

7.3.2 Non-collocated Control with Linear Optimal Output-feedback Controller

 ........................................................................................................................... 247 

7.3.3 Robust Tracking System for Active Tensegrity Structures ...................... 250 

7.4 Discussions ........................................................................................................... 255 

7.5 Summary ............................................................................................................... 261 

 

8 CONCLUSIONS AND FUTURE WORK ............................................................. 263 

8.1 Conclusions ........................................................................................................... 263 

8.2 Future Work .......................................................................................................... 265 

 

REFERENCES ............................................................................................................ 267 

Appendix: LINEAR OPTIMAL CONTROL SYSTEMS ....................................... 286 

A.1 Linear Optimal State-feedback Regulator ........................................................... 286 

A.2 Linear Optimal Observer ..................................................................................... 288 

A.3 Linear Optimal Output-feedback Controller ........................................................ 292 

A.4 Linear Optimal Tracking System and Integral Control ....................................... 294 

 

 

 

 

 

 

 

 

 

 

 



xvii 
 

 

LIST OF FIGURES 

 

Figure 1.1: A simple tensegrity structure with 3 bars (thick black lines) and 9 cables (thin blue lines).   ... 2 

Figure 1.2: A simple example of class 3 tensegrity structures. .................................................................... 3 

Figure 1.3: A simple structural system that cannot be stabilized in the absence of external forces. ............ 4 

Figure 1.4:  Ioganson‘s Sculpture, Snelson‘s X-piece and Snelson‘s simplex. ........................................... 5 

Figure 2.1: A view of an unconstrained node   connected to nodes   and   through members   and  , 

respectively. ............................................................................................................................ 18 

Figure 2.2: A class 3 tensegrity structure (thick and thin lines represent bars and cables, respectively) ... 19 

Figure 2.3: Singular value decomposition of the equilibrium matrix illustrating the relationships 

between        and                ......................................................................................... 23 

Figure 2.4: An illustrating on obtaining tension coefficients from the right orthonormal matrix. ............. 24 

Figure 2.5: Tensegrity structures associated with nodal coordinates defined in Table 2.2. ....................... 27 

Figure 2.6: An illustrative example of the implementation of algorithm in Method 1. .............................. 29 

Figure 2.7: Tension coefficients obtained from the equilibrium matrix using a constrained 

optimization approach. ........................................................................................................... 34 

Figure 2.8: Nodal coordinates obtained from the force density matrix of valid set of tension 

coefficients using an optimization approach. ......................................................................... 39 

Figure 2.9: Tensegrity structure to be determined from geometric consideration ...................................... 40 

Figure 2.10: Tensegrity structures obtained using form-finding methods A, B and C. .............................. 45 

Figure 2.11: A class 2 tensegrity configuration. ......................................................................................... 46 

Figure 2.12: Tensegrity structure obtained from a class 2 tensegrity configuration using constrained 

optimization form-finding approach. ...................................................................................... 47 

Figure 2.13: A truss-like class 2 tensegrity configuration and structure .................................................... 49 

Figure 3.1: A 2-stage tensegrity structure with three bars per stage........................................................... 70 

Figure 3.2: (a) Displacements in the x-,y- and z-axis of node 12 as tension coefficients scaling factor 

   varies on loads 1N, 10N, 50N, 100N and 200N. (b) Vertical displacements of nodes 

10, 11, and 12 as tension coefficients scaling factor    is varied on vertical loads 1N, 10N, 

50N, 100N and 200N. ............................................................................................................. 71 

Figure 3.3: Vertical displacements of nodes 10, 11, and 12 as static loads on these nodes are varied for 

various tension coefficients scaling factor   . ........................................................................ 72 



xviii 
 

Figure 3.4: Vertical displacements of nodes 10, 11, and 12 for the tension coefficients scaling factor of 

      as the nodal coordinates scaling factor varies on loads 10N, 50N, 100N, 150N 

and 200N. ............................................................................................................................... 72 

Figure 3.5: Vertical displacements of nodes 10, 11, and 12 for loads 1KN placed vertically on these 

nodes as the nodal coordinates scaling factor varies for the tension coefficient scaling 

factor    of values 50, 100, 150, 200 and 250. ....................................................................... 73 

Figure 3.6: Dynamic response of the 2-stage tensegrity structure to three vertically downward loads of 

300N on nodes 10, 11, and 12 suddenly applied at time     (sec): Nodal Displacements 

(meter) Vs time (sec) for the x and y axes. ............................................................................. 77 

Figure 3.7: Dynamic response of the 2-stage tensegrity structure to three vertically downward loads of 

300N on nodes 10, 11, and 12 suddenly applied at time     (sec): Nodal Displacements 

(meter) Vs time (sec) for the z axis. ....................................................................................... 78 

Figure 3.8: Dynamic response of the 2-stage tensegrity structure to three vertically downward loads of 

300N on nodes 10, 11, and 12 suddenly applied at time     (sec): Nodal Velocities 

(meter/sec) Vs time (sec) for the x and y axes. ....................................................................... 79 

Figure 3.9: Dynamic response of the 2-stage tensegrity structure to three vertically downward loads of 

300N on nodes 10, 11, and 12 suddenly applied at time     (sec): Nodal Velocities 

(meter/sec) Vs time (sec) for the z axis. ................................................................................. 80 

Figure 3.10: (a) A minimal 2-stage 3-order tensegrity structure; (b) A 2-stage 3-order tensegrity 

structure with additional structural members (shown in red). ................................................ 82 

Figure 3.11: (a) A minimal 3-stage 3-order tensegrity structure; (b) A 3-stage 3-order tensegrity 

structure with additional structural members (shown in red). ................................................ 82 

Figure 3.12: (a) and (b) show the nomenclature adopted for numbering the structural members of 

figures 3.10 (b) and 3.11 (b), respectively; in both cases, the numberings of structural 

members and nodes are in blue and black, respectively. [Scale of Plots: meter in all axes]. . 83 

Figure 3.13: (a) and (b) are the dynamic response (nodal displacements (meter) Vs time (sec) along 

the x-axis) of the 2-stage 3-order tensegrity structures of Figure 3.10 (a) and (b), 

respectively, to three vertically downward loads of 300N on nodes 10, 11, and 12 

suddenly applied at time     (sec) ...................................................................................... 86 

Figure 3.14: (a) and (b) are the dynamic response (nodal displacements (meter) Vs time (sec) along 

the y-axis) of the 2-stage 3-order tensegrity structures of Figure 3.10 (a) and (b), 

respectively, to three vertically downward loads of 300N on nodes 10, 11, and 12 

suddenly applied at time     (sec) ...................................................................................... 87 

Figure 3.15: (a) and (b) are the dynamic response (nodal displacements (meter) Vs time (sec) along 

the z-axis) of the 2-stage 3-order tensegrity structures of Figure 3.10 (a) and (b), 

respectively, to three vertically downward loads of 300N on nodes 10, 11, and 12 

suddenly applied at time     (sec) ...................................................................................... 88 

Figure 3.16: (a) and (b) are the dynamic response (nodal displacements (meter) Vs time (sec) along 

the x-axis) of the 3-stage 3-order tensegrity structures of Figure 3.11 (a) and (b), 

respectively, to three vertically downward loads of 300N on nodes 16, 17, and 18 

suddenly applied at time     (sec) ...................................................................................... 89 

Figure 3.17: (a) and (b) are the dynamic response (nodal displacements (meter) Vs time (sec) along 

the y-axis) of the 3-stage 3-order tensegrity structures of Figure 3.11 (a) and (b), 

respectively, to three vertically downward loads of 300N on nodes 16, 17, and 18  

suddenly applied at time     (sec) ...................................................................................... 90 

 



xix 
 

Figure 3.18: (a) and (b) are the dynamic response (nodal displacements (meter) Vs time (sec) along 

the z-axis) of the 3-stage 3-order tensegrity structures of Figure 3.11 (a) and (b), 

respectively, to three vertically downward loads of 300N on nodes 16, 17, and 18 

suddenly applied at time     (sec) ...................................................................................... 91 

Figure 3.19: An example of non-minimal 3-stage 3-order tensegrity structure (additional structural 

members are shown in red). .................................................................................................... 94 

Figure 4.1: A block diagram of the model reduction procedure ............................................................... 110 

Figure 4.2: A block diagram of the optimal actuator and sensor placement procedure using the    

norm ..................................................................................................................................... 115 

Figure 4.3: (a) A 1-stage 3-order tensegrity structure; (b) a plot of the Hankel singular values of the 

structure; and (c) a plot of the frequency response of the structure. ..................................... 121 

Figure 4.4: (a) A 2-stage 3-order tensegrity structure; (b) a plot of the Hankel singular values of the 

structure (only the largest 30 out of a total of 54 are shown); and (c) a plot of the 

frequency response of the structure. ..................................................................................... 122 

Figure 4.5: (a) A 3-stage 3-order tensegrity structure; (b) a plot of the Hankel singular values of the 

structure (only the largest 30 out of a total of 90 are shown); and (c) a plot of the 

frequency response of the structure. ..................................................................................... 123 

Figure 4.6: (a) A 4-stage 3-order tensegrity structure; (b) a plot of the Hankel singular values of the 

structure (only the largest 30 out of a total of 126 are shown); and (c) a plot of the 

frequency response of the structure. ..................................................................................... 124 

Figure 4.7: (a) A 5-stage 3-order tensegrity structure; (b) a plot of the Hankel singular values of the 

structure (only the largest 35 out of a total of 162 are shown); and (c) a plot of the 

frequency response of the structure. ..................................................................................... 125 

Figure 4.8: (a) A 3-stage 5-order tensegrity structure; (b) a plot of the Hankel singular values of the 

structure (only the largest 40 out of a total of 150 are shown); and (c) a plot of the 

frequency response of the structure. ..................................................................................... 126 

Figure 4.9: (a) A 3-stage 6-order tensegrity structure; (b) a plot of the Hankel singular values of the 

structure (only the largest 50 out of a total of 180 are shown); and (c) a plot of the 

frequency response of the structure. ..................................................................................... 127 

Figure 4.10: (a) A 6-stage 3-order tensegrity structure; (b) a plot of the Hankel singular values of the 

structure (only the largest 50 out of a total of 198 are shown; 2 of these are unstable); and 

(c) a plot of the frequency response of the structure. ............................................................ 128 

Figure 4.11: (a) A 7-stage 3-order tensegrity structure; (b) a plot of the Hankel singular values of the 

structure (only the largest 50 out of a total of 234 are shown; 2 of these are unstable); and 

(c) a plot of the frequency response of the structure. ............................................................ 129 

Figure 4.12: (a) A plot of the frequency response of the 2-stage 3-order tensegrity structure; and (b) a 

plot of the frequency response of the structure. .................................................................... 130 

Figure 4.13: (a) Frequency response plots of minimal and non-minimal 2-stage 3-order tensegrity 

structure; and (b) frequency response plots of minimal and non-minimal 3-stage 3-order 

tensegrity structure. .............................................................................................................. 132 

Figure 4.14 (a): (i) and (ii) are the plots of the actuator placement indices for the states 1, 3, and 5 of 

the 2-stage 3-order minimal and non-minimal tensegrity structures, respectively. .............. 133 

 



xx 
 

Figure 4.14 (b): (i) and (ii) are the plots of the actuator placement indices over all states (  
 ), the 

Hankel singular values (           – only the largest 30 out of a total of 54 are shown), 

and the state importance indices (  ) of the 2-stage 3-order minimal and non-minimal 

tensegrity structures, respectively. ........................................................................................ 134 

Figure 4.15 (a): (i) and (ii) are the plots of the actuator placement indices for the states 1, 3, and 5 of 

the 3-stage 3-order minimal and non-minimal tensegrity structures, respectively. .............. 135 

Figure 4.15 (b): (i) and (ii) are the plots of the actuator placement indices over all states (  
 ), the 

Hankel singular values (           – only the largest 30 out of a total of 90 are shown), 

and the state importance indices (  ) of the 3-stage 3-order minimal and non-minimal 

tensegrity structures, respectively. ........................................................................................ 136 

Figure 5.1: Examples of 3-bar minimal tensegrity prisms: (a) A regular minimal tensegrity prism with  

     ; (b) A regular minimal tensegrity prism with      ; and (c) An irregular 

minimal tensegrity prism with      . ................................................................................ 142 

Figure 5.2: Top view of a 4-bar regular minimal tensegrity prism with         . ............................. 143 

Figure 5.3: The initial 3-bar tensegrity prism (the length of each bar equals to 60 cm and      ) ....... 145 

Figure 5.4: A picture of the 12‖ stroke linear actuator with feedback (LD series actuator) 

manufactured by Concentric International ........................................................................... 148 

Figure 5.5: Plots of the degree of stability (measured by the norm of the nodal residual forces) versus 

the bar lengths of the 3-bar minimal tensegrity prism in two-dimension ............................. 151 

Figure 5.6: A depiction of the stability region of the 3-bar minimal tensegrity prism in three-

dimension using a small number of slices ............................................................................ 152 

Figure 5.7: (a) The initial 3-bar tensegrity prism; (b) SolidWorks
®
 dimensional drawing of the 3-bar 

tensegrity prism .................................................................................................................... 152 

Figure 5.8: SolidWorks
®

 dimensional drawing of the 3-bar tensegrity prism with cables approximated 

by elastic springs and the three bottom nodes rigidly attached to the base........................... 154 

Figure 5.9: Picture of the spring fabricated to approximate the linear cable of the initial 3-bar 

tensegrity prism .................................................................................................................... 154 

Figure 5.10: The variation of forces in the six springs as a linear actuator is driven (a forced 

oscillatory motion) through a distance of 13 cm .................................................................. 156 

Figure 5.11: The degree of stability of the initial 3-bar tensegrity prism (measured by the natural log 

of the norm of the nodal residual forces,       ) as its height is varied by increasing the 

lengths of the bars equally from 45 cm to 75 cm .................................................................. 157 

Figure 5.12: Examples of three regular 3-bar minimal tensegrity prisms (with       ,          
         = 40.8750 cm,                   = 2.5745 N/cm,       
  = 4.4591 N/cm, and            =  4.4591 N/cm in the three structures)................ 159 

Figure 5.13: The 3-bar tensegrity prism with electromechanical or active material based actuator 

embedded in-line with the tensile structural members ......................................................... 161 

Figure 5.14: (a) and (b) are tensile structural members with electromechanical actuator positioned in-

line at the middle and at the end of cable, respectively ........................................................ 161 

Figure 5.15: Picture of the short spring fabricated to form part of the vertical tensile structural member164 

Figure 5.16: Two structural members with each member made up of two nodes .................................... 167 



xxi 
 

Figure 5.17: An illustration of the shortest distance between any two bars of the initial 3-bar tensegrity 

prism ..................................................................................................................................... 169 

Figure 5.18: An illustration of a structural member that makes an angle of   with the plane containing 

nodal points   ,    and    .................................................................................................... 172 

Figure 5.19 (a): (i) and (ii) are the plane containing the three top nodes and the translation of the top 

triangle in the  -   plane, respectively. ................................................................................ 173 

Figure 5.19 (b): Rotation of the top triangle about the   and   axes. ....................................................... 174 

Figure 5.20: The translation of the initial 3-bar tensegrity prism (Before translation: cable = blue, bar 

= black; after translation: cable = red, bar = brown) ............................................................ 177 

Figure 5.21: (a) Rotation of the top-triangle of the initial 3-bar tensegrity prism about the z-axis; (b), 

(c) and (d) are the variation of the norm of the nodal residual forces as rotation of the top 

triangle is carried-out about the x, y and z axes, respectively. ............................................. 179 

Figure 5.22: The translation and rotation of the initial 3-bar tensegrity prism (Before translation: cable 

= blue, bar = black; after translation: cable = red, bar = brown) .......................................... 180 

Figure 5.23: A sectional-view of a flexible (morphing) wing turbine blade loaded with tensegrity 

prisms ................................................................................................................................... 183 

Figure 6.1: A setup for a computer control system of a tensegrity structure showing the relation among 

the various constituent components ...................................................................................... 186 

Figure 6.2: (a) The PJ board with a 14   1 straight 0.1‖ male header strip and two 2-pin 3.5 mm 

terminal blocks; (b) The PJ board with the header strip and terminals soldered unto the 

board. .................................................................................................................................... 188 

Figure 6.3: A labelled top-view picture of the PJ board ........................................................................... 189 

Figure 6.4: A configuration of a potentiometer used as a sensor ............................................................. 190 

Figure 6.5: The wiring of the PJ board ..................................................................................................... 191 

Figure 6.6: The PJ board configuration utility dialog box. ...................................................................... 193 

Figure 6.7: The workflow for executing serial port communication in MATLAB. ................................. 194 

Figure 6.8: The workflow involving the implementation of the ‗stop motor‘ and the ‗set target-

position‘ commands.............................................................................................................. 197 

Figure 6.9: The workflow involving the implementation of the ‗read feedback sensor‘ and ‗send me 

feedback reading‘ commands ............................................................................................... 199 

Figure 6.10: The structure of the implementation of PID control algorithm of the PJ board ................... 200 

Figure 6.11: Flow chart for the determination of the PID controller parameters for the PJ board ........... 204 

Figure 6.12: System responses at the beginning and at the end of the iteration process .......................... 206 

Figure 6.13: Block diagram of the control system for each actuator ........................................................ 207 

Figure 6.14: A general block diagram for the control of the tensegrity structure that uses the proposed 

multistable design approach ................................................................................................. 208 

Figure 6.15: Control strategy for the monostable 3-bar tensegrity prism involving multiple SISO 

control loops (the bottom nodes are rigidly attached to the base) ........................................ 210 



xxii 
 

Figure 6.16: Control strategy for the multistable 3-bar tensegrity prism involving multiple SISO 

control loops (the bottom nodes are rigidly attached to the base) ........................................ 211 

Figure 6.17: Pictures of the set-up for the calibration of the 6 electromechanical actuators .................... 212 

Figure 6.18: Pictures of the final structure after assemblage of all the constituent components .............. 213 

Figure 6.19 (a):  The plots of the stroke lengths versus time as the multistage 3-bar tensegrity 

structural system changes its shapes through tensegrity structures 5.20 (a), (b), (c) and (d).215 

Figure 6.19 (b): The plots of the stroke lengths versus time as the multistage 3-bar tensegrity structural 

system changes its shapes through tensegrity structures 5.22 (a), (b) and (c). ..................... 216 

Figures 6.20 (a): A graphical user interface developed using MATLAB graphical user interface 

development environment (GUIDE) for deployment of the 3-bar tensegrity prism ............. 217 

Figures 6.20 (b): A graphical user interface developed using MATLAB graphical user interface 

development environment (GUIDE) for the six-DOF position control system of the 3-bar 

tensegrity prism .................................................................................................................... 217 

Figure 6.21: A standard, a monostable and a multistable 3-bar tensegrity structures .............................. 219 

Figure 6.22: Dynamic response plots: The plots of nodal displacements (cm) Vs time (sec) of the 

structures of Figure 6.21 (a), (b) and (c) ............................................................................... 221 

Figure 6.23: Frequency response plots of the structures of Figure 6.21 (a), (b) and (c)........................... 222 

Figure 6.24: Dynamic response plots: The plots of nodal displacements (cm) Vs time (sec) of the 

structures of Figure 5.20 (a), (b), (c) and (d) ........................................................................ 223 

Figure 7.1: Assumed structural system for controller design ................................................................... 227 

Figure 7.2: (a), (b) and (c) are the plots of the open- and closed-loop poles of the structural systems of 

Figure 6.21 (a), (b) and (c), respectively, in the complex plane for the output matrix 

      (‗o‘ – open-loop poles; ‗x‘ – closed-loop poles). ................................................... 236 

Figure 7.3 (a): (a) and (b) are the plots of the dynamic responses (nodal velocities [     ] Vs time 

[sec]) and the control efforts (actuator forces [N] Vs time [sec]) at Node 6 in the structural 

system of Figure 6.21 (a), respectively, for the output matrix     . ............................... 237 

Figure 7.3 (b): (c) and (d) are the plots of the dynamic responses (nodal velocities [     ] Vs time 

[sec]) and the control efforts (actuator forces [N] Vs time [sec]) at Node 5 in the structural 

system of Figure 6.21 (b), respectively, for the output matrix     . ............................... 238 

Figure 7.3 (c): (e) and (f) are the dynamic responses (nodal velocities [     ] Vs time [sec]) and the 

control efforts (actuator forces [N] Vs time [sec]) at Node 5 in the structural system of 

Figure 6.21 (c), respectively, for the output matrix     . ................................................ 239 

Figure 7.4: (a), (b) and (c) are the plots of the open- and closed-loop poles of the structural systems of 

Figure 6.21 (a), (b) and (c), respectively, in the complex plane for the output matrix 

      
   (‗o‘ – open-loop poles; ‗x‘ – closed-loop poles). ............................................ 241 

Figure 7.5 (a): (a) and (b) are the dynamic responses (nodal velocities      ] Vs time [sec]) and the 

control efforts (actuator forces [N] Vs time [sec]) at Node 6 in the structural system of 

Figure 6.21 (a), respectively, for the output matrix       
  . ....................................... 242 

Figure 7.5 (b): (c) and (d) are the dynamic responses (nodal velocities [     ] Vs time [sec]) and the 

control efforts (actuator forces [N] Vs time [sec]) at Node 5 in the structural system of 

Figure 6.21 (b), respectively, for the output matrix       
  . ....................................... 243 



xxiii 
 

Figure 7.5 (c): (e) and (f) are the dynamic responses (nodal velocities [     ] Vs time [sec]) and the 

control efforts (actuator forces [N] Vs time [sec]) at Node 4 in the structural system of 

Figure 6.21 (c), respectively, for the output matrix       
  . ....................................... 244 

Figure 7.6: Simulation results for the cases of     and     computed with (7.28 – 7.29) and 

(7.30), respectively, for the tensegrity structures of Figure 6.21(a–c). ................................. 248 

Figure 7.7: Simulation results for the (non-collocated) tensegrity structural system of Figure 6.21(c) 

using output-feedback controllers designed with pole-placement and optimization 

approaches. ........................................................................................................................... 251 

Figure 7.7 (continued): Simulation results for the (non-collocated) tensegrity structural system of 

Figure 6.21(c) using output-feedback controllers designed with pole-placement and 

optimization approaches. ...................................................................................................... 252 

Figure 7.8: Simulation results for the robust tracking control for the (non-collocated) tensegrity 

structural system of Figure 6.21(c) using linear observer designed with pole-placement 

and optimization approaches. ............................................................................................... 253 

Figure 7.8 (continued): Simulation results for the robust tracking control for the (non-collocated) 

tensegrity structural system of Figure 6.21(c) using linear observer designed with pole-

placement and optimization approaches. .............................................................................. 254 

Figure 7.9: A 2-stage 3-order active tensegrity structure ......................................................................... 258 

Figure A.1: (a) and (b) are the time-invariant deterministic and stochastic linear optimal regulators, 

respectively. .......................................................................................................................... 289 

Figure A.2: Block diagram of a time-invariant linear observer ................................................................ 292 

Figure A.3: A structure of a linear output-feedback control system ........................................................ 293 

Figure A.4: A structure of the optimal linear feedback control system for a system with state 

excitation and measurement noises ...................................................................................... 294 

Figure A.5: A block diagram of a linear tracking control system ............................................................ 296 

Figure A.6: A block diagram of an Integral Control System ................................................................... 298 

Figure A.7: A structure of the optimal linear tracking system with integral action ................................. 300 

 

 

 

 

 

 

 

 

 

 

 

 



xxiv 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



xxv 
 

 

LIST OF TABLES 

 

Table 2.1:  Types of structural assemblies ................................................................................................ 22 

Table 2.2:  An illustration on obtaining vectors of nodal coordinates from the nullspaces of the force 

density matrix ......................................................................................................................... 26 

Table 2.3:  Descriptions of two methods for obtaining tensegrity structures: The Nullspaces approach . 28 

Table 2.4:  The Interior Point Algorithm for Constrained Optimization .................................................. 31 

Table 2.5:  Relationship between the vector of tension coefficients and kinematic form-finding 

method .................................................................................................................................... 41 

Table 2.6:  Descriptions of two methods for obtaining tensegrity structures using constrained 

optimization approach ............................................................................................................ 43 

Table 2.7:  Parameters of tensegrity structures of Figure 2.10 obtained using form-finding methods 

A, B and C. ............................................................................................................................. 48 

Table 2.8:  Length and tension coefficient associated with each member of the class 2 tensegrity 

structure .................................................................................................................................. 50 

Table 2.9:  The constrained optimization form-finding algorithm ........................................................... 53 

Table 3.1:  Length and tension coefficient of each of the structural members of the tensegrity 

structure shown in Figure 3.1 ................................................................................................. 70 

Table 3.2:  Tension coefficients, material and physical properties of the structural members of the 

tensegrity structure shown in Figure 3.1................................................................................. 76 

Table 3.3:  Length and tension coefficient of each of the structural members of the tensegrity 

structure shown in figures 3.10 and 3.11 ................................................................................ 84 

Table 3.4:  Nodal coordinates of the structural systems of figures 3.10 and 3.11 .................................... 85 

Table 3.5:  Nodal coordinates, length and tension coefficient of each of the structural members of the 

tensegrity structure shown in Figures 3.19 ............................................................................. 95 

Table 4.1:  The additive and relative model reduction errors (   and    , respectively) for the 

tensegrity structural systems of Figures 4.3 – 4.7. ................................................................ 131 

Table 4.2:  Nodal coordinates of the tensegrity structure of Figure 4.4 and the tension coefficient of 

each of its members .............................................................................................................. 131 

Table 5.1:  Structural parameters of the initial 3-bar tensegrity prism with the following constraints:  

                  ,          and             ............................................ 146 

Table 5.2:  Technical Specification of the 12‖ stroke linear actuator with feedback ............................. 148 

Table 5.3:  The extended length    for the electromechanical actuators of Figure 5.12 (a-c) ................. 162 



xxvi 
 

Table 5.4:  A picture and technical details of the 2‖ stroke linear actuator with feedback (LD series 

actuator) manufactured by Concentric International ............................................................ 164 

Table 6.1:  Technical Specification of the PJ board ............................................................................... 188 

Table 7.1:  Poles of the open-loop and closed-loop structural systems for      ............................... 234 

Table 7.2:  Poles of the open-loop and closed-loop structural systems for       
   ....................... 240 

Table 7.3:  Open-loop and closed-loop poles of the reduced-model of the structural system (non-

collocated case) of Figure 6.21(c) ........................................................................................ 249 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



xxvii 
 

 

LIST OF MAIN SYMBOLS AND 

ABBREVIATIONS 

 

Symbols 

    Equilibrium matrix, p. 18  

     System matrix of the state-space representation, p. 73  

    Equilibrium matrix, p. 20 

 ,  ,  ,    Linear time-invariant system, p. 101 

      Cross-sectional area of the  th member 

     Input matrix of the state-space representation, p. 73 

     Matrix of nodal coordinate differences;          , p. 56 

     Transpose of the equilibrium matrix,       

    Connectivity matrix, p. 19 

     Damping matrix, p. 63 

     Output matrix of the state-space representation, p. 73 

    Force density matrix, p. 21 

     Feed-forward matrix of the state-space representation, p. 73 

     Mean spring diameter, p. 153 

     Matrix of tensor product of    (3-by-3 identity matrix) and   

      Young‘s modulus of the  th member 

     Force in a tensile member 

     Transfer matrix of the linear time-invariant system, p. 105 

     Shear modulus, p. 153 

       Transfer function from the  th
 input to the  th output 

     Transformation matrix determined by the choice of the controlled variable   of a 

  control system 

     Stiffness matrix, p. 58 

     Constant feedback gain matrix, p. 226 

     Optimal value of the constant gain of the integral control system 



xxviii 
 

      Elastic stiffness matrix 

  
     Elastic stiffness matrix of the  th member in the global coordinate system 

    Scaling factor for converting feedback voltage reading between 0 to 5 V to 0 – 4095 

  digital scale 

      Stiffness matrix of the  th member in the global coordinate system 

      Optimal regulator gain 

  ,   ,      Parameters of the PID controller 

      Pre-stress (or geometric) stiffness matrix 

  
   Pre-stress stiffness matrix of the  th member in the global coordinate system 

     Diagonal matrix of vector  , p. 20 

     Length of a tensile member, p. 160 

     Constant feedback gain matrix, p. 231 

     Estimator gain, p. 249 

     Mass matrix  

      Vector obtained by taking the norm of each row of    

      Vector obtained by taking the norm of each row of    

     Matrix of nodal coordinates;           

     Vector of time-varying nodal forces of a structural system, p. 63 

     Parameter of the algebraic Riccati equation of the closed-loop system, p. 246 

      Controllability matrix 

      Vector of loads on elastic nodes 

      Observability matrix 

      Vector of loads on inelastic (unrestricted) nodes 

   ,    ,    Vectors of  ,   and   components of nodal forces, respectively 

     Diagonal matrix of vector q, p. 20 

     Parameter of the algebraic Riccati equation of the observer, p. 292 

      Weighting matrix representing limit on state variables 

      Weighting matrix representing limit on the control effort 

   Diagonal matrix of singular values of   in descending order of magnitude 

     Transformation matrix of the Guyan (static) model reduction, p. 68 

     State transformation matrix, p. 103 

      Placement matrix of actuators 

  
     Vector obtained by taking the norm of each column of    



xxix 
 

      Placement matrix of sensors 

  
     Vector obtained by taking the norm of each column of    

   Left-orthonormal matrix of the singular value decomposition of   

   Left-orthonormal matrix of the singular value decomposition of   

    Right-hand side partition of   

 ,  ,    Diagonal matrices of vectors  ,   and  , respectively 

     Intensity of the white noise 

   Diagonal matrix of singular values of   in descending order of magnitude 

   Diagonal matrix of singular values of   in descending order of magnitude 

     Weight of an ideal extensible bar with uniform cross-sectional area 

   Right-orthonormal matrix of the singular value decomposition of   

   Right-orthonormal matrix of the singular value decomposition of   

      Right-hand side partition of   

      Controllability grammian 

      Observability grammian 

    Number of structural members 

      Vector of coordinate differenceS which uniquely defines the  th member connecting 

nodes   and  ;           .  

      Scaling factor for the tension coefficients 

      Scaling factor for the nodal coordinates 

     Wire diameter of a spring, p. 153 

     Shortest distance between the two lines (or any two bars of the initial 3-bar tensegrity 

  prism), p. 168 

     Vector of nodal displacements 

     Error or error due to state reconstruction 

     Vector of member elongation coefficients 

     Vector of member forces 

k   Number of kinematic constraints, p. 17 

k    Spring constant, p. 153 

  
     Component of the elastic stiffness matrix due to the  th member in the local coordinate 

  system 

  
     Component of the stiffness matrix of the  th member due to pre-stress in the local 

  coordinate system 

      Stiffness matrix of the  th member in the local coordinate system 



xxx 
 

       Scaling factor for converting feedback current reading into 0 – 255 digital scale 

     Vector of member lengths 

        Retracted length of an electromechanical actuator inline with a tensile member 

      Extended length of an electromechanical actuator 

    Original length of a spring 

      Lower bound on the tension coefficients 

     Number of independent inextensible mechanisms 

      Mass matrix of the  th member in the local coordinates system 

       Mass matrix of the  th member in the global coordinates system 

    Number of nodes, p. 17 

     Number of state variables, p. 73 

     Number of active coils of a spring, p. 153 

     Normal vector perpendicular to a plane, p. 171 

      Nodal coordinates of the  th node;              

    Vector of nodal forces, p. 18 

    Vector of nodal forces, p. 20 

    Vector of nodal forces, p. 56 

     Number of bars of a tensegrity prism, p. 141 

       Nodal force at node   due the strain of the  th member 

       Vector representing forces at nodes of the  th member due to its strain 

    Vector of desired closed-loop poles 

   Vector of tension coefficients 

   Vector of tension coefficients 

      Tension coefficient of a cable of the bottom polygon of a tensegrity prism 

      Tension coefficient of a cable of the top polygon of a tensegrity prism 

       Tension coefficient of a vertical bar of a tensegrity prism 

       Tension coefficient of a vertical cable of a tensegrity prism 

     Rank of the equilibrium matrix, p. 22 

     Circumradii of a polygon of a tensegrity prism, p. 141 

     Reference input of a control system, p. 226 

      Circumradii of the bottom polygon of a tensegrity prism 

      Radius of the  th
 bar considered to be a circular cylinder 

      Circumradii of the top polygon of a tensegrity prism 



xxxi 
 

     Number of independent states of self-stress 

 ,  ,    Vectors of coordinate differences of connected nodes for the  ,   and   axes,  

  respectively, p. 20 

     Vector of input (control) variables, p. 73 

      Optimal control input 

      Upper bound on the tension coefficients 

     White noise 

      State excitation (disturbance) noise 

      Measurement noise 

     Vector of state variables 

      Vector of reconstructed state variableS 

      Vector of state variables of the balanced linear time-invariant system 

 ,  ,    Vectors of Cartesian coordinates in the direction of the  ,   and   axes, respectively 

      Matrix of nodal coordinates;                    

            Vector of nodal coordinates;                     

     Vector of output variables 

     Vector of controlled output variables of a control system 

     Singular values of the closed-loop matrix 

     Diagonal matrix of Hankel singular values of the linear time-invariant system arranged 

  in descending order of magnitudes on the diagonal  

     Diagonal matrix of vector    

     Vector of nodal displacements 

      Modal matrix 

    Mode shape or amplitudes of the displacement  ;           

      Vector of elastic nodal degrees of freedom 

      Vector of inelastic (unrestricted) nodal degrees of freedom 

     Diagonal matrix of natural frequencies 

     Potential energy of a structural assembly 

      Strain of the  th member 

     Vector of generalized coordinates (modal displacement) 

      Vector of modal velocities 

      Vector of modal accelerations 

       th Hankel singular value of the linear time-invariant system 

       th eigenvalue of the product of the observability and controllability grammians 



xxxii 
 

      Mass density of the  th member 

       weight assigned to the  th
 actuator/sensor of the  th state 

        Largest singular value at a given frequency 

      Additive error due to model reduction using the    norm 

      Additive Error due to model reduction using the    norm 

       Relative Error due to model reduction using the    norm 

     Characteristic angle of a polygon 

     Twist angle of a tensegrity prism 

   Left-orthonormal matrix of the singular value decomposition of   

   Right-orthonormal matrix of the singular value decomposition of   

     Gain of a linear time-invariant system, p. 105 

     Tension coefficient scaling factor for a tensegrity prism, p. 141 

     Impulse function 

     Angle between a member and a plane 

     Transformation matrix  

     Damping constant 

     Angle between the normal vector and the vector of coordinate differences which 

  uniquely defines a member 

     Ratio of the circumradius of the top polygon to that of the bottom polygon of a  

  tensegrity prism 

        th element of   
   or      

   
     Actuator placement index of the  th state and  th

 actuator location 

   
     Sensor placement index of the  th state and  th

 sensor location 

        th element of   
   or    

     Number of candidate actuators 

     Angular frequency of vibration, p. 64 

     Number of candidate sensors, p. 113 

        Variation (or function) of axial displacement   

     Kronecker product 

     Cross (vector) product operator 

 

Functions 

        Complex conjugate transpose of a matrix 



xxxiii 
 

        2-norm of a linear time-invariant system 

        Infinity-norm of a linear time-invariant system 

        Hankel norm of a linear time-invariant system 

         Norm of the vector of nodal residual forces 

           Supremum operation (the smallest upper bound of a set) 

        Expected value operation 

          Diagonalization of a vector to form a matrix (such that the elements of the vector are 

  the diagonal elements of the matrix with all other elements zero) or (conversely) 

  formation of a vector from the diagonal elements of a matrix.  

          Trace of a matrix 

          Vector valued function of a matrix such that               
     

     
  
 
 where 

      
    is the  th column vector of   

 

Abbreviations 

BFGS    Broydon-Fletcher-Goldfarb-Shanno 

DOF   Degree-of-freedom 

FEM   Finite Element Method 

GUIDE   Graphical User Interface Development Environment 

ISE   Integral of Squared Error 

LED   Light Emitting Diode 

LQG   Linear system – Quadratic cost – Gaussian noise  

MPC   Model Predictive Control 

PID   Proportional Integral Derivative 

PJ board  Pololu Jrk 12v12 USB motor controller with feedback 

PWM   Pulse Width Modulation 

SISO   Single-Input Single-Output 

USB   Universal Serial Bus 

      Tolerance value 



1 
 

 

Chapter 1 

 

INTRODUCTION 

 

1.1 Definition of Tensegrity Structures 

Tensegrity structures date back to the late 1940s when Buckminster Fuller used the term 

tensegrity as a contracted form of the two words tension and integrity to describe 

Kenneth Snelson‘s structure [1]. Despite their long presence, the structures have only 

received a surge in interest from the 1990s. From an engineering perspective, this class 

of structures are ideal candidates for deployable structures [2], [3] as they are capable of 

undergoing large displacements and can be of very lightweight. Moreover, these pre-

stressed structures are obtained by the optimal arrangement of material components, 

each of which must either be in tension or compression.  

Furthermore, tensegrity structures, similar to other tension structures, have 

aesthetic value which, although impossible to measure or quantify, emerges naturally in 

the optimization process. In a research carried-out at the University of Stuttgart‘s 

Institute of Lightweight Structures between 1964 and 1991 that focused on structural 

forms of lightweight structures, it was found that, although the objective was not to 

create structures with beauty, aesthetic value is inherently rooted in the optimal 

structural shapes of lightweight structures; that is, shapes that would satisfy functional, 

durability and strength requirements at minimum cost [4], [5].   

Tensegrity structures consist of two components, or structural members as they 

are often called, as shown in Figure 1.1, namely, the tensile and the compressive 

structural members, often called as cables and bars, respectively; besides, strings and 

struts are also common terms for these two components in the literature, respectively. It 

should be noted that in Figure 1.1 no bar is allowed to touch any other bar at the 

connection points, or nodes, while the cables form a continuous network and these 
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cables are connected (that is, they make contact) at every node. Thus, traditionally, 

tensegrity structures are described as ‗islands of compression inside an ocean of 

tension‘ [1] or as ‘continuous tension, discontinuous compression structures’ [6]. They 

have also been defined as structures which are ‗established when a set of discontinuous 

compression components interacts with a set of continuous tensile components to define 

a stable volume in space‘ [7], and ‗as system in a stable self-equilibrated state 

comprising a discontinuous set of compressed components inside a continuum of 

tensioned components’ [8]. 

    

(a)  Side View              (b) Top View 

Figure 1.1: A simple tensegrity structure with 3 bars (thick black lines) and 9 cables 

(thin blue lines).  

 

In order to incorporate structures, excluded in the traditional definitions, that 

consist of simple tensegrity modules that are connected together to form structures 

wherein bars are connected, the extended definition, given in [9], describes tensegrity 

structures as systems ‗whose rigidity is the result of a state of self-stress equilibrium 

between cables under tension and compression elements and independent of all fields of 

action‘. 

In addition, since the bars of a tensegrity structure can be considered as inelastic 

rigid bodies to a good approximation, the structural system is only stabilized by the 

presence of tensile forces in the cables alone in the absence of external forces. For this 

reason, in [2], a tensegrity structure is described as a system which is composed of a 

given set of cables connected to a configuration of rigid bodies and stabilized by 
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internal forces of the cables in the absence of external forces. In other words, a 

configuration of rigid bodies is a tensegrity system if it can be, or it is, stabilized by a 

set of cable connectivity in the absence of external forces. Here, stability (integrity) of 

the system denotes an equilibrium state or configuration in which the system returns to 

when disturbed by an arbitrary small perturbation.  

Also, since the new definition now excludes the necessity for bars to be 

discontinuous or for cables to form a continuous network, different classes of tensegrity 

structures are distinguished by counting the number of bars present at the nodes [10]. 

For example, if only one bar is present at every node, the structure is classified as a 

class 1 tensegrity structure; if at most two bars are present in at least one node, a class 2, 

and so on. To be precise, ‗a tensegrity configuration that has no contacts between its 

rigid bodies is a class 1 tensegrity system, and a tensegrity system with as many as k 

rigid bodies in contact is a class k tensegrity system’ [2]. Figure 1.2 shows a simple 

example of a tensegrity system constructed with 3 cables and 3 bars. 

 

Figure 1.2: A simple example of class 3 tensegrity structures. 

 

As a result of the wide range of definitions of tensegrity structures, it is difficult to 

make a distinction between tensegrity structures and other pre-stressed spatial structural 

systems. For instance, tensegrity structures have been classified as a special type of 

truss structures [11], as a type of cabled structures [4], and as internally pre-stressed 

free-standing pin-jointed cable-strut systems [12], [13]. However, it is explicitly 

understood that tensegrity structures (or systems) exclude all structures (or 

configuration of rigid bodies) which are not stabilized (or cannot be stabilized) with the 
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pre-stressed cables alone in the absence of external forces. An example of such a 

structure that is not a tensegrity structure is shown in Figure 1.3; it will be observed that 

there is no way this structure that consists of two bars and one cable can be stabilized, 

such that the cable is in tension while the bars remain in compression and with none of 

these structural members touching each other except at the three nodes (as shown in the 

figure), without the influence of an external force or forces. 

 

Figure 1.3: A simple structural system that cannot be stabilized in the absence of 

external forces. 

 

1.2 Origin of Tensegrity Structures 

There has been a controversy on the origin of tensegrity systems as Kenneth Snelson, 

Richard Buckminster Fuller and David Georges Emmerich  have all claimed originality 

of the concept of tensegrity and have all applied for patents in this regards [6], [14], 

[15]. It has also been claimed that Karl Ioganson has presented the same idea in his 

study of balance between 1921 and 1922 [16]. With the exception of Ioganson, all the 

other three have described exactly the tensegrity structures in their patents and a 

detailed account about the controversy on the origin of tensegrity structures can be 

found in [1], [9], [10], [16], for example. It can be deduced from these references that, 

indisputably, Fuller coined and popularized the word tensegrity, a short form of ‗tension 

integrity‘, and Snelson was the first to build a tensegrity structure known as the ‗X-

Piece‘ that inspired Fuller. Furthermore, from Ioganson‘s structure, which although has 

a tensegrity impression, it cannot be concluded that Ioganson has envisioned that he 

would obtain a tensegrity structure as it is being defined today. In other words, on 

seeing Ioganson‘s structure, as Snelson puts it, ‗no one on Earth would have been able 

to discern the nature of IX without prior acquaintance with tensegrity primary‘ [17]; IX 

denotes the number 9 – the minimum number of cables that can be used to construct a 
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three-dimensional class 1 tensegrity structure with three bars, popularly known as a 

simplex tensegrity structure. Furthermore, Emmerich discovered tensegrity, perhaps 

independently, but he is known to have seen the Ioganson‘s sculpture [8] and cited it as 

a precedent to his work [18]. Figure 1.4 shows a piece of construction by Ioganson 

around 1920-1921, Snelson‘s X-piece and the simplex tensegrity structure obtained 

from the original Snelson‘s patent of 1965. 

   

(a) Ioganson‘s Sculpture     (b) Snelson‘s X-piece, 1948    (c) Snelson‘s Patent, 1965 

Figure 1.4: Ioganson‘s Sculpture [16], Snelson‘s X-piece [16] and Snelson‘s simplex [6] 

 

1.3 Research and Application of Tensegrity Structures and Concept 

Sculptors, artists and architects have long been captivated by the beauty of tensegrity 

structures ever since they first started to be built. In the arts, these structures are of 

interest because of their aesthetic value [9]. They have been used to show how 

geometric arrangements of rods and strings give structures of complex configuration 

and striking beauty. Also, direct applications of tensegrity structures in civil engineering 

and architecture have been significant in the last few decades. Tensegrity structures are 

used in cable domes [19–22], bridges [23], [24] and towers [25]. They can also be used 

for deployable structures such as retractable roofs, tents and shelters [2], [26]. In these 

designs, their use has been primarily due to their lightweight and aesthetic property [3].  

At conceptual level, tensegrity structures have been used in different unrelated 

areas; for example, in the sciences, it has been used to explain the structure of the spider 
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fibre [27]. In man and many types of animals, bones (rigid bodies) and tendons (elastic 

bodies) are connected together and are moved from one equilibrium configuration to 

another by tensile forces in the tendons alone. Thus, in osteology, different 

configurations are classified as different classes of tensegrity structures [2]. 

Moreover, it has been argued that tensegrity structures can be used to explain how 

cells obtain their shapes and movements; in explaining cytoskeletal mechanics as well 

as the sensing and response of cells to mechanical forces, tensegrity also play an 

important role [28]. Ingber [28–30], for instance, has made extensive publication on 

how tensegrity structures can be used to model a cell at molecular level and how this 

structural basis can be organized hierarchically from molecule to organism to model 

living systems. A simple tensegrity module – the icosahedrons module – has also been 

used to model biological organisms, like viruses, as well as systems and subsystems of 

other biological systems [31–33]. The role of tensegrity structures as a model for 

cytoskeletal organization to aid the understanding of the mechanical behaviour of living 

cells has also been investigated for many years; see, for example, [34–38]. In addition, 

the significance of tensegrity concepts for osteopathic medicine has also been studied 

[39]. 

Furthermore, tensegrity structures have also been reported as being capable of 

forming building blocks for modelling DNA for studying cellular mechanotransduction, 

molecular forces and other fundamental biological processes [33], [38]. In chemistry, 

the behaviour of tensegrity structures have been used to describe the overall properties 

of sodium caseinate aggregates and casein micelles structures [40]. They have also been 

used to describe the geometry of gas molecules [41]. 

Other areas where tensegrity structures and concept have been used include 

furniture manufacturing [42], [43], robots [44], [45], electrical transducers [46], 

underwater morphing wing applications [47] and flight simulators [48].  

Mathematicians and engineers have tried to analyse tensegrity structures to 

understand and unveil the meaning of this very interesting structural concept from a 

mathematical viewpoint. Thus, mathematical answers to the questions such as ‗what are 

tensegrity structures?‘ and ‗why they are stable?‘ have been proposed. Using group and 

representation theories, mathematicians, such R. Connelly et al. [27], [49], [50], have 

tried to find answers to these questions and have used powerful graphical and 
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computational capabilities of modern computers to find a proper three-dimensional 

generalization for tensegrity structures. The role of tensegrity structural concept in 

rigidity [51–53], geometry [54], energy [55], graph theory [56], [57] are also increasing. 

As a follow-up to the interesting role of tensegrity structures in rigidity, geometry, 

energy and graph theories developed by mathematicians, the mathematical analysis of 

these structures, mainly due to their pre-stressed nature, has also been thoroughly 

investigated by engineers. Maxwell‘s rule for the study of the static and kinematic 

determinacy, or otherwise, of pin-jointed frameworks has been extended to tensegrity 

structures [58]. Equilibrium matrix analyses [59], static analysis [60], first order 

infinitesimal mechanisms [61–63], properties revealed by singular value decomposition 

of equilibrium matrix [64–66], and stiffness matrix analyses [67], [68] of pin-jointed 

frameworks, in general, and of tensegrity structures, in particular, have all been 

presented. 

The largest mathematical and engineering literatures on tensegrity structures are 

related to form-finding of these structures [2]. It normally involves using information on 

the mathematical properties of tensegrity structures to search and/or define a 

configuration that satisfies the conditions of static equilibrium for the pre-stressed 

structure. Examples of form-finding methods include the analytical method [69], 

algebraic form-finding methods [70], [71] [72], the finite element method [73], the 

energy method [54] and the dynamic relaxation method [74]. Computational techniques 

that have been used in association with the different form-finding methods include the 

genetic algorithm [75], [76], neural networks [77] and the sequential quadratic 

programming methods [78], for instance.  

An extension of mathematical research into the equilibrium properties (statics) of 

tensegrity structures is the study of their dynamic properties. Modal analyses in which 

critical values of resonance modes and damping parameters [79] and, vibration and 

damping characteristics [80–82], are to be determined as well as the linearised equation 

of motion [83] for tensegrity structure have been presented. A method for systematic 

and efficient formulation of equation of motion represented in simple form for 

constrained and unconstrained tensegrity systems is given in [2]. Research in tensegrity 

dynamics is still an emerging field. A review on the current research and open problems 

on the dynamics of tensegrity structures is presented in [84].  
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Quite recently, examples of actively controlled tensegrity structure have appeared 

in the literature. These include control of three-stage tensegrity structure [85], tensegrity 

mobile robot [44], [45], and tensegrity flight simulator [48], among others. An 

illustrative example on the way structural design and controller design can be integrated 

when designing a tensegrity system can be found in [86]. Other issues, such as open-

loop control, input/output selection, and optimal dynamic performance, related to 

controlled tensegrity structures are presented in [86–90]. 

 

1.4 Project Motivation and Description 

Structures containing sensors and actuators and that have the abilities to modify 

themselves due to their changing environments are referred to as active structures [91]. 

The development of this field stems from the recent advancement in the fields of 

structural engineering and control engineering. Active control of structural systems was 

originally proposed in the early 1970‘s as a concept and means to counteract extreme 

conditions such as earthquakes in buildings and undesirable vibrations in space-

structure [92]. Thus, it provides a mechanism of enhancing the performance (dynamic 

behaviour) of complex structural systems in changing and uncertain environments. Over 

the past decade, research in active structural control has increased to meet the 

requirements of new challenges faced in extreme environments where many structural 

systems must function. This has also been due to the advancement in the development 

of viable sensors, actuators and microprocessor technologies that can be used to perform 

a wide range of engineering tasks [91]. 

For structural systems such as large buildings and bridges, most active control 

systems will not be reliable enough over their service lives without expensive 

maintenance in place which may be difficult to justify economically. Thus, for the 

structural systems that involve catastrophic collapse, loss of life, or other safety criteria, 

passive control mechanisms – for instance, through the use of tuned-mass dampers 

which are less effective in dealing with inelastic modes or in reducing vibrations that are 

due to high frequency modes [93] – are used as the common standard. However, for 

structures that are not governed by these safety criteria, active control is most practical 

[92]. An important feature of active structures is their possession of computational 

control systems that support certain functions such as control objectives that arise from 
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multiple and/or changing performance goals, adaptation of structural geometry to 

improve performance by sensing the changes in behaviour and in loading, and 

autonomous and continuous control of several coupled structural subsystems [91], [92].  

Active control structures are capable of interacting with complex environments. 

Moreover, some researchers have pointed out the necessity to expand the concepts of 

control theory to embrace the larger concept of system design [94]; this means a system 

design approach where structural design and control systems design can be integrated 

(that is, designed simultaneously in a single framework – not as independents or 

‗afterthoughts‘ – one after the other – approach). A major obstacle against integrated 

design of active control systems during the design process of structures is, however, the 

computational cost involved. To create an approach that tackles this unique problem 

offers a promising and major step in the future of man-made structures. In addition, an 

integrated structural and control design, in particular, and active control techniques, in 

general, are most efficient when the appropriate types of structural systems are chosen. 

Tensegrity structures, not only provide an important platform for exploring advanced 

computational active control technologies but, have been found, so far, to be the only 

type of structural system suitable for integrated structural and control design [2].  

More so, with tensegrity structures, it is possible for a structural component to 

simultaneously be a load-carrying member, an actuator, a sensor, a thermal insulator 

and/or an electric conductor. Thus, proper choice of material for tensegrity structures 

offers excellent opportunities for the physical integration of structural designs with 

controller designs. Furthermore, compared to other structures, tensegrity structures are 

highly suitable alternatives for the design of structural systems with highly complex and 

variable topological configurations. Structural modification (shape morphing), 

adaptation and adjustment may be easier for tensegrity structures than for conventional 

structures [2]. Other attractive features of tensegrity structures from an engineering 

perspective, such as mass efficiency, modularity, redundancy, scalability, deployability 

and shape/stiffness flexibility, have been emphasized extensively in the literature; see 

[2], [10], [24], [26], [70], [95], [96], for example. 

Deformation of components of tensegrity structures is only one-dimensional in 

individual component (since structural members are only axially loaded). As such, 

modelling can be much easier than it would have been if bending of components is 

allowed or possible. Therefore, since components have predefined directions, equations 
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of motion are greatly simplified and relatively accurate dynamic models of tensegrity 

structures can be obtained. Although no component undergoes bending moment, the 

whole structure undergoes global bending when subjected to external loads. This 

feature, in particular, is likely to be the most important scientific feature of tensegrity 

structures for future applications [2]. The consequence of accurate modelling is that 

precision control of tensegrity structures is possible. While one would expect that the 

active control technologies that would be deployed for tensegrity structures will be 

similar to those in civil and mechanical engineering, their application to tensegrity 

structures involves solving unique set of problems. Moreover, many of these challenges 

are interdisciplinary in nature. Finding solutions to these problems will create new 

possibilities for innovative active control and new application areas. 

Therefore, the objectives of this project are as follows:  

1. To develop new algorithms for the form-finding of tensegrity structures that will 

be applicable to small and large tensegrity structures with or without a complex 

connectivity of structural members.   

2. To develop a modelling technique and investigate the static and dynamic 

properties of tensegrity structures.  

3. To investigate the effect of including additional structural members (than strictly 

necessary) on the dynamics of tensegrity structures and to examine how the resulting 

changes in their geometric properties can be explored for self-diagnosis and self-repair 

in the event of structural failure.  

4. To outline the procedures for model reduction and optimal placement of actuators 

and sensors for tensegrity structures.  

5. To develop a design strategy that can be adopted for the physical realization of 

tensegrity structure that can be actively controlled and to offer strategies for preventing 

and discovering collisions between structural members of tensegrity structures.  

6. To develop methods for designing collocated and non-collocated control systems 

for vibration suppression and precise positioning of tensegrity structural systems.  

In general, the thesis can also be viewed as a contribution in the process of 

meeting the needs of design challenges given that it highlights some of the most 
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important aspects of system designs that must be considered for the physical realization 

of tensegrity structures. The contents of this thesis are outlined in the next section.  

 

1.5 Thesis Outline 

In this chapter, tensegrity structures and concept have been broadly introduced. Brief 

accounts on the origin as well as the traditional and more recent definitions of tensegrity 

structures were given. The chapter also includes areas of research and a summary of 

direct and conceptual applications of tensegrity structures in the literature. In addition, 

the chapter addresses the main motivation and the overall goals of this thesis. Specifics 

of these goals are pointed out in the paragraphs that follow.  

The objective of Chapter 2, titled ‗Form-finding of Tensegrity Structures‘, is to 

find shapes for which the structure is pre-stressed and in a state of static equilibrium in 

the absence of external forces. Thus, the chapter presents a new algorithm for the form-

finding of tensegrity structures. The use of computation techniques, which is inevitable 

for large structures, is adopted in general. As such, the new method is based on the 

interior point constrained optimisation technique and the efficacy of the method is 

demonstrated with a number of examples. The chapter concludes with a short review of 

other form-finding methods. 

Chapter 3, titled ‗Modelling, Static and Dynamic Analyses of Tensegrity 

Structures‘, outlines the theory behind modelling, static and dynamic analyses of 

tensegrity structures. The derivation of the mass and stiffness matrices is described 

using the FEM. Thereafter, the solution procedure for carrying out pseudo-static 

analysis of a tensegrity structure is presented. Subsequently, the dynamic equations of 

motion governing a general tensegrity structure, written in the time domain, are 

converted into a state-space representation. With this representation, the study of the 

dynamic responses tensegrity structures is easily carried-out. The effect of including 

additional structural members (than strictly necessary) on the dynamics of n-stage 

tensegrity structures is also examined. The chapter concludes by demonstrating the 

possibility of a tensegrity structure with a highly complex configuration to change its 

geometric properties – making them suitable as a platform for the design of active 

structures capable of shape morphing – in the event of structural failure through self-

diagnosis and self-repair.  
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Chapter 4, titled ‗Model Reduction and Optimal Actuator and Sensor Placement‘, 

presents model reduction technique that can be employed for the reduction of models of 

tensegrity structural systems. The model reduction operation is carried-out to facilitate 

further analysis and design of control systems in subsequent chapters. Also treated in 

this chapter is the procedure for the optimal placement of actuators and sensors. The 

procedure has the potential to minimize the control efforts and determine the credibility 

of the output feedback signals and, thus, must be considered part of the structural 

design, dynamic analysis and controller design to achieve best performance. It should 

be noted that selecting the number and locations of the actuators and sensors first, 

without taking into account during the selection process the future control problem to be 

solved, is not the most effective way of dealing with tensegrity related design problems. 

The applicability of the theory on model reduction and optimal actuator and sensor 

placement procedures presented in this chapter is demonstrated with several examples.  

The design procedure for the physical realization of tensegrity structures proposed 

in this thesis are covered in two chapters, namely, Chapters 5 and 6. Within the context 

of these two chapters, an experimental simplex deployed tensegrity structure (a 3-bar 

multistable tensegrity prism) was designed, assembled and tested. This experimental 

prototype is available in the Intelligent Systems Laboratory of the Department of 

Automatic Control and Systems Engineering of the University of Sheffield. Thus, 

Chapter 5, titled ‗Physical Realization of Tensegrity Structural Systems: Part I Physical 

Structure Design‘, deals with the design of tensegrity structural systems that are capable 

of changing their shapes significantly. The discussion is focused on practical structural 

design and optimization issues and brings together many novel concepts. In particular, it 

introduced a new physical realization approach that makes it possible to combine the 

control of the cable and bar lengths simultaneously, thereby combining the advantages 

of both bar control and cable control techniques of tensegrity structural systems 

together. The chapter also includes the design of the tension and compression structural 

members and the methods for form-finding and deployment of simple and complex 

tensegrity structures. A collision avoidance technique that may be employed for 

tensegrity structures in general is also described. The chapter concludes by suggesting 

that shape-change capability of wind turbine blades which relies on controlled 

deformation of the blade‘s shape is possible under the action of several tensegrity 

prisms located inside the blade box.  
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Chapter 6, titled ‗Physical Realization of Tensegrity Structural Systems: Part II 

Hardware Architecture and a Decentralized Control Scheme‘, presents details of the 

hardware, hardware configuration, serial communication protocol using the Universal 

Serial Bus (USB) interface and the implementation of the software and the control 

system architecture for the 3-bar multistable tensegrity prism designed in Chapter 5. 

There are three main tasks involved in this project for the realization of a tensegrity 

structural system: the first task entails the structural optimization and related design 

issues, and this is covered in Chapter 5. The second task involves the configuration of 

the hardware and the control architecture, and the third task is associated with the 

design of application software user interface and the implementation of the control 

algorithm. These last two tasks are essentially the focus of Chapter 6. Chapter 6 also 

includes mathematical modelling and structural analyses of the tensegrity structures 

designed in Chapter 5 using realistic structural parameters. Moreover, the control of a 3-

bar multi-stable tensegrity structure is achieved through decentralized (independent) 

multiple Single-Input Single-Output (SISO) control systems. Hence, for the 

implementation of a decentralized control scheme for tensegrity structures, Chapter 6 

should be considered a first attempt.  

Chapter 7, titled ‗Control System Design for Tensegrity Structures‘, presents the 

active control of tensegrity structures in a multivariable and centralized control context. 

In the field of control of active structures, the choice of the measured output divides 

active structural systems into two, namely, collocated and non-collocated systems. 

Collocated control systems are those in which actuators and sensors are paired together 

for the suppression of vibration requiring low amount of force typically. Non-collocated 

control systems are commonly used as high-authority controllers which, in addition to 

providing damping forces, are capable of making structural systems undergo significant 

movement (shape change) often requiring the use of powerful actuators to provide 

significant amount of force.  Consequently, the control system design presented in 

Chapter 7 is divided into these two classes of controllers. On the one hand, in relation to 

collocated controller, a new method is presented that can be used for the determination 

of the feedback gain to reduce the control effort as much as possible while the closed-

loop stability of the system is unconditionally guaranteed.  On the other hand, the LQG 

controllers are suitable for both collocated and non-collocated control systems. 

Techniques for the design of LQG controllers are given in the Appendix; these 

techniques are subsequently applied in Chapter 7 to actively control tensegrity structural 
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systems for vibration suppression (low-authority controllers) and precise positioning or 

tracking (high-authority controllers). Chapter 7 concludes with a detailed discussion of 

new results and the importance of these findings in relation to the remaining chapters of 

this thesis and other previous work on active control of flexible structures, in general, 

and tensegrity structures, in particular. 

Chapter 8, titled ‗Conclusions and Future Work‘, summarizes the main findings of 

this thesis. It also presents recommendations for future research.  
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Chapter 2 

 

FORM-FINDING OF TENSEGRITY 

STRUCTURES 

 

2.1 Introduction 

The most basic issue in the design of tensegrity structures, similar to other internally 

pre-stressed stable structures, lies in the selection and definition of their optimal 

structural forms – a process called form-finding [4]. Thus, it is not coincidental that the 

majority of scientific research on tensegrity structures is related to the form-finding 

process [2]. The models of tensegrity structures as a function of structural geometry 

and/or geometrical restrictions, member forces, external forces and joint types, are 

nonlinear and difficult to describe by simple mathematical functions. As such, except 

for small scale tensegrity structures with a few structural members, the analytical 

solutions necessary to obtain optimal structural forms are not possible. Even for the 

small scale systems where analytical solutions may be obtained, significant 

simplifications and several assumptions, especially in relation to the type of joint 

connecting the members, symmetry (similarity) of structural members and the influence 

of external forces, have to be made. Thus, resorting to the use of computational 

techniques is inevitable for analysis when dealing with large structures. Computational 

methods also reveal many properties of these structures that would otherwise not be 

obvious from analytical techniques. 

For the purpose of employing computational methods for the form-finding of a 

tensegrity structure, the term ‗form-finding‘ will be used to mean finding all shapes for 

which the structure is pre-stressed and in a state of static equilibrium in the absence of 

external forces. In other words, the objective is to determine all shapes for which all 

member forces are non-zero and the algebraic sum of all forces at each of the 
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connection points, or nodes, of the structures are zero. Thus, this chapter outlines a new 

method for the form-finding of tensegrity structures using a constrained optimization 

approach. It also explains the use of the four fundamental spaces of the static 

equilibrium matrices in conjunction with the constrained optimization approach for 

form-finding of large tensegrity structures with a complex connectivity of members. 

The new method offers control of both forces and lengths of structural members and it 

will be described via several examples. This chapter also discusses other methods of 

form-finding and the last section summarizes the chapter. 

 

2.2 Form-finding Method for Tensegrity Structures: The Constrained 

Optimization Approach 

2.2.1 Matrix Analysis of Tensegrity Structures 

An investigation into the matrix form of the equations of equilibrium of structural 

assemblies, tensegrity structures not being an exception, reveals the static, kinematic 

and pre-stress properties, among others, of these assemblies. These properties are very 

useful in the design of optimal structural shapes of structural assemblies in general [59], 

[64], [65], [97]. In this section, the properties of tensegrity structures revealed by matrix 

analysis of the equations of equilibrium will be introduced. The works of Pellegrino and 

Calladine on matrix analysis of statically and kinematically indeterminate frameworks 

[59], [64], [65] and Schek‘s force density method for computations of general cable 

networks [98] will be used as a source of main reference in the definitions and notations 

that follow. Moreover, the concepts will be applied to tensegrity structures directly 

which are only a class of statically and kinematically indeterminate frameworks or 

networks. Likewise, in the form-finding methods to be discussed in the subsequent 

sections, except where otherwise stated, the following assumptions will be made: i) 

members are connected at the nodes in pin-jointed manner; that is, each of the joints 

transmits only forces and is not affected by kinetic friction and offers no resistance to 

rotation; ii) the cables are in tension at all times and can be elastic and/or inflexible; 

likewise, the bars are in compression at all times and the possibility of buckling is 

ignored; iii) the influence of external force fields (e.g. self-weight due to gravity, pre-

stress due to temperature variation, etc.) are neglected; iv) the structure is only loaded at 

the nodes. 
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2.2.1.1 Definitions and Notations 

Consider a tensegrity structure with   nodes and   structural members, the forces of 

tension (for cables) and compression (for bars), a total of   forces, assembled together 

form a vector of     . Likewise, the assemblage of external forces at the nodes in 

three-dimensional Euclidean space, a total of   , will form a vector of       . Here, 

it has been assumed that the tensegrity structure is not connected to an external body 

(rigid foundation) for support. Note that, tensegrity structures, as defined traditionally, 

do not need or require any rigid foundation (support constraints) to prevent rigid body 

motion. However, if rigid foundations are present to constrain the movement of the 

structure, a total of      external forces will be present where k is the number of 

kinematic constraints (in which case,         ) with a maximum value of 6 when the 

structure is fully constrained and a minimum value of 0 when the structure is free in 

space. Thus, for an unconstrained node   connected to nodes   and   through structural 

members of lengths   and  , respectively, as shown in Figure 2.1, the three equations of 

equilibrium (that is, the algebraic sum of forces acting) for the node   may be written as 

follows [59]: 

       
  
 
        

  
 
      

       
  

 
        

  

 
                                        (2.1) 

       
  

 
         

  

 
        

where 
  

 
 and 

  

 
 in (2.1) are force-length ratios, which can be denoted by     and    

respectively, and are called force density coefficients or tension coefficients; thus, (2.1) 

can then be re-written as follows:  

                         

                                                          (2.2) 
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The matrix form of (2.2) for an overall tensegrity structure is as follows [59]: 

         

 

 
 
 
 
 

 
       

       

       

 

 
 
 

 
       
       
       

 

 
 
 

 

 
 

 

 
 
 
 

  
 
  
 
  
 
   

 
 
 
 

 

 

 
 

 
    
    
    
  

 
 

             (2.3) 

Equivalently, (2.3) may be written as follows:   

             (2.4) 

where              is called the equilibrium matrix;      and         are 

vectors of tension coefficients and external forces, respectively. It is worth noting that 

since tensegrity structures are in a state of static equilibrium, the algebraic sum of all 

forces at every node is zero and, as such,     is a zero vector. As for the entries of vector 

 ,       for structural members in tension (cables) and        for structural members 

in compression (bars).  

 

Figure 2.1: A view of an unconstrained node   connected to nodes   and   through 

members   and  , respectively. 
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Tensegrity structures are defined by, and are strongly dependent on, the 

connectivity of nodes by the branches. Thus, a branch-node connectivity matrix [98], 

[99], called the incidence matrix [100] and denoted   (               ), may be defined 

with the aid of a connectivity graph; for the structural member    connected to two 

matched nodes numbered      and      (where          ), one can write the following 

equation:  

       
                 

                
               

                (2.5)     

       For the class 3 tensegrity structure of Figure 2.2, for example, the connectivity 

matrix is as follows:  

   

 

Figure 2.2: A class 3 tensegrity structure (thick and thin lines represent bars and cables, 

respectively) 
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Let the nodal coordinates of all points in 3-dimensional Euclidean space be 

assembled into column vectors      ,        and      ; thus,            

represents the coordinates of node  , and the lengths of structural members are 

assembled into vector     . Two nodes are said to be connected if they have a 

structural member in common. The coordinate difference of the connected nodes can be 

written as follows:  

    ,       ,                    (2.6) 

Thus, the equilibrium equation of the whole structure in (2.3) can be written in the 

following forms:  

 
   
   
   

          

  
  
  

  ,     (2.7)  

            (2.8) 

where  ,   and   are defined as follows:  

     
   
   
   

                             

  
  
  

   ,  (2.9)  

and      denotes the linear algebraic transpose of a matrix. Likewise,  ,  ,  , and   are 

diagonal matrices of vectors  ,  ,  , and  , respectively;    ,    and    are vectors of the 

 ,   and   components of external forces at nodes, respectively. Equivalently, using the 

following identities [98]: 

      ,       ,       ,    (2.10) 

where Q is a diagonal matrix of q, the equation of equilibrium in (2.3) can be written as 

follows:  

                     .    (2.11) 

 where   is given by the following equation:  

           .                                                           (2.12) 
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         in equation (2.12) is a matrix of force density coefficients and is called 

the force density matrix [100]. It is worth noting that while both equations (2.4) and 

(2.8) represent equations of equilibrium in a matrix form with the matrices having the 

same dimensions, the way the elements of the matrices are ordered in both equations is 

different – hence, the reason for the slight difference in the notations used for the two 

equations. Also, for the same reason, as noted in (2.4), that tensegrity structures are in a 

state of static equilibrium,    ,    and    are all zero vectors. Importantly, it is also 

worth noting that equations (2.8) and (2.11) are systems of linear equations with tension 

coefficients and nodal coordinates as their variables, respectively. Moreover, the matrix 

  is a positive-semidefinite matrix as long as       for cables (in tension) and 

       for bars (in compression) – which is the case for tensegrity structures. 

2.2.1.2 Matrix Decompositions related to Equations of Equilibrium 

In statically and kinematically determinate structures, the equilibrium matrix and its 

transpose can be used to uniquely determine the tension coefficients and geometry, 

respectively, of a given structural assembly since the two matrices are nonsingular. 

However, on the one hand, when additional structural members than strictly required are 

added, additional stresses in all other members will be introduced in general and, since 

there are now more unknowns than can be determined by the equations of equilibrium 

alone, the solution for the set of tensions in members will not be unique. Thus, a 

statically indeterminate structure is now obtained and the structure is said to be in a 

state of self-stress. On the other hand, if a structural member is removed from the 

structural assembly, the geometry of structure can no longer be uniquely determined in 

general and the structure is said to be kinematically indeterminate and a number of 

independent inextensional mechanisms is, as a result, introduced into the structural 

assembly. The introduction of the independent inextensional mechanisms (also called 

zero-energy deformation modes or higher-order stiffness) means that it is possible for 

the node(s) of the structure to move infinitesimally without any change in the length of 

members [59], [64], [65]. Thus, the number of independent states of self-stress   and the 

number of independent inextensional mechanisms   determine the class a structural 

assembly belong to as shown in Table 2.1 [65]. Tensegrity structures are pre-stressed 

stable structures with a number of inextensional mechanisms and, therefore, fall in type 

IV in the table [65]. 



22 
 

Table 2.1: Types of structural assemblies 

Type of assembly Value of s Value of m 

I 

II 

III 

IV 

Statically and kinematically determinate 

Statically determinate and kinematically indeterminate 

Statically indeterminate and kinematically determinate 

Statically and Kinematically indeterminate 

     s = 0 

     s = 0 

     s > 0 

     s > 0 

    m = 0 

    m > 0 

    m = 0 

    m > 0 

 

Furthermore, the rank of equilibrium matrix    can be used to determine the 

values of m and s using a modified form of Maxwell‘s formula which, in three-

dimension, leads to the following expressions [59]: 

                                (2.13) 

A wealth of other information about tensegrity structures (similar to other 

structural assemblies) can be obtained from the four fundamental spaces (the row space, 

the column space, nullspace and left nullspace) of the equilibrium matrix that are 

obtained by factorizing the equilibrium matrix using the singular value decomposition 

as shown in Figure 2.3 [59], [65]. For tensegrity structures, and other structures 

with      , the initial configuration is not unique but one can still set up an initial 

configuration to obtain the equilibrium matrix by assuming that small-deflection theory 

holds [65]. The singular value decomposition of the equilibrium matrix in (2.8) is as 

follows:  

    
   
   
   

              (2.14) 

where                      and          are left and right orthonormal matrices, 

respectively, and               is a diagonal matrix with singular values on the 

diagonal in descending order of magnitude (note that orthonormality of    means that 

each of its column or row are orthogonal unit vectors; that is        where   is the 

identity matrix). More so,   and   can be further partitioned as follows [64]: 

 
                                       

                                    
   (2.15) 

where a matrix     , deduced from    in (2.15), is defined as follows:  

                                (2.16) 
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The vectors in      represent all states of self-stress   that pre-stress the structure. 

Likewise, the transpose of the equilibrium matrix       is related to the elongations 

of structural members defined by the following equation:  

                 (2.17) 

where              is the vector of nodal displacements and       is a vector of 

member elongation coefficients (unlike tension coefficient that is force-to-length ratio, 

elongation coefficient is the product of member elongation and length). Thus, the 

following equation:  

                                            (2.18) 

can be deduced from    in (2.15); here the column vectors in    represent all modes of 

inextensional mechanisms.  Importantly, the row and column spaces of     are 

orthogonal to subspaces       and     , respectively. Also, the relationships between      

  and                   are depicted in Figure 2.3. 

 

 

Figure 2.3: Singular value decomposition of the equilibrium matrix illustrating the 

relationships between        and                    

 

The use of the equations presented so far in this section will be illustrated with an 

example: For the simplex tensegrity structure of Figure 2.4 which has 6 nodes and 12 

structural members of which 9 are cables in tension and the other 3 are bars in 

           

       

 
 

 

   

(nullspace) 

dimensions:  

row space  column space  

m = 3n - k  

s = b - r  

r

  

r

  

(left-nullspace) r

  

  
 

  

 

                         ; all other entries in  

   are zeros. ) 
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compression, the rank of the equilibrium matrix is 11; thus, using (2.13), and with the 

structure not attached to any rigid foundation (   ), the values of   and    are 7 and 

1, respectively.  

 

Figure 2.4: An illustrating on obtaining tension coefficients from the right orthonormal 

matrix. 

 

Right orthonormal matrix of the Singular Value Decomposition of  A:  

 
 
 
 
 
 
 
 
 
 
         
 
 
 
 
 
 
 
 
 
 
 
 
 

          [                                                                                               ]T 
 
Vector of singular values of                 
 

[                                                                                                     ] 

 
  
                     

Nodal coordinates:  
       x         y      z 
Node 1:   -0.5750      0.1753          0.5501 
Node 2:  -0.5750      0.3888    -0.4269 
Node 3:  -0.5750    -0.5640    -0.1232 
Node 4:  0.0520      0.4269      0.3888 
Node 5:    0.0520      0.1232    -0.5640 
Node 6:  0.0520    -0.5501          0.1753 
 
     

         
 

Singular Value Decomposition of  :   

     

  -0.2696    0.1076   -0.2416   -0.4082    0.0124   -0.5100    0.2287   -0.0286    0.4523    0.1962    0.3043    0.2041 

   -0.2696    0.1554    0.2138   -0.4083    0.4354    0.2657    0.2289   -0.3774   -0.2509   -0.3617    0.0178    0.2041 

   -0.2695   -0.2629    0.0275   -0.4083   -0.4478    0.2442    0.2287    0.4061   -0.2014    0.1655   -0.3222    0.2042 

   -0.2695   -0.2333   -0.1246    0.4082    0.4343    0.2676    0.2287    0.0751    0.4470    0.1406   -0.3337    0.2041 

   -0.2695    0.2244   -0.1396    0.4083   -0.4489    0.2423    0.2289   -0.4246   -0.1584    0.2187    0.2887    0.2042 

   -0.2696    0.0086    0.2643    0.4083    0.0147   -0.5099    0.2287    0.3496   -0.2885   -0.3593    0.0451    0.2041 

   -0.1085   -0.1067   -0.0209    0.0000    0.0101   -0.3813   -0.4433   -0.4145   -0.2116    0.2288   -0.4904    0.3536 

   -0.1086    0.0714   -0.0820   -0.0000    0.3253    0.1995   -0.4434    0.3903   -0.2531    0.3102    0.4434    0.3536 

   -0.1085    0.0353    0.1028    0.0000   -0.3354    0.1819   -0.4433    0.0240    0.4646   -0.5391    0.0470    0.3536 

   -0.4197   -0.2329   -0.6789    0.0001    0.0239   -0.0129   -0.1792   -0.0103   -0.1982   -0.3327    0.0290   -0.3536 

   -0.4199    0.7043    0.1377    0.0001   -0.0008    0.0272   -0.1792    0.1767    0.0902    0.1412   -0.3026   -0.3536 

   -0.4198   -0.4715    0.5411   -0.0002   -0.0232   -0.0142   -0.1792   -0.1665    0.1079    0.1914    0.2736   -0.3536 

2 

7 

4 

1 

8 1 

10 

11 

6 

12 

2 

3 

5 
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5 
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6 
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As tensegrity structures are pre-stressed stable structures, the implication of     

is that, of all the orthogonal unit vectors in the  , only a particular set of column 

vector(s) of      (which, in this case, is a single column vector) solves the equation of 

equilibrium (2.8) and it is this vector of tension coefficients that will pre-stress the 

overall tensegrity structure and will make it attain stability (that is, being in a state of 

static equilibrium) due to pre-stress. Thus, from Figure 2.4, the vector of tension 

coefficients is as follows: 

                                                      

                                         . 

In addition, since     , the number of zero singular values (which make up the 

diagonal of   ) will be 1. Thus, the example presented in Figure 2.4 illustrates the way 

tension coefficients are obtained from the right orthonormal matrix of the singular value 

decomposition of the equilibrium matrix. The 2-norm of the vector of external forces 

        (that is,      ) is used as a test of the level of static equilibrium as shown in 

the figure. Similar to the singular value decomposition of the equilibrium matrix  , a 

singular value decomposition of the force density matrix   leads to the following 

equation:    

                         (2.19) 

where  ,   and   are square matrices of order  . Just as the nullspace of the 

equilibrium matrix   in (2.8) is linked to vectors of tension coefficients, the nullspace 

of the force density matrix   in (2.11) is linked to nodal coordinates. From linear 

algebra, recall that for an original space of    , the possible subspaces, by definition of 

a subspace of a vector space [101], are: (i)     space itself; (ii) any plane (that is,    ) 

through the origin; (iii) any line (that is,    ) through the origin; and (iv) the origin (the 

zero vector) since the zero vector belongs to every subspace – thus, a total of four 

subspaces are in a space of    . For tensegrity structures, the significance of this is that, 

to satisfy the equilibrium equation in the force density form in (2.11), the dimension of 

the nullspace of   must be four for a 3-dimensional (or three for a 2-dimensional) 

tensegrity structure. Stated differently, the number of zero singular values on the 

diagonal of   in (2.19) must be four and any of the corresponding four vectors in   

and   can be selected to represent the nodal coordinate vectors –  ,   and  . This 

concept is the same as the maximal rank concept of rigidity theory in mathematics 
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which is described in [50], [102], where the matrix   is called the rigidity or stress 

matrix; the matrix   must be of maximal rank for the structural system to be 

infinitesimally rigid (that is, to be in a state of static equilibrium due to pre-stress). Since 

  is a square matrix of order   , its maximal rank implies that its rank must be four less 

than   for any given 3-dimensional tensegrity structure to be in a state of static 

equilibrium due to pre-stress.  

Furthermore, in the selection of the vectors   ,   and    (of a 3-dimensional 

structure) from the four vectors of   or   (either case will work), the preferred vectors 

that leads to a unique structural shape that covers  maximum volume in space – which 

can be chosen in any manner to represent  ,   and    – would be the three vectors 

corresponding to     space itself, the plane     through the origin and the line      

through the origin of the nullspaces – the last column vector is excluded; that is, the last 

vector, which corresponds to the zero vector, is a subspace of, not only the nullspace of 

  but, every subspace of   and, therefore, when selected as a vector of coordinates 

leads to a structure that is not unique (that is, it leads to a different structure for every 

different combinations with other nullspace vectors) and may tend towards a structure 

of a lower dimension (for example, a 3-dimension to a 2-dimension structure). The 

implication of this is that, as long as one has a valid set of tension coefficients and a 

tensegrity configuration defined by matrix  , the vectors   ,   and    may be selected 

from the nullspace of  . Here, a valid set of tension coefficients are those that will lead 

to exactly four zero singular values of   . Using the valid vector of tension coefficients 

obtained in the last example (see Figure 2.4), different selections of nodal coordinates 

from the nullspace of the   matrix are shown in Table 2.2 with their associated 

structures shown in Figure 2.5. 

Table 2.2: An illustration on obtaining vectors of nodal coordinates from the 

nullspaces of the force density matrix 

Description n Nodal Coordinates Description n Nodal  Coordinates 

x y z x y z 

a) Nodal 
coordinates 
selected 
from   
 

1 0.6375 -0.1998 -0.1700 c) Nodal coordinates 
selected from   
including its last 
vector 

1 0.6455 -0.0739 0.4934 

2 -0.1900 -0.0951 -0.7126 2 -0.1193 0.1589 0.5556 

3 0.1111 0.6490 -0.1301 3 -0.2152 -0.5769 0.5258 

4 0.0494 -0.6739 0.2566 4 0.3358 0.6338 0.2190 

5 -0.7323 -0.1234 -0.0335 5 -0.6027 0.4777 0.2736 

6 -0.0808 0.2458 0.6159 6 -0.2165 -0.0815 0.2204 

b)  Nodal 
coordinates 
from   

1 0.0332 0.6455 -0.0739 d) Another set of 
Nodal coordinates 
selected from   
including its last 
vector:  

 

1 0.0332 0.0739 0.4934 

2 -0.5643 -0.1193 0.1589 2 -0.5643 0.1589 0.5556 

3 0.1054 -0.2152 -0.5769 3 :0.1054 -0.5769 0.5258 

4 0.3230 0.3358 0.6338 4 0.3230 0.6338 0.2190 

5 0.0198 -0.6027 0.4777 5 0.0198 0.4777 0.2736 

6 0.7514 -0.2165 -0.0815 6 0.7514 -0.0815 0.2204 
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   Side View     Top View 

   (a)    

    (b)    

  (c)   

          (d)  

 

Figure 2.5: Tensegrity structures associated with nodal coordinates defined in Table 2.2. 
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2.2.2 Penalty Function Method of Constrained Optimization 

From the discussions so far, what seems to be a simple approach to obtain a tensegrity 

structure from an initial tensegrity configuration would be to follow any of the two 

algorithmic methods in Table 2.3.  

Table 2.3: Descriptions of two methods for obtaining tensegrity structures:  

The Nullspaces approach 

Method 1 Method 2 

Algorithm:  

Step 1: Define the initial configuration (in 

matrix  ) and a starting feasible geometry 

(vectors of nodal coordinate vectors  ,   and  ). 

Here, feasibility means that the nodal 

coordinates defined correspond to the structural 

configuration defined in  . 

 

Step 2: Compute   

 

Step 3: Obtain the vector of tension 

coefficients  , such that bars are in compression 

and cables are in tension, from the nullspace 

of   . 

 

Step 4: Check if the equation of equilibrium is 

satisfied; if satisfied, terminate the process. 

Otherwise, continue the next step.  

 

Step 5: Compute   using   from Step 3. 

 

 

Step 6: Find new nodal coordinate vectors  ,   

and   for the structure from the nullspace of    

and go back to Step 2. 

Algorithm:  

Step 1: Define the initial configuration (in 

matrix  ) and a starting set of tension 

coefficients in vector  .  

 

 

 

 

Step 2: Compute  . 

 

Step 3: Obtain vectors of nodal coordinates 

from the nullspace of   .  

 

 

 

Step 4: Check if the equation of equilibrium is 

satisfied; if satisfied, terminate the process. 

Otherwise, continue the next step.  

 

Step 5: Compute   using vectors of nodal 

coordinates obtained in Step 3. 

 

Step 6: Find a new set of tension coefficient 

from the nullspaces of     and go back to Step 

2.  

 

Figure 2.6 shows an example of an initial tensegrity configuration transformed to 

a tensegrity structure using Method 1. The sums of all the initial and final lengths of 

structural members of the initial configuration and the obtained tensegrity structure are 

19.3921 and 12.7552, respectively. The vector of tension coefficient of the obtained 

tensegrity structure is as follows: 

                                                     

                                         

The 2-norm of the vector of external forces has been used to verify whether the 

equation of static equilibrium is satisfied with the size of the tolerance set to     ; that 

is, the algorithm terminates at the 11th iteration when                    

     . 
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The algorithms presented in Table 2.3 provide overall characteristics and 

important elements of form-finding via the nullspace approach. Other algorithms that 

use the nullspace approach in the literature are a particular case of these more general 

algorithms. For instance, a special case of how a tensegrity structure can be obtained 

from the algorithm  of Method 2 on Table 2.3 has been presented in [103], [104]. There, 

the starting set of tension coefficients has been termed ‗prototypes‘ as they define which 

structural members are cables (      ) and those that are bars (        ). The 

description also details the way the matrix    may be improved during the current 

iteration process so that the selection of vectors of nodal coordinates from its nullspace 

is optimal – where optimality means that the lengths of structural members must not be 

zero but must be as small as possible. Furthermore, the selection of tension coefficients 

from vectors in the right orthonormal matrix   is determined by which vector matches 

the prototypes the most; that was achieved using a least-square fit procedure. The 

algorithm tries to find a valid set of tension coefficients that will give exactly four zero 

singular values of    in the next iteration and continues until the state of self-stress 

    is found; that is,      is the test for static equilibrium.  

        

a) Tensegrity configuration         b) Tensegrity structure  

Figure 2.6: An illustrative example of the implementation of algorithm in Method 1.  

 

Using any of the two methods on Table 2.3, and also the algorithm provided in 

[103], [104], to form-find tensegrity structures suffer from a number of drawbacks. 

These drawbacks are as follows: 
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1. Because the vectors of tension coefficients and nodal coordinates are chosen from the 

nullspaces of equilibrium matrices, there is no control over what these unit length 

vectors should be. The implication is that, for any tensegrity structure, one cannot 

specify that a particular set of members should have predefined set of tension 

coefficients or lengths. The most that can be done is that, during each iteration, one 

post-processes the equilibrium matrices [103], [104] in the expectation that a solution 

would be found in the next iteration. 

2. By defining a tensegrity configuration with the   matrix and ensuring that the starting 

set of tension coefficients are uniform (that is, all tension coefficients are the same for 

all cables and all bars except for their differences in signs;          for bars and 

      for cables), the procedure finds a tensegrity structure in the first few iterations 

(in fact, in many cases, in the first iteration for Class 1 3-dimensional tensegrity 

structures), otherwise, it fails by not leading to a valid structure of maximum volume in 

space (for example, a 3-dimensional structure collapses to a 2-dimensional structure). 

Note that using tension coefficients of 1 for cables (or -1 for compressive structural 

members) as starting values has been found to produce reasonable results [4], [98], 

[103], [104] for cable and pre-stressed structures in general. Moreover, when non-

uniform starting set of tension coefficients are used, the procedure may not only fail but, 

for cases where a tensegrity structure is found, the number of iterations may increase in 

a way that is difficult to predict in general. 

3. Finally the following orthonormality constraint           , where             

and  ,   and    are the vectors of nodal coordinates and         denote the identity 

matrix, is another constraint imposed on the tensegrity structure that results from these 

methods of form-finding. The consequence is that, only tensegrity structures satisfying 

this orthonormality constraint can be obtained with the methods, and these form only a 

class of tensegrity structures with special meaning as will be shown later in Section 

2.2.3. 

In the next few sections, another procedure which does not involve the use of the 

nullspaces of   or   to determine vectors of tension coefficients and nodal coordinates 

from equilibrium matrices will be presented. The procedure uses constrained 

optimization algorithm – and in particular, the interior point algorithm for constrained 

optimization. The main idea of the interior point algorithm is summarized in the 

remainder of this section.  
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Let an initial optimization problem, with inequality constraints, be written as 

follows: 

                       

subject to:              ,              (2.20) 

This problem is converted to an unconstrained optimization problem by defining 

the following function:  

   
 
                                  

 
        (2.21) 

where    is some function of        (for example,           ) and        is the 

penalty term which, when given a decreasing sequence of values, the solution may 

converge to that of the original problem of (2.20) [105–107]. The algorithm for the 

iteration procedure of this method of constrained optimization is shown in Table 2.4 

[105].  

Table 2.4: The Interior Point Algorithm for Constrained Optimization 

 

Algorithm:  

Step 1: Define initial values of    and feasible points    satisfying the 

constraints with    .  

Step 2: Minimize (2.21) using any unconstrained optimization method to 

obtain the solution   
 . 

Step 3: Using a stopping criterion, test if   
   is the optimal solution; if it is, 

terminate the process. Otherwise, go to the next step.  

Step 4: Find             where    . 

Step 5: Set       and         
 ; then go to step 2.  

 

This straightforward algorithm can be extended to include equality constraints as 

well as lower and upper bounds on the design variables in    [105], [106], [108]. The 

solution to the constrained optimization problem in (2.20) using the interior point 

method may be obtained, for example, using the           function in MATLAB 

[109]. Thus, to obtain the vector of tension coefficients for a tensegrity configuration 
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from its equilibrium matrix   using a constrained optimization approach, the 

optimization problem may be defined, for instance, as follows: 

                             

subject to:                          

                              (2.22) 

                                          

where       and       are the equality and inequality constraints, respectively, for the 

 th structural member;   and   are the total numbers of the equality and inequality 

constraints, respectively;    and    are the lower and upper bounds on the tension 

coefficients, respectively; and, as before,   is the number of structural members and   is 

a vector of external forces given by (2.8). The objective function      is the 2-norm 

of   .       enables us to dictate tension coefficients for some structural members while 

      may be used to prevent these coefficients from exceeding certain limits. Also, the 

constraint                 allows one to define members in compression and those in 

tension. 

Because the interior point algorithm will be used to solve the constrained 

optimization problem in (2.22), the following optimization options in relation to the 

algorithm of Table 2.4 are used:  

1. For Step 1, the starting value of    is 0.1.  

2. For Step 2, the unconstrained optimization method used is the well-known Broydon-

Fletcher-Goldfarb-Shanno (BFGS) quasi-Newton algorithm that calculates the Hessian 

by a dense quasi-Newton approximation and the line search routine used for this 

constrained optimization problem is the backtracking algorithm as described in [110]. 

3. For Step 3, the two stopping criteria used are:                or         

           where         ; that is, the iteration terminates if any or both of the 

two criteria is satisfied. 

4. For Step 4, optimal   will be obtained for each iteration. The initial starting value   , 

with    , is   . For subsequent iterations,    are obtained using the conjugate 

gradient method as the line search algorithm in which    are constrained to have strictly 

positive values within a defined trust region [106], [107], [111]. 
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2.2.2.1 Obtaining Tension Coefficients from the Equilibrium Matrix 

Consider the two structures of Figure 2.7 in which (a) and (b) are a tensegrity 

configuration and a tensegrity structure, respectively. The vector of tension coefficients 

for these structures may be obtained by minimizing the norm of the vector of external 

force  ; the optimization model is as follows:  

                        

subject to:                                      (2.23) 

where   is as defined in (2.8); the constraints                for cables (  = 1, 2, ..., 

9)  and                for bars (  = 10, 11, 12) are defined by the following 

vectors: 

                                                                 

                                                           (2.24) 

The initial starting value of vector   is as follows:  

                                                                  

The solutions to the optimization problem for both structures are given in Figure 

2.7. Recall that the equilibrium matrix   has the dimension           with     

     . For the example is currently being considered,    ,            and 

      ; thus, the solution to the system of linear equations of equilibrium will not be 

unique (there is an infinite number of solutions). This is true for the tension coefficients 

found for tensegrity systems; moreover, for tensegrity structures, it is known that the 

geometry (nodal coordinates) are preserved under affine transformations [49], [70], 

[112]. As such, the tension coefficients of the tensegrity structure obtained using the 

nullspace method (see Figure 2.6) and those obtained using the constrained optimization 

method presented here are the same in that the bar-to-cable tension coefficient ratios are 

the same as the vectors of tension coefficients are scalar multiple of each other. 

Accordingly, in addition to the fact that the constraints of (2.24) define members that 

are in tension and those in compression, they also define the working scale of our 

tension coefficients. In other words, if an initial starting value of vector   is chosen at 

random for a given tensegrity structure, the bar-to-cable tension coefficient ratios will 
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be the same although actual magnitudes of these tension coefficients will be different in 

general. 

 

 
(a) Tensegrity configuration 

 
(b) Tensegrity structure 

 
n 

Nodal Coordinates  
n 

Nodal  Coordinates 

x y z x y z 

1 1.0 0 0 1 -0.5750 0.1753 0.5501 

2 -0.5 0.866 0 2 -0.5750 0.3888 -0.1232 

3 -0.5 -0.866 0 3 -0.5750 -0.5640 0.5258 

4 1.0 0 1 4 0.0520 0.4269 0.3888 

5 -0.5 0.866 1 5 0.0520 0.1232 -0.5640 

6 -0.5 -0.866 1 6 0.0520 -0.5501 0.1753 

 

 
No. of iterations = 30 

 

 
 
 

No. of iterations = 34 

Tension coefficients:  
    0.1000    0.1000    0.1000    0.1000    0.1000    0.1000 
    0.1500    0.1500    0.1500   -0.1500   -0.1500   -0.1500 

Tension coefficients:  
0.8825    0.8826    0.8829    0.8826    0.8829    0.8825     
1.5288    1.5288    1.5288   -1.5288   -1.5288   -1.5288 

 

 

Figure 2.7: Tension coefficients obtained from the equilibrium matrix using a 

constrained optimization approach. 
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Note that in Figure 2.7, the final values of        in figures (a) and (b) are 

       and             , respectively. In other words, with the associated tension 

coefficients obtained from the constrained optimization, structure (b) is a tensegrity 

structure while structure (a) is only a tensegrity configuration and not a tensegrity 

structure since it does not satisfy the condition that the algebraic sum of nodal forces is 

zero at every node. As such, the main task of form-finding, from a constrained 

optimization perspective, will be to find a tensegrity structure (for example, (b) in 

Figure 2.7), given a tensegrity configuration (for example, (a) in Figure 2.7). 

2.2.2.2 Obtaining Nodal Coordinates from the Force Density Matrix 

Similarly, given a valid set of tension coefficients and starting values of nodal 

coordinates of a tensegrity configuration, it is possible to obtain the nodal coordinates of 

the associated tensegrity structure. The corresponding optimization model is as follows: 

                         

subject to:                                     (2.25) 

where     denotes the length of the  th structural member and is a function of the nodal 

coordinates; thus,               represents the length constraints with     and     

representing the lower and the upper bound on the length of the  th structural member, 

respectively. Of course, other equality and inequality constraints can be introduced. Let 

                   , the relationship between          and   is obtained by rewriting 

(2.11) as follows [50]: 

 
   
   
   

     
 
 
 
    

  
  
  

  ,      (2.26) 

                         (2.27) 

where   is defined as follows:  

    
   
   
   

      (2.28) 

Equivalently,   can also be written as follows:  

               (2.29) 
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where    is the 3-by-3 identity matrix and   is the symbol for the tensor product of two 

matrices. Thus, given the valid set of tension coefficients of the tensegrity structure of 

Figure 2.7 (b) and using, as starting values, the nodal coordinates of the tensegrity 

configuration of Figure 2.7 (a) (and shown in Figure 2.8(a)) and without constraining 

the length of any member (and, as such, the BFGS quasi-Newton unconstrained 

optimization algorithm [110] can be used directly), the nodal coordinates of the 

tensegrity structure is shown in Figure 2.8 (a). Figure 2.8 (b) shows the final tensegrity 

structure as well as the nodal coordinates for the case in which six structural members 

have been constrained to have unit lengths using an equality constraint       for 

           as given in the constraint equation for (2.25). 

2.2.2.3 Obtaining Nodal Coordinates from Geometric Consideration 

So far, the procedure of obtaining tension coefficients and nodal coordinates of 

tensegrity structures from equations of static equilibrium has been shown. However, 

tensegrity structures possess remarkable geometric, or kinematic, properties. It is thus 

possible to obtain, by form-finding, tensegrity structures from a geometric consideration 

alone and many analytical and numerical methods have been proposed for doing this 

[7], [51], [113–115]. In general, these methods constrain the lengths of the cables and 

maximize the lengths of the bars or constrain the lengths of the bars and minimize the 

lengths of the cables without explicitly requiring that cables should be in tension and 

bars should be in compression [100], [114]. However, these are, indeed, implied as 

maximizing the lengths of bars and minimizing the lengths of cable correspond to 

putting the bars in a state of compression and the cables in a state of tension, 

respectively. Moreover, the methods implicitly minimize the total length of structural 

members and are independent of the material properties (such as the mechanical, 

electrical and thermal properties) of the of bars and cables or the cross-sectional areas of 

these structural members. Importantly, these methods inherently assume that the 

magnitudes of tension coefficients in all cables and bars are equal as will be shown 

shortly. Furthermore, it will also be shown that these methods do not necessary mean 

that the equations of static equilibrium will be satisfied because, by a priori dictating 

that the magnitudes of tension coefficients for all structural members be equal, the 

possibility that optimal set of tension coefficient exist (in which structural members 

may have different magnitudes of tension coefficients) for a given structural 

configuration is ignored. 
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Consider the general nonlinear constrained optimization form-finding method for 

tensegrity structures proposed in [114], given the tensegrity configuration shown in 

Figure 2.9 with the structural members labelled c1, c2, ..., c9 for the cables, b1, b2, b3 

for the bars and nodes n1, n2, ..., n6, the objective would be to maximize the length of 

only a single member, the bar b1, subject to the constraints that all cables are of unit 

length and that all bars have the same length; the optimization model is as follows 

[100], [114]: 

                 
   

 subject to:                                  (2.30) 

                                 

where                            denotes the length of the  th structural member 

connected to nodes j and h (and is a function of the nodal coordinates of nodes j and h). 

The approximate solution to (2.30) which satisfies all the constraints given in [100] is 

      1.468 compared to the exact value of           1.4679 obtained 

analytically. Now, consider the following four cases:  

Case 1: Another approach to pose the optimization problem of (2.30) is to minimize, 

instead of the negative squared length of a single member, the weighted squared lengths 

of all structural members. 

Thus, the optimization model for minimizing the squared length of all members 

(and of course, subject to cable symmetry) may be written as follows: 

                        
                                                                 

subject to:                                      (2.31) 

Equivalently, the optimization model of (2.31) may be written as follows:  

                      
                  

subject to:                                (2.32) 

where      ,                                                    ,          is the diagonal 

matrix of vector    and   is a vector whose elements are the lengths of the structural 

members. Notice that the constraint          for          is no longer required. 

Furthermore, the negative elements of    shows that squared lengths of bars are being 
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maximized. With    , for example, the solution to (2.31) is    

                                                             as shown on Table 2.5. Notice 

that              in this solution correspond to the exact solution of (2.30) and the 

sum of the lengths of all the structural members is 13.4037. Also, the value of the 

objective function                 at this solution is 2.5359.  

Case 2: Now, instead of using    , the elements of    are replaced with the optimal 

tension coefficients determined previously for the structure in Figure 2.7 (b) which has 

the same configuration as the structure in Figure 2.9; thus,    is as follows:  

                                                        

                                           

With the constraints and initial starting values of nodal coordinates same as in 

Case 1,                                                                is again the solution 

to (2.32) but the value of the objective function for this solution is             . 

Thus, the sum of the lengths of all structural members is again 13.4037.   

Case 3: To be convinced that not any arbitrary value of     gives the desired tensegrity 

structure, consider the following choice of   :  

                                                                                   

With the constraints and initial starting values of nodal coordinates same as in 

Case 1, the solution to (2.32) with these set of tension coefficients is  

                                                               which forms a collapsed (or 2-

dimensional) structure  and the sum of the lengths of all structural members is 12.8637. 

Case 4: Lastly, now consider using the following optimal tension coefficient vector 

again for the optimization problem in (2.32):  

  

                                                        

                                           

This time the constraints would just be that none of the member length should be 

less than a positive scalar. Equivalently, the length of any member (the distance 

between two connected nodes) should be at least non-zero. This constraint can be 

written in the following form:  
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        –          ,            –           ,                (2.33) 

where  ,  , and   are already defined in (2.6), and   is a positive scalar. 

 

 

 
(a) Tensegrity configuration (before optimization) 

 
 

(b) Tensegrity structure (before optimization) 

 
 

n 

Optimal Nodal Coordinates (after optimization)  
 

n 

Optimal Nodal  Coordinates (after optimization) 

x y z x y z 

1 0.9330 -0.2501 0.0000 1 0.5577 -0.1494 0.0000 

2 -0.2500 0.9330 0.0000 2 -0.1494 0.5577 0.0001 

3 -0.6829 -0.6830 0.0000 3 -0.4082 -0.4082 0.0001 

4 0.9331  0.2500 1.0000 4 0.5577 0.1494 0.9998 

5 -0.6830 0.6829 1.0000 5 -0.4082 0.4082 0.9999 

6 -0.2500 -0.9329 1.0000 6 -0.1494 -0.5577 0.9999 

 

 
No. of iterations = 13 

 

 
No. of iterations = 10 

 

Figure 2.8: Nodal coordinates obtained from the force density matrix of valid set of 

tension coefficients using an optimization approach. 
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Final Function Value: 9.6298e-005 
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Figure 2.9: Tensegrity structure to be determined from geometric consideration 

 

Let    5, for instance, so that (2.32) is re-written as follows: 

                     
                  

subject to:         –        ,          –         ,                  (2.34)  

The solution to (2.34) is as follows:  

                                                                               

The sum of the lengths of all structural members is 13.2055. The results of the 

above four cases are summarized in Table 2.5.  

From the above, it can be seen that the lengths of all structural members and the 

sum of their lengths remain the same for the first two cases (cases 1 and 2) though they 

had different elements for the vector    . Furthermore, although the vector    is the same 

for case 2 and 4 and the lengths of members c1, c2, ..., c6 are also the same in both 

cases, the sum of the lengths of all structural members in case 4 is smaller compared to 

that of case 2. The implication is that, the choice of the vector    does indeed determine 

the optimal solution of the length minimization problems in (2.30), (2.32) and (2.34). 

Thus, the optimal selection of the vector    would be of utmost importance in the form-

finding involving geometric consideration alone. Indeed, the vector    is obtained from 

the vector of tension coefficients as these cases illustrate. Moreover, the values of    

   , where      , are 1.7932, 5.1314      , 4.8506 and 5.8696      for cases 1, 

2, 3 and 4, respectively. Thus, case 1 which is the equivalence of (2.30) proposed in 

c7 

c4 

c1 

c8 

b1 

b2 

c6 

b3 

c2 

c3 

c5 

c9 

n2 

n1 

n3 

n6 

n5 

n4 
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[114] has much larger residual forces at the nodes than case 2 or case 4 since it does not 

take into account optimal selection of the vector of tension coefficients for that 

particular structural configuration. It is well-known that form-finding method that does 

not take into account forces (tension coefficients) of the structural members does not 

lead to an outcome of structural assembly whose stability (due to pre-stress) is 

guaranteed [116]. 

Table 2.5: Relationship between the vector of tension coefficients and kinematic 

form-finding method 

Case Parameter members 

           

members 

         

members 

         

Total 

length 

       

 

1 

 

Length 

 

 

1, 1, 1, 1, 1, 1 

 

1, 1, 1 

 

1.4679 

1.4679 

1.4679 

 

13.4037 

 

1.7932 

Tension 

coefficient 

 

1, 1, 1, 1, 1, 1 

 

1, 1, 1 

 

-1, -1, -1 

 

2 

 

Length 

 

 

1, 1, 1, 1, 1, 1 

 

1, 1, 1 

 

1.4679 

1.4679 

1.4679 

 

13.4037 

 

 5.131 

      

 

Tension 

coefficient 

 

0.8825, 0.8826, 0.8829, 

0.8826, 0.8829, 0.8825 

 

1.5288 

1.5288 

1.5288 

 

-1.5288 

-1.5288 

-1.5288 

 

3 

 

Length 

 

 

1, 1, 1, 1, 1, 1 

 

1, 1, 1 

 

0.5176 

1.4142 

1.9319 

 

12.8637 

 

4.8506 

 

Tension 

coefficient 

 

0.8825, 0.8826, 0.8829, 

0.8826, 0.8829, 0.8825 

 

1.5288 

1.5288 

1.5288 

 

-1 

-2 

-3 

 

4 

 

Length 

 

 

1, 1, 1, 1, 1, 1 

 

0.9606 

0.9606 

0.9606 

 

1.4413 

1.4413 

1.4413 

 

13.2055 

 

5.8696 

      

 

Tension 

coefficient 

 

0.8825, 0.8826, 0.8829, 

0.8826, 0.8829, 0.8825 

 

1.5288 

1.5288 

1.5288 

 

-1.5288 

-1.5288 

-1.5288 

 

Thus, a more general approach for form-finding tensegrity structures from a 

geometric consideration alone (or in the context of the subject of this section, obtaining 

nodal coordinates from geometric consideration) is to find, for instance, the solution of 

the following optimization problem:  

                     
                  

subject to:         –       ,        –        ,                   (2.35)  
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where    is the optimal vector of tension coefficients  and the positive scalars   ,    and 

   (which may be equal or different) are the scaling factors that define the magnitudes 

of the lengths of the structural members. 

Lastly, the advantage of this method of obtaining nodal coordinates, from a 

geometric consideration, is that it establishes a relationship between the static and 

kinematic form-finding methods which renders the control of forces of structural 

member possible for these methods. More so, it is thought that kinematic form-finding 

methods are only applicable to systems with a small number of structural members 

supposedly due to the large constraints that would be required for any larger systems 

[100]. Writing the form-finding problem as an optimization problem as in (2.35), for 

instance, alleviates this obstacle and makes this form-finding process feasible for larger 

systems and there are many other ways of expressing the constraints in simpler forms. 

Moreover, the method of obtaining nodal coordinates from a valid vector of tension 

coefficients using the force density matrix presented in the preceding section (see 

equation (2.25)) has the special advantage in that constraints may not be necessary to 

obtain an optimal solution as the example in Figure 2.8 shows. 

2.2.3 A Constrained Optimization Approach for the Form-finding of 

Tensegrity Structures 

Given a tensegrity configuration, the main task of form-finding involves finding an 

optimal set of tension coefficients and/or nodal coordinates for which the structure is in 

a state of static equilibrium due to pre-stress in the absence of external forces. From the 

nullspaces and constrained optimization methods of obtaining tension coefficients and 

nodal coordinates for a tensegrity configuration, two form-finding methods that may be 

deduced, are summarized in Table 2.6. 

In methods A and B, the process of form-finding tensegrity structures from an 

initial configuration has been divided into two main tasks. The first main task, Step 3 in 

both methods,  involves using the constrained optimization method given in (2.22) to 

obtain the optimal vector of tension coefficients for a given tensegrity configuration. 

Also, in methods A and B, the second main task (steps 5 and 4 in methods A and B, 

respectively) involves determining the nodal coordinates for a given set of tension 

coefficients. The reason for dividing the task into two is that the equation of equilibrium 

is a nonlinear function of nodal coordinates and member forces. By expressing the 
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equation in the tension coefficients form, as in (2.8) for example, the equation has been 

linearised into a set of linear equations of tension coefficients. Conversely, when the 

equation is expressed in the force density form, as in (2.11) for example, the equation 

has been linearised into a set of linear equations of nodal coordinates.  

Table 2.6: Descriptions of two methods for obtaining tensegrity structures using 

constrained optimization approach 

Method A Method B 

Step 1: Define the initial configuration (in 

matrix  ) and a starting vector of tension 

coefficients and a feasible geometry.  

 

Step 2: Compute   

 

Step 3: Obtain the vector of tension 

coefficients   from the optimization model in 

(22): 

 

                 
    

subject to:              
                              

                                   

 

Step 4: Compute   using   from Step 3. 

 

 

 

 

 

 

 

Step 5: Find new nodal coordinate vectors  ,   

and   for the structure from the nullspace of   . 

 

 

Step 6: Check if the equation of equilibrium is 

satisfied (for example,                    

or state of self-stress,    , is found); if 

satisfied, a tensegrity structure is found, 

terminate the process. Otherwise, go back to 

Step 2. 

Step 1: Define the initial configuration (in 

matrix  ) and a starting vector of tension 

coefficients and a feasible geometry. 

 

Step 2: Compute   

 

Step 3: Obtain the vector of tension 

coefficients   from the optimization model in 

(22): 

 

                 
    

subject to:              
                              

                                   

 

Step 4: Find new nodal coordinate vectors  ,   

and   for the structure from the optimization 

model: 

 

                                      

 subject to:              
                                          

 

Step 5: If                     , terminate 

the process (where       
   ). Otherwise, go 

back to Step 2. 

 

In other words, by fixing the nodal coordinates (that is, defining the tensegrity 

configuration) and determining the tension coefficients for the configuration, the first 

task ‗assumes‘ that tension coefficients are independent of nodal coordinates which is 

not the case. Recall that tension coefficient is the force-to-length ratio and the length is 

dependent on the nodal coordinates, so the tension coefficient is also dependent on it. 

Similarly, by fixing the tension coefficients and determining the nodal coordinates, the 

second task ‗assumes‘ that the nodal coordinates are independent on the tension 
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coefficients. Thus, an optimization model that combine these two equations takes 

advantage of finding solutions to two linear equations at every iteration which may be 

simpler and less computational expensive than iteratively finding a solution to a single 

but nonlinear equation.  

Furthermore, in the second main task, different approaches have been used for the 

two methods. For method A, the nodal coordinates in Step 5 are obtained from the 

nullspaces of the force density matrix since optimal vector of tension coefficients, for 

the particular configuration, has been determined from Step 3. For method B, the nodal 

coordinates are obtained in Step 4 by finding solution to the constrained optimization 

problem of (2.25); the optimization model in (2.35) – involving a set of linear equations 

– may also be used instead of (2.25). It is worth noting that method A fails if the set of 

tension coefficients, from which the vectors   ,   and    which satisfies the 

orthonormality constraint           (where            ) are obtained, does not 

produce exactly four zero singular values from the   matrix during any iteration and the 

iteration process continues until a solution is found. Recall that   ,   and    form an 

orthonormal set since they are obtained from the nullspace of the same matrix. Such an 

orthonormality constraint is not required in method B but, in fact, it can be included. To 

reveal certain properties of tensegrity structures that satisfy this constraint, the 

constraint will be include in method B and the new method will be called method C; 

thus, with all other steps of method B remaining the same for method C, the Step 4 for 

method C is written as follows:  

Step 4: Find new nodal coordinate vectors  ,   and   for the structure 

from the optimization model: 

                                                   

              subject to:               

                                         (2.36) 

                         . 

Figure 2.10 shows the results of tensegrity structures obtained from initial 

configurations using the form-finding methods A, B and C. It is worth noting that the 

main distinction between methods B and C is the orthonormality constraint present in 

Step 4 of method C; all other similarity constraints are exactly the same. While the three 

methods are capable of finding tensegrity structures for the first configuration, the first 

method (method A) fails to find the second and the third configurations as shown in 

Figure 2.10. The nullspace form-finding methods presented in Section 2.2 (including 
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the method in [103], [104]) also fail to find tensegrity structures when the second and 

third initial configurations were defined for them which are an obvious limitation of 

those methods. 

Tensegrity 

configuration 

Tensegrity Structures 

Method A Method B Method C 

1) 

  
  

2) 

 

 
Method failed (a 2D 

structure – top view)   
 

3)

 

 

 

 

 

 

 

 

 

 

 

 

Method failed (no 

solution found)  
  

 

Figure 2.10: Tensegrity structures obtained using form-finding methods A, B and C. 

The important question, however, is what the difference between the tensegrity 

structures obtained using methods B and C is. To answer this question, consider the 

following: In configuration 1, noting that the lengths of the side cables of the top and 

bottom polygons are the same for both the tensegrity structures of methods B and C, the 
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area of the surface of the top and bottom polygons must be the same. However, the 

heights of the configurations are different. The height of the structure, measured by the 

distance between the top and the bottom parallel polygons, are 1.1063 and 0.8447 for 

methods B and C, respectively. Thus, in addition to obtaining a solution to a static 

equilibrium problem, method C solves a minimum total surface area and volume 

problem. This can be seen more clearly when heights are compared for larger structures; 

for example, using methods B and C, the heights are 2.2197 and 1.2960, respectively, 

for configuration 2, and 2.1863 and 1.2776, respectively, for configuration 3. 

Parameters of the tensegrity structures in Figure 2.10 are shown in Table 2.7. 

The form-finding algorithm Method B will be used in the remainder of this thesis 

for obtaining tensegrity structures. It should be observed that the convergence of this 

algorithm depends on the convergence of the interior point algorithm for solving 

constrained optimization problem that is employed twice at any given iteration. The 

proof convergence of the interior point algorithm can be found, for instance, in [105].  

2.2.4 Examples of Applications of the Constrained Optimization Form-

finding Algorithm 

The constrained optimization method, the method B in particular, described in the 

previous sections for form-finding of practical tensegrity structures will be used to 

demonstrate its applicability to a wide range and complex problems. A class 2 

tensegrity configuration, given in [2], that can be used as a shelter on a disaster site for 

temporary hospital or housing is shown in Figure 2.11. 

  

    Side  view     Top view 

Figure 2.11: A class 2 tensegrity configuration [2]. 
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The large structure of Figure 2.11 includes 84 cables, 25 bars and 38 nodes. From 

the symmetric nature of the structure, the following constraints are used: 

Constraints on tension coefficients:  

            for  i =  2 to 12                           for  i =  62 to 72 

           for  i =  14 to 24                         for  i =  74 to 84 

           for  i =  26 to 36                         for  i =  86 to 96 

           for  i =  38 to 48                         for  i =  98 to 109 

           for  i =  50 to 60               

 

Length constraints: 

            for  i =  2 to 12                           for  i =  62 to 72 

           for  i =  14 to 24                         for  i =  74 to 84 

           for  i =  26 to 36                         for  i =  86 to 96 

           for  i =  38 to 48                         for  i =  98 to 109 

           for  i =  50 to 60                          

 

Node constraints: 

           for  j  =  1 to 38. 

 

  and   denote member and node, respectively; the constraints           for  j  =  1 

to 38 fix the   coordinate values of the nodes. 

            

  Side view      Top view 

Figure 2.12: Tensegrity structure obtained from a class 2 tensegrity configuration using 

constrained optimization form-finding approach.  

 

Using the constrained optimization form-finding method, the final tensegrity 

structure is shown in Figure 2.12. With the defined configuration and a feasible 
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geometry that takes into account the symmetric nature of the structure for which the 

original length of the cable member     is 1.8117, the optimization model is 

constrained to have            . The stopping criterion is                

where          . The value of        reduces from 3.3401 in the first iteration to 

1.4373 as the form-finding algorithm terminates after the 9th iteration. The initial and 

final sums of the lengths of the structural members are 439.3161 and 362.2277, 

respectively. 

 

Table 2.7: Parameters of tensegrity structures of Figure 2.10 obtained using form-

finding methods A, B and C.  

Tensegrity 

configuration 

Tensegrity Structures 

Method A Method B Method C 

1)        1.8526   10-7 1.8472   10-4 1.8526   10-7 

      1 1 1 

       1.0730 1.3491 1.1534 

       1.6890 1.8765 1.7412 

Sum of lengths 23.8097 26.1285 24.4727 

2)         2.3003  10-7 0.0831 

      1 1 

      0.7378 0.9198 

        1.1667 0.8571 

        1 1 

        1.6705 1.5292 

Sum of lengths  27.4503 25.8365 

3)         6.1776   10-7 0.0844 

      1 1 

      0.6509 0.9753 

        0.7876 0.7725 

        0.6509 0.9752 

        1 1 

        1.3322 1.5436 

Sum of lengths  32.8896 38.5503 

 

        

 As another example, Figure 2.13 shows a truss-like class 2 tensegrity 

configuration with 36 cables and 13 bars. Note that the eight middle bars which make 

contact at the middle can be considered as four ‗X‘ pieces or rigid bodies as in the 

original patent of Snelson [6]. Using the constrained optimization form-finding 

approach, and with each of the four rigid bodies still considered as two independent 

bars, the constraints used for form-finding are as follows:  
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Constraints on tension coefficients:  

            for  i =   2  to 20                         for  i =  42 to 44 

           for  i =  22 to 36                         for  i =  46 to 49 

           for  i =  38 to 40               

 

Length constraints: 

            for  i =   2 to 20                          for  i =  42 to 44 

           for  i =  22 to 36                         for  i =  46 to 49 

           for  i =  38 to 40                     

 

Node constraints: 

           for  j  =  1 to 20. 

 

  and   denote member and node, respectively; the constraints           for  j  =  1 

to 20 fix the   coordinate values of the nodes. 

 

 

Figure 2.13: A truss-like class 2 tensegrity configuration and structure 

 

With these constraints, the structural geometry (therefore, lengths of structural 

members) of the final tensegrity structure remains exactly the same as the original 

configuration in Figure 2.13 but the optimal set of tension coefficients has been found 

for the structure and algorithm terminates at the second iteration when        

      . The length and tension coefficient associated with each member are shown in 

Table 2.8. Note that the node constraints are necessary for obtaining Figure 2.12 or 2.13 

to keep the overall shape of the structure the same but optimal as desired. Without these 

constraints, the optimization obtains an arbitrary shape or a collapsed structure in which 

there are members with zero lengths. 
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Table 2.8: Length and tension coefficient associated with each member of the class 

2 tensegrity structure 

Member 1 - 12 13 - 24 25 -36 37 - 48 49 - 60 61 - 72 73 - 84 85 - 96 97 - 109 

Length 1.8117 5.2903 5.3111 4.5403 0.5925 3.0655 2.9406 5.0082 1.5000 

  0.1000 0.1000 0.1000 0.1000 0.6073 0.1247 0.2075 -0.2749 -0.9137 

 

2.2.5 Discussions  

In this section, the main findings in the preceding sections will be summarized and the 

main advantages, as well as limitations, of using the constrained optimization method 

for form-finding of tensegrity structures will be presented.  

Firstly, the wealth of information on tensegrity structures contained in their four 

fundamental spaces of the equilibrium matrices can be used for form-finding of these 

structures. However, using only the information obtained from the fundamental spaces 

for form-finding purposes limits their application to tensegrity structures with few 

structural members and whose member connectivity are relatively simple. Although, in 

some cases, form-finding is possible with only minimal knowledge of the connectivity 

and type of each member – compressive or tensile – these methods offer little or no 

control over member forces or lengths. This is not to mean that the fundamental spaces 

of the equilibrium matrices are not useful for form-finding; in fact, it is the contrary. 

They reveal limitations of these form-finding methods and they may be used, in 

conjunction with other methods, to design optimal tensegrity structures. In particular, 

these have been used, as demonstrated in this chapter, in conjunction with a new 

constrained optimization approach for form-finding of tensegrity structures and it has 

been demonstrated that they can be used for very large tensegrity structures with 

complex connectivity of members. This new method allows for the control of member 

forces and lengths. 

Secondly, the well-known advantage of the kinematic form-finding method is that 

it allows the control of lengths of structural members but the stability of the structure 

obtained using this method is not guaranteed [117]. Moreover, it is thought that it is 

only applicable to systems with a few structural members due to, it is argued, the large 

number of constraints that would be required for larger systems. Not only has a 

relationship between the kinematic form-finding method and the forces in structural 

members with guaranteed stability of the resulting structure been established, but also a 
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simple way to alleviate the problem of handling large constraints by writing them in 

simpler forms has been shown. The use of this new approach was described using a 

class 2 tensegrity configuration given in [2] that can be used as a shelter on a disaster 

site for a temporary hospital or housing, for instance.  

Thirdly, for the new constrained optimisation framework for form-finding of 

tensegrity structures proposed in the preceding section, the process of form-finding 

these structures from initial tensegrity configurations has been divided into two main 

tasks: obtaining the optimal vector of tension coefficients for the given configuration 

and determining the nodal coordinates for the optimal set of tension coefficients. Thus, 

the optimization model takes advantage of finding solutions to two linear equations at 

every iteration which may be simpler and less computationally expensive than 

iteratively finding a solution to a single but nonlinear set of equations. 

Lastly, as with other form finding methods, the constrained optimization method 

is not without its disadvantages. The main disadvantage is the requirement that feasible 

initial nodal coordinates must be defined for the tensegrity configuration. This can be a 

daunting task for very large structures. However, this shortcoming can be overcome by 

using a pre-processing software, such as the Formian programming language [118] as 

suggested in [8], for example, to obtain initial feasible nodal coordinates. The use of the 

form-finding algorithm is also limited to idealized structures satisfying the assumptions 

discussed at the beginning of the chapter (see Section 2.2.1). 

 

2.3 Other Form-finding Methods 

It has been shown that it is possible to obtain tensegrity structures from geometric 

considerations alone (the kinematic form-finding methods). Moreover, the equations of 

static equilibrium in the form of tension coefficients, or force densities, for form-finding 

of tensegrity structures via the nullspace and the constrained optimization approaches 

have also been presented. Other methods also exist that use these and other equations 

for the form-finding of tensegrity structures. A brief discussion on some of these other 

methods is presented in what follows.  

An analytical method, presented in [69], finds the valid set of tension coefficients 

to satisfy the maximal rank condition. Many methods that search for self-equilibrium 
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tensegrity structures arbitrarily using the so-called minimal information – connectivity 

of members and their types being the only initial starting parameters – have also been 

proposed [12], [104]. Algebraic form-finding methods that render the required 

mathematical elegance to the form-finding process are given in [70], [71] but they 

require extensive use of software capable of handling symbolic variables and 

computations. Symmetry can greatly simplify the form-finding process of pre-stressed 

structural assemblies in general; a technique that takes advantage of symmetry for 

finding all possible tensegrity structures with a given connectivity is given in [72]. The 

method presented in [71] also took advantage of symmetry in reducing the        

equilibrium matrix (   denotes the number of cables), obtained from the virtual work 

principle (with the structural geometry defined by a set of generalised coordinates), to a 

square matrix whose dimension is only determined by the number of dissimilar cables. 

Apart from the kinematic and static form-finding methods, there are the finite 

element method, the energy method and the dynamic relaxation method of form-

finding. The equations from which these three methods originated are different from the 

equations used for the static and kinematic form-finding methods. In the finite element 

method [73], the total potential energy of a tensegrity configuration is minimized using 

an equation involving the column vector of nodal coordinates, the external load vector 

and the global stiffness matrix. Because the energy in a tensile member increases with 

increase in length and that in a compressive member increases with length decrease, the 

energy method of form-finding [54] minimizes an energy function by testing for the 

positive semi-definiteness of the stress matrix – a matrix identical to the force density 

matrix in equation (2.11). The dynamic relaxation method is a very successful and 

widely used form-finding and static analysis tool for tension structures [4]. It was used 

for form-finding of tensegrity structures in [74]. In this method, the mass of the 

structure is assumed to be concentrated at the nodes. As such, for a given configuration, 

the peak in kinetic energy is sorted so that the position of the nodal masses of the 

discretized structure is readjusted – which corresponds to the minimum potential energy 

for that configuration. The computation is repeated with every new configuration until 

the peak kinetic energy is very small – meaning that the system has settled to a static 

equilibrium position [4]. 

Some computational techniques that have been used in association with the 

different form-finding methods include the genetic algorithm [75], [76], neural 
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networks [77] and the sequential quadratic programming methods [78], among others. A 

review on state-of-the-art research on form-finding methods of tensegrity structures and 

the associated computational techniques can be found in [100], [116]. 

 

2.4 Summary 

In this chapter the description of a new constrained optimization form-finding algorithm 

for tensegrity structures has been given. First, the description of the nullspace (matrix 

decomposition) approach to form-finding was presented then the form-finding 

technique was reformulated as a constrained optimization problem as shown in Table 

2.9. The constrained optimization problem was solved using the interior point 

algorithm. The main characteristic of the constrained optimization form-finding 

algorithm is that the process of form-finding of a structure from an initial tensegrity 

configuration has been divided into two main tasks: obtaining the optimal vector of 

tension coefficients for the given configuration and determining the nodal coordinates 

for the optimal set of tension coefficients. Next, a number of examples were described 

to show that the presented form-finding method offers control of both forces and lengths 

of structural members.  Lastly, the chapter concludes with a short review of other form-

finding methods. 

In the next chapter, the modelling of tensegrity structures using the Finite Element 

Method will be covered. The chapter will also include the static and dynamic analyses 

and the model simulation of tensegrity structures obtained using the form-finding 

method presented in this chapter.  

Table 2.9: The constrained optimization form-finding algorithm 

Algorithm: 

 

Step 1: Define the initial configuration (in matrix  ) and a starting vector of tension coefficients and 

a feasible geometry. 

Step 2: Compute   

Step 3: Obtain the vector of tension coefficients   from the following optimization model: 

                 
    

subject to:                                                                

Step 4: Find new nodal coordinate vectors  ,   and   for the structure from the optimization model: 

                
                  

 subject to:                                               

Step 5: If                     , terminate the process (where       
   ). Otherwise, go back 

to Step 2. 
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Chapter 3 

 

STATIC AND DYNAMIC ANALYSES OF 

TENSEGRITY STRUCTURES 

 

3.1 Introduction 

The study of (structural) systems in some state of rest (static equilibrium) or in a 

dynamic motion is an important aspect of the engineering study of such systems. Given 

the pre-stressed nature of any tensegrity structural system that is obtained from any 

form-finding method, an important step in the design process is to develop 

mathematical models that describe the behaviour of the system to allow static and 

dynamic analyses. Analyses of tensegrity structures are necessary to understand the 

properties of these structures in their equilibrium states and to establish the relationships 

among load response, geometry and stiffness. Modelling the dynamics of multivariable 

tensegrity structural systems accurately and effectively will enable the understanding of 

their behaviour over time and provide guidance on the control techniques that can be 

employed for their precision control. This chapter outlines the theory behind static and 

dynamic analyses of tensegrity structures. Firstly, the derivation of the mass and 

stiffness matrices is described using the Finite Element Method (FEM). Next, the 

solution procedure for carrying out pseudo-static analysis of a tensegrity structure is 

presented. Subsequently, the dynamic equations of motion governing a general 

tensegrity structure, written in the time domain, are converted into a state-space 

representation. With this representation, the study of the dynamic responses tensegrity 

structures can be easily carried-out. The state-space representation simplifies the 

analyses of tensegrity structures, particularly structures with several degrees of freedom, 

and provides a new insight into the behaviour of these interesting and yet challenging 

structures, at least from a control systems‘ viewpoint. 
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Thus, in this chapter, the three main tasks to be carried-out are as follows: the 

modelling via the FEM, the study of the pseudo-static properties, and the study of the 

dynamic responses via the state-space model representation of tensegrity structures.  

 

3.2 Static and Dynamic Analyses of Tensegrity Structures Using the 

Finite Element Method 

The FEM has been extensively explored in the field of solid and structural mechanics to 

solve a wide range of problems in the field [119–122]. The method will be employed in 

this section in the derivation of the element matrices. The matrices are used in the rest 

of the thesis for several specific modelling cases. 

3.2.1 Derivation and Assembly of the Element Matrices 

3.2.1.1 The Stiffness Matrix 

In this section, the usage of the definitions and notations given in Section 2.2.1.1 will be 

continued. From the coordinates of the nodes of a tensegrity structure in 3-dimensional 

Euclidean space assembled into column vectors      ,        and     , the 

coordinates of node   is represented as            and   is the number of nodes in the 

structure. Thus, a matrix of nodal coordinates        may be defined as follows:  

                (3.1) 

                   

where     
 , given by             , is the nodal coordinates of node  . Thus, 

the  th column of  ,   , corresponds to the coordinates of the   th node of the structural 

system.  

The  th structural member connecting nodes   and   can be uniquely described by 

a Euclidean row vector     
 , given by                       and has 

the length              . Recalling the branch-node connectivity matrix   defined 

in equation (2.5), it will be noted that the  th row of  ,     
 , describes the structural 

configuration of the  th structural member since the element of vector    has the value of 

   at the  th
 entry and the value of    at the  ‘th entry and all other entries are zeros. 
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Thus, all members of the structural system can be assembled into a matrix         

as follows: 

                (3.2) 

         
   

    
    

    

           

where the vectors  ,  , and   have already been defined in equation (2.6). Tensegrity 

structures are in the state of minimum potential energy and this energy (which is due to 

straining alone) for the  th structural member can be written as follows: 

                     (3.3) 

where (3.3) implies    is a function of      . Thus, the potential energy of the whole 

structural system can be written as follows:  

             
 
          (3.4) 

Note that   is a function of nodal coordinates (that is,        ) since     is a 

function of nodal coordinates (that is,            ). If     denotes a Euclidean column 

vector of nodal forces of the  th node, vectors of nodal forces of the structural system 

can be obtained by differentiating the strain energy (which is a scalar function) with 

respect to the nodal displacements (which are vectors) and, assuming that the member 

forces and stresses are constants, the following relationship is obtained: 

                     (3.5) 

where           is defined by              ; that is, the nodal forces is 

computed by taking the negative of the directional derivative of the strain energy along 

the nodal displacement vectors). If the  th structural member is connected to nodes   and 

 , the nodal force at node   due the strain of the  th structural member is obtained as 

follows:   

                                    

             
             

             
  

       

       
 

             
  

  

     
       (3.6) 
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Therefore, Equation (3.6) may be written as follows:  

                   (3.7) 

where    is the tension coefficient (or force density) of the  th structural member and it is 

defined as follows:  

   
   
 

     
         (3.8) 

Thus,      represents the vector of tension coefficients of structural members. 

Therefore, the forces at nodes   and   (     
    ) due to the strain in the  th structural 

member can be written as follows:   

                     (3.9) 

where   denotes the Kronecker product of two matrices. The nodal forces for the entire 

structural system can be written as follows:  

                      (3.10) 

              
 
    

where        is the vector valued function of a matrix defined as follows [123]: 

              
     

     
  
 
     (3.11) 

Here,     
    represents the  th column vector of  . Thus,           . In matrix 

form,      can be written as follows:   

                   (3.12) 

where   is the diagonal matrix of the vector of tension coefficients       . 

Comparing (3.12) with the equilibrium equation (2.8) of Chapter 2 which is re-written 

here as follows:  

              (3.13) 

where     
   
   
   

                 and      

  
  
  

 .  
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Noting that   
       , equation (3.12) can be rewritten as follows:  

       

     

     

     

       (3.14) 

Furthermore, assuming that the member forces and stresses are constants, the 

stiffness matrix of the structural system can be obtained by differentiating      with 

respect to the nodal displacements as follows: 

                    (3.15) 

For the  th structural member, the element stiffness in the global coordinate system 

can therefore be written as follows: 

                    

                              

                              (3.16) 

The following identity of matrix differentiation (see Lemma (6) in [124] for 

proof) should be recalled:  

      

  
          

     

  
                  (3.17) 

where       , the elements of        are constants with respect to  , the 

elements of        are differentiable functions of the elements of  ,     
    is an 

identity matrix and          is a permutation matrix given by              
 such 

that:  

       
                            
           

    for        ,       

           (3.18) 

where       and    . Thus,        is a square matrix with a single ‗1‘ in each 

row and each column; it can be thought to be an identity matrix with some 

rows/columns interchanged [124].  
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Substituting (3.8) into (3.16) and expanding the resulting matrix differential 

equation using the identity of matrix differentiation in (3.17) leads to the following 

results:  

                         

                            

                 
   

   
      

 

     
         

    
 

     
                 (3.19) 

The expression in (3.19) can also be represented, as given in [2], in the following 

forms:  

            
   

   
      

 

     
         

    
 

     
          (3.20) 

                  
                        (3.21) 

where    is given as follows:   

     
   
      

 

     
         

    
 

     
        (3.22) 

Thus, for the tensegrity structural system, the stiffness matrix can be expressed as 

follows:  

            
 
                               (3.23) 

Writing    in the form              
       

    
 

     
  and noting that       

            , the expression in (3.23) may be written as follows [2]:  

                         (3.24) 

where        and       are defined as follows:  

                      (3.25) 

                       
       

    
 

     
     

          (3.26) 

   is called the pre-stress (or geometric) stiffness matrix and it is mainly a 

function of tension coefficients, while    is a called the elastic stiffness matrix and it is 

mainly a function of material properties of the structural members [2], [68], [125].  
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3.2.1.2 The Relationship between the Geometric and Elastic Stiffness 

Matrices and the Stiffness Matrix of the Conventional Finite 

Element Method 

The relationship between    and    and the stiffness matrix   of the conventional finite 

element method can be obtained as follows: The strain energy stored in a structural 

element   with two nodes    and    under axial deformation is given by    

    

 
   

    
  
 

 where    ,   ,   , and     are the cross-sectional area, Young‘s modulus, 

length and strain of the  th member, respectively; the expression for strain is    
  

  
 

where      is the variation axial displacement   (           and            ). 

Assuming   is a linear function of   so that      may be written as               

    
 

  
, then 

  

  
 

       

  
. Therefore,    can be expressed as follows:  

    
    

 
   

    
  
 

 

   
    

   
    

     
           

   
 

 

    

  
 
   
   
 
 

 
   
   

  
   
   
     (3.27) 

   
   

    

  
 
   
   

  
   
   
  

    
    

  
                     

 
    (3.28) 

  
    

    

  
        (3.29) 

where the variation in   
  and   

   has been taken with respect to nodal displacements 

alone. Let the stiffness matrix of the  th structural member be    using the local 

coordinate system; the component of the elastic stiffness matrix due to this  th structural 

member can be expressed as follows:  

   
      

       
   
   

  

   
    

  
     

   
   

      (3.30) 
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Thus, the stiffness matrix of the  th structural member in the global coordinate 

system is as follows:  

  
      

                   (3.31) 

where        is a transformation matrix defined as follows: 

  
 

  
 
  
  

          (3.32) 

It should be noted that, since tensegrity structures are statically indeterminate and 

kinematically indeterminate structures [65], the pre-stressed structure is in a state of 

static equilibrium under zero external load and, as such, there are a number of zero-

energy deformation mode, or mechanisms. For this reason, it is the pre-stress level, or 

state of self-stress, that stiffens the structural system such that at least one mechanism is 

excited without deformation in the structural members. Thus, the equilibrium and 

kinematic equations of the structure,        and        , respectively, becomes 

       and         where  ,    and   are the kinematic matrix, the nodal 

displacement vector and the member elongation vector, respectively (note that,   

  ). Since there is no member elongation,    – which should have been the rest length 

of the  th structure member – has been taken as the length of the  th member at the 

equilibrium state; thus,    can be expressed as follows:  

                (3.33) 

For analysis where   is a nonlinear function of axial displacement, the component 

of the stiffness of the  th structural member mainly due to its material properties,   
 , in 

the local coordinate system is as follows:  

  
         

 
    

   
   

      (3.34) 

where     ;  ,  ,   and   are the strain displacement operator, vector of element 

shape function, elasticity matrix and the volume of the  th structural member, 

respectively. Likewise, the component of the stiffness of the  th structural member 

mainly due to pre-stress,   
 , in the local coordinate system is as follows:  

  
     

   
   

       (3.35) 
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Equation (3.35) in the global coordinate system can be written as follows:  

  
    

            (3.36) 

Since the total number of nodal degrees of freedom is    (where   is the number 

of nodes), from (3.31) and (3.36),       and       can be written, respectively, as 

follows:  

            
  

         (3.37) 

           
  

         (3.38) 

where    
  and    

  (      matrices) are the expanded matrices of   
  and   

 , 

respectively, obtained by identifying the locations of the  th structural member in the 

global system and including zeros in the remaining locations. It is easy to see from 

(3.30) and (3.35) that if the structure is not in a state of stress    
   

    

   
  

   
   

  

and   
      .  

For the properties of the stiffness matrix of tensegrity structures, see [68], [70], 

[83], [125], for instance. 

3.2.1.3 The Mass Matrix 

The mass matrix of a tensegrity structure, similar to other space structures, may be 

written in the consistent mass matrix [126] form. There are also several other simpler 

forms of expressing the mass matrices in structural dynamic problems – the simplest of 

which is the lumped mass matrix [119]. The lumped mass matrix of a structural element 

can be obtained by dividing its total mass by the number of nodal displacement degrees 

of freedom and assigning the result of the division to each of its end node. Consider the 

 th structural member with length   , cross-sectional area   , and mass density   , by 

dividing the total mass of the member between its two nodes, the lumped mass matrix is 

purely a diagonal matrix that can be obtained using the following equation [119]:  

    
       

 
 
  
  

       (3.39) 

It should be noted that the lumped mass matrix ignores any cross, or dynamic, 

coupling between point masses placed at the nodes of the structural member because it 
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assumes each point mass behaves like a rigid body and is independent of the remainder 

of the  structural member when in motion.  

The consistent mass matrix is given as follows [126]:  

        
    

 
      (3.40) 

where   and   are the vector of element shape function and the volume of the  th 

structural member.  If the  th structural member is assumed to deform linearly in the 

axial direction only, then Equation (3.40) leads to the following expression [119]: 

    
       

 
 
  
  

       (3.41) 

The lumped and consistent mass matrices in (3.39) and (3.41) are in a local 

coordinates system; the transformation to the global coordinate system of either can be 

obtained using the following expression:  

       
 
          (3.42) 

where     is obtained from    , the global mass matrix, by identifying the locations of 

the  th structural member in the global system and including zeros in the remaining 

location; the global mass matrix     is defined as follows:  

                  (3.43) 

Thus,   is the mass matrix of the entire structure and        is a 

transformation matrix computed using (3.32). 

3.2.2 Basic Equations and Solution Procedure 

3.2.2.1 Equations of Motion of a Discretized System 

Consider a discretized elastic structural system with   nodal degrees of freedom whose 

dynamic is governed by the equations of motion given by the following:  

                            (3.44) 

where      ,       and      are     vectors of nodal accelerations, velocities and 

displacements, respectively, in the global coordinate system.      is the symmetric 

positive definite mass matrix,       is the damping matrix,      is the symmetric 
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positive semi-definite stiffness matrix, and      is the external nodal force vector. If the 

structural system is a tensegrity structure,   and   may be obtained from (3.42) and 

(3.24), respectively. The case where  ,   and   are time independent matrices while 

     ,      ,      and      are time dependent vectors is the subject of discussion 

throughout the remainder of this chapter.  

A common and computationally effective method for solving (3.44) is the mode 

superstition method which involves transforming the vector      - before any 

integration method is employed – using the following matrix transformation:  

                           (3.45) 

where    and      are called the time independent modal matrix and time dependent 

vector of generalized coordinates, respectively. In structural dynamic problems using 

the FEM,   is called the vector of modal coordinates. The columns of    are 

eigenvectors obtained by solving the ‗linear‘ eigenvalue problem of equation (3.44) for 

an undamped systems. The term ‗linear‘ signifies that both   and   are time 

independent matrices. The basis of the mode superposition method is that the modal 

matrix can be used to diagonalize  ,   and   matrices to transform equation (3.44) into 

uncoupled equations of motion. The solution of the resulting independent second order 

differential equations can then be found by any standard algorithm and the final solution 

is obtained by the superposition of all the individual solutions [119], [127], [128].  

3.2.2.2 Eigenvalue Problem and Uncoupled Equations of Motion 

By assuming that the structure is undamped and the external force vector is zero, the 

equations of motion in (3.44) for the harmonic nodal displacements of the form 

          give the following eigenvalue problem:  

                 (3.46) 

where   is the amplitudes of the displacement  , and   is the natural frequency of 

vibration. Also,   is called the mode shape, or eigenvector, and   is the corresponding 

eigenvalue. For a whole structural system, the mode shape (eigenvector) corresponding 

to the j
th

 natural frequency    (eigenvalue) can be designated as   . Thus, the natural 

frequencies of the structure given by equation (3.46) are   ,   , ...,    and the 
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corresponding eigenvectors are   ,   , ...,   . Therefore, the modal matrix is defined 

as follows:  

                         (3.47) 

It is worth noting that only the shape of the mode    is important, not the 

amplitude; thus,    can be scaled arbitrarily and can therefore be written as      where 

   is an arbitrary nonzero constant. As such, each of the column vectors of    in (3.47) 

can easily be scaled so that the following matrix relation is satisfied [119]:  

                  (3.48) 

where      is the identity matrix. Equation (3.46) is written for a single structural mode; 

for all the modes, the following expression is obtained:  

                     (3.49) 

where   is a diagonal matrix of natural frequencies defined as follows:  

                         (3.50) 

Pre-multiplying equation (3.49) by     and using the identity of (3.48) in the 

resulting equation, the following matrix relation is obtained:  

            .       (3.51) 

Hence, for an undamped structural system, the transformation in equation (3.45) 

simplifies and uncouples the original equations of motion of (3.44) into the following 

form:  

                           (3.51) 

Generally, the elements of the damping matrix   are unknown. A choice for 

which   is proportional to a linear combination of M and K, called a proportional 

damping, is usually chosen to enable the diagonalization of  ; in particular,   of the 

following form:  

                          (3.52)      

where   and   are constants that are chosen to suit a specific problem, is called 

Rayleigh damping [127].  
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Thus, with the form of   in (3.52), (3.51) may be written as follows:  

                                        (3.53) 

Note that the matrix          is diagonal, and as such, the second order 

differential equation of motion of the j
th

 mode obtained from the decoupled equations of 

motion (3.53) is written as follows:  

                       
          

           (3.54) 

where    
       

  

   
 is the damping constant for the j

th
 mode; in matrix form, (3.54) 

may be written as follows:   

                                            (3.55) 

where           . Thus, while Equation (3.44) is expressed in terms of nodal 

coordinates, Equation (3.55) is in the terms of modal coordinates. Typical values of     

0.001 – 0.005 are common choices for satellite and space structures where strain levels 

are usually low, values of     0.01 – 0.02 for mechanical engineering applications 

where most dissipation takes place in the joints, and value of     0.05 for civil 

engineering applications [129].  

Also, it has been assumed that rigid body degrees of freedom have been 

eliminated in (3.46) from matrices   and  . This is easily achieved, for example, by 

imposing some support constraints at some nodes which corresponds to deleting the 

rows and columns associated with these nodes. The significance of applying these 

boundary conditions for fixed structures is to ensure that the matrix K is nonsingular so 

as to prevent the structure from undergoing rigid body motion in which the structure is 

free to undergo translations and rotation without bound. A rigid body mode shape    

correspond to the case where   = 0 and in which      . For a general unrestrained 

structure, there will be six rigid body, or zero energy, modes in the structure. Other 

modes are called elastic modes.  

Furthermore, for practical designs or form-finding of tensegrity structures, it is 

convenient that sets of structural members  are constrained to have similar lengths, 

leading to a structure with repetitive mode-patterns, as a result of which, modal analysis 

will reveal repeated natural frequencies. It is as such necessary that the eigenvectors   , 
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   , ...,     in    of (3.47) are linearly independent for the modal superposition 

technique to be valid. As it is well known, existence of repeated natural frequencies 

does not invalidate the existence of mutually orthogonal eigenvectors in    and 

eigenvectors of the same natural frequency only form a subspace of dimension equal to 

the multiplicity of frequencies [127]. 

3.2.2.3 Rigid Body Modes and Static Model Reduction 

In this section, it will be assumed that the columns and rows of the mass matrix   and 

the stiffness matrix   have been renumbered such that the columns and rows, which 

would have been deleted in for obtaining (3.46) when the boundary conditions are 

applied to make   nonsingular, are placed at the end of the matrices. It will also be 

assumed that the diagonal matrix of natural frequencies is as follows:  

                           (3.56) 

such that      and     ;   and   correspond to the number of flexible and rigid 

degrees of freedom, respectively. Thus,   and    are partitioned as follows:  

    
  

  
     ,        

   
   
     (3.57) 

For undamped structures with rigid body modes, (3.44) can thus be written as 

follows:  

 
      

      
  
   
   
   

      
      

  
  

  
    

  
  
     (3.57) 

where    is the vector of elastic nodal degrees of freedom,    is the vector of 

unrestricted nodal degrees of freedom,    is the vector of loads on the elastic nodes, and 

   is the vector of loads (reactions) at points where    is specified. Note that     and 

     are     and     matrices, respectively. Let         and         so that 

the following equation is obtained:  

   
  

  
        

    
    

    
     

     
      (3.58) 
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where   is the time dependent vector of generalized coordinates; then the first partition 

in (3.57) can be written as follows: 

                                       (3.59) 

The eigenvalue problem of (3.49) can be written as follows:  

  
      
      

      
      

      
   

    
    

      (3.60) 

where    
   
   

 , and    and    are defined as follows:   

                     ,                       (3.61) 

If     , re-arranging the second partition of (3.60) (that is,                 

 ) gives the following expression:  

                   (3.62) 

where 

       
            (3.63) 

The transformation matrix in (3.63) is the matrix of the Guyan reduction method 

[130] commonly used for static model reduction. Substituting (3.62) into (3.59) and pre-

multiplying the result with     
 
 give the following equation: 

     
 
                     

 
                     

 
        (3.64) 

For studying pseudo-static deflection properties (where     ), the following 

equations are obtained from (3.64):  

           
 
                

  

    
 
    (3.65) 

3.2.2.4 Pseudo-Static Deflection Properties of a 2-stage Tensegrity 

Structure 

Let the matrix of nodal coordinates        be defined as       where   is 

defined in (3.1). It is worth noting that static rigidity of tensegrity structures are 

preserved under affine transformation [131]. A transformation of    such that      
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       is an affine transformation of the nodal coordinates of a tensegrity structure 

which corresponds to the scaling of the tensegrity structure by a factor of   ;     is a 

constant and      is a     identity matrix. Also, let    be a scaling factor for the 

tension coefficients of the tensegrity structure, that is,         where   is the vector 

of tension coefficient of the tensegrity structure.  

For the 2-stage tensegrity structure with three bar per stage (in short form, 2-stage 

3-order tensegrity structure) shown in Figure 3.1, it is assumed that the cables are made 

of copper of Young‘s modulus 117 GPa, cross-sectional area          m
2
 and mass 

density 8920 kg/m
3
 and the bars are hollow circular steel cylinders of Young‘s modulus 

200 GPa, cross-sectional area        m
2
 , mass density 7850 Kg/m

3
 and nodes 1, 2, 

and 3 are constrained (rigid) in each of the  ,   and   directions. Also, the figure shows 

the nomenclature that will be adopted throughout this thesis, except where otherwise 

stated, for numbering the structural members of minimal multistage tensegrity 

structures. The length and tension coefficient of each structural member is shown in 

Table 3.1. 

Figures 3.2 (a) and (b) show the solution of equation (3.65) for the various point 

loads, 1N, 10N, 50N, 100N and 200N, each placed at nodes 10, 11 and 12 in the 

downward (vertical) direction as tension coefficients scaling factor    varies. It can be 

seen that, for a given load, as the tension coefficients of the tensegrity structure is 

increased, nodal displacements reduces in a nonlinear manner. Furthermore, Figure 3.3 

shows the solution of equation (3.65) as point loads in the downward (vertical) direction 

at nodes 10, 11 and 12 vary for various level of pre-stress defined by   . Here, it can be 

seen that, for a given pre-stress level, the displacements are proportional to the point 

loads.  

Also, Figure 3.4 is a plot of the nodal coordinates scaling factor    against vertical 

displacements of nodes 10, 11, and 12 for various loads and for the tension coefficient 

scaling factor      . It reveals that, for a given load, the nodal displacements of the 

tensegrity structure increases linearly with   . Lastly, as shown in Figure 3.5, the 

vertical displacements of nodes 10, 11, and 12 increases linearly with    for the three 

1KN loads, each placed in the vertical downward direction at nodes 10, 11 and 12. The 

implication of results of Figure 3.4 and Figure 3.5 in tensegrity structural designs is that, 

although tensegrity structures are scalable, the tension coefficient scaling factor    has 
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to be increased as the scale (defined by   ) of the tensegrity structure increases to 

maintain the same level of rigidity. It should be noted that the staggered nature of the 

plots of Figure 3.2 – 3.5, and similar plots drawn in Chapter 5, is because the plots‘ data 

points where first obtained discretely using equally spaced data points and then joined 

together to form a continuous (but staggered) lines.   

 

Figure 3.1: A 2-stage tensegrity structure with three bars per stage 

 

Table 3.1: Length and tension coefficient of each of the structural members of the 

tensegrity structure shown in Figure 3.1 

Member No. 1-3 4 5 6 7 8 9 10-12 13-15 16-18 19-21 22-24 

Length (m) 10.00 7.38 7.38 7.38 7.38 7.38 7.38 11.67 11.67 10.00 16.71 16.71 

Tension coefficient (N/m) 3.106 3.015 4.909 3.015 4.909 3.015 4.909 4.346 2.730 0.7423 -4.346 -2.030 

 

4

9

8

7

6

10

11

1

2

5

12

3

member 1

member 2

member 

20

member 

21
member 

10

member 3

member 

11

member 

18

member 

15

member 5

member 6 member 8

member 4

member 7

member 

19

z

y

x

member 

17 member 

16

member 

14
member 

23

member 

22

member 

24

member 

13

member 9

member 

12



71 
 

 

(a) 

 

(b) 

Figure 3.2: (a) Displacements in the x-,y- and z-axis of node 12 as tension coefficients 

scaling factor    varies on loads 1N, 10N, 50N, 100N and 200N. (b) Vertical 

displacements of nodes 10, 11, and 12 as tension coefficients scaling factor    is varied 

on vertical loads 1N, 10N, 50N, 100N and 200N. 
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Figure 3.3: Vertical displacements of nodes 10, 11, and 12 as static loads on these nodes 

are varied for various tension coefficients scaling factor   . 

 

 

Figure 3.4: Vertical displacements of nodes 10, 11, and 12 for the tension coefficients 

scaling factor of       as the nodal coordinates scaling factor varies on loads 10N, 

50N, 100N, 150N and 200N.   
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Figure 3.5: Vertical displacements of nodes 10, 11, and 12 for loads 1KN placed 

vertically on these nodes as the nodal coordinates scaling factor varies for the tension 

coefficient scaling factor    of values 50, 100, 150, 200 and 250.  

 

3.2.3 State-Space Model Representation 

In structural analysis, a common way of finding the solution to the second order linear 

equations of motion defined in (3.44) is to transform the equation into a state variable 

form called the state-space model. The state-space model of a linear time invariant 

system is given by a set of first order linear equations as follows:  

                 (3.66) 

                         (3.67) 

where  ,   and   are  -dimension vectors of state variables, inputs and outputs, 

respectively; n – number of state variables, m – number of inputs and p – number of 

outputs;     ,     ,      and      are the system matrix, the input matrix, the output 

matrix and the feed-forward, or feed-through, matrix. The state-space formulation is a 

convenient way of converting higher order linear differential equations into a set of first 

order differential equations. Equations (3.66) and (3.67) are called the state differential 

equation and the output equation, respectively. State variables are a set whose 

knowledge provides the future state and output of a system given the input function and 
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the equation describing the dynamics of the system. The state variables are a non-unique 

set chosen as small as possible to avoid redundant variables and a convenient choice is a 

set of variables that can be easily measured in the output [132]. For equation (3.44), 

choosing vectors of nodal displacements and velocities as state-variables results to the 

following:   

         ,           .     (3.68) 

Thus, the state vector and it differential are as follows:   

   
  
  
    ,      

   
   
                        (3.69)  

Hence, transforming (3.44) into the state-space model of (3.66) gives the 

following:  

    
  

          
  
  
  
   

 
            (3.70) 

The vector    and matrices   and   are as follows:  

          .        
  

          
     ,        

 
       (3.71) 

Depending on which output is measured, the measured output   of displacements 

sensors (that is,     ), velocities sensors (that is,     ) and acceleration sensors 

(that is,      ) are respectively is obtained from the following expressions:  

 With displacement sensor:                 (3.72)  

and from which         and    .  

 With velocity sensor:                  (3.73)  

and from which         and    .  

 With acceleration sensor:                                  (3.74)  

and from which                 and        .  

The above state-space formulation (3.70-3.74) directly involves the nodal 

coordinates of the structural systems (for example,               ) and therefore 

called the nodal state-space model. This model may be impractical since the size of the 
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state vectors, therefore the number of differential equations to be solved, is twice the 

actual number of degrees of freedom of the system [129]. As such, it is common to 

transform (3.44), firstly, into modal coordinate form of equations of motion (3.55). 

Equations (3.69 – 3.74) can then be written as follows:  

   
  
  
   

 
          (3.75) 

    
   
   
   

  
       

  
  
  
   

 
   

         (3.76) 

          ,       
  

       
     ,        

 
   

    (3.77) 

Depending on which output is measured, the measured output   of modal 

displacements sensors (that is,    ), modal velocities sensors (that is,     ) and 

modal acceleration sensors (that is,     ) are respectively is obtained from the 

following expressions: 

 Modal displacements:                 (3.78)  

and from which         and    . In this case, the vector of nodal displacements 

is          .  

 Modal velocities:                 (3.79)  

and from which         and    . In this case, the vector of nodal velocities is 

          . 

 Modal accelerations:                               (3.80)  

and from which              and        . In this case, the vector of nodal 

accelerations is           . 

As the state variables in vector   are not a unique set, apart from those in (3.75), 

another common choice of these variables in the literature (which of course gives 

different forms of matrices  ,  ,   and  ) is as follows [129], [133]:  

   
  
  
   

  
  
 .       (3.81) 
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An important advantage of the transformation into modal state-space model is that 

the state vector can be reduced to contain only those modes that fall into the frequency 

bandwidth of interest by eliminating all other modes [129]. As an example, Figures 3.6 

– 3.9 show the dynamic simulation of the tensegrity structure of Figure 3.1 using 

equations (3.75-3.79) when three vertically downward loads, each of 300N, are placed 

suddenly on nodes 10, 11 and 12 at time     (sec) with zero initial conditions of nodal 

displacements and velocities. Nodes 1, 2, and 3 are constrained (rigid) in each of the  , 

  and   directions. The physical and material properties (the length  , Young‘s modulus 

 , cross-sectional area  , and mass densities  ) and the tension coefficient   of each of 

the structural members of the structure are shown in Table 3.2. The damping constant 

        and the mass matrix, written in the consistent mass matrix form of Equations 

(3.40-3.43), have been employed for the simulation with the integration step-size of 

0.02 sec. 

It can be seen on Figures 3.6 – 3.9 that not all the nodes of the structure (structure 

modes) are significantly affected by the application of the external loading forces. 

Therefore, it may be convenient to eliminate the least affected modes in the state space 

model by transforming the equations of motion (3.44) into a reduced modal coordinate 

form using techniques such as the Guyan reduction method [130] (see Section 3.2.2.3). 

These techniques can prove particularly useful for large structures. In the next section, 

the dynamic simulation of several tensegrity structures will be investigated using the 

state space model equations (3.75 – 3.78). 

 

Table 3.2: Tension coefficients, material and physical properties of the structural 

members of the tensegrity structure shown in Figure 3.1 

Member No. 1-3 4 5 6 7 8 9 10-12 13-15 16-18 19-21 22-24 

  (m) 10.00 7.38 7.38 7.38 7.38 7.38 7.38 11.67 11.67 10.00 16.71 16.71 

  N/m) 31.06 30.15 49.09 30.15 49.09 30.15 49.09 43.46 27.30 7.423 -43.46 -20.30 

  (GPa) 117 117 117 117 117 117 117 117 117 117 200 200 

  (kg/m3) 8920 8920 8920 8920 8920 8920 8920 8920 8920 8920 7850 7850 

  ( 10-6m2) 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 6 6 
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Figure 3.6: Dynamic response of the 2-stage tensegrity structure to three vertically 

downward loads of 300N on nodes 10, 11, and 12 suddenly applied at time     (sec): 

Nodal Displacements (meter) Vs time (sec) for the x and y axes.   
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Figure 3.7: Dynamic response of the 2-stage tensegrity structure to three vertically 

downward loads of 300N on nodes 10, 11, and 12 suddenly applied at time     (sec): 

Nodal Displacements (meter) Vs time (sec) for the z axis.   
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Figure 3.8: Dynamic response of the 2-stage tensegrity structure to three vertically 

downward loads of 300N on nodes 10, 11, and 12 suddenly applied at time     (sec): 

Nodal Velocities (meter/sec) Vs time (sec) for the x and y axes.   
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Figure 3.9: Dynamic response of the 2-stage tensegrity structure to three vertically 

downward loads of 300N on nodes 10, 11, and 12 suddenly applied at time     (sec): 

Nodal Velocities (meter/sec) Vs time (sec) for the z axis.   
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3.2.4 Dynamic Model Simulation of n-stage Tensegrity Structures 

In this section, the simulation of the dynamic models obtained using the techniques 

presented in the preceding sections of this chapter will be carried-out on a number of 

tensegrity structures. Moreover, one of the purposes of the simulation study to be 

carried-out is to investigate the effect of including additional structural members (than 

strictly necessary) on the dynamics of n-stage tensegrity structures. The constrained 

optimisation form-finding algorithm in Chapter 2 has been used to obtain all the 

structural assemblies that will be considered. Figures 3.10 and 3.11 show two 2- and 3-

stage tensegrity structures of 3-order, respectively. The main difference between the 

tensegrity structures of Figure 3.10 (a) and (b) (likewise Figure 3.11 (a) and (b)) is the 

additional structural members – shown in red in the figure – introduced in 3.10 (b) 

(likewise Figure 3.11 (b)). The nomenclature adopted for the structural assemblies of 

figures 3.10 (b) and 3.11 (b) are shown in Figure 3.12. It is assumed that the cables are 

made of copper of Young‘s modulus 117 GPa, cross-sectional area          m
2
 and 

mass density 8920 kg/m
3
 and the bars are hollow circular steel cylinders of Young‘s 

modulus 200 GPa, cross-sectional area        m
2
 and mass density 7850 Kg/m

3
. 

Table 3.3 gives the length   and the tension coefficient   of each of the structural 

members of these structures. The nodal coordinates of the structures are given in Table 

3.4. The damping constant         and the mass matrix, written in the consistent mass 

matrix form of Equations (3.40-3.43), have been employed. Figures 3.13 – 3.18 show 

the dynamic simulation of the tensegrity structure of figures 3.10 and 3.11 using 

equations (3.75-3.79) when three vertically downward loads, each of 300N, are 

suddenly placed on the three top-most nodes at time     (sec) with zero initial 

conditions of nodal displacements. Nodes 1, 2, and 3 are constrained (rigid) in each of 

the  ,   and   directions. The integration step-size for the simulation in all cases is 0.02 

sec. 

As can be seen from Figures 3.13 – 3.18, the additional structural members 

introduced in the tensegrity structures of Figure 3.10 (a) and (b) cause increase in the 

stiffness of these structural assemblies. This results in the significant reduction in the 

amplitudes of vibration of the structures (compare Figures of 3.13 (a),  3.14 (a), 3.15 

(a),  3.16 (a), 3.17 (a) and 3.18 (a) with Figures 3.13 (b),  3.14 (b), 3.15 (b),  3.16 (b), 

3.17 (b) and 3.18 (b), respectively).  
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   (a)      (b)  

Figure 3.10: (a) A minimal 2-stage 3-order tensegrity structure; (b) A 2-stage 3-order 

tensegrity structure with additional structural members (shown in red).  

 

 

   (a)      (b) 

Figure 3.11: (a) A minimal 3-stage 3-order tensegrity structure; (b) A 3-stage 3-order 

tensegrity structure with additional structural members (shown in red).  
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  (a)         (b)  

Figure 3.12: (a) and (b) show the nomenclature adopted for numbering the structural 

members of figures 3.10 (b) and 3.11 (b), respectively; in both cases, the numberings of 

structural members and nodes are in blue and black, respectively. [Scale of Plots: meter 

in all axes]. 
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Table 3.3: Length and tension coefficient of each of the structural members of the 

tensegrity structure shown in figures 3.10 and 3.11 

Structural 

Member 

Structural Assembly of Figure 3.10 (a)  Structural 

Member 

Structural Assembly of Figure 3.10 (b) 

Length (m)   Tension-coefficient (N/m) Length (m)   Tension-coefficient (N/m) 

1     

2    

3     

4     

5     

6     

7     

8     

9     

10     

11    

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

    9.9991   31.0610 

    9.9993   31.0610 

    9.9991   31.0610 

    7.3784   30.1540 

    7.3786   49.0920 

    7.3782   30.1540 

    7.3785   49.0920 

    7.3780   30.1540 

    7.3784   49.0920 

   11.6675   43.4610 

   11.6676   43.4610 

   11.6675   43.4610 

   11.6666   27.2950 

   11.6666   27.2950 

   11.6665   27.2950 

    9.9991    7.4230 

    9.9991    7.4230 

    9.9993    7.4230 

   16.7052  -43.4610 

   16.7051  -43.4610 

   16.7051  -43.4610 

   16.7046  -20.3020 

   16.7047  -20.3020 

   16.7047  -20.3020 

1     

2    

3     

4     

5     

6     

7     

8     

9     

10     

11    

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

    9.9994   31.0619 

    9.9998   31.0619 

    9.9996   31.0619 

    7.7119   35.3930 

    7.7112   71.1659 

    7.7113   35.3930 

    7.7111   71.1659 

    7.7126   35.3930 

    7.7120   71.1659 

   11.7571   40.2307 

   11.7568   40.2307 

   11.7570   40.2307 

   11.7565   24.6689 

   11.7569   24.6689 

   11.7570   24.6689 

    9.9998   23.8699 

   10.0002   23.8699 

    9.9997   23.8699 

   11.9401   14.0456 

   11.9403   14.0456 

   11.9397   14.0456 

   11.9393   26.7644 

   11.9397   26.7644 

   11.9407   26.7644 

   16.7044  -50.4584 

   16.7051  -50.4584 

   16.7050  -50.4584 

   16.7045  -44.9305 

   16.7046  -44.9305 

   16.7050  -44.9305 

 

Structural 

Member 

Structural Assembly of Figure 3.11 (a)  Structural 

Member 

Structural Assembly of Figure 3.11 (b) 

Length (m)   Tension-coefficient (N/m) Length (m)   Tension-coefficient (N/m) 

1     

2    

3     

4     

5     

6     

7     

8     

9     

10     

11    

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

   10.0001   27.3560 

    9.9999   27.3560 

   10.0000   27.3560 

    6.5092   35.7330 

    6.5094   83.5550 

    6.5091   35.7330 

    6.5089   83.5550 

    6.5088   35.7330 

    6.5092   83.5550 

    7.8768   47.3920 

    7.8769   47.3920 

    7.8768   47.3920 

    7.8769   63.4360 

    7.8766   63.4360 

    7.8767   63.4360 

    7.8759   25.4280 

    7.8760   25.4280 

    7.8760   25.4280 

    6.5091   14.3240 

    6.5089   33.4950 

    6.5088   14.3240 

    6.5092   33.4950 

    6.5092   14.3240 

    6.5094   33.4950 

   10.0001    4.3970 

    9.9999    4.3970 

   10.0000    4.3970 

   13.3228  -47.3920 

   13.3224  -47.3920 

   13.3227  -47.3920 

   13.3228  -41.4130 

   13.3228  -41.4130 

   13.3230  -41.4130 

   13.3225  -16.6010 

   13.3225  -16.6010 

   13.3226  -16.6010 

1     

2    

3     

4     

5     

6     

7     

8     

9     

10     

11    

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

37 

38 

39 

40 

41 

42 

43 

44 

45 

   10.0005   27.3560 

    9.9996   27.3560 

   10.0001   27.3560 

    5.7183   52.7697 

    5.7172  151.0325 

    5.7176   52.7697 

    5.7174  151.0325 

    5.7180   52.7697 

    5.7179  151.0325 

    9.2110   34.7695 

    9.2109   34.7695 

    9.2109   34.7695 

    9.2097   27.3560 

    9.2103   27.3560 

    9.2103   27.3560 

    9.2105   50.7727 

    9.2103   50.7727 

    9.2104   50.7727 

    5.7169   63.2471 

    5.7180  127.8346 

    5.7174   63.2471 

    5.7179  127.8346 

    5.7180   63.2471 

    5.7167  127.8346 

    9.9997   27.3560 

    9.9997   27.3560 

    9.9999   27.3560 

    9.0081   50.7180 

    9.0073   50.7180 

    9.0076   50.7180 

    9.0070   50.1709 

    9.0069   50.1709 

    9.0067   50.1709 

    9.0074   32.1433 

    9.0074   32.1433 

    9.0074   32.1433 

   13.3226  -72.7943 

   13.3223  -72.7943 

   13.3224  -72.7943 

   13.3220  -72.7943 

   13.3219  -72.7943 

   13.3216  -72.7943 

   13.3220  -72.7943 

   13.3220  -72.7943 

   13.3219  -72.7943 
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Table 3.4: Nodal coordinates of the structural systems of figures 3.10 and 3.11 

 

Node 

Structural System of Figure 3.10(a) Structural System of Figure 3.10(b) 

x                      y                   z x                      y                   z 

1     

2    

3     

4     

5     

6     

7     

8     

9     

10     

11     

12 

    4.9870   -2.9080   -0.1430 

    0.0250    5.7730   -0.1430 

   -5.0120   -2.8650   -0.1430 

    7.1470   -0.0310   10.9560 

    2.4200    4.1500    7.1330 

   -3.5470    6.2050   10.9560 

   -4.8040    0.0210    7.1330 

   -3.6000   -6.1740   10.9560 

    2.3840   -4.1710    7.1330 

    5.0120    2.8650   22.0540 

   -4.9870    2.9080   22.0540 

   -0.0250   -5.7730   22.0540 

    4.6070   -3.3260    0.0540 

    0.8020    5.9210    0.1070 

   -5.3040   -1.9980    0.0520 

    6.8970   -1.5930   11.4550 

    4.9220    5.2070    8.4000 

   -1.9230    6.9420   11.4980 

   -6.8030    1.8580    8.3670 

   -4.9050   -4.9630   11.4220 

    1.9600   -6.6220    8.3230 

    2.7500    5.1590   20.1400 

   -5.7570   -0.0970   20.0990 

    3.0490   -4.8360   20.0790 

 

 

Node 

Structural System of Figure 3.11(a) Structural System of Figure 3.11(b) 

x                      y                   z x                      y                   z 

1     

2    

3     

4     

5     

6     

7     

8     

9     

10     

11    

12 

13 

14 

15 

16 

17 

18 

    3.9520   -4.2090    5.3600 

    1.6690    5.5270    5.3600 

   -5.6210   -1.3180    5.3600 

    5.5260   -1.6690   12.6480 

    3.2230    3.0260    8.7720 

   -1.3180    5.6200   12.6480 

   -4.2320    1.2780    8.7720 

   -4.2080   -3.9510   12.6480 

    1.0090   -4.3040    8.7720 

    5.6200    1.3180   19.9360 

    1.2780    4.2320   16.0600 

   -3.9510    4.2080   19.9360 

   -4.3040   -1.0090   16.0600 

   -1.6690   -5.5260   19.9360 

    3.0260   -3.2230   16.0600 

    4.2090    3.9520   27.2230 

   -5.5270    1.6690   27.2230 

    1.3180   -5.6210   27.2230 

    2.9370   -4.9710    3.8350 

    2.8360    5.0290    3.8350 

   -5.7730   -0.0580    3.8350 

    3.1040   -3.9260   12.9850 

    5.1580    0.7560   10.4240 

    1.8480    4.6510   12.9850 

   -3.2330    4.0890   10.4240 

   -4.9520   -0.7250   12.9850 

   -1.9250   -4.8450   10.4240 

    4.6880    2.6720   19.2120 

    0.0300    5.3630   17.2770 

   -4.6590    2.7240   19.2120 

   -4.6600   -2.6560   17.2770 

   -0.0300   -5.3970   19.2120 

    4.6300   -2.7070   17.2770 

   -0.3630    5.7620   26.2670 

   -4.8090   -3.1950   26.2670 

    5.1710   -2.5670   26.2670 
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    (a)               (b)  

Figure 3.13: (a) and (b) are the dynamic response (nodal displacements (meter) Vs time 

(sec) along the x-axis) of the 2-stage 3-order tensegrity structures of Figure 3.10 (a) and 

(b), respectively, to three vertically downward loads of 300N on nodes 10, 11, and 12 

suddenly applied at time     (sec) 
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   (a)              (b) 

Figure 3.14: (a) and (b) are the dynamic response (nodal displacements (meter) Vs time 

(sec) along the y-axis) of the 2-stage 3-order tensegrity structures of Figure 3.10 (a) and 

(b), respectively, to three vertically downward loads of 300N on nodes 10, 11, and 12 

suddenly applied at time     (sec) 
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    (a)            (b)  

Figure 3.15: (a) and (b) are the dynamic response (nodal displacements (meter) Vs time 

(sec) along the z-axis) of the 2-stage 3-order tensegrity structures of Figure 3.10 (a) and 

(b), respectively, to three vertically downward loads of 300N on nodes 10, 11, and 12 

suddenly applied at time     (sec) 
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   (a)             (b) 

Figure 3.16: (a) and (b) are the dynamic response (nodal displacements (meter) Vs time 

(sec) along the x-axis) of the 3-stage 3-order tensegrity structures of Figure 3.11 (a) and 

(b), respectively, to three vertically downward loads of 300N on nodes 16, 17, and 18 

suddenly applied at time     (sec) 
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   (a)             (b)  

Figure 3.17: (a) and (b) are the dynamic response (nodal displacements (meter) Vs time 

(sec) along the y-axis) of the 3-stage 3-order tensegrity structures of Figure 3.11 (a) and 

(b), respectively, to three vertically downward loads of 300N on nodes 16, 17, and 18  

suddenly applied at time     (sec)  
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   (a)             (b) 

Figure 3.18: (a) and (b) are the dynamic response (nodal displacements (meter) Vs time 

(sec) along the z-axis) of the 3-stage 3-order tensegrity structures of Figure 3.11 (a) and 

(b), respectively, to three vertically downward loads of 300N on nodes 16, 17, and 18 

suddenly applied at time     (sec) 
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3.3 Discussions 

For the 3-stage 3-order tensegrity structure of Figure 3.11, (a) is the minimal form 

of the structural assembly while (b) is the non-minimal since it contains 9 additional 

structural members (cables) than strictly necessary. Figure 3.11 (b) is not the only non-

minimal form of a 3-stage 3-order tensegrity structure. Figure 3.11 shows another non-

minimal 3-stage 3-order tensegrity structures with 12 additional structural members 

(instead of 9 as in Figure 3.11 (b)); the structural parameters of this structure are given 

in Table 3.5 and the structural assembly has the same nomenclature as that of the 

structure in Figure 3.12 (b).  

The possibility of having different possible configurations or structural assemblies 

for the 3-stage 3-order tensegrity structure being discussed highlights a very important 

feature of tensegrity structural systems; this feature symbolises the possibility of a 

tensegrity structure with a highly complex configuration to change its geometric 

properties, as such, making it suitable as a platform for the design of active structures 

capable of shape morphing, self-diagnosis and self-repair.  

Active control of structural systems was originally proposed in the early 1970‘s as 

a concept and means to counteract extreme conditions such as earthquakes in buildings 

and undesirable vibrations in space-structure [92], [134–136]. For these structural 

systems, most active control systems will not be reliable enough over their service lives 

without expensive maintenance in place the economic cost of which may be difficult to 

justify. Thus, for the structural systems that involve catastrophic collapse, loss of life, or 

other safety criteria, passive control mechanism – through the use of tuned-mass 

dampers, for instance – are used as the common standard. However, for structures that 

are not governed by these safety criteria, active control is most practical [91], [92]. An 

important feature of active structures is their possession of feedback control systems 

that support certain functions such as control objectives that arise from multiple and/or 

changing performance goals, adaptation of structural geometry to improve performance 

by sensing the changes in behaviour and in loading, and autonomous and continuous 

control of several coupled structural subsystems [91], [92].  

Active control structures are capable of interacting with complex environments. 

Moreover, active control techniques are the most efficient for the appropriate structural 

systems; one of such structural systems is the tensegrity structure. In particular, consider 
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a cable cut in the tensegrity structure of Figure 3.19; with the employment of 

knowledge-based computational (active) control system that is capable of reasoning, 

planning and learning, this structure can be transformed into that in Figure 3.11 (b), or 

the structure in Figure 3.11 (b) transformed into that in 3.11 (a), by disengaging certain 

cables and adjusting the lengths and forces in the remaining structural members while 

the structure continues to perform the task it was designed for. The structural 

transformation from Figure 3.19 to Figure 3.11 (b) and from Figure 3.11 (b) to Figure 

3.11 (a) is depicted in Figure 3.20. Also, the structural configurations of figures 3.11 (a) 

and (b) can be considered as subsets of the 3-stage 3-order tensegrity structure of Figure 

3.19. Figure 3.11 (b) is the minimal realizable 3-stage 3-order tensegrity structure and 

any failure (such as cut) in any of its structural member will to a total collapse of the 

structure. While there are other possible subsets that can be obtained from the tensegrity 

structure of the original set of Figure 3.19 by the removal of some structural members 

(cables), structure members can also be added to Figure 3.19 to expand the domain of 

the possible subsets of the original set, creating the possibility to explore other 

possibilities of structural transformation apart from those depicted in Figure 3.20.  

Thus, an active tensegrity structure demonstrates the potential of a framework for 

advanced computational control technologies. While the active control technologies will 

be similar to those in civil and mechanical engineering, their application to tensegrity 

structures involves meeting new and unique challenges the solutions of which will 

create new possibilities for innovative active structures and new application areas. In 

addition, compared to other structures, tensegrity structures are highly suitable 

alternative for the design of structural systems with highly complex and variable 

topological configurations. Some researchers have pointed out the necessity to expand 

the concepts of control theory to embrace the larger concept of system design [94]. A 

major obstacle against integrated design of active control systems during the design 

process of structures is the computational cost involved. Nonetheless, to create an 

approach that tackles this unique problem offers a promising and major step in the 

evolvement process of human-made structures and tensegrity structures provide an 

important platform for exploring this problem.  
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            (a) Side view    (b) Top view   

Figure 3.19: An example of non-minimal 3-stage 3-order tensegrity structure (additional 

structural members are shown in red).  
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Table 3.5: Nodal coordinates, length and tension coefficient of each of the 

structural members of the tensegrity structure shown in Figures 3.19 

 

Node 

         

 x                       y                     z 

1     

2    

3     

4     

5     

6     

7     

8     

9     

10     

11    

12 

13 

14 

15 

16 

17 

18 

    2.9200   -4.9710    5.2260 

    2.9860    5.0280    5.3630 

   -5.7070    0.0870    5.1890 

    3.6930   -4.2460   13.5760 

    5.5920    0.3400   10.9370 

    1.7190    5.2540   13.6810 

   -3.1210    4.6320   10.8880 

   -5.5210   -1.2050   13.5030 

   -2.4800   -5.0590   10.7630 

    5.2540    1.9920   19.0060 

    1.5030    5.4680   16.6720 

   -4.6260    3.4360   18.9040 

   -5.6900   -1.5280   16.4880 

   -0.9350   -5.8430   18.8230 

    3.9670   -4.2600   16.5700 

    0.3170    5.5340   24.8300 

   -5.4010   -2.6680   24.6470 

    4.5620   -3.5200   24.7590 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Structural 

Member 

 

Length (m)   Tension-coefficient (N/m) 

1     

2    

3     

4     

5     

6     

7     

8     

9     

10     

11    

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

37 

38 

39 

40 

41 

42 

43 

44 

45 

46 

47 

48 

   10.0002   27.3560 

   10.0006   27.3560 

   10.0005   27.3560 

    5.6216   36.4469 

    6.8321  110.4727 

    5.6226   36.4469 

    6.8315  110.4727 

    5.6222   36.4469 

    6.8323  110.4727 

    8.4170   34.6820 

    8.4170   34.6820 

    8.4158   34.6820 

    8.4163   16.6500 

    8.4169   16.6500 

    8.4169   16.6500 

    8.4166   48.5014 

    8.4167   48.5014 

    8.4172   48.5014 

    5.6214   42.9237 

    6.8319   99.1674 

    5.6223   42.9237 

    6.8324   99.1674 

    5.6224   42.9237 

    6.8321   99.1674 

   10.0001   27.3560 

   10.0000   27.3560 

   10.0000   27.3560 

    8.2439   47.2194 

    8.2449   47.2194 

    8.2440   47.2194 

    8.2433   49.0676 

    8.2441   49.0676 

    8.2433   49.0676 

    8.2440   31.7848 

    8.2433   31.7848 

    8.2439   31.7848 

   10.4280   16.6500 

   10.4292   16.6500 

   10.4289   16.6500 

   13.3222  -66.4335 

   13.3221  -66.4335 

   13.3220  -66.4335 

   13.3216  -66.4335 

   13.3217  -66.4335 

   13.3221  -66.4335 

   13.3214  -66.4335 

   13.3222  -66.4335 

   13.3219  -66.4335 
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Self-diagnosis Unit Reasoning and Self-repair Unit 

Faulty cables:  Cables identified for removal: 

Figure 3.20: Examples of possible structural transformation as a result of failure (e.g. 

cable cut) in some structural members 
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3.4 Summary 

In this chapter, the theory behind static and dynamic analyses of tensegrity structures 

has been outlined. Firstly, the derivation of the mass and stiffness matrices was 

described using the FEM. Next, the solution procedure for carrying out pseudo-static 

analysis of a tensegrity structure was presented and state-space model representation 

was used to simplify the dynamic analysis and model simulation of tensegrity structures 

of several tensegrity structures. The analysis and simulation provide an insight into the 

dynamic behaviour of tensegrity structures. It was also demonstrated that additional 

structural members introduced in a minimal tensegrity structural assembly causes 

increase in the stiffness of the overall structural system. In addition, it was noted that 

tensegrity structures are important candidates for structural design applications with 

shape morphing, self-diagnosis and self-repair capabilities due to their lightweight, 

ability to form complex variable geometry, possibility of structural transformation and 

adjustable stiffness. 

The models of the tensegrity structures obtained from the FEM presented in this 

chapter may be reduced by techniques such as the Guyan reduction method [130] or 

dynamic sub-structuring method [137]. From a control theory viewpoint, not only are 

the reduced models still too large [138], but the input-output behaviour are only well 

approximated in the neighbourhood of the zero excitations frequency [139] and are very 

dependent on the initial choice of nodal degrees-of-freedom. Furthermore, for the 

design of lighter and stronger controlled flexible tensegrity structures, actuators and 

sensors must be placed at locations that will excite the desired state(s) most effectively. 

Thus, to facilitate further analysis and design of control systems for tensegrity 

structures, efficient and computationally simple model reduction and optimal actuator 

and sensor placement techniques will be presented in the next chapter.  
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Chapter 4 

 

MODEL REDUCTION AND OPTIMAL 

ACTUATOR AND SENSOR PLACEMENT 

 

4.1 Introduction 

Model order reduction, or simply model reduction, is the process of approximating a 

dynamic model of high-order, or high number of states, by a simpler one of a low-order. 

This operation is carried-out to facilitate further analysis and design of control systems. 

In classical structural dynamics, the model of structures, usually obtained from a finite 

element analysis, is reduced by techniques such as the Guyan reduction method [130] or 

dynamic sub-structuring method [137]. The main idea of these techniques is that, to 

reduce the dimension of the mass and stiffness matrices, the designer focuses only on 

nodal coordinates of interest and eliminates or condenses all other degrees-of-freedom 

to the degrees of freedom of interest using matrix transformation that usually preserves 

the stiffness matrix but eliminates the masses of the removed nodes. From a control 

theory viewpoint, not only is the reduced model still too large [138], but the input-

output behaviours are only well approximated in the neighbourhood of the zero 

excitations frequency and are very dependent on the initial choice of nodal degrees-of-

freedom [139]. 

Many model reduction techniques, such as optimal projection method [140], the 

aggregation method [141], and the internal balancing method [142–144] (see [140], for 

example, for the relationships among these methods), have extensively been developed 

in control literature and these methods use optimization methods (for calculating the    

norm,    norm and Hankel-norm, and others) to reduce complex high order models to 

less complex low-order approximations in order to preserve the dynamic behaviour of 

the systems over well-defined frequency ranges. Moreover, these techniques provide a 
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means for controller design, for instance, using optimal and robust control methods, and 

the complexity and performance of model-based controllers are dependent on the order 

of the model to a large extent. The truncation and residualization reduction techniques 

of the internal balancing method [142–144] which, compared to other methods, may be 

less accurate but computationally simpler and relatively efficient [133], are employed in 

this chapter for the reduction of models of tensegrity structural systems obtained using 

the modelling method presented in Chapter 3.  

Also, in developing the dynamic model of a structural system written in the modal 

state-space form, for instance, the system‘s states (state variables) may be chosen as the 

modal displacements and velocities. The design of lighter and stronger controlled 

flexible structures requires that actuators and sensors be placed at locations that will 

excite the desired states most effectively. This task commonly involves the 

determination of the precision requirement for each actuator/sensor as well as the 

minimum number and/or location of the required actuators/sensors. Moreover, in 

collocated structural systems, where structural members also serve as actuators and/or 

sensors, or where actuators and sensors are placed at the same locations, actuators and 

sensors affect the structural dynamics of the integrated structure and, as such, their 

numbers and locations must be considered part of the structural design, dynamic 

analysis and controller design to achieve best performance. Thus, the optimal location 

or placement of actuators and sensors, which has the potential to minimize the control 

efforts and affect the credibility of the output feedback signals, is a very important step 

in the design of controlled flexible structures. Since it will not be possible, in general, to 

relocate the actuators and sensors online while the structure is operational, and it may 

even require a complete redesign or disassembling and reassembling to alter the location 

of the actuators and sensors, the design of controller are mostly done after the locations 

of actuators and sensors have been determined. Clearly, selecting the number and 

locations of the actuators and sensors first, without taking into account during the 

selection process the future control problem to be solved, is not the most effective way 

of dealing with this engineering design problem.  

Different techniques have thus been proposed for the simultaneous selection of 

actuator and sensors and the design of output feedback control systems (see, for 

example, [145], [146]). The problem of finding the optimal numbers and locations of 

actuators and sensors of structural systems, in general, is a complicated nonlinear 
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optimization problem. For a given structure, the optimal number of actuators and 

sensors directly relate to the number of states to be controlled and observed. The 

optimal location of actuators and sensors has been extensively studied in the past for 

general structural systems (see [147] for a review) and in this chapter, the optimal 

actuator and sensor placement method presented in [133], [148], for its numerical 

simplicity, will be applied to tensegrity structural systems. Moreover, optimal actuator 

and sensor placement is of particular importance in the design of active tensegrity 

structures containing very large number of structural members and which are capable of 

undergoing a wide range of nodal displacements (for shape control, for instance) since 

they often require the use of a large number of actuators and sensors. The approach 

employed uses the model of a structural system to determine optimal actuator and 

sensor placement since both the optimal actuator and sensor placement and the 

controller design (that is, a model-based controller design) are dependent on the 

information contained in the structural model.  

 

4.2 Definitions and Notations 

The dynamics of a multivariable system described by the state-space model is a function 

of several state variables but, in general, not all these states are necessarily measurable 

(observable) when the system is excited by the inputs. Likewise, not all these states are 

necessarily driven (controllable) by the inputs. Controllability and observability are 

terms, when used in structural dynamics, describe whether the inputs of the structural 

system drive all structural modes and whether all states are measurable, respectively. 

However, this information, although very useful, does not tell us the degrees by which 

the systems are, or are not, controllable and observable. A more quantitative answer that 

represents these degrees can be obtained by the controllability and observability 

grammians. Moreover, these grammians are useful for system optimization that enables 

us to determine optimal locations to place the actuators and sensors just from the 

preliminary information on structural properties. They are also useful for reducing the 

order of dynamic models written in state-space format. In this section, more precise 

definitions of controllability, observability, grammians and norms in systems analysis 

are given for linear time-invariant systems that will be considered later in the chapter. 
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4.2.1 Controllability, Observability and Grammians 

Controllability: An  -dimensional linear time-invariant system ( ,  ,  ,  ) is said to 

be completely controllable if there exists an unconstrained control (piecewise 

continuous) input   that can transfer any initial state         to any final state 

        within the finite time       ; otherwise, the system is uncontrollable. Let    

be a controllability matrix defined as follows:  

                           (4.1) 

where   and   are the number of states and inputs, respectively. A common criterion 

for determining the controllability of a system is as follows [149]:  

                       (4.2) 

That is, if    is full rank (spans the n-dimensional space), then the system is completely 

controllable.  

Observability: An  -dimensional linear time-invariant system ( ,  ,  ,  ) is said to be 

completely observable on the interval           if any initial state         is 

uniquely determined by observing the output      between the interval          ; 

otherwise, the system is unobservable. Let    be an observability matrix defined as 

follows:  

         

 
  
 

     

        (4.3) 

where   is the number of outputs, a common criterion for determining the complete 

observability of a system is as follows [149]:  

                     (4.4) 

That is, if    is full rank (spans the n-dimensional space), the system is completely 

observable.  

As a result of numerical overflow that may result in finding the determinants or 

ranks of controllability and observability matrices, the use of equations (4.1) and (4.3) 

are limited to systems with few numbers of states. For better numerical properties, the 



102 
 

grammians are used to study the controllability and observability properties of state-

space models [10].  

Grammians: The controllability and observability grammians are defined, respectively, 

by the following equations [149]:  

                
    

 

 
     (4.5)  

           
          

 

 
     (4.6) 

for      . Equations (4.5) and (4.6) are solutions to the following differential 

equations [149]:  

      

  
              

           (4.7) 

      

  
                 

         (4.8) 

From of equations (4.7) and (4.8), if  
      

  
    and 

      

  
    exist as    , 

stationary solutions of    and    are obtained using the following Lyapunov equations 

[149]: 

              
           (4.9) 

                           (4.10) 

A numerical algorithm given in [150] can be used to solve equations (4.9) and 

(4.10) for    and   . Furthermore, stability is an important property of systems and 

involves whether or not the solutions of the system‘s state differential equations tend to 

grow indefinitely as    . The linear time-invariant system ( ,  ,  ,  ) is said to be 

asymptotically stable if and only if all the eigenvalues of   have strictly negative real 

parts; where asymptocity in this definition implies that initial deviations (at    ) of 

the solutions are in the vicinity of the nominal solution [151]. 

Matrices    and    only exist for stable systems and are both positive definite for 

     [149]. The square roots of the eigenvalues of the product of    and    are called 

the Hankel singular values of the system and are given by the following equations 

[152]: 

              ,              (4.11) 
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where    and    are the  th Hankel singular value and the  th eigenvalue of the product of 

   and    for the  -order state-space model, respectively. While the eigenvalues of   

of the system ( ,  ,  ,  ) define its stability, the Hankel singular values provide a 

measure of energy for each state in the system. Thus, by keeping only the states of a 

system with larger energy, most system characteristics in terms of stability, frequency 

and time response are preserved [144], [152]. This idea is the basis for the model 

reduction discussed later in this chapter. 

Furthermore, a system is said to be open-loop balanced, or simply balanced, if its 

controllability and observability grammians are diagonal and equal; diagonality implies 

that each state can be independently controlled and observed while equality implies that 

each state is controllable in the same degree as it is observable. The grammians of a 

balanced system satisfies the following equalities [144]:  

                  (4.12) 

where                    and       is the  th Hankel singular value. A stable but 

unbalanced system ( ,  ,  ,  ) can be balanced using the following state 

transformation:  

              (4.13) 

where   and    are the original state and the new state variables (for the balanced 

system), respectively. Thus, the corresponding state-space model of the system can be 

written in terms of    as follows: 

                     ,                   (4.14) 

The grammians of the balanced system are obtained as follows:  

   
          ,       

          
    (4.15) 

The algorithms to find   such that   
    

    can be found in [144], [150], 

[152]. It should be noted that since   can be arbitraritly scaled and         , both   

and    can be chosen as the state variables of state-space model of  the original system; 

  can, as such, be freely chosen to suite any problem at hand [151]. Moreover, since 

grammians of structure with rigid body modes (that is, structure whose dynamic models 

have a number of poles at the origin) do not exists since they reach infinity value – 

although the structural system may be controllable and observable [133], it may be 
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convenient to remove the rigid body modes by simply applying boundary conditions 

first (as in Chapter 3, for example) before transforming it to the modal model and then 

computing the grammians.  

If the unbalanced system ( ,  ,  ,  ) is unstable (that is, not all system 

eigenvalues have strictly negative real parts), it can be decomposed into its stable and 

unstable subspaces. It should be recalled that, using the eigen decomposition,      can 

be diagonalized in the form         where   is a matrix of eigenvectors and   is a 

diagonal matrix of eigenvalues (eigenvalues assumed to be distinct and   assumed to be 

nonsingular). The stable subspace of the system is the subspace spanned by the 

eigenvectors that correspond to eigenvalues with strictly negative real parts (stable 

system poles) while the other eigenvectors (unstable system poles) form the unstable 

subspace. It is obvious that the stable part of the system correspond to the stable 

subspace; this part can be isolated and balanced using the method of the preceding 

paragraphs. Since the whole of the n-dimensional space is the direct sum of the stable 

and unstable subspaces [151], the unstable part of the system can then be added back to 

the balanced part to form the state differential equations of the whole system. Thus, the 

state vector is partitioned as follows:  

                
           

                (4.16) 

The balancing of the stable subspace is done using the following state 

transformation:  

                               (4.17) 

Finally, the state vector of the unstable but ‗balanced‘ system is obtained as 

follows:  

               
  
              

    
                (4.18) 

4.2.2 The   ,    and Hankel Norms 

The transfer function of a linear system is the ratio of the Laplace transform of the 

output variables to the Laplace transform of the input variables with all initial 

conditions assumed to be zero. The transfer matrix of the system ( ,  ,  ,  ) is given 

by [132], [151]:  
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                 (4.19) 

where   is a complex variable,   and   are the transforms of the output and control 

vectors, respectively and   is the identity matrix. Each element        of      is the 

transfer function from the  th
 input to the  th output. In scalar systems (where both      

and      are one-dimensional), the transfer matrix reduces to a scalar transfer function. 

Also, transfer function is invariant under coordinate transformation of the states [151].  

The frequency response of a system is the steady state response of the system to a 

sinusoidal input signal. It is simply obtained by substituting      in equation (4.19) 

where   and   are the imaginary unit and angular frequency, respectively [132]. The 

gain of a system   at frequency   is defined as follows [153]:  

           
       

       
      (4.20) 

where      represents the 2-norm of a system and provides quantitative information 

about the average system gain over all frequencies.  

The impulse function      is a piecewise function that is defined as follows [132]: 

      
                  
              

      (4.21) 

and satisfies         
 

  
  , and the response of a system to an impulse input      is 

its impulse response. The definitions of the 2-norm and other types of norms in system 

analysis follow. 

The    Norm: The 2-norm, or    norm, of the system ( ,  ,  ,  ) with transfer 

matrix      is the root-mean-square of its impulse response. It is defined as follows 

[153]: 

      
 

  
                 
 

  
     (4.22) 

Equivalently, (4.22) may be written as follows [133]:  

                               (4.23) 

where       and       denotes the trace  and complex conjugate transpose of a matrix, 

respectively.      can also be obtained by taking the square root of the trace of the 
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stationary covariance of the system output when the system is driven by white noise 

[154].        only if      has poles strictly on the left-hand plane of the complex 

plane and    .  

The    Norm: The infinity-norm,    norm, of the system ( ,  ,  ,  ) with transfer 

matrix      is the peak gain of the frequency response. It is defined as follows [153]:  

                                     (4.24) 

where ‗   ‘ is the abbreviation for supremum (that is, the smallest upper bound of a set) 

and      is the largest singular value of matrix     ; in scalar systems,         

                  . The largest singular value at frequency   is obtained as follows:  

                            (4.25) 

where      is the largest eigenvalue of the product of       and     . A fast 

algorithm to compute         is given in [155]. 

The Hankel Norm: The Hankel singular values of a system provide a measure of 

energy for each of the states of the system [144], [152]. The largest Hankel singular 

value, called the Hankel norm, is a measure of total energy of the whole system and is 

obtained using the following equation [133]: 

                          (4.26) 

where      is the largest eigenvalue of the product of    and   . The relationship 

between         and         is given as follows [156]:  

         
 

 
              (4.27) 
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4.3 Model Reduction 

4.3.1 Truncation Method 

Consider the structural system ( ,  ,  ,  ) with state vector   whose equation is written 

in the modal form which has now been transformed into a balanced system (  ,   ,   , 

  ) with state vector    using the transformation matrix   (see equations 4.13 – 4.15). 

The matrices   ,   ,    and    are defined as follows: 

          ,          ,           ,           (4.28) 

The controllability and observability grammians of the balanced system are as 

follows:   

  
          ,      

          
      ,    

    
     (4.29) 

where   is a diagonal matrix whose diagonal element are the Hankel singular values 

arranged in descending order of magnitude (  is the same for the original and balanced 

system). Since the Hankel singular values provide a measure of energy of each states of 

the system, by keeping only the states of the system with larger energy and deleting, or 

truncating, all others, most of the dynamic behaviour of the original high-order model is 

approximated [144], [152]. Accuracy of the low-order system model may be improved 

by taking more states with higher energy. For a system that has unstable subspace, the 

Hankel singular values of unstable system poles are set to infinity and precedes other 

Hankel singular values on the leading diagonal of matrix  . The procedure of the 

truncation is outlined by the following set of equations: 

Modal Model:                             (4.30) 

Balanced Model:       
   
   
                

      
      

  
  
  
   

  
  
    (4.31)  

                        
  
  
         (4.32) 

Reduced Model:                                   (4.33) 

where equation (4.32) is the reduced model,    is the retained state vector that contains 

states with larger energy and    is the truncated state vector containing states with 

negligible energy. 



108 
 

4.3.2 Residualization Method 

Instead of employing truncation as in the preceding section, a transformation that 

projects the subspace of the part to be truncated unto the retained part preserves the 

steady-state response (the ‗dc gain‘) of the modal model. This is achieved by noting that 

the contribution of the states     are negligible,     can therefore be set to zero; that is, 

     . The model reduction procedure can therefore be written as follows: 

Modal Model:                             (4.34) 

Balanced Model:       
   
 
                

      
      

  
  
  
   

  
  
    (4.35)  

                            (4.36) 

        
            

           (4.37) 

                        
  
  
          (4.38) 

Reduced Model:                 
                    

         (4.39) 

               
                 

          (4.40) 

where (4.39) and (4.40) are obtained by substituting (4.37) into (4.36) and (4.38), 

respectively. Of course, it is only possible to obtain the reduced model of equation if 

    is nonsingular. 

4.3.3 Model Reduction Error 

To determine the number of states in the balanced model with a higher energy to be 

retained in the reduced model, it is necessary to evaluate the model reduction error. As 

such, there is a trade-off between having a small sized model and having an accurate 

model. Let  ,    and    be the transfer function of the modal model (for example, 

equation (4.30)), reduced model (for example, the first partition of equation (4.31)) and 

truncated model (for example, the second partition of equation (4.31)), respectively. The 

reduction error that provide absolute or relative approximation of the error that are 

commonly used are as follows:  

a) Additive Error due to model reduction using the    norm [157]:  

                     (4.41) 
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If  ,   and   are the number of states in the modal, reduced and truncated models, 

respectively,    can simply be written as follows:  

                   
 
         (4.42) 

where    is the transfer function of the  th state. 

b) Additive Error due to model reduction using the    norm [158]: 

                     
 
        (4.43) 

where    is the  th Hankel singular value of  . 

c) Relative Error due to model reduction using the    norm [144], [159], [160]:  

                           

         
   
 
     

   
 
   

                       
       (4.44) 

Figure 4.1 summarizes the model reduction procedure described in this section.  

 

4.4 Optimal Actuator and Sensor Placement 

For the structural system written in a modal form (see equation (3.55)), the state 

variables may be chosen simply as the modal displacements and velocities of the 

structure, for instance. In this case, it follows that the  th structural mode is assigned two 

state variables – displacement and velocity – in the state-space model. For this reason, 

attention will be placed on the use of the terms  th mode and  th state of a structure. Also, 

the balanced model representation (equations (4.31-4.32) or (4.35 and 4.38)) will be 

used for the analysis in this section. While the reduced model representation (equations 

(4.33) or (4.39-4.40) can directly replace the balanced model representation in the 

analysis, slight modifications in some equations and definitions will generally be 

required for the expressions to be valid for the modal model representation (equation 

(3.55)); nonetheless, the basic ideas remain the same for three model representations.  
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Figure 4.1: A block diagram of the model reduction procedure 

 

STANDARD MODELS 

MODEL BALANCING 

 Solve for the controllability and observability grammians,    and   , respectively, from 

the following Lyapunov equations: 

                
         

                            

 Compute the Hankel singular values            and the diagonal matrix   
                 where       is the  th Hankel singular value of the system using 

the following equations:   

                ,           

 where     th eigenvalue of the product of    and    

 Compute   such that the following equation is satisfied: 

    
    

     

 where   
  and   

  are defined as follows:  

     
          ,       

          
   

 Obtain the balanced model (  ,   ,   ,   ) using the following state transformation: 

          

 where    is the state variable of the balanced system 

 

MODEL REDUCTION 

 Step 1: Use the Hankel singular values            to determine states that can be 

removed.  

 Step 2: Use the truncation or residualization method to obtain a reduced order model 

based on information obtained from Step 1.  

 Step 3: Evaluate the model reduction error; if unsatisfactory (for instance, the modelling 

error is small but the reduced model is still too large, or the modelling error is small), 

then add or remove more state(s) and repeat the reduction process from Step 1.  

                         

NODAL MODEL 

                                

MODAL MODEL 

                         

STATE-SPACE MODEL 
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4.4.1 State, Actuator and Sensor Norms 

The dynamic model of the  th state of the balanced system ( ,  ,  ,  ) with     is as 

follows:  

                      (4.45) 

                (4.46) 

where    is the  th element of  ,    is the output vector due to the contribution of     

alone so that the system‘s output vector      
 
    where   is the number of the state 

variables,  and    is the  th row of matrix  ;    and    are the  th row and the  th column 

vectors of matrices B and C, respectively. It should be noted that the state matrix   in 

the balanced coordinates is diagonally dominant [161]. Also,    is a weighting of the 

input vector which excites only the  th state and    is a weighting of the effect of the  th 

state on the system output (output vector  ), it follows that       and       are the 

input and output costs [157], or input and output gains [133], of the  th state, 

respectively. The values of       and       are obtained as follows:  

           
 
   ,                  (4.47) 

It should be noted that, although    and    (being eigenvectors) can be arbitrarily 

scaled, the product of their norms,            , is unique [157], and that leads to the 

following definition of input and output gains of the structure [133]: 

Input Gain:                   (4.48) 

Output Gain:                   (4.49) 

Furthermore, the  th
 element of the vector    (that is,    ) correspond to the  th

 

actuator of the  th state. Similarly, the  th
 element of the vector    (that is,    ) correspond 

to the  th
 sensor of the  th state. Actuator and sensor for each state can be located from 

matrices B and C as shown in the following equations:  

              ,                           (4.50) 

 

               ,                              (4.51) 

 th actuator of the  th state 

 th sensor of the  th state 
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The approximate norms of the  th state and the corresponding  th
 actuator and  th

 

sensor can be obtained using the following equations [133], [148]: 

 The   ,    and Hankel norms of the  th state: 

      
          

      
   ,         

          

     
   ,         

          

     
   (4.52) 

 The   ,    and Hankel norms of the  th state,  th
 actuator:  

      
 
 

      
     

      
   ,         

 
 

      
     

     
   ,         

 
 

      
     

     
  (4.53) 

 The   ,    and Hankel norms of the  th state,  th
 sensor:  

      
 
 

           

      
   ,         

 
 

           
     

   ,         
 
 

           
     

  (4.54) 

where    and    are the damping factor and natural frequency of the  th state. It should 

be noted that a pair of state variables (   and     , for instance) in the balanced model 

will have the same value of    and    since each mode is represented with two state 

variables. It is also worth noting that the values of      ,       and       change when 

a structural failure occurs (for example, a failure due to the damage of a structural 

member); thus, the ratio of the magnitudes of these changes to their original values are 

called modal, actuator and sensor indices of the structural damages, respectively, and 

these can be used to detect structural failures [133].  

4.4.2 Placement Indices and Matrices 

Next, to evaluate the importance of each actuator and sensor locations, the ratio of 

norms of each actuator and sensor to the system norm – referred to as the actuator and 

sensor placement indices, respectively – are obtained as follows [133], [148]: 

 Actuator placement index of the  th state and  th
 actuator location: 

   
      

      
 

    
      (4.55) 

 Sensor placement index of the  th state and  th
 sensor location: 

   
      

      
 

    
      (4.56) 
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where       is the weight assigned to the  th
 actuator/sensor of the  th state; the weight 

reflects the importance a designer associates with the  th state and  th
 actuator/sensor. 

Thus, the placement matrices of actuators and sensors (using (4.55) and (4.56), 

respectively) are written respectively as follows (where the superscripts   and   in    
  

and    
  of (4.55) and (4.56), respectively, have been removed for brevity): 

    

 
 
 
 
 
 
              
              
   
              
   
               

 
 
 
 
 

  ,     

 
 
 
 
 
 
              
              
   
              
   
               

 
 
 
 
 

    

           (4.57) 

where     and     are the numbers of candidate actuators and sensors, 

respectively. The    has been used in equations (4.55-4.57), therefore,    ,    and    are 

termed the    norm actuator/sensor placement index,    norm actuator placement 

matrix and    norm sensor placement matrix, respectively; if    norm or Hankel-norm 

are to be used, they are prefixed in those terms. If the  th
 element (that is, the  th

 

actuator/sensor placement index) of the  th state in equation (4.57) is the largest element 

of the  th state, then it is obvious that actuator or sensor location    is the best, or 

optimal, location to excite or sense the  th state as the case may be. Consequently, other 

actuator/sensor placement indices of the  th state can be removed since they constitute 

the least significant placements. Moreover, a set of actuators/sensors with the largest 

indices can be selected as the optimal actuator/sensor placements.  

More so, by taking the norm of each column of    and   , the following vectors 

are obtained: 

  
                     ,    

                     

           (4.58) 

Depending on whether    norm,    norm or Hankel-norm is used for the computation 

of elements of the vectors in (4.58),     and     are obtained as follows: 

 Using the    norm: 

            
 
       ,               

 
      (4.59) 

 th sensor  th actuator 

 th state 

 th actuator  th sensor 
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 Using the    norm or Hankel-norm: 

                    ,                  (4.60) 

Therefore,     and     represent the (non-negative) contributions of the  th
 actuator and 

sensor over all the states to the observability and controllability properties of the 

system, respectively.  

On the other hand, if the norm of each row of matrices    and    are taken 

(instead of columns), the following vectors are obtained:  

                       ,                        

           (4.61) 

where     and     are obtained as follows:  

 Using the    norm: 

            
 
       ,               

 
      (4.62) 

 Using the    norm or Hankel-norm: 

                     ,                   (4.63) 

In this case,     and     are state indices that signify the importance of the  th state for 

the given location of actuators and sensors, respectively, and can be used as indices for 

model reduction just as the Hankel singular values used in Section 4.3. That is, the 

magnitudes of     and     signify the importance of the  th state and, as such, states with 

larger magnitudes affect the dynamic behaviour of the system the most and, therefore, 

should be retained while others may be eliminated. Moreover, the state indices can also 

be used as a recalibration index, that is, the actuators and sensors of  states with lowest 

indices should be enhanced [133]. This statement answers the question of what should 

be the necessary precision for an actuator or sensor. Figure 4.2 summarizes the optimal 

actuator and sensor placement procedure described in this section.  

 

 

 th state  th state 
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Figure 4.2: A block diagram of the optimal actuator and sensor placement procedure 

using the    norm 

                         

BALANCED OR REDUCED 

(STATE-SPACE) MODEL 

TRANSFER FUNCTION OF EACH OF THE 

STATES, ACTUATORS AND SENSORS 

 

Obtain the following norms (for             where 

  is the number of states,              where   is 

the number of candidate actuators and             

where   is the number of candidate sensors):  

 The    norm of the  th state: 

        
          

     
   

 The    norm of the  th state,  th actuator:  

        

 
 

      
     

     
    

 The    norm of the  th state,  th sensor:  

        

 
 

           
     

  

 

ACTUATOR AND SENSOR PLACEMENT 

INDICES 

 

Obtain the actuator and sensor placement indices 

using the following equations (for             

where   is the number of states,              

where   is the number of candidate actuators and 

            where   is the number of 

candidate sensors):  

 Actuator placement index of the  th state and 

 th actuator location: 

     
      

      
 

    
  

 Sensor placement index of the  th state and 

 th sensor location: 

     
      

      
 

    
  

 where       is the weight assigned to 

the  th actuator/sensor of the  th state 

 

 

ACTUATOR AND SENSOR PLACEMENT MATRICES 

 

Assemble the actuator/sensor placement indices into actuator/sensor placement matrices:   

    

 
 
 
 
 
 
              
              
   
              
   
               

 
 
 
 
 

   ,       

 
 
 
 
 
 
              
              
   
              
   
               

 
 
 
 
 

 

OPTIMAL ACTUATOR AND SENSOR LOCATIONS 

Select optimal actuator/sensor location(s) for each state or for the overall system using the following 

criteria: 

 Optimal actuator and sensor locations for the  th state are locations (entry number) of the largest 

elements (indices) of the  th row vector of    and   , respectively.  

 Optimal actuator and sensor location(s) for the overall system are locations of the largest elements of 

vectors   
  and   

 , respectively (where   
                   , 

  
                   ,              ,              ). 
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4.5 Numerical Applications 

In this section, the applicability of the theory on model reduction and optimal actuator 

and sensor placement procedures presented in the preceding sections will be 

demonstrated. The structural models of the tensegrity structures to be considered are 

obtained using the Finite Element Method covered in Chapter 3 and the constrained 

optimisation form-finding algorithm in Chapter 2 has been used to obtain each of the 

structural assemblies.  Moreover, for these structures, it is assumed that all the cables 

are made of copper of Young‘s modulus 117 GPa, cross-sectional area          m
2
 

and mass density 8920 kg/m
3
 and all the bars are hollow circular steel cylinders of 

Young‘s modulus 200 GPa, cross-sectional area        m
2
 and mass density 7850 

Kg/m
3
. Also, the bottom nodes of the structures are constrained (rigid) in the  ,   and   

directions in all the analyses that will be considered.  

4.5.1 Minimal Multistage Tensegrity Structures 

Figures 4.3 – 4.7 show the plots of the Hankel singular values and the frequency 

response for 1-, 2-, 3-, 4- and 5-stage tensegrity structural systems of 3-order. In each 

case, the frequency response plot of the modal and the reduced models are shown. The 

reduced models are obtained using the residualization method (Section 4.3.2) by 

eliminating the states whose Hankel singular values are less than      (which 

corresponds to deleting high frequency modes as the figures clearly show). Each of the 

Hankel singular value plots also show the number of states that are chosen as the 

dominant states for model reduction. Table 4.1 shows the additive and relative model 

reduction errors (   and    , respectively) for these structural systems. 

While it is difficult to compare any set of geometrically and topologically 

different structures, nonetheless it can be seen that the number of dominant states 

(modes) increases with the number of stages generally. Moreover, the existence and 

finiteness of the Hankel singular values for all these cases confirms the previous 

knowledge that tensegrity structures are pre-stressed stable structural systems since the 

Hankel singular values do not exist (that is, are infinite) for unstable modes.  

More so, Figures 4.8 and 4.9 show the plots of the Hankel singular values and the 

frequency response for 5- and 6-order tensegrity structures of 3-stage, respectively. 



117 
 

Compared with the 3-stage 3-order of Figure 4.5, the number of dominant states also 

increases as the order of the tensegrity structures increases. 

Furthermore, Figures 4.10 and 4.11 show the plots of the Hankel singular values 

and the frequency response for the 6- and the 7-stage tensegrity structures of 3-order, 

respectively. An interesting feature of these structures is that they both have states 

which are unstable; it is worth noting that when minimal tensegrity structures are 

obtained using form-finding algorithms that take into account only the static and/or 

other properties (such as material, topological and geometric properties) of the structural 

systems, it is may be desirable (and even essential for very large structures) to 

investigate the degree of stability (for instance, controllability and observability 

grammians, Hankel singular values, etc.) of these structures if the structures are to be 

used for active control applications. As the current example of Figures 4.10 and 4.11 

show, while it is possible that the constrained optimisation form-finding algorithm of 

Chapter 2 (which minimizes the lengths and tension coefficients of structural members 

in two separate steps and uses the state of static equilibrium due to pre-stress as the 

criteria for obtaining a valid tensegrity structure) is able to obtain the 6- and 7-stage 

tensegrity structures of 3-order (Figures 4.10 and 4.11), these structures still contain 

unstable states, thus, requiring additional consideration if these minimal tensegrity 

structures are to be actively controlled, or even physically realized. In fact, using the 

constrained form-finding algorithm, unstable states are present for the 3-order tensegrity 

structures with stages higher than 5; of course, it is possible to modify the similarity 

constraints in the form-finding algorithm to obtain a valid tensegrity structure of the 6- 

and 7-stage tensegrity structures of 3-order under consideration. Introducing additional 

structural members, for example, so that the structures become non-minimal can be used 

as a means for making all systems‘ states stable. Examples of non-minimal multistage 

tensegrity structures (introduced in Section 3.3) are discussed further in the next section. 

In addition, Table 4.2 shows the nodal coordinates of the tensegrity structure of 

Figure 4.4 and the tension coefficient of each of its members. As defined in Section 

3.2.2.4,    and    are the scaling factors of the physical size (in terms of its nodal 

coordinates) of a tensegrity structure and its vector of tension coefficients, respectively. 

Figure 4.12 shows the plots of the frequency response of the tensegrity structural of 

Figure 4.4 when       and      . From the figure, it can be observed that for the 

first case where      , the frequency response plot is shifted upwards and to the left 
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of the original plot, whereas for the second case where      , the frequency response 

is shifted downwards and to the right indicating that the two scaling factors have 

opposite effect on the frequency response plot while the shape of the plot is mostly 

preserved.  

4.5.2 Non-minimal Multistage Tensegrity Structures 

Figures 4.13 (a) and (b) show the frequency response plots of minimal and non-minimal 

2- and 3-stage tensegrity structures of 3-order (figures 3.10 (b) and 3.19, respectively) 

from sections 3.2.4 and 3.3, respectively. Unlike the effects of the scaling factors,    

and   , in the preceding section where the shape of the frequency response is mostly 

preserved, the introduction of additional structural members than strictly necessary (in 

the non-minimal structures) significantly changes the frequency response of the 

structural systems. The addition has the effect of moving a significant number of system 

modes into the high-frequency region. Thus, the control design to attenuate vibration, 

for instance, has only a reduced number of dominant states to consider. Moreover, the 

reduced number of states available for control in the non-minimal structures implies that 

they are less amenable to undergo reasonably large displacements (compared to 

minimal structures), and therefore, are a less attractive option for structural system 

designs (for shape control) that need to be actively controlled for achieving large nodal 

displacements.   

In addition, Figures 4.14 and 4.15 show the plots of the actuator placement indices 

of a few number of states, the actuator placement indices over all states (  
 ), the 

Hankel singular values (          ), and the state-importance indices (  ) of the 2- 

and 3-stage 3-order minimal and non-minimal tensegrity structures, respectively. It is 

worth noting that unit weights have been assumed for all the modes (meaning all modes 

have been assumed to be of equal importance) and the balanced model and    norm 

have been used for the analysis and computations. Results of this analysis can be 

summarized as follows: Firstly, in figures 4.14 (a) and 4.15 (a), it should be noted that 

the optimal balanced actuator placements are different for the 2-stage 3-order minimal 

and non-minimal structures and for the 3-stage 3-order minimal and non-minimal 

structures. Secondly, in figures 4.14 (b) and 4.15 (b), the Hankel singular values that are 

dominant in the minimal n-stage 3-order tensegrity structure are larger in number than 

those of the dominant in the n-stage 3-order non-minimal counterpart (the reason for 
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this follows from the discussion in the preceding paragraph). For instance, the largest 8 

Hankel singular values are the dominant in the minimal 2-stage 3-order tensegrity 

structure while the largest 2 are the dominant in the non-minimal case as shown in 

Figure 4.14 (b). This implies that the model order of the reduced model of the non-

minimal tensegrity structure is much smaller than the minimal counterpart, thus, it will 

require much less number of actuator and sensor to actively control the non-minimal 

structure. Thirdly, the state importance indices (  ) is generally able to detect the most 

important states of the system and indicates that the high frequency modes are the least 

significant ones in the same ways as the Hankel singular values approach was able to 

detect and indicate.  

 

4.6 Discussions 

Although the actuator placement alone, sensor placement alone and the simultaneous 

placement of actuator and sensor are the three distinguishable problems of optimal 

actuator and sensor placement, only the placement of actuators was considered in the 

examples of the preceding section since the other two placements are obtained in mostly 

the same manner. Consider the 2-stage 3-order minimal tensegrity structures whose 

actuator placement indices are shown in Figure 4.14 (a) I, the procedure of actuator 

placement may be described as follows: To actuate state 1, the 27
th

 actuator index is the 

largest index over all actuator; therefore, the 27
th

 location is the optimal actuator 

location for actuating state 1 of the structural system. If other actuator locations are 

chosen instead of the 27
th

, the actuator will have to work harder and be capable of 

providing more force to achieve the same control objective. A similar statement can be 

made for states 3 and 5 with the 27
th

 and 25
th

 optimal actuator locations, respectively, as 

shown in Figure 4.14 (a) i.  

Furthermore, it should be observed from the analysis of the tensegrity structures 

considered that each pair of states is described by two approximately equal Hankel 

singular values. This property is common to flexible structures (that is, lightly damped 

structures) in general [161].  

Importantly, actuator forces are assumed to be applied at the structural nodes of 

the structures in the   ,   and   directions. In the physical system, if an 

electromechanical device (or a piezoelectric material) which will also serves as a 
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structural member will be used as an actuator, then every pair of connected nodes in 

which the device will be attached are a potential candidate actuator location. In this 

case, the problem will be finding the optimal set(s) of nodes (among other sets) to place 

a predetermined number of the actuator(s). An alternative (and, perhaps, more direct) 

way of determining the optimal location of actuators (instead of ‗optimal set of nodes‘ 

as in this case) is to determine the optimal actuator location as described in this chapter 

but using the model representation expressed in terms of member length changes 

(presented later in Section 7.4) instead of those expressed in terms of nodal forces (as in 

the current case).   

Given an open-loop system, the presentation of this chapter covered the 

procedures to determine the importance of each state using the Hankel singular values 

of the system with specific controllability and observability properties (that is, model 

balancing) for model order reduction, and to determine, for each state and for the whole 

system, the optimal location to place actuators or sensors using the controllability and 

observability properties. In this presentation, the selection of the numbers and locations 

of actuators and sensors are done first, while anticipating that the control design will be 

done later. However, the actuator and sensor placement and control design are 

dependent on each other as it is well known; thus, it is more efficient to integrate the 

placement and control design together (that is, to find optimal actuator and sensor 

placement for closed-loop control) and a number of techniques exist to tackle this 

problem that can be applied to structural systems in general (see for example [162–

164]). An approach has also been proposed in [146] for optimal actuator and sensor 

placement of a simple tensegrity structure for closed-loop control in particular. 
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(a)  

(b)  

(c)  

Figure 4.3: (a) A 1-stage 3-order tensegrity structure; (b) a plot of the Hankel singular 

values of the structure; and (c) a plot of the frequency response of the structure. 
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                     (a)            

(b)  

(c)  

Figure 4.4: (a) A 2-stage 3-order tensegrity structure; (b) a plot of the Hankel singular 

values of the structure (only the largest 30 out of a total of 54 are shown); and (c) a plot 

of the frequency response of the structure. 
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                    (a)       

(b)  

(c)  

Figure 4.5: (a) A 3-stage 3-order tensegrity structure; (b) a plot of the Hankel singular 

values of the structure (only the largest 30 out of a total of 90 are shown); and (c) a plot 

of the frequency response of the structure. 
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                 (a)                    

(b)  

(c)  

Figure 4.6: (a) A 4-stage 3-order tensegrity structure; (b) a plot of the Hankel singular 

values of the structure (only the largest 30 out of a total of 126 are shown); and (c) a 

plot of the frequency response of the structure. 
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            (a)                         

(b)  

(c)         

Figure 4.7: (a) A 5-stage 3-order tensegrity structure; (b) a plot of the Hankel singular 

values of the structure (only the largest 35 out of a total of 162 are shown); and (c) a 

plot of the frequency response of the structure. 
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        (a)                             

(b)  

(c)         

Figure 4.8: (a) A 3-stage 5-order tensegrity structure; (b) a plot of the Hankel singular 

values of the structure (only the largest 40 out of a total of 150 are shown); and (c) a 

plot of the frequency response of the structure. 
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(a)                                 

(b)  

(c)        

Figure 4.9: (a) A 3-stage 6-order tensegrity structure; (b) a plot of the Hankel singular 

values of the structure (only the largest 50 out of a total of 180 are shown); and (c) a 

plot of the frequency response of the structure. 
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(a)                                

(b)  

(c)          

Figure 4.10: (a) A 6-stage 3-order tensegrity structure; (b) a plot of the Hankel singular 

values of the structure (only the largest 50 out of a total of 198 are shown; 2 of these are 

unstable); and (c) a plot of the frequency response of the structure. 
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  (a)                              

(b)  

(c)  

Figure 4.11: (a) A 7-stage 3-order tensegrity structure; (b) a plot of the Hankel singular 

values of the structure (only the largest 50 out of a total of 234 are shown; 2 of these are 

unstable); and (c) a plot of the frequency response of the structure. 
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(a)  

(b)  

 

Figure 4.12: (a) A plot of the frequency response of the 2-stage 3-order tensegrity 

structure; and (b) a plot of the frequency response of the structure. 
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Table 4.1: The additive and relative model reduction errors (   and    , 

respectively) for the tensegrity structural systems of Figures 4.3 – 4.7. 

 

 

 

 

 

 

Table 4.2: Nodal coordinates of the tensegrity structure of Figure 4.4 and the 

tension coefficient of each of its members 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Structure 

Figure 4.3 – 4.7 

Additive Error 

   

Relative Error  

    

i)   1-stage 3-order                         

ii)  2-stage 3-order                         

iii) 3-stage 3-order                         

iv) 4-stage 3-order                         

v)  5-stage 3-order                         

 

Node 

Nodal Coordinates 

x                      y                   z 

1     

2    
3     

4     

5     
6 

7 

8 
9 

10 

11 
12     

    4.9870   -2.9080   -0.1430 

    0.0250    5.7730   -0.1430 

   -5.0120   -2.8650   -0.1430 

    7.1470   -0.0310   10.9560 

    2.4200    4.1500    7.1330 

   -3.5470    6.2050   10.9560 

   -4.8040    0.0210    7.1330 

   -3.6000   -6.1740   10.9560 

    2.3840   -4.1710    7.1330 

    5.0120    2.8650   22.0540 

   -4.9870    2.9080   22.0540 

   -0.0250   -5.7730   22.0540 

Structural 

Member 

 Tension  

Coefficient 
(N/m) 

1     

2    

3     
4     

5     
6     

7     

8     
9     

10     

11    
12 

13 

14 
15 

16 

17 
18 

19 

20 
21 

22 

23 
24 

    2.9999 

    2.9999 

    2.9999 
    2.9123 

    4.7413 
    2.9123 

    4.7413 

    2.9123 
    4.7413 

    4.1975 

    4.1975 
    4.1975 

    2.6362 

    2.6362 
    2.6362 

    0.7169 

    0.7169 
    0.7169 

   -4.1975 

   -4.1975 
   -4.1975 

   -1.9608 

   -1.9608 
   -1.9608 
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(a)  

(b)  

Figure 4.13: (a) Frequency response plots of minimal and non-minimal 2-stage 3-order 

tensegrity structure; and (b) frequency response plots of minimal and non-minimal 3-

stage 3-order tensegrity structure.  
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(i)        (ii) 

 

Figure 4.14 (a): (i) and (ii) are the plots of the actuator placement indices for the states 

1, 3, and 5 of the 2-stage 3-order minimal and non-minimal tensegrity structures, 

respectively.  
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(i)        (ii) 

 

Figure 4.14 (b): (i) and (ii) are the plots of the actuator placement indices over all states 

(  
 ), the Hankel singular values (           – only the largest 30 out of a total of 54 

are shown), and the state importance indices (  ) of the 2-stage 3-order minimal and 

non-minimal tensegrity structures, respectively.  
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(i)        (ii) 

 

Figure 4.15 (a): (i) and (ii) are the plots of the actuator placement indices for the states 

1, 3, and 5 of the 3-stage 3-order minimal and non-minimal tensegrity structures, 

respectively.  
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(i)        (ii) 

 

Figure 4.15 (b): (i) and (ii) are the plots of the actuator placement indices over all states 

(  
 ), the Hankel singular values (           – only the largest 30 out of a total of 90 

are shown), and the state importance indices (  ) of the 3-stage 3-order minimal and 

non-minimal tensegrity structures, respectively. 
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4.7 Summary 

In this chapter, model order reduction of tensegrity structural systems has been 

presented. The approach employed the internal balancing technique which keeps only 

the states of the system with larger energy and deletes all others, thus, most of the 

dynamic behaviour of the original high-order model are retained in the reduced model. 

Also, the design of lighter and stronger controlled flexible structures requires that 

actuators and sensors be placed at locations that will excite the desired state(s) most 

effectively. This chapter covers the determination of optimal actuator and sensor 

placement using the balanced model representation since both optimal actuator and 

sensor placement and controller design are dependent on the information contained in 

the structural model and it is simpler to deduce placement indices in some model 

representation than others.  

Despite the surge in interest in tensegrity structural systems and their active 

control capabilities in the last few decades, only few of these structures have actually 

been realized until present. The next chapter will focus on the design and physical 

realization of active tensegrity structures.  
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Chapter 5 

 

PHYSICAL REALIZATION OF 

TENSEGRITY STRUCTURAL SYSTEMS 

PART I: PHYSICAL STRUCTURE 

DESIGN 

 

5.1 Introduction 

There has been a surge in interest in tensegrity structural systems and their deployment 

and control capabilities in the last few decades, however, only a few of these structures 

have actually been realized in practice until present. Moreover, most of the realized 

structures only take advantage of the static properties of these structures, although quite 

recently, some dynamic applications, such as in the three-DOF actuated robots [165], 

locomotive tensegrity robots [44], [166], tensegrity mobile robot [45], and five-module 

active tensegrity structure [92] have been realized.  

Since tensegrity structures, in general, are broadly regarded as deployable 

structures [3], for the purpose of this thesis, it is important to make the following 

distinction: Tensegrity structural systems that are realizable can be classified as either 

un-deployed or deployed tensegrity structural systems. On the one hand, the un-

deployed tensegrity structural systems are tensegrity structural systems that are not 

designed to be capable of changing their shape significantly; examples of these include 

tensegrity bridges [24] and cable domes [167]. Moreover, these systems may be 

equipped with components – for damping or imposing rigidity – to control and restrict 

the level of vibration by passive or active means. On the other hand, the deployed 

tensegrity structural systems are tensegrity structures that are designed to be capable of 

changing their shapes significantly and active vibration control are, to a large extent, 
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inherent in this framework. This chapter and the next deal with the design of the 

deployed tensegrity structures. The ensuing discussions will focus on practical structural 

design and optimization issues as well as the implementation of the software and the 

control system architecture. Importantly, it will bring together novel concepts that have 

not been investigated in the available literature on this subject hitherto. 

Deployed tensegrity structures are capable of significant shape change from 

arbitrary structural configurations – which may or may not be tensegrity 

configurations/structures – to tensegrity structural systems with predefined structural 

shapes. For this class of tensegrity structures, an open-loop control strategy may 

generally be used for their deployments; examples of these are given in [168] and [165]. 

The application of an open-loop control technique for the deployment and 

reconfiguration of a class-2 of tensegrity tower has been demonstrated in  [168], for 

example. In this example, the lengths of the bars – assumed rigid – are fixed and the 

controller ensures that the cable rest lengths are maintained at predefined cable lengths 

or set-points. These predefined set-points are obtained using a form-finding method that 

involves finding the solution to the equations of static equilibrium of tensegrity 

structure for which the overall structure is pre-stressed and this solution is not a unique 

set. Moreover, the transformation – by deployment – from one set of tension 

coefficients to another is considered a structural reconfiguration.  

Furthermore, several techniques for the deployment of tensegrity structure have 

been devised and, with few exceptions such as those presented in [165] and [92] where 

the bar lengths are the control variables, most considered the rest lengths of the cables 

as the sole control variables. On the one hand, the advantage given for the use of cable 

rest length control is the possibility of the cables to provide for force sensing and 

geometry measuring functions while, at the same time, acting as structural members 

[169]. The disadvantage of the cable rest length control, however, is the potential for the 

number of candidate sensing elements to be too large since cables make up most of the 

structural elements of tensegrity structures although it is possible – using optimal 

actuator and sensor placement techniques of classical structural dynamics (as presented 

in Chapter 4 or, for instance, in  [148], [157], [170]) – to determine the optimal choices 

of candidate cable for force/geometry sensing when given that the number of sensing 

elements is few and fixed. On the other hand, bar-length control approach (see, for 

example, [165]) is especially favourable since the number of bars is significantly less 
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than that of the cables in tensegrity structural systems. Moreover, bars can also be 

adapted to serve as force and geometry sensors. However, since the bars are fewer, the 

overall structural system has limited structural displacement necessary for significant 

shape change. A significant contribution of this project is the introduction of a new 

technique that combines the control of the cable and bar lengths simultaneously, thereby 

combining the advantages of both bar control and cable control techniques. Also, the 

approach used for the control of cables is significantly different from the techniques 

used for cable rest length control presented so far in the literature.  

The design method and physical realization of tensegrity structures proposed in 

this thesis are covered in two chapters. Thus, the aim of this chapter and the next are to 

demonstrate the feasibility of realizing tensegrity structure using a given set of 

structural members and a predetermined initial structural configuration. In particular, 

the tensegrity configuration to be considered is the configuration of the simplest form of 

tensegrity structures, commonly called the simplex.  Within the framework of this 

project, an experimental simplex deployed tensegrity structure was designed, assembled 

and tested. This experimental prototype is available in the Intelligent Systems 

Laboratory of the Department of Automatic Control and Systems Engineering of the 

University of Sheffield. The physical realization of the multi-stable tensegrity structure 

is an important step and a unique contribution of this present work in the design of 

tensegrity structural systems. The approach that made this practical realization possible 

is through varying the stiffness of some of the structural members. In this chapter, the 

design of the tension and compression structural members and the techniques for form-

finding and deployment of a simple mono-stable and a more complex multi-stable 

tensegrity structures are given and a demonstration of how the multi-stable structure can 

be used to carry out translation along the three Cartesian axes –  ,    and   – as well as 

rotations about these three axes will be shown. In addition, a collision avoidance 

technique that may be employed for the simplex tensegrity structure will be described. 

The next chapter focuses on details of the hardware, hardware configuration, serial 

communication protocol using the Universal Serial Bus (USB) interface and the 

employed control techniques. 
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5.2 Tensegrity Prisms and their Regularity, Minimality and Design 

Approaches 

The definition of tensegrity prisms and their regularity and minimality, following the 

nomenclature given in [2], are given as follows: A three-dimensional single stage 

tensegrity structure that consists of   number of bars,   number of side cables and    

number of cables that make up the top and bottom  -sided top and bottom polygons, 

respectively, is called a tensegrity prism. A tensegrity prism is said to be regular if the 

top and bottom polygons are parallel and equilateral (note that the circumradii of the top 

and bottom polygons,    and   , respectively, for the structure need not be the same). 

Moreover, the tensegrity prism is said to be minimal if stability of the prism is as a 

result of the smallest number of cables. Figure 5.1 shows three different 3-bar minimal 

tensegrity prisms.  

The characteristic angle of any regular polygon is given by   
 

 and the twist angle 

of any tensegrity prism (regular or irregular) is the angle formed by the bottom polygon 

and the polygon formed by the projection of the top polygon unto the plane of the 

bottom polygon (such that the bottom polygon and the projected top polygon are 

concentric). Figure 5.2 shows the circumradius  , the characteristic angle   of the 

bottom polygon and the twist angle   of a 4-bar regular minimal tensegrity prism. In the 

absence of external forces, the twist angle of any  -bar regular minimal tensegrity prism 

is given as follows [27], [113]:  

    
 

 
  

 

 
       (5.1) 

Also, if the tension coefficients of the cables of the top and bottom polygons are 

denoted as    and   , respectively, and the tension coefficients of the vertical cables and 

bars as     and    , respectively, in the absence of external forces, the values of   ,   , 

    and     for a regular minimal tensegrity prims are given as follows [2]:  

         

        
 
 
  

     

         

       
 
 
 
       (5.2)           
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 Perspective view      Side view      Top view 

   

(a) 

 

   

(b) 

 

   

(c) 

Figure 5.1: Examples of 3-bar minimal tensegrity prisms: (a) A regular minimal 

tensegrity prism with       ; (b) A regular minimal tensegrity prism with      ; and 

(c) An irregular minimal tensegrity prism with      .  

 

where      
  
  is the ratio of the circumradius of the top polygon to that of the bottom 

polygon, and     is a scaling factor which can be chosen arbitrarily without affecting 

the equilibrium of the structure. The level of pre-stress in the structure increases with   

and the first two expressions in (5.2) lead to the relation       
   . Moreover, just as 

in the preceding chapters, the expression in (5.2) assumes that the forces (therefore, 



143 
 

tension coefficients) of the cables are positive – denoting that the cables are in tension – 

while the forces in the bars are negative – denoting that the bars are in compression.  

Deployed tensegrity prisms are those tensegrity prisms that fall into the category 

of deployed tensegrity structures defined in the preceding section. Two design 

approaches may be used in the realization of a deployed tensegrity prism. The first 

approach involves a design in which the shape change that can be realized with a 

tensegrity configuration can only be a regular tensegrity prism; the tensegrity structure 

realized using this approach is called a mono-stable tensegrity prism. The second 

approach involves a design in which the tensegrity configuration can be used to realize 

both regular and irregular tensegrity prisms; the tensegrity structure realized using this 

approach is called a multi-stable tensegrity prism. 

 

Figure 5.2: Top view of a 4-bar regular minimal tensegrity prism with         .  

 

5.3 Designs of Compressive and Tensile Structural Members 

As mentioned earlier, the most basic issue in the design of tensegrity structures is the 

form-finding process which involves the selection and definition of their optimal 

structural forms by searching for all shapes for which the structural configuration is pre-

stressed and in a state of static equilibrium in the absence of external forces. The 

algorithm of the constrained optimisation approach to form-finding developed in 

Chapter 2 can be found in Table 2.9.  
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It is worth noting that the form-finding algorithm of Table 2.9 does not take into 

consideration the type of materials that is used as tensile and compressive structural 

members. It is obvious that tensile members are more mass efficient than compressive 

members. Therefore, an improvement in the strength and reduction in weight of a 

tensegrity may be gained if the use of long compressive members is minimized while 

the use of tensile members is maximized [2]. The process of continuously replacing the 

compressive members by another tensegrity structure with shorter compressive 

members until the required mechanical properties are achieved is called self-similar 

tensegrity [171], and if the iteration process continues infinitely, it is called tensegrity 

fractal [2]. Thus, at microscopic scale (< 10
-6 

m), the process becomes a material design 

process and at larger scale (for example, > 10
-3 

m), it becomes a structural design 

process. Hence, there is no difference in material and structural design of tensegrity 

structures mathematically [2]. Therefore, the constrained optimization form-finding 

algorithm presented in Chapter 2 is applicable to micro- and large-scale material or 

structural designs as the case may be. In this chapter however, the emphasis is on the 

design of tensegrity structural system at a scale between approximately 10
-3

m to 1 m. 

Moreover, if there were no restrictions due to manufacturing related issues, yield 

constraints on the cables and buckling constraints on the bars may be included in the 

form-finding process to avoid structural failure (such as, the yielding of cable or the 

buckling of the bars). However, manufacturing of the bars is beyond the scope of this 

project. Nonetheless, the discussion on the factors that influenced the choice of 

structural components used for the physical realization of the tensegrity structure that is 

to be designed will be presented.   

To begin the design process of a tensegrity structure, the constrained optimization 

form-finding technique is used as a starting point. The engineering problem is to design 

a deployable 3-bar regular minimal tensegrity prism with       and, at equilibrium 

due to pre-stress and in the absence of external forces, the length of each bar should be 

equal to 60 cm. Henceforth, the tensegrity structure with this specification will be 

termed the ‗initial 3-bar tensegrity prism‘. Also, the initial 3-bar tensegrity prism should 

be capable of undergoing structural transformation into a 3-bar irregular minimal 

tensegrity prism by reconfiguration. Figure 5.3 shows the tensegrity structure obtained 

from the form-finding process when the length of cable 1 is constrained to 40.875 cm 

and with no constraints on the set of tension coefficients. (It should be noted that the 

value of 45.875cm was obtained by scaling the vector 
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by the factor of 60; element of this vector are the lengths of the structural members and 

are obtained using the constrained form-finding technique with the constraints that all 

bars are of unit lengths and the cables are of equal lengths). Table 5.1 shows the 

numerical results when the value of the length constraint is varied in the form-finding 

process. Furthermore, by varying the length constraint on cable 1 (that is, the length of 

cable 1 is varied between 32 cm and 49 cm) for instance, the lengths and compressive 

forces of the bars varies approximately between 46.97 cm to 72 cm and between -

209.45 N and -320.73 N, respectively (see Table 5.1;  ,   and   denotes the length, 

force and tension coefficient of a structure member, respectively, and        is the 

norm of the vector of residual nodal forces as defined in Chapter 2). Thus, for the 

deployed 3-bar regular minimal tensegrity structure to be designed, it would be 

desirable that the ‗extensible‘ bars have lengths that can cover at least the range from 

46.97 cm to 72 cm and can withstand at least 320.73 N of compression of compressive 

force. Likewise, it can be deduced from Table 5.1 that the cables, in general, should be 

able to withstand at least 218.50 N – the maximum force that cables are subjected to if 

the bar lengths are kept within 46.97 cm and 72 cm – assuming all the cables have the 

same material properties. It is worth noting that the choice of centimetre and Newton 

scales from the lengths and forces, respectively, in structural members resulting from 

the form-finding process is rather arbitrary but consistent with the earlier assertion from 

the previous section (see equation (5.2)), and also in Chapter 2, that the scaling factor 

can be chosen arbitrarily without affecting the equilibrium of the structure. 

 

Figure 5.3: The initial 3-bar tensegrity prism (the length of each bar equals to 60 cm and 
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Table 5.1: Structural parameters of the initial 3-bar tensegrity prism with the 

following constraints:                    ,          and             

Structural 

Member 

Constraint:            

(Structure of Figure 5.3) 

Constraint:       Constraint:       

  (cm)              (N)              (N/cm)   (cm)              (N)              (N/cm)   (cm)              (N)              (N/cm) 

1     

2    

3     

4     

5     

6     

7     

8     

9     

10     

11    

12 

 

       

 

40.8750  105.2308    2.5745 

40.8750  105.2308    2.5745 

40.8750  105.2308    2.5745 

40.8750  105.2308    2.5745 

40.8750  105.2308    2.5745 

40.8750  105.2308    2.5745 

40.8750  182.2650    4.4591 

40.8750  182.2650    4.4591 

40.8750  182.2650    4.4591 

60.0000 -267.5450   -4.4591 

60.0000 -267.5450   -4.4591 

60.0000 -267.5450   -4.4591 

 

8.2870   10-6 

32.0000   82.3825    2.5745 

32.0000   82.3825    2.5745 

32.0000   82.3825    2.5745 

32.0000   82.3825    2.5745 

32.0000   82.3825    2.5745 

32.0000   82.3825    2.5745 

32.0000  142.6907    4.4591 

32.0000  142.6907    4.4591 

32.0000  142.6907    4.4591 

46.9725 -209.4542   -4.4591 

46.9725 -209.4542   -4.4591 

46.9725 -209.4542   -4.4591    

 

2.6102   10-6 

49.0000  126.1482    2.5745 

49.0000  126.1482    2.5745 

49.0000  126.1482    2.5745 

49.0000  126.1482    2.5745 

49.0000  126.1482    2.5745 

49.0000  126.1482    2.5745 

49.0000  218.4951    4.4591 

49.0000  218.4951    4.4591 

49.0000  218.4951    4.4591 

71.9266 -320.7267   -4.4591 

71.9266 -320.7267   -4.4591 

71.9266 -320.7267   -4.4591 

 

3.4760   10-6 

 

5.3.1 Selection of Extensible Bars 

As it is beyond the scope of this project to manufacture extensible (telescopic) bars to 

achieve large longitudinal displacement of bars, the following is an outline of the 

factors that influenced the selection of the extensible bars used for this project:  

 Physical length: As a starting point, original lengths of the extensible bars 

(commonly referred to as telescopic actuators) should be approximately within 

40 cm to 75 cm (a conservative bound to cover at least the required 46.97 cm to 

72 cm lower and upper bounds, respectively) and, at least, the bars should be 

able to extend to the 60 cm length – the length of each of the bars of the initial 3-

bar tensegrity prism. Thus, if the original (retracted length) of the extensible bar 

is 45 cm, for instance, the stroke length (the difference between maximum 

possible bar length and its retracted length) should be 27 cm when the maximum 

bar length required is 72 cm. 

 Force: Since the bars of tensegrity structures are only allowed to be subjected to 

compressive forces alone, the extensible bar must be able to withstand at least 

320.7267 N of compressive force.  

 Joint type: The use of the ideal extensible bar should make it is easy for the 

structural assembly of the initial tensegrity prism to approximate a pin-jointed 

structural assembly.  

 Weight: If it were possible to design the extensible bar, the problem of finding 

the minimum (optimal) weight for the extensible bar for the maximum expected 
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stress (or any other failure criteria, for example, flexural, buckling, etc.) can be 

formulated as an optimization problem since, for an ideal extensible bar with 

uniform cross-sectional area, the weight can be expressed as [172]:  

               
 

 
   

  

   
      (5.3) 

where  ,  ,  ,   and   are the mass density, cross-sectional area, length, force 

and elastic stress of the extensible bar, respectively. However, given the limited 

scope of this project, it will be ensured that the extensible bar to be used, in 

addition to being as light weight as possible, satisfies the conditions of the other 

factors outlined in this section.   

 Sensor: It will be advantageous to have the extensible bar equipped with force 

sensing and/or geometry measuring functionality. This will aid the design of an 

efficient structural control system required during deployment.  

 Powering and gearing: If the tensegrity structural system is powered during the 

deployment process to a particular valid tensegrity structure, it will be required 

that the extensible bars ‗rigidify‘ by holding on their current positions after the 

deployment process when power supply is discontinued; this can be achieved by 

appropriate choice of the gears located inside the telescopic actuator. This power 

saving strategy also minimizes the likelihood of total structural collapse (and 

may be very important for critical applications) in the event of a power failure.  

In consideration of these factors, the 12‖ stroke linear actuator with feedback – 

one of the Light Duty (LD) series of actuators manufactured by Concentric International 

[173] – has been chosen for this project. The actuator consists of small and large 

cylindrical bars; the small cylindrical bar protrudes from the large one during the 

process of extension. This actuator, pictured in Figure 5.4, is equipped with a 

potentiometer for measuring position and for use in a feedback system. Also, the linear 

actuator uses a worm drive gear arrangement which ensures that the drive will hold its 

position even when unpowered. Table 5.2 presents the technical details related to the 

linear actuator.  
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Figure 5.4: A picture of the 12‖ stroke linear actuator with feedback (LD series 

actuator) manufactured by Concentric International [173] 

 

Table 5.2: Technical Specification of the 12” stroke linear actuator  

with feedback [173] 

 Feature Specification 

Original length: 

Stroke length: 

Max. Extended length: 

Weight: 

Gear Ratio: 

Free-run current measured at 12 V: 

Stall current measured at 12 V: 

Linear Speed measured at 12 V: 

Dynamic Linear force measure at 12 V: 

Static Linear Force (i.e. force it can withstand 

when not running):  

44.958 cm (   0.3048 cm) 

30.48 cm 

Original length   Stroke length 

1.5876 Kg 

20:1 

0.5 A 

10 A 

1.3 cm/sec 

50 Kilogram-force  

 

250 Kilogram-force 

(where 1 Kilogram-force   9.80665 N) 

 

Furthermore, it should be recalled that the equilibrium position of each of the 

three bars of the initial 3-bar tensegrity prism is 60 cm and the norm of the vector of 

nodal residual forces (      ) is             for this configuration. In addition, 

each of the linear actuators has an original length (that is, retracted length) and a stroke 

length of approximately 45 cm and 30 cm, respectively. This means that there is the 

freedom of varying the length of each of the three bars of the tensegrity prism between 

45 cm and 75 cm. However, not all possible configurations (that can be obtained by 

varying all the three bar lengths) are likely to form a three-dimensional pre-stressed and 

statically stable (valid 3-bar regular/irregular minimal tensegrity) structure. Thus, it will 

be useful to obtain the region, defined by the length of each bar [45 cm, 75 cm], for 

which the 3-bar minimal tensegrity configuration results in a valid tensegrity structure. 

This stability region will be the equilibrium space of the 3-bar irregular minimal 

tensegrity prism of which the equilibrium space of the regular counterparts (all other 

possible 3-bar regular minimal tensegrity prisms for this configuration) is a sub-space. 
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The limits on the lengths of the bars due to the minimum and maximum lengths 

achievable with the linear actuators require that additional length constraints are 

included in the form-finding algorithm. These limits also impose restrictions on the 

value of forces in other structural members (thereby, restrictions on the tension 

coefficients and, consequently, on the stiffness of the overall structural system). Thus, 

the following upper and lower bounds are deduced from Table 5.1:  

1) The bounds of the tension coefficient of the vertical cables as follows:  

The expected maximum force in cables of the structural assembly:  218.50 N 

The expected minimum force in cables of the structural assembly:  142.69 N 

The expected maximum length of cables of the structural assembly:   49.00 cm 

The expected minimum length of cables of the structural assembly:   32.00 cm 

Thus, the upper and lower bounds of the constraints on the tension coefficients on 

the vertical cables for the form-finding algorithm can be deduced as follows:  

  Lower bound         
      

     
 
      

     
   2.91 N/cm 

  Upper bound         
      

     
 
      

     
   6.828 N/cm 

These bounds lead to the following constraint on the tension coefficient of the i
th

 

structural members:  

                    for i = 7, 8, 9  (5.4) 

From the constraint of (5.4), a more conservative bound (this will be explained 

later in Section 5.3.3) can be written as follows:  

                     for i = 7, 8, 9  (5.5) 

2) The bounds on length of the i
th

 structural member are as follows: 

   = 40.875      for i = 1, 2, 3 (the bottom-horizontal cables)   (5.6) 

32.891 <     < 42.6502    for i = 7, 8, 9 (the vertical cables)    (5.7) 

46.958 <      < 70.958     for i = 10, 11, 12 (the linear actuators)  (5.8) 
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The explanation on the equality constraint (5.6) and the choice of the lower and 

upper bounds on the length constraints in (5.7) and (5.8) are differed to Section 5.3.3. It 

is very important, however, to note that there is no constraint (similarity or otherwise) 

on the top-horizontal cables. With the set of constraints in (5.5-5.8), the constrained 

optimization form-finding algorithm can be employed to find the degrees of stability of 

all tensegrity structures that can be obtained by varying the lengths of each of the three 

linear actuators    (for i = 10, 11, 12) from 45 cm to 75 cm. Figure 5.5 shows colour-

based plots of the degree of stability (measured by the norm of the nodal residual 

forces) versus the bar lengths of the 3-bar minimal tensegrity prism in two-dimension. 

The figure covers the region [45 cm, 75 cm] for each of the bars. Also, Figure 5.6 

depicts the same figure in three-dimension using a few number of slices. With these 

figures, it is concluded that the stability region of the 3-bar irregular minimal tensegrity 

prism, that is the region in which the multistable tensegrity prism forms valid tensegrity 

structures, with an initial stable configuration corresponding to the initial 3-bar 

tensegrity prism obtained using the constrained optimization form-finding technique 

approximates a geometric shape best described as a circle (of approximately 35 cm in 

diameter with centre at [60, 60, 60] cm) when viewed from one direction (View A) and 

a plano-convex lens (of approximately 15 cm in width) when viewed from an 

orthogonal direction (view B). Moreover, Figure 5.7 shows the SolidWorks
®
 

dimensional drawing of the initial 3-bar tensegrity prism that is built with the 12‖ stroke 

linear actuator of Figure 5.4.  
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(a)        (b)         (c) 

Figure 5.5: Plots of the degree of stability (measured by the norm of the nodal residual 

forces) versus the bar lengths of the 3-bar minimal tensegrity prism in two-dimension 
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Figure 5.6: A depiction of the stability region of the 3-bar minimal tensegrity prism in 

three-dimension using a small number of slices 

 

 

(a)       (b) 

Figure 5.7: (a) The initial 3-bar tensegrity prism; (b) SolidWorks
®
 dimensional drawing 

of the 3-bar tensegrity prism 
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5.3.2 Design of Cables 

The next stage of the realization process is the design of cables. Here, it will be assumed 

that the cables are linearly elastic and, as such, can be approximated by linear springs 

(that will only be subjected to stresses below the yield strength) with fixed stiffness 

constants and the errors associated with linear approximations will be neglected. The 

desired structural configuration is shown in Figure 5.8. It is worth noting that the three 

bottom nodes of this structural system are to be rigidly attached to the base, therefore, 

eliminated when the boundary conditions are applied. Thus, the need for the bottom 

springs is removed and the 12-member structural system has 9 DOFs (that is, each of 

the three top nodes can move in three-dimensional Euclidean space). For the initial 3-

bar tensegrity prism, at bar-lengths of 60 cm (length of each of the three bars), each of 

the six cables (the three top horizontal and the three vertical cables) has a length of 

40.8750 cm. The corresponding tensile forces in each of the three top-horizontal and 

three vertical cables are 105.2308 N and 182.2650 N, respectively, as given in Table 

5.1. Assuming that all the linear springs have the same spring constants k, which is 

38.15 N/cm, the initial spring lengths can be obtained (from Hooke‘s law) as follows:  

(a)  For the vertical spring:  

 Tensile force     = Extension =  
          

          
 = 4.78 cm 

 Original length = Final length   Extension = (40.857   4.78) cm = 36.0974 cm  

(b)  For the horizontal spring:  

 Tensile force     = Extension =  
          

          
 = 2.7583 cm 

   Original length = (40.857   2.7583) cm = 38.1167 cm  

The spring constant is dependent on the spring material (shear modulus) and 

geometry (number of active coils) and, in practice, springs are commonly designed 

using the parameters of the shear modulus and number of active coils as follows [174]:  

  
   

    
        (5.10) 

where  ,  ,   and   are the shear modulus, mean spring diameter, wire diameter and 

the number of active coils, respectively. Figure 5.9 shows the picture of the spring 

fabricated for this project to serve as a top-horizontal cable; the spring has the following 

specifications: G of carbon steel = 79300 Nmm
-2

, D = 12.365 mm, d = 2.95 mm and n = 
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104; thus, the spring constant k is approximately 38.18 N/cm with a tolerance of  /  

6%. The original length of the spring is 37.67 cm which is short of the 38.12 cm 

required by 0.45 cm. The remaining 0.45 cm corresponds to the length of the inactive 

part of the spring (the total distance of the inactive parts due to each of the two end 

connectors) and, thus, on a load (pull force) of 105.23 N, the distance between the 

midpoints of the end connectors will be approximately equal to 40.875 cm as required.  

 

Figure 5.8: SolidWorks
®
 dimensional drawing of the 3-bar tensegrity prism with cables 

approximated by elastic springs and the three bottom nodes rigidly attached to the base 

 

 

Figure 5.9: Picture of the spring fabricated to approximate the linear cable of the initial 

3-bar tensegrity prism 

 

End connector 

Mid-point of the end 

connector 

Inactive part of the end connector 
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Figure 5.10 shows the results of a SolidWorks
®
 simulation of the 3-bar tensegrity 

prism of Figure 5.8 with a forced oscillatory motion of an actuator‘s arm by a force that 

would drive the arm through a distance of 13 cm while the two other actuators (bars) are 

restricted to their current lengths of 60 cm. The simulation assumes that the springs are 

connected to the joints in a pin-jointed fashion. The results reflect the variation of forces 

in the six springs as the linear actuator oscillates. Importantly, the simulation confirms 

the correctness of the results of the form-finding algorithm presented in Chapter 2 in 

that the forces in the top horizontal springs and the vertical springs oscillate around the 

values of 105.2308 N and 182.2650 N, respectively, which are the nominal values of the 

corresponding forces obtained from the form-finding process.  

The design of the 3-bar regular minimal tensegrity prism just considered is 

monostable in that, the only tensegrity structure it can realize are regular tensegrity 

prisms. Thus, since    and   are constants (that is, bottom nodes are rigid and the twist 

angle of regular tensegrity structures are unique), the only other configuration for which 

the initial 3-bar tensegrity prism will obtain a valid tensegrity structure is by varying the 

circumradius of the top polygon   , thereby changing the height of the tensegrity prism 

by simultaneously increasing or decreasing the lengths of each of the three vertical bars 

equally. This particular case of varying the height of the 3-bar regular minimal 

tensegrity prism was also adopted in [165]. Figure 5.11 shows the degree of stability of 

the initial 3-bar tensegrity prism (measured by the natural log of the norm of the nodal 

residual forces) as its height is varied by simultaneously increasing the lengths of the 

bars equally from 45 cm to 75 cm. It can be seen that the valid tensegrity structures can 

only be truly realized if the lengths of the bars are roughly within 55 cm and 62.5 cm 

range. Using the well-known formula of computing the circumradius of a regular 

polygon (circumradius = 
           

       
    

           
 
 ), the 55 cm to 62.5 cm range correspond to 

31.75 cm      36.08 cm. The hindrance to the possibility of having better shape 

control of the structural assembly (through obtaining more valid tensegrity prism) is due 

to the passive nature of the cables or linear springs that are used. This is illustrated by 

considering the example that follows.  
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Figure 5.10: The variation of forces in the six springs as a linear actuator is driven (a 

forced oscillatory motion) through a distance of 13 cm 
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Figure 5.11: The degree of stability of the initial 3-bar tensegrity prism (measured by 

the natural log of the norm of the nodal residual forces,       ) as its height is varied 

by increasing the lengths of the bars equally from 45 cm to 75 cm 

 

Consider the three tensegrity structures shown in Figure 5.12, the first structure, 

(a), is the initial 3-bar tensegrity prism and has the original lengths of the top and 

vertical springs equal to 36.0974 cm and 38.1167 cm, respectively. This makes the 

required stiffness constant for all the springs equal to 38.15 N/cm. Now, if the structure 

is to be transformed by deployment into Figure 5.12 (b) – which is also a valid 

tensegrity structure with       – the required original lengths of the vertical spring 

must be altered if the stiffness constant for all the springs used must remain the same. In 

particular, for the structure in Figure 5.12 (b), the final lengths of the vertical spring are 

41.9863 cm, 37.5095 cm and 45.2774 cm and the corresponding forces for these 

structural members are 186.8189 N, 167.2580 N and 201.8956 N, respectively; 

assuming a linear spring model with a spring constant of 38.15 N/cm, the extensions of 

these members are, using Hooke‘s law, 4.8970 cm, 4.3842 cm and 5.2922 cm, 

respectively, and thus, the required original lengths of the vertical springs are 36.9993 

cm, 33.1253 cm and 39.985 cm, respectively. Likewise, if the tensegrity structure of 
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Figure 5.12 (a) is to be transformed to the valid tensegrity prism of Figure 5.12 (c), the 

original lengths of the three vertical springs must have the values of 29.6309 cm, 

25.5764 cm and 32.9691 cm. Thus, the problem of structural transformation of the 

tensegrity prism may be looked at as the problem of varying the initial length of the 

tensile structural members by active means rather than passive. 

Therefore, to have better shape control of the structural assembly as well as to 

increase the range of    for which valid tensegrity structures can be obtained using the 

initial 3-bar tensegrity prism, it is pertinent to employ a multistable design approach by 

incorporating active tensile structural members to function as active cables into the 

structural assembly. Fulfilling this need will mean that, the control variable for 

achieving shape change that gives valid tensegrity structure will not be limited to 

circumradius of the top polygon alone (that is, the equality constraint of          

     on the three bars). As such, a new approach towards the design of active cables for 

realizing a multistable tensegrity prism is proposed in the next section.  

5.3.3 Design of Active Cables 

In the preceding section, it was shown that varying the original lengths of the three 

vertical springs of the initial 3-bar tensegrity prism can be used as a means of better 

shape control of this tensegrity structure. By combining the control of the original 

lengths of these vertical springs with the control of the bar lengths, a cable-and-bar 

length controlled tensegrity structure is realized. In general, this control scheme 

combines the advantages of cable length and bar length controlled tensegrity structural 

systems together. On the one hand, optimal actuator and sensor placement techniques 

can be employed to determine, in an optimal sense, the best bar and cable candidates – 

to be actuated and/or to serve as sensors – for control. This expands the search domain 

since optimal actuator and sensor locations are no longer restricted to bar locations 

alone or cable locations alone. On the other hand, when cable and bar lengths can be 

controlled simultaneously, the magnitudes of the possible structural displacements 

which are necessary for significant shape change increase. 
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Perspective view      Side view      Top view 

 

(a)         = 40.8750,            = 60.0 

 

 

(b)   = 41.8963,    = 37.5095,    = 45.2774,     = 50.0,     = 60.0,     = 70.0 

 

 

(c)   = 33.5526,    = 28.9621,    = 37.3326,    = 45.0,     = 55.0,     = 64.0 

Figure 5.12: Examples of three regular 3-bar minimal tensegrity prisms (with       , 

                  = 40.8750 cm,                   = 2.5745 

N/cm,         = 4.4591 N/cm, and            =  4.4591 N/cm in the three 

structures) 
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From a practical point of view, it is not convenient to design and install a new 

spring with a new original length each time a tensegrity structure is required to perform 

a structural transformation. Thus, a possible alternative scheme for accomplishing the 

task of getting the correct lengths and forces in the tensile structural members can be to 

introduce, in the form of very small actuators, electromechanical or active material-

based components (such as shape memory alloys or piezoelectric devices). These 

components can easily be embedded into the tensegrity system as shown in Figure 5.13 

to provide an additional increase or a decrease in length to the tensile structural 

members as may be required with minimum additional weight and space requirements 

as possible. The electromechanical or active material-based actuator can be positioned 

at the middle or at the end of a tensile component (which, of course, must be in tension 

at all times) as shown in Figure 5.14 (a) and (b), respectively. From the example of the 

previous section related to the transformation of Figure 5.12 (a) to Figure 5.12 (b) 

where, assuming a spring constant of k = 38.15 Ncm
-1

, the required lengths of the 

vertical springs of Figure 5.12 (b) are 41.9863 cm, 37.5095 cm and 45.2774 cm and the 

corresponding forces are 186.8189 N, 167.2580 N and 201.8956 N, respectively, the 

stroke length that an electromechanical actuator that forms part of the vertical tensile 

structural member of Figure 5.14 (b), for  example, will be required to provide can be 

computed using the following equations:  

                 
 
         (5.11) 

where  ,  ,      and    are the length of the tensile structural member, the force in the 

tensile structural member, the retracted length of the electromechanical actuator inline 

with the tensile structural member and the original length of the spring of the tensile 

structural member, respectively. The spring constant k for each of the springs is 38.15 

N/cm. Let      and    of each of the vertical tensile structural member be 21.558 cm and 

11.00 cm, respectively; thus, using Equation (5.10), the extended length    for the 

electromechanical actuators for Figure 5.12 (a – c) are as given in Table 5.3.   
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Figure 5.13: The 3-bar tensegrity prism with electromechanical or active material based 

actuator embedded in-line with the tensile structural members 

 

(a)  

 

 

 

 

(b) 

 

 

 

 

 

 

 

Figure 5.14: (a) and (b) are tensile structural members with electromechanical actuator 

positioned in-line at the middle and at the end of cable, respectively 

 

Electromechanical or active 

material-based actuator 

         

   

Effective length of the 

short actuator 

     

Effective length of the 

short actuator 

    

   

   

where: 

    - Original spring length  

    - retracted/minimum length of the 

actuator 

     - extended length of the actuator 
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Table 5.3: The extended length    for the electromechanical actuators of  

Figure 5.12 (a-c) 

Structural 

Member 

Structures of Figure 5.12 

(a) 

   (cm) 

(b) 

   (cm) 

(c) 

   (cm) 

7 

8 

9 

3.5394 

3.5394 

3.5394 

4.4413 

0.5673 

7.4272 

-2.9272 

-6.9811 

 0.4111 

 

Thus, it can be seen that the transformation from Figure 5.12 (a) to Figure 5.12 (b) 

requires that the extended length    of the electromechanical actuator of structural 

member 7 changes from 3.5394 cm to 4.4413 cm, that of structural member 8 changes 

from 3.5394 cm to 0.5673 cm and that of structural member 9 changes from 3.5394 cm 

to 7.4272 cm. Likewise, the transformation from Figure 5.12 (a) to Figure 5.12 (c) 

requires that    of the electromechanical actuator of structural member 7 changes from 

3.5394 cm to -2.9272, that of structural member 8 changes from 3.5394 cm to -6.9811 

cm and that of structural member 9 changes from 3.5394 cm to 0.4111 cm. In this latter 

case, the negative signs show that the effective length of two of the vertical tensile 

structural members (structural members 7 and 8) should be smaller than the retracted 

length of the electromechanical actuators. As it is physically not possible for the 

electromechanical actuators to retract below      and, moreover, there is a limit on the 

maximum extended length    that can be achieved with the in-line actuators, and the 

springs of the tensile members have constant original length   ; it is important to 

include all these length constraints into the form-finding algorithm and this leads to the 

following considerations:  

1. The three bottom nodes of the structural assembly are to be rigidly fixed to a base as 

explained in Section 5.3.2; this corresponds to the following constraint on the structural 

members 1, 2, and 3 in the form-finding algorithm:  

   = 40.875  for i = 1, 2, 3    (5.12)  

2. The three linear actuators that form the bars of the structural assembly have limited 

stroke lengths (retracted length of actuator = 44.958 cm, stroke length of actuator = 

30.48 cm). Moreover, for an applied set-point voltage of 0 – 5 V corresponding to 0 – 

30.48 cm of the extended (stroke) length of the linear actuator, the LD series linear 

actuator was experimentally found to respond linearly if its extended length is kept 

approximately within 2 cm and 26 cm. Thus, the lengths of the linear actuators are 
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restricted to a minimum value of [44.958 + 2] cm and a maximum value of [44.958 + 

26] cm; this leads to the following constraints on the structural members 10, 11 and 12 

in the form-finding algorithm:  

46.958 <      < 70.958  for i = 10, 11, 12  (5.13)  

3. The length of the vertical tensile structural member must be greater than          

since tensile structural member must be in tension at all times. It is assumed that the in-

line electromechanical actuator has a retracted length of      = 21.558 cm, a stroke 

length of 5 cm and a linear response with an input voltage of 0 - 5 V (corresponding to 0 

– 5 cm of the extended length) if the set-point of the stroke length is kept within 0.333 – 

4.333 cm. Also, the original length of the in-line spring that forms part of the vertical 

tensile structural member    is 11.00 cm. Thus, the length of the tensile structural 

member must not be below [         + 0.333] cm and must not exceed [         + 

4.333 + ‗maximum allowable spring extension‘] cm. Suppose the maximum allowable 

force on the vertical tensile structural member is 220 N, the maximum allowable spring 

extension is (220 38.15) 5.7667 cm. These leads to the following constraints on the 

tensile structural members 7, 8 and 9 in the form-finding algorithm:  

32.891 <     < 42.6502  for i = 7, 8, 9    (5.14)  

The constraints (5.12 – 5.14) presented here correspond to the constraints (5.6 – 

5.8) included in the constrained optimization form-finding algorithm in Section 5.3.1. 

Also, as explained in Section 5.3.1, the length constraints impose restrictions on the 

value of forces in the vertical structural member. If the minimum and maximum forces 

allowed in the vertical structural members are 142.69 N and 220 N, respectively, the 

upper and lower bound on the associated tension coefficients are as follows: 

Lower bound         
      

      
 
      

     
   2.91 N/cm   (5.15)

  Upper bound         
   

      
 
   

     
   6.6888 N/cm

 
            (5.16) 

Equations (5.15) and (5.16) lead to the following constraints on the tension 

coefficients on the vertical tensile structural members: 

                     for i = 7, 8, 9    (5.17)  

Thus, the constraints of (5.4) and (5.17) may simply be written as given (5.17) 

since the satisfaction of (5.17) implies that (5.4) is already satisfied but the opposite is 
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not true (that is,                   = 6.6888); thus, the appropriate constraint on the 

tension coefficient, as given in (5.17), has been previously expressed in (5.5). 

In relation to the design of a multistable tensegrity prism, the fabrication or design 

of the in-line electromechanical or piezoelectric actuators is beyond the scope of this 

project. However, to demonstrate the feasibility and usage of the design and practical 

realization issues presented thus far, a small version of the linear actuators employed for 

the bars, shown in Table 5.4 with its technical details, will be used to serve as the 

electromechanical actuators that form part of the vertical tensile structural members. 

Indeed, the retracted length of this short actuator in 19.558 cm. If the end connector of 2 

cm in length is taken into account, the effective retracted length      equals 21.558 cm. 

Furthermore, Figure 5.15 shows the picture of the short springs fabricated to form part 

of the vertical tensile structural member. The spring is made of carbon steel (shear 

modulus G = 79300 N/mm2) and has mean spring diameter D = 19.63 mm, wire 

diameter d = 2.95 mm and number of active coils n = 26. Thus, the spring constant of 

the short spring is 38.17 N/cm which is approximately equivalent to that of the long 

springs that made up the top-horizontal cables of the tensegrity prism.  

 

Table 5.4: A picture and technical details of the 2” stroke linear actuator with 

feedback (LD series actuator) manufactured by Concentric International [173] 

Picture Feature Specification 

 

 

 
Original length: 

Stroke length: 

Weight: 

Gear Ratio: 

Free-run current measured at 12 V: 

Stall current measured at 12 V: 

Linear Speed measured at 12 V: 

Dynamic Linear force measure at 12 V: 

Static Linear Force:  

 
19.558 cm (   0.3048 cm) 

4.826 cm 

1.1623 Kg 

20:1 

0.5 A 

10 A 

1.3 cm/sec 

50 Kilogram-force  

227 Kilogram-force 

 

 

Figure 5.15: Picture of the short spring fabricated to form part of the vertical tensile 

structural member 
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5.4 Collision avoidance, detection and related issues 

For a tensegrity structure that is capable of significant shape change, or the deployed 

tensegrity structure, it is possible for structural members to come into contact – during 

the deployment process – with either other structural members of the same structure or 

with the components of the environment that the structure is operating in; these two 

forms of collisions are termed internal (or self) and external collision, respectively 

[175], [176]. Depending on the intended application, either, both or none of these forms 

of collision may be desirable. The strategies for avoiding contact (collision avoidance) 

or discovering contact (collision detection) between structural members of tensegrity 

structures or between the tensegrity structure and its operating environment have only 

been recently investigated in the literature.  

Generally, there are two methods in which collision avoidance and detection 

strategies may be implemented. In the first method (see, for example, [177]), additional 

constraints are included in the form-finding optimization algorithm. These constraints 

specify the minimum distance allowed among the bars of the structural assembly as well 

as the minimum distance allowed among the nodes to avoid internal collision. If an 

external collision avoidance scheme is also included in this method, the minimum 

distance allowed between the structural assembly and the external object is also 

included as a constraint in the algorithm. Moreover, to serve as collision detectors or 

indicators, the distances among the various constituents of the structural assembly (bars, 

nodes, etc) or the external object are compared with predefined values of distances 

which, for bars and nodes, correspond to the minimum distances between the bars and 

nodes of a tensegrity structure. This collision avoidance method of including constraints 

in the form-finding algorithm may better be described as a collision prevention strategy 

since the form-finding algorithm can only give solutions in which collisions are not 

present at all in the first place. As such, the method offers no strategy for dealing with 

collision if it is to occur during the shape changing, or transition, phase. Nonetheless, 

the method can be used as a first step for developing path-planning algorithm for 

tensegrity-based deployable structures [177].  

The second method of collision avoidance operates during the structural transition 

phase (see, for example, [178]). It involves including the constraints outline in the first 

method in the optimisation model used for computing the control law for the actuated 

structural members. The objective function of the optimization problem is not a form-
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finding problem but, depending on what is desirable during the shape transition process, 

could be related to the control effort, element forces, vibration suppression, and so on. 

Model Predictive Control (MPC) technique – famous for its ability to handle system‘s 

input and output constraints – has been used in [175] for computing the future 

behaviour of the tensegrity structural system and to choose the control input(s) at each 

instant of time such that collisions are avoided up until the prediction horizon. To use 

MPC techniques for this collision avoidance scheme effectively, however, will require 

that a back-up control law be provided for cases where there are no feasible control 

input. Also, as the number of structural elements increase, it becomes harder to solve 

the control optimization problem since the number of constraints increase quadratically 

with an increase in the number of structural elements [175]. In addition, just as in the 

first method, the second method has only so far been proved to be useful if the 

tensegrity configuration does not change during the structural transition process. It is 

important to emphasize that none of the methods presented in the literature so far offers 

a general approach to solving the collision avoidance problem and, as yet, they have 

only been demonstrated to work with small scale structural systems with very simple 

node connectivity. Beside, none of the methods proposed is capable of dealing with 

structural transition process involving structural reconfiguration.  

In the remainder of this section, discussions on how the characteristics of a 

tensegrity prism can be explored for the purpose of including collision avoidance and 

detection strategies (that is, the first method as introduced earlier in this section) in the 

form-finding optimization algorithm will be covered. Since the nodes of practically 

realizable tensegrity structure are made of joints that are likely to have a fixed range of 

angular motions, the discussion will also be extended to the process of including these 

joint constraints into the form-finding algorithm.  

Consider the two structural members shown in Figure 5.16. Since each structural 

member is made up of two nodes, the parametric equation of the line describing each of 

the members is the coordinate of a node and a vector in the direction of the second 

node; this may be written as follows:  

Member A:                              (5.18) 

Member B:                              (5.19) 
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where    and    are the coordinates of the nodes of member A such that          

and         ;    and    are the coordinates of the nodes of member B such that 

         and         ; thus,   and   are real numbers. The optimization problem 

to find minimum distance between member A and B may be written as follows:  

         
     

     

where the vector between points on the two lines can be expressed as             

     . At minimum distance,                          . Therefore, the 

minimum distance   between      and      can be written as follows:  

                        (5.20)  

 

 

  

  

  

 1 

 2 

 1  2 

A(  ) 

B(  ) 

Member A 

Member B 

  
   

Figure 5.16: Two structural members with each member made up of two nodes 

 

Let          ,           and          . Also,        ,        , 

       ,         and        , where ‗   ‘ denotes the scalar (dot) product operator, 

the analytical solution to the above optimization problem can be found as follows:  

Of all vectors   for which       and      , the vector     is the only vector 

perpendicular to both      and      [179]. This implies that         and       

 . Thus, at minimum distance, the following equations are satisfied:  

                                   (5.21) 

                               (5.22) 

                               (5.23) 
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Re-arranging (5.22) and (5.23), and solving the resulting two simultaneous linear 

equations for the two unknowns,    and   , the following equations are obtained:  

   
     

     
      ,     

     

     
     (5.24) 

Substituting           and equation (5.24) into equation (5.21) gives the 

following equation:  

            
                   

     
     (5.25) 

where        . The case of         indicates that the two lines      and 

     are parallel; in this case, if     , equations (5.24) and (5.25) can respectively be 

written as follows:  

     
 

 
  

 

 
      (5.26) 

                           
 

 
     (5.27) 

In general,    can be computed as follows:  

      
         

                   

     
                   

         
 

 
                                                

       (5.28) 

Thus, the shortest distance   between the two lines      and      can be 

computed by substituting (5.28) into (5.20). For the initial 3-bar tensegrity prism under 

consideration, the shortest distances between Bar 1 and Bar 2, Bar 1 and Bar 3, and Bar 

2 and Bar 3, are shown in Figure 5.17 as L, M and N, respectively. The coordinates of 

the corresponding points on Bar 1, 2 and 3 are as follows:  

 Shortest distance between Bar 1 (         ) and Bar 2 (         ) = length of L:  

   = 0.5591   ,        = 0.4409 

           = [6.3113, -2.5604, 1.6044]  ,             = [-0.4337, -6.4026, -3.2091]  

Length of L,                                               = 9.1339 cm 

 Shortest distance between Bar 1 (         ) and Bar 3 (         ) = length of M: 

   = 0.4409   ,        = 0.5591 

           = [5.8812, 3.2512, -2.4318]   ,               = -1.0066, 6.3209, 2.7220] 

Length of M,                                               = 9.1339 cm 



169 
 

 Shortest distance between Bar 2 (         ) and Bar 3 (         ) = length of N:  

   = 0.5591   ,        = 0.4409 

           = [-5.0937, -4.4521, 1.7639]  ,              = [-5.6582, 3.8427, -2.0185] 

Length of N,                                               = 9.1339 cm 

Thus, the shortest distance   between any two bars of the initial 3-bar tensegrity 

prism is 9.1339 cm. If the  th
 bar is now considered a circular cylinder of radius   , then 

the extra constraints to be added to the form-finding algorithm to prevent collision of 

the bars can be written as follows:  

     for    1, 2, 3.      (5.29) 

 

Figure 5.17: An illustration of the shortest distance between any two bars of the initial 

3-bar tensegrity prism 

 

The radius of the small and large cylindrical bars that made up the telescopic 

linear actuator shown in Figure 5.4 are approximately 0.991 cm and 2.389 cm, 

respectively; while    is taken as the largest of these two values as a conservative 

measure,   is obtained from (5.20) and computed using (5.21 – 5.28). When the 

Node 2

X: 7.917

Y: -24.25

Z: 16.67

Node 5

X: 16.96
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Z: -21.77
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Z: 20.41

Node 4

Node 1
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collision avoidance constraint (5.29) is included in the form-finding algorithm for 

obtaining the initial 3-bar tensegrity prism or its multistable counterpart, it is found that 

the constraint is always inactive for any point in the feasible region. This is because the 

12-member structural system has a few DOF (9 DOFs – having constrained the other 9 

DOFs of the possible total 18 DOFs of the initial 3-bar tensegrity prism). Therefore, the 

constraint (5.29) can be dropped since the form-finding algorithm ignores the inactive 

constraints anyway. Nonetheless, this approach which consists of including a collision 

avoidance strategy can be useful and employed for larger structures with larger number 

of flexible DOFs. Moreover, the constraint (5.29) can be employed for collision 

detection. Given an optimal solution from the form-finding algorithm, the collision 

detection algorithm can have the following structure, for instance:  

Given an optimal solution from a form-finding algorithm, check if      is 

satisfied for    1, 2, 3: 

o If the constraint      is inactive (that is,     ), there is no collision 

o If the constraint      is active (that is,     ), there is a collision 

o If the constraint      is violated (that is,     ), the shape change is 

infeasible as it requires the physical structural members to cross into 

each other.  

Furthermore, it should be noted that the collision avoidance constraint in (5.29) is 

an internal collision avoidance strategy that involves only the distances between the 

bars. The consideration of the bars only is justified in that internal collisions with the 

cables is not possible for this structural configuration except if the constraint      is 

violated since cables are at the outside of the structure. More so, it should be noticed 

that internal collision avoidance between the nodes is inherent in the form-finding 

algorithm itself (by definition of the tensegrity configuration and the constraint 

requirement that none of the structural members can have zero length). If it were not, it 

would mean that one or more cables have been eliminated from the tensegrity structure 

since cables, which are of none zero lengths, must be in tension at all times. 

Also, for the initial 3-bar tensegrity prism shown in Figure 5.17, it may be 

desirable to know the angles that each of the vertical structural members makes with the 

bottom horizontal plane (that is, the plane containing nodes 1,2 3). As will be shown 

next, these angles can be used to include joint (angular) constraints in the form-finding 

algorithm to take into account the limited range of angular motion that the nodal joints 

are capable of. In addition, they can also be used for optimal joint trajectory planning 
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and, also, for including joint constraint for computing the control law for structures that 

are controlled during the transition phases. From geometry, a plane can be described 

completely by a normal vector   perpendicular to the plane and any point   on the 

plane. For the structural member of Figure 5.18, let the coordinates of the three bottom 

nodes be   ,    and   , the normal vector can be computed as follows: 

                       (5.30)        

where ‗ ‘ denotes the cross (vector) product operator. The point   may be chosen as   , 

   or   . Any structural member   with nodes    and    can be uniquely described by 

the Euclidean vector     as follows:  

                (5.31) 

where the magnitude of    ,      , gives the length of that structural member. If   denotes 

the angle between vectors   and    , the value of   can be computed as follows:  

        
     

         
        (5.32) 

The angle between the  th structural member and the plane, denoted  , is therefore 

given as follows:  

                    (5.33) 

Using equation (5.33) for the initial 3-bar tensegrity prism, the angles between 

each of the bars and the plane and each of the vertical cables and the plane are 40.5503
o
 

and 72.6110
o
, respectively.  Therefore, if each of the three bottom joints of the linear 

actuators (the bars) is a two-axis joint that allows each actuator to travel 0
o
 – 360

o
 

(unrestricted) about the vertical axis as shown in Figure 5.18 and each actuator to make 

the angle   with the bottom horizontal plane such that   
           

 , then the 

constraint to be included in the form-finding algorithm is written as follows:  

  
      

         (5.34) 

where   is computed using (5.33) and converted to degrees. 
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Figure 5.18: An illustration of a structural member that makes an angle of   with the 

plane containing nodal points   ,    and   . 

 

5.5 Motion of Tensegrity Structures 

If tensegrity structures must be used in applications requiring large displacements, the 

development of computationally efficient techniques for performing useful movements 

is necessary. The complexities of computation arise as a result of many factors 

including the additional devices (such electromechanical or piezoelectric actuators) that 

may have been introduced to provide adjustable stuffiness (for shape changing, 

vibration suppression and robustness to external loads and disturbances) as well as the 

requirement to avoid internal structural collisions and to have a desired final structural 

shape that is still a valid tensegrity structure, for example.  

In this section, the process of achieving well-defined movement of tensegrity 

prisms will be discussed. Although the focus is on the initial 3-bar tensegrity prism, the 

discussion extends to tensegrity prisms in general. The triangle formed by the three top 

horizontal cables of the initial 3-bar tensegrity prism and the plane containing these 

cables will be called the top triangle and the triangular plane, respectively. The motion 

of the top triangle whose corners (vertices) are the three top nodes of the initial 3-bar 
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tensegrity prism, in three dimensional Euclidean space, can be characterized by 

translation in the three axes –  ,   and   – and rotation about these three axes as shown 

in Figure 5.19. The focus will be to understand whether or not translational and 

rotational movements of the top triangle will give another valid tensegrity structure and, 

if they do, over what range of translational or rotational variations? If they do not, then 

is the problem peculiar to this structural configuration or extends to tensegrity structures 

in general? 

 

(i) 

 

 

 

 

 

 

 

 

(ii) 

Figure 5.19 (a): (i) and (ii) are the plane containing the three top nodes and the 

translation of the top triangle in the  -   plane, respectively.  

xy

z

Plane containing the three

top nodes (xy - plane)

y 

x 

Top triangle of 

the original 

structure 

Translation 

on the x-axis 

Translation on 

the y-axis 

Translation on the  z-axis is into 

the paper – corresponding to 

height change of the tensegrity 

prisms 



174 
 

 

 

 

 

 

 

 

 

Figure 5.19 (b): Rotation of the top triangle about the   and   axes.  

 

5.5.1 Translation of the Tensegrity Prisms 

In this section, the engineering problem is to achieve translation in the direction of the 

 ,   and   axes of the top triangle (whose corners are the three top nodes – nodes 4, 5 

and 6) of the initial 3-bar tensegrity prism using the constrained optimization form-

finding algorithm presented in Chapter 2. (The nodal coordinates of this structure are 

already given in Figure 5.17.) This problem is solved by including the following 

constraints in the form-finding algorithm:  

1. The three bottom nodes are rigidly attached to the base; the associated equality 

constraints being:  

Node 1:    = 4.2761,      =  24.9402,        = -17.4954 

Node 2:    =  16.9575,      = -13.6822,        = -21.7685    (5.35) 

Node 3:    = -23.0179,      =   -5.4061,        = -19.7103 

2. The translation of the three top nodes (   4, 5, 6) due to the translation vector (  , 

  ,   ) results to the final nodal coordinate vector of the  th node (   ,    ,    );     , 

   and    are computed as follows:  

          ,              ,                 (5.36) 
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where, for the initial 3-bar tensegrity prism, the nodal coordinates of the top nodes are 

as follows:  

Node 4:    =  16.3531,      =  15.5697,       = 20.4138 

Node 5:    =    7.9165,      = -24.2494,       = 16.6680    (5.37) 

Node 6:    = -22.4850,      =    2.8275,       = 20.3234 

3. If it is required that the area of top triangle (which is an equilateral triangle) remain 

the same after translation, this requirement can be expressed as the following equality 

constraint:  

                      (5.38) 

where      723.4627cm
2
 and       denote the area of the triangle before and after 

translation;      is computed using  the well-known Heron‘s formula for computing the 

area of a triangle which is expressed as follows:  

                              (5.39) 

where    is the length of the  th structural member and    
            . It should 

be noted that the equality constraint (5.38) may not be necessary to obtain a valid 

tensegrity prism after the rotation, but, without it, the results of the form-finding may 

not necessarily satisfy the constraint of (5.38). Also, it should be observed that this 

constraint also constrains the lengths of the three top cables. 

4. The three linear actuators that form the bars of the structural assembly have limited 

stroke lengths and ranges in which the input-output relationship is linear (2 cm      < 

26 cm); as discussed in relation to the constraint of Equation (5.13), this limitation 

corresponds to the inequality constraint as follows:  

46.958 <      < 70.958  for i = 10, 11, 12   (5.40) 

5. Constraints due to additional devices (in the current case, in the form of short (in-

line) electromechanical actuators) to provide adjustable stiffness to the vertical cables 

and in view of the linear range in which these devices work (0.333 cm      < 4.333 

cm), as expressed in relation to the constraint given in (5.14), are as follows:  

32.891 <     < 42.6502  for i = 7, 8, 9    (5.41) 



176 
 

6. The nodal constraints (which also imply length constraints) in (5.35), as mentioned in 

relation to the constraint given in (5.17), also imposes the following constraints on the 

tension coefficients of the structure:  

                     for  i = 7, 8, 9    (5.42) 

Figure 5.20 shows the translations of the initial 3-bar tensegrity prism as a result 

of the preceding six constraints. The values of        of the final structure (after 

translation) are given in each case. It should be noted that all the final structures in this 

figure due to the translation vector specified for each structure are valid tensegrity 

structures and they all satisfy all the conditions of the constraints included in the form-

finding algorithm. Also, it is important to observe that if the cables are described by 

direction vectors, the angles between the cables 1 and 4, cables 2 and 5, and cables 3 

and 6 are the same for all these valid tensegrity structures and they are equal to the twist 

angle (    
 

 
  

 

 
    ) of the initial 3-bar tensegrity prism. This confirms that, just 

as the vector of tension of coefficients is unique for any tensegrity prism (for any 

tensegrity structure for that matter), the twist angle of any tensegrity prism is also 

unique and it is independent of translation of the top polygon as long as the final 

structure is a valid tensegrity structure. In other words, the twist-angle is unique for any 

given  -bar tensegrity prism – regular or irregular.  

It has not been possible to find an expression describing the range over which 

translations in the direction of the  ,   and   axes of the top triangle of the initial 3-bar 

tensegrity prism will give a valid tensegrity structure. However, the following results 

(obtained after several simulations) are examples of valid ranges for pure translations in 

the z-axis direction:  

 Translation in the direction of the z-axis with      and      results in a valid 

tensegrity structure for -4.8cm      0 cm 

 Translation in the direction of the z-axis with      and      results in a valid 

tensegrity structure for -4.8cm      -0.65 cm 

 Translation in the direction of the z-axis with      and      results in a valid 

tensegrity structure for -4.0cm      -1.0 cm 
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Perspective view      Side view 

  
(a)     ,     ,      ,                    

  
(b)       ,     ,      ,                    

  
(c)     ,      ,      ,                    

  
(d)     ,     ,        ,                    

 

Figure 5.20: The translation of the initial 3-bar tensegrity prism (Before translation: 

cable = blue, bar = black; after translation: cable = red, bar = brown) 
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5.5.2 Rotation of the Tensegrity Prisms 

In the introduction of this chapter, it has been mentioned that the design of a regular 

tensegrity prism can be approached as a monostable or multistable design. Thus, on the 

one hand, if the design of the initial 3-bar tensegrity prism is considered to be 

monostable, it will be impossible to rotate the top triangular to obtain another valid 

tensegrity prism. On the other hand, if the multistable design approach is adopted, since 

the vertical cables are now equipped with mechanisms to vary their stiffness, it is 

possible to rotate the top triangle and obtain a valid tensegrity prisms. All of these 

different valid tensegrity prisms have a twist angle that is the same as that of the 

monostable system and it is impossible to rotate the top polygon (triangle, in the current 

case) of any valid tensegrity prism about the triangle centre and on the plane containing 

the triangle vertices to find another valid tensegrity structure. Nonetheless, the rotations 

of the top triangle about the  ,   and   axes that can possibility be achieved with the 

multistable tensegrity structure that has been considered so far in this chapter will be 

considered in this section to understand the variation of the norm of the residual forces 

as the rotations are being carried-out.  

A general rotation of the top triangle about the  ,   and   axes by   ,    and   , 

respectively, with the bottom nodes rigidly fixed, is as follows:  

 

         
         
         

     

      
      
      

     (5.43) 

where            and   ,    and    are defined as follows:  

     

   
           
            

  ,      

            
   

           

   ,      
           
            

   
  

           (5.44) 

Also, the vector (   ,    ,    ) denotes the nodal coordinates of node   after the 

rotation from an initial position (  ,   ,   ). Figure 5.21 shows the rotation of the top 

triangle of the initial 3-bar tensegrity prism about its z axis (    ,     ). This 

figure also shows the variation of the norm of the residual force vector (      ) as the 

structure rotates about the  ,   and   axes. Generally, the rotation of the initial 3-bar 

tensegrity prism is possible in the following cases:  
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 Rotation about the   -axis (    ,     ):                 

 Rotation about the   -axis (    ,     ):                  

 Rotation about the   -axis (    ,     ):                

More so, Figure 5.22 combines the translation and rotation processes together; it 

shows the rotation of the top triangle of the tensegrity prisms of Figure 5.20 (b), (c) and 

(d), and – as stated before – the outcome of rotation is not a tensegrity structure but a 

tensegrity configuration.  

 

(a)     ,     ,                       (b)     ,     ,                

 

 

(c)     ,     ,                       (d)     ,     ,            

Figure 5.21: (a) Rotation of the top-triangle of the initial 3-bar tensegrity prism about 

the z-axis; (b), (c) and (d) are the variation of the norm of the nodal residual forces as 

rotation of the top triangle is carried-out about the x, y and z axes, respectively.  
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Perspective view      Side view 

 
(a)       ,     ,      ,     ,     ,        ,                 

  
(b)     ,      ,      ,     ,     ,       ,                

  
(c)     ,     ,        ,     ,     ,      ,                

 

Figure 5.22: The translation and rotation of the initial 3-bar tensegrity prism (Before 

translation: cable = blue, bar = black; after translation: cable = red, bar = brown) 
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5.6 Discussions 

The translation and rotation of the top triangle of the multistable initial 3-bar tensegrity 

prism is an example of a mechanical design that potentially has wide area of 

applications. Additional flexibility (that may be required for precision control 

applications) can be added by increasing the number of active structural members. 

Importantly, the significance of the translation and rotation exercises of the preceding 

sections, from an application perspective, is that the equilibrium of a tensegrity structure 

can be modified to achieve a desired shape (to suite a shape morphing application, for 

instance) without requiring power to hold this new shape. Moreover, the translation and 

rotation of the top triangle gives the structural system that has just been considered a 

six-DOF of movement similar to the motion of the popular Stewart platform[180]. The 

Stewart platform has gained popularity mainly as a positioning tool for wide range of 

applications including flight simulators, satellite dish positioning, and machine tools 

[181]. Generally, the practical usage of the Stewart platform has been in applications 

requiring low speed and large payload conditions [182]. A 2-stage 3-order class 1 

tensegrity structure has been proposed in [48] as a six-DOF motion simulator that, 

unlike the classical Stewart platform, eliminates the need for telescopic actuators and 

the problems associated with using them. However, while telescopic actuators has been 

used for the realization of the multistable 3-bar tensegrity prism in this project, the two 

important differences between this structural system and the classical Stewart platform 

are as follows: 

1. For the 3-bar tensegrity prism used for 6-DOF position control system, there is 

the extra requirement that the bars (‗telescopic actuators‘) must be in compression and 

the cables  (whose stiffness is adjustable) must be in tension at all times. These 

requirements are not present in Stewart platform used for position control applications.  

2. In the 3-bar tensegrity prism, the top triangle (called the ‗platform‘ in the 

standard Stewart platform) consists of cables that are in tension. This implies that the 

forces of the structural members that connect the top nodes are tensile. Moreover, the 

platform of the Stewart platform is a rigid body.  

Thus, in view of the features of tensegrity structural systems, an approach that 

would combine the structural optimization (to obtain valid tensegrity structures) as well 

as the required control strategy (for deployment and position control) opens many 
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potential applications. The following area, for instance, is an example of a potential 

application:  

A unique feature of wind energy generation that has made it both technologically 

and economically viable, as against other major energy generation systems, is the 

possibility of generating energy on a large-scale without the consequence of having 

serious environmental pollution. The cost of building wind turbines may be relatively 

small but the wind field from which wind turbines generate power is also the source of 

large fatigue loads on the wind turbine. This causes a significant increase in 

maintenance costs and also a decrease in the operational lifetime of the turbines [183].  

To address this problem, many techniques that attempt to reduce fatigue loads on 

the turbines while the turbines still generate sufficient power exist. These techniques use 

methods involving controlling the blade pitch [183–185]. However, future turbine 

designs will likely be stability-driven since it is not likely that performance can be 

enhanced significantly without influencing structural stability and vibration 

characteristics. Moreover, recent research has also shown that the blade geometry may 

be optimised to gain performance, loads, and stability benefits [186]. This possibility 

creates more flexible designs such as the possibility to realize torsionally-flexible rotor 

blades. However, the approach introduces problems related to material and geometric 

couplings. Also to be dealt with are multidisciplinary problems related to blade 

elasticity, aerodynamics, dynamics, and control. Finding solutions to these problems 

must be approached from a multidisciplinary viewpoint [91], [166] and tensegrity 

structures provide possible platform for solving these difficult tasks – primarily due to 

their light weight, ability to form complex variable geometry and stiffness, and the 

possibility of modelling these structures easily. Large wind turbine blades capture more 

wind energy but are more susceptible to fatigue stresses at high winds in particular. On 

the other hand, small blades capture less wind but are less susceptible to structural 

fatigue. Using the concept of multistable tensegrity structures, turbine blades can be 

made flexible – making it possible to control their shapes depending on the loading 

conditions to avoid structural fatigue while the efficiency of energy conversion is not at 

risk and the system weight is kept to the minimum. A flexible wind turbine blade loaded 

with tensegrity prisms is shown in Figure 5.23 as a demonstration of this concept. The 

morphing capability of the turbine blades relies on controlled deformation of the blade‘s 

shape under the action of tensegrity prisms located inside the blade box.  



183 
 

  

Figure 5.23: A sectional-view of a flexible (morphing) wing turbine blade loaded with 

tensegrity prisms 

 

5.7 Summary 

This chapter deals with the design of the deployed tensegrity structures which are 

tensegrity structural systems that are designed to be capable of changing their shapes 

significantly. The discussion has focused on practical structural design and optimization 

issues and brings together many novel concepts. In particular, it introduced a new 

physical realization approach that makes it possible to combine the control of the cable 

and bar lengths simultaneously, thereby combining the advantages of both bar control 

and cable control techniques of tensegrity structural systems together. Importantly, the 

approach that made this practical realization possible is by varying the stiffness of the 

cable structural members. Also, the technique used for the control of cables is 

significantly different from the techniques used for cable rest length control presented 

so far in the literature. 

This chapter also includes the design of the tension and compression structural 

members and the techniques for form-finding and deployment of a simple mono-stable 

and a more complex multi-stable tensegrity structures and a demonstration of how the 

multi-stable structure can be used to carry out translation along the three Cartesian axes 

–  ,    and   – as well as rotations about these three axes was shown. In addition, a 

collision avoidance technique that may be employed for the simplex tensegrity structure 

has been described. The chapter concludes by suggesting that shape-change capability 
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of wind turbine blades which relies on controlled deformation of the blade‘s shape is 

possible under the action of tensegrity prisms located inside the blade box.  

The next chapter focuses on details of the hardware, hardware configuration, 

serial communication protocol using the Universal Serial Bus (USB) interface and the 

implementation of the software and the control system architecture for the initial 3-bar 

multistable tensegrity prism designed in this chapter. The next chapter will also include 

mathematical modelling and structural analyses of the mono- and multi-stable tensegrity 

structures covered in this chapter using realistic structural parameters. 
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Chapter 6 

 

PHYSICAL REALIZATION OF 

TENSEGRITY STRUCTURAL SYSTEMS 

PART II: HARDWARE ARCHITECTURE 

AND A DECENTRALIZED CONTROL 

SCHEME 

 

6.1 Introduction 

The aim of this chapter and the preceding one has been to demonstrate the feasibility of 

realizing a tensegrity structure using a given set of structural members and a 

predetermined initial structural configuration.  The block diagram showing the various 

components of a computer controlled tensegrity structural system is presented in Figure 

6.1. There are three main tasks involved in this project for the realization of this system: 

the first task entails the structural optimization and related design issues of the 3-bar 

initial tensegrity prism covered in the preceding chapter. The second task involves the 

configuration of the hardware and the control architecture, and the third task is 

associated with the design of application software user interface and the implementation 

of the control algorithm. These last two tasks are the focus of this chapter. The 

components of the computer controlled tensegrity structure are discussed briefly. The 

chapter concludes by the development of the mathematical models and the carrying-out 

of the structural analyses of the mono- and multi-stable tensegrity structures designed in 

the preceding chapter using realistic structural parameters.  
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6.2 Hardware Architecture and Components and the Serial 

Communication Protocol using the USB interface 

The block diagram of the setup of the computer controlled tensegrity structural system 

in Figure 6.1 consists of three main components: the personal computer (PC), the 

interface board, and the tensegrity structure. The block diagram shows the relationship 

and information flow among the constituent components of the system.  

Signal 
Conditioning Unit

Interface Unit

Tensegrity structural system

Application 
Software

Driver  
Software

Computer
System

Actuators

Sensors

User

PC

Interface Unit

Mini-B 
USB 
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H-Bridge 
Motor 
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ROM
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CPU
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UART

PWM

ADC

External 
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Out 
(to Actuators)
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(from sensors)

Connection to the PC
(Bidirectional Data flow)

 

Figure 6.1: A setup for a computer control system of a tensegrity structure showing the 

relation among the various constituent components 

 

The PC is composed of two elements: the computer and the software. The 

computer provides the processor that, in addition to carrying out the arithmetic and 

logical operations, regulates: the data flow; the system clock, which determines the 

time-information of the data transfer; the bus, along which data are transferred; and, the 

memory and disk space, which allow for the data to be stored during or after processing. 

The software facilitates communication between the computer and the control board and 

there are two types: the driver software and the application software. On the one hand, 

the driver software allows the set-up of configuration information, such as sampling rate 

and other parameters of the data acquisition and signal conditioning hardware, to be sent 
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to these hardware. Also, it allows the sending and receiving of information, such as 

data, status and error messages from these hardware. The data acquisition hardware 

access to the computer resources such as the system memory and processor interrupts 

through the driver software. On the other hand, the application software facilitates data 

analyses and numerical computations for computing control signals to be sent back, 

through the computer, to the connected hardware. It is also involved in the storage of 

data in the system memory for further processing or in the system disk space for safe-

keeping. It is the application software that provides the interface with which a user 

communicates, through the data acquisition hardware, with the system being controlled.  

For this project, the specification of the PC used to implement this hardware 

configuration is a standard PC, running a 64-bit Microsoft
®
 Corporation Windows 7 

Professional (2009) Operating System (OS) with a 16 GB of RAM and Intel(R) 

Core(TM) i7-2600 3.40 GHz CPU; the application software is MATLAB 7.12.0.635 

(R2011a); the interface unit, or board, is the Pololu Jrk 12v12 USB Motor Controller 

with Feedback manufactured by Pololu
®
 Corporation (see product details in [187]); and 

the driver software is provided by the manufacturer of the interface board as a free 

utility that allows easy calibration and configuration through the USB port. In the 

following sections, elaborate description of the interface board, the serial protocol 

adopted for information exchange between the board and the user application, and the 

development of the MATLAB-based user interface will be presented.  

6.2.1 The Interface Board 

The interface board used for this project is the Pololu Jrk 12v12 USB motor controller 

with feedback, abbreviated henceforth, as the ‗PJ board‘. This product is a highly 

configurable general-purpose simple motor controller designed for the bidirectional 

control of a brushed direct current (DC) motor and can support a variety of interfaces 

including the Universal Serial Bus (USB). The PJ board is shown in Figure 6.2 and its 

technical specifications are given in Table 6.1. Other features of the motor controller 

can be found in [187]. 
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(a)        (b) 

Figure 6.2: (a) The PJ board with a 14   1 straight 0.1‖ male header strip and two 2-pin 

3.5 mm terminal blocks; (b) The PJ board with the header strip and terminals soldered 

unto the board.  

Table 6.1: Technical Specification of the PJ board [187] 

 Feature Specification 

No. of motor that can be controlled bi-directionally 

be each board [Motor Channel]: 

Minimum Operating Voltage Range:  

Continuous Output Current to Motor Channel : 

Peak Output Current to Motor Channel : 

Current Sensing:  

Available PWM Frequencies:  

Minimum Logic Voltage:  

Maximum Logic Voltage:  

Auto-detect baud rate range:  

Available fixed baud rates: 

 

1 

6 V – 16 V 

12 A 

30 A 

0.149 mA per unit (on a unit scale of 0 – 255) 

20 KHz, 5 KHz 

4V 

5V 

300 – 115,200 bps 

300 – 115,200 bps 

 

The interface board consists of five main components: the mini-B USB connector, 

the Microchip PIC18F14K50 which is a 20-pin USB Flash microcontroller, the 

VNH2SP30-E H-bridge motor driver manufactured by STMicroelectronics
®
, the power 

regulation unit and the signal conditioning unit. The PIC18F14K50 serves as the data 

acquisition unit which is the ‗heart‘ of any data acquisition hardware. Its main function 

is to convert (filtered and amplified) analog signals to digital signals and vice-versa. 

The H-bridge is a common electronic circuit configuration that allows a voltage to be 

applied across a load in any of the two possible directions. It is commonly used to drive 

DC motors in the forward and backward directions. The layout block diagram of the 

five main components of the interface board and their relationship with one another and 

the rest of the system are shown in Figure 6.1. Moreover, Figure 6.3 is a labelled top-

view picture of the interface board. In the discussion that follows regarding this 
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interface board, the manufacturer‘s data sheet [188] will be used as the main source of 

reference.

 

Figure 6.3: A labelled top-view picture of the PJ board 

 

The mini-B connector of the interface board connects to the PC‘s USB connector 

through the USB A to mini-B cable. Thus, the mini-B connector provides an interface 

through which the motor controller is configured and through which it communicates 

with the PC. If the interface board is required to provide power for the motor it drives, 

power for the interface board must be supplied by an external power source through its 

voltage input (Vin) and ground (GND) pins. The external power supply will power the 

electrical circuitry of the board and supply the current (between 12 A and 30 A) to drive 

the motor through pins A and B that are shown in Figure 6.3. The controller board has a 

reverse power protection on the motor lines so that it is not damaged when motor is 

accidentally switched on. If an external power source is not provided to the board, the 

board will draw power from PC‘s USB port for its electrical circuitry but will not drive 

the connected motor. The external power supply unit employed in this project is the XP 

Power‘s 90 Watts VEH series (VEH90PS12), with output voltage, output current and 

efficiency of 12.0 V, 7.50 A and 88%, respectively, when the mains‘ input voltage and 

frequency ranges are between 90-264 VAC and 47-63 Hz, respectively [189]. 
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The voltage regulation unit of the interface board converts the voltage input of 

12.0 V from the Vin to a 5V supply for powering internal circuitry of the control board 

and excess power are dissipated as heat. The board also has three indicator light 

emitting diodes (LEDs); the green LED when ON indicates that the driver software is 

installed correctly; the red LED when ON indicates that there is an error stropping the 

connected motor from moving; and the yellow LED indicates the status of the 

connected motor – it is normally OFF when the red LED is ON, flashes when the 

control board is waiting for the signal, and stays ON when the motor is ON or has 

reached the desired target state.  

 

Figure 6.4: A configuration of a potentiometer used as a sensor 

 

The signal conditioning unit consists of a set of passive two-terminal electrical 

components on the interface board that are responsible for making the sensor signal 

compatible with the data acquisition unit (the PIC18F14K50). The unit consists of 

signal amplifiers, which amplify the signals from the sensor by a given fraction, and the 

band-pass filtering unit, which removes the noise from the signals before they are 

digitized. The signal conditioning unit is connected to the external sensor through the 

auxiliary output (AUX), the feedback input (FB) and the ground (Gnd) pins that are 

shown in Figure 6.3. Consider that the sensor is a potentiometer with three terminals as 

shown in Figure 6.4, the Gnd and AUX corresponds to the zero and the maximum 

voltages supplied to the sensor by the controller board, and FB corresponds to the 

feedback analog voltage connecting the sensor to the control board; the value of the 

sensor voltage varies between zero and the maximum of the supply. Thus, the interface 

board uses the AUX pin to detect if a sensor is connected to the board or not and the FB 

pin measures the analog output of the sensor on a scale between the minimum 

(determined by the Gnd voltage) and the maximum (determined by the AUX voltage) 

AUX 
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FB 
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voltages. Other pins of this versatile control board have not been used for this project 

but details of their functions can be found in [187]. Figure 6.5 shows the physical wiring 

of the PJ board for this project.   

 

 

Figure 6.5: The wiring of the PJ board 

 

6.2.2 Configuration of the Interface Board 

The PJ board connects to the USB port on the PC running a Microsoft
®
 Windows OS 

via the USB A to mini-B cable. On connecting the interface board to the computer, and 

after installing the driver software provided by its manufacturer, the interface board 

appears as two serial ports which are referred to as COM ports by the PC. To be able to 

communicate with the interface board through an application software such as 

MATLAB, the COM Port numbers associated with each device connected to the PC 

through the PJ board must be known. This can be determined by viewing each of the 

devices from the PC‘s Device Manager. For each device, the first of the two COM ports 

is the ‗Command Port‘ which establishes a communication line between the PC and the 

interface board. The second of these is the ‗TTL Port‘ which, when in use, allows the 

PC to communicate directly with any other serial device(s) that may be connected to the 

interface board.  

The installation of the driver software of the PJ board also provides a user 

interface for setting configuration and control parameters of the interface board. Figure 

6.6 shows this configuration utility dialog box. Alternatively, the settings of the five 
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tabs on the dialog box (Input, Feedback, PID, Motor and Error tabs) can be set using the 

Notepad text editor of Microsoft
®
 Windows. In this case, the settings on the Notepad 

are loaded through the file menu on the dialog box and the settings are applied by 

clicking the ‗Apply settings to device‘ button on the dialog box.  

6.2.3 The Serial Port Interface and the ‘Pololu’ Communication 

Protocol 

The serial port of the PC provides a means through which devices connected to the PC 

can communicate with it using low-level protocol by transmitting data one bit at a time 

over a communication link or bus. This sequential data transfer process is often referred 

to as serial communication [190]. The serial ports, also referred to as COM ports, 

created by each PJ board connected to the PC through the USB cable, allows MATLAB 

to access the controller using any of the serial port interface standards such as the RS-

232, RS-422 and RS-485 [191]. These standards differ, from the technical viewpoint, 

mainly in their serial port characteristics such as: their maximum bit transfer rates and 

cable lengths; the names, electrical characteristics, and functions of signals; and the 

mechanical connections and pin assignments [190]. The serial interface of PJ board uses 

the RS-232 serial communication standard which is one of the standards supported by 

MATLAB serial port interface. To communicate with the interface board - just as with 

any other serial device - through the serial port interface in MATLAB involves the 

following steps [191]:  

Step 1: Create a serial port object.  

Step 2: Configure the serial port properties of the object created. (In 

practice, this step can be performed immediately after Step 1 and before, 

during, or after steps 3 and 4.)  

Step 3: Connect to the serial port device. 

Step 4: Write and/or read data to the device. 

Step 5: Clean-ups: Disconnect device, delete the serial port object, and clear 

variable from MATLAB workspace.  
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Figure 6.6: The PJ board configuration utility dialog box. 

 

The workflow of the MATLAB implementation of the above steps developed for 

this project is shown in Figure 6.7. The instructions in the single-sided rectangular 

processing steps, labelled A to E, are implemented using standard commands in 

MATLAB. The ‗COM5‘ shown in the processing step A is the ‗COMMAND Port‘ 

number associated with the first PJ board connected to the PC. The processing step B 

shows some of the available properties of the serial port that can be configured in 

MATLAB. These properties include: the baud rate (rate at which bits are transmitted); 

the byte order (specifies the order that a device stores the first or last byte in the first 

memory location, e.g. the byte order ‗little endian‘ means that the first byte is stored in 

the first memory address); sizes of the buffers (the input /output buffer represents the 

total number of bytes that can be stored in the input/output buffer during a read/write 

operation); the number of the data bits (the number of bits that represent actual data byte 

– excluding the framing bits – in the serial data format); the stop bit (indicates when the 

data byte has been transferred); the parity bit (a bit used for error-checking transmitted 

data); and the time out (the maximum waiting time in seconds allowed for a read or 

write operation to complete).  



194 
 

 

Figure 6.7: The workflow for executing serial port communication in MATLAB 
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MATLAB Code: 

USBport1 = 'COM5';  

obj=serial(USBport1); 

obj.BaudRate = 9600; 

obj.ByteOrder='littleEndian';  

obj.InputBufferSize = 2^18; 

obj.OutputBufferSize = 2^18;  

 

 

fopen(obj) 

fwrite(obj,r) 

 

fclose(obj);  

delete(obj);  

clear obj  

 

Transmit to device 

 

Receive from device 

 

Data 

 

Command 

 

Yes 

 

No 

 

[Ar, countr, msgr] 

= fread(obj); 

 

 

Furthermore, the MATLAB implementation of the double-sided rectangular 

processing steps in the flowchart of Figure 6.7, labelled P1, P2, P3 and P4, were 

achieved using the interface board manufacturer‘s so-called ‗Pololu‘ serial 

communication protocol [187]. Communication between MATLAB and the interface 

board, using the Pololu protocol, was achieved by sending a set of data packets which 

are written in specific formats and arranged following particular rules. Thus, the 

processing steps P1, P2, P3 and P4 involve the following data packets:  
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 P1: Message packing process (with no data byte) 

 
Detect baud rate byte Device number byte Command byte with MSB 

cleared 

 

 P2: Message packing process (with data byte) 

 
General case:  

Detect baud rate byte Device number byte Command byte with 

MSB cleared 

Data byte 

 

 High resolution ‘set target’ command case:  

 Data bits: 12 bits with LSB in the first column and MSB in the last column 

             LSB        MSB 

1 2 3 4 5 6 7 8 9 10 11 12 

     

   Low bits (LB)    High bits (HB) 

  

 Data packet:  

Detect baud rate byte Device number byte ‗Set target‘ Command byte with 

MSB cleared ‗plus‘ LB 

HB 

 

 P3: Message unpacking process 
 Data bits: 16 bits (2 bytes) in little endian format 

               LSB              MSB 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

     

        1st byte received          2nd byte received  

  

 1st byte:            LSB                 MSB 

1 2 3 4 5 6 7 8 

  

 2nd byte:            LSB                 MSB 

9 10 11 12 13 14 15 16 

 

 P4: Data extraction process 
               MSB              LSB 

16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 

     

             Re-positioned bits of the 2nd byte                re-positioned bits of the 1st byte  

 

where MSB, LSB, LB, HB denote most significant bit, least significant bit, low bits, high bits, respectively 
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Assume that the interface board is used for a position control feedback application 

in which a linear actuator is equipped with a motor and a position sensor, then there will 

be two types of commands that are involved when the workflow diagram of Figure 6.7 

is implemented which are as follows:  

1) Commands that require no response from the interface board: To stop the running 

motor of the linear actuator or to set the position of the linear actuator to a particular 

value, for instance, requires no response from the interface board. On the one hand, the 

‗Stop Motor‘ command requires no ‗data‘ byte, therefore, implements the processing 

step P1 (of Figure 6.7) using the following MATLAB code, for instance:  

SERIAL_MODE_UART_DETECT_BAUD_RATE_BIT = 'aa';   % in hexadecimal format 

SERIAL_MODE_DEVICE_NUMBER = '0b';               % in hexadecimal format 

% 1st and 2nd Command bytes: 

r1 = hex2dec(SERIAL_MODE_UART_DETECT_BAUD_RATE_BIT); % in decimal format 

r2 = hex2dec(SERIAL_MODE_DEVICE_NUMBER);             % in decimal format 

% 3rd byte of the Stop Motor Command: 

STOPCOMMAND        = '7f'; % Stop command 

s3 = hex2dec(STOPCOMMAND);                           % in decimal format  

r = [r1,r2,s3];   % Packets to be transmitted 

 

The ‗set target-position‘ command, on the other hand, requires ‗data‘ byte 

containing information regarding the desired target-position; therefore, the processing 

step P2 (of Figure 6.7) is implemented using the following MATAB code, for instance:  

% 'variable' is the desired target position 

% 1st and 2nd Command bytes: 

r1 = hex2dec(SERIAL_MODE_UART_DETECT_BAUD_RATE_BIT);  % in decimal format 

r2 = hex2dec(SERIAL_MODE_DEVICE_NUMBER);              % in decimal format 

% 3rd and 4th bytes of Pololu Protocol: 

[r3, r4] = High_res(variable);            % r3 & r4 are in decimal format 

% High_res is a self-made function that obtains third and fourth bytes in  

% Pololu protocol format given the 'variable' 

r = [r1,r2,r3,r4];       % Packets to be transmitted 

 

Figure 6.8 shows the workflow diagram involving the implementation of the ‗Stop 

Motor‘ and the ‗set target-position‘ commands 
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Figure 6.8: The workflow involving the implementation of the ‗stop motor‘ and the ‗set 

target-position‘ commands 

 

2) Commands that require response from the interface board: To read the current 

position from the sensor of the linear feedback actuator, for instance, requires that a 

‗read feedback sensor‘ command must first be sent to the interface board. With this, the 

interface board collects the current position of the linear actuator from the attached 
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sensor. A second ‗send me feedback reading‘ command will now be sent again to the 

interface board from MATLAB (this is the function of the processing step D in the 

workflow diagram); the interface board then transmit the sensory readings in the form 

of data packets to MATLAB. The MATLAB codes associated with the ‗read feedback 

sensor‘ command data packet, for instance, are as follows:  

FEEDBACK           = 'a5';                          % in hexadecimal format 

% 1st and 2nd Command bytes: 

r1 = hex2dec(SERIAL_MODE_UART_DETECT_BAUD_RATE_BIT);% in decimal format 

r2 = hex2dec(SERIAL_MODE_DEVICE_NUMBER);            % in decimal format 

% 3rd byte of the Read Command: 

r3 = hex2dec(FEEDBACK);   % FEEDBACK = The 'read feedback sensor' command 

[vr3] = remove_msb(r3);   % Implement the Pololu Protocol: Removing the MSB 

% remove_msb is a self-made function that removes MSB in the third bytes in-

line with the Pololu protocol 

r = [r1,r2,vr3]; % Packets to be transmitted 

Figure 6.9 shows the workflow diagram involving the implementation of the ‗read 

feedback sensor‘ and ‗send me feedback reading‘ commands. 

6.2.4 Control Parameters and Algorithm of the Interface Board 

The PJ board is designed to be part of a feedback control system. In particular, it 

implements the Proportional Integral Derivative (PID) control algorithm – which is the 

most common form of feedback controller [192] – for the control of motor speed or 

position. The structure of the implementation of PID control algorithm of the PJ board 

is shown in Figure 6.10.  The PJ board allows its sampling rate to be set to as low as 

1ms and the PID algorithm is implemented at every sampling intervals. For motor 

position control application, the reference input is a target value from 0 to 4095. The 

reference input is specified using the ‗set target-position‘ command from the previous 

section. The feedback sensor reads a voltage value that represents motor position that 

falls between 0 to 5 V. The reading is scaled by a constant    for conversion into 0 – 

4095 scale. Accordingly, each nominal unit on the 0 – 4095 scale represent 5/4095 = 1.2 

mV; therefore, the value of    is 819. A second feedback sensor reads the current 

through the motor as a unit number that falls between 0 and 255 and a calibration value 

    converts this reading to actual current in Amps. From the manufacturer‘s manual 

[187], each normal unit on the 0 – 4095 scale on the PJ board represents a current of 

149 mA in the motor.  
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Figure 6.10: The structure of the implementation of PID control algorithm of the PJ 

board [187] 

 

The input of the PID controller is the error      – which designates the difference 

between the reference input and the scaled output of the feedback sensor. The PID 

controller uses the error to compute the duty cycle of the Pulse Width Modulation 

(PWM) signal that is applied to the motor. The value of the duty cycle ranges from -600 

to +600. Therefore, a 100% duty cycle in the forward direction represents a value of 

+600; a 100 % duty cycle in the backward direction represents a value of -600; and a 

duty cycle of 0% represents a value of 0 – that is, motor is in ‗off‘ condition. Allowable 

switching frequencies of the PWM for the PJ board are 5 KHz and 20 KHz. The 20 

KHz PWM frequency is typically desirable since – being ultrasonic – it eliminates 

audible motor humming, but this is at the expense of greater power loss as a result of 

switching [187].  

The mathematical representation of a typical PID controller is as follows [192]:  

               
 

  
       
 

 
    

     

  
      (6.1) 

where the output of the PID controller      (which serves as the input to the motor 

plant) is the sum of three terms: the proportional term      , the integral term 

 

  
       
 

 
 and the derivative term    

     

  
. There are many variations of the 

structure of the PID controller; for instance, two other possible representations are as 

follows [192]: 
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     (6.2) 

                       
 

 
    

     

  
     (6.3) 

The parametized PID controller represented by equation (6.3) involves only three 

constants:    – the proportional coefficient,    – the integral coefficient, and    – the 

derivative coefficient. In general, different PID controller structure have different 

parameters although some of the structures are equivalent (for instance, equations (6.1) 

and (6.3) are equivalent).  

Furthermore, to avoid poor performance, the practical implementation of a PID 

controller requires that techniques to deal with nonlinear effects be introduced. 

Particularly, in the PID controller implemented in the PJ board for motor position 

control that is being considered, a phenomenon which involves the integral term of the 

PID controller not being able to keep the error      small as a result of the motor‘s 

saturation (due to its inability to move the connected load beyond ‗the maximum‘ 

position) is encountered. This well-known phenomenon, commonly called the windup 

phenomenon, may also be caused by large disturbances or malfunctioning of the control 

system. Different manufactures have invented different techniques, commonly called 

anti-windup techniques, of dealing with these nonlinear effects but the technique they 

employ are commonly kept as trade secrets [192]. The anti-windup technique employed 

in the PJ board involves limiting the ‗integral wind-up‘ by setting a limit to the 

magnitude of the integral, or resetting the integral to 0 when the proportional terms 

exceeds the maximum duty cycle, or by fixing an amount – called the feedback dead 

zone value – below which if the magnitude of the error falls, will reset the duty cycle 

target and the integral to zeros [187]. A limit is also imposed on the maximum 

acceleration of the duty cycle so as to limit the amount in which it can change in any 

given sampling period. The duty cycle is also adjusted so that the current through the 

motor does not exceed the maximum current allowable. As indicated in Figure 6.10, the 

‗acceleration limit‘ block adjusts the duty cycle based on the values of maximum 

acceleration of the duty cycle and the maximum allowable current in the motor. 

However, the use of limiters frequently leads to conservative bounds and consequently 

poor system performance [192].  

Tuning a PID controller is the process of adjusting its parameters until the 

response of the control system is satisfactory in view of the load disturbances, process 
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uncertainties, reference signals and sensor noise that affect the system. The possibility 

of having a satisfactory controller from less plant information (such as unavailability or 

incomplete mathematical model), simplicity of tuning and ease of understanding the 

tuning process are some of the factors that made PID controllers popular in the industry. 

In addition, these controllers are commonly used at lower-level control loops for 

(coupled and uncoupled) multivariable system that use sophisticated control strategies 

such as model predictive control [192]. The popularity of the PID controller has led to 

the development of many tuning techniques such as the Ziegler-Nichols, Coohen-Coon, 

and optimization-based techniques [193].  

The manufacturer of the PJ board suggested the use of a trial-and-error method for 

the determination (tuning) of the three PID parameters until satisfactory system 

performance is realized. In this project however, attempt is made to find the three PID 

controller parameters by posing the problem of finding these parameters as an 

optimization problem. Before presenting the optimization-based approach that was 

employed, the details on the PJ board that made finding the solution of the optimization 

problem particularly difficult should be kept in mind. As there are many structures for 

implementing a PID control algorithm, the particular structure used by the PJ board is 

not given in the manufacturer‘s manual. Furthermore, once the three parameters are 

chosen, they are programmed onto the EEPROM of the PJ board – therefore, changing 

these parameters requires updating the EEPROM with the new values. In other words, 

parameter changes cannot be done online – making the application of an online or 

adaptive tuning technique impractical. Also, in addition to the three PID controller 

parameters, various other parameters have effect on the overall performance of the 

motor position control system – for instance, the nonlinear effects as a result of the 

introduction of limiters used as anti-windup strategy.  

In the absence of knowledge on the structure of the PID, the impracticality of 

online tuning of the PID parameters, and the lack of information on the implementation 

of the limiting techniques adopted as the anti-windup strategy, the optimisation problem 

of finding the optimal values of the three PID parameters may be formulated as the 

problem of minimizing the Integral of Squared Error (ISE) for all time steps from 0 

until the time the system responses settles reasonably to its final value. In other words, 

some initial values of the three PID controller parameters (  ,   , and   ) are chosen 

and a simulation of the system is ran for a fixed period of time    with predefined set-
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points. Next, the value of the ISE for this simulation is calculated. The values of the PID 

controller parameters to be used for the next simulation so that the value of the ISE will 

be reduced are determined. This iterative process is repeated until the ISE is within a 

specified bound. For the motor position control application using the PJ board, error is 

the difference between the reference input and the scaled feedback of the output. The 

ISE is given by the following equation:  

Integral of Squared Error (ISE) =      
  

              (6.4) 

With the sampling time set to 1 ms, the set-point is increased by 137 unit every 2 

seconds from the initial set-point of 410 to the final set-point of 2740 for a total 

simulation time of 36 sec. It should be recalled that the reference input is a target value 

from 0 to 4095; however, the range of target values within which the behaviour of the 

system is linear is found to be roughly between 400 and 3600. Also, the values of 0 – 

4095 set-point corresponds to the positions of 0 – 30 cm of the actuator arm. The set-

point values of 137, 410 and 2740 therefore correspond to approximated values of 1 cm, 

3 cm, and 20 cm, respectively. Thus, by predefining set-point range of 3 cm to 20 cm 

with 1 cm increment after every 2 sec starting from 3 cm, the search of the PID 

controller parameters takes into account the likelihood of set-point of the control system 

to have any value within the linear range and the possibility that the set-point can 

change from one value to another within this range. As such, the search problem has 

been written as the following optimization problem:  

                  (6.5) 

where               and             
  

   ;    is the error at the  th sampling 

instant and   is the total number of samples at the final time of simulation. To solve this 

problem, the steepest descent [105] unconstrained optimization technique is employed. 

The flow chart of this technique is shown in Figure 6.11 and the descriptions of the 

implementation of the algorithm for the determination of the PID controller parameters 

for the PJ board are as follows:  

Step 1: Specify the values of the sampling time, the maximum duty cycle, the maximum 

value of motor current, and the frequency of the PWM signal; in this exercise, these 

values have been set as 1 ms, 100% duty cycle, 7.45 A and 20 KHz, respectively. The 

maximum motor current has been set to 7.45 A since 7.5 A is the maximum current that 

can be supplied to the interface board by the power supply unit. The starting values of 
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the PID controller parameters, for instance, are       ,     , and       , 

respectively. 

 

Setup the system configuration 

and specify the initial values of 
the PID controller parameters: 
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Figure 6.11: Flow chart for the determination of the PID controller parameters for the PJ 

board 

 

Step 2: Run the simulation of the system using the parameters set in Step 1 using 

reference set-point range of 3 cm to 20 cm with 1 cm increment and a running period of 

2 seconds at each set-point. The initial motor position is 0 cm. This results to a total 

running time of 36 seconds. Calculate the value of the objective function       using 

equation (6.5).  

Step 3: Calculate the direction of steepest descent    given by the negative of the 

gradient vector   ; this is expressed as follows:  

               (6.6) 
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The gradient    is evaluated by computing the partial derivatives 
  

  
 
 ,         using 

the backward difference formula. That is, the approximate partial derivative at the  th 

time instant is computed as follows:  

 
  

  
 
   

             

  
 
  ,               (6.7) 

where    
 
    

 
      

 
. Also, define the step length          . There are 

algorithms to determine the optimal step length (see, for instance, [105]); however, for 

simplicity,       has been used in the initial start of algorithm and the step length has 

been computed using             for subsequent iterations. Thus, the next run of the 

system is prepared by updating the PID controller parameters as follows:  

                     (6.8) 

Step 4: Run the simulation of the system again as in Step 2 but with the new controller 

parameters     . Next, obtain the value of the objective function         using equation 

(6.5).  

Step 5: The criterion used to terminate the iterative process is when the absolute value 

of the relative change in the values of the objective function in two consecutive 

iterations is small relative to a predefined value of tolerance value     (for instance, 

        ). This convergence criterion is expressed as follows:  

 
             

     
            (6.9) 

If the inequality in equation (6.9) is satisfied, the iterative process stops and      is 

taken as the optimal PID controller parameters; otherwise, the algorithm prepares for 

the next iteration and the next iteration begins from Step 3 after the next sampling 

instant.  

The results of the algorithm just described applied to the process of determining 

the optimal PID parameters for the PJ board parameters are as follows:  
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Iteration        (  )        (  )        (  ) 

  Number          x1          x2          x3        

    1           5.1000      1.0000      6.6000      

    2           5.7981      1.5766      7.2981      

    3           5.8324      1.6182      7.3324      

    4           5.8401      1.6245      7.3401      

    5           5.9244      1.7276      7.4244      

    6           5.9255      1.7358      7.4255      

    7           5.9848      1.7682      7.4857      

    8           5.9850      2.0000      7.4861      

Optimization terminated: the specified termination condition is satisfied 

 

It shows that the optimal parameters are         ,        , and    

      . However, it is worth noting that the method of steepest descent direction in 

optimization is a local property [105]. But given the difficulties associated with the use 

of the PJ board mentioned earlier, the results of the approach used  has been found to be 

satisfactory. Figure 6.12 shows the system responses at the beginning of the iteration 

process (with       ,     , and       ) and at the end of the iteration process 

(with         ,        , and          ).  

 

Figure 6.12: System responses at the beginning and at the end of the iteration process 

 

6.3 Control Strategy, Design Characteristics and Setbacks 

In Section 6.2.4, the feedback control system for the control of a linear actuator with the 

PJ board in the form of a motor position control system was presented. Linear actuators 

are used as bars in the initial 3-bar tensegrity prism. For demonstrating the usefulness of 

the concepts presented in this project, the use of short linear actuators to vary the 

stiffness of the vertical cables in the multistable design approach of the tensegrity prism 
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has been used. For the long linear actuator (the bars) and the short linear actuators (the 

inline actuators of the vertical cables), the stroke lengths are 0 – 30 cm and 0 – 5 cm, 

respectively; the linear ranges of 3 – 26 cm and 0.333 – 4.333 cm of stroke lengths for 

the bars and inline actuators, respectively, will be worked with in this project. The block 

diagram for the PID control algorithm used for position control of each actuator of the 

bars and inline actuators (as detailed in Section 6.2.4) is shown in Figure 6.13.  

 

Reference  

(Target stroke length) 

Sensor 

+ PID 

Controller 

Linear 

Actuator 

Measured 

Output 

_ 
Output 

(Actual stroke length) 
× 

 Figure 6.13: Block diagram of the control system for each actuator 

 

The general block diagram for the control of the tensegrity structure that employs 

the proposed multistable design approach (where bars are actuated and stiffness of the 

vertical cables are controlled) is shown in Figure 6.14. As the figure shows, the 

actuators and sensors are highly integral (inseparable) parts of the structural system. 

Four sets of structural components can be identified in the figure: structural components 

A are those structural components that are actuated and sensed (for example, the linear 

actuators are equipped with position sensors and serve as bars of the tensegrity 

structure); structural components B are those structural components that are actuated but 

not sensed (for example, the vertical cables – the forces in them are not measured but 

they are actuated by the movement of the electromechanical parts); structural 

components C are those structural components that are not directly actuated but sensed 

(for example, the top horizontal cables of the structure may not be directly actuated but 

is may be necessary to sense their tensile forces to guarantee structural stability); and 

structural member D are those structural components that are neither directly actuated 

nor sensed (for example, the joints – they are idealistically assumed to be pin-jointed 

and friction loss is neglected). It should be observed that all these components (A, B, C 

and D) have their parameters affected to some degree by the effect of actuation, external 

load and/or disturbances, and the effectiveness of the control systems will depend on the 

magnitude and level of interaction between all these components.  
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Figure 6.14: A general block diagram for the control of the tensegrity structure that uses 

the proposed multistable design approach 

 

The control strategies developed for the monostable and multistable 3-bar 

tensegrity prism are shown in Figure 6.15 and Figure 6.16, respectively; these figures 

are 3-loop and 6-loop single-input single-output (SISO) systems, respectively. In both, 

the primary sources of disturbance to the actively controlled structural members 10, 11 

and 12 (the bars) are due to the forces in structural members 5-6-9, 4-5-7 and 4-6-8, 

respectively; in addition to these disturbances, for Figure 6.16, other primary sources of 

disturbance to the actively controlled structural members 7, 8 and 9 are due to the forces 

in structural members 4-5-11, 4-6-12 and 5-6-10, respectively. In relation to Figures 

5.15 and 6.16,    = 45 cm is the retracted length of the linear actuator,    is the sum of 

the retracted lengths (     = 21.558 cm) of the electromechanically actuated component 

of the vertical cable and the original length (   = 11 cm) of the spring component of the 

vertical cable, and    is the length of the  th structural member. The fundamental 

characteristic of these control strategies are that they attempt to control a highly coupled 

(integrated) structural system using a decentralized (independent) multiple SISO control 

systems. The decentralized control architecture of Figure 6.16 has been used for the 
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control of the multistable tensegrity prism. Figure 6.17 shows the picture of the set-up 

for the calibration of the 6 electromechanical actuators while Figure 6.18 shows the 

picture of the final structure after assemblage of all the constituent components. Also, 

the nodes of the structure, as should be noticed in Figure 6.18 (d) in particular, contain 

sensors for measuring nodal vibration. The control strategy of Figure 6.16 assumes that 

the primary disturbances are independent inputs. The outputs of the form-finding 

algorithm are used to compute the reference inputs for each of the six independent SISO 

control systems. This architecture is a form of static decoupling architecture [194] since 

the reference signals from the algorithm are constants. Details on the anti-windup 

technique which is necessary for the implementation of each PID controller of each 

SISO system of this architecture has been presented in Section 6.2.4.  

For the multistable 3-bar tensegrity structural system, the control strategy is 

suitable for any of the following control objectives:  

1) To change the shape of the structure from an arbitrary tensegrity configuration to a 

valid tensegrity structure (deployment);  

2) To change the shape of the structure from a valid tensegrity structure to another valid 

tensegrity structure (transformation from one structure to another); and 

3) To change the shape of the structure from a valid tensegrity structure to another 

structure that is not tensegrity structure but a tensegrity configuration (for example, the 

rotation of the top polygon of the tensegrity prism while the bottom polygon is rigidly 

fixed to the base).  

Associated with each of these objectives, of course, is the desire for acceptable 

disturbance rejection characteristics of the system in the presence of model 

uncertainties. Under the assumptions that the magnitudes of the disturbance and the 

level of interaction among the six independent SISO systems are small, the springs 

designed in Sections 5.3.2 and 5.3.3 have exactly the specified stiffness constants, the 

frictional force at the joints are negligible and the geometric configuration of the 

structural assembly is correct to at least 10
-4

 m, the control architecture of Figure 6.16 

leads to acceptable results. Clearly, these assumptions are very stringent demands and 

impossible to achieve in practice. Moreover, as in classical control, there is the need to 

pair the input and outputs (for instance, using relative gain array [195]) to implement a 

complete decentralized control architecture. Thus, for the implementation of a 
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decentralized control scheme, this thesis should be considered a first attempt and a solid 

foundation for future work. Beside, an alternative control technique for the control of 

tensegrity structures in general is presented in the next chapter. Meanwhile, the dynamic 

model of the 3-bar tensegrity prism will be presented in the remainder of this chapter. 
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Figure 6.15: Control strategy for the monostable 3-bar tensegrity prism involving 

multiple SISO control loops (the bottom nodes are rigidly attached to the base) 
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 10,  11 and  12 are 

connected as in 

Figure 6.15 
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Figure 6.16: Control strategy for the multistable 3-bar tensegrity prism involving 

multiple SISO control loops (the bottom nodes are rigidly attached to the base) 
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(a)       (d) 

    

(b)       (e) 

   

(c)       (f) 

   

Figure 6.17: Pictures of the set-up for the calibration of the 6 electromechanical 

actuators 
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(a)       (b) 

    

(c)       (d) 

    

(e)       (f) 

    

 

Figure 6.18: Pictures of the final structure after assemblage of all the constituent 

components 
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(g)       (h) 

    

Figure 6.18 (continue): Pictures of the final structure after assemblage of all the 

constituent components 

 

As should be obvious from Figures 6.15 and 6.16, the main sources of interaction 

between each SISO system are the forces acting between the structural members that 

link these SISO systems together. Thus, the fundamental assumption that disturbances 

(primarily, forces due to the links) for each SISO system are independent inputs of the 

SISO systems is, strictly speaking, not very accurate. And also, the major drawback of 

the architecture is the absence of the force feedback. The advantage of the architecture 

lies in the ease to design, implement and maintain the computer controlled structural 

system in a straight forward manner. It is also a good place to start controller design 

before introducing a multivariable control system approach of the next chapter.  

Figures 6.19 (a) and (b) show the plots of the stroke length of the six actuators 

versus time as the physical 3-bar tensegrity structural system changes its shape through 

tensegrity structures of Figure 5.20 (a-d) and Figure 5.22 (a-c), respectively. Figures 

6.20 (a) and (b) show the graphical user interface (GUI) developed as part of this project 

using MATLAB graphical user interface development environment (GUIDE) for the 

deployment and the six-DOF position control systems of the multistable 3- bar 

tensegrity structural system, respectively. 
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Figure 6.19 (a):  The plots of the stroke lengths versus time as the multistage 3-bar 

tensegrity structural system changes its shapes through tensegrity structures 5.20 (a), 

(b), (c) and (d).  
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Figure 6.19 (b): The plots of the stroke lengths versus time as the multistage 3-bar 

tensegrity structural system changes its shapes through tensegrity structures 5.22 (a), (b) 

and (c).  
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Figures 6.20 (a): A graphical user interface developed using MATLAB graphical user 

interface development environment (GUIDE) for deployment of the 3-bar tensegrity 

prism 

 

 

Figures 6.20 (b): A graphical user interface developed using MATLAB graphical user 

interface development environment (GUIDE) for the six-DOF position control system 

of the 3-bar tensegrity prism 
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6.4 Modelling and Simulation of the 3-bar Tensegrity Structural 

System 

In this section, the dynamic models and analyses of the three 3-bar tensegrity structures 

(a), (b) and (c) shown in Figure 6.21will be presented. Figure 6.21 (a) shows a standard 

tensegrity structure whose cables and bars are made with copper wires and hollow steel 

bars, respectively; Figure 6.21 (b) is the monostable 3-bar tensegrity prism considered 

in Section 5.3.2; and Figure 6.21 (c) is the multistable 3-bar tensegrity prism considered 

in Section 5.3.3. These three structures have the same geometries and tension 

coefficients as those of the initial 3-bar tensegrity prism introduced in Chapter 5 and, for 

the current analysis, the three bottom nodes of each of these structures are rigidly 

attached to the base. The material and physical properties of these structures are also 

given in Figure 6.21. It will be assumed that the structural members are connected at the 

nodes in pin-jointed manner. The lumped mass matrix of the  th structural member with 

length   , cross-sectional area   , and mass density   , in local coordinate system for the 

three structures in Figure 6.21 are as follows:  

 Structure (a):       
       

 
 
  
  

        (6.10) 

 Structures (b) and (c):       
   

 
 
  
  

       (6.11) 

The transformation of Equations (6.10) and (6.11) to the global coordinate system to 

obtain the global mass matrix   of the FEM is computed using Equations (3.42) and 

(3.43).  

Furthermore, assuming structural members undergo only linear elastic axial 

deformation, the global stiffness matrix   is computed using Equations (3.24-3.26). For 

the three tensegrity prisms of Figure 6.21, the values of the parameter    
   in Equations 

(3.26) are computed using the following equations:  

 Structure (a):  

    
   

    

  
      (6.12) 

 Structures (b) and (c): 

     
    38.155 N/cm  for    = 1, 2, ..., 9;     

    
    

  
   for   = 10, 11, 12  (6.13) 
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(a) A standard 3-bar tensegrity prism 

 
 

(b) The monostable 3-bar tensegrity prism 

 
 

 

(c) The multistable 3-bar tensegrity prism 
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Figure 6.21: A standard, a monostable and a multistable 3-bar tensegrity structures 
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From Section 3.2.2, the dynamic model of each of the three structural systems is 

written in the modal form as given in Equation (3.55).  Assuming that the damping 

constant for each mode is    = 0.02 for   = 1 – 9 (having applied the boundary 

conditions) and            and choosing the generalized (modal) displacements and 

velocities as the state variables (        and         ) for each of these structural 

systems, the representation of Equation (3.55) is written in the state differential form as 

given in (3.76). If the measured outputs of the structural systems are displacements, the 

modal and nodal displacements are respectively computed using the following 

equations:  

             ,                     (6.14) 

Figure 6.22 shows the plots of nodal displacements versus time for the three 

structures in Figure 6.21 when three vertically downward loads, each of 100 N, are 

suddenly placed at nodes 4, 5, and 6 at time,   = 0 sec with zero initial nodal 

displacements. The simulations of Figure 6.22 show marked differences among the 

dynamic responses of the three structural systems. In particular, the difference in the 

dynamic behaviours of the monostable (Figure 6.21 (b)) and the multistable (Figure 

6.21 (c)) tensegrity prisms is due to the additional weight that the electromechanical 

actuators added to the vertical cables of the multistable tensegrity prism. It is important 

to note that the linearised models of the three structural systems were obtained at the 

same equilibrium point of 60 cm – 60 cm – 60 cm bar lengths (that is, the length of each 

of the three bars is 60 cm) of the initial 3-bar tensegrity prism. Also, the frequency 

response plots of the three structures of Figure 6.21 are shown in Figure 6.23.  

Consider the linear models of the four structures of Figure 5.20 (a), (b), (c) and (d) 

which are all valid tensegrity structures obtained by carrying out translation operations 

(as explained in Section 5.5) for the top triangle of the multistable tensegrity prism of 

Figure 6.21 (c), to obtain the linear models of these four structures, the structure of 

Figure 6.21 (c) is linearised around the equilibrium points of bar lengths 58.344 cm – 

57.9348 cm – 58.0368 cm, 8.3396 cm – 56.8108 cm – 61.2264 cm, 59.5695 cm – 

54.9991 cm – 60.4836 cm, and 53.7535 cm – 59.5989 cm – 61.4254 cm, respectively, 

the simulations of the responses of these four linear models to the same loading and 

initial conditions as those of the models used for the simulations in Figure 6.22 are 

shown in Figure 6.24. 
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Figure 6.22: Dynamic response plots: The plots of nodal displacements (cm) Vs time 

(sec) of the structures of Figure 6.21 (a), (b) and (c) 
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Figure 6.23: Frequency response plots of the structures of Figure 6.21 (a), (b) and (c) 

 

6.5 Discussions 

The preceding section completes the design and physical realization (began in the 

preceding chapter) of the prototype 3-bar multistable tensegrity structural system 

proposed in this thesis. The control algorithm implemented in this chapter has been used 

under the assumptions that the magnitudes of the disturbance and the level of interaction 

among the six independent SISO systems are small, the springs designed in Sections 

5.3.2 and 5.3.3 have exactly the specified stiffness constants, the frictional force at the 

joints are negligible and the geometric configuration of the structural assembly is 

correct to at least 10
-4

 m. Clearly, these assumptions are very stringent. In particular, the 

structural model of a tensegrity structure is also a function of member forces, and thus, 

it is indispensible to have a force-feedback (or an estimation of the member forces from 

the measured geometric parameters) to ensure the accurate control of the tensegrity 

structural system by compensating for, firstly, the inaccuracies in the spring designs, 

and secondly, the non-negligible high level of coupling among the six independent 

SISO controllers which is due to the forces acting between the structural members 

linking these SISO systems together.  
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Figure 6.24: Dynamic response plots: The plots of nodal displacements (cm) Vs time 

(sec) of the structures of Figure 5.20 (a), (b), (c) and (d) 
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6.6 Summary 

In this chapter and the preceding one, the feasibility of realizing a tensegrity structure 

using a given set of structural members and a predetermined initial structural 

configuration has been demonstrated.  There are three main tasks involved in the 

realization process. The first task entails the components design and structural 

optimization of the 3-bar initial tensegrity prism; this was covered in the preceding 

chapter. The second task involves the configuration of the hardware and the control 

architecture, and the third task is associated with the implementation of the control 

algorithm and the design of application software user interfaces. These last two tasks 

have been presented in this chapter. Details of the hardware, the hardware 

configuration, the serial communication protocol using the USB interface and the 

implementations of the control system architecture and algorithm for the initial 3-bar 

multistable tensegrity structural system designed was given. This chapter concludes by 

developing the mathematical models and carrying-out the structural analyses of the 

mono- and multi-stable tensegrity structures designed using realistic structural 

parameters. The next chapter will introduce a multivariable control scheme for the 

control of tensegrity structures in general. 
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Chapter 7 

 

CONTROL SYSTEM DESIGN FOR 

TENSEGRITY STRUCTURES 

 

7.1 Introduction 

In this chapter, the active control of tensegrity structures is presented in a 

multivariable and centralized control context unlike in the preceding chapter where the 

primary concern was the control of the 3-bar multi-stable tensegrity structure which was 

achieved through decentralized (independent) multiple SISO control systems.  

In the field of control of active structures, the choice of the measured output 

divides active structural systems into two: collocated and non-collocated systems. 

Collocated control systems are those in which actuators and sensors are paired together 

for the suppression of vibration requiring low amount of force typically. Non-collocated 

control systems are commonly used as high-authority controllers which, in addition to 

providing damping forces, are capable of making structural systems undergo significant 

movement (shape change) often requiring the use of powerful actuators to provide 

significant amount of force.  Consequently, the control system design in this chapter is 

divided into these two classes of controllers.  

In relation to the collocated controller, a new method is presented in the 

determination of the feedback gain to reduce the control effort as much as possible 

while the closed-loop stability of the system is unconditionally guaranteed.  For the 

non-collocated control systems, the most successful controller design used in the field 

of active structures, the LQG (Linear system, Quadratic cost, Gaussian noise) 

controllers [129], which are suitable for both collocated and non-collocated control 

systems is applied to actively control tensegrity structural systems for vibration 
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suppression (low-authority controllers) and precise positioning or tracking (high-

authority controllers). The chapter concludes with a detailed discussion on the findings 

in this chapter and their relationships with the other chapters of this thesis and other 

previous work on active control of flexible structures, in general, and tensegrity 

structures, in particular. 

 

7.2 Collocated Control of Tensegrity Structures 

Let the system ( ,  ,  ,  ) be the linear time-invariant model of a structural system and 

consider a simple feedback control system with a constant feedback gain   as shown in 

Figure 7.1, the control problem for this system is to find the value of   for which the 

performance of the system is enhanced. Performance here denotes the stabilization of 

the system (if the system is unstable) and/or improvement of its stability to ensure that 

transient phenomenon dies down sufficiently fast. The control law for the system in 

Figure 7.1 can be written as follows: 

               (7.1) 

where   is the measured output of the system,   is the reference input and   is the 

controlled output. Also relating to Figure 7.1, depending on whether displacement or 

velocity is the controlled variable,   is equal to      or     , respectively (  is the 

identity matrix), and many other choices of   are possible.  

In the field of control of active structures, the choice of   divides active structural 

systems into two: collocated and non-collocated systems. On the one hand, collocated 

control systems are those in which actuators and sensors are paired together (making it 

easy for a single structural member to act as an actuator and a sensor simultaneously) 

and are characterized by having alternating poles and zeros along the imaginary axis 

[129]. Collocated controllers form a class of low-authority controllers that are used for 

active damping to suppress vibration of a structural system with typically low amount of 

force [133]. On the other hand, non-collocated control systems are those systems in 

which sensors and actuators need not to be paired together and may be placed at 

different locations, making it possible to position sensors (actuators) at the best possible 

location that will enhance system performance given that the actuator (sensor) locations 

are fixed [196]. Due to the high degree of flexibility in choosing sensor/actuator 



227 
 

locations in non-collocated systems, they are commonly used as high-authority 

controllers which, in addition to providing damping forces, are capable of making 

structural systems undergo significant movement (shape change) often requiring the use 

of powerful actuators to provide significant amount of force; as a result, these controller 

are better suited for applications where the structural system is required to track a given 

reference [133].  

 

    × 
+   =    +     

 =    +     

  

_ 
  

  

  

  

 

Figure 7.1: Assumed structural system for controller design 

 

The transfer functions of flexible structures (such as tensegrity structures) are 

known to be positive real [197]. It should be noted that the term positive real denotes 

the dissipative nature of the structural system and the terms dissipative, passive, hyper 

stable and positive real are synonymous [133], [198]. As such, the controllability and 

observability grammians of these structural systems are nonsingular. The algebraic 

criterion for a matrix of transfer function of the system ( ,  ,  ,  ) to be positive real 

can be written as follows [199]:  

                    (7.2a) 

                      (7.2b) 

                      (7.2c) 

where   and   are real matrices and P is a real symmetric positive definite matrix. For 

the case where the feed-forward matrix   equals zero,       ; therefore, 

Equation (7.2) can be written as:  

                    (7.3a) 

                    (7.3b) 
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To obtain the control law for a low-authority controller with zero reference input 

(   ) using (7.1), the measured output matrix   needs to be determined first. The 

measured output is obtained as follows:  

            (7.4) 

Consider the following three cases of choosing the matrix  :  

Case 1: Let    ; substituting this value of   in Equation (7.3a) and comparing the 

resulting equation with Equation (4.10) gives the following expression:  

             (7.5) 

where   , as in Chapter 4, is the observability grammian. Thus, equations (7.3b) and 

(7.1) can respectively be written as follows:  

               (7.6) 

                 (7.7) 

Moreover, the choice of     signifies that, once the actuators are chosen, the sensory 

outputs (measured outputs) are a weighted sum of the row vectors of      . It should 

be noted that since the computation of    requires the availability of matrix   (see 

Equation (4.6), for instance), matrix   is taken to be equal to matrix   for computing 

  ; subsequently, this value of    is then used to compute   using Equation (7.6).   

Case 2: Let        ; substituting this value of   in Equation (7.3a), and noting that 

    , and comparing the resulting equation with Equation (4.9) gives the following 

equation:  

       
          (7.8) 

where    is the controllability grammian. Thus, in this case, equations (7.3b) and (7.1) 

can respectively be written as follows:  

          
        (7.9) 

           
          (7.10) 

The choice of       signifies that, once the outputs to be measured (sensor locations) 

are chosen, the actuator forces are a weighted sum of the row vectors of        
  . 
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Case 3: Let          
 
  ; substituting this value of   in Equation (7.3a) gives the 

following expression:  

                   (7.11) 

From (7.11), the value of   can be expressed as follows:  

             (7.12) 

In this case, equations (7.3b) and (7.1) can respectively be written as follows:  

            (7.13) 

                (7.14) 

The third case (Case 3) is the most commonly used closed-loop configuration for 

collocated systems [133]. Moreover, the sensor outputs are a weighted sum of the row 

vectors of   . In particular, the choice of      in Equation (7.13) signifies that the 

stability of the closed-loop system is strictly positive real [200], [201]. However, as 

noted in [202], stability does not imply good performance.  

The task of determining the control law for each of the preceding three cases is 

now reduced to determining the value of the constant state-feedback gain  ; it should 

be noted that if   is diagonal, the constant is a proportional state-feedback gain. The 

equations for the closed-loop systems given by the three cases just considered are as 

follows:  

Case 1:                                 (7.15a) 

                          (7.15b) 

Case 2:               
                   (7.16a) 

       
                     (7.16b) 

Case 3:                               (7.17a) 

                       (7.17b) 

From equations (7.15-7.17), there are two issues to be considered: The first issue 

relates to the pairing of the measured outputs and the forces applied by the actuators; for 

example, given the choice between using displacement or velocity sensors, which of 

these sensors is the most suitable with force actuators placed at fixed locations? The 

second issue relates to the use of the properties of the closed-loop dynamics for 
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obtaining the value of   that will enhance the performance of the system; these closed-

loop dynamics for the three cases are defined by the following matrices, respectively:  

                             (7.18a) 

              
                 (7.18b) 

                           (7.18c) 

More so, the output matrices of the three cases can be deduced from equations (7.15-

7.17) as follows:  

                         (7.19) 

         
                   (7.20) 

                         (7.21) 

It should be noted that the upper-half of the partition of the input matrix   of the 

state-space model of a structural system, given by equations (3.68 – 3.71) or (3.75 – 

3.77) for example, is equal to zero. Consequently, the actuator forces are effectively 

located only at the lower-half partition of the input matrix   and, as a result, the left-

half of the output matrix of the velocity measurement representation (given by equation 

(3.73) or (3.79)) is zero while its right-half partition is non-zero; this right-half partition 

is the location of the velocity measurements. Thus, it is most convenient that the non-

zero lower-half partition of   and the non-zero right-half partition be paired, or 

‗collocated‘, together; this means, actuator forces and velocity sensors should be paired 

together for the design of a collocated controller in this case. In other words, in this 

pairing arrangement, the right-half partition (where the velocity measurements are 

located) of the matrices     and     will generally be non-zero while the left-half 

partition of these matrices will be equal to zero (that is, for cases 2 and 3).  

As for Case 1, it should be observed that the computation of     requires the 

availability of the input matrix   and the observability grammian   ;    in turn is 

dependent on the output matrix   (see equations (4.6), (4.8) and (4.10)). This implies 

that the sensor location and actuator locations are simultaneously known and available. 

Moreover, if velocity sensors are used, the velocity measurements is collocated with the 

actuator forces as in Cases 2 and 3 since the left-half partition of     will be zero and 

the right-half partition will contain the velocity measurement. However, if displacement 

sensors are used, both the left- and right-half partitions of     are generally non-zero. 
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Thus, it is not possible to make a general statement about collocation requirements in 

this case of displacement sensors for Case 1. As for both cases 2 and 3, the 

displacement sensors results in zero left-half partition and non-zero right-half partitions 

of     and    . 

Next, the value of   can be determined by any suitable pole-placement technique; 

this involves the placement of the closed-loop poles (that is, the characteristic values of 

the closed-loop matrices) of Equation (7.18) at desirable locations in order to stabilize 

the closed-loop system, shape the transient response, enhance the robustness of the 

closed-loop system and/or minimize the norm of the feedback gain that was due to the 

pole-placement [203–205]. Pole assignment is one of the central problems in control 

systems design and there are numerous pole-placement techniques that have been 

proposed in the literature covering both the theoretical viewpoint (for example, [149], 

[200], [206]) and the computational perspective (for example, [207–211]) of pole-

placement; see [212] for a brief account of some of these techniques, for example. In 

relation to collocated and other low-authority active flexible structural systems where 

robustness is difficult to achieve primarily due to many closely-spaced low-frequency 

lightly damped modes [213], pole-placement techniques are used to design constant 

gain controllers that will ensure that the transient phenomenon of the structure dies 

down sufficiently fast. In the likely event of un-modelled dynamics and parametric 

uncertainties, the strictly passive collocated controllers achievable with pole-placement 

algorithms guarantees robust stability [200], [214], [215]. However, the prices to be 

paid (quantified by the amount of control effort) for using these pole-placement 

techniques for designing collocated controllers have not received much attention so far 

in the literature. Nonetheless, the issue of reducing the control effort as much as 

possible is of great importance since, at it is well-known, the further one moves the 

poles, the greater the gain (and, as such, the control effort) required.  

In what follows, the problem of finding the value of   for which the control input 

are minimum while the closed-loop system response will approximate the response of a 

system whose closed-loop poles are at pre-defined locations in the complex plane will 

be addressed. For example, given that a closed-loop system   , with closed-loop 

dynamics        where   is the constant gain matrix, has the desired closed-loop 

poles at    (where    is chosen so that the closed-loop system is asymptotically stable;  

   is a vector whose elements are the individual poles), the task is to find the values of 
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 , if they exist, for the closed-loop systems    and    whose closed-loop matrices are 

given by the closed-loop matrices           
    and           of cases 2 and 

3, respectively. The optimal values of   in both cases should result in the minimum 

control inputs for systems    and    while, at the same time, ensure that the closed-

loop responses of    and    match that of    as close as possible. Obviously, the 

system matrices   and   must be the same for the systems   ,    and    for the 

solution to make any sense. It should be noted that, in order for stability to be 

unconditionally guaranteed (despite modelling error), the symmetric part of the constant 

feedback gain   must be positive semidefinite [207], [214], [215]. For a constant 

feedback gain satisfying     , for example, this positive semi-definiteness condition 

may be written as follows:  

           (7.22) 

For convenience, let   be a diagonal matrix (that is, a constant proportional state-

feedback gain) in the subsequent analysis.  Thus, the problem of finding   may be 

written as the following optimisation problem:  

                             (7.23) 

                            

where    =          ; it should be recalled that the closed-loop poles are the values of   

such that                  , and as such,   is a measure of the total system 

energy and it is a diagonal matrix of singular values of the closed-loop matrix   defined 

as follows:  

                  (7.24) 

where   is a diagonal matrix whose diagonal entries are the entries of vector    (that is, 

           );   is the output matrix, which for cases 1, 2 and 3, is equal to    ,     

and     (defined by equations (7.19), (7.20) and (7.21)), respectively; and   is obtained 

from   by singular value decomposition (SVD) that can be written in the following 

form:  

                (7.25) 

where   and   are the left and right orthonormal matrices, respectively. More details on 

SVD can be found in Chapter 2 of this thesis. Thus, the optimization problem posed in 
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(7.23) attempts to minimize the total energy of the closed-loop system, thereby the 

control effort, by the relocation of the poles specified in vector    in the complex plane. 

Also, as in Chapter 2, the solution to the optimization problem can be computed using 

the interior-point method of solving linear and nonlinear convex optimisation problems. 

The effectiveness of employing the proposed optimization approach for computing   is 

demonstrated using the three structural systems of Figure 6.21 as examples. In each of 

these examples, the poles of the closed-loop matrix        specified in vector    is 

determined using the following principles [151], [216]: To reduce the control effort as 

much as possible, the low frequency modes (poles) are chosen so that the desired 

system behaviour (fast settling time, minimal steady-state error, etc) is achieved; each of 

the remaining poles is selected by increasing the damping    while holding the 

frequency    constant (where           denotes the i
th

 pole location in the complex 

plane). Importantly, it should be noted that the example structural systems are 

completely controllable and observable – a condition necessary for the closed-loop 

poles of the LTI systems to be arbitrary assigned to any location in the complex plane 

(of course, with the restriction that complex poles appear in conjugate pairs) [151].  

Hence, for each of the collocated structural systems of Figure 6.21, the velocity 

sensors are paired with force sensors as in Case 3. Thus, the output matrix for each of 

these systems is computed as follows:  

                     (7.26) 

Table 7.1 gives the eigenvalues of the open-loop structural systems, the entries of 

the vector    defined by the eigenvalues of       , and the eigenvalues of the 

optimized closed-loop system         obtained by finding solution to the 

optimization problem of (7.23).  

Figure 7.2 shows the plots of the eigenvalues of  ,        and         in 

the complex plane. It should be noted that, while   =          is computed by finding 

the solution of (7.23),   is obtained by a well-known pole-assignment algorithm given 

in [205]; in MATLAB
®
, given  ,   and   , the value of   can be obtained using the 

‗place‘ function. Thus, the values of the constant feedback gain   for the structural 

systems of Figure 6.21 (a), (b) and (c) obtained using the nodal models of these 

structural systems are respectively as follows:  
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Structure 6.21(a): 

                                                                                               

 

Structure 6.21(b): 

                                                                                               

 

Structure 6.21(c):  

                                                                                               

 

Table 7.1: Poles of the open-loop and closed-loop structural systems for      

Structural System of Figure 6.21(a) 

Open-loop eigenvalues:        

 

        

Entries of   :           

 

        

Eigenvalues of the optimized closed-loop 

system:            

        

-0.0229 ± 1.1453i 

-0.0009 ± 0.0468i 

-0.0245 ± 1.2235i 

-0.0245 ± 1.2235i 

-0.0088 ± 0.4376i 

-0.0088 ± 0.4376i 
-0.0171 ± 0.8541i 

-0.0171 ± 0.8549i 

-0.0171 ± 0.8549i 

 

-0.0300 ± 1.1453i 

-1.0100 ± 0.4376i 

-1.0100 ± 0.4376i 

-1.0100 ± 0.0000i 

-0.0200 ± 0.8541i 

-0.0300 ± 1.2235i 
-0.0300 ± 1.2235i 

-0.0200 ± 0.8549i 

-0.0200 ± 0.8549i 

-0.2823 ± 1.1304i 

-0.0674 ± 1.1864i 

-0.0484 ± 1.1521i 

-0.5353 

-0.0052 

-0.0390 ± 0.4047i 
-0.0860 ± 0.4427i 

-0.0175 ± 0.8557i 

-0.0168 ± 0.8539i 

-0.0176 ± 0.8544i 

 

Structural System of Figure 6.21(b) 

Open-loop eigenvalues:        

 

        

Entries of   :           

 

        

Eigenvalues of the optimized closed-loop 

system:            

        

-0.0209 ± 1.0453i 

-0.0209 ± 1.0448i 

-0.0209 ± 1.0448i 

-0.0035 ± 0.1752i 

-0.0039 ± 0.1970i 

-0.0039 ± 0.1970i 

-0.0016 ± 0.0778i 
-0.0017 ± 0.0836i 

-0.0017 ± 0.0836i 

-0.0300 ± 1.0453i 

-0.0250 ± 1.0448i 

-0.0250 ± 1.0448i 

-0.0400 ± 0.1752i 

-0.1999 

-0.1889 

-0.1111 
-0.0450 ± 0.1970i 

-0.0450 ± 0.1970i 

-0.1001 

-0.1000 

-0.1000 

-0.0195 ± 1.0453i 

-0.0233 ± 1.0446i 

-0.0218 ± 1.0449i 

-0.0522 ± 0.1851i 

-0.0503 ± 0.1747i 

-0.0348 ± 0.1569i 

-0.1342 
-0.0395 ± 0.0744i 

-0.0526 ± 0.0688i 

-0.0607 

 

Structural System of Figure 6.21(c) 

Open-loop eigenvalues:        Entries of   :           Eigenvalues of the optimized closed-loop 

system:            

-1.9585 ±97.9035i 

-1.9528 ±97.6195i 

-1.9528 ±97.6195i 
-0.1556 ± 7.7760i 

-0.1978 ± 9.8868i 

-0.3632 ±18.1567i 

-0.3632 ±18.1567i 

-0.1026 ± 5.1311i 

-0.1026 ± 5.1311i 

-2.0000 ±97.9035i 

-2.2000 ±97.6195i 

-2.2000 ±97.6195i 
-3.0000 ± 9.8868i 

-5.1050 

-6.8405 

-8.2621 

-2.0000 ±18.1567i 

-2.0000 ±18.1567i 

-9.9976 

-10.1026 
-10.1026 

-2.0026 ±97.6372i 

-2.0583 ±97.7888i 

-2.5841 ±97.6608i 
-2.3481 ±17.7995i 

-4.4041 ±16.2578i 

-0.6955 ± 9.6162i 

-4.2427 ± 7.3639i 

-1.4898 ± 5.0262i 

-0.7056 ± 5.0965i 
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It should be noted that the fact that some diagonal entries of   are zeros or small 

relative to others (given that   is a diagonal matrix) signifies the relative importance of 

the corresponding outputs (states) compared to other outputs. In other words, just as 

deduced from the results of Chapter 4 on modal reduction and actuator/sensor 

placement, some outputs measurements (sensor) and applied forces (actuators) that are 

of least importance can be eliminated from the structural system (without adversely 

affecting the effectiveness of the control system) to improve computation efficiency and 

reduce the overall cost of the control system (as a result of the reduced number of 

sensors and actuators that are now used).  

The simulation results of the structural systems of Figure 6.21 (a), (b) and (c) for 

initial nodal velocities of [0.5 0.2 -0.4 0.5 0.2 -0.4 0.5 0.2 -0.4]       using the 

collocated controllers are shown in Figure 7.3. The actuator and sensor dynamics are 

assumed to be negligible in these simulations, and it should be recalled that these 

structural systems have nine degrees-of-freedom as previously noted in Chapter 6.  

Furthermore, let the velocity sensors be collocated with the actuator forces as in 

Case 2, then the output matrix   is computed as follows:  

      
                 (7.27) 

For the value   in (7.27), Table 7.2 gives the eigenvalues of the open-loop 

structural systems, the entries of the vector    defined by the eigenvalues of       , 

and the eigenvalues of the optimized closed-loop system         obtained by 

finding solution to the optimization problem of (7.23) for the collocated structural 

systems of Figures 6.21 (a), (b) and (c). For these systems, Figure 7.4 shows the plots of 

the eigenvalues of  ,        and         in the complex plane. Thus, the values 

of the constant feedback gain   for the structural systems of Figure 6.21 (a), (b) and (c) 

obtained using the nodal models of these structural systems are as follows:  

Structure 6.21(a): 

                                                                                               

 

Structure 6.21(b): 

                                                                                                

 

Structure 6.21(c):  
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Also, Figure 7.5 shows the simulation results of the structural systems of Figure 6.21 

(a), (b) and (c) with the same initial conditions (nodal velocities) and model parameters 

and assumptions as in Figure 7.3. 

 
(a) 

 

 
(b) 

 

 
(c) 

 

Figure 7.2: (a), (b) and (c) are the plots of the open- and closed-loop poles of the 

structural systems of Figure 6.21 (a), (b) and (c), respectively, in the complex plane for 

the output matrix       (‗o‘ – open-loop poles; ‗x‘ – closed-loop poles).  
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    (a)            (b)  

 

Figure 7.3 (a): (a) and (b) are the plots of the dynamic responses (nodal velocities 

[     ] Vs time [sec]) and the control efforts (actuator forces [N] Vs time [sec]) at 

Node 6 in the structural system of Figure 6.21 (a), respectively, for the output matrix 

    .   
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    (c)            (d)  

 

Figure 7.3 (b): (c) and (d) are the plots of the dynamic responses (nodal velocities 

[     ] Vs time [sec]) and the control efforts (actuator forces [N] Vs time [sec]) at 

Node 5 in the structural system of Figure 6.21 (b), respectively, for the output matrix 

    .   
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    (e)            (f)  

 

Figure 7.3 (c): (e) and (f) are the dynamic responses (nodal velocities [     ] Vs time 

[sec]) and the control efforts (actuator forces [N] Vs time [sec]) at Node 5 in the 

structural system of Figure 6.21 (c), respectively, for the output matrix     .   
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Table 7.2: Poles of the open-loop and closed-loop structural systems for       
   

Structural System of Figure 6.21(a) 

Open-loop eigenvalues:        

 

        

Entries of   :           

 

        

Eigenvalues of the optimized closed-loop 

system:            

        

-0.0229 ± 1.1453i 
-0.0009 ± 0.0468i 

-0.0245 ± 1.2235i 

-0.0245 ± 1.2235i 

-0.0088 ± 0.4376i 

-0.0088 ±0.4376i 

-0.0171 ± 0.8541i 

-0.0171 ± 0.8549i 

-0.0171 ± 0.8549i 

-0.0300 ± 1.1453i 
-1.0100 ± 0.4376i 

-1.0100 ± 0.4376i 

-1.0100 ± 0.0000i 

-0.0200 ± 0.8541i 

-0.0300 ± 1.2235i 

-0.0300 ± 1.2235i 

-0.0200 ± 0.8549i 

-0.0200 ± 0.8549i 

-4.0074 
-3.8467 

-3.0097 

-1.8236 

-1.4458 

-0.3759 ± 0.7954i 

-0.1552 ± 0.7348i 

-0.1079 ± 0.7080i 

-0.5372 
-0.4792 

-0.0193 

-0.2533 

-0.1578 

-0.1398 

-0.1279 

 

Structural System of Figure 6.21(b) 

Open-loop eigenvalues:        

 

        

Entries of   :           

 

        

Eigenvalues of the optimized closed-loop 

system:            

        

-0.0209 ± 1.0453i 

-0.0209 ± 1.0448i 

-0.0209 ± 1.0448i 

-0.0035 ± 0.1752i 

-0.0039 ± 0.1970i 
-0.0039 ± 0.1970i 

-0.0016 ± 0.0778i 

-0.0017 ± 0.0836i 

-0.0017 ± 0.0836i 

-0.0300 ± 1.0453i 

-0.0250 ± 1.0448i 

-0.0250 ± 1.0448i 

-0.0400 ± 0.1752i 

-0.1999 
-0.1889 

-0.1111 

-0.0450 ± 0.1970i 

-0.0450 ± 0.1970i 

-0.1001 

-0.1000 

-0.1000 

-2.4517 

-0.0697 ± 1.0413i 

-0.9641 ± 0.4007i 

-0.7228 

-0.5439 
-0.4458 

-0.0220 ± 0.1231i 

-0.1910 

-0.0894 ± 0.0968i 

-0.1195 ± 0.0587i 

-0.0579 

-0.0224 
-0.0293 

 

Structural System of Figure 6.21(c) 

Open-loop eigenvalues:        Entries of   :           Eigenvalues of the optimized closed-loop 

system:            

-1.9585 ±97.9035i 

-1.9528 ±97.6195i 

-1.9528 ±97.6195i 

-0.1556 ± 7.7760i 

-0.1978 ± 9.8868i 

-0.3632 ±18.1567i 

-0.3632 ±18.1567i 

-0.1026 ± 5.1311i 
-0.1026 ± 5.1311i 

 

-2.0000 ±97.9035i 

-2.2000 ±97.6195i 

-2.2000 ±97.6195i 

-3.0000 ± 9.8868i 

-5.1050 

-6.8405 

-8.2621 

-2.0000 ±18.1567i 
-2.0000 ±18.1567i 

-9.9976 

-10.1026 

-10.1026 

-12.0309 ±96.9639i 

-41.6238 ±88.4039i 

-48.7880 ±84.6600i 

-24.3009 

-2.6935 ±16.9586i 

-8.8005 ±10.7510i 

-1.9012 ± 8.4815i 

-1.8485 ± 5.7263i 
-7.3587 

-5.2155 

-3.0829 
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(a) 

 

  

(b) 

 

  

(c) 

Figure 7.4: (a), (b) and (c) are the plots of the open- and closed-loop poles of the 

structural systems of Figure 6.21 (a), (b) and (c), respectively, in the complex plane for 

the output matrix       
   (‗o‘ – open-loop poles; ‗x‘ – closed-loop poles).  
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    (a)            (b)  

 

Figure 7.5 (a): (a) and (b) are the dynamic responses (nodal velocities [     ] Vs time 

[sec]) and the control efforts (actuator forces [N] Vs time [sec]) at Node 6 in the 

structural system of Figure 6.21 (a), respectively, for the output matrix       
  .   
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    (c)            (d)  

 

Figure 7.5 (b): (c) and (d) are the dynamic responses (nodal velocities [     ] Vs time 

[sec]) and the control efforts (actuator forces [N] Vs time [sec]) at Node 5 in the 

structural system of Figure 6.21 (b), respectively, for the output matrix       
  .    
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    (e)            (f)  

 

Figure 7.5 (c): (e) and (f) are the dynamic responses (nodal velocities [     ] Vs time 

[sec]) and the control efforts (actuator forces [N] Vs time [sec]) at Node 4 in the 

structural system of Figure 6.21 (c), respectively, for the output matrix       
  .   
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It can be seen from these results that the optimal value of   obtained by solving 

the optimization problem of (7.23) does indeed reduce the control efforts significantly 

compared to using the pole-assignment algorithm directly for computing the gain matrix 

 . Moreover, it should be noted that the proposed optimization method of obtaining the 

constant gain   by this pole-relocation approach is applicable to nodal, modal, balanced 

and reduced-model of any structural system; this is unlike many of the common 

methods of obtaining   (such as methods given in [133], [217]) which require that the 

structural model be in a specific format.  

Furthermore, the design of the collocated control scheme for the active structural 

systems presented in this section is applicable to low-authority controller. For many 

practical structural applications (such as tethered satellite systems [218] and shape 

morphing of aircraft wings [219], for instance), high authority controllers (where the 

structural systems are required to track reference signals within the controller bandwidth 

and within the disturbance bandwidth) are the most suitable. The most successful 

controller design used in the field of active structures is the LQG (Linear system, 

Quadratic cost, Gaussian noise) controllers [129]. These controllers are suitable for both 

collocated and non-collocated control systems. Moreover, they can be made to inculcate 

features such as estimator designs (full- and reduced-order), disturbance rejection, 

robust tracking, etc. The LQG controller design is the subject of the next section.  

 

7.3 Linear Optimal Control of Tensegrity Structures 

The field of optimal control theory has attained considerable maturity that has enhanced 

its widespread applications since its inception in the 1950‘s. In this section, the results 

of some of the most fundamental optimal control problems (the linear quadratic control 

problems, in particular) will be applied to tensegrity structural systems for vibration 

suppression (low-authority controllers) and precise positioning or tracking (high-

authority controllers). Many literatures that cover the analysis and design of linear 

quadratic controllers are available (such as [151], [153], [154], [157], [216]); the main 

results that are needed for the current study on active tensegrity structures are presented 

in the Appendix and [151], [216] are used as the main sources of reference. The sections 

that follow are dedicated to applying these results to tensegrity structural systems in 

particular. It is worth noting that the sections, equations and figures that are given in the 
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Appendix and that are being referred to in the subsequent sections are prefixed with the 

letter ―A‖.  

7.3.1 Collocated Control with Linear Optimal State-feedback 

Regulator 

A linear state-feedback regulator can be used for vibration suppression of an active 

tensegrity structure. This effectively makes the controller a low-authority controller 

since it is not designed to be used for reference tracking. In this section, the design of a 

linear state-feedback regulator for a collocated tensegrity structural system will be 

considered by applying the results of the deterministic linear optimal regulator given in 

Section A.1. The block diagram of the control system equipped with this linear optimal 

regulator is given in Figure A.1 (a). Consider the linear control law of the optimal linear 

state-feedback regulator given by Equation (A.5), the optimal regulator gain    is 

computed using the following expression:  

     
            (7.28) 

where   is obtained by solving the algebraic Riccati equation of (A.8) which, by 

substituting (A.4) in (A.8), can be expressed as follows:  

       
                  (7.29) 

Given   , Equation (7.29) is easily solved for   using the algorithm presented in 

[220], for instance. Thus, for equations (7.28) and (7.29), the value of the optimal linear 

regulator gain    is determined by the two matrices, namely,    and   . In general, 

    in this case.  

Alternatively, consider the positive real criterion expressed in Equation (7.3), the 

case where          
 
   such that Equation (7.11) is valid gives the value of   as 

    for a collocated structural system (refer to Case 3 of Section 7.2). In this case, the 

value of    is determined as follows:  

     
            (7.30) 

Equation (7.30) is obtained by substituting     in Equation (7.29); hence,    is 

defined as follows:  

      
            (7.31)  
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Thus, Equation (7.30) is a special case of Equation (7.28). In this context, only one 

weighting matrix (  ) is needed for computing     using (7.30) whereas two weighting 

matrices (   and   ) are needed for computing    using (7.28); consequently, in the 

computation of    using (7.28), there is the extra freedom in manipulating the stability 

and transient phenomenon by choosing    appropriately.  

The simulation results for the case where   is computed with (7.29) and the case 

where it is computed with     to obtain the value of    for the tensegrity structures 

of Figure 6.21(a–c) are shown in Figure 7.6. Moreover, the modal models of these 

structures are used for this simulation and the figure shows the results of only a few 

number of modes. Also, it should be observed that the modal velocities and modal 

forces are paired (collocated) together. The initial modal velocities for the modes shown 

in Figure 7.6 (a), (b) and (c) are    ,     and     , respectively. Let          and 

         where   is the identity matrix and its subscript ‗  ‘ denotes the number of 

columns of matrix  ; for the simulation results in Figure 7.6 (a), (b) and (c), the values 

of    for computing    are 
 

  
 , 

 

  
 and 

 

  
 , respectively; the values of    used for 

computing    are indicated in Figure 7.6 for the various simulation results. 

7.3.2 Non-collocated Control with Linear Optimal Output-feedback 

Controller  

In the preceding section, the design of linear optimal state-feedback regulators for 

collocated control of tensegrity structural systems was presented. In this section, the 

task is to design linear output-feedback controllers for non-collocated control of the 

structural systems. The block diagram of a control system equipped with the linear 

output-feedback controller is shown in figures (A.3) and (A.4). The problem of 

vibration suppression of tensegrity structural systems will be considered in this section 

just as in the preceding one; the problem of robust tracking for non-collocated control is 

dealt with in the next section.  
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(a) Tensegrity Structure of Figure 6.21(a) 

 

(b) Tensegrity Structure of Figure 6.21(b) 

 

(c) Tensegrity Structure of Figure 6.21(c) 

Figure 7.6: Simulation results for the cases of     and     computed with (7.28 – 

7.29) and (7.30), respectively, for the tensegrity structures of Figure 6.21(a–c). 
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The design of an output-feedback controller can be approached using the 

separation principle (refer to Section A.3 for details). This design involves finding the 

estimator and the regulator gains. This can be approached either by pole-placement or 

by obtaining optimal solution to a quadratic criterion provided the associated 

restrictions on the use of either methods is respected. Consider the state-space model of 

the multistable 3-bar tensegrity structural system of Figure 6.21(c) with 18 number of 

states and with (nodal/modal) displacements and forces as the measured variable and 

control input, respectively (that is, the active tensegrity structure is non-collocated), the 

reduced model of this state model with 8 number of states has been obtained using the 

truncation method described in Section 4.3.1; the reduced model is the system (    , 

    ,     ,     ). Of the 8 states that can be selected as output variables of the reduced 

model, only four are measured (that is,              ); the other four variables (that 

are unmeasured) are the least significant (least affected by the control input) and are 

essentially zero irrespective of the system input. The design of an output-feedback 

controller for this system using the pole-placement and optimization methods follows. 

Output-feedback Controller Design by Pole-placement: The open-loop poles and the 

poles of the closed-loop system obtained by pole-placement for the linear regulator are 

shown in Table 7.3. Also, the estimator poles are chosen so that the estimator dynamics 

(    ) is four times faster than the regulator dynamics (    ).  

 

Table 7.3: Open-loop and closed-loop poles of the reduced-model of the structural 

system (non-collocated case) of Figure 6.21(c) 

Open-loop poles:        

 

Closed-loop poles:           

-1.9585 ± 97.9035i 

-0.1026 ±   5.1311i 

-0.1026 ±   5.1311i 

-0.1556 ±   7.7760i 

-5.9340 ±  2.9660i 

-4.6680 ±  2.3328i 

-2.7780 ±  1.5393i 

-3.0780 ±  1.5393i 

 

Output-feedback Controller Design by Optimization of Quadratic Criterion: The gain 

of the linear optimal regulator is computed using (A.6) where    and    are       and 

 

  
    (‗  ‘ and ‗  ‘ are the number of states and the number of columns of  , 

respectively). Also, the gain of the linear optimal estimator is computed using Equation 
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(A.22) where    and    are taken as      and 
 

   
    , respectively (‗  ‘ is the number 

of rows of  ), and the disturbance and measured noises are assumed to be uncorrelated.  

The simulation results using the output-feedback controller designed with the two 

methods (pole-placement and optimization) for the reduced model of the non-collocated 

active structural systems of Figure 6.21(c) are shown in Figure 7.7; the initial condition 

of the state variables is                                                    .  

7.3.3 Robust Tracking System for Active Tensegrity Structures 

In this section, the task involves the design of a robust tracking controller for an active 

tensegrity structure. The block diagram for the robust tracking control system is given 

in Figure A.7. Furthermore, the reduced model (of non-collocated active structural 

system) of the multistable 3-bar tensegrity structure given in the preceding section is 

also used in this section as the example structural system and the linear tracking control 

system design technique of Section A.4 is directly applied. Moreover, in relation to the 

discussions in Section A.4,   (which can also be obtained by pole-placement) is 

computed here by solving the optimal linear regulator problem described in Section A.1 

using the augmented system model of Equation (A.38); the matrices   ,    and    

required to minimize (A.39) are defined, for the example structural system, as follows: 

   
 

   
   ;    

 

  
   ; and    

 

  
    . Thus, the regulator gain   and the integral 

gain    are deduced by partitioning  . Also, matrices   and   are obtained using 

equations (A.28 – A.34).  

In addition, the estimator gain   can be computed using pole-placement or by 

computing the optimal estimator gain given by Equation (A.22); using the pole-

placement method for the example active structural system,   is obtained so that the 

closed-loop dynamics of the estimator (    ) is four times faster than the closed-loop 

poles of (    ) where   is the left-hand side partition of  ; for the optimization 

method, the optimal linear estimator gain    is computed by assuming that         , 

   
 

   
   , and the disturbance and measurement noises are uncorrelated. Both 

methods of obtaining   are used for the simulation of the robust tracking system of the 

active structural system of Figure 6.21(c). The simulation results are shown in Figure 

7.8. The initial condition of the state variables is                                        

             and the reference vector is                    .  
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(a) 

 

(b) 

Figure 7.7: Simulation results for the (non-collocated) tensegrity structural system of 

Figure 6.21(c) using output-feedback controllers designed with pole-placement and 

optimization approaches. 
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(c) 

 

 

(d) 

Figure 7.7 (continued): Simulation results for the (non-collocated) tensegrity structural 

system of Figure 6.21(c) using output-feedback controllers designed with pole-

placement and optimization approaches. 
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(a) 

 

 

(b) 

Figure 7.8: Simulation results for the robust tracking control for the (non-collocated) 

tensegrity structural system of Figure 6.21(c) using linear observer designed with pole-

placement and optimization approaches.  
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(c) 

 

 

(d) 

Figure 7.8 (continued): Simulation results for the robust tracking control for the (non-

collocated) tensegrity structural system of Figure 6.21(c) using linear observer designed 

with pole-placement and optimization approaches.  
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7.4 Discussions 

Unlike in the previous chapter where the shape control of the multistable 3-bar 

tensegrity structure is achieved through independent multiple PID control systems, the 

framework for the shape control of tensegrity structures presented in this chapter is 

based on centralized linear quadratic control architecture (that is, the LQG controller). It 

should be recalled that, the fundamental assumption that the sources of disturbance 

(primarily, due to the un-modelled member forces that link the SISO systems together) 

for each independent PID control system are independent of each other is not accurate. 

For the LQG controller, since the control law is computed using the information of the 

systems states, a highly coupled tensegrity structural system is effectively controlled 

taking into account, not only the level of interaction between the states but also, the 

presence of model uncertainties due to the dimensional and material imperfections of 

the cables and bars, the lack of the precise knowledge on the frictional force at the 

joints, and the inaccuracies as a result of geometrical configuration of the structure.  

It is well-known that centralized controllers are able to obtain solutions that are 

the globally optimal solutions while decentralized controllers are better suited for large-

scaled system but solutions are local optimal solutions at best. Hence, on the one hand, 

in large structural systems consisting of several active tensegrity modules, the linear 

optimal control system design, as described in this chapter (that is, the LQG controller), 

will be suitable for obtaining a local optimal solution for each of the local tensegrity 

modules. On the other hand, for tensegrity structures consisting of only few structural 

members, the linear optimal control system design will be suitable for obtaining global 

optimal solution since the number of variables for the structural system involved in this 

case are few, and as a result, can be computed fast.  

Furthermore, the reference variables of the linear state/output-feedback or robust 

tracking control systems of the linear optimal control system design  presented in this 

chapter are determined from the results of form-finding (structural optimisation), and 

the form-finding algorithm presented in Chapter 2 can be used, for instance, to compute 

these reference variables just as was the case in Chapter 6. Moreover, vibration 

suppression feature is an important characteristic of the low- and high-authority 

controllers designed in this chapter, making the controllers suitable for the control of 

both the un-deployed and the deployed tensegrity structural systems discussed in 

Chapter 5. Aircrafts that have the ability to change the shape of their wings to improve 
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fuel efficiency [219], [221] and biological inspired surgical robots that can perform 

complex computations required for skilful movement [222], [223] are, for example, 

potential applications of these reference robust tracking controllers.  

In addition, while the models of tensegrity structures are nonlinear and difficult to 

describe by simple mathematical functions, these structures are pre-stress stable (that is, 

they are in a state of static equilibrium due to pre-stress; see, for example, Chapter 2 for 

more detail). Thus, the use of linearised model (obtained from the Finite Element 

Modelling of Chapter 3, for instance) for the control system design described in this 

chapter, given that the actual structural system is nonlinear, is justified in the light of the 

fact that for a controller designed for a linearised model of a stable or an unstable 

nonlinear plant for which the closed-loop system is asymptotically stable, the actual 

nonlinear plant with this controller is also asymptotically stable for small deviations 

from the equilibrium state [151].  

More so, in the example structural system considered in Sections 7.3.2 and 7.3.3, 

the controllers were designed for the model of the active structural system of Figure 

6.21(c). This, in essence, makes the controller in Section 7.3.2 a linear output-feedback 

controller of reduced dimension and that in Section 7.3.3 a linear tracking controller of 

reduced dimension. These controllers, as demonstrated by the simulation results of the 

two sections, render quite satisfactory system performances although the ‗linear 

optimal‘ control law is obviously not optimal for the full model (the linear optimal 

controller is only optimal for the reduced-order linear model that was considered). As a 

result of model reduction in which only few dominant low-frequency modes are taken 

into account, it is possible that the un-modelled (residual) high-frequency modes are 

excited – though in the rare cases, such as in the space environment; the observer 

designed for the reduced-order model will not model response to these high-frequency 

inputs which may be capable of destabilising an otherwise stable closed-loop system. 

Many literature on how to tackle this situation, often called spillover, exist; reference 

[129], for instance, contains a simple way of dealing with spillover for flexible 

structures.  

Also, the linear optimal state-feedback regulator discussed in Section A.1 (and 

applied to tensegrity structural system in Section 7.3.1) has guaranteed stability margins 

(Gain Margin = 
 

 
 to   and Phase Margin >    ) for each mode [129]. The introduction 

of an observer in the state-feedback control-loop may adversely affect this robust 
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stability feature [224], [225]. As such, the estimator design presented in Section A.2 is 

commonly modified so that this robust stability feature is recovered to some extent; the 

associated observer modification procedure is commonly called the Loop Transfer 

Recovery (LTR) [216], [226]. However, the LTR procedure is usually at the expense of 

having, for example, a worse sensor noise sensitivity properties and the design to 

achieve an acceptable trade-off between these conflicting criteria depends on the 

problem at hand [216]. Procedures for LTR can be found in [226], [227] and details on 

the limits of achievable  performance can be found in [228], for instance.  

The model of tensegrity structures that has been used throughout this thesis has 

been obtained using the Finite Element Modelling (FEM) technique presented in 

Chapter 3. The outcome of this modelling exercise is a system model in the nodal 

coordinate format and, for further analyses, the nodal model has been expressed in 

nodal, modal, balanced and reduced state-space model representations (see Chapters 3 

and 4). Although the results of these analyses are not comprised, it should be noted 

however that for shape control (in addition to vibration suppression) of flexible 

structural systems in which structural members acts as sensors and actuators, the 

outcome of the FEM and its state-space representation counterpart can be alternatively 

expressed in slightly different formats that will make them much more easily 

interpretable and accessible for the control of both statically determinate and 

indeterminate structures. In particular, consider the 2-stage 3-order active tensegrity 

structure of Figure 7.9, for instance, the control input and output (measurement) 

variables of this and similar structure can be expressed in terms of the member length 

changes due to the actuators (referred to as the stroke lengths in Chapter 5) and the 

member axial forces, respectively, instead of expressing them in terms of nodal forces 

and velocities (or displacements), respectively, as has been the case in most part of this 

thesis. Moreover, it will be sometimes necessary (depending on the actuators and 

sensors selection) to convert the models in terms of nodal forces and velocities (or 

displacements) back to those in stroke lengths and axial forces for shape control of 

active tensegrity structures due to their static indeterminate nature and the high degree 

of integration amongst the structural members, actuators, sensors and geometric 

configurations. To achieve this conversion, consider the model of the discretized elastic 

structural system expressed in Equation (3.44), re-written here as follows: 

                            (7.32) 
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where the parameters in this equation are already defined in Section 3.2.3.  

 

Detail of an active 

structural member 

(in this case, a bar) 

In-line force sensor 

Linear actuator 

(piezoelectric, electromechanical, 

shape memory alloys, etc) 

Inelastic part of the bar 

(or, elastic part, if the active 

member is an elastic cable) 

 

Figure 7.9: A 2-stage 3-order active tensegrity structure 

 

Let   and   represent the vectors of member axial forces and member lengths, 

respectively, the equation of nodal force equilibrium in (2.4) can then be expressed as 

follows:  

                      (7.33a) 

                          (7.33b) 

                      (7.33c) 

where         is an influence matrix of direction cosines and          ; 

substituting (7.33c) in (7.32) gives the following equation:  

                            (7.34) 

  in Equation (7.34) now represents the active control forces (axial of structural 

member) of the structural system. Also,  , from the generalized Hooke‘s law (the 

constitutive equations), is a product of a stiffness matrix             – where    

represents the stiffness of the  th structural member – and member elongation vector   ; 

   is a vector of member length changes due to elastic deformation, or simply,   

    . The total element length changes    is the sum of the element length changes due 
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to elastic deformations    and the element length changes due to actuators   ; that is, 

        . The geometric compatibility equation can be expressed as         

[229]. The foregoing expressions lead to the following set of equations: 

                        (7.35a) 

                         (7.35b) 

                        (7.35c) 

Substituting Equation (7.35) in Equation (7.34) and rearranging the result leads to the 

following expression:  

                              (7.36) 

where           and       . It should be recalled that tensegrity structures are 

statistically indeterminate structures (see, for example, Chapters 2 and 3 for details); 

thus, the stiffness matrix   is the sum of elastic stiffness matrix    and geometric (pre-

stress) stiffness matrix     (see equations (3.24-3.26)). Therefore, there is a significant 

geometrical modification of the structure during a shape change (due to shape control, 

for instance) as a result of changes in   . Moreover, Equation (7.36) establishes the 

desired relationship amongst the stroke length of actuators through   , axial forces of 

structural members through   (which is a function of  ), and the nodal coordinates   

through the geometric compatibility equations. Additional supplementary notes on 

matrix representations and analysis for active control of flexible structures can be found 

in, for example, [229–232]. Meanwhile, it is clear that since   and   are functions of 

varying length of structural members (matrix  , which in turn is a function of   ),    

and    are both nonlinear time-varying matrices; for the same reason, matrices   and   

are nonlinear and time-varying in a more general sense. In general, the nonlinear model 

of an active tensegrity structure can be approximated by a linear time-varying model (as 

with other flexible structural systems [233]); analyses of the resulting equations are left 

for future work.  

Besides, the control system design covered in this chapter used for controlling 

tensegrity structures modelled as LTI systems has been restricted to the application of 

fundamental concepts of linear optimal control theory (such as linear quadratic 

regulators, observers, robust tracking and integral control) which has proven to be very 

successful in the field of active control of flexible structures [129], future work should, 
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therefore, consider the usefulness of more advance concepts (such as    and    in 

robust control, for instance, which are frequency-domain approaches to controller 

design) that are well-known to be better in dealing with robustness issues [156].  

It should be remembered that, when subjected to rigid body displacements, the 

dynamic behaviour of tensegrity structures presents a coupling between rigid body 

displacements and flexible modes and, as such, can become highly nonlinear or even 

unstable (consider that   in the expression           of Equation (7.36) is given 

by         (see equations (3.24-2-26)); should    become     , the system 

becomes unstable and the tensegrity structure collapses). Consequently, linear 

controllers are, therefore, often unsuitable for this class of problems [233]; several 

approaches have been proposed to enable their use in the control of statically 

indeterminate flexible structural systems (that are similar to tensegrity structures) but 

these are difficult to apply in practice [233–235]. In the general case, it might be 

convenient to use several linear controllers together so that elastic and rigid body modes 

are controlled independently [236], [237]. However, it would be useful to investigate 

the performance of adaptive controllers (for example, such as optimal control for linear 

time-varying systems [238] and time-varying optimal control for nonlinear systems 

[239]) that will be capable of taking into account the geometrical modifications of the 

structure when shape control algorithms are implemented.  

As a further remark, consider once again the equations of motion in (7.32), it 

should be recalled that the control input  , from Section 3.2.3, is given by    . 

Assuming that the structural system is collocated by pairing the nodal velocities and the 

applied forces (measured output and control input, respectively) together, the control 

law can be written as        , where      unconditionally guarantees closed-loop 

stability (refer to Equation (7.22)), Equation (7.32) can therefore be expressed as 

follows:  

                                (7.37) 

Similarly, for the non-collocated system, when the nodal displacements are paired with 

the applied forces (with control law        with     ) or when the nodal 

accelerations are paired with the applied forces (with control law         with 

    ), Equation (7.32) can respectively be written as follows: 
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                                (7.38) 

                                (7.39) 

It is easily seen that in equations (7.37), (7.38) and (7.39), the controller gains   ,    

and    appear as damping, stiffness and mass matrices, respectively; consequently, 

these control approaches can be considered damping control, stiffness control and mass 

control, respectively. While the damping control and the stiffness control are directly 

linked to the collocated control (as presented in Sections 7.2 and 7.3.1) and non-

collocated control (as presented in Section 7.3.2) strategies, the mass control with 

acceleration feedback is achievable since velocity feedback is obtained by integrating 

the acceleration measurements, thereby, obtaining a damping effect such as in Equation 

(7.37). Acceleration measurement is particularly easier than displacement and velocity 

measurements for stiff structures [129]. Numerous literature on active mass damping 

control systems relating to active structural systems exist; references for these can be 

found in [91], for instance.  

Lastly, previous work on active control of tensegrity structures from the control 

community includes, for example, [2], [71], [85–87], [90], [95], [240–242]; all these, 

however, have considered the control of tensegrity structures from the viewpoint of 

multibody dynamical systems that are limited to the control of few structural members. 

This thesis is the first, to the best of the author‘s knowledge, to present the control of 

tensegrity structures from the viewpoints of structural and topology optimization and 

design for small and large structures (Chapters 2 and 5), on the one hand, and structural 

dynamics and active control (Chapters 3, 4 and this chapter), on the other – making the 

presented control design approach suitable for structural systems with a large number of 

active members. This viewpoint is motivated by the need to present a platform for 

integrated design of optimal structures and optimal control system.  

 

7.5 Summary 

The active control of tensegrity structures is presented in this chapter. The chapter 

presents a new method in the determination of the feedback gain for the design of 

collocated tensegrity structural systems.  Also, the LQG control techniques which are 

suitable as controllers for both collocated and non-collocated flexible structural systems 

are applied to design controllers for active tensegrity structural systems to suppress 
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vibration and for shape control. The chapter concludes by discussing the findings in this 

chapter and their relationships with the other chapters of this thesis and other previous 

work on active control of flexible structures in general and tensegrity structures in 

particular. The next chapter summarizes the main findings of this thesis and presents a 

platform for future research.  
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Chapter 8 

 

CONCLUSIONS AND FUTURE WORK 

 

8.1 Conclusions 

The overall objective of the present work is to contribute to the scientific research and 

technological development by investigating tensegrity structures‘ related problems 

across a wide spectrum of engineering disciplines from a control systems perspective. 

Moreover, it can be viewed as a contribution in the process of meeting the needs of 

design challenges for the physical realization of tensegrity structures given that it 

highlights some of the most important aspects of system design that must be considered 

for the design of these structures. Potential application areas are also proposed. The 

accomplishments of this thesis are recapitulated in the paragraphs that follow.  

A new algorithm for the form-finding of tensegrity structures has been presented. 

The use of computational techniques, which is inevitable for large structures, is adopted 

in general. As such, the new method is based on the interior point constrained 

optimisation technique and the efficacy of the method is demonstrated with several 

examples. The use of the four fundamental spaces of the static equilibrium matrices in 

conjunction with the new constrained optimization approach for form-finding of large 

tensegrity structures with a complex connectivity of members was also described. 

Moreover, the new method offers control of both forces and lengths of structural 

members and this was also illustrated via several examples. However, as with other 

form finding methods, the proposed method is not without its disadvantages. The main 

disadvantage of the method is the requirement that feasible initial nodal coordinates 

must be defined for the initial tensegrity configuration. This shortcoming can be 

overcome by pre-processing the initial parameters to obtain initial feasible nodal 

coordinates.  
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Very useful systems can only be built with the right set of tools and with the 

correct set of theories. Thus, the dynamic model of tensegrity structures was derived 

using the powerful engineering design tool, the Finite Element Method (FEM), and the 

static and dynamic analyses of these structures were carried-out using representation of 

the state-space theory. The analyses exercises reveal a number of theoretical and 

numerical results. For instance, the study of the pseudo-static analysis reveals the 

following: i) for a given load, as the tension coefficients of the tensegrity structure is 

increased, the nodal displacements reduces in a nonlinear manner; ii) for a given pre-

stress level, the displacements are proportional to the nodal point loads; and iii) for a 

given load, the nodal displacements of the tensegrity structure increases linearly with 

the scale of the structure. The implication of these particular set of results in the design 

of tensegrity structural systems is that, although tensegrity structures are scalable, the 

tension coefficient has to be increased as the scale of the tensegrity structure increases 

to maintain same level of rigidity and vice versa. 

Furthermore, the effect of including additional structural members (than strictly 

necessary) on the dynamics of n-stage tensegrity structures was also examined. It was 

concluded that additional structural members‘ cause increase in the stiffness of these 

structural assemblies. It was demonstrated that a tensegrity structure with a highly 

complex configuration can be made to change its geometric properties in the event of 

structural failure through self-diagnosis and self-repair.  

Also investigated were the procedures for model reduction and optimal placement 

of actuators and sensors for tensegrity structures to facilitate further analysis and design 

of control systems. These procedures have the potential of minimizing the control 

efforts and determining the credibility of the output feedback signals. The applicability 

of these procedures was demonstrated with several examples.  

The design strategy adopted for the physical realization of tensegrity structures 

proposed in this thesis involves three main tasks which are as follow:  i) the structural 

optimization and related design issues; ii) the configuration of the hardware and the 

control architecture; and iii) the design of application software user interface and the 

implementation of the control algorithm. These stages of design were presented in 

details and the mathematical models and dynamic behaviour of the tensegrity structures 

designed were obtained. Moreover, the control of one these tensegrity structures, the 
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initial 3-bar multi-stable tensegrity structure, was achieved through decentralized 

multiple SISO control systems. 

Lastly, the active control of tensegrity structures in a multivariable and centralized 

control context is presented for the design of collocated and non-collocated control 

systems. A new method is presented in the determination of the feedback gain for 

collocated controllers to reduce the control effort as much as possible while the closed-

loop stability of the system is unconditionally guaranteed.  In addition, the LQG 

controllers which are suitable for both collocated and non-collocated control systems 

was applied to actively control tensegrity structural systems for vibration suppression 

(low-authority controllers) and precise positioning or tracking (high-authority 

controllers). 

 

8.2 Future Work 

Engineering research in tensegrity structures is still an emerging field and there are still 

many open problems. The main focus of future research, based on the findings of this 

thesis, is summarized in the paragraphs that follow.  

Techniques to obtain a set of different geometric configuration of tensegrity 

structures with the same number of structural members need further investigation. Close 

examination of the different form-finding techniques and their possible combination is 

still required to be able to explore the subsets of a given tensegrity structure to 

determine the possibility of structural transformation from one subset to another with 

and/or without the introduction of redundant structural members. Thus, the key factors 

that should determine the efficacy of any new form-finding algorithm that tackles this 

particular challenge are: (i) computational cost of obtaining one structure from another 

by varying one or more parameters of the initial structure; (ii) the number of 

optimization parameters (such as material properties, geometry, structural configuration, 

etc.) and constraints that can possibly be included or varied in the optimisation 

algorithm; and (iii) the possibility of re-configurability: obtaining one structure from 

another of different configuration. 

Mathematical modelling techniques for practical and active tensegrity structures 

are available (see Chapter 3 of this thesis, for instance).  However, in most 
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mathematical models, some fundamental assumptions have been made to simplify the 

complex mathematics involved in the theoretical derivations. These include, for 

instance, the assumptions that members are connected at the nodes in pin-jointed 

manner (the joints can only transmit forces and are affected by kinetic friction and offer 

no resistance to rotation) and the influences of external force fields (e.g. self-weight due 

to gravity, pre-stress due to temperature variation, etc.) are negligible. If tensegrity 

technology would be used for many practical control engineering applications and in a 

multi-objective optimization scenario, it is necessary to include practical considerations 

into the mathematical models. Data-driven parameter estimation methods may also be 

used for modelling purposes instead. Moreover, damping parameters of the structure 

can only actually be approximated by data-driven models.  

Further research is still required in order to design hybrid controllers for tensegrity 

structures that will combine structural optimisation and systems engineering techniques 

to determine, in addition to control outputs in the form of actuator forces/stroke lengths, 

the optimal structural geometry and the optimal path to follow in transforming from one 

structural shape to another. The computational complexities of this problem arise due 

many factors including the computation of the geometric modifications as a result of the 

additional devices (such electromechanical or piezoelectric actuators) that may have to 

be introduced to provide adjustable stuffiness and the requirement to avoid internal 

structural collisions and to have a desired final structural shape.  

Finally, to obtain useful hybrid controllers, multi-objective criteria encompassing 

conflicting demands on active tensegrity structures such as performance enhancement, 

vibratory response, and load reduction subject to multidisciplinary constraints such as 

structural stability, system weight and other material and/or physical structural 

properties, actuator and sensor locations, and structural topology, must be used. Thus, 

advanced search techniques must be developed to determine an optimally directed set of 

control actions, relative to the performance goals and their priorities since local minima 

will be present in the search space.  
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Appendix 

 

LINEAR OPTIMAL CONTROL SYSTEMS 

 

A.1 Linear Optimal State-feedback Regulator 

Consider the following linear time invariant (LTI) system: 

                  (A.1)  

with the controlled variable written in the following form:  

             (A.2) 

Also, consider the following quadratic criterion:  

                      (A.3) 

where    and    are positive-definite constant weighting matrices. The first term of 

(A.3) is equivalent to          since (A.2) can be substituted in this term to deduce 

the following expression:  

               (A.4) 

where    is a positive semi-definite matrix. A widely used starting point in the selection 

of    and    is the Bryson‘s rule [154]; however, it is convenient to choose    and    

as diagonal matrices and these matrices are subsequently modified in the design process 

to achieve an acceptable trade-off between performance and control effort [216]. The 

problem of determining an input    for which the criterion (A.3) is minimal is known as 

the time-invariant deterministic linear optimal regulator problem. It should be noted that 

various versions and extensions of the criterion expressed in (A.3) exist. The optimal 

input is generated through a linear control law of the following form:  
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              (A.5) 

where    is computed as follows:  

     
            (A.6) 

   denotes the linear optimal regulator gain while   denotes simply the linear regulator 

gain; the constant positive semi-definite matrix  , if it exists, is obtained by solving the 

following algebraic Riccati equation: 

            
               (A.7) 

Moreover, the control law expressed in (A.5) makes the closed-loop system to be 

asymptotically stable in general [151]. That is, by substituting (A.5) into (A.1), the 

resulting closed-loop system is asymptotically stable; the closed-loop system can be 

expressed as follows:  

                  (A.8) 

In addition, a linear control law       (which is not necessarily optimal) can be 

computed by choosing the linear gain matrix   appropriately (using pole-placement, for 

instance) so that the poles of the closed-loop system in (A.8) are located on the left-

hand side of the complex-plane (and complex poles appear in conjugate pairs) to 

achieve asymptotic stability with the requirement that the plant (that is, the open-loop 

system) is completely controllable. Choosing the closed-loop poles far into the left-hand 

side of the complex plane results in a transient response that dies down arbitrarily fast 

which requires large input amplitudes to achieve in general. However, if   is computed 

using (A.6), the finding of the minimum of the criterion in (A.3) takes into account 

limits on the inputs amplitudes and speed of convergence to steady-state through 

matrices    and   , respectively.  

Furthermore, the time-invariant stochastic linear optimal regulator problem can be 

expressed in the following terms: For a LTI system described by the following 

expression:  

                          (A.9a) 

                      (A.9b) 
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where   represents white noise with intensity  , the quadratic criterion (instead of the 

expression in (A.3)) is written in the following form:  

                                  (A.10) 

where      denotes the expected value operator. Equation (A.4) still holds for the 

expression in (A.10); likewise, the optimal input is computed using equations (A.4 – 

A.7). Also, if (A.5) is the solution for which the criterion in (A.7) is minimum, then the 

white noise      in Equation (A.9a) is Gaussian. The block diagrams of the time-

invariant deterministic and stochastic linear optimal regulators are shown in (a) and (b) 

of Figure A.1.  

 

A.2 Linear Optimal Observer 

In the discussion of the preceding section, it was assumed that the entire state variables 

(the complete state vector) can be accurately measured. A more realistic system can be 

expressed as follows:  

                                 (A.11a) 

                                (A.11b) 

where   is the observed variable with dimension less than (meaning that only a few 

number of state variables can be measured) or, at most, equal to that of  . Thus, it 

would be desirable to obtain or reconstruct, at least, an approximate of the value of   in 

order to be able to use the linear regulator of the preceding section. Let the 

reconstructed state be denoted as   ; the differential system that obtains     so that  

       as      is called an observer (or estimator). An optimal observer is 

commonly called the Kalman-Bucy, or simply Kalman, filter or estimator [243]. Let the 

observer of the LTI system in Equation (A.11) be represented by the following LTI 

system:  

                              (A.12) 
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Figure A.1: (a) and (b) are the time-invariant deterministic and stochastic linear optimal 

regulators, respectively.  
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The reconstructed error   can be expressed as follows:  

                         (A.13) 

Thus, subtracting (A.12) from (A.11a), and eliminating   by substituting (A.11b), leads 

to the following expression:  

                                        (A.14) 

Let     where   is an arbitrary constant matrix; if          (that is,       ), then 

from (A.14) the following expressions are valid:  

                                 (A.15a) 

                               (A.15b) 

                               (A.15c) 

Substituting (A.15) in (A.12) leads to the following three equivalent –at least 

theoretically [216] – expressions of a full-order observer (an observer that reconstructs 

the complete state vector):  

                                            (A.16a) 

                                           (A.16b) 

                                (A.16c) 

It should be noted that it is possible to find observers of dimension less than that of the 

system. These are often called reduced-order observer and are particularly useful in 

situations where the controller to be designed for a system is of much lower dimension 

than the dimension of the system. More details on the reduced-order observers can be 

found in [151], for example. Meanwhile, continuing the discussion on the full-order 

observer, substituting (A.15) in (A.14), and substituting (A.13) in the resulting equation, 

leads to the following expression:  

                                      (A.17) 

Thus, if the reconstruction error differential equation of (A.17) is asymptotically stable 

(that is,     and    ), the observer in (A.16) is also asymptotically stable. As 

such, observer designs for the LTI system in (A.11) using the observer (A.16) involves 

determining the value of the constant matrix   such that the observer is asymptotically 

stable. Moreover, just as in the determination of the constant gain matrix   for the 

regulator by pole-placement, the determination of the constant gain matrix   for the 
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observer is also possible using pole-placement with the restriction that the system 

(A.11) is completely observable. Furthermore, optimal value of the observer gain matrix 

  can be obtained by finding the minimum of a quadratic criterion. The discussion on 

the optimization method of finding   follows:  

For a LTI system described by the following expressions:  

                                    (A.18a) 

                       (A.18b) 

where    and    are the state excitation (disturbance) noise and measurement noise, 

respectively, assuming that the column vector    
   

    can be represented as a 

white noise with intensity  , then the following expressions are valid:  

    
     
     

    
      

                             (A.19a) 

       
           

   
         

               (A.19b) 

where      is already defined by Equation (4.21). The reconstruction error   is given by 

Equation (A.13). The mean square reconstruction error can be computed using the 

following expression: 

                         (A.20) 

where   is a symmetric positive definite weighting matrix which describes a measure 

of the correctness of the state reconstruction by the observer at a given time. Let (A.16) 

represent the observer for the system in (A.18); the problem of finding   such that the 

quadratic criterion in (A.20) is minimum is known as the optimal observer problem. Let 

a positive definite matrix   represent the variance matrix of   which can be described 

by the following expression: 

                                  (A.21) 

where         represents the mean of e. Assuming that       (that is,   and    are 

uncorrelated) and     , the solution to the optimal observer problem is obtained using 

the following expression:  

        
                    (A.22) 
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where    denotes the optimal observer gain. In addition,  , if it exists, is computed by 

solving the following algebraic Riccati equation:  

                  
                  (A.23) 

Q exist if and only if the system expressed in (A.18) is completely controllable, and the 

optimal observer is asymptotically stable if and only if the system is observable. Figure 

A.2 shows the block diagram of the time-invariant linear observer.  
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Figure A.2: Block diagram of a time-invariant linear observer 

 

A.3 Linear Optimal Output-feedback Controller 

Consider the system equation in (A.11) or (A.18) once again, the control system where 

the observed variable   (instead of  ) serves as the controller input is called the output- 

feedback control system; here, controller denotes a combination of regulator and 

observer units. The linear output-feedback controller, therefore, is the combination of 

the linear observer and the linear control law (regulator). Figure A.3 shows the structure 

of a linear output feedback control system; consider the following two augmented 

matrices of this closed-loop system:  

  
  
   
   

    
         

  
 
  
             (A.24a) 

 
  
  
   

      
     

  
 
 
                        (A.24b) 

where   is the reconstruction given by Equation (A.13). For asymptotic stability of this 

closed-loop system, both equations (A.24a) and (A.24b) must be asymptotically stable. 

In fact, it turns out that the characteristic values of both are the same; these 
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characteristic values consist of the characteristic values of      (the regulator poles) 

and      (the observer poles). This means that asymptotically stable regulator and 

asymptotically stable observers can be designed separately (by pole-placement or 

otherwise) and their combination results in an asymptotically stable control systems. 

This conclusion is known as the separation principle [151]. It should be noted that for a 

LTI system, controllability and observability are necessary and sufficient conditions for 

arbitrary assignment of both the regulator and the observer poles (with the restriction 

that complex poles occur in conjugate pairs).  
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Figure A.3: A structure of a linear output-feedback control system 

 

For the LTI system of Equation (A.18), let the controlled variable be given by 

Equation (A.9b) for this system; the problem of finding the optimal control law   such 

that the criterion expressed in (A.10) is minimum is known as the time-invariant 

stochastic linear optimal output-feedback regulator problem. The solution to this 

problem (the optimal linear solution) is given as follows:  

                        (A.25) 

where    is computed from Equation (A.6) and the reconstructed state    is the output 

of the linear optimal observer (that is, an observer with a linear gain matrix    
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computed using Equation (A.22)). Moreover, if    and    are Gaussian white noises, 

the optimal linear solution is the optimal solution [244]. Figure A.4 shows the structure 

of the optimal linear output-feedback control system for a system with state excitation 

and measurement noises.  
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Figure A.4: A structure of the optimal linear feedback control system for a system with 

state excitation and measurement noises 

 

A.4 Linear Optimal Tracking System and Integral Control 

So far, only the control system in which the reference variable is constant, and as such 

the controller is designed for good disturbance rejection, has been considered. A step 

further in the design process is to include a command following, or tracking, feature 

into the controller so that the controlled variable tracks a reference variable that is not 

necessarily a constant. Accordingly, the regulator problem is a special case of the 

tracking problem. 

Among many possible configurations, the most widely used block diagram of a 

linear tracking control system is shown in Figure A.5; compared to Figure A.3, extra 

blocks (matrices)   and    are introduced in this figure. Thus, the task of designing a 

linear tracking control system involves finding the values of matrices   and    in 
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addition to finding the regulator and observer gain matrices. Moreover, the equation of 

the linear observer for this linear tracking control system is obtained by adding (   ) 

to the expression in Equation (A.16); this can be expressed as follows: 

                                       (A.26) 

Also, the control law for this case is obtained by adding (    ) to the control law 

(      ); this can be written as follows: 

                             (A.27) 

It should be noted that both   and    are external signals (as can be seen from 

equations (A.26) and (A.27)) and, as such, the characteristic values of the closed-loop 

system are not affected by their introduction into the control system. Thus, the 

characteristic values of both the linear output-feedback control systems of Figures A.3 

and A.5 are the same (of course, it is assumed that the plant matrices  ,  ,  ,   and the 

regulator and observer gain matrices,   and   respectively, are the same for both 

control systems). It should be noticed that the configuration of Figure A.3 can be 

obtained by substituting    ,     and      in the configuration of Figure A.5 

(making Figure A.3 a special form of Figure A.5). Importantly, this indicates that, for 

the configuration of the linear tracking system of Figure A.5, if   and    are known, the 

design task remains determining the optimal linear output-feedback controller; this can 

be done using the separation principle, for example, of the preceding section (Section 

A.3) and doing so using the optimal solutions of the quadratic criteria for computing the 

optimal regulator and observer gains gives the linear optimal tracking control system for 

this configuration. However, different possible configurations (that can be defined by 

the different choices of matrices   and   ) of a linear tracking system give different 

responses to command input mainly because (while the closed-loop poles are identical) 

the zeros of the transfer function are different in general. Consequently, the matrices    

and   affect the transient response but not the stability of the linear tracking systems. 

One of the techniques of obtaining matrices   and    is given in [216]; this technique is 

described in the paragraph that follows. 
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Figure A.5: A block diagram of a linear tracking control system 

 

For a general linear tracking system, the control input can be expressed as 

follows: 

                        (A.28) 

At a steady state of zero error, a general system ( ,  ,  ,  ) has its differential 

equation reduced to the following expressions: 

                                     (A.29a) 

                            (A.29b) 

where    ,     and     are constants denoting the values of the state variable, control 

input and output variable at steady-states. Thus, at steady-state, the control law can be 

expressed as follows: 

                              (A.30) 

With this equation, no error implies that       and      . It would be desired that 

the following expression is true at steady-state: 

                         (A.31) 
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where     denote the reference variable at steady-state. Let       and      ; 

then at steady-state, the expressions for     and     can be written as follows: 

                                  (A.32a) 

                                   (A.32b) 

Substituting (A.32) in (A.29), noting the equation in (A.31) and re-arranging the 

resulting expression, leads to the following equations: 

 
  
  

  
 
 
   

 
 
                          (A.33a) 

 
 
 
    

  
  

 
 

 
  
  

  
  

 
  
  

  
 
 
            (A.33b) 

That is, Equation (A.33a) can be solved for   and   using (A.33b) if it is given that 

matrices  ,  ,   and   are known. Moreover, by substituting Equation (A.32) in 

(A.30), the following expression is obtained: 

                          (A.34) 

where         (the subscript ‗  ‘ has been removed from A.34 to indicate that 

this is the control law in the general case; the steady-state is a special case of this). The 

expression in (A.34) is the input required to get a steady-state error of zero to a step-

input. Hence, the values of   and    obtained using the technique that has just been 

described can then be used for the linear tracking control system whose block diagram 

is shown in Figure A.5. However, this control system is not robust to plant parameter 

changes and therefore will result to non-zero error when the system parameters or 

reference variables change [216]; as such, the inclusion of integral action (thereby, 

making the system an Integral Control System) can be used to tackle this problem and 

obtain a robust tracking system. 

Consider the introduction of an integrator in a linear output-feedback control 

system as shown in Figure A.6. The integral state    and its differential equation can be 

written as follows: 

                                 (A.35a) 

                                   (A.35b) 
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where       is the feedback error. Thus, an augmented state equation formed by 

the plant and the integral state equation can be written as follows:  

    
  
   
   

  
   

  
 
  
   

 
 
    

 
 
              (A.36a) 

        
 
  
                (A.36b) 

where        
    and the control input   is now given by the following 

expression:  

                        (A.37) 
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Figure A.6: A block diagram of an Integral Control System 

 

The augmented state equation in (A.36) and the control law in (A.37) can now be 

expressed in the form of the standard linear optimal regulator problem of Section A.1 

using the following state-space model:  

                                    (A.38a) 

                                 (A.38b) 

                                 (A.38c) 

where    
  
   

 ,    
 
 
  and       ; moreover, the following quadratic 

criterion for determining optimal linear regulator gain for the deterministic and 

stochastic cases (instead of (A.3) and (A.10), respectively) must now be used:  

                                          (A.39a) 

                                (A.39b) 
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where     
   
   

  and    is a constant positive definite weighting matrix. Optimal 

value of   can thus be computed as presented in Section A.1 with    replaced with   . 

Also,   can be partitioned as            so that Equation (A.37) can be written as 

follows: 

         
 
  
                        (A.40) 

It should be noted that the state variable   in (A.40) is to be determined by an 

observer. Thus, the structure (block diagram) of a linear optimal tracking system with 

integral action can be obtained using the following steps: 

Step 1: Substitute Equation (A.40) into the block diagram of Figure A.6 

Step 2: Add the observer defined by Equation (A.26) into the resulting structure (where 

  is now replaced with the output of the observer   ). It should be noted that the observer 

is obtained by substituting (A.27) in (A.26); the observer equation for the block diagram 

can therefore be written as follows: 

                                     (A.41) 

where       . 

Step 3: Connect the block diagram so that the control law is obtained by adding (   ) 

to (A.40); this can be expressed as follows: 

                              (A.42) 

The final structure of the optimal linear tracking system with integral control is 

shown in Figure A.7. The observer gain matrix   in this system is computed either by 

pole-placement or by finding an optimal solution to a quadratic criterion (minimum of a 

quadratic cost-function) as discussed in Section A.2.  

In summary,   and   can be found separately – in accordance with the separation 

principle – by pole-placement which involves assigning the characteristic values of the 

regulator system         and the observer system       , respectively, so that 

these two systems are asymptotically stable. Optimal   and   can be obtained by 

solving the optimal linear regulator and the optimal linear observer problems, 
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respectively, using techniques described in Sections A.1-A.3. However, in solving for 

 , the augmented state equation of (A.38) must be used as the state-space model. The 

regulator gain   and the integral gain    are the left- and right-hand side partitions of 

 , respectively. 
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Figure A.7: A structure of the optimal linear tracking system with integral action 

 

 

 


